
IBM

Content

Manager

for

iSeries

Application

Programming

Guide

and

Reference

Version

5

Release

3

SC27-1139-01

���

IBM

Content

Manager

for

iSeries

Application

Programming

Guide

and

Reference

Version

5

Release

3

SC27-1139-01

���

Note

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices”

on

page

303.

Second

Edition

(May

2004)

This

edition

applies

to

Version

5

Release

3

of

IBM

Content

Manager

for

iSeries

(product

number

5722-VI1)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

This

edition

replaces

SC27-1139-00

©

Copyright

International

Business

Machines

Corporation

1997,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

This

Book

.

.

.

.

.

.

.

.

.

. vii

Who

Should

Use

This

Book

.

.

.

.

.

.

.

.

. vii

How

This

Book

Is

Organized

.

.

.

.

.

.

.

. vii

What’s

New

in

Version

5.3

.

.

.

.

.

.

.

.

. viii

How

to

Use

This

Book

.

.

.

.

.

.

.

.

.

. viii

Style

Conventions

.

.

.

.

.

.

.

.

.

.

.

. ix

Prerequisite

and

related

information

.

.

.

.

.

. ix

Support

available

on

the

Web

.

.

.

.

.

.

.

. x

iSeries

Navigator

.

.

.

.

.

.

.

.

.

.

.

. x

How

to

send

your

comments

.

.

.

.

.

.

.

.

. x

Chapter

1.

Introducing

Content

Manager

for

iSeries

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

A

Closer

Look

at

Content

Manager

for

iSeries

.

.

. 1

Client/Server

Relationship

.

.

.

.

.

.

.

.

. 1

Content

Manager

for

iSeries

Components

.

.

.

. 2

Chapter

2.

Content

Manager

for

iSeries

Concepts

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Understanding

the

Logical

Data

Model

.

.

.

.

. 5

Understanding

Workflow

.

.

.

.

.

.

.

.

.

. 5

Getting

Information

about

Documents

and

Folders

. 7

Supporting

Case-Sensitivity

.

.

.

.

.

.

.

.

. 8

Naming

Folders

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Changing

an

Item’s

Index

Class

.

.

.

.

.

.

.

. 8

Restricting

Access

to

Items

.

.

.

.

.

.

.

.

.

. 9

Migrating

Objects

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Chapter

3.

Application

Programming

Interfaces

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Compiling

and

Linking

Content

Manager

for

iSeries

Applications

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Application

Programming

Interfaces

.

.

.

.

.

. 12

SimLibAddFolderItem

(Add

an

Item

to

a

Folder)

12

SimLibCatalogObject

(Catalog

an

Object)

.

.

. 15

SimLibChangeIndexClass

(Change

the

Index

Class

for

an

Item)

.

.

.

.

.

.

.

.

.

.

. 19

SimLibChangeObjectSMS

(Change

the

SMS

Criteria

for

an

Object)

.

.

.

.

.

.

.

.

.

. 21

SimLibCloseAttr

(Close

an

Attribute

Set)

.

.

. 22

SimLibCloseObject

(Close

an

Object)

.

.

.

.

. 23

SimLibCopyObject

(Copy

an

Object)

.

.

.

.

. 25

SimLibCreateItem

(Create

an

Item)

.

.

.

.

. 26

SimLibCreateObject

(Create

an

Object)

.

.

.

. 29

SimLibDeleteItem

(Delete

an

Item)

.

.

.

.

. 34

SimLibDeleteObject

(Delete

an

Object)

.

.

.

. 36

SimLibFree

(Free

Memory)

.

.

.

.

.

.

.

. 37

SimLibGetAttrInfo

(Get

Attribute

Information)

. 38

SimLibGetClassInfo

(Get

Index

Class

Information)

.

.

.

.

.

.

.

.

.

.

.

.

. 40

SimLibGetItemAffiliatedTOC

(Get

a

Table

of

Contents

for

Item

Affiliates)

.

.

.

.

.

.

.

. 41

SimLibGetItemInfo

(Get

Item

Information)

.

.

. 43

SimLibGetItemSnapshot

(Get

a

Snapshot

of

Item

Attributes)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 44

SimLibGetItemType

(Get

the

Type

of

an

Item)

.

. 46

SimLibGetItemXREF

(Get

a

Cross-Reference

for

an

Item)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 47

SimLibGetSessionType

(Get

the

Session

Type)

.

. 49

SimLibGetTOC

(Get

a

Table

of

Contents)

.

.

. 49

SimLibGetTOCData

(Get

a

Snapshot

of

Attributes

for

a

Group

of

Items)

.

.

.

.

.

.

.

.

.

. 53

SimLibListClasses

(List

Index

Classes)

.

.

.

. 55

SimLibLogoff

(Log

Off)

.

.

.

.

.

.

.

.

. 56

SimLibLogon

(Log

On)

.

.

.

.

.

.

.

.

. 58

SimLibOpenItemAttr

(Open

Item

Attributes)

.

. 61

SimLibOpenObject

(Open

an

Object)

.

.

.

.

. 63

SimLibOpenObjectByUniqueName

(Open

an

Object

By

its

Unique

Name)

.

.

.

.

.

.

.

. 66

SimLibQueryObject

(Query

an

Object)

.

.

.

. 68

SimLibReadAttr

(Read

an

Attribute)

.

.

.

.

. 69

SimLibReadObject

(Read

an

Object)

.

.

.

.

. 70

SimLibRemoveFolderItem

(Remove

an

Item

from

a

Folder)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

SimLibResizeObject

(Resize

an

Object)

.

.

.

. 73

SimLibSaveAttr

(Save

an

Attribute)

.

.

.

.

. 75

SimLibSearch

(Search)

.

.

.

.

.

.

.

.

.

. 76

SimLibSeekObject

(Seek

an

Object)

.

.

.

.

. 79

SimLibStageObject

(Stage

an

Object)

.

.

.

.

. 80

SimLibStoreNewObject

(Store

a

New

Object

in

an

Existing

Item)

.

.

.

.

.

.

.

.

.

.

.

. 81

SimLibWriteAttr

(Write

an

Attribute)

.

.

.

.

. 84

SimLibWriteObject

(Write

an

Object)

.

.

.

.

. 85

SimWmActivateWorkPackage

(Activate

a

Work

Package)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

SimWmBeginProcess

(Start

a

Work

Package

on

a

Pre-defined

Process)

.

.

.

.

.

.

.

.

.

. 88

SimWmChangeVariables

(Change

Variable

Values

for

a

Work

Package)

.

.

.

.

.

.

.

.

.

. 90

SimWmCreateWorkPackage

(Create

a

Work

Package)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

SimWmEndCollectionPoint

(Force

a

Work

Package

Out

of

a

Collection

Point)

.

.

.

.

.

. 93

SimWmEndProcess

(End

a

Work

Package

on

a

Process)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 94

SimWmGetActionListInfo

(Get

Action

List

Information)

.

.

.

.

.

.

.

.

.

.

.

.

. 95

SimWmGetProcessInfo

(Get

Information

About

a

Process)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

SimWmGetWorkBasketInfo

(Get

Information

about

a

Workbasket)

.

.

.

.

.

.

.

.

.

. 98

SimWmGetWorkPackage

(Get

the

Next

Work

Package

from

a

Workbasket)

.

.

.

.

.

.

.

. 99

SimWmGetWorkPackagePriority

(Get

the

Priority

of

a

Work

Package)

.

.

.

.

.

.

. 101

SimWmListHistory

(List

the

History

of

a

Work

Package)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

SimWmListProcesses

(List

the

Processes)

.

.

. 103

SimWmListWorkBaskets

(List

the

Workbaskets)

104

©

Copyright

IBM

Corp.

1997,

2004

iii

||

||
||
||

SimWmMatchEvent

(Satisfy

an

Event

for

a

Work

Package)

.

.

.

.

.

.

.

.

.

.

.

. 105

SimWmQueryVariables

(Query

Variables

for

a

Specific

Work

Package)

.

.

.

.

.

.

.

.

. 107

SimWmQueryWorkPackage

(Query

a

Work

Package)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

SimWmReturnWorkPackage

(Return

a

Work

Package

to

a

Workbasket)

.

.

.

.

.

.

.

. 109

SimWmRouteWorkPackage

(Route

a

Work

Package)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

SimWmSetWorkPackagePriority

(Set

the

Priority

of

a

Work

Package)

.

.

.

.

.

.

.

.

.

. 112

SimWmSuspendWorkPackage

(Suspend

a

Work

Package)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Sim400ConvertCodepage

(

Code

Page

Conversion

)

.

.

.

.

.

.

.

.

.

.

.

.

. 115

Sim400SendReceive

(Send

Data

to

AS/400)

.

. 116

Ip2CloseTOC

(Close

a

Table

of

Contents)

.

.

. 117

Ip2GetLibSessionInfo

(Get

the

Information

for

a

Library

Session)

.

.

.

.

.

.

.

.

.

.

. 118

Ip2GetTOCUpdates

(Get

the

Updates

to

a

Table

of

Contents)

.

.

.

.

.

.

.

.

.

.

.

.

. 119

Ip2ListAttrs

(List

the

User-Defined

Attributes)

121

Ip2ListContentClasses

(List

the

Content

Classes)

122

Ip2ListServers

(List

the

Accessible

Servers)

.

. 123

Ip2QueryClassPriv

(Query

the

Privilege

String

for

an

Index

Class

or

View)

.

.

.

.

.

.

. 124

Ip2QueryPrivBuffer

(Query

a

Privilege

Buffer)

125

Ip2TOCCount

(Count

the

Items

in

a

Table

of

Contents)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 130

Ip2TOCStatus

(Get

the

Status

of

a

Table

of

Contents)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 131

Chapter

4.

Common

Data

Structures

133

Data

Structures

.

.

.

.

.

.

.

.

.

.

.

.

. 133

AFFTOCENTRYSTRUCT

(Affiliated

Table

of

Contents

Entry

Structure)

.

.

.

.

.

.

.

. 133

ANNOTATIONSTRUCT

(Annotation

Information

Structure)

.

.

.

.

.

.

.

.

. 134

ATTRINFOSTRUCT

(Attribute

Information

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

ATTRLISTSTRUCT

(Attribute

List

Data

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 137

CLASSATTRSTRUCT

(Class

Attribute

Structure)

138

CLASSINDEXATTRSTRUCT

(Class

Index

Attribute

Structure)

.

.

.

.

.

.

.

.

.

. 139

CLASSINDEXSTRUCT

(Class

Index

Structure)

140

CLASSINFOSTRUCT

(Index

Class

Information

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

CONTENTCLASSINFO

(Content

Class

Information

Structure)

.

.

.

.

.

.

.

.

. 142

HOBJ

(Handle

to

Query

Stored

Object)

.

.

.

. 143

ICVIEWSTRUCT

(Index

Class

View

Information

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 143

ITEMINFOSTRUCT

(Item

Information

Structure)

144

ITEMNAMESTRUCT

(Item

Name

Data

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 146

LIBSEARCHCRITERIASTRUCT

(Search

Criteria

Information

Structure)

.

.

.

.

.

.

.

.

. 147

LIBSESSIONINFOSTRUCT

(Library

Session

Information

Structure)

.

.

.

.

.

.

.

.

. 148

NAMESTRUCT

(Name

Data

Structure)

.

.

.

. 149

OBJINFOSTRUCT

(Object

Information

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 149

RCSTRUCT

(Return

Code

Information

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 151

SERVERINFOSTRUCT

(Server

Information

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 153

SMS

(System-Managed

Storage

Pointer)

.

.

. 154

SNAPSHOTSTRUCT

(Snapshot

Information

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 155

TOCENTRYSTRUCT

(Table

of

Contents

Entry

Data

Structure)

.

.

.

.

.

.

.

.

.

.

.

. 157

USERACCESSSTRUCT

(User

Access

Data

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 158

USERLOGONINFOSTRUCT

(User

Logon

Information

Structure)

.

.

.

.

.

.

.

.

. 159

WMACTIONLISTFUNCSTRUCT

(Action

List

Function

Structure)

.

.

.

.

.

.

.

.

.

. 160

WMACTIONLISTINFOSTRUCT

(Action

List

Data

Structure)

.

.

.

.

.

.

.

.

.

.

.

. 161

WMHISTLOGENTRYSTRUCT

(WMEvent

History

Structure)

.

.

.

.

.

.

.

.

.

.

. 162

WMLOCATIONINFOSTRUCT

(Work

Process

Location

Information

Structure)

.

.

.

.

.

. 162

WMPROCESSINFOSTRUCT

(Process

Information

Data

Structure)

.

.

.

.

.

.

. 163

WMSNAPSHOTSTRUCT

(Work

Management

Information

Structure)

.

.

.

.

.

.

.

.

. 164

WMSUSPENDSTRUCT

(Suspend

Work

Package

Data

Structure)

.

.

.

.

.

.

.

.

.

.

.

. 166

WMVARSTRUCT

(Work

Package

Variable

Data

Structure)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 167

WORKBASKETINFOSTRUCT

(Workbasket

Information

Data

Structure)

.

.

.

.

.

.

. 168

Chapter

5.

Using

the

OLE

Automation

Interface

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Programming

with

OLE

Automation

.

.

.

.

. 173

Properties

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Methods

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Client

for

Windows

Objects

.

.

.

.

.

.

.

. 173

Application

Object

.

.

.

.

.

.

.

.

.

.

. 174

Documents

Collection

.

.

.

.

.

.

.

.

. 174

Document

Object

.

.

.

.

.

.

.

.

.

.

. 174

Error

Object

.

.

.

.

.

.

.

.

.

.

.

.

. 174

Image

Object

.

.

.

.

.

.

.

.

.

.

.

. 174

Items

Collection

.

.

.

.

.

.

.

.

.

.

. 175

Item

Object

.

.

.

.

.

.

.

.

.

.

.

.

. 175

Programming

Tips

.

.

.

.

.

.

.

.

.

.

.

. 175

Releasing

Objects

.

.

.

.

.

.

.

.

.

.

. 175

Handling

Errors

.

.

.

.

.

.

.

.

.

.

. 175

Property

and

Argument

Types

.

.

.

.

.

.

. 176

Sample

Visual

Basic

Program

.

.

.

.

.

.

.

. 176

Properties

and

Methods

of

OLE

Objects

for

Windows

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

Application

Object

.

.

.

.

.

.

.

.

.

.

. 177

Document

Object

.

.

.

.

.

.

.

.

.

.

. 186

Documents

Object

.

.

.

.

.

.

.

.

.

.

. 189

Error

Object

.

.

.

.

.

.

.

.

.

.

.

.

. 191

Image

Object

.

.

.

.

.

.

.

.

.

.

.

. 192

Item

Object

.

.

.

.

.

.

.

.

.

.

.

.

. 194

iv

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Items

Collection

.

.

.

.

.

.

.

.

.

.

. 201

Chapter

6.

Sample

High-Level

Programming

Interface

.

.

.

.

.

.

. 203

Sample

High-Level

Programming

Interface

for

Visual

Basic

.

.

.

.

.

.

.

.

.

.

.

.

.

. 203

General

Use

.

.

.

.

.

.

.

.

.

.

.

.

. 203

Visual

Basic

Parameters

and

Variables

.

.

.

. 203

Access

to

the

Client

for

Windows

.

.

.

.

. 204

Using

Logon/Logoff

with

the

Client

for

Windows

.

.

.

.

.

.

.

.

.

.

.

.

.

. 204

Samples

of

High

Level

Programming

Interface

APIs

for

Windows

.

.

.

.

.

.

.

.

.

.

.

. 205

VbVhlAddFolderItem

(Add

an

Item

to

a

Folder)

205

VbVhlAdminItemNoteLog

(Administer

Document

Note

Logs)

.

.

.

.

.

.

.

.

. 206

VbVhlChangeItemIndex

(Change

an

Item’s

Index

Class)

.

.

.

.

.

.

.

.

.

.

.

.

. 207

VbVhlCloseDocViews

(Close

the

Document

Image

View

Window)

.

.

.

.

.

.

.

.

. 209

VbVhlCopyDoc

(Create

a

Copy

Of

a

Document)

210

VbVhlCreateFolder

(Create

a

New

Folder)

.

.

. 212

VbVhlCreateFolderAddItem

(Create

a

Folder

and

Add

an

Item)

.

.

.

.

.

.

.

.

.

.

. 213

VbVhlDeleteItem

(Delete

an

Item)

.

.

.

.

. 215

VbVhlDisplayDocView

(Display

a

Document

Image)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 216

VbVhlDisplayVIItem

(Display

Item

Using

the

Client

for

Windows)

.

.

.

.

.

.

.

.

.

. 217

VbVhlDropFuncs

(End

Access

to

VHLPI

Functions)

.

.

.

.

.

.

.

.

.

.

.

.

. 218

VbVhlExportDocObj

(Export

a

Document

Base

Object)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

VbVhlGetVIUserID

(Get

the

Logon

User

ID)

.

. 220

VbVhlImportDocObj

(Import

a

Document

Base

Object)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 220

VbVhlListContClasses

(List

all

Content

Classes)

222

VbVhlListFolderItems

(List

Folder

Contents)

223

VbVhlListFolderItemsAttr

(List

Folder

Contents

and

Their

Attributes)

.

.

.

.

.

.

.

.

.

. 225

VbVhlListIndexClassAttr

(List

All

Attributes

Of

an

Index

Class)

.

.

.

.

.

.

.

.

.

.

.

. 227

VbVhlListIndexClasses

(List

all

Index

Classes)

229

VbVhlListItemCC

(List

a

Base

Object’s

Content

Class)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 230

VbVhlListItemInfo

(List

an

Item’s

Index

Class

and

Attribute

Information)

.

.

.

.

.

.

.

. 231

VbVhlListWBItems

(List

Workbasket

Contents)

233

VbVhlListWorkBaskets

(List

All

Workbasket

Names)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 234

VbVhlLoadFuncs

(Get

Access

to

VHLPI

Functions)

.

.

.

.

.

.

.

.

.

.

.

.

. 235

VbVhlLogoff

(End

Access

to

IBM

Content

Manager

for

iSeries)

.

.

.

.

.

.

.

.

.

. 236

VbVhlLogon

(Get

Access

to

IBM

Content

Manager

for

iSeries)

.

.

.

.

.

.

.

.

.

. 237

VbVhlRemoveFolderItem

(Remove

an

Item

From

a

Folder)

.

.

.

.

.

.

.

.

.

.

.

. 238

VbVhlScanDoc

(Scan

Documents)

.

.

.

.

. 239

VbVhlSearchAdv

(Advanced

Search

for

Items)

239

VbVhlSearchItem

(Search

for

Items)

.

.

.

.

. 241

Chapter

7.

Content

Manager

for

iSeries

Programming

Interface

APIs

on

the

Server

.

.

.

.

.

.

.

.

.

.

. 245

Server

Versions

of

the

Content

Manager

for

iSeries

Client

APIs

.

.

.

.

.

.

.

.

.

.

.

.

.

. 245

Server-only

Content

Manager

for

iSeries

APIs

.

. 245

QVISNDRCV

(Send

and

Receive

Buffer)

.

.

. 245

Chapter

8.

Content

Manager

for

iSeries

User

Exits

.

.

.

.

.

.

.

.

. 249

Client

User

Exits

.

.

.

.

.

.

.

.

.

.

.

. 249

AlternateSearchUserExit

(alternate

search

user

exit)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 249

ChangeSMSUserExit

(change

system-managed

storage

user

exit)

.

.

.

.

.

.

.

.

.

.

. 251

DetNextWBUserExit

(determine

next

workbasket

user

exit)

.

.

.

.

.

.

.

.

.

. 254

DetermineWorkflowUserExit

(determine

workflow

user

exit)

.

.

.

.

.

.

.

.

.

. 258

GetAttributeValueList

(Get

attribute

value

list)

262

GetValueListLength

(Get

value

list

length)

.

.

. 263

OverloadTriggerUserExit

(overload

trigger

user

exit)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 264

QuerySortUserExit

(query

sort

user

exit)

.

.

. 268

SaveRecordUserExit

(save

record

user

exit)

.

. 272

UserActionUserExit

(Workflow

User

Action

User

Exit)

.

.

.

.

.

.

.

.

.

.

.

.

. 276

UserOptionUserExit

(User-option

User

Exit)

.

. 277

WBItemSelectedUserExit

(Workbasket

Item

Selected

User

Exit)

.

.

.

.

.

.

.

.

.

. 277

WBItemCompletedUserExit

(Workbasket

Item

Completed

User

Exit)

.

.

.

.

.

.

.

.

.

. 278

UserDefinedWBUserExit

(User-defined

Workbasket

User

Exit)

.

.

.

.

.

.

.

.

. 279

Server

User

Exits

.

.

.

.

.

.

.

.

.

.

.

. 280

Logon

User

Exit

.

.

.

.

.

.

.

.

.

.

. 281

Logoff

User

Exit

.

.

.

.

.

.

.

.

.

.

. 281

Save

Attributes

User

Exit

.

.

.

.

.

.

.

. 281

Create

Object

User

Exit

.

.

.

.

.

.

.

.

. 282

Delete

Object

User

Exit

.

.

.

.

.

.

.

.

. 283

Open

Object

User

Exit

.

.

.

.

.

.

.

.

. 283

Create

Item

User

Exit

.

.

.

.

.

.

.

.

.

. 284

Item

Created

User

Exit

.

.

.

.

.

.

.

.

. 284

Delete

Item

User

Exit

.

.

.

.

.

.

.

.

.

. 285

Object

Import

Create

Item

User

Exit

.

.

.

.

. 285

Object

Import

Item

Created

User

Exit

.

.

.

. 286

Add

Folder

Item

User

Exit

.

.

.

.

.

.

.

. 286

Route

Work

Package

User

Exit

.

.

.

.

.

. 287

Get

Work

Package

User

Exit

.

.

.

.

.

.

. 287

Return

Work

Package

User

Exit

.

.

.

.

.

. 288

End

Process

User

Exit

.

.

.

.

.

.

.

.

. 289

Set

Variable

User

Exit

.

.

.

.

.

.

.

.

. 289

Server

User

Exit

for

Process

Definitions

.

.

.

. 290

Appendix

A.

Guidelines

for

Search

Expressions

.

.

.

.

.

.

.

.

.

.

.

. 291

Logical

Operators

for

Searches

.

.

.

.

.

.

. 291

Search

Expressions

.

.

.

.

.

.

.

.

.

. 291

Attribute

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Operator

.

.

.

.

.

.

.

.

.

.

.

.

.

. 291

Contents

v

|

|

|

|

Value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 292

Relational

Operators

for

Searches

.

.

.

.

.

.

. 292

Process/Location

Search

.

.

.

.

.

.

.

.

.

. 293

Appendix

B.

Predefined

Content

Classes

.

.

.

.

.

.

.

.

.

.

.

.

.

. 295

Appendix

C.

External

References

.

.

. 299

Creating

External

References

.

.

.

.

.

.

.

. 300

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 303

Trademarks

.

.

.

.

.

.

.

.

.

.

.

.

.

. 305

Glossary

.

.

.

.

.

.

.

.

.

.

.

.

. 307

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 315

vi

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

||
||

About

This

Book

This

book

describes

how

to

create

or

integrate

image,

workflow,

or

other

applications

into

a

Content

Manager

for

iSeries

system.

These

application

programming

interfaces

(APIs)

support

client

application

development

for

Content

Manager

for

iSeries.

The

information

in

this

book

applies

to

application

development

in

a

32-bit

Windows®

programming

environment.

This

book

explains

the

following:

v

How

to

use

the

various

components

of

Content

Manager

for

iSeries.

v

Tips

for

identifying

application

requirements

as

you

create

a

Content

Manager

for

iSeries

application.

v

Ways

to

use

the

APIs

to

write

image,

workflow,

or

other

applications

that

use

Content

Manager

for

iSeries

APIs.

v

The

terminology

used

with

Content

Manager

for

iSeries.

Who

Should

Use

This

Book

If

you

are

an

application

programmer

responsible

for

developing

image,

workflow,

or

other

applications,

this

book

provides

detailed

information

about

each

function

available

to

you

through

the

APIs.

If

you

are

a

systems

designer

or

integrator

who

is

designing

a

Content

Manager

for

iSeries

system

or

application,

you

need

to

understand

how

Content

Manager

for

iSeries

works

and

how

to

create

new

applications

for,

or

integrate

existing

applications

with,

Content

Manager

for

iSeries.

This

book

describes

how

each

component

and

its

corresponding

functions

can

meet

your

technical,

design,

and

business

requirements

for

imaging,

workflow,

or

other

applications.

If

you

are

a

system

administrator

responsible

for

administering

and

supporting

Content

Manager

for

iSeries

implementations,

you

can

use

this

book

as

a

reference.

To

successfully

program

with

Content

Manager

for

iSeries,

you

need

experience

developing

applications

in

C,

COBOL,

or

RPG

and

the

OS/400®

environment

for

server-side

programming.

For

client-side

programming,

you

need

experience

with

OLE,

VisualBasic,

C++

and/or

C,

as

well

as

experience

with

the

Windows

environment.

How

This

Book

Is

Organized

This

book

contains

the

following

information.

v

Chapter

1,

“Introducing

Content

Manager

for

iSeries,”

on

page

1

introduces

the

software

and

hardware

components

of

Content

Manager

for

iSeries

and

the

APIs

available

with

Content

Manager

for

iSeries.

v

Chapter

2,

“Content

Manager

for

iSeries

Concepts,”

on

page

5

introduces

you

to

Content

Manager

for

iSeries

concepts

and

capabilities.

v

Chapter

5,

“Using

the

OLE

Automation

Interface,”

on

page

173

shows

you

how

to

enable

another

Windows-based

application

to

log

on

to

Content

Manager

for

iSeries

and

perform

various

tasks

within

the

Client

for

Windows

using

APIs

that

are

based

on

OLE

2.0

Automation.

©

Copyright

IBM

Corp.

1997,

2004

vii

v

“Sample

High-Level

Programming

Interface

for

Visual

Basic”

on

page

203

shows

you

how

to

enable

another

Windows-based

application

to

log

on

to

Content

Manager

for

iSeries

and

perform

various

tasks

within

the

Client

for

Windows

using

APIs

that

are

based

on

OLE

2.0

Automation.

v

Chapter

3,

“Application

Programming

Interfaces,”

on

page

11

describes

the

Content

Manager

for

iSeries

common

application

programming

interfaces.

v

Chapter

4,

“Common

Data

Structures,”

on

page

133

describes

the

common

data

structures

and

database

tables

you

can

use

to

manipulate

and

manage

objects

and

classes

of

objects.

v

“Properties

and

Methods

of

OLE

Objects

for

Windows”

on

page

177

describes

the

properties

and

methods

associated

with

all

client

application

objects.

v

Chapter

6,

“Sample

High-Level

Programming

Interface,”

on

page

203

provides

samples

of

high

level

application

programming

interfaces

for

windows.

v

Chapter

7,

“Content

Manager

for

iSeries

Programming

Interface

APIs

on

the

Server,”

on

page

245

provides

information

about

the

Content

Manager

for

iSeries

server

versions

of

APIs.

v

Chapter

8,

“Content

Manager

for

iSeries

User

Exits,”

on

page

249

gives

you

the

Content

Manager

for

iSeries

user

exits.

v

Appendix

A,

“Guidelines

for

Search

Expressions,”

on

page

291

gives

you

some

guidelines

to

follow

when

you

are

searching

the

Client

for

Windows

.

v

Appendix

B,

“Predefined

Content

Classes,”

on

page

295

lists

the

predefined

content

classes

for

Content

Manager

for

iSeries.

v

Appendix

C,

“External

References,”

on

page

299

describes

how

to

access

data

in

other

repositories

by

using

the

Content

Manager

for

iSeries

Windows

client

and

programming

interfaces.

What’s

New

in

Version

5.3

This

edition

of

IBM®

Content

Manager

OnDemand

for

iSeries™:

Application

Programming

Guide

and

Reference

contains

new

technical

information.

There

may

be

some

instances

where

changes

were

made,

but

change

bars

are

missing.

Significant

changes

to

note

are:

Expanded

the

capability

to

store

ten-character

userids.

In

previous

releases,

only

the

first

eight

characters

of

the

userid

were

used.

Important:

Many

files

have

been

modified

to

support

ten-character

userids.

If

you

support

external

references

and

read

or

write

to

the

EKD0314

file,

it

might

be

necessary

to

recompile

your

custom

programs

to

support

the

expansion

of

the

userid

field

in

the

file

format.

How

to

Use

This

Book

Use

Chapter

1,

“Introducing

Content

Manager

for

iSeries,”

on

page

1

to

familiarize

yourself

with

Content

Manager

for

iSeries.

Refer

to

Chapter

2,

“Content

Manager

for

iSeries

Concepts,”

on

page

5

for

conceptual

information

about

how

to

use

the

Content

Manager

for

iSeries

components.

viii

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

|
|
|

|

|
|
|
|

|
|
|
|
|

Style

Conventions

To

help

you

understand

the

text,

this

book

uses

the

following

conventions:

Convention

Stands

for

Upper

and

lowercase

Column

names

in

library

server

database

Tables

(example:

Owner

UserID)

UPPERCASE

Column

names

in

object

server

database

tables

Constants

Data

structure

names

Data

types

Database

table

names

Return

codes

from

function

calls

Bold

Mixed

Case

API

function

names

(example:

SimLibLogon)

BOLD

UPPERCASE

Field

values

to

specify

Parameter

values

to

specify

ITALIC

UPPERCASE

The

maximum

length

of

a

field

Italic

Field

names

in

data

structures

Names

of

books

as

references

Parameter

names

in

API

functions

Terms

defined

for

the

first

time

in

the

book

Prerequisite

and

related

information

Use

the

iSeries

Information

Center

as

your

starting

point

for

looking

up

iSeries

technical

information.

You

can

access

the

Information

Center

in

one

of

two

ways:

v

From

the

following

Web

site:

http://www.ibm.com/eserver/iseries/infocenter

v

From

CD-ROMs

that

ship

with

your

Content

Manager

for

iSeries

order:

iSeries

Information

Center,

SK3T-4091-04.

This

package

also

includes

the

PDF

versions

of

the

Content

Manager

for

iSeries

publications

in

iSeries

Information

Center:

Supplemental

Manuals,

SK3T-4092-01,

which

replaces

the

Softcopy

Library

CD-ROM.

The

IBM

iSeries

Information

Center

contains

advisors

and

important

topics

such

as

CL

commands,

system

application

programming

interfaces

(APIs),

logical

partitions,

clustering,

Java™,

TCP/IP,

Web

serving,

and

secured

networks.

It

also

includes

links

to

related

IBM

Redbooks™

and

Internet

links

to

other

IBM

Web

sites

such

as

the

Technical

Studio

and

the

IBM

home

page.

Go

to

http://www-3.ibm.com/software/data/cm/cmgr/400/library.html

to

access

the

Content

Manager

for

iSeries

publications

from

the

product

Web

site.

The

publications

are

listed

in

Table

1.

Table

1.

IBM

Content

Manager

for

iSeries

5.3

publications

Title

Publication

number

IBM

Content

Manager

for

iSeries:

Planning

and

Installing

SC27-1133

IBM

Content

Manager

for

iSeries:

Getting

Started

with

Client

for

Windows

GC27-1135

About

This

Book

ix

|

|
|

|

|

|
|
|
|

|
|
|
|
|

|
|
|

||

||

|
|
|

|
|
|

Table

1.

IBM

Content

Manager

for

iSeries

5.3

publications

(continued)

Title

Publication

number

IBM

Content

Manager

for

iSeries:

System

Administration

Guide

SC27-1136

IBM

Content

Manager

for

iSeries:

Messages

and

Code

SC27-1137

IBM

Content

Manager

for

iSeries:

Understanding

Advanced

Workflow

SC27-1138

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SC27-1139

Support

available

on

the

Web

Product

support

is

available

from

IBM

support

at

http://www-
3.ibm.com/software/data/cm/cmgr/400/support.html.

iSeries

Navigator

IBM

iSeries

Navigator

is

a

powerful

graphical

interface

for

managing

your

iSeries

servers.

iSeries

Navigator

functionality

includes

system

navigation,

configuration,

planning

capabilities

and

online

help

to

guide

you

through

your

tasks.

iSeries

Navigator

operation

and

administration

of

the

server

easier

and

more

productive

and

is

the

only

user

interface

to

the

new

advanced

features

of

the

OS/400

operating

system.

It

also

includes

Management

Central

for

managing

multiple

servers

from

a

central

server.

For

more

information

about

iSeries

Navigator,

see

the

Information

Center.

How

to

send

your

comments

Your

feedback

helps

IBM

to

provide

quality

information.

Please

send

any

comments

that

you

have

about

this

publication

or

other

IBM

Content

Manager

for

iSeries

documentation.

You

can

use

either

of

the

following

methods

to

provide

comments:

v

Send

your

comments

from

the

Web.

Visit

the

IBM

Data

Management

Online

Reader’s

Comment

Form

(RCF)

page

at:

http://www.ibm.com/software/data/rcf

You

can

use

the

page

to

enter

and

send

comments.

v

Send

your

comments

by

e-mail

to

comments@vnet.ibm.com.

Be

sure

to

include

the

name

of

the

product,

the

version

number

of

the

product,

and

the

name

and

part

number

of

the

book

(if

applicable).

If

you

are

commenting

on

specific

text,

please

include

the

location

of

the

text

(for

example,

a

chapter

and

section

title,

a

table

number,

a

page

number,

or

a

help

topic

title).

x

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

|

||

|
|
|

|
|
|

|
|
|

|
|
|

|

|

|
|

|

|
|
|
|
|
|
|

|

Chapter

1.

Introducing

Content

Manager

for

iSeries

This

overview

explains

the

ways

to

implement

Content

Manager

for

iSeries

components.

This

information

is

a

framework

for

you

to

use

to

determine

how

to

make

the

most

of

the

Content

Manager

for

iSeries

APIs

as

you

create

your

applications.

It

includes

an

overview

of

the

following

Content

Manager

for

iSeries

components:

Client

Application

Program

The

client

application

you

use

can

be

the

client

application

program

delivered

with

Content

Manager

for

iSeries

or

an

application

that

you

develop.

Content

Manager

for

iSeries

APIs

Content

Manager

for

iSeries

APIs

are

high-level

programming

interfaces

that

let

you

access

and

manipulate

data

stored

on

a

host

server.

Client

Interfaces

for

Windows

The

client

APIs

for

Windows

provide

a

programming

interface

you

can

use

to

develop

your

own

Windows-based

client

applications

for

Content

Manager

for

iSeries.

With

Content

Manager

for

iSeries,

you

can

develop

a

customized

document

management

solution

that

includes

a

host

server

and

information-processing

capabilities

for

multiple

media

types.

Using

Content

Manager

for

iSeries,

you

can

create

image

and

other

applications

to

automate

and

gain

control

of

the

information

your

enterprise

processes

each

day.

You

can

increase

productivity

and

security,

lower

storage

costs,

and

improve

customer

service.

Content

Manager

for

iSeries

offers

tailorable

document

processing

for

both

large

and

small

organizations.

Content

Manager

for

iSeries

lets

users

capture,

store,

and

retrieve

documents

on-line

and

provides

document,

folder,

and

work

management

capabilities.

Content

Manager

for

iSeries

also

provides

extensive

data

integrity

and

security.

Content

Manager

for

iSeries

consists

of

Windows

clients

connected

to

an

iSeries

server.

It

provides

enterprise-wide

access

to

document

processing,

storage,

and

management.

That

way,

Content

Manager

for

iSeries

lets

multiple

departments

of

an

enterprise,

located

in

one

or

several

locations,

access

their

own

documents

as

well

as

enterprise

documents.

A

Closer

Look

at

Content

Manager

for

iSeries

Content

Manager

for

iSeries

offers

a

complete

document

management

system

through

its

client/server

architecture.

Once

you

understand

the

client/server

concept,

you

can

then

take

a

closer

look

at

all

the

key

components

that

make

up

Content

Manager

for

iSeries.

Client/Server

Relationship

Content

Manager

for

iSeries

consists

of

a

client

connected

to

one

or

more

host

servers.

The

host

server

maintains

document

and

folder

index

information,

document

and

folder

relationships,

work-in-process

information,

and

interacts

with

the

client.

©

Copyright

IBM

Corp.

1997,

2004

1

Content

Manager

for

iSeries

Components

Content

Manager

for

iSeries

consists

of

a

client,

the

client

application

program,

a

host

server,

and

Content

Manager

for

iSeries

APIs.

You

can

use

Content

Manager

for

iSeries

to

develop

additional

clients.

The

following

figure

shows

the

major

components

of

Content

Manager

for

iSeries.

Client

Application

The

Content

Manager

for

iSeries

client

application

provides

document

and

folder

management,

scanning

support,

import

and

export,

work

management,

and

search

capabilities

built

on

the

Content

Manager

for

iSeries

APIs.

The

client

application

program

provides

a

complete

end-user

interface

for

Content

Manager

for

iSeries.

You

can

configure

the

client

application

program

to

meet

the

Figure

1.

The

Main

Components

of

Content

Manager

for

iSeries

2

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

specific

needs

of

your

enterprise.

User

exits

provide

points

where

you

can

provide

application-specific

processing

routines

to

customize

the

client

application

program.

The

client

application

program

provides

APIs

to

let

you

integrate

folder

management,

work

management,

and

document

management

with

your

existing

information

systems.

You

can

easily

integrate

your

custom

software

and

other

applications

with

the

client

application

program.

You

can

use

the

client

application

program

that

comes

with

Content

Manager

for

iSeries,

write

your

own

application,

or

use

an

application

available

from

IBM

Services

or

Business

Partners.

Content

Manager

for

iSeries

APIs

If

you

choose

to

write

your

own

application,

you

can

use

the

Content

Manager

for

iSeries

APIs

as

the

primary

interface

between

the

Content

Manager

for

iSeries

host

server

and

your

application.

In

the

Content

Manager

for

iSeries

data

model,

the

most

basic

components

are

documents,

folders,

workbaskets,

and

work

packages.

Documents

are

similar

to

paper

documents.

Folders

are

similar

to

folders

in

a

paper

filing

system

and

can

contain

other

folders

or

documents.

A

workbasket

is

a

queue

of

work

for

one

or

more

employees

to

use.

It

is

similar

to

an

in-basket

from

which

to

take

work.

A

work

package

is

an

entry

in

a

workbasket

for

use

in

work

management

and

contains

a

document

or

folder.

Depending

on

the

level

of

access

to

documents,

you

can

perform

the

following

operations

using

these

APIs:

v

Store

a

document

v

Index

a

document

or

folder

v

Retrieve

a

document

or

folder

The

APIs

support

a

wide

range

of

the

functions

available

in

Content

Manager

for

iSeries.

You

can

use

these

APIs

to

create

Windows

or

OS/400

applications.

Content

Manager

for

iSeries

Server

The

Content

Manager

for

iSeries

server

uses

IBM’s

relational

database

technology

to

maintain

document

contents

and

provides

data

integrity

by

performing

the

following

functions:

v

Manage

data

v

Maintain

index

information

v

Control

access

to

documents

stored

in

object

servers

You

can

develop

applications

to

reference

multiple

Content

Manager

for

iSeries

servers.

Chapter

1.

Introducing

Content

Manager

for

iSeries

3

4

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Chapter

2.

Content

Manager

for

iSeries

Concepts

This

section

provides

an

overview

of

the

Content

Manager

for

iSeries

concepts,

including

the

logical

data

model.

In

other

products

of

the

IBM

Content

Manager

for

iSeries

family,

the

term

“folder

manager

data

model”

identifies

a

subset

of

application

programming

interfaces

(APIs)

and

“common

application

programming

interface”

(CAPI)

identifies

a

subset

of

SimLib

interfaces.

In

Content

Manager

for

iSeries,

all

available

programming

interfaces

are

known

as

Content

Manager

for

iSeries

APIs.

Understanding

the

Logical

Data

Model

Content

Manager

for

iSeries

implements

the

folder

manager

data

model,

which

includes

concepts

such

as

items,

objects,

folders,

index

classes,

and

attributes.

This

model

provides

your

application

with

many

capabilities

for

managing

business

objects.

Documents

in

Content

Manager

for

iSeries

are

similar

to

paper

documents.

A

document

consists

of

a

set

of

closely

related

objects,

such

as

pages

in

a

letter

or

report.

Documents

can

contain

one

or

more

parts.

These

parts,

known

as

base

parts,

can

be

pages

or

illustrations

in

a

letter,

report,

or

other

documents.

Other

parts

associated

with

documents

are

annotations

and

notes.

An

annotation

part

associated

with

a

document

can

highlight

sections

of

a

document.

A

note

part

associated

with

a

document

is

textual

information

that

you

attach

to

the

document

to

give

additional

information

to

other

users.

For

example,

you

might

attach

a

note

to

draw

the

reader’s

attention

to

part

of

the

document.

An

event

part

associated

with

a

document

provides

a

historical

trail

of

the

processing

you

perform

on

the

document.

Folders

in

Content

Manager

for

iSeries

are

similar

to

folders

in

a

paper

filing

system.

Each

folder

can

contain

one

or

more

documents

or

other

folders.

Each

folder

has

a

table

of

contents

that

lists

all

the

documents

and

folders

it

contains.

You

can

associate

note

parts

with

a

folder.

Understanding

Workflow

Workflow

describes

the

movement

and

processing

of

work.

The

terms

workflow

and

work

management

are

used

interchangeably.

Workflow

is

the

definitions

and

rules

that

govern

how

work

is

performed.

The

following

terms

are

commonly

used

in

descriptions

of

workflow:

Action

list

An

approved

list

of

the

actions,

defined

by

a

supervisor,

that

a

user

can

perform

on

work

packages.

Ad

hoc

process

A

process

that

is

not

a

defined

workflow

process.

An

ad

hoc

process

is

started

when

a

user

creates

a

work

package

and

assigns

it

directly

to

a

workbasket.

The

user

manually

routes

the

work

package

from

one

workbasket

to

another

by

reassigning

it.

Within

workflow

processing,

the

value

*ADHOC

is

used

in

place

of

process

names

to

indicate

that

the

work

package

is

being

routed

in

an

ad

hoc

manner.

©

Copyright

IBM

Corp.

1997,

2004

5

Collection

point

The

point

where

work

packages

wait

for

specific

events

to

either

occur

or

become

synchronized

before

processing

can

continue.

A

collection

point

is

part

of

a

process.

For

example,

a

collection

point

is

where

work

packages

that

are

part

of

the

process

″open

a

new

account″

must

wait

until

credit

information

is

verified.

Decision

point

The

point

where

work

packages

continue

on

their

current

route

or

switch

to

an

alternate

route,

depending

on

the

specific

information

in

each

work

package.

Decision

points

are

tables

consisting

of

variable

names,

values,

and

routes.

A

decision

point

is

part

of

a

process.

For

example,

a

decision

point

is

where

work

packages

that

are

part

of

the

process

″open

a

new

account″

receive

approval

or

not

based

on

credit

information.

Instance

An

occurrence

of

a

work

package

within

a

process.

If

the

process

consists

of

parallel

routes,

multiple

instances

of

a

work

package

exist.

Process

The

series

of

steps,

events,

and

rules

through

which

a

work

package

flows.

A

process

is

a

combination

of

the

route,

collection

point,

and

decision

point

through

which

a

predefined

type

or

work

package

must

progress.

For

example,

a

process

called

″open

new

account″

would

describe

the

following:

v

The

steps

that

work

packages

related

to

opening

a

new

account

must

follow

v

The

events

(such

as

verifying

credit

information)

that

must

occur

before

work

packages

for

new

accounts

can

be

routed

to

another

point

in

the

system

v

The

decisions

that

determine

whether

to

open

a

new

account

based

on

the

information

for

that

particular

account

(for

example,

a

good

credit

rating

versus

a

poor

one).

Suspend

To

hold

a

work

package

at

a

workbasket

until

stated

criteria

have

been

satisfied.

Work

packages

can

be

suspended

for

multiple

criteria,

therefore

multiple

suspend

requests

can

exist

for

a

work

package.

A

document

work

package

can

be

suspended

for

a

specific

date.

A

folder

work

package

can

be

suspended

for

a

specific

date

or

index

class.

A

suspended

work

package

is

released

when

the

criteria

have

been

met,

or

when

a

user

with

proper

authority

overrides

the

criteria

and

manually

releases

pend

requests.

Work

package

The

work

that

is

routed

from

one

location

to

another.

A

work

package

can

consist

of

a

document,

a

folder,

or

a

customer-defined

collection

of

objects.

Work

packages

can

be

routed

automatically

by

defined

processes,

or

users

can

manually

route

work

packages

in

an

ad

hoc

manner

to

workbaskets

they

specify.

Users

access

and

work

with

work

packages

through

workbaskets.

Workbasket

A

container

that

holds

work

packages.

Workbaskets

can

be

used

as

parts

of

process

definitions

and

ad

hoc

routes.

A

workbasket

definition

includes

the

rules

that

govern

the

presentation,

status,

and

security

of

its

work

packages.

6

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Getting

Information

about

Documents

and

Folders

To

read

the

attributes

of

a

document

or

folder,

an

application

can

open

the

item

(SimLibOpenItemAttr),

read

one

attribute

at

a

time

(SimLibReadAttr),

and

close

the

item

(SimLibCloseAttr).

You

can

also

use

SimLibGetItemSnapshot

to

retrieve

all

the

attributes

and

optional

information.

This

function

retrieves

the

system

attributes,

user-defined

attributes,

workflow

information,

checkout

holder,

and

other

data

about

the

folder

or

document.

Use

this

function

if

you

want

all

of

this

information

and

do

not

need

to

open

the

item

for

subsequent

activities.

SimLibSearch

can

be

used

to

retrieve

user-defined

attributes

for

items

matching

a

predefined

search

criteria.

If

the

snapshot

option

flag

includes

system

attributes

(SIM_SYSTEM_ATTR),

SimLibGetItemSnapshot

returns

four

attributes

in

the

ATTRLISTSTRUCT

array

for

the

current

view

in

addition

to

user-defined

attributes:

v

OIM_ID_ITEM_NAME

v

OIM_ID_CREATE_TIMESTAMP

v

OIM_ID_MODSYS_TIMESTAMP

v

OIM_ID_UID

Your

application

must

not

depend

on

the

order

of

appearance

of

the

attributes

or

on

whether

user-defined

or

system

attributes

come

first.

Instead

of

SimLibGetItemSnapshot,

use

SimLibGetTOCData

to

return

a

snapshot

for

an

entire

list

of

items.

The

TOCENTRYSTRUCT

array

returned

by

SimLibGetTOC

can

be

passed

directly

to

SimLibGetTOCData

for

processing

as

a

group,

if

its

number

of

entries

does

not

exceed

SIM_TOC_MAX_ENTRY_COUNT.

If

the

count

exceeds

the

maximum,

pass

the

entries,

up

to

the

maximum,

one

at

a

time.

Then,

advance

to

the

next

batch

in

the

TOCENTRYSTRUCT

array.

The

list

pointer

to

SimLibGetTOCData

can

reference

an

entry

in

the

array,

and

the

function

begins

processing

at

this

entry.

For

example,

your

application

can

have

basic

logic

similar

to

the

following:

ulRC

=

SimLibGetTOC(hSession,...);

if

(ulRC

!=

SIM_RC_OK)

{

//

process

errors

}

else

{

ulCount

=

count

returned

by

SimLibGetTOC

pTOC

=

TOCENTRYSTRUCT

array

pointer

returned

by

SimLibGetTOC

while

(ulCount

>

0)

{

i

=

minimum

of

ulCount

and

SIM_MAX_TOC_ENTRY_COUNT

ulRC

=

SimLibGetTOCData(hSession,pTOC,i,NULL,pRC);

if

(ulRC

!=

SIM_RC_OK)

{

//

process

errors,

possibly

exit

the

loop

}

else

{

//

process

results

call

SimLibFree

to

release

data

returned

}

ulCount

-=

i;

//

decrement

number

left

to

do

pTOC

+=

i;

//

advance

to

next

set,

if

any

}

close

the

TOC

from

SimLibGetTOC

}

When

you

are

logged

on,

you

must

have

sufficient

privileges

to

get

the

attributes

for

each

item,

or

the

SimLibGetTOC

function

returns

an

error.

Chapter

2.

Content

Manager

for

iSeries

Concepts

7

You

still

might

want

to

take

advantage

of

the

efficiency

of

SimLibGetTOCData,

without

processing

the

entire

set

of

items

from

SimLibGetTOC.

SimLibGetTOCData

skips

an

item

ID

in

the

TOCENTRYSTRUCT

that

is

a

NULL

string.

Because

an

application

might

not

modify

the

TOCENTRYSTRUCT

array

returned

by

the

SimLibGetTOC

function,

copy

the

TOCENTRYSTRUCT

array

to

another

buffer,

and

then

set

the

item

ID

to

NULL.

You

can

also

filter

the

unnecessary

entries

by

copying

the

desired

data

to

a

temporary

TOCENTRYSTRUCT

array

and

passing

that

to

SimLibGetTOCData.

If

the

item

ID

is

NULL,

SimLibGetTOCData

still

returns

an

empty

SNAPSHOTSTRUCT

for

the

item.

You

can

use

the

same

approach

for

processing

a

block

of

items

even

when

they

are

not

returned

by

SimLibGetTOC.

Your

application

can

generate

its

own

list

in

the

same

format

and

pass

that

list

into

SimLibGetTOCData.

As

an

example,

you

can

take

the

results

of

a

search

(SimLibSearch)

and

build

the

TOCENTRYSTRUCT

array

from

the

item

ID

list.

SimLibGetTOCData

requires

the

index

class

of

each

item

in

advance.

SimLibSearch

does

not

return

the

index

class,

but

if

you

restrict

the

search

to

a

single

index

class,

your

application

already

knows

the

index

class

of

each

item

returned

by

the

search.

You

can

also

use

SimLibSearch

directly

to

retrieve

user-defined

or

both

user-defined

and

system-defined

attributes

by

using

the

SIM_SEARCH_USER_ATTR

or

the

SIM_SEARCH_USER_SYSTEM_ATTR

option.

This

is

more

efficient

than

calling

SimLibSearch

to

get

the

item

IDs,

and

then

calling

other

APIs,

such

as

SimLibGetTOCData,

to

retrieve

attribute

information.

Even

though

you

make

a

TOCENTRYSTRUCT

array

that

might

look

like

the

array

from

SimLibGetTOC,

you

cannot

use

a

table

of

contents

function

such

as

Ip2TOCUpdates

on

a

simulated

TOC.

Table

of

contents

functions

require

a

handle

returned

by

SimLibGetTOC.

Supporting

Case-Sensitivity

Content

Manager

for

iSeries

stores

character-string

attributes

exactly

as

presented

by

the

application.

Content

Manager

for

iSeries

always

converts

user

IDs

to

uppercase.

Naming

Folders

The

folder

data

model

for

Content

Manager

for

iSeries

does

not

include

a

folder

name.

A

folder

name

such

as

a

customer

name,

customer

number,

case

name,

or

other

recognizable

text

is

an

index

class

attribute

for

a

class

that

uses

a

folder

name.

To

search

for

a

folder

by

name,

therefore,

your

application

must

know

the

relevant

index

classes

with

folder

names

and

construct

the

appropriate

search.

Changing

an

Item’s

Index

Class

When

you

create

an

item,

it

is

associated

with

an

index

class.

When

your

application

changes

the

index

class

of

the

item,

this

entry

is

updated

to

reflect

the

change.

This

entry

always

contains

the

current

index

class

to

which

the

item

belongs.

A

number

of

Content

Manager

for

iSeries

APIs,

including

SimLibGetItemInfo

and

SimLibGetItemSnapshot

return

this

information

to

your

application.

You

should

use

this

index

class

within

your

application.

8

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

|
|
|

Restricting

Access

to

Items

There

are

two

layers

for

access

control:

the

privileges

that

are

defined

for

a

user

and

access

lists.

The

user

privileges

are

often

referred

to

as

general

privileges.

Access

lists

are

used

to

establish

access

to

index

classes,

workbaskets

and

processes.

An

access

list

is

a

combination

of

a

list

of

users

and

a

set

of

privileges.

Access

lists

add

authority

to

general

privileges;

they

do

not

remove

authority.

In

the

simplest

example

of

authority

control,

all

users

have

access

to

all

items

in

the

library.

To

implement

this

type

of

authority

control,

give

all

users

maximum

privileges.

Since

access

lists

add

authority,

it

is

not

necessary

in

this

example

to

implement

any

access

lists

for

your

index

classes,

workbaskets

or

processes.

There

are,

however,

many

available

levels

of

restricted

access.

One

type

of

restriction

is

to

allow

a

subset

of

users

to

have

access

to

specific

folders

and

documents.

To

do

this,

you

would

first

define

general

privileges

for

all

users

specifying

minimum

access

to

the

index

class

for

the

items.

You

would

then

define

a

list

consisting

of

those

users

and

groups

that

are

allowed

to

work

with

the

index

class.

That

list

of

users

is

then

associated

with

privilege

sets

that

allow

index

class

functions.

The

list

of

users

combined

with

the

special

privilege

settings

produces

an

access

list

that

is

then

used

for

the

index

class.

In

this

way,

users

that

are

not

part

of

the

access

list

are

denied

use

of

the

index

class

and

users

that

are

part

of

the

access

list

are

allowed

to

perform

those

functions

specified

in

the

privilege

set.

SimLibLogon

returns

general

privileges.

Ip2QueryClassPriv

returns

privileges

for

index

classes.

Similarly,

SimWmGetWorkBasketInfo

and

SimWmGetProcessInfo

return

privileges

for

the

workbasket

or

process.

Your

application

can

use

these

privilege

strings

to

establish

in

advance

whether

to

offer

specific

functional

options

to

users.

For

example,

your

application

can

let

a

user

view

an

item

for

which

the

user

does

not

have

delete

authority

without

offering

the

delete

option.

Migrating

Objects

The

Content

Manager

for

iSeries

storage

management

function

allows

objects

to

be

moved

from

one

medium

to

another–from

magnetic

disk

to

optical

storage,

for

example–based

on

controls

that

the

administrator

establishes.

A

collection

name

is

assigned

to

each

object

created

in

the

system.

A

collection

defines

the

storage

management

controls

associated

to

a

group

of

objects

that

typically

have

similar

performance,

availability,

backup,

and

retention

characteristics.

An

application

can

assign

an

object

to

a

different

collection

using

the

SimLibChangeObjectSMS

API.

Chapter

2.

Content

Manager

for

iSeries

Concepts

9

10

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Chapter

3.

Application

Programming

Interfaces

This

section

describes

the

formats

and

parameters

of

the

Content

Manager

for

iSeries

application

programming

interfaces

(APIs).

You

can

recognize

these

APIs

by

their

SimLib,

SimWm,

Sim400,

and

Ip2

prefixes.

For

more

information

about

the

data

structures

for

these

APIs,

see

Chapter

4,

“Common

Data

Structures,”

on

page

133.

Compiling

and

Linking

Content

Manager

for

iSeries

Applications

Content

Manager

for

iSeries

can

be

accessed

through

the

Content

Manager

for

iSeries

APIs.

You

need

the

following

files

to

build

and

run

applications

to

access

Content

Manager

for

iSeries:

EKDVIAPI.H

The

structures,

macros,

and

function

prototypes

for

the

Content

Manager

for

iSeries

APIs.

EKDVIAPI.H

includes

the

following

header

files:

EKDVIERR.H

Error

numbers

and

descriptive

names.

The

name

is

logged

in

Content

Manager

for

iSeries

for

any

error

detected.

EKDVILIB.H

Library

API

definitions.

EKDVITYP.H

Constants

and

common

type

definitions.

EKDVIWM.H

Workflow

API

prototypes.

EKDWS.LIB

LIB

file

required

to

link

with

EKDWS.DLL.

EKDWS.DLL

All

API

functions.

EKDWS35I.DLL

IBM

VisualAge

runtime

DLL.

These

files

are

installed

when

you

install

the

IBM

Content

Manager

for

iSeries

Windows

Client

Toolkit.

Applications

must

access

headers

as

follows:

#include

"EKDVIAPI.H"

If

you

are

not

using

VisualAge,

the

LIB

file

must

be

regenerated

using

ILIB

or

an

equivalent

command.

The

Content

Manager

for

iSeries

APIs

use

code

page

conversion

tables

from

VisualAge.

Your

installation

program

should

install

the

required

files

for

the

code

pages

that

are

to

be

used

for

any

given

installation.

The

code

page

conversion

files

are

located

in

the

FRNROOT\ICONV

and

FRNROOT\UCONVTAB

directories.

You

must

set

the

LOCPATH

environment

variable

to

the

directory

above

(FRNROOT).

You

can

do

this

in

AUTOEXEC.BAT

or

the

Registry,

or

your

application

can

do

it

before

the

call

to

SimLibLogon.

Doing

this

ensures

that

the

variable

is

always

set,

which

prevents

conflicts

with

other

products.

Client

tracing

and

logging

can

be

enabled

to

aid

in

problem

determination.

The

environment

variables

below

can

be

set

to

any

value

to

control

tracing.

Results

are

©

Copyright

IBM

Corp.

1997,

2004

11

logged

to

VI400.LOG

in

the

working

directory

or

path

specified

in

the

VI400_LOG_PATH

environment

variable.

The

file

is

overwritten

when

the

first

call

is

made

(such

as

to

SimLibLogon).

VI400_LOG_PATH

Path

for

VI400.LOG

VI400_LOG_TRACE

Function

entry

and

exit

VI400_LOG_PERFORMANCE

Trace

and

data

transmission

time

VI400_LOG_DATA

Data

sent

to

and

received

from

the

iSeries

system

VI400_LOG_STORAGE

Content

Manager

for

iSeries

object

storage

allocation

and

de-allocation

VI400_LOG_LOCKS

Log

lock

and

unlock

operations

for

each

API

VI400_LOG_ALL

All

trace

levels

The

FRNOLINT.TBL

file

is

used

to

contain

entries

that

define

Content

Manager

for

iSeries

servers.

It

must

be

located

in

the

path

from

which

the

program

was

started

or

the

path

contained

in

the

VI400_CONFIG_PATH

environment

variable.

The

following

is

an

APPC

and

a

TCP/IP

example:

SERVER:

MYVI400

REMOTE

APPC

LU_NAME

=

USIBMNR.AS400DS1

TP

=

EKDCS01P.EKDCS01P.QVI

MODE

=

QPCSUPP

SERVER_TYPE

=

FRNLS400

SERVER:

MYVI400

REMOTE

TCPIP

HOSTNAME

AS400DS1

PORT

31098

SERVER_TYPE

=

FRNLS400

In

this

example,

if

the

database

name

passed

to

SimLibLogon

is

MYVI400,

the

above

entry

would

be

used

to

connect

to

the

iSeries

system.

Since

the

path

in

the

VI400_CONFIG_PATH

environment

variable

accesses

FRNOLINT.TBL,

it

can

be

placed

on

a

network

drive

or

in

a

directory

on

an

iSeries

that

is

accessed

through

Client

Access

or

an

equivalent

product.

If

the

environment

variable

is

not

set,

the

file

is

accessed

in

the

current

directory

–

namely,

the

Start

in

directory

specified

in

the

Shortcut

page

of

the

Properties

for

the

icon.

EKDVIERR.H

should

be

in

the

path

defined

in

VI400_CONFIG_PATH.

This

file

is

used

to

log

the

descriptive

name

of

each

Content

Manager

for

iSeries

return

code.

Application

Programming

Interfaces

SimLibAddFolderItem

(Add

an

Item

to

a

Folder)

Format

SimLibAddFolderItem(

hSession,

pszFolderID,

pszItemID,

pAsyncCtl,

pRC

)

12

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Purpose

Use

the

SimLibAddFolderItem

function

to

add

a

document

or

a

folder

item

to

an

existing

folder.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszFolderID

PITEMID

—

input

The

identifier

of

the

folder.

Use

the

item

ID

of

an

existing

folder

to

which

you

want

to

add

a

document

or

a

folder

item.

This

folder

does

not

need

to

be

open.

pszItemID

PITEMID

—

input

The

identifier

of

an

item.

Use

the

item

ID

of

the

document

or

the

folder

item

that

you

are

adding

to

the

folder.

The

item

cannot

already

exist

in

the

folder.

Do

not

use

the

identifier

of

the

same

folder

that

you

specified

in

the

pszFolderID

parameter.

You

cannot

add

a

folder

to

itself.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

the

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field

ulParam1

The

function

does

not

use

this

field

ulParam2

The

function

does

not

use

this

field

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_ITEM_OR_FOLDER

v

SIM_RC_INVALID_PITEMIDFOLDER_PTR

v

SIM_RC_INVALID_PITEMIDFOLDER_VALUE

v

SIM_RC_INVALID_PITEMIDITEM_PTR

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PITEMIDFOLDER_NOT_A_FOLDER

v

SIM_RC_PITEM_NOT_FOLDER_OR_DOCUMENT

v

SIM_RC_PRIVILEGE_ERROR

SimLibAddFolderItem

Chapter

3.

Application

Programming

Interfaces

13

Guidelines

for

Use

Preparation:

v

To

create

a

folder,

use

the

SimLibCreateItem

function.

v

A

document

or

folder

can

be

in

multiple

folders

at

the

same

time.

v

A

folder

and

the

items

it

contains

can

all

have

different

index

classes.

Restrictions:

v

You

cannot

add

a

folder

to

itself.

v

This

function

does

not

automatically

update

the

temporary

copy

of

the

folder

table

of

contents.

You

must

use

the

Ip2GetTOCUpdates

or

Ip2GetTOC

function

to

update

your

temporary

copy

of

the

folder

table

of

contents.

Example

#include

<windows.h>

/*

Main

Windows

header

files

*/

#include

<sys\types.h>

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

<stdlib.h>

/*

Standard

library

header

files

*/

#include

<stdarg.h>

#include

<stddef.h>

#include

<io.h>

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

main

()

{

HSESSION

hSession;

/*

Product

session

handle

*/

PITEMID

pszFolderID;

/*

ID

of

the

folder

*/

PITEMID

pszItemID;

/*

ID

of

the

item

to

be

added

*/

RCSTRUCT

RCStruct;

/*

RC

data

structure

*/

USHORT

sResult;

/*

return

codes

*/

/***/

/*Initialize

folderID

and

itemID

*/

/***/

memset

(pszFolderID,

’\0’,

DOC_ID_SIZE);

/*

set

to

null

*/

strcpy

((CHAR

*)pszFolderID,

(CHAR

*)

"F000000001");

memset

(pszItemID,

’\0’,

DOC_ID_SIZE);

/*

set

to

null

*/

strcpy

((CHAR

*)pszItemID,

(CHAR

*)

"DA97220AA.AAB");

/**/

/*

Call

SimLibAddFolderItem

to

place

a

new

document

in

a

folder

*/

/**/

sResult

=

SimLibAddFolderItem(

hSession,

/*

ses’n

handle

from

SimLibLogon

*/

pszFolderID,

/*

add

item

to

this

folder

*/

pszItemID,

/*

add

this

item

to

above

folder

*/

(PASYNCCTLSTRUCT)

NULL,

/*

Request

SYNCHRONOUS

processing*/

(PRCSTRUCT)

&RCStruct

/*

Pointer

to

RC

data

structure

*/

);

if

(sResult

!=

SIM_RC_OK)

{

printf("Add

folder

item

failed

\n");

}

}

Related

Functions

v

SimLibGetTOCData

v

Ip2GetTOCUpdates

v

Ip2TOCCount

v

SimLibGetTOC

SimLibAddFolderItem

14

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

SimLibRemoveFolderItem

SimLibCatalogObject

(Catalog

an

Object)

Format

SimLibCatalogObject(

hSession,

hObj,

ulConCls,

pSMS,

pszFullFileName,

ulPriority,

fCreateControl,

ulVersion,

lSeqAfterPart,

ulAffiliatedType,

pAffiliatedData,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibCatalogObject

function

to

create

a

new

object

from

the

file

that

you

specify.

Use

this

function

when

your

data

is

already

in

a

file

rather

than

in

memory.

Your

application

can

substitute

this

function

for

the

following

sequence

of

Content

Manager

for

iSeries

functions:

v

SimLibCreateObject

v

SimLibOpenObject

v

SimLibWriteObject

v

SimLibCloseObject

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObj

HOBJ

—

input

The

pointer

to

an

object

handle

block

in

the

HOBJ

data

structure.

For

more

information

on

the

HOBJ

data

structure,

see

“HOBJ

(Handle

to

Query

Stored

Object)”

on

page

143.

“Guidelines

for

Use”

describes

the

effects

of

your

input

to

this

data

structure.

ulConCls

ULONG

—

input

The

content

class

identifier

for

the

object

(see

Appendix

B,

“Predefined

Content

Classes,”

on

page

295).

The

value

of

this

parameter

tells

what

kind

of

data

is

in

the

object

that

you

are

cataloging.

To

indicate

an

undefined

content

class,

specify

the

value

SIM_CC_UNKNOWN

for

this

parameter.

However,

if

you

do

not

use

a

defined

content

class,

other

applications

cannot

use

Content

Manager

for

iSeries

content

class

services

to

determine

how

to

manipulate

the

contents

of

objects

that

you

store.

pSMS

PSMS

—

input

Pointer

to

a

system-managed

storage

(SMS)

structure

for

an

object.

This

structure

uses

only

szCollectionName.

pszFullFileName

PSZ

—

input

The

pointer

to

a

fully

qualified

directory

path

and

file

name

ulPriority

USHORT

—

input

Not

supported.

SimLibAddFolderItem

Chapter

3.

Application

Programming

Interfaces

15

fCreateControl

BITS

—

input

Control

option

bits

for

the

cataloging

operation.

The

valid

values

are:

SIM_CLOSE

Closes

the

object

on

completion

of

the

request.

SIM_OPEN

Leaves

the

object

open

in

update

mode.

ulVersion

ULONG

—

input

Not

supported.

lSeqAfterPart

LONG

—

input

Not

supported.

ulAffiliatedType

LONG

—

input

The

type

of

affiliated

object.

The

defined

values

are:

SIM_ANNOTATION

Indicates

that

the

object

is

an

annotation

associated

with

a

folder

or

a

document.

SIM_BASE

Indicates

that

the

object

is

a

base

object

such

as

a

Mixed

Object

Document

Content

Architecture

(MO:DCA)

or

Tag

Image

File

Format

(TIFF)

file.

SIM_EVENT

Indicates

that

the

object

is

an

event

associated

with

a

folder

or

a

document.

SIM_MGDS

Indicates

that

the

object

is

an

MGDS

(machine-generated

data

stream)

associated

with

a

folder

or

a

document.

SIM_NOTE

Indicates

that

the

object

is

a

note

associated

with

a

folder

or

a

document.

pAffiliatedData

PVOID

—

input

The

pointer

to

a

data

structure

of

the

type

ANNOTATIONSTRUCT.

If

the

ulAffiliatedType

parameter

contains

the

value

SIM_ANNOTATION,

pAffiliatedData

points

to

this

structure,

which

contains

additional

data

affiliated

with

the

object.

Otherwise,

the

Content

Manager

for

iSeries

system

ignores

this

parameter.

For

more

information

on

the

ANNOTATIONSTRUCT

structure,

see

“ANNOTATIONSTRUCT

(Annotation

Information

Structure)”

on

page

134.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input

/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

SimLibCatalogObject

16

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

ulParam1

Contains

hObj,

an

HOBJ

pointer

to

an

object

handle

block.

ulParam2

If

you

specified

SIM_OPEN

as

a

flag

in

the

fCreateControl

parameter

and

the

field

is

not

NULL,

it

contains

the

object

access

handle.

This

handle

has

the

data

type

HOBJACC.

The

value

in

this

field

identifies

the

current

instance

of

the

accessed

object.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_INVALID_FOPTIONS

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_LOCAL_STORAGE_MODE

v

SIM_RC_INVALID_OBJECT_HANDLE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_SMS_PTR

v

SIM_RC_NOT_SUPPORTED

v

SIM_RC_OBJECT_ALREADY_EXISTS

v

SIM_RC_OPEN_FAILED

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Preparation:

v

The

object

that

you

catalog

must

exist

as

a

file.

v

To

get

the

defined

values

for

the

ulConCls

parameter,

use

the

Ip2ListContentClasses

function.

Effects:

v

This

function

creates

an

object

and

writes

to

that

object

the

contents

of

the

file

that

you

specify.

v

On

successful

completion,

this

function

returns

an

object

handle

that

you

can

use

to

access

the

object.

Your

input

values

in

the

HOBJ

data

structure

affect

the

results

of

this

function.

Input

values

for

the

szItemID,

ulPart,

and

chRepType

fields

in

that

structure

are

optional.

If

0

is

specified

for

the

part

number,

the

next

sequential

part

number

is

created.

If

part

number

is

nonzero,

that

part

number

is

used

if

it

does

not

already

exist.

If

it

does

exist,

the

first

available

number

is

returned.

Part

number

1

is

typically

a

base

part.

This

API

lets

you

create

part

number

2

–

for

example,

a

note

–

before

creating

part

number

1.

v

If

you

do

not

specify

the

SIM_OPEN

flag

for

the

fCreateControl

parameter,

the

object

is

closed,

but

you

can

open

it

using

the

SimLibOpenObject

function.

Then

you

can

access

the

object

by

using

the

object

access

handle

that

the

function

returns.

You

must

use

the

object

handle

when

referencing

this

object.

v

Although

your

application

can

store

its

own

affiliated

types,

other

applications

may

not

be

able

to

process

those

objects.

SimLibCatalogObject

Chapter

3.

Application

Programming

Interfaces

17

Exceptions:

The

content

class

parameter

is

not

validated

as

a

defined,

known

content

class.

Follow-Up

Tasks:

v

If

you

specify

SIM_OPEN,

close

the

object

when

you

finish

with

it,

using

the

SimLibCloseObject

function.

v

After

you

finish

using

the

pointer

to

the

object

handle

block,

free

its

space

by

using

the

SimLibFree

function.

Example

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

<string.h>

/*

Standard

string

header

file

*/

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

main

()

{

HSESSION

hSession;

//

from

logon

HOBJ

hObj;

HOBJ

hObj2;

//get

pointer

from

catalog

ULONG

ulConCls

=

SIM_CC_MODCA_IS2;

//

mod:ca

object

SMS

sms;

CHAR

pszFullFileName[45];

UCHAR

ulPriority

=

0;

//

not

supported

BITS

fCreateControl

=

SIM_OPEN;

//leave

open-get

hobjacc

ULONG

ulVersion

=

0;

//

not

supported

LONG

lSeqAfterPart

=

0;

//

take

default

ULONG

ulAffiliatedType

=

SIM_BASE;

//

base

part

PVOID

pAffiliatedData

=

NULL;

//

no

affil

data

for

base

part

RCSTRUCT

RC;

PRCSTRUCT

pRC

=

&RC;

POBJ

pObj;

//

Created

object

handle

HOBJACC

hObjAcc;

//

object

access

handle

USHORT

sResult;

//

return

codes

//

create

hobj

if(0==(

pObj=malloc(sizeof(OBJ))))

{

return(1);

}

(

pObj)->ulStruct

=

sizeof(OBJ);

strcpy((

pObj)->szItemID,"");

strcpy((

pObj)->chRepType,"");

(

pObj)->ulPart

=

0;

hObj

=

pObj;

strcpy(pszFullFileName,

"d:\\spid\\modca.mda");

memset(SMS,0,

sizeof(sms));

//

null

out

struct

to

get

defaults

strcpy(SMS.szCollectionName,

"*DFT");

sResult

=

SimLibCatalogObject(

hSession,

hObj,

ulConCls,

SMS,

pszFullFileName,

ulPriority,

fCreateControl,

ulVersion,

lSeqAfterPart,

ulAffiliatedType,

pAffiliatedData,

0,

pRC);

if

(pRC

->ulRC

==

SUCCESS)

{

//

When

only

HOBJ

is

returned,

it

is

in

ulParam1

hObj2

=

(HOBJ)pRC->ulParam1;

SimLibCatalogObject

18

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

//

Free

memory

allocated

for

HOBJ

SimLibFree(hSession,

(PVOID)(hObj2),

pRC);

//

Mem

containing

the

HOBJACC

struct

is

freed

by

SimLibCloseObject.

hObjAcc

=

pRC->ulParam2;

//

object

access

handle

}

}

Related

Functions

v

Ip2ListContentClasses

v

SimLibCloseObject

v

SimLibCreateItem

v

SimLibCreateObject

v

SimLibFree

v

SimLibOpenObject

v

SimLibWriteObject

SimLibChangeIndexClass

(Change

the

Index

Class

for

an

Item)

Format

SimLibChangeIndexClass(

hSession,

hItem,

usClassId,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibChangeIndexClass

function

to

change

the

index

class

of

an

item

to

the

index

class

that

you

specify.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hItem

HITEM

—

input

The

handle

to

a

virtual

item.

The

SimLibOpenItemAttr

function

returns

this

handle.

usClassId

USHORT

—

input

The

identifier

of

the

index

class

to

change

to.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

SimLibCatalogObject

Chapter

3.

Application

Programming

Interfaces

19

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HITEM_VALUE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PASSED_ATTRIBUTE_DATA

v

SIM_RC_INVALID_PATTRIBUTE_PTR

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USATTRIBUTEID_VALUE

v

SIM_RC_INVALID_USCLASSID_VALUE

v

SIM_RC_NO_WRITE_ACCESS

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Preparation:

Before

you

can

use

this

function,

you

must

use

SimLibOpenItemAttr

to

open

the

item

for

write

access.

Effects:

v

By

changing

the

index

class

of

an

item,

this

function

associates

a

different

user-defined

attribute

set

with

that

item.

v

If

the

item

is

not

open

for

write

access,

the

function

returns

error

SIM_RC_NO_WRITE_ACCESS.

v

If

the

function

fails,

the

Content

Manager

for

iSeries

system

maintains

the

current

attribute

set

for

this

item.

v

If

any

index

class

attributes

are

common

to

both

the

original

index

class

and

the

new

one

you

specify

for

the

item,

the

function

copies

those

attributes

to

the

new

index

class.

Your

application

can

then

use

the

SimLibWriteAttr

function

to

set

the

new

index

class

attributes

to

the

values

you

want.

After

you

specify

all

the

required

attribute

values

for

the

new

index

class,

you

can

make

these

values

permanent

by

saving

changes

to

the

item

using

SimLibSaveAttr

or

SimLibCloseAttr.

v

Use

SimLibGetClassInfo

to

determine

the

attributes

associated

with

an

index

class

and

SimLibGetAttrInfo

to

get

details

about

an

attribute.

v

SimLibOpenItemAttr

does

not

validate

if

the

user

has

SIM_ACCESS_READ_WRITE

authority.

This

authority

is

validated

when

SimLibCloseAttr

is

called

with

the

SIM_OPT_SAVE

parameter.

Related

Functions

v

SimLibCloseAttr

v

SimLibGetAttrInfo

v

SimLibGetClassInfo

v

SimLibOpenItemAttr

v

SimLibSaveAttr

v

SimLibWriteAttr

SimLibChangeIndexClass

20

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SimLibChangeObjectSMS

(Change

the

SMS

Criteria

for

an

Object)

Format

SimLibChangeObjectSMS(

hSession,

hObj,

pSMS,

fChangeControl,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibChangeObjectSMS

function

to

modify

the

system-managed

storage

(SMS)

criteria

for

an

object.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObj

HOBJ

—

input

The

pointer

to

an

object

handle

block

in

the

HOBJ

data

structure.

For

more

information

on

the

HOBJ

structure,

see

“HOBJ

(Handle

to

Query

Stored

Object)”

on

page

143.

pSMS

PSMS

—

input

Pointer

to

a

system-managed

storage

(SMS)

structure

for

an

object.

This

structure

uses

only

szCollectionName.

fChangeControl

BITS

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_FOPTIONS

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_ITEMID

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

SimLibChangeObjectSMS

Chapter

3.

Application

Programming

Interfaces

21

v

SIM_RC_INVALID_PSMS_VALUE

v

SIM_RC_INVALID_SMS_PTR

v

SIM_RC_NEW_COLLECTION_NOT_FOUND

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PART_NOT_FOUND

v

SIM_RC_PRIVILEGE_ERROR

Related

Functions

v

SimLibCreateObject

v

SimLibQueryObject

SimLibCloseAttr

(Close

an

Attribute

Set)

Format

SimLibCloseAttr(

hSession,

hItem,

ulDisposition,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibCloseAttr

function

to

release

the

access

rights

that

your

application

has

to

the

folder

or

document

you

specify.

You

can

use

this

function

to

replace

the

permanent

attributes

of

the

item

in

the

database

with

modifications

that

have

been

made

to

the

virtual

item.

Alternatively,

you

can

use

this

function

to

discard

modifications

to

the

virtual

item

without

updating

the

permanent

attributes.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hItem

HITEM

—

input

The

handle

to

a

virtual

item.

The

SimLibOpenItemAttr

function

returns

this

handle.

ulDisposition

ULONG

—

input

The

action

to

take

regarding

modifications

to

the

item.

The

value

of

this

parameter

determines

whether

the

Content

Manager

for

iSeries

system

saves

or

discards

modifications

to

the

attributes

of

the

virtual

item.

If

the

item

is

accessed

for

reading

only

or

if

none

of

its

attributes

are

changed,

the

Content

Manager

for

iSeries

system

ignores

this

parameter.

The

valid

values

are:

SIM_OPT_SAVE

Updates

the

permanent

attributes

of

the

item

in

the

database

by

using

the

current

attribute

settings

of

the

virtual

item.

All

required

attributes

of

the

index

class

must

be

written

before

closing,

or

the

function

returns

the

error

SIM_RC_REQUIRED_ATTRIBUTE_MISSING.

This

value

is

valid

only

if

the

item

is

open

for

update.

SIM_OPT_DISCARD

Discards

modifications

to

the

attribute

settings

of

the

virtual

item

without

updating

the

permanent

attributes

of

the

item

in

the

database.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

SimLibChangeObjectSMS

22

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_FOPTIONS

v

SIM_RC_INVALID_HITEM_VALUE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USACCESSLEVEL_VALUE

v

SIM_RC_INVALID_USCLASSID_VALUE

v

SIM_RC_INVALID_USDISPOSITION_VALUE

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

v

SIM_RC_REQUIRED_ATTRIBUTE_MISSING

Guidelines

for

Use

Effects:

The

function

closes

the

virtual

attribute

set

and

you

can

no

longer

use

the

access

handle.

