
iSeries

FTP

Version 5 Release 3

ERserver

���

iSeries

FTP

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 145.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400 (product number 5722-SS1)

and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run

on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

FTP . 1

Print this topic . 1

FTP scenarios . 2

Scenario: Transfer a file from a remote host . 2

Scenario: Secure FTP with SSL . 3

Configuration details . 4

Configure your FTP server . 7

FTP server in iSeries(TM) Navigator . 8

Configure FTP servers for graphical FTP clients and Web tools 8

Configure Anonymous FTP . 9

Prepare for Anonymous FTP . 10

Write exit programs for Anonymous FTP . 11

Create an OS/400(R) user profile: ANONYMOUS 11

Create a public library or directory . 12

Install and register exit programs . 12

Secure FTP . 13

Prevent FTP server access . 13

Control FTP access . 14

Use SSL to secure the FTP server . 15

Create a local Certificate Authority . 16

Associate a certificate with the FTP server . 17

Require client authentication for the FTP server (optional) 17

Enable SSL on the FTP server . 18

Secure the FTP client with TLS/SSL . 19

Manage access using FTP exit programs . 20

Manage access using iSeries(TM) Navigator . 20

Monitor incoming FTP users . 21

Manage your FTP server . 21

Start and stop the FTP server . 21

Set number of available FTP servers . 22

Improve FTP server performance with configurable subsystem support 22

Use the FTP client on iSeries(TM) . 22

Start and end a client session . 23

Server timeout considerations . 26

Transfer files with FTP . 27

FTP as batch job . 28

FTP reference information . 35

FTP server subcommands . 36

ADDM (Add Physical File Member) . 38

ADDV (Add Physical File Variable Length Member) 38

APPE (Append to Existing File) . 39

AUTH (Authorization) . 39

CRTL (Create Library) . 39

CRTP (Create Physical File) . 40

CRTS (Create Source Physical File) . 40

CWD (Change working directory or library) . 40

DBUG (Turn on the FTP Server Trace) . 41

DELE (Delete file or document) . 41

DLTF (Delete File) . 41

DLTL (Delete Library) . 41

HELP (Getting Help from an iSeries(TM) Remote Server) 42

LIST (File List) . 42

MKD (Make directory) . 42

© Copyright IBM Corp. 1998, 2005 iii

MODE (Set Transfer Mode) . 43

NLST (Name List) . 43

NOOP (Obtain Server Response) . 43

PASS (Password) . 44

PASV (Use Passive Data Connection) . 44

PBSZ (Protection Buffer Size) . 44

PORT (Data Port) . 45

PROT (Data Channel Protection Level) . 45

PWD (Display Working Directory or Library) . 46

QUIT (End an FTP Server Session) . 46

RCMD (Send a CL Command to an FTP Server System) 46

REIN (Reinitialize Session between Systems) . 47

RETR (Retrieve file) . 47

RMD (Remove directory) . 47

RNFR (Rename From) . 47

RNTO (Rename To) . 48

SITE (Send Information Used by a Server System) 48

STOR (Store File) . 50

STOU (Store Unique) . 50

STRU (Specify File Structure) . 51

SYST (Identify the Name of the Operating System) 51

TIME (Set Time-Out Values for FTP Server) . 52

TYPE (Specify Representation Type) . 52

USER (Send a User Logon ID to the Server) . 54

FTP client subcommands . 54

ACCT (Send Account Information) . 56

APPEND (Append a Local File Member to a Remote File) 57

ASCII (Change File Type to ASCII) . 57

BINARY (Set Transfer Type to Image) . 57

CD (Change Working Directory or Library) . 58

CLOSE (End an FTP Session with the Remote System) 58

DEBUG (Create Client Trace and Control Display of Server Subcommands Sent to Remote

System) . 59

DEBUG (Change Client Time-Out Limit Values) 59

DELETE (Delete a File on a Remote System) . 60

DIR (List Directory Entries, Libraries, or Files) . 60

EBCDIC (Change File Type to EBCDIC) . 61

GET (Copy a File from a Remote System to the Local System) 61

HELP (Getting Help for FTP Subcommands) . 62

LCD (Change Working Library or Directory on Local System) 63

LOCSITE (Specify Local Site Information) . 64

LOCSTAT (Display Local Status Information) . 65

LS (List Remote File Names) . 65

LTYPE (Local Type) . 66

MDELETE (Delete Multiple Files on a Remote System) 66

MGET (Copy Multiple Files from a Remote System to the Local System) 67

MKDIR (Make Directory) . 68

MODE (Specify Transmission Mode of Data) . 68

MPUT (Send Multiple File Members from the Local System to a Remote System) 68

NAMEFMT (Select File Naming Format) . 69

NULLFLDS (Allow Transfer of Files with NULL Fields) 70

OPEN (Connect to FTP Server on a Remote System) 71

PASS (Send Your Password) . 71

PUT (Copy a File Member from the Local System to a File on a Remote System) 71

PWD (Display Current Directory, Folder, or Library) 72

QUOTE (Send a Subcommand to an FTP Server) 72

iv iSeries: FTP

REINITIALIZE (Reinitialize Session between Systems) 73

RENAME (Rename a File on a Remote System) 74

RESET (Reset) . 74

RMDIR (Remove Directory) . 74

SECData (Setting data security protection) . 75

SECOpen (Setting data security protection) . 75

SENDPASV (Specify Whether to send a PASV Subcommand) 76

SENDPORT (Specify Whether to Sends a PORT Subcommand) 77

SENDSITE (Specify Whether to Send a SITE Subcommand) 78

SITE (Send Information Used by a Remote System) 78

STATUS (Retrieve Status Information from a Remote System) 79

STRUCT (Specify File Structure) . 79

SUNIQUE (Control Overwriting of Files) . 80

SYSCMD (Pass an iSeries(TM) CL Command to Your Local iSeries) 80

TYPE (Specify File Transfer Type) . 81

USER (Send Your User ID to the Remote System) 83

VERBOSE (Control of Text Display of Error Reply Messages) 83

FTP exit programs . 83

Request validation exit point: client and server . 84

Example: FTP Client or Server Request Validation exit program in CL code 85

Example: FTP Server Request Validation exit program in ILE RPG code 87

VLRQ0100 exit point format . 92

Server logon exit point . 95

Example: FTP Server Logon exit program in CL code 97

Example: FTP Server Logon exit program in C code 98

Example: FTP Server Logon exit program in ILE RPG code 107

TCPL0100 exit point format . 109

TCPL0200 exit point format . 113

TCPL0300 exit point format . 118

Remove exit programs . 122

Data transfer methods . 122

Transfer files that contain packed decimal data between iSeries(TM) servers 122

Transfer *SAVF files . 123

Transfer QDLS documents . 124

Transfer “root”, QOpenSys, QLANSrv, QDLS, and QOPT files 124

Transfer files using QfileSvr.400 . 124

Transfer QSYS.LIB files . 125

Receive text files to QSYS.LIB . 127

File pre-creation considerations . 127

CCSID conversions . 128

Specify mapping tables . 128

CCSID code page tagging for iSeries(TM) files 129

NLS considerations for FTP . 129

File systems and naming conventions . 130

OS/400(R) file systems that are supported by FTP 131

FTP server reply status messages . 132

FTP server syntax conventions . 133

FTP client syntax conventions . 134

Enclose subcommand parameters . 134

File names for client transfer subcommands . 135

Naming files for transfer . 137

Troubleshoot FTP . 137

Determine problems with FTP . 138

Materials required for reporting FTP problems . 140

Trace the FTP server . 140

Trace the FTP client . 143

Contents v

Work with FTP server jobs and job log . 143

Appendix. Notices . 145

Trademarks . 146

Terms and conditions for downloading and printing publications 146

Code disclaimer information . 147

vi iSeries: FTP

FTP

You can set up your iSeries(TM) server to send, receive, and share files across networks by using the file

transfer protocol (FTP). You can also rename, add, and delete files. Before you set up your system to

transfer files, you must have TCP/IP configured and started on your system.

For more information about using FTP on your iSeries server, see the following:

“Print this topic”
Download or print the FTP documentation in a PDF format.

“FTP scenarios” on page 2
Read scenarios to understand how FTP is configured and used.

“Configure your FTP server” on page 7
Set up an iSeries FTP server for graphical FTP clients, web browsers, and web tools. Configure

Anonymous FTP.

“Secure FTP” on page 13
Protect your data by securing FTP with SSL, monitoring FTP users, and managing user access to

FTP functions.

“Manage your FTP server” on page 21
Administer your FTP server, including starting and stopping the server, FTP security, and using SSL.

“Use the FTP client on iSeries(TM)” on page 22
Start and end client sessions, transfer and receive files, and set up FTP batch jobs.

“FTP reference information” on page 35
Find information about server and client subcommands, FTP exit programs, data transfer methods,

and more.

“Troubleshoot FTP” on page 137
Get information on troubleshooting problems with the FTP server or FTP client.

 Note: Read the “Code disclaimer information” on page 147 for

important legal information.

Print this topic

To view or download the PDF version, select FTP (about 934 KB).

Saving PDF files
To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As...

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

© Copyright IBM Corp. 1998, 2005 1

rzaiq.pdf

Downloading Adobe Acrobat Reader
If you need Adobe Acrobat Reader to view or print these PDFs, you can download a copy from the Adobe

Web site(www.adobe.com/products/acrobat/readstep.html)

.

FTP scenarios

The following scenarios help you understand how FTP works, and how you can use an FTP

environment in your network. These scenarios introduce fundamental FTP concepts from which beginners

and experienced users can benefit before they proceed to the planning and configuration tasks.

“Scenario: Transfer a file from a remote host”
You want to transfer a file to a test server. Use basic FTP to send the file to the remote host.

“Scenario: Secure FTP with SSL” on page 3
You want to use Secure Sockets Layer (SSL) to secure data being transferred to your partner

company.

Scenario: Transfer a file from a remote host

 Objectives

Suppose a colleague did some Java(TM) development work on a remote server. As a system test engineer,

you need to transfer the example.jar file from the remote server to your local test server. Use basic FTP to

transfer the file (in binary mode) across a TCP/IP network. The client and the server are both an

iSeries(TM) using OS/400(R) FTP.

 Details

To transfer the file, two connections are used: the control connection and the data connection. The control

connection is used to send subcommands from the client to the server and receive responses to those

subcommands from the server to the client. The client will initiate FTP subcommands that are sent to the

FTP server. The data connection is used to transfer the actual files. Both the client and the server

interface to the OS/400 file system. To transfer files, you will typically need a user ID on both systems.

See the other requirements listed below:

v iSeries server running OS/400.

v TCP/IP Connectivity Utilities (5722-TC1)

v FTP server configured

v Host name of the remote system

v Your user name and password on the remote system

v Name of file to transfer

v Location of the file to transfer

v File format (format that you must transfer the file in, such as binary or ASCII)

 Configuration tasks

You must complete each of these tasks to perform a simple file transfer:

2 iSeries: FTP

http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

1. “Start and end a client session” on page 23 your FTP client session.
For this scenario: In the iSeries character-based interface, type STRTCPFTP and press Enter.

2. Specify the name of the remote system to which you want to send the file.
For this scenario: theirco.com

3. Tell the remote system your user name for the remote server.
For this scenario:

Enter login ID (yourid):

===>yourid

4. Tell the remote system your password for the remote server.
For this scenario:

Enter password:

===>yourpassword

5. Locate the directory on the TheirCo server from which you want to transfer the file.
For this scenario: ===>cd /qibm/userdata/os400/dirserv/usrtools/windows

6. Navigate to the directory on the local server to which you want to transfer the file.
For this scenario: ===>lcd /qibm/userdata/os400/dirserv/usrtools/windows

7. Specify file type, “ASCII (Change File Type to ASCII)” on page 57 or “BINARY (Set Transfer Type to

Image)” on page 57. Default file type is ASCII.
For a .jar file, you must switch the file transfer type to binary.
For this scenario: ===> binary

8. “Transfer files with FTP” on page 27 a file transfer from the remote server system to the client system.
For this scenario: ===> get example.jar

9. When finished, “Start and end a client session” on page 23 from FTP.
For this scenario: ===> QUIT

Next Step
Go one step further. You can also transfer files in an automated manner using “FTP as batch job” on page

28.

Scenario: Secure FTP with SSL

Suppose you work for MyCo, a company that researches startup companies and sells the research to

companies in the investment planning industry. One such company, TheirCo, has need of the service that

MyCo provides, and would like to receive research reports via FTP. MyCo has always ensured the privacy

and security of the data it disperses to its customers—whatever the format. In this case, MyCo needs

SSL-secured FTP sessions with TheirCo.

 Objectives

Your objectives in this scenario are the following:

v Create and operate a Local Certificate Authority on the MyCo iSeries(TM) server

v Enable SSL for MyCo’s FTP server

v Export a copy of MyCo’s Local CA certificate to a file

v Create a *SYSTEM certificate store on TheirCo’s server

v Import MyCo’s Local CA certificate into TheirCo’s *SYSTEM certificate store

v Specify MyCo’s Local CA as a trusted CA for TheirCo’s FTP client

 Prerequisites

MyCo

v Has an iSeries server that is running V5R1 or later of OS/400(R).

FTP 3

v Has the V5R1 or later TCP/IP Connectivity Utilities (5722-TC1) installed on the iSeries server.

v Has the Cryptographic Access Provider 128-bit for iSeries server (5722-AC3) installed on their iSeries

server.

v Has the IBM(R) Digital Certificate Manager (DCM) (5722-SS1 option 34) installed on the iSeries server.

v Has the IBM HTTP Server (5722-DG1) installed on the iSeries server.

v Uses certificates to protect access to public applications and resources (see Scenario: Use certificates

to protect access to public applications and resources for detailed instructions).

TheirCo

v Has an iSeries server that is running V5R2 or later of OS/400.

v Has the V5R2 TCP/IP Connectivity Utilities (5722-TC1) installed on the iSeries server.

v Has the Cryptographic Access Provider 128-bit for iSeries server (5722-AC3) installed on their iSeries

server.

v Has the IBM Digital Certificate Manager (5722-SS1 option 34) installed on the iSeries server.

v Has the IBM HTTP Server (5722-DG1) installed on the iSeries server.

v Uses OS/400 TCP/IP FTP Client for FTP sessions.

 Details

TheirCo uses the OS/400 FTP Client to request a secure FTP file transfer from MyCo’s FTP server. Refer

to “Secure the FTP client with TLS/SSL” on page 19.
Server authentication takes place.
TheirCo receives financial reports from MyCo, using an SSL-secured FTP session.

 Configuration tasks

The following tasks are completed by MyCo and TheirCo to secure their FTP sessions with SSL:

MyCo’s tasks:

1. Create and operate a Local Certificate Authority on the MyCo iSeries server (See 4)

2. Enable SSL for MyCo’s FTP server (See 5)

3. Export a copy of MyCo’s Local CA certificate to a file (See 6)

TheirCo’s tasks:

1. Create a *SYSTEM certificate store on TheirCo’s server (See 6)

2. Import MyCo’s Local CA certificate into TheirCo’s *SYSTEM certificate store (See 7)

3. Specify MyCo’s Local CA as a trusted CA for TheirCo’s FTP client (See 7)

Configuration details

Complete the following task steps to “Scenario: Secure FTP with SSL” on page 3.

 Step 1: Create and operate a Local Certificate Authority (CA) on the MyCo iSeries(TM) server

This scenario assumes that MyCo has not used Digital Certificate Manager (DCM) previously to set up

certificates for its iSeries server. Based on the objectives for this scenario, MyCo has chosen to create and

operate a Local Certificate Authority (CA) to issue a certificate to the FTP server. However, MyCo could

use DCM to configure the FTP server to use a public certificate for SSL instead.

4 iSeries: FTP

When using Digital Certificate Manager (DCM) to create a Local CA, you are guided through a process

that ensures you configure everything needed to enable SSL.

MyCo uses the following steps to create and operate a Local CA on their server, using the Digital

Certificate Manager (DCM):

1. Start DCM.

2. In the navigation frame of DCM, select Create a Certificate Authority (CA) to display a series of

forms. These forms guide you through the process of creating a Local CA and completing other tasks

needed to begin using digital certificates for SSL, object signing, and signature verification.

3. Complete all the forms that display. There is a form for each of the tasks required to create and

operate a Local CA on the iSeries server. These tasks include the following:

a. Choose how to store the private key for the Local CA certificate. This step is included only if you

have an IBM(R) 4758-023 PCI Cryptographic Coprocessor installed on your iSeries. If your system

does not have a cryptographic coprocessor, DCM automatically stores the certificate and its private

key in the Local CA certificate store.

b. Provide identifying information for the Local CA.

c. Install the Local CA certificate on your PC or in your browser. This enables software to recognize

the Local CA and validate certificates that the CA issues.

d. Choose the policy data for your Local CA.

e. Use the new Local CA to issue a server or client certificate that applications can use for SSL

connections. If you have an IBM 4758-023 PCI Cryptographic Coprocessor installed in the iSeries

server, this step allows you to select how to store the private key for the server or client certificate.

If your system does not have a coprocessor, DCM automatically places the certificate and its

private key in the *SYSTEM certificate store. DCM creates the *SYSTEM certificate store as part of

this task.

f. Select the applications that can use the server or client certificate for SSL connections. Note: Be

sure to select the application ID for the OS/400(R) TCP/IP FTP server

(QIBM_QTMF_FTP_SERVER).

g. Use the new Local CA to issue an object signing certificate that applications can use to digitally

sign objects. This creates the *OBJECTSIGNING certificate store, which you use to manage object

signing certificates. Note: Although this scenario does not use object signing certificates, be sure to

complete this step. If you cancel at this point in the task, the task ends and you have to perform

separate tasks to complete your SSL certificate configuration.

h. Select the applications that you want to trust the Local CA. Note: Be sure to select the application

ID for the OS/400 TCP/IP FTP server (QIBM_QTMF_FTP_SERVER).

Once the forms for this guided task are completed, you can configure the FTP server to use SSL.

 Step 2: Enable SSL for MyCo’s FTP server

Now that the FTP server has a certificate assigned to it, MyCo configures the FTP server to use SSL by

following these steps:

1. In iSeries Navigator, expand the iSeries server —> Network —> Servers —> TCP/IP.

2. Right-click FTP.

3. Select Properties.

4. Select the General tab.

5. Choose the following option for SSL support: Secure only
Select this to allow only SSL sessions with the FTP server. Connections may be made to the

non-secure FTP port, but the FTP client must negotiate an SSL session before the user is allowed to

log in.

FTP 5

With this task complete, MyCo’s FTP server can now use SSL to encrypt communication sessions and

protect the privacy of the data transmitted during these sessions. However, to configure the FTP client to

participate in an SSL session with the FTP server, MyCo must provide their client, TheirCo, with a copy of

the Local CA certificate. To do this, MyCo needs to export a copy of the Local CA certificate to a file and

make the file available to TheirCo. Once TheirCo has this file, they can use DCM to import the Local CA

certificate into the *SYSTEM certificate store, and configure the OS/400 FTP client to use SSL.

 Step 3: Export a copy of MyCo’s Local CA certificate to a file

MyCo must provide TheirCo with a copy of the Local CA certificate. TheirCo’s client application must be

configured to trust the CA certificate before it can participate in an SSL session.

MyCo uses the following steps to export a copy of the Local CA certificate to a file:

 1. Start DCM.

 2. Click Select a Certificate Store.

 3. Select *SYSTEM as the certificate store to open and click Continue.

 4. When the Certificate Store and Password page displays, provide the password that was specified for

the certificate store when it was created, and click Continue.

 5. After the navigation frame refreshes, select Manage Certificates, and then select the Export

certificate task.

 6. Select Certificate Authority (CA) and click Continue to display a list of CA certificates.

 7. Select the MyCo Local CA certificate from the list and click Export.

 8. Specify File as the export destination and click Continue.

 9. Specify a fully qualified path and file name for the exported Local CA certificate and click Continue to

export the certificate.

10. Click OK to exit the Export confirmation page.

Now you can transfer these files to the iSeries endpoint systems on which you intend to verify signatures

that you created with the certificate. You can use e-mail or FTP to transfer the files since do not need to

be sent securely.

Next, TheirCo uses DCM to import the Local CA certificate into the *SYSTEM certificate store and specify

the MyCo Local CA (and the certificates that it issues) as trusted.

 Step 4: Create a *SYSTEM certificate store on TheirCo’s server

To participate in an SSL session, TheirCo’s OS/400 FTP client must be able to recognize and accept the

certificate that MyCo’s FTP server presents to establish the SSL session. To authenticate the server’s

certificate, TheirCo’s FTP client must have a copy of the Certificate Authority (CA) certificate in the

*SYSTEM certificate store. The *SYSTEM certificate store contains a copy of most public well-known CA

certificates. However, when MyCo’s FTP server uses a certificate from a Local CA, the TheirCo’s FTP

client must obtain a copy of the Local CA certificate and import it into the *SYSTEM certificate store.

This scenario assumes that Digital Certificate Manager (DCM) has not been previously used to create or

manage certificates. Consequently, TheirCo must first create the *SYSTEM certificate store by following

these steps:

1. StartDCM.

2. In the Digital Certificate Manager (DCM) navigation frame, select Create New Certificate Store and

select *SYSTEM as the certificate store to create and click Continue.

3. Select No to create a certificate as part of creating the *SYSTEM certificate store and click Continue.

4. Specify a password for the new certificate store and click Continue to display a confirmation page.

6 iSeries: FTP

5. Click OK.

Now TheirCo can import the Local CA certificate into the certificate store and specify it as a trusted source

of certificates.

 Step 5: Import MyCo’s Local CA certificate into TheirCo’s *SYSTEM certificate store

TheirCo uses these steps to import the Local CA certificate into the *SYSTEM certificate store and specify

that it is a trusted source for certificates:

1. In the DCM navigation frame, click Select a Certificate Store and select *SYSTEM as the certificate

store to open.

2. When the Certificate Store and Password page displays, provide the password that was specified for

the certificate store when it was created, and click Continue.

3. After the navigation frame refreshes, select Manage Certificates to display a list of tasks.

4. From the task list, select Import certificate.

5. Select Certificate Authority (CA) as the certificate type and click Continue.

6. Specify the fully qualified path and file name for the CA certificate file and click Continue. A message

displays that either confirms that the import process succeeded or provide error information if the

process failed.

Now you TheirCO can specify that their FTP client trusts MyCo’s Local CA certificate, so that the TheirCo’s

FTP client can participate in SSL sessions with server applications that use a certificate from MyCo’s Local

CA.

 Step 6: Specify MyCo’s Local CA as a trusted CA for TheirCo’s FTP client

Before TheirCo can use the FTP client to make secure connections to the MyCo FTP server, TheirCo must

use DCM to specify which CAs the client should trust. This means that TheirCo must specify that the Local

CA certificate that was imported previously is to be trusted.

TheirCo uses the following steps to specify that their FTP client should trust MyCo’s Local CA certificate:

1. Start DCM.

2. Click Select a Certificate Store and select *SYSTEM as the certificate store to open.

3. When the Certificate Store and Password page displays, provide the password that was specified for

the certificate store when it was created, and click Continue.

4. In the navigation frame, select Manage Applications to display a list of tasks.

5. From the task list, select Define CA trust list.

6. Select Client as the type of application for which you want to define the list and click Continue.

7. Select the OS/400 TCP/IP FTP Client application (QIBM_QTMF_FTP_CLIENT) from the list and click

Continue to display a list of CA certificates.

8. Select MyCo’s Local CA certificate that was imported previously and click OK. DCM displays a

message to confirm the trust list selection.

With these steps complete, MyCo’s FTP server can establish an SSL session with TheirCo’s FTP client

and server. Refer to “Secure the FTP client with TLS/SSL” on page 19.

Configure your FTP server

The TCP/IP Connectivity Utilities licensed program comes with TCP/IP FTP servers configured. When

you start TCP/IP, the FTP server starts simultaneously.

FTP 7

Before you configure an FTP server on the Internet, you should review these safeguards to protect your

data:

v Use a firewall between your iSeries(TM) server and the Internet.

v Use a non-production iSeries for your FTP server.

v Do not attach the FTP server to the rest of your company’s LANs or WANs.

v Use FTP exit programs to secure access to the FTP server.

v Test FTP exit programs once a month to ensure that they do not contain security loopholes.

v Do not allow anonymous FTP users to have read and write access to the same directory. This permits

the anonymous user to be untraceable on the Internet.

v Log all access to your iSeries FTP server and review the logs daily or weekly for possible attacks.

v Verify that the correct exit programs are registered for the FTP server once a month.

v Review “Secure FTP” on page 13 for information about securing your iSeries FTP server.

The following topics offer ways to view and customize your FTP servers:

“FTP server in iSeries(TM) Navigator”
Use iSeries Navigator to configure and manage your iSeries FTP server.

“Configure FTP servers for graphical FTP clients and Web tools”
Configure an FTP server on your iSeries to support graphical FTP clients, Web browsers, and other

Web tools.

“Configure Anonymous FTP” on page 9
Anonymous FTP enables remote users to use your FTP server without an assigned userid and

password.

FTP server in iSeries(TM) Navigator

You can use iSeries Navigator to work with your FTP server configuration. To access the graphical user

interface for FTP in iSeries Navigator, follow these steps:

1. In iSeries Navigator, expand your iSeries server —> Network —> Servers —> TCP/IP.

2. In the right pane, right-click FTP and select Properties.

3. From here, you can change the properties for your FTP server. You can view the online help by

clicking the help buttons. To obtain help for a specific field, click the question mark button, then click

that field.

Configure FTP servers for graphical FTP clients and Web tools

The iSeries(TM) FTP server supports graphical FTP clients, Web browsers, and Web development tools.

Most graphical FTP clients use UNIX(R) as their list format and path file as their file name format. Follow

these instructions to set the FTP server properties to use the supported formats:

1. In iSeries Navigator, expand your iSeries server —> Network —> Servers —> TCP/IP.

2. In the right pane, right-click FTP and select Properties.

3. On the Properties page, click the Initial Formats tab.

v Enable Path as the File Naming Format.

v Enable UNIX list format as the File List Format.

8 iSeries: FTP

Note: You can control the LISTFMT and NAMEFMT settings for

specific FTP sessions using an exit program for the

“TCPL0200 exit point format” on page 113 or “TCPL0300

exit point format” on page 118 of the FTP Server Logon

Exit Point.

You can also change the list format after an FTP session is in progress with options for the FTP server

“SITE (Send Information Used by a Server System)” on page 48 subcommand. These settings control the

results returned by the “LIST (File List)” on page 42 and “NLST (Name List)” on page 43 FTP server

subcommands.

You may also want to refer to:

v LIST Information in iSeries format

v LIST information in UNIX-style format

Configure Anonymous FTP

Anonymous FTP enables unprotected access (no password required) to selected information on a remote

system. The remote site determines what information is made available for general access. Such

information is considered to be publicly accessible and can be read by anyone. It is the responsibility of

the person who owns the information and the system to assure that only appropriate information is made

available.

To access this information, a user logs on to the hosts using the user ID ANONYMOUS. The user

ANONYMOUS has limited access rights to the files on the server and has some operating restrictions.

Typically, the only operations allowed include the following:

v Logging on using FTP

v Listing the contents of a limited set of directories

v Retrieving files from these directories.

Usually, anonymous users are not allowed to transfer files to the FTP server system. Some systems do

provide an incoming directory for anonymous uses to send data to. Traditionally, the special anonymous

user account accepts a string as a password, although it is common to use either the password ’guest’ or

one’s e-mail address. Some archive sites explicitly ask for the user’s e-mail address and will not allow

logon with the guest password. Providing an e-mail address is a courtesy that allows the archive site

operators to get some idea of who is using their services.

Anonymous FTP on the iSeries(TM)

The basic File Transfer Protocol (FTP) server does not support anonymous FTP. To set up anonymous

FTP on your iSeries server, you need to provide exit programs for the two FTP Server exit points (server

logon exit point and request validation exit point).

You may want to provide anonymous FTP because it is a convenient and often necessary service.

However, the use of anonymous FTP raises security concerns for your iSeries server. See “Manage

access using FTP exit programs” on page 20 for more information about protecting your system.

To configure Anonymous FTP, complete these tasks:

1. “Prepare for Anonymous FTP” on page 10
Review the technical requirements and define a security policy.

2. “Write exit programs for Anonymous FTP” on page 11
Write two exit programs for Anonymous FTP support. This topic provides many examples of exit

programs as well as useful tips and techniques.

FTP 9

rzaiqfdrt.htm
rzaiqrzaiqfdrtu.htm

3. “Create an OS/400(R) user profile: ANONYMOUS” on page 11
Prevent anyone from signing on to your iSeries server directly with a user ID of ANONYMOUS.

4. “Create a public library or directory” on page 12
Create, load, and set your public libraries or directories.

5. “Install and register exit programs” on page 12
Create a library to contain your exit programs and their log files, compile the programs, and register

them for use by the FTP server.

Prepare for Anonymous FTP

Consider the following information as you prepare to configure Anonymous FTP.

Skill Requirements
To set up Anonymous FTP, you will need the following skills:

v Familiarity with the iSeries(TM) character-based interface and commands with multiple parameters and

keywords.

v Ability to create libraries, members, and source physical files on your iSeries (you should have at least

*SECOFR authority).

v Ability to assign authorities to libraries, files, members, and programs.

v Ability to write, change, compile, and test programs on your iSeries server.

Security considerations
Your first step in implementing Anonymous FTP is to define your Anonymous FTP server site policy. This

plan defines your FTP site security and determines how to code your exit programs. Because your FTP

server will be allowing anyone in the world to access your data, you must carefully consider how you want

it to be used and what data must be protected.

Review the following recommendations for your FTP site policy plan:

v Use a firewall between your iSeries server and the Internet.

v Use a non-production iSeries for your FTP server.

v Do not attach the FTP server to the rest of your company’s LANs or WANs.

v Use FTP exit programs to secure access to the FTP server.

v Test FTP exit programs to ensure that they do not contain security loopholes.

v Do not allow anonymous FTP users to have read and write access to the same directory. This permits

the anonymous user to be untraceable on the Internet.

v Allow ANONYMOUS access only. Do not allow any other userids and do not authenticate passwords.

v Restrict ANONYMOUS access to one public library or directory only. (Where will it be? What will you

call it?)

v Place only public access files in the public library or directory.

v Restrict ANONYMOUS users to ’view’ and ’retrieve’ subcommands only (get, mget). Do not under any

circumstances allow ANONYMOUS users to use CL commands.

v Log all access to your iSeries FTP server.

v Review FTP server logs daily or weekly for possible attacks.

v Verify that the FTP server registers the correct exit programs once a month.

v Test the FTP server for security holes once a month.

What to do next:

“Write exit programs for Anonymous FTP” on page 11

10 iSeries: FTP

Write exit programs for Anonymous FTP

To support Anonymous FTP, you need to write two exit programs: FTP Server Logon exit program and

FTP Server Request Validation exit program. The FTP Server Logon exit program enables the

ANONYMOUS user ID and forces the ANONYMOUS user to the public library or directory. The FTP

Server Request Validation exit program restricts the commands, files, and directories or libraries that the

ANONYMOUS user can use.

Exit points and exit point formats
The FTP server communicates with each exit program through a specific exit point. Parameters are

passed between the server and the exit program. The format of the exchanged information is specified by

an exit point format. For more information about the exit point programs for FTP, refer to “FTP exit

programs” on page 83. The following exit points are used for Anonymous FTP:

 Program Exit Point Format

“Server logon exit point” on

page 95

QIBM_QTMF_SVR_LOGON TCPL0100, TCPL0200, or TCPL0300.1

“Request validation exit

point: client and server” on

page 84

QIBM_QTMF_SERVER_REQ VLRQ0100

1

-An exit point may have more than one format, but an exit program can only be registered for one of the

exit point formats. Examine each of these formats, then choose the one most appropriate for your system.

Example programs
Example programs are available to help you set up anonymous FTP on your server. You can use these

samples as a starting point to build your own programs. By copying portions of the code from the samples,

you can add them to programs that you write yourself. It is recommended that you run the sample

programs on a system other than your production system.

 Note: These examples are for illustration purposes only. They do

not contain enough features to run on a production

machine as is. Feel free to use them as a starting point,

or to use sections of code as you write your own

programs.

To view the example programs, refer to server programs for “Server logon exit point” on page 95 and

“Request validation exit point: client and server” on page 84.

What to do next:

“Create an OS/400(R) user profile: ANONYMOUS”

Create an OS/400(R) user profile: ANONYMOUS

To prevent anyone from directly signing on to your iSeries(TM) server with the user profile ANONYMOUS, it

is strongly recommended that you create a user profile of ANONYMOUS and assign it a password of

*NONE. You can create this profile using iSeries Navigator.

1. In iSeries Navigator, expand Users and Groups.

2. Right-click All Users and select New Users.

3. On the New Users panel, enter the following information:
User name = ANONYMOUS and
Password = No password.

4. Click the Jobs button and select the General tab.

FTP 11

5. On the General tab, assign the Current library and Home directory that the Anonymous user should

use.

6. Click OK and complete any other settings.

7. Click Add to create the profile.

What to do next:

“Create a public library or directory”

Create a public library or directory

After creating anonymous users, you may want to create a public library or directory for them to use.

Usually anonymous users should only be able to access public files. It is recommended that you restrict

anonymous users to a single library or a single directory tree, which only contain “public” files.

1. Create the public libraries or directories that will contain files accessible through anonymous FTP.

2. Load your public libraries or directories with the public access files.

3. Set the public libraries or directories and file authorities to PUBLIC *USE.

What to do next:

“Install and register exit programs”

Install and register exit programs

Install the exit program

1. Create a library to contain your exit programs and their log files.

2. Compile your exit programs in this library.

3. Grant PUBLIC *EXCLUDE authority to the library, program, and file objects.

The FTP server application adopts authority when necessary to resolve and call the exit program.

Register the exit program

1. At the iSeries(TM) character-based interface, enter WRKREGINF.

2. Page down to an FTP Server Logon exit point:

 QIBM_QTMF_SVR_LOGON TCPL0100

 QIBM_QTMF_SVR_LOGON TCPL0200

 QIBM_QTMF_SVR_LOGON TCPL0300

 QIBM_QTMF_SERVER_REQ VLRQ0100

3. Enter 8 in the Opt field to the left of the exit point entry and press Enter.

4. At the Work with Exit Programs display, enter a 1(add).

5. Enter the name of the exit program in the Exit Program field.

6. Enter the name of the library that contains the exit program in the Library field.

7. Press Enter.

8. End and restart the FTP server to ensure that all FTP server instances use the exit programs.

9. Test your exit programs thoroughly.

 Note: Exit programs take effect as soon as the FTP server

requests a new FTP session. Sessions that are already

running are not affected.

Related topic: “Remove exit programs” on page 122

12 iSeries: FTP

Secure FTP

If you use your iSeries(TM) system as an FTP server on the Internet, it is accessible to the entire world.

Therefore, attention to FTP security is necessary to ensure that vital business data stored on your iSeries

server is not compromised. There are also steps you can take to protect your FTP client.

You can find information about ways to protect the FTP server and client in the following topics:

“Prevent FTP server access”
If you are not using FTP, you should prevent FTP from running to ensure no one can enter your

iSeries server through the FTP port. This topic explains how to block the FTP port.

“Control FTP access” on page 14
If you are using FTP, you need to keep control over users to protect your data and network. This

topic offers tips and security considerations.

“Use SSL to secure the FTP server” on page 15
SSL support allows the user to eliminate the exposure of sending passwords and data “in the clear”

on the network when using the OS/400(R) FTP server with an FTP client that also supports SSL.

“Manage access using FTP exit programs” on page 20
This topic describes how to use FTP exit points to protect your iSeries.

“Manage access using iSeries(TM) Navigator” on page 20
You can use Application Administration Limit Access in iSeries Navigator to protect your iSeries FTP

server or client.

“Monitor incoming FTP users” on page 21
Monitor who is logging in to your FTP server.

Prevent FTP server access

If you do not want anyone to use FTP to access your iSeries(TM) server, you should prevent the FTP

server from running. To prevent FTP access to your iSeries, follow these steps:

Prevent the FTP server from starting automatically
To prevent FTP server jobs from starting automatically when you start TCP/IP, follow these steps:

1. In iSeries Navigator, expand your iSeries Server —> Network —> Servers —> TCP/IP.

2. Right-click FTP and select Properties.

3. Deselect Start when TCP/IP starts.

Prevent access to FTP ports
To prevent FTP from starting and to prevent someone from associating a user application, such as a

socket application, with the port that the iSeries normally uses for FTP, do the following:

1. In iSeries Navigator, expand your iSeries Server —> Network —> Servers —> TCP/IP.

2. Right-click TCP/IP Configuration and select Properties.

3. In the TCP/IP Configuration Properties window, click the Port Restrictions tab.

4. On the Port Restrictions page, click Add.

5. On the Add Port Restriction page, specify the following:

v User name: Specify a user profile name that is protected on your iSeries. (A protected user profile

is a user profile that does not own programs that adopt authority and does not have a password that

is known by other users.) By restricting the port to a specific user, you automatically exclude all

other users.

v Starting port: 20

FTP 13

v Ending port: 21

v Protocol: TCP

6. Click OK to add the restriction.

7. On the Port Restrictions page, click Add and repeat the procedure for the UDP protocol.

8. Click OK to save your port restrictions and close the TCP/IP Configuration Properties window.

9. The port restriction takes effect the next time that you start TCP/IP. If TCP/IP is active when you set

the port restrictions, you should end TCP/IP and start it again.

