
iSeries

Multithreaded applications

Version 5 Release 3

ERserver

���

iSeries

Multithreaded applications

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 81.

Seventh Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400 (product number 5722-SS1)

and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not

run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Multithreaded applications . . 1

Chapter 2. Print this topic 3

Chapter 3. Threads on OS/400 5

Thread models 5

Thread program models 5

Jobs and job resources 6

Thread-private data and thread-specific data 7

Multithreaded program startup commands 7

Activation groups and threads 8

Communications considerations for multithreaded

programming 9

Database considerations for multithreaded

programming 9

Example: Working with local SQL databases in

multithreaded Pthread programs 11

Data management considerations for multithreaded

programming 13

File system considerations for multithreaded

programming 14

Printer file considerations for multithreaded

programming 14

Chapter 4. Managing OS/400 threads 17

Thread attributes 17

Example: Setting a thread attribute in a Pthread

program 18

Example: Setting a thread attribute in Java . . . 19

Starting a thread 20

Example: Starting a thread in a Pthread program 20

Example: Starting a thread using Java 21

Ending a thread 22

Example: Ending a thread in a Pthread program 22

Example: Ending a thread using Java 23

Canceling a thread 25

Example: Canceling a thread in a Pthread

program 25

Example: Canceling a thread using Java 26

Suspending a thread 28

Example: Suspending a thread using Java . . . 28

Resuming a thread 30

Waiting for a thread to end 30

Example: Waiting for threads in a Pthread

program 30

Example: Waiting for threads using Java 31

Yielding the processor to another thread 33

Chapter 5. Thread safety 35

Storage usage and threaded applications 35

Job-scoped resources and thread safety 36

API thread safety classifications 37

CL commands and thread safety 37

Denied access functions and thread safety 38

Exit points 39

Chapter 6. Multithreaded programming

techniques 41

Existing application evaluation 41

Synchronization techniques among threads 41

Mutexes and threads 42

Example: Using mutexes in Pthread programs 42

Example: Using mutexes in Java 44

Semaphores and threads 45

Example: Using semaphores in Pthread

programs to protect shared data 46

Condition variables and threads 48

Example: Using condition variables in Pthread

programs 48

Example: Using condition variables in Java

programs 50

Threads as synchronization primitives 53

Space location locks 53

Example: Space location locks in Pthread

programs 53

Object locks 55

Compare and Swap 55

One-time initialization and thread safety 56

Example: One-time initialization in Pthread

programs 56

Thread-specific data 58

Example: Thread-specific data in Pthread

programs 58

Example: Thread-specific data in Java programs 60

Function calls that are not thread safe 61

Using global mutexes to run functions that are

not threadsafe 61

Using separate jobs to run functions that are not

threadsafe 62

Common multithreaded programming errors . . . 63

Calling functions that are not threadsafe 63

Thread creation not allowed failure 63

Activation group ending 64

Mixing thread models 64

Commit operations in multithreaded programs 64

Database record I/O and thread safety 65

Chapter 7. Language access and

threads 67

Threads considerations for Java language 67

Threads considerations for C language 67

Threads considerations for C++ language 68

Threads considerations for ILE COBOL and RPG

language 68

Threads considerations for OPM language 68

Chapter 8. Debugging and servicing of

multithreaded jobs 69

© Copyright IBM Corp. 1998, 2005 iii

Commands that report thread-related data 69

Flight recorders 70

Example: Sample flight recorder output from a

Pthread program 71

Options to view thread information 73

Multithreaded job debugging 74

Areas to test for multithreaded applications . . . 75

Chapter 9. Performance considerations

in multithreaded applications 77

Multithreaded server recommendations 77

Job and thread priorities 77

Contention among threads 78

Effects of storage pool sizes on threaded

applications 78

Activity levels of storage pools 78

Performance and threaded applications 78

Chapter 10. Examples: Threads 79

Code disclaimer information 79

Appendix. Notices 81

Trademarks 83

Terms and conditions for downloading and printing

publications 83

iv iSeries: Multithreaded applications

Chapter 1. Multithreaded applications

What’s new as of October 2004

This topic has been updated with miscellaneous technical changes, including updates to some examples.

What is a thread?

A thread is the path a program takes while it runs, the steps it performs, and the order in which it

performs the steps. A thread runs code from its starting location in an ordered, predefined sequence for a

given set of inputs. The term thread is shorthand for “thread of control”. You can use multiple threads to

improve application performance by running different application tasks simultaneously.

You should become familiar with the following topics before you work with multithreaded applications

on OS/400®:

Thread basics:

v Chapter 3, “Threads on OS/400,” on page 5– Basic thread concepts and considerations for using

multithreaded programs on OS/400.

v Chapter 4, “Managing OS/400 threads,” on page 17– Descriptions of basic thread management tasks in

OS/400 thread kernels.

v Chapter 5, “Thread safety,” on page 35– Thread safety concepts for OS/400.

Programming with threads:

v Chapter 6, “Multithreaded programming techniques,” on page 41– Information on various

multithreaded programming techniques, including the following:

– Evaluating applications

– Synchronization techniques

– Initializing resources

– Using thread-specific data

– Using function calls that are not threadsafe

– Solving common multithreaded errors
v Chapter 7, “Language access and threads,” on page 67– How different languages support threads on

OS/400.

v Chapter 8, “Debugging and servicing of multithreaded jobs,” on page 69– Concepts and techniques for

debugging and servicing multithreaded jobs.

v Chapter 9, “Performance considerations in multithreaded applications,” on page 77

Code snippets that show how to use threads:

Note: Read the “Code disclaimer information” on page 79 for important legal information.

v Chapter 10, “Examples: Threads,” on page 79– Pthread and Java™ examples of several common threads

tasks.

© Copyright IBM Corp. 1998, 2005 1

2 iSeries: Multithreaded applications

Chapter 2. Print this topic

You can view or download a PDF version of this document for viewing or printing. You must have

Adobe® Acrobat® Reader installed to view PDF files. You can download a copy from

http://www.adobe.com/prodindex/acrobat/readstep.html

.

To view or download the PDF version, select Multithreaded Applications (about 465 KB or 94 pages).

To save a PDF on your workstation for viewing or printing:

1. Open the PDF in your browser (click the link above).

2. In the menu of your browser, click File.

3. Click Save As...

4. Navigate to the directory in which you would like to save the PDF.

5. Click Save.

© Copyright IBM Corp. 1998, 2005 3

http://www.adobe.com/prodindex/acrobat/readstep.html
rzahwmst.pdf

4 iSeries: Multithreaded applications

Chapter 3. Threads on OS/400

The term thread is shorthand for ″thread of control.″ A thread is the path taken by a program while

running, the steps performed, and the order in which the steps are performed. A thread runs code from

its starting location in an ordered, predefined sequence for a given set of inputs.

All programs have at least one thread, referred to as the initial thread. In a program with multiple threads,

each thread runs its code independently of the other threads in the program.

A process is the container for the memory and resources of the program. On iSeries™ systems, a job

represents a process. Each process has at least one thread (task) in which the program runs its code. The

first thread in a process is referred to as the initial thread. Some processes are capable of supporting

additional threads, which are called secondary threads.

The concepts that are described here pertain to all programming languages. For details about how each

language enables a concept, refer to the programmer’s guide for that specific language.

 Basic thread concepts:

v “Thread models”

v “Thread program models”

v “Jobs and job resources” on page 6

v “Thread-private data and thread-specific data” on page

7

v “Multithreaded program startup commands” on page 7

v “Activation groups and threads” on page 8

Multithreaded programming considerations:

v “Communications considerations for multithreaded

programming” on page 9

v “Database considerations for multithreaded

programming” on page 9

v “Data management considerations for multithreaded

programming” on page 13

v “File system considerations for multithreaded

programming” on page 14

v “Printer file considerations for multithreaded

programming” on page 14

Thread models

There are different models of thread usage: user threads and kernel threads.

In the user threads model, all program threads share the same process thread. In the user thread model,

the thread application programming interfaces (APIs) enforce the scheduling policy and decide when a

new thread runs. The scheduling policy allows only one thread to be actively running in the process at a

time. The operating system kernel is only aware of a single task in the process.

In the kernel threads model, kernel threads are separate tasks that are associated with a process. The

kernel thread model uses a pre-emptive scheduling policy in which the operating system decides which

thread is eligible to share the processor. In a kernel thread model, there is a one-to-one mapping between

program threads and process threads. OS/400 supports a kernel thread model.

Some platforms support a combination of these two thread models commonly referred to as an MxN

thread model. Each process has M user threads that share N kernel threads. The user threads are

scheduled on top of the kernel threads. The system allocates resources only to the more ″expensive″

kernel threads.

Thread program models

There are different models for creating multithread programs.

© Copyright IBM Corp. 1998, 2005 5

One of the key differences between OS/400 and other platforms is the ability of OS/400 to support a

call-return program model. On other platforms, if one program wants to call another, it must start a

second process to run the second program, or replace the first program with the second. Starting another

process to call a program is expensive in terms of startup time and system resources. To avoid this

expense, programmers group commonly used functions into Dynamically Linked Libraries (DLLs).

Whenever a program needs a service that a DLL provides, the program simply loads the DLL and calls

the function that provides the needed service.

Although the OS/400 call-return program model is supported for multithreaded programs, you are

strongly encouraged to use service programs or DLLs that run in the caller’s activation group. If you

perform ports of multithreaded programs from other platforms, you will naturally employ service

programs in their port.

Although it is not a requirement, all programs used in a multithreaded application should be Integrated

Language Environment® (ILE) programs. The use of non-ILE programs in multithreaded programs

requires special considerations. “Threads considerations for OPM language” on page 68 provides more

information. You must evaluate the thread safety of existing programs if multithreaded programs call

them.

Jobs and job resources

A job is a container for storage and other resources. A job cannot run by itself.

Every job has two basic kinds of storage associated with it.

 Data: Data is where all of the program variables are stored. It is broken down into storage for global

and static variables (static), storage for dynamically allocated storage (heap), and storage for

variables that are local to the function (automatic). The storage for program variables is allocated

from the activation group into which the program was activated. Static and heap storage are

accessible to all threads that are running in the activation group. The automatic storage and local

program variables are local to the thread.

Stack: The stack contains data about the program or procedure call flow in a thread. The stack, along

with automatic storage, is allocated for each thread created. While in use by a thread, the stack

and automatic storage are considered to be thread resources. When the thread ends, these

resources return to the process for subsequent use by another thread.

Job resources are resources that are accessible by all threads within the job. These resources include the

following:

v Coded Character Set Identifier (CCSIDS)

v Locales

v Environment variables

v File descriptors

v Files that are opened with a job scope

v Signal action vector

v Signal timers

v The current working directory

All threads running in an activation group can share activation group resources, such as static and heap

storage. When a thread changes a job resource, the new value is immediately visible to all threads. For

example, changing the signal handling action in one thread effectively changes the signal handling action

in all threads.

6 iSeries: Multithreaded applications

Thread-private data and thread-specific data

Threads cannot share certain resources. Data that threads cannot share between themselves are called

thread-private data. The operating system defines this thread-private data. OS/400 defines the following

resources as thread-private data:

 Thread identifier:

 The unique integral number that can be used to identify the thread.

Priority:

 OS/400 allows specification of a thread priority, which determines the relative importance of one

thread to other threads in the job. The thread priority is defined to be a delta value to the job’s

priority. OS/400 adds the thread’s priority to the job’s priority. It can never exceed the job’s

priority. If you adjust the job’s priority, the thread’s priority is adjusted relative to the new job

priority. The default thread priority value is zero. This results in a thread that has the same

priority as the job.

Security information:

 Security information, including user and group profiles, is maintained on a per thread basis.

When a thread creates a new thread, the new thread inherits the security information from the

thread that created it.

Library list:

 Library list information, including user and group profiles, is maintained on a per thread basis.

When a thread create a new thread, the new thread inherits the library list information from the

thread that created it.

Signal blocking mask:

 The signal blocking mask identifies the set of asynchronous signals to be blocked from delivery to

the thread. When a thread creates a new thread, the new thread inherits the signal blocking mask

of the thread that created it.

Call stack:

 The call stack contains data about the program flow or procedure call flow in a thread. The stack,

along with automatic storage, is allocated for each thread created.

Automatic storage:

 Automatic storage is for variables that are local to the function.

errno variable:

 The program variable that is used to return the result of a C or POSIX system call. errno is a

function call that returns the most recent result for a function call in the thread.

Threads can have their own view of data items called thread-specific data. Thread-specific data is

different from thread-private data. The threads implementation defines the thread-private data, while the

application defines the thread-specific data. Threads do not share thread-specific storage (it is specific to a

thread), but all functions within that thread can access it. Usually, a key indexes thread-specific storage.

The key is a global value that is visible to all threads. It is used to retrieve the thread-specific value of the

storage associated with that key.

Multithreaded program startup commands

To call a multithreaded program, the job in which the program is called must be capable of supporting

multiple threads (multithread-capable). In the OS/400 kernel threads support, only a subset of the

supported job types can create threads. Interactive and communication jobs do no provide

multithread-capable support.

Chapter 3. Threads on OS/400 7

The parameter Allow Multithread (ALWMLTTHD), which is located in the Create Job Description

(CRTJOBD) and Change Job Description (CHGJOBD) commands, controls whether the job supports

multiple threads. OS/400 examines all job types except communications jobs and interactive jobs for the

ALWMLTTHD parameter. The Add Prestart Job Entry (ADDPJE) and Change Prestart Job Entry

(CHGPJE) subsystem description job entry commands use the ALWMLTTHD setting to control whether

jobs started through the entry are capable of supporting multiple threads.

The spawn() API, Spawn Process, supports a new flag field in the inheritance structure that controls

whether the child process can support multiple threads. This flag field, SPAWN_SETTHREAD_NP, is a

non-standard, OS/400 platform-specific extension to the inheritance structure. The spawn() API is the

only programming method that can start a batch immediate or prestart job that is capable of supporting

multiple threads. You can write a SPAWN command, similar to the CALL command, to simplify calling

multithreaded programs. An example SPAWN command is available for your use and modification as

part of OS/400 option 7, the OS/400 Example Tools Library, QUSRTOOLS.

Activation groups and threads

All programs and service programs are activated within a substructure of a job that is called an activation

group. This substructure contains the resources necessary to run the programs, including static and heap

storage, and temporary data management resources.

In a job capable of multithreaded operation, two or more threads can share an activation group. A thread

can run programs that were activated in different activation groups. The system does not keep a list of

threads that run in an activation group or a list of activation groups in a thread. Ending an activation

group while other threads are active in it would produce unpredictable results that could abnormally end

the process. To avoid these problems, any action that ends an activation group in a secondary thread

causes the system to end the job in an orderly fashion. In other words, the system ends all threads in the

job, calls exit routines and C++ destructors in the initial thread, and finally closes the files.

When working with activation groups, consider the following:

 Return from activation groups:

 Programs created with ACTGRP(*NEW) get a new activation group every time it is called. When

the program returns, the new activation group ends. In jobs capable of multithreaded operation,

returning from programs that were created with ACTGRP(*NEW) will end the job.

 Both default and named activation groups are persistent. The Default activation group is created

when a job starts and is destroyed only when the job ends. Named activation groups are created

when they are first needed in a job. A normal return from the named activation group leaves the

activation group in last-used state, but does not delete the activation group. Hence, in a job

capable of multithreaded operations, a normal return from the default or named activation group

does not cause the job to end.

 Using exit() or abort() in any activation group in a secondary thread always ends the job.

Unhandled exceptions:

 If an exception has not been handled by the time it has percolated to the control boundary and

the control boundary is a program entry procedure (PEP or main entry point), the

multithread-capable job is ended.

Reclaim activation group RCLACTGRP:

 Jobs capable of multithreaded operation allow this command to be invoked only in the initial

thread on the job. If secondary threads are present in the job, they will be terminated before the

RCLACTGRP command is run..

Chapter 5, “Thread safety,” on page 35 contains related information.

8 iSeries: Multithreaded applications

Communications considerations for multithreaded programming

The only thread-safe communications protocol supported on OS/400 is sockets. The use of sockets is

subject to the following restrictions:

 Socket application programming interfaces (APIs):

 The majority of the sockets interfaces are thread safe, but most of the Network Routines are not

due to the use of static storage. These routines have been replaced with thread-safe ″_r″

counterparts. For example, you should replace calls to gethostbyaddr() with gethostbyaddr_r().

The ″_r″ routines are compatible with the UNIX® definition. All ″_r″ functions reside in the

existing service program QSOSRV2.

AnyNet® using sockets:

 AnyNet using sockets is considered to be thread safe and is supported in multithread programs.

However, this support has not undergone any formal testing.

Database considerations for multithreaded programming

You should consider several topics when using databases in multithreaded programs.

 Data definition language (DDL):

 Many of the database configuration, administration, and setup type interfaces are threadsafe.

Database operations that are threadsafe include: Create File, Add Member, Delete File, and

Remove Member. Refer to CL Reference or use the Display Command (DSPCMD) command to

determine if a command is threadsafe. The online help information for that command lists any

necessary conditions for threadsafety that apply to a command.

Database record I/O:

 The database protects the I/O operations for the duration of the operation (read, update, insert,

or delete). When you share an open instance of a file among threads, you must serialize access to

the I/O feedback areas and I/O buffers to see valid information in these areas. These areas are

under application control, and the database cannot protect them after the database operation has

completed.

 An example is a simple read operation. If thread 1 is in the process of a read and thread 2

performs any I/O operation against the same open instance, thread 2 waits until thread 1 has

completed the read. The result of the read in thread 1 is placed in the I/O buffer. When control

returns to thread 1, thread 2 begins its I/O operation. Without serialization, thread 2 can change

the information in the I/O buffer before thread 1 can view the result.

 If threads do not share an open instance of a file, no serialization is required.

 For more information, see “Database record I/O and thread safety” on page 65.

Distributed files:

 Access to distributed database files used with DB2® Multisystem and access to distributed data

management (DDM) files of type *SNA are not threadsafe. Multithreaded jobs deny accessing

database files of these types. These file types cannot be made threadsafe because ICF files and the

entire Systems Network Architecture (SNA) layer are not threadsafe. If an attempt is made to

open one of these file types, a CPF4380 message (Open attributes not valid in a multithreaded

process) is sent to the function attempting to open the file.

Trigger programs:

 You can fire trigger programs in a multithreaded job. The same threadsafety restrictions apply to

trigger programs as to any other code that runs in a multithreaded job. Parameters on the Add

Physical File Trigger (ADDPFTRG) command allow for specification of the trigger’s threadsafety

status and the action to take if the trigger is fired in a multithreaded job.

Chapter 3. Threads on OS/400 9

Format selector programs:

 For logical files with multiple formats, the use of format selector programs is not threadsafe. You

should not use format selector programs in a multithreaded job.

Stored procedures:

 DB2 SQL stored procedure support provides a way for a SQL application to define and invoke an

external program though SQL statements. Stored procedures can be invoked in a multithreaded

job. The same thread safety restrictions apply to stored procedures as to any other code that runs

in a multithreaded job. Unlike trigger programs, there is no way to specify the stored procedure’s

thread safety status and the action to take if the stored procedure is invoked in a multithreaded

job.