The

function

also

frees

the

space

used

by

the

access

handle.

Related

Functions

v

v

SimLibChangeIndexClass

v

SimLibOpenItemAttr

v

SimLibSaveAttr

v

SimLibWriteAttr

SimLibCloseObject

(Close

an

Object)

Format

SimLibCloseObject(

hSession,

hObjAcc,

fCommit,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibCloseObject

function

to

close

an

open

object

and

end

access

to

that

object.

You

must

use

this

function

to

close

objects

that

you

opened

using

any

of

the

following

functions:

v

SimLibCatalogObject

SimLibCloseAttr

Chapter

3.

Application

Programming

Interfaces

23

v

SimLibCreateObject

v

SimLibOpenObject

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObjAcc

HOBJACC

—

input

The

object

access

handle.

The

value

of

this

parameter

identifies

the

current

instance

of

the

accessed

object.

fCommit

BOOL

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_FOPTIONS

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_OBJECT_ACCESS_HANDLE

v

SIM_RC_INVALID_OBJECT_HANDLE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

After

successful

completion

of

the

function,

you

can

no

longer

use

the

access

handle.

The

function

also

frees

the

space

used

by

the

access

handle,

so

SimLibFree

should

not

be

called.

If

SIM_RC_PRIVILEGE_ERROR

is

returned,

you

must

call

SimLibCloseAttr

using

SIM_OPT_DISCARD

to

guarantee

that

the

item

lock

has

been

released.

SimLibCloseObject

24

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Example

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

main

()

{

HSESSION

hSession;

//

get

from

logon

HOBJACC

hObjAcc;

//

get

from

catalog,

open,

or

create

BOOL

fCommit

=

TRUE;

//

keep

the

changes

RCSTRUCT

RC;

PRCSTRUCT

pRC

=

&RC;

USHORT

sResult;

//

return

codes

/*Call

the

function

*/

sResult

=

SimLibCloseObject(

hSession,

hObjAcc,

fCommit,

0,

pRC);

}

Related

Functions

v

SimLibCatalogObject

v

SimLibCreateObject

v

SimLibOpenObject

SimLibCopyObject

(Copy

an

Object)

Format

SimLibCopyObject(

hSession,

hDestObj,

hSrcObj,

pSMS,

ulPriority,

fDelete,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibCopyObject

function

to

copy

an

entire

object

from

a

source

object

location

to

a

target

object

location,

replacing

an

existing

target

object.

Neither

the

source

object

nor

the

target

object

can

currently

be

open.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hDestObj

HOBJ—

input

The

destination

object

handle.

The

value

of

this

parameter

identifies

the

target

object.

hSrcObj

HOBJ—

input

The

source

object

handle.

The

value

of

this

parameter

identifies

the

source

object

that

the

function

copies.

pSMS

PSMS—

input

Not

supported.

ulPriority

ULONG—

input

SimLibCloseObject

Chapter

3.

Application

Programming

Interfaces

25

Not

supported.

fDelete

BOOL—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

If

the

return

code

is

SIM_RC_ITEM_CHECKEDOUT,

this

field

contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

If

the

Content

Manager

for

iSeries

system

returns

any

other

error,

this

field

contains

the

value

NULL.

ulParam1

Contains

the

value

NULL

if

the

return

code

is

SIM_RC_ITEM_CHECKEDOUT.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INUSE

v

SIM_RC_INVALID_FOPTIONS

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_NOT_SUPPORTED_

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Related

Functions

v

SimLibLogon

SimLibCreateItem

(Create

an

Item)

Format

SimLibCreateItem(

hSession,

usItemType,

usIndexClass,

usNumOfAttrs,

pAttributeList,

ulAccessControl,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibCreateItem

function

to

create

a

new

document

or

a

new

folder

in

the

index

class

that

you

specify.

You

must

specify

any

required

attributes

for

that

index

class.

You

can

also

specify

optional

attributes

for

the

item.

Parameters

hSession

HSESSION

—

input

SimLibCopyObject

26

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

usItemType

USHORT

—

input

The

type

of

item

you

want

to

create.

The

valid

values

are:

SIM_DOCUMENT

Indicates

that

the

item

is

a

document.

SIM_FOLDER

Indicates

that

the

item

is

a

folder.

usIndexClass

USHORT

—

input

An

index

class

identifier

for

the

set

of

user-defined

attributes

to

associate

with

this

item.

This

index

class

must

exist

at

the

time

you

log

on.

If

you

do

not

require

any

user-defined

attributes,

use

SIM_INDEX_NOINDEX,

which

is

a

special

index

class

created

during

installation

and

preset

with

user-defined

attributes,

to

indicate

that

the

item

has

not

yet

been

indexed.

“Guidelines

for

Use”

explains

why

it

is

important

to

use

a

predefined

index

class.

usNumOfAttrs

USHORT

—

input

The

number

of

data

structures

in

the

pAttributeList

parameter

array.

pAttributeList

PATTRLISTSTRUCT

—

input

The

pointer

to

an

array

of

ATTRLISTSTRUCT

data

structures

that

contain

the

attributes

to

associate

with

this

document

or

this

folder.

Each

data

structure

in

the

array

specifies

one

attribute.

If

you

set

this

parameter

to

NULL,

no

attributes

are

associated

with

the

item.

For

more

information

on

the

ATTRLISTSTRUCT

data

structure,

see

“ATTRLISTSTRUCT

(Attribute

List

Data

Structure)”

on

page

137.

To

add

attributes

to

the

item

later,

your

application

must

first

open

the

item

and

then

use

separate

functions

to

write

the

attributes

to

it.

ulAccessControl

ULONG

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

If

an

error

occurs,

this

field

contains

the

value

0.

ulParam1

Contains

a

PITEMID

pointer

to

a

buffer

with

the

item

identifier

(pszItemID)

for

the

new

item.

ulParam2

The

function

does

not

use

this

field.

SimLibCreateItem

Chapter

3.

Application

Programming

Interfaces

27

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_ATTR_NOT_FOUND

v

SIM_RC_ATTRIBUTE_READ_ONLY

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_INDEX_CLASS

v

SIM_RC_INVALID_MSGID

v

SIM_RC_INVALID_PASSED_ATTRIBUTE_DATA

v

SIM_RC_INVALID_PATTRIBUTELIST_PTR

v

SIM_RC_INVALID_PATTRIBUTELIST_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USATTRIBUTEID_VALUE

v

SIM_RC_INVALID_USITEMTYPE_VALUE

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Preparation:

v

Use

of

a

predefined

index

class

is

important

so

that

you

can

use

the

SimLibSearch

function

to

locate

items.

v

To

add

an

item

to

a

newly

created

index

class,

log

off

and

then

log

on

again

before

using

this

function,

so

that

the

index

class

is

in

existence

at

logon

time.

v

You

can

also

create

items

automatically

by

using

the

SimLibCatalogObject

or

SimLibCreateObject.

Use

SimLibCreateItem

when

you

have

an

index

class

with

attribute

values.

Then

use

SimLibCatalogObject,

SimLibCreateObject,

or

SimLibStoreNewObject

to

put

objects

into

the

new

item.

Follow-Up

Tasks:

After

the

function

gets

the

item

identifier,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

Example

#include

<windows.h>

/*

Main

Windows

header

files

*/

#include

<sys\types.h>

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

<stdlib.h>

/*

Standard

library

header

files*/

#include

<stdarg.h>

#include

<stddef.h>

#include

<io.h>

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

main

()

{

HSESSION

hSession;

/*

Product

session

handle

*/

ITEMID

FolderItemID;

/*

ItemID

of

new

folder

*/

USHORT

usFoldAttrs;

/*

Number

of

ATTRLISTSTRUCTs

*/

ATTRLISTSTRUCT

Folder

[

1

]

=

{

sizeof(Folder),

/*

structure

size

*/

"SourceName",

/*

attribute

value

*/

SIM_ATTR_READWRITE,

/*

attribute

flags

*/

140,

/*

attribute

ID

*/

SIM_ATTR_FSTRING

/*

attribute

type

*/

};

USHORT

usIndexClass;

/*

Index

class

for

folder

*/

RCSTRUCT

RCStruct;

/*

RC

data

structure

*/

SimLibCreateItem

28

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

USHORT

sResult;

/*

return

codes

*/

/***/

/*

Initialize

SimLibCreateItem

Parameters.

*/

/***/

/*

We

will

create

an

item

in

the

SIM_INDEX_NOINDEX

Index

Class.

*/

/*

This

index

has

three

optional

attributes.

We

will

provide

a

*/

/*

value

for

only

one

of

these

attributes.

This

is

done

by

*/

/*

initializing

the

attribute

array

"Folder"

above.

*/

usIndexClass

=

SIM_INDEX_NOINDEX;/*

Index

Class

of

the

folder

*/

usFoldAttrs

=

1;

/*

#

of

attrs

for

the

folder

*/

/**/

/*

Call

SimLibCreateItem

to

create

a

new

folder

*/

/**/

sResult

=

SimLibCreateItem(

hSession,

/*

session

handle

from

SimLibLogon*/

SIM_FOLDER,

/*

Create

a

folder

*/

usIndexClass,

/*

Index

class

of

folder

*/

usFoldAttrs,

/*

Number

of

attribute

lists

*/

&Folder,

/*

Pointer

to

attribute

list

*/

NULL,

/*

Reserved

for

future

use

*/

NULL,

/*

Request

SYNCHRONOUS

processing*/

&RCStruct

/*

Pointer

to

RC

data

structure*/

);

/**/

/*

If

successful,

copy

the

itemID

*/

/**/

if

(sResult

==

SIM_RC_OK)

{

strcpy

(FolderItemID,

(char*)RCStruct.ulParam1;

printf("New

Folder

ItemID

=

%s\n\n",

FolderItemID);

}

else

{

/*

.....

exception

processing

.....

*/

}

}

Related

Functions

v

SimLibChangeIndexClass

v

SimLibFree

v

SimLibGetAttrInfo

v

SimLibGetClassInfo

v

SimLibSearch

SimLibCreateObject

(Create

an

Object)

Format

SimLibCreateObject(

hSession,

hObj,

ulConCls,

pSMS,

ulPriority,

fCreateControl,

ulVersion,

lSeqAfterPart,

ulAffiliatedType,

pAffiliatedData,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibCreateObject

function

to

create

a

new

empty

object,

such

as

when

your

data

is

in

memory

rather

than

in

a

file.

SimLibCreateItem

Chapter

3.

Application

Programming

Interfaces

29

You

can

also

create

an

object

using

the

SimLibCatalogObject

function,

which

is

equivalent

to

using

the

SimLibCreateObject,

SimLibWriteObject,

and

SimLibCloseObject

functions.

You

can

also

create

an

object

using

the

SimLibStoreNewObject

function,

which

is

simpler

than

using

the

combination

of

functions.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObj

HOBJ

—

input

The

pointer

to

an

object

handle

block

in

the

HOBJ

data

structure.

For

more

information

on

the

HOBJ

data

structure,

see

“HOBJ

(Handle

to

Query

Stored

Object)”

on

page

143.

“Guidelines

for

Use”

describes

the

effects

of

your

input

to

this

data

structure.

ulConCls

ULONG

—

input

The

content

class

identifier

for

the

object.

The

value

of

this

parameter

tells

what

kind

of

data

is

in

the

object

that

you

are

creating

(see

Appendix

B,

“Predefined

Content

Classes,”

on

page

295).

To

indicate

an

undefined

content

class,

specify

the

value

SIM_CC_UNKNOWN

for

this

parameter.

However,

if

you

do

not

use

a

defined

content

class,

other

applications

cannot

use

Content

Manager

for

iSeries

content

class

services

to

determine

how

to

manipulate

the

contents

of

the

objects

that

you

store.

pSMS

PSMS

—

input

Pointer

to

a

system-managed

storage

(SMS)

structure

for

an

object.

This

structure

uses

only

szCollectionName.

ulPriority

ULONG

—

input

Not

supported.

fCreateControl

BITS

—

input

Control

option

bits

for

the

creation

operation.

The

valid

values

are:

SIM_CLOSE

Closes

the

object

on

completion

of

the

request.

This

is

the

default.

SIM_OPEN

Leaves

the

object

open

in

update

mode.

If

you

do

not

specify

this

flag,

the

created

object

is

closed.

ulVersion

ULONG

—

input

Not

supported.

lSeqAfterPart

LONG

—

input

Not

supported.

ulAffiliatedType

ULONG

—

input

The

type

of

affiliated

object.

The

defined

values

are:

SimLibCreateObject

30

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SIM_ANNOTATION

Indicates

that

the

object

is

an

annotation

associated

with

a

folder

or

a

document.

SIM_BASE

Indicates

that

the

object

is

a

base

object

such

as

a

MO:DCA

or

TIFF

file,

and

is

not

an

annotation,

note,

or

event

associated

with

a

folder

or

document.

SIM_EVENT

Indicates

that

the

object

is

an

event

associated

with

a

folder

or

a

document.

SIM_MGDS

Indicates

that

the

object

is

an

MGDS

(machine-generated

data

stream)

associated

with

a

folder

or

a

document.

SIM_NOTE

Indicates

that

the

object

is

a

note

associated

with

a

folder

or

a

document.

pAffiliatedData

PVOID

—

input

The

pointer

to

a

data

structure

of

the

type

ANNOTATIONSTRUCT.

If

the

ulAffiliatedType

parameter

contains

the

value

SIM_ANNOTATION,

pAffiliatedData

points

to

this

structure,

which

contains

additional

data

affiliated

with

the

object.

Otherwise,

the

Content

Manager

for

iSeries

system

ignores

this

parameter.

For

more

information

on

the

ANNOTATIONSTRUCT

structure,

see

“ANNOTATIONSTRUCT

(Annotation

Information

Structure)”

on

page

134.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

ulParam1

Contains

hObj,

an

HOBJ

pointer

to

an

object

handle

block.

ulParam2

If

the

fCreateControl

parameter

flag

was

set

to

SIM_OPEN

and

this

field

is

not

null,

it

contains

hobjacc,

the

object

access

handle.

This

handle

has

the

data

type

HOBJACC.

The

value

in

this

field

identifies

the

current

instance

of

the

accessed

object.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_OBJECT_HANDLE

v

SIM_RC_INVALID_POINTER

SimLibCreateObject

Chapter

3.

Application

Programming

Interfaces

31

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_SMS_PTR

v

SIM_RC_OPEN_FAILED

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

v

SIM_RC_INVALID_USCLASSID_VALUE

Guidelines

for

Use

Preparation:

To

get

the

supported

values

for

the

ulConCls

parameter,

use

the

Ip2ListContentClasses

function.

Effects:

v

This

function

creates

an

empty

object

that

you

can

write

to

using

SimLibWriteObject.

v

On

successful

completion,

this

function

returns

an

object

handle

that

you

can

use

to

access

the

object.

v

You

can

create

a

new

object

within

a

specified

item

or

create

both

the

item

and

an

object

within

it.

If

you

create

the

item,

you

cannot

specify

any

attributes.

The

item

is

placed

in

the

SIM_INDEX_NOINDEX

index

class.

You

must

do

that

later

using

the

SimLibOpenItemAttr,

SimLibWriteAttr,

and

SimLibCloseAttr

functions.

v

Although

your

application

can

store

its

own

affiliated

types,

other

applications

may

not

be

able

to

process

those

objects.

v

Your

input

values

in

the

HOBJ

data

structure

affect

the

results

of

this

function.

Input

values

for

the

szItemID,

ulPart,

and

chRepType

fields

in

this

structure

are

optional.

If

0

is

specified

for

the

part

number,

the

next

sequential

part

number

is

created.

If

part

number

is

nonzero,

that

part

number

is

used

if

it

does

not

already

exist.

If

it

does

exist,

the

first

available

number

is

returned.

Part

number

1

is

typically

a

base

part.

This

API

lets

you

create

part

number

2

–

for

example,

a

note

–

before

creating

part

number

1.

v

If

the

function

closed

the

object,

you

can

open

it

using

the

SimLibOpenObject

function.

v

If

the

function

returns

the

object

access

handle,

this

handle

identifies

the

current

instance

of

access

to

the

open

object.

This

handle

is

different

from

the

handle

normally

used

to

reference

the

stored

object.

Use

the

object

access

handle

(hObjAcc),

not

the

object

handle

(hObj),

with

the

following

functions:

–

SimLibCloseObject

–

SimLibReadObject

–

SimLibResizeObject

–

SimLibSeekObject

–

SimLibWriteObject

Exceptions:

v

The

content

class

parameter

is

not

validated

as

a

defined,

known

content

class.

Follow-Up

Tasks:

v

After

your

application

finishes

with

hObj,

the

object

handle,

free

the

space

by

using

the

SimLibFree

function.

v

Your

application

should

not

free

the

space

used

by

hObjAcc,

the

object

access

handle,

because

the

later

call

to

SimLibCloseObject

frees

the

space.

SimLibCreateObject

32

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Example

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

<string.h>

/*

Standard

string

header

file

*/

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

main()

{

HSESSION

hSession;

//

get

from

logon

HOBJ

hObj,

hObj2;

ULONG

ulConCls

=

SIM_CC_MODCA_IS2;

//

mod:ca

object

SMS

sms;

ULONG

ulPriority

=

0;

//

not

supported

BITS

fCreateControl

=

SIM_OPEN;

//leave

open-get

hobjacc

ULONG

ulVersion

=

0;

//

not

supported

LONG

lSeqAfterPart

=

0;

//

not

supported

ULONG

ulAffiliatedType

=

SIM_BASE;

PVOID

pAffiliatedData

=

NULL;

//

no

affiliated

data

RCSTRUCT

RC;

PRCSTRUCT

pRC

=

&RC;

POBJ

pObj;

//

Created

object

handle

USHORT

sResult;

//

get

rc

back

HOBJACC

hObjAcc;

//

object

access

handle

//

create

hobj

if(0==(

pObj=(POBJ)

malloc(sizeof(OBJ))))

{

return(1);

}

(

pObj)->ulStruct

=

sizeof(OBJ);

strcpy((

pObj)->szItemID,"");

strcpy((

pObj)->chRepType,"");

(

pObj)->ulPart

=

0;

hObj

=

pObj;

memset(SMS,0,

sizeof(sms));

//

null

out

struct

to

get

defaults

strcpy(SMS.szCollectionName,

"*DFT");

/*Call

the

function*/

sResult

=

SimLibCreateObject(

hSession,

hObj,

ulConCls,

SMS,;

ulPriority,

fCreateControl,

ulVersion,

lSeqAfterPart,

ulAffiliatedType,

pAffiliatedData,

0,

pRC);

if

(pRC

->ulRC

==

SUCCESS)

{

//

When

only

HOBJ

is

returned,

it

is

in

ulParam1

hObj2

=

(HOBJ)pRC->ulParam1;

//

Free

memory

allocated

for

HOBJ

SimLibFree(hSession,

(PVOID)(hObj2),

pRC);

//

Mem

containing

the

HOBJACC

struct

is

freed

by

SimLibCloseObject.

hObjAcc

=

pRC->ulParam2;

//

object

access

handle

}

}

Related

Functions

v

Ip2ListContentClasses

v

SimLibCatalogObject

SimLibCreateObject

Chapter

3.

Application

Programming

Interfaces

33

v

SimLibCloseObject

v

SimLibCreateObject

v

SimLibFree

v

SimLibOpenObject

v

SimLibReadObject

v

SimLibResizeObject

v

SimLibSeekObject

v

SimLibWriteObject

SimLibDeleteItem

(Delete

an

Item)

Format

SimLibDeleteItem(

hSession,

pszItemID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibDeleteItem

function

to

delete

a

folder

or

a

document

from

the

system.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszItemID

PITEMID

—

input

The

identifier

of

an

item

you

want

to

delete.

This

identifier

is

the

item

ID.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

If

the

item

is

locked

on

the

server,

this

field

contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

If

usParam

is

1,

this

field

contains

a

pointer

to

a

buffer

with

a

USERACCESSSTRUCT

data

structure.

This

data

structure

contains

a

user

ID

that

indicates

who

has

locked

the

item.

If

any

other

error

is

returned,

this

field

contains

the

value

NULL.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INUSE

v

SIM_RC_INVALID_HSESSION

SimLibCreateObject

34

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_PITEMIDITEM_PTR

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_ITEM_CHECKEDOUT

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PARENT_CHECKEDOUT

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

v

This

function

removes

the

specified

document

or

folder

from

the

database.

After

completion

of

the

function,

the

item

ID

(pszItemID)

associated

with

the

item

is

no

longer

valid.

v

The

function

automatically

removes

any

references

to

the

deleted

item

in

the

table

of

contents

of

folders

or

workbaskets

that

list

it.

v

For

either

a

folder

or

a

document,

the

Content

Manager

for

iSeries

system

deletes

all

objects

associated

with

the

item.

v

If

a

folder

is

deleted,

documents

or

folders

in

the

folder

are

not

deleted.

Exceptions:

v

This

function

cannot

delete

an

item

if

the

item,

or

a

folder

containing

the

item,

is

currently

locked

by

a

user

ID

other

than

the

one

you

specified

on

the

pszUserID

parameter

when

you

used

SimLibLogon

to

begin

this

Content

Manager

for

iSeries

session.

A

folder

can

have

more

than

one

parent

folder.

If

a

parent

folder

is

locked

and

SimLibDeleteItem

returns

SIM_RC_PARENT_CHECKEDOUT,

the

function

does

not

identify

the

folder

that

is

locked.

Follow-Up

Tasks:

After

your

application

no

longer

needs

the

user

access

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer

containing

the

USERACCESSSTRUCT

data

structure.

Example

#include

<windows.h>

/*

Main

Windows

header

files

*/

#include

<sys\types.h>

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

<stdlib.h>

/*

Standard

library

header

files*/

#include

<stdarg.h>

#include

<stddef.h>

#include

<io.h>

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

main

()

{

HSESSION

hSession;

/*

Product

session

handle

*/

PITEMID

pszItemID;

/*

Pointer

to

an

item

ID.

*/

RCSTRUCT

RCStruct;

/*

RC

data

structure

*/

USHORT

sResult;

/*

return

codes

*/

/***/

/*Initialize

the

itemID

to

prepare

for

a

call

to

SimLibDeleteItem*/

/***/

memset

(pszItemID,

’\0’,

DOC_ID_SIZE);

/*

set

to

null

*/

strcpy

((CHAR

*)pszItemID,

(CHAR

*)

"DA97220AA.AAB");

/**/

SimLibDeleteItem

Chapter

3.

Application

Programming

Interfaces

35

/*

Call

SimLibDeleteItem

to

delete

a

document

from

the

system

*/

/**/

sResult

=

SimLibDeleteItem(

hSession,

/*

session

handle

from

SimLibLogon

*/

pszItemID,

/*

itemID

to

be

deleted

*/

(PASYNCCTLSTRUCT)

NULL,

/*

Request

SYNCHRONOUS

processing*/

(PRCSTRUCT)

&RCStruct

/*

Pointer

to

RC

data

structure

*/

);

if

(sResult

!=

SIM_RC_OK)

{

printf("Item

%s

cannot

be

deleted",

pszItemID);

}

}

Related

Functions

v

SimLibAddFolderItem

v

SimLibCloseAttr

v

SimLibCreateItem

v

SimLibFree

v

SimLibGetItem

v

SimLibOpenItemAttr

SimLibDeleteObject

(Delete

an

Object)

Format

SimLibDeleteObject(

hSession,

hObj,

ulDeleteOption,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibDeleteObject

function

to

delete

the

object

that

you

specify.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObj

HOBJ

—

input

The

pointer

to

an

object

handle

block

in

the

HOBJ

data

structure.

For

more

information

on

the

HOBJ

structure,

see

“HOBJ

(Handle

to

Query

Stored

Object)”

on

page

143.

ulDeleteOption

ULONG

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

SimLibDeleteItem

36

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

usParam

Contains

the

value

0.

If

the

return

code

is

SIM_RC_ITEM_CHECKEDOUT,

this

field

contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

If

the

Content

Manager

for

iSeries

system

returns

any

other

error,

this

field

contains

the

value

NULL.

ulParam1

If

usParam

is

1,

this

field

contains

a

pointer

to

a

USERACCESSSTRUCT

data

structure.

The

data

structure

contains

the

user

ID

of

the

user

who

has

locked

the

item.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_OBJECT_HANDLE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_ITEM_CHECKEDOUT

v

SIM_RC_ITEM_NOT_FOUND

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PART_NOT_FOUND

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

When

the

last

object

in

an

item

is

deleted,

the

item

is

also

deleted.

To

delete

all

the

objects

in

one

operation,

use

SimLibDeleteItem,

which

deletes

the

item

and

all

the

objects

within

it.

Exceptions:

v

You

cannot

delete

an

object

if

the

item

that

contains

the

object

is

locked

by

someone

else.

v

If

the

item

contains

only

the

object,

the

item

is

also

deleted.

SimLibFree

(Free

Memory)

Format

SimLibFree(

hSession,

pBuffer,

pRC

)

Purpose

Use

the

SimLibFree

function

to

free

all

memory

allocated

and

returned

by

the

Content

Manager

for

iSeries

system.

Do

not

call

this

function

if

your

application

allocated

the

memory.

Use

it

only

as

directed.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pBuffer

PVOID

—

input

A

pointer

to

a

data

structure

of

indeterminate

type.

SimLibDeleteObject

Chapter

3.

Application

Programming

Interfaces

37

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

the

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

Example

ULONG

ulRC;

HSESSION

hsession;

RCSTRUCT

RC;

ulRC

=

SimLibListClasses(hSession,

0,

NULL,

&RC);

if

(ulRC

==

SIM_RC_OK)

{

//

process

list

of

classes

SimLibFree(hSession,

(PVOID)RC.ulParam1,

&RC);

}

Related

Functions

v

SimLibLogon

SimLibGetAttrInfo

(Get

Attribute

Information)

Format

SimLibGetAttrInfo(

hSession,

usAttributeId,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibGetAttrInfo

function

to

return

detailed

information

for

a

specific

attribute

in

the

system.

This

function

can

return

information

for

both

the

system-defined

attributes

and

the

user-defined

index

attributes.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

usAttributeId

USHORT

—

input

The

unique

identifier

assigned

to

an

attribute.

You

can

pass

the

ID

of

an

index

class

or

one

of

the

following

Content

Manager

for

iSeries

system-defined

attributes:

SimLibFree

38

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

OIM_ID_ITEM_CREATE_TIMESTAMP

Indicates

the

creation

time

of

the

item.

OIM_ID_ITEM_NAME

Indicates

the

name

of

the

item.

This

attribute

is

optional.

OIM_ID_SYS_MOD_TIMESTAMP

Indicates

the

last

time

the

item

was

changed.

OIM_ID_UID

Indicates

the

item

ID.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

If

completion

is

not

successful,

this

field

contains

the

value

0.

ulParam1

Contains

a

pointer

to

a

buffer

where

an

ATTRINFOSTRUCT

data

structure

provides

information

about

the

specified

attribute.

For

more

information

on

the

ATTRINFOSTRUCT

data

structure,

see

“ATTRINFOSTRUCT

(Attribute

Information

Structure)”

on

page

135.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USATTRIBUTEID_VALUE

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

ATTRINFOSTRUCT

data,

use

the

SimLibFree(

hSession,(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer

containing

the

structure.

Related

Functions

v

Ip2ListAttrs

v

SimLibFree

v

SimLibGetClassInfo

SimLibGetAttrInfo

Chapter

3.

Application

Programming

Interfaces

39

SimLibGetClassInfo

(Get

Index

Class

Information)

Format

SimLibGetClassInfo(

hSession,

usClassType,

usID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibGetClassInfo

function

to

return

detailed

information

for

a

specific

index

class

defined

in

the

system.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

usClassType

USHORT—

input

The

type

of

information

that

the

usID

parameter

contains.

The

valid

values

are:

SIM_INDEXCLASSID

Indicates

that

the

usID

parameter

contains

an

index

class

ID.

usID

USHORT

—

input

The

ID

of

an

index

class.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer

to

the

data

area.

ulParam1

Contains

a

pointer

to

a

buffer

with

a

CLASSINFOSTRUCT

data

structure.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_CLASS_TYPE

v

SIM_RC_INVALID_FOPTIONS

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USCLASSID_VALUE

SimLibGetClassInfo

40

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Exceptions:

The

information

that

this

function

returns

is

subject

to

access

control

restrictions.

If

you

do

not

have

access

to

the

index

class,

the

function

fails

and

SIM_RC_INVALID_USCLASSID_VALUE

is

returned.

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

CLASSINFOSTRUCT

data,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

SimLibGetItemAffiliatedTOC

(Get

a

Table

of

Contents

for

Item

Affiliates)

Format

SimLibGetItemAffiliatedTOC(

hSession,

pszItemID,

usAffiliatedType,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibGetItemAffiliatedTOC

function

to

get

a

table

of

contents

that

lists

the

affiliated

objects

for

an

item.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszItemID

PITEMID

—

input

The

identifier

of

an

item

for

which

you

want

a

table

of

contents

listing

affiliated

objects.

This

identifier

is

the

item

ID.

usAffiliatedType

USHORT

—

input

The

type

of

affiliated

object

to

list

in

the

table

of

contents.

The

valid

values

are:

SIM_ANNOTATION

Lists

annotations

associated

with

the

folder

or

document.

SIM_BASE

Lists

base

objects,

such

as

MO:DCA

or

TIFF

files,

that

are

not

annotations,

notes,

or

events

associated

with

the

folder

or

document.

SIM_EVENT

Lists

events

associated

with

the

folder

or

document.

SIM_MGDS

Lists

MGDS

(machine-generated

data

streams)

associated

with

the

folder

or

document.

SIM_NOTE

Lists

notes

associated

with

the

folder

or

document.

SimLibGetClassInfo

Chapter

3.

Application

Programming

Interfaces

41

SIM_ALL

Lists

all

types

of

objects

associated

with

the

folder

or

document.

If

you

specify

that

you

want

to

return

objects

other

than

base

objects,

they

must

have

a

nonzero

length.

Base

objects

are

always

included

regardless

of

their

length.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

Otherwise,

this

field

contains

the

value

0.

ulParam1

Contains

a

pointer

to

a

buffer

with

an

array

of

AFFTOCENTRYSTRUCT

data

structures.

If

no

affiliated

objects

satisfy

the

usAffiliatedType

filter,

this

field

contains

the

value

NULL.

For

more

information

on

the

AFFTOCENTRYSTRUCT

data

structure,

see

“AFFTOCENTRYSTRUCT

(Affiliated

Table

of

Contents

Entry

Structure)”

on

page

133.

ulParam2

Contains

the

number

of

entries

in

the

AFFTOCENTRYSTRUCT

array

referenced

by

ulParam1.

If

no

affiliated

objects

satisfy

the

usAffiliatedType

filter,

this

field

contains

the

value

NULL.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_COMPLETION_MSG_NOT_POSTED

v

SIM_RC_COMPLETION_SEM_ALREADY_POSTED

v

SIM_RC_COMPLETION_SEM_TOO_MANY_POSTS

v

SIM_RC_DOCSS_ERROR

v

SIM_RC_ERROR_RELEASING_SEMAPHORE

v

SIM_RC_ERROR_REQUESTING_SEMAPHORE

v

SIM_RC_FUNC_NOT_IN_TRANS

v

SIM_RC_GETRESPONSE_TIMEOUT

v

SIM_RC_INVALID_AFFILIATEDTYPE_VALUE

v

SIM_RC_INVALID_PITEMIDITEM_PTR

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_PLATSESSION_TYPE

v

SIM_RC_INVALID_PRC

v

SIM_RC_ITEM_NOT_FOUND

v

SIM_RC_NOT_SUPPORTED

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

SimLibGetItemAffiliatedTOC

42

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Guidelines

for

Use

Follow-Up

Tasks:

After

you

get

the

TOC

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

clear

the

buffer

containing

the

AFFTOCENTRYSTRUCT

data

structures.

Related

Functions

v

SimLibFree

v

SimLibLogon

SimLibGetItemInfo

(Get

Item

Information)

Format

SimLibGetItemInfo(

hSession,

pszItemID,

usClassId,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibGetItemInfo

function

to

return

the

following

information

about

a

document

or

a

folder

to

your

application:

v

Item

type

v

Item

name

v

Index

class

of

the

item

v

Workflow

information

v

User

ID

of

anyone

who

has

locked

the

item

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszItemID

PITEMID

—

input

The

identifier

of

an

item

for

which

you

want

information.

This

identifier

is

the

item

ID.

usClassId

USHORT

—

input

The

identifier

of

an

index

class.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer

to

a

data

area.

ulParam1

Contains

a

pointer

to

an

ITEMINFOSTRUCT

data

structure

that

provides

the

item

information.

For

more

information

on

this

data

structure,

see

“ITEMINFOSTRUCT

(Item

Information

Structure)”

on

page

144.

SimLibGetItemAffiliatedTOC

Chapter

3.

Application

Programming

Interfaces

43

ulParam2

Contains

the

value

1,

indicating

that

the

buffer

referenced

by

ulParam1

contains

1

entry.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_ITEM_TYPE

v

SIM_RC_INVALID_PITEMIDITEM_PTR

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Exceptions:

Do

not

use

this

function

to

return

information

about

a

workbasket.

To

return

workbasket

information,

use

SimWmGetWorkBasketInfo.

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

item

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

Related

Functions

v

SimWmGetWorkBasketInfo

v

SimLibListClasses

SimLibGetItemSnapshot

(Get

a

Snapshot

of

Item

Attributes)

Format

SimLibGetItemSnapshot(

hSession,

pszItemID,

fReadAttrInd,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibGetItemSnapshot

function

to

return

a

copy

of

the

attributes

associated

with

a

document

or

a

folder.

Your

application

can

substitute

this

function

for

the

following

sequence

of

Content

Manager

for

iSeries

functions:

v

SimLibGetItemType

v

SimLibOpenItemAttr

v

SimLibReadAttr

v

SimLibCloseAttr

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszItemID

PITEMID

—

input

The

identifier

of

an

item.

This

identifier

is

the

item

ID.

fReadAttrInd

BITS

—

input

SimLibGetItemInfo

44

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

type

of

attribute

values

to

return.

Here

are

the

valid

values.

You

can

use

a

bitwise

inclusive

OR

operator

(|)

to

combine

them.

SIM_SYSTEM_ATTR

Returns

the

system-defined

attribute

values

for

the

document

or

the

folder.

SIM_USER_ATTR

Returns

the

user-defined

attribute

values

for

the

document

or

the

folder.

SIM_WORK_ATTR

Returns

the

work

management

information

for

the

document

or

the

folder.

The

function

returns

attribute

values

for

the

current

view.

The

Content

Manager

for

iSeries

system

gets

system-defined

and

user-defined

attribute

values

from

the

SNAPSHOTSTRUCT

data

structure

and

returns

them

in

the

pAttr

field

of

the

ICVIEWSTRUCT

data

structure.

It

returns

priority

attributes

and

work

management

information

in

the

pWmSnapshot

field

of

the

SNAPSHOTSTRUCT

data

structure.

“Guidelines

for

Use”

contains

more

detail.

For

more

information

on

the

ICVIEWSTRUCT

and

SNAPSHOTSTRUCT

data

structures,

see

“ICVIEWSTRUCT

(Index

Class

View

Information

Structure)”

on

page

143

and

“SNAPSHOTSTRUCT

(Snapshot

Information

Structure)”

on

page

155.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer

to

a

data

area.

ulParam1

Contains

a

pointer

to

a

SNAPSHOTSTRUCT

data

structure

that

provides

the

returned

attribute

values.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_ITEM_TYPE

v

SIM_RC_INVALID_PITEMIDITEM_PTR

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

SimLibGetItemSnapshot

Chapter

3.

Application

Programming

Interfaces

45

v

SIM_RC_INVALID_READATTRIND

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

v

SIM_RC_SESSION_DB_VIEW_MISMATCH

Guidelines

for

Use

Exceptions:

Your

application

might

need

to

use

a

conversion

routine

such

as

an

ASCII-to-integer

routine

to

change

the

character

representation

of

an

attribute

value

into

the

correct

form

for

the

application.

Follow-Up

Tasks:

After

your

application

has

processed

the

information

that

the

Content

Manager

for

iSeries

system

returns

to

the

SNAPSHOTSTRUCT

data

structure,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

pointer

to

the

SNAPSHOTSTRUCT

data

structure.

Related

Functions

v

SimLibCloseAttr

v

SimLibFree

v

SimLibGetItemType

v

SimLibGetTOCData

v

SimLibOpenItemAttr

v

SimLibReadAttr

SimLibGetItemType

(Get

the

Type

of

an

Item)

Format

SimLibGetItemType(

hSession,

pszItemID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibGetItemType

function

to

return

the

type

of

an

item

associated

with

the

item

identifier

you

specify.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszItemID

PITEMID

—

input

The

identifier

of

an

item

for

which

you

want

to

return

the

type.

This

identifier

is

the

item

ID.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

SimLibGetItemSnapshot

46

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

ulParam1

Contains

one

of

the

following

values

indicating

the

type

of

item:

SIM_DOCUMENT

Indicates

that

the

item

is

a

document.

SIM_FOLDER

Indicates

that

the

item

is

a

folder.

SIM_WORKBASKET

Indicates

that

the

item

is

a

workbasket.

SIM_WORKFLOW

Indicates

that

the

item

is

a

workflow.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_PITEMIDITEM_PTR

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Effects:

After

successful

completion

of

this

function,

you

can

use

other

Content

Manager

for

iSeries

functions

to

get

additional

detailed

information

about

the

item.

To

return

additional

information,

use

one

of

the

following

functions:

SimLibGetItemInfo

To

return

information

about

a

folder

or

a

document.

SimWmGetWorkBasketInfo

To

return

information

about

a

workbasket.

Related

Functions

v

SimWmGetWorkBasketInfo

v

SimLibGetItemInfo

SimLibGetItemXREF

(Get

a

Cross-Reference

for

an

Item)

Format

SimLibGetItemXREF(

hSession,

pszItemID,

ulFilter,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibGetItemXREF

function

to

list

the

folders

that

contain

the

item

you

specify

and

match

the

other

criteria

you

specify.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

SimLibGetItemType

Chapter

3.

Application

Programming

Interfaces

47

pszItemID

PITEMID

—

input

The

identifier

of

an

item

for

which

you

want

a

cross

reference.

This

identifier

is

the

item

ID.

ulFilter

ULONG

—

input

The

criteria

to

match

for

cross-referencing.

Here

are

the

valid

values:

SIM_XREF_FOLDERS_ONLY_FILTER

Returns

only

folders

that

contain

the

specified

item.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

If

no

items

match

the

criteria

you

specify,

this

field

contains

the

value

NULL.

ulParam1

Contains

a

pointer

to

a

buffer

with

an

array

of

ITEMID

strings.

Each

string

provides

the

item

ID

of

a

folder

that

contains

the

specified

item.

If

no

items

match

the

criteria

you

specify,

this

field

contains

the

value

NULL.

ulParam2

Contains

the

number

of

entries

pointed

to

by

ulParam1.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_ITEM_TYPE

v

SIM_RC_INVALID_PITEMIDITEM_PTR

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USFILTER_VALUE

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Follow-Up

Tasks:

After

you

get

the

item

ID

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer

containing

the

cross-reference

information.

SimLibGetItemXREF

48

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SimLibGetSessionType

(Get

the

Session

Type)

Format

SimLibGetSessionType(

hSession,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibGetSessionType

function

to

return

information

regarding

the

platform

type

of

the

current

session.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

the

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

PSZ

to

the

current

session

type.

If

you

have

a

LAN-based

library

session,

the

session

type

is

Ip2.

Other

values

are

platform

dependent.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

session

type

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

Related

Functions

v

SimLibLogon

SimLibGetTOC

(Get

a

Table

of

Contents)

Format

SimLibGetTOC(

hSession,

pszItemID,

usItemType,

usWipFilter,

usSuspendFilter,

usNbrOfClasses,

pusClassIdList,

pLinkCriteria,

pAsyncCtl,

pRC

)

SimLibGetSessionType

Chapter

3.

Application

Programming

Interfaces

49

Purpose

Use

the

SimLibGetTOC

function

to

return

either

a

partial

or

a

complete

table

of

contents

for

the

workbasket

or

folder

you

specify.

The

table

of

contents

contains

a

list

of

the

documents

and

folders

in

that

workbasket

or

folder.

You

can

specify

a

variety

of

values

for

the

parameters

of

this

function

to

determine

the

entries

in

the

table

of

contents.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszItemID

PITEMID

—

input

The

identifier

of

workbasket

or

folder

for

which

you

want

a

table

of

contents.

This

identifier

is

the

item

ID.

usItemType

USHORT

—

input

The

type

of

item

to

return

in

the

table

of

contents.

The

valid

values

are:

SIM_DOCUMENT

Returns

documents.

SIM_FOLDER

Returns

folders.

SIM_ALL

Returns

both

documents

and

folders.

usWipFilter

USHORT

—

input

Not

supported.

usSuspendFilter

USHORT

—

input

Not

supported.

usNbrOfClasses

USHORT

—

input

The

number

of

index

class

identifiers

in

the

list

you

specify

as

the

value

of

the

pusClassIdList

parameter.

Specify

the

value

0

for

the

usNbrOfClasses

parameter

to

indicate

that

class

is

not

a

criterion

for

selecting

items.

pusClassIdList

PUSHORT

—

input

The

pointer

to

a

list

of

index

class

identifiers

that

indicate

the

items

to

select

for

the

table

of

contents.

You

can

specify

the

value

NULL

for

the

pusClassIdList

parameter

only

if

you

specify

the

value

0

for

the

usNbrOfClasses

parameter.

pLinkCriteria

PVOID

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

SimLibGetTOC

50

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

number

of

items

in

the

table

of

contents.

If

no

items

satisfy

the

filter,

the

field

contains

the

value

NULL.

ulParam1

Contains

a

pointer

to

a

buffer

with

an

array

of

TOCENTRYSTRUCT

data

structures.

If

no

items

satisfy

the

filter,

the

field

contains

the

value

NULL.

For

more

information

on

this

data

structure,

see

“TOCENTRYSTRUCT

(Table

of

Contents

Entry

Data

Structure)”

on

page

157.

Restriction:

Your

application

must

not

modify

the

buffer

containing

the

array

of

TOCENTRYSTRUCT

data

structures.

If

your

application

needs

to

update

returned

information,

it

must

copy

this

information

into

its

own

memory

buffer.

ulParam2

Contains

the

table

of

contents

handle

(hTOC).

If

no

items

satisfy

the

filter,

the

field

contains

the

value

NULL.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_ITEM_TYPE

v

SIM_RC_INVALID_PITEMIDITEM_PTR

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_PUSCLASSIDLIST_PTR

v

SIM_RC_INVALID_USITEMTYPE_VALUE

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

Each

time

you

use

this

function,

you

create

a

new

table

of

contents

handle.

You

can

use

this

handle

later

with

the

SimLibGetTOCData

and

Ip2GetTOCUpdates

functions,

to

specify

which

table

of

contents

to

process.

Exceptions:

The

SimLibGetTOC

function

creates

a

table

of

contents

that

shows

the

current

contents

of

the

workbasket

or

folder.

However,

the

contents

of

the

workbasket

or

folder

might

change

after

you

use

this

function.

Use

the

Ip2GetTOCUpdates

function

to

return

a

list

of

the

changes.

Update

the

TOCENTRYSTRUCT,

which

includes

usItemStatus,

to

indicate

changed

entries.

Follow-Up

Tasks:

When

you

no

longer

need

a

table

of

contents

handle,

free

it

by

using

the

Ip2CloseTOC

function.

That

function

frees

both

the

table

of

contents

handle

(hTOC)

and

the

data

pointed

to

by

the

PTOCENTRYSTRUCT

pointer.

Example

#include

"ekdviapi.h"

//

Content

Manager

for

iSeries

HSESSION

hSession;

//

Session

handle

PITEMID

pszItemID;

//

Pointer

to

an

item

ID

USHORT

usItemType;

//

The

item

type

USHORT

usWipFilter;

//

WIP

status

of

search

items

SimLibGetTOC

Chapter

3.

Application

Programming

Interfaces

51

USHORT

usSuspendFilter;

//

Suspend

status

of

search

items

USHORT

usNbrOfClasses;

//

#

of

index

class

identifiers

in

//

pusClassIdList

PUSHORT

pusClassIdList;

//

Pointer

to

list

of

index

class

IDs

//

that

indicates

TOC

items.

PVOID

pLinkCriteria;

//

Not

used

PASYNCCTLSTRUCT

pAsyncCtl;

//

Pointer

to

asynchronous

control

block.

RCSTRUCT

RC;

//

Pointer

to

return

data

structure.

USHORT

usNumRows

=

0;

//

#

of

returned

TOC

entries

PTOCENTRYSTRUCT

pTocEntry;

//

pointer

to

TOC

entries

usItemType

=

SIM_ALL;

//

Set

up

item

type

filter.

usWipFilter

=

OIM_ALL;

//

Set

up

Work-In-Process

status

filter

usSuspendFilter

=

OIM_ALL;

//

Set

up

suspend

status

of

search

items.

usNbrOfClasses

=

1;

//

Set

up

index

class

filter

usClassIdList[0]

=

NO_INDEX;

ulRC

=

SimLibGetTOC(

hSession,

//

Handle

to

a

Content

Manager

for

iSeries.

pfoldid,

//

Pointer

to

folder

or

Workbasket

ID.

SIM_ALL,

//

The

item

type

filter.

NULL,

//

WIP

status

of

search

items.

NULL,

//

Suspend

status

of

search

items.

usNbrOfClasses,

//

#

of

index

class

IDs

in

pusClassIdList.

usClassIdList,

//

Pointer

to

index

class

identifiers

list.

NULL,

//

Not

used;

link

criteria

NULL,

//

asynch

not

supported

&RC

//

pointer

to

return

struct

);

if

(ulRC

==

SIM_RC_OK)

{

hTOC

=

(HTOC)RC.ulParam2;//

TOC

handle

usNumRows

=

RC.usParam;

//

#

of

returned

toc

entries

pTocEntry

=

RC.ulParam1;

//

pointer

to

TOC

entries.

}

/**/

/*

...

Call

other

Content

Manager

for

iSeries

by

using

the

...

*/

/*

...

session

handle

obtained

by

calling

SimLibLogon

...

*/

/**/

ulRC

=

Ip2CloseTOC(

hSession,

//

Handle

to

a

Content

Manager

for

iSeries

hTOC,

//

TOC

Handle

from

SimLibGetTOC

NULL,

//

by

NULL,

asynchronous

call

made

&RC

//

pointer

to

return

struct

);

if

(ulRC

==

SIM_RC_OK)

{

/*

Ip2CloseTOC

released

all

resource

associated

with

hTOC

*/

}

Related

Functions

v

Ip2CloseTOC

v

Ip2GetTOCUpdates

v

Ip2TOCCount

v

Ip2TOCStatus

v

SimLibGetTOCData

SimLibGetTOC

52

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SimLibGetTOCData

(Get

a

Snapshot

of

Attributes

for

a

Group

of

Items)

Format

SimLibGetTOCData(

hSession,

pTOCEntries,

ulEntryCount,

fDataOptions,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibGetTOCData

function

to

return

a

copy

of

the

attributes

associated

with

a

group

of

documents

or

folders.

Your

application

can

substitute

this

function

for

a

series

of

calls

to

the

SimLibGetItemSnapshot

function.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pTOCEntries

PTOCENTRYSTRUCT

—

input

The

pointer

to

an

array

of

TOCENTRYSTRUCT

data

structures

that

identify

the

items

for

which

you

want

a

copy

of

the

attributes.

For

more

information

on

this

data

structure,

see

“TOCENTRYSTRUCT

(Table

of

Contents

Entry

Data

Structure)”

on

page

157.

ulEntryCount

ULONG

—

input

The

number

of

entries

in

the

TOCENTRYSTRUCT

array.

Because

each

entry

can

result

in

a

large

amount

of

data,

you

should

limit

the

number

of

entries.

fDataOptions

BITS

—

input

The

type

of

data

to

return

for

each

item.

You

must

specify

at

least

one

value

for

this

parameter.

The

following

are

valid

values.

You

can

use

a

bit-wise

inclusive

OR

operator

(|)

to

combine

them.

SIM_TOC_SNAPSHOT_SYSTEM_ATTR

Returns

the

system-defined

attribute

values

for

the

documents

or

folders.

SIM_TOC_SNAPSHOT_USER_ATTR

Returns

the

user-defined

attribute

values

for

the

documents

or

folders.

SIM_TOC_SNAPSHOT_WORK_ATTR

Returns

the

work

management

information

for

the

documents

or

folders.

SIM_TOC_SNAPSHOT_ALL

Returns

the

information

specified

in

all

the

other

values.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

SimLibGetTOCData

Chapter

3.

Application

Programming

Interfaces

53

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer

to

a

data

area.

If

an

error

occurs,

usParam

contains

the

value

0.

ulParam1

Contains

a

pointer

to

an

array

of

SNAPSHOTSTRUCT

data

structures

that

provide

the

returned

information.

If

usParam

contains

the

value

0,

ulParam1

contains

the

array

index

of

the

TOCENTRYSTRUCT

element

that

was

in

error.

For

some

error

conditions,

the

function

can

identify

the

item

that

failed.

If

not,

this

field

contains

SIM_TOC_MAX_ENTRY_COUNT.

ulParam2

Contains

a

count

of

the

items

in

the

returned

array.

This

count

matches

the

value

in

the

ulEntryCount

parameter.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_BUFFER_NULL

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_INDEX_CLASS

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_ITEM_TYPE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_READATTRIND

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

v

This

function

retrieves

data

for

any

group

of

folders

or

documents

that

you

identify

properly.

It

retrieves

information

for

the

items

returned

by

the

SimLibGetTOC

function,

processing

an

entire

list

with

one

function

call.

Retrieving

work

management

information

takes

significantly

more

time

than

retrieving

attributes.

v

Effects

vary

with

the

bit

values

you

specify

in

the

fDataOptions

parameter:

–

If

you

specify

SIM_TOC_SNAPSHOT_SYSTEM_ATTR

to

return

system-defined

attributes,

you

always

get

data

if

the

item

is

a

valid

document

or

folder.

–

If

you

specify

SIM_TOC_SNAPSHOT_WORK_ATTR

but

the

item

is

not

in

a

workbasket,

you

get

a

successful

return

code

but

the

WMSNAPSHOTSTRUCT

data

structure

is

null.

–

If

you

specify

0

or

an

invalid

combination

of

bit

values,

the

function

returns

SIM_RC_INVALID_DATA_OPTIONS.
v

All

the

returned

data

is

in

a

single

memory

block.

The

SNAPSHOTSTRUCT

structures

appear

as

an

array

in

the

same

order

as

the

TOCENTRYSTRUCT

structures.

The

remaining

information

follows

in

the

same

block,

referenced

by

pointers

originated

in

the

individual

SNAPSHOTSTRUCT

structures.

SimLibGetTOCData

54

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Exceptions:

v

The

function

ignores

most

of

the

fields

in

TOCENTRYSTRUCT.

It

always

uses

the

item

ID

field,

and

it

uses

the

index

class

when

you

request

user-defined

attributes.

Therefore,

you

can

use

the

function

to

retrieve

the

item

types

for

a

list

of

folders

and

documents

by

preparing

a

TOCENTRYSTRUCT

structure

and

using

only

the

SIM_TOC_SNAPSHOT_SYSTEM_ATTR

value

on

the

fDataOptions

parameter.

The

function

returns

the

correct

item

types

in

the

SNAPSHOTSTRUCT

structure.

v

Your

application

might

need

to

use

a

conversion

routine

such

as

an

ASCII-to-integer

routine

to

change

the

character

representation

of

an

attribute

value

into

the

correct

form

for

the

application.

Follow-Up

Tasks:

After

your

application

has

processed

the

information

that

the

Content

Manager

for

iSeries

system

returns

to

the

SNAPSHOTSTRUCT

data

structure,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

pointer

to

the

SNAPSHOTSTRUCT

data

structure

array.

Related

Functions

v

SimLibCloseAttr

v

SimLibFree

v

SimLibGetItemSnapshot

v

SimLibGetItemType

v

SimLibGetTOC

v

SimLibOpenItemAttr

v

SimLibReadAttr

SimLibListClasses

(List

Index

Classes)

Format

SimLibListClasses(

hSession,

fClassOptions,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibListClasses

function

to

list

all

existing

index

classes

in

the

Content

Manager

for

iSeries

database.

It

lists

only

the

classes

for

which

this

user

has

access

and

which

contain

attributes.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

fClassOptions

BITS

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

SimLibGetTOCData

Chapter

3.

Application

Programming

Interfaces

55

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

Otherwise,

this

field

contains

the

value

0.

ulParam1

If

ulParam2

contains

a

value

greater

than

0,

this

field

contains

a

pointer

to

a

buffer.

In

the

buffer,

a

NAMESTRUCT

array

provides

the

index

class

identifiers

and

the

associated

names.

For

more

information

on

this

data

structure,

see

“NAMESTRUCT

(Name

Data

Structure)”

on

page

149.

ulParam2

Contains

the

number

of

fields

in

the

array

pointed

to

by

ulParam1.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

The

name

information

that

this

function

returns

reflects

the

language

defined

for

the

current

Content

Manager

for

iSeries

session.

Exceptions:

This

function

provides

only

the

identifiers

of

the

index

classes

in

the

system

that

the

current

user

has

permission

to

access.

Use

the

SimLibGetClassInfo

function

to

determine

the

index

attributes

in

an

index

class.

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

index

class

identifier

list,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

SimLibLogoff

(Log

Off)

Format

SimLibLogoff(

hSession,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibLogoff

function

to

end

access

to

the

Content

Manager

for

iSeries

operations

for

a

current

application.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

SimLibListClasses

56

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

Guidelines

for

Use

Effects:

v

After

your

application

uses

this

function,

any

additional

Content

Manager

for

iSeries

functions

fail

if

they

use

the

same

session

handle.

v

All

structures

that

a

Content

Manager

for

iSeries

API

allocates

that

are

not

released

using

SimLibFree

are

released

during

logoff.

Example

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

int

main

(void)

{

ULONG

ulRC;

/*

Return

code

*/

HSESSION

hSession;

/*

Session

handle

*/

PUSERLOGONINFOSTRUCT

pUserLogonInfo;

/*

User

logon

info

struct

*/

PSZ

pszDBName="VI400LIB";

/*

Pointer

to

Database

name

*/

PSZ

pszUserId="QVIADMIN";

/*

Pointer

to

User

Id

(Name)

*/

PSZ

pszPassword="PASSWORD";

/*

Pointer

to

User’s

Password

*/

BITS

fSessionType=1;

/*

Product

Session

Type

*/

RCSTRUCT

RC;

/*

RC

data

structure

*/

/***/

/*

Logon

to

system,

and

establish

a

normal

session

*/

/***/

fSessionType

=

SIM_SS_NORMAL;

ulRC

=

SimLibLogon(

pszDBName,

//

library

database

NULL,

//

not

used;

library

tableset

pszUserId,

//

user

ID

pszPassword,

//

user

ID

password

NULL,

//

if

any,

new

password

NULL,

//

not

used;

proxy

ID

NULL,

//

not

used;

proxy

scope

fSessionType,

//

session

access

NULL,

//

NULL

=

synchronous

call

&RC

//

pointer

to

return

data

struct

);

if

(ulRC

==

SIM_RC_OK

//

hSession

session

handle

and

user

logon

info

structure

//

returned

through

RC

structure.

SimLibLogoff

Chapter

3.

Application

Programming

Interfaces

57

hSession

=

(HSESSION)RC.ulParam1;

pUserLogonInfo

=

(PUSERLOGONINFOSTRUCT)RC.ulParam2;

}

else

{

printf("error

-SimLibLogon

failed

with

%ld.\n",ulRC);

exit(1);

}

/**/

/*

Call

other

Content

Manager

for

iSeries

APIs

by

using

the

*/

/*

session

handle

obtained

by

calling

SimLibLogon

*/

/**/

/**/

/*

Logoff

from

system,

and

end

a

normal

session

*/

/**/

ulRC

=

SimLibLogoff(

hSession,

//

Session

handle

NULL,

//

not

supported

&RC

//

pointer

to

return

data

struct

);

if

(ulRC

==

SIM_RC_OK)

{

/******************/

/*

Logoff

success

*/

/******************/

}

else

{

printf("error

-

SimLibLogoff

failed

with

%ld\n.",ulRC);

exit(1);

}

return

(0);

}

Related

Functions

v

SimLibLogon

SimLibLogon

(Log

On)

Format

SimLibLogon(

pszDBName,

pszApplicationName,

pszUserID,

pszPassword,

pszNewPassword,

pszProxyID,

pszProxyScope,

fSession,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibLogon

function

to

enable

your

application

to

access

Content

Manager

for

iSeries

operations.

Your

application

must

use

this

function

before

it

can

use

any

other

Content

Manager

for

iSeries

functions,

and

it

must

use

the

SimLibLogoff

function

when

it

has

finished

using

Content

Manager

for

iSeries

operations.

Parameters

pszDBName

PSZ

—

input

The

system

name

contained

in

FRNOLINT.TBL.

pszApplicationName

PSZ

—

input

Not

supported.

pszUserID

PSZ

—

input

The

NULL-terminated

character

string

that

specifies

the

user

ID

of

the

user

to

log

on.

Not

case

sensitive.

SimLibLogoff

58

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

pszPassword

PSZ

—

input

The

NULL-terminated

character

string

that

specifies

the

password

for

the

user

ID.

Case

sensitivity

is

based

on

the

iSeries

operating

system

definition

in

system

value

QPWDLVL.

pszNewPassword

PSZ

—

input

The

NULL-terminated

character

string

that

specifies

a

valid

new

password

for

the

user

ID.

Case

sensitivity

is

based

on

the

iSeries

operating

system

definition

in

system

value

QPWDLVL.

Null

to

keep

existing

password.

pszProxyID

PSZ

—

input

Not

supported.

pszProxyScope

PSZ

—

input

Not

supported.

fSession

BITS

—

input

SIM_SS_NORMAL

As

part

of

the

logon

process,

index

class

and

attribute

information

is

retrieved.

This

improves

the

performance

of

subsequent

calls.

SIM_SS_CONFIG

Only

the

USERLOGONINFOSTRUCT

is

returned

from

the

server.

See

“USERLOGONINFOSTRUCT

(User

Logon

Information

Structure)”

on

page

159

for

more

information

on

this

data

structure.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0,

to

indicate

that

ulParam1

contains

a

session

handle

and

ulParam2

contains

a

pointer

to

a

buffer.

ulParam1

Contains

an

hSession

parameter

or

NULL.

ulParam2

Contains

a

pointer

to

a

USERLOGONINFOSTRUCT

data

structure.

See

“USERLOGONINFOSTRUCT

(User

Logon

Information

Structure)”

on

page

159

for

more

information

on

this

data

structure.

ulRC

Contains

one

of

the

following

return

codes.

“Guidelines

for

Use”

contains

more

detail.

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_GRACE_PERIOD_ENDED

v

SIM_RC_GRACE_PERIOD_OVER_LIMIT

SimLibLogon

Chapter

3.

Application

Programming

Interfaces

59

|
|
|

|
|
|
|

v

SIM_RC_INVALID_PASSWORD

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USERID

v

SIM_RC_USERID_UNKNOWN

When

the

function

completes

successfully,

it

returns

a

value

of

zero

(SIM_RC_OK).

Guidelines

for

Use

Follow-Up

Tasks:

After

your

application

gets

the

information

from

the

USERLOGONINFOSTRUCT

data

structure,

use

the

SimLibFree(

hSession,

(PVOID)ulParam2,

pRC

)

function

to

free

the

memory.

Example

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

int

main

(void)

{

ULONG

ulRC;

/*

Return

code

*/

HSESSION

hSession;

/*

Session

handle

*/

PUSERLOGONINFOSTRUCT

pUserLogonInfo;

/*

User

logon

info

struct*/

PSZ

pszDBName="VI400LIB";

/*

Pointer

to

Database

name

*/

PSZ

pszUserId="QVIADMIN";

/*

Pointer

to

User

Id

(Name)

*/

PSZ

pszPassword="PASSWORD";

/*

Pointer

to

User’s

Password

*/

BITS

fSessionType=1;

/*

Product

Session

Type

*/

RCSTRUCT

RC;

/*

RC’s

data

structure

*/

/***/

/*

Logon

to

system,

and

establish

a

normal

session

*/

/***/

fSessionType

=

SIM_SS_NORMAL;

ulRC

=

SimLibLogon(

pszDBName,

//

library

database

NULL,

//

not

used;

library

tableset

pszUserId,

//

user

ID

pszPassword,

//

user

ID

password

NULL,

//

if

any,

new

password

NULL,

//

not

used;

proxy

ID

NULL,

//

not

used;

proxy

scope

fSessionType,

//

session

access

NULL,

//

not

supported

&RC

//

pointer

to

return

data

struct

);

if

(ulRC

==

SIM_RC_OK{

//

hSession

session

handle

and

user

logon

info

structure

//

returned

through

RC

structure.

hSession

=

(HSESSION)RC.ulParam1;

pUserLogonInfo

=

(PUSERLOGONINFOSTRUCT)RC.ulParam2;

}

else

{

printf("error

-SimLibLogon

failed

with

%ld.\n",ulRC);

exit(1);

}

/**/

/*

Call

other

Content

Manager

for

iSeries

APIs

by

using

the

*/

/*

session

handle

obtained

by

calling

SimLibLogon

*/

/**/

/**/

/*

Logoff

from

system,

and

end

a

normal

session

*/

/**/

SimLibLogon

60

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

ulRC

=

SimLibLogoff(

hSession,

//

Session

handle

NULL,

//

NULL

indicates

synchronous

call

&RC

//

pointer

to

return

data

struct

);

if

(ulRC

==

SIM_RC_OK)

{

/******************/

/*

Logoff

success

*/

/******************/

}

else

{

printf("error

-

SimLibLogoff

failed

with

%ld\n.",ulRC);

exit(1);

}

return

(0);

}

Related

Functions

v

SimLibFree

v

SimLibLogoff

SimLibOpenItemAttr

(Open

Item

Attributes)

Format

SimLibOpenItemAttr(

hSession,

pszItemID,

usClassId,

ulAccessLevel,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibOpenItemAttr

function

to

provide

access

to

the

attributes

of

a

document

or

folder

that

you

specify.

This

function

opens

the

item

for

either

read

or

write

access

by

creating

a

virtual

copy

of

the

attributes

associated

with

that

item.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszItemID

PITEMID

—

input

The

identifier

of

an

item

that

you

want

to

open

to

access

the

attributes.

This

identifier

is

the

item

ID.

usClassId

USHORT

—

input

The

identifier

of

an

index

class.

ulAccessLevel

ULONG

—

input

The

item

access

mode.

The

value

of

this

parameter

indicates

the

access

mode

for

locking

the

item.

The

valid

values

are:

SIM_ACCESS_READ_WRITE

Locks

the

item.

Use

of

this

value

causes

the

function

to

fail

if

another

process

has

the

item

locked.

SIM_ACCESS_SHARED_READ

Opens

the

item

for

read

access

only.

Use

of

this

value

opens

the

item

whether

or

not

others

have

locked

it.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

SimLibLogon

Chapter

3.

Application

Programming

Interfaces

61

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

If

the

return

code

is

SIM_RC_ITEM_CHECKEDOUT,

this

field

contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

If

the

Content

Manager

for

iSeries

system

returns

any

other

error,

this

field

contains

the

value

NULL.

ulParam1

Contains

an

item

handle

with

the

data

type

HITEM,

for

an

open

item.

If

the

return

code

is

SIM_RC_ITEM_CHECKEDOUT,

this

field

contains

a

pointer

to

a

USERACCESSSTRUCT

data

structure.

The

data

structure

contains

the

user

ID

of

the

user

who

has

locked

the

item.

ulParam2

Returns

the

index

class

of

the

item.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_ASYNC_STARTED

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INUSE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_INDEX_CLASS

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_PITEMIDITEM_PTR

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USACCESSLEVEL_VALUE

v

SIM_RC_INVALID_USATTRIBUTEID_VALUE

v

SIM_RC_INVALID_USCLASSID_VALUE

v

SIM_RC_ITEM_CHECKEDOUT

v

SIM_RC_ITEM_NOT_FOUND

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PITEM_NOT_FOLDER_OR_DOCUMENT

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

v

If

your

application

uses

this

function

with

read

access,

the

Content

Manager

for

iSeries

system

makes

a

copy

of

the

current

attribute

values

in

the

database.

Concurrent

or

subsequent

access

by

another

user

might

change

those

values.

v

If

your

application

opens

an

item

for

read

access

while

it

is

open

for

write

access

by

another

application,

the

values

of

the

item

attributes

are

the

same

as

those

currently

in

the

database.

v

If

you

already

have

the

item

open

for

write

access,

the

function

returns

SIM_RC_INUSE.

SimLibOpenItemAttr

62

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

This

function

returns

a

handle

to

the

virtual

item.

This

handle,

hItem,

is

valid

only

within

the

current

session.

It

cannot

be

transferred

to

another

session.

To

manipulate

the

attributes

of

the

item,

use

the

item

handle

with

the

SimLibReadAttr

and

SimLibWriteAttr

functions.

To

copy

the

new

values

permanently,

use

SimLibSaveAttr

or

SimLibCloseAttr.

v

SimLibOpenItemAtt

does

not

validate

if

you

have

SIM_ACCESS_READ_WRITE

authority.

SimLibCloseAtt

validates

authority

when

called

with

SIM_OPT_SAVE.

Exceptions:

v

If

an

item

is

locked,

only

the

user

with

the

locked

item

can

work

with

the

item.

Other

users

can

gain

read

access

only.

v

If

an

item

is

not

locked,

all

users

can

gain

read

access,

and

the

first

user

with

proper

authority

to

request

write

access

gets

exclusive

update

access.

v

If

another

user

modifies

the

attribute

values

of

the

item

without

saving

them

by

using

the

SimLibSaveAttr

function,

the

attribute

values

you

see

can

be

different

from

the

attribute

values

that

the

other

user

sees.

Follow-Up

Tasks:

v

If

you

receive

the

SIM_RC_ITEM_CHECKEDOUT

return

code

and

your

application

no

longer

needs

the

user

access

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

v

If

you

receive

the

SIM_RC_OK

return

code,

use

SimLibCloseAttr

to

close

the

item

and

release

the

storage

for

the

item

handle.

Do

not

use

both

the

SimLibFree

and

the

SimLibCloseAttr.

Related

Functions

v

SimLibCloseAttr

v

SimLibReadAttr

v

SimLibSaveAttr

v

SimLibWriteAttr

SimLibOpenObject

(Open

an

Object)

Format

SimLibOpenObject(

hSession,

hObj,

ulAccessLevel,

ulPriority,

fConflict,

fOpenControl,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibOpenObject

function

to

prepare

an

existing

object

for

access

by

your

application.

On

successful

completion,

the

function

returns

an

object

access

handle

that

you

can

use

to

access

the

object.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObj

HOBJ

—

input

The

pointer

to

an

object

handle

block

in

the

HOBJ

data

structure.

For

more

information

on

the

HOBJ

structure,

see

“HOBJ

(Handle

to

Query

Stored

Object)”

on

page

143.

SimLibOpenItemAttr

Chapter

3.

Application

Programming

Interfaces

63

ulAccessLevel

ULONG

—

input

The

object

access

mode.

The

value

of

this

parameter

indicates

the

access

mode

for

opening

the

object.

The

Content

Manager

for

iSeries

system

uses

this

access

state

to

accept

or

reject

concurrent

requests

to

access

an

open

object.

The

valid

values

are:

SIM_ACCESS_READ_WRITE

Opens

the

object

for

read

access

and

write

access,

at

the

first

byte

of

the

object.

SIM_ACCESS_SHARED_READ

Opens

the

object

for

read

access

only,

at

the

first

byte

of

the

object.

ulPriority

ULONG

—

input

Not

supported.

fConflict

BOOL

—

input

Not

supported.

fOpenControl

BITS

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

ulParam1

Contains

hObjAcc,

an

HOBJACC

object

access

handle.

The

value

in

this

field

identifies

the

current

instance

of

the

accessed

object.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INUSE

v

SIM_RC_INVALID_ACCESS_CODE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_OBJECT_HANDLE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OBJECT_CHECKEDOUT

v

SIM_RC_OPEN_FAILED

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

v

SIM_RC_OBJECT_BEINGPROMOTED

SimLibOpenObject

64

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Guidelines

for

Use

Effects:

v

If

the

function

returns

the

object

access

handle,

this

handle

identifies

the

current

instance

of

access

to

the

open

object.

This

handle

is

different

from

the

handle

normally

used

to

reference

the

stored

object.

Use

the

object

access

handle

(hObjAcc),

not

the

object

handle

(hObj),

with

the

following

functions:

–

SimLibCloseObject

–

SimLibReadObject

–

SimLibResizeObject

–

SimLibSeekObject

–

SimLibWriteObject

v

If

you

try

to

open

an

object

for

write

access

and

another

user

has

the

item

locked,

the

function

returns

SIM_RC_OBJECT_CHECKEDOUT

but

does

not

return

the

ID

of

the

user

who

locked

the

item.

You

can

use

the

SimLibGetItemInfo

function

to

get

the

user

ID.

Example

SimLibLogon...

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

<string.h>

/*

Standard

string

header

file

*/

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

main()

{

HSESSION

hSession

;

//

from

logon

HOBJ

hObj;

UCHAR

ulAccessLevel

=

SIM_ACCESS_SHARED_READ;

UCHAR

ulPriority

=

0;

//

not

supported

BOOL

fConflict

=

0;

//

not

supported

BOOL

fOpenControl

=

0;

//

Not

supported

RCSTRUCT

RC;

PRCSTRUCT

pRC

=

&RC;

POBJ

pObj;

//

Created

object

handle

USHORT

sResult;

//

get

rc

back

HOBJACC

hObjAcc;

//

object

access

handle

//

create

hobj

if(0==(

pObj=(POBJ)

malloc(sizeof(OBJ))))

{

return(1);

}

(

pObj)->ulStruct

=

sizeof(OBJ);

strcpy((

pObj)->szItemID,"DA97220AA.AAA");

strcpy((

pObj)->chRepType,"");

//

take

default

(

pObj)->ulPart

=

1;

hObj

=

pObj;

/*Call

the

function*/

sResult

=

SimLibOpenObject(

hSession,

hObj,

ulAccessLevel,

ulPriority,

fConflict,

fOpenControl,

0,

//

synch

pRC);

if

(pRC->ulRC

==

SUCCESS)

{

//

ulParam1

is

HOBACC

when

call

is

successful.

SimLibOpenObject

Chapter

3.

Application

Programming

Interfaces

65

hObjAcc

=

pRC->ulParam1;

//

Mem

containing

the

HOBJACC

struct

is

freed

by

SimLibCloseObject.

}

}

Related

Functions

v

SimLibCloseObject

v

SimLibReadObject

v

SimLibResizeObject

v

SimLibSeekObject

v

SimLibWriteObject

SimLibOpenObjectByUniqueName

(Open

an

Object

By

its

Unique

Name)

Format

SimLibOpenObjectByUniqueName(

hSession,

pszUniqueName,

ulAccessLevel,

ulPriority,

fConflict,

fOpenControl,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibOpenObjectByUniqueName

function

to

display

a

form

overlay

that

was

created

using

IBM

ImagePlus

Workfolder

Application

Facility

for

AS/400.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszUniqueName

PSZ

—

input

The

unique

name

of

the

item

containing

the

object

that

you

want

to

access.

ulAccessLevel

ULONG

—

input

The

object

access

mode.

The

value

of

this

parameter

indicates

the

access

mode

for

opening

the

object.

The

Content

Manager

for

iSeries

system

uses

this

access

state

to

accept

or

reject

concurrent

requests

to

access

an

open

object.

The

valid

values

are:

SIM_ACCESS_READ_WRITE

Opens

the

object

for

read

access

and

write

access,

at

the

first

byte

of

the

object.

SIM_ACCESS_SHARED_READ

Opens

the

object

for

read

access

only,

at

the

first

byte

of

the

object.

ulPriority

ULONG

—

input

Not

supported.

fConflict

BOOL

—

input

Not

supported.

fOpenControl

BITS

—

input

SimLibOpenObject

66

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

ulParam1

Contains

hObjAcc,

an

HOBJACC

object

access

handle.

The

value

in

this

field

identifies

the

current

instance

of

the

accessed

object.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INUSE

v

SIM_RC_INVALID_ACCESS_CODE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_OBJECT_HANDLE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OBJECT_CHECKEDOUT

v

SIM_RC_OPEN_FAILED

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

v

If

the

function

returns

the

object

access

handle,

this

handle

identifies

the

current

instance

of

access

to

the

open

object.

This

handle

is

different

from

the

handle

normally

used

to

reference

the

stored

object.

Use

the

object

access

handle

(hObjAcc),

with

the

following

functions:

–

SimLibCloseObject

–

SimLibReadObject

–

SimLibResizeObject

–

SimLibSeekObject

–

SimLibWriteObject

v

If

you

try

to

open

an

object

for

write

access

and

another

user

has

the

item

locked,

the

function

returns

SIM_RC_OBJECT_CHECKEDOUT

but

does

not

return

the

ID

of

the

user

who

locked

the

item.

You

can

use

the

SimLibGetItemInfo

function

to

get

the

user

ID.

Related

Functions

v

SimLibCloseObject

v

SimLibReadObject

v

SimLibResizeObject

v

SimLibSeekObject

SimLibOpenObjectByUniqueName

Chapter

3.

Application

Programming

Interfaces

67

v

SimLibWriteObject

SimLibQueryObject

(Query

an

Object)

Format

SimLibQueryObject(

hSession,

hObj,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibQueryObject

function

to

get

the

information

associated

with

the

object

that

you

specify,

such

as

its

size

and

its

content

class

and

collection

name.

This

function

allocates

a

buffer

for

an

object

information

structure

and

then

fills

this

structure

with

all

the

information

associated

with

the

object.

You

do

not

need

to

open

the

object

to

query

it.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObj

HOBJ

—

input

The

pointer

to

an

object

handle

block

in

the

HOBJ

data

structure.

This

handle

specifies

the

object

that

you

want

to

query.

For

more

information

on

the

HOBJ

structure,

see

“HOBJ

(Handle

to

Query

Stored

Object)”

on

page

143.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

a

buffer

where

an

OBJINFOSTRUCT

data

structure

contains

all

the

information

associated

with

the

object.

For

more

information

on

this

data

structure,

see

“OBJINFOSTRUCT

(Object

Information

Structure)”

on

page

149.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_ASYNC_STARTED

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_OBJECT_HANDLE

v

SIM_RC_INVALID_POINTER

SimLibOpenObjectByUniqueName

68

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PART_NOT_FOUND

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

This

function

returns

the

data

in

the

OBJINFOSTRUCT.

Follow-Up

Tasks:

After

the

function

gets

the

object

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

SimLibReadAttr

(Read

an

Attribute)

Format

SimLibReadAttr(

hSession,

hItem,

usAttributeId,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibReadAttr

function

to

return

the

value

of

a

specific

attribute

of

the

open

folder

or

document

you

specify.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hItem

HITEM

—

input

The

handle

to

a

virtual

item,

the

open

folder

or

document

for

which

you

want

to

read

an

attribute.

The

SimLibOpenItemAttr

function

returns

this

handle.

This

item

can

currently

be

open

in

either

read

or

write

access

mode.

usAttributeId

USHORT

—

input

The

unique

identifier

assigned

to

an

attribute.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

If

an

error

occurs,

this

field

contains

the

value

0.

ulParam1

Contains

a

pointer

to

a

buffer

in

which

a

null-terminated

string

is

a

character

representation

of

the

attribute

value.

If

the

attribute

value

is

undefined,

the

value

is

NULL.

ulParam2

The

function

does

not

use

this

field.

SimLibQueryObject

Chapter

3.

Application

Programming

Interfaces

69

|

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HITEM_VALUE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USATTRIBUTEID_VALUE

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Exceptions:

v

Attributes

are

always

returned

as

a

NULL-terminated

string.

v

Your

application

might

need

to

use

a

conversion

routine

such

as

an

ASCII-to-integer

routine

to

change

the

character

representation

of

the

value

into

the

correct

form

for

the

application.

v

Use

the

SimLibGetAttrInfo

function

to

get

the

data

types

and

lengths

of

attributes.

Use

the

SimLibGetItemInfo

function

and

the

SimLibGetClassInfo

function

to

get

the

class

attributes.

Follow-Up

Tasks:

When

you

no

longer

need

the

attribute

string,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

Related

Functions

v

SimLibGetClassInfo

v

SimLibGetAttrInfo

v

SimLibGetItemInfo

v

SimLibOpenItemAttr

SimLibReadObject

(Read

an

Object)

Format

SimLibReadObject(

hSession,

hObjAcc,

pBuffer,

ulBytesToRead,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibReadObject

function

to

transfer

the

number

of

bytes

you

specify

from

an

object

into

the

data

buffer

of

your

application.

This

function

lets

you

manipulate

an

object

as

a

file.

The

function

begins

reading

the

object

at

the

byte

that

the

object

pointer

is

currently

referencing.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObjAcc

HOBJACC

—

input

The

object

access

handle

to

the

open

object

that

you

want

to

read

into

the

data

buffer

of

your

application.

The

value

of

this

parameter

identifies

the

current

instance

of

the

accessed

object.

pBuffer

PHBUF

—

input

SimLibReadAttr

70

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

data

buffer

pointer.

The

value

of

this

parameter

represents

a

pointer

to

the

first

byte

of

the

buffer

returning

the

read

object

data.

ulBytesToRead

ULONG

—

input

The

number

of

bytes

to

read.

