

IBM Application Program Driver/400 Version 3

Developer's Guide

Release 6.0

SH12-6404-00

IBM IBM Application Program Driver/400 Version 3

Developer's Guide

Release 6.0

SH12-6404-00

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First Edition, September 1995

This edition applies to Release 6 Modification Level 0 of IBM Application Program Driver/400 Version 3 (5716-PD1) and to all subse-
quent releases and modifications until otherwise indicated in new editions or technical newsletters. See the Summary of Changes for
the changes made to this manual. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you may address
your comments to the following address:

IBM Anwendungssysteme GmbH
Information Development, Department 5160
Postfach 72 12 80

 30532 Hannover
 Germany

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1988, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming Interface Information . vii

Interfaces for Version 3 Release 6 . viii
Trademarks and Service Marks . viii

About This Book . ix
Who Should Read This Book . x

Summary of Changes . xi

Chapter 1. Introduction . 1
Concept of Installations, Applications, and Data Sets 1

Installations . 2
Applications . 2
Data Sets . 3

Symbolic Libraries and Library Name Templates 3

Chapter 2. Developing an APD/400 Application 6
Building a New Application . 6
Using APD/400 Functions in Existing Applications 7
Design Considerations . 7

Using Libraries . 8
Using QTEMP . 8
Using Folders . 8
Restart . 9

Describing the Application . 9
Creating an AIP . 13

Principles of the AIP . 14
Parameter Passed to the AIP . 14
Sample AIP . 20
Additional Sample AIPs . 21

Full-Function AIP . 22
Standard AIP . 22

Modifying an AIP . 23
Changing the Library List . 23
Allowing for Multiple Installations . 23
Allowing for Multiple Data Sets . 23
Allowing for Multilingual Support . 24
Changing the Job Description . 24
Starting Commitment Control . 24
Saving the Local Data Area . 24
Opening Files . 25
Putting a Time Lock on the Application . 26

Set and Reset an Application Environment . 27
Describing Tasks and Menus . 29
Describing the Authorization Structure . 29

API for Authorization . 30
User Exit for Authorization . 30

Describing Exclusions . 30
User Exit for Exclusions . 31

 Copyright IBM Corp. 1988, 1995 iii

API for Exclusions . 31
Describing Menu Help Texts . 31

Help Texts in Folders . 32
Help Texts in Display Files . 32
Help Texts in Panel Groups . 32
Help Texts Using User Exits . 32

Displaying Messages . 32

Chapter 3. Packaging, Shipping, and Installing an APD/400 Application . 34
Overview . 34

Base Installation of an Application . 36
Updating an Application . 37

Creating the Standard Product Package . 39
Creating a List of Application Library Descriptions 39

Adding an Application Library Description 40
Changing an Application Library Description 42
Deleting an Application Library Description 42

Creating the QAPDIAHDR Library . 43
Creating the Installation Tape . 43

Sample Scenarios . 45
Model 1: Centrally Maintained Software . 45
Model 2: One Tape for Base Install and Update 47

Considerations for Multilingual Support . 49

Chapter 4. User Exits and APIs . 50
User Exits . 51

Calling User Exits from APD/400 . 51
User-Exit Communication Area . 51
Messages from User Exits . 52

User-Exit Descriptions . 53
ADMDSTE Administer Data-Set Entries . 53

Interface Description . 53
BCHPRM Overwrite Batch Task Parameter 54

Interface Description . 55
CHKAUT Check Authorization . 56

Interface Description . 56
CHKEXC Check Exclusion . 57

Interface Description . 57
DSPHLP Display Help . 58

Interface Description . 58
POSTINS Post-Installation . 60

Interface Description . 60
SAVRST Save/Restore . 61

Interface Description . 61
APIs . 62

API Server . 62
Migration . 63
APIs from Previous Releases . 63
Calling an API . 63

Completion Codes . 64
Defaults for Optional Parameters . 65

Messages . 66
API Descriptions . 66

ADDADTE Add Audit File Entry . 66

iv Developer's Guide

Interface Description . 66
Example . 68

CHGAPPD Change Application Definitions 69
Interface Description . 71

CHGDST Change Data Set . 72
Interface Description . 72

CHKAUT Check Authorization . 73
Interface Description . 73

CHKEXC Check Exclusion . 74
Interface Description . 74
Example 1 . 76
Example 2 . 79

CMPAPPD Compare Application Definitions 79
Interface Description . 79

DLTAPPD Delete Application Definitions . 80
Interface Description . 80

DSPINSAPP Display Installed Applications 81
Interface Description . 81

EXTAPPD Extract Application Definitions . 84
Interface Description . 84

INSAPPD Install Application Definitions . 85
Interface Description . 85

SCHBATCH Schedule a Batch Task . 87
Interface Description . 87
Example . 89

SETRST Set Restart Code . 90
Interface Description . 90
Example . 91

SNDMSG Send Message . 92
Interface Description . 92

WRKDST Work with Data Sets . 93
Interface Description . 93

WRKINS Work with Installations . 95
Interface Description . 95

WRKSAVOBJ Work with Save Objects . 96
Interface Description . 97

Appendix A. Layout of File QAAFTASK0 101
Record Layout . 101
Extended Field Descriptions . 102

Appendix B. Layout of File QAAFMENU0 105
Record Layout . 105

Appendix C. Adding Tasks to the Task File 107

Appendix D. Evaluating the APD/400 Audit File 109
Creating Audit File Query Reports . 111

Example 1 . 111
Example 2 . 112

 Contents v

Glossary of Terms and Abbreviations . 115

Bibliography . 119

Index . 121

vi Developer's Guide

 Notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's intellec-
tual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Corporation,
208 Harbor Drive, Stamford, Connecticut 06904.

For online versions of this book, we authorize you to:

� Copy, modify, and print the documentation contained on the media, for use
within your enterprise, provided you reproduce the copyright notice, all warning
statements, and other required statements on each copy or partial copy.

� Transfer the original unaltered copy of the documentation when you transfer the
related IBM product (which may be either machines you own, or programs, if
the program's license terms permit a transfer). You must, at the same time,
destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes,
resulting from this authorization.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Some jurisdictions do not allow the exclusion of implied warranties, so the above
exclusion may not apply to you.

Your failure to comply with the terms above terminates this authorization. Upon
termination, you must destroy your machine readable documentation.

Programming Interface Information
This book is intended to help developers enable AS/400 programs to run under
APD/400, and develop programs that use the functions and services of APD/400.

This book also documents General-use Programming Interface and Associated
Guidance Information provided by APD/400.

General-use programming interfaces allow the customer to write programs that
obtain the services of APD/400.

General-use Programming Interface and Associated Guidance Information is identi-
fied where it occurs, either by an introductory statement to a chapter or section or
by the following marking:

 Copyright IBM Corp. 1988, 1995 vii

General-use programming interface

General-use Programming Interface and Associated Guidance Information...

End of General-use programming interface

Interfaces for Version 3 Release 6
Certain interfaces described in this book (the Audit file is an exception) are valid for
Version 3 Release 6 of APD/400 and are not general-use programming interfaces.
These interfaces may change in future releases of APD/400, and should not be
used on target systems. The applicable interfaces are marked throughout this
book.

Trademarks and Service Marks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

Application System/400 AS/400
Common User Access CUA
Operating System/400 OS/400
IBM OfficeVision/400
SQL/400

viii Developer's Guide

About This Book

This book provides application developers with the necessary information to enable
Application System/400* (AS/400*) application programs to run under IBM Applica-
tion Program Driver/400 Version 3 (program number 5716-PD1), in the following
referred to as APD/400, and to develop applications that use the functions and ser-
vices of APD/400.

You can use the provided facilities and services for menu creation and control,
authorization checking, exclusion control, installation support, and so on, instead of
creating and maintaining these functions within your application.

Chapter 1, “Introduction” on page 1 describes the APD/400 concepts of installa-
tions, applications, and data sets, and how symbolic libraries and library name tem-
plates are used for applications that are multiinstallable or multi-data set enabled.

Chapter 2, “Developing an APD/400 Application” on page 6 explains how to
develop an application to run under APD/400. Topics explain how to build and
describe an application, including how to create an application interface program
(AIP), how to modify an AIP, how to describe the application tasks and menus,
authorization structure, exclusions, and menu Help texts, and how to display mes-
sages.

Chapter 3, “Packaging, Shipping, and Installing an APD/400 Application” on
page 34 describes the procedures to develop an APD/400 application on a source
system, package it, and install it on to a target system. Sample scenarios are
included, and considerations are given for applications that are enabled for multilin-
gual support.

Chapter 4, “User Exits and APIs” on page 50 contains a description of the user
exits and application program interfaces (APIs) supplied with APD/400. For each
user exit and API, a listing of the interface parameters is given.

Appendix A, “Layout of File QAAFTASK0” on page 101 shows the layout of the
APD/400 Task file.

Appendix B, “Layout of File QAAFMENU0” on page 105 shows the layout of the
APD/400 Menu file.

Appendix C, “Adding Tasks to the Task File” on page 107 shows how tasks can be
added to the APD/400 Task file.

Appendix D, “Evaluating the APD/400 Audit File” on page 109 shows the layout of
the APD/400 Audit file. Examples are included on how to create Audit file query
reports.

The back of this book provides a glossary containing definitions of terms used
across the APD/400 library, a bibliography, and an index.

 Copyright IBM Corp. 1988, 1995 ix

Who Should Read This Book
This book is for application developers. Some knowledge and experience of the
following is assumed:

� AS/400 computers and the Operating System/400* (OS/400*) operating envi-
ronment.

� The administrative functions of APD/400 (see the IBM Application Program
Driver/400 Version 3: Administrator's Guide for an explanation of these func-
tions).

� AS/400 Control Language (CL) commands.

� How to create and modify a CL program using the Source Entry Utility (SEU)
and the OS/400 command CRTCLPGM (create CL program).

x Developer's Guide

Summary of Changes

The following major changes have been made since Version 3 Release 1:

� The API CHKEXC has been enhanced in two points.

– It is possible to check/set exclusion for other than current data set.

– If an exclusion is identified, information about this exclusion is provided via
the API.

 Copyright IBM Corp. 1988, 1995 xi

xii Developer's Guide

 Chapter 1. Introduction

This chapter introduces APD/400 by describing how:

� APD/400 is divided into installations
� Applications can be installed into installations
� Application data is organized
� Symbolic libraries and library name templates are used for applications that are

multiinstallable or multi-data set enabled.

Concept of Installations, Applications, and Data Sets
APD/400 is divided into installations. You could, for example, create different
installations for testing, education, and production.

In the example in Figure 1, APD/400 is divided into the installations ␣␣␣ (the
default installation that always exists), IN1, and IN2.

Applications belong to installations; the same application can be installed more than
once in different installations.

APD/400 itself can be considered as an application running under APD/400. For
example, all APD/400 tasks (Administer, Select, and OfficeVision/400 functions)
belong to the application APD. APD is installed only in installation ␣␣␣ (3 blanks),
although APD/400 tasks can be started from all installations. However, adminis-
tering APD/400 tasks, authorization lists, and so on, is possible only from the instal-
lation ␣␣␣.

Application APD+ is created automatically by APD/400 for every installation. The
purpose of this application is to hold all personal menus and other user-created
objects. APD+ tasks are visible only in the installation to which they belong.

Data sets are used to separate different sets of data for one application, for
example, data for different companies for a financial application. In the following
example, application AP1 installed in installation IN1 has 3 different data sets: DS1,
DS2, and DS3.

 APD/4��
 ┌───────────────────┘│└────────────────────┐
 │ │ │
Installations IN1 ␣␣␣ IN2
 ┌────┘│└────┐ ┌────┘│└────┐ │└────┐

│ │ │ │ │ │ │ │
Applications AP1 APD+ AP2 APD APD+ AP2 AP1 APD+
 ┌────┘│└────┐ ┌────┘ └────┐

│ │ │ │ │
Data Sets DS1 DS2 DS3 DS1 DS3

Figure 1. Installations, Applications, and Data Sets

 Copyright IBM Corp. 1988, 1995 1

 Installations
The first subdivision is installations. An installation is identified by a 3-byte installa-
tion ID.

Every application running under APD/400 control belongs to an installation (which
must be specified at installation time). The same application can be installed as
many times as required if the application developer follows the rules described for
symbolic libraries and library name templates on Pages 41 and 42. If the same
application is installed twice (as, for example, AP1 is installed in installations IN1
and IN2), two copies of the complete application code must exist, that is, applica-
tion objects and data, and APD/400 control objects (menus and authorization lists).

Installing the same application more than once can be used as follows:

� For having a production and a tutorial version of the same application.

� For a new release of an application for a customer. The new release is first
installed into an installation other than the one containing the current production
version. It is tested, and when it is found to be working correctly, it can
become the production version.

� For a software developer who wants to have all versions of an application on
the same system for maintenance reasons. This can be done by installing the
application into different installations.

Every user has a “current” installation in which to work. This current installation
can be changed using the Select Installation function (SLTINS).

Access to an installation can be secured by an authorization list. The authorization
list used by APD/400 is called INST_nnn, where nnn is replaced by the installation
ID. This authorization list belongs to the application APD, and can be changed using
the Administer Authorization Lists function (ADMAUT).

 Applications
The second subdivision is applications. Applications are identified by the installa-
tion ID and a 7-byte internal application ID. For IBM* applications, this is the
product number; for non-IBM applications, a similar 7-byte identifier. For conven-
ience, the customer may specify a so-called external application ID at installation
time (it is easier to remember APD than 5763PD1).

An unlimited number of applications may exist within one installation. The only limi-
tations are that the applications must not share the same libraries, and that the
internal and external application IDs must be unique within one installation.

All application definitions controlled by APD/400 (for example, menus and authori-
zation lists), are identified by:

Installation ID +
(internal) Application ID +
Item name (for example, menu name).

A menu MENU1 could exist twice within one installation if it belongs to different appli-
cations (for example, to AP1 and to AP2 in installation IN1).

2 Developer's Guide

 Data Sets
The third subdivision is data sets. The concept of data sets allows you to have
different sets of data for the same application with the same functional code and
the same APD/400 application definitions.

Different technical methods to implement data sets are supported by APD/400:

 � Separate libraries
� Separate members in database files
� Separate records in database files.

Using separate libraries is the default method supported by APD/400 at installation
and runtime (see Page 42).

Methods using separate members and separate records in database files have
runtime support but no installation support.

APD/400 supports selection of a data set with the Select Data Sets function
(SLTDS). This function allows a user to select a data set from a list of data sets
that the user is authorized to use. Authorization is provided by means of an author-
ization list that can be assigned to a data set using the Administer Data Sets
function (ADMDS).

At runtime, APD/400 also supports data sets in the exclusion concept. Exclusions
can be defined to be valid only within the same data set (for example, an applica-
tion function is allowed to run with different data sets at the same time but is not
allowed to run with the same data set at the same time), or for all data sets (for
example, an application function is not allowed to run twice at the same time
regardless of the data sets used).

Because the technical implementation is not limited, APD/400 does not support it at
runtime. For example, setting library lists (using separate libraries), overriding data-
base files to special members (using separate members), or working only with
selected records in a database file (using separate records in database files), must
be done in the application programs. The only support provided by APD/400 is that
the names of the current installation, application, and data set are passed to the
AIP.

Data sets can be added using:

 � Install Applications (INSAPL)
� Administer Data Sets (ADMDS)
� The Install Application Definition API (INSAPPD)
� The Work with Data Sets API (WRKDST).

Symbolic Libraries and Library Name Templates
When an application is designed to be installed more than once under APD/400
(multiinstall enabled), and to work with data sets (multi-data set enabled), or both,
the application developer has several problems:

� At installation time, the customer selects the name of the installation and data
set. These names are not known when the developer packages the applica-
tion.

 Chapter 1. Introduction 3

� Multiinstall enabling (always) and multi-data set enabling (frequently) means
that the names of application objects (libraries, members, and so on) can be
determined only at install time.

How does the developer instruct APD/400 to change OS/400 object names at
install time?

� APD/400 supports Help for menus using display files or panel groups stored in
libraries. If the name of the library is determined at installation time, how can
the developer specify the name of the library at development time?

� APD/400's exclusion control provides allocation of OS/400 objects stored in
libraries. If the name of the library is determined at installation time, how can
the developer specify the name of the library at development time?

APD/400 provides a solution to these problems using library name templates and
symbolic library names.

The library name template is used by APD/400 to form new library names based on
the template plus the installation and data-set IDs selected by the customer at
installation time. The following example might be the library name template:

The APD/400 Install Applications function restores library OBJLIB from tape to
library OLBIN1 (for installation IN1), and to library OLBIN2 (for installation IN2).
The data library DTALIB is restored to DLBIN1DS01 (for installation IN1 and data
set DS�1), and respectively for the other data sets and installations. The symbolic
name remains the same (OBJLIB and DTALIB), regardless of the resolved name.

The following table shows the list of libraries used in the APD/400 data repository
after installation to IN1 with data sets DS�1, DS�2, and DS�3, and to installation IN2
with data sets DS�1 and DS�3.

You can now use the symbolic library name as follows:

� As the name of the library used to store online Help display files or panel
groups (specified using the Administer Applications (Developer) function
(ADMAPP).

Table 1. Example Library Name Template

Name on Tape Symbolic Name Library Name Template

OBJLIB OBJLIB OLB&I1.&I2.&I3.

DTALIB DTALIB DLB&D1.&D2.&D3.&D4.&I1.&I2.&I3.

Table 2. Libraries Used after Installation

Installation Data Set Symbolic Name Resolved Name

IN1 OBJLIB OLBIN1

IN1 DS01 DTALIB DLBIN1DS01

IN1 DS02 DTALIB DLBIN1DS02

IN1 DS03 DTALIB DLBIN1DS03

IN2 OBJLIB OLBIN2

IN2 DS01 DTALIB DLBIN2DS01

IN2 DS03 DTALIB DLBIN2DS03

4 Developer's Guide

If, for example, &OBJLIB (when the symbolic name is used it must be preceded
by an ampersand) is specified for the Help library and the current installation is
IN1, APD/400 searches library OLBIN1 for the Help object.

� As the name of the library used in an object exclusion list.

For example, an object exclusion list is defined where the symbolic library
name &DTALIB is specified as the library of a data area to be allocated *EXCL.
The current installation is IN1 and the current data set is DS�1.

If the exclusion is defined as type 1 (single data set), APD/400 would attempt
to allocate the data area in library DLBIN1DS01.

If the exclusion is defined as type 2 (all data sets), APD/400 would attempt to
allocate the data area in libraries DLBIN1DS01, DLBIN1DS02, and
DLBIN1DS03.

The main advantage of this method is that software developers are not concerned
with library names on the target system. They specify the template to be used for
an application, and use only symbolic library names in the online Help and exclu-
sion definitions.

 Chapter 1. Introduction 5

Chapter 2. Developing an APD/400 Application

This chapter details the procedures for developing an application to run under
APD/400. The following are described:

� Building a New Application
� Using APD/400 Functions in Existing Applications

 � Design Considerations
� Describing an Application
� Creating an AIP
� Modifying an AIP
� Describing Tasks and Menus
� Describing the Authorization Structure

 � Describing Exclusions
� Describing Menu Help Texts

 � Displaying Messages.

Building a New Application
The following are the steps to build a new application to run under APD/400:

Install APD/400
You must have APD/400 installed before you start. See the IBM Application
Program Driver/400 Version 3: Administrator's Guide for details.

Define the New Application in APD/400
Every new application must be made known to APD/400. This can only be
done by the person with the user profile of the APD/400 administrator.

The APD/400 administrator uses the Administer Applications (Developer)
function (ADMAPP) to describe the new application to APD/400. This function
can only be accessed using an expert code, and not via a menu. The
APD/400 administrator should specify you (the application developer) as the
administrator of the new application.

See “Describing the Application” on page 9 for details.

Plan the Menu Tree
After the APD/400 administrator has defined the application, you sign on with
the user profile of the administrator of the new application. You are now ready
to build your application.

Design the menu tree of your application. Consider the following:

� If your application needs protection by an authorization scheme, you can
identify menus and tasks where authorization checking should be done. It
saves time if you create the required authorization lists now, because you
can then use the names of the authorization lists when you enter tasks and
menus.

For a description of authorization checking, see “Describing the Authori-
zation Structure” on page 29.

� If you have programs that should not run at the same time, you can identify
these programs.

For a description of exclusion checking, see “Describing Exclusions” on
page 30.

6 Copyright IBM Corp. 1988, 1995

Describe the Menu Tree in APD/400
To describe the menu tree in APD/400, first enter the tasks (the leaves of the
menu tree). The Administer Menus function described in IBM Application
Program Driver/400 Version 3: Administrator's Guide is used to create tasks.

Once you have entered the tasks, you can build menus that contain these
tasks, and higher-level menus that contain the defined menus. You can select
to display menus in windows or full-screen, assign menu bars to menus, and
pull-downs to menu bars. You can also enable text fields for multilingual
support.

At this stage, you can also implement a naming scheme for the programs of
your application.

You build the menu tree “bottom-up.” This method gives you an early prototype
for navigation through your new application.

Select Names for Libraries That Contain Programs and Data
The next step is to select names for the libraries in which you want to store the
programs and data of your application.

Write the AIP
You must write a program to interface between APD/400 and your application
programs. This program is the AIP.

Write the Programs of Your Application

Using APD/400 Functions in Existing Applications
Essentially, the procedure is the same as that described for building a new applica-
tion. You do not have to plan the menu tree and program names, as they already
exist.

If the existing application has stored a menu structure or task definitions in files, it
may be possible to save development time. To do so, write a short program, or
use SQL/400* statements to transfer data from the application's file to APD/400
files. See Appendix C, “Adding Tasks to the Task File” on page 107 for details.

 Design Considerations
APD/400 integrates different applications. This means that an APD/400 adminis-
trator can define menus that contain tasks of different applications.

Each application has a different environment. APD/400 does not try to use param-
eters for the environment, but uses a more versatile method. The developer of an
application writes an AIP, which is processed by APD/400 whenever a user selects
a task of the application program.

The AIP sets the environment for the application, calls the application program, and
resets the environment.

 Chapter 2. Developing an APD/400 Application 7

 Using Libraries
When an APD/400 application is installed, a library QAPDIAHDR is created. This
name is reserved for APD/400.

If your application can be installed multiple times, or if you want to take advantage
of the “free” multiple data-set solution of APD/400, your programs cannot directly
address libraries. To check this, inspect the outfile from the Display Program Ref-
erences (DSPPGMREF) command, to see the libraries used by your application.
The field WHLNAM should contain only spaces, *LIBL, QTEMP, and so on. Hard-
coded library names in this field mean that your application directly addresses
libraries.

For multiple installability, there are limitations in naming your libraries. See the
description of the Library name template field on page 42 for a description of how
to build library names. Do not give your libraries names such as LIBRARY or
DATALIB.

If you use three characters of the installation ID and four characters of the data-set
ID as suffixes, you have only three characters remaining to uniquely name your
libraries. Using only (the first) two characters of the data-set ID gives you a total of
five fixed characters in your library names.

You are not limited in the maximum number of application libraries, but you must
have at least one.

 Using QTEMP
All applications share the same temporary library (QTEMP). Names like DTAARA
or TEMP for objects in QTEMP should be avoided. Use unique names for the
objects in QTEMP. You could use the following to ensure uniqueness:

 #yyyyyyynn

Where:

yyyyyyy = the internal application ID
nn = a serial number from �� - 99

Also, your application may compete with itself in the case of multiple installations.
You might try some naming algorithm combining the internal application ID and the
installation ID. This is significant because of the limitation on the length of object
names. A better solution could be to have a data area in QTEMP (for example,
#yyyyyyy00) containing the previous (initialized) installation ID. If the installation
changes, you can delete your objects from QTEMP and any overrides you have
created, and reinitialize. Do not use commands such as CLRLIB LIB(QTEMP) or
DLTOVR FILE(*ALL).

Do not use any names starting with Q for objects in QTEMP.

 Using Folders
APD/400 cannot install subfolders, so you should only use a “root” folder for storing
Help texts.

In the case of multiple installations of an application, there is only the last installed
version of the APD/400-installed Help text available.

8 Developer's Guide

Because other applications may also install folders, avoid names like HELP or
DOC. An acceptable naming convention would be to use the internal application ID
as the folder name.

 Restart
APD/400 accomplishes restart by passing the application number of the interrupted
job (see field JOBNA in “Parameter Passed to the AIP” on page 14) with a flag sig-
naling the restart (see field RSTKZ in “Parameter Passed to the AIP” on page 14) to
the AIP.

In the case of a multiple screen application program, the program itself must estab-
lish the point at which the interruption occurred, and reroute to that point. This
requires additional programming, for example, by writing routing information (such
as display numbers) and data to an intermediate work file, but the result is that the
user can be returned to the same display as when the interruption occurred.

Describing the Application
If you want to create a new application or use an existing application with APD/400,
you must first describe the application. The application description can be created
using the Administer Applications (Developer) function. To use this function,
you need the APD_ADMIN authority.

Use the expert code (ADMAPP) to invoke the function. The following is displayed:

C D
 APD/ADMAPP Administer Applications (Developer)

 Type options, press Enter.
 2=Change 3=Copy to library QAPDIAHDR 12=Work with application libraries

 Option Application ID Inst. Application text
 External Internal

__ YOURAPPL 1234WP1 Text of your application
__ OFC 5738WP1 AS/4�� Office - OfficeVision/4��

F3=Exit F5=Refresh F6=Add F12=Cancel F17=Position to

P Q

Figure 2. Administer Applications (Developer)

To add an application description to the APD/400 database, select F6 (Add). The
first page of Add Application Entry is displayed. On this page, you enter:

 Chapter 2. Developing an APD/400 Application 9

Application text
A brief description of the application.

Notes:

1. This description is displayed on the Administer Applications menu and
many of the APD/400 menus.

2. You can enter &msg symbols in this field to retrieve text for a specific lan-
guage. For more information on multilingual support, see the IBM Applica-
tion Program Driver/400 Version 3: Administrator's Guide.

Application administrator
The user ID (user profile) of the administrator responsible for this application.

Note: Administration functions for the new application can be performed only
by this user.

If you ship your application, this user profile name is also shipped. If your
application is installed on another driver, the application administrator has a
user profile with this name. If a user profile with this name does not exist in the
other driver, a user profile is created by APD/400 at installation time, with
default parameters. On the installation tape, it should be the name of the
owner of all application objects.

Audit
The default value for task auditing (Y=Yes, N=No).

When you have entered the required information, press F8 (Page Down) to display
the second page of Add Application Entry. On this page, you enter:

Display blank line if missing option(s)
Enter Y to specify that a menu option that does not exist or the user is not
authorized to use is represented by a blank line. Otherwise, the subsequent
options and subheadings are moved up one line (see IBM Application Program
Driver/400 Version 3: Administrator's Guide for more information on structuring
menus).

If two or more sequential options are missing, only one blank line is displayed.
No blank line is displayed if the missing option is immediately preceded by a
column heading or subheading, or if it is the first option on a menu page or in a
column.

Note: This is not valid for menus in windows.

Menu heading name
The name of the menu heading format to be used for the application (for more
information on menu heading formats, see IBM Application Program Driver/400
Version 3: Administrator's Guide).

This value is used as the default value for the tasks of this application. It is
overridden if a different value is specified for a specific task.

If a menu heading format name is not specified here or for the menu task, the
menu is displayed with APD/400 default heading lines.

Note: Depending on environment parameters, no menu headings are shown
in windows.