Structured Query Language (SQL) statements:

 The use of data definition language (DDL) SQL statements may not be threadsafe. Data

manipulation language (DML) statements are threadsafe. For complete information about the

threadsafety of SQL statements, refer to the Threads section of SQL Reference.

 The following is an example of how to use SQL to interact with databases:

 “Example: Working with local SQL databases in multithreaded Pthread programs” on page 11

Server mode for SQL:

 Using the server mode for SQL is the preferred method for accessing databases with

multithreaded applications. A job can use the server mode for SQL in order to manage multiple

database connections and transactions. When the application is using server mode for SQL,

OS/400 uses the connections in the job as a more encapsulated representation of the current

database context than previously permitted in OS/400. It allows for connections to a database by

multiple users, multiple connections to a database by the same or different users, and the

existance of multiple, independent transactions by connections to a database.

 Use one of the following mechanisms to activate server mode for SQL before data access occurs

in the application:

v Use the ODBC API, SQLSetEnvAttr() and set the SQL_ATTR_SERVER_MODE attribute to

SQL_TRUE before doing any data access.

v Use the Change Job API, QWTCHGJB() and set the ’Server mode for Structured Query

Language’ key before doing any data access.

v Use Java to access the database via JDBC. JDBC automatically uses server mode to preserve

required semantics of JDBC.

Server mode for SQL behavior:

1. For embedded SQL, each thread in a job is a separate transaction that can be committed or

rolled back, even if there are multiple connections within that thread.

2. For ODBC, CLI and JDBC, each connection handle represents a stand-alone connection to the

database and can be committed and used as a separate entity.

The call level interface (CLI) for SQL is threadsafe. More information on CLI can be found in SQL

Call Level Interface (ODBC).

 More information about the server mode for SQL can be found in the Threads section of SQL

Reference.

Commitable transactions:

 The introduction of threads does not change the scope of committable transactions. You can scope

committable units of work to either a job-level commitment definition or an activation

group-level commitment definition. A thread commit or roll-back operation commits or rolls-back

all operations done under the commitment definition. If you want an application where each

10 iSeries: Multithreaded applications

thread (or group of threads) has a separate committable transaction, you must either use server

mode for SQL or manage these transactions with separate activation groups.

Example: Working with local SQL databases in multithreaded Pthread

programs

Note: Read the “Code disclaimer information” on page 79 for important legal information.

/***/

/* Testcase: SQLEXAMPLE */

/* */

/* Function: */

/* Demonstrate how Embedded SQL can be used within a */

/* threaded ILE C program. This program creates and */

/* populates an SQL Table with data. Then, threads are */

/* created which each open a cursor and read all the */

/* data from the table. A semaphore is used to show */

/* how threads execution can be controlled. */

/* */

/* To compile program: */

/* CRTSQLCI OBJ(QGPL/SQLEXAMPLE) SRCFILE(QGPL/QCSRC) */

/* COMMIT(*NONE) RDB(*NONE) OBJTYPE(*MODULE) */

/* OUTPUT(*PRINT) DBGVIEW(*SOURCE) */

/* */

/* To bind program: */

/* CRTPGM PGM(QGPL/SQLEXAMPLE) */

/* MODULE(QGPL/SQLEXAMPLE) ACTGRP(*CALLER) */

/* */

/* To invoke program: */

/* SPAWN QGPL/SQLEXAMPLE */

/* */

/***/

#define _MULTI_THREADED

#include <pthread.h>

#include <sys/sem.h>

#include <sys/types.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

static int semid;

static struct sembuf op_try1[1] = {0,0,0};

#define MAXTHREADS 2

void *threadrtn(void *parm);

int main(int argc, char **argv)

{

 int rc;

 int *status;

 pthread_t thids[MAXTHREADS];

 EXEC SQL BEGIN DECLARE SECTION;

 int i, j;

 char insert[200];

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL INCLUDE SQLDA;

 /* create a new semaphore */

 semid=semget(IPC_PRIVATE,1,S_IRUSR|S_IWUSR);

 printf("\nsemaphore created\n");

 rc=semctl(semid, 0, SETVAL, 1);

Chapter 3. Threads on OS/400 11

printf("semaphore inited\n");

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL CREATE TABLE QGPL/SQLEXMP (COL1 INT,COL2 INT);

 printf("SQL table created\n");

 EXEC SQL WHENEVER SQLERROR GO TO :mainerror;

 for (i=1,j=100;i<10;i++,j++) {

 (void) sprintf(insert, "INSERT INTO QGPL/SQLEXMP \

 VALUES(%d, %d)", i, j);

 EXEC SQL EXECUTE IMMEDIATE :insert;

 }

 printf("Table primed with data\n");

 for (i=0;i<MAXTHREADS;i++) {

 pthread_create(&thids[i], NULL, threadrtn, NULL);

 }

 printf("Threads created\n");

 rc=semctl(semid, 0, SETVAL, 0);

 printf("Threads turned loose\n");

 for (i=0;i<MAXTHREADS;i++) {

 pthread_join(thids[i], &status);

 }

 printf("Threads joined\n");

 return;

mainerror:

 printf("ERROR: sqlcode = %d sqlstate = %d\n", SQLCODE, SQLSTATE);

}

/**/

/* This thread will do the following: */

/* - Declare a cursor for the example table */

/* - Block on a semaphore until initial thread */

/* is ready for us to run */

/* - Open the cursor */

/* - Fetch data one row at a time in a loop until */

/* End of File is reached or an error occurs */

/* - Close the cursor and return */

/**/

void *threadrtn(void *parm)

{

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL INCLUDE SQLDA;

 EXEC SQL BEGIN DECLARE SECTION;

 long HV1, HV2;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR GO TO :thderror;

 EXEC SQL WHENEVER NOT FOUND GO TO :thdeof;

 EXEC SQL DECLARE C1 CURSOR FOR SELECT * FROM QGPL/SQLEXMP;

 /* block on semaphore */

 semop(semid,&op_try1[0],1);

 EXEC SQL OPEN C1;

 printf("thid:%.8x %.8x: cursor open\n",pthread_getthreadid_np());

 /* Loop until End of File (EOF) */

 for (;;) {

 EXEC SQL FETCH C1 INTO :HV1, :HV2;

 printf("thid:%.8x %.8x: fetch done... COL1=%d COL2=%d\n",

12 iSeries: Multithreaded applications

pthread_getthreadid_np(), HV1, HV2);

 }

thderror:

 printf("thid:%.8x %.8x: sqlcode = %d sqlstate = %d\n",

 pthread_getthreadid_np(), SQLCODE, SQLSTATE);

 EXEC SQL CLOSE C1;

 return;

thdeof:

 printf("thid:%.8x %.8x: Done!\n",

 pthread_getthreadid_np());

 return;

}

Testcase output:

 semaphore created

 semaphore inited

 SQL table created

 Table primed with data

 Threads created

 Threads turned loose

 thid:00000000 00000022: cursor open

 thid:00000000 00000023: cursor open

 thid:00000000 00000023: fetch done... COL1=1 COL2=100

 thid:00000000 00000022: fetch done... COL1=1 COL2=100

 thid:00000000 00000023: fetch done... COL1=2 COL2=101

 thid:00000000 00000022: fetch done... COL1=2 COL2=101

 thid:00000000 00000023: fetch done... COL1=3 COL2=102

 thid:00000000 00000022: fetch done... COL1=3 COL2=102

 thid:00000000 00000023: fetch done... COL1=4 COL2=103

 thid:00000000 00000022: fetch done... COL1=4 COL2=103

 thid:00000000 00000023: fetch done... COL1=5 COL2=104

 thid:00000000 00000022: fetch done... COL1=5 COL2=104

 thid:00000000 00000023: fetch done... COL1=6 COL2=105

 thid:00000000 00000022: fetch done... COL1=6 COL2=105

 thid:00000000 00000023: fetch done... COL1=7 COL2=106

 thid:00000000 00000022: fetch done... COL1=7 COL2=106

 thid:00000000 00000023: fetch done... COL1=8 COL2=107

 thid:00000000 00000022: fetch done... COL1=8 COL2=107

 thid:00000000 00000023: fetch done... COL1=9 COL2=108

 thid:00000000 00000022: fetch done... COL1=9 COL2=108

 thid:00000000 00000023: Done!

 thid:00000000 00000022: Done!

 Threads joined

Data management considerations for multithreaded programming

You should consider several topics when managing data in a multithreaded program.

 File open operations:

 Only integrated file system stream files, printer files, distributed data management (DDM) files of

type *IP, and local database files can be opened in a multithread-capable job. Attempts to open

*FILE objects other than print files, type *IP DDM files, or local database files cause a CPF4380

escape message to be sent to the function which opens the file. The CPF4380 escape message

signals that open attributes are not valid in a multithreaded process. Local database files include

physical and logical files. Loosely coupled parallel (LCP) files are not local and send the CPF4380

escape message when a function tries to open the file. Local database files also do not include

save files (*SAVF), which are device files, or other communications files. You cannot open a

printer file by specifying SPOOL(*NO). If you specify SPOOL(*NO) when trying to open the print

file, the CPF4380 escape message is sent to the function that tried to open the print file.

Chapter 3. Threads on OS/400 13

Multithread-capable jobs allow shared opens. However, an open data path (ODP) cannot be

shared between threads. If a file is opened SHARE(*YES) and OPNSCOPE(*ACTGRPDFN) is

specified, any subsequent shared open within the same thread that is running in the same

activation group can share the ODP. If a file is opened SHARE(*YES) with OPNSCOPE(*JOB)

specified, any subsequent shared open of the file within the same thread can share the ODP.

File overrides:

 Multithreaded applications can only issue overrides in their initial thread. Any attempt to issue

an override in a secondary thread returns the CPF180C escape message. Only overrides with

job-level and activation group-level scope affect secondary threads; overrides of call-level scope

are not visible. Overrides of all scope levels can affect initial threads. You can use three different

types of file override commands: Override with Database File (OVRDBF), Override with Printer

File (OVRPRTF), and Override with Message File (OVRMSGF).

 You can delete overrides in the initial thread, but not in secondary threads, by calling the Delete

Override (DLTOVR) command. DLTOVR returns the CPF180C escape message if thrown against a

secondary thread.

Reclaim resources commands:

 None of the commands that reclaim resources are threadsafe because the OS/400 does not track

resources. The operating system cannot identify which resources are in use by which threads. You

cannot call the Reclaim Resources (RCLRSC) and Reclaim Activation Group (RCLACTGRP)

commands in secondary threads. If you call them, these commands send the CPF1892 escape

message to the caller of the command.

File system considerations for multithreaded programming

You should consider several topics when working with file systems in multithreaded programs.

 Threadsafe file systems:

 The Root, QOpenSys, User-Defined (UDFS), QNTC, QSYS.LIB, QOPT, and QLANSrv file systems

are threadsafe and do not have any restrictions. The QDLS, NFS, QFileSvr.400, and QNetWare file

systems are not threadsafe. If you try to use an integrated file system API or command on a file

or file descriptor that represents an object in a file system that is not threadsafe, it fails with

ENOTSAFE. This failure occurs only when multiple threads are in a job.

 An attempt to spawn a program from a job that has multiple threads fails with ENOTSAFE if

you inherit the current working directory or open file descriptors that represent files in a file

system that is not threadsafe.

Integrated file system APIs:

 All of the integrated file system application program interfaces (APIs) are threadsafe when

directed to an object that resides in a threadsafe file system. If you do not know the file system

where an object resides, you can query the path to see if the threadsafe integrated file system

interfaces can safely access it. You can use the pathconf(), fpathconf(), statvfs(), and fstatvfs() APIs

to determine whether a path or file descriptor refers to an object in one of the threadsafe file

systems.

Printer file considerations for multithreaded programming

Only printer files opened with SPOOL(*YES) are allowed in a job that is capable of multithread

operations. Unspooled opens of printer files fail with a CPF4380 (Open atttributes not valid in a

multithreaded process) escape message sent to the function that requested the open.

Most SNA character string (SCS), Intelligent Printer Data Stream™ (IPDS™), Advanced Function Printing™

data stream (AFPDS), LINE, and USERASCII write operations are threadsafe. Write operations that are

not threadsafe include those that use SCS graphics, those that the System/36 Environment uses, those

14 iSeries: Multithreaded applications

generated by the User Interface Manager (UIM), and those that use System/36 PRPQ subroutines. Page

and line counts may be inaccurate due to the inability to atomically update those counters.

Information on overriding with printer files can be found at “Data management considerations for

multithreaded programming” on page 13.

Chapter 3. Threads on OS/400 15

16 iSeries: Multithreaded applications

Chapter 4. Managing OS/400 threads

The concepts that are described here pertain to all programming languages. For details about how each

language enables a concept, refer to the programmer’s guide for that specific language. Specific

information on pthread APIs can be found in OS/400 Pthread APIs.

Topics include:

v “Thread attributes”

v “Starting a thread” on page 20

v “Ending a thread” on page 22

v “Canceling a thread” on page 25

v “Suspending a thread” on page 28

v “Resuming a thread” on page 30

v “Waiting for a thread to end” on page 30

v “Yielding the processor to another thread” on page 33

Thread attributes

Thread attributes are thread characteristics that affect the behavior of the thread. Different attributes are

available depending on the programming language and application programming interface (API) set you

are using. Methods for using an attribute and its effect on the thread depend on how the programming

language and API set externalize the thread attribute to your application. You can set the thread

attributes at the time you start a thread or change them after the thread is actively running.

Some common thread attributes and their effects are as follows:

 Priority:

 Affects the amount of processing time that the system gives the thread before letting another

thread or process interrupt it

Stack size:

 Affects the number of functions that a thread can call before the thread fails due to insufficient

stack space

Name:

 Affects the ability to debug or track the actions of a thread through your application

Thread group:

 Affects the ability to easily manage more than one thread at a time

Detach state:

 Affects how you reclaim or leave active resources associated with a thread when a thread ends

Scheduling policy:

 Affects how the threads are scheduled within the system or within the application. This relates to

thread priority.

Inherit scheduling:

 Affects how the priority of the thread is determined by the system

Use the following as examples for your program:

© Copyright IBM Corp. 1998, 2005 17

v “Example: Setting a thread attribute in a Pthread program”

v “Example: Setting a thread attribute in Java” on page 19

Example: Setting a thread attribute in a Pthread program

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows how to set the ″detach state″ thread attribute in a Pthread program.

/*

Filename: ATEST10.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST10

 Create a default thread attributes object

 Set the detach state thread attribute

 Create a thread using the new attributes

 Destroy thread attributes object

 Join now fails because the detach state attribute was changed

 Entered the thread

 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

void *theThread(void *parm)

{

 printf("Entered the thread\n");

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_attr_t attr;

 pthread_t thread;

 int rc=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create a default thread attributes object\n");

 rc = pthread_attr_init(&attr);

 checkResults("pthread_attr_init()\n", rc);

 printf("Set the detach state thread attribute\n");

 rc = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

 checkResults("pthread_attr_setdetachstate()\n", rc);

 printf("Create a thread using the new attributes\n");

 rc = pthread_create(&thread, &attr, theThread, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Destroy thread attributes object\n");

 rc = pthread_attr_destroy(&attr);

 checkResults("pthread_attr_destroy()\n", rc);

 printf("Join now fails because the detach state attribute was changed\n");

 rc = pthread_join(thread, NULL);

18 iSeries: Multithreaded applications

if (rc==0) {

 printf("Unexpected results from pthread_join()\n");

 exit(1);

 }

 sleep(2);

 printf("Main completed\n");

 return 0;

}

See “Thread attributes” on page 17 for information on thread attributes.

Example: Setting a thread attribute in Java

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows how to set the ″name″ thread attribute in a Java program.

/*

FileName: ATEST10.java

The output of this example is as follows:

Entered the testcase

Create a thread

Set some thread attributes

Start the thread

Wait for the thread to complete

Entered the thread: "theThread"

Testcase completed

*/

import java.lang.*;

public class ATEST10 {

 static class theThread extends Thread {

 public void run() {

 System.out.print("Entered the thread: \"" + getName() +

 "\"\n");

 }

 }

 public static void main(String argv[]) {

 System.out.print("Entered the testcase\n");

 System.out.print("Create a thread\n");

 theThread t = new theThread();

 System.out.print("Set some thread attributes\n");

 t.setName("theThread");

 System.out.print("Start the thread\n");

 t.start();

 System.out.print("Wait for the thread to complete\n");

 try {

 t.join();

 }

 catch (InterruptedException e) {

 System.out.print("Join interrupted\n");

 }

 System.out.print("Testcase completed\nj");

Chapter 4. Managing OS/400 threads 19

System.exit(0);

 }

}

See “Thread attributes” on page 17 for information on thread attributes.

Starting a thread

When your application creates a new thread, the system initializes a thread object, control structures, and

run-time support. These allow the new thread to use language constructs and system services safely. In

addition, you may need to initialize the application data and parameters the new thread uses before

starting the new thread.

As you create each thread, the system assigns it a unique thread identifier. The thread identifier is an

integer value that you can use when you debug, trace, or perform other administrative activities on the

thread. You usually do not use this thread identifier to directly manipulate the thread.

Most threads application program interface (API) sets also return a thread object or handle that represents

the newly created thread. You can use this thread object to manipulate the new thread or as a

synchronization object to wait for the thread to finish its processing.

Use the following as examples for your program:

 “Example: Starting a thread in a Pthread program”

 “Example: Starting a thread using Java” on page 21

Example: Starting a thread in a Pthread program

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows how to start and pass parameters to a thread in a Pthread program.

/*

Filename: ATEST11.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST11

 Create/start a thread with parameters

 Wait for the thread to complete

 Thread ID 0000000c, Parameters: 42 is the answer to "Life, the Universe and Everything"

 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

typedef struct {

 int threadParm1;

 char threadParm2[124];

} threadParm_t;

void *theThread(void *parm)

{

20 iSeries: Multithreaded applications

pthread_id_np_t tid;

 threadParm_t *p = (threadParm_t *)parm;

 tid = pthread_getthreadid_np();

 printf("Thread ID %.8x, Parameters: %d is the answer to \"%s\"\n",

 tid.intId.lo, p->threadParm1, p->threadParm2);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 threadParm_t *threadParm;

 printf("Enter Testcase - %s\n", argv[0]);

 threadParm = (threadParm_t *)malloc(sizeof(threadParm));

 threadParm->threadParm1 = 42;

 strcpy(threadParm->threadParm2, "Life, the Universe and Everything");

 printf("Create/start a thread with parameters\n");

 rc = pthread_create(&thread, NULL, theThread, threadParm);

 checkResults("pthread_create()\n", rc);

 printf("Wait for the thread to complete\n");

 rc = pthread_join(thread, NULL);

 checkResults("pthread_join()\n", rc);

 printf("Main completed\n");

 return 0;

}

See “Starting a thread” on page 20 for information on starting a thread.

Example: Starting a thread using Java

Note: Read the “Code disclaimer information” on page 79 for important legal information.

This program shows how to start a thread in a program written in Java.