 Notes: v The port restriction takes effect the next time that you

start TCP/IP. If TCP/IP is active when you set the port

restrictions, you should end TCP/IP and start it again.

v The Internet Assigned Numbers Authority (IANA)

website provides information about assigned port

numbers at http://www.iana.org

.

v If ports 20 or 21 are restricted to a user profile other

than QTCP, attempting to start the FTP server will

cause it to immediately end with errors.

v This method works only for completely restricting an

application such as the FTP server. It does not work for

restricting specific users. When a user connects to the

FTP server, the request uses the QTCP profile initially.

The system changes to the individual user profile after

the connection is successful. Every user of the FTP

server uses QTCP’s authority to the port.

Control FTP access

If you want to allow FTP clients to access your system, be aware of the following security concerns:

v Your object authority scheme might not provide detailed enough protection when you allow FTP on your

system. For example, when a user has the authority to view a file (*USE authority), the user can also

copy the file to a PC or to another system. You might want to protect some files from being copied to

another system.

v You can use FTP exit programs to restrict the FTP operations that users can perform. You can use the

FTP Request Validation Exit to control what operations you allow. For example, you can reject GET

requests for specific database files.

v You can use the “Server logon exit point” on page 95 to authenticate users who log on to the FTP

server. “Configure Anonymous FTP” on page 9 describes how to use exit programs to set up support for

Anonymous FTP on your system.

v Unless you use TLS/SSL, FTP passwords are not encrypted when they are sent between the client

system and the server system. Depending on your connection methods, your system may be vulnerable

to password theft through line sniffing.

v If the QMAXSGNACN system value is set to 1, the QMAXSIGN system value applies to TELNET but

not to FTP. If QMAXSGNACN is set to 2 or 3 (values which disable the profile if the maximum sign on

count is reached), FTP logon attempts are counted. In this case, a hacker can mount a denial of service

attack through FTP by repeatedly attempting to log on with an incorrect password until the user profile

is disabled.

v For each unsuccessful attempt, the system writes message CPF2234 to the QHST log. You can write a

program to monitor the QHST log for the message. If the program detects repeated attempts, it can end

the FTP servers.

v You can use the Inactivity timeout (INACTTIMO) parameter on the FTP configuration to reduce the

exposure when a user leaves an FTP session unattended. Be sure to read the documentation or online

14 iSeries: FTP

http://www.iana.org

help to understand how the INACTTIMO parameter and the connection timer (for server startup) work

together.

 Note: The QINACTITV system value does not affect FTP

sessions.

v When you use “FTP as batch job” on page 28 support, the program must send both the user ID and the

password to the server system. Either the user ID and password must be coded in the program, or the

program must retrieve them from a file. Both these options for storing passwords and user IDs

represent a potential security exposure. If you use FTP batch, you must ensure that you use object

security to protect the user ID and password information. You should also use a single user ID that has

limited authority on the target system. It should have only enough authority to perform the function that

you want, such as file transfer.

v FTP provides remote-command capability, just as advanced program-to-program communications

(APPC) and iSeries(TM) Access for Windows(R) do. The RCMD (Remote Command) FTP-server

subcommand is the equivalent of having a command line on the system. Before you allow FTP, you

must ensure that your object security scheme is adequate. You can also use the FTP exit program to

limit or reject attempts to use the RCMD subcommand. “FTP exit programs” on page 83 describes this

exit point and provides sample programs.

v A user can access objects in the integrated file system with FTP. Therefore, you need to ensure that

your authority scheme for the integrated file system is adequate when you run the FTP server on your

system.

v A popular hacker activity is to set up an unsuspecting site as a repository for information. Sometimes,

the information might be illegal or pornographic. If a hacker gains access to your site through FTP, the

hacker uploads this undesirable information to your iSeries. The hacker then informs other hackers of

your FTP address. They in turn access your iSeries with FTP and download the undesirable information.

You can use the FTP exit programs to help protect against this type of attack. For example, you might

direct all requests to upload information to a directory that is write-only. This defeats the hacker’s

objective because the hacker’s friends will not be able to download the information in the directory.

AS/400(R) Internet Security: Protecting Your AS/400 from HARM in the Internet

provides more

information about the risks and possible solutions when you allow uploading through FTP.

Use SSL to secure the FTP server

The FTP server provides enhanced security while sending and receiving files over a untrusted network.

FTP server uses Secure Sockets Layer (SSL) to secure passwords and other sensitive data during an

information exchange. The FTP server supports either SSL or TLS protected sessions, including client

authentication and automatic sign-on (see SSL concepts for additional information about the TLS and SSL

protocols).

Most SSL-enabled applications connect a client to separate TCP ports, one port for “unprotected” sessions

and the other for secure sessions. However, secure FTP is a bit more flexible. A client can connect to a

non-encrypted TCP port (usually TCP port 21) and then negotiate authentication and encryption options. A

client can also choose a secure FTP port (usually TCP port 990), where connections are assumed to be

SSL. The iSeries(TM) FTP server provides for both of these options.

Before you can configure the FTP server to use SSL, you must have installed the prerequisite programs

and set up digital certificates on your iSeries.

To configure SSL to secure FTP, complete the following tasks:

FTP 15

http://www.redbooks.ibm.com/abstracts/sg244929.html

1. “Create a local Certificate Authority” or use DCM to configure the FTP server to use a public certificate

for SSL.

2. “Associate a certificate with the FTP server” on page 17

3. “Require client authentication for the FTP server (optional)” on page 17

4. “Enable SSL on the FTP server” on page 18

See “Secure the FTP client with TLS/SSL” on page 19 for related information.

Create a local Certificate Authority

You can use the IBM(R) Digital Certificate Manager (DCM) to create and operate a Local Certificate

Authority (CA) on your iSeries(TM) server. A Local CA enables you to issue private certificates for

applications that run on your iSeries server.

To use DCM to create and operate a Local CA on the iSeries server, follow these steps:

1. Start DCM.

2. In the navigation frame of DCM, select Create a Certificate Authority (CA) to display a series of

forms. These forms guide you through the process of creating a Local CA and completing other tasks

needed to begin using digital certificates for SSL, object signing, and signature verification.

3. Complete all the forms that display. There is a form for each of the tasks that you need to perform to

create and operate a Local CA on the iSeries server. Completing these forms allows you to:

a. Choose how to store the private key for the Local CA certificate. This step is included only if you

have an IBM 4758-023 PCI Cryptographic Coprocessor installed on your iSeries. If your system

does not have a cryptographic coprocessor, DCM automatically stores the certificate and its private

key in the Local CA certificate store.

b. Provide identifying information for the Local CA.

c. Install the Local CA certificate on your PC or in your browser. This enables software to recognize

the Local CA and validate certificates that the CA issues.

d. Choose the policy data for your Local CA.

e. Use the new Local CA to issue a server or client certificate that applications can use for SSL

connections. If you have an IBM 4758-023 PCI Cryptographic Coprocessor installed in the iSeries

server, this step allows you to select how to store the private key for the server or client certificate.

If your system does not have a coprocessor, DCM automatically places the certificate and its

private key in the *SYSTEM certificate store. DCM creates the *SYSTEM certificate store as part of

this task.

f. Select the applications that can use the server or client certificate for SSL connections. Note: Be

sure to select the application ID for the OS/400(R) FTP Server (QIBM_QTMF_FTP_SERVER).

g. Use the new Local CA to issue an object signing certificate that applications can use to digitally

sign objects. This creates the *OBJECTSIGNING certificate store, which you use to manage object

signing certificates. Note: Although this scenario does not use object signing certificates, be sure to

complete this step. If you cancel at this point in the task, the task ends and you have to perform

separate tasks to complete your SSL certificate configuration..

h. Select the applications that you want to trust the Local CA. Note: Be sure to select the application

ID for the OS/400 FTP Server (QIBM_QTMF_FTP_SERVER).

See these related pages for more information about certificates:

Manage user certificates
Learn how your users can use DCM to obtain certificates or associate existing certificates with their

iSeries user profiles.

Use APIs to programmatically issue certificates to non-iSeries users
Learn how you can use your Local CA to issue private certificates to users without associating the

certificate with an iSeries user profile.

16 iSeries: FTP

Obtain a copy of the private CA certificate
Learn how to obtain a copy of the private CA certificate and install it on your PC so that you can

authenticate any server certificates that the CA issues.

What to do next:

“Associate a certificate with the FTP server”

Associate a certificate with the FTP server

Perform this task if you did not perform the task to assign a certificate to the FTP server application

during the creation of the Local Certificate Authority (CA), or if you have configured your system to request

a certificate from a Public CA.

 1. Start IBM(R) Digital Certificate Manager. If you need to obtain or create certificates, or otherwise setup

or change your certificate system, do so now. See Using Digital Certificate Manager for information

on setting up a certificate system.

 2. Click the Select a Certificate Store button.

 3. Select *SYSTEM. Click Continue.

 4. Enter the appropriate password for *SYSTEM certificate store. Click Continue.

 5. When the left navigational menu reloads, expand Manage Applications.

 6. Click Update certificate assignment.

 7. On the next screen, select Server application. Click Continue.

 8. Select the OS/400(R) TCP/IP FTP Server.

 9. Click Update Certificate Assignment to assign a certificate to the OS/400 TCP/IP FTP Server.

10. Select a certificate from the list to assign to the server.

11. Click Assign New Certificate.

12. DCM reloads to the Update Certificate Assignment page with a confirmation message. When you

are finished setting up the certificates for the FTP server, click Done.

What to do next:

“Require client authentication for the FTP server (optional)”
or
“Enable SSL on the FTP server” on page 18

Require client authentication for the FTP server (optional)

If you need the FTP server to authenticate clients, you can change the application specifications in

IBM(R) Digital Certificate Manager.

Note:The FTP server supports client authentication, but the OS/400(R) FTP Client does not. Some users

may still want to require client authentication, but it will exclude the use of the OS/400 FTP Client for SSL

connections.

If an FTP client connects and client authentication is enabled for the server, the client must still send a

USER subcommand. Once the USER subcommand information is sent, the FTP server will check that the

user matches the profile associated with the client certificate that the client sent to the server as part of the

SSL handshake. If the user matches the client certificate, no password is needed and the FTP server will

FTP 17

log the user onto the system. The USER subcommand is needed because there is no mechanism in the

FTP protocol to “inform” the client that it’s logged on without the command.

 1. Start IBM Digital Certificate Manager. If you need to obtain or create certificates, or otherwise setup

or change your certificate system, do so now. See Using Digital Certificate Manager for information

on setting up a certificate system.

 2. Click the Select a Certificate Store button.

 3. Select *SYSTEM. Click Continue.

 4. Enter the appropriate password for *SYSTEM certificate store. Click Continue.

 5. When the left navigational menu reloads, expand Manage Applications.

 6. Click Update application definition.

 7. On the next screen, select Server application. Click Continue.

 8. Select the OS/400 TCP/IP FTP Server.

 9. Click Update Application Definition.

10. In the table that displays, select Yes to require client authentication.

11. Click Apply.

12. DCM reloads to the Update Application Definition page with a confirmation message. When you

are finished updating the application definition for the FTP server, click Done.

What to do next:

“Enable SSL on the FTP server”

Enable SSL on the FTP server

Perform the following steps to Enable SSl on the FTP server:

1. In iSeries(TM) Navigator, expand your iSeries server —> Network —> Servers —> TCP/IP.

2. Right-click FTP.

3. Select Properties.

4. Select the General tab.

5. Choose one of these options for SSL support:

v Secure only
Select this to allow only SSL sessions with the FTP server. Connections may be made to the

non-secure FTP port, but the FTP client must negotiate an SSL session before the user is allowed

to log in.

v Non-secure only
Select this to prohibit secure sessions with the FTP server. Attempts to connect to an SSL port will

not connect.

v Both secure and non-secure
Allows both secure and non-secure sessions with the FTP server.

 Note: You do not need to restart the FTP server. It will

dynamically detect that a certificate has been assigned to

it. If it does not dynamically detect this change, verify that

you have the latest PTFs applied to your iSeries server.

18 iSeries: FTP

Secure the FTP client with TLS/SSL

You can use Transport Layer Security (TLS) / Secure Sockets Layer (SSL) connections to encrypt data

transferred over FTP control and data connections. The primary reason for encryption on the control

connection is to conceal the password when logging on to the FTP server.

Before using the FTP client to make secure connections to servers, you must use DCM to configure

trusted certificate authorities for the FTP Client. Any certificate authorities which were used to create

certificates assigned to servers that you want to connect to must be added. Exporting or importing

Certificate Authority (CA) certificates may be required depending on the CAs used. Refer to Define a CA

trust list for an application in the DCM topic for more information about CA trusted authorities.

If you choose TLS/SSL encryption for the control connection, the FTP client will also encrypt the data sent

on the FTP data connection by default. FTP protocol does not allow you to have a secure data connection

without a secure control connection.

Encryption can have a significant performance cost and can be bypassed on the data connection. This

allows you to transfer non-sensitive files without decreasing performance and still protect the system’s

security by not exposing passwords.

The FTP client has parameters for the “Start and end a client session” on page 23 CL command and

subcommands which are used as part of the TLS/SSL support (“SECOpen (Setting data security

protection)” on page 75 and “SECData (Setting data security protection)” on page 75).

Specifying TLS/SSL protection for the iSeries(TM) FTP Client

Control Connection
TLS/SSL protection can be specified on the STRTCPFTP command and the SECOPEN

subcommand.

For the STRTCPFTP (FTP) command, specify *SSL for the SECCNN secure connection parameter

to request a secure control connection. Also, you may be able to specify *IMPLICIT to obtain a

secure connection on a pre-defined server port number. (See IMPLICIT SSL Connection below for

more details.)

Within your FTP client session, the SECOPEN subcommand can be used to obtain a secure control

connection.

Data Connection
For the STRTCPFTP (FTP) command, enter *PRIVATE for the DTAPROT data protection parameter

to specify a secure data connection. Enter *CLEAR for the DTAPROT data protection parameter to

specify data to be sent without encryption.

When you have a secure control connection, you can use the SECDATA subcommand to change the

data connection protection level.

Implicit SSL connection
Some FTP servers support what is called an implicit SSL connection. This connection provides the

same encryption protection as the *SSL option, but can only be done on a pre-determined server

port, usually 990, for which the server must be configured to expect an SSL/TLS connection

negotiation.

This method is provided to allow secure connections to those FTP implementations that may not

support the standard protocol for providing TLS/SSL protection.

FTP 19

Many early implementations of SSL support used the implicit approach, but now it is no longer

recommended and has been deprecated by the IETF.

 Note: The standard protocol for setting up an TLS/SSL

connection requires that the AUTH (Authorization) server

subcommand be used when making the connection to the

server. Also, the server subcommands PBSZ and PROT

are used to specify the data protection level.

However, for an implicit SSL connection, the AUTH,

PBSZ, and PROT server subcommands are not sent to

the server. Instead, the server will act as if the client had

sent these subcommands with the parameters shown

below:

v AUTH SSL

v PBSZ 0

v PROT P

Manage access using FTP exit programs

FTP provides a security level based on the OS/400(R) object security. This means that remote users

cannot logon to your iSeries(TM) FTP server unless they have a valid user profile and password.

You can provide additional security by adding “FTP exit programs” on page 83 to the FTP Server and

Client exit points to further restrict FTP access to your system. For example, you can restrict FTP logon

capability, as well as access to libraries, objects, and the use of commands.

You can write an FTP Server Request Validation exit program to restrict the CL commands and FTP

subcommands that users may access. For instructions and examples, see the “Request validation exit

point: client and server” on page 84 topic.

You can control the authentication of users to a TCP/IP application server with an exit program for the

“Server logon exit point” on page 95.

You can write an FTP Client Request Validation exit program for the “VLRQ0100 exit point format” on page

92. This controls which FTP client functions a user may perform.

Depending on your situation, you may consider limiting access to FTP subcommands using “Manage

access using iSeries(TM) Navigator” as an alternative to writing exit programs for the FTP Server Request

Validation and FTP Client Request Validation exit points.

To allow the exit programs to work properly, you must “Install and register exit programs” on page 12. If

your programs are no longer needed, you must properly “Remove exit programs” on page 122 to prevent

their future functioning.

Manage access using iSeries(TM) Navigator

You can use iSeries Navigator to limit user access to FTP server and client functions. Use Application

Administration to grant and deny access to functions for individual users or for groups of users.

Alternatively, you can manage access to FTP functions by writing “Manage access using FTP exit

programs” for the FTP Request Validation Exit Points.

To manage user access to functions using iSeries Navigator, complete the following steps:

 1. In iSeries Navigator, right-click your iSeries server and select Application Administration.

 2. Select the Host Applications tab.

20 iSeries: FTP

3. Expand TCP/IP Utilities for iSeries.

 4. Expand File Transfer Protocol (FTP).

 5. Expand FTP Client or FTP Server.

 6. Select the function that you want to allow or deny access to.

 7. Click Customize.

 8. Use the Customize Usage dialog to change the list of users and groups that are allowed or denied

access to the function.

 9. Click OK to save changes to the Customize Access page.

10. Click OK to exit the Application Administration page.

Alternatively, you can manage the access that a specific user or group has to registered FTP functions

through iSeries Navigator’s Users and Groups management tool. To do this, follow these steps:

1. In iSeries Navigator, expand your iSeries server —> Users and Groups.

2. Select All Users or Groups.

3. Right-click a user or group, then select Properties.

4. Click Capabilities.

5. Click Applications.

From here, you can change the user or group’s settings for the listed function. You can also can

change the settings for all functions in a hierarchy grouping by changing the settings of the “parent”

function.

For more information on securing your iSeries FTP server, see the “Secure FTP” on page 13 topic.

Monitor incoming FTP users

Logging and reviewing FTP use will allow you to monitor activity and check for outside attacks. To monitor

for incoming FTP users, follow these steps:

1. In iSeries(TM) Navigator, expand your server —> Network —> Servers —> TCP/IP.

2. In the right pane, right-click FTP and select Server Jobs.

3. The FTP server job panel appears. The Current user column displays the user logged in to the server

job. If no user is logged in, Qtcp is displayed. Press F5 or select View —> Refresh to update the

display.

The format for the names of these jobs is QTFTPnnnnn. The nnnnn is a randomly-generated number.

To start FTP server jobs, follow the steps in “Start and stop the FTP server.”

Manage your FTP server

You can set up your iSeries(TM) server to send, receive, and share files across networks by using file

transfer protocol (FTP). FTP consists of two parts: the FTP client and the FTP server. You interact with the

FTP client. The FTP client interacts with the FTP server. You do not normally interact directly with the FTP

server. The following topics will help you to administer your FTP server:

v “Start and stop the FTP server”

v “Set number of available FTP servers” on page 22

v “Improve FTP server performance with configurable subsystem support” on page 22

Start and stop the FTP server

The FTP server can be started and stopped using iSeries(TM) Navigator. For instructions on how to access

FTP, see “FTP server in iSeries(TM) Navigator” on page 8.

FTP 21

To start the FTP server, complete the following steps:

1. In iSeries Navigator, expand your iSeries server —> Network —> Servers —> TCP/IP.

2. In the right pane, right-click FTP and select Start.

To stop the FTP server, complete the following steps:

1. In iSeries Navigator, expand your iSeries server —> Network —> Servers —> TCP/IP.

2. In the right pane, right-click FTP and select Stop.

Set number of available FTP servers

You can specify the minimum number of available servers to be kept ready for future client connections.

To set this value, go to the FTP Properties page and specify a number from 1 to 20 for the Initial

number of servers to start. Specifying a value of 1 delays incoming connections to the FTP server. The

recommended value is 3.

When a client connects to an iSeries(TM) FTP server, the server examines the number of active servers

that are not connected to a client and the value specified for the initial number of servers to start. If the

initial server value is greater than the number of available servers, additional servers are started so that

the two numbers are equal. If the initial server value is less than the number of available servers, no

action is taken. Changes to the initial server value take effect at the time of the next client connection,

when the above process is activated.

For example, if there are five FTP client sessions established at the same time and the initial server value

is set at 10, there will be 15 FTP servers running. The 15 servers include five servers for the five active

client sessions and ten available servers. The number of available servers can be larger than the initial

server value. In this same example, if the five clients end their sessions and no other sessions are started,

there will be 15 available servers.

Improve FTP server performance with configurable subsystem support

The default subsystem (QSYS/QSYSWRK) is used for many IBM-supplied server jobs. Using a different

subsystem than the default subsystem can result in improved FTP performance because the need to

share resources is eliminated.

To configure a subsystem for the FTP server, follow these steps:

1. In iSeries(TM) Navigator, expand your iSeries Server —> Network —> Servers —> TCP/IP.

2. Right-click FTP and select Properties.

3. On the FTP Properties page, select Subsystem description.

4. Specify a subsystem description and a predefined library.

If the specified subsystem does not exist, then FTP will create it along with routing table entries and job

descriptions. When the startup job for the server is executed, it will specify the parameters for the newly

created subsystem and then submit the server jobs for batch startup in that subsystem.

Use the FTP client on iSeries(TM)

The FTP client allows you to transfer files that are found on your iSeries server, including those in the

Root, QSYS.Lib, QOpenSys, QOPT, and QFileSvr.400 file systems. It also allows you to transfer folders

and documents in the document library services (QDLS) file system. The FTP client may be run

interactively in an unattended batch mode where client subcommands are read from a file and the

responses to these subcommands are written to a file. It also includes other features for manipulating files

on your system.

The client has a user interface from which you can enter client subcommands for making requests to an

FTP server. The results of these requests are then displayed.

22 iSeries: FTP

To transfer files between the client and the server, two connections are established. The control connection

is used to request services from the server with FTP server commands. The server sends replies back to

the client to indicate how the request was handled. The second connection, called the data connection, is

used for transferring lists of files and the actual file data.

Both the client and the server have a data transfer function that interfaces to the resident file systems.

These functions read or write data to the local file systems and to and from the data connection.

“Start and end a client session”
Describes how to start and stop a client session.

“Server timeout considerations” on page 26
Explains how to keep your connection from timing out.

“Transfer files with FTP” on page 27
Describes how to send and receive files with FTP.

“FTP as batch job” on page 28
Provides examples of how to run FTP in an unattended mode.

Start and end a client session

This topic provides details for using the FTP client on the iSeries(TM) server.

Starting FTP client sessions (See 23)
Ending the FTP client session (See 26)

Starting FTP client session
Before starting the FTP client function, you must have the following information:

v The name or Internet address of the system to which files are sent or obtained.

v A logon ID and password (if required) for the remote system where the file transfers are to occur.

v The name of the file or files with which you want to work (send and receive, for example).

The Start TCP/IP File Transfer Protocol (STRTCPFTP “remotesystem”) starts a client session on the local

iSeries server and then opens a connection to the FTP server on the specified remote system. For

example, entering the command FTP myserver.com would start a client session on your iSeries server, then

open a connection to the FTP server on the remote myserver.com system. You can specify additional

parameters, or be prompted for them by typing STRTCPFTP without specifying a remote system.

 Start TCP/IP File Transfer (FTP)

 Type choices, press Enter.

 Remote system > MYSERVER.COM

 Coded character set identifier *DFT 1-65533, *DFT

 Port > *SECURE 1-65535, *DFT, *SECURE

 Secure connection *DFT *DFT, *NONE, *SSL, *IMPLICIT

 Data protection *DFT *DFT, *CLEAR, *PRIVATE

Once you specify a remote system name, you will be prompted to specify additional information. The

following summarizes the options available, additional details are available in the field help:

FTP 23

Remote system (RMTSYS)
Specifies the remote system name to which or from which the files are transferred. The possible values

are:

*INTNETADR
The Internet address (INTNETADR) parameter is prompted. The Internet address is specified in the

form, nnn.nnn.nnn.nnn, where nnn is a decimal number ranging from 0 through 255

remote-system
Specify the remote system name to which or from which the file transfer takes place.

Coded character set identifier (CCSID)
Specifies the ASCII coded character set identifier (CCSID) that is used for single-byte character set

(SBCS) ASCII file transfers when the FTP TYPE mode is set to ASCII. The possible values are:

*DFT
The CCSID value 00819 (ISO 8859-1 8-bit ASCII) is used.

CCSID-value
The requested CCSID value is used. This value is validated to ensure a valid ASCII SBCS CCSID

was requested.

Port (PORT)
Specifies the port number used for connecting to the FTP server. Normally the “well-known” port value of

21 is used to connect to the FTP server. Under some circumstances, the FTP server may be contacted at

a port other than port 21. In those situations, the port parameter may be used to specify the server port to

connect to. The possible values are:

*DFT
The value 00021 is used.

*SECURE
The value 00990 is used. Port 990 is reserved for secure FTP servers which immediately use

Transport Layer Security (TLS) or Secure Sockets Layer (SSL) protocols to encrypt data.

port_value
The requested port value is used. This value is validated to ensure it is in the proper range.

 Note: If 990 is specified, the FTP client will perform the same

functions as if *SECURE were specified.

Secure connection (SECCNN)
Specifies the type of security mechanism to be used for protecting information transferred on the FTP

control connection (which includes the password used to authenticate the session with the FTP server).

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) are compatible protocols which use

encryption to protect data from being viewed during transmission and verify that data loss or corruption

does not occur.

 Note: The FTP client subcommand SECOPEN can be used to

open a protected FTP connection during an FTP client

session.

The possible values are:

24 iSeries: FTP

*DFT
If the PORT parameter specifies *SECURE or 990, *IMPLICIT is used; otherwise, *NONE is used.

*IMPLICIT
The FTP client immediately attempts to use TLS/SSL when connecting to the specified FTP server

(without sending an AUTH subcommand to the server). If the server does not support implicit

TLS/SSL on the specified port, or the TLS/SSL negotiation fails for any reason, the connection is

closed.

*SSL
After connecting to the specified FTP server, the FTP client sends an AUTH (authorization)

subcommand requesting a TLS/SSL protected session. If the server supports TLS/SSL, a TLS/SSL

negotiation performed. If the server does not support TLS/SSL or the TLS/SSL negotiation fails, the

connection is closed.

*NONE
The FTP client does not use encryption for the control connection to the specified FTP server.

Data protection (DTAPROT)
Specifies the type of data protection to be used for information transferred on the FTP data connection.

This connection is used to transfer file data and directory listings. The FTP protocol does not allow

protection of the data connection if the control connection is not protected.

 Note: The FTP client subcommand SECData can be used

subsequently to change the data protection level. The FTP

client uses the FTP server subcommand PROT to request

the specified data protection after a secure control

connection has been established.

The possible values are:

*DFT
If the SECCNN parameter specifies a protected control connection, *PRIVATE is used; otherwise,

*CLEAR is used.

*PRIVATE
Information sent on the FTP data connection is encrypted. If the SECCNN parameter specifies that

the FTP control connection is not encrypted, *PRIVATE cannot be specified.

*CLEAR Information sent on the FTP data connection is not encrypted.

Outgoing ASCII/EBCDIC table (TBLFTPOUT)
Specifies the table object that is to be used to map all outgoing data in the FTP client. Outgoing data is

mapped from EBCDIC to ASCII. If no table object is specified for TBLFTPOUT, the CCSID parameter is

used to determine outgoing mapping. The possible values are:

*CCSID
The CCSID parameter is used to determine outgoing mapping.

*DFT
The CCSID parameter is used to determine outgoing mapping.

The name of the outgoing mapping table can be qualified by one of the following library values:

FTP 25

*LIBL
All libraries in the user and system portions of the job’s library list are searched until the first

match is found.

*CURLIB
The current library for the job is searched. If no library is specified as the current library for the

job, the QGPL library is used.

library-name
Specify the name of the library to be searched.

outgoing-mapping-table
Specify the table object to be used by the FTP client for mapping outgoing data.

Incoming ASCII/EBCDIC table (TBLFTPIN)
Specifies the table object that is to be used to map all incoming data in the FTP client. Incoming data is

mapped from ASCII to EBCDIC. If no table object is specified for TBLFTPIN, the CCSID parameter is used

to determine incoming mapping. The possible values are:

*CCSID
The CCSID parameter is used to determine incoming mapping.

*DFT
The CCSID parameter is used to determine incoming mapping.

The name of the incoming mapping table can be qualified by one of the following library values:

*LIBL
All libraries in the user and system portions of the job’s library list are searched until the first

match is found.

*CURLIB
The current library for the job is searched. If no library is specified as the current library for the

job, the QGPL library is used.

library-name
Specify the name of the library to be searched.

incoming-mapping-table
Specify the table object to be used by the FTP client for mapping incoming data.

For steps for transferring files with between systems, refer to the topic “Transfer files with FTP” on page

27.

 Ending the FTP client session

The FTP session is ended with the QUIT subcommand. The QUIT subcommand closes the connection

with the remote host and ends the FTP session on the iSeries server. Alternatively, you can press F3 (Exit)

and then confirm to end the FTP client session.

Server timeout considerations

The inactivity time-out value requires some consideration. This is the time in seconds without FTP

server activity that will cause the server to close the session. Certain remote servers allow the client to

change this value. For example, iSeries(TM) supports the FTP server TIME subcommand, which can be

26 iSeries: FTP

sent to the server with the FTP client QUOTE subcommand, as described in “QUOTE (Send a

Subcommand to an FTP Server)” on page 72. UNIX(R) servers often support the SITE IDLE subcommand.

When using local iSeries subcommands with either the SYSCMD subcommand or F21, there is no

interaction between the client and the server. Therefore, if the running of these local iSeries commands

exceeds the server inactivity time-out period, the server will close the connection. If you lose your

connection, you must log on to the server again using the OPEN command (OPEN <remote system

name>) and the USER command as described in the note to Logon to the Remote System (Server).

Transfer files with FTP

Follow these steps to transfer files with FTP.

1. Collect this information:

v The TCP/IP name or IP address of the remote computer

v A logon name and password for the remote computer (unless the remote computer supports

anonymous FTP)

v The name and location of the file you want to transfer

v The location of the destination

v The “Data transfer methods” on page 122 that you will use: ASCII, EBCDIC, or BINARY

v Whether you want to use a connection secured with Transport Layer Security (TLS) or Secure

Sockets Layer (SSL).

2. At the command line, type FTP and press Enter.

3. At the prompt, enter the TCP/IP name or IP address of the remote computer system and press Enter.

You can use either the name or the IP address, such as:

remote.systemname.com

or
110.25.9.13

4. Enter the Coded Character Set Identifier (CCSID). Use the default (*DFT) value unless you know that

you need a specific CCSID.

5.

If you want to use a secure connection to protect passwords and data, specify a Port value of

*SECURE.

6. Press Enter to initiate the connection. The FTP client will display messages that indicate a successful

connection with the remote system.

 Note: If you specify a port of *SECURE and the server does not

support implicit TLS/SSL on the specified port, or the

TLS/SSL negotiation fails for any reason, the connection

is closed.

7. To change the file transfer type, do the following:

a. To switch to EBCDIC, enter EBCDIC and press Enter before you transfer the file.

b. To switch to BINARY, enter BINARY and press Enter before you transfer the file.

c. To switch back to the default type, ASCII, enter ASCII and press Enter before you transfer the file.

8. Now you are ready to transfer files:

a. Enter CD and the name of the directory. Press Enter.

FTP 27

b. Do one of the following:

v To transfer a file from the server system to the client system, enter GET followed by the name of

the file:

GET myfile.txt

v To send a file that is on the client system to the server system, enter PUT followed by the name

of the file:

PUT myfile.txt

9. Enter the FTP subcommand QUIT to end the FTP client session and return to the iSeries(TM)

command line.

FTP as batch job

In addition to running the FTP client interactively, you can run the FTP client in an unattended mode. This

topic provides two examples of this method: a simple (See 28) example and a complex (See 29) example.

You can also refer to Section 6.7, Batch FTP, of V4 TCP/IP for AS/400(R): More Cool Things Than Ever

(about 744 pages) for another example.

 Batch FTP: A simple example

The following is a simple example of a batch file transfer that involves the successful transfer of one file

from a remote system.

The components are as follows:

v A CL program

v An input file of FTP commands

v An output file of FTP messages

The CL Program

 **

 ITSOLIB1/QCLSRC BATCHFTP:

 PGM

 OVRDBF FILE(INPUT) TOFILE(ITSOLIB1/QCLSRC) MBR(FTPCMDS)

 OVRDBF FILE(OUTPUT) TOFILE(ITSOLIB1/QCLSRC) MBR(OUT)

 FTP RMTSYS(SYSxxx)

 ENDPGM

 **

 Note: To make this sample work when written with ILECL, you

must add OVRSCOPE(*CALLLVL) to the OVRDBF

commands.

The BATCHFTP program overrides the INPUT parameter to the source physical file ITSOLIB1/QCLSRC

MBR(FTPCMDS). The output is sent to MBR(OUT).

The Input Commands File

 **

 ITSOLIB1/QCLSRC FTPCMDS:

 ITSO ITSO

 CD ITSOLIB1

 SYSCMD CHGCURLIB ITSOLIB2

 GET QCLSRC.BATCHFTP QCLSRC.BATCHFTP (REPLACE

 QUIT

 **

28 iSeries: FTP

http://www.redbooks.ibm.com/abstracts/sg245190.html

The FTP subcommands required are shown in the FTPCMDS file.

The Output Messages File

 **

 FTP Output Redirected to a File

 FTP Input from Overridden File

 Connecting to host name SYSxxx

 at address x.xxx.xx.xxx using port 21.

 220-QTCP at SYSxxx.sysnam123.ibm.com.

 220 Connection will close if idle more than 5 minutes.

 Enter login ID (itso):

 > ITSO ITSO

 331 Enter password.

 230 ITSO logged on.

 OS/400 is the remote operating system. The TCP/IP version is “V3R1M0”.

 250 Now using naming format “0”.

 257 “QGPL” is current library.

 Enter an FTP subcommand.

 > CD ITSOLIB1

 Enter an FTP subcommand.

 250 Current library changed to ITSOLIB1.

 > SYSCMD CHGCURLIB ITSOLIB2

 Enter an FTP subcommand.

 > GET QCLSRC.BATCHFTP QCLSRC.BATCHFTP (REPLACE

 200 PORT subcommand request successful.

 150 Retrieving member BATCHFTP in file QCLSRC in library ITSOLIB1.

 250 File transfer completed successfully.

 147 bytes transferred in 0.487 seconds. Transfer rate 0.302 KB/sec.

 Enter an FTP subcommand.

 > QUIT

 221 QUIT subcommand received.

 **

The output file is shown. It is a straightforward matter to write a program to process this file and display an

error message on QSYSOPR if there are any error messages. FTP error messages have numbers that

start with a 4 or 5.

 Batch FTP: A Complex Example

The following example shows how to retrieve files from several remote hosts to a central iSeries(TM) in

batch mode:

FTP 29

*

User GWIL on iSeries SYSNAM03 wants to:

1. Retrieve files from hosts SYSNAMRS (RS/6000(R)) and MVAX (VAX).

2. After retrieving the file from SYSNAMRS, the file should be transferred to SYSNAM02 (another iSeries)

using FTP.

3. From there the file is to be sent using TCP/IP to iSeries SYSNAM14.

Create a CL Program to Start FTP

1. As we have seen in the previous example, FTP uses the display station for command INPUT and

message OUTPUT, and this needs to be overridden for use in batch mode. We use the OVRDBF

command to overwrite these files with the ones to be used in batch:

 OVRDBF FILE(INPUT) TOFILE(GERRYLIB/QCLSRC) MBR(FTPCMDS)

 OVRDBF FILE(OUTPUT) TOFILE(GERRYLIB/QCLSRC) MBR(FTPLOG)

2. A host name or an internet address is a required parameter for the STRTCPFTP command that is

included in the CL program file. However, if one wants to specify the remote systems in the input

commands file instead of the CL program file, then a dummy host name must be specified for the

STRTCPFTP command to satisfy the required syntax. This dummy name may be a fictitious host name

or a real host name. If it is a real name, then the first entry in the input commands file must be a user

ID and a password, and the second entry must be the CLOSE subcommand. If it is not a real host

name, then these entries are not required, and the first entry should be an OPEN subcommand to

connect to the desired server system.

 FTP RMTSYS(LOOPBACK)

30 iSeries: FTP

rzaiq502_desc.htm

FTP processes the input file and writes messages to the output file (FTPLOG).