The

value

of

this

parameter

specifies

the

maximum

number

of

bytes

to

read

from

the

object

during

the

transfer

operation.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

the

byte

immediately

after

the

last

byte

written

to

the

buffer.

Normally,

this

is

the

address

of

the

buffer

plus

the

number

of

bytes

read.

ulParam2

Contains

the

actual

number

of

bytes

read.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_BUFFER_PTR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_OBJECT_ACCESS_HANDLE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_READ_PAST_EOF

Guidelines

for

Use

Preparation:

Before

you

can

read

the

object,

you

must

open

it

and

obtain

an

object

access

handle.

Effects:

After

successful

completion

of

the

function,

the

object

pointer

references

the

byte

immediately

following

the

data

that

was

read.

Exceptions:

If

the

number

of

bytes

that

you

specify

to

be

read

is

more

than

the

number

of

bytes

in

the

object,

the

function

transfers

fewer

bytes

than

you

specify.

Related

Functions

v

SimLibCloseObject

v

SimLibOpenObject

v

SimLibSeekObject

SimLibReadObject

Chapter

3.

Application

Programming

Interfaces

71

SimLibRemoveFolderItem

(Remove

an

Item

from

a

Folder)

Format

SimLibRemoveFolderItem(

hSession,

pszFolderID,

pszItemID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibRemoveFolderItem

function

to

remove

a

document

or

a

folder

item

from

a

folder.

This

function

removes

the

reference

to

the

item

from

the

table

of

contents

of

the

specified

folder.

You

need

not

open

the

folder

to

use

the

function,

but

the

folder

must

not

be

locked

by

another

user.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszFolderID

PITEMID

—

input

The

identifier

of

a

folder

from

which

you

want

to

remove

an

item.

This

identifier

is

the

item

ID

of

the

folder.

pszItemID

PITEMID

—

input

The

identifier

of

an

item

to

remove

from

the

folder.

This

identifier

is

the

item

ID

of

a

document

or

a

folder

item.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

If

the

return

code

is

SIM_RC_PARENT_CHECKEDOUT,

this

field

contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

the

value

NULL.

If

the

return

code

is

SIM_RC_PARENT_CHECKEDOUT,

this

field

contains

a

pointer

to

a

USERACCESSSTRUCT

data

structure.

The

structure

contains

the

user

ID

of

the

user

who

has

locked

the

folder.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_PITEMIDFOLDER_PTR

v

SIM_RC_INVALID_PITEMIDFOLDER_VALUE

v

SIM_RC_INVALID_PITEMIDITEM_PTR

SimLibRemoveFolderItem

72

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

SIM_RC_INVALID_PITEMIDITEM_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PARENT_CHECKEDOUT

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

v

If

the

folder

is

locked

by

another

user,

you

cannot

remove

an

item

from

it.

Instead,

the

function

returns

the

user

ID

of

the

user

who

has

locked

the

folder.

If

you

have

locked

the

folder,

you

can

remove

items

from

it.

Exceptions:

v

This

function

does

not

automatically

update

a

temporary

copy

of

the

table

of

contents

for

a

folder.

Your

application

must

use

either

the

Ip2GetTOCUpdates

function

or

the

SimLibGetTOC

function

to

update

the

table

of

contents

of

this

folder.

v

You

can

remove

an

item

that

you

or

someone

else

has

locked.

Only

the

status

of

the

parent

folder

is

examined.

Follow-Up

Tasks:

After

your

application

no

longer

needs

the

user

access

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer

containing

the

USERACCESSSTRUCT

data

structure.

Related

Functions

v

Ip2GetTOCUpdates

v

SimLibAddFolderItem

v

SimLibDeleteItem

v

SimLibFree

v

SimLibGetTOC

SimLibResizeObject

(Resize

an

Object)

Format

SimLibResizeObject(

hSession,

hObjAcc,

ulSize,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibResizeObject

function

to

change

the

size,

in

bytes,

of

an

object

to

a

new

size

that

you

specify.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObjAcc

HOBJACC

—

input

The

object

access

handle

to

the

object

that

you

want

to

resize.

The

value

of

this

parameter

identifies

the

current

instance

of

the

accessed

object.

ulSize

ULONG

—

input

SimLibRemoveFolderItem

Chapter

3.

Application

Programming

Interfaces

73

The

new

object

size.

To

truncate

the

object

file

beginning

at

the

current

position

of

the

object

pointer,

and

including

that

byte,

specify

the

value

0.

To

truncate

the

file

to

a

specific

byte

size,

specify

that

byte

size.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_OBJECT_ACCESS_HANDLE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_NO_WRITE_ACCESS

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_RESIZE_FAILED

v

SIM_RC_SEEK_ERROR

Guidelines

for

Use

Preparation:

Before

you

use

this

function

to

resize

an

object,

the

object

must

be

open

for

SIM_ACCESS_READ_WRITE

access.

Effects:

v

The

object

file

pointer

is

set

to

the

end

of

the

object

at

the

completion

of

this

function.

v

Use

this

function

when

you

want

to

replace

an

object

with

one

that

is

smaller

than

the

original.

Use

SimLibWriteObject

and

then

SimLibResizeObject

to

truncate

at

the

end

of

the

new

data.

Exceptions:

To

increase

the

size

of

an

object,

you

should

use

the

SimLibWriteObject

function

to

append

data

to

the

object

and

increase

its

size

at

the

same

time.

Related

Functions

v

SimLibWriteObject

SimLibResizeObject

74

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SimLibSaveAttr

(Save

an

Attribute)

Format

SimLibSaveAttr(

hSession,

hItem,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibSaveAttr

function

to

save

the

attributes

of

a

virtual

item

permanently.

This

function

saves

work

that

is

in

process

on

a

virtual

item

without

closing

the

item

or

releasing

access

rights.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hItem

HITEM

—

input

The

handle

to

a

virtual

item.

The

SimLibOpenItemAttr

function

returns

this

handle.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_ATTRIBUTES_NOT_MODIFIED

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HITEM_VALUE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_PASSED_ATTR_DATA

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USCLASSID_VALUE

v

SIM_RC_NO_WRITE_ACCESS

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

v

SIM_RC_REQUIRED_ATTRIBUTE_MISSING

SimLibSaveAttr

Chapter

3.

Application

Programming

Interfaces

75

Guidelines

for

Use

Effects:

v

If

a

virtual

item

is

open

for

write

access

and

modified,

this

function

copies

the

attributes

of

the

virtual

item

over

the

attributes

in

the

database.

v

If

the

index

class

is

changed,

this

function

saves

a

new

set

of

user-defined

attributes

in

the

new

index

class

and

deletes

the

old

attributes.

Related

Functions

v

SimLibOpenItemAttr

SimLibSearch

(Search)

Format

SimLibSearch(

hSession,

pszItemFilter,

pLinkCriteria,

usStatDyn,

usTypeFilter,

fWipFilter,

usSuspendFilter,

usIndexClass,

usNumCriteria,

pCriteria,

ulMemListRequest,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibSearch

function

to

locate

items

in

the

database

that

match

the

user-defined

attribute

values

you

specify.

This

function

returns

items

that

match

the

search

criteria

to

the

user.

If

you

specify

an

index

class,

you

can

search

on

values

of

user-defined

attributes

within

the

index

class.

If

you

do

not

specify

an

index

class,

this

function

searches

only

index

classes

that

contain

all

specified

user-defined

attributes.

For

example,

in

a

request

to

search

all

index

classes

for

“account

number”

equal

to

12345,

the

search

is

limited

to

those

index

classes

that

include

“account

number”

as

a

user-defined

attribute.

You

can

specify

multiple

combinations

of

index

classes

and

attributes.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszItemFilter

PITEMID

—

input

Not

supported.

pLinkCriteria

PVOID

—

input

Not

supported.

usStatDyn

USHORT

—

input

Not

supported.

usTypeFilter

USHORT

—

input

The

type

of

items

to

search

for.

The

valid

values

are:

SIM_DOCUMENT

Searches

for

documents.

SIM_FOLDER

Searches

for

folders.

SIM_FOLDER_DOC

Searches

for

both

folders

and

documents.

SimLibSaveAttr

76

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

fWipFilter

BITS

—

input

Not

supported.

usSuspendFilter

USHORT

—

input

Not

supported.

usIndexClass

USHORT

—

input

Not

supported.

usNumCriteria

USHORT

—

input

The

number

of

fields

in

the

pCriteria

array.

pCriteria

PLIBSEARCHCRITERIASTRUCT

—

input

The

pointer

to

an

array

specifying

the

search

criteria

for

each

view

you

want

to

search.

pCriteria

must

point

to

an

array

of

at

least

one

field.

For

more

information

on

the

LIBSEARCHCRITERIASTRUCT

structure,

see

“LIBSEARCHCRITERIASTRUCT

(Search

Criteria

Information

Structure)”

on

page

147.

ulMemListRequest

BOOL

—

input

This

parameter

controls

how

the

search

results

are

returned

or

which

attribute

values

are

returned.

The

valid

values

are:

SIM_SEARCH_MEMLIST

Returns

the

search

results

in

a

memory

buffer.

SIM_SEARCH_MEMLIST_ONE

Not

supported.

SIM_SEARCH_USER_ATTR

Returns

the

item

IDs

and

user

attributes

for

the

item

in

a

memory

buffer.

SIM_SEARCH_USER_SYSTEM_ATTR

Returns

the

item

IDs,

user

attributes,

and

system

attributes

in

a

memory

buffer.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer

to

a

buffer.

If

nothing

matches

the

input

search

criteria,

this

field

contains

the

value

0.

ulParam1

If

you

set

the

ulMemListRequest

parameter

to

SimLibSearch

Chapter

3.

Application

Programming

Interfaces

77

SIM_SEARCH_MEMLIST,

this

field

contains

a

PITEMID

pointer

to

a

buffer.

In

the

buffer,

an

array

provides

document

and

folder

item

IDs

that

match

the

search

criteria.

If

you

set

the

ulMemListRequest

parameter

to

SIM_SEARCH_USER_ATTR

or

SIM_SEARCH_USER_SYSTEM_ATTR,

this

field

contains

a

pointer

to

an

array

of

SNAPSHOTSTRUCTs

containing

the

attribute

data

for

items

that

meet

the

search

criteria.

ulParam2

Contains

the

number

of

items

that

match

the

criteria

(the

number

of

fields

in

the

array

referenced

by

ulParam1.

The

values

in

the

ulReturnLimit

field

of

the

LIBSEARCHCRITERIASTRUCT

structures

limit

this

number.

If

nothing

matches

the

search

criteria,

this

field

contains

the

value

0.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_ATTR_NOT_IN_VIEW

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_FSEARCH

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_INDEX_CLASS

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_PATTRIBUTELIST_VALUE

v

SIM_RC_INVALID_PITEMIDFOLDER_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_SEARCH_STRING

v

SIM_RC_INVALID_USATTRIBUTEID_VALUE

v

SIM_RC_INVALID_USITEMTYPE_VALUE

v

SIM_RC_INVALID_VIEWID

v

SIM_RC_NO_SEARCH_CRITERIA

v

SIM_RC_NO_SEARCH_VIEWS

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

See

Appendix

A,

“Guidelines

for

Search

Expressions,”

on

page

291.

Effects:

v

If

nothing

matches

the

input

search

criteria,

the

function

returns

a

successful

return

code

and

the

usParam,

ulParam1,

and

ulParam2

fields

all

contain

the

value

NULL.

v

Specifying

very

explicit

search

criteria

can

narrow

the

number

of

items

returned

by

the

search.

Alternatively,

specifying

very

general

search

criteria

might

degrade

the

performance

of

the

search.

v

If

you

specify

an

all

index

class

search,

the

function

automatically

searches

only

index

classes

that

contain

those

attributes

specified

in

the

expression.

Follow-Up

Tasks:

If

you

set

the

ulMemListRequest

parameter

to

SIM_SEARCH_MEMLIST,

after

the

function

gets

the

search

results

information,

use

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

to

free

the

buffer.

SimLibSearch

78

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SimLibSeekObject

(Seek

an

Object)

Format

SimLibSeekObject(

hSession,

hObjAcc,

ulOrigin,

lOffset,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibSeekObject

function

to

adjust

the

object

pointer

to

reference

a

new

position

that

you

define.

The

next

data

transfer

operation

for

the

object

begins

at

this

new

position.

Use

this

function

to

position

the

pointer

before

you

change

an

object.

This

function

lets

you

manipulate

an

object

as

a

file.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObjAcc

HOBJACC

—

input

The

object

access

handle

to

the

object

in

which

you

want

to

adjust

the

object

pointer.

The

value

of

this

parameter

identifies

the

current

instance

of

the

accessed

object.

The

SimLibOpenObject

function

returns

this

handle.

ulOrigin

ULONG

—

input

The

pointer

origin

index.

The

value

of

this

parameter

indicates

the

initial

position

of

the

object

pointer.

The

valid

values

are:

SIM_POS_BEGIN

Indicates

the

beginning

of

the

object.

SIM_POS_CURRENT

Indicates

the

current

pointer

position.

SIM_POS_END

Indicates

the

byte

following

the

end

of

the

object.

lOffset

LONG

—

input

The

byte

offset

from

the

origin.

The

value

of

this

parameter

specifies

the

position

in

the

object

for

the

adjusted

object

pointer

to

reference.

Specify

the

value

in

relation

to

the

position

you

specify

as

the

value

of

the

ulOrigin

parameter.

This

value

can

be

either

a

negative

or

a

positive

byte

count.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

SimLibSeekObject

Chapter

3.

Application

Programming

Interfaces

79

ulParam1

Contains

ulOffset,

the

current

offset,

which

has

the

data

type

ULONG.

This

value

indicates

the

offset,

in

bytes,

from

the

beginning

of

the

object.

If

the

current

position

is

at

the

beginning

of

the

object,

this

value

is

0.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_OBJECT_ACCESS_HANDLE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_SEEK_OFFSET

v

SIM_RC_INVALID_SEEK_ORIGIN

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_RESIZE_FAILED

v

SIM_RC_SEEK_ERROR

Guidelines

for

Use

Preparation:

You

must

have

opened

the

object

and

obtained

an

hObjAcc

by

calling

SimLibOpenObject

before

you

can

call

the

SimLibSeekObject

function.

Effects:

You

can

adjust

the

object

pointer

to

reference

a

position

beyond

the

end

of

the

object.

However,

any

attempt

to

reference

a

position

before

the

beginning

of

the

object

returns

error

code

SIM_RC_INVALID_SEEK_OFFSET.

Related

Functions

v

SimLibOpenObject

SimLibStageObject

(Stage

an

Object)

Format

SimLibStageObject(

hSession,

hObj,

ulPriority,

fStageControl,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibStageObject

function

to

retrieve

an

object

from

secondary

storage

to

iSeries

DASD.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObj

HOBJ

—

input

The

pointer

to

an

object

handle

block

in

the

HOBJ

data

structure.

For

more

information

on

the

HOBJ

structure,

see

“HOBJ

(Handle

to

Query

Stored

Object)”

on

page

143.

ulPriority

ULONG

—

input

The

priority

value,

which

specifies

the

servicing

priority

for

the

object.

The

valid

values

are:

SimLibSeekObject

80

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SIM_PRI_IMMEDIATE

Attempt

to

interactively

retrieve

the

object.

SIM_PRI_BACKGROUND

Generate

a

retrieve

request

for

the

object.

fStageContro

BITS

—

input

Control

option

bits

for

staging

the

object.

The

valid

value

is:

SIM_PREFETCH

To

prefetch

to

object

server.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_FOPTIONS

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_HSYNC

v

SIM_RC_INVALID_OBJECT_HANDLE

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Preparation:

If

you

are

using

this

API

to

generate

retrieve

requests,

the

optical

retrieve

processor

must

be

started

and

running

to

actually

retrieve

the

object.

Effects:

On

successful

completion

of

the

function,

either

a

retrieve

request

will

be

generated

for

the

object

or

the

object

will

be

interactively

retrieved.

Related

Functions

v

SimLibLogon

SimLibStoreNewObject

(Store

a

New

Object

in

an

Existing

Item)

Format

SimLibStoreNewObject(

hSession,

hObj,

ulConCls,

pSMS,

pObjBuffer,

ulObjSize,

lSeqAfterPart,

ulAffiliatedType,

pAffiliatedData,

pAsyncCtl,

pRC

)

SimLibStageObject

Chapter

3.

Application

Programming

Interfaces

81

Purpose

Use

the

SimLibStoreNewObject

function

to

add

a

new

object

to

an

existing

item.

This

is

a

streamlined

version

of

the

SimLibCatalogObject

function

with

fewer

options

and

data

checks.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObj

HOBJ

—

input

The

pointer

to

an

object

handle

block.

For

more

information

on

the

HOBJ

structure,

see

“HOBJ

(Handle

to

Query

Stored

Object)”

on

page

143.

ulConCls

ULONG

—

input

The

content

class

identifier

for

the

object

(see

Appendix

B,

“Predefined

Content

Classes,”

on

page

295).

The

value

of

this

parameter

tells

what

kind

of

data

is

in

the

new

object.

To

indicate

the

undefined

content

class,

specify

the

value

SIM_CC_UNKNOWN

for

this

parameter.

However,

if

you

have

created

an

undefined

content

class,

other

applications

cannot

use

Content

Manager

for

iSeries

content

class

services

to

determine

how

to

manipulate

the

contents

of

the

objects

you

store.

pSMS

PSMS

—

input

Pointer

to

a

system-managed

storage

(SMS)

structure

for

an

object.

This

structure

uses

only

szCollectionName.

pObjBuffer

PVOID

—

input

The

pointer

to

a

memory

buffer

containing

the

object

data.

ulObjSize

ULONG

—

input

The

total

size,

in

bytes,

of

the

object.

lSeqAfterPart

LONG

—

input

Not

supported.

ulAffiliatedType

LONG

—

input

The

type

of

affiliated

object

to

store.

The

defined

values

are:

SIM_ANNOTATION

Stores

an

annotation

associated

with

a

folder

or

a

document.

SIM_BASE

Stores

a

base

object

such

as

a

MO:DCA

or

TIFF

file,

that

is

not

an

annotation,

note,

or

event

associated

with

a

folder

or

document.

SIM_EVENT

Stores

an

event

associated

with

a

folder

or

a

document.

SIM_MGDS

Stores

an

MGDS

(machine-generated

data

stream)

associated

with

a

folder

or

a

document.

SimLibStoreNewObject

82

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SIM_NOTE

Stores

a

note

associated

with

a

folder

or

a

document.

pAffiliatedData

PVOID

—

input

The

pointer

to

a

data

structure

of

the

type

ANNOTATIONSTRUCT.

If

the

ulAffiliatedType

parameter

contains

the

value

SIM_ANNOTATION,

pAffiliatedData

points

to

this

structure,

which

contains

additional

data

affiliated

with

the

object.

Otherwise,

the

Content

Manager

for

iSeries

system

ignores

this

parameter.

For

more

information

on

the

ANNOTATIONSTRUCT

structure,

see

“ANNOTATIONSTRUCT

(Annotation

Information

Structure)”

on

page

134.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_ANNOTATIONSTRUCT_PTR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_SMS_PTR

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Preparation:

v

To

get

the

supported

values

for

the

ulConCls

parameter,

use

the

Ip2ListContentClasses

function.

v

If

0

is

specified

for

the

part

number,

the

next

sequential

part

number

is

created.

If

part

number

is

nonzero,

that

part

number

is

used

if

it

does

not

already

exist.

If

it

does

exist,

the

first

available

number

is

returned.

Part

number

1

is

typically

a

base

part.

This

API

lets

you

create

part

number

2

–

for

example,

a

note

–

before

creating

part

number

1.

Exceptions:

The

Content

Manager

for

iSeries

system

does

not

validate

the

content

class

parameter

as

a

defined,

known

content

class.

SimLibStoreNewObject

Chapter

3.

Application

Programming

Interfaces

83

Related

Functions

v

Ip2ListContentClasses

v

SimLibCatalogObject

SimLibWriteAttr

(Write

an

Attribute)

Format

SimLibWriteAttr(

hSession,

hItem,

usAttributeId,

pszAttributeValue,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibWriteAttr

function

to

assign

a

value

to

an

attribute

associated

with

an

open

item.

You

can

only

modify

a

user-defined

attribute.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hItem

HITEM

—

input

The

handle

to

a

virtual

item.

The

SimLibOpenItemAttr

function

returns

this

handle.

To

use

the

SimLibWriteAttr

function,

the

item

must

currently

be

open

in

write

access

mode.

usAttributeId

USHORT

—

input

The

unique

identifier

assigned

to

an

attribute.

pszAttributeValue

PSZ

—

input

A

null-terminated

character

string

containing

the

value

of

an

attribute.

This

string

contains

the

value

you

assign

to

the

attribute

you

specify

in

the

usAttributeId

parameter.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_ATTRIBUTE_READ_ONLY

SimLibStoreNewObject

84

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HITEM_VALUE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PASSED_ATTRIBUTE_DATA

v

SIM_RC_INVALID_PATTRIBUTE_PTR

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USATTRIBUTEID_VALUE

v

SIM_RC_NO_WRITE_ACCESS

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Preparation:

Use

a

conversion

routine

such

as

an

integer-to-ASCII

routine

to

change

numeric

data

into

a

character

string

for

this

function.

Effects:

v

This

function

copies

the

value

of

the

pszAttributeValue

parameter

into

the

virtual

item.

v

The

item

must

be

open

for

write

access

or

the

function

returns

an

error,

SIM_RC_NO_WRITE_ACCESS.

v

If

the

function

fails,

the

Content

Manager

for

iSeries

system

maintains

the

current

attribute

value.

Exceptions:

v

The

SimLibWriteAttr

function

validates

only

SIM_ATTR_FSTRING

data

types.

It

validates

these

data

types

by

comparing

maximum

lengths

of

the

attribute

data

with

the

Content

Manager

for

iSeries-defined

string.

The

SimLibCloseAttr

and

the

SimLibSaveAttr

functions

validate

the

attribute

contents

by

comparing

the

data

with

the

data

types

configured

through

the

SimLibWriteAttr

function.

v

The

SimLibWriteAttr

function

changes

only

the

virtual

copy

in

memory.

It

does

not

update

the

permanent

database

copy

of

the

attribute.

Use

the

SimLibSaveAttr

or

the

SimLibCloseAttr

function

to

make

the

modifications

permanent.

Related

Functions

v

SimLibCloseAttr

v

SimLibGetAttrInfo

v

SimLibGetClassInfo

v

SimLibOpenItemAttr

v

SimLibSaveAttr

SimLibWriteObject

(Write

an

Object)

Format

SimLibWriteObject(

hSession,

hObjAcc,

pBuffer,

ulBytesToWrite,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimLibWriteObject

function

to

transfer

the

number

of

bytes

you

specify

from

the

data

buffer

of

your

application

to

an

open

object.

The

write

operation

begins

at

the

byte

referenced

by

the

current

object

pointer.

SimLibWriteAttr

Chapter

3.

Application

Programming

Interfaces

85

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hObjAcc

HOBJACC

—

input

The

object

access

handle

to

the

object

that

you

want

to

write

to.

The

value

of

this

parameter

identifies

the

current

instance

of

the

accessed

object.

pBuffer

PHBUF

—

input

The

data

buffer

pointer.

The

value

of

this

parameter

represents

a

pointer

to

the

first

byte

of

the

data

to

be

written

to

the

object.

ulBytesToWrite

ULONG

—

input

The

number

of

bytes

to

write

to

the

object.

The

value

of

this

parameter

specifies

the

maximum

number

of

bytes

to

write

to

the

object

during

the

transfer

operation.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

ulParam1

Contains

the

number

of

bytes

actually

written.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_BUFFER_PTR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_OBJECT_ACCESS_HANDLE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_NO_WRITE_ACCESS

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_RESIZE_FAILED

Guidelines

for

Use

Preparation:

v

Before

you

can

use

this

function,

you

must

open

the

object

with

SIM_ACCESS_READ_WRITE

access

using

one

of

the

following

functions:

–

SimLibOpenObject

–

SimLibCreateObject

–

SimLibCatalogObject

SimLibWriteObject

86

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

If

you

are

replacing

an

object

with

one

that

is

smaller

than

the

original,

first

truncate

the

original

object

to

the

size

of

the

replacement

object

using

the

SimLibResizeObject

function.

Then

you

can

replace

the

object

using

the

SimLibWriteObject

function.

If

the

replacement

object

is

larger

than

the

original,

resizing

first

is

not

necessary.

Effects:

On

successful

completion

of

the

function,

the

object

pointer

references

the

byte

immediately

following

the

data

that

was

written.

Example

#include

<stdio.h>

/*

Standard

I/O

header

files

*/

#include

<string.h>

/*

Standard

string

header

file

*/

#include

"ekdviapi.h"

/*

Content

Manager

for

iSeries

*/

main()

{

HSESSION

hSession;

//

get

from

logon

HOBJACC

hObjAcc;

//

get

from

catalog,

open,

or

create

RCSTRUCT

RC;

PRCSTRUCT

pRC

=

&RC;

USHORT

sResult;

//

return

codes

CHAR

pBuffer[4096];

//

buffer

ULONG

ulBytesToWrite

=

2048;

/*

fill

buffer

*/

/*Call

the

function*/

sResult

=

SimLibWriteObject(

hSession,

hObjAcc,

pBuffer,

ulBytesToWrite,

pAsyncCtl,

pRC);

if

((pRC->ulRC

==

SIM_RC_OK)

&&;

(ulBytesToWrite

!=

pRC->ulParam1))

printf("not

all

the

bytes

got

written");

}

Related

Functions

v

SimLibCatalogObject

v

SimLibCreateObject

v

SimLibOpenObject

v

SimLibResizeObject

v

SimLibWriteObject

SimWmActivateWorkPackage

(Activate

a

Work

Package)

Format

SimWmActivateWorkPackage(

hSession,

ulWorkPackageID,

ulInstanceID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmActivateWorkPackage

function

to

release

a

suspended

work

package.

SimLibWriteObject

Chapter

3.

Application

Programming

Interfaces

87

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

Related

Functions

v

SimWmSuspendWorkPackage

SimWmBeginProcess

(Start

a

Work

Package

on

a

Pre-defined

Process)

Format

SimWmBeginProcess(

hSession,

pszProcessID,

pszRouteName,

pszWorkPackageDesc,

ulNumVariables,

pVariableList,

usPriority,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmBeginProcess

function

to

create

a

work

package

containing

the

item

and

start

the

work

package

on

a

predefined

process.

Parameters

hSession

HSESSION

—

input

SimWmActivateWorkPackage

88

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszProcessID

PSZ

—

input

The

identifier

of

the

process.

pszRouteName

PSZ

—

input

Pointer

to

the

name

of

the

initial

route

within

the

process.

If

the

pointer

is

NULL,

the

default

route

within

the

specified

process

is

used.

pszWorkPackageDesc

PSZ

—

input

The

NULL-terminated

character

string

that

specifies

the

work

package

description.

It

can

be

used

as

a

comment

about

the

task

or

as

information

the

application

uses

as

a

key

to

an

application

database

for

more

details

about

the

work.

ulNumVariables

ULONG

—

input

Number

of

entries

in

the

variable

array.

Maximum

number

of

entries

that

can

be

specified

is

two.

This

field

is

ignored

if

the

array

pVariableList

pointer

is

NULL.

pVariableList

PWMVARSTRUCT

—

input

Pointer

to

an

array

of

WMVARSTRUCT

structures

containing

the

variable

identifiers

and

values

for

work

management

variables.

Valid

variable

names

are:

SIMWM_ITEMID

The

valid

value

for

SIMWM_ITEMID

is

the

item

ID

of

a

document

or

folder.

SIMWM_INDEX_CLASS

The

valid

value

for

SIMWM_INDEX_CLASS

is

an

index

class

identifier.

usPriority

USHORT

—

input

Priority

of

the

work

to

be

performed.

The

priority

affects

the

work

sequencing

of

the

work

package.

A

larger

number

is

a

higher

priority.

Use

a

priority

of

zero

to

request

the

default

priority.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Always

zero.

ulParam1

Contains

the

work

package

ID.

SimWmBeginProcess

Chapter

3.

Application

Programming

Interfaces

89

ulParam2

Contains

the

work

package

instance.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

OIM_WB_FULL

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_INDEX_CLASS

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_PROCESS_NAME

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Preparation:

To

associate

a

work

package

to

an

item

in

an

index

class,

specify

variables,

SIMWM_INDEX_CLASS

and

SIMWM_ITEMID.

The

pVariableList

parameter

can

be

NULL

to

reflect

a

work

package

with

no

direct

database

references.

If

pVariableList

is

not

specified,

the

calling

application

is

responsible

for

associating

the

work

package

ID

to

the

object.

If

the

route

name

is

not

specified,

the

work

package

is

routed

to

the

first

route

in

the

specified

predefined

process.

Exceptions:

When

you

use

SimWmBeginProcess

to

start

a

work

package

on

a

process,

the

workbasket

overload

limit

is

ignored,

meaning

that

the

work

package

is

always

added

to

the

workbasket.

A

return

code

of

OIM_WB_FULL

is

returned,

however,

to

indicate

that

the

work

package

was

placed

in

a

workbasket

whose

overload

limit

has

been

reached.

SimWmChangeVariables

(Change

Variable

Values

for

a

Work

Package)

Format

SimWmChangeVariables(

hSession,

ulWorkPackageID,ulInstanceID,

ulNumVariables,

pVariableList,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmChangeVariables

function

to

create

new

variables

that

are

associated

with

a

work

package,

or

to

update

variables

that

already

exist.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

SimWmBeginProcess

90

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Identifier

of

the

work

package.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

ulNumVariables

ULONG

—

input

Number

of

entries

in

the

variable

array.

pVariableList

PWMVARSTRUCT

—

input

Pointer

to

an

array

of

WMVARSTRUCT

structures

containing

the

variable

identifiers

and

values

for

work

management

variables.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_WM_VARIABLE

Guidelines

for

Use

Preparation:

The

pre-defined

variable

SIMWM_ACTION

(*ACTION)

is

used

by

the

IBM

Content

Manager

for

iSeries

client

to

identify

the

last

action

selected

by

a

user.

The

value

assigned

to

this

variable

is

based

on

the

action

list

definition.

Exceptions:

The

variables

SIMWM_ITEMID

(*ITEMID)

and

SIMWM_INDEX_CLASS

(*INDEXCLASS)

are

reserved

for

internal

use

and

may

not

be

created

or

changed

using

the

SimWmChangeVariables

function.

Related

Functions

v

SimWmQueryVariables

SimWmChangeVariables

Chapter

3.

Application

Programming

Interfaces

91

SimWmCreateWorkPackage

(Create

a

Work

Package)

Format

SimWmCreateWorkPackage(

hSession,

pszWorkPackageDesc,

ulNumVariables,

pVariableList,

usWorkPriority,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmCreateWorkPackage

function

to

create

a

new

work

package

that

an

application

can

use

for

ad

hoc

work

control.

This

allows

the

application

to

route

a

work

package

containing

a

folder

or

document

through

one

or

more

workbaskets

without

the

requirement

for

a

pre-defined

process.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszWorkPackageDesc

PSZ

—

input

Pointer

to

a

description

of

the

work

package.

It

can

be

used

as

a

comment

about

the

task

or

as

information

the

application

uses

as

a

key

to

an

application

database

for

more

details

about

the

work.

ulNumVariables

ULONG

—

input

Number

of

entries

in

the

variable

array.

This

field

is

ignored

if

the

array

pVariableList

pointer

is

NULL.

pVariableList

PWMVARSTRUCT

—

input

Pointer

to

an

array

of

WMVARSTRUCT

structures

containing

the

variable

identifiers

and

values

for

work

management

variables.

The

parameter

can

be

NULL

to

reflect

a

work

package

with

no

direct

database

references

or

a

work

package

that

an

application

associates

to

an

object.

To

associate

a

work

package

to

an

item

in

an

index

class,

include

the

variables

SIMWM_INDEX_CLASS

and

SIMWM_ITEMID.

usWorkPriority

USHORT

—

input

Priority

of

the

work

to

be

performed.

The

priority

affects

the

work

sequencing

of

the

work

package

at

the

workbasket.

A

larger

number

is

a

higher

priority.

Use

a

priority

of

zero

to

request

the

default

priority.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

SimWmCreateWorkPackage

92

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Always

zero.

ulParam1

Contains

the

work

package

ID.

ulParam2

Contains

the

work

package

instance.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_INDEX_CLASS

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Preparation:

You

can

specify

variables

to

associate

a

work

package

with

a

specific

library

item.

If

pVariableList

is

not

specified,

the

calling

application

is

responsible

for

associating

the

work

package

ID

to

the

object

that

is

being

processed.

If

it

is

specified,

then

the

work

management

interface

always

returns

the

data

to

the

application

whenever

the

work

package

ID

is

referenced

in

an

API.

For

example,

when

the

calling

application

gets

the

next

work

package

from

a

workbasket,

the

item

ID

would

also

be

returned.

Effects:

A

new

work

package

is

created.

Follow-Up

Tasks:

SimWmRouteWorkPackage

should

be

called

to

route

the

work

package

to

a

workbasket.

Related

Functions

v

SimWmRouteWorkPackage

SimWmEndCollectionPoint

(Force

a

Work

Package

Out

of

a

Collection

Point)

Format

SimWmEndCollectionPoint(

hSession,

ulWorkPackageID,

ulInstanceID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmEndCollectionPoint

function

to

force

a

work

package

out

of

a

collection

point.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

SimWmCreateWorkPackage

Chapter

3.

Application

Programming

Interfaces

93

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

OIM_ITEM_NOT_SUSPENDED

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

v

SIM_RC_PRIVILEGE_ERROR

SimWmEndProcess

(End

a

Work

Package

on

a

Process)

Format

SimWmEndProcess(

hSession,

ulWorkPackageID,

ulInstanceID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmEndProcess

function

to

force

an

end

to

an

active

work

package.

It

removes

the

work

package

from

workbaskets.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

If

only

one

instance

exists,

this

parameter

is

ignored.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

SimWmEndCollectionPoint

94

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

v

If

the

work

package

instance

field

is

zero,

it

is

assumed

that

the

the

process

is

being

ended;

otherwise,

the

route

is

ended.

If

the

work

package

is

ended

on

a

process,

all

instances

of

the

work

package

are

ended.

v

To

end

a

work

package

on

an

ad

hoc

route,

specify

only

the

work

package

ID.

Related

Functions

v

SimWmCreateWorkPackage

v

SimWmGetWorkPackage

SimWmGetActionListInfo

(Get

Action

List

Information)

Format

SimWmGetActionListInfo(

hSession,

pszActionListName,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmGetActionListInfo

function

to

obtain

the

detail

information

associated

with

an

action

list.

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszActionListName

PSZ

—

Input

The

pointer

to

the

name

of

the

action

list.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

SimWmEndProcess

Chapter

3.

Application

Programming

Interfaces

95

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

a

WMACTIONLISTINFOSTRUCT

data

structure

that

provides

the

action

list

information.

See

“WMACTIONLISTINFOSTRUCT

(Action

List

Data

Structure)”

on

page

161

for

additional

information.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

Guidelines

for

Use

Follow-Up

Task:

When

your

application

no

longer

needs

the

WMACTIONLISTINFOSTRUCT

data,

use

the

SimLibFree

function

to

free

the

buffer

containing

the

structure.

SimWmGetProcessInfo

(Get

Information

About

a

Process)

Format

SimWmGetProcessInfo(hSession,

pszProcessID,

fGetProcessInfo,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmGetProcessInfo

function

to

return

detailed

information

for

a

specific

process

defined

in

the

system.

This

function

returns

workbaskets

and/or

collection

points

associated

with

a

specific

process.

Parameters

hSession

HFSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszProcessID

PSZ

—

input

Pointer

to

the

process

identifier.

fGetProcessInfo

BITS

—

input

Flag

bits

that

select

what

information

to

return

about

the

process.

You

can

use

the

bitwise

inclusive

OR

operator

(|)

to

combine

them.

SimWmGetActionListInfo

96

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SIMWM_PROCESS_WORKBASKETS

Returns

information

about

all

workbaskets

associated

with

the

specified

process.

SIMWM_PROCESS_COLLECTION_POINTS

Returns

information

about

all

collection

points

associated

with

the

specified

process.

SIMWM_PROCESS_ALL_LOCATIONS

Returns

workbasket

and

collection

point

information

associated

with

the

specified

process.

SIMWM_PROCESS_COUNT

Returns

the

number

of

workbaskets

and

collection

points

associated

with

the

specified

process.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

a

buffer

where

a

WMPROCESSINFOSTUCT

data

structure

provides

the

process

definition

information.

For

more

information

on

this

data

structure,

see

“WMPROCESSINFOSTRUCT

(Process

Information

Data

Structure)”

on

page

163.

ulParam2

Contains

the

number

of

locations.

This

value

is

dependent

on

the

setting

of

fGetProcessInfo.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_ERROR_READING_FROM_FILE

v

SIM_RC_FILE_NOT_FOUND

v

SIM_RC_INVALID_GETPROCESSOPTIONS

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_ITEM_NOT_FOUND

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

process

information,

use

the

SimLibFree(hSession,

(PVOID)ulParam1,

pRC)

function

to

free

the

buffer.

Related

functions:

SimWmGetProcessInfo

Chapter

3.

Application

Programming

Interfaces

97

v

SimWmListProcesses

SimWmGetWorkBasketInfo

(Get

Information

about

a

Workbasket)

Format

SimWmGetWorkBasketInfo(

hSession,

pszWorkBasketID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmGetWorkBasketInfo

function

to

return

information

about

the

workbasket

you

specify.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszWorkBasketID

PSZ

—

input

Pointer

to

the

workbasket

identifier.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

a

buffer

where

a

WORKBASKETINFOSTRUCT

data

structure

provides

detailed

information

about

the

specified

workbasket.

For

more

information

on

this

data

structure,

see

“WORKBASKETINFOSTRUCT

(Workbasket

Information

Data

Structure)”

on

page

168.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

OIM_INVALID_PITEMIDWB_PTR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_PRC

v

SIM_RC_PRIVILEGE_ERROR

SimWmGetProcessInfo

98

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Guidelines

for

Use

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

WORKBASKETINFOSTRUCT

data,

use

SimLibFree

to

free

the

buffer.

Related

Functions

v

SimWmListWorkBaskets

SimWmGetWorkPackage

(Get

the

Next

Work

Package

from

a

Workbasket)

Format

SimWmGetWorkPackage(

hSession,

pszWorkBasketID,

ulWorkOrder,

ulWorkPackageID,

ulInstanceID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmGetWorkPackage

function

to

get

(open)

a

work

package

that

is

currently

in

a

workbasket.

The

work

package

that

is

queued

at

the

specified

workbasket

is

then

not

available

to

other

applications.

This

function

can

get

a

specific

work

package

or

the

next

work

package

currently

available

in

the

specified

workbasket

based

on

work

order.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszWorkBasketID

PSZ

—

input

Pointer

to

the

workbasket

identifier.

ulWorkOrder

ULONG

—

input

Order

used

for

selecting

an

entry

from

the

workbasket.

The

valid

values

are:

NULL

The

server

determines

the

work

order

and

returns

the

first

available

work

package,

or

returns

the

requested

work

package.

SIMWM_ORDER_FIFO

Make

selection

based

on

first

in,

first

out

(FIFO)

order

to

return

first

available

work

package.

SIMWM_ORDER_LIFO

Make

selection

based

on

last

in,

first

out

(LIFO)

order

to

return

first

available

work

package.

SIMWM_ORDER_PRIORITY

Make

selection

based

on

the

work

package

priority

to

return

first

available

work

package.

SIMWM_ORDER_SYSTEM_NEXT

The

server

determines

the

work

order

and

returns

the

next

available

work

package.

SimWmGetWorkBasketInfo

Chapter

3.

Application

Programming

Interfaces

99

SIMWM_ORDER_FIFO_NEXT

Make

selection

for

the

next

available

work

package

based

on

first

in,

first

out

(FIFO)

order.

SIMWM_ORDER_LIFO_NEXT

Make

selection

for

the

next

available

work

package

based

on

last

in,

first

out

(LIFO)

order.

SIMWM_ORDER_PRIORITY_NEXT

Make

selection

for

the

next

available

work

package

based

on

the

work

package

priority.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

Specify

zero

to

retrieve

the

first

work

package.

If

a

work

package

ID

is

specified,

that

work

package

or

the

next

available

work

package

is

retrieved,

depending

on

the

value

specified

in

ulWorkOrder.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer

to

a

data

area.

ulParam1

Contains

a

pointer

to

a

SNAPSHOTSTRUCT

data

structure

that

provides

the

returned

item

and

associated

work

management

information.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

OIM_INVALID_PITEMIDWB_PTR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_EMPTY_WORKBASKET

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

v

If

the

work

package

ID

is

not

specified,

this

function

will

retrieve

the

first

available

work

package

in

the

workbasket.

SimWmGetWorkPackage

100

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

If

the

work

package

ID

is

specified

and

ulWorkOrder

is

NULL,

the

specified

work

package

is

retrieved.

v

If

the

work

package

ID

is

specified

and

ulWorkOrder

is

set

to

SIMWM_ORDER_SYSTEM_NEXT,

SIMWM_ORDER_FIFO_NEXT,

SIMWM_ORDER_LIFO_NEXT,

or

SIMWM_ORDER_PRIORITY_NEXT,

the

next

available

work

package

after

the

one

specified

is

retrieved.

v

Once

the

specified

or

next

work

package

in

the

workbasket

is

retrieved,

the

work

package

is

not

accessible

to

other

users.

Follow-Up

Tasks:

v

Call

SimWmReturnWorkPackage

to

return

the

work

package

to

the

workbasket.

This

makes

the

work

package

available

to

other

users.

v

Call

SimWmRouteWorkPackage

to

route

the

work

package

to

another

workbasket.

This

makes

the

work

package

available

to

other

users

at

the

destination

workbasket.

v

When

your

application

no

longer

needs

the

SNAPSHOTSTRUCT

data,

use

SimLibFree

to

free

the

buffer.

Related

Functions

v

SimWmReturnWorkPackage

v

SimWmRouteWorkPackage

SimWmGetWorkPackagePriority

(Get

the

Priority

of

a

Work

Package)

Format

SimWmGetWorkPackagePriority(

hSession,

ulWorkPackageID,

ulInstanceID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmGetWorkPackagePriority

function

to

determine

the

priority

assigned

to

a

work

package.

The

priority

identifies

the

work

order

of

items

located

in

the

workbasket.

You

can

determine

the

current

priority

of

an

item

even

if

the

item

is

locked.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

SimWmGetWorkPackage

Chapter

3.

Application

Programming

Interfaces

101

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

a

TIMESTAMP

buffer

that

provides

the

date

and

time

the

work

package

entered

the

workbasket.

ulParam2

Contains

the

current

priority

of

the

specified

work

package.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

Guidelines

for

Use

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

TIMESTAMP

data,

use

SimLibFree

to

free

the

buffer.

Related

Functions

v

SimWmGetWorkPackage

v

SimWmSetWorkPackagePriority

v

SimWmRouteWorkPackage

SimWmListHistory

(List

the

History

of

a

Work

Package)

Format

SimWmListHistory(

hSession,

ulWorkPackageID,

ulInstanceID,

fHistoryRequest,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmListHistory

function

to

obtain

the

log

of

activity

for

the

specified

work

package.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibSimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

SimWmGetWorkPackagePriority

102

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

fHistoryReques

BITS

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

an

array

of

WMHISTLOGENTRYSTRUCT

structures

containing

the

variable

identifiers

and

values

for

a

specific

work

package.

ulParam2

Contains

the

number

of

variables

in

the

array

that

ulParam1

points

to.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Effects:

On

successful

completion

of

the

function,

all

history

events

associated

with

the

work

package

are

returned.

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

work

management

history

information

for

the

specified

work

package,

use

the

SimLibFree(hSession,

(PVOID)ulParam1,

pRC)

function

to

free

the

buffer.

Related

Functions

v

SimLibLogon

SimWmListProcesses

(List

the

Processes)

Format

SimWmListProcesses(

hSession,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmListProcesses

function

to

obtain

a

list

of

all

existing

processes

in

the

Content

Manager

for

iSeries

system.

Parameters

hSession

HSESSION

—

input

SimWmListHistory

Chapter

3.

Application

Programming

Interfaces

103

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

an

ITEMNAMESTRUCT

array.

ulParam2

Contains

the

number

of

elements

in

the

array

that

ulParam1

points

to.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_ERROR_READING_FROM_FILE

v

SIM_RC_FILE_NOT_FOUND

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Exceptions:

This

function

provides

all

processes

defined

in

the

system.

Use

the

SimWmGetProcessInfo

function

with

one

of

the

processes

that

SimWmListProcesses

returns.

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

process

list,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC)

function

to

free

the

buffer.

SimWmListWorkBaskets

(List

the

Workbaskets)

Format

SimWmListWorkBaskets(

hSession,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmListWorkBaskets

function

to

get

a

list

of

all

workbaskets

defined

in

the

system.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

SimWmListProcesses

104

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

an

ITEMNAMESTRUCT

array.

ulParam2

Contains

the

number

of

elements

in

the

array

that

ulParam1

points

to.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_OR_FOLDER_VALUE

v

SIM_RC_INVALID_PRC

v

SIM_RC_LIB_CLIENT_ERROR

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Exceptions:

This

function

does

not

provide

detailed

information

about

the

definition

of

a

workbasket.

To

get

that

information,

use

SimWmGetWorkBasketInfo

with

one

of

the

identifiers

that

SimWmListWorkBaskets

returns.

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

ITEMNAMESTRUCT

array,

use

SimLibFree

to

free

the

buffer.

Related

Functions

v

SimWmGetWorkBasketInfo

SimWmMatchEvent

(Satisfy

an

Event

for

a

Work

Package)

Format

SimWmMatchEvent(

hSession,

ulActivate,

pszProcessID,

pszCollectionPointName,

ulWorkPackageID,

ulInstanceID,

ulEventType,

pszEventCriteria,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmMatchEvent

function

to

satisfy

an

event

for

a

work

package

that

is

at

a

collection

point.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

SimWmListWorkBaskets

Chapter

3.

Application

Programming

Interfaces

105

ulActivate

ULONG

—

input

Indicator

of

whether

the

collection

point

should

be

activated.

The

valid

values

are:

SIMWM_ACTIVATE_COLLECTION_POINT

Activate

the

collection

point

if

the

work

package

is

not

currently

at

the

collection

point.

SIMWM_NO_ACTIVATE_COLLECTION_POINT

Do

not

activate

the

collection

point

if

the

work

package

is

not

currently

at

the

collection

point.

pszProcessID

PSZ

—

input

Pointer

to

the

process

identifier.

pszCollectionPointName

PSZ

—

input

Pointer

to

the

name

of

the

collection

point.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

ulEventType

ULONG

—

input

The

type

of

event

to

be

satisfied

at

the

collection

point.

The

valid

values

are:

SIMWM_EVENT_INDEX_CLASS

The

event

is

the

arrival

of

an

item

of

a

specified

index

class.

SIMWM_EVENT_TIME

The

event

is

the

expiration

of

a

time

period.

SIMWM_EVENT_USERDEF_MIN

-

SIMWM_EVENT_USERDEF_MAX

The

event

is

a

user-defined

event.

pszEventCriteria

PSZ

—

input

Pointer

to

match

criteria.

If

ulEventType

is

SIMWM_EVENT_INDEX_CLASS,

the

match

criteria

must

be

an

index

class

identifier.

If

ulEventType

is

SIMWM_EVENT_TIME,

this

field

is

ignored

and

the

current

system

date

of

the

server

is

used

as

the

match

criteria.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

SimWmMatchEvent

106

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

OIM_INVALID_RELEASE_CRITERIA

v

OIM_INVALID_WF_ITEM

v

OIM_ITEM_NOT_IN_WORKFLOW

v

OIM_ITEM_NOT_SUSPENDED

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USCLASSID_VALUE

Guidelines

for

Use

This

function

either

satisfies

events

or

activates

a

work

package

at

a

collection

point.

If

an

event

is

matched

for

a

specified

work

package,

that

work

package

event

is

satisfied.

If

an

event

is

not

matched

and

the

activate

flag

is

set

to

SIMWM_ACTIVATE_COLLECTION_POINT,

the

work

package

is

activated

at

the

collection

point.

If

the

last

event

in

an

event

list

of

the

collection

point

is

satisfied,

the

work

package

is

released

from

the

collection

point

and

is

sent

to

begin

the

route

specified

for

that

event

list

in

the

collection

point

definition.

Calling

this

function

with

event

type

of

SIMWM_EVENT_TIME,

causes

all

collection

points

to

be

tested

for

the

date

expiration

criteria

to

have

been

satisfied.

This

function

is

equivalent

to

the

Release

pended

work

items

function.

SimWmQueryVariables

(Query

Variables

for

a

Specific

Work

Package)

Format

SimWmQueryVariables(

hSession,

ulWorkPackageID,

ulInstanceID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmQueryVariables

function

to

return

all

variables

and

values

associated

with

a

specific

work

package.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

SimWmMatchEvent

Chapter

3.

Application

Programming

Interfaces

107

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

Otherwise,

this

field

contains

the

value

0.

ulParam1

Pointer

to

an

array

of

WMVARSTRUCT

structures

containing

the

variable

identifiers

and

values

for

a

specific

work

package.

ulParam2

Contains

the

number

of

variables

in

the

array

that

ulParam1

points

to.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

Guidelines

for

Use

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

work

package

variable

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

SimWmQueryWorkPackage

(Query

a

Work

Package)

Format

SimWmQueryWorkPackage(

hSession,

ulWorkPackageID,

ulInstanceID,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmQueryWorkPackage

function

to

retrieve

the

contents

and

attributes

of

a

work

package.

Parameters

hSession

HSESSION

—

input

SimWmQueryVariables

108

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer

to

a

data

area.

ulParam1

Contains

a

pointer

to

a

SNAPSHOTSTRUCT

data

structure

that

provides

the

returned

item

and

associated

workflow

information.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_INDEX_CLASS

v

SIM_RC_INVALID_PRC

v

SIM_RC_LIB_CLIENT_ERROR

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

SNAPSHOTSTRUCT

data,

use

SimLibFree

to

free

the

buffer.

Related

Functions

v

SimWmRouteWorkPackage

SimWmReturnWorkPackage

(Return

a

Work

Package

to

a

Workbasket)

Format

SimWmReturnWorkPackage(

hSession,

ulWorkPackageID,

ulInstanceID,

usWorkPriority,

pAsyncCtl,

pRC

)

SimWmQueryWorkPackage

Chapter

3.

Application

Programming

Interfaces

109

Purpose

Use

the

SimWmReturnWorkPackage

function

to

return

a

work

package

instance

that

is

currently

open

in

a

workbasket

back

to

that

workbasket.

This

is

the

opposite

of

SimWmGetWorkPackage.

After

using

this

function,

the

work

package

instance

is

again

available.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

usWorkPriority

USHORT

—

input

Priority

of

the

work

to

perform.

The

priority

affects

the

work

sequencing

as

the

work

package

moves

through

a

process.

A

larger

number

is

a

higher

priority.

Use

zero

to

keep

the

current

priority.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

The

application

can

use

this

function

when

the

user

is

unable

to

complete

the

work

and

needs

to

resume

later.

SimWmGetWorkPackage

opens

the

work

package,

and

SimWmReturnWorkPackage

closes

the

work

package,

making

it

again

available

in

the

workbasket.

SimWmReturnWorkPackage

110

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Related

Functions

v

SimWmGetWorkPackage

v

SimWmRouteWorkPackage

SimWmRouteWorkPackage

(Route

a

Work

Package)

Format

SimWmRouteWorkPackage(

hSession,

pszWorkBasketID,

ulWorkPackageID,

ulInstanceID,

usWorkPriority,

fRoute,

pszOverrideAction,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmRouteWorkPackage

function

to

assign

a

work

package

to

a

workbasket,

reassign

a

work

package

from

one

workbasket

to

another,

or

continue

a

work

package

to

the

next

step

in

a

predefined

process.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pszWorkBasketID

PSZ

—

input

Pointer

to

the

name

of

the

workbasket.

If

NULL

and

the

work

package

is

on

a

process,

the

work

package

will

be

continued

to

the

next

step

in

the

process.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

usWorkPriority

USHORT

—

input

Priority

of

the

work

to

be

performed.

The

priority

affects

the

work

sequencing

of

the

work

package

at

the

workbasket.

A

larger

number

is

a

higher

priority.

Use

a

priority

of

zero

to

request

the

default

priority.

fRoute

BITS

—

input

Work

package

routing

control.

Valid

value

is:

SIMWM_IGNORE_OVERLOAD

If

NULL,

workbasket

overload

limits

will

be

checked.

pszOverrideAction

PSZ

—

input

Pointer

to

the

name

of

the

action

list

to

use

when

work

package

is

routed

to

the

next

workbasket.

This

action

list

overrides

the

default

action

list

associated

with

the

next

workbasket.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

SimWmReturnWorkPackage

Chapter

3.

Application

Programming

Interfaces

111

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Always

zero.

ulParam1

Contains

the

work

package

ID.

ulParam2

Contains

the

work

package

instance.

ulRC

Contains

one

of

the

following:

v

SIM_RC_OK

v

OIM_INVALID_FOVERLOAD_VALUE

v

OIM_WB_FULL

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

This

function

can

be

used

to

continue

an

item

on

a

process,

assign

an

item

to

a

workbasket,

or

reassign

an

item

to

another

workbasket.

If

the

SIMWM_IGNORE_OVERLOAD

is

not

set

and

pszWorkBasketID

is

NULL,

the

item

will

be

added

to

the

workbasket

even

when

an

overload

condition

exists;

however,

the

application

will

be

notified

of

the

overload

condition.

This

function

can

be

used

in

combination

with

SimWmQueryWorkPackage

to

determine

the

location

of

the

work

package

before

routing

the

work

package.

Exceptions:

If

a

work

package

is

at

a

collection

point,

it

cannot

be

routed

until

the

events

for

the

collection

point

are

satisfied.

Related

Functions

v

SimWmCreateWorkPackage

v

SimWmQueryWorkPackage

SimWmSetWorkPackagePriority

(Set

the

Priority

of

a

Work

Package)

Format

SimWmSetWorkPackagePriority(

hSession,

ulWorkPackageID,

ulInstanceID,

usPriority,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmSetWorkPackagePriority

function

to

set

the

priority

of

a

work

package.

This

priority

can

control

the

work

order

of

work

packages

in

the

workbasket.

SimWmRouteWorkPackage

112

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

usPriority

USHORT

—

input

Priority

of

the

work

to

be

performed.

The

priority

affects

the

work

sequencing

of

the

work

package.

A

larger

number

is

a

higher

priority.

Use

a

priority

of

zero

to

request

the

default

priority.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Exceptions:

The

priority

value

can

be

between

1

and

65,535.

The

Content

Manager

for

iSeries

Client

Application,

however,

only

supports

values

between

1

and

31,999.

Related

Functions

v

SimWmGetWorkPackage

v

SimWmGetWorkPackagePriority

v

SimWmRouteWorkPackage

SimWmSetWorkPackagePriority

Chapter

3.

Application

Programming

Interfaces

113

SimWmSuspendWorkPackage

(Suspend

a

Work

Package)

Format

SimWmSuspendWorkPackage(

hSession,

ulWorkPackageID,

ulInstanceID,

pSuspendCriteria,

pAsyncCtl,

pRC

)

Purpose

Use

the

SimWmSuspendWorkPackage

function

to

suspend

a

work

package

instance

that

is

currently

in

a

workbasket,

and

cause

the

work

package

to

remain

unselectable

until

its

suspend

criteria

are

satisfied

or

the

work

package

is

explicitly

reactivated.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

ulWorkPackageID

ULONG

—

input

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

input

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

pSuspendCriteria

PWMSUSPENDSTRUCT

—

input

Pointer

to

a

single

WMSUSPENDSTRUCT

structure

containing

the

criteria

for

suspension

and

release

of

a

work

package.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following:

v

SIM_RC_OK

v

OIM_INVALID_READY_WB

v

OIM_INVALID_RELEASE_CRITERIA

v

SIM_RC_COMPLETION_ERROR

SimWmSuspendWorkPackage

114

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Preparation:

v

You

can

specify

up

to

8

index

classes

in

the

suspension

criteria.

v

You

can

suspend

folders

pending

the

arrival

of

other

items

of

a

specified

index

class,

or

until

a

period

of

time

has

expired.

v

If

you

suspend

for

a

specified

index

class(es),

you

must

also

specify

a

period

of

time.

v

If

you

specify

SIM_INDEX_ANY

as

the

index

class

in

the

release

criteria,

the

item

will

be

suspended

for

the

arrival

of

an

item

belonging

to

any

index

class

defined

in

the

system.

Effects:

v

When

the

release

criteria

are

satisfied,

a

formerly

suspended

item

is

assigned

to

the

workbasket

associated

with

those

criteria

in

the

WMSUSPENDSTRUCT

data

structure.

Exceptions:

v

The

item

to

suspend

must

be

in

a

workbasket.

v

SIMWM_NEXT

is

not

a

valid

workbasket

when

an

item

is

on

an

ad

hoc

process.

v

Changes

to

the

suspension

state

of

an

item

do

not

change

the

checkout

or

access

status

of

the

item.

If

your

application

checks

out

an

item

and

suspends

it,

it

is

the

responsibility

of

the

application

to

be

sure

that

the

item

is

checked

in.

When

the

item

meets

the

release

criteria,

it

becomes

active

and,

if

your

application

did

not

check

the

item

in,

it

remains

checked

out

by

your

application.

v

If

SIM_INDEX_ANY

is

entered

as

an

index

class,

no

other

index

class

can

be

defined

in

the

suspend

criteria.

v

If

the

item

is

currently

suspended

and

SimWmSuspendWorkPackage

is

issued,

the

item

will

not

be

suspended

again.

The

new

suspend

request

will

be

ignored

and

the

application

will

receive

a

successful

completion.

Sim400ConvertCodepage

(

Code

Page

Conversion

)

Format

Sim400ConvertCodepage(

hSession,

iConvertDirection,

chInputBuffer,

chOutputBuffer,

ulInputSize,

ulOutputSize,

pAsyncCtl,

pRC

)

Purpose

Use

the

Sim400ConvertCodepage

function

to

handle

code

page

conversion

between

the

workstation

and

the

iSeries.

Parameters

hSession

HSESSION

—

input

SimWmSuspendWorkPackage

Chapter

3.

Application

Programming

Interfaces

115

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

iConvertDirection

INT

—

input

Specify

one

of

the

following:

SIM_400_CONVERT_TO400

SIM_400_CONVERT_FROM400

chInputBuffer

CHAR

—

input

The

buffer

to

send

to

the

server.

chOutputBuffer

CHAR

—

input

Space

for

returned

data.

ulInputSize

ULONG

—

input

Length

of

the

buffer

that

is

being

sent

to

the

server.

Maximum

size

is

32,700.

ulOutputSize

ULONG

—

input

Size

of

the

space

for

returned

data.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

usParam

The

function

does

not

use

this

field.

ulParam1

Contains

the

length

of

the

output

buffer.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_LIB_CLIENT_ERROR

Related

Functions

v

Sim400SendReceive

Sim400SendReceive

(Send

Data

to

AS/400)

Format

Sim400SendReceive(

hSession,

chInputBuffer,

chOutputBuffer,

ulInputSize,

ulOutputSize,

pAsyncCtl,

pRC

)

Purpose

Use

the

Sim400SendReceive

function

to

send

up

to

32,700

bytes

of

data

to

the

iSeries.

The

data

sent

to

the

server

can

be

processed

by

a

customer-written

application,

and

the

results

can

be

returned

to

the

workstation.

Sim400ConvertCodepage

116

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

chInputBuffer

CHAR

—

input

The

buffer

to

send

to

the

server.

chOutputBuffer

CHAR

—

input

Space

for

returned

data.

ulInputSize

ULONG

—

input

Length

of

the

buffer

that

is

being

sent

to

the

server.

Maximum

size

is

32,700.

ulOutputSize

ULONG

—

input

Size

of

the

space

for

returned

data.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

usParam

The

function

does

not

use

this

field.

ulParam1

Contains

the

number

of

bytes

received.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

Example

Refer

to

sample

program

QVIRCVSND

in

source

file

QLBLSRC

in

your

QVI

library.

This

sample

program

shows

a

COBOL

program

that

receives

data

from

the

Sim400SendReceive

function,

and

returns

data

to

the

function.

Related

Functions

v

Sim400ConvertCodepage

Ip2CloseTOC

(Close

a

Table

of

Contents)

Format

Ip2CloseTOC(

hSession,

hTOC,

pAsyncCtl,

pRC

)

Purpose

Use

the

Ip2CloseTOC

function

to

close

the

specified

table

of

contents

and

then

release

the

table-of-contents

handle.

Sim400SendReceive

Chapter

3.

Application

Programming

Interfaces

117

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hTOC

HTOC

—

input

The

handle

to

the

table

of

contents

you

want

to

close.

Use

the

SimLibGetTOC

function

to

get

this

handle.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

The

function

does

not

use

this

field.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_LIB_CLIENT_ERROR

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Effects:

v

After

you

use

this

function

to

close

the

table

of

contents,

you

cannot

use

the

table-of-contents

handle

(hTOC)

again.

v

Use

the

SimLibGetTOC

function

to

get

a

new

table-of-contents

handle.

Related

Functions

v

Ip2CloseToc

v

Ip2GetTOCUpdates

v

Ip2TOCCount

v

Ip2TOCStatus

v

SimLibGetItemAffiliatedTOC

v

SimLibGetTOC

Ip2GetLibSessionInfo

(Get

the

Information

for

a

Library

Session)

Format

Ip2GetLibSessionInfo(

hSession,

pAsyncCtl,

pRC)

Ip2CloseTOC

118

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Purpose

Use

the

Ip2GetLibSessionInfo

function

to

return

information

for

the

current

library

session.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pAsyncCtl

PASYNCCTLSTRUT

—

input

Not

supported.

pRC

PRSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

pointer

to

a

buffer

with

a

LIBSESSIONINIFOSTRUCT

data

structure.

For

more

information,

on

this

data

structure,

see

“LIBSESSIONINFOSTRUCT

(Library

Session

Information

Structure)”

on

page

148.

ulParam2

This

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_PRC

Guidelines

for

Use

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

LIBSESSIONINFOSTRUCT

data,

use

the

SimLibFree(hSession,

(PVOID)ulParam1,

pRC)

function

to

free

the

buffer.

Ip2GetTOCUpdates

(Get

the

Updates

to

a

Table

of

Contents)

Format

Ip2GetTOCUpdates(

hSession,

hTOC,

usUpdate,

pAsyncCtl,

pRC

)

Purpose

Use

the

Ip2GetTOCUpdates

function

to

refresh

a

table

of

contents

that

you

received

from

a

previous

SimLibGetTOC

function.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

Ip2GetLibSessionInfo

Chapter

3.

Application

Programming

Interfaces

119

hTOC

HTOC

—

input

The

handle

to

the

table

of

contents

that

you

want

to

refresh.

Use

the

SimLibGetTOC

function

to

get

this

handle.

usUpdate

USHORT

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

total

number

of

items

in

the

table

of

contents.

ulParam1

Contains

a

pointer

to

a

buffer

with

an

array

of

TOCENTRYSTRUCT

data

structures

which

indicates

the

number

of

items

that

have

been

updated,

deleted,

or

added.

For

more

information

on

the

TOCENTRYSTRUCT

data

structure,

see

“TOCENTRYSTRUCT

(Table

of

Contents

Entry

Data

Structure)”

on

page

157.

ulParam2

Contains

the

handle

to

the

table

of

contents.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

OIM_INVALID_FUPDATE_VALUE

v

OIM_INVALID_HTOC_VALUE

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_LIB_CLIENT_ERROR

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

table

of

contents,

use

the

Ip2CloseTOC

function

to

close

the

table

of

contents

and

release

the

handle.

Related

Functions

v

SimLibGetTOC

v

Ip2CloseTOC

v

Ip2TOCStatus

v

Ip2GetTOCUpdates

Ip2GetTOCUpdates

120

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Ip2ListAttrs

(List

the

User-Defined

Attributes)

Format

Ip2ListAttrs(

hSession,

pAsyncCtl,

pRC

)

Purpose

Use

the

Ip2ListAttrs

function

to

get

a

list

of

the

attributes

in

the

system.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

If

the

ulParam2

field

contains

a

value

greater

than

0,

this

field

contains

a

pointer

to

a

buffer

with

a

NAMESTRUCT

array.

Each

element

in

this

array

provides

the

index

attribute

identifiers

that

are

associated

with

a

specific

attribute

name.

For

more

information

on

this

data

structure,

see

“NAMESTRUCT

(Name

Data

Structure)”

on

page

149.

ulParam2

Contains

the

number

of

elements

in

the

array

that

ulParam1

points

to.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_LIB_CLIENT_ERROR

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

v

Use

the

SimLibGetAttrInfo

function

to

get

additional

information

about

a

specific

index

attribute.

v

Attributes

with

negative

IDs

or

those

greater

than

32767

are

system

attributes.

You

cannot

modify

these.

Ip2ListAttrs

Chapter

3.

Application

Programming

Interfaces

121

v

If

an

attribute

has

not

been

defined

to

any

index

class,

it

is

not

returned

by

Ip2ListAttrs.

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

array

of

index

attribute

identifiers,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

free

the

buffer.

Related

Functions

v

SimLibGetAttrInfo

Ip2ListContentClasses

(List

the

Content

Classes)

Format

Ip2ListContentClasses(

hSession,

usContentClassType,

pAsyncCtl,

pRC

)

Purpose

Use

the

Ip2ListContentClasses

function

to

display

the

content

class

records

that

are

in

the

library

server

database.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

usContentClassType

USHORT

—

input

The

type

of

content

classes

to

list.

The

valid

values

are:

OIM_SA_ALL_CC

Lists

both

the

IBM-defined

content

classes

and

the

user-defined

content

classes.

OIM_SA_IBM_CC

Lists

only

the

IBM-defined

content

classes.

OIM_SA_USR_CC

Lists

only

the

user-defined

content

classes.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

the

RCSTRUCT

data

structure:

usParam

Contains

the

value

1,

to

indicate

that

ulParam1

contains

a

pointer.

If

no

records

exist

for

the

specified

content

class

type,

this

field

contains

the

value

0.

ulParam1

Contains

a

pointer

to

the

array

of

CONTENTCLASSINFO

data

structures

containing

the

list

of

content

classes.

For

more

Ip2ListAttrs

122

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

information

on

this

data

structure,

see

“CONTENTCLASSINFO

(Content

Class

Information

Structure)”

on

page

142.

If

no

records

exist

for

the

specified

content

class

type,

this

field

contains

the

value

NULL.

ulParam2

Contains

the

number

of

content

classes

in

the

library

server

database.

If

ulRC

contains

an

error

code,

ulParam2

contains

the

value

NULL.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_CC_TYPE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

v

SIM_RC_QUERY_FAILED

Guidelines

for

Use

Follow-Up

Tasks:

When

you

finish

with

the

content

class

information,

use

the

SimLibFree(

hSession,

(PVOID)ulParam1,

pRC

)

function

to

release

allocated

storage.

Ip2ListServers

(List

the

Accessible

Servers)

Format

Ip2ListServers(

pServrInfo,

ulServrInfoSize,

fSrchfilter,

pRC

)

Purpose

Use

the

Ip2ListServers

function

to

retrieve

information

about

all

the

servers

accessible

to

the

system.

You

can

use

this

function

to

determine

the

eligible

libraries

to

display

as

part

of

a

logon

interaction.

Parameters

pServrInfo

PSERVERINFOSTRUCT

—

input/output

The

pointer

to

a

buffer

that

contains

an

array

of

server

names

and

types.

The

calling

application

allocates

memory

for

this

structure.

ulServrInfoSize

ULONG

—

input

The

size,

in

bytes,

of

the

buffer

allocated

for

the

SERVERINFOSTRUCT

array.

fSrchfilter

ULONG

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Ip2ListContentClasses

Chapter

3.

Application

Programming

Interfaces

123

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

1.

ulParam1

If

usParam

contains

a

value

greater

than

0,

this

field

contains

a

pointer

to

an

array

of

SERVERINFOSTRUCT

data

structures.

“Guidelines

for

Use”

explains

how

the

value

of

the

ulServrInfoSize

parameter

affects

the

value

returned

in

ulParam1.

For

more

information

on

the

SERVERINFOSTRUCT

data

structure,

see

“SERVERINFOSTRUCT

(Server

Information

Structure)”

on

page

153.

ulParam2

Contains

the

number

of

the

servers

returned

by

this

call,

though

not

necessarily

the

number

of

servers

in

the

system.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

OIM_INVALID_PSERVERINFO_PTR

v

OIM_RC_INPUTBUF_TOO_SMALL

v

OIM_RC_ISO_CONNECT_FAILED

v

OIM_RC_ISO_LISTSVR_FAILED

Guidelines

for

Use

Exceptions:

v

Your

application

can

connect

to

all

the

servers,

but

not

necessarily

log

on

to

all

of

them.

You

must

have

a

valid

user

ID

and

password

to

access

the

database

on

the

server.

v

If

the

input

value

of

ulServrInfoSize

is

too

small

to

receive

the

data,

error

code

OIM_RC_INPUTBUF_TOO_SMALL

is

returned,

and

the

ulParam2

field

of

the

RCSTRUCT

data

structure

contains

the

number

of

servers

found.

Related

Functions

None

Ip2QueryClassPriv

(Query

the

Privilege

String

for

an

Index

Class

or

View)

Format

Ip2QueryClassPriv(

hSession,

usClassType,

usID,

pAsyncCtl,

pRC

)

Purpose

Use

the

Ip2QueryClassPriv

function

to

return

the

evaluated

privilege

string

for

the

index

class

that

you

specify.

The

evaluated

privilege

string

indicates

your

access

rights

to

the

information

in

the

system.

You

should

use

it

with

Ip2QueryPrivBuffer

to

determine

access

rights.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

usClassType

USHORT

—

input

Ip2ListServers

124

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Not

supported.

usID

USHORT

—

input

The

ID

of

an

index

class.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

the

RCSTRUCT

data

structure:

usParam

This

parameter

contains

the

value

1

to

indicate

that

ulParam1

contains

a

pointer.

ulParam1

Contains

a

PSZ

pointer.

This

pointer

identifies

the

location

of

a

CHAR

szPrivilege[401]

buffer

where

a

data

structure

contains

the

evaluated

privilege

string.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_CLASS_TYPE

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_INVALID_USCLASSID_VALUE

v

SIM_RC_LIB_CLIENT_ERROR

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Effects:

v

The

privilege

string

is

evaluated

for

the

class

with

respect

to

the

user

who

got

the

hSession

by

logging

on.

The

evaluated

privilege

string

specifies

the

privileges

of

that

user

for

the

specified

index

class

as

computed

by

the

access

control

algorithm.

Follow-Up

Tasks:

When

your

application

no

longer

needs

the

data

structure

that

ulParam1

points

to,

use

the

SimLibFree(

hSession,(PVOID)ulParam1,

pRC

)

function

to

free

the

data

structure.

Ip2QueryPrivBuffer

(Query

a

Privilege

Buffer)

Format

Ip2QueryPrivBuffer(

pszPrivilege,

ulAuthority,

pRC

)

Ip2QueryClassPriv

Chapter

3.

Application

Programming

Interfaces

125

Purpose

Use

the

Ip2QueryPrivBuffer

function

to

determine

whether

a

certain

authority

is

granted

in

a

specified

privilege

buffer.

Parameters

pszPrivilege

PSZ

—

input

The

current

privileges

set

for

the

user.

ulAuthority

ULONG

—

input

The

general

privilege

to

search

for.

The

valid

values

are:

OIM_ACL

Determines

the

authority

to

create,

update,

and

delete

access

lists.

OIM_ADD_ITEMS_TO_WB

Determines

the

authority

to

add

an

item

to

a

workbasket.

OIM_ADD_ITEMS_TO_WF

Determines

the

authority

to

add

an

item

to

a

workflow.

OIM_ADD_NEW_BASE_PART

Determines

the

authority

to

add

a

new

document.

OIM_ADD_NOTE_TO_NOTELOG

Determines

the

authority

to

add

a

note

object

to

the

note

log.

OIM_ATTRS

Determines

the

authority

to

create,

update,

and

delete

attributes.

OIM_CC

Determines

the

authority

to

create,

update,

list

and

delete

content

classes.

OIM_CHANGE_INDEX_CLASS

Determines

the

authority

to

change

the

index

class

of

any

items.

OIM_CHANGE_ITEMS_TO_WB

Determines

the

authority

to

change

the

priority

of

an

item

in

a

workbasket.

OIM_CHANGE_ITEMS_TO_WF

Determines

the

authority

to

change

an

item

from

the

current

workflow

to

a

new

workflow.

OIM_CHECK_IN_OUT_ITEMS

Determines

the

authority

to

check

in

and

check

out

a

folder

or

document.

OIM_CLASS

Determines

the

authority

to

add

and

delete

indexes

on

an

index

classes

and

query

their

DLLs.

OIM_CREATE_ITEMS

Determines

the

authority

to

create

a

folder

or

document.

OIM_DB_UTILITY

Determines

the

authority

to

allow

UTILITY

to

access

the

database.

Ip2QueryPrivBuffer

126

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

OIM_DELETE_BASE_PART

Determines

the

authority

to

delete

a

document.

OIM_DELETE_ITEMS

Determines

the

authority

to

delete

a

folder

or

document.

OIM_EXPORT

Determines

the

authority

to

export

and

to

send

mail

that

includes

an

object.

OIM_FAXIN

Determines

the

authority

to

receive

a

facsimile.

OIM_FAXOUT

Determines

the

authority

to

send

a

facsimile.

OIM_FAXSERVER

Determines

the

authority

of

the

fax

server

to

send

or

receive

a

facsimile.

OIM_FILEROOM

Determines

the

authority

to

access

an

application-defined

fileroom.

OIM_IMPORT

Determines

the

authority

to

import

and

to

receive

mail.

OIM_LBOS_BACKUP

Determines

the

authority

to

back

up

the

LAN-based

object

server.

OIM_LIB_SERV_BACKUP

Determines

the

authority

to

back

up

the

library

server.

OIM_LIB_SERV_CONFIG

Determines

the

authority

to

control

the

library

server

configuration.

OIM_LICENSE

Determines

the

authority

to

update

the

license

information

in

the

database.

OIM_LINK_ITEMS

Determines

the

authority

to

add

a

link

between

items

and

a

folder.

OIM_OCR

Determines

the

authority

to

use

an

optical

character

recognition

device.

OIM_PRINT

Determines

the

authority

to

print.

OIM_PRIV_SET

Determines

the

authority

to

create,

update,

and

delete

privilege

sets.

OIM_READ_BASE_PART

Determines

the

authority

to

read

a

document

part.

OIM_READ_HISTORY

Determines

the

authority

to

read

a

history

event.

OIM_READ_NOTELOG

Determines

the

authority

to

read

the

note

log.

Ip2QueryPrivBuffer

Chapter

3.

Application

Programming

Interfaces

127

OIM_READ_TOC

Determines

the

authority

to

read

the

folder

table

of

contents.

OIM_READ_WORKBASKET

Determines

the

authority

to

get

the

workbasket

information.

OIM_REMOVE_ITEMS_TO_WB

Determines

the

authority

to

remove

an

item

from

a

workbasket.

OIM_REMOVE_ITEMS_TO_WF

Determines

the

authority

to

remove

an

item

from

a

workflow.

OIM_REMOVE_LINKS

Determines

the

authority

to

delete

a

link

between

items

and

a

folder.

OIM_SA_NLS

Determines

the

authority

to

update

the

supported

languages

in

the

database.

OIM_SA_OBJSERV

Determines

the

authority

to

update

the

object

server

information

in

the

database.

OIM_SA_USER

Determines

the

general

logon

privileges

of

a

user.

OIM_SA_WORKBASKET

Determines

the

authority

to

create,

update,

and

delete

workbaskets.

OIM_SA_WORKFLOW

Determines

the

authority

to

create,

update,

and

delete

workflows.

OIM_SCAN

Determines

the

authority

to

scan

images.

OIM_SEARCH_INDEX_INFO

Determines

the

authority

to

read

user-defined

attributes

for

all

index

classes

and

all

items

in

each

index

class.

OIM_SERVER

Determines

the

authority

to

act

as

a

client

on

behalf

of

other

clients.

OIM_SMS

Determines

the

authority

to

manage

system-managed

storage

for

a

LAN-based

object

server.

OIM_SNAPSHOT_ALL

Determines

the

authority

to

use

the

SimLibGetItemSnapshot

or

SimLibGetTOCData

functions

on

items.

OIM_SUPER_ADMIN

Determines

the

authority

to

bypass

the

access

list.

Ip2QueryPrivBuffer

128

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

OIM_SUSP_AND_ACTIVATE_ITEMS

Determines

the

authority

to

suspend

and

activate

a

folder

or

document.

OIM_UPDATE_AVT_INFO

Determines

the

authority

to

update

user-defined

attribute

values

for

all

index

classes

and

all

items

in

each

index

class.

OIM_UPDATE_BASE_PART

Determines

the

authority

to

update

a

document.

OIM_UPDATE_NOTELOG

Determines

the

authority

to

update

or

delete

notes

in

the

note

log.

OIM_USER_GROUPS

Determines

the

authority

to

create,

update,

and

delete

user

groups.

OIM_USER_ID

Determines

the

authority

to

create,

update,

and

delete

user

IDs.

OIM_VIEW

Determines

the

authority

to

create,

update,

and

delete

views.

OIM_WORKFLOW_CONTINUE

Determines

the

authority

to

continue

an

item

to

the

next

step

of

a

process.

OIM_WORKFLOW_FORCE_CONTINUE

Determines

the

authority

to

force

an

item,

with

outstanding

events

pending,

to

the

next

step

of

a

process.