Menu column format
Specify whether you want to use single-column or double-column format for the
application menus.

10 Developer's Guide

Note: Only single-column format can be used in windows.

Menu bar
The menu bar for this application that is used if no menu bar is described on
the menu level.

Note: Menu bars are not used in windows.

Display menus in windows
The definition on application level of whether menus should be displayed in
window or full-screen format. This is the default that APD/400 uses if nothing
is specified for the tasks of the application.

On this page, you can also press F18 (Change attributes) to specify the presenta-
tion of full-screen menus and windows (“Administering Applications” in IBM Applica-
tion Program Driver/400 Version 3: Administrator's Guide describes how to change
display attributes).

When you have entered the required information, press F8 (Page Down) for the
third page of Add Application Entry. On this page, you enter:

Version
The version number you want to give your application.

Release
The release number you want to give your application.

Modification
The modification number of your application, if applicable.

Copyright information
The copyright text for your application. The copyright information you enter is
displayed in the message line whenever a user first enters your application.

When you have entered the required information, press F8 (Page Down) for the
fourth page of Add Application Entry On this page, you enter:

Help for menus

Type For your application menus, APD/400 can display Help informa-
tion. You can provide this Help information as:

 1. OfficeVision/400 documents
 2. Display files

3. UIM panel groups
 4. User exit.

OfficeVision/400 documents are stored in a folder, and display
files and UIM panel groups are stored in a library.

In this field, enter the number representing the type of Help you
want to use in your application. Enter � in this field if you do not
want to use Help support.

Folder/Library/User exit
Input is required in this field if you have specified a value other
than � in the Type field. Enter one of the following:

Folder name If you specified 1 (OfficeVision/400 docu-
ments).

 Chapter 2. Developing an APD/400 Application 11

Library name If you specified 2 (Display files) or 3 (UIM
panel groups). Remember that ten characters
is the maximum for a library name. You can
use a symbolic library name here. A symbolic
library name starts with an ampersand (&).
See Page 41 for more information on sym-
bolic libraries.

User-exit name If you specified 4 (User exit). Remember that
ten characters is the maximum for a user-exit
name.

If you have selected 1, 2, or 3 as the Help type, and specify RMRI
as folder or library, APD/400 determines which language folder or
library to use. That folder or library contains language-dependent
data in whatever language the user selected for the application.

When you have entered the required information, press F8 (Page Down) to display
the fifth page of Add Application Entry.

If you want APD/400 to call user exits when processing your application, on this
page you specify the names of your user-exit programs.

Pre/post save/restore
The name of the user exit to be called whenever a library belonging to the
application is saved or restored. For more information, see “SAVRST
Save/Restore” on page 61.

Administer data sets
The name of the user exit to be called from Administer Data Sets whenever a
data-set entry is created, modified, or deleted. For more information, see
“ADMDSTE Administer Data-Set Entries” on page 53. If the field is left blank,
no user exit is called.

When you have entered the required information, press F8 (Page Down) to display
the sixth page of Add Application Entry. On this page, you enter:

Internal application ID
Each application running under APD/400 must be uniquely defined by an
internal application ID. If two applications are to run under the same installa-
tion ID, they must have different application IDs.

For IBM applications, the IBM program number (without the hyphen) is the
internal application ID.

External application ID
The external ID of the application to be created.

Note: This ID is generally presented to the user. It should, therefore, be short
and meaningful.

Application interface
The name of the AIP used by APD/400 to call the application. The AIP sets up
the environment for the application.

Installation program
The name of the Post-Installation user exit. (see “POSTINS Post-Installation”
on page 60).

12 Developer's Guide

Required application
The internal ID of an application required in relation to the current one. If you
later create a tape from your application and the tape is installed on another
driver, the APD/400 installation program checks that the required application is
present on the other driver.

When you have entered the required information, press F8 (Page Down) to display
the last page of Add Application Entry.

Availability of authorization checking, exclusion checking, multi-data-set-enabling,
and working with APIs influences (reduces) performance in the interactive part of
APD/400.

Depending on the customer environment, the administrator makes the decision
whether to work, for example, without authorization checking within an application.

With this panel you can remove the availability of these functions to improve per-
formance.

The decision as to whether the administrator works within APD without authori-
zation checking is dependent on the customer environment.

These settings can be used:

� to customize a special environment

� to switch off functionality for test reasons while developing an application.

Switchable functions are:

� Use Authorisation Checking

� Use Exclusion Checking

� Work with Data Sets

� Work with Defaults in APIs.

Creating an AIP
APD/400 integrates applications. This allows menus with tasks from different appli-
cations to be created by the APD/400 administrator. A user can call a menu or
program that runs under APD/400, and can switch from one application to another.

Different applications usually have different and incompatible library lists, job
descriptions, and naming and calling conventions. They may have conflicting defi-
nitions of the local data area or of other common resources. Integrating applica-
tions must be done carefully.

To achieve integration, APD/400 allows developers to create an application environ-
ment using a program each time an application task is called from an APD/400
menu. This program is the AIP. An AIP is required for each program.

If you are the developer of an application and you want to write the AIP for it, you
can use the sample programs, described later, as the basis on which to build an
AIP. In some cases, you can take one of the sample AIPs, change the library
names to the names of the libraries you use in your application, and use it directly.

 Chapter 2. Developing an APD/400 Application 13

Principles of the AIP
An application program is not called directly by APD/400; instead APD/400 calls the
AIP of the application with information directing it to call the appropriate program.
The AIP then creates the environment expected by the application program and
performs the actual call.

The AIP is the link between APD/400 and tasks of the application. The AIP of an
application must therefore be placed in the QUSRSYS library. When you develop
an application, you must create the AIP in QUSRSYS.

The name of the program to be called is passed to the AIP as follows:

If PTYPE=X (a call to a user exit) and UEXPGM (user-exit program name) is not
blank, call the program specified in UEXPGM. Otherwise, call the program speci-
fied in MPGMN.

Once you have created the AIP, use the CHGPGM command for the AIP program
with USEADPAUT(*NO). Do not remove the observable information from the
program.

When development of your application is complete and you ship it to a target
system, the installation procedure copies the AIP you created for your application to
the QUSRSYS library of the target system. To avoid naming conflicts, the installa-
tion procedure gives your AIP a new name.

Parameter Passed to the AIP
The following describes general-use programming interface and associated guid-
ance information.

APD/400 passes all relevant information about the task to be performed to the AIP
as a parameter. The parameter is a single character string. Your AIP must
“unstring” the required information and ignore the remainder.

The parameter is described as a table of fields. Length, From, and To describe the
position of the fields in the parameter. The names used for the fields are the ones
used internally by APD/400. They are also used in the sample AIPs supplied with
APD/400, and in the description of files QAAFTASK0 (see Appendix A, “Layout of
File QAAFTASK0” on page 101) and QAAFMENU0 (see Appendix B, “Layout of
File QAAFMENU0” on page 105).

Note: When PTYPE=X (user exit) or PTYPE=P (parameter entry program), there are
restrictions. In these cases, certain information is not passed to the AIP. The
APD/400 user exits are detailed in “User-Exit Descriptions” on page 53.

Table 3 (Page 1 of 2). Parameter Passed to the AIP

Field name Length From To Type Description

INSID 3 1 3 A Installation ID

INSTX 40 4 43 A Installation description

ALIAS 7 44 50 A Alias name of the application

ANWTX 40 51 90 A Application description

FIRNR 4 91 94 A Data-set ID

FIRNM 40 95 134 A Data-set description

14 Developer's Guide

Table 3 (Page 2 of 2). Parameter Passed to the AIP

Field name Length From To Type Description

USRID 10 135 144 A User ID

USRTX 40 145 184 A User description

MEPOS 2 185 186 A Menu selection number

MTASK 10 187 196 A Task ID

METTL 46 197 242 A Task description

MPGMN 10 243 252 A Program name

MPPRA 40 253 292 A Program number (1-40)

MAURR 1 293 293 A Control flag

RSTKZ 1 294 294 A Restart flag

JOBNA 6 295 300 A Old job number for restart

ERROR 1 301 301 A Error flag

AUDTF 1 302 302 A Audit flag

ANWID 7 303 309 A Internal application ID

BRSTF 1 310 310 A Authorization level

PTYPE 1 311 311 A Program type

MPPRT 512 312 823 A Program parameter

SRCLB 10 824 833 A APD/400 source library

OBJLB 10 834 843 A APD/400 object library

DTALB 10 844 853 A APD/400 data library

JRNLB 10 854 863 A APD/400 journal library

FRFLD 200 864 1063 A Parameter extension

COLAT 34 1064 1097 A Color attributes

LNGFC 4 1098 1101 A Language feature code

JOBNR 6 1102 1107 A Job number

CLCRQ 1 1108 1108 A Close call required

CTYPE 1 1109 1109 A Call type

LSTAP 7 1110 1116 A Last application

NXTAP 7 1117 1123 A Next application

 Chapter 2. Developing an APD/400 Application 15

The following are extended descriptions of the parameter fields:

INSID
Installation ID. The user selected this installation ID to run the application
when the AIP was called.

INSTX
Installation description. The description of the installation ID specified in INSID.

ALIAS
Alias name of the application. This is the short name of your application as the
user sees it. When the application was installed from tape, the APD/400
administrator specified this name. When you defined the application using the
Administer Applications (Developer) function (ADMAPP), you specified this
name.

ANWTX
Application description. This is the long name of your application as the user
sees it.

FIRNR
Data-set ID. This field contains the data-set ID that the user selected. If your
application does not support multiple data sets, this field is blank.

FIRNM
Data-set description. This field contains the text that describes the data-set ID.
The Administer Data Sets function (ADMDS) can be used to enter the text.

USRID
User ID. Contains the name of the user profile with which the user has signed
on to OS/400.

USRTX
User description. This field is defined by the APD/400 administrator using the
Administer User Entries function (ADMUSR).

MEPOS
Number of the menu selection. This field is empty (spaces) if the task is
selected by expert code.

MTASK
Name of the selected task. The expert code of the task for which the AIP is
called.

METTL
Description of the selected task. This is the Task text field from the task defi-
nition.

MPGMN
Program name. This is the name of the program to be called. See also the
description of the field PTYPE.

MPPRA
The first 40 characters of field MPPRT (program parameter).

MAURR
Control flag defined with the task.

RSTKZ
Restart flag:

0 This is a normal call for the task.

16 Developer's Guide

1 The application program was called in a restart situation. This is a restart
of a previously abended call of the same task. The developer of the AIP
specifies how this restart situation is handled in the application.

JOBNA
The old job number used for a restart (where RSTKZ=1). The restart concept of
your application may have used the OS/400 job number of APD/400 as a key
to store restart information. APD/400 stored its job number for restart and pre-
sents it in this field to the AIP.

ERROR
Error flag or return code. This field must be set in the AIP when control is
returned from the application program. The convention of returning error condi-
tions from an application program is specific to the application.

When the AIP is exited, APD/400 displays general messages to notify the user
of the error situation.

An exception is the user exit for checking exclusions (see “CHKEXC Check
Exclusion” on page 57). When the AIP is used to call this user exit, APD/400
receives a return code in this field. A return code of 1 means that the two
exclusion lists involved exclude each other.

The return codes are:

0 No error.
1 An error has occurred.
2 A serious error has occurred.
3 An error has occurred that requires special attention. Depending on the

restart flag specified for the task, APD/400 enters the task into the Work
with Canceled Jobs list.

For process lists, a nonzero value causes the list to be interrupted. Subse-
quent tasks in the list are not processed.

AUDTF
Audit flag. Whether or not audit records are written for the task. This is the
audit value that is currently active for the task.

ANWID
Current application ID of your application. This is the internal application ID,
and not the ALIAS name of the application.

BRSTF
Authorization level. If the task is protected by an authorization list, APD/400
retrieves the authorization level for the current user from the authorization list.
The task is called only if the authorization level is not zero.

If you require a more detailed authorization scheme in your application, create
an interpretation of this field in your AIP or in all programs of your application.

If the task is not protected by an authorization list, APD/400 sets BRSTF to 1.

PTYPE
The program type as specified in field MPGMN. The value of this field can be:

I MPGMN contains the name of an interactive application program (EXTYP=I in
the corresponding Task file).

B MPGMN contains the name of a batch application program (taken from MPGMN
in the Task file when EXTYP=B).

 Chapter 2. Developing an APD/400 Application 17

P MPGMN contains the name of an interactive parameter entry program to get
data for a batch application program (taken from PRPGM in the Task file
when EXTYP=B).

X This is a call to a user exit (see “Calling User Exits from APD/400” on
page 51).

MPPRT
The program parameter defined with the task.

When the AIP is used to call the user exit for checking exclusions, APD/400
passes the name of the exclusion list to be checked in this field.

SRCLB
Contains QAPD as the APD/400 source library.

OBJLB
Contains QAPD as the APD/400 object library.

DTALB
Contains QUSRSYS as the APD/400 data library.

JRNLB
Contains QUSRSYS as the APD/400 journal library.

FRFLD
Data structure for the APD/400 parameter extension (reserved if PTYPE
is not P).

When PTYPE=X, see “Calling User Exits from APD/400” on page 51 for the
layout of the FRFLD structure.

COLAT
The 34 bytes of this field are organized as follows:

� The first 30 bytes are used to specify the color of the following display
areas. Three bytes are used for each area.

 Menu bar
 Expert code
 Title
 Installation/Data set
 Top instruction
 Option area
 More/Bottom
 Command line
 Function keys
 Window border.

Colors are represented in the three bytes as follows:

000 Green
001 Turquoise
010 White
011 Pink
100 Blue
101 Yellow
110 Red.

18 Developer's Guide

� Byte 31 is used for reverse image on window borders:

1 Set reverse image attribute on.
0 Set reverse image attribute off.

� Byte 32 is used for the blink attribute on window borders:

1 Set blink attribute on (use blink only with color red).
0 Do not set blink attribute on.

� Bytes 33 and 34 are used to select a window border style:

01 Common User Access*-1 (CUA*-1) (Style 1).
00 Asterisks (Style 2).
10 CUA-2 (Style 3).
11 Blanks (Style 4).

The following example is part of a DDS record definition. The indicators 88 -
94 are used to control the style, color, and attribute of the window:

 A R WINDOW�1
A WINDOW(7 6 15 61)

 A N88N89N9� WDWBORDER((RCOLOR GRN))
A N88N89 9� WDWBORDER((RCOLOR TRQ))
A N88 89N9� WDWBORDER((RCOLOR WHT))
A N88 89 9� WDWBORDER((RCOLOR PNK))

 A 88N89N9� WDWBORDER((RCOLOR BLU))
 A 88N89 9� WDWBORDER((RCOLOR YLW))
 A 88 89N9� WDWBORDER((RCOLOR RED))
 AR
 A 91 WDWBORDER((RDSPATR RI))
 A 92 WDWBORDER((RDSPATR BL))
 AR
 A N93N94 WDWBORDER((RCHAR '...:::.:'))

A N93 94 WDWBORDER((RCHAR 'RRRRRRRR'))
 A 93N94 WDWBORDER((RCHAR '.-.II''-'''))
 A 93 94 WDWBORDER((RCHAR ' '))

The following code could be used to transfer the color attributes from the AIP
parameter to the indicator area passed to the workstation function manager:

CHGVAR %SST(&indara 88 7) %SST(&colatr 28 7)

LNGFC
The language feature code. For example, 2929 for German, or 2931 for
Spanish. See AS/400 National Language Support Planning Guide for more
information.

JOBNR
The job number of the current session.

CLCRQ
The application must return the information before performing a task of another
application, whether a close call is required or not.

Example

1. Task TASK1 of application APPL1 was performed.
2. Return from this call, CLCRQ=1.
3. Task TASKX of application APPLX was required
4. APD recognises a change in the appplication ID (field ANWID), and per-

forms a close call because CLCRQ=1. This close call is a normal AIP call
with the interface contents of the previous call and the information that it is

 Chapter 2. Developing an APD/400 Application 19

a close call (CTYPE=3). The AIP has to recognise that CTYPE=3 and has
to perform a special close handling.

5. After performing the close call, the required call task TASKX of application
APPLX will be performed.

CTYPE
The call type tells the AIP whether:

1. an application is called the first time (CTYPE=1)
2. an application is called repeatedly (CTYPE=2)
3. the current call is a close call (CTYPE=3).

LSTAP
If the application ID has changed since the previous call, the application ID of
the previous call is filed in LSTAP.

NXTAP
If the application ID has changed since the previous call, and a close call was
required from the previous application (CLCRQ=1), a close call will be per-
formed before performing the current call. In this close call, the information
which is the application of the next call is included.

 Sample AIP
Three sample AIPs are supplied with APD/400. To use one of these sample AIPs
for your application, copy the appropriate sample from the APD/400 source file and
modify as required. Select a name for your AIP that is unique within your
QUSRSYS library.

The following sample shows a minimum AIP. The source code for this sample is in
member SMPAIP01 in the APD/400 sample source files QAPD/QAAFSMPL0 and
QUSRSYS/QAAFSMPL0.

20 Developer's Guide

/R--R/
/R DISCLAIMER R/
/R--R/
/R Code is shown for illustrative purposes only. IBM has not fully R/
/R tested the code. THE CODE IS OFFERED "AS IS," AND ALL WARRANTIES R/
/R EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE R/
/R IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS FOR PARTICULAR R/
/R PURPOSES, ARE EXPRESSLY DISCLAIMED. IBM is not liable for R/
/R any damages, including but not limited to consequential, R/
/R incidental, special or indirect damages from this code. R/
/R--R/
/R SMPAIP�1 R/
/R Minimum Application Interface Program R/
/R R/
/R Only interactive programs are called. R/
/R This program must be placed in the library QUSRSYS. R/
/R--R/

/R--R/
/R Called by APD/4�� menu control R/
/R--R/
SMPAIP�1: +
PGM &parm

/R--R/
/R Definition of variables R/
/R--R/
DCL &parm RCHAR 12�� /R Entry and exit parameters for the AIP. R/
DCL &mpgmn RCHAR 1� /R Name of the program to be called. R/

/R--R/
/R Unpack entry parameter R/
/R--R/
CHGVAR &mpgmn %SST(&parm 243 �1�)

/R--R/
/R Set the library list for your application. R/
/R Replace YOURLIBL by your library list before compiling this R/
/R program ! R/
/R--R/
CHGLIBL LIBL(YOURLIBL QTEMP QGPL)

/R--R/
/R Call the interactive program. R/
/R--R/
CALL &mpgmn

/R--R/
/R End program and return to APD/4�� R/
/R--R/
RETURN:
ENDPGM

Additional Sample AIPs
The two other AIPs supplied with APD/400 are a full-function AIP and a standard
AIP.

 Chapter 2. Developing an APD/400 Application 21

 Full-Function AIP
This sample AIP:

� Determines the name of the program to be called.

� Determines the installation, application, and data-set IDs. This information
must be retrieved from the AIP parameter for task processing and user-exit
calls.

� Changes the library list based on the selected installation, data set, and lan-
guage.

� Interprets the general purpose Control flag as a command or program as
follows:

0 Command
1 Program.

� Transfers the AIP parameters to the local data area. Because the purpose of
this application is to demonstrate APD/400, many functions use or change the
AIP parameters; this is easiest done using the parameters in the local data
area.

� Calls the application or user-exit program, or processes the application
command.

� Passes all messages received from the operating system or the application to
APD/400 for possible display. If the severity code of the message is greater
than or equal to 2� (and the message ID is not equal to CPF9898), the Error
flag is set to 1.

� Transfers the local data area back to the AIP parameters.

The source code for this program is in member SMPAIP02 in the APD/400 sample
source files QAPD/QAAFSMPL0 and QUSRSYS/QAAFSMPL0.

 Standard AIP
This sample AIP interfaces APD/400 to many standard applications. It provides
three possibilities for processing:

1. A command is processed.

In this case, the field Program Name contains CMD, and Program Parameter con-
tains the command (possibly including prompt characters).

2. A program is called.
In this case, the field Program Name contains the name of the program, and
Program Parameter contains any call parameters. The field Control Flag must
contain N.

3. A System/36 procedure is processed.

In this case, the field Program Name contains the name of the procedure, and
Program Parameter contains any call parameters. The field Control Flag must
contain Y.

The library list is “remembered” in a data area in the APD/400 library named by the
combination of installation ID and internal application ID. Any blanks in the installa-
tion ID are replaced by hash symbols (#). The installation ID must not begin with a
digit. If the library list has not yet been “remembered,” the program prompts the

22 Developer's Guide

CHGLIBL command and saves the input. If the list is changed subsequently, it is not
saved.

The source code for this program is in member SMPAIP03 in the APD/400 sample
source files QAPD/QAAFSMPL0 and QUSRSYS/QAAFSMPL0.

Modifying an AIP
The following are functions that you can include in an AIP to meet the requirements
of an application:

� Changing the library list
� Allowing for multiple installations
� Allowing for multiple data sets
� Allowing for multilingual support
� Changing the job description
� Starting commitment control
� Saving the local data area

 � Opening files
� Putting a time lock on your application.

Changing the Library List
Use the Change Library command (CHGLIBL) in your AIP to use a library list that
is different from the default list. For example:

CHGLIBL LIBL(QTEMP ABC2 QGPL) CURLIB(ABC1)

Allowing for Multiple Installations
To allow for multiple installations of your application, use statements such as the
following:

DCL VAR(&ABC1) TYPE(RCHAR) LEN(1�)
DCL VAR(&ABC2) TYPE(RCHAR) LEN(1�)

 CHGVAR VAR(&ABC1) VALUE('ABC1' RCAT &INSID)
 CHGVAR VAR(&ABC2) VALUE('ABC2' RCAT &INSID)

CHGLIBL LIBL(QTEMP &ABC2 QGPL) CURLIB(&ABC1)

Note: Your application must not directly address libraries (see “Using Libraries” on
page 8).

Allowing for Multiple Data Sets
To allow for multiple data sets as well as multiple installations of your application,
use statements such as the following (assuming that ABC2 is the data library, and
ABC1 contains only nonobjects):

CHGVAR VAR(&ABC1) VALUE('ABC1' RCAT &INSID)
CHGVAR VAR(&ABC2) VALUE('ABC2' RCAT &INSID +
RTCAT %SST(FIRNR 1 2)) /R Chars 1-2 of data sets R/

CHGLIBL LIBL(QTEMP &ABC2 QGPL) CURLIB(&ABC1)

 Chapter 2. Developing an APD/400 Application 23

Allowing for Multilingual Support
To use different libraries (depending on the language) for textual data, use state-
ments such as the following:

 LNGFC 2929
 CHGVAR VAR(&OBJLIB)

CHGVAR VAR(&OBJLIB) VALUE('ABC1' RCAT &INSID)
CHGVAR VAR(&MRILIB) VALUE('ABC2' RCAT INSID +
RTCAT %SST(&LNGFC 3 2)

CHGLIBL LIBL(QTEMP &MRILIB &OBJLIB QGPL)

For more information on the APD/400 multilingual support feature, see IBM Applica-
tion Program Driver/400 Version 3: Administrator's Guide.

Changing the Job Description
If, for example, you want to place the spool files of a payroll application into a pro-
tected queue, add the following statements before calling the application program:

DCL VAR(&OUTQ) TYPE(RCHAR) LEN(1�)
DCL VAR(&OUTQLIB) TYPE(RCHAR) LEN(1�)

 --
RTVJOBA OUTQ(&OUTQ) OUTQLIB(&OUTQLIB)
/R Save current out queue and library R/

 CHGJOB OUTQ(ABCOUTQ)

After returning from the application program, add the statement:

 CHGJOB OUTQ(&OUTQLIB/&OUTQ)

Note: This illustrates the principle that when you make changes to the environ-
ment for your application, you must restore the original environment before
returning to APD/400.

Starting Commitment Control
If some of your application programs run under commitment control, and the control
flag (MAURR) can be used to indicate commitment control, you can insert the fol-
lowing statement before the program call:

IF COND(&MAURR REQ '1') +
 THEN(STRCMTCTL LCKLVL(RCHG))

After the program call (restore the environment to end commitment control), insert:

IF COND(&MAURR REQ '1') +
 THEN(ENDCMTCTL)

Note: If you have already used the control flag for some other purpose, you can
use, for example, character 1 of the program parameter as the commitment control
flag.

Saving the Local Data Area
Concerning the local data area, there are special considerations for applications
running under APD/400:

� The local data is shared by all programs running in a particular job
� Several applications can run in the same job under APD/400
� Each application can have its own standards for what is put into the local data

area.

24 Developer's Guide

These considerations are only relevant if your application uses the local data area
to pass data from your current menu control program to a menu selection (applica-
tion program), or from one menu selection to another.

If you use the local data area to pass data to subroutines or from a menu selection
to a batch job, these considerations are not relevant.

If these considerations are relevant, your AIP must create and restore the local
data area before calling the application program and, where necessary, save it
before returning to APD/400 (otherwise the next task called may destroy it).

You can use the following statements to create and restore the local data area
before calling the application program:

DCL VAR(&LDA) TYPE(RCHAR) LEN(1�)
 --
 RTVDTAARA DTAARA(QTEMP/#1111TST�1 (RTNVAR(&LDA)

/R Get the contents of the previously saved local data area R/
 MONMSG MSGID(CPF1�15) +
 EXEC(DO)

/ If this is the first time ... R/
CHGVAR VAR(&LDA) VALUE('Start value for LDA')
/R ... create the initial contents ...R/
/R (this is only an example R/

CRTDTAARA DTAARA(QTEMP/#1111TST�1) Type(RCHAR) +
LEN(1�24) VALUE(&LDA) TEXT('Contents of LDA')
/R ... and create a data area to save it R/

 ENDDO
 CHGDTAARA DTAARA(RLDA) VALUE(&LDA)

/R Restore the local data area with previous/initial contents R/

Before returning to APD/400, you can save the local data area using the following
statement:

 CHGDTAARA DTAARA(QTEMP/#1111TST�1) +
VALUE(%SST(RLDA 1 1�24))

/R Save the new local data area contents in a data area R/

Note: For a restart, this example may not work correctly. It is therefore better to
save the contents of the local data area in a file, using the job number as key. To
do this, write a high-level language (HLL) program to call the file from your AIP.

 Opening Files
There are certain functions that you may require only once for each job, such as
creating temporary files or preopening certain files to improve the performance of
your application. You could use the following program before calling an application
program to open files for the applicable installation:

 Chapter 2. Developing an APD/400 Application 25

DCL VAR(&OLDINS) TYPE(RCHAR) LEN(3)
 --
 RTVDTAARA DTAARA(QTEMP/#1111TST��) RTNVAR(&OLDINS)

/R Get the last installation ID R/

 MONMSG MSGID(CPF1�15) +
 EXEC(DO)

/R If there was none ... R/
 RMVMSG CLEAR(RALL)

/R ... delete system message ... R/
 CHGVAR VAR(&OLDINS) VALUE('...')

/R Initialize to impossible value R/
CRTDTAARA DTAARA(QTEMP/#1111TST��) Type(RCHAR) +

 LEN(3) VALUE(&OLDINS)
/R ... and create the data area R/

 ENDDO

IF COND(&OLDINS RNE '...' +
RAND &OLDINS RNE &INSID) +

 THEN(DO)
/R If the installation has changed R/

 CLOF OPNID(ABC1)
/R ... close the old files R/

 CLOF OPNID(ABC2)
 ENDDO

IF COND(&INSID RNE &OLDINS) +
 THEN(DO)

/R If the installation is new or changed ... R/
OPNDBF FILE(ABC1) OPTION(RALL) TYPE(RPERM)

/R ... open the files ... R/
OPNDBF FILE(ABC2) OPTION(RALL) TYPE(RPERM)

 CHGDTAARA DTAARA(QTEMP/#1111TST��) VALUE(&INSID)
/R ... and save the installation ID R/

 ENDDO

Note: If you have multiple data sets stored in different libraries or members, and
you want to use the APD/400 Select Data Sets function (SLTDS) to switch
between them, you may need similar logic to change between data sets.