3. After the FTP application ends, delete the overrides:

 DLTOVR FILE(INPUT OUTPUT)

The CL program for batch FTP will look like the following example on system SYSNAM01:

 | |

 | Columns . . . : 1 71 Browse GERRYLIB/QCLSRC |

 | SEU==> FTPBATCH |

 | FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 |

 | *************** Beginning of data ************************************* |

 | 0001.00 PGM |

 | 0002.00 OVRDBF FILE(INPUT) TOFILE(GERRYLIB/QCLSRC) + |

 | 0003.00 MBR(FTPCMDS) |

 | 0004.00 OVRDBF FILE(OUTPUT) TOFILE(GERRYLIB/QCLSRC) + |

 | 0005.00 MBR(FTPLOG) |

 | 0006.00 FTP RMTSYS(LOOPBACK) /* (FTP CL Program) */ |

 | 0007.00 DLTOVR FILE(INPUT OUTPUT) |

 | 0008.00 ENDPGM |

 | ****************** End of data ** |

 | |

 | |

 | F3=Exit F5=Refresh F9=Retrieve F10=Cursor F12=Cancel |

 | F16=Repeat find F24=More keys |

 | (C) COPYRIGHT IBM CORP. 1981, 1994. |

 | |

 |___|

Figure 1. CL Program FTPBATCH for Batch FTP.

Create the FTP Input File (FTCPDMS)
This file has to contain all the FTP client subcommands necessary to connect and log on to the server, set

up for and do the file transfers, close the server connection, and end the client session. The example in

below shows the subcommands used for transferring files to two different remote systems.

 | |

 | Columns . . . : 1 71 Browse GERRYLIB/QCLSRC |

 | SEU==> FTPCMDS |

 | FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 |

 | *************** Beginning of data ************************************* |

 | 0001.00 gwil **** |

 | 0002.00 close |

 | 0003.00 open sysnamrs |

 | 0004.00 user root root |

 | 0005.00 ascii |

 | 0006.00 syscmd dltf file(gerrylib/rs6) |

 | 0007.00 get /Itsotest gerrylib/rs6.rs6 |

 | 0008.00 close |

 | 0009.00 open mvax |

 | 0010.00 user tester tester |

 | 0011.00 get screen1.file gerrylib/vax.vax (replace |

 | 0012.00 close |

 | 0013.00 open sysnam02 |

 | 0014.00 user gwil **** |

 | 0015.00 ebcdic |

 | 0016.00 put gerrylib/rs6.rs6 gerrylib/rs6.rs6 |

 | 0017.00 quote rcmd sndnetf file(gerrylib/rs6) tousrid((gwil sysnam14)) |

 | 0018.00 close |

 | 0019.00 quit |

 | ****************** End of data ** |

 | F3=Exit F5=Refresh F9=Retrieve F10=Cursor F12=Cancel |

 | F16=Repeat find F24=More keys |

 | |

 |___|

Figure 2. Transferring files to two remote systems.

FTP 31

The following is an explanation for the FTP client subcommands shown in Figure 2. The line numbers on

the display correspond to the numbers that follow.

0001
User ID and password for dummy connection within client iSeries SYSNAM03.

0002
Close dummy connection in iSeries SYSNAM03.

0003
Open control connection to RISC System/6000(R) SYSNAMRS.

0004
USER subcommand with user ID and password for SYSNAMRS.

 Note: When running FTP in batch mode, the USER

subcommand must follow an OPEN subcommand. Both

the logon user ID and password parameters for the USER

subcommand should be provided. This is different when

operating FTP interactively online. When FTP is run

interactively online, then the client will automatically initiate

a USER subcommand and prompt you for a logon ID.

There is no automatic USER subcommand when running

FTP in batch mode.

0005
Transfer ASCII data (will be converted on iSeries to/from EBCDIC).

0006
CL command to be run on client iSeries: delete file. Instead parameter (REPLACE could be used

with the next statement.

0007
Retrieve file from RISC System/6000 system

0008
Close control connection to RISC System/6000 SYSNAMRS.

0009
Open connection to VAX MVAX.

0010
USER subcommand with user ID and password for MVAX.

0011
Retrieve file from VAX replacing existing iSeries file.

0012
Close control connection to VAX MVAX.

0013
Open control connection to remote iSeries SYSNAM02.

0014
USER subcommand with user ID and password for SYSNAM02.

32 iSeries: FTP

0015
Transfer EBCDIC data (as it is from iSeries to iSeries).

0016
Send iSeries file to iSeries SYSNAM02 with TCP/IP.

0017
Send this file from server iSeries SYSNAM03 to remote iSeries SYSNAM14 through TCP/IP network.

0018
Close control connection to iSeries SYSNAM02.

0019
End FTP application.

Create CL Program for Submitting the FTPBATCH Job
To schedule the file transfers and run them unattended, create a CL program that submits the FTPBATCH

job. In the following example, the file transfers are supposed to run the next Friday, 17:00 hour, in

unattended mode.

 | |

 | Columns . . . : 1 71 Browse GERRYLIB/QCLSRC |

 | SEU==> FTPSUBMIT |

 | FMT ** ...+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 |

 | *************** Beginning of data ************************************* |

 | 0001.00 PGM |

 | 0002.00 SBMJOB CMD(CALL PGM(GERRYLIB/FTPBATCH)) + |

 | 0003.00 JOB(FTPFRIDAY) OUTQ(QUSRSYS/GERRYQ) + |

 | 0004.00 SCDDATE(*FRI) SCDTIME(170000) /* FTP for + |

 | 0005.00 Friday, 5:00 in the afternoon */ |

 | 0006.00 ENDPGM |

 | ****************** End of data ** |

 | |

 | F3=Exit F5=Refresh F9=Retrieve F10=Cursor F12=Cancel |

 | F16=Repeat find F24=More keys |

 | (C) COPYRIGHT IBM CORP. 1981, 1994. |

 | |

 |___|

Figure 3. CL Program for Submitting Batch FTP Job.

Check the FTP Output File for Errors
While running at the scheduled time, FTP creates the data in file member FTPLOG shown above. The

data in file member FTPLOG corresponds to original statements found both examples.

 | |

 | Connecting to host name LOOPBACK at address 127.0.0.1 using port 21. |

 | 220-QTCP at localhost. |

 | 220 Connection will close if idle more than 5 minutes. |

 | Enter login ID (gwil): |

 | |

 | >>>GWIL **** |

 | 331 Enter password. |

 | 230 GWIL logged on. |

 | OS/400 is the remote operating system. The TCP/IP version is “V4R2M0”. |

 | 250 Now using naming format “0”. |

 | 257 “QGPL” is current library. |

 | Enter an FTP subcommand. |

 | |

 | > CLOSE |

 | 221 QUIT subcommand received. |

 | Enter an FTP subcommand. |

 | |

FTP 33

| > OPEN SYSNAMRS |

 | Connecting to host name SYSNAMRS at address 9.4.73.198 using port 21. |

 | 220 sysnamrs.sysnam123.ibm.com FTP server (Version 4.9 Thu Sep 2 20:35:07 CDT |

 | 1993) ready. |

 | Enter an FTP subcommand. |

 | |

 |___|

Figure 4. FTP Output (FTPLOG) After Running FTPBATCH Program (Part 1)

 | |

 | > USER root **** |

 | 331 Password required for root. |

 | 230 User root logged in. |

 | UNIX Type: L8 Version: BSD-44 |

 | Enter an FTP subcommand. |

 | |

 | > ASCII |

 | 200 Type set to A; form set to N. |

 | Enter an FTP subcommand. |

 | |

 | > SYSCMD DLTF FILE(GERRYLIB/RS6) |

 | Enter an FTP subcommand. |

 | |

 | > GET /Itsotest GERRYLIB/RS6/RS7 |

 | 200 PORT command successful. |

 | 150 Opening data connection for /Itsotest (467 bytes). |

 | 226 Transfer complete. |

 | 467 bytes transferred in 2.845 seconds. Transfer rate 0.167 KB/sec. |

 | Enter an FTP subcommand. |

 | |

 |___|

Figure 5. FTP Output (FTPLOG) after Running FTPBATCH Program (Part 2)

 __

 | |

 | > CLOSE |

 | 221 Goodbye. |

 | Enter an FTP subcommand. |

 | |

 | > OPEN MVAX |

 | Connecting to host system mvax at address 9.4.6.252 using port 21. |

 | 220 FTP Service Ready |

 | Enter an FTP subcommand. |

 | |

 | > USER TESTER ****** |

 | 331 User name TESTER received, please send password |

 | 230 TESTER logged in, directory $DISK1:[TESTER] |

 | Enter an FTP subcommand. |

 | |

 | GET SCREEN1.FILE GERRYLIB/VAX.VAX (REPLACE |

 | 200 PORT Command OK. |

 | 125 ASCII transfer started for $DISK1:[TESTER SCREEN1.FILE;1(266586 bytes) |

 | 226 File transfer completed ok. |

 | 265037 bytes transferred in 8.635 seconds. Transfer rate 30.694 KB/sec. |

 | Enter an FTP subcommand. |

 | |

 | > CLOSE |

 | 221 Goodbye. |

 | Enter an FTP subcommand. |

 | |

 | OPEN SYSNAM02 |

 | Connecting to host system SYSNAM02 at address 9.4.73.250 using port 21. |

34 iSeries: FTP

| 220-QTCP at SYSNAM02.sysnam123.ibm.com. |

 | 220 Connection will close if idle more than 5 minutes. |

 | Enter an FTP subcommand. |

 | |

 |___|

Figure 6. FTP Output (FTPLOG) after Running FTPBATCH Program (Part 3)

 | |

 | > USER GWIL **** |

 | 331 Enter password. |

 | 230 GWIL logged on. |

 | OS/400 is the remote operating system. The TCP/IP version is “V4R2M0”. |

 | 250 Now using naming format “0”. |

 | 257 “QGPL” is current library. |

 | Enter an FTP subcommand. |

 | |

 | > EBCDIC |

 | 200 Representation type is EBCDIC nonprint. |

 | Enter an FTP subcommand. |

 | |

 | > PUT GERRYLIB/RS6.RS6 GERRYLIB/RS6.RS6 |

 | 200 PORT subcommand request successful. |

 | 150 Sending file to member RS6 in file RS6 in library GERRYLIB. |

 | 250 File transfer completed successfully. |

 | 467 bytes transferred in 0.148 seconds. Transfer rate 3.146 KB/sec. |

 | Enter an FTP subcommand. |

 | |

 | > RCMD SNDNETF FILE(GERRYLIB/RS6) TOUSRID((GERRYLIB SYSNAM14)) |

 | 250 Command SNDNETF FILE(GERRYLIB/RS6) TOUSRID((GWIL SYSNAM14)) |

 | successful. |

 | Enter an FTP subcommand. |

 | |

 |___|

Figure 7. FTP Output (FTPLOG) after Running FTPBATCH Program (Part 4)

 | |

 | > CLOSE |

 | 221 QUIT subcommand received. |

 | Enter an FTP subcommand. |

 | > QUIT |

 | (This ends the FTP application) |

 | |

 |___|

Figure 8. FTP Output (FTPLOG) after Running FTPBATCH Program (Part 5)

You should check this output for errors that might have occurred during FTP processing. You can either

check visually or run a program that tests for error reply codes. Three-digit FTP error reply codes start with

4 or 5. Be careful to avoid messages such as ’467 bytes transferred...’.

Sample Procedure: A sample REXX procedure and a sample physical file member are shipped as part of

the TCP/IP product. File QATMPINC in library QTCP includes the following two members:

v BATCHFTP that contains REXX source code to specify the input and output batch files, and start FTP.

v BFTPFILE that contains the subcommands and data required for logon and running FTP.

FTP reference information

The following topics provide information you may find useful when working with the FTP server and

client:

FTP 35

“FTP server subcommands”
These commands represent communication between the client and server. This topic includes

descriptions for iSeries(TM) CL equivalent subcommands that are unique to iSeries FTP server (See

38)

“FTP client subcommands” on page 54
Use FTP client subcommands to establish a connection with a remote FTP server, navigate libraries

and directories, create and delete files, and transfer files.

“FTP exit programs” on page 83
Use FTP exit programs to secure FTP. The FTP server communicates with each exit program

through a specific exit point. This topic includes parameter descriptions and code examples.

Additional reference information

v “Data transfer methods” on page 122

v “File systems and naming conventions” on page 130

v “FTP server reply status messages” on page 132

v “FTP server syntax conventions” on page 133

v “FTP client syntax conventions” on page 134

FTP server subcommands

This topic is a reference of FTP server subcommands. The FTP client communicates with the server using

server subcommands. Because a user does not typically communicate with the FTP server, this topic

provides the server subcommands, descriptions of what they do, their syntax conventions, and FTP reply

status messages for your reference.

iSeries(TM) FTP server supports these subcommands:

 Subcommand What It Does

ABOR Cancels the Previous Subcommand

“ADDM (Add Physical File Member)” on page 38 Adds a Member to a Physical File

“ADDV (Add Physical File Variable Length Member)” on

page 38

Adds a Member to a Variable-Length Member to a

Physical File

“APPE (Append to Existing File)” on page 39 Appends Data to a Specified File

“AUTH (Authorization)” on page 39 Defines the authentication mechanism used for the

current FTP session.

CDUP Changes Directory to the Parent Directory

“CRTL (Create Library)” on page 39 Creates a Library

“CRTP (Create Physical File)” on page 40 Creates a Physical File

“CRTS (Create Source Physical File)” on page 40 Creates a Source Physical File

“CWD (Change working directory or library)” on page 40 Changes the Working Directory or Library

“DBUG (Turn on the FTP Server Trace)” on page 41 Starts or Ends a Server Trace

“DELE (Delete file or document)” on page 41 Deletes a File, a Member, or a Document

“DLTF (Delete File)” on page 41 Deletes a File

“DLTL (Delete Library)” on page 41 Deletes a Library

36 iSeries: FTP

Subcommand What It Does

“HELP (Getting Help from an iSeries(TM) Remote Server)”

on page 42

Gets Information about FTP Server Subcommands

“LIST (File List)” on page 42 Lists Files or Directory Entries

“MKD (Make directory)” on page 42 Makes a Directory

“MODE (Set Transfer Mode)” on page 43 Specifies a Format for Data Transmission

“NLST (Name List)” on page 43 Lists the Names of Files or Directories

“NOOP (Obtain Server Response)” on page 43 Checks if Server is Responding

“PASS (Password)” on page 44 Sends a Password to the Server

“PASV (Use Passive Data Connection)” on page 44 Tells the Server to Passively Open the Next Data

Connection

“PBSZ (Protection Buffer Size)” on page 44 Defines the largest buffer protection buffer size to be

used for application-level encoded data sent or received

on the data connection.

“PORT (Data Port)” on page 45 Identifies the Data Port on which the Client Will Listen for

a Connection

“PROT (Data Channel Protection Level)” on page 45 Defines the protection used for FTP data connections

“PWD (Display Working Directory or Library)” on page 46 Displays the Current Working Directory

“QUIT (End an FTP Server Session)” on page 46 Logs Off the User; Closes the Connection

“RCMD (Send a CL Command to an FTP Server

System)” on page 46

Sends a CL Command to an FTP Server

“REIN (Reinitialize Session between Systems)” on page

47

Re-starts a Session on a Server

“RETR (Retrieve file)” on page 47 Retrieves Data from a Server

“RMD (Remove directory)” on page 47 Removes a Directory

“RNFR (Rename From)” on page 47 Specifies a File to be Renamed

“RNTO (Rename To)” on page 48 Specifies a New File Name

“SITE (Send Information Used by a Server System)” on

page 48

Sends Information for a Server to Use

STAT Gets Status Information from a Server

“STOR (Store File)” on page 50 Saves Data on a Server and Replaces an Existing File

“STOU (Store Unique)” on page 50 Saves Data on a Server But Does Not Replace an

Existing File

“STRU (Specify File Structure)” on page 51 Specifies the Structure of a File

“SYST (Identify the Name of the Operating System)” on

page 51

Prints the Name of the OS on the Server

“TIME (Set Time-Out Values for FTP Server)” on page 52 Sets the Time-Out Value for the FTP Server

“TYPE (Specify Representation Type)” on page 52 Specifies the File Transfer Type

“USER (Send a User Logon ID to the Server)” on page

54

Sends a User Logon ID to the Server

XCUP Changes to the Parent Directory

XCWD Changes to the Working Directory

XMKD Creates a Directory

XPWD Displays the Current Directory or Library

XRMD Removes a Directory

FTP 37

Subcommands unique to iSeries FTP server

iSeries FTP server subcommands include a special set of commands that are really abbreviated names of

equivalent, but longer, iSeries CL commands. The names of these special server subcommands must be

four characters to comply with the FTP architecture limits. When the iSeries server receives these

subcommands, this is how it interprets them:

v “ADDM (Add Physical File Member)” = ADDPFM (Add Physical File Member)

v “ADDV (Add Physical File Variable Length Member)” = ADDPVLM (Add Physical File Variable Length

Member)

v “CRTL (Create Library)” on page 39 = CRTLIB (Create Library)

v “CRTP (Create Physical File)” on page 40 = CRTPF (Create Physical File)

v “CRTS (Create Source Physical File)” on page 40 = CRTSRCPF (Create Source Physical File)

v “DLTF (Delete File)” on page 41 = DLTF (Delete File)

v “DLTL (Delete Library)” on page 41 = DLTLIB (Delete Library)

In addition to these specific subcommands, you can use the FTP server subcommand “RCMD (Send a CL

Command to an FTP Server System)” on page 46 to send any CL command to the server.

Related topics:

v “FTP server syntax conventions” on page 133

v “FTP server reply status messages” on page 132

v “FTP client subcommands” on page 54: Use these subcommands to establish a connection with a

remote FTP server, navigate libraries and directories, create and delete files, and transfer files.

ADDM (Add Physical File Member)

FTP Server Subcommand

 ADDM parameters

parameters
The parameters for this subcommand are the same as for the ADDPFM CL command.

For example, to add member BANANA to physical file GEORGE in library RLKAYS on an iSeries(TM),

enter this:

ADDM FILE(RLKAYS/GEORGE) MBR(BANANA)

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

ADDV (Add Physical File Variable Length Member)

FTP Server Subcommand

 ADDV parameters

parameters
The parameters for this subcommand are the same as for the ADDPVLM CL command.

For example, to add member POLEBEAN to physical file GEORGE in library RLKAYS on an iSeries(TM),

enter this:

38 iSeries: FTP

ADDV FILE(RLKAYS/GEORGE) MBR(POLEBEAN)

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

APPE (Append to Existing File)

FTP Server Subcommand

The APPE FTP server subcommand accepts the transferred data and stores it in a file on the server

system. If the file specified exists, it appends the data to that file; otherwise, it creates the specified file.

 APPE filename

filename
The file that will receive your on the server system.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

AUTH (Authorization)

FTP Server Subcommand

The AUTH FTP server subcommand defines the authentication/security mechanism that is used for the

current FTP session. The syntax of this subcommand is:

AUTH [TLS-C | TLS-P | TLS | SSL]

Parameter values:

 TLS-C Utilize the transport layer security (TLS) protocol as the

security mechanism. The security settings for the data

connection use the RFC2228 defaults; i.e., there is no

implicit protection of the data connection.

TLS-P Utilize the TLS protocol as the security mechanism. Also,

implicitly protect the data connection (which is equivalent

to the command sequence AUTH TLC-C, PBSZ 0, PROT

P)

TLS Synonym for TLS-C.

SSL Synonym for TLS-P.

 Note: The TLS protocol is compatible with the secure sockets

layer (SSL) protocol.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

CRTL (Create Library)

FTP Server Subcommand

FTP 39

CRTL parameters

parameters
The parameters for this subcommand are the same as for the CRTLIB CL command.

For example, to create a library that is called TESTTCP on an iSeries(TM) server, enter this:

CRTL TESTTCP

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

CRTP (Create Physical File)

FTP Server Subcommand

 CRTP parameters

parameters
The parameters for this subcommand are the same as for the CRTPF CL command.

For example, to create a physical file that is called MYFILE with a record length of 80 and no restrictions

on the number of members, enter this:

CRTP FILE(RLKAYS/MYFILE) RCDLEN(80) MAXMBRS(*NOMAX)

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

CRTS (Create Source Physical File)

FTP Server Subcommand

 CRTS parameters

parameters
The parameters for this subcommand are the same as for the CRTSRCPF CL command.

For example, to create a source physical file that is called GEORGE in library RLKAYS, enter this:

CRTS FILE(RLKAYS/GEORGE)

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

CWD (Change working directory or library)

FTP Server Subcommand

To change the working directory, library, or file group, use the CWD FTP server subcommand.

 CWD directory

Go To:

40 iSeries: FTP

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

DBUG (Turn on the FTP Server Trace)

 Note: Use the FTP server trace only for reporting software

problems to IBM. You may affect system performance by

this function.

FTP Server Subcommand

 DBUG

If the FTP server trace is not active, the server starts a trace. The server continues to run a trace until it

receives another DBUG subcommand or a QUIT subcommand. When it ends the trace, there may be a

significant delay while it formats the trace data.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

DELE (Delete file or document)

FTP Server Subcommand

To delete a file, a member, or a document, use the CWD FTP server subcommand.

 DELE remotefile

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

DLTF (Delete File)

FTP Server Subcommand

 DLTF parameters

parameters
The parameters for this subcommand are the same as for the DLTF CL command.

For example, to delete file MYFILE in library RLKAYS, enter this:

DLTF FILE(RLKAYS/MYFILE)

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

DLTL (Delete Library)

FTP Server Subcommand

 DLTL parameters

FTP 41

parameters
The parameters for this subcommand are the same as for the DLTLIB CL command.

For example, to delete a library, enter this:

DLTL libname

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

HELP (Getting Help from an iSeries(TM) Remote Server)

To get information about the FTP server subcommands, use the HELP subcommand in this format:

 HELP [subcommand]

subcommand
The name of the server subcommand you want information about. For example, HELP ADDM will

provide help information about how to add a member to a physical file on an iSeries.

To determine the syntax of the ADDV subcommand that is used by the iSeries server, use the server

subcommand:

HELP ADDV

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

LIST (File List)

FTP Server Subcommand

To get a list of directory entries, library contents, or files in a file group, use the LIST FTP server

subcommand:

 LIST [directory | name]

It lists only those files that FTP can transfer

Go to:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

v “SITE (Send Information Used by a Server System)” on page 48: Use this subcommand to change what

the LIST subcommand returns.

v LIST information in UNIX(R)-style format: Use this subcommand to show what the LIST subcommand

returns.

v LIST Information in iSeries(TM) format: Use this subcommand to show what the LIST subcommand

returns.

MKD (Make directory)

FTP Server Subcommand

To create or make a directory, use the MKD FTP server subcommand.

42 iSeries: FTP

rzaiqrzaiqfdrtu.htm
rzaiqfdrt.htm

MKD directoryname

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

MODE (Set Transfer Mode)

FTP Server Subcommand

To specify how to you want bits of data transmitted, specify the mode, or data format, by using the MODE

FTP server subcommand:

 MODE [B | S]

B
Specifies block mode. In this mode, data is a series of data blocks, preceded by one or more header

bytes.

S
Specifies stream mode. In this mode, data a stream of bytes. You can use any representation type

with stream mode. This transfer mode is more efficient because the server does not transfer any data

block information.

 Notes: 1. Stream mode is the default transfer mode the

iSeries(TM) server uses and is the preferred mode.

2. If there is no parameter, the server returns a reply that

indicates the present setting for MODE.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

NLST (Name List)

FTP Server Subcommand

To get a list of only the names of multiple files, a file group, a directory, or a library, use the NLST FTP

server subcommand:

 NLST [directory | name]

It lists only those files that FTP can transfer.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

NOOP (Obtain Server Response)

FTP Server Subcommand

FTP 43

The NOOP FTP server subcommand sends an “OK” reply to the client. It does not affect server processing

in any other way. The client uses this command to determine if the server is connected and responding.

Use the NOOP subcommand:

 NOOP

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

PASS (Password)

FTP Server Subcommand

 PASS password

password
A string that specifies your password for the server system.

 Note: The USER server subcommand must immediately

precede the server subcommand PASS immediately.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

PASV (Use Passive Data Connection)

FTP Server Subcommand

To instruct this server to passively open the next data connection, use the PASV FTP server subcommand

in this format:

 PASV

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

PBSZ (Protection Buffer Size)

FTP Server Subcommand

The PBSZ subcommand defines largest buffer size to be used for application-level encoded data sent or

received on the data connection. The syntax of this subcommand is:

PBSZ value

where value is an ASCII character string representing a decimal integer.

 Note: RFC2228 requires that the PBSZ subcommand be issued

prior to the PROT subcommand. However, TLS/SSL

handles blocking of data, so ’0’ is the only value accepted.

Go To:

44 iSeries: FTP

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

PORT (Data Port)

FTP Server Subcommand

To identify the port on which the client will listen for a data connection, use the PORT FTP server

subcommand in this format:

 PORT h1,h2,h3,h4,p1,p2

hn
Represents the system IP address and is a character string that is a decimal value between 0 and

255.

pn
Represents the TCP port number and is a character string that is a decimal value between 0 and

255.

To convert the p1 and p2 values to a TCP port number, use this formula:

 port = (p1 * 256) + p2

For example, in this PORT subcommand:

 PORT 9,180,128,180,4,8

the port number is 1032 and the IP address is 9.180.128.180.

 Note: After the server closes the connection, it cannot connect

to the same client IP address and port number until a

two-minute time delay has occurred as specified in TCP/IP

RFC 1122. The server can make a connection to the

same client IP address on a different port number without

this restriction.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

PROT (Data Channel Protection Level)

FTP Server Subcommand

The PROT subcommand defines the protection used for FTP data connections (which are used to transmit

directory listings and file data). The syntax of this subcommand is:

PROT [C | P]

Parameter values:

 C Clear. The data connection carries “raw data” of the file

transfer with no security applied.

P Private. The data connection will use TLS/SSL, which

provides Integrity and Confidentiality protection.

FTP 45

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

PWD (Display Working Directory or Library)

FTP Server Subcommand

The server returns a reply to the client with the name of the current directory or library when the PWD FTP

server subcommand:

 PWD

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

QUIT (End an FTP Server Session)

FTP Server Subcommand

The FTP server subcommand QUIT logs off the client user and closes the control connection. If a file

transfer is in progress, the connection remains open until the file transfer is complete, and then the server

closes it.

 QUIT

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

RCMD (Send a CL Command to an FTP Server System)

FTP Server Subcommand

Use the server subcommand RCMD to run iSeries(TM) control language (CL) commands on the FTP server

system. The length of the RCMD subcommand string is up to 1000 characters. Because no prompting is

available for the RCMD subcommand, the RCMD subcommand string must include all necessary

parameters to run the CL command.

If the CL command called through the RCMD subcommand runs successfully, a message is displayed that

states that the subcommand was successful. If an error occurred, it displays a message that states there

was an error. The message does not include what the error was unless the error occurred because a

library, file, or member name was not valid.

This is an example of using RCMD to run a Delete File (DLTF) command:

 QUOte RCMD DLTF FILE(mylib/myfile)

mylib is the name of the library from which the file is to be deleted. myfile is the name of the file to be

deleted.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

46 iSeries: FTP

You may also be interested in reading about the REXEC server, which provides an alternative method for

executing CL commands on a remote system.

REIN (Reinitialize Session between Systems)

FTP Server Subcommand

 REIN

The REINITIALIZE subcommand:

1. Allows the completion of any transfer in progress

2. Ends the USER session and removes all input/output and account information

3. Resets all server parameters to the default settings

4. Leaves the control connection open

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

RETR (Retrieve file)

FTP Server Subcommand

To retrieve data from the server system, use the RETR FTP server subcommand.

 RETR remotefile

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

RMD (Remove directory)

FTP Server Subcommand

To remove a directory, use the RMD FTP server subcommand.

 RMD directoryname

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

RNFR (Rename From)

FTP Server Subcommand

The RNFR FTP server subcommand renames files. It must be immediately followed by a RNTO (Rename

To) server subcommand.

 RNFR filename

filename
The name of the file you want renamed.

FTP 47

Note: The iSeries(TM) server cannot rename a file to a different

file system.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

RNTO (Rename To)

FTP Server Subcommand

The RNTO FTP server subcommand specifies the new file name when renaming files on the server

system. It must immediately follow an RNFR subcommand, which specified the file name.

 RNTO filename

filename
The name to which the file you want renamed.

 Note: The iSeries(TM) server, cannot rename a file to a different

file system.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

SITE (Send Information Used by a Server System)

FTP Server Subcommand

To send information that is used by the server system or to provide services specific to the server system,

use the SITE FTP server subcommand in this format:

 SITE [parameters]

iSeries(TM) FTP server supports these parameters for the SITE subcommand:

LISTFMT 0
The server returns information for the LIST subcommand in LIST Information in iSeries format, which

was introduced in V3R1M0. The iSeries client supports both the iSeries format and the UNIX-style

format

LISTFMT 1
The server returns information for the LIST subcommand in LIST information in UNIX-style format.

The name of the file is the last item of each line returned. The iSeries client supports both the iSeries

format and the UNIX-style format

LISTFMT
Return a message that indicates the current FTP server LISTFMT setting.

48 iSeries: FTP

rzaiqfdrt.htm
rzaiqrzaiqfdrtu.htm

Notes: If you want to change the LISTFMT default on the server,

then use the LISTFMT option of the CHGFTPA command.

You can also use iSeries Navigator to set this FTP server

property:

1. In iSeries Navigator, expand your iSeries server —>

Network —> Servers —> TCP/IP.

2. In the right pane, right-click FTP and select

Properties.

3. Click the Initial Formats tab.

4. Under the File List heading, enable iSeries or UNIX

as the LISTFMT default on the server.

5. Click OK to accept the changes.

NAMEFMT 0
Use the LIBRARY/FILE.MEMBER name format. This name format is only for library file system

database files.

NAMEFMT 1
Use the path name format. This name format is for all file systems that are supported by FTP that

includes the library file system. Name format 1 must be used to work with all iSeries file systems

other than the library file system.

NAMEFMT
Return a message that contains the current server file name format.

 Note: You can configure the iSeries FTP server the default

NAMEFMT setting with the NAMEFMT option of the

CHGFTPA command.

CRTCCSID *CALC
New database files created during ASCII file transfers use the related default EBCDIC CCSID of the

ASCII file transfer CCSID.

CRTCCSID *USER
New database files created during ASCII file transfers use the current job CCSID. If this CCSID is

65535, the default CCSID is determined by the language id specifies the current job.

CRTCCSID *SYSVAL
New database files created during ASCII file transfers use the CCSID that was specified by the

QCCSID system value.

CRTCCSID [CCSID-number]
Specify the CCSID when creating database files on the client during ASCII file transfers. The server

validates this value.

CRTCCSID
Display a message that contains the current FTP client CRTCCSID setting.

NULLFLDS 0
The server does not allow transfer of database files that contain NULL fields. This is the default.

NULLFLDS 1
The server allows transfer of database files that contain NULL fields.

FTP 49

Note: Transfer of files that contain NULL fields requires both the

client and server to have this setting enabled. If the server

transfers a file that contains NULLfields to a non-iSeries

server, or if the transfer type results in codepage

conversion of the data, then results are unpredictable.

NULLFLDS
Return a message that indicates the current FTP server NULLFLDS setting.

TRIM 0
Set Trim option to OFF. The server sends trailing blanks of database records.

TRIM 1
Set Trim option to ON. The server does not send trailing blanks of database records when

transferring database files that use file structure and stream mode. This is the default.

TRIM 2
The server does not send trailing blanks of database records for all transfers, including record

structure and block mode.

TRIM
Returns a message that indicates the current setting of the FTP server Trim option.

 Notes: 1. Prior to the availability of this subcommand, trailing

blanks of QSYS.LIB file system records were always

removed before transferring the file to the server

system.

2. TRIM settings do not apply to TYPE I (binary) file

transfers. Blanks are never trimmed for TYPE I file

transfers, regardless of the TRIM setting.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

STOR (Store File)

FTP Server Subcommand

To save data on the server system and overlay an existing file, use the STOR FTP server subcommand in

this format:

 STOR remotefile

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

STOU (Store Unique)

FTP Server Subcommand

To save data on the server system and not overlay an existing file, use the STOU FTP server

subcommand:

50 iSeries: FTP

STOU remotefile

The server generates a unique file name. The name assigned to the file will appear in the reply that is

sent back to the client.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

STRU (Specify File Structure)

FTP Server Subcommand

To specify the structure of a file as a continuous sequence of data bytes, use the STRU FTP server

subcommand in this format:

 STRU [F | R]

F
A file structure. The file structure is a continuous sequence of data bytes.

R
A record structure. The file is a sequence of sequential records.

 Notes: 1. The file structure affects the transfer mode and the

interpretation and storage of a file.

2. If there is no parameter, the server returns a reply that

indicates the present specification for file structure.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

SYST (Identify the Name of the Operating System)

FTP Server Subcommand

To obtain the name of the operating system on the server system, use the SYST FTP server

subcommand:

 SYST

The returned information is system dependent.

iSeries(TM) server includes the TCP/IP version.

Here is an example server reply:

OS/400 is the remote operating system. The TCP/IP version is “V4R4M0”.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

FTP 51

TIME (Set Time-Out Values for FTP Server)

FTP Server Subcommand

After the FTP control connection is established between the FTP client and the FTP server, the FTP server

controls the time-out for this connection. This is the inactivity time-out value.

There is also a time-out value for the data connection, known as the transfer time-out.

The format of the TIME FTP server subcommand is:

 TIME inactivity [transfer]

inactivity
The number of seconds the server waits before ending the connection with the client. Inactivity

time-out values can range from 1-9,999,999 seconds. The default inactivity time-out value is 300

seconds.

transfer
The file transfer time-out in seconds. This parameter is optional. If you do not specify this parameter,

then the server does not change the current value. Transfer time-out values can range from

1-9,999,999 seconds. The default transfer time-out value is 420 seconds.

For example, to set the inactivity time-out value of the FTP server to 1000 seconds, and keep the current

value of the transfer time-out, enter this:

QUOTE TIME 1000

The TIME subcommand is not a standard FTP subcommand. It is iSeries(TM) FTP server specific.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

TYPE (Specify Representation Type)

FTP Server Subcommand

To specify the file-transfer type or the representation in which the transfer is to take place, use the TYPE

FTP server subcommand in this format:

 TYPE [A

 | B [1 | 2 | 3 [A|R] | 4 [A|R] | 5 | 6 | 7]

 | C ccsid#

 | E

 | F [1]

 | I]

A
Specifies the transfer type as the default (ASCII) transfer type. The server does not associate any

vertical format control with the file. The server only supports the default format NON PRINT for

ASCII. The ASCII transfer type is for the transfer of text files, except when both systems use the

EBCDIC type.

 Note: The CCSID for TYPE A is the CCSID value of the FTP

server configuration attributes. You can change these

attributes with the CHGFTPA command.

52 iSeries: FTP

B
Shift JIS Kanji (CCSID 932)

B 1
Shift JIS Kanji (CCSID 932)

B 2
Extended UNIX Code Kanji (CCSID 5050)

B 3
JIS 1983 using ASCII shift-in escape sequence (CCSID 5054)

B 3 A
JIS 1983 using ASCII shift-in escape sequence (CCSID 5054)

B 3 R
JIS 1983 using JISROMAN shift-in escape sequence (CCSID 5052)

B 4
JIS 1978 using ASCII shift-in escape sequence (CCSID 5055)

B 4 A
JIS 1978 using ASCII shift-in escape sequence (CCSID 5055)

B 4 R
JIS 1978 using JISROMAN shift-in escape sequence (CCSID 5053)

B 5
Hangeul (CCSID 934)

B 6
Korean Standard Code KSC-5601, 1989 version (CCSID 949)

B 7
Traditional Chinese (5550) (CCSID 938)

C
Specifies the transfer type to any CCSID (coded character set identifier) that is installed on the

system. The CCSID number must follow C.

E
Specifies the transfer type as EBCDIC. The server does not associate any vertical format control with

the file. The server supports only the default format NON PRINT for EBCDIC. The EBCDIC transfer

type is for efficient transfer between systems that use EBCDIC for their internal character

representation.

F
IBM EBCDIC Kanji (CCSID 5035)

F 1
IBM EBCDIC Kanji (CCSID 5035)

I
Specifies the transfer type as image. With the image transfer type, data is a string of bits, packed

into 8-bit bytes. The image transfer type efficiently stores and retrieves files and transfers binary data

such as object code.

FTP 53

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

USER (Send a User Logon ID to the Server)

FTP Server Subcommand

 USER username

username
The user profile on an iSeries(TM) server.

 Note: If the USER subcommand is successful and the iSeries

server is configured for password security, then the server

sends a reply to the client requesting a password. The

client sends the password to the server with the server

subcommand PASS. Thes is no password prompt when

the server is running at security level 10.

Go To:

v “FTP server subcommands” on page 36

v “FTP server syntax conventions” on page 133

FTP client subcommands

File Transfer Protocol (FTP) subcommands instruct the FTP client to transfer files from one computer to

another. With FTP client subcommands, you can establish a connection with a remote FTP server,

navigate libraries and directories, create and delete files, and transfer files.

You can access descriptions about client subcommands and their syntax from the following topics.

iSeries(TM) FTP client supports these subcommands. This table identifies client subcommands, the

accepted abbreviations, and each subcommand’s function.