/*

FileName: ATEST11.java

The output of this example is as follows:

 Entered the testcase

 Create a thread with parameters

 Start the thread

 Wait for the thread to complete

 Thread Parameters: 42 is the answer to "Life, the Universe and Everything"

 Testcase completed

*/

import java.lang.*;

public class ATEST11 {

 static class theThread extends Thread {

 int threadParm1;

 String threadParm2;

 public theThread(int i, String s) {

 threadParm1 = i;

Chapter 4. Managing OS/400 threads 21

threadParm2 = s;

 }

 public void run() {

 System.out.print("Thread Parameters: " + String.valueOf(threadParm1) +

 " is the answer to \"" + threadParm2 + "\"\n");

 }

 }

 public static void main(String argv[]) {

 System.out.print("Entered the testcase\n");

 System.out.print("Create a thread with parameters\n");

 theThread t = new theThread(42, "Life, the Universe and Everything");

 System.out.print("Start the thread\n");

 t.start();

 System.out.print("Wait for the thread to complete\n");

 try {

 t.join();

 }

 catch (InterruptedException e) {

 System.out.print("Join interrupted\n");

 }

 System.out.print("Testcase completed\nj");

 System.exit(0);

 }

}

See “Starting a thread” on page 20 for information on starting a thread.

Ending a thread

When a thread has completed its processing, it takes an action to end itself and release system resources

for use by other threads. Some application programming interface (API) sets require the application to

explicitly release resources associated with the thread when it ends. Other threads implementations (like

Java) garbage collect and clean up resources when it is appropriate to do so.

A thread can end in several ways. From a performance perspective, the best way to end a thread is to

return from the initial routine that was called when the thread was started. Thread API sets usually

provide mechanisms for ending the thread when returning from the initial routine is not an option.

Some API sets also support exception mechanisms. Exception mechanisms for ending a thread result in

the thread ending when it takes an exception that is not handled. An example might be a Java exception

that is thrown by a thread.

See your language-specific documentation for details on exceptions or other ways a thread can end itself.

Use the following as examples for your program:

 “Example: Ending a thread in a Pthread program”

 “Example: Ending a thread using Java” on page 23

Example: Ending a thread in a Pthread program

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that is ending a thread.

22 iSeries: Multithreaded applications

/*

Filename: ATEST12.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST12

 Create/start a thread

 Wait for the thread to complete, and release its resources

 Thread: End with success

 Check the thread status

 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

const int THREADFAIL = 1;

const int THREADPASS = 0;

void *theThread(void *parm)

{

 printf("Thread: End with success\n");

 pthread_exit(__VOID(THREADPASS));

 printf("Thread: Did not expect to get here!\n");

 return __VOID(THREADFAIL);

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create/start a thread\n");

 rc = pthread_create(&thread, NULL, theThread, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Wait for the thread to complete, and release its resources\n");

 rc = pthread_join(thread, &status);

 checkResults("pthread_join()\n", rc);

 printf("Check the thread status\n");

 if (__INT(status) != THREADPASS) {

 printf("The thread failed\n");

 }

 printf("Main completed\n");

 return 0;

}

See “Ending a thread” on page 22 for information on ending a thread.

Example: Ending a thread using Java

Note: Read the “Code disclaimer information” on page 79 for important legal information.

This is an example of how a thread might be ended using Java.

Chapter 4. Managing OS/400 threads 23

/*

FileName: ATEST12.java

The output of this example is as follows:

 Entered the testcase

 Create a thread

 Start the thread

 Wait for the thread to complete

 Thread: End with success

 Check the thread status

 Testcase completed

*/

import java.lang.*;

public class ATEST12 {

 static class theThread extends Thread {

 public final static int THREADFAIL = 1;

 public final static int THREADPASS = 0;

 int _status;

 public int status() {

 return _status;

 }

 public theThread() {

 _status = THREADFAIL;

 }

 public void run() {

 System.out.print("Thread: End with success\n");

 _status = THREADPASS;

 /* End the thread without returning */

 /* from its initial routine */

 stop();

 System.out.print("Thread: Didn’t expect to get here!\n");

 _status = THREADFAIL;

 }

 }

 public static void main(String argv[]) {

 System.out.print("Entered the testcase\n");

 System.out.print("Create a thread\n");

 theThread t = new theThread();

 System.out.print("Start the thread\n");

 t.start();

 System.out.print("Wait for the thread to complete\n");

 try {

 t.join();

 }

 catch (InterruptedException e) {

 System.out.print("Join interrupted\n");

 }

 System.out.print("Check the thread status\n");

 if (t.status() != theThread.THREADPASS) {

 System.out.print("The thread failed\n");

 }

 System.out.print("Testcase completed\n");

 System.exit(0);

 }

}

24 iSeries: Multithreaded applications

See “Ending a thread” on page 22 for information on ending a thread.

Canceling a thread

The ability to end a thread externally allows the user to cancel threads that run long requests before they

completes on their own. The methods available for canceling threads vary according to the threads

application program interface (API) set that is used.

Some API sets provide well-defined points for the cancelation action to occur or other mechanisms that

allow one thread to control when another thread ends. Some API sets also provide a mechanism to run

cleanup code before the thread ends or to set the result of the canceled thread to a specific value.

Use thread cancelation carefully. If your API set does not provide well-defined cancelation points or a

mechanism for the thread to clean up the application data and locks, you may corrupt data or cause

deadlocks within your application.

Note: In versions of Java later than Java Development Kit version 1.1, the resume, stop, and suspend

methods for the thread class have been deprecated. This is because these methods are considered

unsafe. The functions provided by these methods can be implemented by other mechanisms, such

as checking the state of some variables. See Sun’s Java tutorial at

http://java.sun.com/docs/books/tutorial/

for the recommended mechanism for a given

version of Java.

Use the following as examples for your program:

 “Example: Canceling a thread in a Pthread program”

 “Example: Canceling a thread using Java” on page 26

Example: Canceling a thread in a Pthread program

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that is canceling a long-running thread.

/*

Filename: ATEST13.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST13

 Create/start a thread

 Wait a bit until we ’realize’ the thread needs to be canceled

 Thread: Entered

 Thread: Looping or long running request

 Thread: Looping or long running request

 Thread: Looping or long running request

 Wait for the thread to complete, and release its resources

 Thread: Looping or long running request

 Thread status indicates it was canceled

 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

Chapter 4. Managing OS/400 threads 25

http://java.sun.com/docs/books/tutorial/

void *theThread(void *parm)

{

 printf("Thread: Entered\n");

 while (1) {

 printf("Thread: Looping or long running request\n");

 pthread_testcancel();

 sleep(1);

 }

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread;

 int rc=0;

 void *status;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create/start a thread\n");

 rc = pthread_create(&thread, NULL, theThread, NULL);

 checkResults("pthread_create()\n", rc);

 printf("Wait a bit until we ’realize’ the thread needs to be canceled\n");

 sleep(3);

 rc = pthread_cancel(thread);

 checkResults("pthread_cancel()\n", rc);

 printf("Wait for the thread to complete, and release its resources\n");

 rc = pthread_join(thread, &status);

 checkResults("pthread_join()\n", rc);

 printf("Thread status indicates it was canceled\n");

 if (status != PTHREAD_CANCELED) {

 printf("Unexpected thread status\n");

 }

 printf("Main completed\n");

 return 0;

}

See “Canceling a thread” on page 25 for information on canceling a thread.

Example: Canceling a thread using Java

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Java program canceling a long-running thread.

/*

FileName: ATEST13.java

The output of this example is as follows:

 Entered the testcase

 Create a thread

 Start the thread

 Wait a bit until we ’realize’ the thread needs to be canceled

 Thread: Entered

 Thread: Looping or long running request

 Thread: Looping or long running request

 Thread: Looping or long running request

 Wait for the thread to complete

 Thread status indicates it was canceled

 Testcase completed

26 iSeries: Multithreaded applications

*/

import java.lang.*;

public class ATEST13 {

 static class theThread extends Thread {

 public final static int THREADPASS = 0;

 public final static int THREADFAIL = 1;

 public final static int THREADCANCELED = 2;

 int _status;

 public int status() {

 return _status;

 }

 public theThread() {

 _status = THREADFAIL;

 }

 public void run() {

 System.out.print("Thread: Entered\n");

 try {

 while (true) {

 System.out.print("Thread: Looping or long running request\n");

 try {

 Thread.sleep(1000);

 }

 catch (InterruptedException e) {

 System.out.print("Thread: sleep interrupted\n");

 }

 }

 }

 catch (ThreadDeath d) {

 _status = THREADCANCELED;

 }

 }

 }

 public static void main(String argv[]) {

 System.out.print("Entered the testcase\n");

 System.out.print("Create a thread\n");

 theThread t = new theThread();

 System.out.print("Start the thread\n");

 t.start();

 System.out.print("Wait a bit until we ’realize’ the thread needs to be canceled\n");

 try {

 Thread.sleep(3000);

 }

 catch (InterruptedException e) {

 System.out.print("sleep interrupted\n");

 }

 t.stop();

 System.out.print("Wait for the thread to complete\n");

 try {

 t.join();

 }

 catch (InterruptedException e) {

Chapter 4. Managing OS/400 threads 27

System.out.print("Join interrupted\n");

 }

 System.out.print("Thread status indicates it was canceled\n");

 if (t.status() != theThread.THREADCANCELED) {

 System.out.print("Unexpected thread status\n");

 }

 System.out.print("Testcase completed\n");

 System.exit(0);

 }

}

See “Canceling a thread” on page 25 for information on canceling a thread.

Suspending a thread

It may sometimes be useful to temporarily stop a thread from processing in your application. When you

suspend a thread, the state of the thread, including all the attributes and locks held by the thread, is

maintained until that thread is resumed.

Use thread suspension carefully. Suspending threads can easily cause application deadlocks and timeout

conditions. You can solve most problems that involve thread suspension by using other safer mechanisms

(such as synchronization primitives). “Synchronization techniques among threads” on page 41 provides

additional information.

Note: The suspend method of the Java thread class has been deprecated. Refer to “Canceling a thread”

on page 25 for more information.

Use “Example: Suspending a thread using Java” as an example for your program.

Example: Suspending a thread using Java

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Java program suspending an actively running thread.

/*

FileName: ATEST14.java

The output of this example is as follows:

 Entered the testcase

 Create a thread

 Start the thread

 Wait a bit until we ’realize’ the thread needs to be suspended

 Thread: Entered

 Thread: Active processing

 Thread: Active processing

 Suspend the thread

 Wait a bit until we ’realize’ the thread needs to be resumed

 Resume the thread

 Thread: Active processing

 Wait for the thread to complete

 Thread: Active processing

 Thread: Active processing

 Thread: Completed

 Testcase completed

*/

import java.lang.*;

28 iSeries: Multithreaded applications

public class ATEST14 {

 static class theThread extends Thread {

 public void run() {

 int loop=6;

 System.out.print("Thread: Entered\n");

 while (--loop > 0) {

 System.out.print("Thread: Active processing\n");

 safeSleep(1000, "Thread: sleep interrupted\n");

 }

 System.out.print("Thread: Completed\n");

 }

 }

 public static void main(String argv[]) {

 System.out.print("Entered the testcase\n");

 System.out.print("Create a thread\n");

 theThread t = new theThread();

 System.out.print("Start the thread\n");

 t.start();

 System.out.print("Wait a bit until we ’realize’ the thread needs to be suspended\n");

 safeSleep(2000, "Main first sleep interrupted\n");

 System.out.print("Suspend the thread\n");

 t.suspend();

 System.out.print("Wait a bit until we ’realize’ the thread needs to be resumed\n");

 safeSleep(2000, "Main second sleep interrupted\n");

 System.out.print("Resume the thread\n");

 t.resume();

 System.out.print("Wait for the thread to complete\n");

 try {

 t.join();

 }

 catch (InterruptedException e) {

 System.out.print("Join interrupted\n");

 }

 System.out.print("Testcase completed\n");

 System.exit(0);

 }

 public static void safeSleep(long milliseconds, String s) {

 try {

 Thread.sleep(milliseconds);

 }

 catch (InterruptedException e) {

 System.out.print(s);

 }

 }

}

See “Suspending a thread” on page 28 for information on suspending a thread.

Chapter 4. Managing OS/400 threads 29

Resuming a thread

It may sometimes be useful to temporarily stop a thread from processing in your application and resume

the processing at a later time. You can resume the processing of the suspended thread at the same point

that you suspended it. The resumed thread holds the same locks and has the same attributes that it had

when you suspended it.

Note: The suspend method of the Java thread class has been deprecated. Refer to “Canceling a thread”

on page 25 for more information.

Waiting for a thread to end

When using threads, it is important to know when a thread has finished processing. Waiting for a thread

to perform an action or an event to happen is called thread synchronization.

It is usually sufficient to simply wait for a thread to end. When the thread ends, the application is alerted

that the work the thread was assigned is complete or the thread failed. If a status is set by the thread and

is supported by your specific application program interface (API) set, you can use the status to determine

whether the thread successfully completed its work.

When a thread ends, the system reclaims its resources for reuse. You can also wait for a thread to end to

reclaim more of the thread’s resources for use by other threads.

Waiting for a group of threads to end can also be a good way for a larger application, such as a server, to

give large amounts of application work to ″worker″ threads and have a single ″boss″ thread coordinate

the work of the subordinate threads. Your API set may directly support this kind of waiting.

Use the following as examples for your program:

 “Example: Waiting for threads in a Pthread program”

 “Example: Waiting for threads using Java” on page 31

Example: Waiting for threads in a Pthread program

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that starts several threads, waits for them to finish, and

checks their status after they complete.

/*

Filename: ATEST13.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST15

 Create/start some worker threads

 Thread 00000000 000001a4: Entered

 Thread 00000000 000001a4: Working

 Wait for worker threads to complete, release their resources

 Thread 00000000 000001a8: Entered

 Thread 00000000 000001a8: Working

 Thread 00000000 000001a5: Entered

 Thread 00000000 000001a5: Working

 Thread 00000000 000001a6: Entered

 Thread 00000000 000001a6: Working

 Thread 00000000 000001a7: Entered

 Thread 00000000 000001a7: Working

 Thread 00000000 000001a4: Done with work

 Thread 00000000 000001a8: Done with work

 Thread 00000000 000001a6: Done with work

 Thread 00000000 000001a7: Done with work

 Thread 00000000 000001a5: Done with work

 Check all thread’s results

30 iSeries: Multithreaded applications

Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define THREADGROUPSIZE 5

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

void *theThread(void *parm)

{

 printf("Thread %.8x %.8x: Entered\n", pthread_getthreadid_np());

 printf("Thread %.8x %.8x: Working\n", pthread_getthreadid_np());

 sleep(15);

 printf("Thread %.8x %.8x: Done with work\n", pthread_getthreadid_np());

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread[THREADGROUPSIZE];

 void *status[THREADGROUPSIZE];

 int i;

 int rc=0;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create/start some worker threads\n");

 for (i=0; i <THREADGROUPSIZE; ++i)

 {

 rc = pthread_create(&thread[i], NULL, theThread, NULL);

 checkResults("pthread_create()\n", rc);

 }

 printf("Wait for worker threads to complete, release their resources\n");

 for (i=0; i <THREADGROUPSIZE; ++i) {

rc = pthread_join(thread[i], &status[i]);

 checkResults("pthread_join()\n", rc);

 }

 printf("Check all thread’s results\n");

 for (i=0; i <THREADGROUPSIZE; ++i) {

if (status[i] != NULL) {

 printf("Unexpected thread status\n");

 }

 }

 printf("Main completed\n");

 return 0;

}

See “Waiting for a thread to end” on page 30 for information on waiting for a thread to finish processing.

Example: Waiting for threads using Java

Note: Read the “Code disclaimer information” on page 79 for important legal information.

Chapter 4. Managing OS/400 threads 31

The following example shows a Java program starting several threads, waiting for them to finish, and

checking their status after completion.

/*

FileName: ATEST15.java

The output of this example is as follows:

 Entered the testcase

 Create some worker threads

 Start the thread

 Thread Thread-1: Entered

 Thread Thread-1: Working

 Thread Thread-2: Entered

 Thread Thread-2: Working

 Thread Thread-3: Entered

 Thread Thread-3: Working

 Thread Thread-4: Entered

 Thread Thread-4: Working

 Wait for worker threads to complete

 Thread Thread-5: Entered

 Thread Thread-5: Working

 Thread Thread-1: Done with work

 Thread Thread-2: Done with work

 Thread Thread-3: Done with work

 Thread Thread-4: Done with work

 Thread Thread-5: Done with work

 Check all thread’s results

 Testcase completed

*/

import java.lang.*;

public class ATEST15 {

 public final static int THREADGROUPSIZE = 5;

 static class theThread extends Thread {

 public final static int THREADPASS = 0;

 public final static int THREADFAIL = 1;

 int _status;

 public int status() {

 return _status;

 }

 public theThread() {

 _status = THREADFAIL;

 }

 public void run() {

 System.out.print("Thread " + getName() + ": Entered\n");

 System.out.print("Thread " + getName() + ": Working\n");

 safeSleep(15000, "Thread " + getName() + " work");

 System.out.print("Thread " + getName() + ": Done with work\n");

 _status = THREADPASS;

 }

 }

 public static void main(String argv[]) {

 int i=0;

 theThread thread[] = new theThread[THREADGROUPSIZE];

 System.out.print("Entered the testcase\n");

 System.out.print("Create some worker threads\n");

 System.out.print("Start the thread\n");

 /* We won’t use a ThreadGroup for this example, because we’d */

 /* still have to join all the threads individually */

 for (i=0; i <THREADGROUPSIZE; ++i) {

 thread[i] = new theThread();

32 iSeries: Multithreaded applications

thread[i].start();

 }

 System.out.print("Wait for worker threads to complete\n");

 for (i=0; i <THREADGROUPSIZE; ++i) {

try {

 thread[i].join();

 }

 catch (InterruptedException e) {

 System.out.print("Join interrupted\n");

 }

 }

 System.out.print("Check all thread’s results\n");

 for (i=0; i <THREADGROUPSIZE; ++1) {

if (thread[i].status() != theThread.THREADPASS) {

 System.out.print("Unexpected thread status\n");

 }

 }

 System.out.print("Testcase completed\n");

 System.exit(0);

 }

 public static void safeSleep(long milliseconds, String s) {

 try {

 Thread.sleep(milliseconds);

 }

 catch (InterruptedException e) {

 System.out.print(s);

 }

 }

}

See “Waiting for a thread to end” on page 30 for information on waiting for a thread to end.

Yielding the processor to another thread

At times, your application can benefit when a thread yields the processor to another thread in the system.

When a thread yields the processor, it immediately allows another equal or higher priority thread that is

active in the system to run. If no threads of at least equal priority are currently ready to run, yielding the

processor has no effect. Beyond the immediate action, yielding the processor does not have any

additional predictable behavior related to the scheduling of the threads in the system.

The iSeries server provides a fully preemptive multitasking scheduling algorithm. A thread that exists in

a well-written application should seldom need to yield the processor to other threads. This is because

more predictable application program interfaces (API) for synchronizing threads are available.

Chapter 4. Managing OS/400 threads 33

34 iSeries: Multithreaded applications

Chapter 5. Thread safety

A function is threadsafe if you can start it simultaneously in multiple threads within the same process. A

function is threadsafe if and only if all the functions it calls are threadsafe also. “Function calls that are

not thread safe” on page 61 describes accessing function calls that are not threadsafe in a safe manner.

“Existing application evaluation” on page 41 gives information on evaluating the suitability of existing

code for multithreading.

