
iSeries

Developing iSeries Navigator plug ins

ERserver
���

iSeries

Developing iSeries Navigator plug ins

ERserver
���

© Copyright International Business Machines Corporation 1998, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Developing iSeries Navigator Plug-ins . 1
Plug-in support in iSeries Navigator . 1

What you can do with a plug-in . 2
How plug-ins work . 2
Plug-in requirements . 4
Distribute plug-ins . 5
Identifying plug-ins to iSeries Navigator . 11

Install and run sample plug-ins . 11
Setting up sample C++ plug-ins . 12
Setting up sample Visual Basic plug-ins . 13
Setting up the sample Java plug-in . 16

Plug-in programming reference . 18
iSeries Navigator structure and flow of control for C++ plug-ins. 19
iSeries Navigator COM interfaces for C++ . 19
iSeries Navigator API listing. 23
Return codes unique to iSeries Navigator APIs . 27
iSeries Navigator structure and flow of control for Visual Basic plug-ins. 29
iSeries Navigator Visual Basic interfaces . 30
iSeries Navigator structure and flow of control for Java plug-ins 31
Customize the plug-in registry files . 32

© Copyright IBM Corp. 1998, 2002 iii

iv iSeries: Developing iSeries Navigator plug ins

Developing iSeries Navigator Plug-ins

Are you interested in integrating your iSeries server administration tasks and client/server programs into a
single application environment? The plug-in feature for iSeries Navigator allows you to do just that! You
can use plug-ins to consolidate third-party applications and specialized functions written in C++, Visual
Basic (VB) or Java into the iSeries Navigator interface. Use these articles to learn what plug-ins are, how
to create or customize them, and how to distribute them to your users.

Learn about plug-ins:

Plug-in support for iSeries Navigator
Plan your plug-in by learning what plug-ins are, what you can do with them, and how to distribute
them to your users.

Install and run the sample plug-in
The Programmer’s Toolkit helps you download and run sample plug-ins. You can use these samples
to learn about plug-in support in iSeries Navigator. Also, many developers use these samples as a
base for their own modifications.

Develop plug-ins:

Plug-in programming reference
Find information about each type of plug-in’s architecture, and the flow of control within iSeries
Navigator. This topic also contains API listings, return codes, and links to ActiveX and COM
information for C++ plug-ins, as well as links to the interfaces and classes relevant to Java plug-ins.

Distribute plug-ins
The Selective Setup feature in iSeries Access makes it easy to distribute the plug-in to your end
users. Use this section to learn how to identify the new plug-in to iSeries Navigator, and where to
install the new plug-in.

Code disclaimer information

This topic contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar functions tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The implied
warranties of non-infringement, merchantability, and fitness for a particular purpose are expressly
disclaimed.

Plug-in support in iSeries Navigator
iSeries Navigator Plug-in support provides a convenient way to integrate your own functions and
applications into a single user interface: iSeries Navigator. These new functions and applications can vary
in complexity from simple new behaviors to whole applications. Regardless of what specific new ability
your plug-in provides, integrating it into iSeries Navigator provides several important benefits. For example,
bundling common system tasks into a single location in iSeries Navigator can dramatically simplify
common administration and operation functions. Also, iSeries Navigator’s GUI interface ensures that your
integrated functions can be completed easily, and with only minimal prerequisite skills.

© Copyright IBM Corp. 1998, 2002 1

rzakxplugsuport.htm
rzakxinstrunsmpleplug.htm
rzakxpluginreference.htm
rzakxhowtodistrub.htm

To help you plan your plug-in you may want to become familiar with the following topics:

v What you can do with a plug-in

v
The new functions you can add with a plug-in

v How plug-ins work

v
How plug-ins work by examining an example Java plug-in

v Plug-in requirements

v
You can develop plug-ins in C++, VB or Java. This topic describes the specific requirements for each
language.

v Distributing plug-ins

v
You can easily distribute the new plug-in to your end users by placing it on the managing iSeries server.
iSeries Access for Windows Selective Setup then detects the new plug-in and installs it on your client
PCs.

What you can do with a plug-in
Plug-ins are sets of predefined classes and methods that iSeries Navigator will start in response to a
particular user action. You can use plug-ins to add or modify objects and folders in the iSeries Navigator
hierarchy that will represent your tools and applications. You can completely customize the support for
your folders and objects by adding or modifying:

Context menus

Use context menus to launch applications, present new dialogs and add or modify behaviors.

Property pages

Use property pages to support customized attributes, for example additional security settings. You can add
property pages to any object or folder that has a property sheet.

Toolbars
You can completely customize toolbars and buttons.

Custom folders and objects
You can add your own customized folders and objects into the iSeries Navigator tree hierarchy.

How plug-ins work
The following illustration demonstrates how a Java plug-in that adds a new container to the iSeries
Navigator tree could work.

After identifying the new plug-in to the Windows registry, iSeries Navigator will find the new plug-in and
install it in a new configuration. Afterwards, the new container will appear in the iSeries Navigator
hierarchy. When the user selects the container, the plug-in’s Java code is called to obtain the container’s
contents—in this case, a list of messages on the user’s default message queue.

2 iSeries: Developing iSeries Navigator plug ins

rzakxwhatcanIdo.htm
rzakxhowplugswork.htm
rzakxplugreq.htm
rzakxhowtodistrub.htm

iSeries Navigator dialog — messages in the message queue

iSeries Navigator communicates with the Java plug-in by calling methods defined on a Java interface:
ListManager. This interface lets Java applications supply list data to the Navigator’s tree and list views. To
integrate your application into iSeries Navigator, you create a new Java class that implements this
interface. The methods on the new class call into your existing Java application to obtain the list data, as
shown below.

How iSeries Navigator calls an application to obtain list data

Developing iSeries Navigator Plug-ins 3

What happens when the user wants to perform an action on one of your objects? The illustration below
shows what happens when the user right-mouse clicks on a message object to display its context menu.

iSeries Navigator object context menu

iSeries Navigator calls a predefined method on another Java interface: ActionsManager. This interface
obtains the list of menu items supported for message objects. Once again, you would create a new Java
class that implements this interface. This is how you make your application’s specialized functions
available to your users through iSeries Navigator. When the user selects the menu item, the Navigator
calls another ActionsManager method to perform the action. Your ActionsManager implementation calls
your existing Java application, which then can display a confirmation dialog or some other more
sophisticated user interface panel that allows the user to perform a specialized task. The iSeries Navigator
user interface is designed to let users work with lists of iSeries server resources and to perform actions on
them. The architecture of the plug-in feature reflects this user interface design, both by defining interfaces
for working with lists of objects in a hierarchy, and for defining actions on those objects. A third interface,
DropTargetManager, handles drag-and-drop operations.

Plug-in requirements
iSeries Navigator plug-in requirements differ according to the programming language that you use.
However, all plug-ins require at least V3R1M3 of iSeries Access for Windows or Client Access Express
95/NT, and V4R4 for OS/400. Visual Basic and Java plug-ins require Client Access Express V4R4 or
greater.

C++ plug-ins

Plug-ins that are developed by using Microsoft’s Visual C++ programming language must be written in
Version 4.2 or later.

4 iSeries: Developing iSeries Navigator plug ins

C++ plug-ins also require the following iSeries Navigator APIs:

Header file Import library Dynamic Link Library

cwbun. cwbun.lib cwbun.dll

cwbunpla.h (Application Administration APIs) cwbapi.lib cwbunpla.dll

Java plug-ins

Java plug-ins run on the IBM runtime for Windows(R), Java Technology Edition. The following table
indicates the version of Java installed with iSeries Access for Windows:

Release JRE Swing JavaHelp

V5R2 1.3.1 N/A 1.1.1

V5R1 1.3.0 N/A 1.1.1

V4R5 1.1.8 1.1 N/A

V4R4 1.1.7 1.0.3 N/A

All Java plug-ins require a small Windows resource DLL, that contains certain information about your
plug-in. This allows iSeries Navigator to represent your function in the Navigator object hierarchy without
having to load your plug-in’s implementation. The sample’s resource DLL was created by using Microsoft’s
Visual C++ version 4.2, but any C compiler that supports compiling and linking Windows resources may be
used.

iSeries Navigator provides a Java console as an aid to debugging. The console is activated by selecting a
registry file to write the required console indicators to the Windows registry. When the console is activated,
the JIT compiler is turned off to allow source code line numbers to appear in the stack trace, and any
exceptions that are encountered in the Navigator’s Java infrastructure will be displayed in message boxes.
The registry files for activating and for deactivating the console are provided with the sample Java plug-in,
found in the iSeries Access for Windows Toolkit.

The sample’s user interface was developed by using the Graphical Toolbox for Java, which is a part of the
Toolbox for Java component. The Toolbox is an optionally installable component of iSeries Access for
Windows. It can be installed with the initial installation of the iSeries Access for Windows product or
selectively installed later, by using the iSeries Access for Windows Selective Setup program.

Visual Basic plug-ins

Visual Basic plug-ins run on Version 5.0 of the Visual Basic runtime environment.

Distribute plug-ins
You can deliver your plug-in code to iSeries Navigator users by including it with your OS/400 applications.
The installation program for the application writes the plug-in’s code binaries, registry file, and translatable
resources to a folder in the iSeries server integrated file system. After completing this process, your end
users can obtain the plug-in from the iSeries Access for Windows folder (with the help of an iSeries
NetServer mapped network drive) using the iSeries Access Selective Setup program. Selective Setup
copies your plug-in code to the user’s machine, downloads the appropriate translatable resources based
on the language settings on the user’s PC, and runs the registry file to write your plug-in’s registry
information to the Windows registry. If you are not initially installed, you can also install plug-ins on the
initial install using the custom option.

Developing iSeries Navigator Plug-ins 5

For this type of plug-in... Install in this directory... And include these files...

C++ /QIBM/USERDATA/GUIPLUGIN/
<vendor>.<component>

Or: /QIBM/USERDATA/OpNavPlugin/
<vendor>.<component> (To prevent
installation without iSeries Access)

v The registry file for the plug-in.

v The iSeries Access for Windows
“iSeries Access for Windows setup
file” on page 7 for the plug-in.

v The ActiveX server DLL for the
plug-in, and any associated code
DLLs.

Java /QIBM/USERDATA/OpNavPlugin/
<vendor>.<component>
(Java plug-ins require iSeries Access)

v The registry file for the plug-in.

v The iSeries Access for Windows
“iSeries Access for Windows setup
file” on page 7 for the plug-in.

v The Java JAR file contains all Java
classes, HTML, .gif, PDML, PCML,
and serialization files..

Visual Basic /QIBM/USERDATA/OpNavPlugin/
<vendor>.<component>
(VB plug-ins require iSeries Access)

v The registry file for the plug-in.

v The iSeries Access for Windows
“iSeries Access for Windows setup
file” on page 7 for the plug-in.

v The ActiveX server DLL for the
plug-in, and any associated code
DLLs.

Note:The <vendor>.<component> subdirectory must match the one specified in the registry file.

Additionally, all plug-ins must create at least one directory below the <vendor>.<component> subdirectory
called MRI29XX, where XX identifies a supported language. For example, MRI2924 (English). This
directory should contain the correct national language version of the following items:

v The resource DLL for the plug-in

v The help files for the plug-in

v The “MRI setup file” on page 11 for the plug-in.

Upgrading or uninstalling the plug-in

After the users have installed your new plug-in, you may choose either to upgrade it at a later date or ship
bug fixes. When the code is upgraded on the iSeries server, the iSeries Access Check Version program
will detect that this process has occurred and automatically download the updates onto the users
machines. iSeries Access also provides uninstall support, which lets your users completely remove the
plug-in from their machines anytime they wish. Users can learn what plug-ins are installed on their
machines by clicking on the Plug-ins tab on the iSeries Navigator Properties for an iSeries server.

Restricting access to the plug-in with system policies and Application Administration

If you provide a Windows policy template with your plug-in, you can also take advantage of Windows
system policies to control which network users can install your plug-in. Additionally, you can use the
iSeries server based Application Administration support in iSeries Navigator to control which users and
user groups can access your plug-in.

6 iSeries: Developing iSeries Navigator plug ins

iSeries Access for Windows setup file
The iSeries Access for Windows setup file provides the iSeries Access Selective Setup program with the
information needed to install an iSeries Navigator plug-in on a client workstation. It also provides
information that allows the iSeries Access Login Service Check program to determine when the plug-in
needs to be upgraded or serviced.

The file must be named SETUP.INI, and it must reside in the primary <vendor>.<component> directory for
the plug-in on the iSeries server.

The format of the file conforms to that of a standard Windows configuration (.INI) file. The file is divided
into three parts:

v “Example: Information section of setup.ini”

v “Example: Service section of setup.ini” on page 8

v Sections to “Example: Identify files section of setup.ini” on page 8 to install on the client workstation

Example: Information section of setup.ini: The first section of the Setup file (Plug-in Info) contains
global information about the plug-in:
[Plugin Info]
Name=Sample plug-in
NameDLL=sampmri.dll
NameResID=128
Description=Sample plug-in description
DescriptionDLL=sampmri.dll
DescriptionResID=129
Version=0
VendorID=IBM.Sample
SupportExpress=YES
JavaPlugin=YES

Field in [Plugin Info]
section of Setup.ini

Description of field

Name English name of the plug-in. This name is displayed during installation of the plug-in
when the translated name cannot be determined.

NameDLL Name of the resource DLL that contains the translated name of the plug-in. This DLL is
located in the MRI directories of the plug-in.

NameResID Resource ID of the translated name in the MRI DLL. This field must contain the same
value as the NameID field defined in the primary registry key for the plug-in.

Description English description of the plug-in. This description is displayed during installation of the
plug-in when the translated description cannot be determined.

DescriptionDLL Name of the resource DLL that contains the translated description of the plug-in. This
DLL is located in the MRI directories of the plug-in.

DescriptionResID Resource ID of the translated description in the MRI DLL. This field must contain the
same value as the DescriptionID field that is defined in the primary registry key for the
plug-in.

Version A numeric value that indicates the release level of the plug-in. The iSeries Access for
Windows Check Service program uses this value to determine whether the plug-in
needs to be upgraded on the client workstation. This value is incremented by some
amount for each new release of the plug-in.

The Version value is compared to the current Version value of the installed plug-in that
is on the client workstation. When this Version value is greater than the one already
existing on the client workstation, the iSeries Access Login Service Check program
upgrades the plug-in to the new Version.

Developing iSeries Navigator Plug-ins 7

Field in [Plugin Info]
section of Setup.ini

Description of field

VendorID The <VENDOR>.<COMPONENT> string that is used to identify the plug-in. This string
is used to create the registry key for the plug-in in the iSeries Access registry tree. The
VendorID must be identical to the <VENDOR>.<COMPONENT> portion of the path
where the plug-in will be installed on the iSeries server.

SupportExpress SupportExpress is optional. This indicates that the plug-in is supported in iSeries
Access for Windows, and that it will function correctly. If SupportExpress is set to NO or
doesn’t exist, and the user selects to install this plug-in, a dialog box titled iSeries
Navigator Plug-in Not Supported will appear. This notifies you that you will be able to
install the plug-in, but that it isn’t supported in iSeries Access. If you don’t want this
dialog box to appear every time the plug-in is installed, and you know that the plug-in
works with iSeries Access, then add SupportExpress and set it equal to YES.

JavaPlugin JavaPlugin is used to indicate whether this is a Java plug-in. The install process needs
to do some special processing if the plug-in is a Java plug-in. All JAR files must be
installed into the \PLUGINS\<VENDOR>.<COMPONENT> directory, and this value is
used to determine whether the install process should do this. If the plug-in is a Java
plug-in and this value is set to NO or doesn’t exist, the plug-in may not work after it is
installed.

Example: Service section of setup.ini: The second section of the setup file (Service) provides the
iSeries Access Check Service program with the information it requires to determine if a new fix level of the
plug-in should be applied to the client workstation:
[Service]
FixLevel=0
AdditionalSize=0

Below is a listing of the meaning of each field:

Field in [Service] section
of Setup.ini

Description of field

FixLevel A numeric value that indicates the service level of the plug-in. The iSeries Access
Check Service program uses this value to determine whether the plug-in requires
servicing. This value must be incremented by some amount with each service release
for a particular Version.

The FixLevel value is compared to the current FixLevel value of the installed plug-in
on the customer’s computer. When this FixLevel value is greater than that of the
plug-in that is installed on the client workstation, the iSeries Access Check Service
program will Service the plug-in to the new FixLevel. The value must be reset to zero
when a plug-in is upgraded to a new Version or release level.

AdditionalSize The amount of DASD space that is required to store any new or additional executable
files that will be added to the plug-in during servicing. Install uses this value to
determine if the workstation has adequate disk space for the plug-in.

Example: Identify files section of setup.ini: The third and final portion of the setup file contains
sections that identify the files that are to be installed on the client workstation. The section in which a file
appears identifies the locations of the source and target for each file. These file sections are used during
initial installations or during an upgrade to a new Version or release level.

The format for file entries in each file section should ben=file.ext, wherenis the number of the file in that
section. The numbering must start with one (1) and increment by one (1) until all of the files are listed in
the section. For example:

8 iSeries: Developing iSeries Navigator plug ins

[Base Files]
1=file1.dll
2=file2.dll
3=file3.dll

In all cases, only the file name and plug-in should be specified. Do not specify directory path names. If a
file section contains no entries, the section simply is ignored.

Note:The Programmer’s Toolkit provides a sample setup file for three different sample plug-ins: C++, Java,
and Visual Basic.

Section in Setup.ini Description

[Base Files] Files that are copied to \PLUGINS\<VENDOR>.<COMPONENT> under the Client Access
install directory. Normally, the ActiveX server DLL (and associated code DLLs) for the
plug-in reside here.

For C++ and Visual Basic, the ActiveX server DLL (and associated code DLLs) for the
plug-in reside here.

For Java, the Code JAR file name will reside here.

[Shared Files] Files that are copied to the Client Access Shared directory.

[System Files] Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.

[Core Files] Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory that
are use counted in the registry and are never removed. These are typically
re-distributable files.

[MRI Files] Files that are copied from the MRI directories of the plug-in on the iSeries server to the
CLIENT ACCESS\MRI29XX\<VENDOR>.<COMPONENT> directories on the workstation.
This typically is where the locale-dependent resources for a plug-in reside. This will
include your Resource MRI DLL name.

[Java MRI29xx] (where
29xx is the NLV feature
code for the files)

Java files that are copied from the MRI29xx directory of the plug-in on the iSeries server
to the same directory to which the [Base Files] are installed. This typically is where the
JAR MRI29xx resources for the plug-in reside. For each MRI29xx directory supported by
the Java plug-in, there needs to be a [Java MRI29xx] section listing those files. This only
is used by Java plug-ins.

[Help files] The .HLP and .CNT files that are copied from the MRI directories of the plug-in on the
iSeries server to the CLIENT ACCESS\MRI29XX\<VENDOR>.<COMPONENT>
directories on the workstation. The directory path to these files is written to
HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\WINDOWS\HELP in the Windows
registry.

[Registry files] The Windows registry file that is associated with the plug-in.

Developing iSeries Navigator Plug-ins 9

[Dependencies] Defines the sub components that must be installed before the plug-in can be installed.
The values described below are optional. They are only needed if the plug-in requires
other sub components to be installed besides the iSeries Navigator base support sub
component.

Two values are supported: AS400_Operations_Navigator

v This value is used for legacy purposes to identify the sub components that must be
installed if the plug-in is installed on iSeries Access V3R2M0. If the plug-in does not
support running on iSeries Access V3R2M0, this value should not be specified.

v The sub components are specified in a comma-delimited list. A single sub component
is specified as a single number (AS400_Operations_Navigator=3). The CWBUN.H
header file contains a list of constants that are prefixed with CWBUN_OPNAV_. These
constants provide the numeric values that are used in the comma-delimited list for
AS400_Operations_Navigator.

AS400_Client_Access_Express

v This value is used to identify the sub components that must be installed if the plug-in
is installed on iSeries Access.

v The sub components are specified in a comma-delimited list. A single subcomponent
is specified as a single number (AS400_Client_Access_Express=3). The CWBAD.H
header file contains a list of constants that are prefixed with CWBAD_COMP_. These
constants provide the numeric values that are used in the comma-delimited list for
AS400_Client_Access_Express. There are several CWBAD_COMP_ constants that
identify PC5250 font sub components. These constants must not be used in the
AS400_Client_Access_Express value and are listed below:

//5250 Display and Printer Emulator sub components
#define CWBAD_COMP_PC5250_BASE_KOREAN (150)
#define CWBAD_COMP_PC5250_PDFPDT_KOREAN (151)
#define CWBAD_COMP_PC5250_BASE_SIMPCHIN (152)
#define CWBAD_COMP_PC5250_PDFPDT_SIMPCHIN (153)
#define CWBAD_COMP_PC5250_BASE_TRADCHIN (154)
#define CWBAD_COMP_PC5250_PDFPDT_TRADCHIN (155)
#define CWBAD_COMP_PC5250_BASE_STANDARD (156)
#define CWBAD_COMP_PC5250_PDFPDT_STANDARD (157)
#define CWBAD_COMP_PC5250_FONT_ARABIC (158)
#define CWBAD_COMP_PC5250_FONT_BALTIC (159)
#define CWBAD_COMP_PC5250_FONT_LATIN2 (160)
#define CWBAD_COMP_PC5250_FONT_CYRILLIC (161)
#define CWBAD_COMP_PC5250_FONT_GREEK (162)
#define CWBAD_COMP_PC5250_FONT_HEBREW (163)
#define CWBAD_COMP_PC5250_FONT_LAO (164)
#define CWBAD_COMP_PC5250_FONT_THAI (165)
#define CWBAD_COMP_PC5250_FONT_TURKISH (166)
#define CWBAD_COMP_PC5250_FONT_VIET (167)

v This value is ignored by Client Access V3R2M0.

Note:iSeries Access will use the AS400_Client_Access_Express value if it exists. If it
does not exist, it will use the AS400_Operations_Navigator value, if it exists. If neither
value exists, then this section is ignored.

[Service Base Files] Files that are copied to \PLUGINS\<VENDOR>.<COMPONENT> under the iSeries
Access install directory.

[Service Shared Files] Files that are copied to the iSeries Access Shared directory.

[Service System Files] Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.

[Service Core Files] Files that are copied to the \WINDOWS\SYSTEM or \WINNT\SYSTEM32 directory.
These files are use counted in the registry, are never removed, and are typically
re-distributable files.

10 iSeries: Developing iSeries Navigator plug ins

[Service Registry Files] The Windows registry file that is associated with the plug-in.

MRI setup file
The MRI setup file provides the iSeries Access Selective Setup program with the information it needs to
install the locale-dependent resources that are associated with an iSeries Navigator plug-in on a client PC.

You must name the file MRISETUP.INI. A version of this file must reside in the MRI29XX subdirectory on
the iSeries server for each national language that the plug-in supports.

The format of the file conforms to that of a standard Windows configuration (.INI) file. The file contains a
single section, MRI Info. The MRI Info section provides the Version value for the MRI of the plug-in. The
MRI for the plug-in includes all resource DLLs, as well as Help files (.HLP and .CNT) for a particular
language. For example:

[MRI Info]
Version=0

The iSeries Access Selective Setup program checks the Version value of the MRI during an initial install
and during an upgrade of the plug-in when incrementing the Version or release level of the plug-in. The
MRI Version value in this file must match the Version value in the SETUP.INI file of the plug-in during the
installation or upgrade. When these values do not match, the MRI files will not be copied to the client PC.
The Programmer’s Toolkit provides a sample MRI setup file with the sample plug-in.

Identifying plug-ins to iSeries Navigator
Plug-ins identify themselves to iSeries Navigator by supplying information in the Windows registry when
the plug-in software is installed on the Windows desktops of your users. The registry entries specify the
location of the plug-in code and identify the classes that implement the special iSeries Navigator
interfaces. You can supply additional registry information that lets iSeries Navigator determine whether the
plug-in’s function should be activated for a particular iSeries system. For example, a plug-in may require a
certain minimum release of OS/400, or it may specify that a certain product needs to be installed on the
iSeries server in order for it to function.

When a user clicks on an iSeries server in the iSeries Navigator hierarchy tree after installing a plug-in,
iSeries Navigator examines the iSeries server to determine whether it is capable of supporting the new
plug-in. The software prerequisites (specified in the plug-in’s registry entries) are compared against the
software installed on the iSeries server. If the plug-in’s requirements are satisfied, the new function will be
displayed in the hierarchy tree. If the requirements are not met, the plug-in’s function will not appear for
that iSeries server, unless the registry file specifies otherwise.

Install and run sample plug-ins
The Programmer’s Toolkit supplies sample plug-ins in each of the supported programming languages.
These samples provide an excellent way to learn how plug-ins work, and an efficient starting point for
developing your own plug-ins. If you don’t already have the Programmer’s Toolkit installed, you will need to
install it before working with any of the sample plug-ins. You can install the Toolkit through iSeries Access
Selective Setup.

v Setting up the sample C++ plug-in
Download the sample C++ plug-in and get it running in iSeries Navigator.

v “Setting up sample Visual Basic plug-ins” on page 13
Download the sample Visual Basic plug-in and get it running in iSeries Navigator.

Developing iSeries Navigator Plug-ins 11

rzakxinstrunsmpc++.htm

v Setting up the sample Java plug-in
Download the sample Java plug-ins and get them running in iSeries Navigator.

Note: Before starting to work on any of the sample plug-ins, you may want to be aware of the unique requirements
for developing plug-ins in each of the three languages.

Setting up sample C++ plug-ins
This task involves building and running the sample ActiveX server DLL. The sample provides a functioning
Developer Studio workspace that you can use to set breakpoints and to observe the behavior of a typical
iSeries Navigator plug-in. It also allows you to verify that your Developer Studio environment is set up
correctly for compiling and linking plug-in code.

In order to get the sample C++ plug-in running or your PC, you must complete the following steps:

Download the
C++ plug-in

Download the executable file cppsmppq.exe

. When you run the file it will extract all the files associated with the plug-in. Make a new
directory, c:\MyProject, and copy all the files into it. If you create a different directory, you will
have to modify registry file to specify the correct location for the plug-in.

Prepare to build
an ActiveX server
.dll

1. Create a new directory that is named ″MyProject″ on your local hard drive. This example
assumes that the local drive is the C: drive.

Note: If the new directory is not c:\MyProject, you will need to change the registry file.

2. Copy all of the sample files into this directory. You can download the samples from the
Programmer’s Toolkit - iSeries Navigator Plug-ins Web page

.

3. In the Developer Studio, open the File menu and select Open Workspace.

4. In the Open Project Workspace dialog, switch to the MyProject directory and in Files of
Type: select Makefiles (*.mak).

5. Select sampext.mak and click Open.

6. Open the Tools menu and select Options...

7. In the Directories tab, make sure that the Client Access Include directory appears at the top
of your Include files search path.

8. In Show directories for:, select Library files. Make sure that the Client Access Lib directory
appears at the top of your Library files search path.

9. Click OK to save the changes, then close and reopen Developer Studio. This is the only
known way to force Developer Studio to save the search path changes to your hard disk.

Build the ActiveX
server DLL

1. In the Developer Studio, open the Build menu and select Set Default Configuration...

2. In the Default Project Configuration dialog, select samptext Win32 Debug Configuration.

3. Open the Build menu and select Rebuild All to compile and link the DLL.
Note:If the DLL does not compile and link cleanly, double-click the error messages in the
Build window to locate and fix the errors. Then open the Build menu and select sampext.dll
to restart the build.

12 iSeries: Developing iSeries Navigator plug ins

rzakxinstrunsmpjava.htm
rzakxplugreq.htm
http://www.ibm.com/servers/eserver/iseries/access/toolkit/opnav_plugins.htm
http://www.ibm.com/servers/eserver/iseries/access/toolkit/opnav_plugins.htm

Build the resource
library

The resource DLL that contains the translatable text strings and other locale-dependent
resources for the plug-in is included with the sample. This means that you do not have to create
this DLL on your own. Even if your plug-in supports only one language, your plug-in code must
load its text strings and locale-specific resources from this resource library.

To build the resource DLL, complete the following steps:

1. In Developer Studio, open the File menu and select Open Workspace... and select the
MyProject directory.

2. Specify Makefiles (*.mak) in Files of Type:.

3. Select sampmri.mak and click Open.

4. Open the Build menu and select Rebuild All to compile and link the DLL.

Register the
ActiveX server .dll

The SAMPDBG.REG file in the MyProject directory contains registry keys that communicate the
location of the sample plug-in on your workstation to the iSeries Navigator. If you specified a
directory other than c:\MyProject, complete the following steps.

1. Open the SAMPDBG.REG file in the Developer Studio (or use your chosen text editor).

2. Replace all occurrences of ″c:\\MyProject\\″ with ″x:\\<dir>\\,″ where x is the drive letter where
your directory resides and <dir> is the name of the directory.

3. Save the file.

4. In Windows Explorer, double-click the SAMPDBG.REG file. This will write the entries in the
registry file to the Windows registry on your machine.
Note: In Windows NT, you must login with administrative privileges on your workstation to
write to the Windows registry.

Run iSeries
Navigator in the
debugger

To run iSeries Navigator and observe the sample plug-in in action, complete the following steps.

1. In Developer Studio, open the Build menu and select Debug —-> Go.

2. At the prompt, type the fully-qualified path to the iSeries Navigator executable in the iSeries
Access Install directory on your workstation. The path will be C:\PROGRAM
FILES\IBM\CLIENT ACCESS\CWBUNNAV.EXE or something similar.

3. Click OK. The main window of the iSeries Navigator will open.

4. Because you have just registered a new Navigator plug-in, a dialog in iSeries Navigator will
prompt you to scan for the new plug-in.

5. After the progress indicator finishes, click OK in the resulting dialog.

6. After the Navigator window refreshes, a new folder (3rd Party Sample Folder) appears in the
hierarchy under the iSeries server that was initially selected. You can now interact with the
plug-in in iSeries Navigator and observe its behavior in the debugger.

Setting up sample Visual Basic plug-ins
The sample Visual Basic (VB) plug-in adds a folder to the iSeries Navigator hierarchy that provides a list
of OS/400 libraries, and illustrates how to implement properties and actions on those library objects.

In addition to installing the plug-in code, the sample plug-in includes a Readme.txt file, and two registry
files, one for use during development, and another for distribution with the retail version. See the sample
VB plug-in directory of files for detailed description of all the files included with the VB plug-in.

In order to get the sample VB plug-in running on your PC, you must complete the following steps:

Download the VB
plug-in

Download the executable file vbopnav.exe

. When you run the file it will extract all the files associated with the plug-in. Make a new
directory, c:\VBSample, and copy all the files into it. If you create a different directory, you will
have to modify registry file to specify the correct location for the plug-in.

Developing iSeries Navigator Plug-ins 13

rzakxvbdiroffiles.htm
rzakxvbdiroffiles.htm
http://www.ibm.com/eserver/iseries/access/toolkit/opnav_plugins.htm

Create the VB
project

Open vbsample.vpb in Visual Basic. In the reference dialog, select IBM iSeries Access for
Windows ActiveX Object Library, and iSeries Navigator Visual Basic Plug-in Support.

Note: If either of these references do not appear in your References dialog, select Browse and
look for cwbx.dll and cwbunvbi.dll in the iSeries Access for Windows shared directory. The IBM
iSeries Access ActiveX Object Library contains OLE automation objects that the sample
application requires to make remote command calls to the iSeries server. The iSeries Navigator
Visual Basic Plug-in Support contains classes and interfaces required to create a Visual Basic
Plug-in. directory.

Build the ActiveX
server DLL

Select Make from the Visual Basic file menu to build the DLL. If it doesn’t compile and link,
locate and fix the errors, and then rebuild the DLL.

Build the resource
library

1. Open Microsoft Developer Studio, open the File menu, select Open Workspace and then
select the VBSample\win32 directory.

2. In Files of Type:, specify Makefiles (*.mak)

3. Select vbsmpmri.mak and click Open.

4. Open the Build menu and select Rebuild All to compile and link the DLL.

Note: You do not have to create this DLL on your own. The sample includes a resource DLL that
contains the translatable text strings and other locale-dependent resources for the plug-in is
included with the sample. Even if your plug-in supports only one language, your plug-in code
must load its text strings and locale-specific resources from this resource library.

Register the
plug-in

Double-click the file vbsmpdbg.reg in order to register the plug-in. If you did not use the directory
c:\VBSample, edit the registry file, and replace all occurrences of ″c:\\VBSample\\″ with the
fully-qualified path to the plug-in code. You must use double back slashes in the path.

Run the plug-in in
iSeries Navigator

Start iSeries Navigator, and click on the ″+″ next to an iSeries server to expand the tree. iSeries
Navigator will detect the changes to the registry, and prompt you to scan the iSeries server in
order to verify that it is capable of supporting the new plug-in. After completing the scan, iSeries
Navigator will display the new plug-in in the tree hierarchy.

Sample VB plug-in directory of files
The following tables describe all of the files included with the sample VB plug-in for v5r2.

Visual Basic project file Description

vbsample.vbp Visual Basic 5.0 project file

VB forms Description

authorty.frm Set authority form

delete.frm Confirm delete form

propsht.frm Property Sheet form

sysstat.frm System status form

wizard.frm Create new library wizard form

VB Modules Description

global.bas Global declarations.

14 iSeries: Developing iSeries Navigator plug ins

VB Class Modules Description

actnman.cls SampleActions Manager class

dropman.cls Sample Drop Target Manager class

library.cls Library class

listman.cls Sample List Manager class

VB Binaries Description

authorty.frx Set authority form binary

delete.frx Confirm delete form binary

propsht.frx Property Sheet form binary

sysstat.frx System status form binary

wizard.frx Create new library wizard form binary

vbsample.bin Vbsample binary

Configuration settings Description

mrisetup.ini Install information for plug-in’s translatable resources

setup.ini Install information for plug-in’s executables

Registry entries Description

vbsmpdbg.reg Registry file for use during development.

vbsmprls.reg Registry file for use by iSeries Access during installation.

Files for constructing the resource DLL Description

vbsmpmri.mak Make File

vbsmpmri.rc RC file

vbsmpres.h Header file

Images Description

compass.bmp iSeries Navigator icon

lib.ico

vbsmpflr.ico Visual Basic Sample plug-in folder in open and closed state.

vbsmplib.ico Visual Basic Sample plug-in library icon.

Developing iSeries Navigator Plug-ins 15

rzakxmrisetup.htm
rzakxsetup.htm

Setting up the sample Java plug-in
The sample Java plug-in works with message queues in QUSRSYS on a given iSeries server. The first
plug-in allows you to view, add and delete messages in your default message queue, the one with the
same name as your iSeries user ID. The second plug-in adds support for multiple message queues.
Finally, the third plug-in adds the ability to drag and drop messages between queues.

In addition to installing the plug-in code, the sample plug-in includes Java docs, a Readme.txt file, and two
registry files, one for use during development and another for distribution with the retail version. See the
Sample Java plug-in directory of files for a detailed description of all files included with the Java plug-ins.

To set up the sample Java plug-in:

Download the sample
Java plug-ins

Download the executable file jvopnav.exe.

When you run this file, it will extract all of the previously mentioned files. You should allow
the executable to install the files in the default directory: jvopnav\com\ibm\as400\opnav.

Identify the plug-in to
iSeries Navigator

1. Edit the file MsgQueueSampleX.reg in
jvopnav\com\ibm\as400\opnav\MsgQueueSampleX. (X=1, 2 or 3, depending on which
sample you are installing.)

2. Find the lines: ″NLS″=″c:\\jvopnav\\win32\\mri\\MessageQueuesMRI.dll″ and
″JavaPath″=″c:\\jvopnav″

3. Replace ″c:\\″ with the fully-qualified path to the jvopnav directory on your PC. You
must double all back slashes in the path.

4. Save your changes, and double click the registry file.

Run the sample Java
plug-in.

1. Start iSeries Navigator, and click on the ″+″ next to an iSeries server to expand the
tree.

2. iSeries Navigator will detect the changes to the registry, and prompt you to scan the
iSeries server in order to verify that it is capable of supporting the new plug-in.

3. Click Scan Now

4. iSeries Navigator will scan the iSeries server. When it finishes, it will display a new
folder in the hierarchy tree, Java Message Queue Sample 1, 2 or 3.

5. Double click on the new folder

6. The first sample plug-in will display the contents of your default message queue in
QUSRSYS on the iSeries server. The second and third samples will display a list of
message queues.

7. Add a new message by right-clicking on the message queue folder, and selecting
New -> Message.

8. The plug-in displays a PDML dialog allowing you to enter the message text.

9. Delete a message by right-clicking on a message and selecting Delete. You can also
do this from the toolbar.

10. If you’re using the third sample plug-in, you can select a message, drag it to another
queue, and then drop it.

11. The plug-in will then move the message to the other queue.

Sample Java plug-in directory of files
The following tables describe all of the files included with the sample Java plug-ins for v5r2. For more
information, read the plug-in’s javadoc documentation. These were installed in your
jvopnav\com\ibm\as400\opnav\MsgQueueSample1\docs directory. Start with the file Package-
com.ibm.as400.opnav.MsgQueueSample1.html.

16 iSeries: Developing iSeries Navigator plug ins

rzakxjavadiroffiles.htm
http://www.ibm.com/eserver/iseries/access/toolkit/opnav_plugins.htm

The sample’s package name is com.ibm.as400.opnav.MsgQueueSample1. All class names are
prefixed with ″Mq″ to differentiate them from like-named classes in other packages.

Java source code files; first
sample plug-in

Description

MqMessagesListManager.java The ListManager for lists of messages.

MqActionsManager.java The ActionsManager implementation which handles all context menus for the
plug-in.

MqMessageQueue.java A collection of iSeries server message objects on a message queue.

MqMessage.java An object representing an iSeries server message.

MqNewMessageBean.java The UI DataBean implementation for the ″New Message″ dialog.

MqDeleteMessageBean.java The UI DataBean implemetation for the ″Confirm Delete″ dialog.

Java source code files; second
sample plug-in

Description

MqListManager.java The master ListManager implementation for the plug-in.

MqMessageQueuesListManager.java A slave ListManager for lists of message queues.

MqMessagesListManager.java A slave ListManager for lists of messages.

MqActionsManager.java The ActionsManager implementation which handles all context menus for
the plug-in.

MqMessageQueueList.java A collection of iSeries server message queues.

MqMessageQueue.java A collection of iSeries server message objects on a particular queue.

MqMessage.java An object representing an iSeries server message.

MqNewMessageBean.java The UI DataBean implementation for the ″New Message″ dialog.

MqDeleteMessageBean.java The UI DataBean implemetation for the ″Confirm Delete″ dialog.

Java source code files; third sample
plug-in

Description

MqListManager.java The master ListManager implementation for the plug-in.

MqMessageQueuesListManager.java A slave ListManager for lists of message queues.

MqMessagesListManager.java A slave ListManager for lists of messages.

MqActionsManager.java The ActionsManager implementation which handles all context menus for
the plug-in.

MqDropTargetManager.java The DropTargetManager implementation which handles drag/drop for the
plug-in.

MqMessageQueueList.java A collection of iSeries server message queues.

MqMessageQueue.java A collection of iSeries server message objects on a particular queue.

MqMessage.java An object representing an iSeries server message.

MqNewMessageBean.java The UI DataBean implementation for the ″New Message″ dialog.

MqDeleteMessageBean.java The UI DataBean implemetation for the ″Confirm Delete″ dialog.

Developing iSeries Navigator Plug-ins 17

PDML files Description

MessageQueueGUI.pdml Contains all Java UI panel definitions for the plug-in.

MessageQueueGUI.java The associated Java resource bundle (subclasses java.util.ListResourceBundle).

Online help files Description

IDD_MSGQ_ADD.html Online help skeleton for the ″New Message″ dialog.

IDD_MSGQ_CONFIRM_DELETE.html Online help skeleton for the ″Confirm Delete″ dialog.

Serialized files Description

IDD_MSGQ_ADD.pdml.ser Serialized panel definition for the ″New Message″ dialog.

IDD_MSGQ_CONFIRM_DELETE.pdml.ser Serialized panel definition for the ″Confirm Delete″ dialog.

Note: If you make changes to MessageQueueGUI.pdml, rename these
files. Otherwise your changes will not be reflected in the panels.

Registry entries Description

MsgQueueSample1.reg
MsgQueueSample2.reg
MsgQueueSample3.reg

Windows registry entries that tell iSeries Navigator that this plug-in
exists, and identifies its Java interface implementation classes.

MsgQueueSample1install.reg
MsgQueueSample2install.reg
MsgQueueSample3install.reg

The registry file for distribution with the retail version of your plug-in.
This version of the registry file cannot be read directly by Windows. It
contains substitution variables that represent the directory path of the
iSeries Access for Windows installation directory. When the user
invokes the iSeries Access Selective Setup program to install your
plug-in from the iSeries server, Selective Setup reads this registry file,
fills in the correct directory paths, and writes the entries to the registry
on the user’s machine. The entries in this file should therefore be kept
in sync with the registry file used in development.

Plug-in programming reference
iSeries Navigator handles plug-ins in each programming language in a different way. You can use the
following topics to learn about the flow of control in iSeries Navigator for each type of plug-in, as well as
specific reference information regarding the unique interfaces for each language.

C++ Reference

v Flow of Control in iSeries Navigator

v COM Interfaces

18 iSeries: Developing iSeries Navigator plug ins

rzakxc++cntrolflow.htm
rzakxcomint.htm

v API listing

v Return Codes

VB Reference

v Flow of control in iSeries Navigator

v VB Interfaces

Java Reference

v Flow of control in iSeries Navigator

v Java Classes and Interfaces

In addition to reference information specific to each language, each plug-in requires some customization to
Windows registry files.

Plug-in registry files
After modifying the sample plug-ins, you’ll need to make some modifications to the registry files. This topic
provides a walk-through of the registry files for each type of plug-in, and recommends some modifications.

iSeries Navigator structure and flow of control for C++ plug-ins
The internal architecture of the iSeries Navigator product is intended to serve as an integration point for an
extensible, broad-based operations interface for the iSeries server. Each functional component of the
interface is packaged as an ActiveX server DLL. iSeries Navigator uses Microsoft’s Component Object
Model (COM) technology to activate only the component implementations that currently are needed to
service a user request. This avoids the problem of having to load the entire product at start up, thereby
consuming the majority of Windows resources, and impacting performance of the entire system. Multiple
servers may register their request to add menu items and dialogs to a given object type in the Navigator
hierarchy.

Plug-ins work by responding to method calls from iSeries Navigator that are generated in response to user
actions. For example, when a user right-clicks on an object in the Navigator hierarchy, the Navigator
constructs a context menu for the object, and displays the menu on the screen. The Navigator obtains the
menu items by calling each plug-in that has registered its intention to supply context menu items for the
selected object type.

The functions that are implemented by a plug-in logically are grouped into ″interfaces.″ An interface is a
set of logically related methods on a class that iSeries Navigator can call to perform a specific function.
The Component Object Model supports the definition of interfaces in C++ through the declaration of an
abstract class that defines a set of pure virtual functions. Classes that call the interface are known as
implementation classes. Implementation classes subclass the abstract class definition and provide C++
code for each of the functions defined on the interface.

A given implementation class may implement as many interfaces as the developer chooses. When
creating a new project workspace for an ActiveX server DLL in the Developer Studio, the AppWizard
generates macros that facilitate interface implementation. Each interface is declared as a nested class on
a containing implementation class. The nested class has no member data and does not use any functions
other than those that are defined on its interface. Its methods typically call functions on the implementation
class to get and set state data, and to perform the actual work that is defined by the interface
specification.

iSeries Navigator COM interfaces for C++
The functions implemented by a plug-in logically are grouped into Component Object Model (COM)
interfaces. An interface is a set of logically related methods on a class that iSeries Navigator can call to
perform a specific function. A plug-in may implement one or more COM interfaces, depending on the type
of function that the developer intends to provide. For example, when a user right-clicks an object in the

Developing iSeries Navigator Plug-ins 19

rzakxapilist.htm
rzakxreturncodes.htm
rzakxvbcntrolflow.htm
rzakxopnavinterfaceclassvb.htm
rzakxjavacntrolflow.htm
javadoc/index.html
rzakxcreateplugin.htm

tree hierarchy, iSeries Navigator constructs a context menu for the object and displays the menu on the
screen. The Navigator obtains the menu items by calling each plug-in that has registered its desire to
supply context menu items for the selected object type. The plug-ins pass their menu items to the
Navigator when it calls their implementation of the QueryContextMenu method on the IContextMenu
interface.

Interface Method Description

IContextMenu QueryContextMenu Supplies context menu items when a
user right-clicks on an object.

GetCommandString Supplies help text for context menu
items and, based on the state of the
object, also indicates whether the
item should be enabled or grayed.

InvokeCommand Displays the appropriate dialog and
performs the requested action. It’s
called when the user clicks on a
given menu item.

IPropSheetExt AddPages Creates the property page or pages
being added by using standard
Windows APIs. It then adds the
pages by calling a function that was
passed to it as a parameter.

IDropTarget DragEnter Active when the user drags an object
over the drop area.

DragLeave Active when the user drags an object
out of the drop area.

DragOver Active while the user is over the drop
area.

Drop Active when the user drops the
object.

IPersistFile Load Called to initialize the extension with
the fully qualified object name of the
selected folder.

IA4SortingHierarchyFolder IsSortingEnabled Indicates whether sorting is enabled
for a folder.

SortOnColumn Sorts the list on the specified list view
column.

IA4FilteringHierarchyFolder GetFilterDescription Returns a text description of the
current include criteria.

IA4PublicObjectHierarchyFolder GetPublicListObject Implemented by a plug-in when it
desires to make its list objects
available for use by other by other
plug-ins

IA4ListObject GetAttributes Returns a list of supported attribute
IDs and the type of data associated
with each.

GetValue Given an attribute ID, returns the
current value of the attribute.

IA4TasksManager QueryTasks Returns a list of tasks supported by
this object

TaskSelected Informs the IA4TasksManager
implementation that a particular task
has been selected by the user.

20 iSeries: Developing iSeries Navigator plug ins

IA4 interfaces

In addition to Microsoft’s COM interfaces, IBM supplies the IA4HierarchyFolder and IA4PropSheetNotify
interfaces.

IA4PropSheetNotify, notifies third-party property pages when the main dialog closes. It also defines
methods that communicate information to the plug-in. For example, the method may communicatate
whether the iSeries user whose properties are being displayed already exists or is being defined, and
whether changes should be saved or discarded.

IA4HierarchyFolder allows a plug-in to add new folders to the iSeries Navigator hierarchy. The purpose of
this interface is to supply the data used to populate the contents of a new folder that your plug-in added to
the Navigator hierarchy. It also defines methods for specifying list view columns and their headings, and
for defining a custom toolbar that is associated with a folder.

See the following topics for more information:

v “Description of IA4HierarchyFolder Interface”

v “IA4HierarchyFolder interface specifications listing”

v “Description of IA4PropSheetNotify interface” on page 23

v “IA4PropSheetNotify interface specifications listing” on page 23

Description of IA4HierarchyFolder Interface
The IA4HierarchyFolder interface describes a set of functions that the independent software vendor will
implement. IA4HierarchyFolder is a component object model (COM) interface that IBM defined for the
purpose of allowing third parties to add new folders and objects to the iSeries Navigator hierarchy. For a
description of the Microsoft COM, see the Microsoft Web site.

The iSeries Navigator program calls the methods on the IA4HierarchyFolder interface whenever it needs to
communicate with the third-party plug-in. The primary purpose of the interface is to supply the Navigator
with list data that will be used when displaying the contents of a folder defined by the plug-in. The
methods on the interface allow the Navigator to bind to a particular third-party folder and list its contents.
There are methods for returning the number of columns in the details view and their associated headings.
Additional methods exist that supply the specifications for a custom toolbar to be associated with the
folder.

The interface implementation is typically compiled and linked into an ActiveX server Dynamic Link Library
(DLL). The Navigator learns about the existence of the new DLL by means of entries in the Windows
registry. These entries specify the location of the DLL on the user’s personal computer and the ″junction
point″ in the object hierarchy where the new folder or folders are to be inserted. The Navigator then loads
the DLL at the appropriate time and calls methods on the IA4HierarchyFolder interface as needed.

The header file CWBA4HYF.H contains declarations of the interface prototype and associated data
structures and return codes.

IA4HierarchyFolder interface specifications listing
An item identifier, or data entity, identifies all folders and objects in the Windows namespace. Item
identifiers are like filenames in a hierarchical file system. The Windows namespace is, in fact, a
hierarchical namespace with its root at the Desktop.

An item identifier consists of a two-byte count field that is followed by a binary data structure of variable
length (see the SHITEMID structure in the Microsoft header file SHLOBJ.H). This item identifier uniquely
describes an object relative to the parent folder of the object.

Developing iSeries Navigator Plug-ins 21

http://www.microsoft.com

The iSeries Navigator uses item identifiers that adhere to the following given structure that must be
returned by IA4HierarchyFolder::ItemAt.
<cb><item name>\x01<item type>\x02<item index>

where

<cb> is the size in bytes of the item identifier, including the count field itself

<item name> is the translated name of the object, suitable for displaying to the user

<item type> is a unique language-independent string that identifies the object type. It must be at
least four characters in length.

<item index> is the zero-based index that identifies the position of the object within the list of
parent folder objects.

Link to any of the following IA4HierarchyFolder specifications:

IA4HierarchyFolder::Activate

IA4HierarchyFolder::BindToList

IA4HierarchyFolder::DisplayErrorMessage

IA4HierarchyFolder::GetAttributesOf

IA4HierarchyFolder::GetColumnDataItem

IA4HierarchyFolder::GetColumnInfo

IA4HierarchyFolder::GetIconIndexOf

IA4HierarchyFolder::GetItemCount

IA4HierarchyFolder::GetToolBarInfo

IA4HierarchyFolder::GetListObject

IA4HierarchyFolder::ItemAt

22 iSeries: Developing iSeries Navigator plug ins

rzakxia4hfactivate.htm#HDRHDRIA4HFACTIVATE
rzakxia4hfbindtolist.htm#HDRHDRIA4HFBINDTOLIST
rzakxia4hfdisplayerrormessage.htm#HDRHDRIA4HFDISPLAYERRORMESSAGE
rzakxia4hfgetattributes.htm#HDRHDRIA4HFGETATTRIBUTES
rzakxia4hfgetcolumndataitem.htm#HDRHDRIA4HFGETCOLUMNDATAITEM
rzakxia4hfgetcolumninfo.htm#HDRHDRIA4HFGETCOLUMNINFO
rzakxia4hfgeticonindexof.htm#HDRHDRIA4HFGETICONINDEXOF
rzakxia4hfgetitemcount.htm#HDRHDRIA4HFGETITEMCOUNT
rzakxia4hfgettoolbarinfo.htm#HDRHDRIA4HFGETTOOLBARINFO
rzakxia4hfgetlistobject.htm#HDRHDRIA4HFGETLISTOBJECT
rzakxia4hfitemat.htm#HDRHDRIA4HFITEMAT

IA4HierarchyFolder::ProcessTerminating

IA4HierarchyFolder::Refresh

Description of IA4PropSheetNotify interface
Like the IA4HierarchyFolder interface, the IA4PropSheetNotify interface describes a set of functions that
the independent software vendor will implement. IA4PropSheetNotify is a COM interface IBM defined to
allow third parties to add new property pages to any property sheet that the iSeries Navigator defines for
an iSeries server user.

The iSeries Navigator program calls the methods on the IA4PropSheetNotify interface whenever it needs
to communicate with the third-party plug-in. The purpose of the interface is to provide notification when the
main Properties dialog for an iSeries user is closing. The notification indicates whether any changes that
are made by the user should be saved or discarded. The intention is that the interface be added to the
same implementation class that is used for IPropSheetExt.

The interface implementation is compiled and linked into the ActiveX server DLL for the plug-in. The
Navigator learns of the existence of the new DLL by means of entries in the Windows registry. These
entries specify the location of the DLL on the user’s personal computer. The Navigator then loads the DLL
at the appropriate time, calling methods on the IA4PropSheetNotify interface as needed.

CWBA4HYF.H contains declarations of the interface prototype and associated data structures and return
codes.

IA4PropSheetNotify interface specifications listing
The IA4PropSheetNotify interface supplies notifications to the implementation of IShellPropSheetExt that
are needed when adding additional property pages to one of the Users and Groups property sheets.
These notifications are necessary because creating and destroying Users and Groups property sheets
may occur many times before the user clicks OK on the main Properties dialog. IA4PropSheetNotify
informs the IShellPropSheetExt implementation when changes that are made by the user should be saved.

The iSeries Navigator learns about an IA4PropSheetNotify implementation by means of the normal registry
entries that are defined for iSeries Navigator plug-ins. In addition, when a property sheet handler for the
Users and Groups component is registered, a special registry value is supported that allows the plug-in to
specify to which property sheet it desires to add pages.

Link to any of the following IA4PropSheetNotify interface specifications:

v IA4PropSheetNotify::InformUserState

v IA4PropSheetNotify::ApplyChanges

v IA4PropSheetNotify::GetErrorMessage

iSeries Navigator API listing
iSeries Navigator APIs help plug-in developers obtain and manage certain types of global information. The
following iSeries Navigator APIs are listed alphabetically, and are grouped by function:

Function iSeries Navigator APIs

System values: This API allows the plug-in developer to
obtain the current value of an iSeries system value.

cwbUN_GetSystemValue

Developing iSeries Navigator Plug-ins 23

rzakxia4hfprocessterminating.htm#HDRHDRIA4HFPROCESSTERMINATING
rzakxia4hfrefresh.htm#HDRHDRIA4HFREFRESH
rzakxia4psninformuserstate.htm#HDRHDRIA4PSNINFORMUSERSTATE
rzakxia4psnapplychanges.htm#HDRHDRIA4PSNAPPLYCHANGES
rzakxia4psngeterrormessage.htm#HDRHDRIA4PSNGETERRORMESSAGE
rzakxcwbungetsystemvalue.htm#HDRHDRCWBUN_GETSYSTEMVALUE

Function iSeries Navigator APIs

System handles: These APIs allow the plug-in developer
to obtain and to release the current value of an iSeries
system object handle that contains connection properties
including the secure sockets layer (SSL) settings to be
used for the specified iSeries system.

cwbUN_GetSystemHandle

cwbUN_ReleaseSystemHandle

User input validation: These APIs allow the plug-in
developer to check whether the current user has authority
to a particular iSeries object. The APIs also allow the
developer to determine if the user has one or more
special authorities.

cwbUN_CheckObjectAuthority

cwbUN_CheckSpecialAuthority

User authority checking: This API allows the plug-in
developer to check whether certain types of user-supplied
strings are valid before transmitting them to the iSeries
server.

cwbUN_CheckAS400Name

User profile attributes: This API allows the plug-in
developer to obtain the value of any of the user profile
attributes for the current iSeries Navigator user. cwbUN_GetUserAttribute

24 iSeries: Developing iSeries Navigator plug ins

rzakxcwbungetsystemhandle.htm#HDRHDRCWBUN_GETSYSTEMHANDLE
rzakxcwbunreleasesystemhandle.htm#HDRHDRCWBUN_RELEASESYSTEMHANDLE
rzakxcwbuncheckobjectauthor.htm#HDRHDRCWBUN_CHECKOBJECTAUTHORITY
rzakxcwbuncheckspecialautho.htm#HDRHDRCWBUN_CHECKSPECIALAUTHORITY
rzakxcwbuncheckas400name.htm#HDRHDRCWBUN_CHECKAS400NAME
rzakxcwbungetuserattribute.htm#HDRHDRCWBUN_GETUSERATTRIBUTE

Function iSeries Navigator APIs

Data management: Objects that the user has selected
are identified to the third-party plug-in by two data
entities, the item identifier list, and the object name. Data
management APIs provide the plug-in developer with a
means of extracting information from these structures.

cwbUN_ConvertPidlToString

cwbUN_GetDisplayNameFromItemId

cwbUN_GetDisplayNameFromName

cwbUN_GetDisplayPathFromName

cwbUN_GetIndexFromItemId

cwbUN_GetIndexFromName

cwbUN_GetIndexFromPidl

cwbUN_GetListObject

cwbUN_GetParentFolderNameFromName

cwbUN_GetParentFolderPathFromName

cwbUN_GetParentFolderPidl

cwbUN_GetSystemNameFromName

cwbUN_GetSystemNameFromPidl

cwbUN_GetTypeFromItemId

cwbUN_GetTypeFromName

cwbUN_GetTypeFromPidl

Developing iSeries Navigator Plug-ins 25

rzakxcwbunconvertpidltostri.htm#HDRHDRCWBUN_CONVERTPIDLTOSTRING
rzakxcwbungetdisplaynameiid.htm#HDRHDRCWBUN_GETDISPLAYNAMEFROMITEMID
rzakxcwbungetdisplaynamenme.htm#HDRHDRCWBUN_GETDISPLAYNAMEFROMNAME
rzakxcwbungetdisplaypathnme.htm#HDRHDRCWBUN_GETDISPLAYPATHFROMNAME
rzakxcwbungetindexfromitemi.htm#HDRHDRCWBUN_GETINDEXFROMITEMID
rzakxcwbungetindexfromname.htm#HDRHDRCWBUN_GETINDEXFROMNAME
rzakxcwbungetindexfrompidl.htm#HDRHDRCWBUN_GETINDEXFROMPIDL
rzakxcwbungetlistobject.htm#HDRHDRCWBUN_GETLISTOBJECT
rzakxcwbungetparentfolderna.htm#HDRHDRCWBUN_GETPARENTFOLDERNAMEFROM
rzakxcwbungetparentfolderpa.htm#HDRHDRCWBUN_GETPARENTFOLDERPATHFROM
rzakxcwbungetparentfolderpi.htm#HDRHDRCWBUN_GETPARENTFOLDERPIDL
rzakxcwbungetsystemnamename.htm#HDRHDRCWBUN_GETSYSTEMNAMEFROMNAME
rzakxcwbungetsystemnamepidl.htm#HDRHDRCWBUN_GETSYSTEMNAMEFROMPIDL
rzakxcwbungetsystemnamepidl.htm#HDRHDRCWBUN_GETSYSTEMNAMEFROMPIDL
rzakxcwbungettypefromname.htm#HDRHDRCWBUN_GETTYPEFROMNAME
rzakxcwbungettypefrompidl.htm#HDRHDRCWBUN_GETTYPEFROMPIDL

Function iSeries Navigator APIs

Refresh the iSeries Navigator window: Following the
completion of an operation on behalf of the user, these
APIs enable execution of a request by the plug-in to
refresh the tree and list views or to place a message in
the Navigator status bar.

cwbUN_RefreshAll

cwbUN_RefreshList

cwbUN_RefreshListItems

cwbUN_UpdateStatusBar

ODBC connections: These APIs allow the plug-in
developer to reuse and end the handle for an ODBC
connection that already has been obtained by the
Database component of the iSeries Navigator.

cwbUN_GetODBCConnection

cwbUN_EndODBCConnections

Access iSeries Navigator icons: These APIs allow the
plug-in developer to access the icon image lists for
objects that appear in the Navigator object hierarchy. cwbUN_GetIconIndex

cwbUN_GetSharedImageList

Application Administration: These APIs allow the
plug-in developer to programmatically determine whether
a user is denied or allowed use of an Administrable
function. An Administrable function is any function
whose use can be controlled through the Application
Administration sub component of iSeries Navigator.

cwbUN_GetAdminValue

cwbUN_GetAdminValueEx

cwbUN_GetAdminCacheState

cwbUN_GetAdminCacheStateEx

Install: This API allows the plug-in developer to
determine if an iSeries Navigator sun component is
installed. cwbUN_IsSubcomponentInstalled

26 iSeries: Developing iSeries Navigator plug ins

rzakxcwbunrefreshall.htm#HDRHDRCWBUN_REFRESHALL
rzakxcwbunrefreshlist.htm#HDRHDRCWBUN_REFRESHLIST
rzakxcwbunrefreshlistitems.htm#HDRHDRCWBUN_REFRESHLISTITEMS
rzakxcwbunupdatestatusbar.htm#HDRHDRCWBUN_UPDATESTATUSBAR
rzakxcwbungetodbcconnection.htm#HDRHDRCWBUN_GETODBCCONNECTION
rzakxcwbunendodbcconnections.htm#HDRHDRCWBUN_ENDODBCCONNECTIONS
rzakxcwbungeticonindex.htm#HDRHDRCWBUN_GETICONINDEX
rzakxcwbungetsharedimagelis.htm#HDRHDRCWBUN_GETSHAREDIMAGELIST
rzakxcwbungetadminvalue.htm#HDRHDRCWBUN_GETADMINVALUE
rzakxcwbungetadminvalueex.htm#HDRHDRCWBUN_GETADMINVALUEEX
rzakxcwbungetadmincachestat.htm#HDRHDRCWBUN_GETADMINCACHESTATE
rzakxcwbungetadmincachestateex.htm#HDRHDRCWBUN_GETADMINCACHESTATEEX
rzakxcwbunissubcomponentins.htm#HDRHDRCWBUN_ISSUBCOMPONENTINSTALLED

Function iSeries Navigator APIs

Directory Services: These APIs provide information
about the Directory Services (LDAP) server on an iSeries
computer, and functions to connect to the server. The
connection functions enable you to connect to a server
using information (distinguished names, password, etc.)
cached by the iSeries Access for Windows. The
connection functions use the LDAP client shipped with
iSeries Access (LDAP.LIB and LDAP.DLL) and therefore
require that your application use that client.

Functions that use strings are available in ANSI and
Unicode versions.

Functions that return distinguished names and other
strings for use with LDAP client APIs also are provided in
a UTF-8 version for use with LDAP version 3 servers.

cwbUN_OpenLocalLdapServer

cwbUN_FreeLocalLdapServer

cwbUN_GetLdapSvrPort

cwbUN_GetLdapSvrSuffixCount

cwbUN_GetLdapSvrSuffixName

cwbUN_OpenLdapPublishing

cwbUN_FreeLdapPublishing

cwbUN_GetLdapPublishCount

cwbUN_GetLdapPublishType

cwbUN_GetLdapPublishServer

cwbUN_GetLdapPublishPort

cwbUN_GetLdapPublishParentDn

cwbUN_OpenLdapBindInfo

cwbUN_FreeLdapBindInfo

cwbUN_GetLdapServerBindDn

cwbUN_BindToLdapServerOnAs400

cwbUN_BindToLdapServer

cwbUN_NullBindToLdapServerOnAs400

cwbUN_NullBindToLdapServer

Return codes unique to iSeries Navigator APIs
6000 CWBUN_BAD_PARAMETER

An input parameter was not valid.
6001 CWBUN_FORMAT_NOT_VALID

Developing iSeries Navigator Plug-ins 27

rzakxcwbunopenlocalldapserv.htm#HDRHDRCWBUN_OPENLOCALLDAPSERVER
rzakxcwbunfreelocalldapserv.htm#HDRHDRCWBUN_FREELOCALLDAPSERVER
rzakxcwbungetldapsvrport.htm#HDRHDRCWBUN_GETLDAPSVRPORT
rzakxcwbungetldapsvrsuffixc.htm#HDRHDRCWBUN_GETLDAPSVRSUFFIXCOUNT
rzakxcwbungetldapsvrsuffixn.htm#HDRHDRCWBUN_GETLDAPSVRSUFFIXNAME
rzakxcwbunopenldappublishin.htm#HDRHDRCWBUN_OPENLDAPPUBLISHING
rzakxcwbunfreeldappublishin.htm#HDRHDRCWBUN_FREELDAPPUBLISHING
rzakxcwbungetldappublishcou.htm#HDRHDRCWBUN_GETLDAPPUBLISHCOUNT
rzakxcwbungetldappublishtyp.htm#HDRHDRCWBUN_GETLDAPPUBLISHTYPE
rzakxcwbungetldappublishser.htm#HDRHDRCWBUN_GETLDAPPUBLISHSERVER
rzakxcwbungetldappublishpor.htm#HDRHDRCWBUN_GETLDAPPUBLISHPORT
rzakxcwbungetldappublishpar.htm#HDRHDRCWBUN_GETLDAPPUBLISHPARENTDN
rzakxcwbunopenldapbindinfo.htm#HDRHDRCWBUN_OPENLDAPBINDINFO
rzakxcwbunfreeldapbindinfo.htm#HDRHDRCWBUN_FREELDAPBINDINFO
rzakxcwbungetldapserverbind.htm#HDRHDRCWBUN_GETLDAPSERVERBINDDN
rzakxcwbunbindtoldapservero.htm#HDRHDRCWBUN_BINDTOLDAPSERVERON
rzakxcwbunbindtoldapserver.htm#HDRHDRCWBUN_BINDTOLDAPSERVER
rzakxcwbunnullbindtoldapsvn.htm#HDRHDRCWBUN_NULLBINDTOLDAPSERVERON
rzakxcwbunnullbindtoldapsvr.htm#HDRHDRCWBUN_NULLBINDTOLDAPSERVER

The input object name was not valid.
6002 CWBUN_WINDOW_NOTAVAIL

View window not found.
6003 CWBUN_INTERNAL_ERROR

Processing error occurred.
6004 CWBUN_USER_NOT_AUTHORIZED

User does not have specified authority.
6005 CWBUN_OBJECT_NOT_FOUND

Object not found on the iSeries.
6006 CWBUN_INVALID_ITEM_ID

Invalid item ID parameter.
6007 CWBUN_NULL_PARM

NULL parameter passed.
6008 CWBUN_RTN_STR_TOO_LONG

String too long for return buffer.
6009 CWBUN_INVALID_OBJ_NAME

Invalid object name parameter.
6010 CWBUN_INVALID_PIDL

Invalid PIDL parameter.
6011 CWBUN_NULL_PIDL_RETURNED

Parent folder PIDL was NULL.
6012 CWBUN_REFRESH_FAILED

Refresh list failed.
6012 CWBUN_UPDATE_FAILED

Update toolbar failed.
6013 CWBUN_INVALID_NAME_TYPE

Invalid iSeries name type.
6014 CWBUN_INVALID_AUTH_TYPE

Invalid authority type.
6016 CWBUN_HOST_COMM_ERROR

iSeries communications error.
6017 CWBUN_INVALID_NAME_PARM

Invalid name parameter.
6018 CWBUN_NULL_DISPLAY_STRING

Null display string returned.
6019 CWBUN_GENERAL_FAILURE

General iSeries operation failure.
6020 CWBUN_INVALID_SYSVAL_ID

Invalid system value ID.
6021 CWBUN_INVALID_LIST_OBJECT

Can not get list object from name.
6022 CWBUN_INVALID_IFS_PATH

Invalid IFS path specified.
6023 CWBUN_LANG_NOT_FOUND

Extension does not support any of the languages installed.
6024 CWBUN_INVALID_USER_ATTR_ID

Invalid user attribute ID.
6025 CWBUN_GET_USER_ATTR_FAILED

Unable to retrieve user attribute.
6026 CWBUN_INVALID_FLAG_VALUE

Invalid flag parameter value set.
6027 CWBUN_CANT_GET_IMAGELIST

Cannot get icon image list.

The following return codes are for name check APIs.

6050 CWBUN_NAME_TOO_LONG
Name is too long.

6051 CWBUN_NAME_NULLSTRING
String in empty - no chars at all.

6054 CWBUN_NAME_INVALIDCHAR
Invalid character.

6055 CWBUN_NAME_STRINGTOOLONG
String too long.

6056 CWBUN_NAME_MISSINGENDQUOTE
End quote missing.

6057 CWBUN_NAME_INVALIDQUOTECHAR
Char invalid for quote string.

28 iSeries: Developing iSeries Navigator plug ins

6058 CWBUN_NAME_ONLYBLANKS
A string of only blanks found.

6059 CWBUN_NAME_STRINGTOOSHORT
String is too short.

6060 CWBUN_NAME_TOOLONGFORIBM
String OK, too long for IBM cmd.

6011 CWBUN_NAME_INVALIDFIRSTCHAR
The first char is invalid.

6020 CWBUN_NAME_CHECK_LAST
Reserved range.

The following return codes are for LDAP-related APIs.

6101 CWBUN_LDAP_NOT_AVAIL
LDAP is not installed or configured.

6102 CWBUN_LDAP_BIND_FAILED
LDAP bind failed.

The following return codes are for check iSeries name APIs.

1001 CWBUN_NULLSTRING
String is empty.

1004 CWBUN_INVALIDCHAR
Invalid character.

1005 CWBUN_STRINGTOOLONG
String is too long.

1006 CWBUN_MISSINGENDQUOTE
End quote for quoted string missing.

1007 CWBUN_INVALIDQUOTECHAR
Character invalid for quoted string.

1008 CWBUN_ONLYBLANKS
String contains only blanks.

1009 CWBUN_STRINGTOOSHORT
String is less than the defined minimum.

1011 CWBUN_TOOLONGFORIBM
String is OK, but too long for IBM commands.

1012 CWBUN_INVALIDFIRSTCHAR
First character is invalid.

1999 CWBUN_GENERALFAILURE
Unspecified error.

iSeries Navigator structure and flow of control for Visual Basic
plug-ins
For Visual Basic plug-ins, iSeries Navigator provides a built-in ActiveX server that manages the
communication between Navigator and the plug-in’s implementation. Visual Basic programmers who are
developing iSeries Navigator plug-ins then use the facilities that are provided by Microsoft’s Visual Basic
5.0 to create their plug-in classes, and to package them in an ActiveX server DLL.

Plug-ins work by responding to method calls from iSeries Navigator that are generated in response to user
actions. For example, when a user right-clicks on an object in the Navigator hierarchy, Navigator
constructs a context menu for the object and displays the menu on the screen. Navigator obtains the
menu items by calling each plug-in that has registered its intent to supply context menu items for the
selected object type.

The functions that are implemented by a plug-in are logically grouped into interfaces. An interface is a set
of logically related methods on a class that iSeries Navigator can call to perform a specific function. For
Visual Basic plug-ins, three interfaces are defined:

v ListManager

v ActionsManager

v DropTargetManager

Developing iSeries Navigator Plug-ins 29

rzakxopnavlistmanagerclassvb.htm
rzakxopnavactionsmanagerclassvb.htm
rzakxopnavdroptargetmanagerclassvb.htm

iSeries Navigator data for Visual Basic plug-ins

When the Navigator calls a function implemented by a plug-in, the request typically involves an object or
objects the user selected in the main Navigator window. The plug-in must be able to determine which
objects have been selected. The plug-in receives this information as a list of fully-qualified object names.
For Visual Basic plug-ins, an ObjectName class is defined that provides information about the selected
objects. Plug-ins that add folders to the object hierarchy must return items in the folder to iSeries
Navigator in the form of ″item identifiers.″ For Visual Basic plug-ins, an ItemIdentifier class is defined that
is used by the plug-in to return the requested information.

iSeries Navigator services for Visual Basic plug-ins

An iSeries Navigator plug-in sometimes will need to affect the behavior of the main Navigator window. For
example, following completion of a user operation, it may be necessary to refresh the Navigator list view or
to insert text into the Navigator’s status area. A utility class called UIServices is supplied in the Visual
Basic environment that provides the required services. A Visual Basic plug-in also can use the C++ APIs in
the cwbun.h header file to achieve similar results. For detailed descriptions of this class and its methods,
see the online help that is provided with the iSeries Navigator Visual Basic Plug-in Support DLL
(cwbunvbi.dll and cwbunvbi.hlp).

iSeries Navigator Visual Basic interfaces
A Visual Basic plug-in must implement one or more iSeries Navigator interface classes, depending on the
type of function that the developer intends to provide to the iSeries Navigator.

The Programmer’s Toolkit contains a link to the Visual Basic interface definition help file.

There are three iSeries Navigator interface classes:

v “iSeries Navigator ListManager interface class”

v “iSeries Navigator ActionsManager interface class”

v “iSeries Navigator DropTargetManager interface class” on page 31

Your application does not have to implement all three interface classes.

iSeries Navigator ListManager interface class
The ListManager interface class is used for data serving in iSeries Navigator. For example, when a list
view needs to be created and filled with objects, iSeries Navigator will call methods in the ListManager
class to do this. The Visual Basic Sample plug-in provides an example of this class in the file listman.cls.
You must have a ListManager class if your plug-in needs to populate iSeries Navigator component lists.

For detailed descriptions of this class and its methods, see the online help provided with the iSeries
Navigator Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp).

iSeries Navigator ActionsManager interface class
The ActionsManager interface class is used to build context menus, and to implement commands of the
context menu actions. For example, when a user performs a right mouse-click on a Visual Basic list object
in iSeries Navigator, the queryActions method in the ActionsManager interface class will be called to return
the context menu item strings. The Visual Basic Sample plug-in provides an example of this class in the
file actnman.cls. You must define an ActionsManager interface class for each unique object type that your
plug-in supports. You can specify the same ActionsManager interface class for different object types, but
your code logic must handle being called with multiple types of objects.

For detailed descriptions of this class and its methods, see the online help provided with the iSeries
Navigator Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp files).

30 iSeries: Developing iSeries Navigator plug ins

iSeries Navigator DropTargetManager interface class
The DropTargetManager interface class is used to handle drag-and-drop operations in iSeries Navigator.
When a user selects a Visual Basic list object, and performs mouse drag-and-drop operations on it,
methods in this class will be called to perform the drag-and-drop operations.

For detailed descriptions of this class and its methods, see the online help provided with the iSeries
Navigator Visual Basic Plug-in Support DLL (cwbunvbi.dll and cwbunvbi.hlp).

iSeries Navigator structure and flow of control for Java plug-ins
For Java plug-ins, iSeries Navigator provides a built-in ActiveX server that manages the communication
between the Navigator and the plug-in’s Java classes. The server component uses the Java Native
Interface (JNI) API to create the plug-in’s objects and to call their methods. Thus, Java programmers who
are developing iSeries Navigator plug-ins do not need to be concerned with the details of ActiveX server
implementation.

When a user is interacting with iSeries Navigator Java plug-ins, calls will be generated to the different
registered Java interface classes for the implementation of the specific request.

Plug-ins work by responding to method calls from iSeries Navigator that are generated in response to user
actions. For example, when a user right-clicks on an object in the Navigator hierarchy, the Navigator
constructs a context menu for the object, and displays the menu on the screen. The Navigator obtains the
menu items by calling each plug-in that has registered its intent to supply context menu items for the
selected object type.

The functions that are implemented by a plug-in logically are grouped into ″interfaces.″ An interface is a
set of logically related methods on a class that iSeries Navigator can call to perform a specific function.
For Java plug-ins, the following three Java interfaces are defined:

v ListManager

v ActionsManager

v DropTargetManager

Product architecture for iSeries Navigator plug-ins
The internal architecture of the iSeries Navigator product reflects that it is intended to serve as an
integration point for an extensible, broad-based operations interface for the iSeries server. Each
functional component of the interface is packaged as an ActiveX server. The Navigator learns
about the existence of a particular server component by means of entries in the Windows registry.
Multiple servers may register their request to add menu items and dialogs to a given object type in
the Navigator hierarchy.
Note: For third-party Java plug-ins to be available to iSeries Navigator users, iSeries Access users
must have Version 4 Release 4 Modification Level 0 of iSeries Access for Windows installed on
their personal computers.

iSeries Navigator data for Java plug-ins

When the Navigator calls a function implemented by a plug-in, the request typically involves an object or
objects the user selected in the main Navigator window. The plug-in must be able to determine which
objects have been selected. The plug-in receives this information as a list of fully-qualified object names.
For Java plug-ins, an ObjectName class is defined that provides information about the selected objects.
Plug-ins that add folders to the object hierarchy must return items in the folder to iSeries Navigator in the
form of ″item identifiers.″ For Java plug-ins, an ItemIdentifier class is defined that is used by the plug-in to
return the requested information.

An iSeries Navigator plug-in sometimes will need to affect the behavior of the main Navigator window. For
example, following completion of a user operation, it may be necessary to refresh the Navigator list view or

Developing iSeries Navigator Plug-ins 31

to insert text into the Navigator’s status area. Utility classes are supplied in the package
com.ibm.as400.opnav that provide the required services.

Customize the plug-in registry files
Registry files identify plug-ins to iSeries Navigator, describe their functions, and specify any prerequisites
for using the plug-in. The sample plug-ins include two registry files: a windows-readable copy for use
during development, and a copy for distribution on the iSeries server. You’ll need to make some
modifications to these registry files after developing your plug-in. To help you make those changes, this
topic provides an overview of the registry files, and detailed descriptions of the required sections of each
registry file.

iSeries navigator uses the registry files to learn about the plug-ins existence, requirements and functions.
In order to provide that information every plug-in must specify at least the following information

v A ″primary″ registry key that that provides global information about the plug-in. This section includes the
Programmatic Identifier (ProgID) which specifies the vendor and component name for your plug-in, and
will also name the folder in which your plug-in resides on the iSeries server. The ProgID must follow the
form <vendor>.<component>, i.e. IBM.Sample.

v Registry keys that identify the object types in the iSeries Navigator hierarchy for which a plug-in intends
to supply additional function.

v A separate registry key for the root of each sub tree of objects that a plug-in adds to the object
hierarchy. This key contains information about the root folder of the sub tree.

Descriptions of the required sections of the registry files, and the recommended changes:

v C++ registry files

v VB registry files

v Java registry files

Special considerations for the registry files

v Property sheet handling in C++

v Property sheet handling in VB

v SSL support in plug-ins

Customize the C++ registry values
The sample plug-includes two registry files: SAMDBG.REG, a windows-readable registry file for use during
development and SAMPRLS.REG, a registry file for distribution on the iSeries server. The following table
describes the sections in these registry files, and recommends changes for use when developing your own
plug-in.

Primary registry key

; ---
; Define the primary registry key for the plugin
; NOTE: NLS and ServerEntryPoint DLL names must
; not contain qualified directory paths

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY
plug-inS\IBM.Sample]
"Type"="PLUGIN"
"NLS"="sampmri.dll"
"NameID"=dword:00000080
"DescriptionID"=dword:00000081
"MinimumIMPIRelease"="NONE"
"MinimumRISCRelease"="030701"
"ProductID"="NONE"
"ServerEntryPoint"="sampext.dll"

32 iSeries: Developing iSeries Navigator plug ins

rzakxsmpc+reg.htm
rzakxsmpvbreg.htm
rzakxsmpjvreg.htm
rzakxproperty.htm
rzakxconstructvbproppgs.htm
rzakxsslregistryentry.htm

See the topic Example: Primary registry key for a description of each of the fields and the recommended
values.

Data Server Implementation

--
; This section will register an IA4HierarchyFolder implementation for each new
; folder added to the iSeries Navigator hierarchy.

[HKEY_CLASSES_ROOT\CLSID\{D09970E1-9073-11d0-82BD-08005AA74F5C}]
@="AS/400 Data Server - Sample Data"

[HKEY_CLASSES_ROOT\CLSID\{D09970E1-9073-11d0-82BD-08005AA74F5C}\InprocServer32]
@="%CLIENTACCESS%\Plugins\IBM.Sample\sampext.dll"
"ThreadingModel"="Apartment"

If your plug-in will add more than one new folder to the hierarchy, you must duplicate this section of the
registry file for each additional folder, making sure to generate a separate GUID for each folder. If your
plug-in doesn’t add any folders, you can remove this section.

1. Change the name of the DLL to match the name of the DLL that is generated by your new project
workspace.

2. Generate and copy a new GUID (See the global changes section at the bottom of this page)

3. Replace both occurrences of the CLSID in this section of the registry with the new GUID string you
just generated.

4. Search for the string ″IMPLEMENT_OLECREATE″ in your version of the file SAMPDATA.CPP

5. Paste the new GUID over the existing CLSID in the comment line, then change the CLSID in the
IMPLEMENT_OLECREATE macro call to match the hex values in your new GUID. Replace the word
″Sample″ with the name of your new folder.

6. Create two new source files for each new GUID, using a renamed copy of SAMPDATA.H and
SAMPDATA.CPP as a base.

7.

Note: The header file (.H) contains the class declaration for the new implementation class. The implementation file
(.CPP) contains the code that obtains the data for the new folder.

8. Replace all occurrences of the class name ″CSampleData″ in the two source files with a class name
that is meaningful in the context of your plug-in.

9. To add the new implementation files to the project workspace, open the Insert menu and select Files
Into Project....

10. Because you are duplicating SAMPDATA.CPP in this way, all your new folders will initially contain
library objects.

Developing iSeries Navigator Plug-ins 33

rzakxpriregkeyex.htm

Shell plug-in implementation

;--
; This section will register the shell plug-in implementation class.
; A shell plug-in adds context menu items and/or property pages
; for new or existing objects in the hierarchy.

[HKEY_CLASSES_ROOT\CLSID\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]
@="AS/400 Shell plug-ins - Sample"

[HKEY_CLASSES_ROOT\CLSID\{3D7907A1-9080-11d0-82BD-08005AA74F5C}\InprocServer32]
@="%CLIENTACCESS%\Plugins\IBM.Sample\sampext.dll"
"ThreadingModel"="Apartment"

;--
; Approve shell plug-in (required under Windows NT)

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Shell plug-ins\Approved]
"{3D7907A1-9080-11d0-82BD-08005AA74F5C}"="AS/400 Shell plug-ins - Sample"

This section registers the shell plug-in implementation class. Every c++ plug-in must use this section.

1. Change the DLL name to match the name of the DLL that was generated by your new project
workspace.

2. Generate and copy a new GUID (see the global changes section at the bottom of this page).

3. Replace all occurrences of the CLSID in the entries that are shown in the example above with the new
GUID you just generated.

4. Search for the string ″IMPLEMENT_OLECREATE″ in your version of the file EXTINTFC.CPP

5. Paste the new GUID over the existing CLSID in the comment line, then change the CLSID in the
IMPLEMENT_OLECREATE macro call to match the hex values in your new GUID.

34 iSeries: Developing iSeries Navigator plug ins

Shell plug-in implementation for objects

;--
; Register a context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample*
\ContextMenuHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

;--
; Register a property sheet handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\shellex\Sample*
\PropertySheetHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

;--
; Register the Auto Refresh property sheet handler for the new folder and its objects
; (this will allow your folder to take advantage of the iSeries Navigator
; Auto Refresh function)

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample*
\PropertySheetHandlers\{5E44E520-2F69-11d1-9318-0004AC946C18}]

;--
; Register drag and drop context menu handlers

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample*
\DragDropHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\File Systems*
\DragDropHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]

;--
; Register Drop Handler to accept drops of objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Sample*\DropHandler]
@="{3D7907A1-9080-11d0-82BD-08005AA74F5C}"

;--
; Register that this plug-in supports Secure Socket Layer (SSL) Connection
; Note: "Support Level"=dword:00000001 says the plugin supports SSL
; Note: "Support Level"=dword:00000000 says the plugin does not support SSL

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\SSL]
"Support Level"=dword:00000001

The final section of the registry specifies which objects in the Navigator hierarchy are affected by
implementation of the plug-in.

1. Replace the CLSID in this section with the new GUIDs.

2. If your plug-in will not add additional property pages to a property sheet for a folder or object, then
remove the registry entry for the property sheet handler.

3. If your plug-in will not be a drop handler for objects, remove the drag and drop context menu handler
and drop handler registry entries.

4. Edit the subkeys \Sample*\. For more information see, Shell plug-ins.

5. Edit or remove the code in your version of EXTINTFC.CPP, that checks for the object types defined by
the sample.
You should see the folders, context menu items, property pages, and drop actions from the sample,
depending on how much function from the sample you decided to retain

Developing iSeries Navigator Plug-ins 35

rzakxshellext.htm

Note: The code file based on the sample file EXTINTFC.CPP contains the code that will be called for context
menus, property pages, and drop actions. The sample code contains checks for the object types that the
sample defines. You must edit this file and either remove these tests or change them to check for the object
types for which you wish to provide new function.

Global changes

You have to specify a unique ProgID and GUIDs for use throughout the plug-in registry file.

Define a unique programmatic identifier, or ProgID, for your plug-in:

The ProgID should match the <vendor>.<component> text string, where vendor identifies the name of the
vendor who developed the plug-in, and component describes the function being provided. In the sample
plug-in, the string ″IBM.Sample″ identifies IBM as the vendor, and ″Sample″ as the description of the
function that is provided by the plug-in. This will be used throughout the registry file, and will name the
directory where your plug-in will reside on both the iSeries server and the workstation. Replace every
occurrence of ″IBM.Sample″ in the registry file with your ProgID.

Generate new GUIDs, and replace the CLSID values in the registry file:

For your iSeries Navigator C++ plug-in to work properly, you must replace specific CLSIDs in your
new registry file with GUIDs that you generate.
The Component Object Model from Microsoft uses 16-byte hex integers to uniquely identify
ActiveX implementation classes and interfaces. These integers are known as GUIDs (Globally
Unique Identifiers). GUIDs that identify implementation classes are called CLSIDs. (pronounced
″class IDs″) iSeries Navigator uses the Windows ActiveX runtime support to load a plug-in’s
components, and to obtain a pointer to an instance of the plug-in’s implementation of a particular
interface. A CLSID in the registry uniquely identifies a specific implementation class that resides in
a specific ActiveX server DLL. The first stage of this mapping, from the CLSID to the name and
location of the server DLL, is accomplished by means of a registry entry. Therefore, an iSeries
Navigator plug-in must register a CLSID for each implementation class that it provides.

Follow these steps to generate your GUIDs:

1. From the Windows taskbar, select Start and then Run.

2. Type GUIDGEN and click OK.

3. Make sure that Registry Format is selected

4. To generate a new GUID value, select New GUID.

5. To copy the new GUID value to the clipboard, select Copy.

Example: Primary registry key: The primary registry key defines a set of fields that specify global
information for the plug-in. This information is required.
;--
; Define the primary registry key for the plugin
; NOTE: NLS and ServerEntryPoint DLL names must not contain qualified directory paths

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample]
"Type"="PLUGIN"
"NLS"="sampmri.dll"
"NameID"=dword:00000080
"DescriptionID"=dword:00000081
"MinimumIMPIRelease"="NONE"
"MinimumRISCRelease"="030701"
"ProductID"="NONE"
"ServerEntryPoint"="sampext.dll"

36 iSeries: Developing iSeries Navigator plug ins

Primary Registry key field Field Description

Type If the plug-in adds new folders to the iSeries Navigator
hierarchy, the value of this field should be PLUGIN.
Otherwise, it should be EXT.

NLS Identifies the name of the resource DLL that contains the
locale-dependent resources for the plug-in. In the
development version of the registry file, this may be a
fully-qualified pathname.

NameID A double word containing the resource identifier of the
text string in the resource DLL which will be used to
identify the plug-in in the iSeries Navigator user interface.

DescriptionID A double word that contains the resource identifier of the
text string in the resource DLL. This resource DLL is used
to describe the function of the plug-in in the iSeries
Navigator user interface.

MinimumIMPIRelease A 6-character string that identifies the minimum release of
OS/400 that runs on the IMPI hardware that the plug-in
requires. The string should be of the form vvrrmm, where
vv is the OS/400 Version, rr is the Release, and mm is
the Modification Level. For example, if the plug-in
requires Version 3 Release 2 Modification Level 0, the
value of this field should be ″030200.″

If the plug-in does not support any OS/400 release that
runs on IMPI hardware (releases prior to Version 3
Release 6), the value of this field should be ″NONE.″ If
the plug-in can support any release that runs on IMPI
hardware, the value of this field should be ″ANY.″

MinimumRISCRelease A 6-character string that identifies the minimum release of
OS/400 that runs on RISC hardware that the plug-in
requires. The string should be of the form vvrrmm, where
vv is the OS/400 Version, rr is the Release, and mm is
the Modification Level. For example, if the plug-in
requires Version 3 Release 7 Modification Level 1, the
value of this field should be ″030701.″

If the plug-in does not support any OS/400 release that
runs on RISC hardware (Version 3 Release 6 and above),
the value of this field should be ″NONE.″ If the plug-in
can support any release that runs on RISC hardware, the
value of this field should be ″ANY.″

ProductID A 7-character string that specifies the product ID of a
prerequisite iSeries server licensed program that is
required by the plug-in. If the plug-in does not require that
a particular licensed program be installed on the iSeries
server, the value of this field should be ″NONE.″

Multiple comma-separated product IDs may be specified
if multiple IDs exist for the same product.

ServerEntryPoint The name of the code DLL that implements the server
entry point. This entry point is called by the iSeries
Navigator when it needs to determine whether the plug-in
is supported on a particular iSeries server. If the plug-in
does not implement the entry point, the value of this field
should be ″NONE.″ In the development version of the
registry file, this may be a fully-qualified pathname.

Developing iSeries Navigator Plug-ins 37

JavaPath The classpath string that identifies the location of your
plug-in’s Java classes. During development of your
plug-in, this field might contain the directory paths for the
directories where your class files reside. In the production
version of the registry file, it should identify your JAR file
names relative to the iSeries Access for Windows install
path, each preceded by the iSeries Access for Windows
substitution variable that represents the install path.

JavaMRI The base names of the JAR files that contain
locale-dependent resources for the plug-in. iSeries
Navigator will search for each JAR file after first suffixing
the name with the appropriate Java language and country
identifiers. If no MRI JAR files exist for a given locale,
iSeries Navigator will expect the MRI for the base locale
(usually US English) to reside in the code JAR files.

Shell plug-ins: These registry keys map a particular node or set of nodes in the hierarchy to the type of
function supplied by the plug-in, and to the CLSID of the implementation class which implements the
function.

Remember that any number of shell plug-ins may register their intent to add function to a given object type
in the Navigator hierarchy. The plug-in should never assume that it is the only server component which is
providing function for a given object type. This applies not only to existing object types, but also to any
new objects that a plug-in may choose to define. If your plug-in is widely used, there is nothing to prevent
another vendor from extending object types that are defined by your plug-in.

Object type identifiers

A pair of object type identifiers, subkeys \Sample*\, are always expected at this level in the subkey
hierarchy.

The first identifier in the pair specifies the root folder for a Navigator component. For plug-ins that add new
folders, this identifier should always match the registry key name for a root folder specified the previous
section. For plug-ins which add behaviors to existing object types, this subkey should generally be the
object type of the first-level folder under an iSeries server container object. These type strings are defined
under HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES in the registry.

The second identifier in the pair identifies the specific object type that the plug-in wants to affect. If * is
specified, the plug-in will be called the for the folder type identified in the parent subkey, plus all folders
and objects which appear in the hierarchy under that folder. Otherwise, a specific type identifier must be
specified, and the plug-in will then only be called for that object type.

Checking for object types

When performing checks for existing object types, you should use the 3-character type identifiers that are
defined under the key HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES in the registry. When
performing checks for new object types that are defined by your plug-in, use a registry key. Use the
registry key that identifies the folder that you specified as your junction point, or whatever type you will
return to the Navigator when serving data for a folder that is defined by your plug-in.

Customize the VB plug-in registry values
The sample plug-includes two registry files: VBSMPDBG.REG, a windows-readbale registry file for use
during development and VBSMPRLS.REG, a registry file for distribution on the iSeries server. The
following table describes the sections in this registry file, and recommends changes for use when
developing your own plug-in.

38 iSeries: Developing iSeries Navigator plug ins

Primary registry key

The primary registry key defines a set of fields which specify global information for the plug-in. This
information is required.

Note: The subkey name must match the ProgID for your plug-in.

See Example: Primary registry key for a description of each field.

[HKEY_CLASSES_ROOT\IBM.AS400.Network
\3RD PARTY EXTENSIONS\IBM.VBSample]
"Type"="Plugin"
"NLS"="vbsmpmri.dll"
"NameID"=dword:00000080
"DescriptionID"=dword:00000081
"MinimumIMPIRelease"="NONE"
"MinimumRISCRelease"="040200"
"ProductID"="NONE"
"ServerEntryPoint"="vbsample.dll"

Recomended changes:

1. Change the name ″vbsample.dll″ in the ServerEntryPoint key to match the name of the plug-in ActiveX
server DLL.

2. Change the name ″vbsmpmri.dll″ in the NLS key to match the name of the C++ MRI resource DLL for
your plug-in. Each Visual Basic plug-in must have a unique C++ MRI DLL name.

Note: Do not include the path in either of these changes.

Registering a new folder

This section will register a Visual Basic Plug-in ListManager class implementation for each new folder
added to the iSeries Navigator hierarchy. If your plug-in does not add any new folders to the iSeries
Navigator hierarchy, delete this section and proceed to the next task.

The Visual Basic ListManager class is the main interface to serve data to your plug-in folder.

The sample places the Sample Visual Basic Folder into the root level of an iSeries server system name in
the iSeries Navigator hierarchy. If you want your folder to appear at some other point in the hierarchy, you
must change the ″Parent″ key value. See Parent field values for a listing of possible values.

See Example: New folder registry key for a description of each field, and the possible values.

[HKEY_CLASSES_ROOT\IBM.AS400.Network\
3RD PARTY EXTENSIONS\IBM.VBSample\
folders\SampleVBFolder]
"Parent"="AS4"
"Attributes"=hex:00,01,00,20
"CLSID"="{040606B1-1C19-11d2-AA12-08005AD17735}"
"VBClass"="vbsample.SampleListManager"
"VBInterface"="{0FC5EC72-8E00-11D2-AA9A-08005AD17735}"
"NameID"=dword:00000082
"DescriptionID"=dword:00000083
"DefaultIconIndex"=dword:00000001
"OpenIconIndex"=dword:00000001

Recomended changes:

Developing iSeries Navigator Plug-ins 39

rzakxpriregkeyex.htm
rzakxprntkeyvalues.htm
rzakxnewforegkeyex.htm

1. Change all occurrences of the name ″SampleVBFolder″ in the registry file to a unique name that will
identify your folder object. The name that is specified in the registry file must match the object name
that is specified in your ListManager and ActionsManager Visual Basic classes. For the sample plug-in
these Visual Basic source files are: listman.cls and actnman.cls.

2. Change the name ″vbsample.SampleListManager″ in the VBClass key to match the program identifier
name of your ListManager class. For example, if your ActiveX Server DLL is named foo.dll, and your
ListManager implementation class is MyListManager, then the program identifier is
″foo.MyListManager″. This name is case-sensitive.

3. Change the value of the ″VBInterface″ key to the ListManager implementation class interface ID.

Registering VB plug-in objects

The final section of the registry specifies which objects in the Navigator hierarchy are affected by
implementation of the Visual Basic plug-in.

On many of the ActionsManager, ListManager and DropTargetManager class methods, you will be passed
in items or objects. To determine which folder object is being referenced, use the object type string that is
defined in the Windows registry.

Property sheets still can be added to your plug-in by using a context menu item. You cannot use a registry
key for a property sheet that is the mechanism that is used for a C++ plug-in. Property sheet handlers
including the Auto Refresh property sheet handler are not supported for Visual Basic plug-ins.

;--
; Register a context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\
IBM.VBSample\shellex\SampleVBFolder*\
ContextMenuHandlers\{040606B2-1C19-11d2-AA12-08005AD17735}]
"VBClass"="vbsample.SampleActionsManager"
"VBInterface"="{0FC5EC7A-8E00-11D2-AA9A-08005AD17735}"

;---
; Register drag and drop context menu handlers

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\
IBM.VBSample\shellex\SampleVBFolder*\
DragDropHandlers\{040606B2-1C19-11d2-AA12-08005AD17735}]
"VBClass"="vbsample.SampleActionsManager"
"VBInterface"="{0FC5EC7A-8E00-11D2-AA9A-08005AD17735}"

;--
; Register Drop Handler to accept drops of objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.VBSample\
shellex\SampleVBFolder*\
DropHandler]
@="{040606B2-1C19-11d2-AA12-08005AD17735}"
"VBClass"="vbsample.SampleDropTargetManager"
"VBInterface"="{0FC5EC6E-8E00-11D2-AA9A-08005AD17735}"

Recomended changes:

1. The CLSID in the entries above should always have the following: ″{040606B2-1C19-11d2-AA12-
08005AD17735}″

2. The ″VBClass″ key contains the program identifier (ProgID) of the Visual Basic implementation class.

3. The ″VBInterface″ key contains the Visual Basic implementation class’ interface ID.

4. If your plug-in will not be a drop handler for objects, remove the drag and drop context menu handler
and drop handler registry entries.

40 iSeries: Developing iSeries Navigator plug ins

5. Rename the subkeys \SampleVBFolder*\ and use a unique string to identify your folder object. This
name is the object type that will be used in your Visual Basic source to identify when actions are taken
on this folder in iSeries Navigator.

6. In the file that you created that was based on the ActionsManager interface, edit the code that checks
for the object types that are defined by the sample to reflect the name of your new folder object. The
sample’s ActionsManager interface is located in actnman.cls.

Global changes:

Define a unique programmatic identifier, or ProgID for your plug-in. The ProgID should match the
<vendor>.<component> text string, where vendor identifies the name of the vendor who developed the
plug-in, and component describes the function being provided. In the sample plug-in, the string
″IBM.Sample″ identifies IBM as the vendor, and ″Sample″ as the description of the function that is
provided by the plug-in. This will be used throughout the registry file, and will name the directory where
your plug-in will reside on both the iSeries server and the workstation.

Replace all instances of ″IBM.VBSample″ with your new [vender].ProgID.

Note: iSeries Navigator provides built-in ActiveX server DLLs that manage plug-ins written in Java and in Visual
Basic. Therefore, all Java and Visual Basic plug-ins register their own respective CLSID. The registry files that
are provided with the programming samples already contain these predefined CLSIDs.

Example: Primary registry key: The primary registry key defines a set of fields that specify global
information for the plug-in. This information is required.
;--
; Define the primary registry key for the plugin
; NOTE: NLS and ServerEntryPoint DLL names must not contain qualified directory paths

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample]
"Type"="PLUGIN"
"NLS"="sampmri.dll"
"NameID"=dword:00000080
"DescriptionID"=dword:00000081
"MinimumIMPIRelease"="NONE"
"MinimumRISCRelease"="030701"
"ProductID"="NONE"
"ServerEntryPoint"="sampext.dll"

Primary Registry key field Field Description

Type If the plug-in adds new folders to the iSeries Navigator
hierarchy, the value of this field should be PLUGIN.
Otherwise, it should be EXT.

NLS Identifies the name of the resource DLL that contains the
locale-dependent resources for the plug-in. In the
development version of the registry file, this may be a
fully-qualified pathname.

NameID A double word containing the resource identifier of the
text string in the resource DLL which will be used to
identify the plug-in in the iSeries Navigator user interface.

DescriptionID A double word that contains the resource identifier of the
text string in the resource DLL. This resource DLL is used
to describe the function of the plug-in in the iSeries
Navigator user interface.

Developing iSeries Navigator Plug-ins 41

MinimumIMPIRelease A 6-character string that identifies the minimum release of
OS/400 that runs on the IMPI hardware that the plug-in
requires. The string should be of the form vvrrmm, where
vv is the OS/400 Version, rr is the Release, and mm is
the Modification Level. For example, if the plug-in
requires Version 3 Release 2 Modification Level 0, the
value of this field should be ″030200.″

If the plug-in does not support any OS/400 release that
runs on IMPI hardware (releases prior to Version 3
Release 6), the value of this field should be ″NONE.″ If
the plug-in can support any release that runs on IMPI
hardware, the value of this field should be ″ANY.″

MinimumRISCRelease A 6-character string that identifies the minimum release of
OS/400 that runs on RISC hardware that the plug-in
requires. The string should be of the form vvrrmm, where
vv is the OS/400 Version, rr is the Release, and mm is
the Modification Level. For example, if the plug-in
requires Version 3 Release 7 Modification Level 1, the
value of this field should be ″030701.″

If the plug-in does not support any OS/400 release that
runs on RISC hardware (Version 3 Release 6 and above),
the value of this field should be ″NONE.″ If the plug-in
can support any release that runs on RISC hardware, the
value of this field should be ″ANY.″

ProductID A 7-character string that specifies the product ID of a
prerequisite iSeries server licensed program that is
required by the plug-in. If the plug-in does not require that
a particular licensed program be installed on the iSeries
server, the value of this field should be ″NONE.″

Multiple comma-separated product IDs may be specified
if multiple IDs exist for the same product.

ServerEntryPoint The name of the code DLL that implements the server
entry point. This entry point is called by the iSeries
Navigator when it needs to determine whether the plug-in
is supported on a particular iSeries server. If the plug-in
does not implement the entry point, the value of this field
should be ″NONE.″ In the development version of the
registry file, this may be a fully-qualified pathname.

JavaPath The classpath string that identifies the location of your
plug-in’s Java classes. During development of your
plug-in, this field might contain the directory paths for the
directories where your class files reside. In the production
version of the registry file, it should identify your JAR file
names relative to the iSeries Access for Windows install
path, each preceded by the iSeries Access for Windows
substitution variable that represents the install path.

JavaMRI The base names of the JAR files that contain
locale-dependent resources for the plug-in. iSeries
Navigator will search for each JAR file after first suffixing
the name with the appropriate Java language and country
identifiers. If no MRI JAR files exist for a given locale,
iSeries Navigator will expect the MRI for the base locale
(usually US English) to reside in the code JAR files.

42 iSeries: Developing iSeries Navigator plug ins

Parent field values: A three-character ID that identifies the parent of the folder to be added. One of the
following IDs may be specified:

ADF Application Development folder
AS4 iSeries server folder
BKF Backup folder
BOF Basic Operations folder
CFG Configuration and Service folder
DBF Database folder
FSF File Systems folder
JMF Job Management folder
MCN Management Central folder
MCS Management Central Configuration and Service folder
MDF Management Central Definitions folder
MMF Multimedia folder
NSR Network Servers folder
NWF Network folder
SCF Security folder
UGF Users and Groups folder

Example: New folder registry key: A separate registry key must be defined for the root of each sub tree
of objects that a plug-in chooses to add to the object hierarchy. This key contains information specific to
the root folder of the sub tree.

Assign the registry key a meaningful folder name that is at least four characters in length.

;--
; Register a new folder

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\folders\Sample]
"Parent"="AS4"
"Attributes"=hex:00,01,00,20
"CLSID"="{D09970E1-9073-11d0-82BD-08005AA74F5C}"
"NameID"=dword:00000082
"DescriptionID"=dword:00000083
"DefaultIconIndex"=dword:00000000
"OpenIconIndex"=dword:00000001
"AdminItem"="QIBM_SAMPLE_SMPFLR"

Parent A three-character ID that identifies the parent of the folder to be added.

See Parent field values for a listing of possible values.

Attributes A 4-byte binary field that contains the attributes for the folder, with the indicator bytes in reverse
order. See the folder attribute flags defined for the IShellFolder::GetAttributesOf method in the
Microsoft include file SHLOBJ.H.

CLSID The CLSID of the IA4HierarchyFolder implementation that should be called by the iSeries
Navigator to obtain the contents of the folder.

For Java plug-ins, the CLSID always should be: 1827A856-9C20-11d1-96C3-00062912C9B2.

For Visual Basic plug-ins, the CLSID should always be: 040606B1-1C19-11d2-AA12-
08005AD17735}.

JavaClass The fully-qualified Java class name of the ListManager implementation that should be called by
the iSeries Navigator to obtain the contents of the folder. This field should be omitted if the
plug-in is not a Java plug-in.

Developing iSeries Navigator Plug-ins 43

rzakxprntkeyvalues.htm

VBClass The Program Identifier (ProgID) of the ListManager implementation class that should be called
by iSeries Navigator to obtain the contents of the folder.

VBInterface The GUID of the ListManager implementation class’ interface.

NameID A double word that contains the resource ID of the string that should appear as the name of the
folder in the iSeries Navigator hierarchy.

DescriptionID A double word that contains the resource ID of the string that should appear as the description of
the folder in the iSeries Navigator hierarchy.

DefaultIconIndex A double word that contains the index into the NLS resource DLL of the plug-in for the icon that
should be displayed for the folder in the iSeries Navigator hierarchy. This is a zero-based index
into the resource DLL, not the resource ID of the icon. For indexing to work properly, the icon
resource IDs should be assigned sequentially.

OpenIconIndex A double word that contains the index into the NLS resource DLL of the plug-in for the icon that
should be displayed for the folder in the iSeries Navigator hierarchy whenever it is selected by
the user.

AdminItem A STRING that contains the Function ID of the Application Administration function that controls
access to the folder. If this field is omitted, no Application Administration function controls access
to the folder. If specified, this must be the function ID of a Group or Administrable function. It
cannot be the function ID of a Product Function.

Sample Java registry file
Each of the sample plug-ins written in Java provides its own registry file. The following sections describe
the important parts of the registry file and illustrate how to create appropriate entries for your own plug-ins.
The examples are taken from the appropriate sample which illustrates the function described.
Programmatic Identifier (ProgID)

Your plug-in is uniquely identified to iSeries Navigator by means of a text string of the form
<vendor>.<component>, where vendor identifies the vendor who developed the plug-in, and component
describes the function being provided. In the examples below, the string IBM.MsgQueueSample3 identifies
IBM as the vendor, and ″MsgQueueSample3″ as the description of the function provided by the plug-in.
This string is known as the programmatic identifier, or ProgID. It’s used throughout the registry file when
specifying the function your plug-in provides, and it also names the directory where your plug-in will reside
on both the iSeries server and the client workstation.

Globally unique identifiers (GUIDs)

Microsoft’s Component Object Model uses 16-byte hex integers to uniquely identify ActiveX implementation
classes and interfaces. These integers are known as Globally Unique Identifiers, or GUIDs. GUIDs that
identify implementation classes are called CLSIDs (pronounced ″class IDs″).

For iSeries Navigator components written in Java, you should not define new GUIDs. All Java plug-ins use
a set of standard GUIDs that specify the built-in ActiveX server component which manages Java plug-ins.
The standard CLSIDs to use are provided in the examples below.

44 iSeries: Developing iSeries Navigator plug ins

Defining your plug-in’s primary attributes:

;--
; Define the primary registry key for Message Queue Sample 3.

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3]
"Type"="PLUGIN"
"NLS"="MessageQueuesMRI.dll"
"NameID"=dword:00000001
"DescriptionID"=dword:00000002
"MinimumIMPIRelease"="NONE"
"MinimumRISCRelease"="ANY"
"ProductID"="NONE"
"ServerEntryPoint"="NONE"
"JavaPath"="MsgQueueSample3.jar"
"JavaMRI"="MsgQueueSample3MRI.jar"

Type
If the plug-in adds new folders to the iSeries Navigator hierarchy, the value of this field should be
PLUGIN. Otherwise, it should be EXT.

NLS
Identifies the name of the resource DLL that contains locale-dependent resources for the plug-in.
In the development version of the registry file, this may be a fully-qualified pathname.

NameID
A double word containing the resource identifier of the text string in the resource DLL which will
be used to identify the plug-in in the iSeries Navigator user interface.

DescriptionID
A double word that contains the resource identifier of the text string in the resource DLL. This
resource DLL is used to describe the function of the plug-in in the iSeries Navigator user
interface.

MinimumIMPIRelease
A 6-character string that identifies the minimum release of OS/400 running on IMPI hardware that
the plug-in requires. The string should be of the form vvrrmm, where vv is the OS/400 Version, rr is
the Release, and mm is the Modification Level. For example, if the plug-in requires Version 3
Release 2 Modification Level 0, the value of this field should be ″030200.″

If the plug-in does not support any OS/400 release that runs on IMPI hardware (releases prior to Version 3
Release 6), the value of this field should be ″NONE.″ If the plug-in can support any release that runs on
IMPI hardware, the value of this field should be ″ANY.″

MinimumRISCRelease
A 6-character string that identifies the minimum release of OS/400 running on RISC hardware that the
plug-in requires. The string should be of the form vvrrmm, where vv is the OS/400 Version, rr is the
Release, and mm is the Modification Level. For example, if the plug-in requires Version 3 Release 7
Modification Level 1, the value of this field should be ″030701.″

If the plug-in does not support any OS/400 release that runs on RISC hardware (Version 3 Release 6 and
above), the value of this field should be ″NONE.″ If the plug-in can support any release that runs on RISC
hardware, the value of this field should be ″ANY.″

ProductID
A 7-character string that specifies the product ID of a prerequisite iSeries server licensed program that is
required by the plug-in. If the plug-in does not require that a particular licensed program be installed on the
iSeries server, the value of this field should be ″NONE.″

Multiple comma-separated product IDs may be specified if multiple IDs exist for the same product.

Developing iSeries Navigator Plug-ins 45

ServerEntryPoint
The name of the code DLL that implements the server entry point. This entry point is called by the iSeries
Navigator when it needs to determine whether the plug-in is supported on a particular iSeries server. If the
plug-in does not implement the entry point, the value of this field should be ″NONE.″ In the development
version of the registry file, this may be a fully-qualified pathname.

JavaPath
The classpath string that identifies the location of your plug-in’s Java classes. During development
of your plug-in, this field might contain the directory paths for the directories where your class
files reside. In the production version of the registry file, it should identify your JAR files. The JAR
file names should not be qualified with any directory names - iSeries Navigator will qualify them
automatically when it constructs the classpath string to be passed to the Java VM.

JavaMRI
The base names of the JAR files that contain locale-dependent resources for the plug-in. iSeries Navigator
will search for each JAR file after first suffixing the name with the appropriate Java language and country
identifiers. In the development version of the registry file this field may contain an empty string, since the
resources for the base locale (usually US English) should reside in the code JAR.

Defining new folders:

;--
; Register a new folder

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\folders\Sample3]
"Parent"="AS4"
"Attributes"=hex:00,01,00,a0
"CLSID"="{1827A856-9C20-11d1-96C3-00062912C9B2}"
"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MqListManager"
"NameID"=dword:0000000b
"DescriptionID"=dword:0000000c
"DefaultIconIndex"=dword:00000001
"OpenIconIndex"=dword:00000000
"AdminItem"="QIBM_SAMPLE_SMPFLR"
"TaskpadNameID"=dword:00000003
"TaskpadDescriptionID"=dword:00000004

Type
Each new folder that your plug-in adds to the iSeries Navigator hierarchy has a unique logical type.
In the example above, the string Sample3 is the type which will be used to identify the currently
selected folder when control is passed to your plug-in at runtime.

Parent
A three-character ID that identifies the parent of the folder to be added. One of the following IDs
may be specified:

ADF Application Development folder
AS4 iSeries server folder
BKF Backup folder
BOF Basic Operations folder
CFG Configuration and Service folder
DBF Database folder
FSF File Systems folder
JMF Job Management folder
MCN Management Central folder
MCS Management Central Configuration and Service folder

46 iSeries: Developing iSeries Navigator plug ins

MDF Management Central Definitions folder
MMN Management Central Monitors
MST Management Central Scheduled Tasks
MTA Management Central Task Activity
MXS Management Central Extreme Support
NSR Network Servers folder
NWF Network folder
SCF Security folder
UGF Users and Groups folder

Attributes
A 4-byte binary field that contains the attributes for the folder, with the indicator bytes in reverse
order. See the folder attribute flags defined for the IShellFolder::GetAttributesOf method in the
Microsoft include file SHLOBJ.H. To indicate that your folder has a taskpad, use 0x00000008.

CLSID
The CLSID of the IA4HierarchyFolder implementation that should be called by iSeries Navigator to
obtain the contents of the folder. For Java plug-ins this CLSID should always be
{1827A856-9C20-11d1-96C3-00062912C9B2}.

JavaClass
The fully-qualified Java class name of the ListManager implementation that should be called by
the iSeries Navigator to obtain the contents of the folder.

NameID
A double word that contains the resource ID of the string that should appear as the name of the
folder in the iSeries Navigator hierarchy.

DescriptionID
A double word that contains the resource ID of the string that should appear as the description of
the folder in the iSeries Navigator hierarchy.

DefaultIconIndex
A double word that contains the index into the NLS resource DLL of the plug-in for the icon that
should be displayed for the folder in the iSeries Navigator hierarchy. This is a zero-based index
into the resource DLL, not the resource ID of the icon. For indexing to work properly, the icon
resource IDs should be assigned sequentially.

OpenIconIndex
A double word that contains the index into the NLS resource DLL of the plug-in for the icon that
should be displayed for the folder in the iSeries Navigator hierarchy whenever it is selected by the
user. This may be the same as the default icon index.

AdminItem
A STRING that contains the Function ID of the Application Administration function that controls
access to the folder. If this field is omitted, no Application Administration function controls access
to the folder. If specified, this must be the function ID of a Group or Administrable function. It
cannot be the function ID of a Product Function.

TaskpadNameID
A double word that contains the resource ID of the string that should appear as the name of the
taskpad in the iSeries Navigator hierarchy.

TaskpadDescriptionID
A double word that contains the resource identifier of the text string in the resource DLL. This
resource DLL is used to describe the function of the taskpad in the iSeries Navigator user
interface.

Developing iSeries Navigator Plug-ins 47

Adding context menu items:

;--
; Register a context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\
shellex\Sample3*\ContextMenuHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MqActionsManager"

;--
; Register a drag/drop context menu handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\
shellex\Sample3*\DragDropHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MqActionsManager"

Adding taskpad tasks:

;--
; Register a task handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample5\
shellex\Sample5*\TaskHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]

"JavaClass"="com.ibm.as400.opnav.MsgQueueSample5.MqTasksManager"
"JavaClassType"="TasksManager"

Supporting drag/drop:

;--
; Register a drop handler for the new folder and its objects

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\
shellex\Sample3*\DropHandler]

@="{1827A857-9C20-11d1-96C3-00062912C9B2}"
"JavaClass"="com.ibm.as400.opnav.MsgQueueSample3.MqDropTargetManager"

Specifying the objects to be managed

A pair of object type identifiers is required under the shellex key. The first identifier in the pair specifies
the root folder for an iSeries Navigator component. For new folders added by your plug-in, this identifier
should match the logical type of the folder you specified as your junction point. For existing folders, this
subkey should generally be the object type of the first-level folder under an iSeries server container object.
These type strings are defined under HKEY_CLASSES_ROOT\IBM.AS400.Network\TYPES in the registry.

The second identifier in the pair identifies the specific object type that the plug-in wants to affect. If ″*″ is
specified, the plug-in will be called the for the folder type identified in the first identifier, plus all folders and
objects which appear in the hierarchy under that folder. Otherwise, a specific type identifier should be
specified, and the plug-in will only be called when the user performs an action on an object of that type.

Remember that any number of plug-ins may register their intent to add function to a given object type in
the Navigator hierarchy. The plug-in should never assume that it is the only server component which is
providing function for a given object type. This applies not only to existing object types, but also to any
new objects that a plug-in may choose to define. If your plug-in is widely used, there is nothing to prevent
another vendor from extending object types that are defined by your plug-in.

48 iSeries: Developing iSeries Navigator plug ins

CLSIDs
The CLSIDs shown in the above examples specify the built-in ActiveX server component which manages
Java plug-ins. For all non-folder related function this CLSID should always be {1827A857-9C20-11d1-96C3-
00062912C9B2}.

JavaClass
The fully-qualified Java class name of the interface implementation that should be called by the iSeries
Navigator to support the designated function.

SSL support: If a plug-in’s communications with the iSeries server are performed by using the Sockets
API or some other low-level communications service, then it is the responsibility of the plug-in to support
SSL if it has been requested. If the plug-in doesn’t provide this support, it should indicate that it doesn’t
support SSL as described below. When this is done, the plug-in’s function will be disabled if the user has
requested a secure connection.

;--
; Indicate that this plug-in supports SSL.

[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.MsgQueueSample3\SSL]
"Support Level"=dword:00000001

Support Level
If the plug-in supports SSL, this value should be 1. Otherwise, it should be 0.

Property pages for a property sheet handler
The Microsoft Foundation Class Library classes cannot be used to construct property pages for a property
sheet handler. However, IBM provides CExtPropertyPage, which may be used in place of the MFC class
CPropertyPage. Property pages implemented by iSeries Navigator plug-ins should subclass
CExtPropertyPage. The class declaration may be found in the header file PROPEXT.H, and the
implementation is contained in the file PROPEXT.CPP. Both files are provided as part of the sample
plug-in.

Note It is necessary to include PROPEXT.CPP in the project workspace for your plug-in.

If a plug-in requires that a property sheet is associated with one of its own object types, the
SFGAO_HASPROPSHEET flag must be returned as part of the attributes of the object. When this flag is
on, the Navigator automatically will add Properties to the context menu for the object. Also, when this flag
is on, Navigator will call any registered property sheet handlers to add pages to the property sheet when
the context menu item is selected.

In certain cases a plug-in may desire to implement a Properties context menu item that is defined for one
of its own object types as a standard Windows dialog instead of a property sheet. A flag is defined for this
situation that may be returned to the Navigator on calls to IContextMenu::QueryContextMenu. If the flag is
returned, no automatic processing for Properties is performed, and it is up to the plug-in to add the context
menu item and implement the associated dialog. This flag is documented in “Description of
QueryContextMenu flags” on page 50.

If a plug-in intends to add property pages to one of the property sheets for an iSeries user, the key that
specifies the CLSID of the property sheet handler must specify a PropSheet field that identifies the
property sheet to which the specified handler will add pages. An example follows.

;-- ;
Register a property sheet handler for the Network property sheet for iSeries users
[HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY plug-inS\IBM.Sample\shellex\Users
and Groups\User\PropertySheetHandlers\{3D7907A1-9080-11d0-82BD-08005AA74F5C}]
"PropSheet"="Networks"

Developing iSeries Navigator Plug-ins 49

Valid values for the PropSheet field are:

PropSheet field valid values

Groups Personal
Security or
Capabilities Jobs Networks

Groups-Before-All

Groups-After-Info

Personal-Before-All

Personal-After-Name

Personal-After-
Location

Personal-After-Mail

Capabilities-Before-All

Capabilities-After-
Privileges

Capabilities-After-
Auditing

Capabilities-Before-
Other

Capabilities-After-
Other

Jobs-Before-All

Jobs-After-General

Jobs-After-Startup

Jobs-After-Display

Jobs-After-Output

Jobs-After-
International

Networks-Before-All

Networks-After-
Servers

Networks-After-
General

To add pages to a property sheet for an iSeries user, the plug-in must implement the IA4PropSheetNotify
interface (see “IA4PropSheetNotify interface specifications listing” on page 23).

Restriction:
The following restriction currently applies to property sheets for iSeries user objects:

Multiple property sheet handlers for the various property sheets that are associated with
an iSeries user cannot be implemented on the same implementation class. Each property
sheet requires a separate CLSID.

Description of QueryContextMenu flags: iSeries Navigator supports the following enhancements to the
IContextMenu interface:

Ordering of context menu items
The iSeries Navigator has extended the IContextMenu interface to obtain more precise control
over the order in which menu items are added to the menu for a particular folder or object. The
Navigator structures its context menus in three sections. This structure ensures that when more
than one component adds items to the context menu for an object, the items will still appear in the
correct order that is defined for the Windows user interface.

The first section contains actions which are specific to the object type, such as Reorganize for a
database table. The second section contains ″object creation″ items; these items are object types
which cascade off of a New menu item. Lastly there are the so-called ″standard″ Windows menu
items, such as Delete or Properties. You may choose to add menu items to any section of the
context menu.

The iSeries Navigator calls the QueryContextMenu method for a component three times in
succession, once for each section of the menu. The following additional flags are defined in the
uFlags parameter to allow you to determine which section of the context menu is currently being
serviced.

UNITY_CMF_CUSTOM
This flag indicates that you should add object-specific actions to the menu.

50 iSeries: Developing iSeries Navigator plug ins

UNITY_CMF_NEW
This flag indicates that you should add object creation items to the menu.

UNITY_CMF_STANDARD
This flag indicates that you should add standard actions to the menu.

UNITY_CMF_FILEMENU

This flag changes UNITY_CMF_STANDARD. It indicates construction of the File menu pull
down for your object, as opposed to the menu that is displayed when the user clicks on an
object with mouse button 2.

Items on the File pull down are arranged slightly differently. If you add Properties to the
menu, you should avoid inserting a separator as is normally done before this item. Also,
edit actions such as Copy or Paste should not be added to the File menu, because they
appear on the Edit pull down instead. (The iSeries Navigator calls your shell plug-in at the
appropriate time to obtain the items for the Edit menu, and does not set
UNITY_CMF_FILEMENU).

Unique property dialogs

In certain cases, a plug-in may desire to implement a Properties context menu item that is defined
for one of its own object types as a standard Windows dialog instead of a property sheet. A flag
that is defined for this situation may be returned to the Navigator on calls to
IContextMenu::QueryContextMenu when the UNITY_CMF_STANDARD flag is set. This flag,
A4HYF_INFO_PROPERTIESADDED, should be OR’d with the HRESULT value that is returned by
QueryContextMenu.

Returning this flag means that automatic processing for Properties is not performed. In this case,
the plug-in must add the context menu item and construct the associated dialog.

Example: Constructing Visual Basic property pages for a property sheet handler
Property pages that are implemented by iSeries Navigator Visual Basic plug-ins can not use a registry key
to specify property pages. You must add a specific property page context menu item in your ListManager
class to implement a property page. You can not add a property page to any existing property sheet
objects.

In the Visual Basic Sample plug-in, a property page is supported for Libraries in the iSeries Navigator List.
This is done with the following steps:

1. In listman.cls, the Library object type specifies a properties page in the getAttributes method:
’ Returns the attributes of an object in the list.
Public Function ListManager_getAttributes(ByVal item As Object) As Long

Dim uItem As ItemIdentifier
Dim nAttributes As ObjectTypeConstants

If Not IsEmpty(item) Then
Set uItem = item

End If

If uItem.getType = "SampleVBFolder" Then
nAttributes = OBJECT_ISCONTAINER

ElseIf item.getType = "SampleLibrary" Then
nAttributes = OBJECT_IMPLEMENTSPROPERTIES

Else
nAttributes = 0

End If

ListManager_getAttributes = nAttributes
End Function

2. In actnman.cls, the queryActions method specifies that properties should be shown on the Library
object context menu.

Developing iSeries Navigator Plug-ins 51

Public Function ActionsManager_queryActions(ByVal flags As Long) As Variant
.
.

’ Add menu items to a Sample Library
If selectedFolderType = "SampleLibrary" Then

’ Standard Actions
If (flags And STANDARD_ACTIONS) = STANDARD_ACTIONS Then

ReDim actions(0)

’ Properties
Set actions(0) = New ActionDescriptor
With actions(0)

.Create

.setID IDPROPERTIES

.SetText m_uLoader.getString(IDS_ACTIONTEXT_PROPERTIES)

.setHelpText m_uLoader.getString(IDS_ACTIONHELP_PROPERTIES)

.setVerb "PROPERTIES"

.setEnabled True

.setDefault True
End With

’ Properties is only selectable if there is ONLY 1 object selected
If Not IsEmpty(m_ObjectNames) Then

If UBound(m_ObjectNames) > 0 Then
actions(2).setEnabled False

End If
End If

End If
End If
.
.

End Function

3. In actnman.cls, the actionsSelected method displays a properties form when the properties context
menu is selected.
Public Sub ActionsManager_actionSelected(ByVal action As Integer, ByVal owner As Long)

.

.
Select Case action

.

.
Case IDPROPERTIES

If (Not IsEmpty(m_ObjectNames)) Then
’ Pass the System Name into a hidden field on the form for later use
frmProperties.lblSystemName = m_ObjectNames(0).getSystemName

’ Pass the Display Name of the selected object into a hidden field on the form
frmProperties.lblLibName = m_ObjectNames(0).getDisplayName

’ Show the properties
frmProperties.Show vbModal

End If
.
.
Case Else

’Do Nothing
End Select

.
End Sub

Note: The code to create and display the property sheet can be seen in propsht.frm

52 iSeries: Developing iSeries Navigator plug ins

Property sheet handling in Java
In V5R1, you can add property pages to property sheets of Java plug-ins. This allows you to build object
names, display properties, share objects with third parties, and mix C++ and Java code in the same
plug-in.

To use property pages, you must build the properties manager interface, which provides the following
methods:

v Initialize
Identifies the container object for the properties.

v getPages
Construct and provide a vector of PanelManager objects.

v CommitHandlers
Returns a vector of handlers to be called upon Commit.

v CancelHandlers
Returns a vector of handlers to be called upon Cancel.

Then enable the properties menu by having the ListManager getAttributes method return
ListManager.OBJECT_HASPROPERTIES.

Finally, create a registry entry that identifies the PopertiesManagerInterface. For example:

[HKEY_CLASSES_ROOT\IBM.AS400.Network\AS/400 Network*
\shellex\PropertySheetHandlers\{1827A857-9C20-11d1-96C3-00062912C9B2}]
″JavaClass″=″com.ibm.as400.opnav.TestPages.TestPropertiesManager″
″JavaClassType″=″PropertiesManager″

Note: Multiple PropertiesManager implementations may register to provide property pages for a given object
type. Do not assume that your entity is the only one supplying pages, or the order that the pages will
be added.

For more information, see the Properties Manager example.

Secure Sockets Layer (SSL) registry entry
iSeries Navigator users can request a secure connection to an iSeries server by selecting the Use Secure
Sockets Layer checkbox on the Connection tab of the property sheet for iSeries objects. When this is
done, only iSeries Navigator components that are capable of supporting SSL communications are enabled
for activation by the user.

If all of a plug-in’s communications with the iSeries server are managed by using the iSeries Access for
Windows system handle (enter cwbCO_SysHandle), or by using the class com.ibm.as400.access.AS400
in the case of a Java plug-in, then it should indicate that it supports secure connections to the iSeries
server. For C++ plug-ins, the cwbCO_SysHandle is obtained by calling the cwbUN_GetSystemHandle API.
When the user requests a secure connection, the Navigator automatically will enable SSL. In the case of
Java plug-ins, the iSeries server object obtained by calling the getSystemObject method on the class
com.ibm.as400.opnav.ObjectName actually will be an instance of
com.ibm.as400.access.SecureAS400.

Note: If you are running Java over SSL, and creating your own CA certificate, iSeries Access for Windows
GA service pack is required.

If a plug-in’s communications with the iSeries server are performed by using the Sockets API or some
other low-level communications service, then it is the responsibility of the plug-in to support SSL if it has
been requested. If the plug-in doesn’t provide this support, it should indicate that it doesn’t support SSL as
described below. When this is done, the plug-in’s function will be disabled if the user has requested a
secure connection.

Developing iSeries Navigator Plug-ins 53

rzakxexpropmngr.htm

Example: Adding a registry key to enable SSL
The key is SSL under [HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY
EXTENSIONS\IBM.Sample\SSL] ″Support Level″=dword:00000001 where IBM.Sample is the plug-in
supplied product component.

Note: ″Support Level″=dword:00000001 = supports SSL, and ″Support Level″=dword:00000000 = does
NOT support SSL.

;--
; Example registry key that
says this plug-in supports SSL
{HKEY_CLASSES_ROOT\IBM.AS400.Network\3RD PARTY EXTENSIONS\IBM.Sample\SSL}
"Support Level"=dword:00000001

54 iSeries: Developing iSeries Navigator plug ins

����

Printed in U.S.A.

	Contents
	Developing iSeries Navigator Plug-ins
	Plug-in support in iSeries Navigator
	What you can do with a plug-in
	How plug-ins work
	Plug-in requirements
	Distribute plug-ins
	iSeries Access for Windows setup file
	MRI setup file

	Identifying plug-ins to iSeries Navigator

	Install and run sample plug-ins
	Setting up sample C++ plug-ins
	Setting up sample Visual Basic plug-ins
	Sample VB plug-in directory of files

	Setting up the sample Java plug-in
	Sample Java plug-in directory of files

	Plug-in programming reference
	iSeries Navigator structure and flow of control for C++ plug-ins
	iSeries Navigator COM interfaces for C++
	Description of IA4HierarchyFolder Interface
	IA4HierarchyFolder interface specifications listing
	Description of IA4PropSheetNotify interface
	IA4PropSheetNotify interface specifications listing

	iSeries Navigator API listing
	Return codes unique to iSeries Navigator APIs
	iSeries Navigator structure and flow of control for Visual Basic plug-ins
	iSeries Navigator Visual Basic interfaces
	iSeries Navigator ListManager interface class
	iSeries Navigator ActionsManager interface class
	iSeries Navigator DropTargetManager interface class

	iSeries Navigator structure and flow of control for Java plug-ins
	Customize the plug-in registry files
	Customize the C++ registry values
	Customize the VB plug-in registry values
	Sample Java registry file
	Property pages for a property sheet handler
	Example: Constructing Visual Basic property pages for a property sheet handler
	Property sheet handling in Java
	Secure Sockets Layer (SSL) registry entry