 Subcommand What It Does

? Describes How to Use FTP

“ACCT (Send Account Information)” on page 56 Sends a User’s Account Information to a Remote System

“APPEND (Append a Local File Member to a Remote

File)” on page 57

Adds a Local File Member to File on a Remote System

“ASCII (Change File Type to ASCII)” on page 57 Sets the File Transfer Type to ASCII Format

“BINARY (Set Transfer Type to Image)” on page 57 Sets the File Transfer Type to BINARY format

“CD (Change Working Directory or Library)” on page 58 Changes the Working Directory on Remote System

CDUP Changes to the Parent Directory on Remote System

“CLOSE (End an FTP Session with the Remote System)”

on page 58

Ends a Session with the Remote System

“DEBUG (Create Client Trace and Control Display of

Server Subcommands Sent to Remote System)” on page

59

Turns Debugging On or Off

“DEBUG (Change Client Time-Out Limit Values)” on page

59 href=″rzaiqdebugt.htm″>DEBUG

Changes Client Time-out Values

54 iSeries: FTP

Subcommand What It Does

“DELETE (Delete a File on a Remote System)” on page

60

Deletes a File on the Remote System

“DIR (List Directory Entries, Libraries, or Files)” on page

60

Displays Directories and Files on the Remote System

“EBCDIC (Change File Type to EBCDIC)” on page 61 Sets the File Transfer Type to EBCDIC Format

“GET (Copy a File from a Remote System to the Local

System)” on page 61

Copies a File from the Remote to a Local System

“HELP (Getting Help for FTP Subcommands)” on page 62 Gets Information about FTP Client Subcommands

“LCD (Change Working Library or Directory on Local

System)” on page 63

Changes the Working Directory on Local System

“LOCSITE (Specify Local Site Information)” on page 64 Specifies Local Site Information

“LOCSTAT (Display Local Status Information)” on page 65 Displays Local Status Information

LPWD Displays the Working Directory on Local System

“LS (List Remote File Names)” on page 65 Lists the Names of Files in a File Set on Remote System

“LTYPE (Local Type)” on page 66 Specifies the File Transfer Type on the Local System

“MDELETE (Delete Multiple Files on a Remote System)”

on page 66

Deletes Multiple Files on the Server System

“MGET (Copy Multiple Files from a Remote System to the

Local System)” on page 67

Copies File or Files from the Remote System

“MKDIR (Make Directory)” on page 68 Creates a Directory or Subdirectory

“MODE (Specify Transmission Mode of Data)” on page 68 Specifies a Data Format for File Transfer

“MPUT (Send Multiple File Members from the Local

System to a Remote System)” on page 68

Sends Local File or Files to the Remote System

“NAMEFMT (Select File Naming Format)” on page 69 Specifies a File Naming Format to Use

NOOP Checks for a Response

“NULLFLDS (Allow Transfer of Files with NULL Fields)”

on page 70

Allows for NULL Fields

“OPEN (Connect to FTP Server on a Remote System)”

on page 71

Connects to an FTP Server

“PASS (Send Your Password)” on page 71 Sends a User’s Password

“PUT (Copy a File Member from the Local System to a

File on a Remote System)” on page 71

Copies a Local File Member to Remote System

“PWD (Display Current Directory, Folder, or Library)” on

page 72

Displays the Current Directory of Remote System

QUIT Ends an FTP Session

“QUOTE (Send a Subcommand to an FTP Server)” on

page 72

Sends a Subcommand to an FTP Server

“REINITIALIZE (Reinitialize Session between Systems)”

on page 73

Re-starts a Session on a Remote System

“RENAME (Rename a File on a Remote System)” on

page 74

Renames a File on a Remote System

“RESET (Reset)” on page 74 Clears the Server Reply Queue

“RMDIR (Remove Directory)” on page 74 Removes a Directory on the Remote System

“SECData (Setting data security protection)” on page 75 Specifies the protection level used for the data

connection when there is a secure connection established

with an FTP server.

FTP 55

Subcommand What It Does

“SECOpen (Setting data security protection)” on page 75 Opens a secure control connection to an FTP server

using the specified security protocol.

“SENDPASV (Specify Whether to send a PASV

Subcommand)” on page 76

Specifies Whether a PASV Subcommand is Sent

“SENDPORT (Specify Whether to Sends a PORT

Subcommand)” on page 77

Specifies Whether a PORT Subcommand is Sent

“SENDSITE (Specify Whether to Send a SITE

Subcommand)” on page 78

Specifies Whether a SITE Subcommand is Sent

“SITE (Send Information Used by a Remote System)” on

page 78

Sends Information for Use by a Remote System

“STATUS (Retrieve Status Information from a Remote

System)” on page 79

Gets Status Information from a Remote System

“STRUCT (Specify File Structure)” on page 79 Specifies the File Structure of Data Being Sent

“SUNIQUE (Control Overwriting of Files)” on page 80 Controls File Replacement

“SYSCMD (Pass an iSeries(TM) CL Command to Your

Local iSeries)” on page 80

Runs a CL Command on a Local System Without Quitting

FTP

SYSTEM Displays the OS on the Remote System

“TYPE (Specify File Transfer Type)” on page 81 Specifies the File Transfer Type

“USER (Send Your User ID to the Remote System)” on

page 83

Sends a User ID to a Remote System

“VERBOSE (Control of Text Display of Error Reply

Messages)” on page 83

Controls the Display of FTP Server Replies

Related topics:

v “FTP client syntax conventions” on page 134

v “FTP server subcommands” on page 36

v “FTP server reply status messages” on page 132: Access common reply codes and what they indicate.

ACCT (Send Account Information)

FTP Client Subcommand

Some systems require account information to enable certain system functions. The remote system

prompts you for such information. To send account information, use the Account (ACCT) FTP client

subcommand:

 ACCT account-information

account-information
A string that identifies the user’s account. Account information can take the form of a password that

the host system uses to grant privileges. This password is not your user password, but rather it is a

password on the remote system.

For example, TCP/IP on the IBM(R) Virtual Machine (VM) Operating System may require a password for

read and write access to minidisks. Use the ACCT subcommand to supply a password for the minidisk of

the current directory. If the remote system is an iSeries(TM), the ACCT subcommand performs no

operation.

Go To:

v “FTP client subcommands” on page 54

56 iSeries: FTP

v “FTP client syntax conventions” on page 134

APPEND (Append a Local File Member to a Remote File)

FTP Client Subcommand

To add a local file member, document, or other file system file to a remote file, use the APPEND FTP

client subcommand in this format:

 APpend localfile [remotefile]

localfile
The name of the local file member, document, or other iSeries(TM) file. The name of the hierarchical

file system (HFS) file added to a directory on the remote system. For information on file naming, see

“NAMEFMT (Select File Naming Format)” on page 69.

remotefile
The file on the remote system. If you do not enter a remote file, the FTP client creates a default

name. For information on how FTP creates default names, see “File names for client transfer

subcommands” on page 135.

If the remote file does not exist on the server, the FTP server creates it.

To add a file on the remote system, you must have write privileges to it. You may have to supply the

appropriate account information by using the ACCT subcommand (see “ACCT (Send Account Information)”

on page 56).

The default file copy mode is stream. You may need to change this by using the MODE subcommand. In

the case of fixed-record format in the remote file, the server preserves the file format and record length of

the remote file. Records from the local file member shorten or include blanks when necessary.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

ASCII (Change File Type to ASCII)

FTP Client Subcommand

 AScii

There are two basic file types you can use when transferring files with FTP: ASCII and “BINARY (Set

Transfer Type to Image).” ASCII files are plain text files. They may have extensions like .txt or have no

extension at all. BINARY files are programs or other non-text files saved in the file format of the

application that created them or archived or compressed file formats.

Use the ASCII transfer type when transferring text files to or from an ASCII system that does not support

EBCDIC representation. ASCII is the default transfer type. The server does not associate a vertical format

control to the file. ASCII only supports the default format NON PRINT.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

BINARY (Set Transfer Type to Image)

FTP Client Subcommand

FTP 57

Binary

There are two basic file types you can use when transferring files with FTP: “ASCII (Change File Type to

ASCII)” on page 57 and BINARY. ASCII files are plain text files. They may have extensions like .txt or

have no extension at all. BINARY files are programs or other non-text files saved in the file format of the

application that created them or archived or compressed file formats.

If you are transferring binary data to an existing iSeries(TM) file, the record length is the record length of

the existing iSeries file. For example the existing file size should accommodate the new data. If the file

does not exist on an iSeries server, FTP chooses a record length for you.

Certain files, such as save files, require binary image transfer. If TYPE is not binary when attempting to

transfer such files, you receive a message that tells you to use binary.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

CD (Change Working Directory or Library)

FTP Client Subcommand

Use the Change Directory (CD) FTP client subcommand to change the working directory, library, or file

group on the remote system:

 CD directory

directory
The name of a file directory, library, or other system-dependent file-group designator on the remote

system.

If the remote system is an iSeries(TM), this subcommand changes the current library or directory. To

find out what directories are on the remote system, use the Directory (DIR) subcommand to get a

listing.

Use the DIR subcommand with caution. See “DIR (List Directory Entries, Libraries, or Files)” on page 60

for further details and advice.

 Note: When using the subcommand CD (or LCD) to change

from one iSeries file system to another, you must specify

the root directory of the file system that contains the new

current directory.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

CLOSE (End an FTP Session with the Remote System)

FTP Client Subcommand

To end your session with the remote system and keep FTP active on your local iSeries(TM), use the

CLOSE FTP client subcommand:

 CLose

58 iSeries: FTP

The CLOSE subcommand allows you to remain in the FTP environment to open another FTP session on

another system. Use the OPEN subcommand to establish a new connection with the same remote system

or another remote system. Use the QUIT subcommand to end FTP service and return to the iSeries

environment from which FTP was started.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

DEBUG (Create Client Trace and Control Display of Server Subcommands Sent to

Remote System)

 Note: You should only use the FTP client trace to report

software problems to IBM. System performance may be

adversely affected by this function.

This capability is available in release V4R4 and above of

OS/400(R).

FTP Client Subcommand

To produce an FTP client trace or display, use the DEBUG FTP client subcommand. The DEBUG

subcommand toggles the debugging mode. If the client specifies an optional debug-value, it will use it to

set the debugging level. When debugging is on, the client displays with the string ’>>>’. You must set the

debug-value to 100 to produce an FTP client trace.

 DEBug [debug value]

debug value
If the debug-value is 0, debugging is off. If the debug-value is a positive integer, debugging is on. If

you don’t specify a value, the debug value toggles from zero to one or from a positive integer to

zero.

100
Initiate an FTP client trace. The client continues running the trace until the DEBUG is off or until the

server ends the FTP client. When the server ends the trace, there may be a significant delay while it

formats the trace data.

To initiate a trace immediately when the FTP client starts, you need to create the QTMFTPD100 data area

in the QTEMP library by using this command:

CRTDTAARA DTAARA(QTEMP/QTMFTPD100) TYPE(*LGL) AUT(*USE)

If the QTMFTPD100 data area exists, then it will set the debug value to 100 and start an FTP client trace.

The purpose of this capability is to enable the FTP client debug traces in those situations when an FTP

client trace cannot start with the DEBUG 100 subcommand.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

DEBUG (Change Client Time-Out Limit Values)

FTP Client Subcommand

FTP 59

To change the client time-out limits when the default time-out values are not long enough for a data

transfer to complete successfully, use the DEBUG subcommand. You should only need to change these

values in situations where network traffic or other conditions cause transfer times to become quite large.

To change the FTP client time-out values, use the DEBUG FTP client subcommand:

 DEBug T1 | T2 [value]

T1
Change or display the FTP client time-out limit for reading server replies. If the FTP client does not

receive an expected server reply within this time limit, the client will close the control connection to

the server. T2

Change or display the FTP client time-out limit for transferring data. If the FTP client does not receive

an expected data connection response within this time limit, the client will close the data connection

to the server.

value
The time-out limit in seconds. This value must be a positive number greater than zero. When you

omit this value, the client displays the current value of the time-out limit.

For example:

 DEBUG T1 900

This value sets the client time-out value for server replies to 900 seconds.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

DELETE (Delete a File on a Remote System)

FTP Client Subcommand

Use the DELETE subcommand to delete a file or database file member on a remote system. The DELETE

FTP client subcommand format is:

 DELete remotefile

remotefile
The file you want to delete on the remote system. For information on how to specify the file if the

remote system is an iSeries(TM) server, see “NAMEFMT (Select File Naming Format)” on page 69.

The remote system may prompt you for authorization to delete a file. Use the “ACCT (Send Account

Information)” on page 56 subcommand to respond to that request.

You may also want to refer to:

v “MDELETE (Delete Multiple Files on a Remote System)” on page 66

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

DIR (List Directory Entries, Libraries, or Files)

FTP Client Subcommand

The DIR FTP client subcommand displays libraries and their contents or the remote system’s list of

directories and directory entries. Use the Directory (DIR) subcommand in this format:

60 iSeries: FTP

DIr [name] [(Disk]

name
The name of the directory or library. The default is the entire current directory or library. To make a

library or directory current, use the Change Working Directory (CD) subcommand. How you specify a

set of remote files depends on the system. Most systems allow a generic asterisk, *. If the remote

system is an iSeries(TM), for example:
DIR MYLIB/MYFILE.* produces a list of all members of MYFILE in library MYLIB.

There are two possible file name formats you can use. The example shown here uses NAMEFMT 0.

For information about FTP file naming, see “NAMEFMT (Select File Naming Format)” on page 69.

(Disk
Stores the results of the DIR subcommand in the file *CURLIB/DIROUTPUT.DIROUTPUT, instead of

showing the results on the display.

If the remote system is an iSeries, the information includes:

v For database files, the *FILE objects, and members.

v For hierarchical file system (HFS) files:

– All document library services (QDLS) folders and their contents, which could be other folders or

documents.

– All optical volumes (QOPT) and their contents, which could be directories or files.

Use the DIR subcommand with caution. If you enter the DIR subcommand without any parameters, the

server produces a listing of all the current directory files. This may be a much longer list than you want.

To get a list of the file names in a directory, use the List (LS) subcommand (see “LS (List Remote File

Names)” on page 65).

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

EBCDIC (Change File Type to EBCDIC)

FTP Client Subcommand

 EBcdic

The EBCDIC transfer type is useful when transferring files to or from another EBCDIC system. This is due

to the fact that it avoids the need to convert between ASCII and EBCDIC on both systems.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

GET (Copy a File from a Remote System to the Local System)

FTP Client Subcommand

 Get remotefile [localfile]
[(Replace]

FTP 61

remotefile
The file that you want to retrieve from the remote system.

localfile
The local file member, document, or other file you want to create. If you do not specify a local file

name, the FTP client provides a default name. For information about the default names, see “File

names for client transfer subcommands” on page 135.

(Replace
Writes over the localfile if it already exists. The server will not overwrite the localfile unless you

specify (Replace.

The file system in which the file resides determines which file name format you use with the GET

subcommand.

v If the file does not reside in the library file system (QSYS.LIB), you must use the GET subcommand in

name format (NAMEFMT) 1:

GET /QDLS/QIWSOS2/PCSMENU.EXE

v If the file resides in the library file system, use the GET subcommand and the name format (NAMEFMT)

set to 0:

GET YOURLIB/YOURFILE.YOURMBR (REPLACE

Assuming the remote server is an iSeries(TM), this command gets the YOURMBR of YOURFILE in

YOURLIB and places it in YOURMBR of YOURFILE in your current directory on your local system. For

more information on defining the current directory, see “LCD (Change Working Library or Directory on

Local System)” on page 63.

 Note: If the remote file name requires apostrophes as part of the

file name, then enclose the file name within two more sets

of apostrophes. The following example gets ’MEMBER.ONE’

from the remote host. See “Enclose subcommand

parameters” on page 134 for more information.

GET LIBRARY/FILE.MEMBER ’MEMBER.ONE’

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

v “MGET (Copy Multiple Files from a Remote System to the Local System)” on page 67

v “PUT (Copy a File Member from the Local System to a File on a Remote System)” on page 71

v “MPUT (Send Multiple File Members from the Local System to a Remote System)” on page 68

HELP (Getting Help for FTP Subcommands)

The HELP subcommand provides information about the FTP subcommands that the local system and the

remote system uses.

Help for FTP Client Subcommands

To get information about FTP subcommands used by the local system, use the HELP subcommand in this

format:

 Help [* | ALL | subcommand]

* or ALL
Displays a list of the FTP client subcommands.

62 iSeries: FTP

subcommand
Provides detailed help for the specified client subcommand. For example, HELP GET tells you how to

transfer a file from a remote system to your local system. You may abbreviate the subcommand to a

meaningful prefix.

If you use the HELP subcommand without a parameter, you see a list of subcommands and a general

description of the help information available. Context-sensitive help is available by positioning the cursor

over a command on the help display and then pressing the Enter key.

To get the list of local subcommands on an iSeries(TM) server, enter:

HELP

Help information can be obtained with the ? subcommand.

Help for FTP Server Subcommands

To obtain help for FTP subcommands on the remote system, use the HELP subcommand in this format:

 Help SERVER [subcommand]

SERVER
Gives the help the remote system offers for FTP server subcommands. This is similar to using

QUOTE with the HELP parameter. QUOTE HELP lists the FTP subcommands supported by the

remote system.

subcommand
The name of the server subcommand that you want the information. For example, HELP SERVER STOR

will request the server to provide help on the STOR subcommand.

 Note: RHELP is a synonym for HELP SERVER. For example,

HELP SERVER SITE and RHELP SITE are equivalent.

For additional information, see “QUOTE (Send a Subcommand to an FTP Server)” on page 72.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

LCD (Change Working Library or Directory on Local System)

FTP Client Subcommand

 LCd pathname

pathname
The name of a library, folder, or directory on the local system.

 Notes: 1. The LCD subcommand does not change the current

library entry of the library list.

2. When using the subcommand CD (or LCD) to change

from one file system to another file system, you must

specify the “root” directory For example, /QDLS or

/QOPT.

FTP 63

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

LOCSITE (Specify Local Site Information)

FTP Client Subcommand

To specify information that is used by the FTP client to provide services specific to the client system, use

the LOCSITE FTP client subcommand:

 LOCSITE [parameters]

The iSeries(TM) FTP client supports these parameters and parameter options for the LOCSITE

subcommand:

CRTCCSID *CALC
New database files created during ASCII file transfers use the related default EBCDIC CCSID of the

ASCII file transfer CCSID. This is the default value.

CRTCCSID *USER
New database files created during ASCII file transfers use the current job CCSID. However, if this

CCSID is 65535, the default CCSID determined by the language id in the current job specification.

CRTCCSID *SYSVAL
New database files created during ASCII file transfers use the CCSID that the QCCSID system value

specifies.

CRTCCSID [CCSID-number]
Specify the CCSID you want to use when creating database files on the client during ASCII file

transfers. The server validates this value.

CRTCCSID
Display a message that contains the current FTP client CRTCCSID setting.

TRIM 0
Set Trim option to OFF. The server sends trailing blanks of database records.

TRIM 1
Set Trim option to ON. The server does not send trailing blanks of database records when

transferring database files that use file structure and stream mode. This is the default.

TRIM 2
Set Trim option so the server does not send trailing blanks of database records for all transfers,

including record structure and block mode.

TRIM
Display a message that contains the current setting of the FTP client TRIM option.

 Notes: 1. Prior to the availability of this subcommand, trailing

blanks of QSYS.LIB file system records were always

removed before transferring the file to the server

system.

2. TRIM settings do not apply to TYPE I (binary) file

transfers. Blanks are never trimmed for TYPE I file

transfers, regardless of the TRIM setting.

64 iSeries: FTP

DTAPROT C
Set the data protection variable to C (Clear). This variable is used to set the data protection level

when opening a secure control connection. For more details about setting data protection security,

refer to the following subcommands: “SECData (Setting data security protection)” on page 75 and

“SECOpen (Setting data security protection)” on page 75.

DTAPROT P
Set the data protection variable to P (Private). This variable is used to set the data protection level

when opening a secure control connection.

DTAPROT
Display a message that contains the current value of the the data protection variable.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

LOCSTAT (Display Local Status Information)

FTP Client Subcommand

 LOCSTat

Displays Local status information, including:

v The current setting of the SENDSITE subcommand

v The current setting of the SENDPORT subcommand

v Remote system name, port number, and logon status

v Data type and transfer mode

v Name format value for both the client and the server

v Setting for the VERBOSE mode

v Setting for the DEBUG mode

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

LS (List Remote File Names)

FTP Client Subcommand

 LS [name] [(Disk]

name
The remote directory, file, or library that you want to list. If the remote system is an iSeries(TM) server, the

server lists the file names and its members. The default is to list the entire current directory, library, or

folder. To change the current directory, library, or folder, use the CD subcommand (see “CD (Change

Working Directory or Library)” on page 58). The remote file specification is system dependent.

(Disk
Stores the results of the LS subcommand in the file *CURLIB/LSOUTPUT.LSOUTPUT, instead of showing the

results on the display. Each time you specify the (Disk parameter with the same *CURLIB, the server

changes the contents of the LSOUTPUT.LSOUTPUT member file.

FTP 65

Note: If the FTP server returns a negative reply code (550), then

there will be no LSOUTPUT member. If the FTP server

returns a positive reply code (150) without any file names,

then an LSOUTPUT member with no records will result.

The LS subcommand lists the file names only. To get a list of complete directory entries with additional

information about the files see “DIR (List Directory Entries, Libraries, or Files)” on page 60.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

LTYPE (Local Type)

FTP Client Subcommand

To specify the file transfer type or the representation in which the transfer is to take place on the local

system, use the LTYPE FTP client subcommand in this format:

 LType C ccsid#

C
The CCSID type. Code this value as C.

ccsid#
The CCSID value. Code this value as a CCSID number 1-65533.

 Note: The LTYPE subcommand is similar to the TYPE

subcommand (see “TYPE (Specify File Transfer Type)” on

page 81). The LTYPE subcommand changes only the

representation type on the client side. The TYPE

subcommand changes the representation type on both the

client and the server.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

MDELETE (Delete Multiple Files on a Remote System)

FTP Client Subcommand

 MDelete {remotefile [remotefile...]}

remotefile
The file or files on the server system you want to delete.

 Note: When the remotefile is an iSeries(TM) QSYS.LIB file, then

the server deletes all members of the iSeries physical file.

The file itself remains.

This is a library file system example in NAMEFMT 0:

 MDELETE MYLIB/FILE1.MBRA YOURLIB/FILE2.MBRB

66 iSeries: FTP

This deletes member MBRA in file FILE1 in library MYLIB and member MBRB in file FILE2 in library

YOURLIB on a remote iSeries server. The same example in NAMEFMT 1:

 MDELETE /QSYS.LIB/MYLIB.LIB/FILE1.FILE/MBRA.MBR

 /QSYS.LIB/YOURLIB.LIB/FILE2.FILE./MBRB.MBR

This is a document library system example in NAMEFMT 1:

 MDELETE /QDLS/QIWSOS2/PCSMENU.EXE /QDLS/PCSDIR/PCSFILE.EXE

This deletes document PCSMENU.EXE in folder QIWSOS2 in the document library services library, and

also deletes PCSFILE.EXE in folder PCSDIR in the QDLS library on an iSeries.

You can use an asterisk (*) to delete the files generically. For example with NAMEFMT 0, if the remote

system is an iSeries, type:

 MDELETE MYLIB/MYFILE.*

This example would delete all members of file MYFILE in library MYLIB. Use of the asterisk is only valid at

the end of a character string.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

MGET (Copy Multiple Files from a Remote System to the Local System)

FTP Client Subcommand

How MGET transfers files:

To copy one or more remote files, use the MGET FTP client subcommand in this format. A separate GET

subcommand is executed for each remote file you want transferred. The server creates the name of the

corresponding local file automatically as determined by the Default Naming rules.

The MGET FTP client subcommand uses the following process to determine where to put files.

v The MGET subcommand always places files in the current library or directory.

v If the user has issued the LCD subcommand, the server uses this library or directory.

v If the user has not issued the LCD subcommand, the server sets the current directory as follows

– If the user’s job has a current library set, this library is the current directory for FTP.

– If the user’s job does not have a current library set, the server uses QGPL as the current directory.

 MGet {remotefile
[remotefile...]}[(Replace]

remotefile
The file or files you want to retrieve from the remote system.

(Replace
Overwrites an existing file on your local system. If the file already exists on your local system and

you do not use the Replace option, the existing file is not overwritten. The name of the local file

where the remotefile is copied is created automatically. See the GET subcommand description “GET

(Copy a File from a Remote System to the Local System)” on page 61 for additional information.

You can use an asterisk (*) to copy all members in a file to your current library or directory. For example, if

the remote system is an iSeries(TM),

FTP 67

v MGET MYLIB/MYFILE.* copies all the members of file MYFILE in library MYLIB on the remote system to

your current library on the local system.

v MGET /QSYS.LIB/MYLIB.LIB/MYFILE.FILE/*.MBR would be the NAMEFMT 1 version of this command.

v MGET /QOPT/PICTURES/IMAGES/.* copies all the files of directory IMAGES from optical volume

PICTURES to your current library (or directory) on the local system.

v MGET TESTFILE.A* copies all members that start with the letter A in file TESTFILE.

v MGET /QDLS/QISSOS2/A* copies all documents that start with the letter A in folder QISSOS2.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

MKDIR (Make Directory)

FTP Client Subcommand

 MKdir pathname

pathname
The name of a file directory, library, or other system-dependent file-group designator on the remote

system.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

MODE (Specify Transmission Mode of Data)

FTP Client Subcommand

 MODE [B | S]

B
Specifies block mode. In this mode, the server transmits data as a series of data blocks, preceded by

one or more header bytes. If you are transferring data in block mode, the type must be EBCDIC.

S
Specifies stream mode. In this mode, the server transmits data as a stream of bytes. You can use

any representation type with stream mode.

 Notes: 1. Stream mode is the default transfer mode that is used

in FTP. Some systems do not support block mode.

2. If you omit the optional parameter, the client displays

the present MODE value.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

MPUT (Send Multiple File Members from the Local System to a Remote System)

FTP Client Subcommand

68 iSeries: FTP

To send one or more local files to the remote system, use the MPUT FTP client subcommand. The client

executes a separate PUT subcommand for each local file you want transferred. The Default Naming rules

create the name of the corresponding remote file.

 MPut {localfile [localfile...]}

localfile
Specify one or more local library file system file members or other FTP supported file system files

you want transferred to the remote system. The client automatically generates the name given to the

file on the remote system.

 Note: If the remote file already exists, the contents are replaced

by the contents of localfile unless Store Unique

(SUNIQUE) is on (see “SUNIQUE (Control Overwriting of

Files)” on page 80).

For information as to how to specify the file if the remote system is an iSeries(TM), see “NAMEFMT (Select

File Naming Format).” This example uses NAMEFMT 0:

 MPUT MYLIB/FILE1.MBR1 MYLIB/FILE1.MBR2

This sends members MBR1 and MBR2 of file FILE1 in library MYLIB to the remote system.

This example uses NAMEFMT 1:

 MPUT /QDLS/QIWSOS2/PCSMENU.EXE /QDLS/QIWSOS2/PCSMENU2.EXE

This sends document PCSMENU.EXE and document PCSMENU2.EXE from folder QIWSOS2 to the

remote system.

You can use an asterisk (*) to send all the members in a file. For example, MPUT MYLIB/MYFILE.* transfers

all the members of file MYFILE in library MYLIB. For additional information, see “MGET (Copy Multiple

Files from a Remote System to the Local System)” on page 67.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

v “PUT (Copy a File Member from the Local System to a File on a Remote System)” on page 71

NAMEFMT (Select File Naming Format)

FTP Client Subcommand

To select which file name format to use on the local system and the remote system (if it is an iSeries(TM)),

use the NAMEFMT FTP client subcommand:

 NAmefmt [0 | 1]

0
A name format only for library file system database files. The general format is:

[libname/]filename[.mbrname]

1
A name format for all file systems that FTP supports, including the library file system. You must set

the name format to ’1’ to work with all iSeries file systems.

FTP 69

Library file system files in this name format are:

[/QSYS.LIB/][libname.LIB/]filename.FILE[/mbrname.MBR]

For save files, you can also use the format:

/QSYS.LIB/libname.LIB/filename.SAVF

Files in the document library services file system are in this format:

[/QDLS/][{foldername[.ext]/}]filename[.ext]

For optical, the format is:

/QOPT/volname/dirname/filename.ext

 Notes: 1. You can set the name format to 0 only when the

working directory is a database library.

2. If you specify the NAMEFMT subcommand without a

parameter, the client displays the current name format.

You may also want to refer to:

v “File systems and naming conventions” on page 130

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

NULLFLDS (Allow Transfer of Files with NULL Fields)

FTP Client Subcommand

Use this command to select whether or not to allow transfer of a database files that contain NULL field

values on the local system, and the remote system if it is an iSeries(TM).

 NUllflds [0 | 1]

When you enter a parameter the valid values are:

0
Do not allow transfer of database files that contain NULL fields. This is the default.

1
Allow transfer of database files that contain NULL fields.

 Notes: 1. Transfer of files that contain NULL fields requires both

the client and server to have this setting enabled. The

target file must exist prior to the file transfer. Also, the

target file must have the same file definition as the

source file.

2. Results are not predictable if you transfer a file that

contains NULL fields a server that is not an iSeries, or

if the transfer type results in codepage conversion of

the data.

3. If you specify the NULLFLDS subcommand without a

parameter, the client displays the current setting.

Go To:

v “FTP client subcommands” on page 54

70 iSeries: FTP

v “FTP client syntax conventions” on page 134

OPEN (Connect to FTP Server on a Remote System)

FTP Client Subcommand

 Open systemname [portnumber]

systemname
The name or Internet address of the remote system.

portnumber
The port number to use for this session until the server closes the connection. This is optional. If you

do not specify a port number, the server chooses one.

Once you have opened a connection to a remote system, you cannot connect to another system until you

close the current session.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

PASS (Send Your Password)

FTP Client Subcommand

 PAss password

password
A string that specifies your password.

the OPEN and USER subcommands must precede this subcommand. For some systems, this completes

your identification for access control. This subcommand is not necessary when the server requests you to

type a password when connecting or logging on to the server.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

PUT (Copy a File Member from the Local System to a File on a Remote System)

FTP Client Subcommand

 PUt localfile [remotefile]

localfile
The name of a local library system file member, save file, document, or other file.

remotefile
The name of the delivered file on the remote system. If you do not specify the remote file name, the

FTP server provides a default name. For information about default names, see “File names for client

transfer subcommands” on page 135. If a remote file with the same name already exists, then the

server replaces the contents with the contents of the local file unless Store Unique (SUNIQUE) is on

(see “SUNIQUE (Control Overwriting of Files)” on page 80.

FTP 71

To send a file to the remote system, you must have a defined current working directory with write

privileges.

This example uses the PUT subcommand to transfer a file member:

 PUT MYLIB/MYFILE.MYMBR (NAMEFMT = 0)

This sends member MYMBR of file MYFILE in library MYLIB to the remote system.

This example sends the document PCSMENU.EXE of folder QIWSOS2 in the document library services

file system to the remote system.

 PUT /QDLS/QIWSOS2/PCSMENU.EXE (NAMEFMT = 1)

 Note: If the remote file name requires apostrophes as part of the

file name, then you must enclose the file name within two

more sets of apostrophes. The following example sends

’MEMBER.ONE’ as the file name to the remote host. See

“Enclose subcommand parameters” on page 134 for more

information.

 PUT LIBRARY/FILE.MEMBER ’MEMBER.ONE’

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

v “MPUT (Send Multiple File Members from the Local System to a Remote System)” on page 68

v “GET (Copy a File from a Remote System to the Local System)” on page 61

v “MGET (Copy Multiple Files from a Remote System to the Local System)” on page 67

PWD (Display Current Directory, Folder, or Library)

FTP Client Subcommand

To display the current directory or library of the remote system, use the PWD FTP client subcommand:

 PWd

If the remote server is an iSeries(TM), the server displays your current library or file system directory on the

remote system. Also, the server displays the working directory in quotation marks. To change the current

library or directory of the remote system, use the Change Working Directory (CD) subcommand.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

QUOTE (Send a Subcommand to an FTP Server)

FTP Client Subcommand

 QUOte string

string
The server subcommand you want sent to and interpreted by the remote FTP server. The FTP server

sends the string verbatim to the remote FTP server.

72 iSeries: FTP

Notes: 1. The client requires the QUOTE subcommand to run

the special iSeries(TM) FTP server subcommand

“RCMD (Send a CL Command to an FTP Server

System)” on page 46. For example, to write the server

job log to a spooled file, enter this:

 QUOTE RCMD DSPJOBLOG

You can use WRKSPLF to access the job log. Note

that you will need to specify the user profile of the

user who logged in to the FTP server if the WRKSPLF

is run from a different user profile.

2. iSeries FTP server limits the string to 1000 characters.

3. For the QUOTE subcommand, whatever you enter

passes on to the server. For example, if you enter:

QUOTE CWD ’SYS1’

The server receives

CWD ’SYS1’

You can get help information from the server by typing this:

QUOTE HELP

The server sends the HELP subcommand to the remote host, which returns a display of all subcommands

it supports. The information displayed varies depending on the type of remote host.

It should be noted that server subcommands entered with the QUOTE subcommand only affect the server,

but similar client subcommands may affect both the client and the server. For example, the REIN client

subcommand sends the server a REIN server subcommand plus reinitializes certain client state variables.

QUOTE REIN sends only REIN to the server, but does not change any client state variables.

 Note: Be careful when using the QUOTE subcommand to

directly enter server subcommands so that unintended

results do not occur. Typically, use the QUOTE

subcommand for special situations that cannot use other

client subcommands. An example of this is when one

wants to use one of the special iSeries server

subcommands like CRTL.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

REINITIALIZE (Reinitialize Session between Systems)

FTP Client Subcommand

 REInitialize

If the server supports the REINITIALIZE subcommand, the USER session with the server is ended. The

server is in the same state as when the connection was established, and the user needs to log on again to

continue.

Any file transfers already in progress can complete before the USER session ends.

FTP 73

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

RENAME (Rename a File on a Remote System)

FTP Client Subcommand

 REname originalname newname

originalname
The present name of the remote file.

newname
The new name of the remote file. If the file specified by newname already exists, the new file

replaces it.

This example renames the file SPORTSCAR.BMP in directory IMAGES on optical volume PICTURES to

CAR.BMP:

REN /QOPT/PICTURES/IMAGES/SPORTSCAR.BMP

 /QOPT/PICTURES/IMAGES/CAR.BMP

 Note: On an iSeries(TM) server, you cannot rename a file to a

different file system.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

RESET (Reset)

FTP Client Subcommand

To clear the server reply queue, use the RESET FTP client subcommand:

 REset

This subcommand resynchronizes the sequencing of the server subcommands and replies with the remote

FTP server. Resynchronization may be necessary following a violation of the FTP protocol by the remote

server.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

RMDIR (Remove Directory)

FTP Client Subcommand

 RMdir pathname

pathname
The name of a file directory, library, or other system-dependent file-group designator on the remote

system. For hierarchical file system (HFS) directories, you can only delete empty directories. The

server deletes Libraries unconditionally.

74 iSeries: FTP

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

SECData (Setting data security protection)

FTP Client Subcommand

To specify the protection level to be used for the data connection when there is a secure control

connection already established with the remote system, use the SECData subcommand as follows:

 SECData [C | P]

 Note: SData is a synonym for this subcommand.

C
Data channel protection level is set to ’clear’. This connection is not secure. This might be used for

pre-encrypted data or non-sensitive data.

P
The data channel protection level is set to ’private’. This connection is secure. A TLS negotiation

between the client and the server must take place before any data is transmitted over the

connection.

1. When no parameter is specified, SECData displays the present value used for setting data security

protection.

2. The data protection level is initially set to the value specified by the DTAPROT parameter of the

STRTCPFTP CL command when a secure control connection is established with an FTP server.

3. A secure control connection is required to use the SECData subcommand.

4. A PROT server subcommand is issued to the server each time the SECDATA subcommand

successfully sets the data protection level.

5. The SECData subcommand sends a PBSZ and a PROT subcommand to the server when setting the

data protection level. Also, the SECData subcommand sets a client variable for each successful PROT

subcommand. This variable represents the last data protection level (C or P) accepted by the server.

This variable is used to set the data protection level when the SECOpen subcommand opens a secure

control connection. This variable may be changed using the LOCSITE DTAPROT (See 65) option.

6. The parameters ’C’ and ’P’ for the SECData subcommand are the same as used by the PROT server

subcommand.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

SECOpen (Setting data security protection)

FTP Client Subcommand

The SECOpen FTP client subcommand opens a secure control connection to an FTP server using the

specified security option. The syntax of this subcommand is:

 SECOpen systemname [portnumber] [security_option]

 Note: SOpen is a synonym for SECOPEN.

FTP 75

systemname

Enter the name or Internet address of the remote system

portnumber

Enter the port number for this connection.

