
iSeries

iDrink and Cola Connections SMB

scenario overview

���

iSeries

iDrink and Cola Connections SMB

scenario overview

���

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. iDrink and Cola Connections

SMB scenario overview 1

iDrink overview 1

Cola Connections overview 2

Environment overview 3

SMB discoveries 4

Chapter 2. WebSphere Application

Server - Express environment 7

WebSphere(R) Application Server Overview 7

Application flow 8

Development environment 10

Application details 10

Application design points 11

UserServlet 14

CustomerServlet 16

EmployeeServlet 18

SupplierServlet 28

Installation of enterprise application 30

WebSphere discoveries 31

Chapter 3. Lotus Domino environment 33

Configuring Lotus Domino to use OS/400 LDAP . . 33

Application details 34

Application design points 34

Application setup 35

Lotus Domino forms and views 35

Lotus Domino agents 36

Lotus Domino discoveries 37

© Copyright IBM Corp. 2005 iii

iv iSeries: iDrink and Cola Connections SMB scenario overview

Chapter 1. iDrink and Cola Connections SMB scenario

overview

This report documents the IBM(R) eServer(TM) i5 Customer Solution Test team’s experience of

implementing a small to medium business (SMB) scenario using WebSphere(R) Application Server -

Express and Lotus(R) Domino(R). In this scenario, WebSphere Application Server - Express for iSeries(TM)

is used to establish an initial Web presence through dynamic Web pages, database access, and directory

server access. A Lotus Domino application meanwhile provides internal dynamic Web pages for iDrink

employees.

The iDrink SMB scenario simulates a beverage distribution company. This factitious company has less

than two hundred employees and is considered a small to medium size business. The beverage

distributor works with beverage suppliers to obtain the inventory that it sells. iDrink works with

customers who purchase large quantities of beverages to sell in a variety of stores. The employees work

with both the suppliers and customers to ensure that the business is a success. The iDrink company

handles customer, supplier, and product information via Java(TM) servlets and JavaServer Pages (JSPs).

Most of the customer, supplier, and product information is stored in a DB2 Universal Database(TM) with

employee information and passwords, customer passwords, and supplier passwords maintained in an

Lightweight Directory Access Protocol (LDAP) directory.

In addition, the iDrink employees have access to a classified ads Web site called Cola Connections that

they can use to advertise items for sale. This application is implemented in Lotus Domino.

iDrink overview

The iDrink company allows employees, customers, and suppliers access to information appropriate to

their role.

Scenario design decisions

The following describes the scenario design decisions that were initially made:

v Use WebSphere(R) Application Server - Express for application development as it provides a means to

quickly establish a Web presence for customers, employees, and suppliers to interface.

v Use the eServer(TM) i5 LDAP directory for authentication for the WebSphere application to provide

security.

iDrink application

The iDrink application consists of a WebSphere Application Server - Express environment using

JavaServer Pages, JavaBeans(TM), and Java(TM) servlets to allow customers, employees, and suppliers to

perform the following functions:

v Customers

– Register or login

– View product information

– Order products

– Update customer information

– View order history
v Employees

– Update supplier information

– Order products from suppliers

© Copyright IBM Corp. 2005 1

– Modify product pricing

– Track customer orders

– Track product inventory

– Create, update, and view classified ads
v Suppliers

– Update product information

Figure 1 shows the flow of the iDrink application.

Figure 1: iDrink application flow

Cola Connections overview

The Cola Connections application provides employees with a location to list classified ads to other

employees of Drink.

Application design decisions

The following describes the design decisions that were initially made:

v Use Lotus(R) Domino(R) for application development as it provides a means to establish a quick Web

presence.

v Use the eServer(TM) i5 LDAP directory for authentication for the Lotus Domino application to provide

security.

Cola Connections application

The Cola Connections application consists of a Lotus Domino database, agents, views, and forms that

gives iDrink employees the ability to create, update, or view classified ads. Figure 2 shows the flow of

the Cola Connections application.

2 iSeries: iDrink and Cola Connections SMB scenario overview

Figure 2: Cola Connections application flow

Security using Domino Directory Assistance

The Domino Directory provides support for securing application and data access. The security

mechanism determines and verifies user identity and allows access to protected resources only by

designated users. In Cola Connections, only employees are allowed to access the classified ads. Domino

uses an access control model that stores entries in the Access Control List (ACL) for each database.

Security is implemented by configuring Domino Directory Assistance to use the existing i5/OS(TM) LDAP

directory. Details for setting up security can be found in the Chapter 3, “Lotus Domino environment,” on

page 33 section.

Environment overview

The iDrink scenario SMB environment setup is described in the following topics: run-time environment,

system hardware, and the key products that were used.

Run time environment

The iDrink company is considered a small to medium size business, so they have invested in an

affordable, entry-level eServer(TM) i5 designed for the demand of their challenges. This small server

allows iDrink to run a variety of applications simultaneously providing security and availability plus the

power and capacity to run their business applications and their e-business solution.

System hardware

One eServer i5 system is used in this scenario implementation. This eServer i5 system contains a 1-Way

processor, 1 GB of memory, and 175 GB of main storage running i5/OS(TM) V5R3.

Key products

The key software products used in this scenario are:

Chapter 1. iDrink and Cola Connections SMB scenario overview 3

v WebSphere(R) Application Server - Express for iSeries(TM) is a tightly integrated development tool

and application server that provides an easily affordable entry point to e-business for companies

creating dynamic Web sites. WebSphere Application Server - Express supports the specifications for

JavaServer Pages (JSPs), Java(TM) servlets and Web services. WebSphere Application Server - Express

allows the building of static and dynamic Web sites by accessing information in databases and

performing simple updates while also providing the ability to create and use Web Services. It addresses

the needs of midmarket companies by being a low cost, easy to use, out-of-the-box solution.

Detailed information on IBM(R) WebSphere Application Server - Express for iSeries is available on the

Web at: http://www.ibm.com/servers/eserver/iseries/software/

websphere/wsappserver/express/indexexp51.html.

v Lotus(R) Domino(R) provides a foundation for collaboration and e-business, driving solutions from

corporate messaging to Web based transactions and everything in between. This enterprise-class

messaging and collaboration system is built to maximize productivity by unleashing the experience

and expertise of individuals, teams, and extended communities.

Detailed information on Lotus Domino for iSeries is available on the Web at:

http://www.ibm.com/servers/eserver/iseries/domino/

v Lightweight Directory Access Protocol (LDAP) is a directory service protocol that uses TCP/IP. The

LDAP directory service follows a client/server model. One or more LDAP servers contain the directory

data. An LDAP client connects to an LDAP server and makes a request. The server responds with a

reply, or with a pointer (a referral) to another LDAP server. Because LDAP is a directory service rather

than a database, the information in an LDAP directory is usually describable, attribute-based

information. LDAP generally reads the information in the directory much more often than it changes it.

Updates are typically simple, all-or-nothing changes. Common uses of LDAP directories include:

– online telephone directories

– e-mail directories

– authorization

– authentication

Detailed information on LDAP is available on the Web at:

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

v IBM HTTP Server powered by Apache for iSeries is a Web server that provides tools to quickly and

easily establish a Web presence and get started on the road to working the Web for business.

Detailed information on HTTP Server powered by Apache for iSeries is available on the Web at:

http://www.ibm.com/servers/eserver/iseries/software/http/

v DB2 Universal Database(TM) (UDB) for iSeries is an advanced, 64-bit Relational Database

Management System that leverages the On-Demand features of IBM’s eServer i5. A member of IBM’s

leading edge family of DB2(R) products, DB2 UDB for iSeries supports a broad range of applications

and development environments at a lower cost of ownership, due to its unique autonomic computing

(self-managing) features.

Detailed information on DB2 UDB is available on the Web at:

http://www.ibm.com/servers/eserver/iseries/db2

SMB discoveries

The following is a list of key discoveries that were uncovered while creating the iDrink SMB solution:

v If you decide to store information in session data for data communication between servlets and JSPs,

make sure that the objects you store are as small as possible. Any objects stored in the session become

a part of the Java(TM) heap and require memory usage. On a small box with little memory, there is not

a lot of room to store objects. If you go beyond the memory allocation on the system, anything in

memory will be paged to disk causing a decrease in overall system performance.

4 iSeries: iDrink and Cola Connections SMB scenario overview

v Increase the size of the WebSphere(R) data source connection pool to handle the number of requests

that are expected on the site. Also set the Aged Timeout value so that connections can be discarded if

they are not being utilized allowing memory usage to remain low. To set these values in the

WebSphere Administration Console:

– Expand the plus next to Resources in the left hand frame, then click on the JDBC Providers link. In

the main frame, select the Server Scope radio button then press the Apply button

– In the main frame, click on the JDBC provider link used by the application. Towards the bottom of

the JDBC Providers page under additional properties press the Data Sources link

– In the main frame, click on the data source link being used by the application. Towards the bottom

of the data source page click on the Connection Pool link

– On the connection pool page set the minimum and maximum connections as well as the aged

timeout

– Click the Apply button, followed by the Save link in the upper left corner of the screen. On the next

page, click the Save button

– Restart WebSphere Application Server
v Increase the number of threads on the Web Container inside the WebSphere Application Server

instance to match the maximum number of users. Also click to allow thread allocation beyond

maximum thread size. To set these values in the WebSphere Administration Console:

– Expand the plus next to Servers in the left hand frame, then click on the Application Servers link.

In the main frame, click on the application server link where the application is running

– On the application servers page, click on theWeb Container link

– On the web container page, click on the Thread Pool link

– On this page set the minimum and maximum size as well as clicking the radio box for Is Growable

– Click the Apply button, followed by the Save link in the upper left corner of the screen. On the next

page, click the Save button

– Restart WebSphere Application Server
v Increase the number of threads to process requests on the HTTP server to match the maximum number

of users. To set these values in the IBM(R) tasks page:

– Click on the Manage tab then click on the HTTP Servers tab

– Select the HTTP server associated to the WebSphere Application Server from the drop down box

– In the left hand frame select the System Resources link

– In the main frame, click on the Advanced tab

– Set the number of threads to process requests

– Press the Apply button then press the OK button

– Restart the HTTP server
v Increase the system-wide TCP send buffer and receive buffer sizes depending upon the nature of the

applications running on a partition. To change these settings in a 5250 session:

– CHGTCPA

– Change the TCP receive buffer and send buffer sizes

– Press Enter

Chapter 1. iDrink and Cola Connections SMB scenario overview 5

6 iSeries: iDrink and Cola Connections SMB scenario overview

Chapter 2. WebSphere Application Server - Express

environment

IBM(R) WebSphere Application Server - Express for iSeries(TM), Version 5.1 is a combination of both

development tools and an application server that provides an integrated package for Web-based

applications. WebSphere Application Server - Express contains the following:

v An application server containing:

– Servlet 2.3 and JSP 1.2 support

– Embedded Web server

– Web container

– Web services support

– XML and XSL support

– JDBC 2.0 support

– Connection pooling

– Simple WebSphere Authentication Method (SWAM)

– Servlet 2.3 and JSP 1.2 support
v IBM WebSphere Development Studio Client for iSeries, Version 5.1, a development tool containing:

– Servlet 2.3 specification

– JSP 1.2 specification

– HTML

– JavaScript(TM) (client-side and server-side)

– Dynamic HTML (DHTML)

– XML and XHTML

– Web services use and creation

– Team development using CVS

– JDBC 2.0

– Support for remote server configuration and operation

– Customer tag libraries

– Struts

The iDrink application is contained in an Enterprise Archive (EAR) file. An EAR file is a compressed JAR

file that contains a J2EE application. J2EE applications contain elements such as servlets, JSPs,

JavaBeans(TM), and XML configuration files. The EAR file can be created with WebSphere Development

Studio Client, WebSphere Studio Application Developer, or WebSphere Studio Application Site Developer.

WebSphere(R) Application Server Overview

The WebSphere Application Server - Express environment was set up during the eServer(TM) i5 Customer

Solution Test iDrink scenario work. The goal was to quickly establish a Web presence so that the iDrink

company could provide an interface for its customers and suppliers to perform necessary business

functions. The company also uses the WebSphere Application Server - Express environment to provide an

interface for employees to perform their work. The iDrink interface was built using JavaServer Pages

(JSPs), JavaBeans(TM), and servlets.

© Copyright IBM Corp. 2005 7

Application flow

There are a number of JSPs used within the iDrink application. These JSPs are listed and described in the

User, Customer, Employee, and Supplier sections.

The following diagram illustrates the high-level flow within the iDrink application:

8 iSeries: iDrink and Cola Connections SMB scenario overview

Figure 3: iDrink Application Flow

Chapter 2. WebSphere Application Server - Express environment 9

Development environment

The iDrink team chose IBM(R) WebSphere(R) Studio Application Developer (WSAD) version 5.0 to develop

the servlets, JavaServer Pages (JSPs) and JavaBeans(TM) that together form the iDrink application. WSAD

provides an Eclipse-based development environment that allows developers to easily create, compile and

package Java(TM) 2 Platform, Enterprise Edition (J2EE) applications for deployment on a production

system. Once an application is coded and compiled, it can be run in a test environment in WSAD or it

can be deployed to an IBM WebSphere Application Server instance and configured via the WebSphere

administration console. Another tool that can be used for development of Web applications is WebSphere

Development Studio Client (WDSC).

Application details

The iDrink application is an enterprise application that is composed of Java(TM) servlets, JavaBeans(TM)

and JavaServer Pages (JSPs). There are four servlets in the iDrink application. These include the

UserServlet, the CustomerServlet, the EmployeeServlet and the SupplierServlet. The UserServlet is

responsible for handling all login, logout and password change requests from all users. The

CustomerServlet is responsible for handling all requests from customers and from all users who have not

logged into iDrink. The EmployeeServlet handles all requests from iDrink employees who have logged in

and the SupplierServlet handles all requests from iDrink suppliers who have logged in.

When each iDrink servlet receives a request from a user, it parses the contents of the request to determine

which action to take. For example, the servlet may need to access or create a Lightweight Directory

Access Protocol (LDAP) entry or a record in a database file. If data has been retrieved, an appropriate

JavaBean is created and the data is stored within the JavaBean. The JavaBean is then added to the request

object or the session object, and the appropriate JSP is displayed. Figure 4 illustrates the way these

components work together.

Figure 4: iDrink application components

10 iSeries: iDrink and Cola Connections SMB scenario overview

This section contains detailed information about the methods in the UserServlet, the CustomerServlet, the

EmployeeServlet and the SupplierServlet, in addition to the JSPs that are called by these servlets. This

section also contains a description of the application design points that the servlets follow, as well as the

steps that are taken to install an enterprise application, such as iDrink, to an IBM(R) WebSphere(R)

Application Server - Express server.

Application design points

Before designing the application, consideration is taken into account on how the LDAP server and

database schema is designed. This section contains the information on these considerations as well as the

JavaBeans(TM) and Java(TM) servlet designs for the iDrink scenario.

Lightweight Directory Access Protocol (LDAP) design

A LDAP directory is used within the iDrink and Cola Connections applications as an authentication

mechanism. Figure 5 shows how the LDAP directory is configured.

Figure 5: LDAP directory

When configuring the LDAP directory, the following choices for object classes and ACLs are used:

Chapter 2. WebSphere Application Server - Express environment 11

v Customers and Suppliers use the object classes inetOrgPerson and ePerson. All customers are members

of a group called cn=customers and all suppliers are members of a group called cn=suppliers.

v Employees use the object classes inetOrgPerson and ePerson. All employees are members of a group

called cn=employees. A handful of employees are members of a group called cn=powerEmployees. The

powerEmployees group is allowed to do certain actions to the LDAP entries that regular employees are

not allowed to do.

v Acess Control List (ACL) filters were added to the employee records to secure the data contained in

the actionDate (DateOfBirth) and the employeeNumber (Social Security Number). The ACL filters that

are used allow employees to read the record, however, only powerEmployees can view the

employeeNumber and actionDate values.

– aclentry: group:cn=employees,o=iDrink,dc=domainName,dc=domainSuffix:normal:grant:rsc

– aclentry: group:cn=employees,o=iDrink,dc=domainName,dc=domainSuffix:
 at.employeeNumber:deny:rsc:at.actionDate:deny:rsc

– aclentry: group:cn=powerEmployees,o=iDrink,dc=domainName,dc=domainSuffix.:
 at.employeeNumber:grant:rsc:at.actionDate:grant:rsc

v When populating the LDAP direcotry, all date fields have a format of

YYYYMMDDHHMMSS[.|,fraction][(+|-HHMM)|Z]

Database design

The following diagram illustrates iDrink’s database design:

12 iSeries: iDrink and Cola Connections SMB scenario overview

Figure 6: iDrink database design

The following is a brief summary of each table:

v SUPPLIER: Contains information about iDrink’s suppliers.

Chapter 2. WebSphere Application Server - Express environment 13

v SUPPLIERBRANCH: Contains information about iDrink’s supplier branches.

v SUPPLIERCONTACT: Contains information about iDrink’s supplier contacts.

v SUPPLIERPRODUCT: Contains information about products supplied by iDrink’s suppliers. Some of the

products in this database are not sold by iDrink.

v PRODUCT: Contains information about products supplied by iDrink. The values in the PRODUCT

table are a subset of the values in the SUPPLIERPRODUCT table.

v INVENTORY: Contains information regarding the quantity of products that iDrink currently has, and

where these products are located.

v CUSTOMER: Contains customers that purchase products from iDrink.

v ORDER: Contains information for orders placed by iDrink customers.

v SHIPPING: Contains the shipping types used by iDrink to ship orders.

JavaBean Design

JavaBeans were created to store data retrieved by servlets. In the iDrink application, the following

JavaBeans were created:

v CustomerBean - The CustomerBean stores information from the CUSTOMER database.

v CustomerInvoiceBean - The CustomerInvoiceBean stores information from the ORDER database.

v InventoryBean - The InventoryBean stores information from the INVENTORY database.

v InvoiceItemBean The InvoiceItemBean stores information pertaining to a single item in a particular

order in the ORDER database.

v ProductBean - The ProductBean stores information from the PRODUCT database.

v ShippingBean - The ShippingBean stores information from the SHIPPING database.

v SupplierBean - The SupplierBean stores information from the SUPPLIER database.

v SupplierBranchBean - The SupplierBranchBean stores information from the SUPPLIERBRANCH

database.

v SupplierContactBean - The SupplierContactBean stores information from the SUPPLIERCONTACT

database.

v SupplierProductBean - The SupplierProductBean stores information from the SUPPLIERPRODUCT

database.

v UserBean - The UserBean stores user information found in LDAP.

Servlet Design

Four servlets were used in the iDrink application. The following briefly describes each servlet:

v CustomerServlet - The CustomerServlet contains methods used in the customer application flow.

v EmployeeServlet - The EmployeeServlet contains methods used in the employee application flow.

Some methods are also used in the supplier application flow.

v SupplierServlet - The SupplierServlet contains methods used in the supplier application flow.

v UserServlet - The UserServlet contains methods used throughout the entire application flow to ensure

that only users with the proper authority can logon and access the appropriate pages (for example, it

prevents customers from viewing the employee pages).

UserServlet

The iDrink UserServlet provides the functionality that any iDrink user needs to login to iDrink, to change

their password and to logout of iDrink. The servlet utilizes an LDAP directory to accomplish these tasks.

Design Points

14 iSeries: iDrink and Cola Connections SMB scenario overview

The iDrink application needed a mechanism to determine if a user was logged in. If a user was logged in,

the application also needed to know what type of user that user was. To accomplish these tasks, the

application relies on the UserBean class. A UserBean object contains the user ID of the user and an

integer value that is assigned one of three constant values that are associated with each of the iDrink user

types. When a user logs into iDrink, the UserServlet creates a new UserBean object and sets the user ID

and user type values, then adds the object to the session. The object remains in the session, until the user

logs out. Thus, once a user logs in, any servlet or JSP that is accessed by the user can easily determine

the user’s user ID and user type.

Methods

The following is a list of methods that are found in the UserServlet. The doPost method receives all

incoming requests from the customer, and calls the appropriate method from this list of methods.

v assertUserType - The assertUserType method retrieves the UserBean from the request. If the UserBean

is null or is not of a valid user type, the method displays the UserLogin JSP.

v changePassword - The changePassword method accepts a user ID, an old password and a new

password. The LDAP entry for the specified user ID is found, and the userPassword attribute in that

entry is updated with the new password. If this is successful, the method returns a true boolean value.

If any exceptions are thrown during this process, the method returns a false boolean value.

v handlePasswdRequest - The handlePasswdRequest method verifies the new password matches the

confirmation password, then calls the changePassword method to change the existing password. The

method then displays the UserPasswdResults JSP.

v loginUser - The loginUser method retrieves the user ID and the password from the request, and calls

the verifyUser method to verify that the specified password is correct for the user ID. If the password

is correct, a UserBean is created and added to the session object. The appropriate JSP is then displayed,

based on the type of user that is logging on. A customer would view the iDrinkHome JSP, an employee

would view the EmployeeHome JSP and a supplier would view the SupplierHome JSP.

v logoutUser - The logoutUser method removes the UserBean object from the session object, then

displays the iDrinkHome JSP.

v verifyUser - The verifyUser method accepts a user ID and password, and verifies that the password is

correct for the specified user ID. If the password is correct, the method returns an integer which

represents the type of iDrink user. If the password is incorrect, the method returns zero.

JavaServer Pages

The following is a list of JSPs that are called by the UserServlet:

v CustomerProceedToCheckout - The CustomerProceedToCheckout JSP displays a link that will take a

customer to the CustomerCheckout JSP. This JSP is used as an intermediate step when a customer logs

in during the check out process.

v EmployeeHome - The EmployeeHome JSP is displayed after an employee logs in.

v iDrinkHome - The iDrinkHome JSP is displayed after a customer logs in. It is also displayed after a

user logs out.

v SupplierHome - The SupplierHome JSP is displayed after a supplier logs in.

v UserLogin - The UserLogin JSP is displayed at the start of the login process. It displays text fields for a

user ID and a password.

v UserPasswdResults - The UserPasswdResults page is displayed after a user changes their password. It

informs the user that their password change request has succeeded or failed.

Chapter 2. WebSphere Application Server - Express environment 15

CustomerServlet

The iDrink CustomerServlet provides the functionality that an iDrink customer needs in order to do

business with iDrink. It gives a customer the ability to register with iDrink, update their customer

information, search for products, view product descriptions, add items to their shopping cart, place

orders, and view their order history. The CustomerServlet and the JavaServer Pages (JSPs) that it calls

work with the UserServlet to provide functionality that allows a user to login and logout of iDrink and to

change their password. By default, the CustomerServlet handles all of the requests of an iDrink user, until

they log in as an iDrink employee or as an iDrink supplier. If an iDrink user logs in as an iDrink

customer, the CustomerServlet continues to handle the requests from that user.

Design Points

During a customer’s shopping experience with iDrink, the CustomerServlet uses an iDrinkCart object to

store the items that a customer adds to their shopping cart. The iDrinkCart object contains a

java.util.Hashtable, which stores iDrinkCartItems that have been added to the iDrinkCart. Each

iDrinkCartItem contains information about the item in the cart, which includes the UPC number, quantity

and price. The key value for each iDrinkCartItem in the hashtable is that item’s UPC number, which

allows for easy retrieval of items from the hashtable.

When a new customer registers with iDrink, a new, unique customer ID must be generated and assigned

to the new customer’s account. There is only one record in the customer table for each customer, so an

identity column is used to generate this customer ID value. An identity column provides an easy way of

automatically generating an unique, primary key value for every row in a table. This eliminates the

concurrency and performance problems that can occur when an application must generate it’s own

unique values, which are usually based on the values that are already in the table. Since the customer ID

is an identity column in the customer table, the CustomerServlet does not have to try to determine what

the next customer ID should be. It simply lets the functionality of the identity column handle this work

automatically.

When a customer places an order with iDrink, a new, unique invoice ID must be generated and assigned

to that order. When the CustomerServlet receives the order information from the customer, it inserts one

record into the order table for each unique item in the order. Each of these records must contain the same

invoice ID. Thus, there can be any number of records in the order table that have the same invoice ID.

Because of this, an identity column could not be used to generate an unique invoice ID, since an identity

column would generate an unique value for each item in the order, instead of one unique value for the

entire order itself. To generate an unique invoice ID, the CustomerServlet relies on a DB2(R) sequence

object. A DB2 sequence object is an object that generates sequential values. Whenever a value is requested

from a sequence object, it returns the next value in a sequence that was defined when the sequence object

was created. The sequence defined in the invoice ID sequence object is simply a sequence of integers

incremented by one, in ascending order. When the CustomerServlet places an order for a customer, it

accesses the sequence object to retrieve the next invoice ID. This value is then used in all SQL insert

statements that are executed for the order that is being placed.

A customer is not forced to login before they use the iDrink website. Thus, it was necessary to add logic

to the CustomerServlet, the UserServlet and various JSPs to handle the case in which a customer adds

items to their cart and does not login or register until they begin the checkout process. If a customer has

not logged in before they press the checkout button, an additional parameter is sent in the HTTP request

to the CustomerServlet (for customer registration) or to the UserServlet (for user login). If either of these

servlets finds this parameter in a registration or login request, the servlet will process the request, then

redirect the user to an intermediate checkout page that displays the customer ID and a link to continue

with the checkout process. If a customer initiates the login or registration process from any other point in

the iDrink website, they are redirected to a welcome screen, once the registration or login request

successfully completes. In this case, the intermediate page is not needed, and is not displayed.

Application flow

16 iSeries: iDrink and Cola Connections SMB scenario overview

The iDrink customer interface does not force a customer down a predetermined path. Thus, a customer

can easily jump from one task to another at any time. As a result of this flexibility, it is would be very

difficult to illustrate all possible potential paths that a customer could take through the customer interface

while shopping at iDrink. Figure 7 illustrates the paths most commonly used by iDrink customers.

Figure 7: iDrink customer application flow

Methods

The following is a list of methods that are found in the CustomerServlet. The doPost method receives all

incoming requests from the customer, and calls the appropriate method from this list of methods.

v addItemToCart - The addItemToCart method adds a specified quantity of a specified product to the

customer’s iDrinkCart. The updated cart contents are displayed in the CustomerViewCart JSP.

v checkout - The checkout method retrieves the valid shipping codes for a customer’s order, based on

the value of the items in their iDrinkCart. These shipping codes are displayed for the customer’s

selection in the CustomerCheckout JSP.

v displayMatchingProducts - The displayMatchingProducts method retrieves basic information about

products that match search criteria specified by a customer. This information is displayed in the

CustomerMatchingProducts JSP.

v getNextInvoiceID - The getNextInvoiceID method returns the next invoice ID, which is supplied by a

DB2 sequence object.

v registerNewCustomer - The registerNewCustomer method inserts a new record in the iDrink customer

table. This record contains the customer’s information. It also creates a new LDAP entry for the

customer. This entry contains the customer’s password.

Chapter 2. WebSphere Application Server - Express environment 17

v submitOrder - The submitOrder method retrieves the new invoice ID from the getNextInvoiceID

method. It then inserts one record into the iDrink order table for each item in the customer’s

iDrinkCart.

v updateCustomer - The updateCustomer method updates the customer information of the current

customer with values provided by the customer.

v updateItemsInCart - The updateItemsInCart method updates the quantity of each item in the

customer’s iDrinkCart, based on values provided by the customer. The updated contents are displayed

in the CustomerViewCart JSP.

v viewInvoices - The viewInvoices method retrieves basic information about each order that has been

placed by the current customer. This information is displayed in the CustomerInvoices JSP.

v viewInvoiceInformation - The viewInvoiceInformation method retrieves detailed information about a

specified customer order. This information is displayed in the CustomerInvoiceInfo JSP.

v viewProduct - The viewProduct method retrieves detailed information about a product with a specified

UPC. This information is displayed in the CustomerProductInfo JSP.

v viewUpdateCustomerScreen - The viewUpdateCustomerScreen method retrieves the customer

information for the current customer. This information is displayed in the CustomerUpdate JSP.

JavaServer Pages

The following is a list of JSPs that are called by the CustomerServlet:

v CustomerCheckout - The CustomerCheckout JSP displays a list of available shipping options that a

customer may select for their order.

v CustomerDisplayCart - The CustomerDisplayCart JSP displays the contents of the customer’s

iDrinkCart.

v CustomerInvoiceInfo - The CustomerInvoiceInfo JSP displays detailed information about a specific

customer order.

v CustomerInvoices - The CustomerInvoices JSP displays a list of all orders that have been placed by a

customer.

v CustomerMatchingProdcuts - The CustomerMatchingProducts JSP displays all products that match the

search criteria specified by a customer.

v CustomerOrderSubmitted - The CustomerOrderSubmitted JSP informs a user that their order has been

placed, and displays the invoice number.

v CustomerProceedToCheckout - The CustomerProceedToCheckout JSP displays a link that will take a

customer to the CustomerCheckout JSP. This JSP is used as an intermediate step when a customer

registers or logs in during the check out process.

v CustomerProductInfo - The CustomerProductInfo JSP displays detailed information about a specific

iDrink item.

v CustomerRegistration - The CustomerRegistration JSP provides input fields which allow a new

customer to enter and submit their customer information.

v CustomerSearchProducts - The CustomerSearchProducts JSP provides input fields which allow a

customer to enter and submit a set of product search criteria.

v CustomerUpdate - The CustomerUpdate JSP displays current customer information in text fields,

which allow a user to modify and submit updated customer information.

EmployeeServlet

The iDrink EmployeeServlet provides the functionality that an iDrink employee needs in order to work

with all entities of the company, including customers, suppliers, orders, products, and inventory. It gives

employees the ability to:

v view customer orders

v add, view, update, and delete products that iDrink offers

18 iSeries: iDrink and Cola Connections SMB scenario overview

v add, view, update, and delete products from inventory

v create, view, update, and delete suppliers, supplier branches, and supplier contacts

v create, view, update, and delete shipping types

v access the Cola Connections site

The EmployeeServlet and the JSPs that it calls work with the UserServlet to provide functionality to

ensure that only employees can log on to and access the pages associated with the EmployeeServlet.

Design Points

v Along with using identity columns in the design of the customer application flow, identity columns are

used in the employee application flow as well. Identity columns are used in these tables to allow for

easy creation for primary key values:
– SHIPPING

– SUPPLIER

– SUPPLIERBRANCH

– SUPPLIERCONTACT
v Upon comparison of the employee and supplier application flows, it was discovered that these actions

were similar:

– searching and viewing supplier information

– searching and viewing supplier branch information

– searching and viewing supplier contact information

Because these actions were identical, it was decided to only write one set of methods for these actions

in the EmployeeServlet instead of writing methods in both the EmployeeServlet and the

SupplierServlet.

Also, only one set of JSP pages was created to search and view the information. Because only one set

of JSPs was used, it was important to specify that both suppliers and employees were allowed access

to these pages. This was done by adding the supplier check condition to the search and view JSPs, as

this code demonstrates:

UserServlet.assertUserType

 (request, response, UserBean.USER_TYPE_SUPPLIER | UserBean.USER_TYPE_EMPLOYEE, “UserLogin.jsp”);

Since the employee application flow required links to update and delete supplier, supplier branch, and

supplier contact information from these pages, it was important to check the user type before

displaying these links. If the user was of type supplier, the links to update and delete were not

displayed. This JSP code gives an example:

 <%

 if(userbean.getUserType() == UserBean.USER_TYPE_EMPLOYEE)

 {

 %>

 <A HREF=“EmployeeServlet?action=viewSupplierContactToUpdate&contactID=<%=

 supplierContactBean.getContactID()%>”>Update Supplier Contact

 <A HREF=“EmployeeServlet?action=viewSupplierContactToDelete&contactID=<%=

 supplierContactBean.getContactID()%>”>Delete Supplier Contact

 <%

 }

When an employee deletes a supplier, supplier contact, or inventory, that entity is deleted from the

database. However, deletion of products and ship codes have a different meaning. Since the

information needs to be left in the database for historical reasons, the items are left in the database,

and a particular field is set to represent that the item is deleted.

– To delete a product, the DISCONTINUEDATE is set. (A product with a null DISCONTINUEDATE

means the product has not been deleted).

Chapter 2. WebSphere Application Server - Express environment 19

– To delete a ship code, the COSTLIMIT is set to 0. (A ship code with a COSTLIMIT greater than 0 is

an active ship code that can be used for orders).
Also, certain items have conditions that must be met in order to delete the item:

– To delete a supplier, the supplier must not have any supplier branches associated with the supplier.

– To delete a supplier branch, the supplier branch must not have any supplier contacts associated with

the supplier branch.

– To delete a supplier contact, the supplier contact must not have any supplier products associated

with the supplier contact and the supplier contact must not be in an active state.
v In order for iDrink employees to add a new product to their customer offerings, the employee must

choose a product from the SUPPLIERPRODUCT table that is not already in the PRODUCT table. Recall

that the SUPPLIERPRODUCT table contains all products that are offered by iDrink’s suppliers. The

PRODUCT table contains products that iDrink offers to its customers. The products in the PRODUCT

table are a subset of the products in the SUPPLIERPRODUCT table. In order to display the products in

the SUPPLIERPROUDCT table that are not in the PRODUCT table, a subselect was performed on the

SUPPLIERPRODUCT table, as the following example demonstrates:

 SELECT *

 FROM IDRINK.SUPPLIERPRODUCT

 WHERE UPC NOT IN (SELECT UPC FROM

 IDRINK.PRODUCT)

v When updating existing inventory, there were several options that could be implemented:

– Overwriting the existing inventory with a new amount

– Adding or subtracting an amount from the existing inventory

After much consideration, it was decided to implement the first option: overwriting the existing

inventory with a new amount. This provided the simplest option to implement as well as to use by

employees.

v When working with shipping, it is beneficial for the employees to view both the minimum and

maximum cost limits for an order for each ship code. However, in the SHIPPING table, only the

maximum cost limit for the ship code is stored. The minimum cost limit is implied by the maximum

cost limit for the next lowest cost limit for the ship code’s shipping type (shipping types currently used

by iDrink include GROUND, NEXT DAY AIR, and 2ND DAY AIR). In order for the JSPs to easily

access the minimum cost limit information, a variable called costLimitMin was created in the

ShippingBean to hold this information.

Application flow

The iDrink employee interface does not force employees down a predetermined path. Thus, an employee

can easily jump from one task to another at any time. As a result of this flexibility, it is would be very

difficult to illustrate all possible potential paths that an employee could take through the employee

interface. Figure 8 illustrates the basic application flow available to iDrink employees.

20 iSeries: iDrink and Cola Connections SMB scenario overview

Figure 8: iDrink employee application flow

The application flow of these items are similar:

v Search and Update Inventory

v Search and Update Products

v Search and Update Suppliers, Supplier Branches, and Supplier Contacts

v Search and Update Shipping

For example, figure 9 illustrates the application flow for Search and Update Products:

Chapter 2. WebSphere Application Server - Express environment 21

Figure 9: Search and update products application flow

With a few minor exceptions, the same application flow is used for Inventory, Shipping, Suppliers,

Supplier Branches, and Supplier Contacts.

The Cola Connections application flow is described in the Lotus(R) Domino(R) Environment section.

Methods

The following tables contain the methods that are found in the EmployeeServlet. Since most iDrink

entities have methods that perform similar actions, the methods are categorized by action.

The doPost method receives all incoming requests from the customer, and calls the appropriate method

from this list of methods.

 Entity Method Name Tables Used What is called after the

method completes

Inventory createInventory INVENTORY Confirm.jsp

Product createProduct PRODUCT, SUPPLIER

PRODUCT

Confirm.jsp

Shipping createShipping SHIPPING Confirm.jsp

Supplier createSupplier SUPPLIER Confirm.jsp

Supplier Branch createSupplierBranch SUPPLIER,

SUPPLIERBRANCH

Confirm.jsp

22 iSeries: iDrink and Cola Connections SMB scenario overview

Supplier Contact createSupplierContact SUPPLIER,

SUPPLIERBRANCH,

SUPPLIERCONTACT

Confirm.jsp

Table 1: Methods to create a new object and insert the object into the appropriate table.

 Entity Method Name Tables Used What is called after the

method completes

Inventory deleteInventory INVENTORY Confirm.jsp

Product deleteProduct PRODUCT Confirm.jsp

Shipping deleteShipping SHIPPING Confirm.jsp

Supplier deleteSupplier SUPPLIER Confirm.jsp

Supplier Branch deleteSupplierBranch SUPPLIER,

SUPPLIERBRANCH

Confirm.jsp

Supplier Contact deleteSupplierContact SUPPLIER,

SUPPLIERBRANCH,

SUPPLIERCONTACT

Confirm.jsp

Table 2: Methods to allow employees to remove objects. All methods except deleteProduct and

deleteShipping will delete the object from the database, provided the appropriate conditions are met.

 Entity Method Name Tables Used What is called after the method

completes

Customer searchCustomerOrders ORDER EmployeeCustomerOrdersList.jsp

Customer searchCustomers CUSTOMER EmployeeCustomerList.jsp

Inventory searchInventory INVENTORY, PRODUCT InventorySearchResults.jsp

Product searchProduct PRODUCT ProductSearchResults.jsp

Shipping searchShipping SHIPPING ShippingSearchResults.jsp

Supplier searchSupplier SUPPLIER SupplierSearchResults.jsp

Supplier Branch searchSupplierBranch SUPPLIER,

SUPPLIERBRANCH

SupplierBranchSearchResults.jsp

Supplier Contact searchSupplierContact SUPPLIER,

SUPPLIERBRANCH,

SUPPLIERCONTACT

SupplierContactSearchResults.jsp

Supplier Product searchSupplierProduct PRODUCT,

SUPPLIERCONTACT,

SUPPLIERPRODUCT

ProductSearchResults.jsp

Table 3: Methods to allow an employee to search for an object.

 Entity Method Name Tables Used What is called after the

method completes

Inventory updateInventory INVENTORY Confirm.jsp

Product updatePrice PRODUCT Confirm.jsp

Product updateProduct PRODUCT Confirm.jsp

Shipping updateShipping SHIPPING Confirm.jsp

Supplier updateSupplier SUPPLIER Confirm.jsp

Chapter 2. WebSphere Application Server - Express environment 23

Supplier Branch updateSupplierBranch SUPPLIER,

SUPPLIERBRANCH

Confirm.jsp

Supplier Contact updateSupplierContact SUPPLIER,

SUPPLIERBRANCH,

SUPPLIERCONTACT

Confirm.jsp

Table 4: Methods to allow an employee to update an object.

 Entity Method Name Tables Used What is called after the

method completes

Customer viewCustomer CUSTOMER EmployeeCustomerInfo.jsp

Customer viewCustomerOrder ORDER, PRODUCT,

SHIPPING

EmployeeOrderInfo.jsp

Inventory viewInventoryItem INVENTORY InventoryInfo,jsp

Product viewPrice PRODUCT PriceUpdate.jsp

Product viewProductItem PRODUCT ProductInfo.jsp

Shipping viewShippingItem SHIPPING ShippingInfo.jsp

Supplier viewSupplierItem SUPPLIER SupplierInfo.jsp

Supplier Branch viewSupplierBranchItem SUPPLIER,

SUPPLIERBRANCH

SupplierBranchInfo.jsp

Supplier Contact viewSupplierContactItem SUPPLIER,

SUPPLIERBRANCH,

SUPPLIERCONTACT

SupplierContactInfo.jsp

Table 5: Methods to allow an employee to view the details of an object.

 Entity Method Name Tables Used What is called after the

method completes

Inventory inventoryInfo INVENTORY, PRODUCT

Inventory viewInventoryToDelete
(calls inventoryInfo)

 InventoryDelete.jsp

Inventory viewInventoryToUpdate
(calls inventoryInfo)

 InventoryUpdate.jsp

Product productInfo PRODUCT

Product viewProductToDelete
(calls productInfo)

 ProductDelete.jsp

Product viewProductToUpdate
(calls productInfo)

 ProductUpdate.jsp

Shipping fetchShippingInfo SHIPPING

Shipping viewShippingToDelete
(calls fetchShippingInfo)

 ShippingDelete.jsp

Shipping viewShippingToUpdate
(calls fetchShippingInfo)

 ShippingUpdate.jsp

Supplier fetchSupplerInfo SUPPLIER

Supplier viewSupplierToDelete
(calls fetchSupplierInfo)

 SupplierDelete.jsp

Supplier viewSupplierToUpdate
(calls fetchSupplierInfo)

 SupplierUpdate.jsp

24 iSeries: iDrink and Cola Connections SMB scenario overview

Supplier Branch fetchSupplierBranchInfo SUPPLIER,

SUPPLIERBRANCH

Supplier Branch viewSupplierBranchToDelete
(calls fetchSupplierBranchInfo)

 SupplierBranchDelete.jsp

Supplier Branch viewSupplierBranchToUpdate
(calls fetchSupplierBranchInfo)

 SupplierBranchUpdate.jsp

Supplier Contact fetchSupplierContactInfo SUPPLIER,

SUPPLIERBRANCH,

SUPPLIERCONTACT

Supplier Contact viewSupplierContactToDelete
(calls fetchSupplierContactInfo)

 SupplierContactDelete.jsp

Supplier Contact viewSupplierContactToUpdate
(calls fetchSupplierContactInfo)

 SupplierContactUpdate.jsp

Table 6: Methods to either prepare session-associated beans with current information or to call

methods that prepare session-associated beans with current information. The information is then

displayed on the appropriate page.

The remaining methods are described in detail:

v getInventoryCreateInfo - The getInventoryCreateInfo method retrieves a list of valid UPCs from the

PRODUCT table. This information is displayed in the InventoryCreate JSP.

v getInventorySearchInfo - The getInventorySearchInfo method retrieves a list of valid UPCs from the

PRODUCT table and all valid warehouse locations from the INVENTORY table. This information is

displayed in the InventorySearch JSP.

v getProductCreateInfo - The getProductCreateInfo method retrieves information on products that are in

the SUPPLIERPRODUCT table but not in the PRODUCT table. This information is displayed in the

ProductCreate JSP.

v getProductSearchInfo - The getProductSearchInfo method retrieves a list of the valid package types to

provide default values for the search. This information is displayed in the ProductSearch JSP.

v fetchCostLimitMin - The fetchCostLimitMin method calculates the lowest cost limit that the shipping

code can be applied to, and sets this information in the Shipping Bean. This method is called by the

method fetchShippingInfo.

v fetchSupplierIDs - The fetchSupplierIDs method retrieves a list of valid supplier IDs and names to

provide default values for the search. This information is displayed in the SupplierBranchSearch JSP.

v preCreateSupplierBranch - The preCreateSupplierBranch method calls the fetchSupplierIDs method to

retrieve a list of valid suppliers. This information is displayed in the SupplierBranchCreate JSP.

v preSearchSupplierBranch - The preSearchSupplierBranch method calls the fetchSupplierIDs method to

retrieve a list of valid suppliers. This information is displayed in the SupplierBranchSearch JSP.

v fetchSupplierBranchIDs - The fetchSupplierBranchIDs method retrieves a list of valid supplier branch

IDs and names to provide default values for the search. This information is displayed in the

SupplierContactSearch JSP.

v preCreateSupplierContact - The preCreateSupplierContact method calls the fetchSupplierBranchIDs

method to retrieve a list of valid supplier branches. This information is displayed in the

SupplierContactCreate JSP.

v preSearchSupplierContact - The preSearchSupplierContact method calls the fetchSupplierIDs method

and the fetchSupplierBranchIDs to retrieve a list of valid suppliers and supplier branches. This

information is displayed in the SupplierContactSearch JSP.

JavaServer Pages

Chapter 2. WebSphere Application Server - Express environment 25

The following tables contain the JSPs that are used by the EmployeeServlet. Since most iDrink entities are

associated with JSPs that perform similar actions, the JSPs are categorized by the information that is

displayed or requested.

 Entity JSP Name Method that calls the JSP Page that contains a link

to the JSP

Inventory InventoryCreate.jsp InventoryHome.jsp

Product ProductCreate.jsp ProductHome.jsp

Shipping ShippingCreate.jsp ShippingHome.jsp

Supplier SupplierCreate.jsp SupplierHome.jsp

Supplier Branch SupplierBranchCreate.jsp SupplierHome.jsp

Supplier Contact SupplierContactCreate.jsp SupplierHome.jsp

Table 7: JSPs that prompt for information to create a new object.

 Entity JSP Name Method that calls the JSP Page that contains a link to

the JSP

Inventory InventoryDelete.jsp viewInventoryToDelete

Product ProductDelete.jsp viewProductToDelete

Shipping ShippingDelete.jsp viewShippingToDelete

Supplier SupplierDelete.jsp viewSupplierToDelete

Supplier Branch SupplierBranchDelete.jsp viewSupplierBranchToDelete

Supplier Contact SupplierContactDelete.jsp viewSupplierContactToDelete

Table 8: JSPs that delete objects.

 Entity JSP Name Method that calls the JSP Page that contains a link to

the JSP

Customer EmployeeCustomerInfo.jsp viewCustomer

Customer EmployeeCustomerOrderInfo.jsp viewCustomerOrder

Inventory InventoryInfo.jsp viewInventoryItem

Product ProductInfo.jsp viewProductItem

Shipping ShippingInfo.jsp viewShippingItem

Supplier SupplierInfo.jsp viewSupplierItem

SupplierBranch SupplierBranchInfo.jsp viewSupplierBranchItem

SupplierContact SupplierContactInfo.jsp viewSupplierContactItem

Table 9: JSPs that display detailed information about an object.

 Entity JSP Name Method that calls the JSP Page that contains a link

to the JSP

Inventory InventoryHome.jsp EmployeeHome.jsp

Product ProductHome.jsp EmployeeHome.jsp

Shipping ShippingHome.jsp EmployeeHome.jsp

26 iSeries: iDrink and Cola Connections SMB scenario overview

Supplier, Supplier Branch,

Supplier Contact

SupplierHome.jsp EmployeeHome.jsp

Table 10: JSPs that are home pages for various entities.

 Entity JSP Name Method that calls the JSP Page that contains a link to

the JSP

Customer EmployeeCustomerOrdersSearch.jsp EmployeeHome.jsp

Inventory InventorySearch.jsp InventoryHome.jsp

Product ProductSearch.jsp ProductHome.jsp

Shipping ShippingSearch.jsp ShippingHome.jsp

Supplier SupplierSearch.jsp SupplierHome.jsp

Supplier Branch SupplierBranchSearch.jsp SupplierHome.jsp

Suppler Contact SupplierContactSearch.jsp SupplierHome.jsp

Table 11: JSPs that allow employees to search for objects.

 Entity JSP Name Method that calls the JSP Page that contains a link to

the JSP

Customer EmployeeCustomerList.jsp searchCustomers

Customer EmployeeCustomerOrdersList.jsp searchCustomerOrders

Inventory InventorySearchResults.jsp searchInventory

Product ProductSearchResults.jsp searchProduct

Shipping ShippingSearchResults.jsp searchShipping

Supplier SupplierSearchResults.jsp searchSupplier

SupplierBranch SupplierBranchSearchResults.jsp searchSupplierBranch

SupplierContact SupplierContactSearchResults.jsp searchSupplierContact

Table 12: JSPs that display objects that match specified search criteria.

 Entity JSP Name Method that calls the JSP Page that contains a link to

the JSP

Inventory InventoryUpdate.jsp viewInventoryToUpdate

Product ProductUpdate.jsp viewProductToUpdate

Shipping ShippingUpdate.jsp viewShippingToUpdate

Supplier SupplierUpdate.jsp viewSupplierToUpdate

Supplier Branch SupplierBranchUpdate.jsp viewSupplierBranchToUpdate

Supplier Contact SupplierContact.jsp viewSupplierContactToUpdate

Table 13: JSPs which prompt for information to update an existing object.

Chapter 2. WebSphere Application Server - Express environment 27

SupplierServlet

The iDrink SupplierServlet provides the functionality that iDrink suppliers need in order to manage

products supplied to iDrink. It gives suppliers the ability to:

v view detailed information about the products they supply to iDrink

v add new products that iDrink can choose to add to their product listings

v edit product information (if iDrink is not already purchasing the product from the supplier)

v search for supplier’s branches and contacts

v view detailed information about the supplier’s branches and contacts

The SupplierServlet and the JSPs that it calls work with the UserServlet to provide functionality to ensure

that only suppliers can log on to and access the pages associated with the SupplierServlet.

Design Points

v As noted in the EmployeeServlet section, many of the methods and JSPs that were needed between the

EmployeeServlet and SupplierServlet were similar. In order to avoid duplication of code, these

methods and JSPs were coded only once. The common methods were coded in the EmployeeServlet.

See the EmployeeServlet section for more details.

v A supplier can only edit products that iDrink does not currently have in production. A product is in

production for iDrink if the product is in the PRODUCT table. The JSP pages reflect this by checking a

field in the SupplierProductBean called isEditable. This field is set to true if the product is currently in

production for iDrink and false if it is not. The following code from SupplierProductListing.jsp shows

how this field is checked. (In the code below, spb is a SupplierProductBean):
 <td>

 <%

 if(spb.isEditable()) {

 %>

 <a href=“SupplierServlet?action=productedit&upc=<%=spb.getUPC()%>”>edit

 <%

 } else {

 %>

 in distribution

 <%

 }

 %>

 </td>

v In order to display only products supplied by the logged in supplier and not display products

supplied by other suppliers, the supplier ID was used as a check in the SQL statement:

 String queryString = “select

 idrink.product.upc as pupc,

 idrink.supplierproduct.suppliercontactid,

 idrink.supplierproduct.upc,

 idrink.supplierproduct.brand,

 idrink.supplierproduct.name,

 idrink.supplierproduct.size,

 idrink.supplierproduct.packagetype

 from idrink.supplierproduct,

 idrink.suppliercontact,

 idrink.supplierbranch

 left outer join idrink.product

 on idrink.product.upc=idrink.supplierproduct.upc

 where idrink.supplierproduct.suppliercontactid=idrink.suppliercontact.suppliercontactid

 and idrink.suppliercontact.branchid=idrink.supplierbranch.branchid

 and idrink.supplierbranch.supplierid=?”;

Application flow

28 iSeries: iDrink and Cola Connections SMB scenario overview

The iDrink supplier interface does not force suppliers down a predetermined path. Thus, a supplier can

easily jump from one task to another at any time. As a result of this flexibility, it is would be very

difficult to illustrate all possible potential paths that a supplier could take through the supplier interface.

Figure 10 illustrates the basic application flow available to iDrink suppliers.

Figure 10: iDrink supplier application flow

Methods

The following is a list of methods that are found in the SupplierServlet. The doPost method receives all

incoming requests from the customer, and calls the appropriate method from this list of methods.

v addSupplierProduct - The addSupplierProduct method inserts a new product into the

SUPPLIERPRODUCT table based on the form/request data.

v displaySupplierProductDetails - The displaySupplierProductDetails method calls the

fetchSupplierProductDetails method to prepare the session-associated SupplierProductBean with

current information. This information is displayed in SupplierProductInfo.jsp.

v editSupplierProduct - The editSupplierProduct method updates the supplier product information with

values provided by the supplier.

v fetchSupplierProductDetails - The fetchSupplierProductDetails method prepares the session-associated

SupplierProductBean with the information needed to display the current supplier product (just in case

Chapter 2. WebSphere Application Server - Express environment 29

changes have been

made in between the time the information is displayed and when the information needs to be

updated).

v loadSupplierContacts - The loadSupplierContacts method retrieves a list of valid supplier contacts for

the current supplier.

v prepareForSupplierProductAdd - The prepareForSupplierProductAdd method calls the

loadSupplierContacts method to obtain a list of current supplier contacts. This information is displayed

in SupplierProductAdd.jsp.

v prepareForSupplierProductEdit - The prepareForSupplierProductEdit method calls the

fetchSupplierProductDetails method to prepare the session-associated SupplierProductBean with

current information. This information is displayed in SupplierProductEdit.jsp.

v searchSupplierProducts - The searchSupplierProducts method retrieves products supplied by the

logged in supplier. This information is displayed in SupplierProductListing.jsp.

JavaServer Pages

The following is a list of JSPs that are used by suppliers (the JSPs marked with an * are also used in the

employee application flow):

v *SupplierBranchInfo - The SupplierBranchInfo JSP displays detailed information about a specific

supplier branch.

v *SupplierBranchSearch - The SupplierBranchSearch JSP provides input fields which allow a supplier

to enter and submit a set of branch search criteria.

v *SupplierBranchSearchResults - The SupplierBranchSearchResults JSP displays all supplier branches

that match the specified search criteria.

v *SupplierContactInfo - The SupplierContactInfo JSP displays detailed information about a specific

supplier contact.

v *SupplierContactSearch - The SupplierContactSearch JSP provides input fields which allow a supplier

to enter and submit a set of contact search criteria.

v *SupplierContactSearchResults - The SupplierContactSearchResults JSP displays all supplier contacts

that match the specified search criteria.

v SupplierHome - The SupplierHome JSP is the home page to the supplier application flow.

v SupplierProductAdd - The SupplierProductAdd JSP provides input fields which allow a supplier to

create a new supplier product.

v SupplierProductEdit - The SupplierProductEdit JSP provides input fields which allow a supplier to

edit an existing supplier product.

v SupplierProductInfo - The SupplierProductInfo JSP displays detailed information about a specific

supplier product.

v SupplierProductListing - The SupplierProductListing JSP displays all products that the supplier

supplies.

Installation of enterprise application

The installation of an enterprise application in an IBM(R) WebSphere(R) Application Server instance is

handled by wizards found in WebSphere Studio Application Developer (WSAD), the IBM WebSphere

Administrative Console and the IBM Web Administration for iSeries(TM) Console. To deploy an

application, the application must first be exported to a Java(TM) 2 Platform, Enterprise Edition (J2EE)

Enterprise ARchive (EAR) file. The EAR file contains all class files and additional information that is

required to install the application on a production system, and can be created by a wizard in WSAD.

Once the EAR file has been created, the developer can use the WebSphere Administrative Console or the

IBM Web Administration for iSeries Console to deploy the EAR file on the production system.

Export the application to an EAR file

30 iSeries: iDrink and Cola Connections SMB scenario overview

Once an enterprise application has successfully compiled without any errors, a developer will export the

application to an EAR file, which will be placed in the installableApps directory

(\QIBM\UserData\WebASE51\ASE\instanceName\installableApps) of the WebSphere Application Server

instance. This process is documented in Section 13.8.1 - Exporting an enterprise application to a file location in

the IBM WebSphere Application Server - Express V5.0.2 Developer Handbook, SG24-6555 Redbook.

Deploy the EAR file on an IBM WebSphere Application Server instance Once the EAR file has been

successfully created by the WSAD wizard, the EAR file can be deployed to a production system. A

developer may choose to use the WebSphere Administrative Console or the IBM Web Administration for

iSeries Console to complete this task. The process of deploying the EAR file via the WebSphere

Administrative Console is documented in Section 6.4 - Installing applications in the WebSphere Application

Server - Express V5.0.2 Administrator Handbook, SG24-6976 Redbook. To deploy the EAR file via the IBM

Web Administration for iSeries Console, the EAR file must already be on the target system. To deploy the

EAR file, follow these steps:

v In a Web browser, go to the IBM Web Administration for iSeries Console on the target system. The

URL is http://mysystem:2001/HTTPAdmin, where “mysystem” is the name of the target system. Enter a

user ID and password for the target system when prompted for that information.

v Select the Manage tab at the top of the page, then select the Application Servers tab below it.

v Ensure your WebSphere Application Server server instance is selected in Instance/Server menu. If the

server instance is stopped, click the green start button to the left of the menu to start the server

instance. Once the server instance is running, continue to the next step to begin the installation of the

application.

v In the frame on the left, click the Install New Application link.

v In the Specify Application Location screen, click the Browse button. In the file browser window, select

the EAR file and click the OK button. Click the Next button in the Specify Application Location

screen.

v In the Provide Options to Perform Install screen, enter an application name in the Application Name

textfield and check the Pre-compile JSPs checkbox if JSPs should be precompiled. Click the Next

button.

v In the Map Virtual Hosts for Web Modules screen, select default_host in the Virtual host menu. Click

the Next button.

v In the Summary screen, verify the information is correct and click the Finish button. It may take

several minutes for the application to install.

WebSphere discoveries

v Prior to WebSphere Application Server - Express for iSeries(TM), Version 5.1, JSPs could import classes

from the default package. However, with WebSphere Application Server - Express for iSeries, Version

5.1, JSPs could no longer import classes from the default package. Initially, the iDrink servlets and

JavaBeans(TM) were located in the default package. To move them to a non-default package, follow

these steps in WebSphere Studio Application Developer:
– Create a new package and move the java source files into that new package (WebSphere Studio

Application Developer will add the appropriate “package” statement to all of your source files when

they are moved)

– Wherever code instantiates a bean, include the package name with the bean name, for example

Beans.instantiate(getClass().getClassLoader(), “packageName.beanName”);

– Wherever a JSP imports a bean, include the package name with the bean name, for example

 <%@ page import=“packageName.beanName” %>

– Update the servlet list in web.xml file so that it points to servlets that include the package name.

Even though WebSphere Studio Application Developer adds the appropriate package statement to

each of your source files when they are moved, it does not update the web.xml file to point at the

servlets in the new package. If you use the GUI editor, remove the servlets from the list and add

them again. The “Servlet class” field should contain packageName.servletName.

Chapter 2. WebSphere Application Server - Express environment 31

http://www.redbooks.ibm.com/redbooks/pdfs/sg246555.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246976.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246976.pdf

References

v WebSphere Application Server - Express V5.0 for iSeries, IBM(R) Redpaper REDP-3624-00

v WebSphere J2EE Application Development for the IBM eServer(TM) iSeries Server, IBM Redbook

SG24-6559-00

v WebSphere Development Studio Client for iSeries V5.0, IBM Redbook SG24-6961-00

v WebSphere Studio Application Developer Programming Guide, IBM Redbook SG24-6585-00

32 iSeries: iDrink and Cola Connections SMB scenario overview

Chapter 3. Lotus Domino environment

The iDrink company wanted to provide a Web site where employees could browse and place classified

ads. This Web site, Cola Connections, was created with Lotus Domino version 6.5 on eServer(TM) i5.

With Lotus Domino, the iDrink company was able to quickly create a classified ads dynamic Web site. In

addition, Lotus Domino allowed the iDrink company to take advantage of workflow processing and

provided interoperability with many other platforms.

The Cola Connections application uses various forms and views to create and maintain ad information.

The ad information consists of classified ads that are listed for sale by the employees. To securely manage

the employee data, a Lotus Domino Directory Assistance database is used to reference an i5/OS(TM)

Lightweight Directory Access Protocol (LDAP) directory.

The iDrink company provides a Web interface using Lotus Domino framesets. Through the Cola

Connections Web site, the iDrink employees can perform the following tasks:

v View classified ads

v Create classified ads

v Edit existing classified ads with an option to mark the classified ad as sold

Configuring Lotus Domino to use OS/400 LDAP

Because security was a requirement for the Cola Connections Web site, Lotus Domino was configured to

use i5/OS(TM) LDAP services for user authentication. By default, Domino uses its own LDAP capability.

In order for Domino to use the i5/OS LDAP service instead of its own LDAP capability, a Directory

Assistance database must be created.

For detailed instructions on how to set up a Directory Assistance database see section 4.4.1 Creating a

Directory Assistance database in the Redbook entitled Integrating Lotus Domino 6 and WebSphere(R) Express V5

on the IBM(R) eServer(TM) iSeries(TM) Server (SG24-6998-00).

These tips are useful for setting up the Cola Connections Directory Assistance database while following

the instructions contained in the Redbook:

v In step 8, when entering the fields in the Basics tab, the domain name can be specified as any arbitrary

name except for the domain that the Domino server uses. For example, iDrinks’ Domino server was

configured in the iDrink domain. So in the Basics tab, iDrink could not be specified as the domain

name.

v In step 10, when entering the fields in the LDAP tab, based on the LDAP setup for iDrink, for the field

“Type of search filter to use” specify custom and under the “Customized filters” section add the

following to the “Authorization Filter” field:

 (|(&(objectclass=groupofuniquenames)(UniqueMember=%*))(&(|(objectclass=groupofnames)

 (objectclass=AccessGroup))(member=%*)))

This search filter allows Domino the capability to search LDAP groups. The Access Control List (ACL)

on the Domino database is then set so only the employee group can access it. Since all employees are

part of this group, they can now access the Cola Connections Application.

Continue configuring the Domino server by following the instructions in section 4.4.2 Configuring Domino

to use OS/400 LDAP through the end of the chapter.

To configure the ACL on the Domino database, follow the instructions in section 5.2.3 Updating Domino

ACLs for adding users registered in OS/400 LDAP. For example, the Cola Connections database used the

© Copyright IBM Corp. 2005 33

following person group ACL from the iDrink LDAP schema:

cn=employees/o=idrink/dc=domainName/dc=domainSuffix. The slashes need to be entered in the above

fashion so that Domino can find the group in the LDAP schema.

Application details

From the Cola Connections Web site, an iDrink employee can perform several tasks. An iDrink employee

can create an ad by pressing the New Ad button. Once created, this new document can then be updated,

marked as sold, or displayed.

Application design points

When designing the Lotus(R) Domino(R) application, the iDrink company had to choose between using

framesets or navigators for their Web interface. The following lists the differences between framesets and

navigators:

v Framesets can contain a form, folder, page, document, view, navigator, or frameset. The frame can also

contain a Web page and be associated with a specific URL. Links and relationships between frames can

be created with framesets.

v Navigators provide a graphical display of folders, views and design elements to make it easier for

most users to find information.

Since the iDrink company wanted to provide a consistent structure throughout the website that could

display different forms and views, and since frames can contain forms, folders, pages, documents and

views, the frameset was the best choice.

Another task the iDrink company faced was finding and implementing the best way to secure their data.

Cola Connections security requirements included:

v A robust architecture providing reliability, speed of deployment, and ease of administration

v A solution that integrated easily with existing applications

v A solution that could be integrated with other software packages

These requirements led the iDrink company to implement a Directory Assistance database on the Domino

Server that references an i5/OS(TM) LDAP directory.

Since the iDrink company has several employees with skills in Java(TM) development, background agents

for the application were written in Java. This proved to be valuable in terms of utilizing existing skills

and resources.

Figure 11 shows the flow of the Cola Connections application.

34 iSeries: iDrink and Cola Connections SMB scenario overview

Figure 11: Cola Connections application flow

Application setup

Lotus(R) Domino(R) Designer(R) was used as the development tool for the Lotus Domino implementation

work. Lotus Domino designer is a Lotus Notes(R) client application which can be used to quickly create

and modify Lotus Domino applications. It provides the application building blocks for all database

elements, including forms, views, and agents. Forms were used in iDrink to create new documents in a

database and display current documents. Views provide a flexible and intuitive way for documents to be

organized. Users can easily create, sort, view, and edit documents.

Lotus Domino forms and views

The iDrink company employees created the Ad Information form and the Ads and All Ads views for

their Lotus Domino application.

Chapter 3. Lotus Domino environment 35

The Ad Information view contains the list of all available ads that have been created by iDrink

employees. The Ad Information form is used to create a new ad or to display an existing ad.

The Ads and All Ads views display the various ads and are sorted by categories such as automotive,

computer/home office, and real estate.

Table 13 shows the fields in the Ad Information form.

 Name Field Name Type Description

Category Category Dialog List The category of the Ad. The

possible categories are:

Automotive, Misc Auto,

Boats/RVs/Snowmobiles &

Other Vehicles, Clothing,

Computer/Home Office,

Household, Infant, Misc,

MotorCycle, Musical,

Photo/Stereo/TV, Sporting

Goods, Real Estate, Trade,

Wanted, Give Away

Item Description ItemDescription Text The description of the item

for the ad. Limited to 100

characters

Phone Number PhoneNumber Text The phone number of the

employee selling the item

Date Created DateCreate Date/Time Automatically generated

field that indicates the date

the Ad was created

Sold Sold Radio Button Indicates if the item has

been sold. Possible values

are “Yes” or “No”

Table 13: Fields in the Ad Information form.

Lotus Domino agents

Lotus Domino agents are design elements added to a Lotus Domino database to automate tasks. Agents

can be initiated by a user action or run on a scheduled basis. Agents are commonly used to update or

create documents, or to access databases. Lotus Domino agents can be written in Java(TM), LotusScript, or

Formula Language.

The creation of agents requires Lotus Domino Designer(R). Decisions that must be made when creating an

agent include when the agent should run, what language the agent should be written in, and what

documents the agent should run under. After the agent has been written and compiled, it is automatically

scheduled to run at the specified time. The built-in debugging capabilities of Lotus Domino Designer are

helpful when writing agents.

The Lotus Domino Cola Connections application contains one agent, Delete Ads. This Java Agent runs on

a scheduled basis. It will delete any ad documents that have a sold status of yes or that are older than

one month.

A code snippet for the Delete Ads agent is shown below:

private void deleteAd(AgentContext agentContext, Session session) {

 Vector adDateVector;

36 iSeries: iDrink and Cola Connections SMB scenario overview

DateTime adDateTime = null;

 Date adDate = null;

 Date currentDate = null;

 int timeBetween = 0;

 float timePassed = 0;

 try {

 Database db = agentContext.getCurrentDatabase();

 DateTime currentDateTime = session.createDateTime(“Today”); // get the current date

 currentDateTime.setNow(); // get all documents where the Sold Status is Yes from All Ads

 DocumentCollection adInformationDC = db.search(“SELECT ((Form = \”Ad Information\“))”);

 Document adDoc = adInformationDC.getFirstDocument(); // get first ad document

 while (adDoc != null) // while there are ad documents

 String adStatus = adDoc.getItemValueString(“Sold”); // obtain the value of the Sold variable

 adDateVector = adDoc.getItemValue(“DateCreate”); // obtain value of create date for ad

 adDateTime = (DateTime)adDateVector.elementAt(0); // obtain value of create date for ad

 timeBetween = currentDateTime.timeDifference(adDateTime); // returns difference in seconds

 timePassed = timeBetween/2629744; //divide by seconds in a month

 Document adDoc1 = adInformationDC.getNextDocument(); // get the next ad document

 if ((adStatus.equals(“Yes”)) || (timePassed > 1)) // if item is Sold, remove the document

 adDoc.remove(true);

 adDoc = adDoc1; // get the next ad to process

 } // end while adDoc is not null }

 catch(Exception e) {

 e.printStackTrace();

 }} // end delete ads

Lotus Domino discoveries

Following is a list of key discoveries that were uncovered while creating the Cola Connections scenario:

v After the initial setup, iDrink employees were not being prompted to log in when creating a new ad.

At times, the log in prompt did not appear until the Save and Close button was pressed. In order to

require an employee to log in when pressing the New Ad button, the following formula language

command was set on the action New Ad:

 @URLOpen(@WebDbName + “/Ad+Information?OpenForm&login”)

v The iDrink company wanted to implement a way for employees to log out of the Cola Connections

application. Consequently, a log out feature was incorporated. However, when the log out button was

pressed, the employees were not being redirected to the Cola Connections home page. To enable

redirection to the home page, the following formula language command was set on the action Log out:

@SetTargetFrame(“_top”);

@URLOpen(“http://nenotes:2500/ColaConn.nsf?logout&RedirectTo=http://NotesServerName:2500

 /ColaConn.nsf/Cola%20Connections?OpenFrameSet”)

References

v IBM(R) Lotus Domino for iSeries(TM) - OS/400(R) Web site
http://www.ibm.com/servers/eserver/iseries/domino

v IBM Lotus Domino for iSeries (PatnerWorld for Developers)
http://www.ibm.com/servers/eserver/iseries/developer

v Lotus Web site
http://www.lotus.com

Chapter 3. Lotus Domino environment 37

38 iSeries: iDrink and Cola Connections SMB scenario overview

����

Printed in USA

	Contents
	Chapter 1. iDrink and Cola Connections SMB scenario overview
	iDrink overview
	Cola Connections overview
	Environment overview
	SMB discoveries

	Chapter 2. WebSphere Application Server - Express environment
	WebSphere(R) Application Server Overview
	Application flow
	Development environment
	Application details
	Application design points
	UserServlet
	CustomerServlet
	EmployeeServlet
	SupplierServlet
	Installation of enterprise application
	WebSphere discoveries

	Chapter 3. Lotus Domino environment
	Configuring Lotus Domino to use OS/400 LDAP
	Application details
	Application design points
	Application setup
	Lotus Domino forms and views
	Lotus Domino agents
	Lotus Domino discoveries