OIM_WORKFLOW_SEARCH

Determines

the

authority

to

search

a

process

for

items.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

the

RCSTRUCT

data

structure:

usParam

Contains

the

value

1

if

the

privilege

set

represented

by

pszPrivilege

contains

the

specified

authority.

Otherwise

the

field

contains

the

value

0.

ulParam1

The

function

does

not

use

this

field.

ulParam2

The

function

does

not

use

this

field.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

OIM_INVALID_PSZPRIVLEGE_STRING

v

SIM_INVALID_ULAUTHORITY

Ip2QueryPrivBuffer

Chapter

3.

Application

Programming

Interfaces

129

Ip2TOCCount

(Count

the

Items

in

a

Table

of

Contents)

Format

Ip2TOCCount(

hSession,

pitemidItem,

usItemType,

usWipFilter,

usSuspendFilter,

usNbrOfClasses,

pusClassIdList,

pAsyncCtl,

pRC

)

Purpose

Use

the

Ip2TOCCount

function

to

get

a

count

of

the

items

in

a

folder

or

workbasket

that

satisfy

the

filtering

criteria

that

you

specify.

This

function

is

similar

to

SimLibGetTOC,

except

that

this

function

returns

only

a

count

of

the

items

rather

than

a

table

of

contents.

The

count

includes

all

items,

regardless

of

authority.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

pitemidItem

PITEMID

—

input

The

pointer

to

an

item

ID

of

a

folder

or

workbasket.

usItemType

USHORT

—

input

The

type

of

items

to

count.

Here

are

the

valid

values:

SIM_DOCUMENT

Counts

documents.

SIM_FOLDER

Counts

folders.

SIM_ALL

Counts

all

types

of

items.

usWipFilter

USHORT

—

input

Not

supported.

usSuspendFilter

USHORT

—

input

Not

supported.

usNbrOfClasses

USHORT

—

input

The

number

of

index

class

identifiers

in

the

list

you

specify

as

the

value

of

the

pusClassIdList

parameter.

Specify

the

value

0

for

the

usNbrOfClasses

parameter

to

indicate

that

class

is

not

a

criterion

for

selecting

items

to

count.

pusClassIdList

PUSHORT

—

input

The

pointer

to

a

list

of

index

class

identifiers

that

indicate

the

items

to

count.

You

can

specify

the

value

NULL

for

this

parameter

if

you

also

specify

the

value

0

for

the

usNbrOfClasses

parameter.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Not

supported.

pRC

PRCSTRUCT

—

input/output

Ip2TOCCount

130

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

ulParam1

Contains

the

count

of

items

in

the

table

of

contents.

If

no

items

satisfy

the

filtering

criteria,

this

field

contains

the

value

0.

ulParam2

Contains

the

value

0.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_LIB_CLIENT_ERROR

v

SIM_RC_OUT_OF_MEMORY

v

SIM_RC_PRIVILEGE_ERROR

Guidelines

for

Use

Effects:

If

the

item

is

not

a

folder

or

a

workbasket,

the

function

returns

SIM_RC_INVALID_ITEM_TYPE.

Related

Functions

v

Ip2GetTOCUpdates

v

SimLibGetTOC

Ip2TOCStatus

(Get

the

Status

of

a

Table

of

Contents)

Format

Ip2TOCStatus(

hSession,

hTOC,

usCheck,

pAsyncCtl,

pRC

)

Purpose

Use

the

Ip2TOCStatus

function

to

return

a

value

that

indicates

whether

or

not

a

table

of

contents

has

been

changed.

Parameters

hSession

HSESSION

—

input

The

handle

to

the

Content

Manager

for

iSeries

session

information.

The

SimLibLogon

function

creates

the

session

information.

hTOC

HTOC

—

input

The

handle

to

the

table

of

contents

for

which

you

want

to

check

the

status.

The

SimLibGetTOC

function

returns

this

handle.

usCheck

USHORT

—

input

Not

supported.

pAsyncCtl

PASYNCCTLSTRUCT

—

input

Ip2TOCCount

Chapter

3.

Application

Programming

Interfaces

131

Not

supported.

pRC

PRCSTRUCT

—

input/output

The

pointer

to

the

return

data

structure.

For

more

information

on

the

RCSTRUCT

structure,

see

“RCSTRUCT

(Return

Code

Information

Structure)”

on

page

151.

Return

Values

On

successful

completion,

this

function

returns

values

to

the

following

fields

in

an

RCSTRUCT

data

structure:

usParam

Contains

the

value

0.

ulParam1

If

the

table

of

contents

has

changed,

this

field

contains

the

value

TRUE.

If

there

are

no

changes,

this

field

contains

the

value

FALSE.

ulParam2

Contains

the

value

0.

ulRC

Contains

one

of

the

following

return

codes:

v

SIM_RC_OK

v

OIM_EMPTY_WORKBASKET

v

OIM_INVALID_HTOC_VALUE

v

SIM_RC_COMMUNICATIONS_ERROR

v

SIM_RC_COMPLETION_ERROR

v

SIM_RC_INVALID_HSESSION

v

SIM_RC_INVALID_ITEM_ID

v

SIM_RC_INVALID_POINTER

v

SIM_RC_INVALID_PRC

v

SIM_RC_LIB_CLIENT_ERROR

v

SIM_RC_OUT_OF_MEMORY

Guidelines

for

Use

Exceptions:

This

function

tells

whether

a

table

of

contents

has

changed,

but

it

does

not

return

the

updates.

After

you

use

the

function,

your

application

can

use

other

functions

to

get

the

changes

themselves.

Because

the

time

required

for

this

function

is

nearly

the

same

as

the

time

required

for

SimLibGetTOC

or

SimLibGetTOCUpdates,

you

should

use

those

functions

instead,

if

possible.

v

Use

the

Ip2GetTOCUpdates

function

to

refresh

the

table

of

contents.

v

Use

the

Ip2CloseTOC

function

to

close

the

open

table

of

contents

and

then

use

the

SimLibGetTOC

function

to

refresh

the

table

of

contents

to

reflect

the

values

in

the

database.

Related

Functions

v

Ip2CloseTOC

v

Ip2GetTOCUpdates

v

SimLibGetTOC

Ip2TOCStatus

132

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Chapter

4.

Common

Data

Structures

This

part

provides

more

detailed

reference

information

that

describes

the

common

data

structures

and

database

tables

used

for

Content

Manager

for

iSeries.

The

data

structures

are

listed

alphabetically

and

are

always

in

UPPERCASE

in

the

Content

Manager

for

iSeries

code.

The

following

information

is

provided

about

each

data

structure:

v

Purpose

v

Valid

fields

v

Valid

field

values

v

Usage

guidelines

Data

Structures

AFFTOCENTRYSTRUCT

(Affiliated

Table

of

Contents

Entry

Structure)

This

data

structure

provides

information

about

which

objects

are

affiliated

with

an

item.

It

consists

of

the

following:

typedef

struct

_AFFTOCENTRYSTRUCT

{

ULONG

ulStruct;

ANNOTATIONSTRUCT

AnnotationData;

ULONG

ulObjType;

OBJ

Obj;

ULONG

ulObjConCls;

ULONG

ulObjLength;

LONG

lObjSeqAfter;

ULONG

ulObjFlags;

TIMESTAMP

tsCreate;

TIMESTAMP

tsChanged;

}

AFFTOCENTRYSHOTSTRUCT,

*PAFFTOCENTRYSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

AnnotationData

ANNOTATIONSTRUCT

—

output

The

information

associated

with

an

annotation

object.

For

more

information,

see

ANNOTATIONSTRUCT

(Annotation

Information

Structure).

ulObjType

ULONG

—

output

The

type

of

object.

The

valid

values

are:

©

Copyright

IBM

Corp.

1997,

2004

133

SIM_ANNOTATION

Indicates

that

the

item

is

an

annotation

associated

with

a

folder

or

a

document.

SIM_BASE

Indicates

that

the

object

is

a

base

object

such

as

a

Mixed

Object

Document

Content

Architecture

(MO:DCA)

or

Tag

Image

File

Format

(TIFF)

file,

and

is

not

an

annotation,

note,

or

event

associated

with

a

folder

or

document.

SIM_NOTE

Indicates

that

the

item

is

a

note

associated

with

a

folder

or

a

document.

Obj

OBJ

—

output

The

object

handle

data

structure

that

identifies

the

object.

For

more

information,

see

HOBJ

(Handle

to

Query

Stored

Object).

ulObjConCls

ULONG

—

output

The

object

content

class

of

the

object

you

query.

The

value

SIM_CC_UNKNOWN

indicates

the

undefined

content

class.

ulObjLength

ULONG

—

output

The

length

of

the

object

in

bytes.

lObjSeqAfter

LONG

—

output

The

order

of

the

object

relative

to

other

objects

in

the

item.

Restriction:

This

is

the

value

of

the

unsupported

lSeqAfterPart

parameter

of

the

SimLibCreateObject

function.

ulObjFlags

ULONG

—

output

Not

supported.

tsCreate

TIMESTAMP

—

output

The

date

and

time

that

the

item

or

object

was

created.

tsChanged

TIMESTAMP

—

output

The

date

and

time

that

the

item

or

object

was

changed.

ANNOTATIONSTRUCT

(Annotation

Information

Structure)

This

data

structure

provides

information

about

an

annotation

affiliated

with

an

object.

It

consists

of

the

following:

typedef

struct

_ANNOTATIONSTRUCT

{

ULONG

ulStruct;

ULONG

ulPart;

AFFTOCENTRYSTRUCT

134

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

ULONG

ulPageNumber;

USHORT

usX;

USHORT

usY;

USHORT

usT;

USHORT

usAnnotUnused;

}

ANNOTATIONSTRUCT,

*PANNOTATIONSTRUCT;

Fields

ulStruct

ULONG

—

input/output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

ulPart

ULONG

—

input/output

The

part

number

of

the

object.

Only

positive

values

are

valid.

ulPageNumber

ULONG

—

input/output

The

page

number

that

the

annotation

object

refers

to.

usX

USHORT

—

input/output

The

X

coordinate

for

the

annotation

object

on

the

page

that

the

value

of

the

ulPageNumber

field

references.

usY

USHORT

—

input/output

The

Y

coordinate

for

the

annotation

object

on

the

page

that

the

value

of

the

ulPageNumber

field

references.

usT

USHORT

—

input/output

Not

supported.

usAnnotUnused

USHORT

—

input/output

A

reserved

field.

ATTRINFOSTRUCT

(Attribute

Information

Structure)

This

structure

provides

the

data

needed

to

create,

modify,

and

list

a

user-defined

attribute.

It

consists

of

the

following:

typedef

struct

_ATTRINFOSTRUCT

{

ULONG

ulStruct;

BOOL

fUseBidirectional;

BOOL

fSymmetricSwapping;

BOOL

fShaping;

LONG

lMin;

LONG

lMax;

BITS

fTypeFlags;

USHORT

usAttrType;

USHORT

usHorizontalOrientation;

ANNOTATIONSTRUCT

Chapter

4.

Common

Data

Structures

135

USHORT

usVerticalOrientation;

USHORT

usMode;

USHORT

usNumericSelectionDefault;

CHAR

szAttributeName;

CHAR

achLanguageCode;

}

ATTRINFOSTRUCT,

*PATTRINFOSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

fUseBidirectional

BOOL

—

output

This

is

always

set

to

FALSE.

fSymmetricSwapping

BOOL

—

input

This

is

always

set

to

FALSE.

fShaping

BOOL

—

input

This

is

always

set

to

FALSE.

lMin

LONG

—

input

The

meaning

of

lMin

varies

with

the

value

of

the

usAttrType

parameter:

v

It

is

the

minimum

length

of

the

string

and

must

contain

the

value

0

or

a

greater

value,

if

usAttrType

contains

SIM_ATTR_FSTRING.

v

When

the

data

could

be

a

double

byte

character

string

(DBCS),

space

must

be

allowed

for

the

possible

use

of

the

shift

in

(SI)

and

the

shift

out

(SO)

indicators

in

a

mixed

string

situation.

v

It

is

the

minimum

value

allowed

if

usAttrType

contains

SIM_ATTR_LONG.

lMax

LONG

—

output

The

meaning

of

lMax

varies

with

the

value

of

the

usAttrType

parameter:

v

It

is

the

maximum

length

of

the

string

and

must

contain

a

value

greater

than

0

and

greater

than

lMin,

if

usAttrType

contains

SIM_ATTR_FSTRING.

v

It

is

the

maximum

value

allowed

if

usAttrType

contains

SIM_ATTR_LONG.

fTypeFlags

BITS

—

output

Not

supported.

usAttrType

USHORT

—

output

In

Content

Manager

for

iSeries,

this

is

always

set

to

SIM_ATTR_VSTRING.

usHorizontalOrientation

USHORT

—

output

ATTRINFOSTRUCT

136

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Not

supported.

usVerticalOrientation

USHORT

—

output

Not

supported.

usMode

USHORT

—

output

Not

supported.

usNumericSelectionDefault

USHORT

—

output

Not

supported.

szAttributeName

CHAR[SIM_ATTR_NAME_LENGTH+1]

—

input/output

A

NULL-terminated

character

string

containing

the

application-defined

name

of

the

attribute.

achLanguageCode

CHAR[SIM_LANGUAGE_CODE_LENGTH+1]

—

output

The

3-character

national

language

code

for

this

attribute

name.

The

values

for

language

codes

are

described

in

the

IBM

National

Language

Design

Guide:

National

Language

Support

Reference

Manual

Volume

2.

ATTRLISTSTRUCT

(Attribute

List

Data

Structure)

This

data

structure

defines

a

single

system-defined

or

user-defined

attribute

value

to

be

associated

with

an

item.

The

structure

is

also

used

when

creating

an

item.

It

consists

of

the

following:

typedef

struct

_ATTRLISTSTRUCT

{

ULONG

ulStruct;

PSZ

pszAttributeValue;

BITS

fAttrFlags;

USHORT

usAttrId;

USHORT

usAttrType;

}

ATTRLISTSTRUCT,

*PATTRLISTSTRUCT;

Fields

ulStruct

ULONG

—

input/output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

pszAttributeValue

PSZ

—

input/output

The

pointer

to

a

NULL-terminated

character

string

containing

the

value

of

an

attribute.

fAttrFlags

BITS

—

output

Flags

that

denote

attribute

characteristics.

These

flags

indicate

whether

the

attribute

value

is

accessible

for

reading,

writing,

or

both,

and

whether

it

is

required

for

the

index

class.

The

valid

ATTRINFOSTRUCT

Chapter

4.

Common

Data

Structures

137

values

follow.

You

can

use

a

bit-wise

inclusive

OR

operator

(|)

to

combine

them.

SIM_ATTR_READABLE

Indicates

that

the

attribute

is

accessible

for

reading

for

this

index

class.

SIM_ATTR_READWRITE

Indicates

that

the

attribute

is

accessible

for

both

reading

and

writing

for

this

index

class.

SIM_ATTR_WRITEABLE

Indicates

that

the

attribute

is

accessible

for

writing

for

this

index

class.

SIM_ATTR_ALLOW_NULL

Indicates

that

the

attribute

value

is

not

required

for

this

index

class.

usAttrId

USHORT

—

input/output

The

unique

identifier

of

an

attribute.

See

the

note

the

follows

this

list

for

a

discussion

of

the

Content

Manager

for

iSeries

system-defined

attributes.

usAttrType

USHORT

—

input/output

In

Content

Manager

for

iSeries,

this

is

always

set

to

SIM_ATTR_VSTRING.

Content

Manager

for

iSeries

supports

the

system-defined

attributes

shown

in

Table

2.

Table

2.

Source

of

Values

for

System-Defined

Attributes

Attribute

Name

Description

How

Assigned

OIM_ID_ITEM_CREATE_TIMESTAMP

The

timestamp

when

the

item

was

created

System-assigned

and

system-maintained

automatically

OIM_ID_ITEM_NAME

The

name

of

the

item

You

can

assign

when

creating

an

item

and

update

when

opening

an

item

for

read

and

write

access

OIM_ID_SYS_MOD_TIMESTAMP

The

timestamp

for

changes

to

the

system-assigned

or

user-defined

attributes

of

the

item

System-assigned

and

system-maintained

automatically

OIM_ID_ITEM_ID

The

item

ID

of

the

item

System-assigned

and

system-maintained

automatically

CLASSATTRSTRUCT

(Class

Attribute

Structure)

This

data

structure

contains

specific

information

about

the

attributes

defined

for

an

index

class.

It

consists

of

the

following:

typedef

struct

_CLASSATTRSTRUCT

{

ATTRLISTSTRUCT

138

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

ULONG

ulStruct;

BOOL

fAttrRequiredField;

BITS

fAttrAccess;

USHORT

usAttrId;

}

CLASSATTRSTRUCT,

*PCLASSATTRSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

fAttrRequiredField

BOOL

—

output

A

flag

that

indicates

whether

a

value

is

required

for

this

attribute.

The

valid

values

are:

TRUE

Indicates

that

a

value

is

required.

FALSE

Indicates

that

a

value

is

not

required.

Restriction:

This

field

is

valid

for

index

classes

only.

It

is

not

valid

for

views.

fAttrAccess

BITS

—

output

A

flag

that

indicates

the

type

of

access

for

the

attribute.

This

field

is

valid

only

for

views.

It

is

not

valid

for

index

classes.

The

valid

values

are:

SIM_ATTR_READABLE

Indicates

read

access.

SIM_ATTR_READWRITE

Indicates

read

and

write

access.

This

value

is

a

combination

of

SIM_ATTR_READABLE

and

SIM_ATTR_WRITEABLE.

SIM_ATTR_WRITEABLE

Indicates

write

access.

usAttrId

USHORT

—

output

The

unique

identifier

of

an

attribute.

CLASSINDEXATTRSTRUCT

(Class

Index

Attribute

Structure)

This

data

structure

contains

information

about

an

attribute

within

an

index

on

an

index

class

attributes

table.

It

consists

of

the

following:

typedef

struct

_CLASSINDEXATTRSTRUCT

{

ULONG

ulStruct;

USHORT

usAttrId;

USHORT

usIndexSortOrder;

}

CLASSINDEXATTRSTRUCT,

*PCLASSINDEXATTRSTRUCT;

CLASSATTRSTRUCT

Chapter

4.

Common

Data

Structures

139

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

usAttrId

USHORT

—

output

The

unique

identifier

of

an

attribute.

The

attribute

can

be

user-defined

but

not

system-defined,

and

it

must

be

in

the

index

class

for

which

this

index

is

requested.

usIndexSortOrder

USHORT

—

output

In

Content

Manager

for

iSeries,

this

is

always

set

to

SIM_INDEX_ASCENDING.

CLASSINDEXSTRUCT

(Class

Index

Structure)

This

data

structure

contains

the

index

class

attributes

that

are

used

to

create

a

database

index

on

an

index

class.

It

consists

of

the

following:

typedef

struct

_CLASSINDEXSTRUCT

{

ULONG

ulStruct;

BITS

fIndexFlags;

PCLASSINDEXATTRSTRUCT

pClassIndexAttr;

USHORT

usNbrAttrIds;

CHAR

szIndexName;

}

CLASSINDEXSTRUCT,

*PCLASSINDEXSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

fIndexFlags

BITS

—

output

Not

supported.

pClassIndexAttr

PCLASSINDEXATTRSTRUCT

—

output

A

pointer

to

a

ClassIndexAttrStruct

data

structure

containing

class

index

attribute

information.

For

more

information,

see

CLASSINDEXATTRSTRUCT

(Class

Index

Attribute

Structure).

usNbrAttrIds

USHORT

—

output

The

number

of

attribute

IDs

in

the

ClassIndexAttrStruct

structure.

szIndexName

CHAR[SIM_INDEX_NAME_LENGTH+1]

—

output

The

unique

name

of

an

index

class

database

index.

CLASSINDEXATTRSTRUCT

140

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

CLASSINFOSTRUCT

(Index

Class

Information

Structure)

This

data

structure

provides

information

about

an

index

class.

It

consists

of

the

following:

typedef

struct

_CLASSINFOSTRUCT

{

ULONG

ulStruct;

PCLASSATTRSTRUCT

pClassAttrStruct;

USHORT

usNbrAttrIds;

USHORT

usMaxVersions;

USHORT

usIndexClass;

USHORT

usViewID;

CHAR

szACLName;

CHAR

achLanguageCode;

CHAR

szClassName;

CHAR

szDescription;

CHAR

szCollectionName;

CHAR

szStoreSite;

}

CLASSINFOSTRUCT,

*PCLASSINFOSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

pClassAttrStruct

PCLASSATTRSTRUCT

—

output

A

pointer

to

an

array

of

class

attribute

structures.

usNbrAttrIds

USHORT

—

output

The

number

of

attribute

IDs

in

the

CLASSATTRSTRUCT

array.

For

classes

with

no

attributes,

this

value

is

0,

and

the

pClassAttrStruct

field

contains

the

value

NULL.

usMaxVersions

USHORT

—

output

Not

supported.

usIndexClass

USHORT

—

output

An

index

class

identifier.

usViewID

USHORT

—

output

The

ID

of

an

existing

index

class

view.

Content

Manager

for

iSeries

supports

only

a

single

view,

with

the

same

identifier

as

the

index

class.

szACLName

CHAR[SIM_ACCESS_LIST_NAME_LENGTH+1]

—

output

The

name

of

the

access

list

(ACL)

for

the

index

class.

achLanguageCode

CHAR[SIM_LANGUAGE_CODE_LENGTH+1]

—

output

CLASSINFOSTRUCT

Chapter

4.

Common

Data

Structures

141

The

3-character

national

language

code

for

this

index

class

name

or

view

name.

The

values

for

language

codes

are

described

in

the

IBM

National

Language

Design

Guide:

National

Language

Support

Reference

Manual,

Volume

2.

szClassName

CHAR[SIM_CLASS_NAME_LENGTH+1]

—

output

The

name

of

the

index

class

or

view,

expressed

in

the

specified

language.

szDescription

CHAR[SIM_DESCRIPTION_LENGTH+1]

—

output

Not

supported.

szCollectionName

CHAR[SIM_COLLECTION_NAME_LENGTH+1]

—

output

The

default

collection

for

new

objects

in

the

specified

index

class.

For

a

view,

this

is

the

same

value

as

for

the

index

class

that

is

associated

with

the

view.

It

is

valid

for

a

view

only

on

the

SimLibGetClassInfo

function.

szStoreSite

CHAR[SIM_SERVER_NAME_LENGTH+1]

—

output

Not

supported.

CONTENTCLASSINFO

(Content

Class

Information

Structure)

This

information

structure

provides

the

data

you

need

to

create

and

modify

a

content

class.

It

consists

of

the

following:

typedef

struct

_CONTENTCLASSINFO

{

ULONG

ulStruct;

USHORT

usContentClsID;

CHAR

szContentClsName;

CHAR

szContentClsDesc;

}

CONTENTCLASSINFO,

*PCONTENTCLASSINFO;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

usContentClsID

USHORT

—

output

An

unique

content

class

ID

that

Content

Manager

for

iSeries

generates.

szContentClsName

CHAR[9]

—

output

The

name

of

the

content

class.

szContentClsDesc

CHAR[41]

—

output

The

description

of

the

content

class.

CLASSINFOSTRUCT

142

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

HOBJ

(Handle

to

Query

Stored

Object)

This

handle

identifies

the

stored

object

to

query.

This

is

actually

a

pointer

to

a

data

structure

that

consists

of:

typedef

struct

_OBJSTRUCT

{

ULONG

ulStruct;

ULONG

ulPart;

SHORT

sVersion;

ITEMID

szItemID;

UCHAR

chRepType;

UCHAR

chReserved;

}

OBJ,

*HOBJ;

Fields

ulStruct

ULONG

—

input/output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

ulPart

ULONG

—

input/output

The

part

number

of

the

object.

Only

positive

values

are

valid.

sVersion

SHORT

—

input

Not

supported.

szItemID

ITEMID

—

input/output

The

item

ID

of

the

object.

chRepType

UCHAR[SIM_REP_TYPE]

—

input/output

Not

supported.

chReserved

UCHAR[SIM_OBJ_RESERVED_LENGTH]

—

input

Reserved.

ICVIEWSTRUCT

(Index

Class

View

Information

Structure)

This

data

structure

provides

information

about

the

index

class

or

index

class

view

information

structure.

It

consists

of

the

following:

typedef

struct

_ICVIEWSTRUCT

{

ULONG

ulStruct;

struct

_ICVIEWSTRUCT

*pNextView;

PATTRLISTSTRUCT

pAttr;

USHORT

usIndexClass;

USHORT

usViewId;

USHORT

usNumAttributes;

}

ICVIEWSTRUCT,

*PICVIEWSTRUCT;

HOBJ

Chapter

4.

Common

Data

Structures

143

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

pNextView

struct

_ICVIEWSTRUCT

*

—

output

The

pointer

to

the

next

field

in

the

linked

list

of

view

information

for

the

item.

Each

field

in

this

list

is

an

ICVIEWSTRUCT

data

structure.

For

Content

Manager

for

iSeries,

this

pointer

always

contains

the

value

NULL.

pAttr

PATTRLISTSTRUCT

—

output

The

pointer

to

an

array

of

ATTRLISTSTRUCT

data

structures.

Each

data

structure

contains

either

the

system-defined

or

the

user-defined

attribute

ID

of

the

current

view

for

this

item.

One

data

structure

in

the

array

specifies

one

attribute.

usIndexClass

USHORT

—

output

The

index

class

identifier

for

the

item.

usViewId

USHORT

—

output

The

ID

of

an

existing

index

class

view.

Content

Manager

for

iSeries

supports

only

a

single

view,

with

the

same

identifier

as

the

index

class.

usNumAttributes

USHORT

—

output

The

number

of

attribute

values

that

exist

for

this

item.

The

value

of

this

field

matches

the

number

of

ATTRLISTSTRUCT

data

structures

that

the

pAttr

field

points

to.

ITEMINFOSTRUCT

(Item

Information

Structure)

This

data

structure

provides

the

requested

item

information.

It

consists

of

the

following:

typedef

struct

_ITEMINFOSTRUCT

{

ULONG

ulStruct;

BOOL

fSuspended;

USHORT

usItemType;

USHORT

usIndexClass;

ULONG

ulOpenStatus;

USHORT

usWipStatus;

USERID

useridCheckout;

CHAR

szLabel;

}

ITEMINFOSTRUCT,

*PITEMINFOSTRUCT;

Fields

ulStruct

ULONG

—

output

ICVIEWSTRUCT

144

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

fSuspended

BOOL

—

output

Not

supported.

usItemType

USHORT

—

output

The

type

of

items

retrieved

using

the

SimLibGetItemInfo

function.

The

valid

values

are:

SIM_DOCUMENT

Indicates

that

the

item

is

a

document.

SIM_FOLDER

Indicates

that

the

item

is

a

folder.

SIM_WORKBASKET

Indicates

that

the

item

is

a

workbasket.

SIM_WORKFLOW

Indicates

that

the

item

is

a

process.

usIndexClass

USHORT

—

output

An

index

class

identifier.

For

the

SimLibGetItemInfo

function,

this

value

specifies

the

index

class

ID

for

the

item

you

are

querying.

ulOpenStatus

ULONG

—

output

Indicator

of

whether

the

item

is

open

for

update.

Together,

this

parameter

and

the

useridCheckout

parameter

provide

information

about

who

has

the

item

and

for

what

purpose.

The

valid

values

are:

SIM_ACCESS_READ_WRITE

Indicates

that

you

have

the

item

open

for

update.

SIM_ACCESS_UNKNOWN

Indicates

that

you

do

not

have

the

item

open

for

update.

usWipStatus

USHORT

—

output

The

current

WIP

status

of

the

item.

The

value

of

this

field

indicates

whether

or

not

the

item

is

suspended,

as

well

as

the

workflow

status

of

the

item.

The

OR

operator

is

used

to

combine

one

suspension

status

value

with

one

workflow

status

value

from

the

following

groups:

Suspension

Status

Values

Not

supported.

Workflow

Status

Values

OIM-CURRENT_WORKFLOW_ITEMS

Indicates

that

the

item

is

in

a

process.

ITEMINFOSTRUCT

Chapter

4.

Common

Data

Structures

145

OIM_ITEMS_NOT_IN_WORKFLOW

Indicates

that

the

item

is

not

in

a

process.

useridCheckout

USERIDENT

—

output

The

user

ID

of

the

person

who

has

the

item

checked

out.

Together,

this

parameter

and

the

ulOpenStatus

parameter

provide

information

about

who

has

the

item

and

for

what

purpose.

The

valid

values

are:

Your

user

ID

Indicates

that

you

have

the

item

checked

out

permanently

and

open

for

update,

if

ulOpenStatus

contains

the

value

SIM_ACCESS_READ_WRITE.

Otherwise,

you

have

the

item

checked

out

permanently

but

it

is

not

open

for

update.

Other

user

ID

Identifies

another

user

who

has

the

item

checked

out,

if

ulOpenStatus

contains

SIM_ACCESS_UNKNOWN.

A

null

string

Indicates

that

you

have

the

item

open

for

update,

if

ulOpenStatus

contains

the

value

SIM_ACCESS_READ_WRITE.

Otherwise,

the

item

is

not

checked

out.

szLabel

CHAR[SIM_LABEL_LENGTH+1]

—

output

A

null-terminated

string

that

contains

the

name

or

label

of

the

item.

ITEMNAMESTRUCT

(Item

Name

Data

Structure)

This

data

structure

provides

the

name

associated

with

a

workbasket

or

process

item.

typedef

struct_ITEMNAMESTRUCT

{

ULONG

ulStruct;

ITEMID

WItemID;

CHAR

szIDName;

ULONG

ulActive;

}

ITEMNAMESTRUCT,

*PITEMNAMESTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

WItemID

ITEMID

—

output

The

item

ID

of

either

the

workbasket

or

the

process.

ITEMINFOSTRUCT

146

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

szIDName

CHAR[OIM_ITEMNAME_LENGTH+1]

—

output

The

description

of

the

item

.

ulActive

ULONG

—

output

For

Content

Manager

for

iSeries,

the

status

of

the

workbasket

or

process.

The

valid

values

are:

SIMWM_ACTIVE

Indicates

the

workbasket

or

process

is

active.

SIMWM_INACTIVE

Indicates

the

workbasket

or

process

is

marked

for

deletion.

LIBSEARCHCRITERIASTRUCT

(Search

Criteria

Information

Structure)

This

data

structure

provides

information

about

which

index

class

to

search

and

the

search

expression

itself.

It

consists

of

the

following:

typedef

struct

_LIBSEARCHCRITERIASTRUCT

{

ULONG

ulStruct;

ULONG

ulReturnLimit;

BITS

fSearch;

PSZ

pszSearchString;

USHORT

usViewID;

USHORT

usSearchUnused;

}

LIBSEARCHCRITERIASTRUCT,

*PLIBSEARCHCRITERIASTRUCT;

Fields

ulStruct

ULONG

—

input

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

ulReturnLimit

ULONG

—

input

The

maximum

number

of

items

that

the

search

returns

for

the

index

class

you

specify.

If

you

specify

SIM_SEARCH_ALLVIEWS

as

the

value

of

the

fSearch

field,

the

value

of

this

field

is

the

maximum

number

of

items

that

the

search

returns

per

index

class

from

each

index

class

you

search.

Specify

0

as

the

value

of

this

field

to

return

all

the

items

that

match

the

search

criteria

for

the

index

class

you

specify.

fSearch

BITS

—

input

The

search

modification

indicator.

The

value

of

this

field

determines

a

modification

to

the

search.

The

valid

values

are:

SIM_SEARCH_VIEW

Searches

only

the

view

specified

in

the

ITEMNAMESTRUCT

Chapter

4.

Common

Data

Structures

147

usViewID

field.

If

you

specify

this

value,

you

must

specify

the

ID

of

a

valid

view

in

the

usViewID

field.

SIM_SEARCH_ALLVIEWS

Searches

all

the

appropriate

current

views,

not

just

one

view.

If

you

specify

this

value,

you

must

specify

0

as

the

value

of

the

usViewID

field.

You

can

specify

this

value

in

only

one

of

the

data

structures

in

an

array

of

search

criteria.

If

you

specify

this

value,

the

SimLibSearch

function

automatically

searches

only

the

views

that

contain

the

attributes

you

specify

in

the

expression

within

the

pszSearchString

field.

pszSearchString

PSZ

—

input

A

pointer

to

a

null-terminated

string.

This

field

contains

one

or

more

expressions.

Each

expression

describes

the

search

conditions

on

an

attribute.

Use

logical

operators

to

combine

expressions

for

the

search.

You

can

use

an

unlimited

number

of

levels

and

parentheses.

See

Guidelines

for

Search

Expressions

following

this

list.

usViewID

USHORT

—

input

The

ID

of

an

existing

index

class.

usSearchUnused

USHORT

—

input

Reserved

field.

Restriction:

The

SimLibSearch

function

does

not

use

this

value.

Guidelines

for

Search

Expressions

See

Appendix

A,

“Guidelines

for

Search

Expressions,”

on

page

291.

LIBSESSIONINFOSTRUCT

(Library

Session

Information

Structure)

This

data

structure

provides

information

about

the

current

library

session

that

you

specify

as

the

value

of

the

HSESSION

parameter,

when

you

use

the

SimLibLogon

function

to

start

the

current

session.

It

consists

of

the

following:

typedef

struct

_LIBSESSIONINFOSTRUCT

{

ULONG

ulStruct;

SESSION_P

pSession;

CHAR

szDBName;

CHAR

szApplicationName;

PATRON_ID

szUserIDSession;

}

LIBSESSIONINFOSTRUCT,

*PLIBSESSIONINFOSTRUCT;

LIBSEARCHCRITERIASTRUCT

148

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

pSession

SESSION_P

—

output

The

handle

to

a

library

client

session.

szDBName

CHAR[RS_STORE_ID_LENGTH+1]

—

output

Not

supported.

szApplicationName

CHAR[RS_STORE_ID_LENGTH+1]

—

output

Not

supported.

szUserIDSession

PATRON_ID

—

output

The

current

user

ID

for

the

session.

NAMESTRUCT

(Name

Data

Structure)

This

data

structure

provides

the

name

associated

with

an

attribute

or

index

class

view

code.

It

consists

of

the

following:

typedef

struct

_NAMESTRUCT

{

ULONG

ulStruct;

USHORT

usID;

CHAR

szName;

CHAR

szDescription;

}

NAMESTRUCT,

*PNAMESTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

usID

USHORT

—

output

The

ID

of

a

valid

attribute,

an

index

class,

or

an

index

class

view.

szName

CHAR[SIM_CLASS_NAME_LENGTH+1]

—

output

The

name

of

the

index

class

or

view

in

the

current

language.

szDescription

CHAR[SIM_DESCRIPTION_LENGTH+1]

—

output

Not

supported.

OBJINFOSTRUCT

(Object

Information

Structure)

This

data

structure

provides

storage

information

about

the

object.

It

consists

of

the

following:

LIBSESSIONINFOSTRUCT

Chapter

4.

Common

Data

Structures

149

typedef

struct

_OBJINFOSTRUCT

{

ULONG

ulStruct;

ULONG

ulObjSize;

LONG

lSMSRetention;

LONG

lEstimateRetrieveTime;

ULONG

ulAvail;

ULONG

ulObjConCls;

USHORT

usPageNum;

TIMESTAMP

tsCreate;

TIMESTAMP

tsExpiration;

TIMESTAMP

tsLastRef;

TIMESTAMP

tsModify;

TIMESTAMP

tsEnterSG;

TIMESTAMP

tsEnterSC;

CHAR

szCollectionName;

CHAR

szObjectName;

CHAR

szMgtCls;

CHAR

szStgCls;

CHAR

szDataCls;

CHAR

szStoreSite;

}

OBJINFOSTRUCT,

*POBJINFOSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

ulObjSize

ULONG

—

output

The

total

size

of

the

object

in

bytes.

lSMSRetention

LONG

—

output

Not

supported.

lEstimateRetrieveTime

LONG

—

output

Not

supported.

ulAvail

ULONG

—

output

Not

supported.

ulObjConCls

ULONG

—

output

The

object

content

class

of

the

object

you

query.

The

value

SIM_CC_UNKNOWN

indicates

the

undefined

content

class.

usPageNum

USHORT

—

output

Not

supported.

tsCreate

TIMESTAMP

—

output

The

date

and

time

that

the

item

or

object

was

created.

tsExpiration

TIMESTAMP

—

output

OBJINFOSTRUCT

150

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Not

supported.

tsLastRef

TIMESTAMP

—

output

Not

supported.

tsModify

TIMESTAMP

—

output

The

date

and

time

that

the

item

or

object

was

last

modified.

tsEnterSG

TIMESTAMP

—

output

Not

supported.

tsEnterSC

TIMESTAMP

—

output

Not

supported.

szCollectionName

CHAR[MAXCOLNMSZ]

—

input

Not

supported.

szObjectName

CHAR[MAXOBJNMSZ]

—

input

Not

supported.

szMgtCls

CHAR[MAXMGTCLSNMSZ]

—

output

Not

supported.

szStgCls

CHAR[MAXSTGCLSNMSZ]

—

output

Not

supported.

szDataCls

CHAR[MAXDATACLSNMSZ]

—

output

Not

supported.

szStoreSite

CHAR[MAXSTRSITENMSZ]

—

output

Not

supported.

RCSTRUCT

(Return

Code

Information

Structure)

This

data

structure

provides

programming-interface

function

return

code

and

data

information.

It

consists

of

the

following:

typedef

struct

_RCSTRUCT

{

ULONG

ulStruct;

ULONG

ulRC;

USHORT

usReserved;

USHORT

usParam;

ULONG

ulParam1;

ULONG

ulParam2;

#ifdef

OS400

PVOID

pParam1;

PVOID

pParam2;

#endif

ULONG

ulExtRC;

ULONG

ulExtReason;

PVOID

pApplData;

ULONG

ulApplData;

ULONG

ulReserved;

OBJINFOSTRUCT

Chapter

4.

Common

Data

Structures

151

HERR

hErrLog;

}

RCSTRUCT,

*PRCSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

ulRC

ULONG

—

output

The

function

return

code.

usReserved

USHORT

—

output

Not

supported.

usParam

USHORT

—

output

A

field

that

indicates

whether

the

ulParam1

field

contains

a

pointer

to

a

data

area.

The

value

1

indicates

that

this

is

the

case.

Otherwise,

this

field

contains

the

value

0.

ulParam1

ULONG

—

output

A

value

or

a

pointer

to

either

a

data

structure

or

an

array

of

data

structures.

ulParam2

ULONG

—

output

A

field

that

indicates

the

number

of

data

structures

in

the

array

if

the

ulParam1

field

contains

a

pointer

to

an

array

of

data

structures.

pParam1

PVOID

—

output

A

pointer

used

in

place

of

ulParam1

when

the

function

is

executed

on

the

server.

pParam2

PVOID

—

output

A

pointer

used

in

place

of

ulParam2

when

the

function

is

executed

on

the

server.

ulExtRC

ULONG

—

output

A

return

code

from

other

components

that

Content

Manager

for

iSeries

called

directly

or

indirectly.

ulExtReason

ULONG

—

output

Not

supported.

pApplData

PVOID

—

output

A

PVOID

data

field

that

your

application

can

use

to

contain

application

data.

Content

Manager

for

iSeries

does

not

use

this

data

field.

The

value

is

preserved

by

the

programming

interface

function

and

returned.

For

example,

your

application

might

use

this

field

to

point

to

a

data

structure,

one

that

your

application

creates

prior

to

using

a

function

RCSTRUCT

152

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

that

requires

the

data.

The

function

could

use

the

data

in

that

structure

to

process

a

user

exit.

ulApplData

ULONG

—

output

A

ULONG

data

field

that

your

application

can

use

to

contain

application

data.

Content

Manager

for

iSeries

does

not

use

this

data

field.

The

value

is

preserved

by

the

programming

interface

function

and

returned.

For

example,

your

application

might

use

this

field

to

point

to

a

data

structure,

one

that

your

application

creates

prior

to

using

a

function

that

requires

the

data.

The

function

could

use

the

data

in

that

structure

to

process

a

user

exit.

ulReserved

ULONG

—

output

Not

supported.

hErrLog

HERR

—

output

Not

supported.

SERVERINFOSTRUCT

(Server

Information

Structure)

The

structure

contains

information

about

a

server

defined

to

the

system.

This

data

structure

is

returned

to

the

application

that

called

it.

It

consists

of

the

following:

typedef

struct

_SERVERINFOSTRUCT

{

ULONG

ulStruct;

CHAR

szServerName;

CHAR

szServerType;

}

SERVERINFOSTRUCT,

*PSERVERINFOSTRUCT;

Fields

ulStruct

ULONG

—

input

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

szServerName

CHAR[SERVERNAME_LENG+1]—

output

The

name

of

the

Content

Manager

for

iSeriesserver.

szServerType

CHAR[SERVERTYPE_LENG+1]—

output

The

server

type.

Current

server

types

include

the

following:

Server

Type

Explanation

’FRNCACHE’

List

manager

cache

’FRNREXE’

Remote

utility

server

’FRNCS’

Configuration

server

’FRNOSADM’

System-managed

storage

server

’FRNOLM’

List

manager

server

RCSTRUCT

Chapter

4.

Common

Data

Structures

153

SMS

(System-Managed

Storage

Pointer)

The

pointer

to

the

system-managed

storage

(SMS)

data

structure

for

an

object.

This

data

structure

provides

the

information

necessary

to

support

the

SMS

for

an

object

on

a

variety

of

object

servers.

This

is

a

pointer

to

a

data

structure

that

consists

of

the

following:

typedef

struct

_SMS

{

ULONG

ulStruct;

LONG

lSMSRetention;

CHAR

szCollectionName;

CHAR

szObjectName;

CHAR

szMgtCls;

CHAR

szStgCls;

CHAR

szDataCls;

CHAR

szStoreSite;

CHAR

szStoreHint;

}

SMS,

*PSMS;

Fields

ulStruct

ULONG

—

input

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

lSMSRetention

LONG

—

input

The

period

in

days

that

Content

Manager

for

iSeries

retains

the

object

in

system-managed

storage.

The

valid

values

range

from

1

to

999

999

999.

szCollectionName

CHAR[MAXCOLNMSZ]

—

input

The

ASCIIZ

user-defined

collection

name.

The

value

of

this

field

references

a

zero-terminated

string

in

client

data

space,

containing

a

user-defined

number

of

significant

characters.

This

character

string

provides

a

meaningful

name

for

the

collection

being

created.

If

you

do

not

require

a

collection

name,

specify

the

value

NULL.

After

an

object

has

been

assigned

to

a

collection

on

an

object

server,

you

cannot

change

the

collection

assignment.

szObjectName

CHAR[MAXOBJNMSZ]

—

input

Not

supported.

szMgtCls

CHAR[MAXMGTCLSNMSZ]

—

input

Not

supported.

szStgCls

CHAR[MAXSTGCLSNMSZ]

—

input

Not

supported.

szDataCls

CHAR[MAXDATACLSNMSZ]

—

input

SMS

154

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Not

supported.

szStoreSite

CHAR[MAXSTRSITENMSZ]

—

input

The

name

of

the

object

server

in

which

the

object

is

stored.

szStoreHint

CHAR[MAXSTGHINTNMSZ]

—

input

Not

supported.

SNAPSHOTSTRUCT

(Snapshot

Information

Structure)

This

data

structure

provides

the

view,

attribute,

and

work

management

information

for

an

item

at

a

specific

point

in

time.

It

consists

of

the

following:

typedef

struct

_SNAPSHOTSTRUCT

{

ULONG

ulStruct;

PWMSNAPSHOTSTRUCT

pWmSnapshot;

USHORT

usNumWmSnapshots;

PICVIEWSTRUCT

pICView;

USHORT

usNumViews;

USHORT

usItemType;

ULONG

ulOpenStatus;

ITEMID

szItemID;

USERID

useridCheckout;

TIMESTAMP

tsCreate;

TIMESTAMP

tsModify;

}

SNAPSHOTSTRUCT,

*PSNAPSHOTSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

pWmSnapshot

PWMSNAPSHOTSTRUCT

—

output

The

pointer

to

the

workflow

information

data

structure

of

the

type

WMSNAPSHOTSTRUCT.

The

SimLibGetItemSnapshot

function

returns

this

structure

when

the

you

specify

the

value

of

the

fReadAttrInd

input

parameter

as

SIM_WORK_ATTR.

Otherwise,

this

field

contains

the

value

NULL.

Content

Manager

for

iSeries

supports

the

existence

of

an

item

in

more

than

one

workbasket,

so

it

could

be

an

array

of

workflow

information

for

an

item.

usNumWmSnapshots

USHORT

—

input

The

number

of

elements

in

the

array

of

WMSNAPSHOTSTRUCT

that

pWmSnapshot

points

to.

pICView

PICVIEWSTRUCT

—

output

SMS

Chapter

4.

Common

Data

Structures

155

The

pointer

to

a

linked

list

of

view

information

for

the

item,

where

each

element

of

the

list

is

of

the

data

type

ICVIEWSTRUCT.

If

the

item

is

not

associated

with

any

index

class,

or

you

do

not

retrieve

system

attributes,

this

pointer

contains

the

value

NULL.

Currently

in

Content

Manager

for

iSeries,

if

the

item

is

associated

with

an

index

class,

there

is

only

one

element

in

the

linked

list

containing

information

about

the

current

index

class

view

for

the

item.

If

the

item

is

not

associated

with

any

index

class,

this

pointer

contains

the

value

NULL.

usNumViews

USHORT

—

output

The

number

of

elements

in

the

linked

list

pointed

to

by

the

pICView

field

in

the

SNAPSHOTSTRUCT

data

structure.

Currently

in

Content

Manager

for

iSeries,

if

the

item

is

associated

with

an

index

class,

this

field

contains

the

value

1.

This

value

indicates

that

the

linked

list

of

elements

of

the

data

type

ICVIEWSTRUCT

contains

one

element

with

information

pertaining

to

the

current

index

class

view

for

the

item.

If

the

item

is

not

associated

with

an

index

class,

this

field

contains

the

value

0.

In

this

case,

however,

the

pICView

pointer

is

still

valid

if

you

retrieve

system

attributes.

usItemType

USHORT

—

output

The

type

of

items

retrieved

using

the

SimLibGetItemSnapshot

function.

The

valid

values

are:

SIM_DOCUMENT

Indicates

that

the

item

is

a

document.

SIM_FOLDER

Indicates

that

the

item

is

a

folder.

ulOpenStatus

ULONG

—

output

Indicator

of

whether

the

item

is

open

for

update.

Together,

this

parameter

and

the

useridCheckout

parameter

provide

information

about

who

has

the

item

and

for

what

purpose.

The

valid

values

are:

SIM_ACCESS_READ_WRITE

Indicates

that

you

have

the

item

open

for

update.

SIM_ACCESS_UNKNOWN

Indicates

that

you

do

not

have

the

item

open

for

update.

szItemID

ITEMID

—

output

An

item

ID.

useridCheckout

USERIDENT

—

output

SNAPSHOTSTRUCT

156

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

user

ID

of

the

person

who

has

the

item

checked

out.

Together,

this

parameter

and

the

ulOpenStatus

parameter

provide

information

about

who

has

the

item

and

for

what

purpose.

The

valid

values

are:

Your

user

ID

Indicates

that

you

have

the

item

checked

out

permanently

and

open

for

update,

if

ulOpenStatus

contains

the

value

SIM_ACCESS_READ_WRITE.

Otherwise,

you

have

the

item

checked

out

permanently

but

it

is

not

open

for

update.

Other

user

ID

Identifies

another

user

who

has

the

item

checked

out,

if

ulOpenStatus

contains

SIM_ACCESS_UNKNOWN.

A

null

string

Indicates

that

you

have

the

item

open

for

update,

if

ulOpenStatus

contains

the

value

SIM_ACCESS_READ_WRITE.

Otherwise,

the

item

is

not

checked

out.

tsCreate

TIMESTAMP

—

output

The

date

and

time

that

the

item

or

object

was

created.

tsModify

TIMESTAMP

—

output

The

date

and

time

that

the

item

or

object

was

last

modified.

TOCENTRYSTRUCT

(Table

of

Contents

Entry

Data

Structure)

This

data

structure

provides

information

describing

an

entry

in

a

list

of

the

documents

and

folders

contained

in

the

specific

folder

or

workbasket.

It

consists

of

the

following:

typedef

struct

_TOCENTRYSTRUCT

{

ULONG

ulStruct;

USHORT

usItemStatus;

USHORT

usIndexClass;

USHORT

usItemType;

ITEMID

szItemID;

TIMESTAMP

tsItemChanged;

}

TOCENTRYSTRUCT,

*PTOCENTRYSTRUCT;

Fields

ulStruct

ULONG

—

input

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

usItemStatus

USHORT

—

input

SNAPSHOTSTRUCT

Chapter

4.

Common

Data

Structures

157

The

status

of

the

entry

after

the

update.

The

valid

values

are:

v

0

(unmodified)

v

SIM_TOC_ADD

v

SIM_TOC_MODIFIED

v

SIM_TOC_DELETE

usIndexClass

USHORT

—

input

An

index

class

identifier.

usItemType

USHORT

—

input

The

type

of

items

retrieved

using

the

SimLibGetTOC

function.

The

valid

values

are:

SIM_DOCUMENT

Indicates

that

the

item

is

a

document.

SIM_FOLDER

Indicates

that

the

item

is

a

folder.

szItemID

ITEMID

—

input

An

item

ID.

tsItemChanged

TIMESTAMP

—

input

The

timestamp

of

the

item

as

stored

in

the

library

server.

USERACCESSSTRUCT

(User

Access

Data

Structure)

This

data

structure

provides

information

describing

the

user

who

has

checked

out

the

referenced

item.

It

consists

of

the

following:

typedef

struct

_USERACCESSSTRUCT

{

ULONG

ulStruct;

ULONG

ulAccessLevel;

USERIDENT

useridCheckout;

ITEMID

szItemID;

}

USERACCESSSTRUCT,

*PUSERACCESSSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

ulAccessLevel

ULONG

—

output

Not

supported.

useridCheckout

USERIDENT

—

output

The

user

ID

of

the

person

who

checked

out

this

item.

If

the

item

is

not

currently

checked

out,

this

field

contains

the

value

NULL.

szItemID

ITEMID

—

output

TOCENTRYSTRUCT

158

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

An

item

ID.

USERLOGONINFOSTRUCT

(User

Logon

Information

Structure)

This

data

structure

provides

information

about

the

user’s

session.

It

consists

of

the

following:

typedef

struct

_USERLOGONINFOSTRUCT

{

ULONG

ulStruct;

ULONG

ulUserType;

ULONG

ulUserCCSID;

PSZ

pszUserDescription;

CHAR

szUserLanguage;

CHAR

szSessionType;

TIMESTAMP

tsPasswordExpire;

CHAR

szPrivString;

}

USERLOGONINFOSTRUCT,

*PUSERLOGONINFOSTRUCT;

Fields

ulStruct

ULONG

—

input

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

ulUserType

ULONG

—

input

Not

supported.

ulUserCCSID

ULONG

—

input

Not

supported.

pszUserDescription

PSZ

—

input

Not

supported.

szUserLanguage

CHAR[SIM_LANGUAGE_CODE_LENGTH+1]

—

input

A

fixed-length

character

array

that

indicates

the

language

that

this

user

prefers

for

dialogs

and

messages.

The

valid

value

is

a

standard

IBM

3-character

language

code.

The

values

for

language

codes

are

described

in

the

IBM

National

Language

Design

Guide:

National

Language

Support

Reference

Manual

Volume

2

szSessionType

CHAR[SIM_SESSION_TYPE_LENGTH+1]

—

input

The

type

of

logon

session.

The

only

valid

value

for

this

field

is

Ip2.

tsPasswordExpire

TIMESTAMP

—

input

The

date

when

the

current

password

expires.

szPrivString

CHAR[SIM_PRIVSTRING_LENGTH+1]

—

input

A

null-terminated

character

string

that

represents

the

privilege

vector

for

the

user.

This

string

USERACCESSSTRUCT

Chapter

4.

Common

Data

Structures

159

consists

of

ASCII

zeros

and

ones

that

correspond

to

the

zeros

and

ones

in

the

user’s

corresponding

privilege

vector.

WMACTIONLISTFUNCSTRUCT

(Action

List

Function

Structure)

This

data

structure

provides

information

about

an

action

that

is

defined

with

an

action

list.

typedef

struct

_WMACTIONLISTFUNCSTRUCT

{

ULONG

ulFuncNumber;

ULONG

ulActionType;

ULONG

ulFuncCode;

CHAR

szFuncPrompt;

CHAR

szAction;

CHAR

szIcon;

CHAR

szShortcut;

CHAR

szExitFuncName;

CHAR

szExitDLLName;

}

WMACTIONLISTFUNCSTRUCT,

*PWMACTIONLISTFUNCSTRUCT;

Fields

ulFuncNumber

ULONG

—

output

The

sequence

number

of

the

action

within

the

action

list.

ulActionType

ULONG

—

output

Indicates

whether

an

action

is

applicable

for

documents,

folders,

or

both

item

types.

The

valid

values

are:

SIMWM_ACTION_DOCUMENT

The

action

is

associated

with

document

items.

SIMWM_ACTION_FOLDER

The

action

is

associated

with

folder

items.

SIMWM_ACTION_BOTH

The

action

is

associated

with

both

folder

and

document

items.

ulFuncCode

ULONG

—

output

The

value

that

uniquely

identifies

an

action.

szFuncPrompt

CHAR[SIMWM_AL_PROMPT+1]

—

output

The

text

prompt

associated

with

this

action.

szAction

CHAR[SIMWM_AL_ACTION+1]

—

output

The

value

to

be

assigned

to

the

SIMWM_ACTION

variable

when

this

action

is

selected.

szIcon

CHAR[SIMWM_AL_ICON+1]

—

output

USERLOGONINFOSTRUCT

160

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Icon

associated

with

this

action.

szShortcut

CHAR[SIMWM_AL_SHORTCUT+1]

—

output

The

keyboard

shortcut

associated

with

this

action.

szExitFuncName

CHAR[OIM_WB_FUNCTION_LENGTH+1]

—

output

If

this

is

a

user-defined

action,

this

field

contains

the

name

of

the

user

exit

function

to

be

run.

szExitDLLName

CHAR[OIM_WB_DLL_LENGTH+1]

—

output

If

this

is

a

user-defined

action,

this

field

contains

the

name

of

the

dynamic

link

library

which

contains

the

function

szExitFuncName.

WMACTIONLISTINFOSTRUCT

(Action

List

Data

Structure)

This

data

structure

provides

all

of

the

information

associated

with

an

action

list

definition.

typedef

struct

_WMACTIONLISTINFOSTRUCT

{

ULONG

ulStruct;

CHAR

szActionListName;

TIMESTAMP

tsALCreate;

TIMESTAMP

tsALModify;

CHAR

szDescription;

ULONG

ulALNumFunctions;

PWMACTIONLISTFUNCSTRUCT

pALFunctions;

}WMACTIONLISTINFOSTRUCT,

*PWMACTIONLISTINFOSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

szActionListName

CHAR[SIMWM_ACTION_LENGTH+1]

—

output

The

name

of

the

action

list.

tsALCreate

TIMESTAMP

—

output

The

date

and

time

the

action

list

was

created.

tsALModify

TIMESTAMP

—

output

The

date

and

time

the

action

list

was

last

modified.

szDescription

CHAR[SIMWM_AL_DESCRIPTION+1]

—

output

Description

of

the

action

list.

WMACTIONLISTFUNCSTRUCT

Chapter

4.

Common

Data

Structures

161

ulALNumFunctions

ULONG

—

output

The

number

of

functions

associated

with

this

action

list.

pALFunctions

PWMACTIONLISTFUNCSTRUCT

—

output

Pointer

to

the

list

of

functions

associated

with

this

action

list.

WMHISTLOGENTRYSTRUCT

(WMEvent

History

Structure)

This

data

structure

provides

the

history

for

a

work

package

in

an

array

of

the

history

log

entries

for

the

work

package.

typedef

struct

_HISTLOGENTRY

{

CHAR

szEventID;

TIMESTAMP

tsCreated;

CHAR

szProcess;

CHAR

szLocation;

USERIDENT

szUser;

CHAR

szEventData;

}WMHISTLOGENTRYSTRUCT,

*PWMHISTLOGENTRY;

Fields

szEventID

CHAR[7]

—

output

The

seven-character

message

ID.

tsCreated

TIMESTAMP

—

output

The

date

and

time

of

the

event.

szProcessID

CHAR[SIMWM_PROCESS_NAME_LENGTH+1]

—

output

The

WorkFlow

process

name.

szLocation

CHAR[SIMWM_LOC_NAME_LENGTH+1]

—

output

The

WorkFlow

location

name.

szUser

USERIDENT

—

output

The

user

ID.

szEventData

CHAR[256]

—

output

The

text

description

associated

with

the

event.

WMLOCATIONINFOSTRUCT

(Work

Process

Location

Information

Structure)

This

data

structure

provides

information

associated

with

each

location

within

a

process.

WMACTIONLISTINFOSTRUCT

162

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

typedef

struct

_WMLOCATIONINFOSTRUCT

{

ULONG

ulType;

CHAR

szLocation;

CHAR

szDescription;

ULONG

ulActive;

}

WMLOCATIONINFOSTRUCT,

*PWMLOCATIONINFOSTRUCT;

Fields

ulType

ULONG

—

output

Indicates

whether

the

returned

information

is

a

workbasket

or

a

collection

point.

The

valid

values

are:

SIM_WORKBASKET

Indicates

the

location

is

a

workbasket.

SIM_COLLECTION_POINT

Indicates

the

location

is

a

collection

point.

szLocation

CHAR[SIMWM_LOC_NAME_LENGTH+1]

—

output

The

workbasket

or

collection

point

identifier.

szDescription

CHAR[SIMWM_LOC_DESC_LENGTH+1]

—

output

The

text

description

associated

with

the

location.

ulActive

ULONG

—

output

Not

supported.

WMPROCESSINFOSTRUCT

(Process

Information

Data

Structure)

This

data

structure

provides

information

about

a

specific

process.

typedef

struct

_WMPROCESSINFOSTRUCT

{

ULONG

ulStruct;

CHAR

szProcessID;

CHAR

szProcessDescription;

CHAR

chAccessListName;

USHORT

usHistoryLogDisposition;

ULONG

ulNbrItemsInProcess;

ULONG

ulNbrLocations;

UCHAR

szPrivString;

PWMLOCATIONINFOSTRUCT

pLocations;

}

WMPROCESSINFOSTRUCT,

*PWMPROCESSINFOSTRUCT;

WMLOCATIONINFOSTRUCT

Chapter

4.

Common

Data

Structures

163

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

szProcessID

CHAR[SIM_PROCESS_NAME_LENGTH+1]

—

output

The

process

identifier.

szProcessDescription;

CHAR[SIM_DESCRIPTION_LENGTH+1]

—

output

The

text

description

associated

with

the

process.

chAccessListName

CHAR[ACCESS_LIST_NAME_SIZE+1]

—

output

The

name

of

the

access

list

for

the

process.

usHistoryLogDisposition

USHORT

—

output

Not

supported

ulNbrItemsInProcess

ULONG

—

output

The

number

of

work

packages

on

the

process.

ulNbrLocations

ULONG

—

output

The

number

of

unique

locations

defined

within

the

process.

szPrivString

UCHAR[SIM_PRIVSTRING_LENGTH+1]

—

output

The

evaluated

privilege

string

for

the

user

with

respect

to

the

process.

pLocations

PWMLOCATIONINFOSTRUCT

—

output

The

pointer

to

the

array

location

information

data

structures

of

the

type

WMLOCATIONINFOSTRUCT.

WMSNAPSHOTSTRUCT

(Work

Management

Information

Structure)

This

data

structure

provides

workflow

information

associated

with

an

item.

It

consists

of

the

following:

typedef

struct

_WMSNAPSHOTSTRUCT

{

ULONG

ulStruct;

USHORT

usWIPStatus;

USHORT

usReleaseType;

USHORT

usPriority;

ITEMID

szWorkFlowID;

TIMESTAMP

tsWFEntry;

TIMESTAMP

tsEnteredWB;

ITEMID

szWorkBasketID;

WMPROCESSINFOSTRUCT

164

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

ULONG

ulWorkPackageID;

ULONG

ulInstanceID;

ULONG

ulLocationType;

CHAR

szLocation;

TIMESTAMP

tsEnteredLocation;

CHAR

szOverrideAction;

}

WMSNAPSHOTSTRUCT,

*PWMSNAPSHOTSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

usWipStatus

USHORT

—

output

The

current

WIP

status

of

the

item.

The

value

of

this

field

indicates

whether

or

not

the

item

is

suspended,

as

well

as

the

workflow

status

of

the

item.

The

OR

operator

is

used

to

combine

one

suspension

status

value

with

one

workflow

status

value

from

the

following

groups:

Suspension

Status

Values

OIM_ITEMS_SUSPENDED

Indicates

that

the

item

is

suspended.

OIM_ITEMS_NOT_SUSPENDED

Indicates

that

the

item

is

not

suspended.

Workflow

Status

Values

OIM-CURRENT_WORKFLOW_ITEMS

Indicates

that

the

item

is

in

a

process.

OIM_ITEMS_NOT_IN_WORKFLOW

Indicates

that

the

item

is

not

in

a

process.

usReleasetype

Not

supported.

usPriority

USHORT

—

output

The

current

priority

of

the

item.

szWorkFlowID

ITEMID

—

output

The

process,

if

any,

that

this

item

is

assigned

to.

tsWFEntry

TIMESTAMP

—

output

The

date

and

time

when

this

item

entered

the

listed

process.

tsEnteredWB

TIMESTAMP

—

output

The

date

and

time

this

item

entered

the

listed

workbasket.

WMSNAPSHOTSTRUCT

Chapter

4.

Common

Data

Structures

165

szWorkBasketID

ITEMID

—

output

The

workbasket

identifier

that

this

item

is

assigned

to.

ulWorkPackageID

ULONG

—

output

Identifier

of

the

work

package

that

represents

the

work

being

done,

such

as

the

document

being

routed.

ulInstanceID

ULONG

—

output

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

ulLocationType

ULONG

—

output

Indicator

of

whether

the

location

is

a

workbasket

or

collection

point.

The

valid

values

are:

SIMWM_WORKBASKET

Indicates

the

location

is

a

workbasket.

SIMWM_COLLECTION

POINT

Indicates

the

location

is

a

collection

point.

szLocation

CHAR

[SIMWM_LOC_NAME_LENGTH+1]

—

ouput

The

workbasket

or

collection

point

identifier

of

the

location

where

the

work

package

resides.

tsEnteredLocation

TIMESTAMP

—

output

The

date

and

time

the

item

entered

location.

szOverrideAction

CHAR[SIMWM_ACTION_LENGTH+1]

—

output

Action

list

associated

with

this

work

package.

This

action

list

will

override

the

default

action

list

defined

by

the

workbasket

definition.

WMSUSPENDSTRUCT

(Suspend

Work

Package

Data

Structure)

This

data

structure

provides

data

regarding

the

release

criteria

of

a

suspended

item.

It

consists

of

the

following:

typedef

struct

_WMSUSPENDSTRUCT

{

ULONG

ulStruct;

USHORT

usReleaseType;

TIMESTAMP

tsExpDateTime;

CHAR

szExpWB;

CHAR

szReadyWB;

USHORT

usNumAwaitedClasses;

USHORT

usAwaitedClasses;

}

WMSUSPENDSTRUCT,

*PWMSUSPENDSTRUCT;

WMSNAPSHOTSTRUCT

166

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Fields

ulStruct

ULONG

—

input

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

usReleaseType

ULONG

—

input

The

type

of

criteria

in

effect

for

releasing

an

item

from

suspension.

The

valid

values

are:

SIMWM_SUSPEND_TIME

Suspend

until

the

expiration

time

specified

by

tsExpDateTime.

SIMWM_SUSPEND_ANY_CLASS

Suspend

until

a

folder

receives

an

item

of

any

index

class

listed

in

ausAwaitedClasses.

A

preset

time

is

also

required

in

tsExpDateTime.

SIMWM_SUSPEND_ALL_CLASS

Suspend

until

a

folder

receives

an

item

from

each

class

listed

in

ausAwaitedClasses.

A

preset

time

is

also

required

in

tsExpDateTime.

tsExpDateTime

TIMESTAMP

—

input

The

date

and

time

to

release

the

work

package

from

suspension.

usNumAwaitedClasses

USHORT

—

input

The

number

of

index

class

entries

in

the

ausAwaitedClasses

array.

If

SIM_INDEX_ANY

is

entered

for

ausAwaitedClasses,

this

number

must

be

one

(1).

usAwaitedClasses

CHAR[SIMWM_MAX_AWAIT_CLASSES]

—

input

An

array

of

one

to

eight

index

classes

that

you

can

specify

as

suspension

criteria

for

a

particular

folder

work

package.

The

index

class

SIM_INDEX_ANY

may

be

specified

to

suspend

a

folder

work

package

until

the

arrival

of

an

item

of

any

index

class.

szExpWB

CHAR[SIM_ITEM_ID_LENGTH+1]

—

input

The

identifier

of

the

workbasket

to

send

the

suspended

work

package

to

if

the

expiration

time

criteria

are

satisfied.

If

SIMWM_NEXT

is

specified,

the

work

package

will

be

continued

to

the

next

step

of

a

process.

szReadyWB

CHAR[SIM_ITEM_ID_LENGTH+1]

—

input

The

identifier

of

a

workbasket

to

send

the

suspended

folder

work

package

to

if

the

suspension

criteria

are

satisfied

by

adding

one

of

the

items

of

a

specified

index

class

to

the

folder

item.

If

SIMWM_NEXT

is

specified,

the

work

package

will

be

continued

to

the

next

step

of

a

process.

WMVARSTRUCT

(Work

Package

Variable

Data

Structure)

This

data

structure

contains

the

identifier

and

associated

value

of

a

system

or

user-defined

work

package

variable.

It

consists

of

the

following:

WMSUSPENDSTRUCT

Chapter

4.

Common

Data

Structures

167

typedef

struct

_WMVARSTRUCT

{

ULONG

ulStruct;

CHAR

szVarName;

CHAR

szVarValue;

}

WMVARSTRUCT,

*PWMVARSTRUCT;

Fields

ulStruct

ULONG

—

input/output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

szVarName

CHAR

[SIMWM_VAR_NAME_LENGTH+1]

—

input/output

The

name

of

the

variable.

The

following

constants

represent

the

system

variable

names:

SIMWM_ITEMID

Item

being

routed.

SIMWM_INDEX_CLASS

Index

class

of

the

item.

SIMWM_PRIORITY

Priority

of

the

work

package.

SIMWM_ACTION

Action

selected

by

the

user.

szVarValue

CHAR[SIMWM_VAR_NAME_LENGTH+1]

—

input/output

Pointer

to

a

string

which

contains

the

value

of

the

variable.

WORKBASKETINFOSTRUCT

(Workbasket

Information

Data

Structure)

This

data

structure

provides

the

information

used

to

create

and

modify

a

workbasket.

It

consists

of

the

following:

typedef

struct

_WORKBASKETINFOSTRUCT

{

ULONG

ulStruct;

CHAR

szWorkBasketName;

CHAR

chAccessListName;

USHORT

usWBLoadLimit;

BOOL

bRemoveAfterIndex;

BOOL

bSystemCntl;

CHAR

szUserFunName;

CHAR

szUserDLLName;

UCHAR

szWorkBasketPrivString;

ULONG

ulItemStatusFlag;

CHAR

szDefaultAction;

WMVARSTRUCT

168

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

USHORT

usWorkbasketType;

CHAR

szEntryFunName;

CHAR

szEntryDLLName;

CHAR

szExitFunName;

CHAR

szExitDLLName;

CHAR

szUserDefWBExitFunName;

CHAR

szUserDefWBExitDLLName;

}

WORKBASKETINFOSTRUCT,

*PWORKBASKETINFOSTRUCT;

Fields

ulStruct

ULONG

—

output

The

length

of

the

structure

in

bytes,

including

the

length

of

this

field.

szWorkBasketName

CHAR[OIM_WB_NAME_LENGTH+1]

—

output

The

name

of

the

workbasket.

chAccessListName

CHAR[ACCESS_LIST_NAME_SIZE+1]

—

output

The

name

of

the

access

list

for

the

workbasket.

usWBLoadLimit

USHORT

—

output

The

workbasket

overload

limit.

If

you

try

to

add

an

item

to

the

workbasket

and

the

number

of

items

would

exceed

this

limit,

the

item

is

not

added.

However,

when

you

are

adding

the

item

you

can

override

this

limit

and

add

the

item

anyway.

bRemoveAfterIndex

BOOL

—

output

A

flag

that

indicates

whether

the

system

removes

the

item

from

the

workbasket

after

indexing.

The

valid

values

are:

TRUE

Removes

the

item

from

this

workbasket

after

it

has

been

indexed.

FALSE

Does

not

remove

the

item

from

this

workbasket

after

it

has

been

indexed.

bSystemCntl

BOOL

—

output

A

flag

that

indicates

whether

the

system

controls

item

priority

within

the

workbasket.

The

valid

values

are:

TRUE

Indicates

that

this

is

a

system-assigned

workbasket.

The

system

provides

the

user

with

the

next

item

in

the

workbasket

when

requested.

The

priority

or

date

of

the

work

package

and

the

order

defined

for

the

workbasket–LIFO,

FIFO,

or

priority–determines

the

order.

WORKBASKETINFOSTRUCT

Chapter

4.

Common

Data

Structures

169

FALSE

Indicates

that

this

is

not

a

system-assigned

workbasket.

The

user

can

choose

any

item

in

the

workbasket.

szUserFunName

CHAR[OIM_WB_FUNCTION_LENGTH+1]

—

output

The

name

of

the

user

exit

function

to

call

when

the

workbasket’s

overload

trigger

exceeds

the

limit

specified

as

the

value

of

the

usWBLoadLimit

field.

The

DLL

and

function

name

are

for

use

by

your

application.

szUserDLLName

CHAR[OIM_WB_DLL_LENGTH+1]

—

output

The

name

of

a

DLL

that

contains

the

user

exit

function.

The

DLL

and

function

name

are

for

use

by

your

application.

szWorkBasketPrivString

UCHAR[SIM_PRIVSTRING_LENGTH+1]

—

output

The

evaluated

privilege

string

for

the

user

with

respect

to

the

workbasket.

ulItemStatusFlag

ULONG

–

output

Workbasket

status

flag.

The

valid

values

are:

SIMWM_ACTIVE

Indicates

the

workbasket

is

active.

SIMWM_INACTIVE

Indicates

the

workbasket

is

marked

for

deletion.

szDefaultAction

CHAR(SIMWM_ACTION_LENGTH+1)

—

output

The

default

action

list

associated

with

this

workbasket.

usWorkbasketType

USHORT

—

output

The

workbasket

type.

A

value

of

50-99

represents

a

user-defined

workbasket.

szEntryFunName

CHAR[OIM_WB_FUNCTION_LENGTH+1]

—

output

The

user

exit

function

the

application

will

call

when

an

item

is

selected

and

opened

at

the

workbasket.

szEntryDLLName

CHAR[OIM_WB_DLL_LENGTH+1]

—

output

The

name

of

the

DLL

that

contains

the

entry

user

exit

function.

szExitFunName

CHAR[OIM_WB_FUNCTION_LENGTH+1]

—

output

The

user

exit

function

the

application

will

call

when

the

user

has

completed

working

with

an

item

at

the

workbasket.

szExitDLLName

CHAR[OIM_WB_DLL_LENGTH+1]

—

output

WORKBASKETINFOSTRUCT

170

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

name

of

the

DLL

that

contains

the

completion

user

exit

function.

szUserDefWBExitFunName

CHAR[OIM_WB_FUNCTION_LENGTH+1]

—

output

The

user

exit

function

the

application

will

call

when

the

workbasket

is

a

user-defined

workbasket.

szUserDefWBExitDLLName

CHAR[OIM_WB_DLL_LENGTH+1]

—

output

The

name

of

the

DLL

that

contains

the

user-defined

workbasket

function.

WORKBASKETINFOSTRUCT

Chapter

4.

Common

Data

Structures

171

WORKBASKETINFOSTRUCT

172

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Chapter

5.

Using

the

OLE

Automation

Interface

Using

the

APIs

provided

with

the

Content

Manager

for

iSeries

client,

you

can

enable

another

Windows-based

application

to

log

on

to

Content

Manager

for

iSeries,

perform

document

and

folder

searches,

display

table

of

contents

(TOC)

lists

for

search

results,

folders,

or

workbaskets,

and

even

display

and

annotate

documents.

You

accomplish

this

by

using

APIs

that

are

based

on

OLE

2.0

Automation.

Programming

with

OLE

Automation

OLE

automation

enables

an

application’s

command

operations

to

be

manipulated

from

outside

that

application.

The

Client

for

Windows

provides

OLE

automation

objects

that

can

be

manipulated

from

programs

built

using

programming

environments

such

as

Visual

Basic

(Version

3.0

or

above),

Visual

C++,

and

PowerBuilder.

To

manipulate

Client

for

Windows

objects,

you

need

to

know

the

properties

and

methods

for

each

object.

Properties

Properties

are

similar

to

Visual

Basic

variables,

except

they

are

located

inside

Client

for

Windows

objects.

Just

as

you

can

read

or

write

variables,

you

can

set

(that

is,

write)

or

get

(that

is,

read)

properties.

Not

all

properties

are

read/write

properties;

some

properties

are

read-only

and

others

are

write-only.

For

example,

the

Visible

property

of

the

Application

object

is

a

read/write

property

that

can

be

used

to

find

out

whether

the

program

is

currently

visible

on

the

screen.

If

the

value

of

the

property

is

set

to

True,

the

program

is

currently

visible.

Setting

the

value

of

the

Visible

property

to

False

causes

the

program

to

be

hidden.

On

the

other

hand,

the

Name

property

of

the

Item

object

is

a

read-only

property

that

contains

the

name

by

which

Content

Manager

for

iSeries

refers

to

the

item.

An

example

of

a

write-only

property

is

the

Application

property

Password.

Methods

Methods

are

similar

to

Visual

Basic

procedures

or

function

procedures.

You

can

call

a

method

to

perform

an

operation

inside

the

Client

for

Windows

(that

is,

invoke

a

command

operation).

For

example,

the

OpenWorkbasket

method

of

the

Application

class

displays

the

Open

Workbasket

dialog.

Client

for

Windows

Objects

The

Client

for

Windows

OLE

automation

objects

are

designed

according

to

Microsoft®

guidelines.

Therefore,

as

is

the

case

with

all

applications

that

follow

these

guidelines,

the

Client

for

Windows

has

an

Application

object,

a

Documents

collection

object,

and

a

Document

object.

In

addition,

the

Client

for

Windows

has

an

Items

collection

object

to

manage

multiple

Item

objects,

and

an

Item

object

that

provides

information

and

interfaces

to

Content

Manager

for

iSeries

items

like

documents,

folders,

and

workbaskets.

Also

provided

is

an

Image

object

that

holds

the

document

currently

open

in

the

image

viewer.

An

information-only

class

called

Error

is

provided

to

allow

applications

to

determine

what

errors

have

occurred.

©

Copyright

IBM

Corp.

1997,

2004

173

Finally,

the

Client

for

Windows

also

supports

two

helper

objects

(EnumDocument

and

EnumItem)

that

are

needed

by

Visual

Basic

to

provide

object

iteration,

although

they

are

not

created

when

programming

with

Visual

Basic.

Collection

objects

are

similar

to

arrays

in

the

sense

that

they

are

used

to

hold

other

objects.

The

Documents

collection

holds

Document

objects,

while

the

Items

collection

holds

Item

objects.

All

OLE

automation

collection

objects

share

the

same

methods

and

properties.

See

“Programming

Tips”

on

page

175

for

general

information

about

programming

with

OLE

automation

and

the

objects

provided

with

the

Client

for

Windows

.

In

addition

to

Visual

Basic,

the

Client

for

Windows

OLE

automation

API

can

be

used

with

any

programming

language

or

fourth-generation

language

(4GL)

that

supports

OLE

automation.

Application

Object

The

main

Client

for

Windows

object

is

the

Application

object.

Once

a

program

obtains

access

to

the

Application

object,

it

can

get

hold

of

or

create

all

other

Client

for

Windows

objects.

The

methods

and

properties

of

the

Application

object

apply

to

the

Client

for

Windows

as

a

whole.

For

example,

the

Logon

method

is

invoked

to

log

on

to

Content

Manager

for

iSeries,

and

the

Quit

method

is

invoked

to

exit

the

program.

Therefore,

programs

designed

to

interface

with

the

Client

for

Windows

must

first

create

the

Application

object.

Once

the

Client

for

Windows

is

running,

it

can

be

used

to

interact

with

Content

Manager

for

iSeries.

You

can

open

a

TOC,

which

equates

to

a

Document

object

in

OLE

automation,

you

can

find

or

create

items

(Item

object),

and

you

can

display

documents

(Image

object).

Documents

Collection

The

Documents

collection

can

be

compared

to

a

queue

holding

TOCs

(folders,

search

results

or

workbaskets).

The

TOCs

are

represented

by

Document

objects.

Most

Document

objects

are

opened

by

calling

the

Documents

method

OpenTOC,

with

an

Item

object

as

a

parameter.

Document

Object

Once

a

Document

object

has

been

created

through

the

OpenTOC

method

of

the

Documents

collection,

the

object

can

be

displayed,

and

a

number

of

methods

can

be

executed.

For

example,

you

can

query

any

of

the

items

that

are

currently

selected

in

the

Document

TOC

by

the

user.

Error

Object

If

an

error

occurs,

all

of

the

pertinent

information

for

the

error

will

be

stored

in

this

object,

including

Content

Manager

for

iSeries

return

codes.

Image

Object

The

Image

object

represents

a

special

document.

It

is

the

currently

visible

Content

Manager

for

iSeries

document.

The

Image

object

is

opened

by

calling

its

OpenDocument

method

with

an

Item

object

as

a

parameter.

174

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Items

Collection

The

Items

collection

object

is

simply

a

list

of

Items

that

are

related.