 Notes: v If this parameter is omitted and (SSL is specified, the

port number 21 will be used.

v If this parameter is omitted and (IMPLICIT is specified,

then port number 990 is used.

v If both the port number and the security_option are

omitted, then port number 21 and (SSL are assumed.

security_option
Specify the type of security to be used.

(SSL
Uses a secure SSL connection to the FTP server. The AUTH (Authorization) server

subcommand is used when making the connection.

(IMPLICIT
Uses an “implicit” SSL/TLS secure connection to the FTP server. An “implicit” SSL connection is

made without sending the AUTH, PBSZ, and PROT sever subcommands to the server. In this

case, the server must be configured to expect an SSL/TLS connection negotiation to occur for

the specified port number.

For the “implicit” SSL case, the server will act as if the client had sent these subcommands with

the parameters shown below:

v AUTH SSL

v PBSZ 0

v PROT P

 Note: If the security_options parameter is not specified, then

(SSL will be assumed. When the port number used is 990,

then (IMPLICIT is assumed.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

SENDPASV (Specify Whether to send a PASV Subcommand)

FTP Client Subcommand

To specify whether or not to send a PASV subcommand to the FTP server when doing a data transfer or

issuing the DIR and LS subcommands, enter the SENDPASV FTP client subcommand:

 SENDPAsv [0 | 1]

If there is no parameter SENDPASV works like a toggle switch. The SENDPASV value toggles from 1

(ON) to 0 (OFF) or from 0 to 1.

When there is a parameter, the valid values are:

76 iSeries: FTP

0
Do not send a PASV subcommand.

1
Send a PASV subcommand. This is the default.

iSeries(TM) default (on) is to send the PASV subcommand. When SENDPASV is off, then the server does

not send the PASV subcommand.

 Notes: 1. This subcommand supports RFC 1579,

“Firewall-Friendly FTP.” Use of the PASV subcommand

to establish a data connection is a better method

when a data transfer must go through a firewall. In

some scenarios, a data transfer through a firewall may

not be possible without use of PASV.

2. Some FTP servers may not support the PASV

subcommand. When this is the situation and

SENDPASV is ON, then the FTP client will display a

message that indicates that the server does not

support PASV. The system will attempt to establish the

data connection without sending the PASV

subcommand.

3. When SENDPASV is OFF or disabled, then the server

sends the PORT subcommand when SENDPORT is

ON. See “SENDPORT (Specify Whether to Sends a

PORT Subcommand)”

4. FTP servers that do not support PASV are not

compliant with RFC 1123.

 Restriction

When connected to an FTP server through a SOCKS server, the SENDPASV subcommand may only be used before

you issue any data transfer subcommand list directory subcommand. If you use SENDPASV after one of these

subcommands, then the client will not be able to establish a data connection to the FTP server.

Once the client has issued a data transfer or list directory subcommand, then close the connection to the FTP server

through a SOCKS server before you issue SENDPASV again.

You may use the SENDPASV subcommand when the FTP client is disconnected from an FTP server.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

SENDPORT (Specify Whether to Sends a PORT Subcommand)

FTP Client Subcommand

To specify whether or not to send a PORT subcommand to the FTP server when doing a data transfer or

when issuing the DIR and LS subcommands. Enter the SENDPORT FTP client subcommand:

 SENDPOrt [0 | 1]

If there is no parameter SENDPORT works like a toggle switch. The SENDPORT value changes from 1

(ON) to 0 (OFF) or from 0 to 1.

When there is a parameter, the valid values are:

FTP 77

0
Do not send a PORT subcommand.

1
Send a PORT subcommand. This is the default.

 Notes: 1. Use SENDPORT only when you cannot establish a

connection to the server without it. The indiscriminate

use of SENDPORT may result in errors.

2. You may find it useful to not send the PORT

subcommand to those systems that ignore PORT

subcommands because they indicate that they have

accepted the command.

3. The server does not send the PORT subcommand

when the SENDPASV option is ON. See “SENDPASV

(Specify Whether to send a PASV Subcommand)” on

page 76.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

SENDSITE (Specify Whether to Send a SITE Subcommand)

FTP Client Subcommand

To specify whether or not a SITE subcommand with record format information is automatically sent when

doing a PUT or an MPUT operation, enter the SENDSITE FTP client subcommand in this format:

 SENDSite [0 | 1]

If there is no parameter, SENDSITE works like a toggle switch. The SENDSITE value changes from 0

(OFF) to 1 (ON) or from 1 to 0.

When there is a parameter, the valid values are:

0
Do not send a SITE subcommand. This is the default.

1
Send a SITE subcommand (containing record format information) prior to sending PUT and MPUT

subcommands. Use this setting when transferring files to an IBM(R) Virtual Machine server that uses

the record format information that sends with the SITE subcommand.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

SITE (Send Information Used by a Remote System)

FTP Client Subcommand

To send information that is used by the remote system to provide services specific to the remote system,

use the SITE FTP client subcommand in this format:

 SIte [parameters]

78 iSeries: FTP

parameters
Dependent on the remote system.

To find the nature of these parameters and their syntax specifications, issue the HELP SERVER SITE

subcommand. Some FTP servers do not support the SITE subcommand.

 Note: The SITE subcommand is used by the PUT and MPUT

subcommands to indicate the format and length of the

records. By default, the PUT subcommand sends a SITE

subcommand automatically. The NAMEFMT subcommand

uses the SITE subcommand to indicate to the server

whether names are in NAMEFMT 0 or NAMEFMT 1.

For more information, see “SENDSITE (Specify Whether to Send a SITE Subcommand)” on page 78.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

STATUS (Retrieve Status Information from a Remote System)

FTP Client Subcommand

 STAtus [name]

name
The name of the remote directory or file for which you request the status information. It is not a

required parameter.

 Note: The iSeries(TM) FTP server application does not support

this name parameter.

If there is no parameter, the server returns general status information about the FTP server process. This

includes current values of all transfer parameters and the status of connections. The status information

that is returned depends on the specific server implementation.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

STRUCT (Specify File Structure)

FTP Client Subcommand

To specify the structure of the data sent for a file, use the STRUCT FTP client subcommand in this format:

 STRuct [F | R]

F A file structure. The structure of a file is a continuous sequence of data bytes.

R A record structure. The file transfers as a sequence of sequential records.

The structure of a file affects the transfer mode and the interpretation and storage of a file.

FTP 79

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

SUNIQUE (Control Overwriting of Files)

FTP Client Subcommand

To control whether a file is overwritten when doing a PUT or MPUT subcommand, enter the SUNIQUE

FTP client subcommand:

 SUnique [0 | 1]

If there is no parameter, SUNIQUE acts like a toggle switch. The SUNIQUE value changes from 0 (OFF)

to 1 (ON) or from 1 to 0.

When there is a parameter, the valid values are:

0
Overwrite the file if it exists. This is the default.

1
Create a new file with a unique name on the remote system instead of overwriting an existing file.

The FTP server on the remote system sends the name of the created file back to the user.

 Note: If the remote system is an iSeries(TM), the server forms

File.Mbr names by adding numbers to the end of the of

the localfile that you specified in the PUT or MPUT

subcommand. Thus, if the name NEWFILE.NEWMBR

already exists on the remote system, the remote iSeries

server creates NEWFILE.NEWMBR1 and writes the data

to it.

File names for other file systems, like HFS, work in a similar way. If the name already exists, a new file is

created that consists of the specified file name and a number suffix. Thus, if the name xfsname already

exists on the remote system, the remote iSeries creates xfsname1.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

SYSCMD (Pass an iSeries(TM) CL Command to Your Local iSeries)

FTP Client Subcommand

To run a control language (CL) command on your local iSeries without leaving the FTP environment, use

the SYSCMD FTP client subcommand in this format:

 SYSCmd commandline

commandline
An iSeries CL command. You can precede the command name with a ? to get the prompt for the CL

command. For example, if you enter:

 SYSCMD ? SNDBRKMSG

you get the display for the Send Break Message (SNDBRKMSG) command.

80 iSeries: FTP

If you want to see low level messages that result from your CL command, or if you want to enter multiple

CL commands before returning to the FTP environment, use the iSeries CALL QCMD command.

For example, to get to an iSeries Command Entry display, enter this:

SYSCMD CALL QCMD

From the Command Entry display you can then call your application programs or enter CL commands. At

the completion of your application program or the CL command, you return to the Command Entry display.

From there you can display messages, start additional work on the system, or press F3 (Exit) or F12

(Cancel) to return to FTP.

You can enter iSeries CL commands when you press F21 (CL command line) from the main FTP display.

The server does not allow the F21 key when an exit program it is an addition to the FTP Client Request

Validation exit point.

 Notes: 1. Most server systems have a time-out period that ends

the session if no activity occurs within a specific time

period. If the command runs for longer than the

time-out period, the server ends the connection with

the client.

2. The iSeries server supports the exclamation mark (!)

as a synonym for the SYSCMD subcommand.

3. The SYSCMD subcommand passes to the iSeries as

a CL command exactly what the user enters.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

TYPE (Specify File Transfer Type)

FTP Client Subcommand

To specify the file-transfer type, or the representation in which the transfer is to take place, use the TYPE

FTP client subcommand in this format:

TYpe [A

 | B [1 | 2 | 3 [A|R] | 4 [A|R] | 5 | 6 | 7]

 | C ccsid#

 | E

 | F [1]

 | I]

A
Specifies the transfer type as the default (ASCII) transfer type. This has the same effect as the ASCII

subcommand. The server does not associate any vertical format control with the file. It only supports

the default format NON PRINT for ASCII. Use the ASCII transfer type or the transfer of text files,

except when both systems use the EBCDIC type.

The default CCSID for TYPE A (ASCII) is the CCSID that is specified on the CCSID parameter of the

STRTCPFTP command or FTP subcommand.

B
Shift JIS Kanji (CCSID 932)

FTP 81

B 1
Shift JIS Kanji (CCSID 932)

B 2
Extended UNIX Code Kanji (CCSID 5050)

B 3
JIS 1983 using ASCII shift-in escape sequence (CCSID 5054)

B 3 A
JIS 1983 using ASCII shift-in escape sequence (CCSID 5054)

B 3 R
JIS 1983 using JISROMAN shift-in escape sequence (CCSID 5052)

B 4
JIS 1978 using ASCII shift-in escape sequence (CCSID 5055)

B 4 A
JIS 1978 using ASCII shift-in escape sequence (CCSID 5055)

B 4 R
JIS 1978 using JISROMAN shift-in escape sequence (CCSID 5053)

B 5
Hangeul (CCSID 934)

B 6
Korean Standard Code KSC-5601, 1989 version (CCSID 949)

B 7
Traditional Chinese (5550) (CCSID 938)

C ccsid#
Specifies the transfer type to any CCSID (coded character set identifier) that is installed on the

system. The CCSID number must follow C.

E
Specifies the transfer type as EBCDIC. This has the same effect as the EBCDIC subcommand. The

server does not associate any vertical format control with the file. It only supports the default format

NON PRINT for EBCDIC. Use the EBCDIC transfer type for the efficient transfer between systems

that use EBCDIC as their internal character representation.

F
IBM EBCDIC Kanji (CCSID 5035)

F 1
IBM EBCDIC Kanji (CCSID 5035)

I
Specifies the transfer type as image. This has the same effect as the BINARY subcommand. With

the image transfer type, data is a string of bits, packed into 8-bit bytes. The image transfer type is an

efficient at storing and retrieving files and for transferring binary data such as object code. Data is

transferred as is; there is no conversion.

If there are no parameters, the server displays the present setting for the TYPE subcommand.

82 iSeries: FTP

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

USER (Send Your User ID to the Remote System)

FTP Client Subcommand

 User userid [password]

userid
Your logon name on the remote system.

password
Your password on the remote system. Specifying your password is optional. If you do not supply your

password when calling the USER subcommand, you receive a prompt to do so if the remote system

requires a logon password.

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

VERBOSE (Control of Text Display of Error Reply Messages)

FTP Client Subcommand

To control the display of FTP server replies, use the VERBOSE FTP client subcommand. The VERBOSE

subcommand toggles the verbose switch on and off. When verbose is on, all server replies, including their

reply codes, are displayed. When set to off, certain server replies and reply codes are discarded and not

displayed.

 Verbose

Go To:

v “FTP client subcommands” on page 54

v “FTP client syntax conventions” on page 134

FTP exit programs

The FTP client and the FTP server communicate with each exit program through a specific exit point.

Parameters are passed between the server and the exit program. The format of the exchanged information

is specified by an exit point format.

FTP uses the following exit points. Refer to these topics for more information, including parameter

descriptions and code examples:

v “Request validation exit point: client and server” on page 84

v “Server logon exit point” on page 95

To allow the exit programs to work properly, you must “Install and register exit programs” on page 12. If

your programs are no longer needed, you must properly “Remove exit programs” on page 122 to prevent

their future functioning.

TCP/IP exit points and exit point formats
The following table provides information about exit points for various TCP/IP applications and their related

exit point formats.

FTP 83

TCP/IP Exit Points Application

“VLRQ0100

exit point

format” on

page 92

“TCPL0100

exit point

format” on

page 109

“TCPL0200

exit point

format” on

page 113

“TCPL0300

exit point

format” on

page 118

“Request validation exit point: client

and server”

FTP X

“Request validation exit point: client

and server”

FTP X

“Server logon exit point” on page

951

FTP X X X2

QIBM_QTMX_SERVER_REQ REXEC X

QIBM_QTMX_SVR_LOGON1 REXEC X X2

QIBM_QTOD_SERVER_REQ TFTP X

1 -An exit point may have more than one format, but an exit program can only be registered for one

of the exit point formats. Examine each of these formats, then choose the one most appropriate for

your system.

2 - This format is available starting with V5R1.

Request validation exit point: client and server

The Request Validation exit points can be used to restrict operations which can be performed by FTP

users. Request validation exit points are provided by both the FTP client and server; to restrict both FTP

client and FTP server access, exit programs must be added to both exit points.

 Note: Since both the FTP client and server exit points share the

same exit point format, you can write a single program to

handle both.

If you implement anonymous FTP, write your FTP Server Request Validation exit program to restrict

anonymous FTP users to retrieve subcommands only, and never allow anonymous users to execute CL

commands.

What your program should include:

v Exception handling

v Debugging

v Logging

Allowed and rejected commands
The FTP request validation exit program gives you control over whether to accept or reject an operation.

Decisions made by exit programs are in addition to any validation that is performed by the FTP client or

FTP server application. The FTP client or server application calls the exit program registered for that

application each time it processes one of these requests:

1. Directory/library creation

2. Directory/library deletion

3. Setting current directory

4. Listing file names

5. File deletion

84 iSeries: FTP

6. Sending a file

7. Receiving a file

8. Renaming a file

9. Execute a CL command

You may want to set value -1 of parameter 8 (Allow operation) in the “VLRQ0100 exit point format” on

page 92 to always and unconditionally reject a command.

Is there an exit program time-out feature?
There is no time-out for FTP exit programs. If the exit program has an error or exception that it cannot

handle, the FTP server will abort the session.

Example programs
Example programs are available to help you set up anonymous FTP on your server. These examples are

for illustration purposes. They do not contain enough features to run on a production machine as is. You

can use these samples as a starting point to build your own programs. By copying portions of the code

from the samples, you can add them to programs that you write yourself. It is recommended that you run

the sample programs on a system other than your production system.

“Example: FTP Client or Server Request Validation exit program in CL code”
“Example: FTP Server Request Validation exit program in ILE RPG code” on page 87

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you “AS IS” without any warranties of any kind. The implied

warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

Example: FTP Client or Server Request Validation exit program in CL code: This is an example of a

simple FTP Request Validation exit program. It is written in iSeries(TM) Command Language (CL). This

code is not complete, but provides a starting point to help you create your own program for the client or

server exit point.

Note: Read the “Code disclaimer information” on page 147 for important legal information.

(Pre formatted text in the following example will flow outside the frame.)

/**/

/* */

/* Sample FTP server request validation exit program for anonymous FTP. */

/* Note: This program is a sample only and has NOT undergone any formal */

/* review or testing. */

/* */

/* Additional notes: */

/* 1. When the application ID is 1 (FTP server) AND the operation ID is */

/* 0 (session initialization), the job is running under the QTCP */

/* user profile when the exit program is called. In ALL other cases, */

/* the job is running under the user’s profile. */

/* 2. It is highly recommended that the exit program be created in a library */

/* with *PUBLIC authority set to *EXCLUDE, and the exit program itself */

/* be given a *PUBLIC authority of *EXCLUDE. The FTP server adopts */

FTP 85

/* authority necessary to call the exit program. */

/* 3. It is possible to use the same exit program for both the FTP client */

/* and server request validation exit points. However, this program */

/* does not take the client case into account. */

/* */

/**/

 TSTREQCL: PGM PARM(&APPIDIN &OPIDIN &USRPRF &IPADDRIN +

 &IPLENIN &OPINFOIN &OPLENIN &ALLOWOP)

/* Declare input parameters */

 DCL VAR(&APPIDIN) TYPE(*CHAR) LEN(4) /* Application ID */

 DCL VAR(&OPIDIN) TYPE(*CHAR) LEN(4) /* Operation ID */

 DCL VAR(&USRPRF) TYPE(*CHAR) LEN(10) /* User profile */

 DCL VAR(&IPADDRIN) TYPE(*CHAR) /* Remote IP address */

 DCL VAR(&IPLENIN) TYPE(*CHAR) LEN(4) /* Length of IP address */

 DCL VAR(&OPLENIN) TYPE(*CHAR) LEN(4) /* Length of operation-specific info. */

 DCL VAR(&OPINFOIN) TYPE(*CHAR) +

 LEN(9999) /* Operation-specific information */

 DCL VAR(&ALLOWOP) TYPE(*CHAR) LEN(4) /* allow (output) */

/* Declare local copies of parameters (in format usable by CL) */

 DCL VAR(&APPID) TYPE(*DEC) LEN(1 0)

 DCL VAR(&OPID) TYPE(*DEC) LEN(1 0)

 DCL VAR(&IPLEN) TYPE(*DEC) LEN(5 0)

 DCL VAR(&IPADDR) TYPE(*CHAR)

 DCL VAR(&OPLEN) TYPE(*DEC) LEN(5 0)

 DCL VAR(&OPINFO) TYPE(*CHAR) LEN(9999)

 DCL VAR(&PATHNAME) TYPE(*CHAR) LEN(9999) /* Uppercased path name */

/* Declare values for allow(1) and noallow(0) */

 DCL VAR(&ALLOW) TYPE(*DEC) LEN(1 0) VALUE(1)

 DCL VAR(&NOALLOW) TYPE(*DEC) LEN(1 0) VALUE(0)

/* Declare request control block for QLGCNVCS (convert case) API: */

/* convert to uppercase based on job CCSID */

 DCL VAR(&CASEREQ) TYPE(*CHAR) LEN(22) +

 VALUE(X’00000001000000000000000000000000000+

 000000000’)

 DCL VAR(&ERROR) TYPE(*CHAR) LEN(4) +

 VALUE(X’00000000’)

/* Assign input parameters to local copies */

 CHGVAR VAR(&APPID) VALUE(%BINARY(&APPIDIN))

 CHGVAR VAR(&OPID) VALUE(%BINARY(&OPIDIN))

 CHGVAR VAR(&IPLEN) VALUE(%BINARY(&IPLENIN))

 CHGVAR VAR(&IPADDR) VALUE(%SUBSTRING(&IPADDRIN 1 &IPLEN))

 CHGVAR VAR(&OPLEN) VALUE(%BINARY(&OPLENIN))

/* Handle operation specific info field (which is variable length) */

 IF COND(&OPLEN = 0) THEN(CHGVAR VAR(&OPINFO) +

 VALUE(’ ’))

 ELSE CMD(CHGVAR VAR(&OPINFO) VALUE(%SST(&OPINFOIN +

 1 &OPLEN)))

/* Operation id 0 (incoming connection): reject if connection is coming */

/* through interface 9.8.7.6, accept otherwise. (The address is just an */

/* example.) This capability could be used to only allow incoming connections */

/* from an internal network and reject them from the “real” Internet, if */

/* the connection to the Internet were through a separate IP interface. */

/* NOTE: For FTP server, operation 0 is ALWAYS under QTCP profile. */

 IF COND(&OPID = 0) THEN(DO)

 IF COND(&OPINFO = ’9.8.7.6’) THEN(CHGVAR +

 VAR(%BINARY(&ALLOWOP)) VALUE(&NOALLOW))

 ELSE CMD(CHGVAR VAR(%BINARY(&ALLOWOP)) +

 VALUE(&ALLOW))

 GOTO CMDLBL(END)

86 iSeries: FTP

ENDDO

/* Check for ANONYMOUS user */

 IF COND(&USRPRF = ’ANONYMOUS ’) THEN(DO)

/* Don’t allow the following operations for ANONYMOUS user: */

/* 1 (Directory/library creation); 2 (Directory/library deletion); */

/* 5 (File deletion); 7 (Receive file); 8 (Rename file); 9 (Execute CL cmd) */

 IF COND(&OPID = 1 | &OPID = 2 | +

 &OPID = 5 | &OPID = 7 | &OPID = 8 | +

 &OPID = 9) THEN(CHGVAR +

 VAR(%BINARY(&ALLOWOP)) VALUE(&NOALLOW))

 ELSE CMD(DO)

/* For operations 3 (change directory), 4 (list directory) and 6 (send file), */

/* only allow if in PUBLIC library OR “/public” directory. Note that all */

/* path names use the Integrated File System naming format. */

 IF COND(&OPID = 3 | &OPID = 4 | &OPID = 6) THEN(DO)

/* First, convert path name to uppercase (since names in “root” and library */

/* file systems are not case sensitive). */

 CALL PGM(QLGCNVCS) PARM(&CASEREQ &OPINFO &PATHNAME +

 &OPLENIN &ERROR)

/* Note: must check for “/public” directory by itself and path names starting */

/* with “/public/”. */

 IF COND((%SUBSTRING(&PATHNAME 1 20) *NE +

 ’/QSYS.LIB/PUBLIC.LIB’) *AND +

 (&PATHNAME *NE ’/PUBLIC’) *AND +

 (%SUBSTRING(&PATHNAME 1 8) *NE ’/PUBLIC/’)) +

 THEN(CHGVAR +

 VAR(%BINARY(&ALLOWOP)) VALUE(&NOALLOW))

 ELSE CMD(CHGVAR VAR(%BINARY(&ALLOWOP)) +

 VALUE(&ALLOW))

 ENDDO

 ENDDO

 ENDDO

/* Not ANONYMOUS user: allow everything */

 ELSE CMD(CHGVAR VAR(%BINARY(&ALLOWOP)) +

 VALUE(&ALLOW))

 END: ENDPGM

Example: FTP Server Request Validation exit program in ILE RPG code: This is an example of a

simple FTP Server Request Validation exit program. It is written in ILE RPG programming language. This

code is not complete, but provides a starting point to help you create your own program.

Note: Read the “Code disclaimer information” on page 147 for important legal information.

(Pre formatted text in the following example will flow outside the frame.)

 * Module Description ***

 * *

 * PROGRAM FUNCTION *

 * *

 * This program demonstrates some of the abilities an FTP Client *

 * and Server Request Validation Exit Program can have. *

 * *

 * Note: This program is a sample only and has NOT undergone any *

 * formal review or testing. *

 * *

 **

 F/SPACE 3

 **

 * *

 * INDICATOR USAGE *

 * *

 * IND. DESCRIPTION *

 * *

 * LR - CLOSE FILES ON EXIT *

FTP 87

* *

 **

 F/EJECT

 **

 * DATA STRUCTURES USED BY THIS PROGRAM *

 **

 *

 * Define constants

 *

 D Anonym C CONST(’ANONYMOUS ’)

 D PublicLib C CONST(’/QSYS.LIB/ITSOIC400.LIB’)

 D PublicDir C CONST(’//ITSOIC.400’)

 *

 * Some CL commands to used later on in the program

 *

 D ClearSavf C CONST(’CLRSAVF ITSOIC400/TURVIS’)

 D SaveLib C CONST(’SAVLIB LIB(ITSOIC400) -

 D DEV(*SAVF) -

 D SAVF(ITSOIC400/TURVIS)’)

 *

 * A value to be used to trigger a benevolent ’Trojan Horse’

 *

 D Savetti C CONST(’ITSOIC400.LIB/TURVIS.FILE’) Extension is FILE

 * although it is a

 * SAVF (and entered as

 * SAVF by the user)

 *

 * Some nice fields to help us through from lower to upper case character conversion

 * 1

 D LW C CONST(’abcdefghijklmnopqrstuvwxyz’)

 D UP C CONST(’ABCDEFGHIJKLMNOPQRSTUVWXYZ’)

 *

 D NeverAllow C CONST(-1)

 D DontAllow C CONST(0)

 D Allow C CONST(1)

 D AlwaysAllw C CONST(2)

 C/EJECT

 **

 * VARIABLE DEFINITIONS AND LISTS USED BY THIS PROGRAM *

 **

 C/SPACE 2

 *

 * Define binary parameters

 *

 D DS

 D APPIDds 1 4B 0

 D OPIDds 5 8B 0

 D IPLENds 9 12B 0

 D OPLENds 13 16B 0

 D ALLOWOPds 17 20B 0

 *

 C *LIKE DEFINE APPIDds APPIDIN

 C *LIKE DEFINE OPIDds OPIDIN

 C *LIKE DEFINE IPLENds IPLENIN

 C *LIKE DEFINE OPLENds OPLENIN

 C *LIKE DEFINE ALLOWOPds ALLOWOP

 *

 C *LIKE DEFINE OPINFOIN OPINFO

 *

 * Define parameter list

 *

 C *Entry PLIST

 * Input parameters:

 C PARM APPIDIN Application ID

 * possible values: 0 = FTP Client Program

 * 1 = FTP Server Program

 C PARM OPIDIN Operation ID

88 iSeries: FTP

* possible values: 0 = Initialize Session

 * 1 = Create Dir/Lib

 * 2 = Delete Dir/Lib

 * 3 = Set Current Dir

 * 4 = List Dir/Lib

 * 5 = Delete Files

 * 6 = Send Files

 * 7 = Receive Files

 * 8 = Rename Files

 * 9 = Execute CL cmd

 C PARM USRPRF 10 User Profile

 C PARM IPADDRIN 15 Remote IP Address

 C PARM IPLENIN Length of IP Address

 C PARM OPINFOIN 999 Operation-spec. Info

 C PARM OPLENIN Length of Oper. Spec

 * Return parameter:

 C PARM ALLOWOP Allow Operation (Out

 * possible values: -1 = Never Allow

 * (And don’t bother

 * me with this ops

 * in this session)

 * 0 = Reject Operation

 * 1 = Allow Operation

 * 2 = Always Allow Oper.

 * (And don’t bother

 * me with this ops

 * in this session)

 C/EJECT

 **

 * The Main Program *

 **

 *

 C SELECT

 C APPIDIN WHENEQ 0

 C EXSR ClientRqs

 C APPIDIN WHENEQ 1

 C EXSR ServerRqs

 C ENDSL

 *

 C EVAL *INLR = *ON

 C RETURN

 C/EJECT

 **

 * S U B R O U T I N E S *

 **

 **

 * Here we handle all the FTP Client request validation *

 **

 C ClientRqs BEGSR

 *

 * Check user profile

 *

 C SELECT

 *

 * Check for ’bad’ users who are not allowed to do anything ever

 *

 C USRPRF WHENEQ ’JOEBAD ’

 *

 C Z-ADD NeverAllow ALLOWOP Ops not allowed

 *

 * Check for ’normal’ users who are not allowed to do some things

 *

 C USRPRF WHENEQ ’JOENORMAL ’

 *

 C SELECT

 *

 C OPIDIN WHENEQ 0 New Connection

FTP 89

C Z-ADD Allow ALLOWOP

 *

 C OPIDIN WHENEQ 1 Create Directory/Lib

 C OPIDIN OREQ 2 Delete Directory/Lib

 C OPIDIN OREQ 5 Delete Files

 C OPIDIN OREQ 7 Receive Files from S

 C OPIDIN OREQ 8 Rename files

 C OPIDIN OREQ 9 Execute CL Commands

 *

 C Z-ADD NeverAllow ALLOWOP Ops never allowed

 *

 C OPIDIN WHENEQ 3 Set Current Dir

 C OPIDIN OREQ 4 List Directory/Lib

 C OPIDIN OREQ 6 Send Files to Server

 *

 * Extract library and directory names for comparison with allowed areas

 *

 C OPLENIN IFGE 11

 C 11 SUBST OPINFOIN:1 Directory 11

 C ELSE

 C OPLENIN SUBST(P) OPINFOIN:1 Directory

 C ENDIF

 C 1 LW:UP XLATE Directory Directory

 *

 C OPLENIN IFGE 23

 C 23 SUBST OPINFOIN:1 Library 23

 C ELSE

 C OPLENIN SUBST(P) OPINFOIN:1 Library

 C ENDIF

 *

 C Directory IFEQ PublicDir Allowed Directory

 C Library OREQ PublicLib or Library

 C Z-ADD Allow ALLOWOP

 C ELSE

 C Z-ADD DontAllow ALLOWOP

 C ENDIF

 *

 C OTHER

 C Z-ADD DontAllow ALLOWOP

 C ENDSL

 *

 * Check for ’cool’ users who are allowed to do everything

 *

 C USRPRF WHENEQ ’JOEGOOD ’

 C USRPRF OREQ ’A960101B ’

 C USRPRF OREQ ’A960101C ’

 C USRPRF OREQ ’A960101D ’

 C USRPRF OREQ ’A960101E ’

 C USRPRF OREQ ’A960101F ’

 C USRPRF OREQ ’A960101Z ’

 * Allow All FTP Operations

 C Z-ADD AlwaysAllw ALLOWOP

 *

 2 * Any Other User: We leave the back door open and allow

 * all operations. If you want to use this program for securing

 * your system, then close this door!

 *

 C OTHER

 C Z-ADD AlwaysAllw ALLOWOP

 C*************** Z-ADD NeverAllow ALLOWOP

 C ENDSL

 *

 C ENDSR

 C/EJECT

 **

 * Here we handle all the FTP Server request validation *

 **

90 iSeries: FTP

C ServerRqs BEGSR

 *

 * Check for ANONYMOUS user

 *

 C USRPRF IFEQ Anonym

 *

 C SELECT

 *

 C OPIDIN WHENEQ 1 Create Directory/Lib

 C OPIDIN OREQ 2 Delete Directory/Lib

 C OPIDIN OREQ 5 Delete Files

 C OPIDIN OREQ 7 Receive Files from C

 C OPIDIN OREQ 8 Rename files

 C OPIDIN OREQ 9 Execute CL Commands

 *

 C Z-ADD NeverAllow ALLOWOP Ops never allowed

 *

 C OPIDIN WHENEQ 3 Set Current Dir

 C OPIDIN OREQ 4 List Directory/Lib

 C OPIDIN OREQ 6 Send Files to Client

 *

 * Extract library and directory names for comparison with allowed areas

 *

 C OPLENIN IFGE 11

 C 11 SUBST OPINFOIN:1 Directory 11

 C ELSE

 C OPLENIN SUBST(P) OPINFOIN:1 Directory

 C ENDIF

 C 1 LW:UP XLATE Directory Directory

 *

 C OPLENIN IFGE 23

 C 23 SUBST OPINFOIN:1 Library 23

 C ELSE

 C OPLENIN SUBST(P) OPINFOIN:1 Library

 C ENDIF

 *

 C Directory IFEQ PublicDir Allowed Directory

 C Library OREQ PublicLib or Library

 C Z-ADD Allow ALLOWOP

 C ELSE

 C Z-ADD DontAllow ALLOWOP

 C ENDIF

 *

 C OTHER

 C Z-ADD DontAllow ALLOWOP

 C ENDSL

 *

 C ELSE

 *

 * Any Other User: Allow All FTP Operations

 *

 C OPIDIN IFEQ 6 Send Files to Client

 *

 * If client issued GET for save file HESSU in library HESSU then we refresh the contents

 *

 *

 C LW:UP XLATE OPINFOIN OPINFO

 C Z-ADD 0 i 3 0

 C Savetti SCAN OPINFO:1 i

 *

 C i IFGT 0

 *

 * We assume that the save file exits and here clear the save file

 *

 C MOVEL(p) ClearSavf Cmd 80

 C Z-ADD 19 Len 15 5

 C CALL ’QCMDEXC’ 9999

FTP 91

C PARM Cmd

 C PARM Len

 *

 * and here we save the library to the save file

 *

 C MOVEL(p) SaveLib Cmd

 C Z-ADD 46 Len

 C CALL ’QCMDEXC’ 9999

 C PARM Cmd

 C PARM Len

 C ENDIF

 C ENDIF

 *

 C Z-ADD Allow ALLOWOP

 C ENDIF

 *

 C ENDSR

VLRQ0100 exit point format: The exit point for FTP Server Application Request Validation is:

QIBM_QTMF_SERVER_REQ

The exit point for FTP Client Application Request Validation is:

QIBM_QTMF_CLIENT_REQ

The interface that controls the parameter format for the exit point is:

VLRQ0100

The table below shows the parameters and parameter format for the VLRQ0100 interface.

Required Parameter Format for the VLRQ0100 exit point interface

 Parameter Description Input or Output Type and length

1 Application identifier Input Binary (4)

2 Operation identifier Input Binary (4)

3 User profile Input Char (10)

4 Remote IP address Input Char (*)

5 Length of remote IP address Input Binary (4)

6 Operation-specific information Input Char (*)

7 Length of operation-specific information Input Binary (4)

8 Allow operation Output Binary (4)

Here are the parameter descriptions

VLRQ0100 Parameter 1:
Application identifier

INPUT; BINARY(4)
Identifies the TCP/IP application program that is making the request. Four different TCP/IP

applications share the VLRQ0100 interface. The first parameter identifies which application is calling

the exit program. The possible values are:

 0 FTP client program

92 iSeries: FTP

1 FTP server program

2 REXEC server program

3 TFTP server program

VLRQ0100 Parameter 2:
Operation identifier

Input; Binary(4)
Indicates the operation (command) that the FTP user wants (requests) to perform.

When the application identifier (parameter 1) indicates the FTP client or FTP server program, the

possible values are:

 Value Operation ID Client subcommand Server subcommand

0 Start session Open, SECOpen New connection

1 Create directory/library * MKD, XMDK

2 Delete directory/library * RMD, XRMD

3 Set current directory/library LCD CWD, CDUP, XCWD, XCUP

4 List files * LIST, NLIST

5 Delete file * DELE

6 Send file APPEND, PUT, MPUT RETR

7 Receive file GET, MGET APPE, STOR, STOU

8 Rename file * RNFR, RNTO

9 Execute CL command SYSCMD RCMD, ADDm, ADDV, CRTL,

CRTP, CRTS, DLTF, DLTL

 Note: The symbol * represents control operations that the FTP

client exit does not recognize. The only way a client can

use these operations is with CL commands using the FTP

client subcommand SYSCMD. Operation identifier 9

controls the execution of CL commands.

VLRQ0100 Parameter 3:
User profile

INPUT; Char(10)
The user profile for the FTP session.

VLRQ0100 Parameter 4:
Remote IP address

INPUT; CHAR(*)
The Internet Protocol (IP) address of the remote host system. The format for this string is dotted

decimal (123.45.67.89), left justified. The remote host may be a client or a server that is based on

the setting of the application identifier parameter.

VLRQ0100 Parameter 5:
Length (in bytes) of the remote IP address (parameter 4)

FTP 93

INPUT; BINARY(4)
The length of the remote IP address (parameter 4).

VLRQ0100 Parameter 6:
Operation-specific information

INPUT; CHAR(*)
Information that describes the requested operation. The contents of this field depend on the values of

the operation identifier (parameter 2), and the application identifier (parameter 1). For example:

For operation identifier 0 and application identifier 0
There is no operation-specific information. This field is blank.

For operation identifier 0 and application identifier 1
The operation-specific information contains the IP address of the TCP/IP interface that connects

to the local host (FTP server) for this session. The format for this string is dotted decimal

(123.45.67.89), left justified.

For operation identifiers 1 through 3
The operation-specific information contains the name of the directory or library in which to

perform the operation. The format for the directory or library name is an absolute path name.

For operation identifiers 4 through 8
The operation-specific information contains the name of the file on which to perform the

operation. The format for the file name is an absolute path name.

For operation identifier 9
The operation-specific information contains the iSeries(TM) Control Language (CL) command the

user requests.

You may also want to refer to “VLRQ0100 exit point format usage notes” on page 95.

VLRQ0100 Parameter 7:
Length of operation-specific information

INPUT; BINARY(4)
Indicates the length of the operation-specific information (parameter 6). Length is 0 when the exit

point does not provide operation-specific information.

VLRQ0100 Parameter 8:
Allow operation

OUTPUT; BINARY(4)
Indicates whether to allow or reject the requested operation. The possible values are:

 -1 Never allow this operation identifier:

Reject this operation identifier unconditionally for the

remainder of the current session.

This operation identifier will not call the exit program

again.

0 Reject the operation

1 Allow the operation

94 iSeries: FTP

2 Always allow this operation identifier:

Allow this operation identifier unconditionally for the

remainder of the current session.