Putting a Time Lock on the Application
You may have certain requirements that must be performed before a program in
the application is called. For example, you may want to:

� Allow the use of the application only during normal working hours
� Restrict the use of the application
� Display a warning if the libraries are not saved
� Insert a record in a file for your internal restart.

Because APD/400 menu control does not call an application program directly, the
AIP becomes a prolog for each of your programs. So, if you want to perform a task
before a program is called, write it into the AIP.

As an example, you could add the following code to ensure that the application is
used only between certain times of the day:

26 Developer's Guide

DCL VAR(&TIMELOCK) TYPE(RCHAR) LEN(9)
DCL VAR(&QTIME) TYPE(RCHAR) LEN(4)

 --
 RTVDTAARA DTAARA(TIMELOCK) RTNVAR(&TIMELOCK)

/R Get the allowed time from - to R/
/R The format is "HHMM-HHMM" R/

 RTVSYSVAL SYSVAL(QTIME) RTNVAR(&QTIME)
/R Get the system time (HHMM) R/

IF COND(%SST(&QTIME 1 4) RLT %SST(&TIMELOCK 1 4) +
ROR %SST(&QTIME 1 4) RGT %SST(&TIMELOCK 6 4) +

 THEN(DO)
/R If outside of the allowed time ... R/
SNDPGMMSG MSGID(ABC1111) MSGF(ABCMSGF) +

 TOPGMQ(RSAME QAFDRMAIN)
/R ... send an error message ... R/

 CHGVAR VAR(&ERROR) VALUE('1')
/R ... set the error flag ... R/

 GOTO CMDLBL(RETURN)
/R ... and return to APD/4��. R/

 ENDDO

Note: You do not have to write a program to allow for the modification of this data
area; instead you can use the OS/400 selective prompting function in an APD/400
task description. See the AS/400 Programming: Control Language Programmer's
Guide for information on selective prompting.

You could provide the following task to the user:

Task: TIMES
Task type: P
Processing type: I
Menu option text: Change application time frame
Authorization: (Administrator only)
Program name: PROG1
Program parameter: CHGDTAARA TIMELOCK

 ??VALUE('HHMM-HHMM')

Using this technique, the user does not need to know the name of the data area, or
the name of the command.

Set and Reset an Application Environment
APD/400 recognises whether an application is called for the first time, or repeat-
edly.

To improve performance, it is possible to open the application individual environ-
ment with the first task call of an application and close this environment with the
last task call of the same application.

You can use the following statements to handle this requirement:

 Chapter 2. Developing an APD/400 Application 27

DCL VAR(&CLCRQ) TYPE(RCHAR) LEN(1)
DCL VAR(&CTYPE) TYPE(RCHAR) LEN(1)
DCL VAR(&LSTAP) TYPE(RCHAR) LEN(7)
DCL VAR(&NXTAP) TYPE(RCHAR) LEN(7)

CHGVAR VAR(&CTYPE) VALUE(%SST(&PARM 11�9 1)
CHGVAR VAR(&LSTAP) VALUE(%SST(&PARM 111� 7)
CHGVAR VAR(&NXTAP) VALUE(%SST(&PARM 1117 7)
CHGVAR VAR(&CLCRQ) VALUE('1')

/R If it is an initial call, open the environment R/

IF COND(CTYPE REQ '1') +
 THEN(DO)

/R do everything that would normally be done for each task R/
/R of that application, eg., opening files and so on. R/
/R It is also possible to do this, depending on the R/
/R previous application &LSTAP. R/

END DO

/R If it is a close call, close the environment. R/

IF COND(&CTYPE REQ '3') +
 THEN(DO)

/R cancel everything which was done for an initial call R/
/R of that application, eg., close files and so on. R/
/R It is also possible to make this, depending on the R/
/R next application &NXTAP. R/

END DO

/R After opening the environment for an initial call R/
/R and for a repeated call, the usual task call can R/
/R be performed. R/

IF COND(&CTYPE) RNE '3'
 THEN(DO)

/R perform usual task call R/

END DO

/R APD needs the return information from the application R/
/R whether a close call for the application is requried R/
/R or not R/

CHGVAR(%SST(&PARM 11�8 1)) VALUE(&CLCRQ)

28 Developer's Guide

Describing Tasks and Menus
You describe tasks and menus for your application using the Administer Menus
function (ADMMNU). This function is described in IBM Application Program
Driver/400 Version 3: Administrator's Guide.

To create your menus, you must work “bottom up,” describing the tasks for the
menu selections before describing the menu structure:

1. Create task descriptions for all tasks in your application.
2. Create menus using these tasks.
3. Create menus on a higher level, using the tasks and menus already created.

Notes:

1. The menus need not be strictly hierarchical; you can leave some branches or
some tasks (for example, commonly used commands) unattached to the main
menu tree.

2. Take care when using type C (command) tasks. These tasks are called from
APD/400 directly, and not through the AIP of your application. Application pro-
grams called as commands do not therefore find the APD/400 environment
created in the AIP.

3. Tasks referring to a program named SIGNOFF are intercepted by APD/400
that, depending on the circumstances, processes a command such as
ENDGRPJOB or SIGNOFF.

If you want to create APD/400 menus to access tasks of an existing application that
has task information and a menu structure stored in files, you can save time by
writing a conversion program that stores task descriptions and a menu tree directly
in the corresponding APD/400 files QAAFTASK0 and QAAFMENU0. For an
example of such a program, see Appendix C, “Adding Tasks to the Task File” on
page 107. QAAFTASK0 is described in Appendix A, “Layout of File QAAFTASK0”
on page 101, and QAAFMENU0 in Appendix B, “Layout of File QAAFMENU0” on
page 105.

Describing the Authorization Structure
To describe the authorization of your application, use the Administer
Authorization Lists function described in IBM Application Program Driver/400
Version 3: Administrator's Guide.

There are several points to consider:

� You should define authorization lists first and then define your tasks and
menus. If you define tasks and menus before authorization lists, you must use
the Administer Menus function again to enter the authorization list name for
existing tasks and menus.

� You should generally protect all tasks, even SIGNOFF or DSPMSG, by
mapping them to an authority list. In this way, the application administrator is
able to make the complete application “invisible” to unauthorized users.

� Avoid defining too many authorization lists, to reduce the workload for the appli-
cation administrator in authorizing users. If the administrator needs more flexi-

 Chapter 2. Developing an APD/400 Application 29

bility (more authorization lists) than you supply as “default,” new definitions can
be easily created.

� The structure of authority often parallels menu structures. For example,
assume that you have one menu with selections for administering master data,
a second for entering various transactions, a third for different types of proc-
essing, and a fourth for printouts. It would be reasonable for you to define five
authority lists: one protecting each of your menus and all underlying tasks, and
a fifth protecting the main menu and whatever general utility functions you
provide.

� In the authority file on your installation tape, leave the *ALL entry set to � to
lock out users not specifically authorized, and include one record for each list
authorizing the application administrator.

As the application developer, you must inform the administrator about the authori-
zation structure of the application, enabling the administrator to assign the users to
the correct authorizations.

Note: You can switch off authorization checking in the function Administer
Applications

API for Authorization
It may be necessary to check the authorization of a user within an application
program. For example, to check whether the user is allowed to:

� Cancel an order in the order entry program
� Post accounts for a certain account number or account group
� View or change employee salaries.

In your application program, you can call an APD/400 API to find the authorization
level of a user in a given authorization list. See “CHKAUT Check Authorization” on
page 73.

Note: If authorization checking is switched off, it has no influence on API
CHKAUT.

User Exit for Authorization
For each menu item, APD/400 can determine the authorization level of a user from
the authorization list specified with the task. If the authorization level is greater
than �, APD/400 displays the menu item. If the authorization level is �, APD/400
does not display the item.

If the authorization level of a user within an authorization list cannot be determined
in this way, you can provide a user exit with the authorization list. The authori-
zation level is determined in this user exit. See “CHKAUT Check Authorization” on
page 56.

 Describing Exclusions
To describe the exclusions in your application, use the Administer Exclusions
function as described in IBM Application Program Driver/400 Version 3: Administra-
tor's Guide. Consider the following points:

� Reduce the number of conflicts that need to be defined by grouping your
program tasks according to data usage. For example, you could put all pro-

30 Developer's Guide

grams that display or print a customer file into a single exclusion list, you could
make two exclusion lists (displays and printouts), or you might want to put all
programs that display or print master files into a single exclusion list.

� Program (and command) tasks that have no explicit mapping to an exclusion
list are checked against a possible *ALL exclusion.

� You may have exclusions that are not easily (or not at all) definable with the
syntax of APD/400. Sequential exclusions are of this type. In this case, you
can write a user exit that informs APD/400 if an exclusion situation exists.
Although this type of situation may already be coded into your application, it is
good practice to use the APD/400 user exit. Otherwise, you lose certain
advantages APD/400 offers, such as automatic rescheduling of batch jobs,
maintainability by the customer, and same function and appearance as other
applications.

Note: If exclusion checking is switched off for an application, then no exclusion
checking will be performed for the tasks of exclusion lists of this application.

User Exit for Exclusions
You can use the APD/400 Administer Exclusions function to specify that a user
exit determines your application exclusions. See the IBM Application Program
Driver/400 Version 3: Administrator's Guide for a description of this function.

Whenever a user selects a task to process, APD/400 checks if the task is con-
tained in any exclusion list. If so, and if that exclusion list is an exclusion of type 3
(user exit), APD/400 calls the user exit specified.

If the return code from the user exit indicates that the task is excluded, APD/400
does not start the task.

See “CHKEXC Check Exclusion” on page 57 for the technical specification of the
user-exit interface.

API for Exclusions
An API is provided to set, reset, and check for existing exclusions in your applica-
tion. This API is described in “CHKEXC Check Exclusion” on page 74.

Note: If exclusion checking is switched off, this has no influence on API CHKEXC.

Describing Menu Help Texts
There are four methods of providing Help texts for the menus in your application.
You can use:

 � OfficeVision/400 folders
 � Display files
� UIM panel groups

 � User exits.

 Chapter 2. Developing an APD/400 Application 31

Help Texts in Folders
OfficeVision/400 is used to create Help texts in folders. When you specify the Help
method for a task in the Administer Menus function (ADMMNU), you specify a doc-
ument and label. Consider the following when using this method:

� All menu Help texts for an application must be in a single folder. All installa-
tions of the same application must share the same folder. This folder must not
be a subfolder.

� All Help texts must be in final format.

� You can use one large document containing all Help texts for the complete
application, separate documents for each menu, program, and so on, or a com-
bination of these methods.

Help Texts in Display Files
If you create display files to provide Help in your application, you must specify the
following keywords in the display definition:

� INDARA on the file level
� LVLCHK(*NO) on the Create Display command.

If Help is requested by a user, one record from the display file is displayed.

Note: It may confuse the user if you have a record smaller than a full screen.

When you specify the Help method for a task in the Administer Menus function
(ADMMNU), you specify a display file and record.

Help Texts in Panel Groups
To provide Help in panel groups, you create the panel groups using the Create
Panel Group command in UIM. The maximum length of the name parameter on
the HELP tag is 10 characters. For more information, see AS/400 Guide to Pro-
gramming Application and Help Displays.

When you specify the Help method for a task in the Administer Menus function
(ADMMNU), you specify a panel group and Help module.

Help Texts Using User Exits
To provide Help texts using user exits, you specify identifiers for the Help method
for a task in the Administer Menus function (ADMMNU). The identifiers allow the
user exit to determine which Help to display.

See “DSPHLP Display Help” on page 58 for a description of the user exit that
enables an application to display Help texts to users.

 Displaying Messages
Your application programs or the AIP can send messages to APD/400. For interac-
tive jobs, messages are shown in the message line of the menu displayed after
returning from your program. The message line is scrollable, if more than one
message is in the queue. For batch jobs, messages are sent to the job log.

32 Developer's Guide

There are two methods of sending messages from an application program to
APD/400:

� Use the Send Message API (see “SNDMSG Send Message” on page 92).

� Send the messages to the program that calls the AIP.

Notes:

1. In earlier releases of APD/400, a method using the ADPD010 program
message queue was documented to send messages from an application
program to APD/400. APD/400 Version 3 Release 1 does not support this
program message queue.

Change your AIP and any other programs that send messages to the
ADPD010 program message queue to use one of the methods listed earlier.

2. In earlier releases of APD/400, a method using the ADMSGF0 message file
was documented to send a status message ('Loading program. Please wait...').
APD/400 Version 3 Release 1 does not support the ADMSGF0 message file.

Change your AIP and any other programs that use the ADF0042 message to
use a different message file, or to use a hardcoded message as in the following
example:

CHGVAR &msgdta 'Loading Program. Please wait...'
SNDPGMMSG MSGID(CPF9898) MSGF(QCPFMSG) MSGDTA(&msgdta) +

 TOPGMQ(REXT) MSGTYPE(RSTATUS)

 Chapter 2. Developing an APD/400 Application 33

Chapter 3. Packaging, Shipping, and Installing an APD/400
Application

Once you have completed development of your application on a source system (for
example, as a software developer or in the head office), you need to package the
application and ship it to a target system (for example, to a customer or a branch
office) on which APD/400 is installed.

This chapter explains how to do this. The following subjects are covered:

� “Overview” describes the methods of packaging, shipping, and installing an
application running under APD/400:

– The standard APD/400 method, using the Install Applications function,
automatically installs the APD/400 (menus, authorizations, and so on) and
OS/400 parts (programs and database files) of an application. This method
can be used only for the base installation of an application.

– An individual procedure that uses APD/400 APIs to extract, compare,
install, change, and delete the APD/400 part of the application. The
OS/400 part of the application is packaged, shipped, and installed using
OS/400 commands (for example, the SAVxxx and RSTxxx commands) or
SystemManager/400 (SM/400). This method can be used for the base
installation and the update of an application.

� “Creating the Standard Product Package” on page 39 describes how you can
create a product package to be installed using the APD/400 standard method.

� “Sample Scenarios” on page 45 describes sample scenarios that explain how
base versions and updates of an application can be packaged, shipped, and
installed using APD/400.

� “Considerations for Multilingual Support” on page 49 lists considerations for
applications that are enabled for multilingual support.

The sources for all programs described in this chapter are supplied with APD/400 in
both the QAPD/QAAFSMPL0 and QUSRSYS/QAAFSMPL0 source files. Any
changes you make to these sources will be overwritten the next time you install or
restore APD/400. If you want to change the sources, copy the files to another
library and make the changes there.

 Overview
Basically, there are two different situations in which you send application code to a
target system:

� The application is currently not installed on the target system. The complete
application must be packaged, shipped, and installed. This is referred to as the
“base installation” of an application in this chapter.

� The application is already installed on the target system. Only the changes
between the previous version (installed on the target system) and the current
version (installed on the source system) must be packaged, shipped, and
installed. This situation is referred to as an “update” to an application in this
chapter.

34 Copyright IBM Corp. 1988, 1995

The following terms are used in this chapter:

Product package
This is a set of libraries and folders that make up an application or an
application update.

Shipment
This is the act of transferring a product package from a source system
to a target system. This can be done using physical media (tape, car-
tridge, diskette, or CD-ROM) or electronically (a savefile send with the
SNDNETF command).

Installation
When the product package is received on the target system, the installa-
tion process reads the data from the package and stores it permanently
on the target system.

Application definitions and the AIP are referred to as the “APD/400 part” of an
application in this chapter.

Application definition
In the APD/400 data repository, the following application definitions are
stored:1

 � Application description
� Menus, tasks, menu bars, and so on
� Menu heading formats

 � Authorization lists
 � User groups
� Exclusions and exclusion lists

 � Batch environments
 � Timetables
 � Data-set entries
� Application library descriptions.

Note: The physical representation of application definitions in the
APD/400 data repository may change in future releases of APD/400.
However, APD/400 will automatically migrate the data from earlier ver-
sions to the current physical representation. The earliest version cur-
rently supported is Version 1 Release 1.

Because migration is a slow process, it is strongly recommended that
you create new product packages (based on the latest version of
APD/400) when a new version of APD/400 is installed on the target
system.

AIP The AIP is part of the application definition. However, it is treated sepa-
rately in this chapter because it is a program and the other application
definitions are records in a database file.

Application libraries and folders are referred to as the “OS/400 part” of an applica-
tion in this chapter.

1 This data is stored in OS/400 database files.

 Chapter 3. Packaging, Shipping, and Installing an APD/400 Application 35

Application libraries
Libraries contain the objects that make up your application. However,
some of the objects stored in application libraries are related to
APD/400. For example:

� Display files or panel groups for online Help
 � User-exit programs.

Application folders
Folders can contain document library objects (DLOs). These can be
documents, or, for example, PC files (if your application is running on
PCs and the AS/400). OfficeVision/400 documents for online Help in
your application are also stored in folders.

Base Installation of an Application
The following scenario describes how you can package, ship, and install an appli-
cation designed to run under control of APD/400.

On the source system, the current version of an application is installed. The objec-
tive is to build a package of this version, ship it to the target system, and install it
on the target system. Figure 3 shows this procedure:

Figure 3. Package, Ship, and Install the Base Installation

1 The application definitions and the AIP of the current version are
extracted from the APD/400 data repository using one of the following
methods:

36 Developer's Guide

� Option 3 (Copy to library QAPDIAHDR) of the Administer
Applications (Developer) function (ADMAPP). This function uses
the library name QAPDIAHDR for the library that receives the appli-
cation definitions.

� The Extract Application Definitions API (EXTAPPD).

2 The OS/400 libraries and folders are packaged. This is done using the
OS/400 save commands (for example, SAVLIB or SAVDLO), or
SystemManager/400 functions. “Creating the Standard Product
Package” on page 39 gives useful tips and techniques to help you do
this.

3 The product package is shipped to the target system, either physically
(tape, cartridge, diskette, or CD-ROM) or electronically (as a savefile).

4 The APD/400 part of the application is installed using either the Install
Applications function (the standard method), or the Install Application
Definitions API (INSAPPD) for individual install procedures.

5 The OS/400 part of the application is installed using either the Install
Applications function (standard method), OS/400 commands (for
example, RSTLIB or RSTDLO), or SystemManager/400 (RSTLICPGM).

Although this scenario deals with the installation of an application, the APD/400
methods to deinstall or delete applications are mentioned here for completeness:

6 The APD/400 part of the application is deleted using either the Delete
Applications function (standard method), or the Delete Application Defi-
nitions API (DLTAPPD) for individual install procedures.

7 The OS/400 part of the application is deleted using either the Delete
Applications function (standard method), OS/400 commands (for
example, DLTLIB or DLTDLO), or SystemManager/400 (DLTLICPGM).

Updating an Application
The following are considerations in updating an application that runs under
APD/400 control:

� The new or changed APD/400 parts of the application (that is, new menus) are
updated. For example:

– Adding new tasks and menus because of functional enhancements
– Changing conflict control information
– Modifying the authorization scheme of your application
– New timetables, changed batch environments, and so on.

All such changes are retrieved from the source system by APD/400 APIs.
These APIs extract the changes between the two versions of your application
that can be shipped to a target system. Other APIs can be used on the target
system to install the changes. Changes that have been applied previously on
the target system (for example, new menus or changed authorizations) are pre-
served as far as possible. For example, if a menu has been modified on the
target system but has not been modified between the previous and the current
version, the changes on the target system are not affected.

� The new or changed OS/400 objects and DLOs are updated.
The changes to the OS/400 part of an application can be applied using the
OS/400 RSTxxx commands or SystemManager/400.

 Chapter 3. Packaging, Shipping, and Installing an APD/400 Application 37

The following scenario describes this process.

On the source system, the previous (PRV) and the current (CUR) versions of an
application are installed. On the target system, only the previous (PRV) version is
installed. The previous version on the target system is upgraded with the current
version from the source system. Figure 4 shows the procedure:

Figure 4. Package, Ship, and Install Application Updates

1 The application definitions and the AIP of both the previous and the
current version of the application are extracted from the APD/400 data
repository using one of the following methods:

1. Option 3 (Copy to library QAPDIAHDR) of the Administer
Applications (Developer) function (ADMAPP). This function uses
the library name QAPDIAHDR for the library that receives the appli-
cation definitions.

2. The Extract Application Definitions API (EXTAPPD).

2 The previous and the current versions are compared using the Compare
Application Definitions API (CMPAPPD). The result is a description of
the changes (that is, the previous and the current version for every
changed item) between the two versions that can be included in the
product package.

3 As stated earlier, APD/400 has no complete concept for packaging or
installing updates to the OS/400 part of an application. This is a task for
software developers who can use their own software or

38 Developer's Guide

SystemManager/400. A discussion of this task goes beyond the scope
of this book.

4 The update package can be shipped on any physical media (tape, car-
tridge, diskette, or CD-ROM), or electronically as a savefile.

In contrast to the standard product package, an update product package
need not follow APD/400 conventions, that is, the way objects are saved
on media is determined by the requirements of your individual proce-
dures.

5 Using the Change Application Description API (CHGAPPD), the
APD/400 part of the application is updated. This API reads the
description of changes from the update product package, reads the
application definitions of the previous version, and updates the previous
version (changes modified items and adds new items), while preserving
(as far as possible) the changes that have been made on the target
system since the application was installed.

The CHGAPPD API can also be used to create a report of potential
changes to the previous version on the target system before the update
is processed. Based on this report, a decision can be made as to
whether or not the update should be installed. The user can also
change the application definitions (that is, rename items) before
updating the application.

6 The OS/400 part of the application is updated. For example:

� New and changed programs are copied to the production libraries
� Database files are changed and existing data is migrated
� DLOs are modified.

Creating the Standard Product Package
If your application is to be installed on the target system using the Install
Applications function (the standard method), you must do the following:

� Use the Administer Applications (Developer) function to create a list of
library descriptions used in your application.

� Create a library named QAPDIAHDR that contains the application definitions of
your application.

� Create an installation tape that contains the QAPDIAHDR library, the online
Help folder (if applicable), and the application libraries.

These tasks are described in the following.

Creating a List of Application Library Descriptions
To create a list of application libraries, start the Administer Applications
(Developer) function by entering the expert code ADMAPP. On the Administer
Applications (Developer) display, select option 12 (Work with Application
Libraries) for your application. The following is displayed:

 Chapter 3. Packaging, Shipping, and Installing an APD/400 Application 39

C D
Work with Application Library Description

 Installation . . : Default Installation

 Application . . . : PAYROLL Payroll Application

 Type options, press Enter.
 2=Change 4=Delete

 Library Symbolic
Seq Lib name library Library

Opt Nbr Type on tape name template
 _ 1� 1 OBJLIB1 OBJLIB1 OL1&I1.&I2.&I3.
 _ 2� 1 OBJLIB2 OBJLIB2 OL2&I1.&I2.&I3.
 _ 3� 2 DTALIB1 DTALIB1 DL1&D1.&D2.&D3.&D4.&I1.&I2.&I3.
 _ 4� 2 DTALIB2 DTALIB2 DL2&D1.&D2.&D3.&D4.&I1.&I2.&I3.

F3=Exit F5=Refresh F6=Add F12=Cancel

P Q

Figure 5. Work with Application Library Description

Limitations of Administer Applications (Developer)

The Administer Applications (Developer) function has been designed to
create an installation package. You can set up the list of libraries only for an
application that is to be installed on a different system. However, you cannot
use this function to modify a list of libraries for an application that has been
installed using the Install Applications function.

Adding an Application Library Description
To add a description of a library that is to be restored from tape when your applica-
tion is installed, press F6. The following is displayed:

40 Developer's Guide

C D
Add Application Library Description

 Installation . : Default Installation

 Application . . : PAYROLL Payroll Application

 Type choices, press Enter.

Library sequence number 3�

Library type 2 1=Object
 2=Data
 3=Source

Library name on the
installation tape DTALIB1___

Symbolic library name DTALIB1___

Library name template DL1&D1.&D2.&D3.&D4.&I1.&I2.&I3.

 F3=Exit F12=Cancel

P Q

Figure 6. Add Application Library Description

Enter the following information:

Library sequence number
The relative position of this library on the tape. The libraries are restored from
the tape using the sequence numbers specified in this field. You can leave
gaps in your numbering sequence.

Library type
The library type. Specify 1 if the library contains objects, 2 if it contains data, or
3 if it contains files. If you want to support multiple data sets in your applica-
tion, store data and objects in different libraries and indicate that here.

Library name on the installation tape
The name of the library on the installation tape.

To understand the following descriptions of symbolic library name and library name
template, you must have some knowledge of the multiple concept of APD/400.
“Concept of Installations, Applications, and Data Sets” on page 1 describes the
installation, application, and data-set concepts of APD/400, how to design an appli-
cation to be multiinstallable and multi-data set enabled, and how symbolic library
names and library name templates can be used for this support.

Symbolic library name
The symbolic library name without the leading ampersand (&).

Note: The name must be unique within the list of libraries for your application,
and must follow OS/400 naming conventions. Maximum length for the symbolic
library name is nine characters.

You can use a symbolic library for:

� The library that contains Help displays or panel groups (see “Describing the
Application” on page 9).

� The library for an object entry of an object exclusion list. Refer to the IBM
Application Program Driver/400 Version 3: Administrator's Guide for more
information on exclusions.

 Chapter 3. Packaging, Shipping, and Installing an APD/400 Application 41

Library name template
The name template for this library. If you do not provide support for multiple
data sets or for multiple installations, specify the name of the library in the tem-
plate.

If you support multiple data sets or multiple installations in your application,
specify the library naming rules to be used by the Install Applications func-
tions at application installation time.

The name template can contain:

1. A-Z, $, or # (Hex 7B) for the first byte.

2. A-Z, �-9, $, # (Hex 7B), _ or . for bytes 2 through 10.

3. A placeholder for a byte of the installation ID (&I1., &I2., and &I3.).

4. A placeholder for a byte of the data-set ID (&D1., &D2., &D3., and &D4.).

When an authorized user selects Install Applications, the user is asked to
specify installation and data-set IDs. If a library is restored by APD/400 from your
installation tape, the name of that library in APD/400 is created from the naming
rules set up in the Library name template and the specified values for installation
ID and data-set ID.

Notes:

1. To support multiple data sets, data libraries are created for each data-set ID.
Only libraries with the library type 2 (Data) can contain placeholders for data
sets.

2. Blanks can be specified for installation ID or data-set ID when your application
is installed. If you specify placeholders in the middle of the library name tem-
plate, library names that are not valid in OS/400 could be created.

3. If your application supports multiple data sets or installations, you must create
the correct library list in the AIP of your application. Make sure that when you
specify or change a library name template in this field, the AIP supports the
template.

Refer to “Creating an AIP” on page 13 for a description of how to create an
AIP.

4. If the library defined here is the library that contains the Help displays, this
library must not contain any &Dn. placeholders.

Changing an Application Library Description
To change the description of an application library, specify 2 (Change) in the corre-
sponding option column on Work with Application Library Description. Revise
Application Library Description is displayed.

Deleting an Application Library Description
To delete an application library description, specify 4 (Delete) in the corresponding
option column on Work with Application Library Description. On Delete
Application Library Description, press Enter to confirm the deletion.