For

example,

the

Document

method

Selections

returns

the

Items

collection

containing

all

of

the

items

that

are

currently

selected.

It

has

methods

that

return

a

specific

Item

object

from

the

collection,

and

also

has

housekeeping

methods

to

delete

Item

objects

and

the

Items

collection

instance.

You

can

have

more

than

one

Items

collection

defined

at

one

time.

However,

it

is

your

responsibility

to

keep

track

of

the

Items

collections,

because

the

only

way

to

get

an

Items

collection

is

when

it

is

returned

from

a

method.

Item

Object

The

Item

object

represents

a

Content

Manager

for

iSeries

item

like

a

document,

folder,

or

workbasket.

The

Item

object

enables

you

to

display

the

item

(by

passing

it

as

a

parameter

to

other

objects),

query

its

index

class

and

key

fields,

re-index

it,

and

perform

a

number

of

other

actions.

The

Item

object

also

contains

properties

describing

itself.

Programming

Tips

The

OLE

automation

API

can

be

used

to

integrate

the

Client

for

Windows

into

your

application.

To

integrate

the

Client

for

Windows

using

this

API,

the

development

environment

for

your

application

must

be

able

to

access

OLE

automation

objects.

For

example,

Microsoft

Visual

Basic,

Microsoft

Visual

C++,

and

PowerBuilder,

as

do

a

number

of

applications

like

Microsoft

Excel

and

Microsoft

Access.

The

following

provides

programming

tips

for

programming

with

OLE

automation,

including

information

on

releasing

objects

and

handling

errors.

Releasing

Objects

Programming

with

OLE

automation

requires

paying

attention

to

object

release;

programs

that

allocate

objects

are

responsible

for

freeing

the

objects

after

use.

For

example,

a

Client

for

Windows

object

is

created

in

Visual

Basic

as

follows:

Dim

MyItem

As

Object

Set

MyItem

=

MyApp.GetWorkbasket(“To

be

indexed”)

In

this

operation,

the

Client

for

Windows

allocates

memory

to

hold

the

Item

object

and

returns

a

pointer

to

the

object.

The

pointer

is

stored

in

the

MyItem

variable.

To

release

the

Item

object,

use

a

statement

as

follows:

Set

MyItem

=

Nothing

In

this

operation,

the

Client

for

Windows

releases

the

memory

it

previously

allocated

for

the

Item

object.

Failure

to

release

objects

results

in

the

Client

for

Windows

eventually

running

out

of

memory.

Also,

the

Client

for

Windows

does

not

actually

exit

if

any

objects

are

still

open.

Handling

Errors

The

Client

for

Windows

throws

an

exception

when

it

detects

an

error.

In

Visual

Basic,

exceptions

can

be

caught

with

the

OnError

statement.

Programs

that

count

on

exceptions

to

catch

errors

do

not

need

to

check

the

return

value

after

calling

a

method.

Chapter

5.

Using

the

OLE

Automation

Interface

175

A

viable

strategy

for

processing

the

Client

for

Windows

errors

is

to

execute

an

On

Error

Resume

Next

statement

at

program

start-up

and

to

test

the

value

of

the

built-in

Visual

Basic

Err

variable

upon

return

from

a

method.

When

Err

is

nonzero,

an

error

has

occurred

and

the

Error

object

can

be

consulted

to

obtain

the

details

(the

Error

object

can

be

found

as

a

property

of

the

Application

object).

The

Error

object

contains

the

actual

error

codes

and

the

error

message

string.

Most

methods

return

an

error

status.

The

type

of

this

status

is

VT_I4,

which

in

Visual

Basic

translates

to

the

Long

data

type.

The

error

status

is

either

zero

(successful)

or

nonzero

(error

detected).

When

an

error

has

been

detected,

details

about

the

problem

can

be

obtained

by

consulting

the

Error

object.

Property

and

Argument

Types

The

arguments

and

properties

are

listed

in

Chapter

7.

These

types

can

be

translated

into

Visual

Basic

types

and

Visual

C++

types

by

consulting

the

following

table:

OLE

Type

VisualBasic

C++

Description

VT_BSTR

String

Char

Array,

zero

terminated

An

ASCII

string.

Can

have

any

type

of

character

data,

but

usually

holds

user

readable

text.

VT_DISPATCH

Object

IDispatch*

A

reference

to

an

OLE

object.

Read

the

method

or

property

to

determine

what

type

of

object

will

be

returned.

VT_VARIENT

(safe

array)

Array

(VB

4.0

or

greater

only)

IVarient*

A

safe

array

of

objects.

In

the

areas

where

safe

arrays

are

used,

the

object

type

is

VT_BSTR.

VT_I4

Number

long

A

long

integer.

Can

be

positive

or

negative.

The

acceptable

range

is

-2

147

483

648

to

+2

147

483

647.

VT_EMPTY

(N/A)

void

No

value.

VT_UNKNOWN

(N/A)

IVarient*

A

structure

used

internally

by

OLE

automation.

VT_BOOL

Boolean

int

A

logical

value

with

two

possible

values:

TRUE

or

FALSE.

Sample

Visual

Basic

Program

This

section

shows

the

code

for

a

Visual

Basic

program

that

starts

the

Client

for

Windows

and

causes

it

to

display

the

“To

be

indexed”

workbasket.

Then

it

displays

the

first

item

in

the

workbasket,

whether

it

is

a

document

or

a

folder.

To

keep

the

example

readable,

no

error

handling

has

been

taken

into

account.

The

best

way

to

learn

from

this

program

is

to

type

it

into

Visual

Basic

and

then

trace

through

it

by

repeatedly

pressing

the

F8

key.

’

This

example

invokes

the

Client

for

Windows

and

causes

it

to

display

the

’

To

be

indexed

workbasket,

then

displays

the

first

item

in

the

workbasket,

’

whether

it

is

a

document

or

a

folder.

’

Data

declarations

Dim

VicApp

As

Object

Dim

Workbasket

As

Object

Dim

Docs

As

Object

Dim

Doc

As

Object

Dim

Item

As

Object

’

Get

the

application

objects

176

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Set

VicApp

=

CreateObject(“Vic.Application”)

’

Set

login

information

VicApp.User

=

“GLEND”

VicApp.Password

=

“PASSWORD”

’

Log

into

Content

Manager

for

iSeries

VicApp.Logon

’

Get

the

workbasket

item

Set

Workbasket

=

VicApp.GetWorkbasket(“To

be

indexed“)

’

Display

the

workbasket

Set

Docs

=

VicApp.Documents

Set

Doc

=

Docs.OpenTOC(Workbasket)

’

Get

next

item

from

workbasket

Set

Item

=

Workbasket.NextWorkbasketItem

’

Find

out

if

the

item

is

a

folder

or

a

document

If

(Item.Type

=

1)

Then

’

Document!

Display

it.

VicApp.Image.OpenDocument

Item

Else

’

Must

be

a

folder.

Display

it.

Docs.OpenTOC

Item

End

If

’

Clean

up

Set

Workbasket

=

Nothing

Set

Docs

=

Nothing

Set

Doc

=

Nothing

Set

Item

=

Nothing

VicApp.Quit

Set

VicApp

=

Nothing

In

this

example,

the

Client

for

Windows

is

loaded,

and

then

the

user

name

and

password

to

be

used,

while

logging

onto

the

default

Client

for

Windows

Library

Server

are

configured.

Next,

the

Client

for

Windows

log

on

is

executed.

After

getting

the

“To

be

indexed”

workbasket

item,

the

workbasket

is

opened

using

the

Documents

object.

The

next

step

is

to

get

the

next

item

in

the

workbasket

and

determine

if

it

is

a

document

or

a

folder.

If

it

is

a

folder,

it

is

passed

to

the

Documents

object,

while

a

document

is

passed

to

the

Image

object.

Finally,

the

Client

for

Windows

ends.

Properties

and

Methods

of

OLE

Objects

for

Windows

This

section

describes

the

properties

and

methods

associated

with

all

Windows

client

application

objects.

Application

Object

The

Application

object

gets

and

sets

application-level

states,

such

as

log

on

and

quit.

Properties

The

Application

object

has

the

following

properties.

Application

The

Application

property

returns

the

Application

object.

Data

Type:

VT_DISPATCH

(Application)

Documents

The

Documents

property

holds

a

collection

of

Document

objects.

A

document,

in

Client

for

Windows

terms,

is

a

Table

of

Contents

view.

Chapter

5.

Using

the

OLE

Automation

Interface

177

Data

Type:

VT_DISPATCH

(Documents)

Error

The

error

information

for

the

most

recent

method

error.

Data

Type:

VT_DISPATCH

(Error)

HWnd

This

property

returns

the

client’s

main

window

handle.

This

is

a

read

only

property.

Data

Type:

VT_14

Image

The

Image

property

holds

the

IBM

Content

Manager

for

iSeries

document

that

is

currently

visible

in

the

image

viewer.

If

no

document

is

visible,

Image

returns

NULL.

Data

Type:

VT_DISPATCH

(Image)

KeyFieldTranslation

The

KeyFieldTranslation

property

sets

the

Item.KeyFields

property

to

either

translate

or

not

translate

the

values

that

have

been

retrieved

or

set,

depending

on

the

value

of

the

KeyFieldTranslation

property.

Data

Type:

VT_BOOL

NewPassword

The

NewPassword

property

is

used

to

change

the

user’s

password.

You

should

set

this

property

before

calling

the

Logon

method.

If

the

user

successfully

logs

on,

the

user’s

password

is

changed.

The

default

value

is

NULL.

Data

Type:

VT_BSTR

Password

The

Password

property

is

the

password

to

be

used

when

the

Logon

method

is

called

to

log

on

to

the

IBM

Content

Manager

for

iSeries

Library

Server.

Reference

the

description

of

the

Application

object’s

Logon

method

for

a

description

of

the

possible

values

and

results.

Data

Type:

VT_BSTR

Server

The

Server

property

contains

the

name

of

the

Library

Server

that

is

logged

on

to

when

the

Logon

method

is

called.

Reference

the

description

of

the

Application

object’s

Logon

method

for

a

description

of

the

possible

values

and

results.

Data

Type:

VT_BSTR

User

The

User

property

c

Application

object’s

Logon

method

for

a

description

of

the

possible

values

and

results.

Data

Type:

VT_BSTR

Visible

The

Visible

property

contains

the

visible

status

of

the

Windows

Client

frame

window.

The

default

value

is

False

(0).

Data

Type:

VT_BOOL

Methods

The

Application

object

supports

the

following

methods.

Activate

This

method

attempts

to

force

the

client

into

the

foreground.

Parameters:

None

178

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Returns:

None

ClassArray

The

ClassArray

method

returns

a

safe

array

of

VT_BSTRs

containing

the

names

of

all

of

the

index

classes

defined

at

the

time

the

Logon

method

was

executed.

Parameters:

None

Returns:

VT_VARIANT

(safe

array

of

VT_BSTR)

ClassKeyFieldArray

The

ClassKeyFieldArray

method

returns

a

safe

array

of

VT_BSTRs

containing

the

names

of

all

of

the

key

fields

associated

with

the

specified

index

class

at

the

time

the

Logon

method

was

executed.

Parameters:

Index

Class

as

VT_BSTR

Returns:

VT_VARIANT

(safe

array

of

VT_BSTR)

ClassKeyFieldList

The

ClassKeyFieldList

method

returns

a

string

with

all

of

the

key

fields

associated

with

the

specified

index

class

at

the

time

the

Logon

method

was

executed.

The

key

fields

are

separated

by

the

string

separator

argument.

Parameters:

IndexClass

as

VT_BSTR,

Separator

as

VT_BSTR

Returns:

VT_BSTR

ClassList

The

ClassList

method

returns

a

string

with

a

list

of

all

of

the

index

classes

defined

at

the

time

the

Logon

method

was

executed.

The

index

classes

are

separated

by

the

string

separator

argument.

Parameters:

Separator

as

VT_BSTR

Returns:

VT_BSTR

ContentClassArray

The

ContentClassArray

method

returns

a

safe

array

of

VT_BSTRs

containing

the

names

of

all

content

classes

that

were

defined

at

the

time

the

Logon

method

was

executed.

Parameters:

None

Returns:

VT_VARIANT

(safe

array

of

VT_BSTR)

ContentClassList

The

ContentClassList

method

returns

a

string

with

all

of

the

content

classes

that

were

defined

at

the

time

the

Logon

method

was

executed.

The

content

classes

are

separated

by

the

separator

argument.

Parameters:

Separator

as

VT_BSTR

Returns:

VT_BSTR

CreateDocument

The

CreateDocument

method

returns

an

Item

object

that

represents

a

newly

created

document.

It

contains

no

objects

(pages),

and

is

indexed

with

a

NOINDEX

index

class.

The

source

key

field

is

filled

in

with

the

Source

argument’s

value,

the

name

key

field

is

filled

in

with

the

contents

of

the

User

property,

and

the

timestamp

key

field

is

the

exact

time

and

date

that

the

document

was

created.

Parameters:

Source

as

VT_BSTR

Chapter

5.

Using

the

OLE

Automation

Interface

179

Returns:

VT_DISPATCH

(Item)

CreateFolder

The

CreateFolder

method

returns

an

Item

object

that

represents

a

newly

created

folder.

It

contains

no

items

in

its

TOC,

and

is

indexed

with

a

NOINDEX

index

class.

The

Source

key

field

is

filled

in

with

the

Source

argument’s

value,

the

UserID

key

field

is

filled

in

with

the

contents

of

the

User

property,

and

the

Timestamp

key

field

is

the

exact

time

and

date

that

the

document

was

created.

Parameters:

Source

as

VT_BSTR

Returns:

VT_DISPATCH

(Item)

DisableMenus

Thie

DisableMenus

method

allows

you

to

disable

menu

classes.

You

specify

the

menus

to

be

disabled

using

the

Flags

argument.

The

valid

values

for

this

method

are

listed

below:

v

IP2_DISABLE_CHECKINOUT

(0x001)

Prevents

the

user

from

checking

items

in

or

out

v

IP2_DISABLE_DELETE

(0x002)

Prevents

the

user

from

deleting

items

v

IP2_DISABLE_EXPORT

(0x004)

Prevents

the

user

from

exporting

items

v

IP2_DISABLE_FAXOUT

(0x008)

Prevents

the

user

from

faxing

items

v

IP2_DISABLE_FOLDER_FUNCTIONS

(0x0010)

Prevents

the

user

from

adding

items

to

an

existing

folder,

adding

items

to

a

new

folder,

or

removing

items

from

a

folder

v

IP2_DISABLE_INDEX_CLASS_CHANGE

(0x0020)

Prevents

the

user

from

changing

to

a

different

index

class.

The

user

can

still

edit

the

key

fields

for

the

index

class.

v

IP2_DISABLE_INDEX_VALUE_CHANGE

(0x0040)

Prevents

the

user

from

changing

to

a

different

index

class

and

from

editing

the

key

fields

from

the

index

class.

The

user

can

browse

the

menu

and

copy

the

values

listed

in

the

window.

If

you

specify

this

value,

the

system

ignores

the

IP2_DISABLE_INDEX_CLASS_CHANGE

flag.

v

IP2_DISABLE_NOTE_APPEND

(0x0100)

Prevents

the

user

from

editing

previously

saved

notes

and

from

adding

new

notes.

The

user

can

open

and

copy

existing

notes

in

browse

mode.

When

no

notes

exist,

the

Note

Log

window

is

not

displayed.

If

you

specify

this

value,

the

system

ignores

the

IP2_DISABLE_NOTE_EDIT

flag.

v

IP2_DISABLE_NOTE_EDIT

(0x0080)

Prevents

the

user

from

editing

previously

saved

notes;

however,

the

user

can

still

add

new

notes

v

IP2_DISABLE_OPTIONS

(0x8000)

Prevents

the

user

from

using

the

Options—�Preferences

or

Options—�Layout

menu

options.

v

IP2_DISABLE_PRINT

(0x0200)

Prevents

the

user

from

printing

items

180

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

IP2_DISABLE_SEARCH

(0x4000)

Prevents

the

user

from

searching

v

IP2_DISABLE_WORKBASKET_ACTIVATE

(0x0400)

Prevents

the

user

from

removing

an

item

from

suspended

status

v

IP2_DISABLE_WORKBASKET_REMOVAL

(0x0800)

Prevents

the

user

from

removing

items

from

a

workbasket

or

routing

them

from

one

workbasket

to

another

v

IP2_DISABLE_WORKBASKET_SUSPEND

(0x1000)

Prevents

the

user

from

suspending

items

v

IP2_DISABLE_WORKFLOW

(0x2000)

Prevents

the

user

from

starting

an

item

in

a

workflow,

changing

an

item’s

workflow,

completing

an

item’s

workflow,

or

removing

an

item

from

its

workflow

These

values

can

be

combined

in

order

to

disable

more

than

one

class

at

a

time.

If

you

call

the

DisableMenus

method

with

a

Flags

argument

of

zero,

the

method

will

make

the

menus

fully

available.

You

can

use

the

optional

Hide

argument

to

delete

the

menu

options

instead

of

disabling

them.

However,

if

you

delete

a

menu

item,

you

cannot

restore

that

item

by

setting

a

lower

restriction

value.

Parameters:

Flags

as

VT_14,

Hide

as

VT_VARIANT

(optional,

usually

VT_BOOL)

Returns:

VT_NONE

ExtendedPrintSetup

The

ExtendedPrintSetup

method

allows

the

external

application

to

modify

the

default

printing

behavior

for

the

client.

The

options

described

are

extended

print

features

that

cannot

be

configured

from

the

standard

user

interface.

Parameters:

Comments

as

VT_BOOL,

Borders

as

VT_BOOL,

SinglePage

as

VT_BOOL,

HorizPages

as

VT_BOOL,

PageNumbers

as

VT_BOOL,

NumRows

as

VT_I2,

NumColumns

as

VT_I2

.

Returns:

VT_I4

v

Comments

is

an

alternate

way

of

not

printing

the

annotations.

This

option

duplicates

the

PrintMarkup

argument

in

the

Item.PrintItem

method.

v

Borders

enables

or

disables

a

single

pixel

line

around

the

image.

This

feature

is

most

useful

if

you

set

SinglePage

to

false

(see

next

bullet).

v

SinglePage

can

be

used

in

conjunction

with

the

NumRows,

NumColumns,

and

HorizPages

arguments

to

define

how

to

arrange

images

on

pages.

If

SinglePage

is

true,

only

one

image

prints

on

each

page.

If

SinglePage

is

false,

the

other

three

arguments

define

how

many

images

to

print

on

each

page.

v

HorizPages

is

used

when

the

SinglePage

argument

is

false.

HorizPages

specifies

image

orientation

on

the

printed

page:

true

for

horizontal

and

false

for

vertical.

v

PageNumbers

prints

the

page

number

on

each

image.

If

PageNumbers

is

set

to

true,

the

page

number

prints

in

the

upper

left

corner

of

each

image

(a

page

might

show

more

than

one

image).

Chapter

5.

Using

the

OLE

Automation

Interface

181

v

NumRows

and

NumColumns

are

used

when

the

SinglePage

argument

is

false.

NumRows

and

NumColumns

define

how

many

images

to

horizontally

and

vertically

display

on

a

single

printed

page.

GetWorkbasket

The

GetWorkbasket

method

returns

the

Item

object

associated

with

the

workbasket

specified

in

the

Name

argument.

Note

that

the

workbasket

name

is

not

case

sensitive.

Parameters:

Name

as

VT_BSTR

Returns:

VT_DISPATCH

(Item)

ItemID

The

ItemID

method

returns

an

Item

object

with

the

item

ID

specified.

Reference

the

Item

object

properties

for

a

description

of

the

ItemID

property.

Parameters:

Item

as

VT_BSTR

Returns:

VT_DISPATCH

(Item)

KeyFieldArray

The

KeyFieldArray

method

returns

a

safe

array

of

VT_BSTRs

containing

the

names

of

all

of

the

index

classes

defined

at

the

time

the

Logon

method

was

executed.

Parameters:

None

Returns:

VT_VARIANT

(safe

array

of

VT_BSTR)

KeyFieldList

The

KeyFieldList

method

returns

a

string

with

all

of

the

key

fields

defined

at

the

time

the

Logon

method

was

executed.

The

key

fields

are

separated

by

the

string

separator

argument.

Parameters:

Separator

as

VT_BSTR

Returns:

VT_BSTR

Logon

The

Logon

method

logs

on

to

IBM

Content

Manager

for

iSeries.

If

the

User,

Password,

and

Server

properties

have

all

been

set,

a

log

on

will

be

attempted

with

that

information.

If

any

of

the

previously

mentioned

properties

were

not

filled

in,

or

the

initial

log

on

attempt

was

unsuccessful,

a

log

on

screen

will

be

displayed

for

the

operator

to

fill

in

the

remaining

information.

If

the

Password

property

is

filled

in

prior

to

calling

the

Logon

method,

but

the

User

property

was

not,

the

password

information

will

be

ignored.

The

Server

property

is

pre-initialized

with

the

last

library

server

that

was

logged

onto,

or

″LIBSRVR2″

if

no

successful

logon

has

occurred.

The

return

value

is

0

for

a

successful

log

on,

or

no-zero

if

there

was

an

error.

Parameters:

None

Returns:

VT_I4

OpenBasicSearch

The

OpenBasicSearch

method

displays

the

basic

search

dialog

box,

allowing

the

operator

to

fill

in

a

search.

Note

that

the

resulting

Document

object

is

not

returned.

Parameters:

None.

182

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Returns:

None

OpenScan

The

OpenScan

method

displays

the

scan

dialog

box,

allowing

the

operator

to

open

a

scan

session.

Note

that

the

resulting

Document

object

is

NOT

returned.

Parameters:

None.

Returns:

None

OpenWorkbasket

The

Workbasket

method

displays

the

Workbasket

selection

dialog

box,

allowing

the

user

to

select

a

workbasket

to

open.

Note

that

the

Document

object

that

results

is

NOT

returned.

Parameters:

None.

Returns:

None

PrintSetup

The

PrintSetup

method

allows

the

external

application

to

modify

the

default

printing

behavior

for

the

client.

Values

specified

with

this

method

are

saved

as

the

default

print

settings,

not

only

for

OLE

Automation

printing,

but

also

for

user-initiated

printing.

Parameters:

Printer

as

VT_BSTR,

PaperSize

as

VT_I2,

Portrait

as

VT_BOOL,

Copies

as

VT_I2,Scaling

as

VT_VARIANT

(optional,

usually

VT_BOOL).

Returns:

VT_I4

v

Printer

specifies

the

name

of

the

printer

to

print

to.

v

PaperSize

defines

the

paper

type.

Specify

the

paper

type

you

want

by

assigning

the

number

that

corresponds

to

it

(1

through

41)

in

the

following

list:

1.

Letter

8

1/2

x

11

in

2.

Letter

Small

8

1/2

x

11

in

3.

Tabloid

11

x

17

in

4.

Ledger

17

x

11

in

5.

Legal

8

1/2

x

14

in

6.

Statement

5

1/2

x

8

1/2

in

7.

Executive

7

1/4

x

10

1/2

in

8.

A3

297

x

420

mm

9.

A4

210

x

297

mm

10.

A4

Small

210

x

297

mm

11.

A5

148

x

210

mm

12.

B4

(JIS)

250

x

354

13.

B5

(JIS)

182

x

257

mm

14.

Folio

8

1/2

x

13

in

15.

Quarto

215

x

275

mm

16.

10x14

in

17.

11x17

in

18.

Note

8

1/2

x

11

in

19.

Envelope

#9

3

7/8

x

8

7/8

20.

Envelope

#10

4

1/8

x

9

1/2

21.

Envelope

#11

4

1/2

x

10

3/8

Chapter

5.

Using

the

OLE

Automation

Interface

183

22.

Envelope

#12

4

\276

x

11

23.

Envelope

#14

5

x

11

1/2

24.

C

size

sheet

25.

D

size

sheet

26.

E

size

sheet

27.

Envelope

DL

110

x

220mm

28.

Envelope

C5

162

x

229

mm

29.

Envelope

C3

324

x

458

mm

30.

Envelope

C4

229

x

324

mm

31.

Envelope

C6

114

x

162

mm

32.

Envelope

C65

114

x

229

mm

33.

Envelope

B4

250

x

353

mm

34.

Envelope

B5

176

x

250

mm

35.

Envelope

B6

176

x

125

mm

36.

Envelope

110

x

230

mm

37.

Envelope

Monarch

3.875

x

7.5

in

38.

6

3/4

Envelope

3

5/8

x

6

1/2

in

39.

US

Std

Fanfold

14

7/8

x

11

in

40.

German

Std

Fanfold

8

1/2

x

12

in

41.

German

Legal

Fanfold

8

1/2

x

13

in
v

Portrait

defines

the

print

orientation

(true

=

Portrait,

false

=

Landscape).

v

Copies

specifies

the

number

of

copies

to

print.

v

Scaling

specifies

whether

the

printing

occurs

as

″fit

to

page″

size

or

″normal″

size.

If

Scaling

is

set

to

True

(non

zero)

or

omitted,

printing

is

done

as

″fit

to

page″.

If

Scaling

is

set

to

False,

printing

is

done

as

″normal″

size.

QueryPrivilege

The

QueryPrivilege

method

allows

an

external

application

to

determine

the

actual

privileges

for

a

user

who

is

currently

logged

on.

The

application

can

check

general

privileges

or

specific

privileges

(such

as

those

for

an

index

class

or

workbasket).

Parameters:

Authority

as

VT_I4,

Context

as

VT_VARIANT

(optional,

VT_BOOL(Item)

or

VT_BSTR).

Returns:

VT_BOOL

v

Authority

defines

which

privilege

to

check.

You

can

set

this

value

to

any

of

the

OIM_

values

supported

by

the

Folder

Manager

function

Ip2QueryPrivBuffer.

v

Context

determines

evaluated

privileges

for

different

contexts.

If

you

do

not

enter

a

value

for

Context,

the

user’s

general

privilege

is

returned.

You

can

also

set

Context

to

one

of

the

following:

–

A

dispatch

to

an

Item

object:

a

folder,

document,

or

workbasket

–

The

name

of

an

index

class

(VT_BSTR)

–

The

name

of

a

workflow

(VT_BSTR)

Quit

The

Quit

method

ends

the

Client

for

Windows

application.

All

open

documents

(TOCs),

any

image

viewer

sessions,

and

all

outstanding

Item

and

Items

objects

are

closed.

Parameters:

None

184

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Returns:

None

Search

The

Search

method

returns

an

Item

that

represents

the

results

of

a

search

conducted

on

the

system

fileroom

with

an

optional

index

class

and

key

field

wildcard

search

string.

The

search

results

folder

is

deleted

automatically

when

it

is

closed,

unless

the

index

class

is

changed.

The

format

of

the

search

string

is

defined

in

“LIBSEARCHCRITERIASTRUCT

(Search

Criteria

Information

Structure)”

on

page

147.

When

TypeFilter=1,

only

folders

are

returned.

When

TypeFilter=2,

only

documents

are

returned.

Any

other

TypeFilter

value

returns

both

documents

and

folders.

If

WipFilter=1,

items

not

in

a

workflow

are

returned.

If

WipFilter=2,

items

that

are

currently

in

a

workflow

are

returned.

If

WipFilter=4,

items

that

were

cancelled

from

a

workflow

are

returned.

If

WipFilter=8,

items

that

completed

a

workflow

are

returned.

The

WipFilter

values

may

be

combined

with

a

binary

OR

operator.

If

SuspendFilter=1,

active

items

are

returned.

active

or

suspended

items.

If

SuspendFilter=2,

suspended

items

are

returned.

Any

other

SuspendFilter

value

returns

items

that

are

either

suspended

or

activated.

Parameters:

IndexClass

as

VT_BSTR

(optional)

SearchString

as

VT_BSTR

(optional)

TypeFilter

as

VT_VARIANT

(optional,

usually

VT_I2)

WipFilter

as

VT_VARIANT

(optional,

usually

VT_I2)

SuspendFilter

as

VT_VARIANT

(optional,

usually

VT_I2)

Returns:

VT_DISPATCH

(Item)

SetPrintRect

The

SetPrintRect

method

allows

you

to

define

a

rectangle

that

contains

the

images

when

they

are

printed

on

the

page.

Values

specified

with

this

method

are

saved

as

the

default

print

settings,

not

only

for

OLE

Automation

printing,

but

also

for

user-initiated

printing.

Parameters:

RectLeft

as

VT_I2,

RectTop

as

VT_I2,

RectRight

as

VT_I2,

RectBottom

as

VT_I2.

Returns:

None

The

four

arguments

define

the

distance

in

millimeters

of

each

box

side

from

the

upper

left

hand

corner

of

the

paper.

You

can

reset

the

print

rectangle

to

″none″

by

calling

the

SetPrintRect

method

again

and

setting

all

arguments

set

to

0.

Attention:

If

you

specify

a

rectangle

that

doesn’t

fit

on

the

paper,

some

or

all

of

the

image

does

not

appear

on

your

print

out.

Chapter

5.

Using

the

OLE

Automation

Interface

185

WorkbasketArray

The

WorkbasketArray

method

returns

a

safe

array

of

VT_BSTRs

containing

the

names

of

all

the

workbaskets

defined

at

the

time

the

Logon

method

was

executed.

Parameters:

None

Returns:

VT_VARIANT

WorkbasketList

The

WorkbasketList

method

returns

a

string

with

a

list

of

all

of

the

workbaskets

defined

at

the

time

the

Logon

method

was

executed.

The

workbaskets

are

separated

by

the

string

separator

argument.

Parameters:

Separator

as

VT_BSTR

Returns:

VT_BSTR

Document

Object

The

Document

object

holds

information

about

a

Table

of

Contents

(TOC).

Properties

Application

The

Application

property

returns

the

Application

object.

Data

Type:

VT_DISPATCH

(Application)

Count

The

Count

property

returns

the

number

of

items

that

are

listed

in

the

TOC.

Data

Type:

VT_14

Item

The

Item

property

returns

the

Item

object

that

is

associated

with

this

Document

(TOC).

Data

Type:

VT_DISPATCH

(Item)

Page

The

Page

property

contains

the

selected

page

number.

This

property

is

valid

only

for

documents,

not

workbaskets

or

folders.

The

default

value

is

0.

Data

Type:

VT_I4

PageCount

The

PageCount

property

contains

the

number

of

pages

in

a

document.

This

property

is

valid

only

for

documents,

not

workbaskets

or

folders.

The

default

value

is

0.

This

is

a

read

only

property.

Data

Type:

VT_I4

Parent

The

Parent

property

returns

the

parent

of

the

Document

object

(which

is

the

Documents

collection

object).

Data

Type:

VT_DISPATCH

(Documents)

SelectedCount

The

SelectedCount

property

returns

the

number

of

items

that

are

selected

in

the

TOC.

Data

Type:

VT_14

Type

The

Type

property

returns

the

type

of

item

that

is

open

in

the

document:

a

folder,

workbasket,

or

a

document.

The

actual

values

are:

1

-

Document

2

-

Folder

186

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

3

-

Workbasket

1024

-

Scan

(the

basic

scan

viewer,

no

other

property

or

method

works

on

this

type)

The

default

value

is

0

(error).

This

is

a

read

only

property.

Data

Type:

VT_I4

Methods

The

Document

object

supports

the

following

methods.

Activate

The

Activate

method

brings

the

TOC

window

associated

with

this

document

to

the

foreground.

Parameters:

None

Returns:

VT_I4

CaretIndex

The

CaretIndex

method

returns

the

index

of

the

caret

item

(the

item

that

contains

the

dotted-line

rectangle

in

the

grid)

in

a

folder

or

workbasket.

Parameters:

None

Returns:

VT_I4

ClearSelect

The

ClearSelect

method

clears

all

of

the

current

selections

in

the

TOC.

Parameters:

None

Returns:

VT_I4

Close

The

Close

method

closes

the

window

associated

with

the

associated

document

(TOC)

and

removes

the

document

from

the

Documents

collection.

The

remaining

Document

objects

in

the

collection

will

be

shifted

down

to

prevent

gaps

in

the

collection.

Parameters:

VT_VARIANT

(optional,

usually

VT_BOOL)

Returns:

VT_I4

CloseIt

The

CloseIt

method

is

the

same

as

the

Close

method.

It

is

implemented

solely

to

support

VisualBasic,

which

uses

Close

as

a

reserved

word.

The

CloseIt

method

closes

the

window

associated

with

the

associated

document

(TOC)

and

removes

the

document

from

the

Documents

collection.

The

remaining

Document

objects

in

the

collection

will

be

shifted

down

to

prevent

gaps

in

the

collection.

Parameters:

VT_VARIANT

(optional,

usually

VT_BOOL)

Returns:

VT_I4

DisplayPage

The

DisplayPage

method

forces

the

page

specified

to

be

displayed

in

a

document.

This

method

is

valid

only

for

documents,

not

workbaskets

or

folders.

Parameters:

Page

as

VT_I4

Returns:

VT_I4

Chapter

5.

Using

the

OLE

Automation

Interface

187

FirstPage

The

FirstPage

method

displays

the

first

page

in

a

document.

This

method

is

valid

only

for

documents,

not

workbaskets

or

folders.

Parameters:

None

Returns:

VT_I4

IndexedItem

The

IndexedItem

method

returns

a

single

item

from

Document

based

on

its

index

(specified

with

the

Index

argument)

from

a

folder

or

workbasket.

Parameters:

Index

as

VT_I4

Returns:

VT_DISPATCH

(Item)

LastPage

Displays

the

last

page

in

a

document.

This

method

is

valid

only

for

documents,

not

workbaskets

or

folders.

Parameters:

None

Returns:

VT_I4

Maximize

The

Maximize

method

maximizes

the

Document

object

in

the

main

client

window,

hiding

all

other

Document

objects.

Parameters:

None

Returns:

VT_I4

Minimize

The

Minimize

method

minimizes

the

Document

object

in

the

main

client

window.

Parameters:

None

Returns:

VT_I4

NextPage

The

NextPage

method

displays

the

next

page

(current

page,

plus

1)

in

a

document.

This

method

is

valid

only

for

documents,

not

workbaskets

or

folders.

Parameters:

None

Returns:

VT_I4

PreviousPage

The

PreviousPage

method

displays

the

previous

page

(current

page,

minus

1)

in

a

document.

This

method

is

valid

only

for

documents,

not

workbaskets

or

folders.

Parameters:

None

Returns:

VT_I4

Restore

The

Restore

method

restores

the

Document

object

in

the

main

client

window

to

its

original

state

(neither

minimized

or

maximized).

Parameters:

None

Returns:

VT_I4

188

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Selections

The

Selections

method

returns

an

Items

collection

containing

all

of

the

Item

objects

that

are

selected

in

the

Document

(TOC).

Parameters:

None

Returns:

VT_DISPATCH

(Items)

SelectRange

The

SelectRange

method

selects

a

range

of

items

in

the

TOC.

The

arguments

are

the

zero-based

index

of

the

first

and

last

items

to

be

selected.

Parameters:

First

as

VT_I4

Last

as

VT_I4

Returns:

VT_I4

Zoom

The

Zoom

method

changes

the

zoom

ration

of

the

Document

object.

For

example,

if

you

set

the

zoom

ratio

to

100,

the

image

is

shown

at

full

size,

pixel

for

pixel.

If

you

set

the

zoom

ration

to

50,

the

image

is

shown

in

half

height.

Zoom

only

works

on

documents,

not

folders

or

workbaskets.

Parameters:

Percent

as

VT_I4

Returns:

VT_I4

ZoomFit

The

ZoomFit

method

allows

you

to

fit

the

document

image

into

the

viewing

rectangle.

The

Type

argument

specifies

how

to

fit:

1

means

fit

height,

0

means

fit

width.

ZoomFit

only

works

on

documents,

not

folders

or

workbaskets.

Parameters:

Fit

as

VT_14

Returns:

VT_I4

ZoomRect

ZoomRect

allows

you

to

specify

a

rectangle

to

zoom

to

in

the

Document

object.

The

left,

top,

right,

and

bottom

arguments

specify

the

bounding

rectangle

to

display

as

large

as

possible

in

the

viewing

rectangle

(the

viewer

window).

The

arguments

are

specified

in

pixels.

ZoomRect

only

works

on

documents,

not

folders

or

workbaskets.

Parameters:

Left

as

VT_I4

Top

as

VT_I4

Right

as

VT_I4

Bottom

as

VT_I4

Returns:

VT_I4

Documents

Object

The

Documents

collection

object

is

a

collection

of

all

of

the

open

Document

objects

(TOCs).

Properties

The

Document

object

has

the

following

properties.

Chapter

5.

Using

the

OLE

Automation

Interface

189

Active

The

Active

property

holds

the

index

of

the

Document

object

that

currently

has

the

focus.

This

is

a

read

only

property.

Data

Type:

VT_I4

Application

The

Application

property

returns

the

Application

object.

Data

Type:

VT_DIPSATCH

(Application)

Count

The

Count

property

holds

the

number

of

Document

objects

currently

in

the

collection.

Data

Type:

VT_14

Parent

The

Parent

property

returns

the

parent

of

the

Documents

collection

object

(which

is

the

Application

object).

Data

Type:

VT_DISPATCH

(Application)

Methods

The

Document

object

supports

the

following

methods.

Cascade

The

Cascade

method

arranges

all

of

the

open

Document

objects

that

are

not

minimized

in

a

cascaded

manner.

Parameters:

None.

Returns:

VT_I4

Close

The

Close

method

closes

all

windows

associated

with

the

Documents

objects

and

removes

the

Document

objects

from

the

Documents

collection.

Parameters:

None

Returns:

None

CloseIt

Attention:

The

CloseIt

method

is

the

same

as

the

Close

method.

It

is

implemented

solely

to

support

VisualBasic,

which

uses

Close

as

a

reserved

word.

The

Close

method

closes

all

windows

associated

with

the

Documents

objects

and

removes

the

Document

objects

from

the

Documents

collection.

Parameters:

None

Returns:

VT_I4

Item

The

Item

method

returns

one

of

the

Document

objects

contained

in

the

collection.

Parameters:

Index

as

VT_I4

Returns:

VT_DISPATCH

(Document)

OpenDocument

The

OpenDocument

method

creates

a

new

Document

object

for

the

document

and

adds

it

to

the

Documents

collection.

If

the

Browse

argument

is

set

to

TRUE,

the

document

is

opened

without

being

locked,

allowing

other

users

to

open

it.

Parameters:

Index

as

VT_DISPATCH

(Item)

Browse

as

VT_VARIANT

(optional,

usually

VT_BOOL)

190

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Returns:

VT_DISPATCH

(Document)

OpenTOC

The

OpenTOC

method

creates

a

new

Document

object

for

the

specified

workbasket

or

folder

and

adds

it

to

the

Documents

collection.

If

the

Browse

argument

is

set

to

TRUE,

the

folder

is

opened

without

being

locked,

allowing

other

users

to

open

it.

Browse

has

no

affect

on

workbaskets.

Parameters:

Index

as

VT_DISPATCH

(Item)

Browse

as

VT_VARIANT

(optional,

usually

VT_BOOL)

Returns:

VT_DISPATCH

(Document)

Tile

The

Tile

method

arranges

all

of

the

open

Document

objects

that

are

not

minimized

in

a

tiled

manner.

The

Vertical

argument

specifies

if

the

objects

should

be

set

primarily

vertically

(non-zero)

or

horizontally

(zero).

Parameters:

Vertical

as

VT_I4

Returns:

VT_I4

Error

Object

The

Error

object

describes

the

details

about

any

error

that

may

have

happened

while

executing

a

method

in

Client

for

Windows.

Properties

The

Error

object

has

the

following

properties.

ErrorMessage

The

ErrorMessage

property

contains

a

descriptive

error

code

describing

what

went

wrong

and

what

Client

for

Windows

was

doing

at

the

time.

Data

Type:

VT_BSTR

ExtReturnCode

The

ExtReturnCode

property

contains

the

extended

return

code

that

was

returned

when

the

error

was

detected.

Data

Type:

VT_14

ReturnCode

When

detecting

an

error,

the

ReturnCode

property

contains

the

error

code.

OLE

Automotation

methods

now

return

standardized

error

codes—either

uniform

four

digit

codes

described

in

the

″Messages

and

Codes″

manual

or

values

described

in

the

frnwole.h

header

file,

as

shown

in

Table

3.

Data

Type:

VT_14

Table

3.

Standardized

OLE

API

Return

Codes

OLEAPI_RC_NOT_LOGGED_ON

12000

OLEAPI_RC_INVALID_INDEXCLASS

12001

OLEAPI_RC_INSUFFICIENT_MEMORY

12002

OLEAPI_RC_NO_ITEMS_FOUND

12003

OLEAPI_RC_INVALID_WORKBASKET

12004

OLEAPI_RC_ALREADY_LOGGED_ON

12005

OLEAPI_RC_INVALID_ARGUMENT

12006

Chapter

5.

Using

the

OLE

Automation

Interface

191

Table

3.

Standardized

OLE

API

Return

Codes

(continued)

OLEAPI_RC_NO_DOC_OPEN

12007

OLEAPI_RC_INVALID_ITEM

12008

OLEAPI_RC_INDEX_OUT_OF_RANGE

12009

OLEAPI_RC_INVALID_KEYFIELD

12010

OLEAPI_RC_ERROR_PRINTING

12011

OLEAPI_RC_INVALID_CONTENT_CLASS

12012

OLEAPI_RC_ITEM_NOT_FOLDER

12013

OLEAPI_RC_ITEM_NOT_WORKBASKET

12014

OLEAPI_RC_ITEM_NOT_WORKFLOW

12015

OLEAPI_RC_ERROR_GETTING_PART

12016

OLEAPI_RC_ERROR_UNLOCKING

12017

OLEAPI_RC_INVALID_DOCUMENT

12018

OLEAPI_RC_NOT_TOC_DOCUMENT

12019

OLEAPI_RC_INSUFFICIENT_PRIVS

12020

OLEAPI_RC_NO_SELECTIONS

12021

OLEAPI_RC_NOT_DOC_DOCUMENT

12022

OLEAPI_RC_ITEM_NOT_TOC

12023

OLEAPI_RC_ITEM_NOT_DOCUMENT

12024

OLEAPI_RC_TEMP_FOLDER

12030

OLEAPI_RC_VALIDATION_ERROR

12040

OLEAPI_RC_UNABLE_TO_QUIT

12100

OLEAPI_RC_FAX_NOT_INSTALLED

12110

OLEAPI_RC_FAX_GEN_ERROR

12111

OLEAPI_RC_FAX_EMPTY_TOC

12112

OLEAPI_RC_FAX_NODOCSIN_TOC

12113

Methods

The

Error

object

does

not

have

any

methods.

Image

Object

Attention:

In

place

of

the

Image

Object,

we

recommend

using

the

Document

and

Documents

Objects

to

permit

the

ability

to

open

more

than

one

document

at

a

time.

The

Image

object

holds

the

currently

visible

document.

Properties

The

Image

object

supports

the

following

properties.

Application

The

Application

property

returns

the

Application

object.

Data

Type:

VT_DISPATCH

(Application)

Item

The

Item

property

returns

the

Item

object

that

is

associated

with

this

Image.

Data

Type:

VT_DISPATCH

(Item)

192

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Page

The

Page

property

contains

the

selected

page

number.

Data

Type:

VT_14

Parent

The

Parent

property

returns

the

parent

of

the

Image

object

(which

is

the

Application

object).

Data

Type:

VT_DISPATCH

(Application)

Methods

The

Image

object

supports

the

following

methods.

Close

The

Close

method

closes

all

windows

associated

with

the

Image

object.

If

the

Save

argument

is

True,

any

changes

to

the

object

are

saved.

If

the

Save

argument

is

False,

changes

are

thrown

away.

If

the

Save

argument

is

not

specified,

a

message

box

asks

the

user

if

they

want

to

save

the

changes

or

not.

Parameters:

Save

as

VT_VARIANT

(optional,

usually

VT_BOOL

Returns:

None

CloseIt

Attention:

The

CloseIt

method

is

the

same

as

the

Close

method.

It

is

implemented

solely

to

support

VisualBasic

which

uses

Close

as

a

reserved

word.

The

CloseIt

method

closes

all

windows

associated

with

the

Image

object.

If

the

Save

argument

is

True,

any

changes

to

the

object

are

saved.

If

the

Save

argument

is

False,

changes

are

thrown

away.

If

the

Save

argument

is

not

specified,

a

message

box

asks

the

user

if

they

want

to

save

the

changes

or

not.

Parameters:

Save

as

VT_VARIANT

(optional,

usually

VT_BOOL)

Returns:

None

DisplayPage

The

DisplayPage

method

forces

the

page

specified

to

be

displayed

in

the

image

viewer.

Parameters:

Page

as

VT_I4

Returns:

VT_I4

FirstPage

The

FirstPage

method

displays

the

first

page

in

the

viewer.

Parameters:

None

Returns:

VT_I4

LastPage

The

LastPage

method

displays

the

last

page

in

the

viewer.

Parameters:

None

Returns:

VT_I4

NextPage

The

NextPage

method

displays

the

next

page

(current

page

+

1)

in

the

viewer.

Parameters:

None

Returns:

VT_I4

OpenDocument

The

OpenDocument

method

opens

a

new

IBM

Content

Manager

for

iSeries

Chapter

5.

Using

the

OLE

Automation

Interface

193

document

in

the

image

viewer.

The

argument

Index

is

the

item

that

is

to

be

opened.

An

Item

error

will

occur

if

the

item

is

not

a

workbasket

or

folder.

Parameters:

Index

as

VT_DISPATCH

(Item)

Returns:

VT_I4

PreviousPage

The

PreviousPage

method

displays

the

previous

page

(current

page

−

1)

in

the

viewer.

Parameters:

None

Returns:

VT_I4

Item

Object

The

Item

object

represents

an

item

like

a

folder,

workbasket,

or

document.

Properties

The

Item

object

supports

the

following

properties.

Application

The

Application

property

returns

the

Application

object.

Data

Type:

VT_DISPATCH

(Application)

CheckedStatus

The

CheckedStatus

property

returns

the

user

who

has

the

item

checked

out,

if

any.

Data

Type:

VT_BSTR

Class

The

Class

property

is

the

index

class

of

the

item.

Changes

to

the

key

field

values

are

not

updated

until

you

call

the

UpdateIndex

method.

This

is

a

read/write

property.

Data

Type:

VT_BSTR

ItemID

The

ItemID

property

is

a

string

that

uniquely

defines

each

item

in

the

IBM

Content

Manager

for

iSeries

fileroom.

Data

Type:

VT_BSTR

Name

The

Name

property

returns

IBM

Content

Manager

for

iSeries’s

name

for

the

item.

This

property

is

based

on

the

key

field

selected

as

the

identifier

(if

any)

when

the

index

class

was

created.

If

the

item

is

a

workbasket

the

workbasket

name

is

returned.

Data

Type:

VT_BSTR

PartCount

The

PartCount

property

returns

the

number

of

parts

stored

in

a

document.

Data

Type:

VT_14

Parent

The

Parent

property

returns

the

parent

of

the

Image

object

(which

can

be

the

Application

object

or

an

Items

object).

Data

Type:

VT_DISPATCH

(Application

or

Items)

Priority

The

Priority

property

returns

the

workbasket

priority

of

the

item.

Valid

194

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

values

are

1

to

31,999,

where

1

is

the

lowest

priority.

If

the

item

is

not

in

a

workbasket,

the

Priority

property

returns

the

class

default

priority,

and

is

read-only.

Data

Type:

VT_14

SystemAssigned

Returns

TRUE

if

the

workbasket

is

a

system

assigned

workbasket.

Data

Type:

VT_BOOL

TOCCount

The

TOCCount

property

returns

the

number

of

items

that

are

indexed

in

this

table

of

contents.

Data

Type:

VT_14

Type

The

Type

property

returns

the

item

type

of

the

item.

A

value

of

1

means

a

document,

2

means

folder,

and

3

means

workbasket.

Data

Type:

VT_14

Methods

The

Item

object

supports

the

following

methods.

Activate

The

Activate

method

removes

the

suspended

status

from

a

suspended

item.

Parameters:

None

Returns:

VT_I4

AddAnnotationPart

The

AddAnnotationPart

method

can

be

used

to

add

an

annotation

part

to

an

existing

document.

The

Path

argument

must

be

a

full

path

to

the

new

annotation

part

to

be

used

with

the

document.

If

an

annotation

part

already

exists,

it

will

be

replaced

by

the

new

annotation

file.

Note

that

an

extension

of

″.T_L″

is

assumed

and

will

be

used

even

if

a

different

extension

is

provided.

Parameters:

Path

as

VT_BSTR

Returns:

VT_I4

AddPart

The

AddPart

method

adds

a

file

as

an

object

to

the

item.

You

must

specify

a

full

path

and

a

content

class.

Optionally,

you

can

specify

that

the

Library

Server

should

choose

the

Object

Server

and

Collection

for

a

new

part

according

to

its

rules

(usually

the

User’s

default

Object

Server

and

Collection).

Parameters:

Path

as

VT_BSTR

ContentClass

as

VT_BSTR

SMSOption

as

VT_VARIANT

(optional,

usually

VT_BOOL)

If

SMSOption

is

set

to

TRUE

(non-zero)

or

omitted,

the

Index

Class’s

default

Object

Server

and

collection

will

be

used

(original

behavior).

If

SMSOption

is

set

to

FALSE

(0),

the

Library

Server

will

choose

the

Object

Server

and

Collection,

based

on

the

configuration

(usually

the

defaults

for

the

user).

Returns:

VT_14

Chapter

5.

Using

the

OLE

Automation

Interface

195

AddToFolder

The

AddToFolder

method

adds

the

Item

to

the

folder

specified

as

another

Item

object.

Parameters:

Folder

as

VT_DISPATCH

(Item)

Returns:

VT_I4

ChangeNotes

The

ChangeNotes

method

saves

the

argument

value

as

the

note

log.

Parameters:

Value

as

VT_BSTR

Returns:

VT_I4

ChangeWorkflow

The

ChangeWorkflow

method

allows

you

specify

a

new

workflow

to

send

the

item

through.

The

new

workflow

is

specified

by

name

with

the

WorkFlow

argument.

Parameters:

WorkFlow

as

VT_BSTR

Returns:

VT_I4

CheckIn

The

CheckIn

method

checks

the

item

in,

allowing

anyone

to

modify

it.

Parameters:

None

Returns:

VT_I4

CheckOut

The

CheckOut

method

checks

the

item

out

to

the

current

user,

disabling

anyone

else

from

modifying

it.

Parameters:

None

Returns:

VT_I4

Close

The

Close

method

unlocks

the

item

previously

locked

with

the

Open

method

or

NextWorkbasketItem

(the

resulting

item,

not

the

workbasket).

Parameters:

None

Returns:

VT_I4

CloseIt

Attention:

The

CloseIt

method

is

the

same

as

the

Close

method.

It

is

implemented

solely

to

support

VisualBasic,

which

uses

Close

as

a

reserved

word.

The

CloseIt

method

unlocks

the

item

previously

locked

with

the

Open

method

or

NextWorkbasketItem

(the

resulting

item,

not

the

workbasket).

Parameters:

None

Returns:

VT_I4

CloseNotes

The

CloseNotes

method

closes

the

open

note

log

without

saving

any

changes.

Parameters:

None

Returns:

VT_I4

CloseParts

The

CloseParts

method

closes

all

of

the

open

part

files

(pages)

without

saving

any

changes.

196

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Parameters:

None

Returns:

VT_I4

CompleteWorkflow

The

CompleteWorkflow

method

marks

the

item

as

successfully

finishing

a

workflow.

Parameters:

None

Returns:

VT_I4

Delete

The

Delete

method

removes

the

item

from

the

fileroom.

This

is

a

non-recoverable

operation,

so

use

this

method

with

care.

Parameters:

None

Returns:

VT_I4

DeletePart

The

DeletePart

method

deletes

the

specified

object

(part)

from

the

item.

Parameters:

Index

as

VT_I4

Returns:

VT_I4

FaxItem

The

FaxItem

method

sends

the

item

to

the

fax

subsystem

if

it

is

loaded.

The

argument

withSubFolderContents,

if

specified

and

set

to

True

(non-zero),

enables

you

to

fax

the

documents

contained

in

folders.

Parameters:

withSubFolderContents

as

VT_VARIANT

(optional,

usually

VT_BOOL)

Returns:

VT_I4

GetAnnotationFile

The

GetAnnotationFile

method

retrieves

the

annotation

file

for

the

item.

Parameters:

None

Returns:

VT_BSTR

GetHistoryLog

The

GetHistoryLog

method

retrieves

the

work

history

for

the

item.

Parameters:

None

Returns:

VT_BSTR

GetKeyFields

The

GetKeyFields

method

returns

the

value

for

the

given

key

field

of

an

item.

Parameters:

Name

as

VT_BSTR

Returns:

VT_BSTR

GetNotes

The

GetNotes

method

retrieves

the

text

of

the

note

log

from

IBM

Content

Manager

for

iSeries

and

returns

it

to

the

calling

application.

The

item

is

checked

out

in

IBM

Content

Manager

for

iSeries

the

first

time

you

call

this

method.

Parameters:

None

Returns:

VT_BSTR

Chapter

5.

Using

the

OLE

Automation

Interface

197

GetPartContentClass

The

GetPartContentClass

method

returns

the

content

class

of

the

part

file

specified

with

the

Index

argument.

Parameters:

Index

as

VT_I4

Returns:

VT_BSTR

GetPartFile

The

GetPartFile

method

retrieves

an

object

file

from

IBM

Content

Manager

for

iSeries,

stores

it

on

the

local

workstation,

and

returns

the

full

path

to

the

temporary

file.

The

Item

is

checked

out

in

IBM

Content

Manager

for

iSeries

the

first

time

you

call

this

method.

Parameters:

Index

as

VT_I4

Returns:

VT_BSTR

GetParentFolders

The

GetParentFolders

method

returns

an

Items

collection

of

folders.

Each

of

these

folders

contains

the

document

of

the

folder

that

calls

the

method.

Parameters:

None

Returns:

VT_DISPATCH

(Items)

GetTOCItem

The

GetTOCItem

method

returns

the

Item

object

specified

from

the

TOC.

Parameters:

Index

as

VT_I4

Returns:

VT_DISPATCH

(Item)

NextWorkbasketItem

The

NextWorkbasketItem

method

returns

the

next

available

item

by

order

of

priority

in

a

workbasket.

Parameters:

None

Returns:

VT_DISPATCH

(Item).

Open

The

Open

method

locks

the

item.

No

other

user

can

modify

index

information

or

modify

parts

when

the

item

is

locked.

You

must

use

the

Close

or

CloseIt

methods

to

unlock

the

item.

Parameters:

None

Returns:

None

PreStage

The

PreStage

method

stages

an

off-line

part

for

future

retrieval.

Call

this

method

if

Item.GetPartFile

returns

a

6265

(SIM_RC_OBJECT_BEINGPROMOTED)

exception,

which

indicates

that

the

part

object

is

on

an

off-line

storage

device.

Parameters:

Index

as

VT_14

Returns:

None

PrintItem

The

PrintItem

method

prints

the

item

to

the

currently

selected

printer

using

the

current

print

options.

If

ShowDialog

is

true,

the

print

dialog

displays

where

the

user

can

select

a

different

printer,

modify

options,

or

cancel

printing.

Parameters:

ShowDialog

as

VT_BOOL,

PrintImage

as

VT_VARIANT,

StartPage

as

VT_VARIANT,

EndPage

as

VT_VARIANT,

PrintMarkup

as

198

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

VT_VARIANT,

PrintIndex

as

VT_VARIANT,

PrintNoteLog

as

VT_VARIANT,

PrintTOC

as

VT_VARIANT,

PrintContents

as

VT_VARIANT

Returns:

VT_I4

v

PrintImage

(optional)

specifies

whether

or

not

to

print

the

base

parts

of

the

document,

also

known

as

images.

If

you

also

select

PrintMarkup

(optional),

any

defined

annotations

are

printed

on

the

image.

v

StartPage

(optional)

and

EndPage

(optional)

specify

the

desired

base

part

page

ranges

to

print.

The

pages

are

numbered

starting

from

1.

Examples:

–

To

print

the

middle

three

pages

of

a

five-page

document,

set

StartPage

to

2

and

EndPage

to

4.

–

To

print

an

entire

document,

set

StartPage

to

1

and

EndPage

to

10000

or

some

other

sufficiently-large

number.
v

PrintIndex

and

PrintNotelog

allow

you

to

specify

whether

the

indexing

and

note

log

information

prints

for

documents

and

folders.

Workbaskets

ignore

these

arguments.

However,

you

can

print

out

the

note

logs

and

index

information

for

the

documents

and

folders

contained

in

the

workbasket

by

setting

PrintIndex

and

PrintNotelog

to

true

in

workbaskets.

v

PrintTOC

and

PrintContents

specify

how

to

print

workbaskets

and

folders.

If

PrintTOC

is

true,

the

list

of

items

contained

in

the

folder

or

workbasket

prints.

If

PrintContents

is

true,

the

folders

and

documents

contained

in

the

table

of

contents

prints

as

well.

RefreshTOC

The

RefreshTOC

method

re-samples

the

TOC

of

a

workbasket

or

folder.

If

you

did

not

call

this

method

any

changes

to

a

workbasket

or

folder’s

TOC

will

not

be

recognized

by

methods

in

the

Item

class.

Parameters:

None

Returns:

VT_I4

RemoveFromFolder

The

RemoveFromFolder

method

removes

the

item

from

the

folder

specified

as

an

argument.

Parameters:

Folder

as

VT_DISPATCH

(Item)

Returns:

VT_I4

RemoveFromWorkbasket

The

RemoveFromWorkbasket

method

removes

the

item

from

the

workbasket

specified

as

an

argument.

Parameters:

Workbasket

as

VT_DISPATCH

(Item)

Returns:

VT_I4

RemoveFromWorkflow

The

RemoveFromWorkflow

method

marks

the

item

as

being

canceled

from

workflow.

Parameters:

None

Returns:

VT_I4

RouteToWorkbasket

The

RouteToWorkbasket

method

adds

this

item

to

a

workbasket,

removing

it

from

any

workbasket

it

is

currently

in.

The

workbasket

is

specified

by

its

Chapter

5.

Using

the

OLE

Automation

Interface

199

Item

object.

If

Force

is

specified

as

TRUE,

the

item

is

added

to

the

workbasket,

even

if

the

workbasket

is

already

full.

Parameters:

Workbasket

as

VT_DISPATCH

(Item)

Priority

as

VT_VARIANT

(optional,

usually

VT_I4)

Force

as

VT_VARIANT

(optional,

usually

VT_BOOL)

Returns:

VT_I4

SavePart

The

SavePart

method

saves

any

changes

that

occurred

to

the

part

file

specified

and

its

annotation

file.

Returns:

VT_I4

SetKeyFields

The

SetKeyFields

method

sets

the

value

for

the

given

field

of

an

item.

To

store

updated

key

fields

to

the

server,

you

must

call

the

UpdateIndex

method.

Parameters:

Name

as

VT_BSTR;

NewValue

as

VT_BSTR

Returns:

None

StartWorkflow

The

StartWorkflow

method

adds

the

item

into

the

specified

workflow.

Parameters:

Workflow

as

VT_BSTR

Workbasket

as

VT_VARIANT

(optional,

usualy

VT_DISPATCH)

Priority

as

VT_VARIANT

(optioanl,

usually

VT_14

Returns:

VT_I4

Suspend

The

Suspend

method

causes

the

item

to

be

suspended,

pending

some

future

event.

This

event

is

a

time

and

date,

but

could

also

be

an

item

being

included

in

a

folder

item.

Parameters:

Timestamp

as

VT_VARIANT

(optional,

usually

VT_BSTR)

TimeoutWorkbasket

as

VT_VARIANT

(optional,

usually

VT_DISPATCH)

Classes

as

VT_VARIANT

(optional,

usually

VT_BSTR)

Criteria

as

VT_VARIANT

(optional,

usually

VT_I4)

ReadyWorkbasket

as

VT_VARIANT

(optional,

usually

VT_DISPATCH)

If

Timestamp

is

specified,

the

item

is

suspended,

pending

a

time

event.

When

the

time

event

is

triggered,

the

item

is

activated

and

placed

in

the

TimeOutWorkbasket

workbasket.

The

Timestamp

argument

must

be

in

a

format

like

the

following

example:

1997-09-30-08.05.23.000000

If

Classes

is

specified

(only

valid

for

folder

items),

the

item

is

suspended,

pending

a

time

event

or

a

folder

event.

When

the

time

event

is

triggered,

the

item

is

activated

and

placed

in

the

TimeOutWorkbasket

workbasket.

If

the

folder

event

is

triggered

before

the

timeout,

the

item

is

activated

and

placed

in

the

ReadyWorkbasket

workbasket.

200

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

The

optional

Classes

argument

is

a

string

containing

a

list

of

index

classes

separated

by

semicolons

(;).

This

list

is

used

to

indicate

which

index

classes

will

trigger

an

activation.

The

optional

Criteria

argument,

which

is

only

valid

for

folder

items,

should

be

zero

(0)

to

indicate

an

OR

condition,

or

one

(1)

to

indicate

an

AND

condition.

This

condition

is

used

when

determining

if

one

or

all

of

the

index

classes

specified

in

the

Classes

argument

must

be

indexed

before

the

folder

is

activated.

Returns:

VT_I4

UpdateIndex

The

UpdateIndex

method

saves

any

changes

that

you

have

made

to

the

Index

Class

and/or

key

fields

(using

the

Class

property

and/or

the

SetKeyFields

method).

Until

this

method

is

called

no

changes

are

stored.

Parameters:

None

Returns:

VT_I4

Items

Collection

The

Items

collection

holds

a

list

of

Item

objects,

allowing

you

to

access

the

contained

objects.

An

Items

collection

typically

is

a

result

of

the

Document

method

SelectionList.

Properties

Application

The

Application

property

returns

the

Application

object.

Data

Type:

Application

Count

The

Count

property

returns

the

number

of

Item

objects

referenced

in

the

Items

collection.

Data

Type:

VT_14

Parent

The

Parent

property

returns

the

parent

of

the

Items

collection

(which

is

usually

a

Document

object).

Data

Type:

VT_DISPATCH

(Document)

Methods

_NewEnum

The_NewEnum

method

returns

an

unknown

which

supports

the

IID_IEnumVARIANT.

_NewEnum

is

a

restricted

method

that

cannot

be

invoked

like

the

other

methods.

It

is

used

to

implement

loop

constructs

in

macro

languages

such

as

Visual

Basic.

Parameters:

None

Returns:

VT_UNKNOWN

Close

The

Close

method

closes

the

Items

collection.

Parameters:

None.

Returns:

VT_I4

CloseIt

Attention:

The

CloseIt

method

is

the

same

as

the

Close

method.

It

is

Chapter

5.

Using

the

OLE

Automation

Interface

201

implemented

solely

to

support

VisualBasic

which

uses

Close

as

a

reserved

word.

The

CloseIt

method

closes

the

Items

collection.

Parameters:

None

Returns:

VT_I4

Item

The

Item

method

returns

an

Item

object

from

the

Items

collection.

Parameters:

Index

as

VT_I4

Returns:

VT_DISPATCH

(Item)

202

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Chapter

6.

Sample

High-Level

Programming

Interface

Sample

High-Level

Programming

Interface

for

Visual

Basic

The

Content

Manager

for

iSeries

client

high-level

programming

interface

is

a

set

of

frequently

used

folder

and

document

management

functions.

These

high-level

functions

have

a

simple

call

interface

reflecting

how

users

access

documents

and

folders

in

Content

Manager

for

iSeries.

Some

highlights

of

the

Content

Manager

for

iSeries

client

high-level

programming

interface

using

Visual

Basic

are

as

follows:

v

Approximately

30

functions

for

frequently

used

folder

and

document

management

functions

v

Single

workstation

logon

to

Content

Manager

for

iSeries

by

means

of

the

Client

for

Windows

application

v

Visual

Basic

OLE

automation

source

code

provided

In

addition,

the

Client

for

Windows

can

allow

multiple

applications

to

access

Content

Manager

for

iSeries

simultaneously.

General

Use

The

Content

Manager

for

iSeries

client

high-level

programming

interface

interacts

with

the

basic

components

of

the

Content

Manager

for

iSeries

data

model:

documents,

folders,

and

workbaskets.

A

Content

Manager

for

iSeries

document

consists

of

a

set

of

closely

related

objects

or

parts.

The

Content

Manager

for

iSeries

client

high-level

programming

interface

provides

functions

to

create,

view,

update

and

delete

typical

Content

Manager

for

iSeries

documents

composed

of

a

single

base

part

(for

example

a

scanned

document

or

word

processing

file)

and

a

single

note

part.

Use

of

the

Content

Manager

for

iSeries

high-level

programming

interface

with

documents

containing

multiple

base

parts

can

produce

unexpected

or

undesired

results.

For

additional

information

about

the

Content

Manager

for

iSeries

data

model,

see

“Understanding

the

Logical

Data

Model”

on

page

5.

The

Client

for

Windows

’

OLE

automation

interface

does

provide

the

ability

to

manipulate

multiple

base

part

documents.

Because

Visual

Basic

source

code

is

provided,

the

user

might

want

to

customize

the

VHLPI

to

handle

other

document

compositions.

Lists

of

data

returned

by

VHLPI

functions

can

be

filtered

based

upon

the

privileges

set

for

the

user

ID

that

has

logged

on.

In

addition,

the

user

should

be

aware

that

index

class

and

attribute

names

specified

as

parameters

to

VHLPI

functions

are

normally

case-sensitive.

Visual

Basic

Parameters

and

Variables

All

Visual

Basic

variables

passed

to

VHLPI

functions

as

parameters

should

be

of

type

Variant

or

Variant

Array.

If

a

Variant

Array

is

passed,

the

size

of

the

array,

excluding

element

index

0,

should

be

contained

in

element

0

of

the

array.

NULL

values

can

be

set

by

assigning

the

variable

to

an

empty

string,

″″.

©

Copyright

IBM

Corp.

1997,

2004

203

There

are

several

global

variables

which

are

included

with

the

VHLPI

code

module,

FRNWWFVB.BAS.

These

global

variables

can

be

accessed

by

any

Visual

Basic

program

which

includes

FRNWWFVB.BAS.

The

global

variables

are

as

follows:

v

VhlApplObj

-

Client

for

Windows

’

Application

Object

v

VhlDocsObj

-

Client

for

Windows

’

Documents

Collection

Object

v

VhlErrorObj

-

Client

for

Windows

’

Error

Object

These

global

variables

are

created

via

the

VbVhlLoadFuncs

function

and

they

are

freed

by

the

VbVhlDropFuncs

function.

A

Visual

Basic

program

must

call

VbVhlLoadFuncs

before

using

VHLPI

functions,

and

should

call

VbVhlDropFuncs

before

ending

to

free

these

objects.

Once

these

variables

have

been

created,

the

Visual

Basic

program

can

invoke

methods

or

get/set

properties

associated

with

them.

For

instance,

to

find

out

what

server

the

Client

for

Windows

is

logged

on

to,

the

following

could

be

executed:

’

Create

Objects

ulRC

=

VbVhlLoadFuncs

’

Get

what

server

is

logged

on

Server$

=

VhlApplObj.Server

’

Display

the

server

name

MsgBox

"The

server

is

"

&

Server$

Access

to

the

Client

for

Windows

The

Client

for

Windows

can

be

used

to

maintain

a

constant

logon

session

with

Content

Manager

for

iSeries.

When

started,

this

program

logs

on

to

Content

Manager

for

iSeries

and

then

waits

for

operator

commands.

Once

logged

on,

other

applications

through

the

OLE

automation

interface

can

use

the

Content

Manager

for

iSeries

logon

session

established.

By

using

the

Client

for

Windows

logon

session,

other

applications

do

not

need

to

logon

to

Content

Manager

for

iSeries,

instead

they

must

create

an

OLE

automation

Application

Object

from

the

Client

for

Windows

.

This

can

be

done

by

executing

the

following:

Set

VhlApplObj

=

CreateObject("Vic.Application")

where

VhlApplObj

is

the

global

variable

object

included

in

the

VHLPI

code

module,

FRNWWFVB.BAS.

The

VbVhlLoadFuncs

function

does

this

processing,

plus

initializes

other

global

data

objects.

It

is

recommended

that

Visual

Basic

programs

use

the

VbVhlLoadFuncs

and

VbVhlDropFuncs

to

get

and

end

access

to

the

Client

for

Windows

.

The

above

description

pertains

to

the

situation

where

the

Client

for

Windows

is

started

and

logged

on

before

subsequent

Visual

Basic

applications

are

executed.

If

this

is

not

the

case,

it

will

be

necessary

for

the

Visual

Basic

application

to

issue

logon

and

logoff

commands

as

discussed

in

the

next

section.

Using

Logon/Logoff

with

the

Client

for

Windows

If

the

Client

for

Windows

is

not

started

and

logged

on

before

the

Visual

Basic

application

is

executed,

the

application

must

call

VbVhlLogon

instead

of

VbVhlLoadFuncs.

VbVhlLogon

will

cause

the

Client

for

Windows

to

be

started

and

then

issue

the

Logon

method

to

logon

to

Content

Manager

for

iSeries.

204

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Once

the

Client

for

Windows

is

logged

on

to

Content

Manager

for

iSeries,

any

subsequent

attempt

to

logon,

even

if

the

user

ID

or

server

information

is

different,

does

not

cause

another

logon

attempt.

All

subsequent

logons

will

simply

use

the

original

logon

session

and

no

error

indication

will

be

provided.

The

VbVhlLogoff

will

issue

the

Logoff

method

and

close

the

Client

for

Windows

,

even

if

other

applications

are

using

the

logon

session.

If

it

is

not

desired

to

terminate

the

Client

for

Windows

,

then

VbVhlDropFuncs

should

be

used

to

terminate

access

only

for

the

current

application.

Samples

of

High

Level

Programming

Interface

APIs

for

Windows

VbVhlAddFolderItem

(Add

an

Item

to

a

Folder)

Format

VbVhlAddFolderItem(

ItemId,

FolderId

)

Purpose

Use

this

function

to

add

a

document

or

folder

(specified

by

its

Item

Id)

to

an

existing

folder

(specified

by

the

folder’s

Item

Id).

Parameters

ItemId

—

input

The

Item

Id

of

the

document

or

folder

which

is

to

be

added

to

the

folder.

FolderId

—

input

The

Item

Id

of

the

folder.

Guidelines

for

Use

The

Item

Ids

for

both

the

item

to

add

and

the

folder

must

be

valid.

Visual

Basic

Source

Code

Function

VbVhlAddFolderItem

(ItemID,

FolderId)

’

Declarations

Dim

ItemObj

As

Object

Dim

FolderObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlAddFolderError

ulRC

=

0

’

Get

the

Folder

Object

Set

FolderObj

=

VhlApplObj.ItemID(FolderId)

’

Get

the

ItemID

Object

Set

ItemObj

=

VhlApplObj.ItemID(ItemID)

’

Put

ItemId

into

Folder

ulRC

=

ItemObj.AddToFolder(FolderObj)

VhlAddFolderEnd:

’

Free

the

objects

Set

ItemObj

=

Nothing

Set

FolderObj

=

Nothing

Chapter

6.

Sample

High-Level

Programming

Interface

205

’

Set

return

value

to

error

code

VbVhlAddFolderItem

=

ulRC

Exit

Function

VhlAddFolderError:

’

Set

return

value

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlAddFolderEnd

End

Function

VbVhlAdminItemNoteLog

(Administer

Document

Note

Logs)

Format

VbVhlAdminItemNoteLog(

ItemID,

FuncInd,

NoteText

)

Purpose

Use

this

function

to

replace,

delete,

get

or

append

notes

to

an

item’s

note

log.

Parameters

ItemID

—

input

The

Id

of

the

Item.

FuncInd

—

input

The

function

indicator

which

must

be

one

of

the

following

—

″APPEND″

Append

NoteText

to

the

item’s

note

log.

″DELETE″

Delete

the

item’s

note

log.

″REPLACE″

Replace

the

item’s

note

log

with

NoteText.

″GET″

Copy

item’s

note

log

text

to

NoteText.

NoteText

—

input/output

The

Visual

Basic

variable

name

containing

the

text

value

of

the

Note.

v

If

FuncInd

=

GET,

then

the

function

copies

the

item’s

note

log

text

into

this

Visual

Basic

variable.

v

If

FuncInd

=

REPLACE

the

function

replaces

the

requested

item’s

note

log

with

the

contents

of

this

Visual

Basic

variable.

v

If

FuncInd

=

APPEND

the

function

appends

the

text

contained

in

this

Visual

Basic

variable

to

the

requested

item’s

note

log.

Guidelines

for

Use

The

Item

Id

for

the

document

must

be

valid.

VbVhlAddFolderItem

206

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Visual

Basic

Source

Code

Function

VbVhlAdminItemNoteLog

(ItemId,

FuncInd,

NoteText)

’

Declarations

Dim

ItemObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlAdminNoteError

ulRC

=

0

’

Get

the

Item

object

Set

ItemObj

=

VhlApplObj.ItemID(ItemId)

’

Determine

what

to

do

Select

Case

FuncInd

Case

"APPEND"

OldNoteText

=

ItemObj.GetNotes

ulRC

=

ItemObj.ChangeNotes(OldNoteText

&

NoteText)

Case

"DELETE"

ulRC

=

ItemObj.ChangeNotes("")

Case

"REPLACE"

ulRC

=

ItemObj.ChangeNotes(NoteText)

Case

"GET"

NoteText

=

ItemObj.GetNotes

End

Select

VhlAdminNoteEnd:

’

Free

the

object

Set

ItemObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlAdminItemNoteLog

=

ulRC

Exit

Function

VhlAdminNoteError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlAdminNoteEnd

End

Function

VbVhlChangeItemIndex

(Change

an

Item’s

Index

Class)

Format

VbVhlChangeItemIndex(

ItemId,

ClassName,

AttrName(),

AttrValue()

)

Purpose

Use

this

function

to

associate

a

different

index

class

name

and

index

class

attributes

(name/values)

to

an

existing

document

or

folder

(specified

by

an

Item

Id).

Parameters

ItemId

—

input

The

Item

Id

of

the

document

or

folder

which

is

to

be

changed.

ClassName

—

input

VbVhlAdminItemNoteLog

Chapter

6.

Sample

High-Level

Programming

Interface

207

The

name

of

the

new

index

class

name

for

the

item.

AttrName()

—

input

An

array

of

attribute

names

which

correspond

to

the

array

of

attribute

values

in

AttrValue().

These

attribute

names

must

be

defined

for

the

specified

ClassName.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

AttrValue()

—

input

An

array

of

attribute

values

which

correspond

to

the

array

of

attribute

names

in

AttrName().

These

attribute

values

must

be

valid

for

the

data

type

defined

in

index

class

ClassName

for

this

attribute.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

Guidelines

for

Use

The

ItemId

and

index

class

name

specified

must

exist

prior

to

using

this

function.

Also

the

attributes

in

the

input

array

list

must

be

defined

for

this

index

class

and

all

required

attributes

of

the

index

class

must

be

specified

in

the

array

list.

Note

that

when

specifying

attribute

name

and

value

arrays,

each

attribute

name

array

element

must

have

a

corresponding

attribute

value

array

element

at

the

same

array

index.

Visual

Basic

Source

Code

Function

VbVhlChangeItemIndex

(ItemID,

ClassName,

AttrName(),

AttrValue())

’

Declarations

Dim

ItemObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlChgIndexError

ulRC

=

0

’

Get

the

search

results

folder

Set

ItemObj

=

VhlApplObj.ItemID(ItemID)

’

Update

Item

index

class

ItemObj.Class

=

ClassName

’

Update

the

Item

attributes

For

i

=

1

To

AttrName(0)

ItemObj.KeyFields(AttrName(i))

=

AttrValue(i)

Next

’

Update

the

Items

Index

Class

and

attribute

information

ulRC

=

ItemObj.UpdateIndex

VhlChgIndexEnd:

’

Free

the

objects

Set

ItemObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlChangeItemIndex

=

ulRC

Exit

Function

VhlChgIndexError:

VbVhlChangeItemIndex

208

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlChgIndexEnd

End

Function

VbVhlCloseDocViews

(Close

the

Document

Image

View

Window)

Format

VbVhlCloseDocViews(

fUpdate

)

Purpose

This

function

closes

the

document

which

is

currently

displayed

in

the

Image

viewer.

Parameters

fUpdate

—

input

Flag

(True

or

False)

to

specify

whether

changes

made

to

the

document

being

displayed

are

to

be

saved.

Guidelines

for

Use

The

document

display

window

currently

displayed

in

the

Image

viewer

is

closed

after

executing

this

function.

The

fUpdate

parameter

determines

whether

any

changes

(annotation,

highlighting,

and

so

forth)

made

to

the

document

are

saved.

Visual

Basic

Source

Code

Function

VbVhlCloseDocViews

(fUpdate)

’

Declarations

Dim

ImageObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlCloseDocError

ulRC

=

0

’

Close

Document

being

displayed

Set

ImageObj

=

VhlApplObj.Image

If

Not

(ImageObj

Is

Nothing)

Then

ImageObj.CloseIt

(fUpdate)

End

If

VhlCloseDocEnd:

’

Set

return

value

to

error

code

VbVhlCloseDocViews

=

ulRC

Exit

Function

VhlCloseDocError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlCloseDocEnd

End

Function

VbVhlChangeItemIndex

Chapter

6.

Sample

High-Level

Programming

Interface

209

VbVhlCopyDoc

(Create

a

Copy

Of

a

Document)

Format

VbVhlCopyDoc(

NewDocID,

DocID,

ClassName,

AttrName(),

AttrValue()

)

Purpose

Use

this

function

to

create

a

new

document

and

copy

all

the

objects

from

an

existing

document

into

it.

The

new

document

can

be

set

to

a

new

index

class

or

the

default

index

class.

Parameters

NewDocID

—

output

The

Item

Id

for

the

created

document

is

returned

into

this

Visual

Basic

variable.

DocID

—

input

The

Item

Id

of

the

original

document.

ClassName

—

input

The

name

of

the

new

index

class

for

the

new

document.

If

set

to

NULL,

the

index

class

will

be

set

to

NOINDEX.

AttrName()

—

input

An

array

of

attribute

names

which

correspond

to

the

array

of

attribute

values

in

AttrValue().

These

attribute

names

must

be

defined

for

the

specified

ClassName.

Not

used

if

ClassName

is

NULL.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

AttrValue()

—

input

An

array

of

attribute

values

which

correspond

to

the

array

of

attribute

names

in

AttrName().

These

attribute

values

must

be

valid

for

the

data

type

defined

in

index

class

ClassName

for

this

attribute.

Not

used

if

ClassName

is

NULL.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

Guidelines

for

Use

The

document

Item

Id

must

be

valid.

If

ClassName

is

not

NULL,

it

must

exist

prior

to

using

this

function.

Also

the

attributes

in

the

input

array

list

must

be

defined

for

this

index

class

and

all

required

attributes

that

are

used

for

uniquely

indexing

the

index

class

must

be

specified

in

the

new

attribute

array

list.

If

ClassName

is

NULL,

the

index

class

of

the

new

document

will

be

set

to

NOINDEX,

with

attribute

Source

set

to

″COPY″

and

attributes

Name

and

Timestamp

set

to

the

User

Id

and

current

time.

The

newly

created

document

Item

ID

is

stored

in

the

specified

Visual

Basic

variable,

NewDocID.

VbVhlCopyDoc

210

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Visual

Basic

Source

Code

Function

VbVhlCopyDoc

(NewDocId,

DocId,

ClassName,

AttrName(),

AttrValue())

’

Declarations

Dim

ItemObj

As

Object

Dim

NewItemObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlCopyDocError

ulRC

=

0

’

Get

the

Document

object

Set

ItemObj

=

VhlApplObj.ItemID(DocId)

’

Make

sure

the

object

is

a

document

If

ItemObj.Type

<>

1

Then

’

Return

with

error

-

SBVI_BAD_DOCUMENT

ulRC

=

909

GoTo

VhlCopyDocEnd

End

If

’

Create

a

new

document

Set

NewItemObj

=

VhlApplObj.CreateDocument("COPY")

NewDocId

=

NewItemObj.ItemID

’

Update

the

new

document

with

Index

Class

information

if

provided

If

(ulRC

=

0)

And

(ClassName

<>

"")

Then

’

Change

the

Items

Index

Class

ulRC

=

VbVhlChangeItemIndex(NewDocId,

ClassName,

AttrName(),

AttrValue())

End

If

’

Copy

document

base

parts

into

new

document

i

=

0

While

(ulRC

=

0)

And

(i

<

ItemObj.PartCount)

ContentClass

=

ItemObj.GetPartContentClass(i)

TempFile

=

ItemObj.GetPartFile(i)

ulRC

=

NewItemObj.AddPart(TempFile,

ContentClass)

i

=

i

+

1

Wend

’

Close

the

original

document

RC

=

ItemObj.CloseParts

VhlCopyDocEnd:

’

Free

the

objects

Set

ItemObj

=

Nothing

Set

NewItemObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlCopyDoc

=

ulRC

Exit

Function

VhlCopyDocError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlCopyDocEnd

End

Function

VbVhlCopyDoc

Chapter

6.

Sample

High-Level

Programming

Interface

211

VbVhlCreateFolder

(Create

a

New

Folder)

Format

VbVhlCreateFolder(

FolderId,

ClassName,

AttrName(),

AttrValue()

)

Purpose

Use

this

function

to

create

a

folder

using

the

specified

index

class

name

and

index

attributes

(name/values).

Parameters

FolderId

—

output

The

name

of

the

Visual

Basic

Variable

into

which

the

created

folder

Item

Id

is

stored.

ClassName

—

input

The

name

of

the

index

class

for

the

folder.

If

NULL,

the

name

″NOINDEX″

is

used.

AttrName()

—

input

An

array

of

attribute

names

which

correspond

to

the

array

of

attribute

values

in

AttrValue().

These

attribute

names

must

be

defined

for

the

specified

ClassName.

Not

used

if

ClassName

is

NULL.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

AttrValue()

—

input

An

array

of

attribute

values

which

correspond

to

the

array

of

attribute

names

in

AttrName().

These

attribute

values

must

be

valid

for

the

data

type

defined

in

index

class

ClassName

for

this

attribute.

Not

used

if

ClassName

is

NULL.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

Guidelines

for

Use

The

index

class

name

specified

must

be

defined

prior

to

using

this

function.

Also

the

attribute

names

in

the

input

array

list

must

be

defined

for

this

index

class

and

all

required

attributes

of

the

index

class

must

be

specified

in

the

array

list.

If

ClassName

is

NULL,

the

index

class

of

the

new

folder

will

be

set

to

NOINDEX,

with

attribute

Source

set

to

″CREATE″

and

attributes

Name

and

Timestamp

set

to

the

User

Id

and

current

time.

The

created

folder

Item

Id

is

stored

in

the

specified

Visual

Basic

Variable,

FolderId.

Visual

Basic

Source

Code

Function

VbVhlCreateFolder

(FolderId,

ClassName,

AttrName(),

AttrValue())

’

Declarations

Dim

FolderObj

As

Object

VbVhlCreateFolder

212

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

’

Setup

Error

handler

On

Error

GoTo

VhlCreFoldError

ulRC

=

0

’

Create

the

folder

Set

FolderObj

=

VhlApplObj.CreateFolder("CREATE")

FolderId

=

FolderObj.ItemID

If

(ulRC

=

0)

And

(ClassName

<>

"")

Then

’

Change

the

Items

Index

Class

ulRC

=

VbVhlChangeItemIndex(FolderId,

ClassName,

AttrName(),

AttrValue())

End

If

VhlCreFoldEnd:

’

Free

the

object

Set

FolderObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlCreateFolder

=

ulRC

Exit

Function

VhlCreFoldError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlCreFoldEnd

End

Function

VbVhlCreateFolderAddItem

(Create

a

Folder

and

Add

an

Item)

Format

VbVhlCreateFolderAddItem(

FolderId,

ItemId,

ClassName,

AttrName(),

AttrValue()

)

Purpose

Use

this

function

to

create

a

folder

using

the

specified

index

class

name

and

index

attributes

(name/values).

This

function

can

also

be

used

to

add

a

document

or

folder

(specified

by

an

Item

Id)

to

the

newly

created

folder.

Parameters

FolderId

—

output

The

name

of

the

Visual

Basic

Variable

into

which

the

created

folder

Item

Id

is

stored.

ItemId

—

input

The

Item

Id

of

the

document

or

folder

which

is

to

be

added

to

the

newly

created

folder.

ClassName

—

input

The

name

of

the

index

class

for

the

folder.

If

NULL,

the

name

″NOINDEX″

is

used.

AttrName()

—

input

VbVhlCreateFolder

Chapter

6.

Sample

High-Level

Programming

Interface

213

An

array

of

attribute

names

which

correspond

to

the

array

of

attribute

values

in

AttrValue().

These

attribute

names

must

be

defined

for

the

specified

ClassName.

Not

used

if

ClassName

is

NULL.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

AttrValue()

—

input

An

array

of

attribute

values

which

correspond

to

the

array

of

attribute

names

in

AttrName().

These

attribute

values

must

be

valid

for

the

data

type

defined

in

index

class

ClassName

for

this

attribute.

Not

used

if

ClassName

is

NULL.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

Guidelines

for

Use

The

Item

Id

and

index

class

name

specified

must

be

defined

prior

to

using

this

function.

Also

the

attribute

names

in

the

input

array

list

must

be

defined

for

this

index

class

and

all

required

attributes

of

the

index

class

must

be

specified

in

the

list.

If

ClassName

is

NULL,

the

index

class

of

the

new

folder

will

be

set

to

NOINDEX,

with

attribute

Source

set

to

″CREATE″

and

attributes

Name

and

Timestamp

set

to

the

User

Id

and

current

time.

The

created

folder

item

ID

is

stored

in

the

specified

Visual

Basic

variable,

FolderID.

Visual

Basic

Source

Code

Function

VbVhlCreateFolderAddItem

(FolderId,

ItemID,

ClassName,

AttrName(),

AttrValue())

’

Declarations

Dim

FolderObj

As

Object

Dim

ItemObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlCreFoldAddError

ulRC

=

0

’

Create

the

folder

Set

FolderObj

=

VhlApplObj.CreateFolder("CREATE")

FolderId

=

FolderObj.ItemID

’

Get

the

ItemID

Object

Set

ItemObj

=

VhlApplObj.ItemID(ItemID)

’

Put

ItemId

into

Folder

ulRC

=

ItemObj.AddToFolder(FolderObj)

If

(ulRC

=

0)

And

(ClassName

<>

"")

Then

’

Change

the

Items

Index

Class

ulRC

=

VbVhlChangeItemIndex(FolderId,

ClassName,

AttrName(),

AttrValue())

End

If

VhlCreFoldAddEnd:

’

Free

the

objects

Set

FolderObj

=

Nothing

Set

ItemObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlCreateFolderAddItem

=

ulRC

Exit

Function

VbVhlCreateFolderAddItem

214

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

VhlCreFoldAddError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlCreFoldAddEnd

End

Function

VbVhlDeleteItem

(Delete

an

Item)

Format

VbVhlDeleteItem(

ItemID

)

Purpose

Use

this

function

to

delete

a

document

or

folder

as

specified

by

the

Item

Id,

Content

Manager

for

iSeries.

Parameters

ItemID

—

input

The

Item

Id

of

the

document

or

folder

to

be

deleted

from

Content

Manager

for

iSeries.

Guidelines

for

Use

The

document

or

folder

specified

is

physically

deleted.

Visual

Basic

Source

Code

Function

VbVhlDeleteItem

(ItemID)

’

Declarations

Dim

ItemObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlDeleteError

ulRC

=

0

’

Get

the

ItemID

Object

Set

ItemObj

=

VhlApplObj.ItemID(ItemID)

’

Delete

the

Item

ulRC

=

ItemObj.DeleteIt

VhlDeleteEnd:

’

Free

the

objects

Set

ItemObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlDeleteItem

=

ulRC

Exit

Function

VhlDeleteError:

’

Set

return

value

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlDeleteEnd

End

Function

VbVhlCreateFolderAddItem

Chapter

6.

Sample

High-Level

Programming

Interface

215

VbVhlDisplayDocView

(Display

a

Document

Image)

Format

VbVhlDisplayDocView(

DocId,

fUpdate

)

Purpose

This

function

displays

a

document

image

(specified

by

Item

Id)

in

the

Image

viewer.

Parameters

DocId

—

input

The

Item

Id

of

the

document

image

to

be

displayed.

fUpdate

—

input

Flag

(True

or

False)

to

specify

whether

changes

made

to

the

document

currently

displayed

are

to

be

saved.

Guidelines

for

Use

The

document

currently

displayed

in

the

Image

viewer

is

closed

before

the

specified

new

document

is

displayed.

The

fUpdate

parameter

determines

whether

any

changes

(annotation,

highlighting,

and

so

forth)

made

to

the

previous

document

are

saved.

Visual

Basic

Source

Code

Function

VbVhlDisplayDocView

(ItemID,

fUpdate)

’

Declarations

Dim

ItemObj

As

Object

Dim

ImageObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlDispDocError

ulRC

=

0

’

Get

the

Item

object

Set

ItemObj

=

VhlApplObj.ItemID(ItemID)

’

Close

Document

being

displayed

Set

ImageObj

=

VhlApplObj.Image

If

Not

(ImageObj

Is

Nothing)

Then

ImageObj.CloseIt

(fUpdate)

End

If

’

Display

Document

ulRC

=

ImageObj.OpenDocument(ItemObj)

VhlDispDocEnd:

’

Free

the

object

Set

ItemObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlDisplayDocView

=

ulRC

Exit

Function

VhlDispDocError:

’

Set

return

code

to

error

code

VbVhlDisplayDocView

216

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlDispDocEnd

End

Function

VbVhlDisplayVIItem

(Display

Item

Using

the

Client

for

Windows)

Format

VbVhlDisplayVIItem(

ItemID,

fUpdate

)

Purpose

The

Client

for

Windows

application

is

used

to

display

the

contents

of

a

document,

folder,

or

workbasket.

A

document

will

be

displayed

in

the

Image

viewer,

while

folders

and

workbaskets

are

displayed

in

the

Client

for

Windows

main

window

as

a

separate

window.

Parameters

ItemID

—

input

The

Item

ID

of

the

Document

or

Folder

to

be

displayed.

fUpdate

—

input

Flag

(True

or

False)

to

specify

whether

changes

made

to

the

document

currently

displayed

are

to

be

saved.

This

is

only

used

if

the

Item

Id

specified

is

a

document.

Guidelines

for

Use

The

Document,

Folder,

or

Workbasket

information

is

displayed

using

the

Client

for

Windows

application.

A

document

will

be

displayed

in

the

Image

viewer,

while

folders

and

workbaskets

are

displayed

in

the

Client

for

Windows

main

window

as

a

separate

window.

The

fUpdate

parameter

is

only

used

if

a

document

is

specified,

this

flag

determines

whether

any

changes

to

the

currently

displayed

document

are

saved.

Visual

Basic

Source

Code

Function

VbVhlDisplayVIItem

(ItemID,

fUpdate)

’

Declarations

Dim

ItemObj

As

Object

Dim

ImageObj

As

Object

Dim

FolderObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlDispItemError

ulRC

=

0

’

Get

the

Item

object

Set

ItemObj

=

VhlApplObj.ItemID(ItemID)

’

Find

out

if

the

item

is

a

folder

or

a

document

If

(ItemObj.Type

=

1)

Then

’

Close

Document

being

displayed

Set

ImageObj

=

VhlApplObj.Image

If

Not

(ImageObj

Is

Nothing)

Then

ImageObj.CloseIt

(fUpdate)

VbVhlDisplayDocView

Chapter

6.

Sample

High-Level

Programming

Interface

217

End

If

’

Display

Document

ulRC

=

ImageObj.OpenDocument(ItemObj)

Else

’

Must

be

a

folder.

Display

it.

Set

FolderObj

=

VhlDocsObj.OpenTOC(ItemObj)

End

If

VhlDispItemEnd:

’

Free

the

object

Set

ItemObj

=

Nothing

Set

FolderObj

=

Nothing

Set

ImageObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlDisplayVIItem

=

ulRC

Exit

Function

VhlDispItemError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlDispItemEnd

End

Function

VbVhlDropFuncs

(End

Access

to

VHLPI

Functions)

Format

VbVhlDropFuncs()

Purpose

Use

this

API

to

end

access

to

the

Client

for

Windows’s

OLE

automation

interface.

Any

subsequent

use

of

the

VHLPI

functions

will

fail.

Guidelines

for

Use

After

executing

this

function,

the

Visual

Basic

program

cannot

call

any

VHLPI

functions.

To

establish

access

to

these

functions,

use

the

VbVhlLoadFuncs

API.

Visual

Basic

Source

Code

Function

VbVhlDropFuncs

()

’

Setup

Error

handler

On

Error

GoTo

VhlDropError

’

End

access

with

OLE

interface

ulRC

=

0

Set

VhlDocsObj

=

Nothing

Set

VhlErrorObj

=

Nothing

Set

VhlApplObj

=

Nothing

VhlDropEnd:

’

Set

return

value

to

error

code

VbVhlDropFuncs

=

ulRC

Exit

Function

VhlDropError:

’

Set

return

code

to

error

code

VbVhlDisplayVIItem

218

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

ulRC

=

Err

Resume

VhlDropEnd

End

Function

VbVhlExportDocObj

(Export

a

Document

Base

Object)

Format

VbVhlExportDocObj(

DocId,

FileName,

PartNum

)

Purpose

This

function

creates

a

disk

file

containing

a

base

object

of

a

document

(specified

by

DocId).

Parameters

DocId

—

input

The

Item

Id

for

the

document

whose

base

part

is

to

be

exported.

FileName

—

input

The

name

(path

included)

of

the

file

to

create.

PartNum

—

input

The

part

number

of

the

base

object

to

export.

″0″

represents

the

first

base

part.

Guidelines

for

Use

The

document

Item

Id

must

be

valid

and

the

document

base

object

must

be

able

to

be

represented

in

a

file.

Visual

Basic

Source

Code

Function

VbVhlExportDocObj

(DocId,

Filename,

PartNum)

’

Declarations

Dim

DocObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlExportDocError

ulRC

=

0

’

Get

the

document

object

Set

DocObj

=

VhlApplObj.ItemID(DocId)

’

Copy

document

base

part

into

file

TempFile

=

DocObj.GetPartFile(PartNum)

Name

TempFile

As

Filename

’

Close

the

document

RC

=

DocObj.CloseParts

VhlExportDocEnd:

’

Free

the

object

Set

DocObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlExportDocObj

=

ulRC

VbVhlDropFuncs

Chapter

6.

Sample

High-Level

Programming

Interface

219

Exit

Function

VhlExportDocError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlExportDocEnd

End

Function

VbVhlGetVIUserID

(Get

the

Logon

User

ID)

Format

VbVhlGetVIUserID()

Purpose

Use

this

function

to

return

the

logged—on

User

Id.

Guidelines

for

Use

A

NULL

User

ID

is

returned

in

case

of

an

error,

say

for

example,

no

logon

session

exists.

Visual

Basic

Source

Code

Function

VbVhlGetVIUserID

()

’

Setup

Error

handler

On

Error

GoTo

VhlGetUserError

ulRC

=

0

’

Set

return

value

to

UserId

VbVhlGetVIUserID

=

VhlApplObj.User

VhlGetUserEnd:

Exit

Function

VhlGetUserError:

’

Set

return

code

to

error

code

VbVhlGetVIUserID

=

VhlErrorObj.ReturnCode

Resume

VhlGetUserEnd

End

Function

VbVhlImportDocObj

(Import

a

Document

Base

Object)

Format

VbVhlImportDocObj(

DocId,

FileName,

ContentClass,

ClassName,

AttrName(),

AttrValue()

)

Purpose

This

function

creates

a

document

base

object

from

a

disk

file

format

of

the

document

base

part.

VbVhlExportDocObj

220

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Parameters

DocId

—

output

The

name

of

the

Visual

Basic

Variable

into

which

the

document

Item

Id

is

stored.

FileName

—

input

The

name

(path

included)

of

the

file

containing

the

document

base

part

(file

extension

is

included).

ContentClass

—

input

The

content

class

name

for

the

file.

ClassName

—

input

The

name

of

the

index

class

for

the

document.

If

NULL

or

not

specified,

the

name

″NOINDEX″

is

used.

AttrName()

—

input

An

array

of

attribute

names

which

correspond

to

the

array

of

attribute

values

in

AttrValue().

These

attribute

names

must

be

defined

for

the

specified

ClassName.

Not

used

if

ClassName

is

NULL.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

AttrValue()

—

input

An

array

of

attribute

values

which

correspond

to

the

array

of

attribute

names

in

AttrName().

These

attribute

values

must

be

valid

for

the

data

type

defined

in

index

class

ClassName

for

this

attribute.

Not

used

if

ClassName

is

NULL.

Note:

Array

index

0

must

contain

the

number

of

array

elements.

Guidelines

for

Use

The

index

class

name

specified

must

exist

prior

to

using

this

function.

Also

the

attribute

names

in

the

input

array

list

must

be

defined

for

this

index

class

and

all

required

attributes

of

the

index

class

must

be

specified

in

the

list.

The

created

document

Item

Id

is

stored

in

the

specified

Visual

Basic

Variable,

DocId.

Visual

Basic

Source

Code

Function

VbVhlImportDocObj

(DocId,

Filename,

ContentClass,

ClassName,

AttrName(),

AttrValue())

’

Declarations

Dim

DocObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlImportDocError

ulRC

=

0

’

Create

the

document

and

add

the

file

Set

DocObj

=

VhlApplObj.CreateDocument("IMPORT")

VbVhlImportDocObj

Chapter

6.

Sample

High-Level

Programming

Interface

221

DocId

=

DocObj.ItemID

ulRC

=

DocObj.AddPart(Filename,

ContentClass)

If

(ulRC

=

0)

And

(ClassName

<>

"")

Then

’

Change

the

Items

Index

Class

ulRC

=

VbVhlChangeItemIndex(DocId,

ClassName,

AttrName(),

AttrValue())

End

If

VhlImportDocEnd:

’

Free

the

object

Set

DocObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlImportDocObj

=

ulRC

Exit

Function

VhlImportDocError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlImportDocEnd

End

Function

VbVhlListContClasses

(List

all

Content

Classes)

Format

VbVhlListContClasses(

CCList()

)

Purpose

Use

this

function

to

list

all

content

classes.

Parameters

CCList()

—

output

The

name

of

the

Visual

Basic

variable

into

which

is

stored

the

list

of

all

content

classes.

This

Visual

Basic

variable

name

will

be

an

array

variable

with

the

index

count

(number

of

content

classes

returned)

stored

in

CCList(0).

The

format

of

the

Visual

Basic

array

is

as

follows:

CCList(0)—

#

of

content

classes

CCList(n)—

Content

Class

name

n

Guidelines

for

Use

This

function

lists

both

the

IBM-defined

Content

Classes

and

the

user-defined

content

classes.

Visual

Basic

Source

Code

Function

VbVhlListContClasses

(CCList())

’

Declarations

Dim

i,

ulStart,

ulEnd,

ulLen,

ulTotLen

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlContListError

ulRC

=

0

’

Get

the

list

of

Cont

Classes

VbVhlImportDocObj

222

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

strRet

=

VhlApplObj.ContentClassList(";")

ulTotLen

=

Len(strRet)

’

Add

Cont

classes

to

List

array

i

=

0

ReDim

CCList(1)

CCList(0)

=

0

ulStart

=

1

Do

’

Each

name

separated

by

a

";"

ulEnd

=

InStr(ulStart,

strRet,

";")

If

(ulEnd

=

0)

Then

ulEnd

=

ulTotLen

+

1

End

If

ulLen

=

ulEnd

-

ulStart

’

Set

next

array

variable

to

Cont

Class

name

i

=

i

+

1

ReDim

Preserve

CCList(i

+

1)

CCList(i)

=

Mid$(strRet,

ulStart,

ulLen)

’

Setup

for

next

loop

ulStart

=

ulEnd

+

1

Loop

Until

(ulStart

>=

ulTotLen)

’

Set

total

number

of

Cont

Classes

in

array

CCList(0)

=

i

VhlContListEnd:

’

Set

return

value

to

error

code

VbVhlListContClasses

=

ulRC

Exit

Function

VhlContListError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlContListEnd

End

Function

VbVhlListFolderItems

(List

Folder

Contents)

Format

VbVhlListFolderItems(

ItemList(),

FolderID,

IndexClass()

)

Purpose

Use

this

function

to

list

all

document

and

folder

Item

IDs

contained

in

a

folder

(specified

by

the

folder’s

Item

ID),

and

matching

the

optional

index

classes

array

specification.

Parameters

ItemList()

—

output

The

name

of

the

Visual

Basic

Variable

into

which

is

stored

the

list

of

documents

and

folders

contained

in

the

specified

folder’s

table

of

contents

and

also

matching

the

optional

index

classes.

This

Visual

Basic

Variable

VbVhlListContClasses

Chapter

6.

Sample

High-Level

Programming

Interface

223

name

will

be

an

array

variable

with

the

index

count

(number

of

Item

IDs

returned)

stored

in

ItemList(0,0),

and

for

each

returned

item,

a

structure

of

three

Visual

Basic

array

elements

are

created,

such

as:

ItemList(n,1)—

Item

ID

ItemList(n,2)—

Item

Type

——(1)Document

——(2)Folder

——(?)Unknown

ItemList(n,3)—

Index

class

FolderID

—

input

The

Item

Id

of

the

folder

to

list.

IndexClass()

—

input

Optional

index

classes

to

filter

the

items

returned.

If

no

elements

specified,

all

the

items

in

the

Folder’s

table

of

contents

will

be

returned,

regardless

of

its

index

class.

Note:

Array

index

0

must

contain

the

number

of

array

elements

in

the

list.

Guidelines

for

Use

The

folder

Item

Id

must

exist

prior

to

this

call.

This

function

can

also

be

used

to

list

the

contents

of

a

workbasket.

Visual

Basic

Source

Code

Function

VbVhlListFolderItems

(ItemList(),

FolderId,

IndexClass())

’

Declarations

Dim

FolderObj

As

Object

Dim

ContentObj

As

Object

Dim

ulTOCCnt,

ulStart,

ulEnd,

ulLen,

ulTotLen

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlLstFldError

ulRC

=

0

’

Get

the

Folder

Object

Set

FolderObj

=

VhlApplObj.ItemID(FolderId)

’

Setup

return

array

based

on

size

of

folder

ulTOCCnt

=

FolderObj.TOCCount

ReDim

ItemList(ulTOCCnt

+

1,

4)

ItemList(0,

0)

=

0

’

Get

the

list

of

Item

Objects

in

the

Folder

j

=

1

For

i

=

1

To

ulTOCCnt

Set

ContentObj

=

FolderObj.GetTOCItem(i

-

1)

ItemList(j,

0)

=

3

ItemList(j,

1)

=

ContentObj.ItemID

ItemList(j,

2)

=

ContentObj.Type

ItemList(j,

3)

=

ContentObj.Class

Set

ContentObj

=

Nothing

’

Check

if

Index

Class

filter

was

provided

Found

=

False

If

IndexClass(0)

<>

0

Then

For

k

=

1

To

IndexClass(0)

If

IndexClass(k)

=

ItemList(j,

3)

Then

VbVhlListFolderItems

224

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Found

=

True

Exit

For

End

If

Next

k

Else

Found

=

True

End

If

’

Only

send

back

Items

found

in

Index

Class

list

If

Found

Then

ItemList(0,

0)

=

j

j

=

j

+

1

End

If

Next

i

VhlLstFldEnd:

’

Free

the

objects

Set

ContentObj

=

Nothing

Set

FolderObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlListFolderItems

=

ulRC

Exit

Function

VhlLstFldError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlLstFldEnd

End

Function

VbVhlListFolderItemsAttr

(List

Folder

Contents

and

Their

Attributes)

Format

VbVhlListFolderItemsAttr(

ItemList(),

FolderId

)

Purpose

Use

this

function

to

list

all

document

and

folder

Item

Ids

contained

in

a

folder

(specified

by

the

folder’s

Item

Id).

Parameters

ItemList()

—

output

The

name

of

the

Visual

Basic

Variable

into

which

is

stored

the

list

of

documents

and

folders

contained

in

the

specified

folder’s

table

of

contents.

This

Visual

Basic

Variable

name

will

be

an

array

variable

with

the

index

count

(number

of

Item

IDs

returned)

stored

in

ItemList(0,0),

and

for

each

returned

item,

a

structure

of

Visual

Basic

array

elements

are

created,

such

as:

ItemList(n,0)—

size

of

array

ItemList(n,1)—

Item

ID

ItemList(n,2)—

Item

Type

——(1)Document

VbVhlListFolderItems

Chapter

6.

Sample

High-Level

Programming

Interface

225

——(2)Folder

——(?)Unknown

ItemList(n,3)—

Index

class

ItemList(n,3+m)

—

Attribute

name

m

ItemList(n,3+m)

—

Attribute

value

m

FolderId

—

input

The

Item

Id

of

the

folder

to

list.

Guidelines

for

Use

The

folder

Item

Id

must

exist

prior

to

this

call.

This

function

can

also

be

used

to

list

the

contents

of

a

workbasket.

Visual

Basic

Source

Code

Function

VbVhlListFolderItemsAttr

(ItemList(),

FolderId)

’

Declarations

Dim

FolderObj

As

Object

Dim

ContentObj

As

Object

Dim

ulTOCCnt,

ulStart,

ulEnd,

ulLen,

ulTotLen

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlLstFldAttrError

ulRC

=

0

’

Get

the

Folder

Object

Set

FolderObj

=

VhlApplObj.ItemID(FolderId)

’

Setup

return

array

based

on

size

of

folder

ulTOCCnt

=

FolderObj.TOCCount

ReDim

ItemList(ulTOCCnt

+

1,

4)

ItemList(0,

0)

=

0

’

Get

the

list

of

Item

Objects

in

the

Folder

For

i

=

1

To

ulTOCCnt

Set

ContentObj

=

FolderObj.GetTOCItem(i

-

1)

ItemList(i,

1)

=

ContentObj.ItemID

ItemList(i,

2)

=

ContentObj.Type

ItemList(i,

3)

=

ContentObj.Class

ItemList(0,

0)

=

i

ItemList(i,

0)

=

3

’

Get

the

list

of

Index

Class

attributes

strRet

=

VhlApplObj.ClassKeyFieldList(ContentObj.Class,

";")

ulTotLen

=

Len(strRet)

j

=

3

ulStart

=

1

’

Add

attributes

to

List

array

Do

’

Each

name

separated

by

a

";"

ulEnd

=

InStr(ulStart,

strRet,

";")

If

(ulEnd

=

0)

Then

ulEnd

=

ulTotLen

+

1

End

If

ulLen

=

ulEnd

-

ulStart

AttrName

=

Mid$(strRet,

ulStart,

ulLen)

’

Set

next

array

variables

to

attribute

name

and

value

j

=

j

+

1

ReDim

Preserve

ItemList(i,

j

+

2)

ItemList(i)

=

AttrName

j

=

j

+

1

VbVhlListFolderItemsAttr

226

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

ItemList(i,

j)

=

ContentObj.KeyFields(AttrName)

’

Setup

for

next

loop

ulStart

=

ulEnd

+

1

Loop

Until

(ulStart

>=

ulTotLen)

’

Reset

total

number

of

variables

in

array

ItemList(i,

0)

=

j

’

Free

the

current

Item

object

Set

ContentObj

=

Nothing

Next

i

VhlLstFldAttrEnd:

’

Free

the

objects

Set

ContentObj

=

Nothing

Set

FolderObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlListFolderItemsAttr

=

ulRC

Exit

Function

VhlLstFldAttrError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlLstFldAttrEnd

End

Function

VbVhlListIndexClassAttr

(List

All

Attributes

Of

an

Index

Class)

Format

VbVhlListIndexClassAttr(

AttrList(),

ClassName

)

Purpose

This

function

lists

all

the

attributes

of

a

specified

Index

Class.

Parameters

AttrList()

—

output

The

name

of

the

Visual

Basic

variable

into

which

is

stored

the

list

of

all

the

attribute

names

of

the

specified

Index

Class

name.

This

Visual

Basic

variable

name

will

be

a

array

variable

with

the

index

count

(number

of

attributes

returned)

stored

in

AttrList(0).

The

format

of

the

Visual

Basic

array

is

as

follows:

AttrList(0)—

#

of

attributes

AttrList(n)—

Attribute

Name

n

ClassName

—

input

The

Index

class

name

for

which

all

attribute

names

are

to

be

listed.

VbVhlListFolderItemsAttr

Chapter

6.

Sample

High-Level

Programming

Interface

227

Guidelines

for

Use

This

function

lists

only

attributes

of

an

Index

Class

name

for

which

the

user

has

access.

Visual

Basic

Source

Code

Function

VbVhlListIndexClassAttr

(AttrList(),

ClassName)

’

Declarations

Dim

i,

ulStart,

ulEnd,

ulLen,

ulTotLen

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlClassAttrError

ulRC

=

0

’

Get

the

list

of

Index

Class

attributes

strRet

=

VhlApplObj.ClassKeyFieldList(ClassName,

";")

ulTotLen

=

Len(strRet)

’

Add

attributes

to

List

array

i

=

0

ReDim

AttrList(1)

AttrList(0)

=

0

ulStart

=

1

Do

’

Each

name

separated

by

a

";"

ulEnd

=

InStr(ulStart,

strRet,

";")

If

(ulEnd

=

0)

Then

ulEnd

=

ulTotLen

+

1

End

If

ulLen

=

ulEnd

-

ulStart

’

Set

next

array

variable

to

attribute

name

i

=

i

+

1

ReDim

Preserve

AttrList(i

+

1)

AttrList(i)

=

Mid$(strRet,

ulStart,

ulLen)

’

Setup

for

next

loop

ulStart

=

ulEnd

+

1

Loop

Until

(ulStart

>=

ulTotLen)

’

Set

total

number

of

attributes

in

array

AttrList(0)

=

i

VhlClassAttrEnd:

’

Set

return

value

to

error

code

VbVhlListIndexClassAttr

=

ulRC

Exit

Function

VhlClassAttrError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlClassAttrEnd

End

Function

VbVhlListIndexClassAttr

228

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

VbVhlListIndexClasses

(List

all

Index

Classes)

Format

VbVhlListIndexClasses(

IxClassList()

)

Purpose

Use

this

function

to

list

all

user

accessible

Index

Classes.

Parameters

IxClassList()

—

output

The

name

of

the

Visual

Basic

variable

into

which

is

stored

the

returned

Index

Classes.

This

Visual

Basic

variable

name

will

be

an

array

variable

with

the

index

count

(number

of

index

classes

returned)

stored

in

IxClassList(0).

The

format

of

the

Visual

Basic

array

is

as

follows:

IxClassList(0)—

#

of

index

classes

IxClassList(n)—

Index

Class

name

n

Visual

Basic

Source

Code

Function

VbVhlListIndexClasses

(IxClassList())

’

Declarations

Dim

i,

ulStart,

ulEnd,

ulLen,

ulTotLen

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlClassListError

ulRC

=

0

’

Get

the

list

of

Index

Classes

strRet

=

VhlApplObj.ClassList(";")

ulTotLen

=

Len(strRet)

’

Add

Index

classes

to

List

array

i

=

0

ReDim

IxClassList(1)

IxClassList(0)

=

0

ulStart

=

1

Do

’

Each

name

separated

by

a

";"

ulEnd

=

InStr(ulStart,

strRet,

";")

If

(ulEnd

=

0)

Then

ulEnd

=

ulTotLen

+

1

End

If

ulLen

=

ulEnd

-

ulStart

’

Set

next

array

variable

to

Index

Class

name

i

=

i

+

1

ReDim

Preserve

IxClassList(i

+

1)

IxClassList(i)

=

Mid$(strRet,

ulStart,

ulLen)

’

Setup

for

next

loop

ulStart

=

ulEnd

+

1

Loop

Until

(ulStart

>=

ulTotLen)

’

Set

total

number

of

Index

Classes

in

array

IxClassList(0)

=

i

VhlClassListEnd:

VbVhlListIndexClasses

Chapter

6.

Sample

High-Level

Programming

Interface

229

’

Set

return

value

to

error

code

VbVhlListIndexClasses

=

ulRC

Exit

Function

VhlClassListError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlClassListEnd

End

Function

VbVhlListItemCC

(List

a

Base

Object’s

Content

Class)

Format

VbVhlListItemCC(

ItemCC,

ItemId,

PartNum

)

Purpose

This

function

lists

the

Content

Class

associated

with

a

base

object

of

the

specified

Item

Id.

Parameters

ItemCC

—

output

The

name

of

the

Visual

Basic

Variable

into

which

is

stored

the

returned

Content

Class

name.

ItemId

—

input

The

Item

Id.

PartNum

—

input

The

part

number

of

the

document

to

return

content

class

information.

″0″

represents

the

first

base

part.

Guidelines

for

Use

The

Item

Id

must

exist

prior

to

this

call.

Visual

Basic

Source

Code

Function

VbVhlListItemCC

(ItemCC,

ItemId,

PartNum)

’

Declarations

Dim

ItemObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlItemCCError

ulRC

=

0

’

Get

the

Item

object

Set

ItemObj

=

VhlApplObj.ItemID(ItemId)

’

Copy

content

class

of

document

base

part

ItemCC

=

ItemObj.GetPartContentClass(PartNum)

VhlItemCCEnd:

VbVhlListIndexClasses

230

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

’

Free

the

object

Set

ItemObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlListItemCC

=

ulRC

Exit

Function

VhlItemCCError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlItemCCEnd

End

Function

VbVhlListItemInfo

(List

an

Item’s

Index

Class

and

Attribute

Information)

Format

VbVhlListItemInfo(

ItemInfo(),

ItemId

)

Purpose

This

function

lists

information

about

the

specified

Item

Id

such

as

—

item

type,

index

class

type,

and

attribute

names

and

values.

Parameters

ItemInfo

—

output

The

name

of

the

Visual

Basic

Variable

into

which

is

stored

the

item

information.

This

Visual

Basic

Variable

name

will

be

an

array

variable

with

the

index

count

(size

of

the

array

variable)

stored

in

ItemInfo(0),

and

a

structure

such

as:

ItemInfo(0)—

array

size

ItemInfo(1)—

Item

ID

ItemInfo(2)—

Item

Type

——(1)Document

——(2)Folder

——(3)Workbasket

——(?)Unknown

ItemInfo(3)—

Index

class

ItemInfo(3+m)

—

Attribute

name

m

ItemInfo(3+m)

—

Attribute

value

m

ItemId

—

input

The

Item

Id.

Guidelines

for

Use

The

Item

Id

must

exist

prior

to

this

call.

Index

class

and

attribute

information

do

not

pertain

to

workbasket

items.

VbVhlListItemCC

Chapter

6.

Sample

High-Level

Programming

Interface

231

Visual

Basic

Source

Code

Function

VbVhlListItemInfo

(ItemList(),

ItemID)

’

Declarations

Dim

ItemObj

As

Object

Dim

ulTOCCnt,

ulStart,

ulEnd,

ulLen,

ulTotLen

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlListInfoError

ulRC

=

0

’

Get

the

Item

Object

Set

ItemObj

=

VhlApplObj.ItemID(ItemID)

’

Get

the

list

of

Item

Objects

in

the

Folder

ReDim

ItemList(10)

ItemList(0)

=

3

ItemList(1)

=

ItemObj.ItemID

ItemList(2)

=

ItemObj.Type

ItemList(3)

=

ItemObj.Class

’

Workbaskets

don’t

have

attributes

If

ItemList(2)

>

2

Then

GoTo

VhlListInfoEnd

End

If

’

Get

the

list

of

Index

Class

attributes

strRet

=

VhlApplObj.ClassKeyFieldList(ItemObj.Class,

";")

ulTotLen

=

Len(strRet)

i

=

3

ulStart

=

1

’

Add

attributes

to

List

array

Do

’

Each

name

separated

by

a

";"

ulEnd

=

InStr(ulStart,

strRet,

";")

If

(ulEnd

=

0)

Then

ulEnd

=

ulTotLen

+

1

End

If

ulLen

=

ulEnd

-

ulStart

AttrName

=

Mid$(strRet,

ulStart,

ulLen)

’

Set

next

array

variables

to

attribute

name

and

value

i

=

i

+

1

ReDim

Preserve

ItemList(i

+

2)

ItemList(i)

=

AttrName

i

=

i

+

1

ItemList(i)

=

ItemObj.KeyFields(AttrName)

’

Setup

for

next

loop

ulStart

=

ulEnd

+

1

Loop

Until

(ulStart

>=

ulTotLen)

’

Set

total

number

of

variables

in

array

ItemList(0)

=

i

VhlListInfoEnd:

’

Free

the

objects

Set

ItemObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlListItemInfo

=

ulRC

Exit

Function

VhlListInfoError:

VbVhlListItemInfo

232

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlListInfoEnd

End

Function

VbVhlListWBItems

(List

Workbasket

Contents)

Format

VbVhlListWBItems(

ItemList(),

WorkBasket

)

Purpose

This

function

lists

all

the

document

and

folder

Item

Ids

that

are

contained

in

the

workbasket

(specified

by

name).

Parameters

ItemList()

—

output

The

name

of

the

Visual

Basic

Variable

into

which

the

Item

Ids

are

stored.

This

Visual

Basic

Variable

name

will

be

an

array

variable

with

the

number

of

items

stored

in

ItemList(0),

and

the

Item

Ids

in

ItemList(1)

through

ItemList(n).

WorkBasket

—

input

The

workbasket

name.

Guidelines

for

Use

The

workbasket

name

must

be

valid.

Visual

Basic

Source

Code

Function

VbVhlListWBItems

(ItemList(),

WBItemID)

’

Declarations

Dim

WBObj

As

Object

Dim

ContentObj

As

Object

Dim

ulTOCCnt

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlLstWBItemError

ulRC

=

0

’

Get

the

WB

Object

Set

WBObj

=

VhlApplObj.ItemID(WBItemID)

’

Setup

return

array

based

on

size

of

WB

ulTOCCnt

=

WBObj.TOCCount

ReDim

ItemList(ulTOCCnt

+

1)

ItemList(0)

=

0

’

Get

the

list

of

Item

Objects

in

the

WB

j

=

1

For

i

=

1

To

ulTOCCnt

Set

ContentObj

=

WBObj.GetTOCItem(i

-

1)

ItemList(j)

=

ContentObj.ItemID

Set

ContentObj

=

Nothing

ItemList(0)

=

j

j

=

j

+

1

VbVhlListItemInfo

Chapter

6.

Sample

High-Level

Programming

Interface

233

Next

i

VhlLstWBItemEnd:

’

Free

the

objects

Set

ContentObj

=

Nothing

Set

WBObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlListWBItems

=

ulRC

Exit

Function

VhlLstWBItemError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlLstWBItemEnd

End

Function

VbVhlListWorkBaskets

(List

All

Workbasket

Names)

Format

VbVhlListWorkBaskets(

WkBasketList()

)

Purpose

Use

this

function

to

list

all

the

workbasket

names

and

descriptions.

Parameters

WkBasketList()

—

output

The

name

of

the

Visual

Basic

variable

into

which

is

stored

the

list

of

defined

workbasket

names.

This

Visual

Basic

variable

name

will

be

an

array

variable

with

the

index

count

(number

of

workbaskets

returned)

stored

in

WkBasketList(0).

and

the

workbasket

names

stored

in

WkBasketList(1)

through

WkBasketList(n).

Visual

Basic

Source

Code

Function

VbVhlListWorkBaskets

(WBList())

’

Declarations

Dim

i,

ulStart,

ulEnd,

ulLen,

ulTotLen

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlListWBError

ulRC

=

0

’

Get

the

list

of

WorkBaskets

strRet

=

VhlApplObj.WorkBasketList(";")

ulTotLen

=

Len(strRet)

’

Add

Index

classes

to

List

array

i

=

0

ReDim

WBList(1)

WBList(0)

=

0

ulStart

=

1

Do

’

Each

name

separated

by

a

";"

VbVhlListWBItems

234

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

ulEnd

=

InStr(ulStart,

strRet,

";")

If

(ulEnd

=

0)

Then

ulEnd

=

ulTotLen

+

1

End

If

ulLen

=

ulEnd

-

ulStart

’

Set

next

array

variable

to

Index

Class

name

i

=

i

+

1

ReDim

Preserve

WBList(i

+

1)

WBList(i)

=

Mid$(strRet,

ulStart,

ulLen)

’

Setup

for

next

loop

ulStart

=

ulEnd

+

1

Loop

Until

(ulStart

>=

ulTotLen)

’

Set

total

number

of

Index

Classes

in

array

WBList(0)

=

i

VhlListWBEnd:

’

Set

return

value

to

error

code

VbVhlListWorkBaskets

=

ulRC

Exit

Function

VhlListWBError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlListWBEnd

End

Function

VbVhlLoadFuncs

(Get

Access

to

VHLPI

Functions)

Format

VbVhlLoadFuncs()

Purpose

Use

this

function

to

gain

access

to

the

VHLPI

functions

for

Visual

Basic.

This

allows

the

Visual

Basic

program

to

call

these

functions.

Guidelines

for

Use

After

executing

this

function,

the

Visual

Basic

program

can

call

any

VHLPI

function.

To

terminate

access

to

these

functions,

use

the

VbVhlDropFuncs

function.

Visual

Basic

Source

Code

Function

VbVhlLoadFuncs

()

’

Setup

Error

handler

On

Error

GoTo

VhlLoadError

ulRC

=

0

’

Get

the

application

object

Set

VhlApplObj

=

CreateObject("Vic.Application")

’

Setup

Global

Application

Objects

Set

VhlDocsObj

=

VhlApplObj.Documents

Set

VhlErrorObj

=

VhlApplObj.Error

VhlLoadEnd:

VbVhlListWorkBaskets

Chapter

6.

Sample

High-Level

Programming

Interface

235

’

Set

return

value

to

error

code

VbVhlLoadFuncs

=

ulRC

Exit

Function

VhlLoadError:

’

Set

return

code

to

error

code

ulRC

=

Err

Resume

VhlLoadEnd

End

Function

VbVhlLogoff

(End

Access

to

IBM

Content

Manager

for

iSeries)

Format

VbVhlLogoff()

Purpose

Use

this

API

to

end

access

and

close

the

Client

for

Windows.

Any

subsequent

use

of

the

VHLPI

functions

will

fail.

Guidelines

for

Use

After

executing

this

function,

the

Client

for

Windows

will

be

closed

and

no

Visual

Basic

program

can

call

VHLPI

functions.

To

establish

access

to

these

functions,

use

the

VbVhlLogon

API.

Visual

Basic

Source

Code

Function

VbVhlLogoff

()

’

Setup

Error

handler

On

Error

GoTo

VhlLogoffError

’

Logoff

from

the

system

ulRC

=

0

VhlApplObj.Quit

Set

VhlDocsObj

=

Nothing

Set

VhlErrorObj

=

Nothing

Set

VhlApplObj

=

Nothing

VhlLogoffEnd:

’

Set

return

value

to

error

code

VbVhlLogoff

=

ulRC

Exit

Function

VhlLogoffError:

’

Set

return

code

to

error

code

ulRC

=

Err

Resume

VhlLogoffEnd

End

Function

VbVhlLoadFuncs

236

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

VbVhlLogon

(Get

Access

to

IBM

Content

Manager

for

iSeries)

Format

VbVhlLogon()

Purpose

Use

this

function

to

logon

and

gain

access

to

the

VHLPI

functions

for

Visual

Basic.

This

allows

the

Visual

Basic

program

to

call

these

functions.

Guidelines

for

Use

After

executing

this

function,

the

Visual

Basic

program

can

call

any

VHLPI

function.

To

logoff

and

close

the

Client

for

Windows,

use

the

VbVhlLogoff

function.

To

simply

terminate

access

to

these

functions,

use

the

VbVhlDropFuncs

function.

Visual

Basic

Source

Code

Function

VbVhlLogon

(UserId,

Password,

LibServer)

’

Setup

Error

handler

On

Error

GoTo

VhlLogonError

ulRC

=

0

’

Get

the

application

object

Set

VhlApplObj

=

CreateObject("Vic.Application")

’

Set

logon

information

VhlApplObj.User

=

UserId

VhlApplObj.Server

=

LibServer

VhlApplObj.Password

=

Password

’

Display

the

Logon

screen

and

Log

onto

the

system

ulRC

=

VhlApplObj.Logon

If

(ulRC

=

0)

Then

’

Setup

Global

Application

Objects

Set

VhlDocsObj

=

VhlApplObj.Documents

Set

VhlErrorObj

=

VhlApplObj.Error

Else

’

Release

application

object

Set

VhlApplObj

=

Nothing

End

If

VhlLogonEnd:

’

Set

return

value

to

error

code

VbVhlLogon

=

ulRC

Exit

Function

VhlLogonError:

’

Set

return

code

to

error

code

ulRC

=

Err

Resume

VhlLogonEnd

End

Function

VbVhlLogon

Chapter

6.

Sample

High-Level

Programming

Interface

237

VbVhlRemoveFolderItem

(Remove

an

Item

From

a

Folder)

Format

VbVhlRemoveFolderItem(

ItemId,

FolderId

)

Purpose

This

function

removes

a

document

or

folder

(specified

by

Item

Id)

from

a

folder

(specified

by

the

folder’s

Item

Id).

Parameters

ItemId

—

input

The

Item

Id

for

the

document

or

folder

to

be

removed.

FolderId

—

input

The

Item

Id

for

the

folder.

Guidelines

for

Use

The

document

or

folder

specified

is

NOT

physically

deleted.

It

is

simply

disassociated

with

the

folder.

Visual

Basic

Source

Code

Function

VbVhlRemoveFolderItem

(ItemID,

FolderId)

’

Declarations

Dim

ItemObj

As

Object

Dim

FolderObj

As

Object

’

Setup

Error

handler

On

Error

GoTo

VhlRemFolderError

ulRC

=

0

’

Get

the

Folder

Object

Set

FolderObj

=

VhlApplObj.ItemID(FolderId)

’

Get

the

ItemID

Object

Set

ItemObj

=

VhlApplObj.ItemID(ItemID)

’

Put

ItemId

into

Folder

ulRC

=

ItemObj.RemoveFromFolder(FolderObj)

VhlRemFolderEnd:

’

Free

the

objects

Set

ItemObj

=

Nothing

Set

FolderObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlRemoveFolderItem

=

ulRC

Exit

Function

VhlRemFolderError:

’

Set

return

value

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlRemFolderEnd

End

Function

VbVhlRemoveFolderItem

238

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

VbVhlScanDoc

(Scan

Documents)

Format

VbVhlScanDoc()

Purpose

This

function

invokes

the

Scan

facility.

This

enables

the

user

to

scan

images

and

create

new

documents.

The

created

document’s

Item

Ids

will

not

be

returned

when

the

user

closes

the

Scan

window.

Guidelines

for

Use

The

user

interacts

with

the

Scan

facility

to

perform

the

work.

Hence

the

user

controls

how

and

when

documents

are

created

via

his

commands

to

the

Scan

facility.

Visual

Basic

Source

Code

Function

VbVhlScanDoc

()

’

Setup

Error

handler

On

Error

GoTo

VhlScanDocError

ulRC

=

0

’

Scan

some

documents

VhlApplObj.OpenScan

VhlScanDocEnd:

Exit

Function

VhlScanDocError:

’

Set

return

code

to

error

code

VbVhlScanDoc

=

VhlErrorObj.ReturnCode

Resume

VhlScanDocEnd

End

Function

VbVhlSearchAdv

(Advanced

Search

for

Items)

Format

VbVhlSearchAdv(

ItemList(),

ClassName,

Criteria,

TypeFilter,

WIPFilter,

SuspendFilter

)

Purpose

This

function

lists

all

the

Item

Ids

matching

the

supplied

search

criteria.

The

list

of

returned

Item

Ids

can

be

filtered

based

upon

the

values

supplied

for

the

various

filter

parameters.

Parameters

ItemList()

—

output

VbVhlScanDoc

Chapter

6.

Sample

High-Level

Programming

Interface

239

The

name

of

the

Visual

Basic

Variable

into

which

the

document

list

of

Item

Ids

is

stored.

This

Visual

Basic

Variable

name

will

be

an

array

variable

with

the

number

of

items

stored

in

ItemList(0),

and

the

Item

Ids

in

ItemList(1)

through

ItemList(n).

ClassName

—

input

The

name

of

the

index

class.

Criteria

—

input

The

search

criteria.

See

“Guidelines

for

Use.”

TypeFilter

—

input

The

type

value

of

item

to

search

for.

Valid

values

are

—

v

1(SIM_DOCUMENT)

v

2(SIM_FOLDER)

v

other(SIM_FOLDER_DOC)

WIPFilter

—

input

The

Work

In

Progress

status

for

items

to

return.

The

values

for

WIP

status

can

be

ORed

together

if

more

than

one

criteria

is

desired.

Valid

values

are

—

v

1(OIM_ITEMS_NOT_IN_WORKFLOW)

v

2(OIM_CURRENT_WORKFLOW_ITEMS)

v

4(OIM_CANCELLED_WORKFLOW_ITEMS)

v

8(OIM_COMPLETED_WORKFLOW_ITEMS)

SuspendFilter

—

input

The

suspension

status

for

items

to

return.

Valid

values

are

—

v

1(OIM_ITEMS_NOT_SUSPENDED)

v

2(OIM_ITEMS_SUSPENDED)

v

other(OIM_ITEMS_ALL)

Guidelines

for

Use

The

specified

index

class

name

must

exist

prior

to

using

this

function.

Also

the

Attribute

Ids

in

the

search

specification

must

be

defined

for

this

index

class.

The

syntax

of

the

search

criteria

is

—

″Attribute

Operator

Value″

where

v

Attribute

is

the

Id

of

an

attribute

which

must

be

defined

in

IBM

Content

Manager

for

iSeries.

This

attribute

Id

is

in

the

format,

Annn,

where

nnn

is

the

attribute

number.

v

Operator

is

a

text

string

representing

the

operation

where

valid

″Operator″

values

are

EQ,

==,

LEQ,

<=,

GEQ,

>=,

LT,

<,

GT,

>,

NEQ,

<>,

IN,

NOTIN,

LIKE,

NOTLIKE,

BETWEEN,

NOTBETWEEN.

v

Value

can

be

text,

numbers,

or

the

word

NULL.

The

″Value″

text

can

also

contain

the

character

’%’

which

matches

any

characters

or

the

character

’_’

which

matches

any

single

character.

Examples

of

valid

″Operator

Value″

search

criteria

are:

–

″LIKE

E%″

VbVhlSearchAdv

240

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

–

″<

123″

–

″==

NULL″

The

system

uses

the

search

criteria

to

find

any

matching

Item

Ids

in

the

database,

via

a

dynamic

SQL

query.

Visual

Basic

Source

Code

Function

VbVhlSearchAdv

(ItemList(),

ClassName,

Criteria,

TypeFilter,

WIPFilter,

SuspendFilter)

’

Declarations

Dim

FolderObj

As

Object

Dim

ContentObj

As

Object

Dim

ulTOCCnt,

ulStart,

ulEnd,

ulLen,

ulTotLen

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlSearchAdvError

ulRC

=

0

’

Get

the

search

results

folder

Set

FolderObj

=

VhlApplObj.Search(ClassName,

Criteria,

TypeFilter,

WIPFilter,

SuspendFilter)

’

Setup

return

array

based

on

size

of

folder

ulTOCCnt

=

FolderObj.TOCCount

ReDim

ItemList(ulTOCCnt

+

1)

ItemList(0)

=

0

’

Get

the

list

of

Item

Objects

in

the

Folder

For

i

=

1

To

ulTOCCnt

Set

ContentObj

=

FolderObj.GetTOCItem(i

-

1)

ItemList(i)

=

ContentObj.ItemID

Set

ContentObj

=

Nothing

ItemList(0)

=

i

Next

VhlSearchAdvEnd:

’

Free

the

objects

Set

ContentObj

=

Nothing

Set

FolderObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlSearchAdv

=

ulRC

Exit

Function

VhlSearchAdvError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlSearchAdvEnd

End

Function

VbVhlSearchItem

(Search

for

Items)

Format

VbVhlSearchItem(

ItemList(),

ClassName,

Criteria

)

VbVhlSearchAdv

Chapter

6.

Sample

High-Level

Programming

Interface

241

Purpose

This

function

lists

all

the

Item

Ids

of

the

specified

index

class

name,

which

contain

attribute

names/values

matching

the

supplied

search

criteria.

Parameters

ItemList()

—

output

The

name

of

the

Visual

Basic

Variable

into

which

the

document

list

of

Item

Ids

is

stored.

This

Visual

Basic

Variable

name

will

be

an

array

variable

with

the

number

of

items

stored

in

ItemList(0),

and

the

Item

Ids

in

ItemList(1)

through

ItemList(n).

ClassName

—

input

The

name

of

the

index

class.

Criteria

—

input

The

search

criteria.

See

“Guidelines

for

Use”

on

page

240.

Guidelines

for

Use

The

specified

index

class

name

must

exist

prior

to

using

this

function.

Also

the

Attribute

Ids

in

the

search

specification

must

be

defined

for

this

index

class.

The

syntax

of

the

search

criteria

is

—

″Attribute

Operator

Value″

where

v

Attribute

is

the

Id

of

an

attribute

which

must

be

defined.

This

attribute

Id

is

in

the

format,

Annn,

where

nnn

is

the

attribute

number.

v

Operator

is

a

text

string

representing

the

operation

where

valid

″Operator″

values

are

EQ,

==,

LEQ,

<=,

GEQ,

>=,

LT,

<,

GT,

>,

NEQ,

<>,

IN,

NOTIN,

LIKE,

NOTLIKE,

BETWEEN,

NOTBETWEEN.

v

Value

can

be

text,

numbers,

or

the

word

NULL.

The

″Value″

text

can

also

contain

the

character

’%’

which

matches

any

characters

or

the

character

’_’

which

matches

any

single

character.

Examples

of

valid

″Operator

Value″

search

criteria

are:

–

″LIKE

E%″

–

″<

123″

–

″==

NULL″

The

system

uses

the

search

criteria

to

find

any

matching

Item

Ids

in

the

database,

via

a

dynamic

SQL

query.

Visual

Basic

Source

Code

Function

VbVhlSearchItem

(ItemList(),

ClassName,

Criteria)

’

Declarations

Dim

FolderObj

As

Object

Dim

ContentObj

As

Object

Dim

ulTOCCnt,

ulStart,

ulEnd,

ulLen,

ulTotLen

As

Long

’

Setup

Error

handler

On

Error

GoTo

VhlSearchError

ulRC

=

0

’

Get

the

search

results

folder

Set

FolderObj

=

VhlApplObj.Search(ClassName,

Criteria)

VbVhlSearchItem

242

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

’

Setup

return

array

based

on

size

of

folder

ulTOCCnt

=

FolderObj.TOCCount

ReDim

ItemList(ulTOCCnt

+

1)

ItemList(0)

=

0

’

Get

the

list

of

Item

Objects

in

the

Folder

For

i

=

1

To

ulTOCCnt

Set

ContentObj

=

FolderObj.GetTOCItem(i

-

1)

ItemList(i)

=

ContentObj.ItemID

Set

ContentObj

=

Nothing

ItemList(0)

=

i

Next

VhlSearchEnd:

’

Free

the

objects

Set

ContentObj

=

Nothing

Set

FolderObj

=

Nothing

’

Set

return

value

to

error

code

VbVhlSearchItem

=

ulRC

Exit

Function

VhlSearchError:

’

Set

return

code

to

error

code

ulRC

=

VhlErrorObj.ReturnCode

Resume

VhlSearchEnd

End

Function

VbVhlSearchItem

Chapter

6.

Sample

High-Level

Programming

Interface

243

VbVhlSearchItem

244

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Chapter

7.

Content

Manager

for

iSeries

Programming

Interface

APIs

on

the

Server

Server

Versions

of

the

Content

Manager

for

iSeries

Client

APIs

The

Content

Manager

for

iSeries

client

APIs

are

also

available

as

equivalent

server

APIs

for

the

Content

Manager

for

iSeries.

Sample

programs

using

some

of

these

APIs

are

available

in

COBOL,

RPG

and

C.

For

information,

refer

to

the

sample

programs

in

the

QSMPSRC

source

file

in

your

QVI

library.

Also

provided

are

sample

data

structures

in

the

following

source

files:

QVIRPGCPY,

QVICBLCPY

and

H.

Create

your

custom

modules

using

ILE

C/400®,

ILE

COBOL/400®,

ILE

RPG/400®,

or

VisualAge/400.

Then

create

a

program

binding

your

new

modules

with

service

program

QVIAPI.

The

Content

Manager

for

iSeries

Application

Programming

Guide

&

Reference

(SC23–4586)

may

be

used

as

a

reference,

noting

these

differences:

v

Pointers

are

16

bytes

on

the

Content

Manager

for

iSeries,

so

all

pointers

returned

in

the

RCSTRUCT

are

accessed

through

pParam2

instead

of

ulParam1

and

ulParam2.

v

When

running

the

APIs

on

the

Content

Manager

for

iSeries,

the

server

code

is

run

in

the

same

job

space

as

the

application

calling

the

APIs

–

a

separate

job

is

not

started.

v

Only

image

data

accessible

on

the

Content

Manager

for

iSeries

can

be

opened

through

SimLibOpenObject.

v

Two

workstation

APIs

do

not

have

equivalent

server

versions.

Sim400SendReceive

and

Sim400ConvertCodepage

are

available

on

the

workstation

only.

v

The

VI400TST

program

is

available

to

run

on

either

the

Content

Manager

for

iSeries

of

the

workstation

to

verify

the

behavior

of

any

API.

Server-only

Content

Manager

for

iSeries

APIs

The

following

Content

Manager

for

iSeries

API

exists

on

the

server

only;

there

is

no

API

of

a

similar

name

on

the

workstation.

QVISNDRCV

(Send

and

Receive

Buffer)

Purpose

QVISNDRV

is

a

generic

function

for

sending

data

to

and

receiving

data

from

a

workstation.

This

function

can

be

used

by

Content

Manager

for

iSeries

applications

to

display

documents

through

the

Content

Manager

for

iSeries

client.

A

reset

option

is

also

included

to

close

the

document

workstation.

Parameters

Communication_Type

INT—input/output

The

communication

type

to

use.

Valid

values

are:

0

Detect

The

connection

used

for

the

application

will

be

used,

as

determined

by

the

device

description.

Value

will

be

returned

as

1

©

Copyright

IBM

Corp.

1997,

2004

245

or

2,

unless

an

error

occurs.

This

would

be

used

except

when

a

specific

workstation

address

is

to

be

used,

such

as

for

printing.

1

APC

(CPI-C).

For

explicity

using

APPC.

2

TPC/IP.

For

example

using

TCP/IP.

Partner_Address

CHAR[20]—input/output

Address

for

the

workstation

with

at

least

one

trailing

blank.

This

may

be

the

fully

qualified

LU

name

for

CPI-C

or

the

TCP/IP

address.

If

Cmmunication_Type

is

set

to

0,

this

field

is

ignored,

but

the

workstation

address

will

be

returned

here.

Partner_TPName

CHAR[20]

—

input/output

Transaction

program

name

for

APPC.

If

passed

as

blank,

the

default

is

EKDVICLA,

which

is

provided

by

Content

Manager

for

iSeries.

Partner_ModeName

CHAR[10]

Mode

name

for

APPC,

with

at

least

one

trailing

blank.

If

passed

as

blank,

made

name

will

be

#INTER.

Partner_PortNumber

INT

—

input/output

For

a

TCP/IP

connection,

the

port

number

on

the

workstation.

If

passed

as

0,

the

default

is

31015.

communication_handle

CHAR[20]

Contains

the

communication

handle.

If

blank

and

the

buffer

size

is

not

zero,

a

conversation

will

be

allocated

or

a

socket

will

be

opened

to

connect

to

the

workstation.

If

the

buffer

size

is

0,

and

this

field

is

not

blank,

the

conversation

will

be

deallocated

or

the

socket

will

be

closed.

dllname

CHAR

—

input/output

The

name

of

the

DLL,

null

or

blank

terminated,

to

be

loaded

on

the

workstation.

The

function

in

the

DLL

must

be:

int

vi400comm

(int

*

buffer_size,

char

*

buffer)

If

a

non-zero

return

is

received,

the

workstation

program

will

be

ended.

The

user

would

then

have

to

start

it

again

to

be

able

to

initiate

another

display

request.

If

passed

as

blank,

the

default

is

EKDVIDSP.DLL,

which

is

provided

by

Content

Manager

for

iSeries

to

support

host-initiated

display

requests.

host_code_page

INT

—

input

If

0,

QVISNDRCV

will

extract

the

current

code

page.

All

data

in

the

buffer

must

be

translatable

characters.

To

send

binary

data

that

is

not

converted,

use

–1.

buffer_size

INT

—

input/output

246

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Pointer

to

the

size

of

the

buffer

to

send

from

and

receive

into.

The

maximum

size

is

32760

bytes.

If

0

on

the

host,

the

conversation

or

socket

will

be

closed.

If

non-zero

on

return,

the

buffer

contains

data

sent

from

the

workstation.

No

more

than

32500

bytes

can

be

sent

or

received.

The

rest

of

the

32K

is

for

control

information.

buffer

CHAR

—

input/output

Pointer

to

the

buffer

to

send

from

and

receive

into.

This

must

be

at

least

as

long

as

the

buffer_size

specified,

or

the

size

of

the

buffer

returned.

Providing

a

return

buffer

that

is

smaller

than

the

amount

of

data

returned

will

not

cause

an

explicit

error,

but

will

probably

cause

the

calling

program

to

fail.

Return

Values

The

function

returns

an

integer

return

code

if

an

error

occurs

in

the

Content

Manager

for

iSeries

code.

Sample

code

is

provided

which

supports

host-inititated

display

requests

using

the

Content

Manager

for

iSeries.

This

code

will

return

the

following

character

return

codes

in

the

buffer

passed

back

to

the

calling

application:

1

Content

Manager

for

iSeries

was

not

started

2

Null

buffer

passed

3

First

byte

not

R

(reset)

or

D

(display)

4

Invalid

item

ID

length

5

Invalid

item

ID

6

Problem

accessing

item

7

Content

Manager

for

iSeries

error

Guidelines

for

Use

All

parameters

are

passed

by

reference.

Character

variables

may

be

null

or

blank

terminated.

Create

your

custom

modules

using

ILE

C/400,

ILE

COBOL/400,

ILE

RPG/400,

or

VisualAge/400.

Then

create

a

program

binding

your

new

modules

with

service

program

QVISNDRCV.

Two

workstation

programs

for

communications

are

provided:

EKDVICLA

for

APPC

communications

and

EKDVICLT

for

TCP/IP

communications.

If

called

with

defaults,

the

address

of

the

workstation

and

the

communication

type

will

be

determined

automatically.

For

APPC

communications,

the

program

EKDVICLA

can

be

pre-started

or

defined

as

a

transaction

program

to

be

started

by

the

attach

manager.

If

you

are

using

Personal

Communications

for

APPC

support,

to

define

the

transaction

program

EKDVICLA,

set

Receive_Allocate

timeout

to

0,

and

check

Dynamically

loaded,

Queued

TP,

and

Background

process.

If

the

program

is

not

already

running

when

requested

by

a

program

on

the

iSeries,

it

will

be

automatically

started.

By

setting

the

timeout

to

0,

the

program

will

remain

active

even

after

the

conversation

is

deallocated.

For

TCP/IP

communications,

the

program

EKDVICLT

must

be

pre-started

on

the

workstation.

If

the

port

number

(31015)

is

not

acceptable,

a

different

value

may

be

passed

as

a

parameter

when

starting

EKDVICLT.

Chapter

7.

Content

Manager

for

iSeries

Programming

Interface

APIs

on

the

Server

247

Sample

Source

Refer

to

sample

source

program,

QVIDSPTST,

in

file

QCSRC

in

your

QVI

library.

This

program

is

provided

as

a

sample

for

calling

QVISNDRCV

from

a

C

program

on

the

server.

It

contains,

defines,

and

structures

that

you

will

find

useful

when

creating

your

custom

code.

248

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Chapter

8.

Content

Manager

for

iSeries

User

Exits

User

exits

provided

by

Content

Manager

for

iSeries

are

specific

points

in

the

program

where

you

can

specify

your

own

processing

routines.

You

may

create

exit

programs

which

provide

a

level

of

customization

by

accessing

a

database

or

integrating

with

another

application.

Client

User

Exits

The

user

exit

points

described

here

are

invoked

by

the

Content

Manager

for

iSeries.

Use

the

following

user

exits

in

conjunction

with

the

Client

for

Windows.

AlternateSearchUserExit

(alternate

search

user

exit)

Format

SHORT

AlternateSearchUserExit(

hSession,

hWnd,

szUserID

usTypeFilter,

fWipFilter,

usSuspendFilter,

usIndexClass,

usNumCriteria,

pCriteria,

pItemIdResultFolder)

Purpose

Use

the

AlternateSearchUserExit

to

replace

the

search

function

of

the

client

application

program

with

your

own

search

routine.

The

exit

returns

the

results

of

the

search

operation

in

a

search

result

folder.

Parameters

hSession

HSESSION

—

input

Session

handle

returned

by

SimLibLogon.

hWnd

HWND

—

input

The

handle

to

a

window.

The

device

manager

uses

this

handle

to

identify

the

window

where

any

operation

of

an

end-user

interface

occurs,

such

as

the

display

of

error

messages.

pszUserID

PSZ

—

input

The

0-terminated

character

string

containing

the

user

ID

of

the

user

who

receives

the

search

results.

This

parameter

is

not

case-sensitive.

usTypeFilter

USHORT

—

input

The

type

of

items

to

search

for.

The

valid

values

are:

SIM_DOCUMENT

Indicates

that

the

item

is

a

document.

SIM_FOLDER

Indicates

that

the

item

is

a

folder.

SIM_FOLDER_DOC

Indicates

that

the

item

can

be

either

a

folder

or

a

document.

©

Copyright

IBM

Corp.

1997,

2004

249

fWipFilter

BITS

—

input

The

work-in-process

status

of

the

items

to

search

for.

The

following

are

valid

values.

You

can

use

a

bit

inclusive

OR

operator

(|)

to

combine

them.

OIM_ITEMS_NOT_IN_WORKFLOW

Searches

for

items

not

in

a

workflow.

OIM_CURRENT_WORKFLOW_ITEMS

Searches

for

items

in

a

workflow.

OIM_CANCELLED_WORKFLOW_ITEMS

Searches

for

items

removed

from

a

workflow.

OIM_COMPLETED_WORKFLOW_ITEMS

Searches

for

items

that

completed

their

workflow.

OIM_ALL

Searches

without

regard

for

the

work-in-process

status

of

the

object.

Do

not

combine

this

value

with

the

others.

It

is

equivalent

to

using

all

the

other

values.

usSuspendFilter

USHORT

—

input

The

suspension

status

of

the

items

to

search

for.

The

valid

values

are:

OIM_ITEMS_SUSPENDED

Searches

for

suspended

items.

OIM_ITEMS_NOT_SUSPENDED

Searches

for

items

that

are

not

suspended.

OIM_ALL

Searches

without

regard

for

the

suspension

status

of

the

object.

Do

not

combine

this

value

with

the

others.

It

is

equivalent

to

using

all

the

other

values.

usIndexClass

USHORT

—

input

The

index

class

identifier

of

the

index

class

for

the

folder

you

create

for

the

search

results.

Ensure

that

the

index

class

you

assign

to

the

created

folder

has

no

required

attributes.

Otherwise,

the

search

fails

and

the

folder

is

not

created.

If

you

do

not

want

to

assign

an

index

class

to

the

folder

you

create,

specify

the

value

0

for

this

parameter.

If

the

value

of

the

fMemListRequest

parameter

is

TRUE

or

the

value

of

the

usStatDyn

parameter

is

SIM_SEARCH_BUILD_ONLY,

IBM

Content

Manager

for

iSeries

ignores

this

value.

usNumCriteria

USHORT

—

input

The

number

of

elements

in

the

pCriteria

array.

pCriteria

PLIBSEARCHCRITERIASTRUCT

—

input

The

pointer

to

an

array

specifying

the

search

criteria

for

each

view

to

be

searched.

The

array

it

points

to

must

have

at

least

one

element.

250

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

pItemIdResultFolder

PITEMID

—

output

The

pointer

to

the

search

results

folder.

Return

values

The

exit

returns

SIM_RC_OK

to

indicate

that

the

search

operation

completed

normally.

All

other

return

values

indicate

an

abnormal

ending

and

are

logged

as

errors.

On

successful

completion,

the

function

identifies

the

search

results

folder

in

the

value

of

the

ItemidResultFolder

output

parameter.

Comments

The

Alternate

Search

user

exit

routine

works

at

the

view

level.

When

running

a

basic

search,

if

the

search

is

against

a

particular

view,

the

client

application

program

loads

the

exit

for

that

view.

If

the

search

is

against

all

views,

the

client

application

program

loads

the

exit

for

the

base

view

of

the

NOINDEX

class.

For

advanced

search,

the

client

application

program

loads

the

exit

for

the

base

view

of

the

NOINDEX

class.

ChangeSMSUserExit

(change

system-managed

storage

user

exit)

Format

SHORT

ChangeSMSUserExit(

hwnd,

pExitStruct,

pfContinue)

Purpose

This

user

exit

routine

is

called

whenever

the

index

class

is

changed

for

an

item

before

the

library

object

window

is

closed.

The

exit

is

passed

the

ItemID

of

the

item

and

returns

a

flag

indicating

whether

default

processing

should

continue.

The

default

processing

calls

SimLibChangeObjSMS

for

each

of

the

item’s

parts

using

the

object

server

and

collection

information

defined

in

the

item’s

new

index

class.

Use

the

system

administration

program

to

specify

this

user

exit

routine

in

the

settings

notebook

of

the

index

class.

Refer

to

the

System

Administration

Guide.

Parameters

hwnd

HWND

—

Input

Anchor

window

for

message

boxes.

This

parameter

can

be

used

to

display

messages

and

associate

them

with

the

application

window.

pExitStruct

PUSEREXITSTRUCT

—

Input

User-defined

attribute

fields

and

other

relevant

information

for

the

open

document

are

passed

in

the

pExitStruct

parameter.

pfContinue

PBOOL

—

Output

Pointer

to

the

continue

flag.

Set

this

value

to

TRUE

to

continue

with

default

processing.

Chapter

8.

Content

Manager

for

iSeries

User

Exits

251

Internal

representation

USEREXITSTRUCT:

typedef

struct

{

HSESSION

hSession;

ITEMID

uidItem;

USHORT

itemidWorkflowId;

BOOL

fIsUnindexed;

USHORT

hOrigClass;

USHORT

hClass;

CHAR

szUserId[LST_USERID_LEN+1];

CHAR

szUserHandle[LST_USERID_LEN+1];

USHORT

usAccessLevel;

SHORT

sFields;

FIELDVALUE

*

pFields;

}

USEREXITSTRUCT;

typedef

USEREXITSTRUCT

*

PUSEREXITSTRUCT

where:

hSession

Session

handle

returned

by

SimLibLogon.

uidItem

Is

the

ItemID

of

the

current

document

or

folder

to

be

changed.

itemidWorkflowId

Is

the

workflow

ID

of

the

opened

document

or

folder

to

be

changed.

This

value

is

NULL

if

the

object

is

not

in

a

workflow.

fIsUnindexed

This

value

is

TRUE

if

the

object

is

a

new

document

that

has

not

been

indexed

in

the

system.

hOrigClass

Is

the

original

class

ID

of

the

opened

document

or

folder.

hClass

Is

the

current

class

ID

of

the

opened

document

or

folder.

szUserId[LST_USERID_LEN+1]

Is

the

user

ID

of

the

user

saving

the

document

or

folder.

szUserHandle[LST_USERID_LEN+1]

This

parameter

is

reserved.

usAccessLevel

Is

the

access

privilege

the

user

has

for

this

document

or

folder.

The

valid

value

is:

UX_PRIV_WRITE

when

the

user

opens

this

object

in

UPDATE

mode.

252

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

sFields

Is

the

number

of

fields

passed

to

the

exit

in

the

pFields

parameter.

pFields

Is

the

pointer

to

an

array

of

FIELDVALUE

data

structures.

The

configuration

and

content

of

the

user-defined

attributes

for

this

document

or

folder

is

passed

to

the

exit

in

these

data

structures.

FIELDVALUE:

typedef

struct

{

USHORT

usFieldId;

USHORT

usDataType;

USHORT

usMaxLength;

BOOL

fIsReq;

PSZ

pBuffer;

}

FIELDVALUE;

typedef

FIELDVALUE

*

PFIELDVALUE

where:

usFieldId

Is

the

user-defined

attribute

ID.

usDataType

Is

IBM

Content

Manager

for

iSeries

data

type

of

the

attribute

in

the

usFieldId

parameter.

This

is

a

numeric

equivalent

representing

the

data

type.

usMaxLength

Is

the

maximum

number

of

bytes

in

the

pBuffer

parameter

to

appear

in

the

Index

Form

window,

excluding

the

NULL

terminator.

fIsReq

This

value

is

TRUE

if

the

field

is

required.

pBuffer

Is

the

current

value

of

the

attribute

in

ASCIIZ

display

format.

The

buffer

length

is

the

value

in

the

usMaxLength

parameter

plus

one

for

the

NULL

terminator.

Results

The

function

returns

SHORT

with

zero

as

SUCCESS.

If

any

value

other

than

zero

is

returned,

default

processing

occurs.

If

the

call

is

successful,

the

value

returned

in

the

pfContinue

parameter

is

checked.

Comments

The

exit

routine

must

not

free

the

buffers

that

are

passed

in.

All

items

sent

to

the

exit

are

read-only

copies.

This

exit

must

not

modify

these

data

structures.

The

index

form

is

closing

when

this

user

exit

routine

is

called.

If

a

class

has

both

the

Save

Record

and

Change

SMS

user

exit

routines

specified,

the

Save

Record

user

exit

routine

is

called

first.

Chapter

8.

Content

Manager

for

iSeries

User

Exits

253

DetNextWBUserExit

(determine

next

workbasket

user

exit)

Format

SHORT

DetNextWBUserExit(

hwnd,

usOperation,

sNumberofITEMIDs,

pListofITEMIDs,

pExitStruct,

pNextWorkBasketITEMID,

pfComplete,

pfContinue)

Purpose

The

client

application

program

calls

this

user

exit

routine

from

one

of

three

functions

within

IBM

Content

Manager

for

iSeries.

The

exit

is

associated

with

a

particular

index

class.

This

exit

routes

an

item

of

this

class

to

another

workbasket,

starts

the

item

in

a

workflow,

or

changes

its

workflow.

The

client

application

program

calls

this

user

exit

routine

whenever

the

user

chooses

the

Route

to

option

on

the

Process

menu

if

the

index

class

of

the

item

defines

the

exit.

By

default,

IBM

Content

Manager

for

iSeries

determines

if

the

item

is

in

a

workflow.

If

it

is,

it

determines

the

next

workbasket

in

the

workflow.

The

system

selects

this

workbasket

in

the

resulting

dialog

box.

The

client

application

program

calls

this

user

exit

routine

prior

to

displaying

the

Route

To

dialog

box,

regardless

of

whether

the

item

is

in

a

workflow.

If

the

user

exit

routine

returns

a

workbasket

ITEMID,

the

workbasket

appears

as

selected

in

the

Route

To

dialog

box.

The

user

can

still

select

a

different

workbasket

in

which

to

route

the

items.

The

user

exit

routine

can

perform

any

required

processing

and

notifies

IBM

Content

Manager

for

iSeries

that

the

route

operation

should

not

continue.

In

this

case,

the

Route

To

dialog

box

does

not

appear.

The

client

application

also

calls

this

user

exit

routine

when

the

user

selects

the

Start

workflow

or

Change

workflow

option

on

the

Process

menu.

The

default

processing

for

the

Start

workflow

option

includes

routing

the

item

to

the

first

workbasket

in

the

workflow.

For

a

Change

workflow

action,

the

user

can

optionally

route

the

item

to

the

first

workbasket.

The

system

does

not

call

the

Determine

Next

Workbasket

User

Exit

during

an

automatic

workflow

operation.

The

client

application

program

calls

this

user

exit

routine

prior

to

the

actual

routing

of

the

item.

The

system

routes

this

item

to

the

specified

workbasket.

A

valid

workbasket

must

be

returned

in

this

case,

because

an

item

in

a

workflow

must

always

be

in

a

workbasket,

even

if

the

workbasket

is

not

part

of

the

workflow.

Use

the

system

administration

program

to

specify

this

user

exit

routine

in

the

Next

workbasket

field

of

the

index

class

settings

notebook.

Refer

to

the

IBM

Content

Manager

for

iSeries:

System

Administration

Guide.

Parameters

hwnd

HWND

—

input

Anchor

window

for

message

boxes.

You

can

use

this

parameter

to

display

messages

and

associate

them

with

the

application

window.

usOperation

USHORT

—

input

254

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

This

value

indicates

the

operation

that

called

the

user

exit

routine.

The

value

is

one

of

the

following:

v

UX_ROUTE

v

UX_START_WORKFLOW

v

UX_CHANGE_WORKFLOW

sNumberofITEMIDs

USHORT

—

input

This

value

specifies

the

number

of

ItemIDs

in

the

list

that

is

pointed

to

by

the

pListofITEMIDs

parameter.

If

this

number

is

greater

than

one,

the

user

selects

multiple

objects

from

the

table

of

contents

of

a

folder

or

workbasket.

pListofITEMIDs

PITEMID

—

input

This

parameter

is

the

pointer

to

the

list

of

ItemIDs

for

the

documents

and

folders

the

user

wants

to

route.

pExitStruct

PUSEREXITSTRUCT

—

input

If

the

document

or

folder

being

routed

is

open

when

the

exit

is

called,

the

user-defined

attributes

for

the

object

and

other

relevant

information

are

passed

in

the

pExitStruct

parameter.

The

values

in

the

data

structure

include

changes

made

to

the

class

and

attributes

in

the

Index

Form

window.

If

the

object

being

routed

is

not

open,

the

pListofITEMIDs

parameter

points

to

a

list

of

one

or

more

ItemIDs

the

user

selects

from

the

Table

of

Contents

window.

The

pExitStruct

values

are

NULL

except

for

the

szUserId

parameter,

that

contains

the

current

value.

pNextWorkBasketITEMID

PITEMID

—

input/output

Initially

contains

a

pointer

to

the

ItemID

of

the

next

workbasket

recommended

by

IBM

Content

Manager

for

iSeries.

If

the

document

or

folder

being

routed

is

not

in

a

workflow,

the

initial

ItemID

value

contains

zeros.

Replace

this

value

only

if

the

user

exit

routine

returns

the

ItemID

of

a

valid

workbasket

in

the

system.

pfComplete

PBOOL

—

input/output

Set

this

parameter

to

TRUE

if

IBM

Content

Manager

for

iSeries

recommends

marking

this

object

as

complete

for

the

workflow

when

the

user

exit

routine

returns

control.

When

the

document

or

folder

is

marked

complete,

the

system

automatically

removes

it

from

the

workbasket.

Recommendation:

Do

not

set

this

parameter

to

TRUE

if

a

user

selects

multiple

workflow

objects

that

should

not

be

marked

as

complete.

pfContinue

PBOOL

—

output

Set

this

parameter

to

FALSE

to

cancel

the

route

to

action.

This

value

lets

the

user

exit

routine

perform

all

routing

without

letting

the

user

override

the

suggestion.

If

you

set

this

flag

to

FALSE,

the

Route

To

dialog

box

does

not

appear.

The

system

ignores

this

parameter

when

the

user

exit

routine

is

called

during

a

Save,

Start

workflow,

or

Change

workflow

operation.

Chapter

8.

Content

Manager

for

iSeries

User

Exits

255

Internal

representation

USEREXITSTRUCT::

typedef

struct

{

HSESSION

hSession;

ITEMID

uidItem;

ITEMID

itemidWorkflowid;

BOOL

fIsUnindexed;

USHORT

hOrigClass;

USHORT

hClass;

CHAR

szUserId[LST_USERID_LEN+1];

CHAR

szUserHandle[LST_USERID_LEN+1];

USHORT

usAccessLevel;

SHORT

sFields;

FIELDVALUE

*

pFields;

}

USEREXITSTRUCT;

typedef

USEREXITSTRUCT

*

PUSEREXITSTRUCT

where:

uidItem

Is

the

ItemID

of

the

current

document

or

folder

the

user

wants

to

route

if

only

one

item

is

being

routed.

If

the

user

wants

to

route

more

than

one

item,

the

value

is

NULL.

This

value

is

NULL

if

the

user

does

not

open

this

object.

itemidWorkflowId

If

called

during

a

Start

workflow

action

or

Change

workflow

action,

this

value

is

the

workflow

ID

of

the

document

or

folder

the

user

wants

to

route.

The

value

is

also

the

workflow

ID

if

the

user

selects

the

route

to

action

for

a

single

document

or

folder.

If

the

user

selects

the

Route

to

option

for

more

than

one

document

or

folder,

the

value

is

NULL.

flsUnindexed

This

value

is

always

NULL.

hOrigClass

This

value

is

always

NULL.

hClass

This

value

is

always

NULL.

szUserId[LST_USERID_LEN+1]

This

value

is

the

user

ID

of

the

user

routing

the

document

or

folder.

szUserHandle[LST_USERID_LEN+1]

This

parameter

is

reserved.

usAccessLevel

This

value

is

always

NULL.

256

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

sFields

This

value

is

always

NULL.

pFields

This

value

is

always

NULL.

FIELDVALUE:

typedef

struct

{

USHORT

usFieldId;

USHORT

usDataType;

USHORT

usMaxLength;

BOOL

fIsReq;

PSZ

pBuffer;

}

FIELDVALUE;

typedef

FIELDVALUE

*

PFIELDVALUE

where:

usFieldId

Is

the

user-defined

attribute

identifier.

usDataType

Is

IBM

Content

Manager

for

iSeries

data

type

of

the

attribute

in

the

usFieldId

parameter.

This

is

a

numeric

equivalent

representing

the

data

type.

usMaxLength

Is

the

maximum

number

of

bytes

in

the

pBuffer

parameter

to

appear

in

the

Index

Form

window,

excluding

the

NULL

terminator.

fIsReq

This

value

is

TRUE

if

the

field

is

required.

pBuffer

Is

the

current

value

of

the

attribute

in

ASCIIZ

display

format.

The

buffer

length

is

the

value

in

the

usMaxLength

parameter

plus

one

to

represent

the

NULL

terminator.

Results

The

function

returns

a

value

of

SHORT

with

zero

for

SUCCESS.

Another

value

is

assumed

to

be

an

error

and

an

error

message

appears.

If

the

exit

completes

successfully,

the

pfComplete

parameter

is

checked.

If

this

parameter

is

set

to

TRUE,

IBM

Content

Manager

for

iSeries

displays

a

message

box

that

recommends

marking

the

selected

objects

as

complete

for

this

workflow.

This

parameter

is

ignored

if

the

object

is

not

in

a

workflow.

If

the

pfComplete

parameter

is

not

set

to

TRUE,

the

value

in

the

pNextWorkBasketITEMID

parameter

is

used

as

the

recommended

destination

for

the

selected

objects.

This

value

must

point

to

a

valid

IBM

Content

Manager

for

iSeries

workbasket

ItemID.

The

user

can

override

these

recommendations

for

both

cases,

either

the

next

workbasket

or

completion.

If

the

user

exit

routine

is

called

during

a

route

operation

and

pfContinue

is

FALSE,

the

Route

To

dialog

box

does

not

appear.

Comments

The

exit

routine

must

not

free

the

buffers

that

are

passed

in.

All

items

sent

to

the

exit

are

read-only

copies.

These

data

structures

must

not

be

modified

by

this

exit.

Do

not

perform

any

OIM

function

calls

to

change

the

workflow

status

or

Chapter

8.

Content

Manager

for

iSeries

User

Exits

257

workbasket

of

an

object

listed

in

the

data

structures

or

parameters

of

this

user

exit

routine

unless

the

pfContinue

parameter

is

set

to

FALSE.

When

the

user

exit

routine

is

called

during

a

Route

to

option

from

the

Process

menu,

the

parameters

in

the

USEREXITSTRUCT

data

structure

are

NULL

except

for

the

szUserId

parameter.

When

the

user

exit

routine

is

called

during

a

Start

workflow

or

Change

workflow

action

from

the

Process

menu,

the

parameters

in

the

USEREXITSTRUCT

data

structure

are

NULL

except

for

the

itemidWorkflowId

and

szUserIdt

parameters.

In

these

cases,

the

FIELDVALUE

data

structures

that

normally

contain

details

about

the

user-defined

attributes

are

not

passed

to

the

user

exit

routine.

If

you

need

information

about

the

user-defined

attributes

to

process

this

exit,

use

the

appropriate

OIM

function

calls

to

obtain

the

required

data.

Refer

to

the

following

function

calls:

v

SimLibGetAttrInfo

v

SimLibGetClassInfo

v

SimLibGetItemInfo

v

SimLibGetItemType

v

SimLibItemSnapshot

v

SimLibOpenItem

v

SimLibReadItemAttr

When

multiple

items

are

selected

from

the

table

of

contents

and

routed,

the

class

of

the

first

item

in

the

list

is

checked

for

the

DetNextWBUserExit.

If

this

user

exit

routine

is

specified

for

the

first

class,

this

user

exit

routine

is

called

for

all

items

selected,

regardless

of

their

classes.

If

the

first

item’s

class

does

not

have

a

user

exit

routine

specified,

no

user

exit

routines

are

called.

DetermineWorkflowUserExit

(determine

workflow

user

exit)

Format

SHORT

DetWorkflowUserExit(

hwnd,

puidItem,

pExitStruct,

puidWorkflow,

puidWorkbasket)

Purpose

The

client

application

program

calls

this

user

exit

routine

when

a

user

saves

a

document

or

folder

with

an

index

class

that

is

defined

to

automatically

start

items

in

a

workflow

when

they

are

saved.

The

client

application

program

calls

this

user

exit

routine

only

when

these

items

have

never

been

in

a

workflow

before.

Although

this

user

exit

routine

is

specified

for

a

particular

index

class,

the

same

user

exit

routine

can

be

used

for

multiple

index

classes.

IBM

Content

Manager

for

iSeries

automatically

provides

the

user

exit

routine

with

the

default

workflow

for

the

index

class,

as

specified

by

the

system

administrator.

The

user

exit

routine

can

specify

that

the

item

should

be

started

in

a

different

workflow,

the

default

workflow,

or

no

workflow.

This

user

exit

routine

can

also

optionally

specify

the

workbasket

where

the

item

is

to

be

routed.

When

an

item

is

specified

to

be

in

a

workflow,

it

must

be

in

a

workbasket

even

if

the

workbasket

is

not

in

the

workflow

where

the

item

is.

If

the

user

exit

routine

does

not

explicitly

specify

a

workbasket,

IBM

Content

Manager

for

iSeries

routes

the

item

to

the

first

workbasket

in

the

workflow.

Use

the

system

administration

program

to

specify

this

user

exit

routine

in

the

Automatic

workflow

field

of

the

index

class

settings

notebook.

Refer

to

the

Administration

and

Operation

Guide.

258

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Parameters

hwnd

HWND

—

Input

Anchor

window

for

message

boxes.

This

parameter

can

be

used

to

display

messages

and

associate

them

with

the

application

window.

puidItem

PITEMID

—

input

Pointer

to

the

ItemID

of

the

item

being

saved.

pExitStruct

PUSEREXITSTRUCT

—

Input

User-defined

attributes

for

the

document

or

folder

and

other

relevant

information

are

passed

in

the

pExitStruct

parameter.

puidWorkflow

PITEM

—

Input/Output

Pointer

to

the

workflow

item

ID

that

the

item

should

be

started

in.

The

workflow

ID

provided

as

input

to

the

user

exit

routine

is

the

default

workflow

for

the

class,

as

defined

by

the

system

administrator.

The

user

exit

routine

should

set

the

workflow

ID

to

one

of

the

following:

no

change

Uses

the

default

workflow.

workflow

item

id

Where

the

item

is

to

be

started

must

be

defined.

a

null

id

(Set

at

least

the

first

character

of

UID

null)

Cancels

automatic

workflow

processing.

The

item

is

not

started

in

a

workflow.

puidWorkBasket

PITEMID

—

Output

Pointer

to

the

Workbasket

ITEMID

that

the

item

being

saved

should

be

routed

to

after

it

is

started

in

the

workflow.

This

parameter

points

to

a

NULL

ITEMID

when

the

exit

is

called.

The

user

exit

routine

should

set

this

parameter

to

a

valid

workbasket

ItemID

if

the

item

should

be

routed

to

a

workbasket

other

than

the

first

workbasket

in

the

workflow.

If

this

parameter

is

still

a

NULL

ITEMID

when

the

user

exit

returns,

IBM

Content

Manager

for

iSeries

routes

the

item

to

the

first

workbasket

in

the

workflow.

Internal

representation

USEREXITSTRUCT:

typedef

struct

{

HSESSION

hSession

ITEMID

uidItem;

USHORT

itemidWorkflowId;

BOOL

fIsUnindexed;

USHORT

hOrigClass;

Chapter

8.

Content

Manager

for

iSeries

User

Exits

259

USHORT

hClass;

CHAR

szUserId[LST_USERID_LEN+1];

CHAR

szUserHandle[LST_USERID_LEN+1];

USHORT

usAccessLevel;

SHORT

sFields;

FIELDVALUE

*

pFields;

}

USEREXITSTRUCT;

typedef

USEREXITSTRUCT

*

PUSEREXITSTRUCT

where:

hSession

Session

handle

returned

by

SimLibLogon.

uidItem

Is

the

ItemID

of

the

current

document

or

folder

to

be

saved.

itemidWorkflowId

This

parameter

is

always

null.

fIsUnindexed

This

value

is

TRUE

if

the

object

is

a

new

document

that

has

not

been

indexed

in

the

system.

hOrigClass

Is

the

original

class

ID

of

the

opened

document

or

folder.

hClass

Is

the

current

class

ID

of

the

opened

document

or

folder.

This

value

is

the

same

as

the

hOrigClass

parameter

unless

the

user

specifies

a

new

index

class.

szUserId[LST_USERID_LEN+1]

Is

the

user

ID

of

the

user

saving

the

document

or

folder.

szUserHandle[LST_USERID_LEN+1]

This

parameter

is

reserved.

usAccessLevel

Is

the

access

privilege

the

user

has

for

this

document

or

folder.

The

valid

value

for

this

user

exit

is:

UX_PRIV_WRITE

when

the

user

opens

this

object

in

UPDATE

mode.

sFields

Is

the

number

of

fields

passed

to

the

exit

in

the

pFields

parameter.

pFields

Is

the

pointer

to

an

array

of

FIELDVALUE

data

structures.

The

configuration

and

content

of

the

user-defined

attributes

for

this

document

or

folder

are

passed

to

the

exit

in

these

data

structures.

FIELDVALUE:

typedef

struct

{

USHORT

usFieldId;

USHORT

usDataType;

260

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

USHORT

usMaxLength;

BOOL

fIsReq;

PSZ

pBuffer;

}

FIELDVALUE;

typedef

FIELDVALUE

*

PFIELDVALUE

where:

usFieldId

Is

the

user-defined

attribute

ID.

usDataType

Is

IBM

Content

Manager

for

iSeries

data

type

of

the

attribute

in

the

usFieldId

parameter.

This

is

a

numeric

equivalent

representing

the

data

type.

Refer

to

the

section

″Attribute

types″

in

the

frnpfi.h

header

file

for

the

define

statements

and

content

requirements

for

these

numbers.

usMaxLength

Is

the

maximum

number

of

bytes

in

the

pBuffer

parameter

to

appear

in

the

Index

Form

window,

excluding

the

NULL

terminator.

fIsReq

This

value

is

TRUE

if

the

field

is

required.

If

this

parameter

is

set

to

TRUE

and

this

FIELDVALUE

data

structure

is

modified

by

the

exit,

the

value

in

pBuffer

must

not

be

changed

to

NULL.

pBuffer

Is

the

current

value

of

the

attribute

in

ASCIIZ

display

format.

The

buffer

length

is

the

value

in

the

usMaxLength

parameter

plus

one

to

represent

the

NULL

terminator.

Results

This

user

exit

routine

returns

a

value

of

type

SHORT.

It

should

return

a

value

of

zero

for

successful

completion

of

the

user

exit

routine.

If

it

returns

another

value,

the

item

is

not

started

in

a

workflow,

and

an

error

message

appears.

If

the

user

exit

routine

completes

successfully,

the

item

is

started

in

the

workflow

specified

by

the

puidWorkflow

parameter.

If

this

parameter

specifies

a

workflow

ID

of

null,

then

the

item

is

not

started

in

a

workflow

and

the

automatic

workflow

processing

is

canceled.

If

the

user

exit

routine

specified

a

workbasket

to

route

the

item

to,

the

item

is

routed

to

that

workbasket

by

IBM

Content

Manager

for

iSeries

after

the

item

is

started

in

the

workflow.

If

the

user

exit

does

not

specify

a

workbasket,

the

item

is

routed

to

the

first

workbasket

in

the

workflow.

Comments

This

user

exit

routine

must

not

modify

or

free

any

of

the

buffers

that

are

passed

in.

Do

not

start

this

item

in

a

workflow

with

the

Ip2StartWorkFlow

function

in

this

user

exit

routine

unless

the

exit

cancels

workflow

processing

by

returning

null

for

the

workflow

ID.

This

exit

is

called

when

a

document

or

folder

is

saved

after

modifying

the

index

values

or

changing

the

class

of

the

item.

It

is

not

called

if

index

values

are

not

modified

or

if

the

Index

Form

is

not

open

when

the

item

is

saved.

This

exit

is

called

after

the

Save

Record

user

exit

routine

is

called.

Automatic

workflow

processing

is

performed

only

if

the

item

being

saved

is

not

in

a

workflow

and

has

never

been

in

a

workflow.

Therefore,

this

user

exit

routine

is

called

only

if

the

item

being

saved

has

never

been

in

a

workflow.

Chapter

8.

Content

Manager

for

iSeries

User

Exits

261

This

user

exit

routine

is

called

when

folders

with

an

index

class

that

specifies

this

user

exit

routine

are

created

during

auto-filing.

The

index

values

that

are

passed

to

the

user

exit

routine

are

in

display

format,

not

in

the

internal

format

in

which

data

is

stored

in

the

database.

GetAttributeValueList

(Get

attribute

value

list)

Format

INT_cdecl

GetAttributeValueList(hSession,

nClassView,

nAttrID,

reserved,

pControlType,

pSortOption,

ListValues,

pNumValues,

nMaxValueLen)

Purpose

This

user

exit

routine

allows

you

to

extend

the

Edit

Index

window

to

include

a

combination

list

box.

The

actual

values

to

be

listed

are

returned

by

this

user

exit

routine.

This

user

exit

routine

must

be

contained

in

a

Dynamic

Library

Link

(DLL)

named

frnwueal.dll.

This

user

exit

routine

is

called

for

each

attribute

ID

in

an

index

class.

The

routine

returns:

v

Information

about

the

type

of

control

(entry

field,

combination

list

box

with

an

entry

field,

combination

list

box

without

an

entry

field).

v

The

ordering

option:

whether

to

sort

the

list

or

display

it

as

listed

in

the

array.

v

The

list

of

values

to

display.

A

sample

of

this

user

exit

is

located

in

the

%FRNROOT%\SAMPLES

directory.

Parameters

hSession

HSESSION

-

Input

Session

handle

returned

by

SimLibLogon.

nClassView

INT

-

Input

The

index

class

view

for

which

the

nAttrID

field,

below,

is

being

checked

to

determine

the

desired

control

type.

nAttrID

INT

-

Input

The

key

field

being

checked

for

the

desired

control

type.

reserved

PVOID

Reserved

parameter

for

future

use;

currently

set

to

NULL.

pControlType

INT

*

-

Output

Returns

one

of

the

following:

v

0

for

a

standard

entry

field

v

1

for

a

list

box

that

allows

text

entry

v

2

for

a

static

list

box

pSortOption

INT

*

-

Output

Returns

one

of

the

following:

262

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

v

0

to

leave

the

combo

values

in

the

order

returned

v

1

to

have

the

list

sorted

alphabetically

ListValues

PPSZ

-

Output

An

array

of

character

pointers,

each

pointing

to

a

zero-terminated

string

representing

one

of

the

values

that

will

be

displayed

in

the

list

box.

If

the

field

is

a

standard

edit

field

(*pControlType=0),

this

array

should

have

the

size

of

1.

This

also

means

that

GetValueListLength,

below,

should

return

1

in

*pNumValues.

Restriction:

Do

not

fill

in

more

values

than

are

specified

in

pNumValues,

below.

pNumValues

INT

*

-

Input

and

output

On

input,

this

is

the

number

of

values

returned

in

pNumValues

from

the

GetValueListLength()

function.

This

value

can

be

left

alone

or

decreased

if

fewer

values

are

actually

used.

This

value

must

not

be

incremented.

nMaxValueLen

INT

-

Input

The

value

that

is

returned

through

pMaxValueLen

in

GetValueListLength().

Results/Return

Values

0

for

success;

non-zero

for

error.

Comments

Because

this

user

exit

routine

is

called

for

every

field

in

the

Edit

Index

window,

it

must

run

quickly.

GetValueListLength

(Get

value

list

length)

Format

INT_cdecl

GetValueListLength(hSession,

nClassView,

nAttrID,

reserved,

pNumValues,

pMaxValueLen)

Purpose

This

user

exit

routine

returns

the

number

of

values

and

the

maximum

value

length

for

the

specified

attribute

ID,

from

the

specified

index

class.

The

client

calls

this

function

for

every

field

of

every

index

class

to

determine

if

there

is

a

list

of

values

for

the

attribute

and

if

there

is,

how

much

space

to

allocate

for

it.

This

user

exit

routine

must

be

contained

in

a

DLL

named

frnwueal.dll.

A

sample

of

this

user

exit

routine

is

located

in

the

%FRNROOT%\SAMPLES

directory.

Parameters

hSession

HSESSION

-

Input

Session

handle

returned

by

SimLibLogon.

nClassView

INT

-

Input

Chapter

8.

Content

Manager

for

iSeries

User

Exits

263

The

index

class

view

for

which

the

nAttrID

field,

below,

is

being

checked

to

determine

the

desired

control

type.

nAttrID

INT

-

Input

The

attribute

being

checked

for

the

desired

control

type.

pNumValues

INT

*

-

Output

The

default

is

0

(*pNumValues=0).

If

the

attribute

is

to

have

values,

set

this

to

the

number

of

values.

pMaxValueLen

INT

*

-

Output

The

default

is

0

(

*pMaxValueLen=0).

If

the

attribute

is

to

have

values,

set

this

to

the

maximum

length

of

any

value.

Results/Return

Values

0

for

success;

non-zero

for

error.

Comments

This

function

gets

called

for

every

field

in

the

Edit

Index

dialog

so

be

sure

that

it

works

quickly.

OverloadTriggerUserExit

(overload

trigger

user

exit)

Format

SHORT

OverloadTriggerUserExit(hwnd,

usOperation,

usNumberofITEMIDs,

usIndex,

pListofITEMIDs,

pExitStruct,

pWorkBasketITEMID,

pNewWorkBasketITEMID)

Purpose

This

user

exit

routine

is

called

every

time

a

document

or

folder

is

added

to

a

workbasket

that

has

reached

its

overload

condition,

except

when

added

as

a

result

of

satisfying

suspension

criteria.

The

user

adds

an

item

to

a

workbasket

by

selecting

the

Route

to

option

from

the

Process

menu,

then

by

selecting

a

destination

from

the

list

of

available

workbaskets

in

the

system.

Items

are

also

added

to

a

workbasket

when

a

new

class

is

specified

that

automatically

assigns

the

item

to

a

workflow.

This

user

exit

routine

can

also

be

called

during

a

Start

workflow

or

Change

workflow

operation,

or

during

a

scanning

or

importing

operation.

The

suspension

criteria

include:

v

A

timeout

as

detected

by

the

expired

time

check

utility.

v

Adding

an

item

to

a

folder

using

the

SimLibAddFolderItem

function.

Adding

an

item

to

a

folder

through

the

user

interface

triggers

this

user

exit

routine.

The

overload

trigger

is

the

number

specified

in

the

system

administration

program

for

the

maximum

quantity

of

items

allowed

in

the

workbasket.

If

the

overload

condition

is

triggered

for

the

workbasket,

the

user

exit

routine

is

processed.

By

default,

IBM

Content

Manager

for

iSeries

displays

a

message

that

the

overload

condition

has

occurred,

and

lets

the

user

cancel

the

route,

select

a

different

workbasket

as

the

destination,

or

force

the

items

into

the

original

workbasket.

This

264

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

user

exit

routine

can

also

be

used

to

replace

the

default

IBM

Content

Manager

for

iSeries

processing.

You

can

specify

an

alternate

workbasket

to

be

used

as

the

backup

and

return

the

ITEMID

of

that

alternate

to

IBM

Content

Manager

for

iSeries.

Use

the

system

administration

program

to

specify

this

user

exit

routine

in

the

workbasket

settings

notebook.

Refer

to

the

Administration

and

Operation

Guide

.

Parameters

hwnd

HWND

—

Input

Anchor

window

for

message

boxes.

This

parameter

can

be

used

to

display

messages

and

associate

them

with

the

application

window.

usOperation

USHORT

—

input

This

value

indicates

the

operation

that

called

the

user

exit

routine.

The

value

is

one

of

the

following:

v

UX_SAVE_ITEM

v

UX_ROUTE

v

UX_START_WORKFLOW

v

UX_CHANGE_WORKFLOW

v

UX_SCAN_ITEM

v

UX_IMPORT_ITEM

usNumberofITEMIDs

USHORT

—

Input

Number

of

ItemIDs

in

the

pListofITEMIDs

parameter.

usIndex

USHORT

—

Input

The

item

that

cause

the

overload

condition

to

occur.

pListofITEMIDs

PITEMID

—

Input

Pointer

to

a

list

of

ItemIDs

of

the

items

to

be

routed

to

the

workbasket.

pExitStruct

PUSEREXITSTRUCT

—

Input/output

If

the

document

or

folder

being

routed

is

open

at

exit

processing

time,

the

user-defined

attribute

fields

and

other

relevant

information

for

the

object

are

passed

in

the

pExitStruct

parameter.

The

values

in

the

data

structure

include

changes

the

user

made

to

the

class

and

attributes

in

the

Index

Form

window.

If

the

object

being

routed

is

not

open,

the

pListofITEMIDs

parameter

points

to

a

list

of

one

or

more

ItemIDS

selected

by

the

user

from

the

Table

of

Contents

window.

The

pExitStruct

parameters

are

NULL

except

for

szUserId,

that

contains

the

current

value.

pWorkBasketITEMID

PITEMID

—

Input

Pointer

to

the

ITEMID

of

the

original

destination

workbasket

causing

the

overload

trigger.

pNewWorkBasketITEMID

PITEMID

—

Output

Chapter

8.

Content

Manager

for

iSeries

User

Exits

265

Pointer

to

a

buffer

containing

a

NULL

ITEMID.

Replace

this

with

the

ItemID

of

a

valid

workbasket

in

the

system

to

be

used

as

a

backup

destination.

Internal

representation

USEREXITSTRUCT:

typedef

struct

{

HSESSION

hSession

ITEMID

uidItem;

USHORT

itemidWorkflowId;

BOOL

fIsUnindexed;

USHORT

hOrigClass;

USHORT

hClass;

CHAR

szUserId[LST_USERID_LEN+1];

CHAR

szUserHandle[LST_USERID_LEN+1];

USHORT

usAccessLevel;

SHORT

sFields;

FIELDVALUE

*

pFields;

}

USEREXITSTRUCT;

typedef

USEREXITSTRUCT

*

PUSEREXITSTRUCT

where:

hSession

Session

handle

returned

by

SimLibLogon.

uidItem

Is

the

ItemID

of

the

current

document

or

folder

to

be

routed.

itemidWorkflowId

Is

the

workflow

ID

of

the

opened

document

or

folder

to

be

routed.

This

value

is

NULL

if

the

object

is

not

opened

by

this

user

or

if

the

object

is

not

in

a

workflow.

fIsUnindexed

This

value

is

TRUE

if

the

object

is

a

new

document

that

has

not

been

indexed

in

the

system.

This

value

is

FALSE

if

the

object

is

not

opened

by

this

user.

hOrigClass

Is

the

original

class

ID

of

the

opened

document

or

folder.

This

value

is

NULL

if

the

object

is

not

opened

by

this

user.

hClass

Is

the

current

class

ID

of

the

opened

document

or

folder.

This

value

is

the

same

as

the

hOrigClass

parameter

unless

the

user

specified

a

new

index

class.

This

value

is

NULL

if

the

object

is

not

opened

by

this

user.

266

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

szUserId[LST_USERID_LEN+1]

Is

the

user

ID

of

the

user

routing

the

document

or

folder.

szUserHandle[LST_USERID_LEN+1]

This

parameter

is

reserved.

usAccessLevel

Is

the

access

privileges

the

user

has

for

this

document

or

folder.

This

value

is

NULL

if

the

object

is

not

opened

by

this

user.

The

valid

values

are:

UX_PRIV_READ

when

the

user

opens

this

object

in

BROWSE

mode.

UX_PRIV_WRITE

when

the

user

opens

this

object

in

UPDATE

mode.

sFields

Is

the

number

of

fields

passed

to

the

exit

in

the

pFields

parameter.

This

value

is

zero

if

the

object

is

not

opened

by

this

user

or

if

the

user

selects

the

Route

to

option

for

an

opened

document

or

folder

while

the

Index

Form

window

for

that

object

is

closed.

pFields

Is

the

pointer

to

an

array

of

FIELDVALUE

data

structures.

The

configuration

and

content

of

the

user-defined

attributes

for

this

document

or

folder

are

passed

to

the

exit

in

these

data

structures.

This

value

is

NULL

if

the

object

is

not

opened

by

this

user

or

if

the

user

selects

the

Route

to

option

for

an

opened

document

or

folder

while

the

Index

Form

window

for

that

object

is

closed.

FIELDVALUE:

typedef

struct

{

USHORT

usFieldId;

USHORT

usDataType;

USHORT

usMaxLength;

BOOL

fIsReq;

PSZ

pBuffer;

}

FIELDVALUE;

typedef

FIELDVALUE

*

PFIELDVALUE

where:

usFieldId

Is

the

user-defined

attribute

ID.

usDataType

Is

IBM

Content

Manager

for

iSeries

data

type

of

the

attribute

in

the

usFieldId

parameter.

This

is

a

numeric

equivalent

representing

the

data

type.

Refer

to

the

section

″Attribute

types″

in

the

frnpfi.h

header

file

for

the

define

statements

and

content

requirements

for

these

numbers.

usMaxLength

Is

the

maximum

number

of

bytes

in

the

pBuffer

parameter

to

appear

in

the

Index

Form

window,

excluding

the

NULL

terminator.

fIsReq

This

value

is

TRUE

if

the

field

is

required.

pBuffer

Is

the

current

value

of

the

attribute

in

ASCIIZ

display

format.

The

buffer

length

is

the

value

in

the

usMaxLength

parameter

plus

one

to

represent

the

NULL

terminator.

Chapter

8.

Content

Manager

for

iSeries

User

Exits

267

Results

The

function

returns

a

value

of

SHORT

with

zero

as

SUCCESS.

If

the

call

completes

successfully,

the

value

in

the

pNewWorkBasketITEMID

parameter

is

used

as

the

alternate

destination.

This

must

be

a

valid

IBM

Content

Manager

for

iSeries

workbasket

ItemID.

If

this

ItemID

is

the

same

as

the

overloaded

workbasket

or

if

this

value

contains

a

NULL

ITEMID,

the

items

are

forced

into

the

original

workbasket

and

the

overload

condition

is

ignored.

If

the

call

returns

any

value

other

than

zero,

an

error

message

appears,

and

the

items

are

not

routed

to

any

workbasket.

If

an

error

is

returned

while

the

user

exit

routine

is

called

during

a

save,

the

item

is

saved

but

not

placed

in

a

workflow

or

routed

to

any

workbasket.

If

the

new

workbasket

routing

results

in

another

overload,

this

user

exit

routine

is

called

again.

Comments

The

exit

routine

must

not

free

the

buffers

that

are

passed

in.

All

parameters

sent

to

the

exit

are

read-only

copies.

Buffers

should

not

be

modified

or

unallocated.

If

the

pNewWorkBasketITEMID

parameter

is

still

NULL

after

the

exit

completes,

the

selected

items

are

forced

into

the

original

workbasket

destination.

If

the

Index

Form

window

is

not

opened

when

the

user

selects

the

Route

to

option

from

the

Process

menu,

the

pFields

pointer

and

the

sFields

parameter

in

the

USEREXITSTRUCT

data

structure

are

NULL.

In

this

case,

the

FIELDVALUE

data

structures

that

normally

contain

details

about

the

user-defined

attributes

are

not

passed

to

the

user

exit

routine.

Avoid

assigning

two

workbaskets

as

backup

for

each

other.

In

this

case,

you

can

begin

an

endless

loop

of

circular

references

if

both

workbaskets

are

overloaded.

QuerySortUserExit

(query

sort

user

exit)

Format

SHORT

QuerySortUserExit(

hSession,

hwnd,

pSortList,

usItemCount,

pszUserId,

usSortObject)

Purpose

This

user

exit

routine

is

called

when

a

folder

or

workbasket

is

opened

that

contains

documents

or

folders

in

a

class

for

which

the

exit

is

defined.

This

includes

a

folder

created

as

a

result

of

a

fileroom

search.

You

can

program

this

exit

to

sort

and

modify

the

table

of

contents

of

the

folder

or

workbasket

before

it

appears

on

the

screen.

This

function

lets

you

define

a

specific

sort

order

other

than

the

default

ascending

or

descending

order

provided

by

IBM

Content

Manager

for

iSeries.

The

exit

can

also

be

used

to

filter

out

selected

documents

and

folders

to

prevent

display

and

user

access

to

those

objects.

It

can

also

be

called

prior

to

printing

the

table

of

contents

of

a

folder.

You

can

assign

this

user

exit

routine

on

a

class

basis

using

IBM

Content

Manager

for

iSeries.

Each

class

represented

in

a

folder

or

workbasket

table

of

contents

is

sorted

according

to

the

user

exit

routine

specified

for

that

class.

If

more

than

one

class

in

the

folder

or

workbasket

calls

this

user

exit

routine,

each

exit

routine

is

268

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

called

and

completed

sequentially

prior

to

the

display

of

the

contents.

Only

the

documents

and

folders

assigned

to

a

specific

class

are

passed

to

the

exit

routine

called

for

that

class.

Use

the

system

administration

program

to

specify

this

user

exit

routine

in

the

Sort

field

of

the

index

class

settings

notebook.

Refer

to

the

Administration

and

Operation

Guide.

Parameters

hSession

HSESSION

—

Input

Session

handle

returned

by

SimLibLogon.

hwnd

HWND

—

Input

Anchor

window

for

message

boxes.

This

parameter

can

be

used

to

display

messages

and

associate

them

with

the

application

window.

pSortList

PUSERSORTSTRUCT

—

Input/Output

Pointer

to

an

array

of

documents

and

folders

to

be

sorted.

Each

document

or

folder

is

represented

by

a

USERSORTSTRUCT

data

structure.

usItemCount

USHORT

—

Input

Number

of

documents

and

folders

in

the

pSortList

parameter.

pszUserId

PSZ

—

Input

User

ID

name

of

the

user

opening

the

folder

or

workbasket.

This

is

the

ID

specified

through

the

API.

usSortObject

USHORT

—

Input

Type

of

object

that

appears.

The

valid

values

are:

SIM_FOLDER

when

the

table

of

contents

is

sorted

for

a

folder

display.

This

includes

search

results

folders.

SIM_WORKBASKET

when

the

table

of

contents

is

sorted

for

a

workbasket

display.

Internal

representation

USERSORTSTRUCT:

typedef

struct

{

USHORT

usType;

USHORT

usClass;

ITEMID

uid;

USHORT

usPriority;

PCHAR

*

pszVals;

PCHAR

*

pszWbVals;

Chapter

8.

Content

Manager

for

iSeries

User

Exits

269

ATLIST

*

pAttrList;

BOOL

fCheckedOut;

USHORT

usFlags;

}

USERSORTSTRUCT;

typedef

USERSORTSTRUCT

*

PUSERSORTSTRUCT;

where:

usType

Is

the

type

of

object.

The

valid

values

are:

SIM_DOCUMENT

when

the

object

is

a

document.

SIM_FOLDER

when

the

object

is

a

folder.

usClass

Is

the

current

view

identifier

of

the

index

class

for

this

object.

uid

Is

the

IBM

Content

Manager

for

iSeries

ITEMID

of

this

object.

usPriority

Is

the

priority

for

this

object.

pszVals

Is

the

pointer

to

an

array

of

display

values

in

ASCIIZ

format

for

this

document

or

folder.

These

values

include

the

user-defined

attributes

and

the

following

system

attributes:

Workflow

name

Priority

Check-out

ID

Suspend

status.

A

NULL

ASCIIZ

string

appears

in

the

array

for

each

attribute

that

is

not

in

the

user’s

current

layout

for

this

index

class.

For

each

value

in

this

array,

there

is

a

corresponding

value

in

the

ATLIST

data

structure

from

the

pAttrList

parameter.

pszWbVals

Is

the

pointer

to

the

workbasket

view

values

for

an

object.

The

values

included

are

in

this

order:

Priority

Date

of

entry

to

the

workbasket

Time

of

entry

to

the

workbasket

Class

name

This

is

the

time

and

date

stamp

indicating

the

time

of

entry

to

this

workbasket.

This

pointer

is

NULL

if

the

usSortObject

is

equal

to

SIM_FOLDER.

pAttrList

Is

the

pointer

to

an

ATLIST

data

structure.

This

data

structure

contains

detailed

information

about

the

attribute

values

that

appear

for

this

object.

These

values

include

the

user-defined

attributes

and

the

following

system

attributes:

Workflow

name

Priority

Check-out

ID

Suspend

status.

fCheckedOut

This

value

is

TRUE

if

the

object

is

checked

out.

270

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

usFlags

Set

this

parameter

to

SF_HIDE

if

this

object

should

not

appear

in

the

sorted

table

of

contents.

The

count

reflects

items

that

are

not

hidden.

ATLIST:

typedef

struct

{

USHORT

usClass;

USHORT

usCount;

ATINFO

*

patinfo;

USHORT

usUserCount;

USHORT

*

patidUserList;

}

ATLIST;

typedef

ATLIST

*

PATLIST;

where:

usClass

Is

the

current

view

id

for

the

index

class

stored

for

this

object.

This

is

the

same

value

as

the

usClass

parameter

in

the

USERSORTSTRUCT

data

structure.

usCount

Is

the

number

of

attributes

listed

in

the

array

referred

to

in

the

patinfo

parameter.

patinfo

Is

the

pointer

to

an

array

of

ATINFO

data

structures.

There

is

a

separate

data

structure

for

each

user-defined

attribute

and

these

system

attributes:

Workflow

name

Priority

Check

out

ID

Suspend

status.

When

this

user

exit

routine

is

called

from

a

print

operation,

only

the

attributes

in

the

user’s

current

layout

are

included

in

the

array.

usUserCount

Is

the

number

of

attributes

listed

in

the

array

referred

to

in

the

patidUserList

parameter.

patidUserList

Is

the

pointer

to

an

array

of

USHORTs.

There

is

a

separate

USHORT

for

each

user-defined

attribute

of

this

object

to

appear

in

the

Table

of

Contents

window.

These

attributes

are

selected

by

each

user

from

the

list

of

attributes

assigned

to

this

index

class.

Only

these

selected

attributes

can

be

viewed.

ATINFO:

typedef

struct

{

USHORT

atid;

PATTRINFOSTRUCT

pai;

Chapter

8.

Content

Manager

for

iSeries

User

Exits

271

}

ATINFO;

typedef

ATINFO

*

PATINFO;

where:

atid

Is

the

attribute

ID

defined

in

the

ATTRINFOSTRUCT

data

structure

pointed

to

by

the

pai

parameter.

pai

Is

the

pointer

to

an

ATTRINFOSTRUCT

data

structure.

This

data

structure

contains

the

attribute

name

in

the

system,

data

type,

minimum

length,

and

maximum

length.

Results

The

function

returns

a

value

of

SHORT

with

zero

as

SUCCESS.

The

table

of

contents

of

the

folder

or

workbasket

appears

in

random

order.

If

the

exit

completes

successfully,

the

items

appear

in

the

order

in

which

they

are

sorted

in

USERSORTSTRUCT

array

(pSortList

[0],

pSortList

[1]).

If

the

usFlags

parameter

is

set

to

SF_HIDE,

the

document

or

folder

does

not

appear

with

the

other

objects

in

its

index

class.

Comments

The

exit

routine

must

not

free

the

buffers

that

are

passed

in.

This

exit

does

not

allow

changes

to

the

user

layout

of

the

Table

of

Contents

window.

The

attribute

values

cannot

be

modified

by

the

exit.

These

attributes

are

listed

in

the

patidUserList

parameter

of

the

ATLIST

data

structures.

This

exit

is

not

called

if

the

workbasket

being

opened

is

specified

for

system-assigned

work

through

the

system

administration

program.

If

the

user

displays

a

workbasket

in

priority

mode,

IBM

Content

Manager

for

iSeries

ignores

the

order

returned

by

the

user

exit

routine.

Items

that

are

specified

to

be

hidden

do

not

appear.

This

function

is

processed

prior

to

the

display

of

the

list.

SaveRecordUserExit

(save

record

user

exit)

Format

SHORT

SaveRecordUserExit(

hwnd,

pPreSaveStruct,

ppszErrorMsgs,

ppusFieldIdsInError)

Purpose

This

user

exit

routine

is

called

when

a

user

chooses

to

save

changes

to

the

user-defined

attributes

of

a

document

or

folder.

The

index

attribute

fields

are

passed

to

the

exit

for

processing.

The

new

attribute

data

entered

in

the

Index

Form

window

can

be

validated

by

matching

the

information

in

your

existing

files.

This

exit

also

allows

changes

to

the

user-defined

attribute

fields.

If

the

fields

are

modified

by

the

exit,

they

are

audited

by

IBM

Content

Manager

for

iSeries

before

the

record

is

written

to

the

database.

The

audits

compare

the

data

returned

using

the

following

guidelines:

Data

type

—

the

format

and

content

of

the

data

must

conform

to

the

requirements

of

the

data

type

for

the

attribute.

272

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Minimum

length

—

the

minimum

length

requirement

of

the

data

string,

or

minimum

numeric

value

for

certain

data

types,

must

be

met

if

specified

for

the

attribute.

Maximum

length

—

the

maximum

length

requirement

of

the

data

string,

or

maximum

numeric

value

for

certain

data

types

must

be

met

if

specified

for

the

attribute.

Required

fields

must

be

specified.

The

exit

can

return

a

list

of

error

messages

to

indicate

any

errors

in

the

user-specified

values.

The

error

messages

appear

in

the

Index

Form

Errors

window.

The

display

fields

of

the

attributes

corresponding

to

the

error

messages

are

flagged

with

a

question

mark

in

the

Index

Form

window.

Use

the

system

administration

program

to

specify

this

user

exit

routine

in

the

Save

field

in

the

index

class

settings

notebook.

Refer

to

the

Administration

and

Operation

Guide.

Parameters

hwnd

HWND

—

Input

Anchor

window

for

message

boxes.

This

can

be

used

to

display

messages

and

associate

them

with

the

application

window.

Restriction

Because

the

frame

is

disabled

during

the

save,

do

not

use

this

window

(hwnd)

as

the

parent

of

a

dialog.

You

can

use

the

desktop

as

the

parent,

and

you

can

use

this

window

(hwnd)

as

the

owner.

pPreSaveStruct

PUSEREXITSTRUCT

—

Input/output

User-defined

attributes

for

the

document

or

folder

and

other

relevant

information

are

passed

in

the

pPreSaveStruct

parameter.

ppszErrorMsgs

PSZ

*

—

Output

Address

of

a

pointer.

The

pointer

must

be

set

by

your

exit

routine

to

point

to

a

data

stream

of

ASCIIZ

strings

representing

error

messages.

Each

error

message

must

correspond

with

an

attribute

ID

in

the

ppusFieldIdsInError

parameter.

The

required

format

of

the

error

data

stream

is

defined

in

the

Results

section.

This

buffer

must

be

allocated

by

the

user

exit

routine

and

is

deallocated

by

IBM

Content

Manager

for

iSeries.

ppusFieldIdsInError

PUSHORT

*—

Output

Address

of

a

pointer

to

an

array

of

attribute

IDs

associated

with

the

error

messages

returned

in

the

ppszErrorMsgs

parameter.

The

valid

attribute

IDs

are

passed

to

the

exit

in

the

usFieldId

parameter

of

the

FIELDVALUE

data

structures.

This

buffer

must

be

allocated

by

the

user

exit

routine;

it

is

deallocated

by

IBM

Content

Manager

for

iSeries.

Internal

representation

USEREXITSTRUCT:

typedef

struct

{

HSESSION

hSession

Chapter

8.

Content

Manager

for

iSeries

User

Exits

273

ITEMID

uidItem;

USHORT

itemidWorkflowId;

BOOL

fIsUnindexed;

USHORT

hOrigClass;

USHORT

hClass;

CHAR

szUserId[LST_USERID_LEN+1];

CHAR

szUserHandle[LST_USERID_LEN+1];

USHORT

usAccessLevel;

SHORT

sFields;

FIELDVALUE

*

pFields;

}

USEREXITSTRUCT;

typedef

USEREXITSTRUCT

*

PUSEREXITSTRUCT

where:

hSession

Session

handle

returned

by

SimLibLogon.

uidItem

Is

the

ItemID

of

the

current

document

or

folder

to

be

saved.

itemidWorkflowId

This

parameter

is

always

NULL.

fIsUnindexed

This

value

is

TRUE

if

the

object

is

a

new

document

that

has

not

been

indexed

in

the

system.

hOrigClass

Is

the

original

class

ID

of

the

opened

document

or

folder.

hClass

Is

the

current

class

ID

of

the

opened

document

or

folder.

This

value

is

the

same

as

the

hOrigClass

parameter

unless

the

user

specifies

a

new

index

class.

szUserId[LST_USERID_LEN+1]

Is

the

user

ID

of

the

user

saving

the

document

or

folder.

szUserHandle[LST_USERID_LEN+1]

This

parameter

is

reserved.

usAccessLevel

Is

the

access

privilege

the

user

has

for

this

document

or

folder.

The

valid

value

for

this

user

exit

routine

is:

UX_PRIV_WRITE

when

the

user

opens

this

object

in

UPDATE

mode.

sFields

Is

the

number

of

fields

passed

to

the

exit

in

the

pFields

parameter.

pFields

Is

the

pointer

to

an

array

of

FIELDVALUE

data

structures.

The

configuration

and

content

of

the

user-defined

attributes

for

this

document

or

folder

are

passed

to

the

exit

in

these

data

structures.

274

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

FIELDVALUE:

typedef

struct

{

USHORT

usFieldId;

USHORT

usDataType;

USHORT

usMaxLength;

BOOL

fIsReq;

PSZ

pBuffer;

}

FIELDVALUE;

typedef

FIELDVALUE

*

PFIELDVALUE

where:

usFieldId

Is

the

user-defined

attribute

ID.

usDataType

Is

IBM

Content

Manager

for

iSeries

data

type

of

the

attribute

in

the

usFieldId

parameter.

This

is

a

numeric

equivalent

representing

the

data

type.

Refer

to

the

section

″Attribute

types″

in

the

frnpfi.h

header

file

for

the

define

statements

and

content

requirements

for

these

numbers.

usMaxLength

Is

the

maximum

number

of

bytes

in

the

pBuffer

parameter

to

appear

in

the

Index

Form

window,

excluding

the

NULL

terminator.

fIsReq

This

value

is

TRUE

if

the

field

is

required.

If

this

parameter

is

set

to

TRUE

and

this

FIELDVALUE

data

structure

is

modified

by

the

exit,

the

value

in

pBuffer

must

not

be

changed

to

NULL.

pBuffer

Is

the

current

value

of

the

attribute

in

ASCIIZ

display

format.

The

buffer

length

is

the

value

in

the

usMaxLength

parameter

plus

one

to

represent

the

NULL

terminator.

Results

The

function

returns

a

value

of

SHORT

with

zero

for

SUCCESS.

If

any

other

value

is

returned,

the

Save

operation

is

ended.

An

error

message

appears.

If

the

exit

routine

completes

successfully,

the

error

string

pointer

address

in

the

ppszErrorMsgs

parameter

is

interrogated.

If

the

error

string

pointer

is

NULL

or

it

points

to

a

NULL

error

string,

the

attribute

values

returned

in

the

FIELDVALUE

data

structures

are

audited

by

IBM

Content

Manager

for

iSeries

against

the

data

type,

minimum,

and

maximum

length

requirements.

Audit

errors

appear

in

the

Index

Errors

window.

A

question

mark

appears

beside

each

attribute

field

in

the

Index

Form

window

with

audit

errors.

In

this

case,

the

user

must

correct

the

errors

and

select

the

Save

option

again

to

save

the

record

in

IBM

Content

Manager

for

iSeries

database.

The

error

string

pointer

in

the

ppszErrorMsgs

parameter

refers

to

the

messages

to

appear.

The

format

of

the

error

message

string

is

:

string1

(zero-terminated)

<one

or

more

zero-terminated

strings

>zero

terminator

Chapter

8.

Content

Manager

for

iSeries

User

Exits

275

These

error

messages

appear

in

the

Index

Errors

window.

Each

zero-terminated

string

appears

on

a

new

line

in

the

window.

Any

audit

errors

found

by

IBM

Content

Manager

for

iSeries

appear

in

the

same

Index

Errors

window.

If

an

error

message

string

is

returned

by

the

exit,

the

pointer

addressed

in

the

ppusFieldIdsInError

parameter

must

be

set

to

point

to

an

array

of

attribute

IDs

in

error.

There

must

be

one

attribute

ID

in

this

array

for

each

message

in

the

error

string

referred

to

by

the

ppszErrorMsgs

parameter.

The

user-defined

attribute

name

from

the

Index

Form

window

appears

to

the

left

of

its

corresponding

error

message

in

the

Index

Errors

window.

A

question

mark

appears

next

to

the

field

on

the

Index

Form

window.

Comments

The

exit

routine

must

not

free

the

buffers

that

are

passed

in.

All

items

sent

to

the

exit

are

read-only

copies

except

the

user-defined

attributes

in

the

FIELDVALUE

data

structures.

This

exit

is

called

when

a

document

or

folder

is

saved

after

modifying

the

user-defined

attributes

of

the

object.

This

exit

is

called

prior

to

the

Change

System-Managed

Storage

user

exit

routine

if

both

are

specified

for

the

current

index

class.

Validation

of

the

user-defined

attribute

fields

is

performed

after

the

user

exit

routine

is

completed.

IBM

Content

Manager

for

iSeries

frees

the

error

message

buffer

allocated

by

the

exit

after

displaying

the

error

messages

to

the

user.

This

exit

is

not

processed

if

the

Index

Form

window

is

not

opened

or

if

the

user

has

not

changed

the

class

or

attributes

of

the

object.

UserActionUserExit

(Workflow

User

Action

User

Exit)

Format

SHORT

EXPENTRY

UserActionUserExit(

hSession,

hWnd,

pWorkManagementInfo,

pExitStruct,

pszAction

)

The

client

application

program

calls

this

user

exit

when

a

user-defined

action

(function

code

0050)

is

selected

at

a

workbasket.

Use

the

Workflow

Builder

feature

to

specify

this

user

exit

and

associate

it

with

a

user

action

function

in

an

action

list

definition.

Parameters

hSession

HSESSION

—

input

Session

handle

returned

by

SimLibLogon.

hWnd

HWND

—

input

Anchor

window

for

message

boxes.

You

can

use

this

parameter

to

display

messages

and

associate

them

with

the

application

window.

pWorkManagementInfo

PWMSNAPSHOTSTRUCT

—

input

The

pointer

to

a

buffer

where

a

WMSNAPSHOTSTRUCT

data

structure

provides

detailed

work

management

information

about

the

item

selected.

276

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

pExitStruct

PUSEREXITSTRUCT

—

input

Contains

index

class

and

attribute

information

associated

with

the

selected

item.

pszAction

PSZ

—

input

The

null-terminated

character

string

containing

the

action

selected.

This

is

the

value

of

the

*ACTION

variable.

Results

This

user

exit

returns

a

value

of

type

SHORT.

It

should

return

a

value

of

zero

for

successful

completion

of

the

user

exit.

If

it

returns

another

value,

an

error

message

is

displayed.

UserOptionUserExit

(User-option

User

Exit)

Format

SHORT

EXPENTRY

UserOptionUserExit(

hSession,

hWnd,

pExitStruct

)

The

client

application

program

calls

this

user

exit

when

a

user-defined

option

is

selected

from

the

Selected

menu

for

an

item.

Use

the

system

administration

function

to

specify

this

user

in

the

index

class

profile.

Refer

to

the

IBM

Content

Manager

for

iSeries:

System

Administration

Guidefor

more

information.

Parameters

hSession

HSESSION

—

input

Session

handle

returned

by

SimLibLogon.

hWnd

HWND

—

input

Anchor

window

for

message

boxes.

You

can

use

this

parameter

to

display

messages

and

associate

them

with

the

application

window.

pExitStruct

PUSEREXITSTRUCT

—

input

Contains

index

class

and

attribute

information

associated

with

the

selected

item.

This

user

exit

returns

a

value

of

type

SHORT.

It

should

return

a

value

of

zero

for

successful

completion

of

the

user

exit.

If

it

returns

another

value,

an

error

message

is

displayed.

WBItemSelectedUserExit

(Workbasket

Item

Selected

User

Exit)

Format

SHORT

EXPENTRY

WBItemUserExit(

hSession,

hWnd,

pWorkManagementInfo,

pExitStruct,

pfContinue

)

Chapter

8.

Content

Manager

for

iSeries

User

Exits

277

The

client

application

program

calls

this

user

exit

when

an

item

is

selected

at

a

workbasket.

The

exit

is

called

before

the

item

is

displayed

to

the

user.

Use

the

system

administration

function

to

specify

this

user

exit

in

the

workbasket

profile.

Refer

to

the

IBM

Content

Manager

for

iSeries:

System

Administration

Guidefor

more

information.

Parameters

hSession

HSESSION

—

input

Session

handle

returned

by

SimLibLogon.

hWnd

HWND

—

input

Anchor

window

for

message

boxes.

You

can

use

this

parameter

to

display

messages

and

associate

them

with

the

application

window.

pWorkManagementInfo

PWMSNAPSHOTSTRUCT

—

input

The

pointer

to

a

buffer

where

a

WMSNAPSHOTSTRUCT

data

structure

provides

detailed

work

management

information

about

the

item

selected.

pExitStruct

PUSEREXITSTRUCT

—

input

Contains

index

class

and

attribute

information

associate

with

the

selected

item.

pfContinue

PBOOL

—

output

Pointer

to

the

continue

flag.

Set

this

value

to

TRUE

to

continue

with

the

display

of

the

selected

item.

Set

this

to

FALSE

to

bypass

the

display

of

the

item.

Results

This

user

exit

returns

a

value

of

type

SHORT.

It

should

return

a

value

of

zero

for

successful

completion

of

the

user

exit.

If

it

returns

another

value,

an

error

message

is

displayed.

WBItemCompletedUserExit

(Workbasket

Item

Completed

User

Exit)

Format

SHORT

EXPENTRY

WBItemCompletedUserExit(

hSession,

hWnd,

pWorkManagementInfo,

pExitStruct,

pszAction,

pfContinue

)

The

client

application

program

calls

this

user

exit

when

an

action

is

selected

at

a

workbasket

that

will

complete

working

the

item.

The

exit

is

called

before

the

action

is

processed

by

the

client.

Use

the

system

administration

function

to

specify

this

user

exit

in

the

workbasket

profile.

Refer

to

the

IBM

Content

Manager

for

iSeries:

System

Administration

Guidefor

more

information.

278

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Parameters

hSession

HSESSION

—

input

Session

handle

returned

bySimLibLogon.

hWnd

HWND

—

input

Anchor

window

for

message

boxes.

You

can

use

this

parameter

to

display

messages

and

associate

them

with

the

application

window.

pWorkManagementInfo

PWMSNAPSHOTSTRUCT

—

input

The

pointer

to

a

buffer

where

a

WMSNAPSHOTSTRUCT

data

structure

provides

detailed

work

management

information

about

the

item

selected.

pExitStruct

PUSEREXITSTRUCT

—

input

Contains

index

class

and

attribute

information

associate

with

the

selected

item.

pszAction

PSZ

—

input

The

null-terminated

character

string

containing

the

action

selected.

This

is

the

value

of

the

SIMWM_ACTION

variable.

pfContinue

PBOOL

—

output

Pointer

to

the

continue

flag.

Set

this

value

to

TRUE

to

continue

with

the

display

of

the

selected

item.

Set

this

to

FALSE

to

bypass

the

display

of

the

item.

Results

This

user

exit

returns

a

value

of

type

SHORT.

It

should

return

a

value

of

zero

for

successful

completion

of

the

user

exit.

If

it

returns

another

value,

an

error

message

is

displayed.

UserDefinedWBUserExit

(User-defined

Workbasket

User

Exit)

Format

SHORT

EXPENTRY

UserDefinedWBUserExit(

hSession,

hWnd,

pWorkBasketInfo,

pszUserid

)

The

client

application

program

calls

this

user

exit

when

a

user

selects

to

open

a

workbasket

of

type

50

through

99.

The

user-defined

workbasket

type

and

this

exit

let

you

take

advantage

of

the

process

control

and

workbasket

control

functions

provided

by

Content

Manager

for

iSeries.

However,

the

interface

to

the

workbasket

and

its

contents

are

controlled

by

your

own

definition

through

this

exit.

Use

the

system

administration

function

to

specify

this

user

exit

in

the

workbasket

profile.

Refer

to

the

IBM

Content

Manager

for

iSeries:

System

Administration

Guidefor

more

information.

Chapter

8.

Content

Manager

for

iSeries

User

Exits

279

Parameters

hSession

HSESSION

—

input

Session

handle

returned

by

SimLibLogon.

hWnd

HWND

—

input

Anchor

window

for

message

boxes.

You

can

use

this

parameter

to

display

messages

and

associate

them

with

the

application

window.

pWorkBasketInfo

PWORKBASKETINFOSTRUCT

—

input

The

pointer

to

a

buffer

where

a

WORKBASKETINFOSTRUCT

data

structure

provides

detailed

information

about

the

user-defined

workbasket.

pszUserID

PSZ

—

input

The

null-terminated

character

string

containing

the

user

ID

of

the

user

calling

this

user

exit.

Results

This

user

exit

returns

a

value

of

type

SHORT.

It

should

return

a

value

of

zero

for

successful

completion

of

the

user

exit.

If

it

returns

another

value,

an

error

message

is

displayed.

Server

User

Exits

The

user

exit

points

described

here

are

invoked

on

the

Content

Manager

for

iSeries

server.

Note:

When

calling

the

Content

Manager

for

iSeries

APIs

from

within

any

of

the

server

exit

points,

the

call

must

ensure

that

the

SimLibLogoff

API

is

called

after

the

last

API

is

called.

Failure

to

do

so

may

lead

to

unexpected

results

upon

subsequent

calls.

Content

Manager

for

iSeries

uses

the

OS/400

Registration

Facility

function

to

determine

the

exit

programs

to

call.

To

add

an

exit

program,

enter

the

Work

with

Registration

Information

(WRKREGINF)

command.

On

the

Work

with

Registration

Information

screen,

find

the

exit

point

and

format

name

that

you

want

to

work

with

(see

Table

1

for

a

list

of

the

exit

points

and

format

names).

Select

option

8

(Work

with

Exit

Programs)

to

work

with

exit

programs

for

the

specific

exit

point

and

format

name.

On

the

Work

with

Exit

Programs

screen

do

the

following:

v

If

there

is

no

program

currently

defined

for

the

exit

point,

use

option

1

(Add)

to

add

an

exit

program

entry.

Enter

a

program

number

of

1

and

the

program

name

and

library

name

for

the

program.

v

If

there

is

currently

a

program

defined

and

you

want

to

change

the

name

of

the

program

or

the

library,

you

must

first

remove

the

current

entry

using

option

4

(Remove),

then

you

must

add

the

new

program

entry

using

option

1

(Add).

Although

the

registration

facility

supports

multiple

exit

programs,

Content

Manager

for

iSeries

only

supports

one

exit

program

per

exit

point.

If

the

Content

Manager

for

iSeries

exit

points

do

not

appear

in

the

list,

perform

the

following

action

from

a

command

prompt

to

have

them

added:

CALL

EKDCSUEREG

PARM(’

’

’

’)

280

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

|
|
|
|

|
|
|

|
|

|

After

this

call

has

completed,

the

list

of

exit

points

will

be

registered.

Table

4.

Content

Manager

for

iSeries

Exit

Points.

EXIT

POINT

NAME

FORMAT

NAME

EXIT

PROGRAM

NAME

QIBM_VI-LOGON

VIF0100

User-defined

QIBM_VI_LOGOFF

VIF0100

User-defined

QIBM_VI_SAVE_ATTR

VIF0100

User-defined

QIBM_VI_CRT_OBJECT

VIF0100

User-defined

QIBM_VI_DLT_OBJECT

VIF0100

User-defined

QIBM_VI_OPEN_OBJECT

VIF0100

User-defined

QIBM_VI_CRT_ITEM

VIF0100

User-defined

QIBM_VI_ITEM_CREATED

VIF0100

User-defined

QIBM_VI_DLT_ITEM

VIF0100

User-defined

QIBM_VI_IMP_CREATED

VIF0100

User-defined

QIBM_VI_IMP_ITEM

VIF0100

User-defined

QIBM_VI_ADD_FLR_ITEM

VIF0100

User-defined

QIBM_VI_ROUTE_WP

VIF0100

User-defined

QIBM_VI_GET_WP

VIF0100

User-defined

QIBM_VI_RETURN_WP

VIF0100

User-defined

QIBM_VI_END_PROCESS

VIF0100

User-defined

QIBM_VI_SET_VARIABLE

VIF0100

User-defined

Logon

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

logon

to

Content

Manager

for

iSeries

using

SimLibLogon.

Table

5.

Logon

User

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

User

identifier

The

user

ID

of

the

user

to

Log

on.

Input

Character

10

Address

Workstation

name

or

address.

Input

Character

15

Logoff

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

logoff

of

Content

Manager

for

iSeries

using

SimLibLogoff.

Table

6.

Logoff

User

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

No

parameters

This

user

exit

is

called

when

a

request

is

made

to

logoff

for

Content

Manager

for

iSeries

using

SimLibLogoff.

Save

Attributes

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

save

changes

to

the

attributes

of

a

document

or

folder

using

SimLibSaveAttr

or

SimLibCloseAttr.

This

exit

point

is

Chapter

8.

Content

Manager

for

iSeries

User

Exits

281

|

|||

|||

|
|
||||

before

the

attributes

are

actually

updated.

Given

this,

you

may

validate

or

modify

attributes

within

the

exit

program.

Modified

attributes

are

not

validated

upon

return

from

the

exit.

This

exit

is

invoked

prior

to

privilege

verification

and

input

validation.

Table

7.

Save

Attributes

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Item

ID

Identifier

of

the

item

for

which

attributes

will

be

changed.

Input

Character

16

Index

Class

An

index

class

identifier

for

the

set

of

user-defined

attributes

to

associate

with

the

item.

Input

Binary

4

Attributes

Table

of

attribute

identifiers

and

values

associated

with

the

item.

Input/Output

Character

*

Return

Value

Indicates

how

subsequent

processing

should

continue.

Valid

values

are:

v

0

-

Normal

processing.

The

attributes

will

be

modified.

v

non-zero

-

Error

processing.

The

request

to

change

the

attributes

should

not

be

processed.

Output

Binary

4

The

format

of

the

Attributes

parameter

is:

Table

8.

Attributes

FIELD

TYPE

Number

of

attributes

Binary

(4)

Attribute

table

Char

(*)

The

attribute

table

consists

of

an

array

of

attribute

table

entries.

The

number

of

entries

in

the

attribute

table

is

based

on

the

value

in

the

Number

of

Attributes

parameter

above.

Table

9.

Attribute

Table

Entry

FIELD

TYPE

Attribute

identifier

Binary

(4)

Attribute

type

Binary

(4)

Attribute

length

Binary

(4)

Attribute

value

Char

(*)

Create

Object

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

create

an

object

using

SimLibCreateObject.

This

exit

point

is

after

the

create

object

request

has

been

processed.

Therefore,

the

item

identifier

and

part

number

are

the

new

object.

This

exit

is

invoked

only

if

the

create

request

was

successfully

processed.

Table

10.

Create

Object

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

282

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

|
|
|

||

||

||

||

||

||
|

|

Table

10.

Create

Object

Exit

Parameters

(continued)

Item

identifier

Item

identifier

of

the

object.

Input

Character

16

Part

number

The

part

number

of

the

object.

Input

Binary

4

Version

Version

number

of

the

object.

Input

Binary

4

Affiliated

type

The

type

of

affiliated

values

are:

v

SIM_ANNOTATIVE

v

SIM_BASE

v

SIM_EVENT

v

SIM_MGDS

v

SIM_NOTE

Input

Binary

4

Delete

Object

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

delete

an

object

using

SimLibDeleteObject.

This

exit

point

is

after

the

delete

request

has

been

processed.

Table

11.

Delete

Object

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Item

identifier

Item

identifier

of

the

object.

Input

Character

16

Part

number

The

part

number

of

the

object.

Input

Binary

4

Delete

option

Valid

delete

options

are:

v

SIM_DELETE_ITEM

—

Delete

item

if

no

more

parts

left.

v

SIM_DELETE_OBJECT

—

Don’t

delete

the

item,

even

if

no

more

parts

are

left.

Input

Binary

4

Return

code

Return

code

after

processing

delete

object

requests.

Input

Binary

4

Open

Object

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

open

an

object

using

SimLibOpenObject.

This

exit

point

is

called

prior

to

the

request

being

processed.

Table

12.

Open

Object

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Item

identifier

Item

identifier

of

the

object.

Input

Character

16

Part

number

Part

number

of

the

object.

Input/Output

Binary

4

Access

Level

Type

of

Access

given

to

the

object

when

opened.

Valid

values

are:

v

SIM_ACCESS_READ_WRITE

v

SIM_ACCESS_SHARED_READ

Input/Output

Binary

4

Chapter

8.

Content

Manager

for

iSeries

User

Exits

283

|

|
|

||

|||||

|
|
||||

|
|
||||

|
|
|
|
|
|

|||

Table

12.

Open

Object

Exit

Parameters

(continued)

Return

Value

Indicates

how

processing

will

continue.

0

Normal

processing.

The

object

will

be

opened.

Non-zero

Error

processing

and

the

request

to

open

will

not

be

processed

and

this

return

value

will

be

returned

to

the

user.

Output

Binary

4

Create

Item

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

create

an

item

using

SimLibCreateItem.

This

exit

point

is

before

the

item

is

created.

Given

this,

you

may

validate

or

modify

the

index

class

and

associated

attributes

within

the

exit

program.

This

exit

is

invoked

prior

to

privilege

verification

and

input

validation.

Table

13.

Create

Item

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Item

type

The

type

of

item

you

want

to

create.

The

valid

values

are:

v

SIM_DOCUMENT

-

Indicates

that

the

item

is

a

document.

v

SIM_FOLDER

-

Indicates

that

the

item

is

a

folder.

Input

Binary

4

Index

class

An

index

class

identifier

for

the

set

of

user-defined

attributes

to

associate

with

this

item.

Input/Output

Binary

4

Attributes

Table

of

attribute

identifiers

and

values

associated

with

the

item

created.

Input/Output

Character

*

Return

value

Indicates

how

subsequent

processing

should

continue.

Valid

values

are:

v

0

-

Normal

processing.

The

item

will

be

created.

v

non-zero

-

Error

processing.

The

request

to

create

an

item

should

not

be

processed.

Output

Binary

4

See

Table

8

on

page

282

for

a

definition

of

the

Attributes

parameter.

Item

Created

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

create

an

item

using

SimLibCreateItem.

This

exit

point

is

after

the

item

has

been

created.

Table

14.

Item

Created

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

284

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

|

|
|
|
|

||
|

|
|
|
|
|
|

|||

|

|

Table

14.

Item

Created

Exit

Parameters

(continued)

Item

type

The

type

of

item

that

was

created.

The

valid

values

are:

v

SIM_DOCUMENT

-

Indicates

that

the

item

is

a

document.

v

SIM_FOLDER

-

Indicates

that

the

item

is

a

folder.

Input

Binary

4

Index

class

An

index

class

identifier

for

the

set

of

user-defined

attributes

associated

with

this

item.

Input

Binary

4

Attributes

Table

of

attribute

identifiers

and

values

associated

with

the

item

created.

Input

Character

*

Item

ID

The

identifier

of

the

item

created.

Input

Character

16

See

Table

8

on

page

282

for

a

definition

of

the

attribute

parameter.

Delete

Item

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

delete

an

item

using

SimLibDeleteItem.

This

exit

point

is

after

the

item

has

been

deleted.

Table

15.

Delete

Item

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Item

ID

The

identifier

of

an

item

that

was

deleted.

Input

Character

16

Return

code

Return

code

after

processing

delete

item

request.

Input

Binary

4

Object

Import

Create

Item

User

Exit

This

user

exit

is

called

when

the

object

import

function

creates

an

item.

This

exit

point

is

before

the

item

is

created.

Given

this,

you

may

validate

or

modify

the

index

class

and

associated

attributes

within

the

exit

program.

This

exit

is

invoked

prior

to

privilege

verification

and

input

validation.

Table

16.

Object

Import

Create

Item

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Item

type

The

type

of

item

you

want

to

create.

The

valid

values

are:

v

SIM_DOCUMENT

-

Indicates

that

the

item

is

a

document.

v

SIM_FOLDER

-

Indicates

that

the

item

is

a

folder.

Input

Binary

4

Index

class

An

index

class

identifier

for

the

set

of

user-defined

attributes

to

associate

with

this

item.

Input/Output

Binary

4

Attributes

Table

of

attribute

identifiers

and

values

associated

with

the

item

created.

Input/Output

Character

*

Chapter

8.

Content

Manager

for

iSeries

User

Exits

285

Table

16.

Object

Import

Create

Item

Exit

Parameters

(continued)

Return

value

Indicates

how

subsequent

processing

should

continue.

Valid

values

are:

v

0

-

Normal

processing.

The

item

will

be

created.

v

non-zero

-

Error

processing.

The

request

to

create

an

item

should

not

be

processed.

Output

Binary

4

See

Table

8

on

page

282

for

a

definition

of

the

Attributes

parameter.

Object

Import

Item

Created

User

Exit

This

user

exit

is

called

when

the

object

import

function

creates

an

item.

This

exit

point

is

after

the

item

has

been

created.

Table

17.

Object

Import

Item

Created

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Item

type

The

type

of

item

that

was

created.

The

valid

values

are:

v

SIM_DOCUMENT

-

Indicates

that

the

item

is

a

document.

v

SIM_FOLDER

-

Indicates

that

the

item

is

a

folder.

Input

Binary

4

Index

class

An

index

class

identifier

for

the

set

of

user-defined

attributes

associated

with

this

item.

Input

Binary

4

Attributes

Table

of

attribute

identifiers

and

values

associated

with

the

item

created.

Input

Character

*

Item

ID

The

identifier

of

the

item

created.

Input

Character

16

See

Table

8

on

page

282

for

a

definition

of

the

attribute

parameter.

Add

Folder

Item

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

add

an

item

to

a

folder

using

SimLibAddFolderItem.

This

exit

point

is

before

the

item

is

added

to

the

folder,

giving

you

the

option

of

changing

the

destination

folder.

This

exit

is

invoked

prior

to

privilege

verification

and

input

validation.

Table

18.

Add

Folder

Item

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Folder

ID

The

identifier

of

the

folder

to

which

the

item

will

be

added.

Input/Output

Character

16

Item

ID

The

identifier

of

the

item

to

be

added

to

the

folder.

Input

Character

16

286

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Table

18.

Add

Folder

Item

Exit

Parameters

(continued)

Return

value

Indicates

how

subsequent

processing

should

continue.

Valid

values

are:

v

0

-

Normal

processing.

The

item

will

be

added

to

the

folder.

v

non-zero

-

Error

processing.

The

request

to

add

the

item

to

the

folder

should

not

be

processed.

Output

Binary

4

Route

Work

Package

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

route

a

work

package

usingSimWmRouteWorkPackage.

This

exit

point

is

before

the

work

package

is

routed,

giving

you

the

option

of

changing

the

destination

workbasket.

This

exit

is

invoked

prior

to

privilege

verification

and

input

validation.

Table

19.

Route

Work

Package

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Workbasket

Workbasket

identifier.

Input/Output

Character

11

Work

Package

ID

Identifier

of

the

work

package

that

represents

the

work

being

done.

Input

Binary

4

Instance

ID

The

identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

Input

Binary

4

Priority

Priority

of

the

work.

The

priority

affects

the

work

sequencing

as

the

work

package

moves

through

a

process.

A

larger

number

is

a

higher

priority.

Input/Output

Binary

4

Continue

v

0

-

Continue

with

normal

route

processing.

v

non-zero

-

All

required

processing

was

performed

within

the

exit,

bypass

any

additional

processing.

Output

Binary

4

Return

value

If

continue

is

non-zero,

this

is

the

error

code

to

be

returned.

Output

Binary

4

Get

Work

Package

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

get

a

work

package

using

SimWmGetWorkPackage.

This

exit

work

order

and

work

package

ID/instance

may

be

overridden.

This

exit

is

invoked

prior

to

privilege

verification

and

input

validation.

Table

20.

Get

Work

Package

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Workbasket

Workbasket

identifier.

Input

Character

11

Chapter

8.

Content

Manager

for

iSeries

User

Exits

287

||
|
|
|
|

|||

Table

20.

Get

Work

Package

Exit

Parameters

(continued)

Work

Order

Order

used

for

selecting

an

entry

from

the

workbasket.

Valid

values

are:

v

SIMWM_ORDER_FIFO

-

Make

selection

based

on

first

in,

first

out,

order

to

return

first

available

work

package.

v

SIMWM_ORDER_LIFO

-

Make

selection

based

on

last

in,

first

out

order

to

return

first

available

work

package.

v

SIMWM_ORDER_PRIORITY

-

Make

selection

based

on

the

work

package

priority

to

return

first

available

work

package.

v

SIMWM_ORDER_SYSTEM_NEXT

-

The

server

determines

the

work

order

and

returns

the

next

available

work

package.

v

SIMWM_ORDER_FIFO_NEXT

-

Make

selection

for

the

next

available

work

package

based

on

first

in,

first

out

(FIFO)

order.

v

SIMWM_ORDER_LIFO_NEXT

-

Make

selection

for

the

next

available

work

package

based

on

last

in,

first

out

(LIFO)

order.

v

SIMWM_ORDER_PRIORITY_NEXT

-

Make

selection

for

the

next

available

work

package

based

on

the

work

package

priority.

v

NULL

-

If

work

package

ID

is

specified,

select

this

work

package.

If

work

package

ID

is

0,

the

server

determines

the

work

order

and

returns

the

first

available

work

package.

Input/Output

Binary

4

Work

package

ID

Identifier

to

the

work

package

that

represents

the

work

being

done.

Input/Output

Binary

4

Instance

ID

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

Input/Output

Binary

4

Return

Work

Package

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

return

a

work

package

using

SimWmReturnWorkPackage.

This

exit

point

is

before

the

return

work

package

request

has

been

processed.

The

priority

may

be

overridden.

This

exit

is

invoked

prior

to

privilege

verification

and

input

validation.

Table

21.

Return

Work

Package

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

288

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Table

21.

Return

Work

Package

Exit

Parameters

(continued)

Work

package

ID

Identifier

of

the

work

package

that

represents

the

work

being

done.

Input

Binary

4

Instance

ID

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

Input

Binary

4

Priority

Priority

of

the

work

to

perform.

The

priority

affects

the

work

sequencing

as

the

work

package

moves

through

a

process.

A

larger

number

is

a

higher

priority.

Input/Output

Binary

4

End

Process

User

Exit

This

user

exit

is

called

when

a

request

is

made

to

end

a

work

package

on

a

route,

using

SimWmEndProcess.

This

exit

point

is

before

the

work

package

is

ended.

This

exit

is

invoked

prior

to

privilege

verification

and

input

validation.

Table

22.

End

Process

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Work

package

ID

Identifier

of

the

work

package

that

represents

the

work

being

done.

Input

Binary

4

Instance

ID

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

Input

Binary

4

Continue

v

0

-

Continue

with

normal

end

processing.

v

non-zero

-

All

required

processing

was

performed

within

the

exit,

bypass

any

additional

processing.

Output

Binary

4

Return

value

If

continue

is

non-zero,

this

is

the

error

code

to

be

returned.

Output

Binary

4

Set

Variable

User

Exit

This

user

exit

is

called

during

workflow

processing,

when

a

variable

is

being

interrogated.

The

process

will

first

determine

if

the

variable

is

one

of

the

following:

v

Process

v

Index

class

v

An

existing

variable

v

Key

field

If

the

variable

is

none

of

the

above,

the

process

will

assume

that

the

variable

is

an

external

variable

and

call

this

user

exit

to

get

the

variable

value.

Table

23.

Set

Variable

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Chapter

8.

Content

Manager

for

iSeries

User

Exits

289

|

|
|

|

|

|

|

|
|

||

|||||

Table

23.

Set

Variable

Exit

Parameters

(continued)

Work

package

ID

Identifier

of

the

work

package

that

represents

the

work

being

done.

Input

Binary

4

Instance

ID

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

Input

Binary

4

Variable

name

Name

of

the

variable

to

process.

Input

Character

10

Variable

value

Value

of

the

variable

Input/Output

Character

40

Return

value

Indicates

how

subsequent

processing

should

continue.

0

Normal

processing.

Create

variable.

Non-zero

Error

processing.

The

request

to

create

the

variable

should

not

be

processed.

Output

Binary

4

Server

User

Exit

for

Process

Definitions

This

user

exit

is

called

as

a

step

in

a

process

when

the

process

definition

includes

a

user

exit

node.

Unlike

the

previous

server

user

exits,

the

user

exit

node

user

exit

is

not

entered

in

the

OS/400

Registration

Facility.

When

you

define

the

user

exit

node

as

part

of

your

process

definition

in

Workflow

Builder,

you

specify

the

program

and

library

to

be

called.

Table

24.

User

Exit

Node

Exit

Parameters

FIELD

DESCRIPTION

INPUT/OUTPUT

FORMAT

SIZE

Work

package

ID

Identifier

of

the

work

package

that

represents

the

work

being

done.

Input

Decimal

10

Instance

ID

Identifier

of

the

work

package

instance

that

distinguishes

one

parallel

path

from

another

within

the

process.

Input

Decimal

5

Return

value

If

the

return

value

is

0,

processing

continues

with

the

next

command

in

the

route

definition.

If

the

return

value

has

any

other

value,

error

message

EKD-1111

is

logged

to

the

error

log

file

and

the

next

command

in

the

route

definition

is

processed.

Output

Decimal

4

Reserved

Reserved

for

future

use.

Input

Character

512

290

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

|

|
|
|
|
|

|||

||
|
|
|

|||

|
|
||||

|
|
||||

|
|
|
|

||
|

|
|
|
|
|

|||

|

|

Appendix

A.

Guidelines

for

Search

Expressions

Included

in

this

appendix

are

some

guidelines

to

follow

when

you

are

searching

a

Content

Manager

for

iSeries

client

application.

Logical

Operators

for

Searches

The

following

are

the

valid

logical

operators

in

order

of

precedence:

NOT

or

^

Negate

the

condition

that

follows.

AND

or

&

Both

the

preceding

condition

and

the

condition

that

follows

must

be

true.

OR

or

|

Either

the

preceding

condition

or

the

condition

that

follows

is

true.

The

following

examples

illustrate

the

precedence

rules.

W,

X,

Y,

and

Z

represent

expressions

in

the

following

string:

W

OR

X

AND

NOT

Y

AND

Z

Using

the

default

precedence

rules,

this

string

is

the

same

as

the

following:

W

OR

(

X

AND

(NOT

Y)

AND

Z

)

You

can

use

parentheses

to

alter

precedence

and

change

the

meaning

of

the

string.

For

example:

(W

OR

X)

AND

NOT

(Y

AND

Z)

Note:

You

can

enter

the

logical

operators

in

uppercase,

lowercase,

or

mixed

case.

Search

Expressions

Each

search

expression

takes

the

following

form:

Attribute

Operator

Value

Element

Meaning

Attribute

A

character

string

of

the

following

form:

Annn

Where

the

fields

have

the

following

meanings:

A

An

attribute.

You

can

enter

attributes

in

uppercase,

lowercase,

or

mixed

case.

nnn

A

decimal

attribute

ID.

This

value

identifies

either

a

user-defined

attribute

or

a

system-defined

attribute

as

it

exists

in

Content

Manager

for

iSeries.

Operator

A

relational

operator.

You

can

enter

operators

in

uppercase,

lowercase,

or

mixed

case.

The

following

are

the

valid

operators.

Operator

Meaning

EQ

or

==

Equal

to

©

Copyright

IBM

Corp.

1997,

2004

291

LEQ

or

<=

Less

than

or

equal

to

GEQ

or

>=

Greater

than

or

equal

to

LT

or

<

Less

than

GT

or

>

Greater

than

NEQ

or

<>

Not

equal

to

IN

In

a

list

of

values

NOTIN

Not

in

a

list

of

values

LIKE

Like

NOTLIKE

Not

like

BETWEEN

Between

two

values

NOTBETWEEN

Not

between

two

values

Value

A

string

value,

a

numeric

value,

or

the

value

NULL.

You

must

enclose

string

values

within

quotation

marks.

Use

two

quotation

marks

together

to

specify

a

zero-length

string.

Use

two

blanks

within

two

quotation

marks

to

specify

a

string

of

two

blanks.

Note

that

neither

a

zero-length

string

or

a

string

of

two

blanks

is

equivalent

to

the

value

NULL.

You

can

place

a

plus

or

a

minus

sign

before

a

numeric

value.

Optionally,

you

can

specify

a

numeric

value

as

a

string.

Use

the

reserved

word

null

to

specify

the

value

NULL.

You

can

specify

the

value

NULL

for

the

EQ

and

NEQ

operators

only.

The

following

are

examples

of

valid

values:

"XXXXX"

null

"123"

+123

123

Note:

The

values

“123”,

+123,

and

123

are

equivalent.

Relational

Operators

for

Searches

When

you

use

the

following

relational

operators,

you

must

specify

value

strings

in

certain

special

formats:

v

BETWEEN

v

NOTBETWEEN

v

LIKE

v

NOTLIKE

v

IN

v

NOTIN

When

you

use

either

the

BETWEEN

operator

or

the

NOTBETWEEN

operator,

you

must

specify

all

value

strings

within

an

expression

in

the

same

format.

The

following

are

examples

of

valid

expressions:

292

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

A1

BETWEEN

100

200

A51

BETWEEN

’1995-01-01’

’2020-09-29’

A49

BETWEEN

’1900-01-01-00.00.00.000000’

’1920-02-02-00.00.00.000003’

A50

BETWEEN

’13.00.00’

’17.00.00’

A2

NOTBETWEEN

"FIRST"

"LAST"

When

you

use

either

the

LIKE

operator

or

the

NOTLIKE

operator,

use

the

percent

sign

(%)

or

the

underscore

character

(_)

in

SQL

format

to

specify

searches

for

partial

strings.

Specify

the

percent

sign

to

match

any

character.

For

example,

the

following

expression

searches

for

any

value

that

begins

with

the

character

S:

A3

LIKE

"S%"

Specify

the

underscore

character

to

match

any

character

in

a

certain

position.

For

example,

the

following

expression

searches

for

any

value

that

begins

with

the

character

string

PA,

contains

any

character

in

the

third

position,

and

contains

the

character

K

in

the

fourth

and

final

position:

A8

LIKE

"PA_K"

When

you

use

either

the

IN

operator

or

the

NOTIN

operator,

you

must

enclose

string

values

within

apostrophes

(’)

and

enclose

the

entire

set

of

values

within

parentheses.

Additionally,

you

must

place

a

comma

(,)

between

any

two

values

within

an

expression.

The

following

are

examples

of

valid

expressions:

A4

IN

"(’Monday’,’Tuesday’,’Wednesday’)"

A50

NOTIN

"(’15.30.03’)

"

A51

NOTIN

"(’1994-08-31’)

"

A49

NOTIN

"(’1920-02-02-00.00.00.000001’)

"

A5

NOTIN

"(1,3,5,7,9)"

If

you

specify

any

attribute

in

an

expression

that

does

not

belong

to

the

index

class

you

specify

for

that

expression

in

this

data

structure,

the

search

method

fails.

In

such

a

case,

the

function

fails

regardless

of

any

other

correctly

structured

portion

of

the

expression.

In

the

following

example,

the

function

fails

if

the

index

class

you

specify

contains

only

attribute

10

and

attribute

12:

(A12

==

3)

OR

(A38

<

5)

The

expression

in

the

preceding

example

causes

the

method

to

fail

because

the

index

class

you

specify

does

not

contain

attribute

38.

If

you

specify

a

null

string

("")

as

the

value

of

the

index

class,

the

method

automatically

searches

only

the

index

classes

that

contain

the

attributes

you

specify

in

the

expression

within

the

search

string.

If

that

expression

consists

of

system

attribute

IDs

only,

the

function

searches

all

current

index

classes.

Process/Location

Search

Process

and

location

are

the

only

system-defined

attributes

which

may

be

specified

within

a

search.

The

associated

attribute

identifiers

are

SIM_INDEX_ATTR_PROCESS

and

SIM_INDEX_ATTR_LOCATION,

respectively.

If

you

would

like

to

specify

process

and

location

within

a

search,

the

first

search

expression

must

contain

the

process

criteria.

Location

is

optional,

but

if

specified,

the

second

search

expression

must

contain

location

criteria,

including

location

type.

The

value

element

of

the

search

expressions

should

contain

a

valid

process

or

Appendix

A.

Guidelines

for

Search

Expressions

293

location

identifier.

The

search

expressions

should

not

contain

an

operator.

Valid

location

types

are

SIMWM_WORKBASKET

and

SIMWM_COLLECTION_POINT.

For

example:

A-20

"PAPPLICANT

"

A-21

3

"WWORK05

"

294

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Appendix

B.

Predefined

Content

Classes

Table

25

lists

the

predefined

content

classes

for

Content

Manager

for

iSeries.

Table

25.

Predefined

Content

Classes

Content

Class

Description

SIM_CC_ADVWRITE

HP

AdvanceWrite

Plus

format

SIM_CC_AIX_EXE

AIX®

executable

program

SIM_CC_AIXCMD

AIX

command

file

SIM_CC_AMIPRO

Ami

Pro

format

SIM_CC_AOCA

Audio

Object

Content

Architecture

(AOCA)

data

only

SIM_CC_ASCII

Flat

ASCII

text

SIM_CC_BCOCA

Tiled

Bar

Code

Object

Content

Architecture

(BCOCA)

data

only

SIM_CC_BKMGR_READ

BookManager®

Read

format

SIM_CC_BINARY

Unformatted

binary

data

SIM_CC_DESCRIBE

DeScribe

text

editor

SIM_CC_DIGITAL

Digital

DX

and

WPS-Plus

format

SIM_CC_DWRITE

DisplayWrite®

SIM_CC_EBCDIC

Flat

EBCDIC

text

SIM_CC_ENABLE

Enable

format

SIM_CC_EXCEL

Microsoft

Excel

SIM_CC_FAXGRP3

Fax

image

in

group

3

format

SIM_CC_FRN_NOTE

Application

note

log

SIM_CC_FRN_HISTORY

Application

history

log

SIM_CC_FWORK

Framework

format

SIM_CC_GOCA

Graphic

Object

Content

Architecture

(GOCA)

data

only

SIM_CC_IBMFFT

DCA

-

Final

Form

text

SIM_CC_IBMWA

IBM

Writing

Assistant

SIM_CC_INTER

Interleaf

Publisher

format

SIM_CC_IOCA_FS11

Image

Object

Content

Architecture

(IOCA)

data

only

SIM_CC_IOCA_IRM

IRM

version

of

IOCA,

non-standard

SIM_CC_IOCA_TILED

Tiled

IOCA

only

SIM_CC_LEGACY

Legacy

format

SIM_CC_MacWrite

MacWrite

format

SIM_CC_MASS

MASS

11

format

SIM_CC_MGDS

IBM

machine-generated

data

stream

(MGDS)

format

(for

forms,

for

example)

SIM_CC_RICHTEXT

Microsoft

Rich

Text

format

SIM_CC_MODCA_FORM

Mixed

Object

Document

Content

Architecture

(MO:DCA)

form

overlay

structure

©

Copyright

IBM

Corp.

1997,

2004

295

Table

25.

Predefined

Content

Classes

(continued)

Content

Class

Description

SIM_CC_MODCA_IS2

MO:DCA-P

document

SIM_CC_MODCA_PAGE

MO:DCA

page

structure

only

SIM_CC_MSCRIPT

Lotus®

Manuscript

format

SIM_CC_MULTIMATE

Multimate**

and

Multimate/Advantage**

format

SIM_CC_MSTSOFT

Mastersoft

internal

format

SIM_CC_OFSWRITE

Office

Writer

SIM_CC_OS2EXE

OS/2®

Version

2

executable

program

SIM_CC_OS2CMD

OS/2

Version

2

command

file

SIM_CC_OS2DLL

OS/2

Version

2

Dynamic

Link

Library

(DLL)

SIM_CC_OS2V12_BMP

OS/2

Version

1.2

bitmap

SIM_CC_OS2V13_BMP

OS/2

Version

1.3

bitmap

SIM_CC_OS2V2_BMP

OS/2

Version

2.0

bitmap

SIM_CC_PCX

PCX

SIM_CC_PEACH

PeachText

5000

format

SIM_CC_PFS

PFS:First

Choice

format

SIM_CC_POSTSCRIPT

PostScript

data

SIM_CC_PPDS

Printer

data

stream

SIM_CC_PRS

Freelance

presentation

SIM_CC_PWRITE

Professional

Write

format

SIM_CC_QAWRITE

QA

Write

format

SIM_CC_QUATTRO

Quattro

Pro

format

SIM_CC_RFILE

Rapid

File

format

SIM_CC_RFT

IBM

RFT:DCA

SIM_CC_TARGA

TARGA

SIM_CC_TEXT

Text

(where

code

page

is

unknown

or

variable)

SIM_CC_TIFF_G3_FINE

Tagged

Image

File

Format

(TIFF)

header,

higher

resolution

fax

SIM_CC_TIFF_G3_STANDARD

TIFF

header,

standard

fax

SIM_CC_TIFF_IRM

IRM

version

of

TIFF,

single

page

SIM_CC_TIFF_SINGLE_STRIP

Raster

in

a

single

strip

SIM_CC_TIFF5

TIFF

V5,

multi-page

allowed

SIM_CC_TIFF5_PAGE

TIFF

V5,

single

page

SIM_CC_TIFF6

TIFF

V6,

multi-page

SIM_CC_TIFF6_PAGE

TIFF

V6,

single

page

SIM_CC_TOTALWORD

Total

Word

format

SIM_CC_UNIPLEX

Uniplex

onGo

format

SIM_CC_UNKNOWN

Content

class

unknown

SIM_CC_USER

Start

of

user-defined

content

classes

SIM_CC_VKS

Volkswriter

format

SIM_CC_WANGPC

WANG

PC

format

296

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Table

25.

Predefined

Content

Classes

(continued)

Content

Class

Description

SIM_CC_WG1

Graphics,

from

Lotus

1-2-3/G

SIM_CC_WINV3_BMP

Microsoft

Windows

Version

3

bitmap

SIM_CC_WINWRITE

Windows

Write

format

SIM_CC_WKS

Lotus

spreadsheet

format

SIM_CC_WORD

Microsoft

Word

format

SIM_CC_WORDSTAR

Wordstar

format

SIM_CC_WP

WordPerfect

format

SIM_CC_WRITENOW

WriteNow

format

SIM_CC_XYWRITE

XyWrite

format

Appendix

B.

Predefined

Content

Classes

297

298

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Appendix

C.

External

References

Many

Content

Manager

for

iSeries

customers

have

other

repositories

of

data

on

their

iSeries

or

within

their

network,

and

would

like

the

ability

to

access

that

data

through

the

Content

Manager

for

iSeries

Windows

client

and

programming

interfaces.

These

external

documents

should

be

treated

exactly

the

same

as

a

Content

Manager

for

iSeries

document,

including

search,

addition

to

folders,

and

inclusion

in

workflow.

The

end

user

should

not

need

to

know

the

location

of

the

document,

or

know

that

the

content

is

not

managed

by

Content

Manager

for

iSeries.

To

satisfy

the

requirement

to

access

external

documents

as

if

they

were

Content

Manager

for

iSeries

documents,

support

for

External

References

is

being

made

available.

An

External

Reference

is

simply

the

indexing

information

that

Content

Manager

for

iSeries

already

uses,

plus

the

location

information

needed

by

another

application

to

retrieve

the

document

content.

In

the

simplest

form,

this

might

be

the

path

name

of

a

file

stored

in

the

iSeries

file

system

or

on

a

network

drive

accessible

to

workstations.

To

define

an

External

Reference

to

Content

Manager

for

iSeries,

a

file

must

first

be

created

containing

the

location

information

and

the

Content

Manager

for

iSeries

indexing

information

such

as

the

Index

Class,

Key

Fields,

and

Content

Class.

Each

record

in

this

file

represents

one

document

that

is

to

be

indexed

into

Content

Manager

for

iSeries.

By

indexing

all

documents

in

the

file

at

once,

instead

of

calling

the

Content

Manager

for

iSeries

APIs

for

each

document,

processing

time

is

minimized.

On

a

model

510,

indexing

1000

documents

takes

approximately

seven

seconds.

Four

types

of

External

References

are

supported:

v

An

OS/400

file

v

A

workstation

(or

network)

file

v

Data

retrieved

by

a

program

called

on

the

server

v

Data

retrieved

by

a

program

called

on

the

workstation

After

indexing

the

External

References,

they

can

be

accessed

through

the

Content

Manager

for

iSeries

APIs.

These

APIs

are

used

today

by

the

Content

Manager

client,

the

Content

Connect

client,

and

applications

written

by

business

partners

and

customers.

These

applications

will

now

be

able

to

transparently

access

documents

stored

in

other

locations,

but

indexed

by

Content

Manager

for

iSeries.

The

Content

Class

capability

of

the

Content

Manager

Client

is

key

to

this

solution.

When

the

Content

Manager

Client

opens

a

document,

the

Content

Class

associated

with

the

document

controls

whether

it

will

be

displayed

by

the

Content

Manager

Viewer,

or

passed

to

another

application.

For

example,

if

a

video

or

audio

clip

is

imported,

the

user

would

identify

the

Content

Class

as

AVI.

When

the

document

is

opened,

the

Content

Manager

Client

would

start

MPLAY32

to

play

the

video.

This

makes

it

possible

for

any

type

of

document

to

be

indexed

by

Content

Manager

for

iSeries,

located

through

search

interfaces,

and

displayed

either

by

the

Content

Manager

Viewer

or

an

alternate

program.

There

are

many

uses

for

External

References.

For

example,

it

would

be

possible

to

store

a

large

number

of

documents

(images,

video

clips,

text,

and

so

forth)

on

a

CD

or

DVD,

duplicate

it

for

all

users,

then

index

those

documents

into

Content

©

Copyright

IBM

Corp.

1997,

2004

299

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

Manager

for

iSeries.

By

storing

the

path

name

to

each

of

the

files,

users

could

quickly

retrieve

a

document

even

if

they

are

using

a

dial-up

connection.

The

same

indexing

approach

could

be

used

for

files

on

a

iSeries

or

on

a

LAN

drive.

For

even

more

flexibility,

a

program

can

be

called

on

either

the

workstation

or

iSeries

to

retrieve

the

data.

For

example,

the

document

that

is

indexed

into

Content

Manager

for

iSeries

might

refer

to

an

employee

record.

The

called

program

could

gather

information

from

multiple

databases

and

prepare

a

simple

text

representation,

an

image,

or

even

an

HTML

document

that

is

returned

to

the

workstation.

The

Content

Manager

client,

using

the

Content

Class,

would

either

display

the

results

directly,

or

pass

the

document

to

another

program

for

display.

With

support

for

External

References,

any

information

can

be

indexed

by

Content

Manager

for

iSeries,

located,

managed,

and

displayed

through

the

Content

Manager

Client.

You

now

have

the

option

to

maintain

a

single,

central

index

of

all

your

enterprise

documents,

and

increased

flexibility

for

constructing

documents

dynamically.

Creating

External

References

To

index

one

or

more

documents

as

external

references,

create

records

in

the

file

EKD0314,

and

then

run

the

indexing

program

QVIXRFINX.

The

following

fields

are

defined

in

EKD0314:

INDEX

CLASS

This

is

the

name

(not

description)

of

the

Content

Manager

for

iSeries

index

class

into

which

the

document

is

to

be

indexed.

If

the

index

class

specified

does

not

exist,

it

can

be

created

later.

(If

the

index

class

does

not

exist,

the

documents

cannot

be

located

through

the

Content

Manager

for

iSeries

APIs

or

any

application

using

the

APIs.)

KEY1-KEY8

DATA

These

fields

contain

the

attributes

for

indexing

the

document.

They

will

be

written

to

EKD0312

(the

indexing

file)

exactly

as

they

appear

in

EKD0314.

CREATE

DATE,

CREATE

TIME,

USER

ID

These

fields

will

be

written

exactly

as

they

appear.

CONTENT

CLASS

For

any

document

that

type

that

can

be

processed

directly

by

the

Content

Manager

Client,

use

0.

For

others,

review

EKD0318

to

find

an

appropriate

Content

Class.

If

a

Content

Class

does

not

exist,

use

DFU

or

another

utility

to

define

a

Content

Class.

At

this

time,

there

is

not

an

administrative

interface

for

defining

Content

Classes.

EXTERNAL

REFERENCE

TYPE

Four

types

are

supported:

1

The

External

Reference

field

contains

information

that

is

used

by

another

program

(the

Object

Handler)

on

the

iSeries

to

retrieve

the

data.

In

this

example,

a

fully

qualified

iSeries

library,

file,

and

member

name

is

passed

to

the

program

QVIXRFSMP.

2

The

External

Reference

field

contains

a

fully

qualified

iSeries

path.

This

may

be

a

library/file/member

as

above,

or

the

name

of

an

IFS

file.

3

The

External

Reference

field

contains

information

that

is

used

by

another

program

(the

Object

Handler)

on

the

workstation

to

retrieve

the

data.

The

specified

program

must

be

a

DLL

containing

the

function

name

vi400extref

with

the

following

prototype:

300

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

||
|
|
|

||
|

||
|
|
|

int

_Export

_System

vi400extref

(

HSESSION

hSession,

/*

CM

for

iSeries

session

handle

*/

char

*

extref,

/*

External

reference

string,

converted

to

workstation

code

page.

*/

FILE

*

filehandle)

/*

Handle

of

file

to

receive

document

content.

Must

not

be

closed.

*/

For

a

type

3

reference,

the

Object

Handler

is

the

name

of

a

workstation

DLL

containing

the

following

function.

A

non-zero

return

code

will

be

returned

as

an

error

in

SimLibOpenObject.

4

The

External

Reference

field

contains

a

fully

qualified

path

name

that

can

be

accessed

from

the

workstation.

EXTERNAL

REFERENCE

The

location

data,

either

a

file

name

or

information

to

be

passed

to

the

Object

Handler.

OBJECT

HANDLER

LIBRARY

For

a

type

1

reference

only,

the

name

of

the

iSeries

library

containing

the

Object

Handler

program.

OBJECT

HANDLER

PROGRAM

For

a

type

1

reference,

the

name

of

the

iSeries

program

to

receive

the

External

Reference.

This

will

be

a

standalone

program

that

receives

as

input

the

following

structure:

RCAREA

CHAR(8)

Non-blank

return

code

will

be

written

to

EKD0080

to

indicate

an

error

FILENAME

CHAR(256)

The

content

to

be

returned

through

the

Content

Manager

for

iSeries

APIs

must

be

written

to

the

temporary

file

specified.

EXTREF

CHAR(256)

The

external

reference,

or

location

information,

used

to

locate

the

document

content

ITEM

ID

This

field

should

initially

be

blank.

This

field

will

be

set

to

the

Item

ID

created

by

the

indexing

process.

When

non-blank,

the

record

is

assumed

to

already

be

indexed,

so

will

be

skipped

by

QVIXRFINX.

After

creating

EKD0314,

the

indexing

program

QVIXRFINX

may

be

run.

This

program

can

be

called

from

a

command

line

or

another

program.

All

required

files

are

opened,

a

sufficient

number

of

document

IDs

reserved,

and

each

document

is

indexed.

If

there

is

any

program

failure,

QVIXRFINX

may

be

restarted

and

only

those

records

which

have

not

already

been

indexed

will

be

processed.

Limitations:

Documents

are

indexed

using

this

batch

approach

to

provide

the

best

possible

performance.

At

this

time,

there

is

no

API

provided

to

index

such

documents

from

another

application.

There

is

no

security

checking,

so

only

selected

users

should

be

given

authorization

to

QVIXRFINX.

Fields

are

not

validated

during

processing.

Appendix

C.

External

References

301

|
|
|
|
|
|
|
|

|
|
|

||
|

|
|
|

|
|
|

|
|
|
|

||

|
|

||

|
|

||

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

302

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1997,

2004

303

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

J74/G4

555

Bailey

Avenue

P.O.

Box

49023

San

Jose,

CA

95161-9023

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurements

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

All

statements

regarding

IBM’s

future

direction

or

intent

are

subject

to

change

or

withdrawal

without

notice,

and

represent

goals

and

objectives

only.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrate

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

304

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Trademarks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both:

IBM

Advanced

Peer-to-Peer

Networking

DisplayWrite

AIX

iSeries

Application

System/400

Operating

System/2

APPN

Operating

System/400

AS/400

OS/2

BookManager

OS/400

C/400

Redbooks

CICS

RPG/400

COBOL

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

or

registered

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Lotus

and

1-2-3

are

registered

trademarks

of

Lotus

Development

Corporation

in

the

United

States,

other

countries

or

both.

Microsoft

and

Windows

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

Notices

305

306

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Glossary

This

glossary

defines

terms

and

abbreviations

used

in

this

book

and

the

product

document

library.

Refer

to

the

IBM

Dictionary

of

Computing,

ZC20-1699-09,

for

terms

or

abbreviations

that

do

not

appear

here.

The

following

cross-references

are

used

in

this

glossary:

v

Contrast

with.

This

refers

to

a

term

that

has

an

opposed

or

substantively

different

meaning.

v

See.

This

refers

the

reader

to

multiple-word

terms

in

which

this

term

appears.

v

See

also.

This

refers

the

reader

to

terms

that

have

a

related,

but

not

synonymous,

meaning.

v

Synonym

for.

This

indicates

that

the

term

has

the

same

meaning

as

a

preferred

term,

which

is

defined

in

the

glossary.

A

access

list.

A

list

consisting

of

one

or

more

individual

user

IDs

or

user

groups

and

the

privilege

set

associated

with

each

user

ID

or

user

group.

You

use

access

lists

to

control

user

access

to

items

in

Content

Manager

for

iSeries.

The

items

that

can

be

associated

with

access

lists

are

index

classes,

workbaskets,

and

processes.

action

list.

An

approved

list

of

the

actions,

defined

by

a

supervisor,

that

a

user

can

perform

while

working

with

items

in

a

workbasket.

ad

hoc

route.

A

route

that

is

not

part

of

a

defined

process.

An

ad

hoc

route

is

started

when

a

user

assigns

an

item

directly

to

a

workbasket.

The

user

manually

routes

the

item

from

one

workbasket

to

another

by

reassigning

it.

administrator.

The

person

responsible

for

system

management,

controls,

and

security,

as

well

as

case

statistics.

Synonymous

with

system

administrator.

advanced

peer-to-peer

networking

(APPN).

Data

communications

support

that

routes

data

in

a

network

between

two

or

more

APPC

systems

that

are

not

directly

attached.

advanced

program-to-program

communications

(APPC).

Data

communications

support

that

allows

programs

on

an

iSeries

server

to

communicate

with

programs

on

other

systems

having

compatible

communications

support.

This

communications

support

is

the

iSeries

method

of

using

the

SNA

LU

session

type

6.2

protocol.

annotation.

An

added

descriptive

comment

or

explanatory

note.

APAR.

Authorized

Program

Analysis

Report.

API.

Application

programming

interface.

application

programmer.

A

programmer

who

designs

programming

systems

and

other

applications

for

a

user’s

system.

application

program

interface

(API).

The

formally-defined

programming

language

interface

which

is

between

an

IBM

system

control

program

or

a

licensed

program

and

the

user

of

the

program.

APPC.

Advanced

program-to-program

communications.

APPN®.

Advanced

Peer-to-Peer

Networking®.

archiving.

The

storage

of

backup

files

and

any

associated

journals,

usually

for

a

given

period

of

time.

AS/400®.

Application

System/400®.

attribute.

Used

in

Content

Manager

for

iSeries

APIs,

a

single

value

associated

with

an

item

(document

or

folder).

Each

index

class

can

have

up

to

eight

attributes.

B

binary

large

object

(BLOB).

A

large

stream

of

binary

data

treated

as

a

single

object.

C

cartridge.

(1)

A

storage

device

that

consists

of

magnetic

tape,

on

supply

and

takeup

reels,

in

a

protective

housing.

(2)

For

optical

storage,

a

plastic

case

that

contains

and

protects

optical

disks,

permitting

insertion

into

an

optical

drive.

See

also

optical

disk

and

cartridge

storage

slots.

cartridge

storage

slots.

An

area

in

an

optical

library

where

cartridges

are

stored.

collection.

The

definition

of

storage

management

controls

associated

with

a

group

of

objects

that

typically

have

similar

performance,

availability,

backup,

and

retention

characteristics.

collection

point.

(1)

The

point

where

work

packages

wait

for

specific

events

to

either

occur

or

become

synchronized

before

processing

can

continue.

(2)

A

collection

point

is

part

of

a

work

process.

For

example,

©

Copyright

IBM

Corp.

1997,

2004

307

a

collection

point

is

where

work

packages

that

are

part

of

the

“open

a

new

account”

work

process

must

wait

until

credit

information

is

verified.

See

also

decision

point.

content

class.

A

number

that

indicates

the

data

format

of

an

object,

such

as

MO:DCA,

TIFF,

or

ASCII.

control

files.

Files

that

govern

the

categories

of

work

performed

by

an

operator

and

the

types

of

documents

the

system

recognizes.

convenience

workstation.

A

display

workstation

equipped

with

a

printer

and

a

scanner.

current

document.

A

document

that

is

being

processed.

customization.

The

process

of

designing

a

data

processing

installation

or

network

to

meet

the

requirements

of

particular

users.

D

DASD.

Direct

access

storage

device.

DDM.

Distributed

data

management.

DBCS.

Double-byte

character

set.

decision

point.

(1)

The

point

where

work

packages

continue

on

their

current

route

or

switch

to

an

alternate

route,

depending

on

the

specific

information

in

each

work

package.

Decision

points

are

tables

consisting

of

variable

names,

values,

and

routes.

(2)

A

decision

point

is

part

of

a

work

process.

For

example,

a

decision

point

is

where

work

packages

that

are

part

of

the

“open

a

new

account”

work

process

receive

approval

or

not

based

on

credit

information.

See

also

collection

point.

direct

access

storage

device

(DASD).

A

device

in

which

access

time

is

effectively

independent

of

the

location

of

the

data.

distributed

data

management

(DDM).

A

feature

of

the

System

Support

Program

that

lets

an

application

program

work

on

files

that

reside

in

a

remote

system.

display

workstation.

An

image

processing

workstation

used

primarily

for

displaying

documents

that

have

been

previously

scanned

or

imported

into

the

iSeries

server.

document.

(1)

An

item

containing

one

or

more

base

parts.

(2)

A

named,

structural

unit

of

text

that

can

be

stored,

retrieved,

and

exchanged

among

systems

and

users

as

a

separate

unit.

Also

referred

to

as

an

object.

A

single

document

can

contain

many

different

types

of

base

parts,

including

text,

images,

and

objects

such

as

spreadsheet

files.

document

content

architecture

(DCA).

An

architecture

that

guarantees

information

integrity

for

a

document

being

interchanged

in

an

office

system

network.

DCA

provides

the

rule

for

specifying

form

and

meaning

of

a

document.

It

defines

revisable

form

text

(changeable)

and

final

form

text

(unchangeable).

double-byte

character

set

(DBCS).

A

set

of

characters

in

which

each

character

occupies

two

bytes.

Languages,

such

as

Japanese,

Chinese,

and

Korean,

that

contain

more

symbols

than

can

be

represented

by

256

code

points,

require

double-byte

character

sets.

Entering,

displaying,

and

printing

DBCS

characters

requires

special

hardware

and

software

support.

E

export.

A

process

used

to

write

data

from

a

document

in

a

system

folder

to

a

file.

Export

and

import

processes

can

be

used

to

transfer

documents

among

systems.

F

first

in

first

out

(FIFO).

A

queueing

technique

in

which

the

next

item

to

be

retrieved

is

the

item

that

has

been

in

the

queue

for

the

longest

time.

folder.

In

Content

Manager

for

iSeries,

an

object

that

can

contain

other

folders

or

documents.

folder

balancing.

In

the

iSeries,

the

process

by

which

documents

are

distributed

evenly

among

the

available

folders

in

the

system.

folder

manager.

In

IBM

Content

Manager

for

iSeries

systems

other

than

Content

Manager

for

iSeries,

the

term

used

to

describe

the

data

model

and

a

subset

of

the

APIs.

In

Content

Manager

for

iSeries,

this

term

refers

to

the

entire

set

of

Content

Manager

for

iSeries

APIs.

G

Group

III.

A

compression

algorithm

that

conforms

to

a

standard

promulgated

by

the

International

Telegraph

and

Telephone

Consultative

Committee

(CCITT).

H

HTML.

Hypertext

markup

language.

I

image.

(1)

A

single

page

of

information;

the

result

of

scanning,

or

digitizing,

a

single

sheet

of

paper.

(2)

An

electronic

representation

of

a

picture

produced

by

means

of

sensing

light,

sound,

electron

radiation,

or

other

emanations

from

the

picture

or

reflected

by

the

308

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

picture.

An

image

can

also

be

generated

directly

by

software

without

reference

to

an

existing

picture.

See

also

page

image.

image

data.

Rectangular

arrays

of

raster

information

that

define

an

image.

Image

data

is

often

created

originally

by

a

scanning

process.

image

host.

The

system

where

scanned

and

imported

documents

are

permanently

stored.

See

also

optical

library

subsystem.

Image

Object

Content

Architecture

(IOCA).

A

structured

collection

of

constructs

used

to

interchange

and

present

images.

image

workstation.

A

programmable

workstation

that

can

perform

image

functions.

importing.

A

process

by

which

documents

are

input

into

iSeries

using

files

rather

than

the

scanning

process.

Imported

documents

can

be

stored

in

Content

Manager

for

iSeries

on

DASD

and

optical,

and

displayed

and

printed,

in

the

same

manner

as

scanned

documents.

inbound.

Pertaining

to

communication

flowing

in

a

direction

towards

the

application

program

from

external

sources,

such

as

a

transmission

from

a

terminal

to

the

application

program.

Contrast

with

outbound.

index.

To

associate

a

document

or

folder

with

an

index

class

and

provide

the

key

field

values

required

by

that

class.

index

class.

A

category

for

storing

and

retrieving

objects,

consisting

of

a

named

set

of

attributes

known

as

key

fields.

When

you

create

an

item

in

Content

Manager

for

iSeries,

your

application

must

assign

an

index

class

and

supply

the

key

field

values

required

by

that

class.

An

index

class

identifies

the

automatic

processing

requirements

and

storage

requirements

for

an

object.

instance.

An

occurrence

of

a

work

package

within

a

process.

If

the

process

consists

of

parallel

routes,

multiple

instances

of

a

work

package

exist.

iSeries

object

directory

profile.

A

control

file

used

in

Content

Manager

for

iSeries

to

identify

iSeries

object

directories

used

for

image

document

storage.

item.

(1)

Set

of

attributes

and

objects–one

or

more

files

containing

image

data,

annotations,

notes,

or

other

content–that

together

represent

a

physical

document,

such

as

an

insurance

claim

or

a

folder.

See

also

document.

(2)

The

smallest

unit

of

information

that

the

library

server

administers.

An

item

can

be

a

folder,

document,

workbasket,

or

process.

Referred

to

as

an

object

outside

of

library

server

functions.

K

key

field.

An

attribute

of

an

item

that

represents

a

type

of

information

about

that

item.

For

example,

a

customer

data

item

might

have

key

fields

for

the

customer’s

name

and

social

security

number.

keyword.

A

name

or

symbol

that

identifies

a

parameter.

L

LAN.

Local

area

network.

language

profile.

A

control

file

used

in

Content

Manager

for

iSeries

to

define

parameters

that

are

specific

to

a

territory,

such

as

time

and

date

formats.

last

in,

first

out

(LIFO).

A

queueing

technique

in

which

the

next

item

to

be

retrieved

is

the

item

most

recently

placed

in

the

queue.

library

server.

The

component

of

Content

Manager

for

iSeries

that

contains

index

information

for

the

items

stored

on

one

or

more

object

servers.

LIFO

(last

in,

first

out).

A

queueing

technique

in

which

the

next

item

to

be

retrieved

is

the

item

most

recently

placed

in

the

queue.

local

area

network

(LAN).

A

computer

network

located

on

a

user’s

premises

within

a

limited

geographical

area.

LU

6.2.

In

Systems

Network

Architecture

(SNA),

a

type

of

session

between

two

application

programs

in

a

distributed

processing

environment,

using

the

SNA

character

string

or

a

structured-field

data

stream;

for

example,

an

application

program

using

CICS®

communication

with

an

iSeries

application.

M

Machine-Generated

Data

Structure

(MGDS).

Data

extracted

from

an

image

and

put

into

generalized

data

stream

(GDS)

format.

magnetic

storage.

A

storage

device

that

uses

the

magnetic

properties

of

certain

materials.

magnetic

tape.

A

tape

with

a

magnetizable

layer

on

which

data

can

be

stored.

magnetic

tape

device.

A

device

for

reading

or

writing

data

from

or

to

magnetic

tape.

MGDS.

Machine-Generated

Data

Structure.

Glossary

309

Mixed

Object:

Document

Content

Architecture

(MO:DCA).

An

IBM

architecture

developed

to

allow

the

interchange

of

object

data

among

applications

within

the

interchange

environment

and

among

environments.

Mixed

Object:

Document

Content

Architecture-Presentation

(MO:DCA-P).

A

subset

architecture

of

MO:DCA

that

is

used

as

an

envelope

to

contain

documents

that

are

sent

to

the

Content

Manager

for

iSeries

workstation

for

displaying

or

printing.

MO:DCA.

Mixed

Object:

Document

Content

Architecture.

MO:DCA-P.

Mixed

Object:

Document

Content

Architecture-Presentation.

MRI.

Machine-readable

information.

N

national

language

support

(NLS).

The

modification

or

conversion

of

a

United

States

English

product

to

conform

to

the

requirements

of

another

language

or

territory.

This

can

include

enabling

or

retrofitting

of

a

product

and

the

translation

of

nomenclature,

MRI,

or

product

documents.

network.

An

arrangement

of

programs

and

devices

connected

for

sending

and

receiving

information.

network

table

file.

A

text

file

created

during

installation

that

contains

the

system-specific

configuration

information

for

each

node

for

each

Content

Manager

for

iSeries

server.

Each

server

must

have

a

network

table

file

that

identifies

it.

The

name

of

the

network

table

is

always

FRNOLNT.TBL.

NLS.

National

language

support.

O

object.

(1)

An

item

upon

which

actions

are

performed.

A

collection

of

data

referred

to

by

a

single

name.

The

smallest

unit

within

the

system.

For

Content

Manager

for

iSeries

systems,

this

is

typically

a

single-image

document.

(2)

Any

binary

data

entity

stored

on

an

object

server.

In

the

Content

Manager

for

iSeries

data

model,

object

specifically

refers

to

a

document’s

contents

or

parts.

object

authority.

The

right

to

use

or

control

an

object.

object

directory.

A

control

file

used

in

Content

Manager

for

iSeries

to

identify

iSeries

object

directories

used

for

image

document

storage.

object

server.

The

component

of

IBM

Content

Manager

for

iSeries

that

physically

stores

the

objects

or

information

that

client

applications

store

and

access.

operator.

The

person

who

handles

daily

system

administrative

tasks.

optical.

Pertaining

to

optical

storage.

optical

cartridge.

A

storage

device

that

consists

of

an

optical

disk

in

a

protective

housing.

See

also

cartridge.

optical

disk.

A

disk

that

contains

digital

data

readable

by

optical

techniques.

Synonymous

with

digital

optical

disk.

optical

drive.

The

mechanism

used

to

seek,

read,

or

write

data

on

an

optical

disk.

An

optical

drive

may

reside

in

an

optical

library

or

as

a

stand-alone

unit.

optical

libraries.

Software

used

to

store

image

data

on

optical

platters.

Only

direct-attached

optical

systems

contain

optical

libraries.

optical

library

subsystem.

The

hardware

and

software

that

provides

the

long-term

storage

of

the

image

data.

See

also

image

host.

Optical

Storage

Support.

Software

that

supports

communication

between

stand-alone

optical

disk

drives,

the

optical

library,

and

Content

Manager

for

iSeries.

The

software

runs

on

the

System/36™

5363

unit

serving

as

the

optical

controller.

optical

system

profile.

A

file

used

to

define

the

optical

controller

used

for

the

optical

storage

of

documents.

optical

systems.

Hardware

used

to

store

image

data

on

optical

platters.

Only

direct-attach

optical

systems

contain

optical

libraries.

optical

volume.

One

side

of

a

double-sided

optical

disk

containing

optically

stored

data.

OS/2.

Operating

System/2®.

OS/400.

Operating

System/400®.

outbound.

Pertaining

to

a

transmission

from

the

application

program

to

a

device.

Contrast

with

inbound.

override.

A

parameter

or

value

that

replaces

a

previous

parameter

or

value.

P

page.

A

single

physical

medium;

for

example,

an

8.5-inch

by

11-inch

piece

of

paper.

page

image.

The

electronic

representation

of

a

single

physical

page.

The

bounds

of

a

page

image

are

determined

by

the

electromechanical

characteristics

of

310

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

the

scanning

equipment,

along

with

the

image

capture

application

specifications

in

the

receiving

data

processing

system.

page

scan.

The

electromechanical

process

of

scanning

a

physical

page

(paper)

to

create

a

bit

image

of

the

page.

pan.

Progressively

translating

an

entire

display

image

to

give

the

visual

impression

of

lateral

movement

of

the

image.

PDF.

Portable

document

format.

platter.

See

optical

disk.

Presentation

Text

Object

Content

Architecture

(PTOCA).

An

architecture

developed

to

allow

the

interchange

of

presentation

text

data.

primary

processor.

In

a

group

of

processing

units,

the

main

processing

unit

and

its

internal

storage

through

which

all

other

units

communicate.

printer

workstation.

A

display

workstation

equipped

with

a

printer.

priority.

(1)

A

rank

assigned

to

a

task

that

determines

its

precedence

in

receiving

system

resources.

(2)

In

Content

Manager

for

iSeries

workflow,

the

priority

of

the

work

to

be

performed.

The

priority

affects

the

work

sequencing

of

the

work

package.

A

larger

number

is

a

higher

priority.

privilege.

An

authorization

for

a

user

to

either

access

or

perform

certain

tasks

on

objects

stored

in

Content

Manager

for

iSeries.

The

system

administrator

assigns

privileges.

privilege

set.

In

Content

Manager

for

iSeries,

collection

of

privileges

for

working

with

system

components

and

functions.

The

system

administrator

assigns

privilege

sets

to

users

(user

IDs)

and

user

groups.

process.

The

series

of

steps,

events,

and

rules

through

which

a

work

package

flows.

A

process

is

a

combination

of

the

route,

collection

point,

and

decision

point

through

which

a

predefined

type

or

work

package

must

progress.

For

example,

a

process

called

″open

new

account″

would

describe

the

following:

v

The

steps

that

work

packages

related

to

opening

a

new

account

must

follow

v

The

events

(such

as

verifying

credit

information)

that

must

occur

before

work

packages

for

new

accounts

can

be

routed

to

another

point

in

the

system

v

The

decisions

that

determine

whether

to

open

a

new

account

based

on

the

information

for

that

particular

account

(for

example,

a

good

credit

rating

versus

a

poor

one).

process

item.

Item

used

as

a

building

block

in

a

work

process.

profile.

A

file

that

governs

the

categories

of

work

performed

and

the

types

of

users

recognized

by

the

system.

program

temporary

fix

(PTF).

A

temporary

solution

or

bypass

of

a

problem

diagnosed

by

IBM

as

resulting

from

a

defect

in

a

current

unaltered

release

of

the

program.

PTF.

Program

temporary

fix.

PTOCA.

Presentation

Text

Object

Content

Architecture.

R

release.

To

remove

suspend

criteria

from

a

work

package

so

that

it

is

available

to

be

worked.

A

suspended

work

package

is

released

when

the

criteria

have

been

met,

or

when

a

user

with

proper

authority

overrides

the

criteria

and

manually

releases

pend

requests.

render.

To

take

data

that

is

not

typically

image-oriented

and

depict

or

display

it

as

an

image.

In

Content

Manager

for

iSeries,

you

can

render

word-processing

documents

as

images

for

display

purposes.

resolution.

In

computer

graphics,

a

measure

of

the

sharpness

of

the

image,

expressed

as

the

number

of

lines

and

columns

on

the

display

screen

or

the

number

of

pels

per

unit

of

area.

rotate.

A

function

of

the

document

display

window

and

the

scan

document

display

window.

The

orientation

depends

on

the

option

selected.

route.

A

set

of

steps

that

move

work

between

workbaskets,

collection

points,

and

decision

points.

S

SBCS.

Single-byte

character

set.

scanner.

A

device

that

examines

a

spatial

pattern

one

part

after

another

and

generates

analog

or

digital

signals

corresponding

to

the

pattern.

scanner

workstation.

A

display

workstation

equipped

with

a

scanner.

scanning.

A

physical

process

that

enters

documents

into

an

Content

Manager

for

iSeries

workstation.

After

a

document

has

been

scanned,

it

can

be

stored

permanently.

Glossary

311

search

criteria.

In

Content

Manager

for

iSeries,

the

text

string

used

to

represent

the

logical

search

to

be

performed

on

the

library

server.

secondary

processor.

In

a

group

of

processing

units,

any

processing

unit

other

than

the

primary

unit.

server.

On

a

local

area

network,

a

data

station

that

provides

facilities

to

other

data

stations;

for

example,

a

file

server,

a

print

server,

a

mail

server.

side

by

side.

A

function

on

the

document

display

window

that

displays

two

pages

of

a

multipage

document

next

to

each

other.

single-byte

character

set

(SBCS).

A

set

of

characters

in

which

each

character

occupies

one

byte.

slot.

(1)

A

position

in

a

device

used

for

removable

storage

media.

(2)

A

space

in

an

optical

library

where

an

optical

cartridge

is

stored.

See

optical

cartridge.

SMS.

System-managed

storage.

spool

file.

A

file

that

holds

output

data

waiting

to

be

printed

or

input

data

waiting

to

be

processed

by

a

program.

staging.

The

process

of

moving

a

stored

object

from

an

off-line

or

low-priority

device

back

to

an

on-line

or

higher

priority

device,

usually

on

demand

of

the

system

or

on

request

of

a

user.

When

a

user

requests

an

object

stored

in

permanent

storage,

a

working

copy

is

written

to

the

staging

area.

stand-alone.

Pertaining

to

an

operation

that

is

independent

of

any

other

device,

program,

or

system.

storage.

The

action

of

placing

data

into

a

storage

device.

storage

class.

A

storage

class,

in

combination

with

an

optical

system

identifier,

defines

the

set

of

optical

volumes

upon

which

documents

can

be

stored.

Documents

with

the

same

storage

class

and

optical

system

ID

are

stored

on

the

same

optical

volume.

storage

method.

A

means

of

grouping

documents

together

for

storage

to

an

optical

disk.

storage

system.

A

generic

term

for

storage

in

Content

Manager

for

iSeries.

subsystem.

A

secondary

or

subordinate

system,

or

the

programming

support

part

of

a

system

that

is

usually

capable

of

operating

independently

of

or

asynchronously

with

a

controlling

system.

suspend.

To

hold

a

work

package

at

a

workbasket

until

stated

criteria

have

been

satisfied.

Work

packages

can

be

suspended

for

multiple

criteria,

therefore

multiple

suspend

requests

can

exist

for

a

work

package.

A

document

work

package

can

be

suspended

for

a

specific

date.

A

folder

work

package

can

be

suspended

for

a

specific

date

or

index

class.

system

administrator.

The

person

who

manages

the

Optical

Library

Subsystem

and

the

departmental

processor.

The

system

administrator

helps

with

problem

determination

and

resolution.

Synonymous

with

administrator.

system-managed

storage

(SMS).

The

Content

Manager

for

iSeries

approach

to

storage

management.

The

system

determines

object

placement,

and

automatically

manages

object

backup,

movement,

space,

and

security.

System

Support

Program

(SSP).

A

group

of

IBM-licensed

programs

that

manage

the

running

of

other

programs

and

the

operation

of

associated

devices,

such

as

the

display

station

and

printer.

The

SSP

also

contains

utility

programs

that

perform

common

tasks,

such

as

copying

information

from

diskette

to

disk.

T

tape.

See

magnetic

tape.

tape

cartridge.

See

cartridge.

U

user.

Anyone

requiring

the

services

of

Content

Manager

for

iSeries.

This

term

generally

refers

to

users

of

client

applications

rather

than

the

developers

of

applications,

who

use

the

Content

Manager

for

iSeries

APIs.

user

exit.

(1)

A

point

in

an

IBM-supplied

program

at

which

a

user

exit

routine

may

be

given

control.

(2)

A

programming

service

provided

by

an

IBM

software

product

that

may

be

requested

during

the

processing

of

an

application

program

for

the

service

of

transferring

control

back

to

the

application

program

upon

the

later

occurrence

of

a

user-specified

event.

user

exit

routine.

A

routine

written

by

a

user

to

take

control

at

a

user

exit

of

a

program

supplied

by

IBM.

user

ID

profile.

A

file

that

contains

one

entry

for

each

user.

The

entries

contain

information

such

as

processing

eligibility.

V

volume.

A

certain

portion

of

data,

together

with

its

data

carrier,

that

can

be

handled

conveniently

as

a

unit.

W

workbasket.

A

container

that

holds

work

packages.

Workbaskets

can

be

used

as

parts

of

process

definitions

312

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

or

ad-hoc

routes.

In

Content

Manager

for

iSeries,

a

logical

location

within

the

Content

Manager

for

iSeries

system

to

which

work

packages

can

be

assigned

to

wait

for

further

processing.

A

workbasket

definition

includes

the

rules

that

govern

the

presentation,

status,

and

security

of

its

contents.

workflow.

A

system

that

lets

an

enterprise

define

a

work

process

and

environment

to

automate

workflow

and

control

business

processes.

work

order.

The

sequence

of

work

packages

in

a

workbasket.

work

package.

The

work

that

is

routed

from

one

location

to

another.

Users

access

and

work

with

work

packages

through

workbaskets.

work

process.

In

work

management,

the

series

of

steps,

events,

and

rules

through

which

a

work

package

flows.

A

work

process

is

a

combination

of

the

route,

collection

point,

and

decision

point

through

which

a

work

package

must

progress.

workstation.

A

computer

processor

unit,

image

display

unit,

scanners,

and

printers

with

which

the

user

performs

input,

indexing,

and

printing.

Glossary

313

314

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

Index

A
access

ending

236

getting

237

Access

to

Items
Restricting

9

Access

to

the

Client

for

Windows

204

add

an

item

to

a

folder

(SimLibAddFolderItem)

12

Add

Folder

Item

User

Exit

286

AFFTOCENTRYSTRUCT

133

Alternate

Search

User

Exit

249

annotations

15,

29,

41

ANNOTATIONSTRUCT

134

APIs

11

application

object

177

application

programming

interfaces

11

application

programming

interfaces

(APIs)

1

Applications
Compiling

and

Linking

Content

Manager

for

iSeries

11

Argument

Types
Property

and

176

attribute

information,

getting

(SimLibGetAttrInfo)

38

attribute

set,

closing

(SimLibCloseAttr)

22

attributes
listing

attributes

of

an

index

class

227

listing

folder

attributes

225

ATTRINFOSTRUCT

135

ATTRLISTSTRUCT

137

B
base

object
listing

a

content

class

230

C
Case-Sensitivity

8

catalog

an

object

(SimLibCatalogObject)

15

change

SMS

criteria

for

an

object

(SimLibChangeObjectSMS)

21

Change

System-Managed

Storage

User

Exit

251

change

the

index

class

of

an

item

(SimLibChangeIndexClass)

19

Changing

an

Items

Index

Class

8

Class
Changing

an

Items

Index

8

CLASSATTRSTRUCT

138

CLASSINDEXATTRSTURCT

139

CLASSINDEXSTRUCT

140

CLASSINFOSTRUCT

141

Client

for

Windows

204

Close

a

Table

of

Contents
Ip2CloseTOC

117

Close

a

TOC

(Ip2CloseTOC)

117

close

an

attribute

set

(SimLibCloseAttr)

22

close

an

object

(SimLibCloseObject)

23

collection
items

201

Collection
Documents

174

Items

175

Common

Data

Structures

133

Compiling

and

Linking

Content

Manager

for

iSeries

Applications

11

Components
Content

Manager

for

iSeries

2

Concepts
Content

Manager

for

iSeries

5

content

class
listing

a

base

object’s

content

class

230

content

classes
listing

222

Content

Manager

for

iSeries

Applications
Compiling

and

Linking

11

CONTENTCLASSINFO

142

copy

an

object

(SimLibCopyObject)

25

Create

a

Work

Package
SimWmCreateWorkPackage

92

create

an

item

(SimLibCreateItem)

26

create

an

object

(SimLibCreateObject)

29

Create

Item

User

Exit

284

Create

Object

User

Exit

282

D
Data

Structures
Common

133

delete

an

item

(SimLibDeleteItem)

34

delete

an

object

(SimLibDeleteObject)

36

Delete

Item

User

Exit

285

Delete

Object

User

Exit

283

Determine

Next

Workbasket

User

Exit

254

Determine

Workflow

User

Exit

258

document
creating

a

copy

of

210

document

base

object
exporting

219

importing

220

document

image
displaying

216

document

note

logs

206

document

object

186

Document

Object

174

document

view

windows
closing

209

documents
scanning

239

Documents

and

Folders

7

Documents

Collection

174

documents

object

189

E
End

Process

User

Exit

289

ending

access

to

VHLPI

functions

218

error

object

191

Error

Object

174

Errors
Handling

175

events

15,

29,

41

F
folder

adding

an

item

to

205

creating

a

folder

212,

213

listing

contents

223,

225

removing

an

item

from

238

folder

management

concepts

5

free

memory

(SimLibFree)

37

G
get

a

TOC

(SimLibGetTOC)

49

get

a

TOC

for

item

affiliates

(SimLibGetItemAffiliatedTOC)

41

get

attribute

information

(SimLibGetAttrInfo)

38

get

index

class

information

(SimLibGetClassInfo)

40

get

item

information

(SimLibGetItemInfo)

43

get

session

type

(SimLibGetSessionType)

49

Get

the

Updates

to

a

Table

of

Contents

119

get

TOC

updates

119

Get

Work

Package

User

Exit

287

getting

information

about

documents

and

folders

7

H
Handling

Errors

175

HOBJ

143

I
ICVIEWSTRUCT

143

image

object

192

index

class
listing

all

attributes

of

227

listing

an

item’s

index

class

231

Index

Class
Changing

an

Items

8

index

classes
listing

229

©

Copyright

IBM

Corp.

1997,

2004

315

Index

Form

and

Save

Record

User

Exit

272

Interface
Using

the

OLE

Automation

173

Ip2CloseTOC

117

Ip2CloseTOC

(Close

a

Table

of

Contents)

117

Ip2GetLibSessionInfo

118

Ip2GetTOCUpdates

119

Ip2ListAttrs

121

Ip2ListContentClasses

122

Ip2ListServers

123

Ip2QueryClassPriv

124

Ip2QueryPrivBuffer

125

Ip2TOCCount

130

Ip2TOCStatus

131

item
adding

to

a

folder

205,

213

changing

an

index

class

207

deleting

215

displaying

using

a

library

object

window

217

listing

attribute

information

231

listing

index

class

231

removing

from

a

folder

238

item

affiliates,

getting

a

TOC

for

(SimLibGetItemAffiliatedTOC)

41

Item

Created

User

Exit

284

item

information,

getting

(SimLibGetItemInfo)

43

item

object

194

Item

Object

175

ITEMINFOSTRUCT

144

ITEMNAMESTRUCT

146

items
searching

239

searching

for

241

Items
Restricting

Access

to

9

items

collection

201

Items

Collection

175

items

in

TOC

130

L
library

object

window
displaying

an

item

217

LIBSEARCHCRITERIASTRUCT

147

list

content

classes

(Ip2ListContentClasses)

122

list

user-defined

attributes

(Ip2ListAttrs)

121

logging

off

56

logging

on

(SimLibLogon)

58

logical

data

model

5

logoff

236

Logoff

User

Exit

281

logon

237

user

id

220

Logon

User

Exit

281

Logon/Logoff

with

the

Client

for

Windows

204

M
Management

Understanding

Work

5

memory,

freeing

(SimLibFree)

37

Migrating

Objects

9

N
NAMESTRUCT

149

naming

folders

8

note

attributes

69,

84

notes

15,

29,

34

notes,

TOC

of

41

Notices

303

O
object

application

177

document

186

documents

189

error

191

image

192

item

194

Object
Application

174

Document

174

Error

174

Item

175

Object

Import

Create

Item

User

Exit

285

Object

Import

Item

Created

User

Exit

286

object

information

68

Objects
Client

for

Windows

173

Migrating

9

Releasing

175

OBJINFOSTRUCT

149

OLE

Automation

Interface
Using

the

173

OLE

Objects

for

Windows
Properties

and

Methods

of

177

open

item

attributes

61

Open

Object

User

Exit

283

Overload

Trigger

User

Exit

264

P
Parameters

and

Variables
Visual

Basic

203

Process

Information

Data

Structure

163

Program
Sample

Visual

Basic

176

Programming

Interface

for

Visual

Basic
Sample

High-Level

203

Programming

Tips

175

Properties

and

Methods

of

OLE

Objects

for

Windows

177

Property

and

Argument

Types

176

Q
query

a

privilege

buffer

125

query

an

object

(SimLibQueryObject)

68

query

privileges

124

Query

Sort

User

Exit

268

R
RCSTRUCT

151

read

an

attribute

(SimLibReadAttr)

69

read

an

object

70

Releasing

Objects

175

remove

an

item

from

a

folder

72

resize

an

object

73

Restricting

Access

to

Items

9

retrieving

information

about

documents

and

folders

7

Return

Work

Package

User

Exit

288

Route

Work

Package

User

Exit

287

S
Sample

High-Level

Programming

Interface

for

Visual

Basic

203

Sample

Visual

Basic

Program

176

save

an

attribute

75

Save

Attributes

User

Exit

281

Save

Record

User

Exit

272

search

76

search

query

results

268

searching
items

239,

241

seek

an

object

79

Server

User

Exits

280

Set

Variable

User

Exit

289

Sim400ConvertCodepage

115

SimLibAddFolderItem

12

SimLibCatalogObject

15

SimLibChangeIndexClass

19

SimLibChangeObjectSMS

21

SimLibCloseAttr

22

SimLibCloseObject

23

SimLibCopyObject

25

SimLibCreateItem

26

SimLibCreateObject

29

SimLibDeleteItem

34

SimLibDeleteObject

36

SimLibFree

37

SimLibGetAttrInfo

38

SimLibGetClassInfo

40

SimLibGetItemAffiliatedTOC

41

SimLibGetItemInfo

43

SimLibGetItemSnapshot

44

SimLibGetItemType

46

SimLibGetItemXref

47

SimLibGetSessionType

49

SimLibGetTOC

49

SimLibGetTOCData

53

SimLibListClasses

55

SimLibLogoff

56

SimLibLogon

58

SimLibOpenItemAttr

61

SimLibOpenObject

63

SimLibOpenObjectByUniqueName

66

SimLibQueryObject

68

SimLibReadAttr

69

SimLibReadObject

70

SimLibRemoveFolderItem

72

SimLibResizeObject

73

SimLibSaveAttr

75

316

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

SimLibSearch

76

SimLibSeekObject

79

SimLibStageObject

80

SimLibStoreNewObject

81

SimLibWriteAttr

84

SimLibWriteObject

85

SimWmActivateWorkPackage

87

SimWmBeginProcess

88

SimWmChangeVariables

90

SimWmCreateWorkPackage

92

SimWmEndCollectionPoint

93

SimWmEndProcess

94

SimWmGetActionListInfo

95

SimWmGetWorkBasketInfo

98

SimWmGetWorkPackage

99

SimWmGetWorkPackagePriority

101

SimWmListHistory

102

SimWmListProcesses

103

SimWmListWorkBaskets

104

SimWmMatchEvent

105

SimWmQueryVariables

107

SimWmQueryWorkPackage

108

SimWmReturnWorkPackage

109

SimWmRouteWorkPackage

111

SimWmSetWorkPackagePriority

112

SimWmSuspendWorkPackage

114

SMS

154

SMS,

changing

criteria

(SimLibChangeObjectSMS)

21

SNAPSHOTSTRUCT

155

stage

an

object

80

store

a

new

object

81

store

an

object

(SimLibCatalogObject)

15

Supporting

8

Supporting

Case-Sensitivity

8

T
Table

of

Contents
Get

the

Updates

to

a

119

Tips
Programming

175

TOCENTRYSTRUCT

157

Types
Property

and

Argument

176

U
Understanding

Workflow

5

Updates

to

a

Table

of

Contents

119

User

Exits

249

Alternate

Search

User

Exit

249

Change

System-Managed

Storage

User

Exit

251

Determine

Next

Workbasket

254

Determine

Workflow

258

Overload

Trigger

264

Query

Sort

268

Save

Record

272

USERACCESSSTRUCT

158

UserActionUserExit

276

UserDefinedWBUserExit

279

USERLOGONINFOSTRUCT

159

UserOptionUserExit

277

Using

Logon/Logoff

with

the

Client

for

Windows

204

V
Variables

Visual

Basic

Parameters

and

203

VbVhlAddFolderItem()

205

VbVhlAdminItemNoteLog()

206

VbVhlChangeItemIndex()

207

VbVhlCloseDocViews()

209

VbVhlCopyDoc()

210

VbVhlCreateFolder()

212

VbVhlCreateFolderAddItem()

213

VbVhlDeleteItem()

215

VbVhlDisplayDocView()

216

VbVhlDisplayVIItem()

217

VbVhlDropFuncs

()

218

VbVhlExportDocObj()

219

VbVhlGetVIUserID()

220

VbVhlImportDocObj()

220

VbVhlListContClasses()

222

VbVhlListFolderItems

223

VbVhlListFolderItemsAttr()

225

VbVhlListIndexClassAttr()

227

VbVhlListIndexClasses()

229

VbVhlListItemCC()

230

VbVhlListItemInfo()

231

VbVhlListWBItems()

233

VbVhlListWorkBaskets()

234

VbVhlLoadFuncs()

235

VbVhlLogoff()

236

VbVhlLogon()

237

VbVhlRemoveFolderItem()

238

VbVhlScanDoc()

239

VbVhlSearchAdv()

239

VbVhlSearchItem()

241

VHLPI

functions
access

235

ending

access

to

218

Visual

Basic
Sample

High-Level

Programming

Interface

for

203

Sample

Program

176

Visual

Basic

Parameters

and

Variables

203

W
WBItemCompletedUserExit

278

WBItemSelectedUserExit

277

Windows
Access

to

the

Client

for

204

Windows

Objects
Client

for

173

WMACTIONLISTFUNCSTRUCT

160

WMACTIONLISTINFOSTRUCT

161

WMHISTLOGENTRYSTRUCT

162

WMLOCATIONINFOSTRUCT

162

WMPROCESSINFOSTRUCT

163

WMSNAPSHOTSTRUCT

164

WMSUSPENDSTRUCT

166

WMVARSTRUCT

167

wokbasket
listing

all

names

for

234

workbasket
listing

contents

233

WORKBASKETINFOSTRUCT

168

Workflow

5

Workflow

Location

Information

Structure

162

write

an

attribute

(SimLibWriteAttr)

84

write

an

object

85

Index

317

318

IBM

Content

Manager

for

iSeries:

Application

Programming

Guide

and

Reference

����

Program

Number:

5722-VI1

SC27-1139-01

	Contents
	About This Book
	Who Should Use This Book
	How This Book Is Organized
	What's New in Version 5.3
	How to Use This Book
	Style Conventions
	Prerequisite and related information
	Support available on the Web
	iSeries Navigator

	How to send your comments

	Chapter 1. Introducing Content Manager for iSeries
	A Closer Look at Content Manager for iSeries
	Client/Server Relationship
	Content Manager for iSeries Components
	Client Application
	Content Manager for iSeries APIs
	Content Manager for iSeries Server

	Chapter 2. Content Manager for iSeries Concepts
	Understanding the Logical Data Model
	Understanding Workflow
	Getting Information about Documents and Folders
	Supporting Case-Sensitivity
	Naming Folders
	Changing an Item’s Index Class
	Restricting Access to Items
	Migrating Objects

	Chapter 3. Application Programming Interfaces
	Compiling and Linking Content Manager for iSeries Applications
	Application Programming Interfaces
	SimLibAddFolderItem (Add an Item to a Folder)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibCatalogObject (Catalog an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibChangeIndexClass (Change the Index Class for an Item)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibChangeObjectSMS (Change the SMS Criteria for an Object)
	Purpose
	Parameters
	Return Values
	Related Functions

	SimLibCloseAttr (Close an Attribute Set)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibCloseObject (Close an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibCopyObject (Copy an Object)
	Purpose
	Parameters
	Return Values
	Related Functions

	SimLibCreateItem (Create an Item)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibCreateObject (Create an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibDeleteItem (Delete an Item)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibDeleteObject (Delete an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimLibFree (Free Memory)
	Purpose
	Parameters
	Return Values
	Example
	Related Functions

	SimLibGetAttrInfo (Get Attribute Information)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibGetClassInfo (Get Index Class Information)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimLibGetItemAffiliatedTOC (Get a Table of Contents for Item Affiliates)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibGetItemInfo (Get Item Information)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibGetItemSnapshot (Get a Snapshot of Item Attributes)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibGetItemType (Get the Type of an Item)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibGetItemXREF (Get a Cross-Reference for an Item)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimLibGetSessionType (Get the Session Type)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibGetTOC (Get a Table of Contents)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibGetTOCData (Get a Snapshot of Attributes for a Group of Items)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibListClasses (List Index Classes)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimLibLogoff (Log Off)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibLogon (Log On)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibOpenItemAttr (Open Item Attributes)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibOpenObject (Open an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimLibOpenObjectByUniqueName (Open an Object By its Unique Name)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibQueryObject (Query an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimLibReadAttr (Read an Attribute)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibReadObject (Read an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibRemoveFolderItem (Remove an Item from a Folder)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibResizeObject (Resize an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibSaveAttr (Save an Attribute)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibSearch (Search)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimLibSeekObject (Seek an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibStageObject (Stage an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibStoreNewObject (Store a New Object in an Existing Item)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibWriteAttr (Write an Attribute)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimLibWriteObject (Write an Object)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Example
	Related Functions

	SimWmActivateWorkPackage (Activate a Work Package)
	Purpose
	Parameters
	Return Values
	Related Functions

	SimWmBeginProcess (Start a Work Package on a Pre-defined Process)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimWmChangeVariables (Change Variable Values for a Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmCreateWorkPackage (Create a Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmEndCollectionPoint (Force a Work Package Out of a Collection Point)
	Purpose
	Parameters
	Return Values

	SimWmEndProcess (End a Work Package on a Process)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmGetActionListInfo (Get Action List Information)
	Purpose
	Return Values
	Guidelines for Use

	SimWmGetProcessInfo (Get Information About a Process)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimWmGetWorkBasketInfo (Get Information about a Workbasket)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmGetWorkPackage (Get the Next Work Package from a Workbasket)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmGetWorkPackagePriority (Get the Priority of a Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmListHistory (List the History of a Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmListProcesses (List the Processes)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimWmListWorkBaskets (List the Workbaskets)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmMatchEvent (Satisfy an Event for a Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimWmQueryVariables (Query Variables for a Specific Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	SimWmQueryWorkPackage (Query a Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmReturnWorkPackage (Return a Work Package to a Workbasket)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmRouteWorkPackage (Route a Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmSetWorkPackagePriority (Set the Priority of a Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	SimWmSuspendWorkPackage (Suspend a Work Package)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	Sim400ConvertCodepage (Code Page Conversion)
	Purpose
	Parameters
	Return Values
	Related Functions

	Sim400SendReceive (Send Data to AS/400)
	Purpose
	Parameters
	Return Values
	Example
	Related Functions

	Ip2CloseTOC (Close a Table of Contents)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	Ip2GetLibSessionInfo (Get the Information for a Library Session)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	Ip2GetTOCUpdates (Get the Updates to a Table of Contents)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	Ip2ListAttrs (List the User-Defined Attributes)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	Ip2ListContentClasses (List the Content Classes)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	Ip2ListServers (List the Accessible Servers)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	Ip2QueryClassPriv (Query the Privilege String for an Index Class or View)
	Purpose
	Parameters
	Return Values
	Guidelines for Use

	Ip2QueryPrivBuffer (Query a Privilege Buffer)
	Purpose
	Parameters
	Return Values

	Ip2TOCCount (Count the Items in a Table of Contents)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	Ip2TOCStatus (Get the Status of a Table of Contents)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Related Functions

	Chapter 4. Common Data Structures
	Data Structures
	AFFTOCENTRYSTRUCT (Affiliated Table of Contents Entry Structure)
	Fields

	ANNOTATIONSTRUCT (Annotation Information Structure)
	Fields

	ATTRINFOSTRUCT (Attribute Information Structure)
	Fields

	ATTRLISTSTRUCT (Attribute List Data Structure)
	Fields

	CLASSATTRSTRUCT (Class Attribute Structure)
	Fields

	CLASSINDEXATTRSTRUCT (Class Index Attribute Structure)
	Fields

	CLASSINDEXSTRUCT (Class Index Structure)
	Fields

	CLASSINFOSTRUCT (Index Class Information Structure)
	Fields

	CONTENTCLASSINFO (Content Class Information Structure)
	Fields

	HOBJ (Handle to Query Stored Object)
	Fields

	ICVIEWSTRUCT (Index Class View Information Structure)
	Fields

	ITEMINFOSTRUCT (Item Information Structure)
	Fields

	ITEMNAMESTRUCT (Item Name Data Structure)
	Fields

	LIBSEARCHCRITERIASTRUCT (Search Criteria Information Structure)
	Fields
	Guidelines for Search Expressions

	LIBSESSIONINFOSTRUCT (Library Session Information Structure)
	Fields

	NAMESTRUCT (Name Data Structure)
	Fields

	OBJINFOSTRUCT (Object Information Structure)
	Fields

	RCSTRUCT (Return Code Information Structure)
	Fields

	SERVERINFOSTRUCT (Server Information Structure)
	Fields

	SMS (System-Managed Storage Pointer)
	Fields

	SNAPSHOTSTRUCT (Snapshot Information Structure)
	Fields

	TOCENTRYSTRUCT (Table of Contents Entry Data Structure)
	Fields

	USERACCESSSTRUCT (User Access Data Structure)
	Fields

	USERLOGONINFOSTRUCT (User Logon Information Structure)
	Fields

	WMACTIONLISTFUNCSTRUCT (Action List Function Structure)
	Fields

	WMACTIONLISTINFOSTRUCT (Action List Data Structure)
	Fields

	WMHISTLOGENTRYSTRUCT (WMEvent History Structure)
	Fields

	WMLOCATIONINFOSTRUCT (Work Process Location Information Structure)
	Fields

	WMPROCESSINFOSTRUCT (Process Information Data Structure)
	Fields

	WMSNAPSHOTSTRUCT (Work Management Information Structure)
	Fields

	WMSUSPENDSTRUCT (Suspend Work Package Data Structure)
	Fields

	WMVARSTRUCT (Work Package Variable Data Structure)
	Fields

	WORKBASKETINFOSTRUCT (Workbasket Information Data Structure)
	Fields

	Chapter 5. Using the OLE Automation Interface
	Programming with OLE Automation
	Properties
	Methods

	Client for Windows Objects
	Application Object
	Documents Collection
	Document Object
	Error Object
	Image Object
	Items Collection
	Item Object

	Programming Tips
	Releasing Objects
	Handling Errors
	Property and Argument Types

	Sample Visual Basic Program
	Properties and Methods of OLE Objects for Windows
	Application Object
	Properties
	Methods

	Document Object
	Properties
	Methods

	Documents Object
	Properties
	Methods

	Error Object
	Properties
	Methods

	Image Object
	Properties
	Methods

	Item Object
	Properties
	Methods

	Items Collection
	Properties
	Methods

	Chapter 6. Sample High-Level Programming Interface
	Sample High-Level Programming Interface for Visual Basic
	General Use
	Visual Basic Parameters and Variables
	Access to the Client for Windows
	Using Logon/Logoff with the Client for Windows

	Samples of High Level Programming Interface APIs for Windows
	VbVhlAddFolderItem (Add an Item to a Folder)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlAdminItemNoteLog (Administer Document Note Logs)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlChangeItemIndex (Change an Item's Index Class)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlCloseDocViews (Close the Document Image View Window)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlCopyDoc (Create a Copy Of a Document)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlCreateFolder (Create a New Folder)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlCreateFolderAddItem (Create a Folder and Add an Item)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlDeleteItem (Delete an Item)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlDisplayDocView (Display a Document Image)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlDisplayVIItem (Display Item Using the Client for Windows)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlDropFuncs (End Access to VHLPI Functions)
	Purpose
	Guidelines for Use
	Visual Basic Source Code

	VbVhlExportDocObj (Export a Document Base Object)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlGetVIUserID (Get the Logon User ID)
	Purpose
	Guidelines for Use
	Visual Basic Source Code

	VbVhlImportDocObj (Import a Document Base Object)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlListContClasses (List all Content Classes)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlListFolderItems (List Folder Contents)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlListFolderItemsAttr (List Folder Contents and Their Attributes)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlListIndexClassAttr (List All Attributes Of an Index Class)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlListIndexClasses (List all Index Classes)
	Purpose
	Parameters
	Visual Basic Source Code

	VbVhlListItemCC (List a Base Object's Content Class)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlListItemInfo (List an Item's Index Class and Attribute Information)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlListWBItems (List Workbasket Contents)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlListWorkBaskets (List All Workbasket Names)
	Purpose
	Parameters
	Visual Basic Source Code

	VbVhlLoadFuncs (Get Access to VHLPI Functions)
	Purpose
	Guidelines for Use
	Visual Basic Source Code

	VbVhlLogoff (End Access to IBM Content Manager for iSeries)
	Purpose
	Guidelines for Use
	Visual Basic Source Code

	VbVhlLogon (Get Access to IBM Content Manager for iSeries)
	Purpose
	Guidelines for Use
	Visual Basic Source Code

	VbVhlRemoveFolderItem (Remove an Item From a Folder)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlScanDoc (Scan Documents)
	Purpose
	Guidelines for Use
	Visual Basic Source Code

	VbVhlSearchAdv (Advanced Search for Items)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	VbVhlSearchItem (Search for Items)
	Purpose
	Parameters
	Guidelines for Use
	Visual Basic Source Code

	Chapter 7. Content Manager for iSeries Programming Interface APIs on the Server
	Server Versions of the Content Manager for iSeries Client APIs
	Server-only Content Manager for iSeries APIs
	QVISNDRCV (Send and Receive Buffer)
	Purpose
	Parameters
	Return Values
	Guidelines for Use
	Sample Source

	Chapter 8. Content Manager for iSeries User Exits
	Client User Exits
	AlternateSearchUserExit (alternate search user exit)
	Purpose
	Parameters
	Return values
	Comments

	ChangeSMSUserExit (change system-managed storage user exit)
	Purpose
	Parameters
	Internal representation
	Results
	Comments

	DetNextWBUserExit (determine next workbasket user exit)
	Purpose
	Parameters
	Internal representation
	Results
	Comments

	DetermineWorkflowUserExit (determine workflow user exit)
	Purpose
	Parameters
	Internal representation
	Results
	Comments

	GetAttributeValueList (Get attribute value list)
	Purpose
	Parameters
	Results/Return Values
	Comments

	GetValueListLength (Get value list length)
	Purpose
	Parameters
	Results/Return Values
	Comments

	OverloadTriggerUserExit (overload trigger user exit)
	Purpose
	Parameters
	Internal representation
	Results
	Comments

	QuerySortUserExit (query sort user exit)
	Purpose
	Parameters
	Internal representation
	Results
	Comments

	SaveRecordUserExit (save record user exit)
	Purpose
	Parameters
	Internal representation
	Results
	Comments

	UserActionUserExit (Workflow User Action User Exit)
	Parameters
	Results

	UserOptionUserExit (User-option User Exit)
	Parameters

	WBItemSelectedUserExit (Workbasket Item Selected User Exit)
	Parameters
	Results

	WBItemCompletedUserExit (Workbasket Item Completed User Exit)
	Parameters
	Results

	UserDefinedWBUserExit (User-defined Workbasket User Exit)
	Parameters
	Results

	Server User Exits
	Logon User Exit
	Logoff User Exit
	Save Attributes User Exit
	Create Object User Exit
	Delete Object User Exit
	Open Object User Exit
	Create Item User Exit
	Item Created User Exit
	Delete Item User Exit
	Object Import Create Item User Exit
	Object Import Item Created User Exit
	Add Folder Item User Exit
	Route Work Package User Exit
	Get Work Package User Exit
	Return Work Package User Exit
	End Process User Exit
	Set Variable User Exit

	Server User Exit for Process Definitions

	Appendix A. Guidelines for Search Expressions
	Logical Operators for Searches
	Search Expressions
	Attribute
	Operator
	Value

	Relational Operators for Searches
	Process/Location Search

	Appendix B. Predefined Content Classes
	Appendix C. External References
	Creating External References

	Notices
	Trademarks

	Glossary
	Index