This operation identifier will not call the exit program

again.

VLRQ0100 exit point format usage notes: VLRQ0100 is the exit point format that is used for both the

FTP Client Request Validation Exit Point and the FTP Server Request Validation Exit Point.

Invalid Output Parameters

If the output returned for the Allow Operation parameter (parameter 8) is not valid, then the FTP server

rejects the requested operation and posts this message to the job log:

Data from exit program for exit point &1 is missing or not valid

Exceptions

If the FTP server encounters any exception when calling the exit program, it posts this message to the job

log:

Exception encountered for FTP exit program &1 in library &2 for exit point &3

Summary: Operation-specific information

This table summarizes the Operation-specific information (VLRQ0100 parameter 6)that is required for each

Operation identifier (VLRQ0100 parameter 2).

Operation Identifier (VLRQ0100 Parm 2)

Operation-Specific Information (VLRQ0100 Parameter

6)

0 NONE if application ID=0 (parameter 1)

0 Dotted decimal format IP address of client host when

application ID=1 or 2 (parameter 1)

1-3 Absolute path name of library or directory. Examples:

/QSYS.LIB/QGPL.LIB(a)

/QOpenSys/DirA/DirAB/DirABC(b)

4-8 Absolute path name of file. Examples:
/QSYS.LIB/MYLIB.LIB/MYFILE.FILE/MYMEMB.MBR(a)

/QOpenSys/DirA/DirAB/DirABC/FileA1(b)

 Notes:

(a) - QSYS.LIB file system path names are always in

uppercase

(b) - QOpenSys file system path names are case sensitive

and may include upper and lower case letters.

Server logon exit point

You can control the authentication of users to a TCP/IP application server with the TCP/IP Application

Server Logon Exit Point. This exit point allows server access based on the originating session’s address. It

also allows you to specify an initial working directory that is different from those that are in the user profile.

FTP 95

When you add an exit program to the exit point, the server calls the logon exit program each time a user

attempts to log on. The exit program sets the return code output parameter to indicate whether or not the

server will continue the logon operation. Alternate return code settings are available for processing the

logon, and initializing directory information.

The iSeries(TM) exit point for FTP server logon is:

QIBM_QTMF_SVR_LOGON

These are the three exit point formats available:

v The “TCPL0100 exit point format” on page 109 allows this basic logon control:

– Ability to accept or reject a logon

– Control of the user profile, password, and current library

v The “TCPL0200 exit point format” on page 113 provides additional parameters to control the logon

process, including:

– Ability to set the working directory to any directory on the system.

– Ability to return application-specific information

– Ability to control encryption of FTP data sent to and received from the FTP client.

v The “TCPL0300 exit point format” on page 118 extends the TCPL0200 format to allow usage of

OS/400(R) enhanced password support and provides additional parameters to allow CCSID processing

for password and directory name fields. In addition, when the user for the session has been

authenticated with a client certificate, the client certificate is provided to the exit program.

 Notes: 1. There can be only one exit program registered for the

FTP server logon exit point. You must decide which of

the three exit point formats you want to use.

2. For the FTP application, this exit point provides the

capability to implement “Configure Anonymous FTP”

on page 9, including the information required to log

and control access.

3. For all character parameters in exit point formats

TCPL0100 and TCPL0200, and all character

parameters without an associated CCSID in exit point

format TCPL0200: Character data passed to the exit

program is in the CCSID of the job. If the job CCSID is

65535, the character data is in the default CCSID of

the job. Any character data that is returned by the exit

program in these parameters is expected to be in this

same CCSID.

For anonymous FTP, write your FTP server logon exit program to:

1. Accept logons from user ID ANONYMOUS

2. Request an e-mail address as a password. It is customary to require a ’valid e-mail address’ for the

password. The term is misleading because the exit program only verifies if there is an ’@’ symbol in

the middle of a string of alphanumeric characters. That too is customary. This is why it is important to

log the user’s IP address.

3. Check for the @ symbol in the password string.

4. Force ANONYMOUS users to your public access library only. See return code 3 of parameter 8 for

“TCPL0200 exit point format” on page 113).

What your program should include:

v Exception handling

96 iSeries: FTP

v Debugging

v Logging

– Log the IP address and e-mail address (sent as a password) of the FTP requester.

Is there an exit program time-out feature?
There is no time-out for FTP exit programs. If the exit program has an error or exception that it cannot

handle, the FTP server will abort the session.

QTCP Needs Authority
When the application calls the FTP server logon exit program, the FTP server job is running under the

QTCP user profile.

Make sure that QTCP has sufficient authority to access and write to any log files or other satellite files

associated with the exit programs.

Example programs
Example programs are available to help you set up anonymous FTP on your server. These examples are

for illustration purposes. They do not contain enough features to run on a production machine as is. You

can use these samples as a starting point to build your own programs. By copying portions of the code

from the samples, you can add them to programs that you write yourself. It is recommended that you run

the sample programs on a system other than your production system.

“Example: FTP Server Logon exit program in CL code”
“Example: FTP Server Logon exit program in C code” on page 98
“Example: FTP Server Logon exit program in ILE RPG code” on page 107

Code example disclaimer

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you “AS IS” without any warranties of any kind. The implied

warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

Example: FTP Server Logon exit program in CL code: This is an example of a simple FTP Server

Logon exit program. It is written in iSeries(TM) Command Language (CL). This code is not complete, but

provides a starting point to help you create your own program.

Note: Read the “Code disclaimer information” on page 147 for important legal information.

(Pre formatted text in the following example will flow outside the frame.)

/**/

/* */

/* Sample FTP server logon exit program. */

/* Note: This program is a sample only and has not undergone any formal */

/* review or testing. */

/* */

/* Additional notes: */

/* 1. When the FTP server logon exit is called, the FTP server job is */

/* running under the QTCP user profile. */

/* 2. For the ANONYMOUS case, users can add logging capability (for */

/* example, write the E-mail address entered for the password and */

FTP 97

/* the client IP address to a log file). */

/* 3. IBM strongly recommends that you create the exit program in a library */

/* with *PUBLIC authority set to *EXCLUDE, and give the exit program */

/* itself a *PUBLIC authority of *EXCLUDE. The FTP server adopts */

/* authority when it is necessary to resolve and call the exit program. */

/* */

/**/

 TSTLOGCL: PGM PARM(&APPIDIN &USRIN &USRLENIN &AUTIN &AUTLENIN +

 &IPADDRIN &IPLENIN &RETCDOUT &USRPRFOUT &PASSWDOUT +

 &CURLIBOUT)

/* Declare input parameters */

 DCL VAR(&APPIDIN) TYPE(*CHAR) LEN(4) /* Application identifier */

 DCL VAR(&USRIN) TYPE(*CHAR) LEN(999)/* User ID */

 DCL VAR(&USRLENIN) TYPE(*CHAR) LEN(4) /* Length of user ID */

 DCL VAR(&AUTIN) TYPE(*CHAR) LEN(999)/* Authentication string */

 DCL VAR(&AUTLENIN) TYPE(*CHAR) LEN(4) /* Length of auth. string */

 DCL VAR(&IPADDRIN) TYPE(*CHAR) LEN(15) /* Client IP address */

 DCL VAR(&IPLENIN) TYPE(*CHAR) LEN(4) /* IP address length */

 DCL VAR(&RETCDOUT) TYPE(*CHAR) LEN(4) /* return code (out) */

 DCL VAR(&USRPRFOUT) TYPE(*CHAR) LEN(10) /* user profile (out) */

 DCL VAR(&PASSWDOUT) TYPE(*CHAR) LEN(10) /* password (out) */

 DCL VAR(&CURLIBOUT) TYPE(*CHAR) LEN(10) /* current library (out) */

/* Declare local copies of parameters (in format usable by CL) */

 DCL VAR(&APPID) TYPE(*DEC) LEN(1 0)

 DCL VAR(&USRLEN) TYPE(*DEC) LEN(5 0)

 DCL VAR(&AUTLEN) TYPE(*DEC) LEN(5 0)

 DCL VAR(&IPLEN) TYPE(*DEC) LEN(5 0)

/* Assign input parameters to local copies */

 CHGVAR VAR(&APPID) VALUE(%BINARY(&APPIDIN))

 CHGVAR VAR(&USRLEN) VALUE(%BINARY(&USRLENIN))

 CHGVAR VAR(&AUTLEN) VALUE(%BINARY(&AUTLENIN))

 CHGVAR VAR(&IPLEN) VALUE(%BINARY(&IPLENIN))

/* Check for ANONYMOUS user. Allow for ANONYMOUSA, etc. as “regular” */

/* user profile. */

 IF COND(&USRLEN = 9) THEN(DO)

 IF COND(%SST(&USRIN 1 9) = ’ANONYMOUS’) THEN(DO)

/* For anonymous user: want to force user profile ANONYMOUS current library to PUBLIC. */

 CHGVAR VAR(%BINARY(&RETCDOUT)) VALUE(6)

 CHGVAR VAR(&USRPRFOUT) VALUE(’ANONYMOUS ’)

 CHGVAR VAR(&CURLIBOUT) VALUE(’PUBLIC ’)

 ENDDO

/* Any other user: proceed with normal logon processing. */

 ELSE CMD(CHGVAR VAR(%BINARY(&RETCDOUT)) VALUE(1))

 ENDDO

 ELSE CMD(CHGVAR VAR(%BINARY(&RETCDOUT)) VALUE(1))

 END: ENDPGM

Example: FTP Server Logon exit program in C code: This is an example of a simple FTP Server

Logon exit program. It is written in C programming language. This code is not complete, but provides a

starting point to help you create your own program.

Note: Read the “Code disclaimer information” on page 147 for important legal information.

(Pre formatted text in the following example will flow outside the frame.)

 /* Module Description ***/

 /* */

 /**/

 /* */

 /* Note: This program is a sample only and has NOT undergone any */

98 iSeries: FTP

/ formal review or testing. */

 /* */

 /**/

 /* */

 /* Source File Name: qtmfsvrlgn.c */

 /* */

 /* Module Name: FTP Server Logon exit program. */

 /* */

 /* Service Program Name: n/a */

 /* */

 /* Source File Description: */

 /* This example exit program provides additional control over the */

 /* process of authenticating a user to a TCP/IP application server.*/

 /* When installed, this example exit program would be called each */

 /* time a user attempts to log on to the server. */

 /* */

 /**/

 /* */

 /* Function List: main - FTP Server Logon exit program main. */

 /* qtmfsvrlgn - FTP Server Logon exit function. */

 /* CheckClientAddress - Check originating sessions IP */

 /* address. */

 /* */

 /* End Module Description ***/

 #define _QTMFSVRLGN_C

 /**/

 /* All file scoped includes go here */

 /**/

 #ifndef __stdio_h

 #include <stdio.h>

 #endif

 #ifndef __ctype_h

 #include <ctype.h>

 #endif

 #ifndef __string_h

 #include <string.h>

 #endif

 #ifndef __stdlib_h

 #include <stdlib.h>

 #endif

 #include “qusec.h” /* Include for API error code structure */

 #include “qsyrusri.h” /* Include for User Information API */

 /**/

 /* All file scoped Constants go here */

 /**/

 #define EQ ==

 #define NEQ !=

 #define BLANK ’ ’

 #define FWIDTH 128 /* Width of one database file record */

 #define FNAME 21 /* Qualified database file name width */

 /* Valid characters for Client IP address. The CheckClientAddress() */

 /* function will check the Client IP address input argument */

 /* (ClientIPaddr_p) to ensure it is in valid dotted-decimal format. */

 /* This is one example of an input validity check. */

 const char ValidChars[] = “0123456789.”;

 /**/

 /* All file scoped type declarations go here */

 /**/

FTP 99

/**/

 /* All file-scoped macro calls go here */

 /**/

 /**/

 /* All internal function prototypes go here */

 /**/

 static void qtmfsvrlgn

 (int,char *,int,char *,int,char *,int,int *,char *,char *,char *);

 static int CheckClientAddress(char *, int);

 /**/

 /* All file scoped variable declarations go here */

 /**/

 /**/

 /* ** NOTE ** */

 /* The following client IP address are for example purposes only. Any */

 /* resemblance to actual system IP addresses is purely coincidental. */

 /**/

 /* EXCLUSIVE system lists, ie - Logon attempts from any client IP */

 /* addresses NOT in one of these lists */

 /* are allowed to continue. */

 /* Reject server logon attempts of users attempting to log in from */

 /* these client systems (return code = 0) */

 char Reject[] = “1.2.3.4 5.6.7.8”;

 /* Limit logon abilities of users attempting to log in as ANONYMOUS */

 /* from these client systems (return code = 6). */

 /* In this example program, the initial current library is set and */

 /* returned as an output parameter for users attempting to log in */

 /* as ANONYMOUS from these specific client systems. */

 char Limit[] = “9.8.7.6 4.3.2.1 8.7.6.5”;

 /* Function Specification ***/

 /* */

 /* Function Name: Main */

 /* */

 /* Descriptive Name: FTP Server Logon exit program main. */

 /* */

 /* This example exit program allows access to a TCP/IP server to */

 /* be controlled by the address of the originating session, gives */

 /* additional control over the initial current library to a user, */

 /* and provides the capability to implement “anonymous” FTP. */

 /* */

 /* Notes: */

 /* */

 /* Dependencies: */

 /* FTP Server Logon exit point QIBM_QTMF_SVR_LOGON was registered */

 /* during FTP product installation. */

 /* */

 /* Restrictions: */

 /* */

 /* None */

 /* */

 /* Messages: */

 /* */

 /* None */

 /* */

 /* Side Effects: */

 /* */

 /* None */

 /* */

 /* Functions/Macros called: */

 /* */

100 iSeries: FTP

/* qtmfsvrlgn - Server Logon exit function. */

 /* */

 /* Input: */

 /* int * argv[1] - Identifies requesting application */

 /* (FTP Client =0, FTP Server = 1). */

 /* char * argv[2] - User identifier from client program. */

 /* (For FTP server, this is user CMD data */

 /* int * argv[3] - Length (in bytes) of User ID string. */

 /* char * argv[4] - Authentication string from client. */

 /* (For FTP server, this is the password) */

 /* int * argv[5] - Length (bytes) Authentication string. */

 /* char * argv[6] - Internet Protocol address from which */

 /* the session originates. */

 /* int * argv[7] - Length (in bytes) of IP address. */

 /* int * argv[8] - Return code (received as 0). */

 /* char * argv[9] - User profile (received as blanks). */

 /* char * argv[10] - Password (received as blanks). */

 /* char * argv[11] - Initial current library (received as blanks)*/

 /* */

 /* Exit Normal: Return Return Code, User Profile, Password, Initial */

 /* Current Library to server application. */

 /* */

 /* Exit Error: None */

 /* */

 /* End Function Specification ***/

 void main(int argc, char *argv[])

 {

 /**/

 /* Code */

 /**/

 /**/

 /* Collect input arguments and call function to determine if client */

 /* should be allowed to log in to an FTP server application. */

 /**/

 qtmfsvrlgn(*((int *)(argv[1])), /* Application Identifier

 (Input) */

 argv[2], /* User Identifier (Input) */

 *((int *)(argv[3])), /* Length User of

 Identifier(Input) */

 argv[4], /* Authentication String (Input) */

 *((int *)(argv[5])), /* Length of Authentication string */

 (Input) */

 argv[6], /* Client IP Address (Input) */

 *((int *)(argv[7])), /* Length of Client IP Address */

 (Input) */

 (int *)(argv[8]), /* Return Code (Output)*/

 argv[9], /* User Profile (Output)*/

 argv[10], /* Password (Output)*/

 argv[11]); /* Initial Current Library (Output)*/

 return;

 }

 /* Function Specification ***/

 /* */

 /* Function Name: qtmfsvrlgn */

 /* */

 /* Descriptive Name: Server Logon exit function. */

 /* */

 /* This exit function provides control over user authentication to */

 /* an FTP server. */

 /* */

 /* Notes: */

FTP 101

/* */

 /* Dependencies: */

 /* */

 /* FTP Server Logon exit point QIBM_QTMF_SVR_LOGON was */

 /* registered during FTP product installation. */

 /* */

 /* Restrictions: */

 /* */

 /* None */

 /* */

 /* Messages: */

 /* */

 /* None */

 /* */

 /* Side Effects: */

 /* */

 /* None */

 /* */

 /* Functions/Macros called: */

 /* */

 /* CheckClientAddress - Check the ClientIPaddr_p input argument.*/

 /* memcpy - Copy bytes from source to destination. */

 /* memset - Set bytes to value. */

 /* strstr - Locate first occurrence of substring. */

 /* sprintf - Formatted print to buffer. */

 /* */

 /* Input: */

 /* int ApplId - Application Identifier (Server = 1). */

 /* char * UserId_p - User identifier from client program. */

 /* (For FTP server, USER subcommand data)*/

 /* int Lgth_UserId - Length (in bytes) of user ID string. */

 /* char * AuthStr_p - Authentication string from client. */

 /* (For FTP server, this is the password)*/

 /* int Lgth_AuthStr - Length (bytes) Authentication string. */

 /* char * ClientIPaddr_p - Internet Protocol address from which */

 /* the session originates. */

 /* int * Lgth_ClientIPaddr - Length (in bytes) of IP address. */

 /* */

 /* Output: */

 /* int * ReturnCode: Indicates degree of success of operation: */

 /* ReturnCode = 0 - Reject logon. */

 /* ReturnCode = 1 - Continue logon; use initial current library*/

 /* ReturnCode = 2 - Continue logon; override initial current */

 /* library */

 /* ReturnCode = 3 - Continue logon; override user, password */

 /* ReturnCode = 4 - Continue logon; override user, password, */

 /* current library */

 /* ReturnCode = 5 - Accept logon; override user profile */

 /* ReturnCode = 6 - Accept logon; override user profile, */

 /* current library */

 /* char * UserProfile - User profile to use for this session */

 /* char * Password - Password to use for this session */

 /* char * Init_Cur_Lib - Initial current library for this session */

 /* */

 /* Exit Normal: (See OUTPUT) */

 /* */

 /* Exit Error: None */

 /* */

 /* End Function Specification ***/

 static void qtmfsvrlgn(int ApplId, /* Entry point */

 char *UserId_p,

 int Lgth_UserId,

 char *AuthStr_p,

 int Lgth_AuthStr,

 char *ClientIPaddr_p,

102 iSeries: FTP

int Lgth_ClientIPaddr,

 int *ReturnCode,

 char *UserProfile_p,

 char *Password_p,

 char *InitCurrLib_p)

 {

 /**/

 /* Local Variables */

 /**/

 /* The following lists serve as an example of an additional layer */

 /* of control over user authentication to an application server. */

 /* Here, logon operations using the following user identifiers */

 /* will be allowed to continue, but the output parameters returned */

 /* by this example exit program will vary depending on which list */

 /* a user identifier (UserId_p) is found in. */

 /* For example, attempts to logon as FTPUSR11 or FTPUSR2 will be */

 /* allowed, and this example exit will return the initial current */

 /* library as an output parameter along with a return code of 2. */

 /**/

 /* Continue the logon operation, Return Code = 1 */

 char Return1[] = “FTPUSR10 ”;

 /* Continue the logon operation, Return Code = 2 */

 char Return2[] = “FTPUSR11 FTPUSR2 ”;

 /* Continue the logon operation, Return Code = 3 */

 char Return3[] = “FTPUSR12 FTPUSR3 FTPUSR23 ”;

 /* Continue the logon operation, Return Code = 4 */

 char Return4[] = “FTPUSER FTPUSR4 FTPUSR24 FTPUSR94 ”;

 int rc; /* Results of server logon request */

 Qsy_USRI0300_T Receiver_var; /* QSYRUSRI API Receiver variable */

 int Lgth_Receiver_var; /* Receiver variable length */

 char Format_Name[8]; /* Format name buffer */

 char User_Id[10]; /* User Identifier buffer */

 Qus_EC_t error_code = /* QSYRUSRI API error code structure: */

 {

 sizeof(Qus_EC_t), /* Set bytes provided */

 0, /* Initialize bytes available */

 ’ ’,’ ’,’ ’,’ ’,’ ’,’ ’,’ ’ /* Initialize Exception Id */

 };

 char *pcTest_p; /* Upper-case User Identifier pointer*/

 int i; /* “For” loop counter variable */

 /**/

 /* Code */

 /**/

 /* Test validity of application ID input argument. */

 if(1 NEQ ApplId)

 {

 /* ERROR - Not FTP server application. */

 /* Return Code of 0 is used here to indicate */

 /* that an incorrect input argument was received. */

 /* The server logon operation will be rejected. */

 rc = 0; /* Application ID not valid */

 } /* End If the application identifier is NOT for FTP server */

 else /* FTP server application identifier */

 {

 /* Validate the client IP address input argument. */

 rc = CheckClientAddress(ClientIPaddr_p,

 Lgth_ClientIPaddr);

 if(0 NEQ rc) /* Valid, acceptable client address */

 {

 /* Initialize User_Id; used to hold upper-cased user identifier */

 memset(User_Id, BLANK, sizeof(User_Id));

 /* Initialize pcTest_p to point to UserId_p input argument. */

FTP 103

pcTest_p = UserId_p;

 /* Uppercase all of the user ID to compare for ANONYMOUS user. */

 for(i = 0; i < Lgth_UserId; i++)

 {

 User_Id[i] = (char)toupper(*pcTest_p);

 pcTest_p += 1;

 }

 /* If user has logged in as ANONYMOUS. */

 if(0 == memcmp(“ANONYMOUS ”, User_Id, 10))

 {

 /* Determine how to continue with ANONYMOUS logon attempt. */

 if(NULL NEQ strstr(Limit, ClientIPaddr_p))

 {

 /* If users system IP address is found in the “Limit” list, */

 /* return ReturnCode of 6, user profile and initial */

 /* current library values as output parameters. */

 memcpy(UserProfile_p, “USERA1 ”, 10);

 memcpy(InitCurrLib_p, “PUBLIC ”, 10);

 rc = 6;

 }

 else

 {

 /* Users system IP address is NOT found in the “Limit” list,*/

 /* return ReturnCode of 5, user profile output parameter; */

 /* use the initial current library that is specified by the */

 /* user profile information. */

 memcpy(UserProfile_p, “USERA1 ”, 10);

 rc = 5;

 }

 } /* End If USER is ANONYMOUS */

 else /* Else USER is not ANONYMOUS */

 {

 /* Set receiver variable length. */

 Lgth_Receiver_var = sizeof(Qsy_USRI0300_T);

 /* Set return information format. */

 memcpy(Format_Name, “USRI0300”, sizeof(Format_Name));

 /* Set user identifier passed in. */

 memset(User_Id, BLANK, sizeof(User_Id));

 memcpy(User_Id, UserId_p, Lgth_UserId);

 /* Call QSYRUSRI - Retrieve User Information API */

 QSYRUSRI(&Receiver_var, /* Return Information receiver var */

 Lgth_Receiver_var,/* Receiver variable length */

 Format_Name, /* Return information format name */

 User_Id, /* User ID seeking information */

 &error_code); /* Error return information */

 /* Check if an error occurred (byte_available not equal 0) */

 if(0 NEQ error_code.Bytes_Available)

 {

 /* Return ReturnCode of 0 only (Reject logon); */

 rc = 0; /* Reject the logon operation */

 ReturnCode = rc; / Assign result to ReturnCode */

 }

 else /* No error occurred from Retrieve User Info */

 { /* (Bytes_Available = 0) */

 /* Set current library for user profile. */

 memcpy(InitCurrLib_p, Receiver_var.Current_Library, 10);

 if(NULL NEQ strstr(“*CRTDFT ”,

 Receiver_var.Current_Library))

 {

 memcpy(InitCurrLib_p, “FTPDEFAULT”, 10);

 }

 else

 {

104 iSeries: FTP

if(NULL NEQ strstr(Return1, UserId_p))

 {

 /* Return ReturnCode of 1 (Continue logon); */

 /* Also return user profile and password output */

 /* parameters to endure they are ignored by the server.*/

 memcpy(UserProfile_p, UserId_p, Lgth_UserId);

 memcpy(Password_p, AuthStr_p, Lgth_AuthStr);

 rc = 1; /* Continue the logon operation */

 }

 else

 {

 if(NULL NEQ strstr(Return2, UserId_p))

 {

 /* Return ReturnCode of 2, and initial current library*/

 /* Also return user profile and password values */

 /* even though they will be ignored by the server. */

 memcpy(UserProfile_p, UserId_p, Lgth_UserId);

 memcpy(Password_p, AuthStr_p, Lgth_AuthStr);

 memcpy(InitCurrLib_p, “FTPEXT2”,

 strlen(“FTPEXT2”));

 rc = 2; /* Continue logon; return InitCurLib */

 }

 else

 {

 if(NULL NEQ strstr(Return3, UserId_p))

 {

 /* Return ReturnCode of 3, user profile, password. */

 /* Also return initial current library value, */

 /* even though it will be ignored. */

 memcpy(UserProfile_p, UserId_p, Lgth_UserId);

 memcpy(Password_p, AuthStr_p, Lgth_AuthStr);

 memcpy(InitCurrLib_p, “FTPEXT3”,

 strlen(“FTPEXT3”)); /* Server ignores */

 rc = 3;

 }

 else

 {

 if(NULL NEQ strstr(Return4, UserId_p))

 {

 /*Return ReturnCode of 4, user profile, */

 /* password, and initial current library values */

 memcpy(UserProfile_p, UserId_p, Lgth_UserId);

 memcpy(Password_p, AuthStr_p, Lgth_AuthStr);

 memcpy(InitCurrLib_p, “FTPEXT4”,

 strlen(“FTPEXT4”));

 rc = 4;

 }

 else

 /* This is the default return code for logon */

 /* attempts using any user identifier not */

 /* explicitly found in one of the four lists in */

 /* the local variables section of this function. */

 {

 /*Return ReturnCode of 1, continue logon operation*/

 rc = 1;

 }

 }

 }

 }

 }

 } /* End No error occurred (byte_available = 0) */

 } /* End Else USER is not ANONYMOUS */

 } /* End Valid, acceptable client address */

 } /* End FTP server application identifier */

FTP 105

*ReturnCode = rc;

 return;

 } /* End program qtmfsvrlgn.c */

 /* Function Specification ***/

 /* */

 /* Function Name: CheckClientAddress */

 /* */

 /* Descriptive Name: Check the IP address of the originating session */

 /* from the input argument (ClientIPaddr_p) to */

 /* ensure it is in valid dotted-decimal format, */

 /* and that the client system is allowed access. */

 /* This is an example of an input validity check. */

 /* */

 /* Notes: */

 /* */

 /* Dependencies: */

 /* None */

 /* */

 /* Restrictions: */

 /* None */

 /* */

 /* Messages: */

 /* None */

 /* */

 /* Side Effects: */

 /* None */

 /* */

 /* Functions/Macros called: */

 /* */

 /* strspn - Search for first occurrence of a string. */

 /* */

 /* Input: */

 /* char * ClientIPaddr_p - Internet Protocol address from which */

 /* the session originates. */

 /* int * Lgth_ClientIPaddr - Length (in bytes) of IP address. */

 /* */

 /* Output: */

 /* int rc - Return code indicating validity of IP */

 /* address from ClientIPaddr_p input. */

 /* 0 = Reject the logon operation. */

 /* ClientIPaddr_p is one that is not */

 /* allowed, or contains a character */

 /* that is not valid. */

 /* 1 = Continue the logon operation. */

 /* */

 /* Exit Normal: (See OUTPUT) */

 /* */

 /* Exit Error: None. */

 /* */

 /* End Function Specification ***/

 static int CheckClientAddress(char *ClientIPaddr_p, /* Entry point */

 int Lgth_ClientIPaddr)

 {

 /**/

 /* Local Variables */

 /**/

 int rc; /* Return code */

 /**/

 /* Code */

 /**/

106 iSeries: FTP

/* Check that client IP address input argument is dotted-decimal */

 /* format of minimum length, with no leading blanks or periods, */

 /* and contains only valid characters. */

 if((Lgth_ClientIPaddr < 7) || /* Minimum IP address size */

 (strspn(ClientIPaddr_p, ValidChars) < Lgth_ClientIPaddr)||

 (strspn(ClientIPaddr_p, “.”) EQ 1)|| /* Leading ’.’ in IP */

 (strspn(ClientIPaddr_p, “ ”) EQ 1)) /* Leading blank in IP */

 {

 /* Client’s IP address not valid, or contains an incorrect character */

 rc = 0; /* Client IP address input argument not valid */

 }

 else

 {

 /* Is client system allowed to log in to FTP server? */

 if(NULL NEQ strstr(Reject, ClientIPaddr_p))

 {

 /* Return code = 0 - Reject the server logon operation, as the */

 /* client IP address is found in the global */

 /* “Reject” list. */

 rc = 0; /* Reject the logon operation */

 }

 else

 {

 /* Continue the server logon operation checks. */

 rc = 1; /* Continue the logon operation */

 }

 }

 return(rc);

 }

 #undef _QTMFSVRLGN_C

Example: FTP Server Logon exit program in ILE RPG code: This is an example of a simple FTP

Server Logon exit program. It is written in ILE RPG. This code is not complete, but provides a starting

point to help you create your own program.

Note: Read the “Code disclaimer information” on page 147 for important legal information.

(Pre formatted text in the following example will flow outside the frame.)

 * Module Description ***

 * *

 **

 * *

 * Note: This program is a sample only and has NOT undergone any *

 * formal review or testing. *

 * *

 **

 * *

 * PROGRAM FUNCTION *

 * *

 * This program demonstrates some of the abilities an FTP Server *

 * Logon Exit Program can have. *

 * *

 **

 F/SPACE 3

 **

 * *

 * INDICATOR USAGE *

 * *

 * IND. DESCRIPTION *

 * *

 * LR - CLOSE FILES ON EXIT *

 * *

 **

 F/EJECT

FTP 107

**

 * DATA STRUCTURES USED BY THIS PROGRAM *

 **

 *

 * Define constants

 *

 1 D Anonym C CONST(’ANONYMOUS ’)

 D Text1 C CONST(’Anonymous (’)

 D Text2 C CONST(’) FTP logon’)

 D InvalidNet C CONST(’10.’)

 C/EJECT

 **

 * VARIABLE DEFINITIONS AND LISTS USED BY THIS PROGRAM *

 **

 C/SPACE 2

 *

 * Define binary parameters

 *

 D DS

 D APPIDds 1 4B 0

 D USRLENds 5 8B 0

 D AUTLENds 9 12B 0

 D IPLENds 13 16B 0

 D RETCDds 17 20B 0

 *

 C *LIKE DEFINE APPIDds APPIDIN

 C *LIKE DEFINE USRLENds USRLENIN

 C *LIKE DEFINE AUTLENds AUTLENIN

 C *LIKE DEFINE IPLENds IPLENIN

 C *LIKE DEFINE RETCDds RETCDOUT

 *

 * Define parameter list

 *

 C *Entry PLIST

 * Input parameters:

 C PARM APPIDIN Application ID

 * possible values: 1 = FTP Server Program

 C PARM USRIN 999 User ID

 C PARM USRLENIN Length of User ID

 C PARM AUTIN 999 Authentication Strg

 C PARM AUTLENIN Length of Auth. Strg

 C PARM IPADDRIN 15 Client IP Address

 C PARM IPLENIN Length of IP Address

 * Return parameters:

 C PARM RETCDOUT Return Code (Out)

 * possible values: 0 = Reject Logon

 * 1 = Continue Logon

 * 2 = Continue Logon,

 * override current

 * library

 * 3 = Continue Logon,

 * override user prf,

 * password

 * 4 = Continue Logon,

 * override user prf,

 * password, current

 * library

 * 5 = Accept logon with

 * user prf returned

 * 6 = Accept logon with

 * user prf returned,

 * override current

 * library

 C PARM USRPRFOUT 10 User Profile (Out)

 C PARM PASSWDOUT 10 Password (Out)

 C PARM CURLIBOUT 10 Current Lib. (Out)

 C/EJECT

108 iSeries: FTP

**

 * THE MAIN PROGRAM *

 **

 *

 * Check for ANONYMOUS user

 * 1

 C USRLENIN SUBST(P) USRIN:1 User 10

 C User IFEQ Anonym

 C MOVEL Anonym USRPRFOUT

 *

 * Check if the user entered something as a e-mail address

 *

 C AUTLENIN IFGT *ZERO E-mail addr. entered

 *

 * Check if the E-mail address is a valid one

 *

 C Z-ADD 0 i 3 0

 C ’@’ SCAN AUTIN:1 i Valid E-mail address

 * contains @ character

 *

 C i IFGT 0 Found a ’@’

 C AUTLENIN SUBST(P) AUTIN:1 Email 30

 C Z-ADD 5 RETCDOUT Accept Logon

 *

 * Log Anonymous FTP Logon to message queue QSYSOPR

 * (The logging should be done to a secure physical file!!!!!!!)

 *

 C Text1 CAT(p) Email:0 Message 43

 C Message CAT(p) Text2:0 Message

 C Message DSPLY ’QSYSOPR’

 *

 C ELSE Invalid E-mail addr

 C Z-ADD 0 RETCDOUT Reject Logon attempt

 C ENDIF

 *

 C ELSE No E-mail address

 C Z-ADD 0 RETCDOUT Reject Logon attempt

 C ENDIF

 *

 C ELSE

 *

 * Any Other User: Proceed with Normal Logon Processing, but the Client address must not belong

 * to network 10.xxx.xxx.xxx

 *

 C 3 SUBST IPADDRIN:1 TheNet 3

 C TheNet IFEQ InvalidNet Wrong Net

 C Z-ADD 0 RETCDOUT Reject Logon attempt

 C ELSE Right Net

 C Z-ADD 1 RETCDOUT Continue with Logon

 C ENDIF

 *

 C ENDIF

 *

 C EVAL *INLR = *ON

 C RETURN

TCPL0100 exit point format:

Exit Point Format Name: TCPL0100
Exit Point Name: QIBM_QTMF_SVR_LOGON
Exit Point Name: QIBM_QTMX_SVR_LOGON

This is the required parameter group:

 1 Application identifier Input Binary(4)

2 User identifier Input Char(*)

FTP 109

3 Length of user identifier Input Binary(4)

4 Authentication string Input Char(*)

5 Length of authentication

string

Input Binary(4)

6 Client IP address Input Char(*)

7 Length of client IP address Input Binary(4)

8 Return code Output Binary(4)

9 User profile Output Char(10)

10 Password Output Char(10)

11 Initial current library Output Char(10)

Parameter Descriptions

Application identifier INPUT; BINARY(4) Identifies the requested application server. The valid

values are:

1
FTP server program

2
REXEC server program

User identifier
INPUT; CHAR(*) The user identification supplied by the client program. For the FTP server, this

parameter contains the data field from the USER subcommand.

Length of user identifier
INPUT; BINARY(4) The length (in bytes) of the user identifier string.

Authentication string
INPUT; CHAR(*) The string (such as a password) supplied by the client program.

For the FTP server, this parameter contains the data field from the PASS (password) subcommand.

Beginning with V5R1, if the user is authenticated via a client certificate, no data is provided for this

parameter.

Length of authentication string
INPUT; BINARY(4) The length (in bytes) of the authentication string.

 Note: For the FTP server: When the user is authenticated via a

client certificate, this parameter is set to 0.

Client IP address
INPUT; CHAR(*) The Internet Protocol (IP) address from which the session originates. This string is

in dotted decimal format, left justified.

Length of client IP address
INPUT; BINARY(4) Indicates the length (in bytes) of the client IP address.

Return code
OUTPUT; BINARY(4) Indicates whether to accept or reject the logon operation, to perform password

authentication, and whether or not to override the initial current library. The valid values are:

110 iSeries: FTP

0
Reject the logon operation. Ignore the user profile, password, and initial current library output

parameters.

1
Continue the logon operation with the specified user identifier and authentication string, and the

user-specified the initial current library. The user identifier becomes the user profile, and the

authentication string becomes the password. The program ignores the user profile, password,

and initial current library output parameters.

 Note: For the logon to succeed, the authentication string must

match the user profile-specified password.

2
Continue the logon operation with the specified user identifier and authentication string, and

override the initial current library with the one specified by the initial current library parameter.

The user identifier is the user profile. The authentication string is the password. Provide the

initial current library output parameter. The program ignores the user profile and password

output parameters.

 Note: For the logon to succeed, the authentication string must

match the user profile-specified password.

3
Continue the logon operation. Override the user profile and password with those values you

received from the output parameters of this exit program. Use the user profile-specified initial

current library that the exit program returns. The program ignores the initial current library output

parameter.

 Note: For the logon to succeed, the password output parameter

must match the user profile-specified password.

Attention! IBM strongly recommends that you never code

passwords directly in an exit program. Encryption, for

example, allows algorithmic password determination.

4
Continue the logon operation, which will override the user profile, password, and initial current

library with output parameters of this exit program.

 Note: For the logon to succeed, the password output parameter

must match the user profile-specified password.

Attention! IBM strongly recommends that you never code

passwords directly in an exit program. Encryption, for

example, allows algorithmic password determination.