You should be familiar with these concepts of thread safety on OS/400 before you begin using threads:

Thread safety with storage, jobs, and activation groups

v “Storage usage and threaded applications”

v “Job-scoped resources and thread safety” on page 36

Information on thread safety for activation groups can be found at “Activation groups and threads” on

page 8.

Thread safety with APIs and CL commands

v “API thread safety classifications” on page 37

v “CL commands and thread safety” on page 37

v “Denied access functions and thread safety” on page 38

v “Exit points” on page 39

Storage usage and threaded applications

When writing a threaded application, its important to understand the visibility and scope of various

classes of storage. When your application declares variables, multiple threads might be able to access or

use them. The visibility and scope of the storage it uses often affect your application.

 Global storage:

 Global storage that you declare in one of your application source files is visible to all other source

files or modules in your application. All threads that run code in your application share the same

global storage. This unintended sharing of storage is a common safety problem.

Static storage:

 Static storage is global storage with visibility that is restricted to the source file, module, or

function in which the storage or variable was declared. All threads that run code from that

module share the same static storage.

Heap storage:

 Heap storage is allocated and deallocated dynamically by your application (for example, by

malloc() and free() in C, or new and delete in Java or C++). All threads that run code in your

application share the same heap.

 If you give another thread a pointer to the heap storage that has been allocated (by storing the

pointer in static or global storage, or by otherwise passing the pointer to another thread) that

thread can use or deallocate the storage. This unintended sharing of storage is a common thread

safety problem.

Automatic storage:

 Automatic or local storage is allocated automatically by your language when you declare a

variable that is private to a function, method, or subroutine. Local storage is not visible to other

© Copyright IBM Corp. 1998, 2005 35

threads in the process. Each time those threads call the function, method, or subroutine, the

thread allocates new versions of the automatic variables. Each thread gets its own automatic

storage. A thread should not access automatic storage from another thread because of the

complex serialization and synchronization issues involved.

 Operating System/400® (OS/400) further restricts the scope of global, static, and heap storage to the

activation group that your application code is running in. This means that application code or threads

running in different activation groups but using the same global or static variables access different

versions of those variables and their storage. Similarly, heap storage that is allocated in one activation

group may not be deallocated in a different activation group although it can be used by different

activation groups.

Some languages support only global or static storage classes for variables. These languages are not easy

to use in threaded applications. You should not use threads in these languages.

Job-scoped resources and thread safety

Many system and application resources are available only within a defined job. When writing a

multithreaded application or service, you must evaluate your use of job-scoped resources. The use of

these resources must not conflict with or negatively affect other threads in the process.

Some resources (open database files, for example) are scoped to the activation group. For the purposes of

this discussion, resources that are scoped to the activation group must be treated with the same

considerations as job-scoped resources. All of the threads that use the activation group use them.

Your application can use appropriate synchronization techniques if threads in your application modify

these resources while other threads are using them, and you need to ensure a consistent view of the

resources between your threads.

Some of the common job-scoped or activation group-scoped resources are as follows:

 Heap, static, and global storage:

 The most commonly shared resource. For more information, see the section about storage usage.

Open files:

 After you open a file, threads in a process can directly share integrated file system file and

database files by passing the file handle pointer or file descriptor number to another thread. The

working directory is always scoped to the process.

Locales:

 The locale of an application is an activation group resource. All threads share the locale.

Changing the locale affects other threads with regard to collating sequences or other locale

information.

CCSID:

 Changing the CCSID of a job affects the current data translation or representation of all threads in

that job.

Environment variables:

 You application commonly use environment variables for configuration and optional behavior. All

the threads in the job share them.

36 iSeries: Multithreaded applications

API thread safety classifications

Before using an application programming interface (API), you should refer to the System Programming

Interface Reference book to determine if it is safe to call that API in your multithreaded program. Each

API in the System Programming Interface Reference book has a threadsafe classification. The three types

of threadsafe classifications are as follows:

 Threadsafe: yes

 This classification indicates that you can safely call the API simultaneously in multiple threads

without restrictions. This classification also indicates that all functions called by this API are

threadsafe.

Threadsafe: conditional

 This classification indicates that not all functions provided by the API are threadsafe. The Usage

Notes® section of the API provides information that relates to thread safety limitations. Many

APIs are classified conditionally threadsafe because either some underlying system support is not

threadsafe or the API can call an exit point. For example, many of the file system APIs are

completely threadsafe when used with files in a threadsafe file system. Some conditionally

threadsafe APIs may deny access under some circumstances. The API usage notes describe the

conditions that cause the function to deny access.

Threadsafe: no

 This classification indicates that the API is not threadsafe and that the API should not be used in

a multithreaded program. While some APIs that are not threadsafe may deny access, most APIs

that are not threadsafe do not. Unlike in CL commands, no diagnostic message is in the job log to

indicate that an API that is not threadsafe has been called (other than APIs that deny access).

There are techniques for calling functions that are not threadsafe in multithreaded programs.

CL commands and thread safety

The ILE CL runtime and compiler-generated code are threadsafe. OPM CL programs are not threadsafe.

For any ILE CL code that is compiled before Version 4 Release 3 or any OPM CL code, the CL runtime

sends a CPD000B diagnostic message and continues to run with unpredictable results. This may or may

not be threadsafe, depending on the underlying code.

Command analyzer is threadsafe. For a given command, if the threadsafe attribute (THDSAFE) is *NO

and the multithreaded job action attribute (MLTTHDACN) is set to *NORUN or *MSG, the command

analyzer does one of the following when such a command is called in a job capable of multithreaded

operations:

v If MLTTHDACN is set to *NORUN in a multithreaded job, command analyzer sends a CPD000D

diagnostic message, and the command does not run. A CPF0001 escape message then follows the

CPD000D diagnostic message.

v If MLTTHDACN is set to *MSG in a multithreaded job, command analyzer sends a CPD000D

diagnostic message, and the program continues to run with unpredictable results.

v If the job is capable of running multiple threads but is not actually multithreaded, command analyzer

allows commands that are not threadsafe to run without interference.

If MLTTHDACN is set to *RUN, the command analyzer does not send a diagnostic message and allows

the command to run. The results of this are unpredictable. Also, MLTTHDACN only applies to comments

whose THDSAFE value is *NO. To determine the THDSAFE and MLTTHDACN values for a command,

use Display Command (DSPCMD).

The MLTTHDACN value of some commands is set to *SYSVAL. In this case, command analyzer uses the

QMLTTHDACN system value to decide how to process the command.

To display the setting of this value on OS/400:

Chapter 5. Thread safety 37

DSPSYSVAL SYSVAL(QMLTTHDACN)

To change the setting of this value on OS/400:

CHGSYSVAL SYSVAL(QMLTTHDACN) VALUE(x)

Sample output from DSPSYSVAL:

 Display System Value

 System value : QMLTTHDACN

 Description : Multithreaded job action

 Multithreaded job

 action : 2

 1=Perform the function that is not

 threadsafe without sending a message

 2=Perform the function that is not

 threadsafe and send an informational

 message

 3=Do not perform the function that is

 not threadsafe

The following topics provide related information on CL commands and threads:

v Chapter 6, “Multithreaded programming techniques,” on page 41

v “Function calls that are not thread safe” on page 61

Denied access functions and thread safety

To prevent problems in system integrity and data corruption, certain application programming interfaces

(API) and commands are either conditionally threadsafe or not threadsafe. These APIs and commands

deny all or partial access. The three criteria for denying access are as follows:

 Multithread capability:

 In this case, the decision to deny access to a function is made by checking the

multithread-capable job attribute. If the job is capable of supporting threads, regardless of the

current number of threads in the job, you cannot call the function. When a function denies access

based on multithread capability, it sends a CPF1892 (Function &1 not allowed) escape message to

the caller. You must call functions that deny access based on multithread capability in separate

jobs or not at all. Reclaim Resources (RCLRSC) is an example of a function that denies access in

a multithread-capable job when called from a secondary thread. Refer to Reclaim Resources

(RCLRCS) command in the CL Reference topic for more information.

Initial thread:

 Some functions deny access based on whether the initial thread of the job calls the function. If

you call the function in a secondary thread, the function denies access by sending a CPF180C

(Function &1 not allowed) escape message to the caller. You can call a function that denies access

from a secondary thread by routing a request to the initial thread and having the function called

in the initial thread. Overriding a database file is an example of a function that is only allowed in

the initial thread.

More than one thread:

 In this case, the number of threads in the job causes the decision to deny access. If more than one

thread is in the job, the function sends a CPF180B (Function &1 not allowed) escape message to

the caller. Other functions that return error numbers sets errno to ENOTSAFE.

38 iSeries: Multithreaded applications

You can call a function that denies access when there are multiple threads by restricting its use to

when only one thread is active. An example of such a function is any file system API that is used

to access a file in a file system that is not threadsafe.

Exit points

The OS/400 registration facility allows you to define exit points for functions in an application and to

register programs that run at those exit points. Some OS/400 services also support the registration facility

for registering exit programs. They have predefined exit points that are registered when those services are

installed. The registration facility itself is threadsafe. You can use it to specify attributes of thread safety

and multithreaded job actions for exit program entries.

Without careful evaluation, however, you should not consider existing exit programs to be threadsafe,

even though you can call exit programs in a multithreaded job. The same restrictions apply to exit

programs as to any other code that runs in a multithreaded job. For example, only exit programs written

using a threadsafe ILE language that may be made threadsafe.

“Existing application evaluation” on page 41 provides related information about exit points in threaded

applications.

Trigger programs, user-defined functions (UDF),and stored procedures can act as exit points. For more

information on trigger programs and stored procedures, see “Database considerations for multithreaded

programming” on page 9.

Chapter 5. Thread safety 39

40 iSeries: Multithreaded applications

Chapter 6. Multithreaded programming techniques

If you are going to write multithreaded applications or server applications for OS/400, you should be

familiar with several techniques:

v “Existing application evaluation”

v “Synchronization techniques among threads”

v “One-time initialization and thread safety” on page 56

v “Thread-specific data” on page 58

v “Function calls that are not thread safe” on page 61

v “Common multithreaded programming errors” on page 63

The concepts that are described in this section pertain to all programming languages. To determine how

each language enables these concepts, refer to the programmer’s guide for the specific language.

Existing application evaluation

When writing a multithreaded application, you should evaluate all the parts of the application and all the

services that it uses for thread safety.

How each service or application program interface (API) that is used by the application uses its storage

resources is an important consideration for providing thread-safe applications. If you do not use storage

in a thread-safe manner, data in your application is likely to be corrupted.

Other critical aspects in creating thread-safe applications are the APIs and system services on which your

application or your application services rely. To be thread safe, your storage usage and all APIs and

services that you use directly or indirectly must be thread safe. APIs and system resources that you use

indirectly are particularly difficult to evaluate. Consult the reference manual for the specific APIs or

system services you use to see if they are thread safe.

You will probably call system services, APIs, or other applications for which you do not have the source

code. Many of these services are not be classified as thread safe or non-thread safe. You must assume that

the services are not thread safe.

Synchronization techniques among threads

When you create code that is threadsafe but still benefits from sharing data or resources between threads,

the most important aspect of programming becomes the ability to synchronize threads. Synchronization is

the cooperative act of two or more threads that ensures that each thread reaches a known point of

operation in relationship to other threads before continuing. Attempting to share resources without

correctly using synchronization is the most common cause of damage to application data.

Typically, synchronizing two threads involves the use of one or more synchronization primitives.

Synchronization primitives are low-level functions or application objects (not OS/400 objects) that your

application used or created to provide the synchronization behavior the application requires.

The most common synchronization primitives are as follows, in order of least to most computationally

expensive:

v “Compare and Swap” on page 55

v “Mutexes and threads” on page 42

v “Semaphores and threads” on page 45

© Copyright IBM Corp. 1998, 2005 41

v “Condition variables and threads” on page 48

v “Threads as synchronization primitives” on page 53

v “Space location locks” on page 53

v “Object locks” on page 55

“Function calls that are not thread safe” on page 61 describes safe methods of accessing functions that are

not threadsafe.

These concepts pertain to all programming languages. To determine how each language enables these

concepts, refer to the programmer’s guide for the specific language.

Mutexes and threads

The word mutex is shorthand for a primitive object that provides MUTual EXclusion between threads. A

mutual exclusion (mutex) is used cooperatively between threads to ensure that only one of the

cooperating threads is allowed to access the data or run certain application code at a time. For the

purposes of this introduction, you can think of mutexes as similar to critical sections and monitors.

The mutex is usually logically associated with the data it protects by the application. For example,

PAYROLL DATA has a PAYROLL MUTEX associated with it. The application code always locks the

PAYROLL MUTEX before accessing the PAYROLL DATA. The mutex prevents access to the data by a

thread only if that thread uses the mutex before accessing the data.

Create, lock, unlock, and destroy are operations typically preformed on a mutex. Any thread that

successfully locks the mutex is the owner until it unlocks the mutex. Any thread that attempts to lock the

mutex waits until the owner unlocks the mutex. When the owner unlocks the mutex, control is returned

to one waiting thread with that thread becoming the owner of the mutex. There can be only one owner of

a mutex.

Mutex wait operations can be recursive. Recursive mutexes allow the owner to lock the mutex repeatedly.

The owner of the mutex remains the same until the number of unlock requests is the same as the number

of successful lock requests. Mutex waits can time out after a user specified amount of time or can return

immediately if they cannot acquire the lock. For more information, see your API set documentation about

mutex primitives available for your application.

Use the following as examples in your program:

v “Example: Using mutexes in Pthread programs”

v “Example: Using mutexes in Java” on page 44

Example: Using mutexes in Pthread programs

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that is starting several threads that protect access to

shared data with a mutex.

/*

Filename: ATEST16.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST16

 Hold Mutex to prevent access to shared data

 Create/start threads

 Wait a bit until we are ’done’ with the shared data

 Thread 00000000 00000019: Entered

 Thread 00000000 0000001a: Entered

 Thread 00000000 0000001b: Entered

 Unlock shared data

 Wait for the threads to complete, and release their resources

 Thread 00000000 00000019: Start critical section, holding lock

42 iSeries: Multithreaded applications

Thread 00000000 00000019: End critical section, release lock

 Thread 00000000 0000001a: Start critical section, holding lock

 Thread 00000000 0000001a: End critical section, release lock

 Thread 00000000 0000001b: Start critical section, holding lock

 Thread 00000000 0000001b: End critical section, release lock

 Clean up

 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

#define NUMTHREADS 3

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int sharedData=0;

int sharedData2=0;

void *theThread(void *parm)

{

 int rc;

 printf("Thread %.8x %.8x: Entered\n", pthread_getthreadid_np());

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 /********** Critical Section *******************/

 printf("Thread %.8x %.8x: Start critical section, holding lock\n",

 pthread_getthreadid_np());

 /* Access to shared data goes here */

 ++sharedData; --sharedData2;

 printf("Thread %.8x %.8x: End critical section, release lock\n",

 pthread_getthreadid_np());

 /********** Critical Section *******************/

 rc = pthread_mutex_unlock(&mutex);

 checkResults("pthread_mutex_unlock()\n", rc);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Hold Mutex to prevent access to shared data\n");

 rc = pthread_mutex_lock(&mutex);

 checkResults("pthread_mutex_lock()\n", rc);

 printf("Create/start threads\n");

 for (i=0; i<NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, theThread, NULL);

 checkResults("pthread_create()\n", rc);

 }

 printf("Wait a bit until we are ’done’ with the shared data\n");

 sleep(3);

 printf("Unlock shared data\n");

 rc = pthread_mutex_unlock(&mutex);

 checkResults("pthread_mutex_lock()\n",rc);

Chapter 6. Multithreaded programming techniques 43

printf("Wait for the threads to complete, and release their resources\n");

 for (i=0; i <NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Clean up\n");

 rc = pthread_mutex_destroy(&mutex);

 printf("Main completed\n");

 return 0;

}

See “Mutexes and threads” on page 42 for information on using mutexes with threads.

Example: Using mutexes in Java

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Java program creating a critical section of code. In Java, any object or

array can function similarly to a mutex using the synchronized keyword on a block of code or a method.

/*

FileName: ATEST16.java

The output of this example is as follows:

 Entered the testcase

 Synchronize to prevent access to shared data

 Create/start the thread

 Thread Thread-1: Entered

 Thread Thread-2: Entered

 Wait a bit until we’re ’done’ with the shared data

 Thread Thread-3: Entered

 Unlock shared data

 Thread Thread-1: Start critical section, in synchronized block

 Thread Thread-1: End critical section, leave synchronized block

 Thread Thread-2: Start critical section, in synchronized block

 Thread Thread-2: End critical section, leave synchronized block

 Thread Thread-3: Start critical section, in synchronized block

 Thread Thread-3: End critical section, leave synchronized block

 Wait for the threads to complete

 Testcase completed

*/

import java.lang.*;

public class ATEST16 {

 public final static int NUMTHREADS = 3;

 public static int sharedData = 0;

 public static int sharedData2 = 0;

 /* Any real java object or array would suit for synchronization */

 /* We invent one here since we have two unique data items to synchronize */

 /* An in this simple example, they’re not in an object */

 static class theLock extends Object {

 }

 static public theLock lockObject = new theLock();

 static class theThread extends Thread {

 public void run() {

 System.out.print("Thread " + getName() + ": Entered\n");

 synchronized (lockObject) {

 /********** Critical Section *******************/

 System.out.print("Thread " + getName() +

 ": Start critical section, in synchronized block\n");

 ++sharedData; --sharedData2;

 System.out.print("Thread " + getName() +

 ": End critical section, leave synchronized block\n");

44 iSeries: Multithreaded applications

/********** Critical Section *******************/

 }

 }

 }

 public static void main(String argv[]) {

 theThread threads[] = new theThread[NUMTHREADS];

 System.out.print("Entered the testcase\n");

 System.out.print("Synchronize to prevent access to shared data\n");

 synchronized (lockObject) {

 System.out.print("Create/start the thread\n");

 for (int i=0; i<NUMTHREADS; ++i) {

 threads[i] = new theThread();

 threads[i].start();

 }

 System.out.print("Wait a bit until we’re ’done’ with the shared data\n");

 try {

 Thread.sleep(3000);

 }

 catch (InterruptedException e) {

 System.out.print("sleep interrupted\n");

 }

 System.out.print("Unlock shared data\n");

 }

 System.out.print("Wait for the threads to complete\n");

 for(int i=0; i <NUMTHREADS; ++i) {

 threads[i].join();

 }

 catch (InterruptedException e) {

 System.out.print("Join interrupted\n");

 }

 }

 System.out.print("Testcase completed\n");

 System.exit(0);

 }

}

See “Mutexes and threads” on page 42 for information on using mutexes with threads.

Semaphores and threads

Semaphores (sometimes referred to as counting semaphores) can be used to control access to shared

resources. A semaphore can be thought of as an intelligent counter. Every semaphore has a current count,

which is greater than or equal to 0.

Any thread can decrement the count to lock the semaphore (this is also called waiting on the semaphore).

Attempting to decrement the count past 0 causes the thread that is calling to wait for another thread to

unlock the semaphore.

Any thread can increment the count to unlock the semaphore (this is also called posting the semaphore).

Posting a semaphore may wake up a waiting thread if there is one present.

In their simplest form (with an initial count of 1), semaphores can be thought of as a mutual exclusion

(mutex). The important distinction between semaphores and mutexes is the concept of ownership. No

ownership is associated with a semaphore. Unlike mutexes, it is possible for a thread that never waited

for (locked) the semaphore to post (unlock) the semaphore. This could cause unpredictable application

behavior. You should avoid this if possible.

Chapter 6. Multithreaded programming techniques 45

Additional capabilities of some semaphore APIs that are provided byOS/400 include the following:

v More complete management capabilities, including permissions on semaphores that are similar to file

permissions.

v The ability to group semaphores in sets and perform atomic operations on the group

v The ability to do multicount wait and post operations

v The ability to wait for a semaphore to have a count of 0

v The ability to undo operations that are done by another thread under certain conditions

Note: Java does not have the ability to use semaphores.

Use “Example: Using semaphores in Pthread programs to protect shared data” as an example for your

program.

Example: Using semaphores in Pthread programs to protect shared data

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that is starting several threads that protect access to

shared data with a semaphore set.

/*

Filename: ATEST17.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST17

 Wait on semaphore to prevent access to shared data

 Create/start threads

 Wait a bit until we are ’done’ with the shared data

 Thread 00000000 00000020: Entered

 Thread 00000000 0000001f: Entered

 Thread 00000000 0000001e: Entered

 Unlock shared data

 Wait for the threads to complete, and release their resources

 Thread 00000000 0000001f: Start critical section, holding semaphore

 Thread 00000000 0000001f: End critical section, release semaphore

 Thread 00000000 00000020: Start critical section, holding semaphore

 Thread 00000000 00000020: End critical section, release semaphore

 Thread 00000000 0000001e: Start critical section, holding semaphore

 Thread 00000000 0000001e: End critical section, release semaphore

 Clean up

 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <unistd.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#include <sys/stat.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

#define NUMTHREADS 3

int sharedData=0;

int sharedData2=0;

/* Simple semaphore used here is actually a set of 1 */

46 iSeries: Multithreaded applications

int semaphoreId=-1;

/* Simple lock operation. 0=which-semaphore, -1=decrement, 0=noflags */

struct sembuf lockOperation = { 0, -1, 0};

/* Simple unlock operation. 0=which-semaphore, 1=increment, 0=noflags */

struct sembuf unlockOperation = { 0, 1, 0};

void *theThread(void *parm)

{

 int rc;

 printf("Thread %.8x %.8x: Entered\n", pthread_getthreadid_np());

 rc = semop(semaphoreId, &lockOperation, 1);

 checkResults("semop(lock)\n",rc);

 /********** Critical Section *******************/

 printf("Thread %.8x %.8x: Start critical section, holding semaphore\n",

 pthread_getthreadid_np());

 /* Access to shared data goes here */

 ++sharedData; --sharedData2;

 printf("Thread %.8x %.8x: End critical section, release semaphore\n",

 pthread_getthreadid_np());

 /********** Critical Section *******************/

 rc = semop(semaphoreId, &unlockOperation, 1);

 checkResults("semop(unlock)\n",rc);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i;

 printf("Enter Testcase - %s\n", argv[0]);

 /* Create a private semaphore set with 1 semaphore that only I can use */

 semaphoreId = semget(IPC_PRIVATE, 1, S_IRUSR|S_IWUSR);

 if (semaphoreId < 0) { printf("semget failed, err=%d\n",errno); exit(1); }

 /* Set the semaphore (#0 in the set) count to 1. Simulate a mutex */

 rc = semctl(semaphoreId, 0, SETVAL, (int)1);

 checkResults("semctl(SETALL)\n", rc);

 printf("Wait on semaphore to prevent access to shared data\n");

 rc = semop(semaphoreId, &lockOperation, 1);

 checkResults("semop(lock)\n",rc);

 printf("Create/start threads\n");

 for (i=0; i <NUMTHREADS; ++i) {

 checkResults("pthread_create()\n", rc);

 }

 printf("Wait a bit until we are ’done’ with the shared data\n");

 sleep(3);

 printf("Unlock shared data\n");

 rc = semop(semaphoreId, &unlockOperation, 1);

 checkResults("semop(unlock)\n",rc);

 printf("Wait for the threads to complete, and release their resources\n");

 for (i=0; i <NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Clean up\n");

 rc = semctl(semaphoreId, 0, IPC_RMID);

Chapter 6. Multithreaded programming techniques 47

checkResults("semctl(removeID)\n", rc);

 printf("Main completed\n");

 return 0;

}

See “Semaphores and threads” on page 45 for information on using semaphores with threads.

Condition variables and threads

Condition variables allow threads to wait for certain events or conditions to occur and they notify other

threads that are also waiting for the same events or conditions. The thread can wait on a condition

variable and broadcast a condition such that one or all of the threads that are waiting on the condition

variable become active. You can consider condition variables to be similar to using events to synchronize

threads on other platforms.

Condition variables do not have ownership associated with them and are usually stateless. A stateless

condition variable means that if a thread signals a condition variable to wake up a waiting thread when

there currently are no waiting threads, the signal is discarded and no action is taken. The signal is

effectively lost. It is possible for one thread to signal a condition immediately before a different thread

begins waiting for it without any resulting action.

Locking protocols that use mutexes are typically used with condition variables. If you use locking

protocols, your application can ensure that a thread does not lose a signal that was intended to wake it

up.

Use the following as examples for your program:

v “Example: Using condition variables in Pthread programs”

v “Example: Using condition variables in Java programs” on page 50

Example: Using condition variables in Pthread programs

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that is using condition variables to notify threads of a

condition. Notice what mutex locking protocol is used.

/*

Filename: ATEST18.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST18

 Create/start threads

 Producer: ’Finding’ data

 Consumer Thread 00000000 00000022: Entered

 Consumer Thread 00000000 00000023: Entered

 Consumer Thread 00000000 00000022: Wait for data to be produced

 Consumer Thread 00000000 00000023: Wait for data to be produced

 Producer: Make data shared and notify consumer

 Producer: Unlock shared data and flag

 Producer: ’Finding’ data

 Consumer Thread 00000000 00000022: Found data or Notified, CONSUME IT while holding lock

 Consumer Thread 00000000 00000022: Wait for data to be produced

 Producer: Make data shared and notify consumer

 Producer: Unlock shared data and flag

 Producer: ’Finding’ data

 Consumer Thread 00000000 00000023: Found data or Notified, CONSUME IT while holding lock

 Consumer Thread 00000000 00000023: Wait for data to be produced

 Producer: Make data shared and notify consumer

 Producer: Unlock shared data and flag

 Producer: ’Finding’ data

 Consumer Thread 00000000 00000022: Found data or Notified, CONSUME IT while holding lock

 Consumer Thread 00000000 00000022: All done

 Producer: Make data shared and notify consumer

 Producer: Unlock shared data and flag

48 iSeries: Multithreaded applications

Wait for the threads to complete, and release their resources

 Consumer Thread 00000000 00000023: Found data or Notified, CONSUME IT while holding lock

 Consumer Thread 00000000 00000023: All done

 Clean up

 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

#define NUMTHREADS 2

pthread_mutex_t dataMutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t dataPresentCondition = PTHREAD_COND_INITIALIZER;

int dataPresent=0;

int sharedData=0;

void *theThread(void *parm)

{

 int rc;

 int retries=2;

 printf("Consumer Thread %.8x %.8x: Entered\n", pthread_getthreadid_np());

 rc = pthread_mutex_lock(&dataMutex);

 checkResults("pthread_mutex_lock()\n", rc);

 while (retries--) {

 /* The boolean dataPresent value is required for safe use of */

 /* condition variables. If no data is present we wait, other */

 /* wise we process immediately. */

 while (!dataPresent) {

 printf("Consumer Thread %.8x %.8x: Wait for data to be produced\n");

 rc = pthread_cond_wait(&dataPresentCondition, &dataMutex);

 if (rc) {

 printf("Consumer Thread %.8x %.8x: condwait failed, rc=%d\n",rc);

 pthread_mutex_unlock(&dataMutex);

 exit(1);

 }

 }

 printf("Consumer Thread %.8x %.8x: Found data or Notified, "

 "CONSUME IT while holding lock\n",

 pthread_getthreadid_np());

 /* Typically an application should remove the data from being */

 /* in the shared structure or Queue, then unlock. Processing */

 /* of the data does not necessarily require that the lock is held */

 /* Access to shared data goes here */

 --sharedData;

 /* We consumed the last of the data */

 if (sharedData==0) {dataPresent=0;}

 /* Repeat holding the lock. pthread_cond_wait releases it atomically */

 }

 printf("Consumer Thread %.8x %.8x: All done\n",pthread_getthreadid_np());

 rc = pthread_mutex_unlock(&dataMutex);

 checkResults("pthread_mutex_unlock()\n", rc);

 return NULL;

}

int main(int argc, char **argv)

{

Chapter 6. Multithreaded programming techniques 49

pthread_t thread[NUMTHREADS];

 int rc=0;

 int amountOfData=4;

 int i;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create/start threads\n");

 for (i=0; i <NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, theThread, NULL);

 checkResults("pthread_create()\n", rc);

 }

 /* The producer loop */

 while (amountOfData--) {

 printf("Producer: ’Finding’ data\n");

 sleep(3);

 rc = pthread_mutex_lock(&dataMutex); /* Protect shared data and flag */

 checkResults("pthread_mutex_lock()\n", rc);

 printf("Producer: Make data shared and notify consumer\n");

 ++sharedData; /* Add data */

 dataPresent=1; /* Set boolean predicate */

 rc = pthread_cond_signal(&dataPresentCondition); /* wake up a consumer */

 if (rc) {

 pthread_mutex_unlock(&dataMutex);

 printf("Producer: Failed to wake up consumer, rc=%d\n", rc);

 exit(1);

 }

 printf("Producer: Unlock shared data and flag\n");

 rc = pthread_mutex_unlock(&dataMutex);

 checkResults("pthread_mutex_lock()\n",rc);

 }

 printf("Wait for the threads to complete, and release their resources\n");

 for (i=0; i <NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Clean up\n");

 rc = pthread_mutex_destroy(&dataMutex);

 rc = pthread_cond_destroy(&dataPresentCondition);

 printf("Main completed\n");

 return 0;

}

See “Condition variables and threads” on page 48 for information on using condition variables with

threads.

Example: Using condition variables in Java programs

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Java program using condition variables in the form of the wait and

notify methods on a Java object. Note the locking protocol used.

/*

FileName: ATEST18.java

The output of this example is as follows:

 Entered the testcase

 Create/start the thread

 Consumer Thread-1: Entered

 Consumer Thread-1: Wait for the data to be produced

50 iSeries: Multithreaded applications

Producer: ’Finding data

 Consumer Thread-2: Entered

 Consumer Thread-2: Wait for the data to be produced

 Producer: Make data shared and notify consumer

 Producer: Unlock shared data and flag

 Consumer Thread-2: Found data or notified, CONSUME IT while holding inside the monitor

 Consumer Thread-2: Wait for the data to be produced

 Producer: ’Finding data

 Producer: Make data shared and notify consumer

 Producer: Unlock shared data and flag

 Producer: ’Finding data

 Consumer Thread-2: Found data or notified, CONSUME IT while holding inside the monitor

 Consumer Thread-2: All done

 Producer: Make data shared and notify consumer

 Producer: Unlock shared data and flag

 Producer: ’Finding data

 Consumer Thread-1: Found data or notified, CONSUME IT while holding inside the monitor

 Consumer Thread-1: Wait for the data to be produced

 Producer: Make data shared and notify consumer

 Producer: Unlock shared data and flag

 Wait for the threads to complete

 Consumer Thread-1: Found data or notified, CONSUME IT while holding inside the monitor

 Consumer Thread-1: All done

 Testcase completed

*/

import java.lang.*;

/* This class is an encapsulation of the condition variable plus */

/* mutex locking logic that can be seen in the Pthread example */

class theSharedData extends Object {

 int dataPresent;

 int sharedData;

 public theSharedData() {

 dataPresent=0;

 sharedData=0;

 }

 public synchronized void get() {

 while (dataPresent == 0) {

 try {

 System.out.print("Consumer " +

 Thread.currentThread().getName() +

 ": Wait for the data to be produced\n");

 wait();

 }

 catch (InterruptedException e) {

 System.out.print("Consumer " +

 Thread.currentThread().getName() +

 ": wait interrupted\n");

 }

 }

 System.out.print("Consumer " +

 Thread.currentThread().getName() +

 ": Found data or notified, CONSUME IT " +

 "while holding inside the monitor\n");

 --sharedData;

 if (sharedData == 0) {dataPresent=0;}

 /* in a real world application, the actual data would be returned */

 /* here */

 }

 public synchronized void put() {

 System.out.print("Producer: Make data shared and notify consumer\n");

 ++sharedData;

 dataPresent=1;

 notify();

 System.out.print("Producer: Unlock shared data and flag\n");

 /* unlock occurs when leaving the synchronized method */

Chapter 6. Multithreaded programming techniques 51

}

}

public class ATEST18 {

 public final static int NUMTHREADS = 2;

 public static theSharedData dataConditionEncapsulation = new theSharedData();

 static class theThread extends Thread {

 public void run() {

 int retries=2;

 System.out.print("Consumer " + getName() + ": Entered\n");

 while (retries-- != 0) {

 dataConditionEncapsulation.get();

 /* Typically an application would process the data outside */

 /* the monitor (synchronized get method here) */

 }

 System.out.print("Consumer " + getName() + ": All done\n");

 }

 }

 public static void main(String argv[]) {

 int amountOfData = 4;

 theThread threads[] = new theThread[NUMTHREADS];

 System.out.print("Entered the testcase\n");

 System.out.print("Create/start the thread\n");

 for (int i=0; i <NUMTHREADS; ++i) {

threads[i] = new theThread();

 threads[i].start();

 }

 while (amountOfData-- != 0) {

 System.out.print("Producer: ’Finding data\n");

 try {

 Thread.sleep(3000);

 }

 catch (InterruptedException e) {

 System.out.print("sleep interrupted\n");

 }

 dataConditionEncapsulation.put();

 }

 System.out.print("Wait for the threads to complete\n");

 for(int i=0; i <NUMTHREADS; ++i) {

 try {

 threads[i].join();

 }

 catch (InterruptedException e) {

 System.out.print("Join interrupted\n");

 }

 }

 System.out.print("Testcase completed\n");

 System.exit(0);

 }

}

See “Condition variables and threads” on page 48 for information on using condition variables with

threads.

52 iSeries: Multithreaded applications

Threads as synchronization primitives

Threads themselves can be used as synchronization primitives when one thread specifically waits for

another thread to complete. The waiting thread does not continue processing until the target thread has

finished running all of its application code. Compared to other synchronization techniques, there is little

cooperation in this synchronization mechanism.

A thread that is used as a synchronization primitive does not have the concept of an owner, such as in

other synchronization techniques. A thread simply waits for another to finish processing and end.

“Ending a thread” on page 22 provides information and a code example on ending threads.

Space location locks

A space location lock puts a logical lock on any single byte of storage. The lock does not change the

storage or effect your application’s access to the storage. The lock is simply a piece of information that is

recorded by the system.

Space location locks provide cooperative locking similar to that provided by mutexes. However, space

location locks differ from mutual exclusions (mutex) in several respects:

v You can use the space location lock directly on the data it is protecting. The space location lock does

not require your application to create and maintain an additional object. Correct results in your

application still depend on the fact that all threads that are accessing the data use the space location

lock.

v Space location locks allow an application to coordinate the use of different locking request types. For

example, more than one thread could use space location locks to acquire a shared lock on the same

data.

v Due to the extra lock types that are provided by space location locks, the concept of an owner is

slightly different than with mutexes. There can be multiple owners of a shared lock if each owner has

successfully acquired the shared lock. For a thread to get an exclusive lock, all of the shared locks must

be unlocked.

v Space location locks have different performance implications to your application than mutexes. A space

location lock costs about 500 reduced instruction set computer (RISC) instructions to lock in a path

without contention between other threads. A mutex costs about 50 RISC instructions in the same path.

However, a space location lock has no creation or deletion costs associated with it, while a mutex costs

approximately 1000 RISC instructions for creation or deletion.

Note: Java does not have the ability to directly use space location locks. Space location locks require the

use of pointers.

Use “Example: Space location locks in Pthread programs” as an example for your program.

Example: Space location locks in Pthread programs

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that is dynamically initializing an integer using the

space location lock synchronization primitive.

/*

Filename: ATEST19.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST19

 Hold Lock to prevent access to shared data

 Create/start threads

 Thread 00000000 00000025: Entered

 Wait a bit until we are ’done’ with the shared data

 Thread 00000000 00000026: Entered

 Thread 00000000 00000027: Entered

Chapter 6. Multithreaded programming techniques 53

Unlock shared data

 Wait for the threads to complete, and release their resources

 Thread 00000000 00000025: Start critical section, holding lock

 Thread 00000000 00000025: End critical section, release lock

 Thread 00000000 00000026: Start critical section, holding lock

 Thread 00000000 00000026: End critical section, release lock

 Thread 00000000 00000027: Start critical section, holding lock

 Thread 00000000 00000027: End critical section, release lock

 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <mih/milckcom.h> /* Lock types */

#include <mih/locksl.h> /* LOCKSL instruction */

#include <mih/unlocksl.h> /* UNLOCKSL instruction */

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

#define NUMTHREADS 3

int sharedData=0;

int sharedData2=0;

void *theThread(void *parm)

{

 int rc;

 printf("Thread %.8x %.8x: Entered\n", pthread_getthreadid_np());

 locksl(&sharedData, _LENR_LOCK); /* Lock Exclusive, No Read */

 /********** Critical Section *******************/

 printf("Thread %.8x %.8x: Start critical section, holding lock\n",

 pthread_getthreadid_np());

 /* Access to shared data goes here */

 ++sharedData; --sharedData2;

 printf("Thread %.8x %.8x: End critical section, release lock\n",

 pthread_getthreadid_np());

 unlocksl(&sharedData, _LENR_LOCK); /* Unlock Exclusive, No Read */

 /********** Critical Section *******************/

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Hold Lock to prevent access to shared data\n");

 locksl(&sharedData, _LENR_LOCK); /* Lock Exclusive, No Read */

 printf("Create/start threads\n");

 for (i=0; i <NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, theThread, NULL);

 checkResults("pthread_create()\n", rc);

 }

 printf("Wait a bit until we are ’done’ with the shared data\n");

 sleep(3);

 printf("Unlock shared data\n");

54 iSeries: Multithreaded applications

unlocksl(&sharedData, _LENR_LOCK); /* Unlock Exclusive, No Read */

 printf("Wait for the threads to complete, and release their resources\n");

 for (i=0; i <NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Main completed\n");

 return 0;

}

The following provide information that is related to this code example:

 “Space location locks” on page 53

 “One-time initialization and thread safety” on page 56

Object locks

Object locks provide ways to acquire locks on specific system or application objects. In some cases, the

system acquires object locks on behalf of actions a user takes against certain objects. The system respects

and enforces object locks for some actions.

You can acquire object locks such that the lock is effective only within the thread (thread-scoped) or is

effective within the process (process-scoped). If two threads in the same process each try to acquire a

process-scoped lock to a system object, that lock is satisfied for both threads. Neither thread prevents the

other from acquiring the lock if they are in the same process.

If you are using object locks to protect access to an object from two threads within the same process, you

should use object locks that are scoped to a thread. A thread-scoped object lock never conflicts with an

object lock scoped to a process that is acquired by the same process.

Object locks allow an application to coordinate the use of different locking request types. More than one

thread could acquire a shared but thread-scoped lock on the same system object. Your application can

also acquire different types of object locks in a way that is similar to space locks. This allows more than

one thread to acquire a thread-scoped shared lock on a single target.

Due to the extra lock types provided by object locks, the concept of an owner is slightly different than it

is with mutexes. There can be multiple owners of a shared, thread-scoped lock. If each owner has

successfully acquired the shared thread-scoped lock, all of the shared locks must be unlocked for a thread

to get an exclusive thread-scoped object lock.

Compare and Swap

You can use the Machine Interface’s (MI) Compare and Swap (CMPSWP) instruction to access data in a

multithreaded program. CMPSWP compares the value of a first compare operand to the value of a

second compare operand. If they are equal, the swap operand is stored in the second compare operand’s

location. If they are unequal, the second compare operand is stored into the first compare operand’s

location.

When an equal comparison occurs, it is assured that no access by another CMPSWP instruction will occur

at the second compare operand location between the moment that the second compare operand is fetched

for comparison and the moment that the swap operand is stored at the second compare operand location.

When an unequal comparison occurs, no atomicity guarantees are made regarding the store to the first

compare operand location and other CMPSWP instruction access. Thus only the second compare operand

should be a variable shared for concurrent processing control.

The following is a code example for a C macro that could be used to atomically increment or decrement

an integer variable:

Chapter 6. Multithreaded programming techniques 55

#ifndef __cmpswp_h

 #include <mih/cmpswp.h>

#endif

#define ATOMICADD (var, val, rc) { \

 int aatemp1 = (var); \

 int aatemp2 = aatemp1 + val; \

 while(! _CMPSWP(&aatemp1, &var, aatemp2)) \

 aatemp2 = aatemp1 + val; \

 rc = aatemp2; \

}

where var is an integer to be incremented or decremented, val is an integer value to be added or

subtracted from var, and rc is the resultant value.

One-time initialization and thread safety

At times, you may want to defer the initialization of resources until a thread requires them. However,

your application may require that multiple threads use a certain resource, which requires you to initialize

the resource only once in a threadsafe way.

There are several ways you can initialize a resource that is used multiple times in a threadsafe fashion.

Most of these methods involve a boolean value to allow the application to quickly determine whether the

required initialization completed. You must also use a synchronization technique in addition to the

boolean flag to ensure that the initialization completed.

Use the following as an example for your program:

v “Example: One-time initialization in Pthread programs”

The following provide additional information related to initialization and thread safety:

v “Thread-specific data” on page 58

v “Function calls that are not thread safe” on page 61

v “Common multithreaded programming errors” on page 63

Example: One-time initialization in Pthread programs

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that is dynamically initializing an integer using the

Pthread one time initialization support.

/*

Filename: ATEST20.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST20

 Create/start threads

 Wait for the threads to complete, and release their resources

 Thread 00000000 00000007: Entered

 Thread 00000000 00000000: INITIALIZE RESOURCE

 Thread 00000000 00000007: The resource is 42

 Thread 00000000 00000006: Entered

 Thread 00000000 00000009: Entered

 Thread 00000000 00000008: Entered

 Thread 00000000 0000000a: Entered

 Thread 00000000 00000006: The resource is 42

 Thread 00000000 0000000a: The resource is 42

 Thread 00000000 00000009: The resource is 42

 Thread 00000000 00000008: The resource is 42

 Main completed

*/

#define _MULTI_THREADED

56 iSeries: Multithreaded applications

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>t

#include <unistd.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

#define NUMTHREADS 5

pthread_once_t oneTimeInit = PTHREAD_ONCE_INIT;

int initialized = 0;

int resource = 0;

void initFunction(void)

{

 printf("Thread %.8x %.8x: INITIALIZE RESOURCE\n");

 resource = 42;

 /* Ensure that all initialization is complete and flushed */

 /* to storage before turning on this boolean flag */

 /* Perhaps call a function or register an exception */

 /* that causes an optimization boundary */

 initialized = 1;

}

void *theThread(void *parm)

{

 int rc;

 printf("Thread %.8x %.8x: Entered\n", pthread_getthreadid_np());

 if (!initialized) {

 rc = pthread_once(&oneTimeInit, initFunction);

 checkResults("pthread_once()\n", rc);

 }

 printf("Thread %.8x %.8x: The resource is %d\n",

 pthread_getthreadid_np(), resource);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i;

 printf("Enter Testcase - %s\n", argv[0]);

 printf("Create/start threads\n");

 for (i=0; i <NUMTHREADS; ++i) {

 rc = pthread_create(&thread[i], NULL, theThread, NULL);

 checkResults("pthread_create()\n", rc);

 }

 printf("Wait for the threads to complete, and release their resources\n");

 for (i=0; i <NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 printf("Main completed\n");

 return 0;

}

See “One-time initialization and thread safety” on page 56 for information on initializing a resource only

once and in a thread-safe way.

Chapter 6. Multithreaded programming techniques 57

Thread-specific data

Typical applications that are not threaded use global storage. When changing the application or

application services to run in a multithreaded application, you must use a synchronization technique to

protect global storage from being changed by multiple threads at the same time. Thread-specific data

allows a thread to maintain its own global storage that is hidden from the other threads.

Due to the design of the application, threads may not function correctly if they share the global storage of

the application. If eliminating the global storage is not feasible, you should consider using thread-specific

data.

Consider the example of a server that stores information about the client and the current transaction in

global storage. This server would never be able to share the client information in a multithreaded

environment without significant redesign. The application could instead pass the client information from

function to function instead of using the global client information.

However, the application could maintain the client and transaction information in thread-specific data

more easily than it could be modified to eliminate the use of global storage. When each new thread is

created, the thread would use a global identifier (or key) to create and store its thread-specific data. Each

client (thread) would then have unique but global client data.

In addition, some application programming interface (API) sets provide a way for the system to

automatically call a data destructor function that cleans up the thread-specific data when a thread ends.

Use the following as examples for your program:

v “Example: Thread-specific data in Pthread programs”

v “Example: Thread-specific data in Java programs” on page 60

Example: Thread-specific data in Pthread programs

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that is creating thread-specific data.

/*

Filename: ATEST22.QCSRC

The output of this example is as follows:

 Enter Testcase - LIBRARY/ATEST22

 Create/start threads

 Wait for the threads to complete, and release their resources

 Thread 00000000 00000036: Entered

 Thread 00000000 00000036: foo(), threadSpecific data=0 2

 Thread 00000000 00000036: bar(), threadSpecific data=0 2

 Thread 00000000 00000036: Free data

 Thread 00000000 00000037: Entered

 Thread 00000000 00000037: foo(), threadSpecific data=1 4

 Thread 00000000 00000037: bar(), threadSpecific data=1 4

 Thread 00000000 00000037: Free data

 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

void foo(void); /* Functions that use the threadSpecific data */

void bar(void);

void dataDestructor(void *data);

#define checkResults(string, val) { \

58 iSeries: Multithreaded applications

if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

typedef struct {

 int threadSpecific1;

 int threadSpecific2;

} threadSpecific_data_t;

#define NUMTHREADS 2

pthread_key_t threadSpecificKey;

void *theThread(void *parm)

{

 int rc;

 threadSpecific_data_t *gData;

 printf("Thread %.8x %.8x: Entered\n", pthread_getthreadid_np());

 gData = (threadSpecific_data_t *)parm;

 rc = pthread_setspecific(threadSpecificKey, gData);

 checkResults("pthread_setspecific()\n", rc);

 foo();

 return NULL;

}

void foo() {

 threadSpecific_data_t *gData = pthread_getspecific(threadSpecificKey);

 printf("Thread %.8x %.8x: foo(), threadSpecific data=%d %d\n",

 pthread_getthreadid_np(), gData->threadSpecific1, gData->threadSpecific2);

 bar();

}

void bar() {

 threadSpecific_data_t *gData = pthread_getspecific(threadSpecificKey);

 printf("Thread %.8x %.8x: bar(), threadSpecific data=%d %d\n",

 pthread_getthreadid_np(), gData->threadSpecific1, gData->threadSpecific2);

 return;

}

void dataDestructor(void *data) {

 printf("Thread %.8x %.8x: Free data\n", pthread_getthreadid_np());

 pthread_setspecific(threadSpecificKey, NULL);

 free(data);

}

int main(int argc, char **argv)

{

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i;

 threadSpecific_data_t *gData;

 printf("Enter Testcase - %s\n", argv[0]);

 rc = pthread_key_create(&threadSpecificKey, dataDestructor);

 checkResults("pthread_key_create()\n", rc);

 printf("Create/start threads\n");

 for (i=0; i <NUMTHREADS; ++i) {

 /* Create per-thread threadSpecific data and pass it to the thread */

 gData = (threadSpecific_data_t *)malloc(sizeof(threadSpecific_data_t));

 gData->threadSpecific1 = i;

 gData->threadSpecific2 = (i+1)*2;

 rc = pthread_create(&thread[i], NULL, theThread, gData);

 checkResults("pthread_create()\n", rc);

Chapter 6. Multithreaded programming techniques 59

}

 printf("Wait for the threads to complete, and release their resources\n");

 for (i=0; i <NUMTHREADS; ++i) {

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 pthread_key_delete(threadSpecificKey);

 printf("Main completed\n");

 return 0;

}

See “Thread-specific data” on page 58 for information on using a synchronization technique to ensure

that an application that is changed to run in a multithreaded application can protect its global storage

from being changed by multiple threads at the same time.

Example: Thread-specific data in Java programs

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Java program creating thread-specific data. Because a Java thread is

created on an object, the use of thread-specific data is transparent. Java is a language that performs

garbage collection. Note the lack of data destructors or other cleanup action.

/*

FileName: ATEST22.java

The output of this example is as follows:

 Entered the testcase

 Create/start threads

 Thread Thread-1: Entered

 Thread Thread-1: foo(), threadSpecific data=0 2

 Thread Thread-1: bar(), threadSpecific data=0 2

 Wait for the threads to complete

 Thread Thread-2: Entered

 Thread Thread-2: foo(), threadSpecific data=1 4

 Thread Thread-2: bar(), threadSpecific data=1 4

 Testcase completed

*/

import java.lang.*;

public class ATEST22 {

 public final static int NUMTHREADS = 2;

 static class theThread extends Thread {

 int threadSpecific1;

 int threadSpecific2;

 public theThread(int i, int i2) {

 threadSpecific1 = i;

 threadSpecific2 = i2;

 }

 public void run() {

 System.out.print("Thread " + getName() +

 ": Entered\n");

 foo();

 return;

 }

 void foo() {

 System.out.print("Thread " + getName() +

 ": foo(), threadSpecific data=" +

 String.valueOf(threadSpecific1) + " " +

 String.valueOf(threadSpecific2) + "\n");

 bar();

60 iSeries: Multithreaded applications

}

 void bar() {

 System.out.print("Thread " + getName() +

 ": bar(), threadSpecific data=" +

 String.valueOf(threadSpecific1) + " " +

 String.valueOf(threadSpecific2) + "\n");

 }

 }

 public static void main(String argv[]) {

 System.out.print("Entered the testcase\n");

 System.out.print("Create/start threads\n");

 theThread threads[] = new theThread[NUMTHREADS];

 for (int i=0; i <NUMTHREADS; ++i) {

 threads[i] = new theThread(i, (i+1)*2);

 threads[i].start();

 }

 System.out.print("Wait for the threads to complete\n");

 for (int i=0; i <NUMTHREADS; ++i) {

 try {

 threads[i].join();

 }

 catch (InterruptedException e) {

 System.out.print("Join interrupted\n");

 }

 }

 System.out.print("Testcase completed\nj");

 System.exit(0);

 }

}

See “Thread-specific data” on page 58 for information on using a synchronization technique to ensure

that an application that is changed to run in a multithreaded application can protect its global storage

from being changed by multiple threads at the same time.

Function calls that are not thread safe

Your multithreaded application at times requires access to functions or system services that are not thread

safe. There are few completely safe alternatives for calling these functions.

To illustrate the alternatives, consider the example of a program that calls application programming

interface (API) foo(). Because function foo() is listed as not being thread safe, you need to find a safe way

to call it. Two common options are using a global mutual exclusion (mutex) or using a separate job to run

the function that is not thread safe.

The following provide additional information related to thread safety:

v “Using global mutexes to run functions that are not threadsafe”

v “Using separate jobs to run functions that are not threadsafe” on page 62

v “Common multithreaded programming errors” on page 63

Using global mutexes to run functions that are not threadsafe

One alternative you should consider when you need to call a function that is not threadsafe is using a

global mutex to run these functions. You might try locking a mutual exclusion (mutex) that you call the

FOO MUTEX whenever you call foo(). This works if you know everything about the internal parts of

foo(), but for general operating system functions, this still is not a completely safe solution.

Chapter 6. Multithreaded programming techniques 61

For example, application program interface (API) foo() is not threadsafe because it calls API bar(), which

calls threadUnsafeFoo(). The threadUnsafeFoo() function uses certain storage and control blocks in an

unsafe way. In this example, those storage and control blocks are called DATA1.

Because the API threadUnsafeFoo() is unsafe, any application or system service that uses foo() is not

threadsafe because using it with multiple threads may result in corrupt data or have undefined results.

Your application also uses a threadsafe API or system service that is called wiffle(). Wiffle() calls waffle(),

which accesses storage and control blocks DATA1 in a threadsafe manner. (That is waffle() and a group of

other APIs use an internal DATA1 MUTEX).

Your application does not know the underlying DATA1 connection between foo() and wiffle() system

services. Your application therefore does not lock the FOO MUTEX before calling wiffle(). When a call to

foo() (holding the FOO MUTEX) occurs at the same time as a call to wiffle(), the application’s use of the

not threadsafe function foo() causes DATA1 and whatever it represents to be corrupted.

As complex as this scenario is, consider how complex resolving failures is when you do not know the

internal details of all the functions involved.

Do not try to make operating system services or functions threadsafe by using your own serialization.

Back to “Function calls that are not thread safe” on page 61.

Using separate jobs to run functions that are not threadsafe

There are several thread-safe mechanisms to submit a new job to complete the processing you need.

v If your application uses CL commands that are not thread safe, you can use the system application

programming interface (API) Qp0zSystem(). This API is similar to the C system() function; however, it

starts a new process before running the CL command. It also returns some information about the

results of the CL command that you ran. For more details about Qp0zSystem(), see the System API

Programming Reference.

v If your application calls APIs or programs that are not thread safe, you might use the spawn() API to

start a new job. If you use the spawn() API, your application must decide which part of the application

environment gets duplicated into the child. The spawn() API allows the child process to inherit open

IFS files, sockets, or other resources from the parent. For details about spawn(), see the System API

Programming Reference.

v Your application might frequently use multiple functions that are not thread safe. In this case, you

should use one of the previously mentioned mechanisms to start a new job. That new job could

function as a server, running the code that is not thread safe when requested by your application. Your

application could use message queues, data queues, or perhaps semaphores to communicate with your

server.

When using any of these separate job mechanisms, you need to be aware of issues involved with using a

different job to complete some of your application processing. These include:

 Input/ouput considerations:

 The server job cannot perform normal I/O without conflicting with the application I/O

processing. The application I/O processing can affect file offsets or locks that are maintained on

system objects. Attempts at I/O could conflict between the jobs.

Parameter passing:

 Passing pointers or other types of complex parameters to the functions that are not thread safe

may not be easy to accomplish. That function runs in a separate job. You may have to solve the

issues involved with passing complex data to that function.

Returning function calls:

62 iSeries: Multithreaded applications

The results from the function that is not thread safe might be more complex than the simple

pass/fail type of information that is provided by some of the mechanisms described above. This

is similar to the parameter passing issue described above.

Job attributes:

 You may have additional complexity to manage when trying to duplicate your application’s

environment in the server job. For example, if you started your application as user ALICE, and

you started the server job as user BOB, the application behavior is not correct.

Back to “Function calls that are not thread safe” on page 61.

Common multithreaded programming errors

Several programming errors often occur when writing multithreaded applications. These include the

following:

v “Calling functions that are not threadsafe”

v “Thread creation not allowed failure”

v “Activation group ending” on page 64

v “Mixing thread models” on page 64

v “Commit operations in multithreaded programs” on page 64

v “Database record I/O and thread safety” on page 65

Troubleshooting pthread errors describes common Pthread API errors.

Chapter 8, “Debugging and servicing of multithreaded jobs,” on page 69 describes several basic

techniques to help debug multithreaded programs.

Calling functions that are not threadsafe

The most common programming error when writing a threaded application is the use of application

program interfaces (API) or system services that are not thread safe. An application needs to be aware of

each API that it calls and whether the provider classifies it as thread safe. If the API or system-provided

service is thread safe, it must use only other thread-safe APIs or system services in its implementation.

This is especially problematic when your application calls user-written code that is outside of your

control. You cannot validate this code for thread safety. If the user code is not thread safe and you call it

within your application’s own process context, you may corrupt the application data, or the application

may halt.

Thread creation not allowed failure

OS/400 does not allow every process on the system to create threads at every time while running. You

can specify special parameters when you create a job. These parameters can indicate that the job should

allow multiple threads.

For example, the spawn() application programming interface (API) has a multithreaded flag that can be

specified in the inheritance parameter. You can use other ways to submit OS/400 jobs that allow you to

specify that the new job should be allowed to create threads. Some job types allow the use of a job

description specifying that the job that is started using the job description should be allowed to start

threads. To do this, use the Allow Multithread (ALWMLTTHD) parameter on the Create Job Description

(CRTJOBD) or Change Job Description (CHGJOBD) commands.

If you attempt to create a thread in a job that is not capable of starting threads, thread creation fails. See

your API or language specific documentation for details on how the failure is manifested.

Chapter 6. Multithreaded programming techniques 63

The same failure recurs if your application is running the destructors for C++ static objects or C/C++

program termination routines. Application code cannot create threads when the job is ending.

Activation group ending

The OS/400 integrated language environment (ILE) program model uses activation groups as a way to

encapsulate resources for an application program within a job.

When multiple threads exist in the processes that possibly use the activation group, the system cannot

end that activation group in a predictable and safe way. To solve this problem, the system changes the

behavior of ending an activation group in a multithreaded job.

If a secondary thread in a multithreaded application performs an action that ends an activation group

(for example, C functions exit() or abort()) or fails to prevent an activation group from ending, the system

takes action to end the process at that time. If the initial thread in an multithreaded application performs

an action that ends an activation group or fails to prevent an activation group from ending, the system

terminates the activation group but does not end the process.

A typical example of this occurs when a current OS/400 application is altered to take advantage of

multithreading. The current OS/400 application probably uses multiple program objects. Unlike other

platforms, Operating System/400 (OS/400) allows you to call the programs within the same process

context as the currently running application code.

The default activation group attribute for a program is *NEW. Calling a program with a default activation

of *NEW in a multithreaded job ends both the activation group and the process when the program ends.

If the job is to remain active after the progam ends, the program should be changed to use the

*DEFAULT or a named activation group.

Mixing thread models

Do not mix Pthreads application programming interfaces (APIs) with other thread management APIs that

might be provided by the system. For example, you should not use Java or the IBM® Open Class®

libraries threads implementations in the same thread or process as Pthreads. More importantly, do not

attempt to manipulate a thread from one threads implementation with the application programming

interfaces (API) of another. Unpredictable results may occur.

For example, you may be able to manipulate the priority of a thread by using Pthread interfaces and

non-Pthread interfaces. If you do so, the priority is always set correctly. However, the priority returned

from the Pthread interface pthread_getschedparam() is correct only if setting the priority was always

done using either the pthread_setschedparam() interface or some other interface, but not both. If you

instead use multiple interfaces to set the priority of the thread, pthread_getschedparam() always returns

the priority that was set by the last use of the pthread_setschedparam() interface.

Similarly, you can end a Java thread using the pthread_exit() API if you are running application code in a

native method. However, using pthread_exit() to terminate the Java thread could have unexpected

repercussions. These could include bypassing some of the Java environment thread processing or perhaps

ending the Java thread in a way that your Java application does not expect and cannot handle.

Commit operations in multithreaded programs

Database transactions in Operating System/400 (OS/400) are scoped to the job or the activation group. If

your multithreaded application is working on multiple database transactions in multiple threads

simultaneously, it is possible that a commit operation in one thread also commits activity done by

another thread.

For example, an application has a thread that is working on a database transaction for client1 and

another thread working on a database transaction for client2. The thread that is processing for client1

64 iSeries: Multithreaded applications

completes its processing and commits the changes. This commit operation also commits all the changes

made for client2. Your application must be aware of the in-flight transactions that are in progress.

For more information on how databases interact with multiple threads, see “Database considerations for

multithreaded programming” on page 9.

Database record I/O and thread safety

You can use the I/O feedback area of an Operating System/400 (OS/400) database file to communicate

results of I/O operations to the record I/O user. A typical application may have problems with thread

safety because of the nature of the feedback area.

When you perform an I/O operation, the support of the runtime and of the database ensures that the

I/O operation is threadsafe. When the I/O is complete, any locks that the runtime holds are released and

control is given back to the application.

It is the application’s responsibility to serialize access when examining the I/O feedback area so that

another thread does not use it simultaneously. COBOL and RPG use the feedback area on every I/O

operation, so if you do I/O to the same shared file with different languages, you should serialize access

to the file even when you are not apparently using the feedback area.

For example, Thread 1 is using fileA for record I/O operations. The system stores information about

those operations in the feedback area for fileA. After the I/O operation for Thread 1 completes, Thread 1

manipulates the feedback area by examining fields in the feedback area. If it does not protect the

feedback area when Thread 2 uses fileA for record I/O operations, the system uses the same feedback

area. Thread 1 may get inconsistent results because Thread 2 is using the feedback area at the same time.

This occurs when sharing a file is conducted by the use of the file pointer or file descriptor number. It is

not a problem if the file is opened in each thread.

You should use a synchronization technique to protect the feedback area so that other application code or

the system does not change it when it is being accessed.

Chapter 6. Multithreaded programming techniques 65

66 iSeries: Multithreaded applications

Chapter 7. Language access and threads

Use the following links to learn about how different languages support threads on OS/400. This

information can help you evaluate how threads can be implemented in your own application.

The concepts and techniques that are described in the following sections contain information pertaining

to the use of threads by the language supported on OS/400.

v “Threads considerations for Java language”

v “Threads considerations for C language”

v “Threads considerations for C++ language” on page 68

v “Threads considerations for ILE COBOL and RPG language” on page 68

v “Threads considerations for OPM language” on page 68

The concepts that are described in this section pertain to all programming languages. To determine how

each language enables these concepts, refer to the programmer’s guide for the specific language.

Threads considerations for Java language

You can take advantage of OS/400 kernel threads using the java.lang.Thread class. Java threads operate

on top of the OS/400 kernel threads model. Each Java thread is one of many tasks that runs in the

process. You can do all of the activities that are listed in the Threads Management section.

The Java virtual machine always creates several threads to perform services such as Java garbage

collection. The system uses these threads; applications should not use them.

You can use native methods to access system functions that are not available in Java. Native methods are

not *PGM objects. They are procedures that are exported from Integrated Language Environment (ILE)

service programs (*SRVPGM). These native methods always run in processes that are multithreaded so

they must be threadsafe. The ILE COBOL, RPG IV, CL, C and C++ compilers are threadsafe.

Note: Not all standard C and C++ functions are threadsafe. Refer to the Language Reference Manual for

specific functions.

When it is necessary to call an ILE program (*PGM) object, use java.lang.Runtime.exec() to start another

process in which the program can run.

Use exit() and abort() with care. These functions end the application, including the process and all the

threads that run in the process.

Code examples of common multithreaded operations in Java are can be found at Chapter 10, “Examples:

Threads,” on page 79.

Threads considerations for C language

Not all C library functions are threadsafe. Before calling your existing C applications in a

multithread-capable job, refer to the WebSphere® Development Studio: ILE C/C++ Programmer’s Guide,

SC09-2712-03

, to determine whether all of your functions are threadsafe.

You must evaluate existing C applications for thread safety before calling them in a multithreaded job. If

your C program is not threadsafe, techniques are available for calling programs that are not threadsafe

from multithreaded jobs.

© Copyright IBM Corp. 1998, 2005 67

When using programs that are written in C, use the following actions:

 Re-creation of ILE C applications

 Compile and bind all existing ILE C applications with TGTRLS(*CURRENT) before you call them

in a multithreaded job.

Elimination of *NEW activation groups:

 You should not use *NEW activation groups in multithreaded applications.

Note: ACTGRP(*NEW) is the default on CRTPGM and CRTBNDC commands.

Calling ILE C *PGM objects:

 If you need to call an ILE C *PGM object that has an activation group of *NEW, either start

another process to run the second program or create the second program specifying a named

activation group.

“Calling functions that are not threadsafe” on page 63 provides related information on thread safety.

Threads considerations for C++ language

The C++ runtime functions new, delete, try, catch, and throw are threadsafe. To determine the thread

safety of C++ library functions, see the WebSphere Development Studio: ILE C/C++ Programmer’s Guide,

SC09-2712-03

and WebSphere Development Studio: C/C++ Language Reference, SC09-4815-00.

Threads considerations for ILE COBOL and RPG language

You can create an ILE COBOL or ILE RPG module that will run safely in a multithreaded environment

by serializing access to the module. You do this by specifying THREAD(SERIALIZE) on the PROCESS

statement for COBOL or THREAD(*SERIALIZE) on the Control specification for RPG. When you serialize

a module, only one thread can run any procedure in that module at one time. For example, consider a

module that has procedures P1 and P2. If one thread is running procedure P1, no other thread can run

either procedure P1 or P2 until the first thread has finished running P1. Even when a module is

serialized, the COBOL or RPG programmer must ensure that global storage and heap storage are

accessed in a threadsafe way. Even if an RPG or COBOL procedure apparently only uses automatic

storage, RPG and COBOL use static storage control blocks in every procedure. Therefore, you must

always specify THREAD(*SERIALIZE) when using ILE RPG or COBOL in a multi-threaded environment.

“Function calls that are not thread safe” on page 61 provides related information on thread safety.

Threads considerations for OPM language

Original program model (OPM) programs are not threadsafe. You should migrate OPM programs to ILE

and make them threadsafe before a multithreaded application calls them. User-written Java native

methods should not call OPM programs. When it is necessary to call an OPM program in a

multithreaded application, you should start another process to run the OPM program.

68 iSeries: Multithreaded applications

Chapter 8. Debugging and servicing of multithreaded jobs

Use the concepts and techniques that are described in the following links to learn about debugging and

servicing multithreaded jobs:

v “Commands that report thread-related data”

v “Flight recorders” on page 70

v “Options to view thread information” on page 73

v “Multithreaded job debugging” on page 74

v “Areas to test for multithreaded applications” on page 75

The concepts that are described in this section pertain to all programming languages. To determine how

each language enables these concepts, refer to the programmer’s guide for the specific language.

“Common multithreaded programming errors” on page 63 describes many commonly occuring

multithreaded programming errors.

Commands that report thread-related data

Most of the commands that are used to service jobs were not changed to support multithreaded

processes. Therefore, the existing commands will continue to operate against the job and not individual

threads within the job. The following commands were enhanced to report thread-related data:

 Dump Job (DMPJOB) command:

 The Dump Job command now dumps all threads within a job. The thread-related data is

available though use of the JOBTHD parameter on the command. The following example shows

how to obtain a multithreaded job dump that contains the thread-related data:

 STRSRVJOB JOB(000000/USER/JOBNAME)

DMPJOB PGM(*NONE) JOBARA(*NONE) ADROBJ(*NO) JOBTHD(*THDSTK)

ENDSRVJOB

Start Trace (STRTRC) command:

 The Start Trace command allows you either to trace all threads within a multithreaded job or to

specify up to 20 specific threads to be traced in a multithreaded job. The thread identifier is

included in each trace record to indicate the thread that caused the record to be entered into the

log. The following example shows how to obtain a trace for a multithreaded job:

 STRTRC SSNID(MYSSNID) JOB((000000/USERNAME/JOBNAME (*ALL)))

 ... tracing the job

ENDTRC SSNID(MYSSNID) DTALIB(MYLIB) PRTTRC(*YES)

 The following example shows how to obtain a trace for specified threads in a multithreaded job:

STRTRC SSNID(MYSSNID) JOB((000000/USERNAME/JOBNAME (00000001 00000002 00000003)))

 ... tracing the job

ENDTRC SSNID(MYSSNID) DTALIB(MYLIB) PRTTRC(*YES)

First Failure Data Capture (FFDC) function:

 FFDC is a function that you can use in your program, service program, or module to report a

problem for an authorized program analysis report (APAR). FFDC logs the problem, builds a

symptom string, and collects problem analysis data.

© Copyright IBM Corp. 1998, 2005 69

FFDC is not fully functional when used in a multithreaded program. When it is called in a

multithreaded program, FFDC provides partial support that includes:

v Collecting data item information and storing this information in the QPSRVDMP spool file.

v Storage of the point of failure, symptom string, and the detecting and suspected program

information in the QPSRVDMP spool file. The job log also contains this information.

v Starting the Dump Job (DMPJOB) command.

FFDC support for object dumping, problem entry creation, or data collection for problem

determination is not provided within a multithreaded job.

Flight recorders

A useful way to debug multithreaded applications is to write data to a flight recorder. A flight recorder is

a file, output buffer, or some other object where trace information is written so that problems in the

application can be tracked. Entries to and exits from a function are typical information that is traced in a

flight recorder. Parameters that are passed to functions, major changes in control flow, and error

conditions are often tracked as well.

The Pthread library provides a way for your application to trace problems. Tracing allows you to cut

optional trace points, turn the recorder on or off, and recompile your application so that all of the tracing

code is removed.

You can use different levels of tracing. If your application wishes to honor the trace levels, it is the

application’s responsibility to cue trace points at the appropriate trace levels, or manage the trace level.

The Pthread library provides application program interfaces (API), macros, and trace level variables to

assist you. See “Example: Sample flight recorder output from a Pthread program” on page 71 for more

information.

For Pthread tracing, an error-level tracing displays only those trace points that have error-level severity.

An informational-level tracing traces all error-level trace points in addition to the informational trace

points. A verbose-level trace point traces all levels. Each trace point automatically includes the thread ID,

a timestamp of millisecond granularity, and the trace data.

The CL commands that enable, display, and work with the tracing are part of OS/400.

The tracing buffers for your tracepoints are created as user space objects in the QUSRSYS library. The

trace buffers are named QP0Zxxxxxx, in which xxxxxx is the six-digit job number of the job that

performed the tracing.

The following APIs relate to tracing and are detailed in the UNIX-Type APIs guide:

v Qp0zUprintf - print formatted trace data

v Qp0zDump - dump formatted hex data

v Qp0zDumpStack - dump the call stack of the calling thread

v Qp0zDumpTargetStack - dump the call stack of the target thread

v Qp0zLprintf - print formatted job log message

The following CL commands that allow you to manipulate tracing:

v DMPUSRTRC - dump the contents of a specified job’s trace

v CHGUSRTRC - change attributes (size, wrapping, clear) of a specified job’s trace

v DLTUSRTRC - delete the persistent trace object that is associated with a job’s trace

Use “Example: Sample flight recorder output from a Pthread program” on page 71 as an example for

your program.

70 iSeries: Multithreaded applications

Example: Sample flight recorder output from a Pthread program

Note: Read the “Code disclaimer information” on page 79 for important legal information.

The following example shows a Pthread program that is using the flight recorder or tracing interfaces

that are provided by the system.

/*

Filename: ATEST23.QCSRC

Use CL command DMPUSRTRC to output the following tracing

information that this example traces.

This information is put into a file QTEMP/QAP0ZDMP or to

standard output.

The trace records are indented and labeled based on thread id,

and millisecond timestamp of the time the tracepoint was cut.

The following trace output occurs when the optional parameter

’PTHREAD_TRACING’ is NOT specified when calling this program.

If the optional parameter ’PTHREAD_TRACING’ is specified, many

more tracepoints describing pthread library processing will occur.

Use the Pthread library tracepoints to debug incorrect calls to the

Pthreads library from your application.

Trace output ---------

User Trace Dump for job 096932/MYLIB/PTHREADT. Size: 300K, Wrapped 0 times.

--- 11/06/1998 11:06:57 ---

 0000000D:133520 Create/start a thread

 0000000D:293104 Wait for the thread to complete, and release their resources

 0000000E:294072 Thread Entered

 0000000E:294272 DB51A4C80A:001CD0 L:0008 Global Data

 0000000E:294416 DB51A4C80A:001CD0 00000000 00000002 *................*

 0000000E:294496 foo(), threadSpecific data=0 2

 0000000E:294568 bar(), threadSpecific data=0 2

 0000000E:294624 bar(): This is an error tracepoint

 0000000E:294680 Stack Dump For Current Thread

 0000000E:294736 Stack: This thread’s stack at time of error in bar()

 0000000E:333872 Stack: Library / Program Module Stmt Procedure

 0000000E:367488 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 0000000E:371704 Stack: QSYS / QP0WPTHR QP0WPTHR 1008 : pthread_create_part2

 0000000E:371872 Stack: MYLIB / PTHREADT PTHREADT 19 : theThread__FPv

 0000000E:371944 Stack: MYLIB / PTHREADT PTHREADT 29 : foo__Fv

 0000000E:372016 Stack: MYLIB / PTHREADT PTHREADT 46 : bar__Fv

 0000000E:372104 Stack: QSYS / QP0ZCPA QP0ZUDBG 87 : Qp0zDumpStack

 0000000E:379248 Stack: QSYS / QP0ZSCPA QP0ZSCPA 276 : Qp0zSUDumpStack

 0000000E:379400 Stack: QSYS / QP0ZSCPA QP0ZSCPA 287 : Qp0zSUDumpTargetStack

 0000000E:379440 Stack: Completed

 0000000E:379560 foo(): This is an error tracepoint

 0000000E:379656 dataDestructor: Free data

 0000000D:413816 Create/start a thread

 0000000D:414408 Wait for the thread to complete, and release their resources

 0000000F:415672 Thread Entered

 0000000F:415872 DB51A4C80A:001CD0 L:0008 Global Data

 0000000F:416024 DB51A4C80A:001CD0 00000001 00000004 *................*

 0000000F:416104 foo(), threadSpecific data=1 4

 0000000F:416176 bar(), threadSpecific data=1 4

 0000000F:416232 bar(): This is an error tracepoint

 0000000F:416288 Stack Dump For Current Thread

 0000000F:416344 Stack: This thread’s stack at time of error in bar()

 0000000F:416552 Stack: Library / Program Module Stmt Procedure

 0000000F:416696 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 0000000F:416784 Stack: QSYS / QP0WPTHR QP0WPTHR 1008 : pthread_create_part2

 0000000F:416872 Stack: MYLIB / PTHREADT PTHREADT 19 : theThread__FPv

 0000000F:416952 Stack: MYLIB / PTHREADT PTHREADT 29 : foo__Fv

 0000000F:531432 Stack: MYLIB / PTHREADT PTHREADT 46 : bar__Fv

 0000000F:531544 Stack: QSYS / QP0ZCPA QP0ZUDBG 87 : Qp0zDumpStack

 0000000F:531632 Stack: QSYS / QP0ZSCPA QP0ZSCPA 276 : Qp0zSUDumpStack

Chapter 8. Debugging and servicing of multithreaded jobs 71

0000000F:531704 Stack: QSYS / QP0ZSCPA QP0ZSCPA 287 : Qp0zSUDumpTargetStack

 0000000F:531744 Stack: Completed

 0000000F:531856 foo(): This is an error tracepoint

 0000000F:531952 dataDestructor: Free data

 0000000D:532528 Main completed

*/

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <qp0ztrc.h>

#define checkResults(string, val) { \

 if (val) { \

 printf("Failed with %d at %s", val, string); \

 exit(1); \

 } \

}

typedef struct {

 int threadSpecific1;

 int threadSpecific2;

} threadSpecific_data_t;

#define NUMTHREADS 2

pthread_key_t threadSpecificKey;

void foo(void);

void bar(void);

void dataDestructor(void *);

void *theThread(void *parm) {

 int rc;

 threadSpecific_data_t *gData;

 PTHREAD_TRACE_NP({

 Qp0zUprintf("Thread Entered\n");

 Qp0zDump("Global Data", parm, sizeof(threadSpecific_data_t));},

 PTHREAD_TRACE_INFO_NP);

 gData = (threadSpecific_data_t *)parm;

 rc = pthread_setspecific(threadSpecificKey, gData);

 checkResults("pthread_setspecific()\n", rc);

 foo();

 return NULL;

}

void foo() {

 threadSpecific_data_t *gData =

 (threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);

 PTHREAD_TRACE_NP(Qp0zUprintf("foo(), threadSpecific data=%d %d\n",

 gData->threadSpecific1, gData->threadSpecific2);,

 PTHREAD_TRACE_INFO_NP);

 bar();

 PTHREAD_TRACE_NP(Qp0zUprintf("foo(): This is an error tracepoint\n");,

 PTHREAD_TRACE_ERROR_NP);

}

void bar() {

 threadSpecific_data_t *gData =

 (threadSpecific_data_t *)pthread_getspecific(threadSpecificKey);

 PTHREAD_TRACE_NP(Qp0zUprintf("bar(), threadSpecific data=%d %d\n",

 gData->threadSpecific1, gData->threadSpecific2);,

 PTHREAD_TRACE_INFO_NP);

 PTHREAD_TRACE_NP(Qp0zUprintf("bar(): This is an error tracepoint\n");

 Qp0zDumpStack("This thread’s stack at time of error in bar()");,

 PTHREAD_TRACE_ERROR_NP);

 return;

}

void dataDestructor(void *data) {

 PTHREAD_TRACE_NP(Qp0zUprintf("dataDestructor: Free data\n");,

 PTHREAD_TRACE_INFO_NP);

 pthread_setspecific(threadSpecificKey, NULL); free(data);

72 iSeries: Multithreaded applications

/* If doing verbose tracing we will even write a message to the job log */

 PTHREAD_TRACE_NP(Qp0zLprintf("Free’d the thread specific data\n");,

 PTHREAD_TRACE_VERBOSE_NP);

}

/* Call this testcase with an optional parameter ’PTHREAD_TRACING’ */

/* If the PTHREAD_TRACING parameter is specified, then the */

/* Pthread tracing environment variable will be set, and the */

/* pthread tracing will be re initialized from its previous value. */

/* NOTE: We set the trace level to informational, tracepoints cut */

/* using PTHREAD_TRACE_NP at a VERBOSE level will NOT show up*/

int main(int argc, char **argv) {

 pthread_t thread[NUMTHREADS];

 int rc=0;

 int i;

 threadSpecific_data_t *gData;

 char buffer[50];

 PTHREAD_TRACE_NP(Qp0zUprintf("Enter Testcase - %s\n", argv[0]);,

 PTHREAD_TRACE_INFO_NP);

 if (argc == 2 && !strcmp("PTHREAD_TRACING", argv[1])) {

 /* Turn on internal pthread function tracing support */

 /* Or, use ADDENVVAR, CHGENVVAR CL commands to set this envvar*/

 sprintf(buffer, "QIBM_PTHREAD_TRACE_LEVEL=%d", PTHREAD_TRACE_INFO_NP);

 putenv(buffer);

 /* Refresh the Pthreads internal tracing with the environment */

 /* variables value. */

 pthread_trace_init_np();

 }

 else {

 /* Trace only our application, not the Pthread code */

 Qp0wTraceLevel = PTHREAD_TRACE_INFO_NP;

 }

 rc = pthread_key_create(&threadSpecificKey, dataDestructor);

 checkResults("pthread_key_create()\n", rc);

 for (i=0; i <NUMTHREADS; ++i) {

 /* Create per-thread threadSpecific data and pass it to the thread */

 gData = (threadSpecific_data_t *)malloc(sizeof(threadSpecific_data_t));

 gData->threadSpecific1 = i;

 gData->threadSpecific2 = (i+1)*2;

 rc = pthread_create(&thread[i], NULL, theThread, gData);

 checkResults("pthread_create()\n", rc);

 PTHREAD_TRACE_NP(Qp0zUprintf("Wait for the thread to complete, "

 "and release their resources\n");,

 PTHREAD_TRACE_INFO_NP);

 rc = pthread_join(thread[i], NULL);

 checkResults("pthread_join()\n", rc);

 }

 pthread_key_delete(threadSpecificKey);

 PTHREAD_TRACE_NP(Qp0zUprintf("Main completed\n");,

 PTHREAD_TRACE_INFO_NP);

 return 0;

}

See “Flight recorders” on page 70 for more information on using a flight recorder to help you debug your

multithreaded application.

Options to view thread information

The Display Job (DSPJOB), Work with Job (WRKJOB), and Work with Active Jobs (WRKACTJOB)

commands allow you to display and work with threads associated with an OS/400 job. Through each of

these commands, you can select an option that allows you to display or work with the threads in the job.

You can use the Work with Threads display to view the following information for the job:

 List of threads:

Chapter 8. Debugging and servicing of multithreaded jobs 73

This display shows all of the threads that are currently associated with the job. The first thread in

the list is the initial thread in the process. An eight-digit number (Thread) identifies threads by

their identifier. This list changes depending on the thread activity in the job. Other information

on this display includes the thread’s status of active or waiting, total CPU usage, total auxiliary

storage I/O counts, and thread run priority.

Thread call stack option:

 This option displays the call stack of any thread. In some conditions, usually when the thread is

running an instruction that cannot be interrupted, the call stack may not be displayed. In these

cases, a message indicates that no stack information is available is displayed.

Thread mutexes option:

 This option allows you to see all mutexes associated with a specific thread. This includes mutexes

that are held and the mutex for which the thread may be waiting. If the specified thread has no

mutexes that are associated with it, the Job or thread has no mutexes message is displayed.

Thread locks option:

 This option allows you see all the thread-scoped object locks held by the thread. It also allows

you to see all pending process-scoped locks and thread-scoped locks on which the the thread is

waiting. If the specified thread has no object locks associated with it, the Thread has no locks

message is displayed.

Hold thread option:

 This option allows you to temporarily suspend the running of a specific thread. This option is

useful if you suspect that a thread may be looping or causing some other system problem. You

must use the Hold thread option in conjunction with the Release thread option. Unlike Hold Job

(HLDJOB), repeated Hold thread requests are cumulative. To resume the running of a held

thread, you must issue the equivalent number of Release thread requests.

Release thread option:

 This option is used to resume the running of a thread that has been suspended.

End thread option:

 This option allows you to end a specific thread. In general, you should not use of this option

because it can cause unpredictable results. This option requires *SERVICE special authority.

The Release Job (RLSJOB), Hold Job (HLDJOB), End Job (ENDJOB), and End Job Abnormal

(ENDJOBABN) commands affect all threads within a multi-threaded job. No commands are planned to

provide the equivalent thread-level support.

Multithreaded job debugging

The spawn() API provides a mechanism to allow you to start a debugging session before actually calling

the multithreaded program to be debugged. Setting the QIBM_CHILD_JOB_SNDINQMSG environment

variable to 1 controls this capability. Refer to the usage notes for the spawn() API in the System API

Reference, for details about the use of this environment variable.

An example SPAWN command is available for your use and modification as part of OS/400 option 7, the

OS/400 Example Tools Library, QUSRTOOL. Member TP0ZINFO in the file QATTINFO in the

QUSRTOOL library contains information on how to create the SPAWN CL command. You can also find

more information on using the SPAWN command in SPAWN CL command, QUSRTOOL example.

You can also simplify the process of starting a job that runs the multithreaded program and the

debugging session by creating a command (such as the SPAWN command) that performs the necessary

steps. These steps include the following:

v Signing on to a display station session

74 iSeries: Multithreaded applications

v Starting a job to run the multithreaded program

v Using the Start Service Job (STRSRVJOB) command to service the job running the multithreaded

program

v Calling the Start Debug (STRDBG) command, adding programs to debug, and setting breakpoints

v Notifying the servicing job when the thread hits a breakpoint so that it stops the thread

v Stopping all threads with the debugger support

v Issuing valid debug commands from the debug screen that is displayed

v Resuming the thread that hit the breakpoint and then all other threads

v Repeating the above cycle until debugging is complete

v Calling the End Debug (ENDDBG) command

The System API Reference, WebSphere Development Studio: ILE C/C++ Programmer’s Guide, SC09-2712

,

and ILE Concepts, SC41-5606

publications contain additional information about thread debugging

capabilities.

Areas to test for multithreaded applications

Testing is key to the process of verifying the correcting of a multithreaded program. You should consider

the following key concepts when testing a multithreaded program:

 Multiple instances:

 Test your multithreaded program by having multiple instances of the program active at the same

time. If your application allows the number of threads to vary, configure each instance of the

program with a different number of threads.

Vary system workload:

 Test your multithreaded program by running it repeatedly with a different mix of applications

running. The interaction of different applications may reveal timing problems or race conditions.

Stress environments:

 Environments running stressful workload can reveal contention, timing, and performance

problems.

Different hardware models:

 Whenever possible, run your multithreaded program on different hardware models with varying

workload and stress levels. Different hardware models, especially multiprocessor systems, reveal

a variety of problems. If you are porting an application from another platform, verify that your

application produces the same result on both platforms.

Testing is only one consideration for validating the correctness of a multithreaded program. Code

inspections are critical and often the only way to determine potential problems. When inspecting the code

for a multithreaded program, you need to continually ask the question, ″If the code is interrupted at this

point, what potential problems could occur?″ Often, knowing the potential sources of problems helps you

avoid them. Common problems include the following:

Hardware-related problems:

 It is usually sufficient to test a single-threaded program on one hardware model and expect that

it will behave identically on different hardware models. Unlike with single-threaded programs,

you cannot have the same expectation with a multithreaded program that runs on a hardware

platform that supports kernel threads. On these platforms, each thread runs in a separately

dispatched task. Depending on processor speed, main memory sizes, storage capacity, and other

hardware characteristics, timing problems or race conditions may result when the multithreaded

Chapter 8. Debugging and servicing of multithreaded jobs 75

programs are called on different hardware. Multiprocessor systems further increase the likelihood

of discovering potential problems. On multiprocessor systems, two different threads can be

running the same sequence of code at the same time.

Java Virtual Machine implementation problems:

 A problem for Java application developers is the implementation of the Java Virtual Machine

(JVM). On some platforms, the JVM is single-threaded. On OS/400, the JVM is multithreaded.

Similar problems may occur with a Java application as with an application from another platform

that supports user threads.

Threads model problems:

 If you are porting an application from another platform, you need to know the threads model

that the other platform supported. If the platform supported a user threads model, you may

encounter problems with the application on OS/400 because it supports a kernel threads model.

A key difference between the two models is that the user threads model uses cooperative

scheduling and the kernel threads model uses pre-emptive scheduling. With a user threads

model, only one thread in the application may be active at a given time. With a kernel threads

model, the machine determines which threads are eligible to run. Race conditions, resource

contention, and other problems may occur with kernel threads because the application writer did

not consider these potential problems when using user threads.

76 iSeries: Multithreaded applications

Chapter 9. Performance considerations in multithreaded

applications

Use the following links to learn about performance considerations for multithreaded jobs on OS/400:

v “Multithreaded server recommendations”

v “Job and thread priorities”

v “Contention among threads” on page 78

v “Effects of storage pool sizes on threaded applications” on page 78

v “Activity levels of storage pools” on page 78

v “Performance and threaded applications” on page 78

The concepts that are described here pertain to all programming languages. For details about how each

language enables a concept, refer to the programmer’s guide for that specific language.

Multithreaded server recommendations

When you write a typical server to take advantage of threads, a common design is to have a single

listener thread waiting for client requests and multiple individual worker threads to perform the client’s

requested operations.

Creating threads should not use very many resources. However, because some servers require a faster

response time to clients, some server application programs maintain a pool of worker threads that are

waiting for work. They do this to avoid creating new threads.

Typically, the worker threads use some synchronization primitive to wait for client processing requests.

Instead of creating a new thread to process each client request, the listener thread simply queues the

client request and signals the waiting worker threads. The signal sometimes uses variables.

A server application is commonly considered trusted with the data that it serves to clients. Because the

server is running multithreaded applications, you must consider some issues concerning the activities it

performs:

v You should not call user application code from a multithreaded server. To run user application code

safely from a multithreaded server, the user application code must follow the same strict rules that the

original multithreaded server did. These rules concern the actions that it can take and the APIs that it

can call

v As you should with any other part of your application, you must evaluate the processing that is

required to fulfill the client request for its thread safety.

v Processing on behalf of the client might affect process-level resources of the server in a way that is not

desirable for the server. For example, changing the CCSID so that data representation is the same as

that of the client also affects other threads in the job. CCSID is a job resource.

v A server can change the security information (user profile and group profile) of a worker thread to

make it become the client that is being served. However, when the server does this, you need to

consider what resources the threads share. The worker thread has access to all the already opened job

level resources that more privileged users in the same job may have created or opened.

Job and thread priorities

An OS/400 thread competes with threads throughout the system for scheduling resources in addition to

competing with other threads in the same job. The system schedules processing resources by using a

delay cost scheduler that is based on several delay cost curves (priority ranges).

© Copyright IBM Corp. 1998, 2005 77

On OS/400, numerically lower priority values indicate higher priority with regard to scheduling. Adding

its thread priority adjustment value to the job’s priority specifies the priority of a thread. The default

priority for a thread is no change from the process priority or a thread priority adjustment value of zero.

You can directly affect the application performance by assigning different thread priority adjustment

values to the threads in your application.

Contention among threads

Contention occurs when one thread has to wait for another thread to finish using a resource. Contention

problems can occur if your application uses too few mutual exclusions (mutexes) to protect access to a

large number of resources. A large number of threads that share a small number of resources can also

cause contention between threads in your application.

Contention between threads over resources can cause context switches and paging. To reduce contention

within your application, you should hold locks for the shortest amount of time and try to prevent a

single lock from being used for two different or unrelated shared resources.

Threads that poll or spin to wait for resources prevent scaling. This form of contention can drastically

affect the performance of your application. Polling or spinning can also adversely affect other threads or

jobs, degrading system performance. Use condition variables, semaphores, mutexes, or other

synchronization primitives so that threads never have to poll or spin to wait for resources to become

available.

Effects of storage pool sizes on threaded applications

The storage pool size that is specified for a subsystem affects the performance and number of threads you

can create. If thread creation or processing is slow or fails consistently with an out-of-memory error, you

may not have enough resources available in the storage pool to run all of your application threads in

addition to the other jobs that are using the same storage pool. Increasing the storage pool size may

eliminate these problems.

You can examine the storage pool sizes by using the Work with System Status (WRKSYSSTS) command.

If you have too many active threads or threads that use too many system resources, you will see

numerous page faults for the storage pools in which applications are running. Increasing the storage pool

size may reduce the number of page faults.

Activity levels of storage pools

The activity level of a storage pool refers to the number of active threads within that storage pool. A

single job with 500 threads takes up the same number of activity level slots as 500 jobs with a single

thread. If the activity level is too low for the number of threads and jobs that are active, your threads are

paged out of main storage and marked as ineligible for a short time. This could drastically affect the

performance of your application.

Performance and threaded applications

Job-level performance counters are updated by all the threads in a job. The presence of multiple active

threads can affect the accuracy of both general system counters and performance monitor specific

transaction boundary counters. Data loss may occur as there is no automatic synchronization for these

counters.

The initial thread performance information is a combination of thread and job-scoped data. Derived

information that involves both thread and job-scoped data is not valid unless you total the thread-scoped

data across all threads.

78 iSeries: Multithreaded applications

Chapter 10. Examples: Threads

Note: Read the “Code disclaimer information” for important legal information.

The following list contains all the examples used throughout the Programming Multithreaded

Applications information. Use the following as examples for your programs:

 Pthread examples:

v “Example: Setting a thread attribute in a Pthread

program” on page 18

v “Example: Starting a thread in a Pthread program” on

page 20

v “Example: Ending a thread in a Pthread program” on

page 22

v “Example: Canceling a thread in a Pthread program”

on page 25

v “Example: Waiting for threads in a Pthread program”

on page 30

v “Example: Using mutexes in Pthread programs” on

page 42

v “Example: Using semaphores in Pthread programs to

protect shared data” on page 46

v “Example: Using condition variables in Pthread

programs” on page 48

v “Example: Space location locks in Pthread programs”

on page 53

v “Example: One-time initialization in Pthread programs”

on page 56

v “Example: Thread-specific data in Pthread programs”

on page 58

v “Example: Sample flight recorder output from a

Pthread program” on page 71

v “Example: Working with local SQL databases in

multithreaded Pthread programs” on page 11

Java examples:

v “Example: Setting a thread attribute in Java” on page

19

v “Example: Starting a thread using Java” on page 21

v “Example: Ending a thread using Java” on page 23

v “Example: Canceling a thread using Java” on page 26

v “Example: Suspending a thread using Java” on page 28

v “Example: Waiting for threads using Java” on page 31

v “Example: Using mutexes in Java” on page 44

v “Example: Using condition variables in Java programs”

on page 50

v “Example: Thread-specific data in Java programs” on

page 60

Code disclaimer information

IBM grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

© Copyright IBM Corp. 1998, 2005 79

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

80 iSeries: Multithreaded applications

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

© Copyright IBM Corp. 1998, 2005 81

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming

to IBM’s application programming interfaces.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

82 iSeries: Multithreaded applications

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. ©

Copyright IBM Corp. _enter the year or years_. All rights reserved.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

Advanced Function Printing

AnyNet

DB2

IBM

Intelligent Printer Data Stream

IPDS

iSeries

Language Environment

Notes

Open Class

Operating System/400

OS/400

WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the publications you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

Appendix. Notices 83

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE

All material copyrighted by IBM Corporation.

By downloading or printing a publication from this site, you have indicated your agreement with these

terms and conditions.

84 iSeries: Multithreaded applications

����

Printed in USA

	Contents
	Chapter 1. Multithreaded applications
	Chapter 2. Print this topic
	Chapter 3. Threads on OS/400
	Thread models
	Thread program models
	Jobs and job resources
	Thread-private data and thread-specific data
	Multithreaded program startup commands
	Activation groups and threads
	Communications considerations for multithreaded programming
	Database considerations for multithreaded programming
	Example: Working with local SQL databases in multithreaded Pthread programs

	Data management considerations for multithreaded programming
	File system considerations for multithreaded programming
	Printer file considerations for multithreaded programming

	Chapter 4. Managing OS/400 threads
	Thread attributes
	Example: Setting a thread attribute in a Pthread program
	Example: Setting a thread attribute in Java

	Starting a thread
	Example: Starting a thread in a Pthread program
	Example: Starting a thread using Java

	Ending a thread
	Example: Ending a thread in a Pthread program
	Example: Ending a thread using Java

	Canceling a thread
	Example: Canceling a thread in a Pthread program
	Example: Canceling a thread using Java

	Suspending a thread
	Example: Suspending a thread using Java

	Resuming a thread
	Waiting for a thread to end
	Example: Waiting for threads in a Pthread program
	Example: Waiting for threads using Java

	Yielding the processor to another thread

	Chapter 5. Thread safety
	Storage usage and threaded applications
	Job-scoped resources and thread safety
	API thread safety classifications
	CL commands and thread safety
	Denied access functions and thread safety
	Exit points

	Chapter 6. Multithreaded programming techniques
	Existing application evaluation
	Synchronization techniques among threads
	Mutexes and threads
	Example: Using mutexes in Pthread programs
	Example: Using mutexes in Java

	Semaphores and threads
	Example: Using semaphores in Pthread programs to protect shared data

	Condition variables and threads
	Example: Using condition variables in Pthread programs
	Example: Using condition variables in Java programs

	Threads as synchronization primitives
	Space location locks
	Example: Space location locks in Pthread programs

	Object locks
	Compare and Swap

	One-time initialization and thread safety
	Example: One-time initialization in Pthread programs

	Thread-specific data
	Example: Thread-specific data in Pthread programs
	Example: Thread-specific data in Java programs

	Function calls that are not thread safe
	Using global mutexes to run functions that are not threadsafe
	Using separate jobs to run functions that are not threadsafe

	Common multithreaded programming errors
	Calling functions that are not threadsafe
	Thread creation not allowed failure
	Activation group ending
	Mixing thread models
	Commit operations in multithreaded programs
	Database record I/O and thread safety

	Chapter 7. Language access and threads
	Threads considerations for Java language
	Threads considerations for C language
	Threads considerations for C++ language
	Threads considerations for ILE COBOL and RPG language
	Threads considerations for OPM language

	Chapter 8. Debugging and servicing of multithreaded jobs
	Commands that report thread-related data
	Flight recorders
	Example: Sample flight recorder output from a Pthread program

	Options to view thread information
	Multithreaded job debugging
	Areas to test for multithreaded applications

	Chapter 9. Performance considerations in multithreaded applications
	Multithreaded server recommendations
	Job and thread priorities
	Contention among threads
	Effects of storage pool sizes on threaded applications
	Activity levels of storage pools
	Performance and threaded applications

	Chapter 10. Examples: Threads
	Code disclaimer information

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications

