
iSeries

WebSphere Application Server  and Lotus  

Domino Scenario  

   

  

 

���





iSeries

WebSphere Application Server  and Lotus  

Domino Scenario  

   

���



© Copyright  International  Business  Machines  Corporation  2005.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

Chapter 1. WebSphere(R) Application 

Server and Lotus(R) Domino(TM)  Scenario 

Overview  . . . . . . . . . . . . . . 1 

Chapter 2. Lotus(R) Domino(TM)  

environment Overview  . . . . . . . . 5 

Lotus(R) Domino(TM) environment  workflow  . . . . 6  

Application  Design  Points   . . . . . . . . . 6 

Application  Setup   . . . . . . . . . . . 6 

Lotus  Domino  forms  and  views   . . . . . . . . 6 

Lotus  Domino  agents   . . . . . . . . . . . 12 

Application  details   . . . . . . . . . . . 14  

Lotus(R) Domino(TM) environment  key  findings   . . 14  

References  . . . . . . . . . . . . . . . 15 

Example:  Source  code  for Lotus  Domino  agents   . . 16  

Chapter 3. WebSphere(R) Application 

Server environment overview  . . . . . 25 

Application  Model   . . . . . . . . . . . . 25  

Chapter 4. Application Process Flow 27 

Development  Environment   . . . . . . . . . 28 

WebSphere(R) Application  Server  environment  

application  flow   . . . . . . . . . . . . . 29 

Application  Details   . . . . . . . . . . . 29 

Design  Considerations  . . . . . . . . . . . 29 

Flights  Servlet   . . . . . . . . . . . . . 30 

Enterprise  beans  . . . . . . . . . . . . . 31  

CustomerFlight  enterprise  bean  . . . . . . . 31  

Customer  bean   . . . . . . . . . . . . 33  

Flight  bean   . . . . . . . . . . . . . 34 

Ticket  bean   . . . . . . . . . . . . . 47  

Installation  of Enterprise  Application   . . . . . 49 

WebSphere(R) Application  Server  environment  key  

findings   . . . . . . . . . . . . . . . 51  

Chapter 5. References  . . . . . . . . 57 

Example:  Customer  bean   . . . . . . . . . . 57 

Chapter 6. WebSphere(R) Application 

Server and Lotus(R) Domino(TM)  

interoperability overview  . . . . . . . 79 

WebSphere(R) Application  Server  and  Lotus(R) 

Domino(TM) interoperability  single  sign-on   . . . . 79 

Setting  up IIOP  on Lotus  Domino   . . . . . . 80  

Configuring  the  flights  application  for  security  81 

Enabling  single  sign-on  for  WebSphere  

Application  Server   . . . . . . . . . . . 81 

Enabling  single  sign-on  for  the  Lotus  Domino  

Server   . . . . . . . . . . . . . . . 82  

WebSphere(R) Application  Server  and  Lotus(R) 

Domino(TM) inter  operability  key findings   . . . . 83  

Chapter 7. References  . . . . . . . . 89

 

© Copyright  IBM Corp. 2005 iii



iv iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



Chapter  1.  WebSphere(R) Application  Server  and  Lotus(R) 

Domino(TM) Scenario  Overview  

This  report  documents  the  iSeries(TM) System  Test team’s  experience  of bringing  WebSphere  Application  

Server  and  Lotus  Domino  together  as  part  of  a single  application.  In  this  application,  we  use  Lotus  

Domino  to  establish  an  initial  Web presence,  create  a database,  and  utilize  directory  services.  WebSphere  

Application  Server  is  used  to  create  dynamic  Web pages,  set  up  single  sign  on,  and  ensure  security.  This  

was  done  through  several  phases  as  part  of our  flights  scenario.  

The  flights  scenario  simulates  an  airline  company  which  is working  hard  to  increase  their  market  share.  

The  flights  company  determined  that  in  order  to remain  competitive,  they  needed  to  have  a Web site  in 

which  customers  could  view  and  book  flights.  Anxious  to  get  a Web presence,  they  decided  to  make  this  

transition  in  several  phases  which  included:  

1.    Getting  an  initial  presence  by  allowing  the  customers  to  view  the  available  flights  

2.   Increasing  customer  services  by  allowing  customers  to book  flights  on-line  

3.   Branching  out  to  create  a business  to  business  relationship  with  a travel  agency  

Each  of these  phases  built  on  the  previous  phase  and  incorporated  the  latest  technologies  available.  

Below  are  more  details  on  the  functions  and  technologies  used  in  each  of  the  phases.  

  

Phase  one  consisted  of  creating  a web  presence  via  static  Lotus  Domino  served  pages.  During  this  phase  

a Lotus  Domino  Server  was  used  for  a database,  directory  services,  and  the  Lotus  Domino  HTTP  server.  

  

Phase  one  allowed  the  customers  and  employees  to  do  the  following  functions:  

v   Customers  

–   View  available  flights  from  the  Web site  

–   Call  a flights  employee  to  book  a flight
v    Employees  

–   Add  and  delete  flights  

–   Add,  update,  and  delete  customer  information  

–   Book  flights  

–   Retrieve  customer  flight  information  

–   Bill  customers  and  update  billing  information  

Figure  1 illustrates  phase  one.  

Figure  1 Flights  scenario  phase  one  

 

© Copyright  IBM Corp. 2005 1



Phase  two  consisted  of  using  the  existing  Lotus  Domino  server,  database,  and  directory  services.  In  

addition,  WebSphere  Application  Server  was  used  to  provide  dynamic  Web sites  which  allowed  the  

customers  to  book  flights.  Servlets,  enterprise  beans,  and  JSPs  were  used  to upgrade  the  scenario.  

WebSphere  Application  Server  single  sign-on  (SSO)  and  security  were  used  to complete  the  application.  

As  the  result  of  the  phase  two  changes,  customers  were  able  to  do  the  functions  listed  above  as  well  as  

these  additional  functions:  

v   Book  available  flights  from  the  Web site  

v   Retrieve  customer  flight  information  

v   Update  customer  information  

v   Pay  bills  on-line  

Figure  2 illustrates  phase  two.  

Figure  2 Flights  scenario  phase  two  

   

 

2 iSeries:  WebSphere  Application  Server  and Lotus Domino Scenario



Phase  three,  which  is  yet  to  be  implemented,  will  consist  of  creating  a business  to  business  relationship  

with  a travel  agency.  This  relationship  will  allow  customers  to  book  flights  through  the  travel  agency.  

For  more  information  on  the  Lotus  Domino  environment,  the  WebSphere  Application  Server  environment,  

or  the  interoperability  between  the  two,  see  the  following  sections.  

Chapter  2, “Lotus(R) Domino(TM) environment  Overview,”  on  page  5
This  section  describes  the  overall  Lotus  Domino  environment.  It includes  an  overview  of the  

environment,  the  workflow  throughout  the  environment,  and  our  key  findings  from  creating  and  

using  this  environment.  Chapter  3,  “WebSphere(R) Application  Server  environment  overview,”  on  

page  25
This  section  describes  the  overall  WebSphere  Application  Server  environment.  It includes  an  

overview  of  the  environment,  the  application  flow  through  the  environment,  and  our  key  findings  

from  creating  and  using  this  environment.  

  

Chapter  6, “WebSphere(R) Application  Server  and  Lotus(R) Domino(TM) interoperability  overview,”  on  

page  79
This  section  describes  the  inter  operability  of the  WebSphere  Application  Server  and  the  Lotus  

Domino  environment.  It includes  an  overview,  details  about  setting  up  the  single  sign-on,  and  our  

key  findings  from  creating  and  using  WebSphere  Application  Server  and  Lotus  Domino  together.

 

Chapter  1. WebSphere(R) Application  Server and Lotus(R) Domino(TM) Scenario  Overview  3



4 iSeries:  WebSphere  Application  Server  and Lotus Domino Scenario



Chapter  2.  Lotus(R) Domino(TM) environment  Overview  

The  Lotus  Domino  environment  was  set  up  during  phase  one  of the  iSeries(TM) System  Test flights  

scenario  work.  During  phase  one,  the  goal  was  to  quickly  establish  a Web presence  so the  flights  

company  could  expand  their  business  and  provide  a solution  that  was  reliable,  available,  scalable,  and  

could  integrate  easily  with  other  applications.  

  

These  requirements  led  the  flights  company  to choose  Lotus  Domino  on  eServer  iSeries.  With  Lotus  

Domino,  the  flights  company  was  able  to  quickly  obtain  a Web presence  for  their  customers  and  

employees  by  providing  static  Web pages.  In  addition,  Lotus  Domino  allowed  the  flights  company  to  take  

advantage  of  workflow  processing  and  provided  inter  operability  with  many  other  platforms.  

  

The  flights  company’s  Lotus  Domino  application  contains  customer,  flight,  itinerary,  and  billing  

information.  The  application  uses  various  forms  and  views,  which  create  and  maintain  the  information.  

The  flight  information  consists  of  the  flights  offered  including  the  arrival  dates,  departure  dates,  times,  

cities,  and  the  number  of  first  class  and  coach  seats  available  per  flight.  To securely  manage  both  the  

customer  and  employee  data,  a Lotus  Domino  Lightweight  Directory  Access  Protocol  (LDAP)  directory  is 

used.  

  

The  flights  company  provides  two  Web interfaces  using  Lotus  Domino  framesets.  There  is one  interface  

for  the  customers  and  one  for  the  employees.  

  

The  flights  customers  can  perform  the  following  tasks:  

v   View  flights  

v   Call  a flights  employee  to  book  a flight  

The  flights  employees  can  perform  the  following  tasks:  

v   Add,  display,  and  delete  flights  

v   Add  and  delete  city  codes  

v   Add,  update,  display,  and  delete  customer  information  

v   Book  flights  

v   Retrieve  customer  flight  information  

v   Display  and  update  billing  information  

During  phase  two,  WebSphere(R) Application  Server  was  used  to  allow  more  customer  functions  

including  the  ability  to  book  flights.  See  the  WebSphere  Application  Server  Overview  for  more  

information.  

 

© Copyright  IBM Corp. 2005 5



Lotus(R)  Domino(TM)  environment workflow 

Application Design Points 

When  designing  the  Lotus  Domino  application,  the  flights  company  had  to  choose  between  using  

framesets  or  navigators  for  their  Web interface.  Since  the  flights  company  wanted  to  provide  a consistent  

structure  throughout  the  website  that  could  display  different  forms  and  views,  and  since  frames  can  

contain  forms,  folders,  pages,  documents  and  views,  the  frameset  became  the  best  choice.  

  

Another  decision  the  flights  company  faced  was  finding  and  implementing  the  best  way  to  secure  their  

data.  They  wanted  a solution  that  was  robust  enough  to  provide  the  security  they  needed,  integrated  

easily  with  their  existing  application,  and  had  the  flexibility  to  integrate  with  other  software  packages.  

These  requirements  led  the  flights  company  to choose  Lotus  Domino  Lightweight  Directory  Access  

Protocol  (LDAP).  

  

Since  the  flights  company  already  had  several  employees  with  skills  in  Java(TM) development,  they  were  

able  to  use  those  skills  in  writing  the  background  agents  for  their  application  in  Java.  This  proved  

valuable  in  terms  of  making  the  best  use  of  the  skills  of  their  employees.  

Application Setup 

For  all  of  our  Lotus  Domino  implementation  work,  we  used  Lotus  Domino  Designer  as  the  development  

tool.  Lotus  Domino  designer  is  a Lotus  Notes(R) client  application  used  to  quickly  create  and  modify  a 

Lotus  Domino  application.  It provides  the  application  building  blocks  for  everything  needed  in  a 

database,  including  forms,  views,  and  agents.  We used  forms  to  create  new  documents  in  a database  and  

display  current  documents.  Views  provide  a flexible  and  intuitive  way  for  documents  to  be  organized.  

Users  can  easily  see  lists  of  documents,  sort  the  lists  in  different  ways,  open  documents  for  reading  or  

editing,  and  create  new  documents.  

Lotus Domino forms and views 

The  flights  company  employees  created  the  forms  and  views  shown  in  Table 1 for  their  Lotus  Domino  

application.  

Table  1 Flights  Lotus  Domino  Forms  and  Views  

 Lotus  Domino  forms  Lotus  Domino  views  

List  Of  Available  Flights  List  Of  Available  Flights  

Scheduled  Flights  Processed  Flights,  Scheduled  Flights  

Airplane  Seat  Information  Airplane  Seat  Information  

Ticket  Information  Active  Tickets,  Inactive  Tickets,  Processed  Tickets  

Credit  Information  Credit  Information  

City  Codes  City  Codes  

Bill  Information  Bill  Information  

Customer  Number  viewCustomerFldNumber  

Flight  Number  viewFlightFldNumber  

Invoice  Number  viewInvoiceFldNumber  

Seat  Number  viewSeatFldNumber  

 

6 iSeries:  WebSphere  Application  Server  and Lotus Domino Scenario



Statement  Number  viewStatementFldNumber
  

The  List  Of  Available  Flights  form  contains  the  flight  information  for  the  available  flights  that  are  offered  

by  the  flight  company.  It  is  used  to  create  a new  flight  or  display  an  existing  flight.  All  of  the  flight  

specific  data  is  contained  in  this  form.  The  cities  serviced  are  in  the  City  Codes  form  and  the  airplane  

type  and  seats  available  are  in  the  Airplane  Seat  Information  form.  

  

The  List  Of  Available  Flights  view  displays  the  various  flights  and  is categorized  by  the  Available  Flight  

Number.  

  

Table  2 shows  the  fields  in  the  List  Of  Available  Flights  form.  

Table  2 List  of  Available  Flights  Form  

 Name  Field  Name  Type Description  

Flight  Number  AvailableFlightNumber  Text The  number  of the  flight,  

which  may  be  used  on 

multiple  days  of the  week  

but  not  on the same  day  

Departure  Time DepartureTime  Date/time  The  time  the  flight  leaves  

the  departure  city  

Arrival  Time  ArrivalTime  Date/time  The  time  the  flight  arrives  

in the arrival  city  

Duration  Duration  Number  The  amount  of hours  

between  departure  and  

arrival  

Airline  Name  AirlineName  Text The  name  of the  airline  

providing  the  flight  

Departure  City  Code  DisplayOnlyDeparture  Dialog  list  based  on city  

codes  

The  three  letter  code  of the 

departure  city  

Arrival  City  Code  DisplayOnlyArrival  Dialog  list  based  on city  

codes  

The  three  letter  code  of the 

arrival  city  

AirplaneType  ListAirplaneType  Dialog  list  The  type  of plane  

Food  Food  Radio  button  ->  (breakfast,  

lunch,  dinner,  snack,  none)  

Specifies  whether  breakfast,  

lunch,  dinner, snack,  or no 

food  (none)  will  be 

provided  on the  flight  

Scheduled  Days  ScheduledDays  Checkbox  -> Sunday,  

Monday,  Tuesday,  

Wednesday,  Thursday,  

Friday,  Saturday  

The  days  the  flight  will  be  

scheduled  to fly  

First  Class  Price  FirstClassPrice  Number  The  price  of a first  class  

ticket  

Coach  Price  CoachPrice  Number  The  price  of a coach  ticket  

Departure  City  Code  DepartureCityCode  Text Hidden  

Arrival  City  Code  ArrivalCityCode  Text Hidden  

Display  Status  DisplayStatus  Text Hidden
 

 

Chapter  2. Lotus(R) Domino(TM) environment Overview 7



The  Scheduled  Flights  form  contains  the  flight  information  for  a particular  flight  on  a particular  date.  It  is 

used  to  book  and  track  seats  on  a specific  flight  on  a specific  date.  All  of the  scheduled  flight  specific  

data  is contained  in  this  form.  

  

The  Scheduled  Flights  view  displays  the  various  scheduled  flights  and  is categorized  by  the  Flight  By  

Date.  The  Processed  Flights  view  displays  all  flights  that  have  arrived  or  have  no  available  seats  to book.  

  

Table 3 shows  the  fields  in  the  Scheduled  Flights  form.  

Table  3 Scheduled  Flights  Form  

 Name  Field  Name  Type Description  

Flight  By Date  ScheduledFlightByDate  Text The  ID to be used  to track  

a specific  flight  on a 

specific  date,  created  by 

joining  the  flight  number  

with  the date  of the  flight  

Flight  Number  ScheduledFlightNumber  Text The  flight  number  

AirplaneType  ScheduledAirplaneType  Dialog  list The  type  of plane  

First  Class  Seats  Available  FirstClassSeatsAvailable  Number  The  number  of first  class  

seats  that  are  still  available  

on the  plane  

Coach  Seats  Available  CoachSeatsAvailable  Number  The  number  of coach  seats  

that  are  still  available  on 

the  plane  

Status  Status  Radio  button  -> (Cancelled,  

arrived,  departed,  standby,  

new)  

The  status  of the  flight  

DepartureDate  ScheduledDepartureDate  Date  The  date  the  flight  is 

departing  

ArrivalDate  ScheduledArrivalDate  Date  The  date  the  flight  is 

arriving,  which  may  differ  

if it is an overnight  flight  or 

crossing  the international  

date  line
  

The  Airplane  Seat  Information  form  contains  the  airplane  specific  information.  It is used  to  list  the  type  of  

plane  and  the  total  number  of  seats  available.  

  

The  Airplane  Seat  Information  view  displays  the  various  airplanes  and  is categorized  by  the  Airplane  

Type. 

  

Table 4 shows  the  fields  in  the  Airplane  Seat  Information  form.  

Table  4 Airplane  Seat  Information  Form  

 

8 iSeries:  WebSphere  Application  Server  and Lotus Domino Scenario



Name  Field  Name  Type   Description  

AirplaneType  SeatAirplaneType  Text The  type  of plane  

First  Class  Seats  FirstClassSeats  Number  The  number  of first  class  

seats  that  exist  on the  plane  

Coach  Seats  CoachSeats  Number  The  number  of coach  seats  

that  exist  on the  plane  

All  Airplane  Info  AllAirplaneInfo  Text Hidden
  

The  Ticket  Information  form  contains  the  information  for  one  ticket.  There  will  be  one  or  more  tickets  

included  in  an  invoice.  

  

The  Active  Tickets  view  displays  the  tickets  that  have  not  yet  been  processed.  Once  these  orders  are  

processed,  they  are  removed  from  this  view  and  displayed  in  either  the  Processed  Tickets  or  the  Inactive  

Tickets  view, depending  on  whether  the  ticket  was  successfully  processed.  

  

The  Inactive  Tickets  view  displays  the  tickets  that  could  not  be  completed.  An  example  of  tickets  that  

could  not  be  processed  are  for  orders  that  were  placed  when  no  more  tickets  were  available  for  the  flight  

or  for  a flight  that  was  cancelled.  

  

The  Processed  Tickets  view  displays  all  the  completed  tickets.  

  

Table  5 shows  the  fields  in  the  Ticket  Information  form.  

Table  5 Ticket  Information  Form  

 Name  Field  Name  Type Description  

Invoice  Number  InvoiceNumber  Text Number  used  to tie tickets  

together  

Flight  Number  TicketFlightNumber  Text Ties to the  list of available  

flights  document  

Ticket  Class  TicketClass  Dialog  List  Which  class  the  ticket  is: 

First  Class  or Coach  

Seat  Number  SeatNumber  Text The  seat  number  on  this  

flight  

Ticket  Price  TicketPrice  Number  The  price  of the  ticket  for 

that  seat  

Paid  Status  PaidStatus  Radio  button  The  status  of the  ticket  

Customer  Number  TicketCustomerNumber  Text The  number  of the  

customer  paying  for  the 

ticket  

Ticket  Status  TicketStatus  Dialog  List  The  status  of the  ticket:  

Active,  Inactive,  or 

Processed  

 

Chapter  2. Lotus(R) Domino(TM) environment Overview 9



Passenger  First  Name  PassengerFirstName  Text The  name  of the  customer  

sitting  in the  assigned  seat.  

This  may  differ  from  the 

person  purchasing  the 

ticket  and  therefore  the  

customer  number  

Passenger  Middle  Name  PassengerMiddleName  Text The  middle  name  of the 

passenger  

Passenger  Last  Name  PassengerLastName  Text The  last  name  of the  

passenger  

Passenger  Street  Address  PassengerStreet  Text The  address  for the  

passenger  

Passenger  City  PassengerCity  Text The  passenger’s  city  

Passenger  State  PassengerState  Text The  passenger’s  state  

Passenger  Zip  PassengerZip  Text The  zip code  for the 

passenger’s  address  

Passenger  Country  PassengerCountry  Text The  passenger’s  country  

Passenger  Phone  PassengerPhone  Text The  phone  number  for the  

passenger  

Flight  By Date  FlightByDate  Text The  flight  by  date  number  

for the  flight  of this  ticket
  

The  Credit  Information  form  contains  the  credit  information  for  the  customer  as  identified  by  the  

customer  number.  

  

The  Credit  Information  view  displays  the  credit  card  information  used  by  the  customer  to  pay  for  their  

flight  and  is categorized  by  the  Customer  Number.  

  

Table 6 shows  the  fields  in  the  Credit  Information  form.  

Table  6 Credit  Information  Form  

 Name  Field  Name  Type Description  

Card  Type CardType  Dialog  list (Mastercard,  

Visa,  Diner’s  Club)  

The  type  of credit  card  

Credit  Card  Number  CreditCardNumber  Text The  number  of the  card  

Expiration  Date  ExpirationDate  Date  / time  The  date  the  card  expires  

Customer  Number  CreditCustomerNumber  Text The  customer  number  

associated  with  that  card  

Invoice  Number  InvoiceNumber  Text Number  used  to tie  tickets  

together
  

The  City  Codes  form  contains  the  list  of cities  supported  and  their  corresponding  three  letter  city  codes.  

  

The  City  Codes  view  displays  the  various  city  codes  and  is categorized  by  the  code.  

 

10 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



Table  7 shows  the  fields  in  the  City  Codes  form.  

Table  7 City  Codes  Form  

 Name  Field  Name  Type   Description  

City  City  Text The  city  

State  State  Text The  state  or providence  

Country  Country  Text The  country  

Code  Code  Text The  three  letter  code  to represent  the  city  specified  

All  City  Code  Info  AllCityCodeInfo  Text Hidden  

Save  Options  SaveOptions  Number  Hidden  - set to 0 so default  doc  will  not  save
  

The  Bill  Information  form  contains  information  for  billing  customers.  

  

The  Bill  Information  view  displays  the  ticket  information  used  to  bill  a customer  for  their  flight  and  is  

categorized  by  the  Customer  Number.  

  

Table  8 shows  the  fields  in  the  Credit  Information  form.  

Table  8 Credit  Information  Form  

 Name  Field  Name  Type Description  

Bill  Price  BillAmount  Number  The  amount  the  customer  owes  

Customer  Number  BillCustomer  Text The  customer  number  

Ticket  Invoice  Info  BillTicketInfo  Text The  ticket  to which  the  bill  is associated
  

The  viewCustomerFldNumber,  viewFlightFldNumber,  viewInvoiceFldNumber,  viewSeatFldNumber,  and  

viewStatementFldNumber  are  hidden  views  that  display  the  customer  number,  flight  number,  invoice  

number,  seat  number,  and  statement  number  documents.  When  a new  document  is created,  the  PostOpen  

event  uses  the  current  value  in  the  document  to  create  a unique  number.  Once  the  number  has  been  

created,  the  PostOpen  event  increments  the  value  and  stores  it in  the  document.  

  

In  addition  to  the  forms  and  views  created  within  their  application  database,  the  flights  company  also  

added  the  following  form  and  view  to  the  Names  and  Address  book  on  their  Lotus  Domino  server,  

shown  in Table 9. 

Table  9 Lotus  Domino  Forms  and  Views  

 Lotus  Domino  forms  Lotus  Domino  views  

Flight  Person  Flights  Customers
 

 

Chapter  2. Lotus(R) Domino(TM) environment Overview  11



The  Flight  Person  form  contains  the  name,  address  information,  and  customer  number  for  each  of the  

flights  customers.  The  flights  company  based  this  form  off  of  the  existing  Person  form  from  the  Address  

Book  design  and  modified  it to  better  fit  their  needs.  

  

The  Flight  Customers  view  displays  the  customer  information  and  is categorized  by  the  Customer  

Number.  

  

Table 10  shows  the  fields  in  the  Flight  Person  form.  

Table  10  Flight  Person  Form  

 Name  Field  Name  Type Description  

First  name  FirstName  Text The  customer’s  first  name  

Middle  initial  MiddleInitial  Text The  customer’s  middle  

initial  

Last  name  LastName  Text The  customer’s  last name  

Internet  Address  InternetAddress  Text The  customer’s  internet  

address  

Internet  Password  HTTPPassword  Text The  customer’s  password  

for accessing  the  flights  

company’s  website  

Street  Address  StreetAddress  Text The  customer’s  home  street  

address  

City  City  Text The  customer’s  city  

State/Province  State  Text The  customer’s  

state/province  

Zip/Postal  Code  Zip  Text The  customer’s  zip/postal  

code  

Country  Country  Text The  customer’s  country  

Home  Phone  PhoneNumber  Text The  customer’s  home  

phone  number  

Customer  Number  PersonalID  Number  The  customer  number
  

Lotus Domino agents 

Lotus  Domino  agents  are  design  elements  added  to  a Lotus  Domino  database  to  automate  tasks.  Agents  

can  be  initiated  by  a user  action  or  run on  a scheduled  basis.  Agents  are  commonly  used  to update  or  

create  documents,  or  to  access  data  from  the  Lotus  Domino  database  or  other  sources.  Lotus  Domino  

agents  can  be  written  in  Java,  LotusScript,  or  Formula  Language.  

  

The  creation  of agents  requires  Lotus  Domino  Designer.  When  you  create  an  agent,  you  specify  when  you  

want  it to  run, what  language  the  code  will  be  written  in,  and  what  documents  it runs under.  After  you  

have  written  the  code  and  compiled  it,  it is  automatically  scheduled  to  run at the  time  you  previously  

specified.  While  you  are  writing  code,  you  can  make  use  of the  built-in  debugging  capabilities  of Lotus  

Domino  Designer  to  help  you  debug  your  code.  

 

12 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



The  following  provides  detailed  information  about  the  Lotus  Domino  agents  written  for  the  Lotus  

Domino  flight  application:  

v   Check  Unique  City  Code  

This  LotusScript  agent  receives  a city  code  as  input  from  a Web browser  using  the  City  Codes  form.  

This  agent  uses  that  information  along  with  information  from  the  existing  City  Code  documents  

(created  from  the  City  Codes  form)  to  search  through  all  the  City  Code  documents.  If a match  is found,  

an  error  message  is  displayed  and  the  user  is notified  and  allowed  to create  a different  City  Code  

document.  If  no  match  is  found,  the  City  Code  document  will  be  created.  

v   Create  Random  Customer  Number,  Flight  Number,  and  Invoice  Number  - Web Only
These  LotusScript  agents  generate  a unique  customer  number,  flight  number,  or  invoice  number  for  

new  customers,  flights,  or  invoices  added  through  the  Lotus  Domino  Web interface.  

v   Delete  Button  City  Codes  and  List  of  Available  Flights
This  Java  agent  runs based  on  the  user  clicking  on  the  Delete  action  button  in  the  City  Code  or  Flight  

views.  It marks  the  selected  City  Code  or  Flight  document  as  deleted.  

v   Delete  Selected  City  Codes
This  Java  agent  runs on  a scheduled  basis.  It will  delete  any  city  codes  that  have  a CityCodeStatus  of 

Delete  from  the  City  Codes  documents.  It  will  also  delete  the  documents  from  List  Of  Available  Flights,  

Scheduled  Flights  and  Tickets  that  match  the  city  code.  

v   Delete  Selected  Flights
This  Java  agent  runs on  a scheduled  basis.  It will  delete  any  flights  that  have  a DisplayStatus  of  Delete  

from  the  List  Of  Available  Flights  documents.  It will  also  delete  the  documents  from  Scheduled  Flights  

and  Tickets  that  match  the  flight  number.  

v   Delete  Ticket  - Update  Available  Seats
This  Java  agent  runs based  on  the  user  clicking  an  action  button.  It will  increment  the  number  of 

available  seats  based  on  the  FlightByDate  and  Ticket  Class  selected  from  the  Scheduled  Flight  

document.  

v   Generate  Bill  

This  Java  agent  runs based  on  the  user  clicking  an  action  button.  It will  generate  the  billing  

information  for  the  customer  based  on  the  customer  number  selected.  

v   Generate  Price  and  Seat  Number
This  Java  agent  runs based  on  the  user  clicking  an  action  button.  It will  generate  the  price  information  

and  calculate  the  next  available  seat  for  a particular  flight  and  seat  class  based  on  the  FlightByDate  and  

Ticket  Class  selected.  

v   Populate  Scheduled  Flights
This  Java  agent  runs on  a scheduled  basis.  It creates  Scheduled  Flights  documents  with  information  

gathered  from  the  List  of Available  Flights  and  Airplane  Seat  Information  documents  where  the  display  

status  is “New”.  Each  flight  will  be  populated  for  one  month  from  today’s  date.  

v   Scheduled  Flight  Status
This  Java  agent  runs on  a scheduled  basis.  It will  change  the  status  of  flights  from  new  to  departed  

and  from  departed  to  arrived  based  on  the  Date  and  Time  of the  flight  gathered  from  the  List  of  

Available  Flights  and  Scheduled  Flights  documents.  

v   Update  Scheduled  Flights  

This  Java  agent  runs on  a scheduled  basis.  It checks  the  status  of  flights  and  if it finds  any  flights  that  

have  departed  from  the  previous  run of  the  agent,  it updates  the  tickets  associated  with  the  flight  by  

moving  them  to  the  Processed  Tickets  view. 

v   Update  Ticket  Status
This  Java  agent  runs on  a scheduled  basis.  It will  change  the  status  of  tickets  from  active  to  processed  

or  inactive  based  on  the  Date  and  Time  of the  flight  gathered  from  the  the  List  of  Available  Flights  and  

Scheduled  Flights  documents.  A ticket  becomes  inactive  if a flight  is cancelled.  Processed  tickets  are  

those  that  have  departed.

 

Chapter  2. Lotus(R) Domino(TM) environment Overview  13



The  source  code  for  the  Generate  Price  and  Seat  Number  and  the  Check  Unique  City  Code  agents  are  

shown  in  the  “Example:  Source  code  for  Lotus  Domino  agents”  on  page  16  section.  

Application details 

From  the  Lotus  Domino  Web interface,  the  flights  employee  can  perform  several  tasks.  These  tasks  fall  

under  four  main  categories  of  customer,  flights,  flight  reservations,  and  billing.  Each  of  these  categories  

contain  actions  that  the  employee  can  perform.  These  actions  are  as  follows:  

v   Customer
A  flights  employee  can  add  a customer  by  entering  the  customers  name,  password,  internet  address,  

and  home  address.  The  information  entered  along  with  the  generated  customer  number  is stored  in  the  

Lotus  Domino  LDAP  directory.  Once  created,  this  new  document  can  then  be  updated,  deleted,  or  

displayed.
v   Flights  

–   A  flights  employes  can  add  a flight  by  entering  departure  and  arrival  time,  length  of  flight,  

departure  and  arrival  city  code,  airplane  type,  type  of  food  available,  scheduled  flight  days,  and  first  

class  and  coach  price.  The  information  entered  is stored  in  the  List  Of  Available  Flights  form.  Once  

created,  this  new  document  can  then  be  displayed  or  deleted.  

–   A  flights  employee  can  also  add  a city  code  by  entering  city,  state,  country,  and  city  code.  The  

information  entered  is  stored  in  the  City  Codes  form  after  the  city  code  is checked  to  make  sure  it  is 

unique.  If it is unique,  the  document  is created.  Once  created,  the  document  can  be  displayed  or  

deleted.
v   Flight  Reservations

A flight  employee  can  book  a flight  by  entering  scheduled  flight  by  date,  class  of ticket  (coach/first  

class),  generated  price,  generated  seat  number,  paid  status,  customer  number,  and  passenger  

information.  The  information  entered  is  stored  in the  Ticket  form.  Once  created,  the  document  can  be  

displayed  in  the  following  states:  active,  processed,  or  inactive.
v    Billing

A  flight  employee  can  generate  a bill  for  a ticket  by  entering  credit  card  type,  number,  expiration  date,  

and  the  customer  number.  The  information  entered  is stored  in the  Credit  Information  form.  Once  

created,  the  document  can  be  displayed  or  updated.

Lotus(R)  Domino(TM)  environment key findings 

Following  is a list  of  key  findings  that  we  uncovered  while  creating  and  using  the  flights  scenario  Lotus  

Domino  environment.  

v   In several  flight  documents,  we  used  an  agent  to  generate  a unique  number.  This  agent  was  called  by  

the  WebQueryOpen  event.  The  agent  would  generate  the  number  when  a new  document  was  created,  

but  the  generated  number  would  not  save  when  the  document  was  saved.  The  following  excerpt  from  

Lotus  Domino  Designer  help  text  explains  how  the  WebQueryOpen  event  works  and  why  this  value  

was  not  being  saved:  

 

“WebQueryOpen  agents  run when  the  user  opens  a form  or  document,  but  do  not  run when  the  user  

saves  a document.  This  means  that  computed  fields  set  by  a WebQueryOpen  agent  are  not  saved  when  

the  user  submits  a document.  To make  sure  computed  fields  are  saved,  you  can  either  recalculate  them  

in  the  WebQuerySave  agent  or  set  the  form  property  ’Generate  HTML  for  all  fields’.”  

 

After  selecting  the  form  property  ’Generate  HTML  for  all  fields’,  the  computed  number  was  saved  

along  with  all  of  the  other  fields  in  the  document.  

  

v   To display  a view  after  submitting  a document  through  the  Web, instead  of  displaying  the  default  text:  

“Form  processed”,  do  the  following:  

–   Create  a hidden  text  field  in  the  form  that  is  computed  for  display  

 

14 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



–   Name  the  field  $$Return  

–   Use  a formula  similar  to  this  in the  field  value:
“[/”+@Subset(@DbName;-1)+“/YourViewName?OpenView&DblClkTarget=_self]”  

 

If your  view  name  has  spaces  in it,  use  a ’+’  instead  of  a space.  (i.e.  Your+View+Name)
If  your  view  name  is  categorized  under  other  views,  use  a double  ’\\’.  (i.e.  YourView\\ViewName)

v    We experienced  poor  performance  and  other  odd  behavior  when  we  had  the  view  property  ’Use  applet  

in  the  browser’  selected  under  the  For  Web Access  in  the  advanced  tab  of  the  view  properties.
v    In  the  Flight  Person  form,  the  form  property  ’Generate  HTML  for  all  fields’  needed  to  be  selected  to  

allow  the  data  to  be  maintained  in  the  form  when  entering  data  on  the  Web. Without  it selected,  when  

clicking  on  the  next  tab  in  the  customer  form,  the  data  in  the  other  tabs  would  not  be  maintained.  With  

it selected,  the  data  was  maintained  as  each  of  the  tabs  was  selected.  

  

v   We wanted  to  only  allow  unique  city  codes  to  be  saved  when  creating  a new  unique  city  code  from  the  

Web. 

 

The  following  excerpt  from  the  Lotus  Domino  Designer  help  text  explains  how  the  WebQuerySave  

event  works  when  checking  for  unique  values:  

 

“Simulating  CGI  programs  that  run on  user-supplied  data  by  programming  a WebQuerySave  event  

and  adding  a SaveOptions  field  with  a value  of  ’0’  to  the  form.  When  the  agent  runs, you  can  collect  

field  values  from  the  filled-out  form  without  generating  a new  Notes(TM) document.”  

 

Having  the  SaveOptions  set  to  0 will  keep  the  document  from  being  saved.  As  soon  as  this  value  is set  

to  1,  the  document  is  saved.  There  is no  need  to  perform  an  if check  on  SaveOptions  in  the  submit  

button.  Lotus  Domino  handles  the  saving  based  on  the  value  of the  SaveOptions  field.  

 

For  example,  here  is  the  solution  we  used:  

1.   In  the  Form,  create  a Submit  button  and  also  a hidden  field  called  SaveOptions  with  an  initial  value  

of 0 

2.   In  the  Submit  button,  code  the  following  formula:
@Command([FileSave]);
@Command([FileCloseWindow])  

3.   In  the  WebQuerySave  event,  enter  the  formula  that  runs an  agent  

4.   In  the  agent,  add  the  following  code:
If  (foundCityCode)  Then
Print  “<SCRIPT  LANGUAGE=JavaScript(TM)>”
Print  “alert(”“Duplicate  City  Code  found.  Please  enter  a new  city  code.”“)”
Print  “location.href  = ”“../../”  +  file  + “/City+Codes?OpenForm”“”
Print  “</SCRIPT>”  

Else  

’//  The  following  line  will  set  the  SaveOptions  on  the  document  as  1 which  will  cause  Notes  to 

save  the  document.
Set  item  = doc.ReplaceItemValue(“SaveOptions”,  1)
End  If

References 

v   Lotus  Domino  Release  5.0:  A  Developer’s  Handbook,  IBM  Redbook(R) SG24-5331-01  

v   IBM  Lotus  Domino  for  iSeries(TM) - OS/400(R) Web site
http://www.ibm.com/servers/eserver/iseries/domino/  

 

Chapter  2. Lotus(R) Domino(TM) environment Overview  15



v   IBM  Lotus  Domino  for  iSeries  (PartnerWorld(R) for  Developers)
http://www.as400.ibm.com/developer/domino/  

v   Lotus  Web site
http://www.lotus.com

Example: Source code for Lotus Domino agents 

This  section  contains  source  code  for  two  of  the  flight’s  application  Lotus  

(R) Domino  

(TM) agents.  The  first  

example  is Generate  Price  and  Seat  Number  agent  which  is written  in  Java(TM). This  agent  generates  price  

information  and  calculates  the  next  available  seat.  The  second  example  is Check  Unique  City  Code  agent  

which  is written  in LotusScript.  This  agent  verifies  that  the  city  code  is  unique.  

Example  1:  Generate  Price  and  Seat  Number  agent  

/////////////////////////////////////////////////////////////////////
/*
* This  Java  Agent  will  run  based  on  the  user  clicking  an  action  button.
*  It  will  generate  the  price  information  and  calculate  the  next  available  seat
*  based  on  the  FlightByDate  and  Ticket  Class  selected.
*
*  Scenario  Name:  TFC  Flights
*
*  Java  Version:  JDK  1.1.8
*/  

/////////////////////////////////////////////////////////////////////  

  

import  lotus.domino.*;  

  

public  class  JavaAgent  extends  AgentBase  { 

  

public  void  NotesMain()  { 

  

System.out.println(“Starting:  Generate  Price  and  Seat  Number  agent.”);  

  

try  

{
Session  session  =  getSession();
AgentContext  agentContext  =  session.getAgentContext();  

  

generateSeat(session,  agentContext);  

 

 

16 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



System.out.println(“Done:  Generate  Price  and  Seat  Number  agent.”);
}  

catch(Exception  e)  {
e.printStackTrace();
}  

  

} //  end  Notes(TM) main  

  

public  void  generateSeat(Session  session,  AgentContext  agentContext)
{
//  get  the  Flight  by  date  and  ticket  class  data  from  the  current  document
boolean  isFirstClass  = false;  //initially  set  this  flag  to false  (i.e.  coach)  

  

try
{
Database  db  = agentContext.getCurrentDatabase();
DocumentCollection  collection  =  agentContext.getUnprocessedDocuments();
if  (collection.getCount()  < 1)
{
//  there  was  a problem  accessing  the  current  doc,  quit  agent
System.out.println(“Error  with  the  current  document,  agent  ending.”);
return;
}  //  end  if
else
{
Document  doc  =  collection.getFirstDocument();
String  flightByDate  =  doc.getItemValueString(“FlightByDate”);
String  ticketClass  = doc.getItemValueString(“TicketClass”);
DocumentCollection  scheduledFlightDC  = db.search(“SELECT  ((Form  = \”Scheduled  Flights\“))  & 

((@Contains(ScheduledFlightByDate;  \”“  + flightByDate  + ”\“)))”);
if  (scheduledFlightDC.getCount()  <  1)
{
//  invalid  flight  by  date  specified  - no  matching  flight  by  date  found
System.out.println(“Invalid  flight  by  date  specified  - no  matching  flight  by  date  found,  agent  ending.”);
return;
}  //  end  if 

else
{
int  seatsRemaining  =  0;
int  seatNumber  =  0;
Document  scheduledFlightDoc  = scheduledFlightDC.getFirstDocument();  

  

if (ticketClass.equals(“First  Class”))
{
isFirstClass  =  true; 

 

 

Chapter  2. Lotus(R) Domino(TM) environment Overview  17



seatsRemaining  = scheduledFlightDoc.getItemValueInteger(“FirstClassSeatsAvailable”);  

  

//check  to  see  if a seat  is  still  available
if  (seatsRemaining  >=  1)
{
//  get  the  next  available  seat  number
seatNumber  = getNextAvailableSeat(db,  isFirstClass,  

scheduledFlightDoc.getItemValueString(“ScheduledAirplaneType”));
int  nextAvailableSeat  =  seatNumber  - seatsRemaining  + 1;  

  

String  strObj  = String.valueOf(nextAvailableSeat);
doc.replaceItemValue(“SeatNumber”,  strObj);  

  

int  price  = getPrice(flightByDate,  session,  agentContext,  isFirstClass);  //get  the  price  info  for  this  ticket
Integer  priceInt  =  new  Integer(price);
doc.replaceItemValue(“TicketPrice”,  priceInt);
doc.save(true,  true); 

  

//  a seat  is available
Integer  intObject  =  new  Integer(seatsRemaining-1);  //decrement  num  of  available  seats
scheduledFlightDoc.replaceItemValue(“FirstClassSeatsAvailable”,  intObject);
scheduledFlightDoc.save(true,  true);
}  //end  if seats  remaining  >=  1 

  

else
{ //if  seats  remaining  = 0, check  to  see  if any  tickets  have  been  deleted
String  deletedSeats  =  scheduledFlightDoc.getItemValueString(“DeletedFirstClassSeats”);
if  (deletedSeats  !=  null)
{ //  there’s  a cancelled  seat(s)  available,  book  the  seat
int  index  = deletedSeats.indexOf(“;”);
String  availSeat  = deletedSeats.substring(0,  index);
Integer  intObject  =  Integer.valueOf(availSeat);
//  update  the  deleted  seats,  removing  the  seat  that  was  just  booked  and  leaving  the  remaining  as is
scheduledFlightDoc.replaceItemValue(“DeletedFirstClassSeats”,  deletedSeats.substring(index  + 1));  

scheduledFlightDoc.save(true,  true);  

  

String  strObj  = String.valueOf(availSeat);
doc.replaceItemValue(“SeatNumber”,  strObj);  

 

 

18 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



int  price  = getPrice(flightByDate,  session,  agentContext,  isFirstClass);  //get  the  price  info  for  this  ticket
Integer  priceInt  = new  Integer(price);
doc.replaceItemValue(“TicketPrice”,  priceInt);
doc.save(true,  true);  

  

} //  end  if deletedSeats  !=  null
else
{
//  the  flight  is  full
System.out.println  (“<SCRIPT  LANGUAGE=JavaScript(TM)>”);
System.out.println  (“alert(\”No  more  seats  are  available  on  this  flight.  Please  select  a new  flight.\“)”);
System.out.println  (“</SCRIPT>”);
}  //  end  else  

  

} //  end  seats  remaining  = 0 

  

} //  end  if first  class  

else
{ //  the  ticket  is  for  a coach  seat
seatsRemaining  = scheduledFlightDoc.getItemValueInteger(“CoachSeatsAvailable”);  

  

//check  to  see  if a seat  is still  available
if  (seatsRemaining  >=  1)
{
//  get  the  next  available  seat  number
seatNumber  = getNextAvailableSeat(db,  isFirstClass,  

scheduledFlightDoc.getItemValueString(“ScheduledAirplaneType”));
int  nextAvailableSeat  = seatNumber  - seatsRemaining  + 1;  

  

String  strObj  =  String.valueOf(nextAvailableSeat);
doc.replaceItemValue(“SeatNumber”,  strObj);  

  

int  price  = getPrice(flightByDate,  session,  agentContext,  isFirstClass);  //get  the  price  info  for  this  ticket
Integer  priceInt  = new  Integer(price);
doc.replaceItemValue(“TicketPrice”,  priceInt);
doc.save(true,  true);  

  

//  a seat  is available
Integer  intObject  =  new  Integer(seatsRemaining-1);  //decrement  num  of  available  seats
scheduledFlightDoc.replaceItemValue(“CoachSeatsAvailable”,  intObject);
scheduledFlightDoc.save(true,  true);
}  //end  if seats  remaining  >=  1 

 

Chapter  2. Lotus(R) Domino(TM) environment Overview  19



else
{ //if  seats  remaining  = 0, check  to  see  if any  tickets  have  been  deleted
String  deletedSeats  =  scheduledFlightDoc.getItemValueString(“DeletedCoachSeats”);
if  (deletedSeats  !=  null)
{ //  there’s  a cancelled  seat(s)  available,  book  the  seat
int  index  = deletedSeats.indexOf(“;”);
String  availSeat  = deletedSeats.substring(0,  index);
Integer  intObject  =  Integer.valueOf(availSeat);
//  update  the  deleted  seats,  removing  the  seat  that  was  just  booked  and  leaving  the  remaining  as is
scheduledFlightDoc.replaceItemValue(“DeletedCoachSeats”,  deletedSeats.substring(index  + 1));  

scheduledFlightDoc.save(true,  true);  

  

String  strObj  = String.valueOf(availSeat);
doc.replaceItemValue(“SeatNumber”,  strObj);  

  

int  price  = getPrice(flightByDate,  session,  agentContext,  isFirstClass);  //get  the  price  info  for  this  ticket
Integer  priceInt  =  new  Integer(price);
doc.replaceItemValue(“TicketPrice”,  priceInt);
doc.save(true,  true); 

  

} //  end  if deletedSeats  !=  null
else
{
//  the  flight  is full
System.out.println  (“<SCRIPT  LANGUAGE=JavaScript>”);
System.out.println  (“alert(\”No  more  seats  are  available  on  this  flight.  Please  select  a new  flight.\“)”);
System.out.println  (“</SCRIPT>”);
}  

} //  end  seats  remaining  =  0
}  //  end  else  ticket  is coach
}
}  //  end  else
}  //  end  try  

  

catch  (NotesException  ne)  {
ne.printStackTrace();
}
catch  (Exception  e)  {
e.printStackTrace();
}  

  

} //  end  method  generateSeat  

 

 

20 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



public  int  getNextAvailableSeat(Database  db,  boolean  isFirstClass,  String  airplaneType)
{
//  go  to  Airplane  Seat  Info  view  and  find  the  matching  plane  type
int  seatNum  = 0;
try
{
DocumentCollection  seatDC  = db.search(“SELECT  ((Form  = \”Airplane  Seat  Information\“))  &  

((@Contains(SeatAirplaneType;  \”“  +  airplaneType  + ”\“)))”);
if  (seatDC.getCount()  < 1)
{
//  no  matching  airplane  type  found
System.out.println(“Invalid  airplane  model  specified  - no  matching  record  found,  agent  ending.”);
return  0;
}  //  end  if 

else
{
Document  seatDoc  =  seatDC.getFirstDocument();
if  (isFirstClass)
{
seatNum  = seatDoc.getItemValueInteger(“FirstClassSeats”);
}
else
{
seatNum  = seatDoc.getItemValueInteger(“CoachSeats”);
}  

  

} //  end  else
}  //  end  try
catch  (NotesException  ne)  {
ne.printStackTrace();
}
catch  (Exception  e)  {
e.printStackTrace();
}  

  

return  seatNum;
}  //  end  method  getNextAvailableSeat  

  

public  int  getPrice(String  flightByDate,  Session  session,  AgentContext  agentContext,  boolean  isFirstClass)
{
int  price  = 0;
try
{
//  calculate  flight  number
int  index  = flightByDate.lastIndexOf(“_”);
String  flightNumber  =  flightByDate.substring(0,  index);  

 

 

Chapter  2. Lotus(R) Domino(TM) environment Overview  21



Database  db  = agentContext.getCurrentDatabase();
DocumentCollection  flightDC  =  db.search(“SELECT  ((Form  = \”List  Of  Available  Flights\“))  &  

((@Contains(AvailableFlightNumber;  \”“  + flightNumber  + ”\“)))”);  

  

if (flightDC.getCount()  <  1)
{
//  there  was  a problem  accessing  the  current  doc,  quit  agent
System.out.println(“Error  with  the  current  document,  agent  ending.”);
return  0;
}  //  end  if
else
{
Document  doc  =  flightDC.getFirstDocument();
if  (isFirstClass)
{
price  = doc.getItemValueInteger(“FirstClassPrice”);
}
else
{
price  = doc.getItemValueInteger(“CoachPrice”);
} 

  

} //  end  else  

  

} //  end  try
catch  (NotesException  ne)  {
ne.printStackTrace();
}
catch  (Exception  e)  {
e.printStackTrace();
}  

  

return  price;  

} //  end  method  generateSeat
}  //  end  class  

  

Example  2:  Check  Unique  City  Code  Agent  

  

Sub  Initialize  

  

’//=======================================  ’//  This  Domino  agent  receives  a City  Code  as 

input  from  a browser  using  the  City  Codes  Form.

 

22 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



’//  This  agent  uses  that  information  along  with  information  from  the  existing  City  Code  documents  

(created  from  the  City  Codes  form).
’//  This  agent  uses  the  veiw  ’City  Codes’  to  search  through  all  the  City  Code  documents.  If a match  is 

found,  the  user  is 

’//  notified  and  allowed  to  create  a new  City  Code  document.  If  no  match  is found,  the  City  Code  

document  will  be  created.  

’//=======================================  

  

’//  Set  foundCityCode  variant
Dim  foundCityCode  As  Variant
foundCityCode  = False  

  

’//  Create  a notes  session
Dim  session  As  New  NotesSession  

  

Messagebox  “Running  agent  ” & session.CurrentAgent.Name  & “ in  database  ” & 

session.CurrentDatabase.Title  & “ as  ” &  session.CommonUserName  

  

’//  Open  this  database
Dim  db  As  NotesDatabase
Set  db  = session.CurrentDatabase
If  Not  ( db.IsOpen)  Then
Messagebox  “Database  ” &  session.CurrentDatabase.Title  & “ did  not  open.  Agent  ending.”
Exit  Sub
End  If 

  

’//  Set  doc  equal  to  the  current  session  transient  values  (i.e.  the  city  code  document  code  variables)
Dim  doc  As  NotesDocument
Set  doc  = session.DocumentContext
Dim  unid  As  String
Dim  file  As  String
file  = db.FileName  

  

’//  Set  the  view  to  the  City  Codes  view, to  locate  a City  Codes  document
Dim  CCview  As  NotesView  

Dim  CCdoc  As  NotesDocument  

Set  CCview  = db.GetView(“City  Codes”)
Set  CCdoc  = CCview.GetFirstDocument  

  

’//  Search  through  the  City  Code  documents  until  a match  is found  or  no  match  is found
While  ((Not  (CCdoc  Is  Nothing))  And  (Not  foundCityCode))
If  (CCdoc.Code(0)  = doc.Code(0))  Then

 

Chapter  2. Lotus(R) Domino(TM) environment Overview  23



unid  = CCdoc.UniversalID
foundCityCode  = True
Else
Set  CCdoc  = CCview.GetNextDocument  (CCdoc)
End  If
Wend 

  

’//  If match  found,  display  a message  and  allow  user  to  create  a new  City  Code  document
’//  If no  match  found,  allow  user  to  create  a new  City  Code  document  

If (foundCityCode)  Then
Print  “<SCRIPT  LANGUAGE=JavaScript>”
Print  “alert(”“Duplicate  City  Code  found.  Please  enter  a new  city  code.”“)”
Print  “location.href  =  ”“../../”  + file  +  “/City+Codes?OpenForm”“”
Print  “</SCRIPT>”  

Else  

On  Error  Goto  Errhandle
’//  Call  doc.Save(True,  True)
’//  Print  “<SCRIPT  LANGUAGE=JavaScript>”
’//  Print  “location.href  =  ”“../../”  + file  + “/City+Codes/doc?SaveDocument”“”
’//  Print  “alert(”“Saving.”“)”
’// Print  “location.href  =  ”“../../”  + file  + “/City+Codes?OpenView”“”
’//  Print  “</SCRIPT>”
Set item  = doc.ReplaceItemValue(“SaveOptions”,  1)
End  If 

  

Errhandle:  

’ Use  the  Err  function  to  return  the  error  number  and  

’ the  Error$  function  to  return  the  error  message.
Messagebox  “Error”  &  Str(Err)  & “:  ” & Error$
Exit  Sub  

  

End  Sub  

 

24 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



Chapter  3.  WebSphere(R) Application  Server  environment  

overview  

The  WebSphere  Application  Server  environment  was  set  up  during  phase  two  of  the  iSeries(TM) System  

Test flights  scenario  work.  During  phase  two,  the  flight  company’s  goal  was  to  allow  their  customers  to 

book  flights  from  their  Web site.  They  decided  to  build  this  interface  using  HTML  pages,  Java(TM) Server  

Pages  (JSPs),  JavaBeans(TM), enterprise  beans,  and  servlets.  This  interface  allowed  customers  to view  and  

book  flights  on-line,  retrieve  flight  information,  update  customer  information,  and  pay  bills  on-line.  

Application Model 

The  flights  application  uses  the  application  model  depicted  in  Figure  1.  In  this  model,  a browser  accesses  

the  Java  Server  Pages  (JSPs)  indirectly  through  a servlet  which  interacts  with  the  business  logic  using  

enterprise  beans.  The  enterprise  beans  extract  the  needed  information  from  the  Lotus(R) Domino(TM) 

database.  After  receiving  the  client  request,  the  servlet  performs  any  necessary  computation  and  creates  

the  JavaBeans.  The  JSP  is  invoked  with  the  appropriate  JavaBeans.  The  JSP  extracts  the  information  it 

requires  from  the  JavaBeans  and  merges  them  with  the  HTML  page.  The  browser  then  interprets  and  

renders  the  HTML.  

Figure  1 Flights  Application  Model  

  

 

 

© Copyright  IBM Corp. 2005 25



26 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



Chapter  4.  Application  Process  Flow  

There  are  a number  of  HTML  and  JSP  pages  used  within  the  flights  application.  Table 1 contains  the  list  

of  HTML  pages  and  Table  2 contains  the  list  of JSPs.  The  application  flow  is displayed  in  Figure  2. 

Table  1 Flights  Application  HTML  pages  

 HTML  

page  

Functions  

homePage  Allows  the  customer  to choose  between  displaying  the  following  information:  

v   flight  

v   customer  

v   itinerary  

index  Brings  together  the  menu,  top,  and  homePage  frames  

logOn  Allows  customer  to log  on  

menu  Provides  menu  options  on  the  left  side  

top  Provides  top  of page  which  contains  the  logo
  

Table  2 Flights  Application  JSPs  

 JSP  Functions  

customerInformation  Displays  information  about  the  customer  

logOff  Allows  customer  to log  off  

customerInformationUpdate  Allows  customer  to update  their  information  

customerInformationConfirmation  Allows  customer  to verify  their  updated  information  

flightsSearch  Provides  list of criteria  for searching  for flights  

flightsList  Provides  a list of flights  that  match  the  search  criteria  

flightsDetails  Provides  the detailed  flight  information  for  a specific  flight  

passengerInformation  Allows  customer  to enter  passenger  information  

passengerInformationVerification  Allows  customer  to verify  passenger  information  

paymentInformation  Allows  customer  to enter  payment  information  

paymentInformationVerification  Allows  customer  to verify  payment  information  

reservationCancel  Allows  customer  to cancel  the  reservation  

bookConfirmation  Confirms  the booking  

itineraryList  Provides  the list  of itineraries  for  the customer  

itineraryDetails  Provides  the detailed  itinerary  information  for  a specific  itinerary
  

Figure  2 Flights  Application  Flow  

 

© Copyright  IBM Corp. 2005 27



Development Environment 

The  following  products  were  used  during  the  development  of this  application:  

v   WebSphere  Studio  

v   Visual  Age  for  Java  Enterprise  Edition  

v   WebSphere  Studio  Application  Developer

 

28 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



The  JSPs  were  initially  developed  using  WebSphere  Studio  and  the  enterprise  beans  were  developed  

using  Visual  Age  for  Java.  In  the  middle  of development,  we  migrated  to  WebSphere  Application  Server  

Version  4.0.  This  change  prompted  us  to  move  our  development  of the  JSPs  and  enterprise  beans  to  

WebSphere  Studio  Application  Developer.  

WebSphere(R)  Application Server environment application flow 

Application Details 

This  section  provides  details  on  the  flights  application  model  including  the  use  of  servlets,  JavaBeans(TM), 

enterprise  beans,  and  JSPs.  There  is one  servlet  (FlightsServlet)  that  acts  as  the  main  controller.  All  

requests  are  sent  to  this  servlet,  which  then  performs  the  requested  task.  The  servlet  accesses  a session  

bean  (CustomerFlight)  to  accomplish  the  majority  of  its  work.  The  CustomerFlight  session  bean  uses  

entity  beans  (Customer,  Flight,  and  Ticket)  to  accomplish  the  desired  task.  

  

Figure  1 illustrates  the  relationship  between  the  servlet  and  enterprise  beans.  

Figure  1 Application  relationship  

   

Design Considerations 

The  initial  plan  was  to  use  a Lotus(R) Domino(TM) JDBC  Driver  within  our  enterprise  beans  to  access  the  

Lotus  Domino  databases.  However,  in WebSphere  Application  Server,  you  cannot  create  a datasource  that  

uses  the  Lotus  Domino  JDBC  driver  on  the  iSeries(TM). Since  the  iSeries  has  not  yet  ported  the  Lotus  

Domino  JDBC  driver,  we  also  could  not  implement  our  own  connection  pooling.  A Lotus  Domino  JDBC  

 

Chapter  4. Application  Process Flow 29



driver  for  iSeries  is  scheduled  to  be  available  in  a future  release.  Because  of  the  limitations  listed  above,  

we  used  the  Lotus  Domino  APIs  to  access  the  Lotus  Domino  database  within  our  entity  beans.  

  

When  the  application  was  designed,  the  decision  was  made  to use  bean-managed  persistence  entity  

beans.  We needed  to  use  bean-managed  entity  beans  because  the  entity  beans  would  be  using  Lotus  

Domino  APIs  to  access  Lotus  Domino  databases.  

Flights Servlet 

The  flights  application  uses  the  FlightsServlet  to  control  the  flow  of the  application.  The  FlightsServlet  is 

used  to  provide  the  Flights  customers  with  the  capability  to  view  and  update  customer  data,  view  

scheduled  flight  data,  and  book  flights  using  a Web browser.  The  JSP  pages  called  by  this  servlet  are  used  

for  the  presentation  of  data.  They  perform  a minimal  amount  of  processing  work.  The  majority  of  the  

processing  work  is  done  by  the  FlightsServlet  through  the  following  methods:  

v   doPost  

–   Creates  a session  between  the  Web server  and  the  browser  making  the  request.  

–   Examines  each  request  and  routes  it to  the  appropriate  method  within  the  servlet  based  on  the  

jspRequest  value.
v    doGet  

–   Creates  a session  between  the  Web server  and  the  browser  making  the  request.  

–   Sets  the  jspRequest  value  accordingly  and  calls  doPost().
v    errorHandle  

–   Handles  any  exceptions  encountered  by  the  servlet  or  enterprise  beans.  

–   Provides  a message  to  the  user  on  the  error  encountered.
v    init  

–   Called  by  the  server  immediately  after  the  server  constructs  the  servlet’s  instance.  

–   Creates  and  looks  up  the  CustomerFlight  home  object.
v    bookFlight  

–   Uses  the  CustomerFlight  enterprise  bean  to  book  a flight  for  the  specified  customer.  

–   Displays  the  passengerInformation.jsp.
v   cancelBookFlight  

–   Uses  the  CustomerFlight  enterprise  bean  to  cancel  a flight  that  was  being  booked  for  a specific  

customer.  

–   Displays  the  reservationCancel.jsp.
v   confirmFlight  

–   Uses  the  CustomerFlight  enterprise  bean  to  confirm  and  make  payment  for  a booked  flight.  

–   Displays  the  bookConfirmation.jsp.
v   displayCustomer  

–   Uses  the  CustomerFlight  enterprise  bean  to  obtain  the  information  for  the  specified  customer.  

–   Displays  the  customerInformation.jsp.
v   displayJSP  

–   Calls  a JSP  page.  All  the  data  that  the  JSP  needs  will  be  in  the  session.
v    findTickets  

–   Uses  the  CustomerFlight  enterprise  bean  to  obtain  a list  of  tickets.  

–   Displays  the  itineraryList.jsp.
v   flightDetail  

 

30 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



–   Uses  the  CustomerFlight  enterprise  bean  to  obtain  the  detailed  flight  information.  

–   Displays  the  flightsDetails.jsp.
v   flightList  

–   Uses  the  CustomerFlight  enterprise  bean  to  obtain  a list  of all  of  the  city  codes.  

–   Displays  the  flightSearch.jsp.
v   getCustomerFlight  

–   Creates  a CustomerFlightHome  object  by  looking  up  the  CustomerFlightHome  class.
v    getInitialContext  

–   Obtains  an  initial  context  for  the  specified  URL.
v    itineraryDetails  

–   Uses  the  CustomerFlight  enterprise  bean  to  obtain  the  details  of  the  itinerary  and  flight  based  on  the  

itinerary  number  and  flight  by  date.  

–   Displays  the  itineraryDetails.jsp.
v   selectFlight  

–   Uses  the  CustomerFlight  enterprise  bean  to  obtain  a list  of all  flights  based  on  the  search  criteria  

provided.  

–   Displays  the  flightsList.jsp.
v   updateCustomer  

–   Uses  the  CustomerFlight  enterprise  bean  to  update  the  customer  data.  

–   Displays  the  customerInfoConfirmation.jsp.

Enterprise beans 

Within  the  flights  application,  FlightsServlet  acts  as  the  main  controller.  All  requests  are  sent  to  this  

servlet  which  then  does  the  requested  task.  The  servlet  accesses  a session  bean  (CustomerFlight)  to 

accomplish  the  majority  of  its  work.  The  CustomerFlight  session  bean  uses  entity  beans  (Customer,  Flight,  

and  Ticket)  to  accomplish  the  desired  task.  

CustomerFlight enterprise bean 

The  CustomerFlight  enterprise  bean  is  a stateless  session  bean.  It  supplies  methods  that  accomplish  tasks  

that  would  be  performed  by  a customer,  for  example:  

v   View  or  update  customer  information  

v   Obtain  a list  of  available  flights  

v   View  itinerary  details  

v   Book  a flight  

v   Make  a payment  for  a booked  flight  

The  methods  in the  CustomerFlight  session  bean  are  described  here:  

v   The  bookFlight()  method  returns  a TicketInfo  object  that  contains  the  information  for  the  ticket  that  

was  booked.  The  following  tasks  are  performed:  

1.   It checks  to  see  if an  invoice  number  is specified.  If it is not  specified,  it will  create  a new  ticket  

with  a new  invoice  number.  If  the  invoice  number  is specified,  it  will  create  a new  ticket  using  the  

specified  invoice  number.  The  tickets  are  created  using  the  Ticket  enterprise  bean.  

2.   The  getData()  method  is  invoked  in  the  Ticket  enterprise  bean  and  the  data  is stored  in  a TicketInfo  

object.  

3.   The  TicketInfo  object  is  returned.
v    The  cancelBookFlight()  method  cancels  the  tickets  for  the  specified  invoice  number.  The  following  tasks  

are  performed:  

 

Chapter  4. Application  Process Flow 31



1.   It uses  the  findByInvoiceNumber()  method  within  the  Ticket  enterprise  bean  to  obtain  a list  of 

tickets  with  the  specified  invoice  number.  

2.   The  list  of  tickets  is  then  processed  through  and  the  remove()  method  is called  on  each  Ticket  to  

remove  the  documents  from  the  Lotus  Domino  database.
v    The  getAllCityCodes()  method  obtains  a list  of all  the  city  codes  available  in the  City  Codes  document.  

The  following  tasks  are  performed:  

1.   It selects  all  city  codes  from  the  City  Codes  form  and  the  information  is stored  in a FlightInfo  

object.  

2.   The  FlightInfo  object  is returned.
v    The  getAvailableFlights()  method  returns  a FlightInfo  object  that  contains  a list  of  all  the  flights  that  

match  the  specified  search  criteria.  The  following  tasks  are  performed:  

1.   The  parameter  values  are  checked  and  a find  by  is  performed  based  on  the  search  criteria  using  the  

Flight  enterprise  bean.  

2.   The  getData()  method  in  the  Flight  enterprise  bean  is invoked  and  the  data  is stored  in  a FlightInfo  

object.  

3.   The  FlightInfo  object  is returned.
v    The  getConnection()  method  returns  a connection  to the  Lotus  Domino  database  using  Lotus  Domino  

APIs.  The  following  tasks  are  performed:  

1.   The  environment  variables  are  used  to  create  the  connection.  

2.   A new  session  is created  to  the  Lotus  Domino  database.  

3.   The  database  object  is  created  and  returned.
v    The  getCustomerDetails()  method  returns  a CustomerInfo  object  that  contains  the  customer  information  

for  the  specified  customer  number.  The  following  tasks  are  performed:  

1.   A find  by  primary  key  is  executed  based  on  the  customer  number  using  the  Customer  enterprise  

bean.  

2.   The  getData()  method  is  invoked  in  the  Customer  enterprise  bean  and  the  data  is returned  in  a 

CustomerInfo  object.
v    The  getFlightDetails()  method  returns  a FlightInfo  object  that  contains  the  flight  information  for  the  

specified  flight  by  date.  The  following  tasks  are  performed:  

1.   A find  by  primary  key  is  executed  based  on  the  flight  by  date  using  the  Flight  enterprise  bean.  

2.   The  getData()  method  is  invoked  in  the  Flight  enterprise  bean  and  the  data  is returned  in  a 

FlightInfo  object.
v    The  getInitialContext()  method  returns  the  initial  context  for  creating  the  entity  beans.  

v   The  getTicketList()  method  returns  a TicketInfo  object  that  contains  a list  of  all  the  tickets  based  on  a 

customer  number  or  an  invoice  number.  The  following  tasks  are  performed:  

1.   A find  by  customer  number  or  a find  by  invoice  number  is  executed  based  on  the  parameter  passed  

in  using  the  Ticket  enterprise  bean.  

2.   The  getData()  method  is  invoked  in  the  Ticket  enterprise  bean  and  the  data  is stored  in  a vector.  

3.   The  vector  is  stored  in  a TicketInfo  object.  

4.   The  TicketInfo  object  is returned.
v    The  makePayment()  method  returns  a TicketInfo  object.  This  method  is used  to  make  a payment  for  a 

booked  flight.  It will  update  all  of  the  tickets  with  the  same  invoice  number.  The  following  tasks  are  

performed:  

1.   A find  by  invoice  number  is  executed  based  on  the  invoice  number  using  the  Ticket  enterprise  

bean.  

2.   The  payTicket()  method  is invoked  in the  Ticket  enterprise  bean.  

3.   The  getData()  method  is  invoked  in  the  Ticket  enterprise  bean  and  the  data  is returned  in  a 

TicketInfo  object.

 

32 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



v   The  setCustomerHome()  method  creates  a CustomerHome  object  by  looking  up  the  CustomerHome  

class.  

v   The  setFlightHome()  method  creates  a FlightHome  object  by  looking  up  the  FlightHome  class.  

v   The  setTicketHome()  method  creates  a TicketHome  object  by  looking  up  the  TicketHome  class.  

v   The  updateCustomer()  method  updates  a customer’s  personal  information.  The  following  tasks  are  

performed:  

1.   A find  by  primary  key  is  executed  based  on  the  customer  number  using  the  Customer  enterprise  

bean.  

2.   The  following  methods  are  invoked  in the  Customer  enterprise  bean:  

–   setCustomerFirstName()  method  

–   setCustomerMiddleInitial()  method  

–   setCustomerLastName()  method  

–   setCustomerAddress()  method  

–   setCustomerCity()  method  

–   setCustomerState()  method  

–   setCustomerZipCode()  method  

–   setCustomerCountry()  method  

–   setCustomerPhoneNumber()  method  

–   setCustomerInernetAddress()  method  

–   getData()  method  which  stores  the  data  in  a CustomerInfo  object
3.   The  CustomerInfo  object  is  returned.

Customer bean 

The  Customer  enterprise  bean  is an  entity  bean  used  to  represent  a flights  customer.  It supplies  methods  

that  accomplish  tasks  that  are  performed  on  customer  data,  for  example:  

v   Viewing  customer  information  

v   Updating  customer  information  

The  Customer  enterprise  bean  uses  bean-managed  persistence  and  is mapped  to  the  FlightPerson  form  in  

the  names.nsf  Lotus  Domino  database.  The  layout  for  the  FlightPerson  form  is shown  in  Table  10  in  the  

“Lotus(R) Domino(TM) environment  workflow”  on  page  6 section.
The  Customer  enterprise  bean  contains  one  ejbFindBy  method.  This  finder  method  is defined  in the  home  

interface.  Table 1 contains  the  finder  method.  

Table  1 Customer  enterprise  bean  Finder  Methods  

 Method  Name  Select  Statement  Description  

ejbFindByPrimaryKey()  “SELECT  (Form  = \”FlightPerson\“)  

& (PersonalID  = ” + 

customerNumber.trim()  +“)”  

Finds  customers  based  on customer  

number

  

The  getter  and  setter  methods,  and  the  values  they  return  or  set,  are  listed  in Table  2. 

Table  2 Customer  Getter  and  Setter  Methods  

 Getter  Setter  Form  Field  Name  Data  Type 

getCustomerAddress()  setCustomerAddress()  FlightPerson:  StreetAddress  String  

getCustomerCity()  setCustomerCity()  FlightPerson:  City  String  

getCustomerCountry()  setCustomerCountry()  FlightPerson:  Country  String  

 

Chapter  4. Application  Process Flow 33



getCustomerFirstName()  setCustomerFirstName()  FlightPerson:  FirstName  String  

getCustomerInternetAddress()  setCustomerInternetAddress()  FlightPerson:  InternetAddress  String  

getCustomerLastName()  setCustomerLastName()  FlightPerson:  LastName  String  

getCustomerMiddleInitial()  setCustomerMiddleInitial()  FlightPerson:  MiddleInitial  String  

getCustomerNumber()  setCustomerNumber()  FlightPerson:  PersonalID  String  

getCustomerPhoneNumber()  setCustomerPhoneNumber()  FlightPerson:  PhoneNumber  String  

getCustomerState()  setCustomerState()  FlightPerson:  State  String  

getCustomerZipCode()  setCustomerZipCode()  FlightPerson:  Zip String  

getData()    CustomerInfo  JavaBean  

containing  the  values  within  

the enterprise  bean  

CustomerInfo

  

The  ejbLoad()  method  is used  to retrieve  the  data  from  a specific  FlightPerson  document  and  place  it  in 

the  bean  properties.  

  

The  ejbStore()  method  is  used  to  update  the  data  in  a specific  FlightPerson  document  from  the  bean  

properties.  

CustomerInfo 

CustomerInfo  is  a JavaBean  used  to  store  the  customer  information.  It  is passed  to  the  appropriate  JSP,  

which,  in  turn,  uses  it  to  retrieve  the  specific  customer  data.  

  

The  getter  and  setter  methods,  and  the  values  that  they  return  or  set,  are  listed  in  Table 3. 

Table  3 CustomerInfo  Getter  and  Setter  Methods  

 Getter  Setter  Value  Data  type  

getCustomerAddress()  setCustomerAddress()  Customer  Address  String  

getCustomerCity()  setCustomerCity()  Customer  City  String  

getCustomerCountry()  setCustomerCountry()  Customer  Country  String  

getCustomerFirstName()  setCustomerFirstName()  Customer  First  Name  String  

getCustomerInternetAddress()  setCustomerInternetAddress()  Customer  Internet  Address  String  

getCustomerLastName()  setCustomerLastName()  Customer  Last  Name  String  

getCustomerMiddleInitial()  setCustomerMiddleInitial()  Customer  Middle  Initial  String  

getCustomerPhoneNumber()  setCustomerPhoneNumber()  Customer  Phone  Number  String  

getCustomerState()  setCustomerState()  Customer  State  String  

getCustomerZipCode()  setCustomerZipCode()  Customer  Zip  Code  String
  

The  source  code  used  within  the  Customer  and  CustomerInfo  beans  is shown  in  the  “Example:  Customer  

bean”  on  page  57  section.  

Flight bean 

The  Flight  enterprise  bean  is an  entity  bean  used  to  represent  a flight.  It  supplies  methods  that  

accomplish  tasks  that  are  performed  on  flight  data,  for  example:  

 

34 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



v   Obtaining  a list  of  available  flights  based  on  specific  search  criteria  

v   Obtaining  specific  flight  information  based  on  the  flight  by  date  value  

The  Flight  enterprise  bean  uses  bean-managed  persistence  and  is mapped  to  the  List  Of  Available  Flights  

and  the  Scheduled  Flights  forms  in the  flights.nsf  Lotus  Domino  database.  The  layout  for  the  List  of  

Available  Flights  form  is  shown  in  Table  2 and  the  Scheduled  Flights  form  is shown  in  Table  3 in the  

“Lotus(R) Domino(TM) environment  workflow”  on  page  6 section.  

The  Flight  enterprise  bean  contains  several  ejbFindBy  methods.  These  finder  methods  are  defined  in the  

home  interface.  Table  4 contains  the  finder  methods  where  the  method  name  is preceded  by  ejbFindBy.  

Table  4 Flight  Finder  Methods  

 Method  Name  Select  Statement  Description  

ArrivalCity()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  city  

ArrivalCityArrivalDate()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  city  

and  the arrival  date  

ArrivalCityArrivalDate
DepartureCity()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  city,  

arrival  date,  and  departure  city  

 

Chapter  4. Application  Process Flow 35



ArrivalCityArrivalDate
DepartureCityDepartureDate()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  city,  

arrival  date,  departure  city,  and  

departure  date  

ArrivalCityArrivalDate
DepartureCitySeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  city,  

arrival  date,  departure  city,  departure  

date,  and  seat  type  

ArrivalCityArrivalDate
DepartureDate()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  city,  

arrival  date,  and  departure  date  

 

36 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



ArrivalCityArrivalDate
DepartureDateSeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  city,  

arrival  date,  departure  date,  and  seat  

type  

ArrivalCityArrivalDate
SeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  city,  

arrival  date,  and  seat  type  

 

Chapter  4. Application  Process Flow 37



ArrivalCityDepartureCity()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  city  

and  departure  city  

ArrivalCityDepartureCity
DepartureDate()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  city,  

departure  city,  and  departure  date  

ArrivalCityDepartureCity
DepartureDateSeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  city,  

departure  city,  departure  date,  and  

seat  type  

 

38 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



ArrivalCityDepartureCity
SeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  city,  

departure  city,  and  seat  type  

ArrivalCityDepartureDate()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  city  

and  departure  date  

ArrivalCityDepartureDate
SeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  city,  

departure  date,  and  seat  type  

 

Chapter  4. Application  Process Flow 39



ArrivalCitySeatType()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  city  

and  seat  type  

ArrivalDate()  “SELECT  (Form  = \”Scheduled  

Flights\“)  & (ScheduledArrivalDate  = 

[” + aArrivalDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  

date  

ArrivalDateDepartureCity()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  

date  and  departure  city  

ArrivalDateDepartureCity
DepartureDate()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  

date,  departure  city,  and  departure  

date  

 

40 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



ArrivalDateDepartureCity
DepartureDateSeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  

date,  departure  city,  departure  date,  

and  seat  type  

ArrivalDateDepartureCity
SeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  

date,  departure  city,  and  seat  type  

ArrivalDateDepartureDate()  “SELECT  (Form  = \”Scheduled  

Flights\“)  & (ScheduledArrivalDate  = 

[” + aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  arrival  

date  and  departure  date  

 

Chapter  4. Application  Process Flow 41



ArrivalDateDepartureDate
SeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  

date,  departure  date,  and  seat  type  

ArrivalDateSeatType()  v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & (ScheduledArrivalDate  = 

[” + aArrivalDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & (ScheduledArrivalDate  = 

[” + aArrivalDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  arrival  

date  and  seat  type  

DepartureCity()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  +”\“)  & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  departure  

city  

 

42 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



DepartureCityDepartureDate()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

 

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  departure  

city  and  departure  date  

DepartureCityDepartureDate
SeatType()  

“SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  departure  

city,  departure  date,  and  seat  type  

DepartureCitySeatType()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  departure  

city  and  seat  type  

 

Chapter  4. Application  Process Flow 43



DepartureDate()  “SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & (Status  = 

\”New\“)  & ((CoachSeatsAvailable  > 

0) | (FirstClassSeatsAvailable>0))”  

Finds  flights  based  on the  departure  

date  

DepartureDateSeatType()  v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on the  departure  

date  and  seat  type  

PrimaryKey()  “SELECT  (Form  = \”Scheduled  

Flights\“)  & (ScheduledFlightByDate  

= \”“+  tempScheduledFlightByDate  

+”\“)”  

 

“SELECT  ((Form  = \”List  Of 

Available  Flights\“))  & 

(AvailableFlightNumber  = \”“  + 

flightNum  + ”\“)”  

Finds  flights  based  on the  scheduled  

flight  by date  

 

44 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



SearchCriteria()  “SELECT  (Form  = \”List  Of 

Available  Flights\“)  & 

(ArrivalCityCode  = \”“  + 

aArrivalCity  + ”\“)  & 

(DepartureCityCode  = \”“  + 

aDepartureCity  + ”\“)”  

v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(CoachSeatsAvailable  > 0) & (Status  = 

\”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & 

(ScheduledFlightNumber  = \”“+  

flightNum  + ”\“)  & 

(ScheduledArrivalDate  = [” + 

aArrivalDate  + “]) & 

(ScheduledDepartureDate  = [” + 

aDepartureDate  + “]) & 

(FirstClassSeatsAvailable  > 0) & 

(Status  = \”New\“)”  

Finds  flights  based  on all search  

criteria  

SeatType()  v   Coach

“SELECT  (Form  = \”Scheduled  

Flights\“)  & (CoachSeatsAvailable  > 

0) & (Status  = \”New\“)”  

v   First  Class

“SELECT  (Form  = \”Scheduled  

Flights\“)  & (FirstClassSeatsAvailable  

> 0) & (Status  = \”New\“)”  

Finds  flights  based  on the  seat  type

  

The  ejbLoad()  method  is  used  to  retrieve  the  data  based  on  the  scheduled  flight  by  date  from  a Scheduled  

Flights  document  and  the  corresponding  List  Of  Available  Flights  document  and  places  it in  the  bean  

properties.  

  

The  getter  and  setter  methods,  and  the  values  they  return  or  set,  are  listed  in Table  5. 

Table  5 Flight  Getter  and  Setter  Methods  

 Getter  Setter  Form  Field  Name  Data  Type 

getArrivalCityCode()  setArrivalCityCode()  List  Of Available  Flights:  

DisplayOnlyArrival  

String  

getArrivalDate()  setArrivalDate()  Scheduled  Flights:  

ScheduledArrivalDate  

String  

 

Chapter  4. Application  Process Flow 45



getArrivalTime()  setArrivalTime()  List  Of Available  Flights:  

ArrivalTime  

String  

getCoachPrice()  setCoachPrice()  List  Of Available  Flights:  

CoachPrice  

String  

getCoachSeatsAvailable()  setCoachSeatsAvailable()  Scheduled  Flights:  

CoachSeatsAvailable  

String  

getData()    FlightInfo  JavaBean  

containing  the  values  within  

the enterprise  bean  bean  

FlightInfo  

getDepartureCityCode()  setDepartureCityCode()  List  Of Available  Flights:  

DisplayOnlyDeparture  

String  

getDepartureDate()  setDepartureDate()  Scheduled  Flights:  

ScheduledDepartureDate  

String  

getDepartureTime()  setDepartureTime()  List  Of Available  Flights:  

DepartureTime  

String  

getFirstClassPrice()  setFirstClassPrice()  List  Of Available  Flights:  

FirstClassPrice  

String  

getFirstClassSeatsAvailable()  setFirstClassSeatsAvailable()  Scheduled  Flights:  

FirstClassSeatsAvailable  

String  

getFood()  setFood()  List  Of Available  Flights:  

Food  

String  

getListAirplaneType()  setListAirplaneType()  List  Of Available  Flights:  

ListAirplaneType  

String  

getScheduledFlightByDate()  setScheduledFlightByDate()  Scheduled  Flights:  

ScheduledFlightByDate  

String

  

FlightInfo 

FlightInfo  is a JavaBean  used  to  store  the  flight  information.  It is passed  to  the  appropriate  JSP,  which,  in  

turn,  uses  it to  retrieve  the  specific  flight  data.  

  

The  getter  and  setter  methods,  and  the  values  that  they  return  or  set,  are  listed  in  Table 6. 

Table  6 FlightInfo  Getter  and  Setter  Methods  

 Getter  Setter  Value  Data  type  

getArrivalCityCode()  setArrivalCityCode()  Flight  Arrival  City  Code  String  

getArrivalDate()  setArrivalDate()  Flight  Arrival  Date  String  

getArrivalTime()  setArrivalTime()  Flight  Arrival  Time  String  

getCityCode()  setCityCode()  Flight  City  Code  String  

getCoachPrice()  setCoachPrice()  Flight  Coach  Price  String  

getCoachSeatsAvailable()  setCoachSeatsAvailable()  Flight  Coach  Seats  Available String  

getDepartureCityCode()  setDepartureCityCode()  Flight  Departure  City  Code  String  

getDepartureDate()  setDepartureDate()  Flight  Departure  Date  String  

getDepartureTime()  setDepartureTime()  Flight  Departure  Time  String  

getFirstClassPrice()  setFirstClassPrice()  Flight  First  Class  Price  String  

getFirstClassSeatsAvailable()  setFirstClassSeatsAvailable()  Flight  First  Class  Seats  

Available  

String  

 

46 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



getFlightList()  setFlightList()  Flight  List Vector  

getFood()  setFood()  Flight  Food  String  

getListAirplaneType()  setListAirplaneType()  Flight  Airplane  Type String  

getScheduledFlightByDate()  setScheduledFlightByDate()  Flight  Scheduled  Flight  By 

Date  

String

  

Ticket  bean 

The  Ticket  enterprise  bean  is an  entity  bean  used  to represent  a ticket.  It  supplies  methods  that  

accomplish  tasks  that  are  performed  on  ticket  data,  for  example:  

v   Creating  a new  ticket  for  a flight  which  has  been  booked  by  a customer  

v   Obtaining  a list  of  tickets  for  a specified  customer  or  itinerary  number  

v   Marking  the  ticket  as  paid  and  saving  the  credit  card  information  

The  Ticket  enterprise  bean  uses  bean-managed  persistence  and  is mapped  to  the  Ticket  Information  and  

Credit  Information  forms  in  the  flights.nsf  Lotus  Domino  database.  The  layout  for  the  Ticket  Information  

form  is shown  in  Table  5 and  the  Credit  Information  form  is shown  in  Table 6 in  the  “Lotus(R) 

Domino(TM) environment  workflow”  on  page  6 section.  

  

The  Ticket  enterprise  bean  contains  several  ejbFindBy  methods.  These  finder  methods  are  defined  in the  

home  interface.  Table  7 contains  the  finder  methods.  

Table  7 Ticket  Finder  Methods  

 Method  Name  Select  Statement  Description  

ejbFindByCustomerNumber()  “SELECT  ((Form=\”Ticket  

Information\“))  & 

(TicketCustomerNumber  = \”“  + 

aCustomerNumber  + ”\“)”  

Finds  tickets  based  on the customer  

number  

ejbFindByInvoiceNumber()  “SELECT  ((Form=\”Ticket  

Information\“))  & (InvoiceNumber  = 

\”“  + aInvoiceNumber  + ”\“)”  

Finds  tickets  based  on the invoice  

number  

ejbFindByPrimaryKey()  “SELECT  ((Form=\”Ticket  

Information\“))  & (FlightByDate  = 

\”“  + tk.flightByDate  + ”\“)  & 

(SeatNumber  = \”“  + tk.seatNumber  

+”\“)”  

 

“SELECT  ((Form=\”Credit  

Information\“))  & (InvoiceNumber  = 

\”“  + invoiceNumber  + ”\“)”  

Finds  tickets  based  on flight  by date  

and  seat  number

  

The  ejbLoad()  method  is  used  to  retrieve  the  data  based  on  the  flight  by  date  and  seat  number  from  a 

Ticket  Information  document  and  the  corresponding  Credit  Information  document  and  places  it  in  the  

bean  properties.  

  

The  ejbStore()  method  is  used  to  update  the  data  in  a specific  Ticket  Information  document  and  the  

corresponding  Credit  Information  document  from  the  bean  properties.  

 

Chapter  4. Application  Process Flow 47



The  getter  and  setter  methods,  and  the  values  they  return  or  set,  are  listed  in  Table 8.  

Table  8 Ticket  Getter  and  Setter  Methods  

 Getter  Setter  Form  Field  Name  Data  Type 

getCreditCardExpirationDate()  setCreditCardExpirationDate()  Credit  Information:  

ExpirationDate  

String  

getCreditCardNumber()  setCreditCardNumber()  Credit  Information:  

CreditCardNumber  

String  

getCreditCardType()  setCreditCardType()  Credit  Information:  CardType  String  

getCustomerNumber()  setCustomerNumber()  Ticket  Information:  

TicketCustomerNumber  

String  

getData()    TicketInfo  JavaBean  containing  

the  values  within  the  enterprise  

bean  bean  

String  

getFlightByDate()  setFlightByDate()  Ticket  Information:  FlightByDate  String  

getInvoiceNumber()  setInvoiceNumber()  Ticket  Information:  

InvoiceNumber  

String  

getPaidStatus()  setPaidStatus  Ticket  Information:  PaidStatus  String  

getPassengerAddress()  setPassengerAddress()  Ticket  Information:  

PassengerStreet  

String  

getPassengerCity()  setPassengerCity()  Ticket  Information:  PassengerCity  String  

getPassengerCountry()  setPassengerCountry()  Ticket  Information:  

PassengerCountry  

String  

getPassengerFirstName()  setPassengerFirstName()  Ticket  Information:  

PassengerFirstName  

String  

getPassengerLastName()  setPassengerLastName()  Ticket  Information:  

PassengerLastName  

String  

getPassengerMiddleInitial()  setPassengerMiddleInitial()  Ticket  Information:  

PassengerMiddleInitial  

String  

getPassengerPhoneNumber()  setPassengerPhoneNumber()  Ticket  Information:  

PassengerPhone  

String  

getPassengerState()  setPassengerState()  Ticket  Information:  PassengerState  String  

getPassengerZipCode()  setPassengerZipCode()  Ticket  Information:  PassengerZip  String  

getSeatNumber()  setSeatNumber()  Ticket  Information:  SeatNumber  String  

getTicketClass()  setTicketClass()  Ticket  Information:  TicketClass  String  

getTicketPrice()  setTicketPrice()  Ticket  Information:  TicketPrice  BigDecimal  

getTicketStatus()  setTicketStatus()  Ticket  Information:  TicketStatus  String  

payTicket()    Ticket  Information:  

PaidStatus  and  sets  Credit  

Information  

String

  

TicketInfo 

TicketInfo  is a JavaBean  used  to  store  the  ticket  information.  It is  passed  to  the  appropriate  JSP,  which,  in  

turn,  uses  it to  retrieve  the  specific  ticket  data.  

 

 

48 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



The  getter  and  setter  methods,  and  the  values  that  they  return  or  set,  are  listed  in  Table 9.  

Table  9 TicketInfo  Getter  and  Setter  Methods  

 Getter  Setter  Value  Data  type  

getCreditCardExpirationDate()  setCreditCardExpirationDate()  Credit  card  expiration  date  String  

getCreditCardNumber()  setCreditCardNumber()  Credit  card  number  String  

getCreditCardType()  setCreditCardType()  Credit  card  type  String  

getCustomerNumber()  setCustomerNumber()  Customer  number  String  

getFlightByDate()  setFlightByDate()  Flight  by  date  String  

getInvoiceNumber()  setInvoiceNumber()  Invoice  number  String  

getPaidStatus()  setPaidStatus()  Paid  status  String  

getPassengerAddress()  setPassengerAddress()  Passenger  address  String  

getPassengerCity()  setPassengerCity()  Passenger  city  String  

getPassengerCountry()  setPassengerCountry()  Passenger  country  String  

getPassengerFirstName()  setPassengerFirstName()  Passenger  first  name  String  

getPassengerLastName()  setPassengerLastName()  Passenger  last name  String  

getPassengerMiddleInitial()  setPassengerMiddleInitial()  Passenger  middle  initial  String  

getPassengerPhoneNumber()  setPassengerPhoneNumber()  Passenger  phone  number  String  

getPassengerState()  setPassengerState()  Passenger  state  String  

getPassengerZipCode()  setPassengerZipCode()  Passenger  zip code  String  

getSeatNumber()  setSeatNumber()  Seat  number  String  

getTicketClass()  setTicketClass()  Ticket  class  String  

getTicketList()  setTicketList()  Ticket  list Vector  

getTicketPrice()  setTicketPrice()  Ticket  price  String  

getTicketStatus()  setTicketStatus()  Ticket  status  String  

getTotalCost()    Total cost  of all tickets  within  the  

ticket  list  vector  

String  

getUniqueInvoiceNumbers()    Unique  invoice  numbers  of all 

tickets  within  the  ticket  list vector  

Vector  

toString()    String  representation  of the object  String
  

Installation of Enterprise Application 

WebSphere  Studio  Application  Developer  combines  the  functionality  that  was  found  in Visual  Age  for  

Java(TM) and  WebSphere  Studio.  However,  many  new  features  were  added.  It supports  perspectives,  

which  allow  you  to  work  with  your  applications  from  different  views.  For  example,  the  J2EE  perspective  

allows  you  to  work  in  an  environment  customized  for  building  J2EE  compliant  applications.  

  

Application  Developer  allows  you  to  export  your  applications  directly  into  J2EE  compliant  formats,  such  

as  enterprise  archive  file  (EAR)  and  Web archive  file  (WAR).  You can  install  these  files  as  enterprise  

applications  in  WebSphere  Application  Server  4.0  without  using  the  WebSphere  Application  Assembly  

Tool (AAT).  Figure  2 shows  the  J2EE  hierarchy  and  the  matching  support  in WebSphere  Studio  

Application  Developer.  

 

 

Chapter  4. Application  Process Flow 49



Figure  2 J2EE  Architecture  

   

A J2EE  application  is  stored  in  an  Enterprise  Archive  (EAR)  file  that  contains  enterprise  bean  modules  

(stored  in  an  enterprise  bean  JAR  file),  Web modules  (stored  in  Web Archives  (WAR)  files),  and  client  

modules  (stored  in  a JAR  file).  A  WAR file  contains  all  the  components  of a Web application:  servlets,  

JSPs,  HTML  files,  images,  and  so  on.  Each  of  the  modules  contains  a deployment  descriptor.  For  example,  

a WAR file  contains  a web.xml  file.  

  

The  J2EE  hierarchy  is  matched  by  projects  in  WSAD.  An  EAR  project  contains  references  to  enterprise  

bean,  Web, and  Client  projects.  

  

Within  this  application,  there  is  a FlightsEAR  EAR  file  which  contains  a FlightsEJBModule  and  a 

FlightsWebModule  Web module.  The  FlightsEJBModule  contains  all  of  the  enterprise  beans  

(CustomerFlight,  Customer,  Flight,  and  Ticket).  The  FlightWebModule  contains  all  of  the  Web components  

(FlightsServlet,  HTML,  JSP,  and  image  files).  

  

To generate  the  flights  Enterprise  Application  file:  

1.   Select  File  ->  Export  from  the  Application  Developer  main  screen  

2.   The  Export  window  will  appear  at  which  point  choose  EAR  file  

3.   In  the  next  window,  select  the  FlightsEAR  resource  from  the  drop  down  list  for  the  “What  resource  do  

you  want  to  export?”  field.  

4.   Enter  the  location  

SystemName:\QIBM\UserData\WebASAdv4\instanceName\installableApps\flight.ear  for  the  

“Where  do  you  want  to  export  resources  to?”  field.  Click  Finish.  

5.   Once  the  flights  Enterprise  Application  is exported  you  can  see  the  file  in  the  folder.  

To install  the  flights  Enterprise  Application:  

1.   Open  a command  prompt  window  to  start  the  Administrative  Console.  Wait until  you  see  the  

message  Console  Ready.  

2.   In  the  Console,  select  the  wizard  icon  and  click  Install  Enterprise  Application.  The  Specifying  the  

Application  Module  window  displays.  Make  sure  that  the  Install  Application  radio  button  is selected.  

Click  the  Browse  button  next  to  Path  to  locate  the  flight.ear  in  the  

\QIBM\UserData\WebASAdv4\instanceName\installableApps  directory.  

 

50 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



3.   After  clicking  on  Next,  you  will  get  the  following  message:  “This  application  contains  method  

permissions.  Do  you  wish  to  deny  all  unprotected  methods?”  Answer  Yes. 

4.   On  the  Mapping  User  Roles  window,  press  the  Select  button  and  check  “All  Authenticated  Users”  

then  press  OK.  

5.   Keep  clicking  on  Next  until  you  see  the  “Selecting  Application  Servers”  window.  At  this  window,  

select  all  the  modules  in  the  Module  box  and  press  the  Select  Server  button.  Choose  the  default  server  

and  press  OK.  

6.   Click  Next  and  then  Finish  to  install  the  application,  when  the  Regenerate  the  application  dialog  

displays,  Click  No.  

Now  that  the  flights  Enterprise  Application  is installed  on  WebSphere  Application  Server  Version  4.0  

Advanced  Edition,  we  need  to  stop  the  server.  Before  we  restart  it,  we  need  to  copy  the  NCSOW.jar  to  

the  QIBM/UserData/WebASAdv4/InstanceName/lib/ext  directory  so  that  it is picked  up  in  the  

classpath  when  the  server  is  restarted.  Restart  the  server  to  make  the  new  application  ready.  

  

Finally  the  flights  Enterprise  Application  is  ready  for  use.  To use  the  application,  open  a browser  and  

enter  the  following  URL:  http://systemName:port/webapp/Flights/index.html  

WebSphere(R)  Application Server environment key findings 

Following  is a list  of  key  findings  that  we  uncovered  while  creating  and  using  the  flights  scenario  

WebSphere  Application  Server  environment.  

v   To set  the  Session  Timeout  value  in  a stateful  session  bean  to a larger  value,  perform  the  following  

steps  in the  WebSphere  Application  Server  Application  Assembly  Tool (AAT):  

1.   Open  your  enterprise  bean  JAR  or  EAR  in  the  AAT 

2.   Drill  down  to  your  Session  enterprise  bean  and  click  on  it.  

3.   Click  on  the  IBM(R) Extensions  tab  in  the  right-hand  pane  

4.   Set  the  Timeout  property  

5.   Save  your  JAR  or  EAR  

6.   Exit  the  AAT
v   WebSphere  Application  Server  Application  Assembly  Tool (AAT)  can  be  used  to  generate  code  for  an 

Enterprise  Application.  If  you  encounter  problems  generating  code  for  an  Enterprise  Application  

during  installation,  the  WebSphere  Application  Server  administration  console  does  not  provide  much  

information  on  why  installation  failed.  In  this  case,  you  can  use  AAT to  generate  the  deployed  code  for  

the  same  EAR  file  and  it will  provide  you  with  more  information  as  to  why  it is  failing.  Both  the  

WebSphere  Application  Server  administration  console  and  AAT use  the  same  underlying  code  to  

generate  the  code.  There  is also  a Verify  option  that  you  can  run on  the  EAR  file  which  will  give  you  

additional  information.  

  

v   To accommodate  the  needs  of  the  JSPs,  a couple  of the  Lotus(R) Domino(TM) documents  had  to  have  

fields  added  to  them.  For  the  flightSearch.jsp,  the  Scheduled  Flights  form  needed  to  have  the  following  

fields  added:  Departure  Date  and  Arrival  Date.  For  the  passengerInformation.jsp,  the  Ticket  

Information  form  needed  to have  passenger  information  fields  added.  

  

v   When  using  the  Lotus  Domino  JDBC  driver,  the  names  of the  Lotus  Domino  documents  and  columns  

are  case  sensitive  within  the  SQL  statements.  

  

v   In  the  flights  application,  we  used  the  Lotus  Domino  Java(TM) APIs  to connect  to  a Lotus  Domino  

database.  Originally  we  were  going  to  use  the  Lotus  Domino  JDBC  driver;  however,  in  WebSphere  

Application  Server,  you  can  not  create  a datasource  that  uses  the  Lotus  Domino  JDBC  driver  on the  

 

Chapter  4. Application  Process Flow 51



iSeries(TM). Since  the  iSeries  has  not  yet  ported  the  Lotus  Domino  JDBC  driver,  we  also  could  not  

implement  our  own  connection  pooling.  A  Lotus  Domino  JDBC  driver  for  iSeries  is scheduled  to  be  

available  in  a future  release.  

  

v   The  following  hints  may  help  if you  are  experiencing  problems  connecting  to  a Lotus  Domino  server  

remotely  from  a WebSphere  Java  Application:  

  

–   Make  sure  DIIOP  is set  up  on  the  Lotus  Domino  server.  If  DIIOP  is  not  set  up,  you  will  receive  a 

message  that  the  remote  host  refused  the  connection.  

  

–   Make  sure  to  specify  the  port  number  of  the  Lotus  Domino  HTTP  server  when  trying  to  obtain  a 

NotesFactory  session.  For  example:  

Session  session  =  NotesFactory.createSession(“systemName.domainName:portNumber”,  “user  ID”,  

“password”).
This  will  allow  the  CORBA  request  to  get  to the  correct  server.  If  the  port  number  is not  specified,  

you  will  receive  a NotesException.  

  

–   You may  receive  a NotesException  of  4377:  Server  must  be  on  same  host  as  session  when  

performing  the  getDatabase  statement  from  a Java  Application  using  the  following  lines  of  code:
Session  session  =  NotesFactory.createSession(notesServer,  notesUser,  password);
ndbContent  =  session.getDatabase(notesServer,  notesDatabase);  

 

There  are  two  solutions:  

1.   On  the  getDatabase,  send  only  the  server  name  not  the  server  name  along  with  the  port  number.  

2.   Pass  in  “”  as  the  notesServer  on  the  getDatabase  call  which  will  force  the  use  of  the  session  just  

created:  

ndbContent  = session.getDatabase(“”,  notesDatabase);
–    Make  sure  that  the  CLASSPATH  contains  the  NCSOW.jar  file  obtained  from  the  version  of  Lotus  

Domino  that  you  are  using.  This  is  the  WebSphere  version  of the  NCSO.jar  file.  The  NCSO.jar  is 

unusable  because  the  IIOP  levels  will  clash  and  you  will  not  be  able  to  create  a session.  

  

–   To use  the  Domino  Java  APIs  to  connect  from  a WebSphere  Java  Application  to a Domino  database  

via  IIOP,  the  application  must  import  the  lotus.domino.*  package.  

  

–   To obtain  additional  information  on  NotesExceptions,  add  the  System.out.println  in  the  code  below.  

This  allows  you  to  print  out  static  variables  that  explain  the  error  better:  

 

catch(lotus.domino.NotesException  ne)
{
System.out.println(ne.text  +  “ ” + ne.id);
ne.printStackTrace();
}  

 

v   In a Java  application  using  Lotus  Domino  Java  APIs,  when  writing  a Select  statement  to search  on  a 

date,  you  need  to  specify  the  date  you  are  searching  for  as a constant  (ie  the  [ ] around  the  value).  For  

example:  SELECT  (Form  = “Scheduled  Flights”)  &  (ScheduledDepartureDate  = [10/31/2001]).  

  

v   When  coding  finder  methods  in  bean-managed  persistence  entity  beans,  the  finder  is implemented  by 

the  ejbFindByxxxx() method.  Finder  methods  in  the  home  interface  will  have  the  name  findByxxxx(). 

The  container  implements  the  findByxxxx() essentially  as  a wrapper  around  ejbFindByxxxx() so the  

actual  finder  code  needs  to  be  written.  

 

52 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



v   To avoid  receiving  a CSITransactionRolledbackException  when  calling  a bean-managed  persistence  

entity  bean  from  a session  bean,  the  session  bean  needs  to  be  deployed  with  a transaction  setting  of 

TX_SUPPORTS.  

 

A org.omg.CORBA.INV_OBJREF  exception  happens  when  the  client  code  is trying  to use  an  object  that  

the  Lotus  Domino  server  does  not  know  about  any  more.  This  could  happen  if the  client  session  stays  

idle  longer  than  the  amount  of  time  allowed  by  the  session  timeout  parameter  in the  server  record  or  if 

someone  forces  a drop  of  all  the  sessions  from  the  server  console.  Leaving  a session  idle  for  a long  time  

is not  considered  to  be  a good  thing  so  DIIOP  will  go  out  and  terminate  these  sessions.  The  client  is  

responsible  for  handling  the  situation.  

 

If the  client  does  not  handle  the  error, the  Lotus  Domino  Session  will  time  out  and  render  the  session  

object  obsolete  and  the  following  error  messages  will  be  displayed.  

 

Here  is the  error  message  from  the  WebSphere  Application  Server:  

 

org.omg.CORBA.INV_OBJREF:  minor  code:  1229062208  completed:  No
java/lang/Throwable.<init>(Ljava/lang/String;)V+4  (Throwable.java:94)  

org/omg/CORBA/INV_OBJREF.<init>(Ljava/lang/String;ILorg/omg/CORBA
/CompletionStatus;)V+1
(INV_OBJREF.java:72)  

org/omg/CORBA/INV_OBJREF.<init>(Ljava/lang/String;)V+6  (INV_OBJREF.java:48)  

com/ibm/CORBA/iiop/ReplyMessage.getSystemException()Lorg/omg/CORBA/
SystemException;+119
(ReplyMessage.java:181)  

com/ibm/rmi/iiop/ClientResponseImpl.getSystemException()Lorg/omg/CORBA/
SystemException;+11
(ClientResponseImpl.java:89)  

com/ibm/CORBA/iiop/ClientDelegate.invoke(Lorg/omg/CORBA/Object;Lorg/omg/
CORBA/portable/OutputStream;)Lorg/omg/CORBA/portable/InputStream;+235
(ClientDelegate.java:439)  

org/omg/CORBA/portable/ObjectImpl._invoke(Lorg/omg/CORBA/portable/
OutputStream;)Lorg/omg/CORBA/portable/InputStream;+4
(ObjectImpl.java:251)  

lotus/domino/corba/_IDatabaseStub.search(Ljava/lang/String;Llotus/domino/
corba/IDateTime;I)Llotus/domino/corba/DCData;+0
(_IDatabaseStub.java:0)  

lotus/domino/cso/Database.search(Ljava/lang/String;Llotus/domino/DateTime;I)
Llotus/domino/DocumentCollection;+0
(Database.java:1478)  

lotus/domino/cso/Database.search(Ljava/lang/String;)Llotus/domino/
DocumentCollection;+0
(Database.java:1452)  

com/flights/ejb/session/CustomerFlightBean.getAllCityCodes()Lcom/flights/
FlightInfo;+0
(CustomerFlightBean.java:110)  

com/flights/ejb/session/EJSRemoteCustomerFlight.getAllCityCodes()Lcom/
flights/FlightInfo;+0
(EJSRemoteCustomerFlight.java:31)  

com/flights/ejb/session/_EJSRemoteCustomerFlight_Tie._invoke(Ljava/lang/
String;Lorg/omg/CORBA/portable/InputStream;Lorg/omg/CORBA/portable/
ResponseHandler;)Lorg/omg/CORBA/portable/OutputStream;+0
(_EJSRemoteCustomerFlight_Tie.java:82)  

com/ibm/CORBA/iiop/ExtendedServerDelegate.dispatch(Lcom/ibm/rmi/

 

Chapter  4. Application  Process Flow 53



ServerRequest;)Lcom/ibm/rmi/ServerResponse;+224
(ExtendedServerDelegate.java:506)  

com/ibm/CORBA/iiop/ORB.process(Lcom/ibm/rmi/ServerRequest;)Lcom/ibm/
rmi/ServerResponse;+20
(ORB.java:2282)  

com/ibm/CORBA/iiop/WorkerThread.run()V+89  (WorkerThread.java:195)  

com/ibm/ejs/oa/pool/ThreadPool$PooledThread.run()V+67  (ThreadPool.java:641)  

 

Here  is the  error  message  from  the  Domino  server:  

 

DIIOP  SYSTEM  EXCEPTION:  INV_OBJREF,  minor
code  49420040,  SOMDERROR_BadObjref  [somd_refdata_to_obj
(CORBA::ReferenceData*):1091]  

 

You can  try  setting  the  timeout  of  IIOP  to  a higher  value  or  you  can  try  to catch  the  error  and  

re-establish  the  session.  

 

The  following  are  ideas  we  tried  to  use  to  determine  if a Lotus  Domino  session  object  is  open  from  a 

Java  client:  

  

–   Catch  the  exception  from  within  the  enterprise  bean  and  handle  it  there.  This  idea  will  not  work  

because  of  the  following:.  

 

From  the  Enterprise  JavaBean  1.1  specification,  section  12.3.4  Exceptions  and  transactions:  

 

“If  an  instance  has  thrown  an  unchecked  exception  while  executing  in  a client’s  transaction  context,  

the  container  must  mark  the  transaction  for  rollback  and  throw  

javax.jts.TransactionRolledbackException  to  the  client.”  

 

“If  the  container  decides  for  any  reason  to  mark  a transaction  for  rollback,  it should  throw  the  

javax.jts.TransactionRolledbackException  to  the  client.  The  javax.jts.TransactionRolledbackException  

is a subclass  of  the  java.rmi.RemoteException,  and  it informs  the  client  that  any  attempted  recovery  

of the  exception  within  the  transaction  would  be  fruitless  since  the  transaction  cannot  commit.”  

 

To summarize,  an  unchecked  exception  occurring  in  an  enterprise  bean  will  always  cause  the  

in-flight  transaction  to  be  rolled  back  even  if you  are  explicitly  handling  it. Basically,  an  unchecked  

exception  is any  exception  that  is  not  derived  from  java.lang.Exception.  A  CORBA.INV_OBJREF  

exception  is not  derived  from  java.lang.Exception;  hence,  it can  be  classified  as  an  unchecked  

exception.  Thus,  the  container  will  always  throw  a TransactionRolledbackException  when  this  

exception  is thrown.  

  

–   Use  Session.isValid()  which  will  be  added  to  a future  version  of the  Lotus  Domino  Java  APIs.  This  is 

the  best  way  to  determine  the  state  of  a session,  but  it is not  yet  available.  

 

Feature:  Session.isValid()
This  is part  of  the  DIIOP  connection  pooling  feature.  

 

Purpose:
The  purpose  of  this  Java  only  method  is to  determine  if a Session  object  that  had  been  created  is still  

valid.  For  the  remoted  API,  it  determines  if the  DIIOP  server  task  still  considers  this  session  valid  

and  therefore  this  method  may  perform  a network  operation.  For  this  reason,  this  method  should  

 

54 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



not  be  used  in  a tight  loop.
For  the  local  API,  it also  determines  if a session  is still  valid.  

 

Signature:
boolean  isValid();  

 

NOTE:  This  method  does  not  throw  any  Exceptions.  

 

Usage:  

 

Here’s  an  example  of  how  to  use  the  method  in  a servlet  worker  type  of thread.  

 

class  WorkerThread  extends  Thread  {
...
public  void  run()
{
while  (WaitForWork())  {
if  ( ! session.isValid()  ) {
//  need  to  create  new  session
}
//  do  the  work
}
}
} 

  

–   Modify  your  getConnection  code  to  always  get  a new  session  to  Lotus  Domino.  This  will  avoid  the  

CORBA.INV_OBJREF  exception  all  together.  This  idea  works  although  it provides  extra  overhead  to  

the  Java  application.
v    In  the  server  document  on  the  IIOP  tab,  the  maximum  number  of  threads  that  the  administrator  can  

specify  is not  restricted.  In  a future  release  of Lotus  Domino,  this  setting  is no  longer  used  by  DIIOP.  It 

will  be  left  in  the  server  document  only  for  backwards  support.  The  minimum  timeout  value  for  a 

session  in  the  Lotus  Domino  server  document  is five  minutes.  

  

v   To specify  classpath  information  for  objects  that  reside  in  QIBM  without  using  AAT, in  WebSphere  

Studio  Application  Developer,  you  will  want  to  create  a MANIFEST.MF  file  in the  following  locations:  

 

For  an  enterprise  bean  module,  you  want  create  or  use  the  existing  manifest  file  in the  following  

location  : ejbModule  ->  META-INF  ->  MANIFEST.MF  

 

For  a Web module,  you  want  to  create  or  use  the  existing  manifest  file  in the  following  location:  

webApplication  ->  META-INF  ->  MANIFEST.MF  

 

Here  is an  example  of  what  the  classpath  would  look  like  in  a Manifest.mf  file:  

 

Manifest-Version:  1.0
Class-Path:  /qibm/userdata/webasadv4/flight4/installedapps/flightsear.ear/flightsejbmodule.jar  

  

v   After  importing  the  published  versions  of  the  flights  JSPs  into  WebSphere  Studio  Application  

Developer,  they  were  each  edited  using  Page  Designer.  After  editing,  the  EAR  was  exported  to  the  

installable  directory  and  then  each  JSP  was  exported  to a central  team  location.  The  JSPs  that  had  

updates  made  to  them  would  not  export  to the  team  location.  We also  found  that  these  JSPs  could  not  

be  copied  or  deleted  within  WebSphere  Studio  Application  Developer.  The  error  received  was  that  the  

 

Chapter  4. Application  Process Flow 55



resource  is out  of sync  with  the  file  system.  The  JSPs  that  were  opened  but  did  not  have  changes  made  

were  okay.  The  Web Module  was  then  refreshed  from  local.  This  allowed  the  JSPs  to  be  copied,  

deleted,  and  exported.  

  

v   Table 1 lists  the  keyboard  shortcuts  you  can  use  in  WebSphere  Studio  Application  Developer’s  Java  

editor:  

 

Table  1 Keyboard  shortcuts

 Description  Key  Sequence  

Import  Ctrl+Shift+M  

Go to line  number  Ctrl+L  

Indent  the  highlighted  text  Ctrl+I  

Find/replace  Ctrl+F  

Copy  Ctrl+C  

Cut  Ctrl+X  

Undo  Ctrl+Z  

Select  all Ctrl+A  

Go to the  next  error  Ctrl+E  

Brings  up Java  search  with  the  selected  item  in the  

search  table  

Ctrl+H  

Brings  up coding/content  assistant.  After  you  make  your  

selection,  Javadoc  appears  in hover  Help  

Ctrl+Space  

Executes  an incremental  build  of a project  in the 

navigation  view  

Ctrl+B  

Hold  Ctrl  key  down  and  drag-and-drop  resource  to copy  

the  resource  between  different  Workbench  windows  

Ctrl+Drag-and-Drop

 

 

56 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



Chapter  5.  References  

v   Developing  iSeries  J2EE  Applications  for  WebSphere  4.0,  IBM  Redbook  SG24-6559-00  

v   WebSphere  Studio  Application  Developer  Programming  Guide,  IBM  Redbook  SG24-6585-00  

v   Tips  for  Working  with  Lotus  Domino  Objects
http://www.advisor.com/Articles.nsf/aidp/BALAB03  

v   WebSphere  Studio  Application  Developer  Migration  Guide
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0110_wsad_mig/migration_ga.html

Example: Customer bean 

The  following  examples  illustrate  the  coding  of  the  Customer  entity  bean.  The  Customer  bean  uses  

bean-managed  persistence  and  is  mapped  to the  FlightPerson  form  in  the  names.nsf  Lotus(R) Domino(TM) 

database.  It uses  Lotus  Domino  APIs  to  access  the  Lotus  Domino  database.  

The  source  code  for  the  CustomerKey  is  shown  in  Example  1. 

  

Example  1: CustomerKey  source  code  

  

package  com.flights.ejb.bmp;  

  

/**
* This  is a Primary  Key  Class  for  the  Entity  Bean
**/
public  class  CustomerKey  implements  java.io.Serializable  {
public  String  primaryKey;
final  static  long  serialVersionUID  =  3206093459760846163L;  

  

/**
* CustomerKey()  constructor
*/
public  CustomerKey()  {
}
/**
*  CustomerKey(String  key)  constructor  

*/
public  CustomerKey(String  key)  {
primaryKey  = key;
}
/**
* equals  method
* - user  must  provide  a proper  implementation  for  the  equal  method.  The  generated  

* method  assumes  the  key  is a String  object.
*/
public  boolean  equals  (Object  o)  {

 

© Copyright  IBM Corp. 2005 57



if (o instanceof  CustomerKey)
return  primaryKey.equals(((CustomerKey)o).primaryKey);
else
return  false;
}
/**
*  hashode  method
*  - user  must  provide  a proper  implementation  for  the  hashCode  method.  The  generated
*  method  assumes  the  key  is  a String  object.
*/
public  int  hashCode  ()  {
return  primaryKey.hashCode();
}
}  

  

The  source  code  for  the  CustomerHome  inteface  is shown  in  Example  2. 

  

Example  2:  CustomerHome  source  code  

  

package  com.flights.ejb.bmp;  

  

/**
* This  is a Home  interface  for  the  Entity  Bean
*/
public  interface  CustomerHome  extends  javax.ejb.EJBHome  { 

  

/**
* create  method  for  a BMP  entity  bean
*  @return  com.flights.ejb.bmp.Customer
*  @param  primaryKey  com.flights.ejb.bmp.CustomerKey
*  @exception  javax.ejb.CreateException  The  exception  description.
*  @exception  java.rmi.RemoteException  The  exception  description.
*/
com.flights.ejb.bmp.Customer  create(com.flights.ejb.bmp.CustomerKey  primaryKey)  throws  

javax.ejb.CreateException,  java.rmi.RemoteException;
/**
*  findByPrimaryKey  method  comment
*  @return  com.flights.ejb.bmp.Customer
*  @param  key  com.flights.ejb.bmp.CustomerKey
*  @exception  java.rmi.RemoteException  The  exception  description.
*  @exception  javax.ejb.FinderException  The  exception  description.
*/
com.flights.ejb.bmp.Customer  findByPrimaryKey(com.flights.ejb.bmp.CustomerKey  key)  throws  

java.rmi.RemoteException,  javax.ejb.FinderException;
}  

 

58 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



The  source  code  for  the  Customer  remote  interface  is shown  in  Example  3.  

  

Example  3: Customer  remote  interface  source  code  

  

package  com.flights.ejb.bmp;  

  

/**
* This  is the  enterprise  bean  Remote  Interface  for  the  Customer  bean
*/
public  interface  Customer  extends  javax.ejb.EJBObject  { 

  

/**
* Returns  the  address  for  the  customer.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerAddress()  throws  java.rmi.RemoteException;
/**
*  Returns  the  city  for  the  customer.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerCity()  throws  java.rmi.RemoteException;
/**
*  Returns  the  country  for  the  customer.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerCountry()  throws  java.rmi.RemoteException;
/**
*  Returns  the  first  name  of  the  customer.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerFirstName()  throws  java.rmi.RemoteException;
/**
*  Returns  the  internet  address  for  the  customer.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerInternetAddress()  throws  java.rmi.RemoteException;
/**
*  Returns  the  last  name  of  the  customer.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/

 

Chapter  5. References 59



java.lang.String  getCustomerLastName()  throws  java.rmi.RemoteException;
/**
*  Returns  the  middle  initial  of the  customer.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerMiddleInitial()  throws  java.rmi.RemoteException;
/**
*  Returns  the  customer  number.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerNumber()  throws  java.rmi.RemoteException;
/**
*  Returns  the  customer  phone  number.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerPhoneNumber()  throws  java.rmi.RemoteException;
/**
*  Returns  the  state  for  the  customer.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerState()  throws  java.rmi.RemoteException;
/**
*  Returns  the  zip  code  for  the  customer.
*  @return  java.lang.String
*  @exception  String  The  exception  description.
*/
java.lang.String  getCustomerZipCode()  throws  java.rmi.RemoteException;
/**
*  Returns  the  values  within  the  bean  as  data  stored  within  a CustomerInfo  JavaBean.  

* @return  com.flights.CustomerInfo
*  @exception  String  The  exception  description.
*/
com.flights.CustomerInfo  getData()  throws  java.rmi.RemoteException;
/**
*  Sets  the  address  for  the  customer.
*  @return  void
*  @param  newCustomerAddress  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerAddress(java.lang.String  newCustomerAddress)  throws  java.rmi.RemoteException;
/**
*  Sets  the  city  for  the  customer.
*  @return  void
*  @param  newCustomerCity  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerCity(java.lang.String  newCustomerCity)  throws  java.rmi.RemoteException;
/**
*  Sets  the  country  for  the  customer.
*  @return  void
*  @param  newCustomerCountry  java.lang.String
*  @exception  String  The  exception  description.

 

60 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



*/
void  setCustomerCountry(java.lang.String  newCustomerCountry)  throws  java.rmi.RemoteException;
/**
*  Sets  the  first  name  of  the  customer.
*  @return  void
*  @param  newCustomerFirstName  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerFirstName(java.lang.String  newCustomerFirstName)  throws  java.rmi.RemoteException;
/**
*  Sets  the  internet  address  for  the  customer.
*  @return  void
*  @param  newCustomerInternetAddress  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerInternetAddress(java.lang.String  newCustomerInternetAddress)  throws  

java.rmi.RemoteException;
/**
* Sets  the  last  name  of  the  customer.
*  @return  void
*  @param  newCustomerLastName  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerLastName(java.lang.String  newCustomerLastName)  throws  java.rmi.RemoteException;
/**
*  Sets  the  middle  initial  of the  customer.
*  @return  void
*  @param  newCustomerMiddleInitial  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerMiddleInitial(java.lang.String  newCustomerMiddleInitial)  throws  

java.rmi.RemoteException;
/**
* Sets  the  customer  number.
*  @return  void
*  @param  newCustomerNumber  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerNumber(java.lang.String  newCustomerNumber)  throws  java.rmi.RemoteException;
/**
*  Sets  the  phone  number  for  the  customer.
*  @return  void
*  @param  newCustomerPhoneNumber  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerPhoneNumber(java.lang.String  newCustomerPhoneNumber)  throws  

java.rmi.RemoteException;
/**
* Sets  the  state  for  the  customer.
* @return  void
*  @param  newCustomerState  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerState(java.lang.String  newCustomerState)  throws  java.rmi.RemoteException;
/**
*  Sets  the  zip  code  for  the  customer.

 

Chapter  5. References 61



* @return  void
*  @param  newCustomerZipCode  java.lang.String
*  @exception  String  The  exception  description.
*/
void  setCustomerZipCode(java.lang.String  newCustomerZipCode)  throws  java.rmi.RemoteException;
}  

  

The  source  code  for  the  Customer  enterprise  bean  is shown  in  Example  4.  

  

Example  4:  Customer  enterprise  bean  source  code  

  

package  com.flights.ejb.bmp;  

  

import  java.rmi.RemoteException;
import  java.security.Identity;
import  java.util.Properties;
import  javax.ejb.*;
import  lotus.domino.*;
import  javax.naming.*;
/**
*  This  is an  Entity  Bean  class  with  BMP  fields
*/
public  class  CustomerBean  implements  EntityBean  {
private  javax.ejb.EntityContext  entityContext  = null;
private  final  static  long  serialVersionUID  =  3206093459760846163L;  

  

private  java.lang.String  customerAddress;
private  java.lang.String  customerCity;
private  java.lang.String  customerCountry;
private  java.lang.String  customerFirstName;
private  java.lang.String  customerInternetAddress;
private  java.lang.String  customerLastName;
private  java.lang.String  customerMiddleInitial;
private  java.lang.String  customerPhoneNumber;
private  java.lang.String  customerState;
private  java.lang.String  customerZipCode;
private  java.lang.String  customerNumber;
private  transient  Database  ndbContent  = null;
/**
*  ejbActivate  method  comment
*  @exception  java.rmi.RemoteException  The  exception  description.
*/
public  void  ejbActivate()  throws  java.rmi.RemoteException  {}
/**
*  ejbCreate  method  for  a BMP  entity  bean
*  @return  com.flights.ejb.bmp.CustomerKey

 

62 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



* @exception  javax.ejb.CreateException  The  exception  description.
*  @exception  java.rmi.RemoteException  The  exception  description.
*/
public  com.flights.ejb.bmp.CustomerKey  ejbCreate()  throws  javax.ejb.CreateException,  

java.rmi.RemoteException  {
return  null;
}
/**
*  ejbCreate  method  for  a BMP  entity  bean
*  @return  com.flights.ejb.bmp.CustomerKey
*  @param  key  com.flights.ejb.bmp.CustomerKey
*  @exception  javax.ejb.CreateException  The  exception  description.
*  @exception  java.rmi.RemoteException  The  exception  description.
*/
public  com.flights.ejb.bmp.CustomerKey  ejbCreate(com.flights.ejb.bmp.CustomerKey  key)  throws  

javax.ejb.CreateException,  java.rmi.RemoteException  { 

  

return  null;
}
/**
*  ejbFindByPrimaryKey  method  comment
*  @return  com.flights.ejb.bmp.CustomerKey
*  @param  primaryKey  com.flights.ejb.bmp.CustomerKey
*  @exception  java.rmi.RemoteException  The  exception  description.
*  @exception  javax.ejb.FinderException  The  exception  description.
*/
public  com.flights.ejb.bmp.CustomerKey  ejbFindByPrimaryKey(com.flights.ejb.bmp.CustomerKey  

primaryKey)  throws  java.rmi.RemoteException,  javax.ejb.FinderException  {
refresh(primaryKey);
return  primaryKey;
}
/**
*  Used  to  refresh  the  enterprise  bean  from  the  persistent  storage.
*  @exception  java.rmi.RemoteException  The  exception  description.
*/
public  void  ejbLoad()  throws  java.rmi.RemoteException  { 

  

System.out.println(“Customer.ejbLoad()”);
try
{
refresh((CustomerKey)  entityContext.getPrimaryKey());
}
catch  (FinderException  fe)
{
throw  new  RemoteException(fe.getMessage());
}  

}
/**
* ejbPassivate  method  comment
*  @exception  java.rmi.RemoteException  The  exception  description.
*/
public  void  ejbPassivate()  throws  java.rmi.RemoteException  {}

 

Chapter  5. References 63



/**
* ejbPostCreate  method  for  a BMP  entity  bean
*  @param  key  com.flights.ejb.bmp.CustomerKey
*  @exception  java.rmi.RemoteException  The  exception  description.
*/
public  void  ejbPostCreate(com.flights.ejb.bmp.CustomerKey  key)  throws  java.rmi.RemoteException  {}
/**
*  ejbRemove  method  comment  —  currently  not  implemented
*  @exception  java.rmi.RemoteException  The  exception  description.
*  @exception  javax.ejb.RemoveException  The  exception  description.
*/
public  void  ejbRemove()  throws  java.rmi.RemoteException,  javax.ejb.RemoveException  {}
/**
*  ejbStore  method  comment
* @exception  java.rmi.RemoteException  The  exception  description.
*/
public  void  ejbStore()  throws  java.rmi.RemoteException  { 

  

System.out.println(“Customer.ejbStore()  ”);  

  

DocumentCollection  dclResult  = null;
Document  docResult  = null;  

  

try
{
ndbContent  = getConnection();  

  

//  Search  for  document  with  specified  key  values
System.out.println(“Searching  for  document:  ” + customerNumber);
dclResult  = ndbContent.search(“SELECT  (Form  = \”FlightPerson\“)  & (PersonalID  = ”+  

customerNumber.trim()  +“)”);
docResult  = dclResult.getFirstDocument();  

  

if (docResult  !=  null)
{
//  Update  document  to  contain  new  values
System.out.println(“Should  be  updating  customer  info”);  

  

docResult.replaceItemValue(“FirstName”,  customerFirstName);
docResult.replaceItemValue(“MiddleInitial”,  customerMiddleInitial);
docResult.replaceItemValue(“LastName”,  customerLastName);
docResult.replaceItemValue(“StreetAddress”,  customerAddress);
docResult.replaceItemValue(“City”,  customerCity);
docResult.replaceItemValue(“State”,  customerState);

 

64 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



docResult.replaceItemValue(“Zip”,  customerZipCode);
docResult.replaceItemValue(“Country”,  customerCountry);
docResult.replaceItemValue(“PhoneNumber”,  customerPhoneNumber);
docResult.replaceItemValue(“InternetAddress”,  customerInternetAddress);  

  

docResult.save();
}
else
throw  new  FinderException(“Customer  EJB  Store:  CustomerBean  (” + customerNumber  + “)  not  found”);  

  

System.out.println(“After  update”);  

  

}
catch(lotus.domino.NotesException  ne)
{
System.out.println(ne.text  +  “ ” + ne.id);
ne.printStackTrace();
throw  new  RemoteException(ne.toString());
}
catch(Exception  e)
{
e.printStackTrace();
throw  new  RemoteException(e.toString());
}  

  

finally  

{
try
{
System.out.println(“Recycle  objects”);
if  (dclResult  !=  null)
dclResult.recycle();
if  (docResult  !=  null)
docResult.recycle();  

}
catch(Exception  ex)
{
throw  new  RemoteException(ex.toString());
}
}  

  

}
/**
* Used  to  return  a connection  to  the  Lotus  Domino  database  using  Lotus  Domino  APIs  .
*  Creation  date:  (10/19/2001  3:14:11  PM)
*  @return  javax.sql.DataSource

 

Chapter  5. References 65



* @exception  java.sql.SQLException  The  exception  description.
*/
private  Database  getConnection()  throws  java.rmi.RemoteException,  java.sql.SQLException  { 

  

if (ndbContent  ==  null)  {
Properties  properties  = getEntityContext().getEnvironment();
String  providerURL  =  properties.getProperty(“provider_url”);
String  notesServer  = properties.getProperty(“notesServer”);
String  notesUser  =  properties.getProperty(“notesUser”);
String  password  =  properties.getProperty(“password”);
String  notesDatabase  = properties.getProperty(“notesDB”);  

  

InitialContext  ctx  =  null;
Properties  prop  = new  Properties();  

  

try  {
prop.put(Context.PROVIDER_URL,  providerURL);
prop.put(Context.INITIAL_CONTEXT_FACTORY,  “com.ibm.ejs.ns.jndi.CNInitialContextFactory”);
ctx  = new  InitialContext(prop);  

  

System.out.println(“creating  notes  session  using  current  creds”);
Session  session  =  NotesFactory.createSession(notesServer,  null);
System.out.println(“username:  ” +  session.getUserName());  

  

System.out.println(“got  session  - getting  DB”);
ndbContent  = session.getDatabase(“”,  notesDatabase);  

  

System.out.println(“got  database”);  

  

if (!ndbContent.isOpen())  ndbContent.open();
}
catch(lotus.domino.NotesException  ne){
System.out.println(ne.text  +  “ ” + ne.id);
ne.printStackTrace();
throw  new  RemoteException(ne.toString());
}  

catch  (Exception  e)  {
System.out.println(“an  error  occurred”);
e.printStackTrace();
throw  new  RemoteException(e.toString());
}
}  

 

66 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



return  ndbContent;
}
/**
*  Returns  address  for  customer.
* Creation  date:  (04/02/02  2:37:06  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerAddress()  {
return  customerAddress;
}
/**
*  Returns  city  for  customer.
*  Creation  date:  (04/02/02  2:37:28  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerCity()  {
return  customerCity;
}
/**
*  Returns  country  for  customer.
* Creation  date:  (04/02/02  2:37:46  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerCountry()  {
return  customerCountry;
}
/**
*  Returns  first  name  of  customer.
*  Creation  date:  (04/02/02  2:38:05  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerFirstName()  {
return  customerFirstName;
}
/**
*  Returns  internet  address  of  customer.
*  Creation  date:  (04/02/02  2:38:24  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerInternetAddress()  {
return  customerInternetAddress;
}
/**
*  Returns  last  name  of  customer.
*  Creation  date:  (04/02/02  2:38:39  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerLastName()  {
return  customerLastName;
}
/**
*  Returns  middle  initial  of customer.
*  Creation  date:  (04/02/02  2:38:55  PM)
*  @return  java.lang.String

 

Chapter  5. References 67



*/
public  java.lang.String  getCustomerMiddleInitial()  {
return  customerMiddleInitial;
}
/**
*  Returns  customer  number.
*  Creation  date:  (04/02/02  2:40:12  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerNumber()  {
return  customerNumber;
}
/**
*  Returns  phone  number  for  customer.
*  Creation  date:  (04/02/02  2:39:10  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerPhoneNumber()  {
return  customerPhoneNumber;
}
/**
*  Returns  state  for  customer.
*  Creation  date:  (04/02/02  2:39:22  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerState()  {
return  customerState;
}
/**
*  Returns  zip  code  for  customer.
*  Creation  date:  (04/02/02  2:39:40  PM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerZipCode()  {
return  customerZipCode;
}
/**
*  Returns  the  values  within  the  enterprise  bean  as data  stored  within  a CustomerInfo  JavaBean.  

* Creation  date:  (03/26/02  7:20:12  AM)
*/
public  com.flights.CustomerInfo  getData()  { 

  

com.flights.CustomerInfo  customerInfo  = new  com.flights.CustomerInfo();  

  

customerInfo.setCustomerFirstName(customerFirstName);  

  

System.out.println(“getData():  Here’s  the  customer  first  name:  ” + customerFirstName);  

 

 

68 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



customerInfo.setCustomerMiddleInitial(customerMiddleInitial);  

  

System.out.println(“getData():  Here’s  the  customer  middle  initial:  ” + customerMiddleInitial);
customerInfo.setCustomerLastName(customerLastName);
customerInfo.setCustomerAddress(customerAddress);
customerInfo.setCustomerInternetAddress(customerInternetAddress);  

  

System.out.println(“getData():  Here’s  the  customer  internet  address:  ” + customerInternetAddress);
customerInfo.setCustomerCity(customerCity);
customerInfo.setCustomerState(customerState);
customerInfo.setCustomerZipCode(customerZipCode);
customerInfo.setCustomerCountry(customerCountry);
customerInfo.setCustomerPhoneNumber(customerPhoneNumber);  

  

return  customerInfo;
}
/**
*  getEntityContext  method  comment
*  @return  javax.ejb.EntityContext
*/
public  javax.ejb.EntityContext  getEntityContext()  {
return  entityContext;
}  

  

/**
* Refreshes  the  enterprise  bean  corresponding  to the  primary  key  from  the  persistent
*  storage.
*  Creation  date:  (11/14/2001  2:06:39  PM)
*  @param  aPrimaryKey  com.flights.ejb.bmp.FlightKey
* @exception  java.rmi.RemoteException  The  exception  description.
*  @exception  javax.ejb.FinderException  The  exception  description.
*/
private  void  refresh(CustomerKey  primaryKey)  throws  java.rmi.RemoteException,  

javax.ejb.FinderException  { 

  

DocumentCollection  customerDC  =  null;
Document  customerDoc  = null;  

  

System.out.println(“starting  refresh”);  

  

if (primaryKey  ==  null)
throw  new  RemoteException(“Primary  key  cannot  be  null”);  

 

Chapter  5. References 69



customerNumber  =  primaryKey.primaryKey;
System.out.println(“Customer  Number  in  refresh:  ” + customerNumber);  

  

try  { 

  

ndbContent  = getConnection();  

  

//  find  the  customer  number  to  obtain  customer  info
customerDC  = ndbContent.search(“SELECT  (Form  = \”FlightPerson\“)  &  (PersonalID  = ”+  

customerNumber.trim()  +“)”);
System.out.println(“number  of  elements  in  collection:  ” + customerDC.getCount());
customerDoc  = customerDC.getFirstDocument();  

  

if (customerDoc  !=  null)  {
customerFirstName  = customerDoc.getItemValueString(“FirstName”);
customerMiddleInitial  = customerDoc.getItemValueString(“MiddleInitial”);
customerLastName  = customerDoc.getItemValueString(“LastName”);
customerAddress  =  customerDoc.getItemValueString(“StreetAddress”);
customerCity  = customerDoc.getItemValueString(“City”);
customerState  = customerDoc.getItemValueString(“State”);
customerZipCode  = customerDoc.getItemValueString(“Zip”);
customerCountry  = customerDoc.getItemValueString(“Country”);
customerPhoneNumber  = customerDoc.getItemValueString(“PhoneNumber”);
customerInternetAddress  = customerDoc.getItemValueString(“InternetAddress”);  

  

System.out.println(“FN:  ” +  customerFirstName  + “ LN:  ” + customerLastName  + “ MI:  ” + 

customerMiddleInitial  + “ Internet  Addr:  ” + customerInternetAddress);  

  

} //  end  if
else
{
throw  new  FinderException(“Customer  information  not  found  for  customer  number  ” + 

customerNumber);  

  

} 

  

} //  end  try
catch(lotus.domino.NotesException  ne){

 

70 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



System.out.println(ne.text  +  “ ” + ne.id);
ne.printStackTrace();
throw  new  RemoteException(ne.toString());
}
catch(Exception  e)  {
e.printStackTrace();
throw  new  RemoteException(e.toString());
}
finally  

{
try
{
System.out.println(“Recycle  objects  in  CustomerBean  refresh”);
if  (customerDC  !=  null)
customerDC.recycle();
if (customerDoc  !=  null)
customerDoc.recycle();  

  

}
catch(Exception  ex)
{
throw  new  RemoteException(ex.toString());
}
}
}
/**
*  Sets  the  address  for  the  customer.
*  Creation  date:  (04/02/02  2:37:06  PM)
*  @param  newCustomerAddress  java.lang.String
*/
public  void  setCustomerAddress(java.lang.String  newCustomerAddress)  {
customerAddress  =  newCustomerAddress;
}
/**
* Sets  the  city  for  the  customer.
*  Creation  date:  (04/02/02  2:37:28  PM)
*  @param  newCustomerCity  java.lang.String
*/
public  void  setCustomerCity(java.lang.String  newCustomerCity)  {
customerCity  = newCustomerCity;
}
/**
*  Sets  the  country  for  the  customer.
*  Creation  date:  (04/02/02  2:37:46  PM)
*  @param  newCustomerCountry  java.lang.String
*/
public  void  setCustomerCountry(java.lang.String  newCustomerCountry)  {
customerCountry  =  newCustomerCountry;
}
/**
* Sets  the  first  name  of  the  customer.
*  Creation  date:  (04/02/02  2:38:05  PM)
*  @param  newCustomerFirstName  java.lang.String
*/

 

Chapter  5. References 71



public  void  setCustomerFirstName(java.lang.String  newCustomerFirstName)  {
customerFirstName  = newCustomerFirstName;
}
/**
*  Sets  the  internet  address  for  the  customer.
*  Creation  date:  (04/02/02  2:38:24  PM)
*  @param  newCustomerInternetAddress  java.lang.String
*/
public  void  setCustomerInternetAddress(java.lang.String  newCustomerInternetAddress)  {
customerInternetAddress  = newCustomerInternetAddress;
}
/**
*  Sets  the  last  name  of  the  customer.
*  Creation  date:  (04/02/02  2:38:39  PM)
*  @param  newCustomerLastName  java.lang.String
*/
public  void  setCustomerLastName(java.lang.String  newCustomerLastName)  {
customerLastName  = newCustomerLastName;
}
/**
*  Sets  the  middle  initial  of  the  customer.
*  Creation  date:  (04/02/02  2:38:55  PM)
*  @param  newCustomerMiddleInitial  java.lang.String
*/
public  void  setCustomerMiddleInitial(java.lang.String  newCustomerMiddleInitial)  {
customerMiddleInitial  = newCustomerMiddleInitial;
}
/**
*  Sets  the  customer  number.
*  Creation  date:  (04/02/02  2:40:12  PM)
*  @param  newCustomerNumber  java.lang.String
*/
public  void  setCustomerNumber(java.lang.String  newCustomerNumber)  {
customerNumber  =  newCustomerNumber;
}
/**
*  Sets  the  phone  number  for  the  customer.
*  Creation  date:  (04/02/02  2:39:10  PM)
*  @param  newCustomerPhoneNumber  java.lang.String
*/
public  void  setCustomerPhoneNumber(java.lang.String  newCustomerPhoneNumber)  {
customerPhoneNumber  = newCustomerPhoneNumber;
}
/**
*  Sets  the  state  for  the  customer.
* Creation  date:  (04/02/02  2:39:22  PM)
*  @param  newCustomerState  java.lang.String
*/
public  void  setCustomerState(java.lang.String  newCustomerState)  {
customerState  = newCustomerState;
}
/**
*  Sets  the  zip  code  for  the  customer.
*  Creation  date:  (04/02/02  2:39:40  PM)
*  @param  newCustomerZipCode  java.lang.String
*/

 

72 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



public  void  setCustomerZipCode(java.lang.String  newCustomerZipCode)  {
customerZipCode  =  newCustomerZipCode;
}
/**
* setEntityContext  method  comment
*  @param  ctx  javax.ejb.EntityContext
*  @exception  java.rmi.RemoteException  The  exception  description.
*/
public  void  setEntityContext(javax.ejb.EntityContext  ctx)  throws  java.rmi.RemoteException  {
entityContext  = ctx;
}
/**
*  unsetEntityContext  method  comment
*  @exception  java.rmi.RemoteException  The  exception  description.
*/
public  void  unsetEntityContext()  throws  java.rmi.RemoteException  {
entityContext  = null;
}
}  

  

The  source  code  for  the  CustomerInfoBean  is shown  in  Example  5. 

  

Example  5: CustomerInfoBean  source  code  

  

package  com.flights;
import  java.util.*;  

  

/**
* CustomerInfo  is  a JavaBean  used  to  store  the  customer  information  for  

* a specific  customer/flight.  It  is  passed  to  the  appropriate  

* JSP  which  will  use  it to  retrieve  the  specific  customer  data.
*/
public  class  CustomerInfo  implements  java.io.Serializable  { 

  

private  java.lang.String  customerFirstName;
private  java.lang.String  customerMiddleInitial;
private  java.lang.String  customerLastName;
private  java.lang.String  customerAddress;
private  java.lang.String  customerCity;
private  java.lang.String  customerState;
private  java.lang.String  customerZipCode;
private  java.lang.String  customerCountry;
private  java.lang.String  customerPhoneNumber;
private  java.lang.String  customerInternetAddress;
private  Vector  customerListVector;
/**

 

Chapter  5. References 73



* CustomerInfo  constructor.
*/
public  CustomerInfo()  {
super();
}
/**
*  Returns  address  for  customer.
*  Creation  date:  (02/11/02  10:08:49  AM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerAddress()  {
return  customerAddress;
}
/**
*  Returns  city  for  customer.
*  Creation  date:  (02/11/02  10:10:19  AM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerCity()  {
return  customerCity;
}
/**
*  Returns  country  for  customer.
* Creation  date:  (02/11/02  10:11:38  AM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerCountry()  {
return  customerCountry;
}
/**
*  Returns  first  name  of  customer.
*  Creation  date:  (02/11/02  10:28:15  AM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerFirstName()  {
return  customerFirstName;
}
/**
*  Returns  internet  address  for  customer.
*  Creation  date:  (04/02/02  12:31:05  PM)
*  @return  java.lang.String
*/
public  String  getCustomerInternetAddress()  {
return  customerInternetAddress;
}
/**
*  Returns  last  name  of  customer.
*  Creation  date:  (02/11/02  10:29:22  AM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerLastName()  {
return  customerLastName;
}
/**
*  Returns  list  of customers.
*  Creation  date:  (02/11/02  10:30:00  AM)

 

74 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



* @return  java.lang.String
*/
public  Vector  getCustomerListVector()  {
return  customerListVector;
}
/**
*  Returns  middlet  initial  of  customer.
*  Creation  date:  (02/11/02  10:30:00  AM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerMiddleInitial()  {
return  customerMiddleInitial;
}
/**
*  Returns  phone  number  for  customer.
*  Creation  date:  (02/11/02  10:30:28  AM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerPhoneNumber()  {
return  customerPhoneNumber;
}
/**
*  Returns  state  for  customer.
*  Creation  date:  (02/11/02  10:31:01  AM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerState()  {
return  customerState;
}
/**
*  Returns  zip  code  for  customer.
*  Creation  date:  (02/11/02  10:31:32  AM)
*  @return  java.lang.String
*/
public  java.lang.String  getCustomerZipCode()  {
return  customerZipCode;
}
/**
*  Sets  address  for  customer.
*  Creation  date:  (02/11/02  10:42:16  AM)
*/
public  void  setCustomerAddress(java.lang.String  newCustomerAddress)  {
customerAddress  =  newCustomerAddress;
}
/**
* Set  city  for  customer.
*  Creation  date:  (02/11/02  10:53:31  AM)
*/
public  void  setCustomerCity(java.lang.String  newCustomerCity)  {
customerCity  = newCustomerCity;
}
/**
*  Sets  country  for  customer.
*  Creation  date:  (02/11/02  10:57:06  AM)
*/
public  void  setCustomerCountry(java.lang.String  newCustomerCountry)  {

 

Chapter  5. References 75



customerCountry  = newCustomerCountry;
}
/**
*  Sets  first  name  of  customer.
*  Creation  date:  (02/11/02  10:57:31  AM)
*/
public  void  setCustomerFirstName(java.lang.String  newCustomerFirstName)  {
customerFirstName  = newCustomerFirstName;
}
/**
*  Sets  internet  address  for  customer.
*  Creation  date:  (04/02/02  12:32:18  PM)
*  @param  newCustomerInternetAddress  java.lang.String
*/
public  void  setCustomerInternetAddress(String  newCustomerInternetAddress)  {
customerInternetAddress  = newCustomerInternetAddress;
}
/**
*  Sets  last  name  of  customer.
* Creation  date:  (02/11/02  10:57:57  AM)
*/
public  void  setCustomerLastName(java.lang.String  newCustomerLastName)  {
customerLastName  = newCustomerLastName;
}
/**
*  Sets  list  of  customers.
*  Creation  date:  (02/11/02  10:58:12  AM)
*/
public  void  setCustomerListVector(Vector  newCustomerListVector)  {
customerListVector  = newCustomerListVector;
}
/**
*  Sets  middle  initial  of  customer.
*  Creation  date:  (02/11/02  10:58:39  AM)
*/
public  void  setCustomerMiddleInitial(java.lang.String  newCustomerMiddleInitial)  {
customerMiddleInitial  = newCustomerMiddleInitial;
}
/**
*  Sets  phone  number  for  customer.
*  Creation  date:  (02/11/02  10:58:39  AM)
*/
public  void  setCustomerPhoneNumber(java.lang.String  newCustomerPhoneNumber)  {
customerPhoneNumber  = newCustomerPhoneNumber;
}
/**
*  Sets  state  for  customer.
*  Creation  date:  (02/11/02  10:58:52  AM)
*/
public  void  setCustomerState(java.lang.String  newCustomerState)  {
customerState  = newCustomerState;
}
/**
*  Sets  zip  code  for  customer.
* Creation  date:  (02/11/02  10:59:08  AM)
*/

 

76 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



public  void  setCustomerZipCode(java.lang.String  newCustomerZipCode)  {
customerZipCode  =  newCustomerZipCode;
}
}

 

Chapter  5. References 77



78 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



Chapter  6.  WebSphere(R) Application  Server  and  Lotus(R) 

Domino(TM) interoperability  overview  

The  iSeries(TM) System  Test flights  scenario  consisted  of  a a WebSphere  Application  Server  front  end  with  

Lotus  Domino  databases  on  the  backend.  As  a result,  we  needed  to ensure  that  the  WebSphere  

Application  Server  front  end  could  work  with  the  Lotus  Domino  back  end.  This  included  the  ability  to 

communicate  between  the  two  environments,  share  a single  sign-on  (SSO)  across  the  environments,  and  

ensure  security  within  each  of  the  environments.  

To communicate  between  the  two  environments,  the  flights  application  used  WebSphere  Application  

Server  programs  written  in  Java(TM) that  used  the  Lotus  Domino  Java  APIs.  The  Lotus  Domino  workflow  

managed  the  population  of the  flights.  The  WebSphere  Application  Server  transaction  services  were  used  

to  implement  the  customer  flight  Web site.  

The  flights  application  uses  the  Lotus  Domino  LDAP  (Lightweight  Directory  Access  Protocol)  directory.  

The  LDAP  directory  is needed  for  implementing  WebSphere  Application  Server  security.  LDAP  allows  the  

flight  customers  to  authenticate  using  customer  numbers  and  passwords.  The  flights  application  validates  

the  user’s  identity  to  allow  access  to  customer  and  payment  information.  

The  flights  application  uses  the  single  sign-on  capability  that  spans  WebSphere  Application  Server  and  

Lotus  Domino.  This  allows  the  flight  application  to  access  either  while  only  requiring  the  user  to  sign  on  

once.  This  means  that  when  a transaction  is initiated  from  WebSphere  Application  Server  to  the  Lotus  

Domino  database,  the  same  login  credentials  are  used.  The  opposite  is also  possible,  but  the  flights  

application  did  not  have  a need  for  Lotus  Domino  to  access  WebSphere  Application  Server.  The  goal  of  

single  sign-on  is to  provide  a seamless  flow  of information  across  the  products.  

WebSphere(R)  Application Server and Lotus(R)  Domino(TM)  

interoperability single sign-on 

For  the  flights  application,  security  is  a concern.  Both  WebSphere  Application  server  and  Lotus  Domino  

provide  support  for  securing  access  and  data.  Both  products  implement  security  mechanisms  which  

involve  determining  and  verifying  user  identity  (authentication)  and  allowing  access  to  protected  

resources  to  designated  users  (authorization).  

  

Using  single  sign-on  (SSO),  the  flight’s  Web users  can  authenticate  once  to the  WebSphere  Application  

Server,  and  then  access  Lotus  Domino  without  logging  in  again.  This  is accomplished  by  configuring  the  

Lotus  Domino  and  WebSphere  Application  Servers  to  share  authentication  information  gathered  from  the  

single  Lotus  Domino  LDAP  server.  

  

To enable  SSO  between  servers,  the  Lightweight  Third  Party  Authentication  (LTPA) mechanism  is used.  

This  mechanism  utilizes  an  LTPAToken which  contains  the  user  authentication  information,  the  network  

domain  in  which  the  SSO  is valid,  and  the  expiration  time.  The  LTPAToken is encrypted  using  the  LTPA 

keys  that  must  be  shared  for  all  the  SSO  participating  servers.  

  

The  token  is issued  to  the  Web user  in  a cookie.  This  cookie  resides  in  browser  memory  and  is not  stored  

on  the  user’s  computer  and  expires  when  the  user  closes  the  browser.  

 

© Copyright  IBM Corp. 2005 79



Enabling  single  sign-on  (SSO)  on  WebSphere,  requires  configuring  the  Enterprise  Application  Resource  

(EAR)  file  for  security  and  configuring  the  global  security  settings  in  WebSphere  Application  Server.  

Figure  1 shows  the  flight  application  single  sign-on  process  between  Lotus  Domino  and  WebSphere  

Application  Server.  

Figure  1 Lotus  Domino  and  WebSphere  SSO  

   

1.   A Web user  submits  a request  to  the  Web server  (HTTP  server)  for  a protected  resource,  to obtain  the  

home  page.  

2.   The  Web server  prompts  the  user  for  the  authentication  information.  

3.   The  user  responds  by  supplying  the  information  (customer  number  and  password).  

4.   Then  the  Web server  contacts  the  LTPA server  (WebSphere  Application  Server)  which  connects  with  

the  Lotus  Domino  Directory  to  verify  the  authentication  information.  

5.   If the  information  supplied  for  the  user  is correct,  Lotus  Domino  responds  to  the  server  (WebSphere  

Application  Server)  with  the  validated  information.  

6.   The  server  uses  the  returned  values  to  check  if the  user  has  access  to  the  requested  resource  and  

issues  an  LTPA token  for  the  user.  The  Web server  sends  the  token  to  the  user  as  a HTTP  Cookie  

which  is stored  in  the  user’s  browser  and  serves  the  requested  resource  (index.html).  

7.   Once  the  user  is authenticated  and  the  cookie  is  available,  they  can  request  another  protected  resource  

from  Lotus  Domino  or  WebSphere  Application  Server.  

8.   Lotus  Domino  and  WebSphere  Application  Server  validate  the  token  provided  for  the  user  and  tell  the  

Web server  to  send  the  requested  resource  to  the  browser,  as  long  as  the  user  has  enough  access  to 

that  resource,  without  prompting  again  with  the  challenge  information.

Setting up IIOP on Lotus Domino 

Remote  Lotus  Domino  objects  make  use  of  Common  Object  Request  Broker  Architecture  (CORBA)  to  

implement  access  to  Lotus  Domino.  In  CORBA,  communication  between  objects  occurs  through  Object  

Request  Brokers  (ORBs)  that  use  the  Internet  Inter-ORB  Protocol  (IIOP)  to send  messages  to  each  other.  In 

Lotus  Domino,  the  Lotus  Domino  Internet  Inter-ORB  Protocol  (DIIOP)  service  is used  for  CORBA  

communication.  The  advantage  of  using  remote  objects  is that  the  Web application  server  can  run on a 

separate  machine  from  the  Lotus  Domino  server.  The  code  imports  the  lotus.domino.*  package.  The  

 

80 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



NotesFactory()  method  requires  a Lotus  Domino  server  IP  address  or  name  and  a valid  user  ID  and  

profile  that  has  access  to  IIOP  and  the  Lotus  Domino  server.  The  remote  Lotus  Domino  server  needs  to  

have  DIIOP  configured  and  the  user  ID  must  be  authorized  to  use  the  Lotus  Domino  server  and  be  

authorized  to  run IIOP  agents.  

  

The  flights  application  used  remote  Lotus  Domino  objects  when  using  the  Lotus  Domino  Java(TM) APIs  

for  the  following  reasons:  

v   Configuration  and  execution  time  requirements  are  simpler  

v   No  restrictions  on  usage  in  multi-threaded  environments  

To configure  the  Lotus  Domino  server  for  CORBA,  perform  the  following  steps:  

1.   Edit  the  notes.ini  file  and  add  the  tasks  to  the  lists  of  tasks  specified  in  the  ServerTasks  parameter.  For  

example:
ServerTasks=<any  other  tasks>,  HTTP,  DIIOP  

2.   Open  the  Lotus  Domino  server  document  for  editing  and  choose  the  Ports  ->  Internet  Ports  ->  IIOP  

tab.  Set  the  port  number  and  enable  the  port.  The  default  port  number  is 63149  for  a TCP/IP  IIOP  

port  and  63148  for  the  IIOP  port  that  uses  SSL.  Also,  you  can  specify  whether  to  allow  name  and  

password  and  anonymous  access.  

3.   Configure  the  number  of  threads  and  time-out  value.  The  time-out  value  represents  the  number  of  

minutes  a connection  can  be  idle  before  being  dropped  by  the  server.  To set  the  time-out  value,  

choose  Internet  Protocols  ->  IIOP  tab  of the  Lotus  Domino  server  document.  

4.   Set  security  for  accessing  the  Lotus  Domino  server  and  for  running  Java  programs  on  the  server.  In  

the  Server  access  section,  specify  who  can  access  the  server.  If  the  field  is left  blank,  no  one  is denied  

access  to  the  server.  If  the  field  has  any  names  listed  in  it,  then  only  those  people  or groups  

specifically  listed  can  access  the  server.  If  users  are  required  to log  in,  this  information  is  checked  by  

the  server  after  they  have  been  authenticated.  

5.   In  the  Java/COM  Restrictions  section  of the  Lotus  Domino  server  document,  specify  the  users  who  

are  allowed  to  access  the  Lotus  Domino  objects  using  CORBA.  If this  field  is  left  blank,  no  one  is 

allowed  to  access  the  Lotus  Domino  objects  using  CORBA.  The  field  can  accept  wildcards.  An  asterisk  

(*)  in  this  field  allows  everyone.  

6.   If your  Lotus  Domino  server  is  behind  a firewall,  edit  the  Lotus  Domino  server’s  Notes(TM).ini  and  

add  the  line  DIIOP_IOR_HOST=ipAddress.  Here  ipAddress  is the  IP  address  of  your  Lotus  Domino  

server  as it is known  outside  of  the  firewall.

Configuring the flights application for security 

Before  configuring  WebSphere  Application  Server  or  Lotus  Domino,  the  application  needs  to be  

configured  for  security  and  installed.  For  information  on  configuring  an  application  for  security,  see  the  

IBM(R) Redbook,  IBM  WebSphere  V4.0  Advanced  Edition  Security.  The  chapters  on  Securing  Web 

Components  and  Securing  Enterprise  Bean  Components  were  followed  for  securing  the  flights  application  

in  WebSphere  Studio  Application  Developer.
In  the  flights  application,  Form-based  authentication  was  used.  This  authentication  mechanism  allowed  

the  flights  site  to  specify  a site  specific  HTML  login  page.  When  using  Form-based  authentication,  the  

password  is not  encrypted  and  the  target  server  is not  authenticated  which  provides  a security  risk.  To 

avoid  this  security  risk,  secure  transport  (SSL)  could  be  used.  

Enabling single sign-on for WebSphere  Application Server 

Configuring  Global  Security  Settings  for  SSO  in  WebSphere  involves  the  following:  

1.   Start  WebSphere  Administrator’s  Console.  

2.   Select  Console  ->  Security  Center.  This  will  display  the  global  security  settings  for  WebSphere.  Check  

Enable  Security  in  the  General  tab.  

 

Chapter  6. WebSphere(R) Application  Server and Lotus(R) Domino(TM) interoperability overview  81



3.   Click  on  the  Authentication  tab  and  choose  Lightweight  Third  Party  Authentication  (LTPA) as the  

Authentication  mechanism  type.  

4.   Specify  the  following  LTPA settings:  

a.   How  many  minutes  can  pass  before  a client  using  an  LTPA token  must  authenticate  again  in  the  

Token  Expiration  field.  

b.   Check  Enabled  single  sign-on  (SSO).  The  Domain  field  will  then  be  enabled.  

c.   Enter  a DNS  domain  name  in  the  Domain  field.  This  domain  name  is used  when  the  HTTP  cookie  

is created  for  SSO  and  determines  the  scope  to  which  SSO  applies.  

Important:  All  SSO  participating  servers  must  be  in  the  same  DNS  domain.  

1.   Check  the  LDAP  radio  button  and  input  the  LDAP  server  settings.  

Note:  Make  sure  to  configure  WebSphere  Application  Server  to  use  Lotus  Domino  5.0  as  the  Directory  

type  in  Security  Center.  Also  make  sure  that  the  Lotus  Domino  server  is running  and  the  LDAP  task  is 

started,  because  the  Security  server  ID  and  password  will  be  verified.  

1.   Click  on  the  Generate  Keys  button  to  create  the  LTPA keys  for  encrypting  the  LTPA token.  You will  be  

prompted  for  an  LTPA password  to  protect  the  set  of  encryption  keys.  These  LTPA keys  must  be  

shared  for  all  servers  using  SSO.  

Important:  Remember  that  the  generation  of  the  LTPA keys  must  be  done  when  the  Lotus  Domino  LDAP  

server  settings  are  configured.  This  guarantees  that  the  LDAP  host  name  and  port  are  present  in  the  

exported  file.  Lotus  Domino  needs  this  information  during  the  Web SSO  configuration  document  creation  

process.  

1.   Once  the  LTPA keys  are  generated,  click  on  the  Export  Key  button  to  export  the  LTPA keys  to a file.  

This  file  is used  to  import  the  keys  into  Lotus  Domino.  

2.   Click  on  Apply  and  then  OK.  

3.   When  the  process  is  completed  a warning  message  will  display,  saying:  Changes  will  not  take  effect  

until  the  admin  server  is restarted.  Click  OK.  

4.   Restart  the  administration  server  by  selecting  the  node  included  in the  node  folder  located  in the  tree  

view  on  the  left  side  of the  console  and  then  right-clicking  on  it  and  select  Restart  in  the  resulting  

context  menu.

Enabling single sign-on for the Lotus Domino Server 

1.   Create  a new  Web SSO  configuration  Document  in  the  Lotus  Domino  Directory  database.  

a.   Select  Server  ->  Servers  to  display  the  view. Click  on  the  Web button  and  select  Create  Web SSO  

Document  in the  resulting  context  menu.  

b.   A new  document  will  be  displayed  with  the  following  Token  Name  field  (LTPAToken). 

c.   Include  the  DNS  domain  in the  Token  Domain  field.  This  value  must  coincide  with  the  value  

specified  in  the  Domain  field  in  WebSphere  Application  Server.  This  domain  name  is  used  when  

the  HTTP  cookie  is  created  for  single  sign-on  and  determines  the  scope  to  which  single  sign-on  

applies.  

d.   Choose  the  Lotus  Domino  servers  that  are  going  to participate  in  the  SSO  scenario.

Note:  You must  specify  a fully  qualified  Lotus  Domino  server  name  (for  example,  

MyDominoServer/MyOu).  The  Lotus  Domino  server  name  that  you  specify  must  also  match  the  

name  of the  Home/mail  server  currently  in  the  active  Location  document  on  your  Lotus  Notes(R) 

client.  If the  Location  document  does  not  match,  you  must  create  one  that  does.  

  

a.   Enter  the  maximum  number  of  minutes  that  the  issued  token  will  be  valid  in  the  Expiration  

(minutes)  files.  Set  it to  match  the  time  set  in  WebSphere  Application  Server.  

b.   Click  on  the  Keys  drop  down  and  select  Import  WebSphere  LTPA keys.  

 

82 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



c.   Specify  the  path  and  the  file  name  for  the  WebSphere  Application  Server  LTPA keys  file  exported  

earlier.  

d.   Click  OK.  A  new  dialog  box  will  appear  prompting  the  user  for  the  LTPA password  specified  

when  the  keys  were  generated.  

e.   Click  OK.  When  the  process  completes  a confirmation  message  will  be  displayed.  

f.   A new  WebSphere  Information  section  will  appear  in  the  document.  The  LDAP  realm  and  host  

name  are  read  from  the  WebSphere  Application  Server  Import  file.  If  a port  was  specified  in  the  

WebSphere  LDAP  configuration  setting,  make  sure  to  add  a blackslash  (\)  prior  to  the  colon  (:) in  

the  LDAP  Realm  field.  

g.   Click  on  Save  and  Close  button.  The  document  will  be  saved.  To check  if the  document  is  present  

in  the  Lotus  Domino  Directory  select  Server  ->  Web Configurations  View  and  expand  the  *-All  

Servers  - section.  The  new  document  should  be  displayed  as  Web SSO  configuration  for  

LtpaToken.
2.   Enable  TCP/IP  port  status  in  Ports  ->  Internet  Ports  ->  Web tab  and  do  not  allow  anonymous  

connections  over  TCP/IP  by  modifying  the  Lotus  Domino  Server  Document.  

3.   Select  Multi-Server  session  in  Internet  Protocols  ->  Lotus  Domino  Web Engine  tab  on  the  server  

document.  

4.   Select  More  name  variations  with  lower  security  in  the  Web server  authentication  section  of  the  

security  tab.  This  allows  users  to  enter  the  following  name  formats  in  the  name  and  password  dialog  

box:  last  name,  first  name,  common  name,  full  hierarchical  name,  short  name,  and  alias  name.  

Table  1 shows  how  the  Database  ACL  was  modified  to implement  security  on  the  flights  application  

database.  

  

Table  1 Lotus  Domino  and  WebSphere  SSO  

 People,  Servers,  and  Group  User  Type Access  Level  Authorization  

Flight  Employees  Person  Group  Editor  Delete  Documents,  Create  Lotus  Script/Java  Agent  

Anonymous  Unspecified  Reader  Write Public  Documents
  

The  Lotus  Domino  server  will  present  a default  server  login  page  when  a user  tries  to access  a Web page  

from  the  database.  The  Web user  then  needs  to enter  their  username  and  password  and  click  on  the  

Login  button.  

  

The  Lotus  Domino  server  checks  if the  user  is  registered  in  the  Lotus  Domino  Directory  database  and  

verifies  that  the  credential  values  are  correct.  It  also  checks  if the  user  has  access  to  the  database.  Once  

the  user  is authenticated,  Lotus  Domino  creates  a new  LTPAToken and  sends  it to  the  user  as  a HTTP  

cookie  and  opens  the  Lotus  Domino  document.  

WebSphere(R)  Application Server and Lotus(R)  Domino(TM)  inter 

operability key findings 

Following  is a list  of  key  findings  that  we  uncovered  while  implementing  the  flights  scenario  which  dealt  

with  WebSphere  Application  Server  and  Lotus  Domino  inter  operability.  

v   When  creating  the  Lotus  Domino  Web single  sign-on  (SSO)  configuration  document,  you  need  to make  

sure  the  location  document  of  your  Notes(TM) client  points  to the  Lotus  Domino  server  where  you  want  

 

Chapter  6. WebSphere(R) Application  Server and Lotus(R) Domino(TM) interoperability overview  83



to  enable  SSO.  This  is needed  so  that  a public  key  can  be  used  for  the  server.  If a message  appears  

when  you  save  the  Web SSO  Configuration  document  saying  it could  not  find  server,  then  this  should  

fix  the  message.  

  

v   In the  WebSphere  Application  Server  security  center,  the  realm  (domain  name)  needs  to  be  specified  in 

lower  case.  

  

v   Since  WebSphere  Application  Server  treats  the  DNS  name  as  case-sensitive,  ensure  that  the  DNS  

domain  value  is  specified  exactly  the  same,  including  casing  as  in  Figure  1,  whenever  you  use  this  

value  in  Lotus  Domino.  

Figure  1 Lotus  Domino  and  WebSphere  SSO  

   

v   Make  sure  that  you  fully  qualify  the  URL  with  the  domain  name  (ie  

http://systemName.domainName:portNumber/uri) when  accessing  either  a Lotus  Domino  or a WebSphere  

URL  when  security  and  SSO  are  configured.  If  you  do  not  fully  qualify  the  URL  (ie  

http://systemName:portNumber/uri), you  will  get  returned  to  the  login  form  and  never  get  to  the  page  

you  were  trying  to  access.  

  

v   When  security  is  configured  in WebSphere  Application  Server,  place  the  NCSOW.jar  in  the  

qibm/userdata/webasadv4/instanceName/lib/ext  directory.  Because  we  were  using  the  NCSOW.jar  file  

to  create  our  Lotus  Domino  sessions,  we  had  put  this  jar  file  in the  JVM  properties  of  the  default  

server.  This  caused  a problem  once  security  was  enabled.  With  the  jar  file  in  the  JVM  settings,  we  kept  

getting  a NoClassDefFound  for  com.ibm.ejs.oa.EJSORB.  Since  the  NCSOW  was  in  the  JVM  classpath  

we  were  seeing  this  problem.  To fix,  we  moved  the  NCSOW.jar  to  the  

qibm/userdata/webasadv4/instanceName/lib/ext  directory  and  removed  the  entry  from  the  JVM  

classpath.  

  

v   When  using  security,  you  can  verify  that  you  are  running  under  the  correct  identity  by  using  the  

getCalledIdentity()  method  on  the  enterprise  bean  Context.  This  method  will  print  out  the  user  identity  

that  the  method  inside  the  enterprise  bean  is running  under.  

  

v   The  following  Java/CORBA  class  (lotus.domino  package)  elements  support  sign-on  to  Lotus  Domino  

and  WebSphere  servers  in  a single  sign-on  domain.
–    SessionToken  property

Read-only.  Gets  a session  token  for  enabling  sign-on  to  Lotus  Domino  and  WebSphere  servers  in a 

domain  that  supports  single  sign-on.
NOTE:  This  property  is  new  with  R5.0.5.
Defined  in:  lotus.domino.Session
Data  type:  String
Syntax:  public  String  getSessionToken()  throws  NotesException
Usage:  The  token  is  unique  for  each  user  and  is valid  for  the  time  specified  in  the  Lotus  Domino  

Directory.  The  format  of  the  token  is  consistent  with  the  LtpaToken  cookie  used  by  WebSphere.  

 

84 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



You can  also  get  the  token  from  the  HTTP  headers  in  a servlet  with  HttpServletRequest.getCookies().
This  property  is  valid  only  on  a server  configured  for  single  sign-on.
See  NotesFactory  for  usage  and  examples.

–    NotesFactory  class
NOTE:  To make  remote  (IIOP)  calls  to  the  Lotus  Domino  Objects  in  a WebSphere  environment,  

NCSOW.jar  must  be  in  your  classpath.  This  is new  with  R5.0.4.
The  description  of  the  NotesFactory  class  is extended  as  follows.
NOTE:  These  extensions  are  new  with  R5.0.5.  

 

To access  a server  using  single  sign-on,  create  a Session  object  as follows.  For  remote  (IIOP)  calls,  the  

first  parameter  is the  Internet  name  of  the  host.  For  local  calls,  the  first  parameter  is null.  

-   createSession(hostString,  String  token)  - Access  is  granted  based  on  the  token.  This  method  works  

in  a Lotus  Domino  environment.  The  token  must  be  a valid  token  for  single  sign-on  obtained  

from  Session.getSessionToken  or  the  LtpaToken  cookie  used  by  WebSphere.  

-   createSession(hostString,  org.omg.SecurityLevel2.Credentials)  - Access  is based  on  the  Credentials  

object.  This  method  works  in  a WebSphere  environment  where  the  Credentials  object  is created  

using  loginHelper.  

-   createSession(hostString,  null)  - Access  is  granted  based  on  the  current  Credentials  object  in  the  

WebSphere  environment.  This  method  works  from  an  enterprise  bean  application  in  WebSphere.

The  specification  of  NotesFactory  is  extended  with  the  following  methods:  

-   static  public  Session  createSession(String  host,  String  token)  throws  NotesException  

-   static  public  Session  createSession(String  host,  org.omg.SecurityLevel2.Credentials)  throws  

NotesException
–    Examples  

-   Example  1:  This  Lotus  Domino  agent  gets  a token  for  single  sign-on  and  creates  a remote  (IIOP)  

session  to  another  server  based  on  the  token.  

 

import  lotus.domino.*;
public  class  JavaAgent  extends  AgentBase  { 

 

public  void  NotesMain()  {
try  {
Session  session  = getSession();
AgentContext  agentContext  = session.getAgentContext();
Session  s2  = NotesFactory.createSession(“test5.iris.com”,
session.getSessionToken());
System.out.println(“remote  session  name  = ” + s2.getUserName());
}  catch(Exception  e)  {
e.printStackTrace();
}
}
}

-    Example  2:  This  servlet  gets  a token  for  single  sign-on  from  the  LTPAToken cookie  through  

HttpServletRequest  and  creates  a session  based  on  the  token.  

 

import  java.lang.*;
import  java.lang.reflect.*;
import  java.util.*;
import  java.io.*;

 

Chapter  6. WebSphere(R) Application  Server and Lotus(R) Domino(TM) interoperability overview  85



import  javax.servlet.*;
import  javax.servlet.http.*;
import  lotus.domino.*;  

 

public  class  Cookies  extends  HttpServlet
{  

 

private  void  respond(HttpServletResponse  response,  String  entity)  throws  IOException
{
response.setContentType(“text/plain”);
if  (entity  ==  null)
{ response.setContentLength(0);}
else  {
response.setContentLength(entity.length()  + 1);
ServletOutputStream  out  = response.getOutputStream();
out.println(entity);
}
}  

 

public  void  doGet  (HttpServletRequest  request,  HttpServletResponse  response)  

throws  ServletException,  IOException
{
String  s1 = “”;
Cookie[]  cookies  = null;
String  sessionToken  =  null;  

 

try  {
cookies  =  request.getCookies();
}
catch  (Exception  e)  { 

respond(response,“Exception  from  request.getCookies():  ” + e.toString());  

return;
} 

 

if (cookies  ==  null)  { 

s1  = “No  cookies  received”;
}
else  {
for  (int  i =  0;  i <  cookies.length;  i++)  {
if  (cookies[i].getName().equals(“LtpaToken”))  {
sessionToken  = cookies[i].getValue();
}
}
}  

 

if (sessionToken  !=  null)  {
try  {
NotesThread.sinitThread();
Session  session  =  NotesFactory.createSession(null,  sessionToken);
s1  +=  “\n”  + “Server:  ” + session.getServerName();
s1  +=  “\n”  + “IsOnServer:  ” + session.isOnServer();
s1  +=  “\n”  + “CommonUserName:  ” + session.getCommonUserName();
s1  +=  “\n”  + “UserName:  ” +  session.getUserName();
s1  +=  “\n”  + “NotesVersion:  ” + session.getNotesVersion();

 

86 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



s1  +=  “\n”  +  “Platform:  ” +  session.getPlatform();
NotesThread.stermThread();
}
catch  (NotesException  e)  {
s1  +=  “\n”  +  e.id  + e.text;
e.printStackTrace();
}
}  

 

respond(response,s1);
}
}

-    Example  3:  This  application  snippet  creates  a session  based  on  a credentials  object  obtained  from  

WebSphere.
com.ibm.CORBA.iiop.ORB  orb  =  com.ibm.ejs.oa.EJSORB.getORBInstance();  

 

if (orb  !=  null)  {
org.omg.SecurityLevel2.Current(R) securityCurrent  = 

(org.omg.SecurityLevel2.Current)orb.resolve_initial_references(“SecurityCurrent”);
org.omg.SecurityLevel2.Credentials  invCred  = 

securityCurrent.get_credentials(org.omg.Security.CredentialType.SecInvocationCredentials);
System.out.println(“creating  notes  session  using  current  creds”);
session  = NotesFactory.createSession(notesServer,  invCred);
}

-    Example  4:  This  WebSphere  enterprise  bean  application  creates  a session  based  on  the  current  

credentials  object  in  the  WebSphere  environment.  

 

import  lotus.domino.*;  

 

public  class  HelloBean  extends  Object  implements  SessionBean  { 

 

... /*  See  HelloBean.java  from  Websphere  for  the  complete  class  code  */  

 

/**
Returns  the  greeting.  But  has  been  modified  to create  a remote  session  to the
Lotus  Domino  server.
@return  The  greeting.
@exception  RemoteException  Thrown  if the  remote  method  call  fails.
*/
public  String  getMessage  ()  throws  RemoteException
{
String  result  = “hello  bean  ”;  

 

try  {
Session  s =  NotesFactory.createSession(“test5.iris.com”,  null);
result  = result  + “ —  Got  Session  for  ” + s.getUserName();
}
catch  (NotesException  ne)  {
result  = result  + “—  ” + ne.text;
result  = result  + “—  failed  to  get  session  for  user”;
}  

 

Chapter  6. WebSphere(R) Application  Server and Lotus(R) Domino(TM) interoperability overview  87



return  (String)  result  +  “ —  done”;
}
}

 

88 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario



Chapter  7.  References  

The  following  resources  provide  information  you  may  find  helpful.  

v   IBM(R) WebSphere  V4.0  Advanced  Edition  Security,  IBM  Redbook  SG24-6520-00  

v   Lotus  Domino  and  WebSphere  Integration  on  the  IBM  eServer  iSeries(TM) Server,  IBM  Redbook  

SG24-6223  

v   Lotus  Domino  and  WebSphere  Together  Second  Edition,  IBM  Redbook  SG24-5955-01  

v   Security  Guide
http://www.ibm.com/software/webservers/appserv/doc/v40/aes/infocenter/was/  

pdf/nav_Securityguide.pdf  

v   WebSphere  Interoperability
http://www-106.ibm.com/developerworks/webservices/library/ws-bpinter/

 

 

© Copyright  IBM Corp. 2005 89



90 iSeries:  WebSphere  Application  Server  and Lotus Domino  Scenario





����

  

Printed in USA 

 

 

 

 


	Contents
	Chapter 1. WebSphere(R) Application Server and Lotus(R) Domino(TM) Scenario Overview
	Chapter 2. Lotus(R) Domino(TM) environment Overview
	Lotus(R) Domino(TM) environment workflow
	Application Design Points
	Application Setup

	Lotus Domino forms and views
	Lotus Domino agents
	Application details

	Lotus(R) Domino(TM) environment key findings
	References
	Example: Source code for Lotus Domino agents

	Chapter 3. WebSphere(R) Application Server environment overview
	Application Model

	Chapter 4. Application Process Flow
	Development Environment
	WebSphere(R) Application Server environment application flow
	Application Details

	Design Considerations
	Flights Servlet
	Enterprise beans
	CustomerFlight enterprise bean
	Customer bean
	CustomerInfo

	Flight bean
	FlightInfo

	Ticket bean
	TicketInfo

	Installation of Enterprise Application

	WebSphere(R) Application Server environment key findings

	Chapter 5. References
	Example: Customer bean

	Chapter 6. WebSphere(R) Application Server and Lotus(R) Domino(TM) interoperability overview
	WebSphere(R) Application Server and Lotus(R) Domino(TM) interoperability single sign-on
	Setting up IIOP on Lotus Domino
	Configuring the flights application for security
	Enabling single sign-on for WebSphere Application Server
	Enabling single sign-on for the Lotus Domino Server

	WebSphere(R) Application Server and Lotus(R) Domino(TM) inter operability key findings

	Chapter 7. References