5
Accept the logon operation. Override the user profile is returned in the user profile output

parameter of this exit program. Use the initial current library specified by the user profile,

returned by this exit program. The program ignores the output parameters for the initial current

library and password.

 Note: Specifying this value will override normal OS/400(R)

password processing. It is the only password

authentication.

FTP 111

6
Accept the logon operation. Override the user profile and initial current library with those that

are returned in the output parameters of this exit program. Ignore the output parameter for

password.

 Note: Specifying this value will override normal OS/400

password processing. It is the only password

authentication.

User profile
OUTPUT; CHAR(10) The user profile to use for this session. This parameter must be left justified and

padded with blanks.

Password
OUTPUT; CHAR(10) The password to use for this session. This parameter must be left justified and

padded with blanks.

Initial current library
OUTPUT; CHAR(10) The initial current library to be established for this session. This parameter must

be left justified and padded with blanks.

Go To:

v “TCPL0100 format usage notes”

You may also need to refer to:

v “TCPL0200 exit point format” on page 113: This exit point provides additional parameters to control the

logon process.

v “TCPL0300 exit point format” on page 118: This exit point identifies the application server from which

the request is being made.

v “Server logon exit point” on page 95: You can control the authentication of users to a TCP/IP application

server with this TCP/IP Application Server Logon Exit Point.

TCPL0100 format usage notes: For FTP, if any of the returned output parameters are not valid, the FTP

server will not allow the operation. In this case, the FTP server issues the message Data from exit

program for exit point &1 is missing or not valid to the job log.

For FTP, if you encounter any exception when you call the exit program, the FTP server issues this

message: Exception encountered for FTP exit program &1 in library &2 for exit point &3

This table summarizes what the FTP sever will do, depending on the value of the return code (parameter

8) that is returned to the FTP server by the exit program.

 Note: A value of ’Return value’ indicates that the exit program

must return the appropriate value for that output

parameter. The value will then be used by the FTP server

to complete the logon request process.

 Return Code User Profile (9) Password (10) Initial Lib (11)

0 Ignored Ignored Ignored

1 (User identifier, parameter 2) (Password, parameter 4) (From user profile)

2 (User identifier, parameter 2) (Password, parameter 4) Return value

112 iSeries: FTP

Return Code User Profile (9) Password (10) Initial Lib (11)

3 Return value Return value (From user profile)

4 Return value Return value Return value

5 Return value Ignored (From user profile)

6 Return value Ignored Return value

In the table above, the values in parentheses indicate what the TCP/IP application uses for information

when it ignores the output value. The entry Ignored means that it used no value; therefore return nothing

for that return code value.

For the FTP server (exit point QIBM_QTMF_SVR_LOGON, application identifier 1): when the user

identifier is ANONYMOUS and this exit point adds the exit program, the server issues this special reply when

requesting the password: 331 Guest logon in process, send complete e-mail address as password. The

application issues this message before calling the exit program.

After the application accepts the server logon, the FTP server issues this reply: 230 Guest logon

accepted, access restrictions apply

For the REXEC server (application identifier 2):

1. If the return allow operation output parameter is not valid, the REXEC server will not allow the

operation. The REXEC server issues the message “Data from exit program for exit point &1 is missing

or not valid” to the job log

2. If the REXEC server encounters any exception when calling the exit program, the REXEC server will

not allow the operation. It issues the message “Exception encountered for REXEC exit program &1 in

library &2 for exit point &3,” to the job log.

TCPL0200 exit point format:

Exit Point Format Name: TCPL0200
Exit Point Name: QIBM_QTMF_SVR_LOGON

This is the required parameter group:

 1 Application identifier Input Binary(4)

2 User identifier Input Char(*)

3 Length of user identifier Input Binary(4)

4 Authentication string Input Char(*)

5 Length of authentication

string

Input Binary(4)

6 Client IP address Input Char(*)

7 Length of client IP address Input Binary(4)

8 Allow logon Output Binary(4)

9 User profile Output Char(10)

10 Password Output Char(10)

11 Initial current library Input/Output Char(10)

12 Initial home directory Output Char(*)

13 Length of initial home

directory

Input/Output Binary(4)

14 Application-specific

information

Input/Output Char(*)

FTP 113

15 Length of

application-specific

information

Input Binary(4)

Parameter Descriptions

Application identifier
INPUT; BINARY(4) Identifies the application server from which the request is being made. The valid

values are:

1
FTP server program

User identifier
INPUT; CHAR(*) The user identification supplied by the client program. For the FTP server, this

parameter contains the data field from the USER subcommand.

Length of user identifier
INPUT; BINARY(4) The length (in bytes) of the user identifier string.

Authentication string
INPUT; CHAR(*) The string (such as a password) supplied by the client program.

For the FTP server, this parameter contains the data field from the PASS (password) subcommand.

Beginning with V5R1, if the user is authenticated via a client certificate, no data is provided for this

parameter.

Length of authentication string
INPUT; BINARY(4) The length (in bytes) of the authentication string.

 Note: For the FTP server: When the user is authenticated via a

client certificate, this parameter is set to 0.

Client IP address
INPUT; CHAR(*) The Internet Protocol (IP) address from which the session originates. This string is

in dotted decimal format, left justified.

Length of client IP address
INPUT; BINARY(4) Indicates the length (in bytes) of the client IP address.

Allow logon
OUTPUT; BINARY(4) Indicates whether the logon operation should be accepted or rejected, and how

password authentication is performed. The valid values are:

0
Reject the logon operation. Ignores all other output parameters.

1
Continue the logon operation with the specified user identifier and authentication string. The

user identifier is the user profile, and the authentication string is the password. The current

library and working directory is based on the settings of those output parameters. The

application ignores the user profile and password output parameters.

114 iSeries: FTP

Note: For the logon to succeed, the authentication string must

match the user profile-specified password.

2
Continue the logon operation. Override the user profile and password with the returned values

in the output parameters of this exit program. The application initializes the current library and

working directory based on the settings of those output parameters.

 Note: For the logon to succeed, the password output parameter

must match the user profile-specified password.

Attention! IBM strongly recommends that you never code

passwords directly in an exit program. Encryption, for

example, allows algorithmic password determination.

3
Accept the logon operation. Override the user profile with the profile returned in the user profile

output parameter of this exit program. The program initializes the current library and working

directory based on the settings of the output parameters. It ignores the password output

parameter.

 Note: If your system is running at a security level of 20 or

higher, specifying this value overrides normal OS/400(R)

password processing. This is the only password

authentication.

User profile
OUTPUT; CHAR(10) The user profile to use for this session. When required, this parameter must be

left justified and padded with blanks.

Password
OUTPUT; CHAR(10) The password to use for this session. When required, this parameter must be

left justified and padded with blanks.

Initial current library
OUTPUT; CHAR(10) The initial current library to use for this session. When required, this parameter

must be left justified and padded with blanks. This parameter is set to the following special value

when the exit program is called:

*CURLIB
Use the current library that the user profile specifies.

Initial home directory
OUTPUT; CHAR(*) The initial setting of the home directory to use for this session. When specified,

this parameter must be a valid absolute path name, and the length of initial home directory

parameter set to the proper value.

Length of initial home directory
INPUT/OUTPUT; BINARY(4) The length of the initial home directory parameter returned by the exit

program. This parameter initializes at zero when the application calls the exit program. If the exit

program does not change the value of the parameter, the home directory is initialized to the home

directory that the user’s profile specifies.

FTP 115

Application-specific information
INPUT/OUTPUT; CHAR(*) Information that is used to communicate application-specific logon

settings. For the correct format, see “Format of application-specific information parameter.”

Length of application-specific information INPUT; BINARY(4) The length (in bytes) of the

application-specific information.

You may also need to refer to:

v “Server logon exit point” on page 95: You can control the authentication of users to a TCP/IP application

server with this TCP/IP Application Server Logon Exit Point.

Format of application-specific information parameter: When the application identifier indicates the FTP

server program, the application-specific information parameter has these fields:

 Offset Dec Offset Hex Type Field

0 0 BINARY(4) Initial name format

4 4 BINARY(4) Initial current working directory

8 8 BINARY(4) Initial file listing format

12 C BINARY(4) Control connection security mechanism

16 10 BINARY(4) Data connection encryption option

20 14 BINARY(2) Control connection ciphersuite

22 16 BINARY(2) Data connection cyphersuite

Field Descriptions

Initial name format
Identifies the initial setting of the file name format for this session. When the exit program is called,

the value of this field is set to correspond to the FTP server configuration file value specified by the

NAMEFMT parameter. Valid values are:

0
Use the LIBRARY/FILE.MEMBER name format. This setting corresponds to the

NAMEFMT(*LIB) option of the CHGFTPA command and is equivalent to specifying the SITE

NAMEFMT 0 subcommand to the FTP server.

1
Use the path name format. This setting corresponds to the NAMEFMT(*PATH) option of the

CHGFTPA command and is equivalent to specifying the SITE NAMEFMT 1 subcommand to the

FTP server.

Initial current working directory
Identifies the initial setting of the FTP server current working directory, which is the default directory

that is used for file and list operations. When the exit program is called, the value of this field is set

to correspond to the FTP server configuration values specified by the CURDIR. Valid values are:

0
Use the current library as the initial FTP server current working directory. This setting

corresponds to the CURDIR(*CURLIB) option of the CHGFTPA command.

1
Use the home directory as the initial FTP server current working directory. This setting

corresponds to the CURDIR(*HOMEDIR) option of the CHGFTPA command.

116 iSeries: FTP

Note: If you set this field to 1, you must also set the initial name

format field to 1.

Initial file list format
Identifies the initial setting of the file list format for this session. When the exit program is called, the

value of this field is set to correspond to the FTP server configuration value that you specify with the

LISTFMT parameter. Valid values are:

0
Use iSeries(TM) server file list format. This setting corresponds to the LISTFMT(*DFT) option of

the CHGFTPA command and is equivalent to specifying the SITE LISTFMT 0 subcommand to

the FTP Server.

1
Use the UNIX(R) file list format. This setting corresponds to the LISTFMT(*UNIX) option of the

CHGFTPA command and is equivalent to specifying the SITE LISTFMT 1 subcommand to the

FTP server.

Control connection security mechanism
Identifies the security mechanism used on to control connection for this FTP session. Valid values

are:

0
The control connection is not secured. 1

The control connection is secured using Sockets Layer (SSL); the mechanism specified by the

FTP client on the AUTH subcommands is TLS-P or SSL.

2
The control connection is secured using SSL; the mechanism specified by the client on the

AUTH subcommand is TLS-C or TLS.

 Notes: v This field is input only to the exit program. Changes

made by the exit program are ignored.

v For sessions connecting to the secure FTP port, the

value is set to 1. Connections to the secure FTP port

act as if an implicit AUTH SSL subcommand has been

sent to the FTP server.

Data connection encryption option
Specifies whether FTP data connections for this FTP session are to be encrypted. Valid values are:

-1
Encryption of FTP data connections is not allowed for this FTP session.

0
Encryption of FTP data connections is allowed (but not required) for this FTP session.

1
Encryption of FTP data connections is required for this FTP session.

FTP 117

Notes: v If the control connection security mechanism value is 1,

setting the data connection encryption option to -1 will

require additional FTP subcommands from the client to

successfully transfer data. (The TLS-P/SSL security

mechanism encrypts data connections by default.)

v If the control connection security mechanism value is 2,

setting the data connection encryption option to 1 will

require additional FTP subcommands from the client to

successfully transfer data. (The TLS-C/TLS security

mechanism does not encrypt data connections by

default.)

Control connection ciphersuite
Identifies the SSL ciphersuite used to encrypt on the control connection for this FTP session.

Ciphersuite values are defined in the Secure Sockets Layer (SSL) APIs. For information about these

APIs, see the Secure Sockets Layer (SSL) APIs topic under Programming in the iSeries Information

Center.

 Notes: v This field is input only to the exit program. Changes

made by the exit program are ignored.

v This value is valid only when the control connection

security mechanism value is 1 or 2.

Data connection ciphersuite
Identifies the SSL ciphersuite used to encrypt data on data connection for this FTP session. When

the exit program is called, this value is set to 0, which means to allow the secure sockets layer

support negotiate the ciphersuite to be used. If the exit program changes this field, a valid ciphersuite

value must be specified. Ciphersuite values are defined in the Secure Sockets Layer (SSL) APIs. For

information about these APIs, see the Secure Sockets Layer (SSL) APIs topic under Programming

in the iSeries Information Center.

 Notes: v This field ignored if the control connection security

mechanism is 0 or the data connection encryption

option is -1.

v Setting this field to a value other than 0 or the value

specified in the control connection ciphersuite field may

result in failure attempting to perform an SSL

handshake between the FTP server and the FTP client,

since the specified ciphersuite may not be supported by

the FTP client.

TCPL0300 exit point format:

Exit Point Format Name: TCPL0300
Exit Point Name: QIBM_QTMF_SVR_LOGON
Exit Point Name: QIBM_QTMX_SVR_LOGON

This is the required parameter group:

 1 Application identifier Input Binary(4)

2 User identifier Input Char(*)

3 Length of user identifier Input Binary(4)

4 Authentication string Input Char(*)

118 iSeries: FTP

5 Length of authentication

string

Input Binary(4)

6 CCSID of authentication

string

Input Binary(4)

7 Client IP address Input Char(*)

8 Length of client IP address Input Binary(4)

9 Allow logon Output Binary(4)

10 User profile Output Char(10)

11 Password Output Char(*)

12 Length of password Output Binary(4)

13 CCSID of password Output Binary(4)

14 Initial current library Input/Output Char(10)

15 Initial home directory Output Char(*)

16 Length of initial home

directory

Input/Output Binary(4)

17 CCSID of initial home

directory

Input/Output Binary(4)

18 Application-specific

information

Input/Output Char(*)

19 Length of

application-specific

information

Input Binary(4)

Parameter Descriptions

Application identifier
INPUT; BINARY(4) Identifies the application server from which the request is being made. The valid

values are:

1
FTP server program

2
REXEC server program

User identifier
INPUT; CHAR(*) The user identification supplied by the client program.

For the FTP server, this parameter contains the data field from the USER subcommand.

Length of user identifier
INPUT; BINARY(4) The length (in bytes) of the user identifier string.

Authentication string
INPUT; CHAR(*) The string (such as a password) supplied by the client program.

For the FTP server, this parameter contains the data field from the PASS (password) subcommand

(unless the user is authenticated via a client certificate, in which case the client certificate is provided

for this parameter).

FTP 119

Length of authentication string
INPUT; BINARY(4) The length (in bytes) of the authentication string.

CCSID of authentication string
INPUT; BINARY(4) The CCSID of the authentication string parameter. For the FTP server: When the

user is authenticated via a client certificate, this parameter is set to -2.

Client IP address
INPUT; CHAR(*) The Internet Protocol (IP) address from which the session originates. This string is

in dotted decimal format, left justified.

Length of client IP address
INPUT; BINARY(4) Indicates the length (in bytes) of the client IP address.

Allow logon
OUTPUT; BINARY(4) Indicates whether the logon operation should be accepted or rejected, and how

password authentication is performed. The valid values are:

0 Reject the logon operation. Ignores all other output parameters.

1 Continue the logon operation with the specified user identifier and authentication string. The

user identifier is the user profile, and the authentication string is the password. The current

library and working directory is based on the settings of those output parameters. The

application ignores the user profile and password output parameters.

 Note: For the logon to succeed, the authentication string must

match the user profile-specified password.

2
Continue the logon operation. Override the user profile and password with the returned values

in the output parameters of this exit program. The application initializes the current library and

working directory based on the settings of those output parameters.

 Note: For the logon to succeed, the password output parameter

must match the user profile-specified password.

Attention! IBM strongly recommends that you never code

passwords directly in an exit program. Encryption, for

example, allows algorithmic password determination.

3
Accept the logon operation. Override the user profile with the profile returned in the user profile

output parameter of this exit program. The program initializes the current library and working

directory based on the settings of the output parameters. It ignores the password output

parameter.

 Note: If your system is running at a security level of 20 or

higher, specifying this value overrides normal OS/400(R)

password processing. This is the only password

authentication.

User profile
OUTPUT; CHAR(10) The user profile to use for this session. When required, this parameter must be

left justified and padded with blanks.

120 iSeries: FTP

Password
OUTPUT; CHAR(*) The password to use for this session. When required, the Length of password

and CCSID of password parameters must also be specified, and this parameter must be left-justified.

When the QPWDLVL system value is set to 0 or 1, up to 10 characters may be specified; when the

QPWDLVL system value is set to 2 or 3, up to 128 characters may be specified.

Length of password
OUTPUT; BINARY(4) The length (in bytes) of the password. When required, the valid range is 1 to

512 bytes.

CCSID of password
OUTPUT; BINARY(4) The CCSID of the password. This parameter must be set by the exit program

when the password parameter is specified. The valid values are:

0
The CCSID of the job is used to determine the CCSID of the data to be converted. If the job

CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.

1-65533
A valid CCSID in this range.

Initial current library
OUTPUT; CHAR(10) The initial current library to use for this session. When required, this parameter

must be left justified and padded with blanks. This parameter is set to the following special value

when the exit program is called:*CURLIB- Use the current library that the user profile specifies.

Initial home directory
OUTPUT; CHAR(*) The initial setting of the home directory to use for this session. When specified,

this parameter must be a valid absolute path name, and the length of initial home directory and

CCSID of initial home directory parameters set to the proper values.

Length of initial home directory
INPUT/OUTPUT; BINARY(4) The length of the initial home directory parameter returned by the exit

program. This parameter initializes at zero when the application calls the exit program. If the exit

program does not change the value of the parameter, the home directory is initialized to the home

directory that the user’s profile specifies.

CCSID of initial home directory OUTPUT; BINARY(4) The CCSID of the initial home directory. This

parameter must be set by the exit program when the initial home directory is specified. The valid

values are:

0
The CCSID of the job is used to determine the CCSID of the data to be converted. If the job

CCSID is 65535, the CCSID from the default CCSID (DFTCCSID) job attribute is used.

1-65533
A valid CCSID in this range.

Application-specific information
INPUT/OUTPUT; CHAR(*) Information that is used to communicate application-specific logon

settings. For the correct format, see “Format of application-specific information parameter” on page

116.

Length of application-specific information
INPUT; BINARY(4) The length (in bytes) of the application-specific information.

FTP 121

You may also need to refer to:

v “Server logon exit point” on page 95: You can control the authentication of users to a TCP/IP application

server with this TCP/IP Application Server Logon Exit Point.

Remove exit programs

To remove an installed exit program:

1. Enter WRKREGINF at an iSeries(TM) command line.

2. Page down to an FTP Server Logon exit point:

 QIBM_QTMF_SERVER_REQ VLRQ0100

 QIBM_QTMF_SVR_LOGON TCPL0100

 QIBM_QTMF_SVR_LOGON TCPL0200

 QIBM_QTMF_SVR_LOGON TCPL0300

3. Enter 8 in the Opt field to the left of the exit point entry and press Enter.

4. At the Work with Exit Program display, enter a 4 (Remove).

5. Enter the name of the exit program in Exit Program field.

6. Enter the name of the library that contains the exit program in the Library field.

7. Press Enter.

8. After you finish removing exit points, “Start and stop the FTP server” on page 21 the FTP server.

Data transfer methods

Before you begin to transfer files, you must choose the appropriate file transfer type. You can use the

default type, ASCII, or specify a different type. ASCII is the Internet standard for character encoding.

EBCDIC is the standard for iSeries(TM). Select the appropriate type according to the following:

v Use “ASCII (Change File Type to ASCII)” on page 57 for transfers of files that only contain text

(“text-only” files).

v Use “EBCDIC (Change File Type to EBCDIC)” on page 61 to transfer EBCDIC data between systems

that both support EBCDIC. This will avoid the need to convert data between EBCDIC and ASCII on both

systems.

v Use “BINARY (Set Transfer Type to Image)” on page 57 for transfers of non-text files, such as binary

numeric data, graphics files, and iSeries save files.

After you have chosen a file transfer format, you are ready to “Transfer files with FTP” on page 27.

The following topics provide additional information about specific file types:

v “Transfer files that contain packed decimal data between iSeries(TM) servers”

v “Transfer *SAVF files” on page 123

v “Transfer QDLS documents” on page 124

v “Transfer “root”, QOpenSys, QLANSrv, QDLS, and QOPT files” on page 124

v “Transfer files using QfileSvr.400” on page 124

v “Transfer QSYS.LIB files” on page 125

v “File pre-creation considerations” on page 127

v “CCSID conversions” on page 128

Transfer files that contain packed decimal data between iSeries(TM) servers

There is no support in FTP for converting special numeric formats like packed decimal or zoned

decimal.

The transfer of packed decimal or zoned decimal data is supported between iSeries servers when you use

either a transfer type of TYPE I (BINARY) or TYPE E (EBCDIC) with a transmission mode of BLOCK;

these transfer types send the data as is without any conversion. The results of any other transfer type are

unpredictable.

122 iSeries: FTP

When transferring packed or zoned data in an externally-described QSYS.LIB file, the target file should be

pre-created in the same manner as the source file. This restriction applies to data containing any special

numeric format or when keyed access is required.

When transferring data with a transfer type of binary, the record length of the target file must be the same

as the record length of the source file.

Before packed decimal or zoned decimal data can be transferred to or from other system architectures

(such as S/390(R) or UNIX(R)), you must convert the data to printable form.

Transfer *SAVF files

*SAVF files must be sent as images and, therefore, require the FTP BINARY subcommand to be run

before the GET or PUT subcommands.

When transferring a *SAVF file using name format 0, the save file on the receiving system must be

pre-created. It is recommended that files are pre-created in other situations as well for reasons of

performance and integrity.

The transfer of a save file—because it is a file format peculiar to iSeries(TM)—can only be made usable if

the sending and receiving servers are both iSeries servers. However, a save file could be sent to a

non-iSeries server and stored there for backup purposes. The save file could be transferred later to the

iSeries with FTP.

Example: Transferring a *SAVF file from VM to an iSeries
The following example shows how to transfer a *SAVF file from VM to an iSeries for both NAMEFMT 0

and 1. The FTP session has already been initiated, the BINARY subcommand has been issued, and

NAMEFMT 0 has been specified.

First, transfer the file P162484 SAVF310L from the VM A disk to the iSeries. VM FTP requires that you

insert a period between its file name and file type. Give it the file name P162484 in library P162484 on the

iSeries, and specify REPLACE as it has been pre-created even if it has not been used before. You will

recall that pre-creation is mandatory with NAMEFMT 0.

Change the NAMEFMT to 1, and repeat the file transfer using the new name format. Once again, specify

REPLACE, since the file exists from the previous step.

 Notes: v If you had not pre-created the file on the iSeries before performing the transfer with NAMEFMT 0, the

transfer would have appeared to have completed satisfactorily. However, on inspection of the file on

the iSeries, it would be seen that a physical file (*PF) has been created and not a save file (*SAVF).

v Some preprocessing may be necessary on the VM system depending on how the *SAVF file was sent

to VM:

– If FTP was used to send the *SAVF file to VM, you can just issue a GET subcommand to transfer it

back to the iSeries.

– If the Send Network File (SNDNETF) command was used to send the *SAVF file to VM, it is first

necessary to convert the file on the VM system from a record format (RECFM) of variable to a

RECFM of fixed before using FTP to transfer it back to the iSeries server. To do this, use the

COPYFILE command on VM. For example:

 COPYFILE P162484 SAVF310L A = = = (RECFM F REPLACE

FTP 123

Figure 1. Transferring a *SAVF from VM to iSeries using NAMEFMT 0 and NAMEFMT 1.

 | |

 | > GET P162484.SAVF310L P162484/P162484 (REPLACE |

 | 200 Port request OK. |

 | 150 Sending file ’P162484.SAVF310L’ |

 | 250 Transfer completed successfully. |

 | 384912 bytes transferred in 3.625 seconds. Transfer rate 106.183 KB/sec |

 | |

 | > namefmt 1 |

 | 202 SITE not necessary; you may proceed |

 | Client NAMEFMT is 1. |

 | > GET P162484.SAVF310L/QSYS.LIB/P162484.LIB/P162484.savf (REPLACE |

 | 200 Port request OK. |

 | 150 Sending file ’P162484.SAVF310L’ |

 | 250 Transfer completed successfully. |

 | 384912 bytes transferred in 3.569 seconds. Transfer rate 107.839 KB/sec |

 | Enter an FTP subcommand. |

 | ===> |

 | |

 |___|

Transfer QDLS documents

When a QDLS document is transferred, The QDLS directory entry attribute that indicates the type of

document is defaulted to the document type PCFILE on the receiving iSeries(TM) server for all document

types except revisable-form text (RFT) documents. RFT documents are defaulted to the document type

RFTDCA. RFTDCA type documents can be viewed and edited using the WRKDOC CL command. PCFILE

type documents cannot be viewed or edited using the WRKDOC CL command.

Transfer “root”, QOpenSys, QLANSrv, QDLS, and QOPT files

You must use stream mode (MODE S) and file structure (STRUCT F) when transferring files in the

“root”, QOpenSys, QLANSrv, QDLS, and QOPT file systems.

“root”, QOpenSys, QDLS, and QOPT files can exist in any valid code page. Files transferred to the

QLANSrv file system are tagged with the code page defined for the network server description

corresponding to the directory containing that file.

Data conversion and CCSID assignments vary depending on the transfer TYPE used. You may want to

refer to “CCSID code page tagging for iSeries(TM) files” on page 129. TYPE E is not supported for the

QLANSrv file system.

When appending data to an existing file, the CCSID tag of that file is not changed. When appending data

to an existing file using TYPE A, the data is converted to the code page of that file.

Transfer files using QfileSvr.400

The QFileSvr.400 file system provides access to other file systems on remote iSeries(TM) servers. The

transfer of files in the “root”, QOpenSys, QLANSrv, QDLS, and QOPT file systems is supported. The

transfer of files in the QSYS.LIB file systems is not supported.

You must use stream mode (MODE S) and file structure (STRUCT F). For example, in Figure 9-30 (See

125), FILE.ABC is transferred to and from three different files systems on system AS012 using the

QFileSvr.400 file system on system AS009.

124 iSeries: FTP

After connecting to system AS009, the FTP client subcommands shown in Figure 9-31 (See 125) perform

the data transfers.

 Note: The userid and password on systems AS009 and AS012

must be the same.

Figure 9-30. QFileSvr.400 File System Example

 __

 | |

 | |

 | Client System System |

 | System AS009 AS012 |

 | _________ _________ __________ |

 | | | | | | | |

 | | | PUT | | | root, | |

 | | |-------------->| | | QOpenSys,| |

 | | | |QFileSvr.|<---------->| and | |

 | | | GET | 400 | | QLanSrv | |

 | | |<--------------| | | file | |

 | | | | | | systems | |

 | | | | | | | |

 | |_________| |_________| |__________| |

 | |

 | |

 |__|

Figure 9-31. Subcommands to Transfer Files Using QFileSvr.400

 __

 | |

 | |

 | NAMEFMT 1 |

 | LCD /CLIENTDIR1 |

 | CD /QFileSvr.400/AS012/FLSDIR |

 | PUT FILE.ABC |

 | GET FILE.ABC /CLIENTDIR2/FILE.ABC |

 | CD /QFileSvr.400/AS012/QOpenSys/FLSDIR |

 | PUT FILE.ABC |

 | GET FILE.ABC /CLIENTDIR2/FILE.ABC (REPLACE |

 | CD /QFileSvr.400/AS012/QLANSrv/NWS/LANSRV/DSK/K/FLSDIR |

 | PUT FILE.ABC |

 | GET FILE.ABC /CLIENTDIR2/FILE.ABC (REPLACE |

 | SYSCMD RMVLNK ’/CLIENTDIR2/FILE.ABC’ |

 | DELETE /QFileSvr.400/AS012/FLSDIR/FILE.ABC |

 | DELETE /QFileSvr.400/AS012/QOpenSys/FLSDIR/FILE.ABC |

 | DELETE /QFileSvr.400/AS012/QLANSrv/NWS/LANSRV/DSK/K/FLSDIR/FILE.ABC |

 | QUIT |

 | |

 | |

 |__|

Transfer QSYS.LIB files

Table 1 and Table 2 below summarize FTP operations in stream transfer mode and in image transfer

type for the QSYS.LIB file system. Keep the following in mind when using these tables:

Compatible record length and file size
When you send data to a file that already exists, the record and file size of the receiving file must be

compatible with the file being sent or a transfer error will occur. Both the record and file size of the

receiving file must be greater than or equal to the source file record and file size. To determine if the

existing file size is compatible you need to consider the current number of records, the number of

FTP 125

extensions allowed, and the maximum record size allowed. You can view this information by entering the

iSeries(TM) Display File Description (DSPFD) command.

Automatic file creation on the iSeries server
When receiving a file, the iSeries server automatically creates a physical file, if one does not already exist.

However, it is recommended that you “File pre-creation considerations” on page 127 the file on the iSeries.

Data type
When transferring data using TYPE I, the data is not converted. If the file does not exist, it is tagged with

CCSID 65535 when it is created.

 Note: File pre-creation is advised when using the MGET and

MPUT subcommands to transfer files with multiple

members. When a file is not pre-created, FTP creates a

file with a maximum record length equal to the longest

record of the first member processed. If the record length

of any other file member is longer, a data truncation error

will occur when transferring that member. Pre-creating a

file with a record size to accommodate all members will

prevent this error

Table 1: Stream Transfer Mode for QSYS.LIB File System

Library Exists File Exists

Member

Exists

Replace

Selected

Compatible

Record

Length

Compatible

File Size Result

Yes Yes Yes Yes Yes Yes Data written to

member.

Yes Yes Yes No N/A N/A Transfer

rejected and

message sent.

Yes Yes No N/A No Yes File transfer

completed,

records

truncated, and

message

returned.

Yes Yes No Yes No Yes File transfer

completed,

records

truncated, and

message

returned.

Yes Yes No N/A Yes Yes Member

created and

data written to

it.

Yes Yes No No N/A No Transfer

rejected and

message sent.

126 iSeries: FTP

Library Exists File Exists

Member

Exists

Replace

Selected

Compatible

Record

Length

Compatible

File Size Result

Yes No N/A N/A N/A N/A File created

with record

length equal to

the maximum

record length

of the incoming

file. Member

created and

data written to

member.

No N/A N/A N/A N/A N/A Transfer

rejected and

message sent.

Use the

CRTLIB

command to

create a library

on the remote

iSeries server.

Table 2: Image Transfer Type for QSYS.LIB File System

 Library Exists File Exists Member Exists Replace Selected Result

Yes Yes Yes Yes Data written to member.

Yes Yes Yes No Transfer rejected and message sent.

Yes Yes No N/A Member created and data

Yes No N/A N/A

No N/A N/A N/A

Receive text files to QSYS.LIB:

Because the iSeries(TM) QSYS.LIB file system internally supports a

record structure, the iSeries FTP converts files received on the iSeries server into a record structure and

converts files sent from the iSeries server into the FTP file structure. Text files received on the iSeries

server by FTP are converted into a record structure in the following manner:

v When FTP receives a file and that file already exists on the iSeries server, the record length of the

existing file is used.

v When FTP creates a new file on the iSeries server, it uses the length (excluding trailing spaces) of the

longest line or record in the file as the record length of the file.

Text files sent from the iSeries server by FTP are converted into a file structure by removing the trailing

blanks from each line or record and sending the truncated record.

File pre-creation considerations

It is strongly recommended that you pre-create any files that are to be transferred into the iSeries(TM)

QSYS.LIB file system. This is the best method of ensuring that your data is transferred reliably and

effectively with optimal performance and integrity.

FTP 127

Be sure to allocate enough records to accommodate the entire file. On the iSeries this is done in the SIZE

parameter of the Create Physical File (CRTPF) command.

Ensure that the RCDLEN parameter of the Create Physical File (CRTPF) command is adequate to

accommodate the maximum record length expected.

 Note: You can pre-create files on the FTP server system using

the QUOTE subcommand. You can pre-create files on the

FTP client system using the SYSCMD subcommand.

CCSID conversions

iSeries(TM) uses Coded Character Set Identifier (CCSID) information to interpret the input data and

provide the output data in the proper format for display. The input could be ASCII or EBCDIC. The

following topics provide detailed information about CCSID conversions:

v “Specify mapping tables”

v “CCSID code page tagging for iSeries(TM) files” on page 129

v “NLS considerations for FTP” on page 129

Specify mapping tables:

For FTP client, the ASCII mapping tables are specified in the FTP

command. For FTP server this is done in the Change FTP Attributes (CHGFTPA) command. To specify the

FTP client mapping tables:

1. Enter the command FTP.

2. Press PF4. The Start TCP/IP FTP display is shown.

3. Press F10. The prompts for outgoing and incoming ASCII/EBCDIC tables are displayed.

 | |

 | Start TCP/IP File Transfer (FTP) |

 | |

 | Type choices, press Enter. |

 | |

 | Remote system |

 | |

 | |

 | |

 | Internet address |

 | Coded character set identifier *DFT 1-65533, *DFT |

 | |

 | Additional Parameters |

 | |

 | Outgoing EBCDIC/ASCII table . . *CCSID Name, *CCSID, *DFT |

 | Library Name, *LIBL, *CURLIB |

 | Incoming ASCII/EBCDIC table . . *CCSID Name, *CCSID, *DFT |

 | Library Name, *LIBL, *CURLIB |

 | |

 | |

 | Bottom |

 | F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display |

 | F24=More keys |

 | |

 | |

 |___|

Figure 1. Specifying ASCII Mapping Tables with the *CCSID Value

128 iSeries: FTP

Specify the CCSID (and hence the mapping tables) to be used for the FTP client. When the *DFT value is

not changed, the CCSID value 00819 (ISO 8859-1 8 bit ASCII) is used. You may also specify a specific

CCSID for both inbound and outbound transfers. The use of CCSIDs is discussed in “NLS considerations

for FTP.”

 Notes: v Double-byte character set (DBCS) CCSID values are

not permitted for the CCSID parameter on the

CHGFTPA command. The DBCS CCSID values can be

specified using the “TYPE (Specify File Transfer Type)”

on page 81 subcommand.

v IBM includes mapping support in FTP to ensure

compatibility with releases prior to V3R1. Use of

mapping tables for incoming TYPE A file transfers

results in the loss of CCSID tagging if the target file

must be created. IBM strongly recommends that you

use CCSID support for normal operations.

CCSID code page tagging for iSeries(TM) files:

When FTP creates a new file on an iSeries server, it

is tagged with a CCSID or the code page of that CCSID to identify the character data in that file. When

replacing or appending data to an existing file, the tag of the file is not changed. The table below

summarizes how FTP assigns these values for different file systems and transfer types.

Table 1: CCSID Code Page Tagging for iSeries Files

 Receiving File

System

Transfer Type A

(ASCII)

Transfer Transfer

Type C (’ccsid’)

Transfer Type E

(EBCDIC)

Transfer Type I

(Image/Binary)

QSYS.LIB CCSID specified by

the EBCDIC coded

character set identifier

for new database files

(CRTCCSID) setting.

’ccsid’ if EBCDIC

CCSID. If ccsid is

ASCII, then related

default EBCDIC

CCSID.

65535 65535

“root”, QOpenSys,

QDLS, QOPT

Default ASCII CCSID. ’ccsid’ value specified

in TYPE C ccsid#

subcommand.

Job CCSID if it is not

65535. If Job CCSID

is 65535, assign

Default Job CCSID.

Default ASCII CCSID.

QLanSrv ASCII code page of

the network server

description for file

directory.

ASCII code page of

the network server

description for file

directory.

Not supported. ASCII code page of

the network server

description for file

directory.

 Note: The default ASCII CCSID is defined when the FTP job is

started: For the client, the CCSID parameter of the

STRTCPFTP (and FTP) command. For the server, the

CCSID parameter of the FTP Configuration attributes

which can be changed using the CHGFTPA command.

QFileSvr.400 file assignments depend on the file system

receiving the file.

NLS considerations for FTP:

Be aware of the following when using FTP in an environment with

different primary languages.

FTP 129

v When data is transferred using TYPE E (or EBCDIC) the data is stored as is and therefore will be in the

EBCDIC code page of the file that it came from. This can result in the stored file being tagged with an

inappropriate CCSID value when the primary language of the two iSeries(TM) servers is different.

For example, when data in code page 237 is sent using TYPE E to the QSYS.LIB file system on a

machine where the file does not exist, the data is stored as is in a new file tagged with CCSID 65535. If

the receiving file already exists, then the data will be received as is and tagged with the existing file

CCSID which may not be 237.

To avoid incorrect CCSID tagging, you can use the TYPE C CCSID subcommand (for example, TYPE C

237) to specify the CCSID of the data being transferred. When a CCSID is specified on a transfer and

the data is written to an existing file, the data is converted to the CCSID of the existing file. If no target

file exists before the transfer, a file is created and tagged with the specified CCSID.

In the preceding example, if the target file does not exist, a file with a CCSID of 237 is created on the

receiving system. When the target file already exists, the data is converted from CCSID 237 to the

CCSID of the target file.

v When starting the FTP client, message TCP3C14: Unable to convert data from CCSID &1 to CCSID

&2, may be displayed. This occurs if no character conversion is available between the EBCDIC CCSID

specified by your job and the ASCII CCSID specified for the this FTP session.

You can change the ASCII CCSID by specifying a value for the coded character set identifier parameter

of the STRTCPFTP CL command. CCSID 850, which contains the IBM(R) Personal Computer Latin-1

coded character set, is an ASCII CCSID for which character conversions are available to all valid job

CCSID values.

v When using FTP in ASCII mode between two EBCDIC systems, the data on the system sending the file

is converted from its stored EBCDIC code page to ASCII, and then from ASCII to the EBCDIC code

page of the receiving system. Usually this does not present a problem because the 7-bit ASCII code

page used by the two systems is the same unless the EBCDIC characters on the sending system are

not defined in the ASCII code page. Also, some characters in the ASCII code page may be mapped

differently between the two different EBCDIC code pages. This might occur if some of the ASCII

characters are variant (the character occupies a different hexadecimal code point in an EBCDIC code

page). The variant character may be interpreted differently on the receiving system if the EBCDIC code

page is different from that of the system sending the file.

File systems and naming conventions

The FTP server arranges the information units of a file system in a multiple-level tree-like structure.

The “OS/400(R) file systems that are supported by FTP” on page 131 vary depending on the release level

of your iSeries(TM) server. File systems on OS/400 can use different terms for data and the hierarchical

grouping of data.

Naming conventions
Each OS/400 file system has its own set of rules for naming files. The format used to name any file must

adhere to the naming conventions of the file system in which it resides. Formats and examples of file

names for FTP-supported OS/400 file systems are described in Integrated File System. Refer to the Files

and File Systems topic for more information. The server may provide naming information for files on

non-iSeries servers when you use “QUOTE (Send a Subcommand to an FTP Server)” on page 72.

 FTP server NAMEFMT

When an FTP server session is started, NAMEFMT is set to “0”. You can change the NAMEFMT value by

using the SITE subcommand.

The server automatically switches from the default of NAMEFMT 0 to NAMEFMT 1 when the ’first’ file or

pathname parameter received in a subcommand either:

130 iSeries: FTP

v Starts with a slash (/) or a tilde (~) character

or

v Is blank (except for the LIST and NLST subcommands)

Any subsequent server subcommands with a file or path name parameter will not affect the NAMEFMT

value. In addition to changing the NAMEFMT, the server reply for the subcommand will include a

statement saying that the NAMEFMT value has been changed.

For example, the server NAMEFMT value will be changed to “1” if the first server subcommand with a file

or path name is:

 CWD /DIR1/DIR2A

The server reply will be:

 250-NAMEFMT set to 1.

 250 Current directory changed to /DIR1/DIR2A.

 Note: This capability enables the typical Web browser, which

requires NAMEFMT 1, to interact with iSeries FTP servers

without issuing a SITE NAMEFMT 1 subcommand.

For additional information on NAMEFMT, refer to “File systems and naming conventions” on page 130.

See the “NAMEFMT (Select File Naming Format)” on page 69 client subcommand page for instructions on

the use of the NAMEFMT subcommand to work with file name formats.

OS/400(R) file systems that are supported by FTP

The file systems supported by FTP vary depending on the release level of your iSeries(TM) server.

QSYS.LIB Library file system - libraries, files, members
FTP supports the transfer of save files and members in physical files, logical files, DDM files, and

source physical files. For QSYS.LIB file system physical files, the data transferred is a member of a

file which resides in a library.

QDLS Document library services - folders and documents
For the Document Library Services (QDLS) file system the data transferred is a document. QDLS

documents reside in directories called folders.

“root”
The / file system. This file system takes full advantage of the stream file support and hierarchical

directory structure of the integrated file system. It has the characteristics of the DOS and OS/2(R) file

systems.

QOpenSys
The open systems file system. This file system is compatible with UNIX(R)-based open system

standards, such as POSIX and XPG. Like the root file system, it takes advantage of stream file and

directory support that are provided by the integrated file system. It supports case-sensitive names.

QOPT
The QOPT optical file system. This file system provides access to stream data that is stored on

optical media.

QFileSvr.400
The OS/400 file server file system. This file system provides access to other file systems that reside

on remote iSeries servers. FTP does not support access to QSYS.LIB, QDLS, and QOPT that uses

QFileSvr.400.

FTP 131

For comprehensive information on the file systems that FTP supports, see Integrated File System.

FTP server reply status messages

When you enter subcommands during an FTP client session, status messages return to your display in a

3-digit code: xyz.

The first digit (x) tells you whether the response is good, bad, or incomplete. There are five values for the

first digit:

v 1yz = Good. The requested action is being initiated; another reply should follow.

v 2yz = Good. The requested action was successfully completed; a new request may be initiated.

v 3yz = Incomplete. The subcommand was accepted, but the requested action is being held pending

receipt of more information.

v 4yz = Incomplete. The server did not accept the subcommand. The requested action did not take place;

the error is temporary and you can request the action again.

v 5yz = Bad. The subcommand was not accepted, and the requested action did not take place.

The second digit (y) tells you the functional category of the response.

v x0z=Syntax. Refers to syntax errors, commands that aren’t appropriate for what you’re trying to do, and

unnecessary commands.

v x1z=Information. Refers to requests for information, such as status or help.

v x2z=Connections. Refers to the control or data connections.

v x3z=Authentication. Refers to the login process.

v x5z=File system. Refers to the status of the server in relation to the file transfer request.

The third digit (z) tells you a finer level of detail about the functional category.

Common reply codes and what they indicate are below. The message text may vary for different server

systems.

 Code What It Means

110 Restart the marker reply

120 Service is ready in nnn minutes

125 Data connection is already open; transfer is starting

150 File starting OK; about to open the data connection

200 Command OK

202 Command was not implemented; it is not used on this

system

211 System status, or system help reply

212 Directory status

213 File status

214 Help message

220 Service is ready for a new user

226 Closing the data connection; the requested file action was

successful

230 User is logged in

250 Requested file action was okay; action is completed

257 Path name was created

331 Password is required

132 iSeries: FTP

Code What It Means

332 Account is required

425 Cannot open the data connection

426 Connection is closed; the transfer ended abnormally

450 Requested file action was not taken; file busy

451 Requested action ended abnormally; local error in

processing

452 Requested action was not taken; insufficient storage

exists in system

500 Syntax error; command was unrecognized

501 Syntax error in the parameters or arguments

502 Command was not implemented

503 Bad sequence of commands

504 Command was not implemented for that parameter

530 Logon attempt was rejected

532 Need an account for storing files

550 Requested action was not taken; the file was not found

(or no access)

551 Requested action ended abnormally; the page type is

unknown

552 Requested file action ended abnormally; storage

allocation was exceeded

553 Requested action was not taken; the file name is not

allowed

FTP server syntax conventions

The FTP server subcommands described in this topic make use of these syntax conventions:

Uppercase Letters
You must enter letters in uppercase exactly as shown in the syntax definitions for subcommands. You

can enter these letters in either uppercase or lowercase.

Lowercase Words or Hyphenated Terms
Lowercase words or hyphenated terms, such as (remotefile and account-information,) represent

variables for which you must substitute specific information.

Brackets []
You can consider words, symbols, or phrases placed within brackets to be optional.

Left Parentheses (and Asterisks *
You must enter left parentheses and asterisks exactly as shown in the syntax definitions.

Braces { }
Braces indicate a group of parameters, values, or variables that you can repeat.

Ellipsis ...
Ellipses indicate that you can include zero or more repetitions of the preceding variable enclosed

within brackets.

FTP 133

Vertical Bar |
A vertical bar between parameters or values indicates that you can specify one or the other, but not

both, at one time. You will see the vertical bars placed within sets of brackets or braces.

FTP client syntax conventions

The FTP client subcommands described in this topic make use of these syntax conventions:

Uppercase Letters
Letters printed in uppercase in the syntax definitions for client subcommands are the minimum

number of letters that you must enter. You can enter FTP client subcommands in either uppercase or

lowercase.

Lowercase Words or Hyphenated Terms
Lowercase words or hyphenated terms, like remotefile and account-information, represent variables

that you must substitute specific information.

Brackets[]
You can consider words, symbols, or phrases placed within brackets to be optional.

Left Parentheses (and Asterisks *
You must enter left parentheses and asterisks exactly as they appear n in the syntax definitions.

Braces { }
Braces indicate a group of parameters, values, or variables that you may repeat.

Ellipsis ...
Ellipses indicate that you can include zero or more repetitions of the preceding variable enclosed

within brackets.

Vertical Bar |
A vertical bar between parameters or values indicates that you can specify one or the other, but not

both, at one time. The vertical bars are within sets of brackets or braces.

More details on syntax:

v “Enclose subcommand parameters”: Link to this information on how to use either an apostrophe (’) or

quotation marks (“) to enclose parameters.

v “File names for client transfer subcommands” on page 135: Link to this information for details on the

default values.

v Naming files for transfer: Link to this information for details on the Localfile and Remotefile parameters.

Enclose subcommand parameters

You can use either an apostrophe (’) or quotation marks (“) to enclose subcommand parameters. To

enclose an apostrophe within a parameter, you must enter it either as two consecutive apostrophes (’’) in a

parameter that is enclosed by apostrophes. You must enter it as a single apostrophe in a parameter that is

enclosed by quotation marks (”).

Similarly, if a quotation mark (“) is to be contained within a parameter, you must enter it in one of these

ways:

v A single quotation mark (”) in a parameter that is enclosed by apostrophes

v As two consecutive quotation marks (“”) in a parameter that is enclosed by quotation marks.

You can use the apostrophe or quotation marks as follows:

1. If the apostrophe or quotation marks within the parameter are the same as the starting and ending

delimiter, you must repeat the mark within the parameter. For example:

134 iSeries: FTP

rzaiqcslarf.htm

’ABCD’12345’

 results in ABCD’12345

“ABCD”“12345”

 results in ABCD“12345

2. If the starting and ending marks are not the same as the mark within the parameter, you do not repeat

the mark. For example:

”ABCD’12345“

 results in ABCD’12345

’ABCD”12345’

 results in ABCD“12345

3. If both the apostrophe and quotation marks are within the parameter, you must choose one mark

symbol as the delimiter. For example:

”ABC’12“”345“ or ’ABC’12”345’

 results in ABC’12“345

More details on syntax:

v “FTP client syntax conventions” on page 134

File names for client transfer subcommands

The FTP client provides a default file name if the target file name for the “PUT (Copy a File Member from

the Local System to a File on a Remote System)” on page 71, “APPEND (Append a Local File Member to

a Remote File)” on page 57, and “GET (Copy a File from a Remote System to the Local System)” on page

61 subcommands is omitted. Since you can specify source file names for the “MPUT (Send Multiple File

Members from the Local System to a Remote System)” on page 68 and“MGET (Copy Multiple Files from a

Remote System to the Local System)” on page 67 subcommands, the FTP server also generates target

file names for MPUT and MGET. See the Data Transfer Subcommands table below for the syntax of these

subcommands. The table column labeled Target is the parameter for which a default name is provided.

 Subcommand Source Target Other

“APPEND (Append a

Local File Member to

a Remote File)” on

page 57

local filename [server filename]

“PUT (Copy a File

Member from the

Local System to a

File on a Remote

System)” on page 71

local filename [server filename]

“GET (Copy a File

from a Remote

System to the Local

System)” on page 61

server filename [local file name] [(Replace]

“MPUT (Send

Multiple File

Members from the

Local System to a

Remote System)” on

page 68

local filename

“MGET (Copy

Multiple Files from a

Remote System to

the Local System)”

on page 67

server filename [(Replace]

PUT and APPEND

FTP 135

For the “PUT (Copy a File Member from the Local System to a File on a Remote System)” on page 71

and “APPEND (Append a Local File Member to a Remote File)” on page 57 subcommands, the rules for

forming default names are divided into two categories:

v iSeries(TM) server case

– If the target file system is a library file system or a document library system, the default name

complies with the naming rules for these systems, including their name format.

– If the target file system is neither a library file system nor a document file system it is one of two

names:

- the default name is the name after the last slash in the source file name

- the same as the source file name if there is no slash.

v Non-iSeries server case

– If the source file is a library file system file, then the default name consists of the file name.member

name. If there is no member name, the file name is the default name.

– If the source file is a document library services file, the default name is the file name and the

extension.

– If the source file is neither a library file system nor a document library services file, the name after

the last slash in the source name is the default name. If there is no slash, the default name is the

same as the source name.

If the server is an iSeries server, then the server generates the default name in these subcommands using

the same rules as applied for the “PUT (Copy a File Member from the Local System to a File on a Remote

System)” on page 71 subcommand.

GET and MGET

If the server is not an iSeries server, it bases the default name for the GET and MGET subcommands on

the part of the source name that follows the last slash. If there is no slash, the entire source name is the

default name. Here are the rules for forming default names:

v If the client file system is the library file system (iSeries database), these rules apply:

– If the remote file name contains a period (.), the characters preceding the period are truncated to 10

characters to form the local file name. The characters after the period are truncated to 10 characters

to form the member name.

– If the remote file name does not contain a period, both file and member names are set to the remote

file name truncated to 10 characters to form the local file name.

– If the name format is 1, the server adds the appropriate extensions to the file and member parts of

the name.

v If the client file system is document library services, these rules apply:

– If the remote name contains a period, the characters preceding the period are truncated to 8

characters. The characters after the period are truncated to 3 characters.

– If the remote name does not contain a period, the name is truncated to 8 characters without an

extension.

v For other file systems, the name after the last slash in the remote name is the default name.

 Notes: 1. Save files do not have members, so default names for

save files do not have a member part.

2. The server displays the default names when the

“DEBUG (Change Client Time-Out Limit Values)” on

page 59 mode is on.

More details on syntax:

v “FTP client syntax conventions” on page 134

136 iSeries: FTP

Naming files for transfer

The FTP client subcommands that you use for transferring data can have a localfile or a remotefile

parameter or both. You can use these parameters to name the data you want to transfer. The transfer

subcommands are:

“APPEND (Append a Local File Member to a Remote File)” on page 57
localfile [remotefile]

“DELETE (Delete a File on a Remote System)” on page 60
remotefile

“GET (Copy a File from a Remote System to the Local System)” on page 61
remotefile [localfile]

“MDELETE (Delete Multiple Files on a Remote System)” on page 66
remotefiles

“MGET (Copy Multiple Files from a Remote System to the Local System)” on page 67
remotefiles

“MPUT (Send Multiple File Members from the Local System to a Remote System)” on page 68
localfiles

“PUT (Copy a File Member from the Local System to a File on a Remote System)” on page 71
localfile [remotefile]

The names for the localfile and remotefile parameters can be either partially qualified or fully qualified. A

partially-qualified name includes the name of the data itself as well as one or more names in the

hierarchical sequence above the data. A fully-qualified name includes all names in the hierarchical

sequence above the data.

When the name is partially qualified, the current working directory identifies the file to be processed. You

can set the working directory on the local client system with the “LCD (Change Working Library or

Directory on Local System)” on page 63 subcommand. You can set the working directory on the remote

server system with the “CD (Change Working Directory or Library)” on page 58 subcommand.

The format of the localfile name parameters must conform to iSeries file naming rules. The remotefile

names must adhere to the file naming rules of the remote system.

More details on syntax:

v “Enclose subcommand parameters” on page 134: You can use either an apostrophe (’) or quotation

marks (“) to enclose parameters.

v “File names for client transfer subcommands” on page 135: Link to this information about default file

names for client transfer subcommands.

v “FTP client syntax conventions” on page 134: FTP client subcommands make use of these syntax

conventions.

Troubleshoot FTP

This topic provides basic troubleshooting information for FTP.

“Determine problems with FTP” on page 138
View a list of steps to determine whether your SMTP is working correctly.

FTP 137

“Materials required for reporting FTP problems” on page 140
This topic describes what information your service representative may require.

“Trace the FTP server” on page 140
Use the DBUG subcommand to track down problems on the FTP server.

“Trace the FTP client” on page 143
Use the DEBUG subcommand to track down problems on the FTP client.

“Work with FTP server jobs and job log” on page 143
Obtain a spooled file of the FTP server job log to research errors.

Determine problems with FTP

If you detect a problem when using FTP, use the following flow chart to identify the cause after using the

flow chart for general TCP/IP problems. The cause lists that follow list steps to help you identify the cause

of the problem.

 *

138 iSeries: FTP

rzaiq501_desc.htm

FTP Problem Analysis

Cause List A

1. Is there is a long delay between connecting to the iSeries(TM) FTP server and receiving a prompt for a

user id? If so, check the configuration of the domain name server on your iSeries. The FTP server

performs a DNS query as soon as a new connection is received. DNS problems may cause the server

to hang for several minutes before a response is received.

2. Check to see if an exit program has been added to the FTP Server Logon Exit Point. Refer to the

“Server logon exit point” on page 95 subtopic. If yes, then check if the logon that is unsuccessful is

allowed by the exit program.

3. Check to see if the remote logon requires a password if a password was requested. Some systems

request a password, but the connection can fail because it is not required.

4. Set up a password on the remote system if required. You may have to restart if you change the

security information on the system.

5. Check your user ID and password by attempting to sign on to your remote system. If you are unable to

do so, contact the system owner to verify that your user ID and password are correct.

Cause List B

1. Make sure binary mode is in effect if you are transferring binary files.

2. Check to be sure the mapping tables on both the client and server systems are compatible. You need

only do this if you are using your own mapping tables.

3. Check to see that the correct CCSID has been specified for the transfer. If not, use the TYPE or

LTYPE subcommand to set the correct CCSID value before the transfer is performed.

4. Create a file on the system that you are planning to store data into. Set the proper record length,

number of members, and number of increments. Try the data transfer again and verify that it was

successful.

5. Make sure that you are authorized to use the file and the file members.

6. Check to see if the transfer file contains packed decimal or zoned decimal data.

7. If you are transferring a Save file, verify that the appropriate method was used.

Cause List C

1. Check file size limits on the remote system.

2. Check to see if the FTP server timer ended. The iSeries server time-out value can be set using the

QUOTE TIME command.

3. Use the NETSTAT command to verify that the *LOOPBACK interface is active. Then re-create the

problem doing FTP LOOPBACK (iSeries-to-iSeries internally).

v If the problem cannot be recreated, it is probably a remote system problem.

v If you can re-create the problem, do the following:

a. If the problem is an FTP server problem, then start the FTP server trace using the TRCTCPAPP

command.

b. Create the problem again.

c. End the FTP connection. Refer to the “Start and stop the FTP server” on page 21.

d. End the FTP server trace using the TRCTCPAPP command.

e. Find a spooled file with the following characteristics:

– The file name is QTMFFTRC

– The username associated with the file is the name of the user who issued the TRCTCPAPP

command.

The trace is a spooled file in the default output queue of the system associated with the FTP

server job.

FTP 139

f. Send in that spooled file.

g. If the problem was on the iSeries FTP client, a trace can be obtained using the DEBUG 100

client subcommand.

h. When running the FTP client interactively, use the F6 (Print) key to create a spool file that

contains a history of the FTP client subcommands entered, and the associated FTP server

replies. When the FTP client is run in batch unattended mode, then this history of subcommands

and server replies is written to the specified OUTPUT file. For more details, see “FTP as Batch

Job”.

Materials required for reporting FTP problems

Any FTP problem reported to IBM should include the following:

v A communications trace from the time of the failure (Request TCP/IP data only) formatted twice: once

for ASCII and once for EBCDIC.

v If the FTP client or server has logged software error data, submit the data.

 Note: The system value QSFWERRLOG must be set to *LOG

for software error logging to take place. If an error occurs

while QSFWERRLOG is set to *NOLOG, change the

value to *LOG, try to re-create the error, and submit the

logged software error data. If logged software error data is

submitted, there is no need to perform a trace of FTP.

v The QTCPIP and any FTP server or FTP client job logs.

v The “Trace the FTP client” on page 143 and “Trace the FTP server” debug traces.

v For FTP client problems, a spool file containing the FTP client session (which may be obtained by

hitting the print (F6) key in the FTP session).

v If data integrity is the problem, then the file, member, or library causing the problem should be sent in

along with a copy of the description of the file, member, or library.

Trace the FTP server

The FTP server can be traced from any iSeries(TM) or non-iSeries server that runs TCP/IP. There are two

ways to trace the FTP server. The FTP server “DBUG (Turn on the FTP Server Trace)” on page 41

subcommand traces within an FTP server session. The Trace TCP/IP Application (TRCTCPAPP) command

allows system wide tracing of all the FTP servers.

Tracing the FTP server with the DBUG subcommand
The following is an example using the FTP server DBUG subcommand:

 | |

 | File Transfer Protocol |

 | |

 | Previous FTP subcommands and messages: |

 | Connecting to host name xxxxxnnn.xxxxxxxx.xxx.xxx at address |

 | n.nnn.nn.nnn using port 21. |

 | 220-QTCP at xxxxxnnn.nnnnnnnn.nnn.nnn. |

 | 220 Connection will close if idle more than 5 minutes. |

 | 215 OS/400 is the remote operating system. The TCP/IP version is |

 | “V4R4M0”. |

 | > |

 | 331 Enter password. |

 | 230 TEST logged on. |

 | 250 Now using naming format “0”. |

 | 257 “QGPL” is current library. |

 | |

 | |

 | |

 | Enter an FTP subcommand. |

140 iSeries: FTP

| ===> quote dbug |

 | |

 | |

 | |

 | F3=Exit F6=Print F9=Retrieve |

 | F17=Top F18=Bottom F21=CL command line |

 | |

 | |

 |___|

To trace the FTP server:

 1. Type QUOTE DBUG to start the trace.

 | |

 | File Transfer Protocol |

 | |

 | Previous FTP subcommands and messages: |

 | Connecting to host name xxxxxnnn.xxxxxxxx.xxx.xxx at address |

 | n.nnn.nn.nnn using port 21. |

 | 220-QTCP at xxxxxnnn.xxxxxxxx.xxx.xxx. |

 | 220 Connection will close if idle more than 5 minutes. |

 | 215 OS/400 is the remote operating system. The TCP/IP version is |

 | “V4R4M0”. |

 | > |

 | 331 Enter password. |

 | 230 TEST logged on. |

 | 250 Now using naming format “0”. |

 | 257 “QGPL” is current library. |

 | > quote dbug |

 | 250 Debug mode is now ON. |

 | Enter an FTP subcommand. |

 | ===> quote dbug |

 | |

 | |

 | |

 | F3=Exit F6=Print F9=Retrieve |

 | F17=Top F18=Bottom F21=CL command line |

 | |

 | |

 |___|

 2. Perform the FTP operation that you want to trace.

 3. Type QUOTE DBUG again to end the trace. The trace creates a spooled file called QTMFFTRC. The

default output queue contains the spooled file. The user is always the name of the user who was

logged on to the FTP server when the trace was ended.

 4. Type QUIT to end the FTP session.

 5. Enter the following command to find the output queue:
DSPSYSVAL QPRTDEV
For example, the following display appears:

 __

 | |

 | Display System Value |

 | System value : QPRTDEV |

 | Description : Printer device description |

 | Printer device : PRT01 Name |

 | |

The printer device is also the name of the default system output
queue.

 6. Record the name of the printer device. In this example, PRT01 is the
printer device.

 7. Press F12 (Cancel) to return to the display where you entered the DSPSYSVAL command.

FTP 141

8. Type the following command:
WRKOUTQ OUTQ(printer-device)
Replace printer-device with the printer device recorded in the previous display. PRT01 is the output

queue in this example. For example, the following display appears:

 __

 | |

 | Work with Output Queue |

 | Queue: PRT01 Library: QGPL Status: RLS |

 | Type options, press Enter. |

 | 1=Send 2=Change 3=Hold 4=Delete 5=Display 6=Release 7=Messages |

 | 8=Attributes 9=Work with printing status |

 | Opt File User User Data Sts Pages Copies Form Type Pty |

 | _ QTCPPRT QTCP QTMSMTP HLD 46 1 *STD 5 |

 | _ QTMFFTRC QSECOFR HLD 44 1 *STD 5 |

 |

 9. Press F18 (Bottom) to get to the bottom of the spooled file list if More... appears on the display.

10. Find the last file named QTMFFTRC with the same user as the user who was logged on the FTP

server when the trace was created.

11. Press F11 (View 2) to view the date and time of the file you want to work with.

12. Verify that you are working with the most recent spooled file, QTMFFTRC.

Indicate in the problem report that the trace was tried and it failed. Send whatever trace information there

is with the problem report.

Tracing the FTP server with the Trace TCP/IP Application (TRCTCPAPP) command
The Trace TCP/IP Application (TRCTCPAPP) command (new for V4R4) allows system-wide tracing of all

the FTP servers.

The TRCTCPAPP command is provided specifically for trained service and development personnel.

*SERVICE special authority is required to use this command. Use TRCTCPAPP in situations that require

the capturing of trace data for service and development use. This command allows experienced personnel

to dynamically start and stop tracing for applications.

With the use of TRCTCPAPP, trace information can be captured for the FTP TCP/IP application:

v Internal trace information can be captured for the iSeries FTP server. The information that can be

captured for the FTP server may be filtered using remote IP address and port or iSeries user profile.

Only one trace can be active at a time on the system.

Here are two examples of the use of the TRCTCPAPP command:

Example 1:

 TRCTCPAPP APP(*FTP) SET(*ON)

This will start tracing for all FTP servers. Tracing for all other TCP applications is not affected.
Example 2:

 TRCTCPAPP APP(*FTP) SET(*CHK)

This command is used to check the status of the tracing for the FTP server job(s). Assume that the last

command entered was: >

 TRCTCPAPP APP(*FTP) SET(*ON) USER(JOECOOL)

The format of the response to this command would be a set of messages that would look similar to the

following:

142 iSeries: FTP

TCP45B7 TRCTCPAPP APP(*FTP) SET(*ON) USER(JOECOOL)

 MAXSTG(*DFT) TRCFULL(*WRAP)

 TCP45B1 Tracing active for *FTP.

 TCP45B2 Data capture begun for *FTP.

 TCP45B3 Data buffer wrapped for *FTP.

Trace the FTP client

To produce an FTP client trace or display the subcommands sent to the FTP server, use the DEBUG FTP

client subcommand. The DEBUG subcommand toggles the debugging mode. If an optional debug-value is

specified, it is used to set the debugging level. When debugging is on, each subcommand sent to the

server is displayed and preceded by the string ’>>>’. The debug-value must be set to 100 to produce an

FTP client trace.

 __

 | |

 | |

 | DEBug [debug value] |

 | |

 |__|

debug value
If the debug-value is 0, debugging is off. If the debug-value is a positive integer, debugging is on.

If no value is specified, the debug-value is toggled from zero to one or from a positive integer to

zero.

100
Initiate an FTP client trace. The client continues running the trace until DEBUG is turned off or until

the FTP client is ended. (When the trace is ended, there may be a significant delay while the trace

data is formatted.)

 Note: The FTP client trace should only be used for reporting

software problems to IBM. System performance may be

adversely affected by this function.

A new capability has been added to the FTP client for debugging for V4R4. This function is similar to the

DEBUG 100 described above. When the client is started, it first checks for the existence of a data area

named QTMFTPD100.

You need to create the dataarea QTMFTPD100 in the QTEMP library using this command:

 CRTDTAARA DTAARA(QTEMP/QTMFTPD100) TYPE(*LGL)AUT(*USE)

If the QTMFTPD100 dataarea exists, then it will set the debug value to 100 and start an FTP client trace.

The purpose of this capability is to enable FTP client debug traces to be done in those situations when an

FTP client trace cannot be started by issuing the DEBUG 100 subcommand.

Work with FTP server jobs and job log

A copy of the FTP server job log may be required to obtain additional information about errors that occur

on the FTP server. The FTP server automatically writes a server job log to a spooled file when it ends with

an error.

A server job log may be written to a spooled file without ending the server by issuing the following

subcommand from an FTP client:

 QUOTE RCMD DSPJOBLOG

To obtain a copy of error messages written to the server job log, this subcommand must be issued after

the error has occurred. You can then inspect the job log using the WRKSPLF command.

FTP 143

This technique is recommended in those cases where the reply message returned to the client from the

server only provides minimal information about an error occurring on the server machine. For example,

this method is useful for obtaining details about I/O errors that occur on the server machine.

If the error prevents the FTP server job log from being obtained by the method described here, enter the

following command to force a spooled job log to be created for each FTP session:

 CHGJOBD JOBD(QUSRSYS/QTMFTPS) LOG(4 00 *SECLVL)

Then recreate the scenario which causes the error. To restore the original job log behavior after obtaining

the required data, enter the following command:

 CHGJOBD JOBD(QUSRSYS/QTMFTPS) LOG(4 00 *NOLOG)

To have a spooled job log produced at the end of each FTP session and each time an FTP server ends

(with or without an error), use the Change Job Description (CHGJOBD) command as follows:

 CHGJOBD JOBD(QUSRSYS/QTMFTPS) LOG(4 00 *SECLVL)

To get a spooled job log only when a server ends, use the CHGJOBD command as follows:

 CHGJOBD JOBD(QUSRSYS/QTMFTPS) LOG(4 00 *NOLIST)

FTP server jobs and job names
The FTP server jobs are started when the STRTCP command is run and the FTP AUTOSTART parameter

is set to *YES, or when the STRTCPSVR command is run with a SERVER parameter of *FTP or *ALL.

These jobs run in the QSYSWRK subsystem and their purpose is to monitor for incoming FTP users. The

format for the names of these jobs is QTFTPnnnnn. The nnnnn is the job number of the FTP server job

submitting to this server.

To work with FTP server jobs, enter the following CL command:

 WRKACTJOB JOB(QTFTP*)

144 iSeries: FTP

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that only

that IBM product, program, or service may be used. Any functionally equivalent product, program, or

service that does not infringe any IBM intellectual property right may be used instead. However, it is the

user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.

The furnishing of this document does not give you any license to these patents. You can send license

inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication. IBM

may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

© Copyright IBM Corp. 1998, 2005 145

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided by

IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or any

equivalent agreement between us.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (C)

Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
AIX
Application System/400
AS/400
e (logo)
IBM
iSeries
Operating System/400
OS/400
pSeries
400

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the publications you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

146 iSeries: FTP

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of these

Publications, or reproduce, distribute or display these Publications or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not being

properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing a publication from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

IBM(R) grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The implied

warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

Appendix. Notices 147

148 iSeries: FTP

����

Printed in USA

	Contents
	FTP
	Print this topic
	FTP scenarios
	Scenario: Transfer a file from a remote host
	Scenario: Secure FTP with SSL
	Configuration details

	Configure your FTP server
	FTP server in iSeries(TM) Navigator
	Configure FTP servers for graphical FTP clients and Web tools
	Configure Anonymous FTP
	Prepare for Anonymous FTP
	Write exit programs for Anonymous FTP
	Create an OS/400(R) user profile: ANONYMOUS
	Create a public library or directory
	Install and register exit programs

	Secure FTP
	Prevent FTP server access
	Control FTP access
	Use SSL to secure the FTP server
	Create a local Certificate Authority
	Associate a certificate with the FTP server
	Require client authentication for the FTP server (optional)
	Enable SSL on the FTP server

	Secure the FTP client with TLS/SSL
	Manage access using FTP exit programs
	Manage access using iSeries(TM) Navigator
	Monitor incoming FTP users

	Manage your FTP server
	Start and stop the FTP server
	Set number of available FTP servers
	Improve FTP server performance with configurable subsystem support

	Use the FTP client on iSeries(TM)
	Start and end a client session
	Server timeout considerations
	Transfer files with FTP
	FTP as batch job

	FTP reference information
	FTP server subcommands
	ADDM (Add Physical File Member)
	ADDV (Add Physical File Variable Length Member)
	APPE (Append to Existing File)
	AUTH (Authorization)
	CRTL (Create Library)
	CRTP (Create Physical File)
	CRTS (Create Source Physical File)
	CWD (Change working directory or library)
	DBUG (Turn on the FTP Server Trace)
	DELE (Delete file or document)
	DLTF (Delete File)
	DLTL (Delete Library)
	HELP (Getting Help from an iSeries(TM) Remote Server)
	LIST (File List)
	MKD (Make directory)
	MODE (Set Transfer Mode)
	NLST (Name List)
	NOOP (Obtain Server Response)
	PASS (Password)
	PASV (Use Passive Data Connection)
	PBSZ (Protection Buffer Size)
	PORT (Data Port)
	PROT (Data Channel Protection Level)
	PWD (Display Working Directory or Library)
	QUIT (End an FTP Server Session)
	RCMD (Send a CL Command to an FTP Server System)
	REIN (Reinitialize Session between Systems)
	RETR (Retrieve file)
	RMD (Remove directory)
	RNFR (Rename From)
	RNTO (Rename To)
	SITE (Send Information Used by a Server System)
	STOR (Store File)
	STOU (Store Unique)
	STRU (Specify File Structure)
	SYST (Identify the Name of the Operating System)
	TIME (Set Time-Out Values for FTP Server)
	TYPE (Specify Representation Type)
	USER (Send a User Logon ID to the Server)

	FTP client subcommands
	ACCT (Send Account Information)
	APPEND (Append a Local File Member to a Remote File)
	ASCII (Change File Type to ASCII)
	BINARY (Set Transfer Type to Image)
	CD (Change Working Directory or Library)
	CLOSE (End an FTP Session with the Remote System)
	DEBUG (Create Client Trace and Control Display of Server Subcommands Sent to Remote System)
	DEBUG (Change Client Time-Out Limit Values)
	DELETE (Delete a File on a Remote System)
	DIR (List Directory Entries, Libraries, or Files)
	EBCDIC (Change File Type to EBCDIC)
	GET (Copy a File from a Remote System to the Local System)
	HELP (Getting Help for FTP Subcommands)
	LCD (Change Working Library or Directory on Local System)
	LOCSITE (Specify Local Site Information)
	LOCSTAT (Display Local Status Information)
	LS (List Remote File Names)
	LTYPE (Local Type)
	MDELETE (Delete Multiple Files on a Remote System)
	MGET (Copy Multiple Files from a Remote System to the Local System)
	MKDIR (Make Directory)
	MODE (Specify Transmission Mode of Data)
	MPUT (Send Multiple File Members from the Local System to a Remote System)
	NAMEFMT (Select File Naming Format)
	NULLFLDS (Allow Transfer of Files with NULL Fields)
	OPEN (Connect to FTP Server on a Remote System)
	PASS (Send Your Password)
	PUT (Copy a File Member from the Local System to a File on a Remote System)
	PWD (Display Current Directory, Folder, or Library)
	QUOTE (Send a Subcommand to an FTP Server)
	REINITIALIZE (Reinitialize Session between Systems)
	RENAME (Rename a File on a Remote System)
	RESET (Reset)
	RMDIR (Remove Directory)
	SECData (Setting data security protection)
	SECOpen (Setting data security protection)
	SENDPASV (Specify Whether to send a PASV Subcommand)
	SENDPORT (Specify Whether to Sends a PORT Subcommand)
	SENDSITE (Specify Whether to Send a SITE Subcommand)
	SITE (Send Information Used by a Remote System)
	STATUS (Retrieve Status Information from a Remote System)
	STRUCT (Specify File Structure)
	SUNIQUE (Control Overwriting of Files)
	SYSCMD (Pass an iSeries(TM) CL Command to Your Local iSeries)
	TYPE (Specify File Transfer Type)
	USER (Send Your User ID to the Remote System)
	VERBOSE (Control of Text Display of Error Reply Messages)

	FTP exit programs
	Request validation exit point: client and server
	Example: FTP Client or Server Request Validation exit program in CL code
	Example: FTP Server Request Validation exit program in ILE RPG code
	VLRQ0100 exit point format
	VLRQ0100 exit point format usage notes

	Server logon exit point
	Example: FTP Server Logon exit program in CL code
	Example: FTP Server Logon exit program in C code
	Example: FTP Server Logon exit program in ILE RPG code
	TCPL0100 exit point format
	TCPL0100 format usage notes

	TCPL0200 exit point format
	Format of application-specific information parameter

	TCPL0300 exit point format

	Remove exit programs

	Data transfer methods
	Transfer files that contain packed decimal data between iSeries(TM) servers
	Transfer *SAVF files
	Transfer QDLS documents
	Transfer “root”, QOpenSys, QLANSrv, QDLS, and QOPT files
	Transfer files using QfileSvr.400
	Transfer QSYS.LIB files
	Receive text files to QSYS.LIB

	File pre-creation considerations
	CCSID conversions
	Specify mapping tables
	CCSID code page tagging for iSeries(TM) files
	NLS considerations for FTP

	File systems and naming conventions
	OS/400(R) file systems that are supported by FTP
	FTP server reply status messages
	FTP server syntax conventions
	FTP client syntax conventions
	Enclose subcommand parameters
	File names for client transfer subcommands
	Naming files for transfer

	Troubleshoot FTP
	Determine problems with FTP
	Materials required for reporting FTP problems
	Trace the FTP server
	Trace the FTP client
	Work with FTP server jobs and job log

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