42 Developer's Guide

Creating the QAPDIAHDR Library
There are two methods you can use to extract the definitions of your application to
the QAPDIAHDR library:

1. The Extract Application Definitions API (EXTAPPD). Specify QAPDIAHDR as
the target library to receive the extracted application definitions or use another
library name and rename it afterwards to QAPDIAHDR using the RNMOBJ
command.

“EXTAPPD Extract Application Definitions” on page 84 describes this API, and
“Sample Scenarios” on page 45 contains samples that use this API.

2. The Administer Applications (Developer) function. This is an interactive
function that guides you through the creation of the QAPDIAHDR library. To
select this function, enter ADMAPP, and on the Administer Applications
(Developer) display select option 3 (Copy to library QAPDIAHDR) for your
application.

When you select this function, APD/400 creates a library with the name
QAPDIAHDR that contains all the application definitions that belong to your
application.

If QAPDIAHDR already exists, a confirmation window is displayed before
APD/400 overwrites data in that library. You can select to overwrite the data,
to retry the request (for example, after you have renamed the existing library),
or to cancel the process.

Creating the Installation Tape
When you have created the QAPDIAHDR library containing the APD/400 applica-
tion definitions, you can create the installation tape. Because this tape is intended
to be used by the Install Applications function, it must have the following struc-
ture:

Note: This structure describes general-use programming interface and associated
guidance information.

Except for QAPDIAHDR (which must have a sequence number of 1), the sequence
numbers do not have to be the same as those in Table 4. However, the relative
sequence must always be:

Table 4. Structure of the Installation Tape

Sequence
Number

Library/Folder Description

1 QAPDIAHDR A library containing the APD/400 application definitions
(stored in database files named QAAFxxxxA) and the
AIP. This is also the library in which the Post-
Installation user exit should be stored.

2 Folder This is the folder that contains the online Help docu-
ments when you specify Help type 1 (OfficeVision/400
documents) for your menus. Otherwise it can be
omitted.

3 Application
libraries

The application libraries must be saved in exactly the
same sequence as specified in the application library
description.

 Chapter 3. Packaging, Shipping, and Installing an APD/400 Application 43

QAPDIAHDR ───_ Folder ───_ Application library

This is because the Install Applications function searches the tape in the order:
folder (if specified), application libraries.

The Post-Installation user exit can be stored in any of the application libraries
defined for your application, but it is recommended to store it in QAPDIAHDR, as
this is the first library searched.

The following describes the procedure to create the installation tape:

1. Initialize the tape using the command INZTAP. No special volume or owner
IDs are required. The APD/400 Install Applications function supports every
tape media that is supported by the AS/400.

2. Save library QAPDIAHDR to the tape, specifying not to rewind the tape. For
example:

SAVLIB LIB(QAPDIAHDR) DEV(TAP�1) ENDOPT(RLEAVE)

The library QAPDIAHDR must be the first library on the tape because Install
Applications tries to restore the library from the first file (sequence number 1)
on the tape.

3. If you have specified a folder to store the Help texts of your menus, save the
folder to the tape (again, specifying not to rewind the tape). For example:

SAVDLO DLO(RALL) FLR(YOURFLR) DEV(TAP�1) ENDOPT(RLEAVE)

4. Save the application libraries in the sequence you specified with the Library
sequence number field. For example:

SAVLIB LIB(YOURLIB1) DEV(TAP�1) ENDOPT(RLEAVE)

If you have more than one library, you can write a short program to store the
libraries in the correct sequence. The following is an example of such a
program:

Note: This interface is as described in “Interfaces for Version 3 Release 6” on
page viii.

 /R--R/
/R Program to save the application libraries to the R/
/R installation tape. The list of libraries to be R/
/R saved is in QAPDIAHDR/QAAFLIBRA. R/

 /R--R/
 PGM
 DCLF FILE(QAPDIAHDR/QAAFLIBRA)

 /R--R/
/R Save the libraries R/

 /R--R/
 SAVLIB:

 RCVF
MONMSG MSGID(CPF�864) EXEC(GOTO SAVLIBEND)
SAVLIB LIB(&LIBSAV) DEV(TAP�1) ENDOPT(RLEAVE)

 GOTO SAVLIB
 SAVLIBEND:

 ENDPGM

5. Unload the tape or save the next application to the tape. For example:

 CHKTAP DEV(TAP�1) ENDOPT(RUNLOAD)

44 Developer's Guide

6. Delete library QAPDIAHDR:

 DLTLIB LIB(QAPDIAHDR)

Notes:

1. You could also write a CL program to process these commands. This would be
useful if you frequently create installation tapes.

2. If you want to store more than one APD/400 application on the same tape, all
applications must have QAPDIAHDR as the first library. In this case, only the
first QAPDIAHDR library on the tape must have a sequence number of 1. Use
the OS/400 RNMOBJ command to store different QAPDIAHDR libraries on the
same tape.

 Sample Scenarios
As stated earlier, the APD/400 standard method is not the only method that you
can use to install your application. You can also use the APIs supplied with
APD/400. These APIs must be used for the installation as well as for the updating
of an existing application. Using the APIs to extract, install, change, compare, and
delete APD/400 application definitions, you can build your own individual proce-
dures for base installation and update of your application.

The APIs are described as follows:

“CHGAPPD Change Application Definitions” on page 69
“CMPAPPD Compare Application Definitions” on page 79
“DLTAPPD Delete Application Definitions” on page 80
“DSPINSAPP Display Installed Applications” on page 81
“EXTAPPD Extract Application Definitions” on page 84
“INSAPPD Install Application Definitions” on page 85
“WRKDST Work with Data Sets” on page 93
“WRKINS Work with Installations” on page 95.

Two models (or scenarios) describe how the APD/400 functions and APIs can be
used to package, ship, and install software designed to run under control of
APD/400.

Note: The models do not describe the installation of the OS/400 part (for example,
install libraries and folders, and create user profiles) of the application (application
programs or database files). Use SystemManager/400 or OS/400 commands to
install this part.

The source code for the programs used in the models is shipped with APD/400 in
the source files QAPD/QAAFSMPL0 and QUSRSYS/QAAFSMPL0.

Model 1: Centrally Maintained Software
This model describes a solution for a company that has developed an application to
be used in its branch offices. Because employees in the branch offices do not
have the necessary data processing skill, the software is maintained from a central
site (the head office). Figure 7 on page 46 shows the model:

 Chapter 3. Packaging, Shipping, and Installing an APD/400 Application 45

Figure 7. Model 1: Application Update

This model consists of the programs APIM1P1, APIM1P2, and APIM1P3:

APIM1P1:

1 The application definitions of the previous production version of the
application are extracted into the file XYZPRV.DEF using the EXTAPPD
API. This version is referred to as the PRV version.

APIM1P2:

2 The application definitions of the new production version of the applica-
tion are extracted into the file XYZNEW.DEF using the EXTAPPD API.
This version is referred to as the NEW version.

3 The CMPAPPD API is used to compare the PRV and the NEW ver-
sions. The differences are stored in the XYZCHG.DEF library.

4 The XYZCHG.DEF library is saved to a savefile.

5 The savefile is sent to the branch offices.

6 The library XYZNEW.DEF is made the previous version in library
XYZPRV.DEF.

APIM1P3:

7 The savefiles sent from the head office are received and the library
XYZCHG.DEF is restored.

8 The CHGAPPD API is used to install the changes stored in the
XYZCHG.DEF library to the PRV version. The application definitions in
the branch offices are now the same as the NEW production version in
the head office.

46 Developer's Guide

Notes:

1. With some simple variations you could use the same programs to install the
application on the same system. For example, to transfer changes from a test
to a production installation.

2. You could also use the EXTAPPD and INSAPPD APIs to copy an application
from one installation to another.

Model 2: One Tape for Base Install and Update
In this scenario the install process is designed so that one tape can be used for
both base installation and update of the software. To do this, a copy of the original
version is stored on the customer's (target) system. The compare process is done
on the target system (compare the new base version against the old original
version).

This scenario also shows how an installation can be created automatically using
APIs, and how other information can be retrieved from the APD/400 data reposi-
tory. Figure 8 shows the model:

Figure 8. Model 2: Base Install and Update

The model consists of the programs APIM2P1, APIM2P2, APIM2P2A, and
APIM2P3:

APIM2P2:
This program is used on the developer's site to create the installation tape.

1 The application definitions for application APITEST in installation IN1 are
extracted to library QAPDIAHDR.

 Chapter 3. Packaging, Shipping, and Installing an APD/400 Application 47

2 The file QAPDIAHDR/QAAFANWG0 is read to determine the name of
the Post-Installation user exit (&instp) of application APITEST. This
program is also copied to library QAPDIAHDR.

Note: This interface is as described in “Interfaces for Version 3
Release 6” on page viii.

3 Library QAPDIAHDR is saved as the first file on the installation tape.

4 The second file is saved to the tape; it contains the LODRUN program
QTEMP/QINSTAPP. This is a renamed copy of sample program
APIM2P3.

5 The online Help folder is saved to tape. This is the third file saved, and
it must be saved after the QAPDIAHDR library and before the applica-
tion libraries.

APIM2P2A:

This is a subprogram of APIM2P2.

6 The list of libraries for application APITEST is read from file
QAPDIAHDR/QAAFLIBRA. Every library found is saved to the installa-
tion tape.

Note: This interface is as described in “Interfaces for Version 3
Release 6” on page viii.

The Install Applications function is not part of the sample programs but is docu-
mented for completeness. In the sample, it is used for the base installation of
application APITEST into the installations IN1, IN2, and IN3.

7 The installation package is read from the tape, new installations (IN1,
IN2, and IN3) are created, and all application data is copied to the
APD/400 data repository.

APIM2P1:

This program is used as the Post-Installation user exit for the Install
Applications function (see “POSTINS Post-Installation” on page 60 for a
description of this user exit). It receives the installation ID, application ID, and (if
applicable) the data-set ID of the application currently installed from the Install
Applications function.

8 The application definitions of the installed application are extracted to
library XYZPRV.DEF (using the EXTAPPD API).

9 Information about data sets is retrieved (using the WRKDST API), a new
installation called QPD is created (using the WRKINS API), and the appli-
cation definitions are installed from library XYZPRV.DEF to the new
installation (using the INSAPPD API).

APIM2P3:

This program is used for updating application APITEST. It is stored on the installa-
tion tape (created by program APIM2P2) with the name QTEMP/QINSTAPP, and
can be loaded and started using the OS/400 command LODRUN.

10 The library with the new definitions is restored from tape to library
XYZNEW.DEF.

11 The application definitions of the previous version are extracted from
installation QPD to library XYZPRV.DEF using the EXTAPPD API.

48 Developer's Guide

12 The previous and the new application definitions are compared (using
the CMPAPPD API), and the results are stored in library XYZCHG.DEF.

13 A list of all installations where application APITEST is currently installed
is created (using the DSPINSAPP API), and the application definitions
for all occurrences of application APITEST are updated (using the
CHGAPPD API). This is done for the installations IN1, IN2, IN3, and
QPD.

Considerations for Multilingual Support
As well as changes necessary to the AIP (see “Allowing for Multilingual Support” on
page 24), consider the following points when packaging, shipping, and installing an
application enabled for multilingual support:

� APD/400 does not currently support the installation of textual data objects (Help
documents, panel groups, display files, and message files). You must provide
the programs to create the necessary QAPDxxxx libraries and QAFxxxx folders,
and copy the textual data objects from tape to the library or folder of each lan-
guage to be installed.

� When RMRI is specified for the Folder/Library/User exit field of the applica-
tion description (see the fifth page of Add Application Entry on Page 11),
APD/400 does not automatically install this library or folder (as it does for Help
folders of applications not enabled for multilingual support).

� When textual data stored in message files is modified (for example, during a
release change), you must use APD/400 to rebuild all menus that use these
messages (using the &msg symbol). To do this, run the APD/400 reorganiza-
tion with a reorganization level of 4 or greater.

For more information on the APD/400 multilingual support features, see the
appendix on “Multilingual Support” in IBM Application Program Driver/400 Version
3: Administrator's Guide.

 Chapter 3. Packaging, Shipping, and Installing an APD/400 Application 49

Chapter 4. User Exits and APIs

This chapter describes:

� APD/400 user exits and APIs, including a listing of the parameters used in the
interface for each user exit or API

� General-use programming interface and associated guidance information.

The following diagrams show sample call structures during the processing of
APD/400 to explain the terms “user exit” and “API” as they are used in this chapter.

 Case 1
 ┌─────────────┐
┌─────────┐ calls │ A program │
│ APD/4�� ├──────_ │ of an │
└─────────┘ │ application │

 └─────────────┘

 Case 2
 ┌─────────────┐
┌─────────┐ calls │ A user exit │
│ APD/4�� ├──────_ │ while in an │
└─────────┘ │ application │

 └─────────────┘

 Case 3
 ┌─────────────┐
┌─────────┐ calls │ A program │ calls ┌──────────────────────────┐
│ APD/4�� ├──────_ │ of an ├───────_ │ An APD/4�� service (API) │
└─────────┘ │ application │ └──────────────────────────┘

 └─────────────┘

 Case 4
 ┌─────────────┐
┌─────────┐ calls │ A user exit │ calls ┌──────────────────────────┐
│ APD/4�� ├──────_ │ of an ├───────_ │ An APD/4�� service (API) │
└─────────┘ │ application │ └──────────────────────────┘

 └─────────────┘

 Case 5
 ┌────────────────────────────────┐ calls ┌──────────────────────────┐
 │ Any program running on OS/4�� ├───────_ │ An APD/4�� service (API) │
 └────────────────────────────────┘ └──────────────────────────┘

Figure 9. APD/400 Call Structures

Application programs are called in various situations by APD/400 (calls on the left-
hand side in Figure 9). In most cases, an application program is called when a
user has selected a task from an APD/400 menu (cases 1 and 3).

Application programs can also be called by APD/400 to allow the application to
enhance services normally provided by APD/400 functions, or to do additional
checking or provide services not part of APD/400 functions. In these situations, the
application program is called a user exit (cases 2 and 4).

An application developer defines names of user-exit programs for the application
being developed using APD/400 administrative functions. “User-Exit Descriptions”
on page 53 describes the instances in APD/400 when user exits are called by

50 Copyright IBM Corp. 1988, 1995

APD/400, if so defined by the application or user, and also provides information
about the parameters passed from APD/400 to user exits.

Certain APD/400 functions can be called from application programs, whether proc-
essing under control of APD/400 (being called as a task from a menu) or not (calls
on the right-hand side in Figure 9 on page 50). Each function has a unique name.
A function name and the description of the parameters passed with it is called an
API (cases 3, 4, and 5). A parameter description for each function is given in “API
Descriptions” on page 66.

 User Exits
The following describes how user exits are called, the user-exit communication
areas passed from APD/400 to the AIP, the messages produced by user exits, and
lists the user exits supplied with APD/400.

Calling User Exits from APD/400
A user-exit program is part of an application, and is called via the AIP as is any
application program. An exception to this is the Post-Installation user exit
(POSTINS), which is called directly from APD/400, and not via the AIP.

The AIP parameter contains two fields that are used for the communication
between APD/400 and the user-exit program:

PTYPE If this field is set to X, a user-exit program must be called by the AIP.

FRFLD This structure serves as the communication area for the call of a user
exit, and contains all information necessary to control its processing.

The user-exit communication area is initialized by APD/400 before
each call to a user-exit. It consists of two parts:

1. The user-exit-independent part contains information valid for all
user exits, for example, the name of the user-exit program. This
part is described in “User-Exit Communication Area.”

2. The user-exit-dependent part contains information required only
by the individual user exit. This part is described individually for
each user exit.

Note: User exits introduced with Version 1 Release 2 of APD follow the described
interface structure. User exits available with the previous release of APD (Version
1 Release 1) still use the original interface. Which interface layout is applicable is
explained under the description of each user exit.

User-Exit Communication Area
The user-exit communication area is passed by APD/400 to the AIP in the field
AIP.FRFLD. The structure of the user-exit-independent part of the communication
area is as follows:

 Chapter 4. User Exits and APIs 51

Table 5. User-Exit-Independent Part of the Communication Area

Parameter Use Type Len Pos Description

1
User-exit name
UEXNAM

INPUT CHAR(1�) 1� 1 User-exit ID.
Filled by APD/400 before calling an application
program. This ID can be used in the AIP to process
actions specific for each user exit. It can also be
used in a user-exit program to double check that the
program was called from the expected function in
APD/400. This field is blank when an application
program is called that is not a user exit.

2
Completion code
UEXCCD

OUTPUT CHAR(2) 2 11 Completion code.
Initialized to �� by APD/400. Allows the user-exit
program to communicate with APD/400. Should
always be set by the user-exit program. The way
the completion code is interpreted by APD/400 is
described under each user exit.

3
Reserved

4 13 This space is reserved for future use.

4
User-exit program
name
UEXPGM

INPUT CHAR(1�) 1� 17 This is the name of the program to be called by the
AIP. As this program is not directly called by
APD/400, it could also be interpreted by the AIP as
the name of a command or the name of a REXX
procedure.

5
Reserved

2 27 This space is reserved for future use.

6
User-dependent
part

INPUT CHAR(172) 172 29 This part of the user-exit communication area is
reserved for the specific information used by each
individual user exit. It is described individually for
each user exit.

Total 200

Note: If a user exit is called from APD/400, feedback is via the field UEXCCD. If an
application program is called from APD/400, feedback is via the field ERROR, which
allows a possible restart condition to be specified.

Messages from User Exits
In addition to the completion code UEXCCD, a user exit may need to return text to the
calling APD/400 function, to be displayed by APD/400. This is done in the same
way as with messages sent from any OS/400 program; all messages are sent back
to the message queue of the APD/400 program that called the AIP. To do so, you
must code a loop in your AIP as in the following:

52 Developer's Guide

/R DO UNTIL < no more messages in the program msg.queue > R/
 LOOP99BEG:

RCVMSG MSGDTA(&MSGDTA) MSGID(&MSGID) MSGF(&MSGF) +
 MSGFLIB(&MSGFLIB)

IF (&MSGID REQ ' ') +
 THEN(DO)
 GOTO LOOP99END
 ENDDO

SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFLIB/&MSGF) +
 MSGDTA(&MSGDTA) TOPGMQ(RPRV)

 GOTO LOOP99BEG
 LOOP99END:

For example, if a user exit is called to determine the application-defined exclusion
status of a program that the user wants to start, the user exit may return a return
code indicating that the program cannot be started. In this case, APD/400 does not
start the program the user has requested. The reason that the program cannot be
started is determined only by the user exit. The user exit can generate the text that
can then be displayed by APD/400 using the method described.

 User-Exit Descriptions
The following are the user exits supplied with APD/400.

ADMDSTE Administer Data-Set Entries
This user exit enables the application developer to perform certain application-
dependent activities if a data set is created, changed, or deleted using the function
Administer Data Sets.

You can define this user exit for your application using the Administer
Applications (Developer) function (ADMAPP).

 Interface Description

Table 6 (Page 1 of 2). Interface for the Administer Data-Set Entries User Exit (ADMDSTE)

Parameter Use Type Len Pos Description

1
User-exit name
UEXNAM

INPUT CHAR(1�) 1� 1 ADMDSTE
The name of the user exit for Administer Data-Set
Entries.

2
Completion code
UEXCCD

OUTPUT CHAR(2) 2 11 00 Successful completion.

Other
An error occurred during the processing of the
AIP or the user-exit program. The results are
unpredictable. Administer Data Sets is redis-
played with the option field of the item selected
in reverse image. All messages sent through
the AIP are displayed in the message line. The
data-set entry is not updated.

3
Reserved

4 13 This space is reserved for future use.

 Chapter 4. User Exits and APIs 53

Table 6 (Page 2 of 2). Interface for the Administer Data-Set Entries User Exit (ADMDSTE)

Parameter Use Type Len Pos Description

4
User-exit program
name
UEXPGM

INPUT CHAR(1�) 1� 17 The name of the program to be called by the AIP.

5
Reserved

2 27 This space is reserved for future use.

6
Installation name
INSID

INPUT CHAR(3) 3 29 The name of the installation to which the data set to
be maintained belongs.

7
Application name
ANWID

INPUT CHAR(7) 7 32 The name of the application to which the data set to
be maintained belongs.

8
Data-set name
FIRNR

INPUT CHAR(4) 4 39 The name of the data set to be maintained.

9
Data-set description
FIRNM

INPUT CHAR(4�) 4� 43 The description of the data set to be maintained.

10
Operation code
OPRCD

INPUT CHAR(1) 1 83 Defines the type of administration requested when
this user exit is called:

1 Add data set.
2 Change data set.
3 Delete data set.

11
Return code
RETCDE

OUTPUT CHAR(2) 2 84 00 Data-set entry changed. The data-set entry is
updated and processing continues (Administer
Data Sets is displayed or the next entry is proc-
essed).

03 F3 (Exit) pressed. The Administer Data Sets
program has ended. The data-set entry is not
updated.

12 F12 (Cancel) pressed. The data-set entry is
not updated and processing is interrupted;
Administer Data Sets is displayed and the
cursor is on the corresponding entry in the
subfile.

For other return codes, no update is performed but
processing continues.

Total 85

BCHPRM Overwrite Batch Task Parameter
This user exit enables a parameter program to be called when a user invokes a
batch job, and allows parameter data to be entered for the batch job that is different
from that defined in APD/400 for the batch task.

The user-exit information can be maintained using the Administer Menus
(ADMMNU) function.

54 Developer's Guide

 Interface Description
The interface for this user exit is the input parameter of the AIP. In the interface
description, only those fields are mentioned that are necessary for the user exit. All
other fields of the AIP interface are not used and not mentioned in this description.

Note: The layout of this user-exit interface is the same as in Version 1 Release 1
of APD. No user-exit communication area is used here.

The value in the Pos (Position) column describes the relative position of the field in
the AIP interface.

Table 7. Interface for the Batch Parameter User Exit (BCHPRM)

Parameter Use Type Len Pos Description

1
Installation name
AIP.INSID

INPUT CHAR(3) 3 1 The name of the installation to which the task to be
scheduled belongs.

2
Task name
AIP.MTASK

INPUT CHAR(1�) 1� 187 The name of the task to be scheduled.

3
Program name
AIP.MPGMN

INPUT CHAR(1�) 1� 243 The name of the user-exit program to be called by
the AIP.

4
Application name
AIP.ANWID

INPUT CHAR(7) 7 3�3 The name of the application to which the task to be
scheduled belongs.

5
Program type
AIP.PTYPE

INPUT CHAR(1) 1 311 This is set to the constant P by APD/400 to indicate
that this is the BCHPRM user exit for Version 1
Release 1.

6
Program parameter
AIP.MPPRT

UPDATE CHAR(512) 512 312 The parameter that was defined with the Administer
Menus function is passed to the user-exit program,
which overwrites this parameter with its own values.
The new value is then passed to the task when it is
processed by APD/400's batch handler.

7
Schedule time
AIP.DATTIM
AIP.FRFLD(1-14)

UPDATE CHAR(14) 14 864 Date and time when the job is to be processed, in
the format YYYYMMTTHHMMSS (bytes 1 to 14 of field
FRFLD).

8
Return code
AIP.RETCDE
AIP.FRFLD(32-33)

OUTPUT CHAR(2) 2 895 Return code used to inform APD/400 how the user-
exit program has ended. The following values are
valid:

00 Successful completion: the task is scheduled
with the specified date and time, and task
parameter as passed from the user exit.

03 F3 (Exit) has been pressed in the user-exit
program: the task scheduling is canceled.

12 F12 (Cancel) has been pressed in the user-exit
program: the task scheduling is canceled.

These are bytes 32 to 33 of field FRFLD.

Total 559

 Chapter 4. User Exits and APIs 55

CHKAUT Check Authorization
This user exit enables the application developer or user to have application-
dependent authorization checking without having to use the APD/400 authorization
concept. The user-exit program determines the authorization level described by:

 � Installation name
 � Application name
� Authorization list name

 � User name.

Authorization checking in APD/400 is accomplished using authorization lists. There
are two types of authorization list:

� Normal lists point to a list of users and user groups with corresponding authori-
zation levels.

� User exits point to an application program that is processed whenever the
authorization level for the authorization list is requested. You can define one
user-exit program for each authorization list. This procedure is not called if use
authorization checking=N.

You can define both types of authorization list with the function Administer
Authorization Lists (ADMAUT).

 Interface Description

Table 8 (Page 1 of 2). Interface for the Check Authorization User Exit (CHKAUT)

Parameter Use Type Len Pos Description

1
User-exit name
UEXNAM

INPUT CHAR(1�) 1� 1 CHKAUT
The name of the Check Authorization user exit.

2
Completion code
UEXCCD

OUTPUT CHAR(2) 2 11 00 Successful completion.

Other
An error has occurred during the processing of
the AIP or the user-exit program. The results
are unpredictable. All messages sent by the
AIP are displayed on the next display shown by
APD/400. Authorization level (BRSTF) � is
assumed.

3
Reserved

4 13 This space is reserved for future use.

4
User-exit program
name
UEXPGM

INPUT CHAR(1�) 1� 17 The name of the program to be called by the AIP.

5
Reserved

2 27 This space is reserved for future use.

6
Installation name
INSID

INPUT CHAR(3) 3 29 The name of the installation to which the authori-
zation list to be checked belongs.

7
Application name
ANWID

INPUT CHAR(7) 7 32 The name of the application to which the authori-
zation list to be checked belongs.

56 Developer's Guide

Table 8 (Page 2 of 2). Interface for the Check Authorization User Exit (CHKAUT)

Parameter Use Type Len Pos Description

8
Authorization list
name
BRFKT

INPUT CHAR(1�) 1� 39 The name of the authorization list that points to the
user exit to be processed.

9
User name
USRID

INPUT CHAR(1�) 1� 49 The user profile of the user that owns the current job
as retrieved from OS/400 using RTVJOBA.

10
Authorization level
BRSTF

OUTPUT CHAR(1) 1 59 The authorization level as a 1-character field (�
through 9). This field must be set by your user-exit
program. APD/400 interprets:

0 User not authorized.
1-9 Authorization level of the user.

Total 59

CHKEXC Check Exclusion
This user exit enables the application developer or user to have exclusion checking
without using the APD/400 exclusion concept.

The user-exit program for exclusion checking can be defined with the function
Administer Exclusions (ADMEXC). It is possible to have an unlimited number of
exclusion definitions and therefore an unlimited number of different user-exit pro-
grams for every exclusion list.

Control can be passed to this user exit when a task is to be processed. APD/400
checks if this task belongs to an exclusion list (type *FCT), and if there is any
exclusion record defined for this exclusion list. If one exists with exclusion type 3
(user exit), APD/400 calls the AIP of the corresponding application with the appro-
priate interface. This procedure is not called if use exclusion checking=N.

 Interface Description
The interface for this user exit is the input parameter of the AIP. In the interface
description, only those fields are mentioned that are necessary for the user exit.
The value in the Pos (Position) column describes the relative position of the field in
the AIP interface. All other fields of the AIP interface are not used and therefore
not mentioned in this description.

Table 9 (Page 1 of 2). Interface for the Check Exclusion User Exit (CHKEXC)

Parameter Use Type Len Pos Description

1
Installation name
AIP.INSID

INPUT CHAR(3) 3 1 The name of the installation to which the task to be
processed belongs.

2
Data-set name
AIP.FIRNR

INPUT CHAR(4) 4 91 The name of the currently active data set for the
application to which the task to be processed
belongs.

3
Task name
AIP.MTASK

INPUT CHAR(1�) 1� 187 The name of the task to be processed.

 Chapter 4. User Exits and APIs 57

Table 9 (Page 2 of 2). Interface for the Check Exclusion User Exit (CHKEXC)

Parameter Use Type Len Pos Description

4
User-exit program
name
AIP.MPGMN

INPUT CHAR(1�) 1� 243 The name of the user-exit program to be called by
the AIP.

5
Exclusion list
AIP.PGMGR
AIP.MPPRA(1..1�)

INPUT CHAR(4�) 1� 253 This field contains the name of the exclusion list to
which the task to be processed belongs. Only the
first 10 bytes of this field are used.

6
Error flag
AIP.ERROR

OUTPUT CHAR(1) 1 3�1 In the error flag, the user exit returns the information
on whether the task can be processed or not:

0 No exclusion; the task can be processed.
<>0 The task is currently excluded.

7
Application name
AIP.ANWID

INPUT CHAR(7) 7 3�3 The name of the application to which the task to be
processed belongs.

8
Program type
AIP.PTYPE

INPUT CHAR(1) 1 311 The constant X is passed in this field to the user exit.

Total 46

DSPHLP Display Help
This user exit enables an application to use its own programs and commands to
display a task-oriented Help to the user. You can define one user exit for each
application installed under APD/400 using the Administer Applications
(Developer) function (ADMAPP).

The Help flag must be set to 4=User exit and the name of the user-exit program is
stored in the Library/Folder/User Exit field. Make sure that only the first ten
bytes are used. This name is passed in the parameter field UEXPGM to the AIP.

 Interface Description

Table 10 (Page 1 of 3). Interface for the Display Help User Exit (DSPHLP)

Parameter Use Type Len Pos Description

1
User-exit name
UEXNAM

INPUT CHAR(1�) 1� 1 DSPHLP
The name of the Display Help user exit.

2
Completion code
UEXCCD

OUTPUT CHAR(2) 2 11 00 Successful completion.

Other
An error has occurred during the processing of
the AIP or the user-exit program. All messages
sent by the AIP are displayed on the next
display shown by APD/400. No additional Help
is shown.

3
Reserved

4 13 This space is reserved for future use.

58 Developer's Guide

Table 10 (Page 2 of 3). Interface for the Display Help User Exit (DSPHLP)

Parameter Use Type Len Pos Description

4
User-exit program
name
UEXPGM

INPUT CHAR(1�) 1� 17 The name of the program to be called by the AIP.
Retrieved from the Library/Folder/User Exit field
of the application definition.

5
Reserved

4 27 This space is reserved for future use.

6
Installation name
INSID

INPUT CHAR(3) 3 31 The name of the installation to which the task
belongs for which the Help information has been
requested.

7
Application name
ANWID

INPUT CHAR(7) 7 34 The name of the application to which the task
belongs for which the Help information has been
requested.

8
Task name
MTASK

INPUT CHAR(1�) 1� 41 The name of the task for which the Help information
has been requested.

9
Identifier 1
HLDOC

INPUT CHAR(1�) 1� 51 The first identifier that can contain information for the
user-exit program to retrieve the task-oriented Help.
This value is retrieved from the identifier 1 field of
the task description, and can be changed using the
Administer Menus function.

10
Identifier 2
HLLAB

INPUT CHAR(1�) 1� 61 The second identifier that can contain information for
the user-exit program to retrieve the task-oriented
Help. This value is retrieved from the identifier 2
field of the task description, and can be changed
using the Administer Menus function.

11
Language feature
code
LNGFC

INPUT CHAR(4) 4 71 The language feature code of the currently used lan-
guage for this application. The IBM language
feature code in the form 29xx is used. Refer to the
AS/400 National Language Support Planning Guide
for a complete list of IBM language feature codes.

This parameter is set only for applications that have
multilingual support for online Help, that is, the
Library/Folder/User Exit field on the application
definition must be set to RMRI. For other applica-
tions, this parameter contains blanks.

12
Current column
CURCOL

INPUT ZONED(3) 3 75 The current column position of the cursor when the
user presses the Help function key.

13
Current row
CURROW

INPUT ZONED(2) 2 78 The current row position of the cursor when the user
presses the Help function key.

14
Upper row
UPLROW

INPUT ZONED(2) 2 8� The upper row of a “Do-Not-Cover-Area” that should
not be used to display Help information.

15
Left column
UPLCOL

INPUT ZONED(3) 3 82 The left column of a “Do-Not-Cover-Area” that
should not be used to display Help information.

15
Lower row
LOWROW

INPUT ZONED(2) 2 85 The lower row of a “Do-Not-Cover-Area” that should
not be used to display Help information.

 Chapter 4. User Exits and APIs 59

Table 10 (Page 3 of 3). Interface for the Display Help User Exit (DSPHLP)

Parameter Use Type Len Pos Description

15
Right column
LOWCOL

INPUT ZONED(3) 3 87 The right column of a “Do-Not-Cover-Area” that
should not be used to display Help information.

Total 89

 POSTINS Post-Installation
This user exit enables the application developer to perform certain application-
dependent activities, such as to install libraries or folders, after installation of the
application using the Install Applications function. You can define the Post-
Installation user exit for your application using the Administer Applications
(Developer) function (ADMAPP).

If the user-exit program is defined, it is called when the APD/400 part of the appli-
cation installation (merge files, install libraries, and so on) is completed.

It is recommended to store this user-exit program in the QAPDIAHDR header
library.

An error in this user exit can be signalled to APD/400 by sending an escape
message to *PRV. Before sending the message, any task already completed by
the user exit is reversed, for example, any libraries, journals, or user profiles that
have been deleted are restored.

 Interface Description
The interface for the Post-Installation user exit is different from other user-exit inter-
faces in terms of how the parameters are passed to the user exit program:

1. The user-exit program is called directly from the APD/400 application installa-
tion procedure and not via the AIP. Because an AIP is not used, the library list,
local data area, and so on, are the responsibility of this program.

2. The parameters passed to the program are passed as single parameters, and
not as one parameter represented by a structure.

Table 11 (Page 1 of 2). Interface for the Post-Installation User Exit (POSTINS)

Parameter Use Type Len Description

1
Installation name
INSID

INPUT CHAR(3) 3 The name of the installation in which the application is
installed. This is defined by the user during application
installation.

2
Application name
ANWID

INPUT CHAR(7) 7 The name of the application that is currently being
installed.

3
Data-set name
FIRNR

INPUT CHAR(4) 4 The name of the data set that has been defined as the
initial data set during application installation. If an appli-
cation is multi-data set enabled, the user must define
the name of the initial data set.

4
Device name
DEV

INPUT CHAR(1�) 1� The device name specified during installation.

60 Developer's Guide

Table 11 (Page 2 of 2). Interface for the Post-Installation User Exit (POSTINS)

Parameter Use Type Len Description

5
Alias name
ALIAS

INPUT CHAR(7) 7 The alias name of your application specified during
installation.

6
Type of install
INSTP

INPUT CHAR(1) 1 � for initial installation of the application, or 1 for subse-
quent installation of a data set for an application already
installed.

Total 32

 SAVRST Save/Restore
This user exit enables the developer of an application to decide whether a library
about to be saved or restored can be processed or not, or to perform certain
application-dependent activities before or after the save or restore. You can define
one user exit for each application installed under APD/400 using the Administer
Applications (Developer) function (ADMAPP).

A library that has been defined in the save and restore control records but that
does not belong to any application installed under APD/400 (for example, a user
library) cannot have an associated Save/Restore user exit.

 Interface Description

Table 12 (Page 1 of 2). Interface for the Save/Restore User Exit (SAVRST)

Parameter Use Type Len Pos Description

1
User-exit name
UEXNAM

INPUT CHAR(1�) 1� 1 SAVRST
The name of the Save/Restore user exit.

2
Completion code
UEXCCD

OUTPUT CHAR(2) 2 11 00 Successful completion.

Other
An error occurred during the processing of the
AIP or the user-exit program. The current save
or restore task is suspended and the display
from which the task was activated is redis-
played. The messages sent through the AIP
are displayed on the message line of the
display.

3
Reserved

4 13 This space is reserved for future use.

4
User-exit program
name
UEXPGM

INPUT CHAR(1�) 1� 17 The name of the program to be called by the AIP.

5
Reserved

2 27 This space is reserved for future use.

6
Application name
ANWID

INPUT CHAR(7) 7 29 The name of the application to which the library to
be saved or restored belongs.

 Chapter 4. User Exits and APIs 61

Table 12 (Page 2 of 2). Interface for the Save/Restore User Exit (SAVRST)

Parameter Use Type Len Pos Description

7
Library name
LBNAM

INPUT CHAR(1�) 1� 36 The name of the library that is to be saved or
restored.

8
Library type
LBTYP

INPUT CHAR(1) 1 46 The identifier used in APD/400 to identify the type of
the library. This can have the values:

S Source library
O Object library
D Data library
J Journal library.

9
Operation code
OPRCD

INPUT CHAR(1) 1 47 As there are four possible instances in save and
restore processing where this user exit can be
called, this flag is used by APD/400 to tell the AIP
from what point of the save or restore process it is
called:

1 Before save
2 After save
3 Before restore
4 After restore.

10
Activity flag
ACTFL

OUTPUT CHAR(1) 1 48 This flag is returned from the user exit to APD/400
and instructs APD/400 how to continue:

0 Save or restore the library LBNAM.
1 Do not save or restore the library LBNAM.

This flag is evaluated only for calls prior to save or
restore (OPRCD=1 and OPRCD=3). If it is 1, APD/400
skips the current library and continues with the next
library to be saved or restored.

Total 48

 APIs
The following describes how APIs are accessed via an API server, migration of
APIs between different releases of APD/400, APIs from previous releases, the inter-
face to an API, and messages returned from an API.

 API Server
You as an application developer can call certain APD/400 functions from within
your application. These functions, called APIs, are accessible through a single
APD/400 program, the API server, called QAFAPIPG.

The API server builds the environment in which APD/400 works, and also restores
the environment in which your application works after processing of the APD/400
function.

You must pass a parameter structure to the API server program instructing it which
API function you want to process, and containing all information needed by that
function to perform its task.

62 Developer's Guide

The layout of the API interface, like that of the user-exit interface, consists of two
parts:

1. The service-independent part provides communication with the API server (the
name of the APD/400 service being called is passed here to the API server
program). This part is described in “Calling an API.”

2. The service-dependent part contains information that is needed by the indi-
vidual APD/400 API to perform its task. This part is described individually for
each API.

 Migration
APIs described and called differently in previous releases of APD are supported by
the current release and will be supported by future releases of APD/400 in parallel
to the APIs described here.

An API interface, described and published, will not be changed in future releases of
APD/400. API services used in an application will be the same in future APD/400
releases.

However, improvements, including extension of services of existing APD/400 APIs
could be introduced in future releases. If such an API is introduced with a new
APD/400 release, this API will have a new name and a new interface layout. If you
want to use the extended services in your application, you will have to call the new
API.

APIs from Previous Releases
The following table lists APIs that have been documented in earlier releases of
APD. These APIs are supported in the current release and will be supported in
future releases:

For performance reasons, it is recommended that applications using old APIs
migrate to the new API calling convention.

Table 13. APIs from Previous Releases

APD Version 1 Release 1
API Name

APD/400 Version 2
Release 3 API Name

Description

ADPD040 CHKAUT Check authorization

ADPD940 SCHBATCH Schedule batch

Calling an API
The interface that is used for the communication between the application program
and the API can be divided into two parts:

� A service-independent part is used to pass information to the API server. This
part of the interface has the same layout for all APIs.

� A service-dependent part is used to pass information to each API. The layout
of this part depends on the individual requirements of each API.

The service-independent part of the interface is described in Table 14 on page 64.
The service-dependent part is described individually for each API.

 Chapter 4. User Exits and APIs 63

Table 14. Service-Independent Part of the API Parameter

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 The service name.
This a 10-byte name representing the purpose of the
API. All service names must be in uppercase.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 If �� is returned the service has been completed
successfully. Otherwise an error has been detected.
Refer to “Completion Codes” on page 64 for more
details on this parameter.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

Total 16

 Completion Codes
A 2-byte character field. This field is always set by the API on return to the appli-
cation. The following completion codes are valid:

00 Successful Completion. Both the API server and the service program
ended without detecting any errors.

01 Unknown Service. The service name supplied in the parameter APINAM
(service name) is invalid. Check if you have misspelled the service
name.

Note: The service name must be in uppercase.

03 No Defaults Available. You requested to use the APD/400 defaults
(you defined an asterisk (*) for one or more fields) for some of the
service-dependent parameters, but the API server is not able to set the
defaults. One possible reason for this error is that you requested this
service from an application that is not running under APD/400 control
(such as an unattached job; see case 5 in Figure 9 on page 50). In
such a case, APD/400 does not know the current values for installation,
application, and so on.

05 Service Program Not Callable. The API server could not find the
program that processes the service. There are several reasons why this
error can occur, such as:

� The server program object has been deleted or destroyed.
� The calling application program is not authorized to call the server

program.
� The server program does not have the correct release and modifica-

tion level.

Refer to the OS/400 job log to analyze the reason for this error.

06 APD/400 is currently locked, that is, another function (for example, reor-
ganization) needs exclusive access to APD/400. The request must be
tried again at a later time.

19 Other Server Errors. An error not described previously has occurred.
In such a case, APD/400 may send messages to the program message
queue of the program that called QAFAPIPG. Analyze these messages

64 Developer's Guide

and refer to the OS/400 job log to determine the reason for this type of
error.

20 - 98 Service-Dependent Completion Codes. This range is reserved for the
service-dependent completion codes. Refer to the description of each
individual API service.

99 Other Service-Dependent Errors. An error that is not described in the
list of service-dependent completion codes has occurred. In such a
case, APD/400 may send messages to the program message queue of
the program that called QAFAPIPG. Analyze these messages and refer
to the OS/400 job log to determine the reason for this type of error.

Defaults for Optional Parameters
If the program calling the API is running under APD/400 control (cases 1 to 4 in
Figure 9 on page 50), it is not mandatory that you specify all values required by
the service. Because there is already an active APD/400 session, APD/400 could
use defaults for some parameters. For example:

 � Installation name
 � Application name
 � Task name
 � Data-set name.

If one of these values is required within the service-dependent part of the API inter-
face, the server inserts the current defaults if you specify an asterisk (*) for the first
byte, and blanks (␣ = Hex 40) for the other bytes of the field.

For example, the batch schedule API SCHBATCH needs information about the installa-
tion and the application to which the batch task belongs. If the task belongs to the
same installation and application, you can fill the first byte of the corresponding
installation and application fields of the service-dependent part with an asterisk.
APD/400 then retrieves the information for the current active task from the data-
base, and replaces the asterisks with the corresponding values.

In the following description of each API interface, the parameters that are optional
(for which APD/400 may provide a default) are marked with an asterisk in the first
character of the Use column. For example, the installation name (INSID) field of the
SCHBATCH service is optional and marked as RINPUT in the Use column of the inter-
face description table. A required parameter would be marked as INPUT (without
the leading asterisk).

The Description column for each optional parameter contains an explanation of the
default.

Note: You cannot use the APD/400 defaults for one of the service-dependent
parameters from an application that is not running under control of APD/400 (for
example, an unattached job; see case 5 in Figure 9 on page 50). In such a case,
APD/400 does not know the current values for installation, application, and so on.
You must provide existing values for all the service-dependent parameters even if
they are defined as replaceable by defaults.

You can use this feature for all or for a subset of the parameters that are defined
as replaceable by defaults.

 Chapter 4. User Exits and APIs 65

Refer to the description of the individual services for a more detailed description of
parameter defaults.

Note: If work with defaults in APIs is switched off, no information from the active
APD/400 session will be provided for this application.

 Messages
All APIs return messages to the calling application when an error has been
detected that cannot be matched to the completion codes �1 through 18 (for
service-independent errors), and 2� through 98 (for service-dependent errors). The
messages are sent to the program message queue of the program that called
QAFAPIPG. If the completion code 19 or 99 is returned, receive these messages to
your program to analyze the problem.

 API Descriptions
The following are the APIs supplied with APD/400.

ADDADTE Add Audit File Entry
This API is used to add records to the audit file QAAFAUDT0, to save information
on the current job that a user wants to keep. The user can trace the job by calling
this API at each step where a problem could occur, or at specific events. All values
are optional. The user can decide which information is necessary in each case.

 Interface Description

Table 15 (Page 1 of 2). Parameters for the Add Audit File Entry API (ADDADTE)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 ADDADTE
The service name of the Add Audit File Entry API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

99 An error during a file operation on file
QAAFAUDT0 has occurred. See the mes-
sages.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Installation name
INSID

RINPUT CHAR(3) 3 17 The name of the installation to which the task
defined in TSKID belongs.

Default: The name of the installation to which the
currently active task belongs.

5
Application name
ANWID

RINPUT CHAR(7) 7 2� The name of the application to which the task to be
processed belongs.

Default: The name of the application to which the
currently active task belongs.

66 Developer's Guide

Table 15 (Page 2 of 2). Parameters for the Add Audit File Entry API (ADDADTE)

Parameter Use Type Len Pos Description

6
Task name
TSKID

INPUT CHAR(1�) 1� 27 In this field the name of the task or program that is
processed is stored.

7
User name
USRID

RINPUT CHAR(1�) 1� 27 The name of the user processing the task.

Default: The user profile of the user to which the
currently active job belongs.

8
Data-set name
FIRNR

RINPUT CHAR(4) 4 47 The name of the data set to which the task to be
processed belongs.

Default: The name of the currently active data set of
the currently active application. Leave this param-
eter blank if the application does not use data sets.

9
Job name
JOBID

RINPUT CHAR(1�) 1� 51 The name of the current job. This value can be
found with RTVJOBA.

Default: The job name of the current job.

10
Job number
JOBNR

RINPUT CHAR(6) 6 61 The job number of the current job. This value can
be found with RTVJOBA.

Default: The job number of the current job.

11
Processing type
EXTYP

INPUT CHAR(1) 1 67 Processing type: B for batch or I for interactive.

12
Event type
EVNTP

INPUT CHAR(7) 7 68 Describes the event that is to be stored, such as
START, END, CANCEL, and so on.

Total 74

Note: None of the fields are checked for validity.

 Chapter 4. User Exits and APIs 67

 Example
In the following example, the ADDADTE API is used to log the processing (start and
end) of a subtask in a COBOL program:

 ---+-R- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 ---+--- 6 ---+--- 7
R Define the structure for the interface of the API.
R Call the structure ADDADTE to be consistent with the rest of

 R the example.
 .
 .
 PROCEDURE DIVISION.
 SAMPLE-PROGRAM.

R // Initialize the parameters for the API server.
 MOVE "ADDADTE" TO APINAM IN ADDADTE
 MOVE "��" TO APICCD IN ADDADTE
 MOVE SPACES TO APIFTU IN ADDADTE
 MOVE " " TO INSID IN ADDADTE

MOVE "APPL123 TO ANWID IN ADDADTE
 MOVE "R" TO USRID IN ADDADTE
 MOVE "���1" TO FIRNR IN ADDADTE
 MOVE "R" TO JOBID IN ADDADTE
 MOVE "R" TO JOBNR IN ADDADTE
 MOVE "B" TO EXTYP IN ADDADTE

R // Process procedure PROC�1 and log start and end
R // using the API ADDADTE.

MOVE "PROC�1" TO TSKID IN ADDADTE
 MOVE "START" TO EVNTP IN ADDADTE

CALL "QAFAPIPG" USING ADDADTE IN QAFAPIPG
 PERFORM PROC�1
 MOVE "END" TO EVNTP IN ADDADTE

CALL "QAFAPIPG" USING ADDADTE IN QAFAPIPG

R // Process procedure PROC�2 and log start and end
R // using the API ADDADTE.

MOVE "PROC�2" TO TSKID IN ADDADTE
 MOVE "START" TO EVNTP IN ADDADTE

CALL "QAFAPIPG" USING ADDADTE IN QAFAPIPG
 PERFORM PROC�2
 MOVE "END" TO EVNTP IN ADDADTE

CALL "QAFAPIPG" USING ADDADTE IN QAFAPIPG

The entries in the Audit file are built according to the passed data, including the
time and the date when the event happened (�2/�5/1993 �8:��:��), and the
current job IDs (JOB1 and 123456).

68 Developer's Guide

The fields in the Audit file are inserted as follows:

QAAFAUDT� 1. 2. 3. 4.
field Record Record Record Record

 name

USRID 'USER1' 'USER1' 'USER1' 'USER1'
JOBID 'JOB1' 'JOB1' 'JOB1' 'JOB1'
JOBNR '123456' '123456' '123456' '123456'
EVTDS x'1993�2�5' x'1993�2�5' x'1993�2�5' x'1993�2�5'
EVTTS x'�8����' x'�8����' x'�8����' x'�8����'

 EVTDA '1993�2�5' '1993�2�5' '1993�2�5' '1993�2�5'
EVTTA '�8����' '�8����' '�8����' '�8����'
EVTDD '1993-�2-�5' '1993-�2-�5' '1993-�2-�5' '1993-�2-�5'

 EVTTD '�8:��:��' '�8:��:��' '�8:��:��' '�8:��:��'
 INSID ' ' ' ' ' ' ' '

ANWID 'APPL123' 'APPL123' 'APPL123' 'APPL123'
MTASK 'PROC�1' 'PROC�1' 'PROC�2' 'PROC�2'
FIRNR '���1' '���1' '���1' '���1'

 RETCD
BJSNR � � � �
RSSNR � � � �

 EVNTP 'START' 'END' 'START' 'END'
EXTYP 'B' 'B' 'B' 'B'

Note: The date format in the EVTDD field depends on the setting of the APD/400
parameter APD_DATE_REPRESENTATION at the time the ADDADTE API is called.

CHGAPPD Change Application Definitions
This API updates an application according to changes created by using the
Compare Application Definitions (CMPAPPD) API. The changes (inserts, deletes,
or updates) are applied to the current version that is stored in the APD/400 data
repository in library QUSRSYS.

Note: In the following, before-image refers to the previous version, and after-
image to the new version.

Definitions are inserted as follows. If the record:

� Does not already exist, it is inserted.

� Already exists and has the same content as the after-image, it is ignored.

� Already exists and has a content different from the after-image, it is replaced
with the after-image and the current values of the deviating fields are printed in
the error report.

Definitions are deleted as follows. If the record:

� Exists and has the same content as the before-image, it is deleted.

� Does not exist, it is ignored.

� Exists and has a content different from the before-image, it is deleted and the
current values of the deviating fields are printed in the error report.

Definitions are changed as follows. If the record:

� Exists and has the same content as the before-image, it is replaced with the
after-image.

� Exists and has the same content as the after-image, it is ignored.

 Chapter 4. User Exits and APIs 69

� Exists and has a content different from both the before-image and the after-
image, it is replaced with the after-image, and the current values of the fields
different from the before-image and after-image are printed in the error report.

Note: The comparison is done field-by-field. No error is reported for fields of
which the before-image and after-image are identical. In this case, the current
content of the field is retained even though other fields in the record may be
updated.

� If the record does not exist, the after-image is inserted and a corresponding
error is printed.

The AIP is always replaced.

Figure 10 shows a sample warning report.

C D
5716PD1 V3R6M� 95�43� IBM AS/4�� Application Program Driver/4�� �4/3�/95 1�:3�:16 Page 1
Change Application Description (Warning report) DT ����ADT

Record key Field Description Replaced field contents

Application file
DT ANWTX Application text APDC Development Tools (PTR Tool)
DT AUDTF Audit flag 1

Figure 10. Sample Warning Report

“Sample Scenarios” on page 45 shows how this API can be used.

70 Developer's Guide

 Interface Description

Table 16 (Page 1 of 2). Parameters for the Change Application Definitions API (CHGAPPD)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 CHGAPPD
The service name of the Change Application Defi-
nitions API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The specified installation does not exist.
21 The specified application does not exist in

either the current APD/400 tables or in the input
library.

22 You do not have authority for the application.
You must be the administrator of the application
(the APD/400 administrator can authorize you
to use the Administer Applications function
(ADMAPL)), or have the OS/400 special author-
ities *ALLOBJ and *SECADM (for example, by
being the QSECOFR).

23 The AIP does not exist in the input library.
25 The input library does not exist.
26 The input library contains incorrect application

definitions.
27 The APD/400 version of the application defi-

nitions in the input library could not be deter-
mined.

28 The operation code is not valid.
29 The specified application is currently in use. All

users must suspend use of the application
while changes are being applied.

58 All processing has completed successfully, but
a warning report has been printed listing the
changes that have been overwritten.

99 Other errors. See the job log.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Installation name
INSID

INPUT CHAR(3) 3 17 The name of the installation containing the applica-
tion for which the definitions are to be changed.

Default: The name of the installation to which the
currently active task belongs.

5
Application name
ANWID

INPUT CHAR(7) 7 2� The name of the application for which the definitions
are to be changed.

Default: The name of the application to which the
currently active task belongs.

6
Definition library
DLIBC

INPUT CHAR(1�) 1� 27 The name of the library containing the changes to
the application definitions.

 Chapter 4. User Exits and APIs 71

Table 16 (Page 2 of 2). Parameters for the Change Application Definitions API (CHGAPPD)

Parameter Use Type Len Pos Description

7
Operation code
OPRCD

INPUT CHAR(1) 1 37 This API can be used in two different modes
depending on whether you want updates to the
application definitions to be applied:

0 A warning report listing the user changes that
would be destroyed is written but no actual
updates are made to the current application defi-
nitions.

1 The current application definitions are updated
and a report listing the user changes that have
been destroyed is written.

A report is not written (independent of the operation
code) if there are no replacement definitions.

Total 37

CHGDST Change Data Set
This API is used to change the current data set of an application from within an
application program. It has the same effect as the Select Data Sets function (see
IBM Application Program Driver/400 Version 3: User's Guide). The change is valid
for the user and job. The data set selected is used for the current job and as the
default after the next sign-on.

 Interface Description

Table 17 (Page 1 of 2). Parameters for the Change Data-Set API (CHGDST)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 CHGDST
The service name of the Change Data-Set API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

99 Other errors.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Installation name
INSID

RINPUT CHAR(3) 3 17 The name of the installation to which the data set to
be changed belongs.

Default: The name of the installation to which the
currently active task belongs.

5
Application name
ANWID

RINPUT CHAR(7) 7 2� The name of the application to which the data set to
be changed belongs.

Default: The name of the application to which the
currently active task belongs.

6
Data-set name
FIRNR

INPUT CHAR(4) 4 27 The name of the data set that should be used as the
new active data set for the current job.

72 Developer's Guide

Table 17 (Page 2 of 2). Parameters for the Change Data-Set API (CHGDST)

Parameter Use Type Len Pos Description

7
Return code
RETCDE

OUTPUT CHAR(1) 1 31 0 Data set has been changed.
1 Data set does not exist.

A data set with the given installation, application,
and data-set name does not exist.

2 User not authorized to use the data set.
This is returned if the data set is secured with an
APD/400 authorization list and the current user
does not have an authorization level of 1 or
greater.

3 Data set is locked.
Another job is processing a task that requires
exclusive access to the data set (an exclusion of
type 2 has been defined for the task).

Total 31

Note: The setting Work with Data Sets has no influence on this API.

CHKAUT Check Authorization
This API is used to retrieve the authorization level for a given user from an
APD/400 authorization list.

Authorization lists can be used for APD/400 objects such as tasks and data sets.
This API can be used to provide APD/400 authorization lists for objects of an appli-
cation, so that it is not necessary to develop a new authorization concept.

 Interface Description

Table 18 (Page 1 of 2). Parameters for the Check Authorization API (CHKAUT)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 CHKAUT
The service name of the Check Authorization API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The authorization list name (field BRFKT) or user
ID (field USRID) was blank when the API was
called. No authorization level could be deter-
mined.

99 An error occurred during the authorization
checking. (This return code occurs, for
example, if the authorization list name is
unknown.)

3
Future use
APIFTU

4 13 This field is reserved for future use. However, you
should fill it with blanks (␣ = Hex 40) before you call
the server.

4
Installation name
INSID

RINPUT CHAR(3) 3 17 The name of the installation to which the authori-
zation list to be checked belongs.

Default: The installation name of the currently active
task.

 Chapter 4. User Exits and APIs 73

Table 18 (Page 2 of 2). Parameters for the Check Authorization API (CHKAUT)

Parameter Use Type Len Pos Description

5
Application name
ANWID

RINPUT CHAR(7) 7 2� The name of the application to which the authori-
zation list to be checked belongs.

Default: The application name of the currently active
task.

6
User name
USRID

RINPUT CHAR(1�) 1� 27 The name of the user processing the task.

Default: The user profile of the user who owns the
current job.

7
Authorization list
name
BRFKT

INPUT CHAR(1�) 1� 37 The name of the authorization list to be checked.

8
Authorization level
BRSTF

OUTPUT CHAR(1) 1 47 The 1-character (� to 9) authorization level retrieved
from the authorization list.

Total 47

Note: The setting Use Authorization Checking has no influence on API CHKAUT.

CHKEXC Check Exclusion
This API service can be called to use the APD/400 exclusion control from within
your application program. With this service you can check, set, and reset an exclu-
sion for an exclusion list.

Note: If you set an exclusion for an exclusion list with this API, you must reset it
when the function that required the exclusive access ends. Otherwise, the exclu-
sion record remains in the APD/400 database and may lock other functions. In
such a case, you must process the database reorganization with at least level 2.
See “Reorganization” in the APD/400 IBM Application Program Driver/400 Version
3: Administrator's Guide.

 Interface Description

Table 19 (Page 1 of 3). Parameters for the Check Exclusion API (CHKEXC)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 CHKEXC
The service name of the Check Exclusion API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The field Operation Code (OPRCD) contained an
invalid value. The value of RETCDE is undefined.

23 Data set not found.
24 Not authorized for data set.
99 Other errors. See the job log.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

74 Developer's Guide

Table 19 (Page 2 of 3). Parameters for the Check Exclusion API (CHKEXC)

Parameter Use Type Len Pos Description

4
Installation name
INSID

RINPUT CHAR(3) 3 17 The name of the installation to which the exclusion
list to be allocated or deallocated belongs.

Default: The name of the installation to which the
currently active task belongs.

5
Application name
ANWID

RINPUT CHAR(7) 7 20 The name of the application to which the exclusion
list to be allocated or deallocated belongs.

Default: The name of the application to which the
currently active task belongs.

6
Exclusion list name
PGMGR

INPUT CHAR(1�) 10 27 The name of the exclusion list to be allocated or
deallocated.

7
Operation code
OPRCD

INPUT CHAR(1) 1 37 This API can be used in two different modes: one to
check and set an exclusion, and one to release an
exclusion. The mode is controlled by the operation
code as follows:

1 Check and set an exclusion for the exclusion list.
2 Release an exclusion for the exclusion list.

8
Return code
RETCDE

OUTPUT CHAR(1) 1 38 The API passes a return code back to the caller
program as follows:

0 The operation was successful and the exclusion
could be set or released.

1 For OPRCD = 1, the exclusion could not be set,
because it is excluded by another task.
For OPRCD = 2, the exclusion has not been
released, because no activity record could be
found for this exclusion list.

If the completion code (APICCD) does not contain 00,
the return code RETCDE is undefined.

9
Data set Id
FIRNR

RINPUT CHAR(4) 4 39 The ID of the data set, for which the exclusion list
should be allocated or deallocated.

Default:The current active data set. (this one which
was selected at last is the current data set).

 Chapter 4. User Exits and APIs 75

Table 19 (Page 3 of 3). Parameters for the Check Exclusion API (CHKEXC)

Parameter Use Type Len Pos Description

10
Return message
variable
RETMSG

OUTPUT CHAR(48) 48 43 A record format which contains the

 � application-id (char7)
 � alias-name (char7)
 � task-id (char10)
� exclusion list (char10)

 � user-id (char10)
� data set-id (char4)

which causes the exclusion. This field is filled, if an
exclusion is identified.

If an active task is identified,

 � alias-name
 � task-id
 � user-id
 � data-set

will be returned.

If only an exclusion is identfied without finding the
corresponding active task (e.g., if the exclusion was
set using the API CHKEXC),

 � application-id
 � exclusion list
 � data set

will be returned.

Total 90

 Example 1
In this example, a task T1 is processing under APD/400. The program that belongs
to T1 is an online program that displays a list of items, where the user can select
one of the items for processing by typing an option code against the item. The
options are 2=Change, 4=Delete, 5=Display, and 6=Print. This is a typical WRKxxx
list display as often used by OS/400.

No exclusion control has been defined on the task level, because it can be decided
only on the subtask level whether processing is excluded or not. Having an exclu-
sion on the task level that avoids double invocation of T1 would be too restrictive.

The solution is to use a set of subtasks named T1_2, T1_4, T1_5, and T1_6 that
correspond to the processing performed when options 2, 4, 5, or 6 are selected.
The following table provides an overview of the tasks and subtasks that belong to
the sample program:

Table 20. Tasks and Subtasks

Task Option Subtask Exclusion List

T1 2 T1_2 T1_UPDATE

T1 4 T1_4 T1_UPDATE

T1 5 T1_5

T1 6 T1_6

76 Developer's Guide

Note: Subtasks T1_2 through T1_6 need not necessarily be defined as tasks
within APD/400, as the API requires only the name of the exclusion list to which the
task belongs.

In this example, the change and delete processes require exclusive access to the
database of the application. Therefore, within APD/400 an exclusion has been
defined as follows:

T1_UPDATE c────────_ T1_UPDATE

This exclusion definition guarantees that only one task belonging to the exclusion
list can be active at a given point in time.

Note: The setting Use Exclusion Checking has no influence on API CHKEXC.

 Chapter 4. User Exits and APIs 77

Code for the example is as follows:

 ---+-R- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 ---+--- 6 ---+--- 7
R Define the structure for the interface of the API.
R Call the structure CHKEXC to be consistent with the rest of

 R the example.

R // The interface for the call to QAFAPIPG is
R // initialized. The installation ID (INSID) and
R // application ID (ANWID) must not be explicitly
R // defined as they are the same as for the current
R // active task T1. Therefore, an asterisk (R) is used
R // to tell the APD/4�� API server to insert the defaults.

MOVE "CHKEXC" TO APINAM IN CHKEXC
 MOVE "��" TO APICCD IN CHKEXC
 MOVE SPACES TO APIFTU IN CHKEXC
 MOVE "R" TO INSID IN CHKEXC
 MOVE "R" TO ANWID IN CHKEXC

PERFORM UNTIL F�3-PRESSED
 R // Write and read the display file that displays
 R // the WRKxxx panel.
 PERFORM GET-OPTION-FROM-PANEL
 IF NOT-F�3-PRESSED
 THEN
 EVALUATE TRUE

WHEN OPTION ═ "2" OR OPTION ═ "4"
R // Option 2 and 4 (subtask T1_2 and T1_4) belong
R // to the T1_UPDATE exclusion group.

 MOVE "T1_UPDATE" TO PGMGR IN CHKEXC
 MOVE "1" TO OPRCD IN CHKEXC

CALL "QAFAPIPG" USING CHKEXC IN QAFAPIPG
IF RETCDE IN CHKEXC ═ "�"

 THEN
R // No exclusion, processing may continue.

 EVALUATE OPTION
WHEN "2" PERFORM PROC�2
WHEN "4" PERFORM PROC�4

 END-EVALUATE

R // Deallocate the exclusion group when processing
R // has finished.

 MOVE "2" TO OPRCD IN CHKEXC
CALL "QAFAPIPG" USING CHKEXC IN QAFAPIPG

 ELSE
R // T1_UPDATE is currently excluded by different
R // processing. Send a message and redisplay the

 R // panel.
 END-IF

R // Options 5 and 6 (display and print)
R // do a read access on the database.
R // No exclusion checking is necessary.

WHEN OPTION ═ "5" PERFORM PROC�5
WHEN OPTION ═ "6" PERFORM PROC�6

 WHEN OTHER CONTINUE
 END-EVALUATE
 END-IF
 END-PERFORM

78 Developer's Guide

 Example 2
This API can also be used to exclude a task, all tasks of an application, or all tasks
within APD/400 without calling all excluding tasks. For example, an application can
be excluded during installation of a database upgrade, even though the upgrade
program does not run under APD/400 control.

CMPAPPD Compare Application Definitions
This API compares the new and previous definitions of the specified application,
creating a set of changed definitions. The records in each file contain a flag indi-
cating whether the record is to be inserted, deleted, or updated (with a before-
image and an after-image). The AIP is always copied.

“Sample Scenarios” on page 45 describes how this API can be used.

 Interface Description

Table 21 (Page 1 of 2). Parameters for the Compare Application Definitions API (CMPAPPD)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 CMPAPPD
The service name of the Compare Application Defi-
nitions API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

21 The specified application does not exist in at
least one of the input libraries.

22 You do not have authority for the application.
You must be the administrator of the application
as defined in one of the input libraries, or have
the OS/400 special authorities *ALLOBJ and
*SECADM (for example, by being the
QSECOFR).

23 The AIP does not exist in at least one of the
input libraries.

24 The library already exists.
25 At least one of the input libraries does not exist.
26 At least one of the input libraries contains incor-

rect application definitions.
27 The APD/400 version of the application defi-

nitions in at least one of the input libraries could
not be determined.

99 Other errors. See the job log.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Application name
ANWID

INPUT CHAR(7) 7 17 The name of the application for which the definitions
are to be compared.

Default: The name of the installation to which the
currently active task belongs.

5
Definition library
(previous version)
DLIBP

INPUT CHAR(1�) 1� 24 The name of the library containing the definitions of
the previous version of the application.

 Chapter 4. User Exits and APIs 79

Table 21 (Page 2 of 2). Parameters for the Compare Application Definitions API (CMPAPPD)

Parameter Use Type Len Pos Description

6
Definition library
(new version)
DLIBN

INPUT CHAR(1�) 1� 34 The name of the library containing the definitions of
the new version of the application.

7
Definition library
(changes)
DLIBC

INPUT CHAR(1�) 1� 44 The name of the library to receive the changes to
the application definitions. It should not exist when
the API is invoked.

Total 53

DLTAPPD Delete Application Definitions
This API deletes the APD/400 part (application definitions and AIP) of an applica-
tion. It performs a function similar to Delete Applications.

Note: Only the APD/400 part is deleted. Application objects such as libraries,
folders, and user profiles are not changed.

“Sample Scenarios” on page 45 describes how this API can be used.

 Interface Description

Table 22 (Page 1 of 2). Parameters for the Delete Application Definitions API (DLTAPPD)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 DLTAPPD
The service name of the Delete Application Defi-
nitions API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The specified installation does not exist.
21 The specified application does not exist in the

specified installation.
22 You do not have authority for the application.

You must be the administrator of the application
(the APD/400 administrator can authorize you
to use the Administer Applications function
(ADMAPL)), or have the OS/400 special author-
ities *ALLOBJ and *SECADM (for example, by
being the QSECOFR).

29 The specified application is currently in use. All
users must suspend use of the application
while changes are being deleted.

34 The specified application cannot be deleted
because it is a prerequisite for another applica-
tion.

35 The application APD cannot be deleted from
the standard installation.

99 Other errors. See the job log.

80 Developer's Guide

Table 22 (Page 2 of 2). Parameters for the Delete Application Definitions API (DLTAPPD)

Parameter Use Type Len Pos Description

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Installation name
INSID

INPUT CHAR(3) 3 17 The name of the installation containing the applica-
tion for which the definitions are to be deleted.

Default: The name of the installation to which the
currently active task belongs.

5
Application name
ANWID

INPUT CHAR(7) 7 2� The name of the application for which the definitions
are to be deleted.

Total 26

DSPINSAPP Display Installed Applications
This API allows the developer or user to display selected installations, applications,
and data sets in a specified output file.

“Sample Scenarios” on page 45 describes how this API can be used.

 Interface Description

Table 23 (Page 1 of 2). Parameters for the Display Installed Applications API (DSPINSAPP)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 DSPINSAPP
The service name of the Display Installed Applica-
tions API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

22 You do not have authority to display installed
applications. You must be an application
administrator (the APD/400 administrator can
authorize you to use the Administer
Applications function (ADMAPL)), or have the
OS/400 special authorities *ALLOBJ and
*SECADM (for example, by being the
QSECOFR).

31 At least one of the parameters for the output
file is not valid, or the file or member already
exists and *NEWFILE or *NEWMBR was speci-
fied.

99 Other errors. See the job log.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Installation name
INSID

RINPUT CHAR(4) 4 17 The name of the installation. *ALL means display all
installations. A generic name can also be used.

Default: The name of the installation to which the
currently active task belongs.

 Chapter 4. User Exits and APIs 81

Table 23 (Page 2 of 2). Parameters for the Display Installed Applications API (DSPINSAPP)

Parameter Use Type Len Pos Description

5
Application name
ANWID

RINPUT CHAR(7) 7 21 The (internal) name of the application. *ALL means
display all installations. A generic name can also be
used.

Default: The name of the installation to which the
currently active task belongs.

6
Data-set name
FIRNR

RINPUT CHAR(4) 4 28 The name of the data set. *ALL means display all
data sets. A generic name can also be used.

Default: The name of the currently active data set in
the application to which the currently active task
belongs.

7
File name
OUTFILE

INPUT CHAR(1�) 1� 32 The name of the database file that receives the
output. If the database file does not exist, the
system creates it in the specified library.

8
Library name
LIB

INPUT CHAR(1�) 1� 42 The name of the library where the database file is
located, or *CURLIB.

9
Member name
MBR

INPUT CHAR(1�) 1� 52 The file member to receive the output, or *FIRST.

10
Output option
OPTION

INPUT CHAR(8) 8 62 The possible values for output options are:

*NEWFILE
The output is written to a new database file.

*RPLFILE
The output deletes the old file if it exists, and
creates a new database file.

*NEWMBR
The output is added as a new member.

*RPLMBR
The existing member is cleared and the output is
added.

*ADDMBR
The output is added to the end of an existing
member.

Total 69

The following is the layout of the outfile produced by this API:

Table 24 (Page 1 of 2). Layout of Outfile for Display Installed Applications

Field Pos Len Description

INSID 1 3 Installation ID
The ID of the installation to which the application belongs.

INSTX 4 4� Installation description
The description of the installation to which the application
belongs.

BRFKT 44 1� Authorization list ID of installation
The ID of the authorization list that is used to secure the instal-
lation. The authorization list belongs to the application APD in
the default installation (␣␣␣). The ID of the authorization list is
INST_xxx, where xxx is replaced by the installation ID.

82 Developer's Guide

Table 24 (Page 2 of 2). Layout of Outfile for Display Installed Applications

Field Pos Len Description

ANWID 54 7 Application ID
The (internal) ID of the application.

ALIAS 61 7 Alias
The (external) ID of the application.

FTRCD 68 4 Future use
Currently not used.

VRSST 72 2 Version
The version of the application.

RLSST 74 2 Release
The release of the application.

MDLVL 76 4 Modification level
The modification level of the application.

ANADM 8� 1� Application administrator
The user profile name of the application administrator.

ANWTX 9� 4� Application text
The descriptive text for the application.

AUDTF 13� 1 Audit flag
Indicates whether activities of the application are audited or not.
Values are:

0 Do not audit activities
1 Audit activities.

MNUBL 131 1 Blank line for missing menu options flag
Indicates whether blank lines are inserted between menu
options of the application if the option numbers are not in a
sequence. Values are:

0 Do not insert blank line
1 Insert blank line.

MHFID 132 1� Menu headings format ID
The ID of the menu heading format to be used for menus of the
application. This menu heading format is used only if one is not
specified on the task level.

MNUFT 142 1 Single/double column menu format flag
Indicates whether the single or double column layout is used for
menus of the application. Values are:

1 Single column
2 Double column.

FIRNR 143 4 Data set ID
The ID of a data set for the application.

FIRNM 147 4� Data set description
The description of a data set for the application.

BRFKT�1 187 1� Authorization list ID of data set
The ID of the authorization list used to secure the data set.

 Chapter 4. User Exits and APIs 83

EXTAPPD Extract Application Definitions
This API extracts the APD/400 part (application definitions and AIP) of the given
application from the APD/400 repository and stores it in a specified library. The
procedure is basically the same as that performed by option 3 (Copy to library
QAPDIAHDR) of the Administer Applications (Developer) function (ADMAPP).

“Sample Scenarios” on page 45 describes how this API can be used.

 Interface Description

Table 25 (Page 1 of 2). Parameters for the Extract Application Definitions API (EXTAPPD)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 EXPAPPD
The service name of the Extract Application Defi-
nitions API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The specified installation does not exist.
21 The specified application does not exist.
22 You do not have authority for the application.

You must be the administrator of the application
(the APD/400 administrator can authorize you
to use the Administer Applications function
(ADMAPL)), or have the OS/400 special author-
ities *ALLOBJ and *SECADM (for example, by
being the QSECOFR).

23 The AIP does not exist.
24 The library already exists.
36 No menu selection was found for this applica-

tion in the APD/MAIN menu. The extraction of
the application definitions was completed
despite this minor error. If the resulting defi-
nitions are installed, no menu selection is
inserted into the APD/MAIN menu.

57 More than one menu selection was found for
this application in the APD/MAIN menu. The
extraction of the application definitions was
completed despite this minor error. If the
resulting definitions are installed, only the first
menu selection is inserted into the APD/MAIN
menu.

99 Other errors. See the job log.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Installation name
INSID

INPUT CHAR(3) 3 17 The name of the installation containing the applica-
tion for which the definitions are to be extracted.

Default: The name of the installation to which the
currently active task belongs.

84 Developer's Guide

Table 25 (Page 2 of 2). Parameters for the Extract Application Definitions API (EXTAPPD)

Parameter Use Type Len Pos Description

5
Application name
ANWID

INPUT CHAR(7) 7 2� The name of the application for which the definitions
are to be extracted.

Default: The name of the application to which the
currently active task belongs.

6
Definition library
DLIBN

INPUT CHAR(1�) 1� 27 The name of the library to receive the extracted
application definitions. It should not exist when the
API is evoked.

Total 36

INSAPPD Install Application Definitions
This API installs the APD/400 part (application definitions and AIP) of the given
application. It performs a function similar to Install Applications.

Note: Only the APD/400 part of the application is installed. No user profiles,
libraries, or folders are installed or created.

“Sample Scenarios” on page 45 describes how this API can be used.

 Interface Description

Table 26 (Page 1 of 3). Parameters for the Install Application Definitions API (INSAPPD)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 INSAPPD
The service name of the Install Application Defi-
nitions API.

 Chapter 4. User Exits and APIs 85

Table 26 (Page 2 of 3). Parameters for the Install Application Definitions API (INSAPPD)

Parameter Use Type Len Pos Description

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The specified installation does not exist.
21 The specified application does not exist in the

input library.
22 You do not have authority for the application.

You must be the administrator of the application
(the APD/400 administrator can authorize you
to use the Administer Applications function
(ADMAPL)), or have the OS/400 special author-
ities *ALLOBJ and *SECADM (for example, by
being the QSECOFR).

23 The AIP does not exist in the input library.
25 The input library does not exist.
26 The input library contains incorrect application

definitions.
27 The APD/400 version of the application defi-

nitions in the input library could not be deter-
mined.

29 The specified application is currently excluded
by other processing.

32 The specified application already exists in the
specified installation.

33 The specified application cannot be installed
because a prerequisite application has not yet
been installed.

42 The data-set description is blank.
43 The data-set name contains characters that are

not valid.
46 The save object name is incorrect.
99 Other errors. See the job log.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Installation name
INSID

INPUT CHAR(3) 3 17 The name of the installation that contains the appli-
cation for which the definitions are to be installed.

Default: The name of the installation to which the
currently active task belongs.

5
Application name
ANWID

INPUT CHAR(7) 7 2� The name of the application for which the definitions
are to be installed.

6
Data-set name
FIRNR

INPUT CHAR(4) 4 27 The name of the data set.

This parameter is required only when the name of
the data set is used in forming library names
(replacement variables &Dn appear in the library
name templates). Otherwise, it is blank.

Valid characters are A-Z and �-9. Characters used
in the library name must not be blank.

86 Developer's Guide

Table 26 (Page 3 of 3). Parameters for the Install Application Definitions API (INSAPPD)

Parameter Use Type Len Pos Description

7
Data-set description
FIRNM

INPUT CHAR(4�) 4� 31 The description of the data set.

This parameter is required only when the name of
the data set is used in forming library names
(replacement variables &Dn appear in the library
name templates). Otherwise, it is blank.

8
Definition library
DLIBN

INPUT CHAR(1�) 1� 71 The name of the library containing the application
definitions.

Total 80

SCHBATCH Schedule a Batch Task
This API is used to enable a user to schedule a batch task through APD/400. The
service program checks whether the current user is authorized to perform the task
and to use the batch environment that is defined for the task.

Note: Schedule a Batch Job (where you can override the schedule time, batch
environment, and so on) does not display for batch tasks scheduled using this API.
It displays only when you schedule the batch task from a menu or using an expert
code.

 Interface Description

Table 27 (Page 1 of 2). Parameters for the Schedule Batch Task API (SCHBATCH)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 SCHBATCH
The service name of the Schedule a Batch task API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 - The task type is not program or command
(process lists are not supported).
- The type of processing is not batch.

21 The task does not exist.
22 The user is not authorized for the task.
23 The data set does not exist.
24 The user is not authorized for the data set.
26 The restart flag is not valid.
27 The audit flag is not valid.
28 The date or time is not valid.
99 Other errors. The job is not scheduled. See

other messages.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

 Chapter 4. User Exits and APIs 87

Table 27 (Page 2 of 2). Parameters for the Schedule Batch Task API (SCHBATCH)

Parameter Use Type Len Pos Description

4
Installation name
INSID

RINPUT CHAR(3) 3 17 The name of the installation to which the currently
active task belongs.

Default: The name of the installation to which the
currently active task belongs.

5
Application name
ANWID

RINPUT CHAR(7) 7 2� The name of the application to which the task to be
processed belongs.

Default: The name of the application to which the
currently active task belongs.

6
Task name
TSKID

INPUT CHAR(1�) 1� 27 The name of the task to be processed.

Default: The name of the currently active task.

7
Data-set name
FIRNR

RINPUT CHAR(4) 4 37 The name of the data set to be used by the batch
job.

Default: The name of the data set to which the cur-
rently active task belongs.

This parameter should be left blank if the application
does not use data sets.

8
Restart flag
RSTFL

RINPUT CHAR(1) 1 41 The following values are allowed for the restart flag:

0 No restart
1 Normal restartable
2 Mandatory restart.

Default: The restart flag as it has been defined for
the task.

9
Audit flag
AUDTF

RINPUT CHAR(1) 1 42 The following values are allowed for the audit flag:

0 The task is not audited
1 The task is audited.

Default: The audit flag as it has been defined for the
task.

10
Time stamp
DATTIM

RINPUT CHAR(14) 14 43 Date and time when the job is to be processed in
the format YYYYMMDDHHMMSS.

Default: The current date and time is used, so the
task is processed immediately.

11
Task parameter
MPPRT

RINPUT CHAR(512) 512 57 The task parameter that is required by the applica-
tion program.

Default: The parameter as it has been defined for
the task. You must define an asterisk for byte 1 of
the parameter, and all spaces (␣ = Hex 40) for bytes
2 through 512 of the task parameter if you want to
instruct APD/400 to insert the default.

Total 568

88 Developer's Guide

 Example
In this example, a batch task is scheduled from an application program to process
under the control of APD/400. The batch program prints database records from
files. It expects the name of the file and the lower and upper limits for the records
to be printed in the task parameter MPPRT. The online program prompts the user to
enter the required parameters and then calls the SCHBATCH API to allow the task to
process under control of APD/400.

This example also shows you how to instruct APD/400 to insert the defaults to the
interface:

� The task to be scheduled belongs to the same installation, application, and
data set as the task that processes the program described.

� For the audit and restart flags, the values from the task definition are used.

� The date and time that the task is processed is set to the current date and
time.

Therefore, asterisks (*) are used as the first byte for these parameters.

 Chapter 4. User Exits and APIs 89

Code for the example is as follows:

 ---+-R- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 ---+--- 6 ---+--- 7
R Define the structure for the interface of the API.
R Call the structure SCHBATCH to be consistent with the rest of

 R the example.
 .
 .
 .
 PROCEDURE DIVISION.
 SAMPLE-PROGRAM.

R // Initialize the parameters for the API server.
 MOVE "SCHBATCH" TO APINAM IN SCHBATCH
 MOVE "��" TO APICCD IN SCHBATCH
 MOVE SPACES TO APIFTU IN SCHBATCH
 MOVE "R" TO INSID IN SCHBATCH
 MOVE "R" TO ANWID IN SCHBATCH

MOVE "PRINTFILE" TO TSKID IN SCHBATCH
 MOVE "R" TO FIRNR IN SCHBATCH
 MOVE "R" TO RSTFL IN SCHBATCH
 MOVE "R" TO AUDTF IN SCHBATCH
 MOVE "R" TO DATTIM IN SCHBATCH

R // A panel is displayed where the user can define the
R // filename and the lower and upper limits for the
R // records to be printed.

 PERFORM GET-PARAMETER-FROM-USER
 STRING

FILENAME IN DISPLAY-FILE-RECORD DELIMITED BY SIZE
LOWER IN DISPLAY-FILE-RECORD DELIMITED BY SIZE
UPPER IN DISPLAY-FILE-RECORD DELIMITED BY SIZE

INTO MPPRT IN SCHBATCH
 END-STRING

CALL "QAFAPIPG" USING SCHBATCH IN QAFAPIPG

SETRST Set Restart Code
To determine the restartability of a task, APD/400 normally uses the restart flag as
defined by the developer or user as a default.

This API is used to dynamically overwrite the restart flag of a task that is proc-
essing. This could be necessary if a long-running task (especially a task running in
batch) needs to have different restartability options within different steps of proc-
essing. If, for example, the task abends within a complex update of a database file,
the task must be restarted (mandatory restart), but when the task is creating a
report this is not necessary.

Therefore, you can use this API to change the restartability of a task according to
your requirements during runtime.

 Interface Description

Table 28 (Page 1 of 2). Parameters for the Set Restart Code API (SETRST)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 SETRST
The service name of the Set Restart Code API.

90 Developer's Guide

Table 28 (Page 2 of 2). Parameters for the Set Restart Code API (SETRST)

Parameter Use Type Len Pos Description

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

21 One of the following errors has occurred:
� The restart flag is not valid.
� No job entries in ADJOBS0, ADSCDL0, or

ADSTCK0.
99 Other errors.

3
Future use
APIFTU

CHAR(4) 4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Restart flag
RSTFL

INPUT CHAR(1) 1 17 The following values are allowed for the restart flag:

0 Not restartable
1 Restartable
2 Mandatory restartable.

Total 17

 Example
The following is a sample program that uses the SETRST API:

 ---+-R- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 ---+--- 6 ---+--- 7
R Copy the interface record for the SETRST API call
R to the program.
R Define the structure for the interface of the API.
R Call the structure SETRST to be consistent with the rest of

 R the example.
 .
 .
 .
 PROCEDURE DIVISION.
 SAMPLE-PROGRAM.

R // Procedure PROC-�1 does a complex database update.
R // If this fails then a restart should be mandatory.
R // To change the restart to "mandatory" (2), APD/4��
R // API SETRST is used.

MOVE "SETRST" TO APINAM IN SETRST
 MOVE "��" TO APICCD IN SETRST
 MOVE SPACES TO APIFTU IN SETRST
 MOVE "2" TO RSTFL IN SETRST

CALL "QAFAPIPG" USING SETRST IN QAFAPIPG
 PERFORM PROC-�1

R // When procedure PROC-�1 ends, the restart flag is set back
R // to "no-restart" (�) again using the APD/4�� API SETRST.

 MOVE "�" TO RSTFL IN SETRST
CALL "QAFAPIPG" USING SETRST IN QAFAPIPG

 Chapter 4. User Exits and APIs 91

SNDMSG Send Message
This API is used to send messages to APD/400 to be displayed on APD/400 dis-
plays. For example, a task performed from an APD/400 menu that does not
require any user interaction sends a completion message. Both messages from
message files and messages defined at program runtime can be sent.

To send a predefined message from a message file, the values for MSGFLIB, MSGF,
and MSGID must be defined. MSGDTA contains the message data fields that replace
the & variables defined for the message.

If field MSG contains any characters that are not blank, a message defined at
program runtime is sent. If all fields contain only blanks, the completion code is 20.

To send a message defined at program runtime, the text to be displayed must be
defined in field MSG.

 Interface Description

Table 29. Parameters for the Send Message API (SNDMSG)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 SNDMSG
The service name of the Send Message API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The message file or the message file library
does not exist.

21 The message does not exist in the specified
message file.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Message file library
MSGFLIB

RINPUT CHAR(1�) 1� 17 The name of the library in which the message file is
stored.

5
Message file
MSGF

RINPUT CHAR(1�) 1� 27 The name of the message file in which the message
is stored.

6
Message ID
MSGID

RINPUT CHAR(7) 7 37 The identifier of the message in the message file.

7
Message data
MSGDTA

INPUT CHAR(512) 512 44 The data for the & variables in the message.

8
Message text
MSG

INPUT CHAR(132) 132 556 The text for messages defined at program run time.
If field MSG is not blank, such a message is sent.

Total 687

92 Developer's Guide

WRKDST Work with Data Sets
This API allows the developer or user to create, change, retrieve, and delete
APD/400 data sets. It performs tasks similar to the Administer Data Sets function
(see IBM Application Program Driver/400 Version 3: Administrator's Guide). For
example, you can use the WRKDST API to:

� Provide multiple data sets during the post installation procedure

� Create identical data sets for an application family.

If an application library description (see “Adding an Application Library Description”
on page 40) exists for the application, and the library name template contains at
least one data set ID placeholder (&Dn.), the following apply:

� Application library descriptions with a data set placeholder in the library name
template will be created or deleted if a data set is created or deleted. This is to
guarantee that the symbolic names are resolved correctly for new data sets.
However, no OS/400 object of type *LIB is created.

� A save/restore control record (see Administering Control Records in IBM
Application Program Driver/400 Version 3: Administrator's Guide) is created or
deleted whenever an application library description is created or deleted. The
save/restore control record is created with the following values:

Backup cycle: 1 (Daily)

Starting date: Current date

Priority: 00

Generations: 3

Use Administer Control Records to change these initial values.

“Sample Scenarios” on page 45 describes how this API can be used.

 Interface Description

Table 30 (Page 1 of 3). Parameters for the Work with Data-Sets API (WRKDST)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 WRKDST
The service name of the Work with Data-Sets API.

 Chapter 4. User Exits and APIs 93

Table 30 (Page 2 of 3). Parameters for the Work with Data-Sets API (WRKDST)

Parameter Use Type Len Pos Description

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The specified installation does not exist.
21 The specified application does not exist.
22 You do not have authority for the application.

You must be the administrator of the application
(the APD/400 administrator can authorize you
to use the Administer Applications function
(ADMAPL)), or have the OS/400 special author-
ities *ALLOBJ and *SECADM (for example, by
being the QSECOFR).

28 The operation code is not valid.
30 The specified data set does not exist.
42 The data-set description is blank.
43 The data-set name contains characters that are

not valid.
44 The data set already exists.
45 The data-set description already exists.
46 The save object name is incorrect.
56 The authorization list does not exist.
99 Other errors. See the job log.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Installation name
INSID

RINPUT CHAR(3) 3 17 The name of the installation.

Default: The name of the installation to which the
currently active task belongs.

5
Application name
ANWID

RINPUT CHAR(7) 7 2� The name of the application.

Default: The name of the installation to which the
currently active task belongs.

6
Data-set name
FIRNR

RINPUT CHAR(4) 4 27 The name of the data set.

Valid characters are A-Z and �-9. If the name of the
data set is used in forming library names (replace-
ment variables &Dn. are used in the library name
template), characters used in the library name must
not be blank.

Default: The name of the currently active data set in
the application to which the currently active task
belongs.

7
Data-set description
FIRNM

INPUT/
OUTPUT

CHAR(4�) 4� 31 The description of the data set.

As an input parameter, it cannot be blank and it
must be unique as a data-set description for this
application in this installation.

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

94 Developer's Guide

Table 30 (Page 3 of 3). Parameters for the Work with Data-Sets API (WRKDST)

Parameter Use Type Len Pos Description

8
Authorization list
BRFKT

INPUT/
OUTPUT

CHAR(1�) 1� 71 The authorization list controlling access to the data
set. Blank means no authorization checking is per-
formed.

As an input parameter, the authorization list must
have been previously defined.

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

9
Operation code
OPRCD

INPUT CHAR(1) 1 81 The operation to be performed:

1 Create
2 Change
3 Retrieve
4 Delete.

Total 81

Note: The setting Work with Data-Sets has no influence on API WRKDST.

WRKINS Work with Installations
This API allows the developer or user to create, change, retrieve, and delete
APD/400 installations.

“Sample Scenarios” on page 45 describes how this API can be used.

 Interface Description

Table 31 (Page 1 of 2). Parameters for the Work with Installations API (WRKINS)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 WRKINS
The service name of the Work with Installations API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The specified installation does not exist.
22 You do not have authority to work with installa-

tions. You must be an application administrator
(the APD/400 administrator can authorize you
to use the Administer Applications function
(ADMAPL)), or have the OS/400 special author-
ities *ALLOBJ and *SECADM (for example, by
being the QSECOFR).

28 The operation code is not valid.
37 The installation description is blank.
38 The installation name contains characters that

are not valid.
39 The installation already exists.
40 The installation description already exists.
41 The installation cannot be deleted because

applications still exist in it.
99 Other errors. See the job log.

 Chapter 4. User Exits and APIs 95

Table 31 (Page 2 of 2). Parameters for the Work with Installations API (WRKINS)

Parameter Use Type Len Pos Description

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Installation name
INSID

RINPUT CHAR(3) 3 17 The name of the installation.

Valid characters are A-Z and �-9. Embedded
spaces are not allowed.

Default: The name of the installation to which the
currently active task belongs.

5
Installation
description
INSTX

INPUT/
OUTPUT

CHAR(4�) 4� 2� The description of the installation.

As an input parameter, it cannot be blank and it
must be unique as an installation description.

Input for operations 1 and 2, output for operation 3,
unused for operation 4.

6
Operation code
OPRCD

INPUT CHAR(1) 1 6� The operation to be performed:

1 Create
2 Change
3 Retrieve
4 Delete.

Total 60

WRKSAVOBJ Work with Save Objects
This API allows the developer or user to create, change, retrieve, and delete
APD/400 save object entries. It performs tasks similar to the Administer Control
Records function (see IBM Application Program Driver/400 Version 3: Administra-
tor's Guide).

If the save object type is 2 (Folder), only the save/restore control information is
affected.

If the save object type is 1 (Library), the save/restore control information and the
application library description (see “Adding an Application Library Description” on
page 40) are affected as follows:

� If the operation code is 2 (Change), an application library description exists for
the library, and blank has been specified for INSID, ANWID, and FIRNR, the appli-
cation library description for the library is deleted.

� If the operation code is 2 (Change), an application library description exists for
the library, and different values are specified for INSID, ANWID, and FIRNR, from
those to which the application library description belongs, the application library
description is moved to the specified installation, application, and data set.

� If the operation code is 4 (Delete), and an application library description exists
for the library, the application library description is deleted.

All these operations can cause problems for an application that needs the applica-
tion library description (for example, symbolic library names are resolved based on
the information in the application library description). To avoid these problems,

96 Developer's Guide

retrieve (operation code 3) the save object attributes and test to see if an applica-
tion library description exists for the library (in which case, INSID and ANWID are not
blank). If an application library description exists, make sure that the application
can run correctly without the application library description.

 Interface Description

Table 32 (Page 1 of 3). Parameters for the Work with Save Objects API (WRKSAVOBJ)

Parameter Use Type Len Pos Description

1
Service name
APINAM

INPUT CHAR(1�) 1� 1 WRKSAVOBJ
The service name of the Work with Save Objects
API.

2
Completion code
APICCD

OUTPUT CHAR(2) 2 11 00 Successful completion.
01 - 19

Refer to “Completion Codes” on page 64 for
more details on completion codes.

20 The specified installation does not exist.
21 The specified application does not exist.
22 You do not have authority to work with save

object entries. You must be the application
administrator (the APD/400 administrator can
authorize you to use the Administer
Applications function (ADMAPL)), or have the
OS/400 special authorities *ALLOBJ and
*SECADM (for example, by being the
QSECOFR).

28 The operation code is not valid.
30 The specified data set does not exist.
46 The save object name is incorrect.
47 The save object type is incorrect.
48 The number of generations to be saved is

incorrect.
49 The group priority is incorrect.
50 The medium type is incorrect.
51 The save cycle is incorrect.
52 The starting date for saving is incorrect.
53 The names of the installation, application, and

data set must be blank when the save object
type is not 1=Library.

54 The save object entry already exists.
55 The save object entry does not exist.
99 Other errors. See the job log.

3
Future use
APIFTU

4 13 This field is reserved for future use. However, fill it
with blanks (␣ = Hex 40) before you call the server.

4
Save object name
BIBL�1

INPUT CHAR(12) 12 17 The name of the library or folder to be saved.

 Chapter 4. User Exits and APIs 97

Table 32 (Page 2 of 3). Parameters for the Work with Save Objects API (WRKSAVOBJ)

Parameter Use Type Len Pos Description

5
Save object type
TYPE�1

INPUT CHAR(1) 1 29 The type of the object to be saved:

1 Library
2 Folder.

6
Generations to be
saved
GENE�1

INPUT/
OUTPUT

CHAR(1) 1 3� Generations to be saved (1-9).

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

7
Group priority
PRIO�1

INPUT/
OUTPUT

CHAR(2) 2 31 The priority for saving and restoring the save object.

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

8
Medium type
MEDT�1

INPUT/
OUTPUT

CHAR(1) 1 33 The type of medium used to save the object:

1 Tape.

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

9
Save cycle
ZYKL�1

INPUT/
OUTPUT

CHAR(1) 1 34 The save cycle for the save object:

0 Optional
1 Daily
2 Weekly
3 Monthly.

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

10
Starting date for
saving
STDT�1

RINPUT/
OUTPUT

CHAR(8) 8 35 The starting date to save the object (YYYYMMDD).

Default: Today's date.

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

11
Installation name
INSID

RINPUT/
OUTPUT

CHAR(3) 3 43 The name of the installation. Blank if the save
object does not belong to a particular application
under control of APD/400.

Default: The name of the installation to which the
currently active task belongs.

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

12
Application name
ANWID

RINPUT/
OUTPUT

CHAR(7) 7 46 The name of the application. Blank if the save
object does not belong to a particular application
under control of APD/400.

Default: The name of the installation to which the
currently active task belongs.

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

98 Developer's Guide

Table 32 (Page 3 of 3). Parameters for the Work with Save Objects API (WRKSAVOBJ)

Parameter Use Type Len Pos Description

13
Data-set name
FIRNR

RINPUT/
OUTPUT

CHAR(4) 4 53 The name of the data set. Blank if the save object
does not belong to a particular application under
control of APD/400, if the application does not use
data sets, or if the save object does not belong to a
data set of the application.

Default: The name of the currently active data set in
the application to which the currently active task
belongs.

Input for operations 1 and 2, output for operation 3,
not used for operation 4.

14
Operation code
OPRCD

INPUT CHAR(1) 1 57 The operation to be performed:

1 Create
2 Change
3 Retrieve
4 Delete.

Total 57

 Chapter 4. User Exits and APIs 99

100 Developer's Guide

Appendix A. Layout of File QAAFTASK0

Each record in the task file QAAFTASK0 holds an entry for a task. A task is an
element function within APD/400. A record in QAAFTASK0 holds all data that
APD/400 needs to process the task.

Note: This interface is as described in “Interfaces for Version 3 Release 6” on
page viii.

 Record Layout
The following table shows the record layout of the QAAFTASK0 file:

Table 33 (Page 1 of 2). QAAFTASK0: Task File

Field Name Data Type Bytes Offset Key Default Description

1 INSID CHAR(3) 3 1 1A *none Installation ID

2 ANWID CHAR(7) 7 4 2A *none Application ID

3 MTASK CHAR(10) 10 11 3A *none Task ID/Expert code

4 TASKA CHAR(1) 1 21 *none Task type

5 EXTYP CHAR(1) 1 22 *none Processing type

6 HLDOC CHAR(12) 12 23 *spaces Help document

7 HLLAB CHAR(10) 10 35 *spaces Help label

8 BRFKT CHAR(10) 10 45 *spaces Authorization list ID

9 PGMGR CHAR(10) 10 55 *spaces Exclusion list ID

10 MAWTX CHAR(46) 46 65 *none Menu option text

11 AUDTF CHAR(1) 1 111 *spaces Audit flag

12 MAURR CHAR(1) 1 112 *spaces Control flag

13 MPPRT CHAR(512) 512 113 *spaces Menu program parameter

14 MPGMN CHAR(10) 10 625 *none Menu program name

15 RSTFL CHAR(1) 1 635 *none Restart flag

16 ENVID CHAR(10) 10 636 *spaces Environment ID

17 OVRSD CHAR(1) 1 646 0 Overwrite schedule date

18 OVRBE CHAR(1) 1 647 0 Overwrite batch environment

19 OVRPR CHAR(1) 1 648 0 Overwrite parameter

20 PRPGM CHAR(10) 10 649 *spaces Parameter definition user-exit program

21 CNFMS CHAR(1) 1 659 0 Send confirmation message

22 SCDMS CHAR(1) 1 660 0 Send schedule message

23 ISCHT CHAR(3) 3 661 Hex
hhmmss

Initial schedule time

24 ISTAT CHAR(3) 3 664 RDY Initial schedule status

25 MHFID CHAR(10) 10 667 *spaces Menu headings format ID

26 ULPRM CHAR(2) 2 677 *spaces Interface level for the user-exit
program for parameter definition
(PRPGM)

 Copyright IBM Corp. 1988, 1995 101

Table 33 (Page 2 of 2). QAAFTASK0: Task File

Field Name Data Type Bytes Offset Key Default Description

27 MSTXT CHAR(20) 20 679 *spaces Task short text

28 ACTBR CHAR(10) 10 699 *spaces Related menu bar

29 MNUWD CHAR(1) 1 709 1 Menu window

Total 709

Extended Field Descriptions
The following are detailed descriptions of the fields in the QAAFTASK0 file:

INSID The 3-digit installation ID.

ANWID The 7-digit application ID is the program number of the application (for
example, *APD for APD/400).

MTASK The expert code name that identifies a task within an application.

TASKA The task type can be:

B A menu bar task.
C A command task. For command tasks, APD/400 interprets the task

name MTASK as an OS/400 command with the associated parame-
ters stored in the menu parameter MPPRT. A command is not proc-
essed through the AIP. This prevents a user from being granted all
administrator authorizations for the corresponding application,
because the AIP is always compiled with the USRPRF parameter of
the CRTxxx command set to *OWNER.

D A pull-down task.
L A process list task.
M A menu task.
P A program task.

EXTYP The processing type can be I for interactive or B for batch. EXTYP=B is
not allowed for pull-down, menu bar, and menu tasks.

HLDOC If the Help source for the task is:

� OfficeVision/400, this field is the name of a document.
� UIM, this field is the name of a panel group.
� An OS/400 library, this field is the name of a display file.
� A user-exit program, this field is the name of an identifier.

HLLAB If the Help source for the task is:

� OfficeVision/400, this field is the name of a label.
� UIM, this field is the name of a Help module.
� An OS/400 library, this field is the name of a record.
� A user-exit program, this field is the name of an identifier.

BRFKT The name of an authorization list. Only users that have an authorization
of at least 1 in this list are authorized to perform the task.

PGMGR A task of type program (TASKA=P) can be associated with a program
group. A program group is stored in the program group text file
(QAAFPGTX0) and the program group file (QAAFPRGR0). A program
group is identified with INSID/ANWID/PGMGR.

102 Developer's Guide

MAWTX The menu option text is a brief description of the task.

AUDTF If this field contains �, no audit records are written when the task is
processed. If this field contains 1, records are written into the Audit file.
If this field is empty, the related value from the Application file is used.

MAURR This control flag has no specific use for APD/400 itself. It is passed
unchanged to the AIP, where it can be used in several ways. The value
for this field can be 1 for Yes or � for No.

MPPRT The menu program parameter holds all the information that an applica-
tion needs to run a program. The 512 bytes can be defined as needed
by the application. This field can be changed, depending on the value
of the field OVRPR.

MPGMN The name of the program if the task is type P (program).

RSTFL The restart flag defines the way in which APD/400 controls the proc-
essing of a task. This flag can have the following values:

0 No restart control. The user is not notified if the task ended abnor-
mally.

1 Normal restart control. APD/400 notifies the user if a task with this
definition fails. The restart is displayed but can be omitted on Work
with Canceled Jobs.

2 Mandatory restart. A task defined as mandatory restart cannot be
omitted within Work with Canceled Jobs. It may be set to HLD if the
user wants to resolve the restart situation later.

ENVID The name of a batch environment.

OVRSD This field holds a Boolean value that defines whether or not the
schedule date can be overwritten during the invocation and the changing
of a batch job:

0 The schedule date cannot be overwritten.
1 The date can be overwritten.

OVRBE This field holds a Boolean value that defines whether or not the batch
environment can be overwritten during the invocation and the modifica-
tion (using Work with Scheduled Jobs) of a batch job:

0 The batch environment cannot be overwritten.
1 The batch environment can be overwritten.

APD/400 checks whether the user is authorized to use the specified
batch environment at invocation and modification time.

OVRPR This field holds a Boolean value that defines whether or not the task
parameter can be overwritten during the invocation and the changing of
a batch job:

0 The batch task parameter cannot be overwritten.
1 The batch task parameter can be overwritten.

PRPGM If this value is defined, the editing of the task parameter (MPPRT) in the
batch scheduler and Work with Scheduled Jobs functions is done using
a special program. This program is part of the application and is called
via the AIP of the application.

CNFMS This is a 1-byte Boolean field and can have two values:

 Appendix A. Layout of File QAAFTASK0 103

0 No confirmation message is sent.

1 A confirmation message is sent when the user wants to invoke a
batch job via APD/400 and no further panels are displayed. If the
user presses F3 or F12, the batch job is not submitted. If the user
presses Enter, the batch job is submitted to the APD/400 batch
handler.

SCDMS This is a 1-byte Boolean field and can have two values:

0 No message is displayed.

1 APD/400 sends a message to the user stating that the batch task
has been transferred to the APD/400 batch handler.

ISCHT The initial schedule time. The value in this field is used as the initial
value for the field SCHTM in QAAFSCDL0. If field OVRSD is set to 1, the
suggested schedule time can be overwritten by the user at schedule
time, and by using the function Work with Scheduled Jobs. The format
of this field is hhmmss.

ISTAT The initial schedule status. A record with a value in this field as the
initial state is inserted into the schedule table when the task is sched-
uled. The value of this field can be:

RDY The task is ready to be submitted. At the appropriate date and
time, APD/400 processes the task.

HLD The task will not be submitted until the state is changed to RDY
using the Work with Scheduled Jobs function. Initialize your
batch jobs with HLD if you do not want them to run immediately;
for example, if you want report jobs to run only during the night
but you want to allow the scheduling during the day.

MHFID This field points to an entry in the menu headings format file
(QAAFMHFS0). It is applicable only for menu tasks (TASKA=M). If this
field is left blank, the default heading for the application (stored in field
MHFID in QAAFANWG0) to which the task belongs is used. If that field
is blank, the APD/400 default menu heading is used.

ULPRM This field defines the layout level of the parameters passed by APD/400
to the user exit specified in PRPGM. Valid values are �� through 99. If
this is not specified, APD/400 uses the layout for the current release
level.

MSTXT A short text of up to 20 characters describing the task.

ACTBR This field is used only for menu tasks (TASKA=M). It specifies the name
of the menu bar to be used for the menu. The menu bar must be in the
same application (same ANWID) as the menu.

MNUWD This field indicates whether the menu is displayed in a window or full-
screen. The user's initial menu is always displayed as a full-screen
menu, regardless of the value in this field.

104 Developer's Guide

Appendix B. Layout of File QAAFMENU0

The menu file QAAFMENU0 defines the structure of menus, pull-downs, and
process lists. It contains one record for each menu option, pull-down choice, or list
entry. Each menu, pull-down, or process list and each option, choice, and entry
points to a record in the task file (see Appendix A, “Layout of File QAAFTASK0” on
page 101).

Notes:

1. If ANWID or ANWMT are equal to RAPD, the corresponding entry in the task file must
be searched with the installation ID (INSID) of ‘ ’, regardless of the settings of
INSID in QAAFMENU0.

2. This interface is as described in “Interfaces for Version 3 Release 6” on
page viii.

 Record Layout
The following table shows the record layout of the QAAFMENU0 file:

Table 34 (Page 1 of 2). QAAFMENU0: Menu File

Field Name Data Type Bytes Offset Key Default Description

1 INSID CHAR(3) 3 1 1A *none Installation ID.

2 ANWID CHAR(7) 7 4 2A *none Application ID of the menu.

3 MENAM CHAR(10) 10 11 3A *none Menu name.
The task ID of the menu. The
description and other information about
the menu must be stored in the Task
file.

4 MAWNR PACKED(2) 2 21 4A *none Menu selection number.
A maximum of 14 menu selections can
be defined in one menu. The valid
range is �1 through 99.

5 ANWMT CHAR(7) 7 23 *none Application ID of the task.
The internal application ID of the
selected task. ANWID and ANWMT are
identical if the menu and the menu
selection belong to the same applica-
tion.

6 MTASK CHAR(10) 10 30 *none Task name/expert code.
The name (expert code) of the
selected task. It can be of any task or
processing type except that, for
process lists, only the last item in the
list can be a menu task.

 Copyright IBM Corp. 1988, 1995 105

Table 34 (Page 2 of 2). QAAFMENU0: Menu File

Field Name Data Type Bytes Offset Key Default Description

7 MSHTP CHAR(1) 1 40 5A *none Menu subheading type.
Describes whether this entry is used
as a menu option that points to a task
in the Task file (MSHTP=1), or is used to
store subheading information
(MSHTP=�), or is used as an option on a
menu bar (MSHTP=2).

If the task identified by field MENAM is B
(menu bar), D (pull-down), or L
(process list), the value in this field
must be 1.

8 MSHTX CHAR(46) 46 41 *spaces Menu subheading text.
Contains the text for the subheading if
MSHTP=�. It can contain a blank line.

If MHSTP=2, this field contains the menu
bar choice text. In this case, it must
not be blank.

Total 86

On the installation tape, this file (renamed to QAAFMENUA) must contain an addi-
tional record that APD/400 uses to insert your application into the APD/400 main
menu at the first free position. Leave fields INSID and MENAM blank, enter � for field
MAWNR, RAPD for field ANWID, and the internal ID of your application in field ANWMT.
MTASK is the name of your main menu. Without an entry, the application is not
listed in the APD/400 main menu, but can be invoked using the expert code.

106 Developer's Guide

Appendix C. Adding Tasks to the Task File

This is an example of a program that inserts records into the APD/400 task file
(QAAFTASK0). Each record in the file represents a task. The tasks created with
this program allow you to use OS/400 commands from the APD/400 command line.

Note: This interface is as described in “Interfaces for Version 3 Release 6” on
page viii.

To run this program, you must have SQL/400 on your system, and you need
*ALLOBJ authority:

1. Use the Administer Applications (Developer) function (ADMAPP) to define
an application in APD/400. The external name of the application could be, for
example, OS, and the internal name 5738SS1. You can use one of the sample
AIPs provided (see “Sample AIP” on page 20, and “Additional Sample AIPs” on
page 21) as the basis on which to build an AIP for your application.

2. In OS/400, type in the following command to create a file DSPOBJD in QTEMP
with the list of all OS/400 commands:

DSPOBJD OBJ(QSYS/RALL) OBJTYPE(RCMD RMENU)
 OUTPUT(ROUTFILE) OUTFILE(QTEMP/DSPOBJD)

3. Start SQL/400 by typing:

 STRSQL

4. Type in the following SQL/400 statements:

INSERT INTO QUSRSYS/QAAFTASK�
(ANWID, MTASK, TASKA, EXTYP, MAWTX, MAURR, MPGMN,

 RSTFL)
SELECT '5738SS1', ODOBNM, 'P', 'I',

SUBSTR(ODOBTX, 1, 46), '1', ODOBNM, '�'
 FROM QTEMP/DSPOBJD

WHERE ODOBTP = 'RCMD'
AND ODOBNM <> 'DATA'

INSERT INTO QUSRSYS/QAAFTASK�
(ANWID, MTASK, TASKA, EXTYP, MAWTX)
SELECT '5738SS1', ODOBNM, 'M', 'I',

SUBSTR(ODOBTX, 1, 46)
 FROM QTEMP/DSPOBJD

WHERE ODOBTP = 'RMENU'
AND ODOBNM NOT LIKE 'CMD%'

INSERT INTO QUSRSYS/QAAFTASK�
(ANWID, MTASK, TASKA, EXTYP, MAWTX, MAURR, MPGMN,

 MPPRT, RSTFL)
SELECT '5738SS1', ODOBNM, 'P', 'I',

SUBSTR(ODOBTX, 1, 46), '�', 'GO', ODOBNM, '�'
 FROM QTEMP/DSPOBJD

WHERE ODOBTP = 'RMENU'
AND ODOBNM LIKE 'CMD%'

All system commands and menus are now directly accessible as expert codes from
any APD/400 menu (for example, OS/DSPMSG).

 Copyright IBM Corp. 1988, 1995 107

If you want the prompting for a particular command, use the Administer Menus
function (ADMMNU) to change the task that represents that command.

Where necessary, you can improve the conversion of OS/400 to APD/400 by ana-
lyzing the output of the DSPCMD command (for example, by inserting only com-
mands that can be processed by QCMDEXC in an interactive production
environment).

Note: No menus for OS/400 commands have been created. You cannot read the
system tables in which information about OS/400 menus is stored. You can,
however, manually call each system menu, press F1 (Help) and then press F14.
This creates a spool file that you can analyze in a program (after you have run the
CRTSPLF command) to create the menu selections.

You can now use the Administer Menus function to build menus using the tasks
you have created.

108 Developer's Guide

Appendix D. Evaluating the APD/400 Audit File

This appendix contains general-use programming interface and associated guid-
ance information.

The APD/400 Audit file (QAAFAUDT0) contains a record for each event in
APD/400. An event is, for example, the starting or ending of a task. This file is
written sequentially and is not used by APD/400 for retrieving information.

The following table shows the layout of the Audit file:

The fields USRID, JOBID, and JOBNR make up the unique identifier for a job in
OS/400.

USRID The name of the user who owns the job. For interactive jobs, this is
the name of the user who signed on to the system. For batch jobs,
this is the name of the user who invoked the job or the user specified
in the ENUSR field of the related batch environment.

JOBID The name of the job. For interactive jobs, this is the name of the
work station where the job was invoked. For batch jobs, APD/400
uses the name of the MTASK field in the Task file (QAAFTASK0).

Table 35. QAAFAUDT0: Audit File

Field Name Length Type Description

USRID 10 A User ID

JOBID 10 A Job ID

JOBNR 6 A Job number

EVTDS 4 A Event date (SQL) internal

EVTTS 3 A Event time (SQL) internal

EVTDA 8 A Event date alpha

EVTTA 6 A Event time alpha

EVTDD 10 A Event date external

EVTTD 8 A Event time external

AKTST 3,0 P Activity level

UNTST 3,0 P Subprogram level

INSID 3 A Installation ID

ANWID 7 A Application ID

MTASK 10 A Task ID/Expert code

FIRNR 4 A Data-set ID

RETCD 1 A Return code

EVNTP 7 A Event type

BJSNR 9,0 P Batch job sequence number

RSSNR 9,0 P Restart sequence number

EXTYP 1 A Processing type

 Copyright IBM Corp. 1988, 1995 109

JOBNR The job number is a 6-digit number assigned sequentially by OS/400
to prevent duplicate job IDs.

EVTDS The event date in APD/400 internal representation (SQL/400 format).

EVTTS The event time in APD/400 internal representation (SQL/400 format).

EVTDA The event date in the format YYYYMMDD. This field is a character field
with one byte per digit. It can be used as a sort or selection field for
AS/400 Query.

EVTTA The event time in the format HHMMSS. This field is a character field
with one byte per digit. It can be used as a sort or selection field for
AS/400 Query.

EVTDD The event date format for displays. This format depends on the value
of the APD/400 parameter APD_DATE_REPRESENTATION.

EVTTD The event time format for displays.

AKTST The activity level is used as a key for the link between the Jobs file
(QAAFJOBS0) and the Main Program file (QAAFANAS0). The cur-
rently highest activity level is stored in the User file QAAFANWR0
(field AKTST), and is updated by the online monitor program
QAFDRMAIN. This field is a constant filler that is set to �.

UNTST The subprogram level information shown in this field is used to identify
the number of active APD/400 calls within this job, and is used for all
related files (Subprogram file QAAFANUS0 and Stack file
QAAFSTCK0) to uniquely identify a record. This field is a constant
filler that is set to �.

INSID The 3-digit installation ID.

ANWID This field is usually the application ID that uniquely defines an applica-
tion within an installation ID. For IBM applications, the IBM program
number (without the dash) is the application ID.

MTASK The task ID (expert code) identifies a task within an application. This
name is used as a reference for several purposes; as an expert code,
for building menus, and so on.

FIRNR The data-set ID is recorded if the application to which the task
belongs is designed to work with different data-set IDs. If not, this
field is left empty.

RETCD A return code is stored for entries with EVNTP=END, CNL, or RST. This is
the return code that the online monitor program QAFDRMAIN or the
Batch Gate Program (BGP) receives from the AIP.

EVNTP The event type can have the following values:

ACT Marks a start entry.

END Marks an end entry.

RST Marks a restart entry, which is a task that has been
defined as capable of restart (field RSTFL=1 or 2 in file
QAAFTASK0), and ends with a return code greater than 2
(abnormal end or cancelation).

CNL If a task not defined as restartable ends with a return
code of greater than 0, 1, or 2, the system writes a CNL
entry to the Audit file.

110 Developer's Guide

RST-CNL A task canceled with option 4 (Delete) on Work with
Canceled Jobs causes a RST-CNL entry.

RST-ACT A task marked as a restart and restarted using Work with
Canceled Jobs causes a RST-ACT entry.

AUT If you attempt to invoke a task for which you are not
authorized, the system adds this entry to the Audit file.

EXC An interactive task excluded by another user, or a batch
task marked as excluded after several rescheduling
attempts, causes an EXC entry.

RSC A batch task that has been excluded is rescheduled
several times. The number of rescheduling attempts and
the length of the intervals between them can be set in the
Parameter file. Tasks that are being rescheduled cause
RSC entries.

BJSNR This job sequence number is used to uniquely identify an invocation of
a batch or interactive job via APD/400.

RSSNR This is the batch job sequence number for those jobs for which the
current job is a restart. It indicates the first job in a possible chain of
started, failed, and restarted jobs. This makes it possible to retrieve
the entries in the Audit file in that chain by grouping the entries
according to their RSSNR value.

EXTYP The processing type can be I (interactive) or B (batch).

Creating Audit File Query Reports
In the Audit file (QAAFAUDT0), APD/400 stores information about how often spe-
cific tasks are called. This requires that the user specified Y as the audit flag for
the tasks using Administer Menus. If you do not specify 1 as the value for the
audit flag in the Task file, the default value for task auditing, specified in the Appli-
cation file, is used.

Auditing provides you with statistical material about system activities. Even if you
are not familiar with AS/400 Query, the two examples that follow will help you in
using it to produce the corresponding report and to create similar queries. IBM
AS/400 Query must be installed on your system if you want to change the supplied
queries. For more information, see the AS/400 Query: User's Guide.

 Example 1
You want to know which administration functions have been called during a specific
period of time (1993-02-02 until 1993-02-21), and how many calls occurred for the
different companies of the default installation ‘ ’. The expert code of any adminis-
tration function starts with ADM.

Note: You use different data sets in your application to separate data for different
companies you have as clients.

This sample query is stored as QAF_QD01 in library QUSRSYS. It queries file
QAAFAUDT0 in library *LIBL. The report may look as follows. The data-set ID is
interpreted in this example as the ID of a company.

 Appendix D. Evaluating the APD/400 Audit File 111

93/�2/22 �9:59:44 PAGE 1

 Task Company ID
 name/expert
 code

 ADMAPL

Menu ADMAPL in company called:
 COUNT 7 7

Menu ADMMNU in company called:
 COUNT 2 2

In company menus were called:
 COUNT 9 9

 ADMAPL ���1

Menu ADMMNU in company ���1 called:
 COUNT 4 4

In company ���1 menus were called:
 COUNT 4 4

 ADMAPL 1234

Menu ADMAPL in company 1234 called:
 COUNT 1 1

In company 1234 menus were called:
 COUNT 1 1

Menus called in all companies
 COUNT 14 14

R R R E N D O F R E P O R T R R R

You could produce a similar report by using the following SQL/400 command:

SELECT MTASK, FIRNR FROM QAAFAUDT� WHERE INSID =
' 'AND EVTDA BETWEEN '1993�2�1' AND'1993�221' AND
MTASK LIKE 'ADM%%%' ORDER BY FIRNR, MTASK

 Example 2
This example is stored as QAF_QD02 in library QUSRSYS. The report produced
by this query tells you how many menus have been called interactively or in batch
mode on a specific day (1993-01-18).

112 Developer's Guide

The Query report may look as follows:

 93/�2/22 16:27:58 PAGE 1

Event date Processing type Task
 name/expert
 code

 1993-�1-18 B EXT�1
 1993-�1-18 EXT�1
 1993-�1-18 SCHED��1
 1993-�1-18 SCHED��1
 1993-�1-18 TESTPROGB
 1993-�1-18 TESTPROGB
 1993-�1-18 TESTPROGB
 1993-�1-18 TESTPROGB
 1993-�1-18 TESTPROGB
 1993-�1-18 TESTPROGB

Processing type B used:
 COUNT 1�

 1993-�1-18 I TESTCMDI
 1993-�1-18 TESTCMDI
 1993-�1-18 TESTPROGI
 1993-�1-18 TESTPROGI
 1993-�1-18 TESTPROGI
 1993-�1-18 WRKCNLJOB
 1993-�1-18 WRKSBMJOB
 1993-�1-18 WRKSBMJOB
 1993-�1-18 WRKSBMJOB
 1993-�1-18 WRKSCDJOB

Processing type I used:
 COUNT 1�

Total number of calls on specified day:
 COUNT 2�

R R R E N D O F R E P O R T R R R

You could produce a similar report by using the SQL/400 command:

SELECT EVTDA, EXTYP, MTASK FROM QAAFAUDT� WHERE
EVTDA = '1993�118' ORDER BY EXTYP, MTASK

 Appendix D. Evaluating the APD/400 Audit File 113

114 Developer's Guide

Glossary of Terms and Abbreviations

This glossary defines terms used in the APD/400
library.

A
AIP. Application interface program.

API. Application program interface.

application. A program used to perform a particular
data processing task, such as inventory control or
payroll.

application interface program (AIP). A functional
interface used by APD/400 to invoke the corresponding
application.

application program interface (API). A functional
interface that allows an application program written in a
high- or low-level language to use specific data or func-
tions of APD/400.

authorization. The process of giving a user either
complete or restricted access to an object, resource, or
function.

authorization list. Authorization lists are used to
protect menus, menu options, installations, and data
sets from unauthorized access. An authorization list
consists of a 10-digit authorization list name and a list
of authorization list entries, each of which is comprised
of a user name and an authority level.

B
back up. To save some or all of the objects on a
system to tape or diskette, for safe keeping.

backup. (1) Pertaining to an alternative copy used as
a substitute if the original is lost or destroyed, such as a
backup log. (2) The act of saving some or all of the
objects on a system to a tape, diskette, or save file.
(3) The tapes, diskettes, or save files with the saved
objects.

Batch Monitor Program (BMP). The program used by
APD/400 to control batch jobs.

batch processing. A method of running a program or
a series of programs in which one or more records (a
batch) are processed with little or no action from the
user or operator. Contrast with interactive processing.

BMP. Batch Monitor Program.

C
CL. Control language.

command. A statement used to request a function of
the system. A command consists of the command
name abbreviation, which identifies the requested func-
tion, and its parameters.

Common User Access (CUA). Pertaining to a
Systems Application Architecture (SAA) specification
that gives a series of guidelines describing the way
information should be displayed on a screen, and the
interaction techniques between users and computers.

control language. The set of all commands with
which a user requests system functions.

control record. The description of a save operation
for libraries and folders. Record details include the
save cycle, the number of generations to be stored, the
medium, and the starting date.

CUA. Common User Access.

D
data description specifications (DDS). A description
of the user's database or device files that is entered into
the system in a fixed form. The description is then
used to create files.

data set. A data environment contained within an
application. For applications that are multi-data set
enabled, data sets could be used for different depart-
ments or clients.

DBCS. Double-byte character set.

DDS. Data description specifications.

default. A value that is automatically supplied or
assumed by the system or program when no value is
specified by the user.

DLO. Document library object.

document library object (DLO). Any system object
that resides in the document library, such as RFT and
FFT documents, folders, and PC files.

double-byte character set (DBCS). A set of charac-
ters in which each character is represented by 2 bytes.
Languages such as Japanese, Chinese, and Korean,
which contain more symbols than can be represented
by 256 code points, require double-byte character sets.

 Copyright IBM Corp. 1988, 1995 115

Because each character requires 2 bytes, the typing,
displaying, and printing of DBCS characters requires
hardware and programs that support DBCS.

E
exclusion. An exclusion defines which programs
cannot be active simultaneously in an application.

exclusion list. An exclusion list combines tasks into
groups. Defining exclusion lists saves the work of spec-
ifying each program for exclusions. Programs with
identical exclusion characteristics can be combined in
exclusion lists. An exclusion list can be either a func-
tion list or an object list.

expert code. A command or abbreviation used to
invoke a menu or program. Entering an expert code
allows the user to directly access a menu, task, or
program (without calling intermediate menus), as well
as to switch between applications without signing off
and on. Pressing F4 on a menu screen displays a list
of all expert codes for which the user is authorized.

F
folder. A directory for documents. A folder is used to
group related documents and to find documents by
name. The system-recognized identifier for the object
type is *FLR. Compare with library.

function key. A keyboard key that allows the user to
select keyboard functions or programmer functions.
The keys available are displayed on line 23 of the
screen display.

H
help function. Pressing either the Help key or F1 on a
display provides information on a specific part of that
display or the whole display, depending on the position
of the cursor. If the cursor is located on a message,
second-level text for that message is displayed.

high-level language (HLL). A programming language,
such as RPG, BASIC, PL/1, Pascal, COBOL, and C
used to write computer programs.

HLL. High-level language.

I
IBM SAA OfficeVision/400 Version 3. The IBM
licensed program that allows users to prepare, send,
and receive mail; schedule items on calendars; maintain
directories of names and addresses; file and retrieve
documents; and create and maintain distribution lists.

SAA OfficeVision/400 also provides word processing
functions and the capability to work on behalf of other
users.

initial menu. The first menu displayed after sign-on.
Each user can set a personal initial menu. Pressing
F23 on a menu labels it as the initial menu for the user.

installation. A specific processing environment con-
taining applications and data sets. For example, dif-
ferent installations could be used for test and production
environments.

interactive processing. A processing method in which
each operator action causes a response from the
program or the system. Contrast with batch processing.

J
job. (1) A unit of work to be done by a computer.
(2) In the SAA OfficeVision/400 calendar function, an
item that schedules a control language (CL) command
to run at any date or time.

journal. A system object that identifies the objects
being journaled, the current journal receiver, and all the
journal receivers on the system for the journal. The
system-recognized identifier for the object is *JRN.

journal receiver. A system object that contains journal
entries added when changes are made to an object, for
example, when an update is made to a file being jour-
naled. The object type is *JRNRCV.

journaling. The process of recording, in a journal, the
changes made to a physical file member.

L
language priority list. In APD/400, a list of available
languages ranked in order of a user's preference, to
enable the use of an application in one of the preferred
languages. Number 1 on the priority list is the user's
most preferred language.

library. A system object that serves as a directory to
other objects. A library groups related objects, and
allows the user to find objects by name. The system-
recognized identifier for the object type is *LIB.
Compare with folder.

library list. A list that indicates which libraries are to
be searched and the order in which they are to be
searched. The system-recognized identifier is *LIBL.

library name template. Naming conventions used in
combination with the installation and data-set IDs to
resolve a library name during installation of an applica-

116 Developer's Guide

tion that supports multiple installations or multiple data
sets.

local data area. A 1024-byte data area that can be
used to pass information between programs in a job. A
separate local data area is automatically created for
each job.

M
menu. A displayed list of items from which a user can
make a selection. The system-recognized identifier for
the object type is *MENU.

menu bar. The area containing keywords at the top of
a display that gives a user access to actions available
for that display. After a user requests a choice in the
menu bar, a pull-down menu is shown below the menu
bar.

message. A communication sent by the AS/400
system or APD/400, and displayed either on line 24 of
the screen or in window format.

MNCS. Multinational character set.

More. When displays and menus comprise several
pages, More... is displayed at the bottom of all screens
except the last one.

Position your cursor on the display, or message line,
and press F8. You can continue to do this until the
word Bottom is displayed.

multilingual support. Support that includes more than
one national language on a system. See also National
Language Support.

multinational character set (MNCS). A set of graphic
characters that support the languages within a specific
language group.

N
National Language Support (NLS). The ability for a
user to communicate with hardware and software pro-
ducts in a language of choice to obtain results that are
culturally acceptable. See also multilingual support.

NLS. National Language Support.

O
object. A named storage space that consists of a set
of characteristics that describe itself and, in some
cases, data. An object is anything that exists in and
occupies space in storage and on which operations can
be performed. Some examples of objects are pro-
grams, files, libraries, and folders.

OfficeVision. See IBM SAA OfficeVision/400
Version 3.

Operational Assistant. Pertaining to a part of the
operating system that provides a set of menus and dis-
plays for end users to do commonly performed tasks,
such as working with printer output, messages, and
batch jobs.

output queue. An object that contains a list of spooled
files to be written to an output device, such as a printer
or a diskette. The system-recognized identifier for the
object type is *OUTQ.

P
parameter. A value supplied to a command or
program that is used either as input or to control the
actions of the command or program.

process list. A list of program or command tasks that
are automatically processed in sequence. The last
entry can be a menu. A process list is a special type of
menu in which all tasks are called. Only when the last
task has been processed is control returned to the pre-
vious menu or the menu at the end of the process list.

program. A sequence of instructions that a computer
can interpret and run.

pull-down menu. An extension of the menu bar that
displays a list of available choices for a choice selected
by a user in the menu bar. After a user selects a
choice in the menu bar, the pull-down menu is shown.

Q
queue. A list of messages, jobs, files, or requests
waiting to be read.

R
restart. The action necessary when a batch job has
failed to run as scheduled.

restore. To copy data from tape, diskette, or a save
file to auxiliary storage. Contrast with save.

S
SAA. Systems Application Architecture.

save. To copy specific objects, libraries, or data by
transferring them from main storage or auxiliary storage
to a media such as tape, diskette, or a save file. Con-
trast with restore.

 Glossary of Terms and Abbreviations 117

scheduled job. A batch job that becomes eligible to
run at a specified date and time.

scroll. To move a display image vertically or horizon-
tally to view data that cannot be seen within the bound-
aries of the displayed screen.

SEU. Source entry utility.

source entry utility (SEU). A function of the AS/400
Application Development Tools licensed program that is
used to create and change source members.

spooled file. A file that holds output data waiting to be
processed, such as information waiting to be printed.

start program. A program defined by a user to run at
sign-on time.

symbolic library name. A name given to represent a
library in an application that supports multiple installa-
tions or multiple data sets. A symbolic library name is
used in conjunction with a library name template.

Systems Application Architecture (SAA). Pertaining
to an architecture defining a set of rules for designing a
common user interface, programming interface, applica-
tion programs, and communications support for strategic
operating systems such as the OS/2, OS/400, VM/370,
and MVS/370 operating systems.

T
tape cartridge. A case containing a reel of magnetic
tape that can be put into a tape unit without stringing
the tape between reels.

tape drive. A device used to move the tape and read
and write information on magnetic tapes.

task. A basic unit of work to be defined. In APD/400
there are six task types:

 � Command
 � Menu
 � Menu bar
 � Process list
 � Program
 � Pull-down.

textual data. The collective term for menus, displays,
lists, prompts, options, online Help information, and
messages.

timetable. A schedule showing a planned order or
sequence, used in APD/400 to determine when to run a
recurring batch job.

toggle. Pertaining to a switching device, such as a
toggle key on a keyboard, that allows a user to switch
between two types of operations. For example, in
APD/400 you can press F11 to display expert codes,
and press the key again to return to the original screen
display.

U
UIM. User Interface Manager.

user exit. A program routine given control by APD/400
to enhance services provided by APD/400 functions.

user identification (user ID). The name used to asso-
ciate the user profile with a user when the user signs on
the system.

User Interface Manager (UIM). A function of the oper-
ating system that provides a consistent user interface
by providing comprehensive support for defining and
running panels (displays), dialogs, and online Help infor-
mation.

user password. A unique string of characters that a
system user enters to identify that user to the system, if
the system resources are secured.

user profile. An object with a unique name that con-
tains the user's password, the list of special authorities
assigned to the user, and the objects the user owns.
The system-recognized identifier for the object type is
*USRPRF.

V
value. Data (numbers or character strings) entered in
an entry field, and data supplied in parameters of CL
commands.

W
window. A part of the display screen with visible
boundaries in which information is displayed. For
example, in APD/400 when F17 (Position to) is pressed
(where applicable), the Position the List window is
displayed over the current display.

118 Developer's Guide

 Bibliography

This bibliography lists related APD/400 publications and
other documentation that provides general information.

IBM Application Program Driver/400 Version 3 publi-
cations

� Administrator's Guide, SH12-6403-00

� General Information, GH12-6401-00

� Licensed Program Specifications, GH12-6400-00

� User's Guide, SH12-6402-00.

Other publications

� AS/400 Guide to Programming Application and Help
Displays, SC41-0011

� AS/400 National Language Support , SC41-4101

� AS/400 Control Language Programming,
SC41-4721

� AS/400 Query: User's Guide, SC41-4210.

 Copyright IBM Corp. 1988, 1995 119

120 Developer's Guide

 Index

A
Administer Data-Set Entries (ADMDSTE) 53
AIP

changing the job description 24
changing the library list 23
commitment control 24
creating 13
modifying 23
multilingual support 24
multiple data sets 23
multiple installations 23
opening files 25
parameter 14
principles 14
sample 20, 21
saving the local data area 24
time locks 26

APD/400 applications
authorization structure 29
base installation 36
concepts 1
creating an AIP 13
describing 9
design considerations 7
developing 6
displaying messages 32
exclusions 30
existing 7
new 6
packaging, shipping, and installing 34
restarting 9
specifying Help 11
tasks and menus 29
updates 37

API
Audit File Entry (ADDADTE) 66
authorization 30
call structures 50
calling 63
Change Application Definitions (CHGAPPD) 69
Change Data Set (CHGDST) 72
Check Authorization (CHKAUT) 73
Check Exclusion (CHKEXC) 74
Compare Application Definitions (CMPAPPD) 79
completion codes 64
default parameters 65
Delete Application Definitions (DLTAPPD) 80
descriptions 66
Display Installed Applications (DSPINSAPP) 81
exclusions 31
Extract Application Definitions (EXTAPPD) 84

API (continued)
Install Application Definitions (INSAPPD) 85
messages 66
migration 63
previous releases 63
Schedule a Batch Task (SCHBATCH) 87
Send Message (SNDMSG) 92
server 62
Set Restart Code (SETRST) 90
Work with Data Sets (WRKDST) 93
Work with Installations (WRKINS) 95
Work with Save Objects (WRKSAVOBJ) 96

application 115
application interface program 115
application library descriptions

changing 42
creating 40
creating a list 39
deleting 42

application program interface 115
applications 2
Audit file

creating query reports 111
evaluating 109

Audit File Entry (ADDADTE) 66
authorization 115

API 30
structure 29
user exit 30

B
base installation

application library descriptions 39
installation tape 43
QAPDIAHDR library 43
sample scenarios 45
scenario 36, 47
standard product package 39

batch processing 115
building new APD/400 applications 6

C
call structures 50
calling an API

completion codes 64
default parameters 65

calling user exits from APD/400 51
Change Application Definitions (CHGAPPD) 69
Change Data Set (CHGDST) 72

 Copyright IBM Corp. 1988, 1995 121

changing an application library description 42
Check Authorization (CHKAUT) 56, 73
Check Exclusion (CHKEXC) 57, 74
commitment control 24
Compare Application Definitions (CMPAPPD) 79
completion codes 64
concepts

APD/400 applications 1
data sets 1
installations 1

creating
application library description 40
installation tape 43
list of application library descriptions 39
QAPDIAHDR library 43
standard product package 39

D
data set 115
data sets

concepts 1, 3
multiple 23

default 115
default parameters 65
Delete Application Definitions (DLTAPPD) 80
deleting an application library description 42
describing APD/400 applications 9
design considerations 7
developing APD/400 applications 6
display

Administer Applications (Developer) 9
Work with Application Library Description 40, 41

display files 32
Display Help (DSPHLP) 58
Display Installed Applications (DSPINSAPP) 81
displaying messages 32

E
evaluating the Audit file 109
exclusion 116
exclusion list 116
exclusions

API 31
describing 30
user exit 31

expert code 116
Extract Application Definitions (EXTAPPD) 84

F
folder 116
folders

Help texts 32
using 8

function key 116

H
help function 116
Help texts

display files 32
folders 32
panel groups 32
specifying 11
user exits 32

I
Install Application Definitions (INSAPPD) 85
installation 116
installation tape 43
installations

concepts 1, 2
interactive processing 116

J
job description 24
journal 116
journal receiver 116
journaling 116

L
libraries

changing 23
QTEMP 8
using 8

library 116
library list 116
library name template 3, 116
local data area 24, 117

M
menu 117
menu bar 117
Menu file

record layout 105
message 117
messages 32, 52, 66
modifying an AIP

changing the job description 24
changing the library list 23
commitment control 24
multilingual support 24
multiple data sets 23
multiple installations 23
opening files 25
saving the local data area 24
time locks 26

122 Developer's Guide

multilingual support 24, 49
multiple data sets 23
multiple installations 23

O
object 117
opening files 25
Operational Assistant 117
output queue 117
Overwrite Batch Task Parameter (BCHPRM) 54

P
packaging, shipping, and installing

base install and update 47
centrally maintained software 45
multilingual support 49
overview 34
sample scenarios 45

Post-Installation (POSTINS) 60
process list 117
program 117
pull-down menu 117

Q
QAAFMENU0 105
QAAFTASK0 101
QAPDIAHDR library 43
QTEMP 8
queue 117

R
restart 9
restore 117

S
sample AIPs

full-function 22
minimum 20
standard 22

save 117
Save/Restore (SAVRST) 61
scenarios 45
Schedule a Batch Task (SCHBATCH) 87
scheduled job 117
scroll 118
Send Message (SNDMSG) 92
Set and Reset an Application Environment 27
Set Restart Code (SETRST) 90
settings 13
spooled file 118
start program 118

switchable functions 13
symbolic libraries 3
symbolic library name 118

T
tape cartridge 118
tape drive 118
task 118
Task file

adding tasks 107
field descriptions 102
record layout 101

tasks and menus 29
time locks 26
timetable 118

U
UIM panel groups 32
updates 37, 47
user exit

Administer Data-Set Entries (ADMDSTE) 53
authorization 30
call structures 50
calling 51
Check Authorization (CHKAUT) 56
Check Exclusion (CHKEXC) 57
communication area 51
descriptions 53
Display Help (DSPHLP) 58
exclusions 31
Help texts 32
messages 52
Overwrite Batch Task Parameter (BCHPRM) 54
Post-Installation (POSTINS) 60
Save/Restore (SAVRST) 61

user ID 118
User Interface Manager 118
user password 118
user profile 118

V
value 118

W
Work with Data Sets (WRKDST) 93
Work with Installations (WRKINS) 95
Work with Save Objects (WRKSAVOBJ) 96

 Index 123

Your comments, please ...

IBM Application Program Driver/400 Version 3
Developer's Guide
Release 6.0

Publication No. SH12-6404-00

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want to
express your opinion about it (such as organization, subject matter, appearance) or make suggestions for
improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

If you mail this form to us, be sure to print your name and address below if you would like a reply.

You can also send us your comments using:

� A FAX machine. The number is: +49–511–5165340.

� Internet. The address is: gadlid@sdfvm1.vnet.ibm.com.

� IBMLink. The address is: SDFVM1(GADLID).

� IBM Mail Exchange. The address is: DEIBM3P3 at IBMMAIL.

Please include the title and publication number (as shown above) in your reply.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Your comments, please ...
SH12-6404-00 IBM

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Anwendungssysteme GmbH
Information Development, Dept. 5160
Postfach 72 12 80
30532 Hannover
Germany

Fold and Tape Please do not staple Fold and Tape

SH12-6404-00

IBM

File Number: AS400-79
Program Number: 5716-PD1

Printed in Denmark

SH12-64�4-��

