
iSeries

DB2 Universal Database for iSeries SQL Reference
Version 5

ERserver
���

iSeries

DB2 Universal Database for iSeries SQL Reference
Version 5

ERserver
���

© Copyright International Business Machines Corporation 1998, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About DB2 UDB for iSeries SQL
Reference xiii
Standards Compliance xiii
Who should read the SQL Reference book xiii

Assumptions Relating to Examples of SQL
Statements xiv
How to Read Syntax Diagrams xv

Conventions for Describing Mixed Data Values xvii
SQL Accessibility xvii
What’s new for V5R2 in the SQL Reference book xviii

Chapter 1. Concepts 1
Relational Database 1
Structured Query Language 3

Static SQL 3
Dynamic SQL 3
Extended Dynamic SQL 4
Interactive SQL 4
SQL Call Level Interface (CLI) and Open Database
Connectivity (ODBC) 4
Java Database Connectivity (JDBC) and Embedded
SQL for Java (SQLJ) Programs 4

Schemas 5
Tables 5
Keys 6
Primary Keys and Unique Keys 6
Referential Integrity 7
Check Constraints 9
Triggers 9
Indexes 11
Views 12
Aliases 13
Packages and Access Plans 13
Procedures 13
Catalog 15
Application Processes, Concurrency, and Recovery 15

Locking, Commit, and Rollback 17
Unit of Work 18
Rolling Back Work 19
Rolling back all changes 19
Rolling back selected changes using savepoints 20

Threads 20
Isolation Level 21
Distributed Relational Database 24

Database Servers 25
CONNECT (Type 1) and CONNECT (Type 2) . . 26
Remote Unit of Work 26
Application-Directed Distributed Unit of Work 28
Data Representation Considerations 31

Character Conversion 31
Character Sets and Code Pages 32
Coded Character Sets and CCSIDs. 33
Default CCSID 34

Sort Sequence 34
Authorization and Privileges 35

Storage Structures 36

Chapter 2. Language Elements 39
Characters 40
Tokens 41
Identifiers 43

SQL Identifiers 43
System identifiers 43
Host Identifiers 44

Naming Conventions 45
Qualification of Unqualified Object Names . . . 52
SQL Names and System Names: Special
Considerations 53

Schemas and the SQL Path 55
Aliases 56
Authorization IDs and Authorization-Names . . . 57

Examples 58
Data Types 59

Binary Strings 61
Character Strings 61
Character Subtypes 62
Graphic Strings 63
Graphic Subtypes 64
Large Objects (LOBs) 64
Numbers 65
Datetime Values 66
DataLink Values 71
Row ID Values 72
User-Defined Types. 73

Promotion of Data Types 74
Casting Between Data Types. 75
Assignments and Comparisons 78

Numeric Assignments 80
String Assignments 81
Datetime Assignments 83
DataLink Assignments. 84
Row ID Assignments 86
Distinct Type Assignments 86
Numeric Comparisons. 87
String Comparisons. 88
Datetime Comparisons 89
Distinct Type Comparisons 90

Rules for Result Data Types 91
Binary String Operands 91
Character and Graphic String Operands 92
Numeric Operands 92
Datetime Operands 93
DATALINK Operands 94
DISTINCT Type Operands 94

Conversion Rules for Operations That Combine
Strings 95
Constants 97

Integer Constants 97
Floating-Point Constants 97
Decimal Constants 97

© Copyright IBM Corp. 1998, 2002 iii

||

||
||

||
||
||
||

||

Binary-String Constants 97
Character-String Constants 98
Graphic-String Constants 99
Decimal Point 100
Delimiters 101

Special Registers 102
CURRENT DATE or CURRENT_DATE 102
CURRENT PATH, CURRENT_PATH, or
CURRENT FUNCTION PATH. 102
CURRENT SCHEMA 103
CURRENT SERVER or CURRENT_SERVER . . 103
CURRENT TIME or CURRENT_TIME 103
CURRENT TIMESTAMP or
CURRENT_TIMESTAMP 104
CURRENT TIMEZONE or
CURRENT_TIMEZONE 104
USER 104

Column Names. 105
Qualified Column Names 105
Correlation Names 105
Column Name Qualifiers to Avoid Ambiguity 107
Column Name Qualifiers in Correlated
References 108
Unqualified Column Names 109

References to Variables 111
References to Host Variables 111

Host Structures in C, C++, COBOL, PL/I, and RPG 116
Host Structure Arrays in C, C++, COBOL, PL/I,
and RPG 118
Functions 119

Types of Functions 119
Function resolution 120
Method of finding the best fit 121
Function Invocation 123

Expressions 125
Without Operators. 126
With the Concatenation Operator 126
With Arithmetic Operators 127
Two Integer Operands 128
Integer and Decimal Operands 128
Two Decimal Operands 128
Decimal Arithmetic in SQL 129
Floating-Point Operands. 129
Distinct Types as Operands. 129
Scalar Subselect 130
Datetime Operands and Durations 130
Datetime Arithmetic in SQL 131
Precedence of Operations 134
CASE Expressions 135
CAST Specification 137

Predicates 141
Basic Predicate 142
Quantified Predicate 143
BETWEEN Predicate 145
EXISTS Predicate 146
IN Predicate 147
LIKE Predicate 151
NULL Predicate 154

Search Conditions 155
Examples 156

Chapter 3. Built-In Functions. 157
Column Functions 162

AVG 163
COUNT 164
COUNT_BIG 165
MAX 167
MIN 168
STDDEV or STDDEV_POP 169
SUM 170
VAR_POP or VARIANCE or VAR 171

Scalar Functions 172
Example 172
ABS 173
ACOS 174
ANTILOG 175
ASIN 176
ATAN 177
ATANH 178
ATAN2 179
BIGINT 180
BLOB 181
CEILING 182
CHAR. 183
CHARACTER_LENGTH 188
CLOB 189
COALESCE 193
CONCAT. 194
COS 195
COSH 196
COT 197
CURDATE 198
CURTIME 199
DATE 200
DAY 202
DAYOFMONTH 203
DAYOFWEEK 204
DAYOFWEEK_ISO 205
DAYOFYEAR 206
DAYS 207
DBCLOB 208
DECIMAL or DEC 210
DEGREES 212
DIFFERENCE 213
DIGITS 214
DLCOMMENT 215
DLLINKTYPE 216
DLURLCOMPLETE 217
DLURLPATH 218
DLURLPATHONLY 219
DLURLSCHEME 220
DLURLSERVER 221
DLVALUE 222
DOUBLE_PRECISION or DOUBLE 224
EXP 225
FLOAT 226
FLOOR 227
GRAPHIC 229
HASH. 231
HEX 232
HOUR. 233
IDENTITY_VAL_LOCAL 234

iv DB2 UDB for iSeries SQL Reference V5R2

||

||

||

||

||

IFNULL 238
INTEGER or INT 239
JULIAN_DAY 241
LAND. 242
LCASE 243
LEFT 244
LENGTH 246
LN 248
LNOT 249
LOCATE 250
LOG10 251
LOR 252
LOWER 253
LTRIM 254
MAX 255
MICROSECOND 257
MIDNIGHT_SECONDS 258
MIN 259
MINUTE 261
MOD 262
MONTH 264
NODENAME 265
NODENUMBER 266
NOW 267
NULLIF 268
PARTITION 269
PI 270
POSITION or POSSTR 271
POWER 273
QUARTER 274
RADIANS 275
RAND. 276
REAL 277
ROUND 278
ROWID 280
RRN 281
RTRIM 282
SECOND 283
SIGN 284
SIN. 285
SINH 286
SMALLINT 287
SOUNDEX 288
SPACE 289
SQRT 290
STRIP 291
SUBSTRING or SUBSTR. 293
TAN 295
TANH. 296
TIME 297
TIMESTAMP 298
TIMESTAMPDIFF 300
TRANSLATE 301
TRIM 303
TRUNCATE or TRUNC 305
UCASE 307
UPPER 308
VALUE 309
VARCHAR 310
VARGRAPHIC 315
WEEK 317

WEEK_ISO 318
XOR 319
YEAR 320
ZONED 321

Chapter 4. Queries 323
Authorization 323
subselect 324

select-clause 324
from-clause 328
where-clause 333
group-by-clause 333
having-clause 335
Examples of a subselect 335

fullselect 337
Examples of a fullselect 338

select-statement 339
common-table-expression 339
order-by-clause 340
fetch-first-clause 341
update-clause 342
read-only-clause 342
optimize-clause. 343
isolation-clause 343
Examples of a select-statement 344

Chapter 5. Statements 347
How SQL Statements Are Invoked 352

Embedding a Statement in an Application
Program 352
Dynamic Preparation and Execution. 353
Static Invocation of a select-statement 353
Dynamic Invocation of a select-statement . . . 354
Interactive Invocation 354

SQL Return Codes. 354
SQLCODE 355
SQLSTATE 355

SQL Comments. 355
Example 356

ALTER TABLE 357
Invocation 357
Authorization 357
Syntax. 358
Description 364
ADD COLUMN 366
ALTER COLUMN 370
DROP COLUMN 371
ADD unique-constraint 372
ADD referential-constraint 373
ADD check-constraint 375
DROP 375
Notes 376
Cascaded Effects 377
Examples 379

BEGIN DECLARE SECTION 381
Invocation 381
Authorization 381
Syntax. 381
Description 381
Examples 382

Contents v

||

||

||

||

||

CALL 383
Invocation 383
Authorization 383
Syntax. 383
Description 385
Notes 386
Example 387

CLOSE 388
Invocation 388
Authorization 388
Syntax. 388
Description 388
Notes 388
Example 389

COMMENT 390
Invocation 390
Authorization 390
Syntax. 392
Description 395
Examples 398

COMMIT. 399
Invocation 399
Authorization 399
Syntax. 399
Description 399
Notes 400
Example 401

CONNECT (Type 1) 402
Invocation 402
Authorization 402
Syntax. 402
Description 402
Notes 403
Examples 406

CONNECT (Type 2) 407
Invocation 407
Authorization 407
Syntax. 407
Description 407
Notes 409
Examples 410

CREATE ALIAS 411
Invocation 411
Authorization 411
Syntax 411
Description 411
Notes 412
Examples 413

CREATE DISTINCT TYPE 414
Invocation 414
Authorization 414
Syntax. 414
Description 416
Notes 417
Examples 420

CREATE FUNCTION. 421
Notes 421

CREATE FUNCTION (External Scalar) 424
Invocation 424
Authorization 424
Syntax. 425

Description 428
Notes 437
Example 1 438
Example 2 438

CREATE FUNCTION (External Table) 440
Invocation 440
Authorization 440
Syntax. 441
Description 444
Notes 452
Example 1 453

CREATE FUNCTION (Sourced) 454
Invocation 454
Authorization 454
Syntax. 455
Description 456
Notes 459
Example 1 460
Example 2 460

CREATE FUNCTION (SQL Scalar) 461
Invocation 461
Authorization 461
Syntax. 461
Description 464
Notes 467
Example 1 468

CREATE FUNCTION (SQL Table) 469
Invocation 469
Authorization 469
Syntax. 469
Description 472
Notes 475
Example 476

CREATE INDEX 477
Invocation 477
Authorization 477
Syntax. 477
Description 478
Notes 479
Examples 480

CREATE PROCEDURE 481
Notes 481

CREATE PROCEDURE (External) 482
Invocation 482
Authorization 482
Syntax. 482
Description 485
Notes 491
Example 492

CREATE PROCEDURE (SQL) 493
Invocation 493
Authorization 493
Syntax. 494
Description 497
Notes 500
Example 501

CREATE SCHEMA 502
Invocation 502
Authorization 502
Syntax. 502
Description 503

vi DB2 UDB for iSeries SQL Reference V5R2

||

||

||

||
||
||
||
||
||
||

||
||
||
||
||
||
||

||
||

||
||
||
||
||

Notes 504
Examples 505

CREATE TABLE 507
Invocation 507
Authorization 507
Syntax. 508
Description 514
column-definition 520
LIKE 525
as-subquery-clause 526
copy-options 528
unique-constraint 528
referential-constraint 529
check-constraint 530
nodegroup-clause 531
Notes 532
Rules for System Name Generation 535
Examples 536

CREATE TRIGGER 538
Invocation 538
Authorization 538
Syntax. 540
Description 544
Notes 546
Examples 549

CREATE VIEW 551
Invocation 551
Authorization 551
Syntax. 552
Description 552
Notes 554
Examples 556

DECLARE CURSOR 558
Invocation 558
Authorization 558
Syntax. 559
Description 559
Notes 561
Examples 563

DECLARE GLOBAL TEMPORARY TABLE . . . 565
Invocation 565
Authorization 565
Syntax. 566
Description 569
column-definition 571
LIKE 574
as-subquery-clause 575
copy-options 577
Notes 578
Examples 579

DECLARE PROCEDURE 580
Invocation 580
Authorization 580
Syntax. 580
Description 583
Notes 588
Example 588

DECLARE STATEMENT 589
Invocation 589
Authorization 589
Syntax. 589

Description 589
Example 589

DECLARE VARIABLE 591
Invocation 591
Authorization 591
Syntax. 591
Description 591
Notes 592
Example 592

DELETE 594
Invocation 594
Authorization 594
Syntax. 595
Description 595
DELETE Rules 596
Notes 597
Examples 598

DESCRIBE 600
Invocation 600
Authorization 600
Syntax. 600
Description 600
Notes 602
Example 603

DESCRIBE TABLE. 604
Invocation 604
Authorization 604
Syntax. 604
Description 604
Notes 606
Example 606

DISCONNECT 607
Invocation 607
Authorization 607
Syntax. 607
Description 607
Notes 608
Examples 608

DROP 609
Invocation 609
Authorization 609
Syntax. 610
Description 613
Note 618
Examples 618

END DECLARE SECTION 620
Invocation 620
Authorization 620
Syntax. 620
Description 620
Examples 620

EXECUTE 621
Invocation 621
Authorization 621
Syntax. 621
Description 621
Notes 622
Example 623

EXECUTE IMMEDIATE 624
Invocation 624
Authorization 624

Contents vii

||
||

||
||

||
||
||
||
||
||
||
||
||
||
||

||

Syntax. 624
Description 625
Note 625
Example 625

FETCH 626
Invocation 626
Authorization 626
Syntax. 626
Description 627
single-fetch 628
multiple-row-fetch. 628
Notes 630
Example 631

FREE LOCATOR 633
Invocation 633
Authorization 633
Syntax. 633
Description 633
Example 633

GRANT (Distinct Type Privileges) 634
Invocation 634
Authorization 634
Syntax. 634
Description 634
Note 635
Example 636

GRANT (Function or Procedure Privileges) . . . 637
Invocation 637
Authorization 637
Syntax. 637
Description 639
Note 642
Example 643

GRANT (Package Privileges) 644
Invocation 644
Authorization 644
Syntax. 644
Description 644
Note 645
Example 645

GRANT (Table Privileges) 647
Invocation 647
Authorization 647
Syntax. 647
Description 647
Notes 649
Examples 651

HOLD LOCATOR 652
Invocation 652
Authorization 652
Syntax. 652
Description 652
Note 652
Example 652

INCLUDE 654
Invocation 654
Authorization 654
Syntax. 654
Description 654
Notes 655
Example 655

INSERT 656
Invocation 656
Authorization 656
Syntax. 657
Description 657
insert-multiple-rows 660
INSERT Rules 660
Notes 661
Examples 662

LABEL 664
Invocation 664
Authorization 664
Syntax. 664
Description 665
Notes 665
Examples 666

LOCK TABLE 667
Invocation 667
Authorization 667
Syntax. 667
Description 667
Example 668

OPEN 669
Invocation 669
Authorization 669
Syntax. 669
Description 669
Parameter Marker Replacement 670
Notes 671
Examples 672

PREPARE 674
Invocation 674
Authorization 674
Syntax. 674
Description 676
Parameter markers 677
Notes 680
Examples 682

RELEASE. 684
Invocation 684
Authorization 684
Syntax. 684
Description 684
Notes 685
Examples 685

RELEASE SAVEPOINT 686
Invocation 686
Authorization 686
Syntax. 686
Description 686
Note 686
Example 686

RENAME 687
Invocation 687
Authorization 687
Syntax. 687
Description 687
Notes 688
Examples 688

REVOKE (Distinct Type Privileges) 689
Invocation 689

viii DB2 UDB for iSeries SQL Reference V5R2

||
||
||
||
||
||
||

||
||
||
||
||
||
||

Authorization 689
Syntax. 689
Description 689
Notes 690
Example 690

REVOKE (Function or Procedure Privileges) . . . 691
Invocation 691
Authorization 691
Syntax. 691
Description 693
Notes 696
Example 696

REVOKE (Package Privileges) 697
Invocation 697
Authorization 697
Syntax. 697
Description 697
Notes 698
Example 698

REVOKE (Table Privileges) 699
Invocation 699
Authorization 699
Syntax. 699
Description 699
Notes 700
Examples 701

ROLLBACK 702
Invocation 702
Authorization 702
Syntax. 702
Description 702
Notes 703
Examples 704

SAVEPOINT. 706
Invocation 706
Authorization 706
Syntax. 706
Description 706
Note 707
Example 707

SELECT 708
SELECT INTO 709

Invocation 709
Authorization 709
Syntax. 709
Description 710
Examples 711

SET CONNECTION 712
Invocation 712
Authorization 712
Syntax. 712
Description 712
Notes 713
Example 713

SET OPTION 715
Invocation 715
Authorization 715
Syntax. 715
Description 719
Notes 728
Examples 728

SET PATH 729
Invocation 729
Authorization 729
Syntax. 729
Description 729
Notes 730
Example 730

SET RESULT SETS 731
Invocation 731
Authorization 731
Syntax. 731
Description 731
Notes 732
Example 733

SET SCHEMA 734
Invocation 734
Authorization 734
Syntax. 734
Description 734
Notes 734
Examples 735

SET TRANSACTION 736
Invocation 736
Authorization 736
Syntax. 736
Description 736
Notes 737
Examples 738

SET transition-variable 739
Invocation 739
Authorization 739
Syntax. 739
Description 739
Notes 740
Examples 740

SET variable. 741
Invocation 741
Authorization 741
Syntax. 741
Description 741
Notes 742
Examples 742

UPDATE 743
Invocation 743
Authorization 743
Syntax. 745
Description 746
UPDATE Rules 749
Notes 749
Examples 750

VALUES 752
Invocation 752
Authorization 752
Syntax. 752
Description 752
Notes 752
Examples 753

VALUES INTO 754
Invocation 754
Authorization 754
Syntax. 754

Contents ix

||
||
||
||
||
||
||
||

||
||
||
||
||
||
||

||
||
||
||
||
||
||

Description 754
Notes 755
Examples 755

WHENEVER 756
Invocation 756
Authorization 756
Syntax. 756
Description 756
Notes 756
Example 757

Chapter 6. SQL Control Statements 759
Syntax. 759
References to SQL Parameters and Variables . . . 761
SQL procedure statement 762

Syntax. 762
assignment-statement. 763

Syntax. 763
Description 763
Notes 764
Example 764

CALL statement 765
Syntax. 765
Description 765
Notes 765
Example 765

CASE statement 766
Syntax. 766
Description 766
Notes 767
Examples 767

compound-statement 768
Syntax. 768
Description 770
Notes 773
Example 773

FOR statement 775
Syntax. 775
Description 775
Notes 776
Example 776

GET DIAGNOSTICS statement 777
Syntax. 777
Description 777
Notes 778
Example 778

GOTO statement 780
Syntax. 780
Description 780
Notes 780
Example 780

IF statement 782
Syntax. 782
Description 782
Example 782

ITERATE statement 784
Syntax. 784
Description 784
Example 784

LEAVE statement 785
Syntax. 785

Description 785
Notes 785
Example 785

LOOP statement 786
Syntax. 786
Description 786
Example 786

REPEAT statement 787
Syntax. 787
Description 787
Example 787

RESIGNAL statement. 789
Syntax. 789
Description 789
Notes 790
Example 791

RETURN statement 792
Syntax. 792
Description 792
Notes 792
Example 793

SIGNAL statement 794
Syntax. 794
Description 794
Notes 795
Example 796

WHILE statement 797
Syntax. 797
Description 797
Example 797

Appendix A. SQL Limits 799

Appendix B. SQL Communication
Area 803
Field Descriptions 803
INCLUDE SQLCA Declarations 808

Appendix C. SQL Descriptor Area
(SQLDA) 813
Field Descriptions 813
Field Descriptions in an Occurrence of SQLVAR 814

Determining How Many SQLVAR Occurrences
are Needed 816

SQLTYPE and SQLLEN 819
SQLDATA or SQLNAME 821
Unrecognized and Unsupported SQLTYPES . . . 821
INCLUDE SQLDA Declarations 822

For C and C++ 822
For COBOL 824
For ILE COBOL 824
For PL/I 825
For ILE RPG/400 826

Appendix D. Reserved Words 829

Appendix E. CCSID Values. 831

x DB2 UDB for iSeries SQL Reference V5R2

||

||

||

Appendix F. Characteristics of SQL
Statements 845
Actions allowed on SQL statements 845
SQL Statement Data Access Indication in Routines 847
Considerations for Using Distributed Relational
Database 848

CONNECT (Type 1) and CONNECT (Type 2)
Differences 857

Appendix G. DB2 UDB for iSeries
Catalog Views 859
Notes 861
iSeries Catalog Tables and Views 862

SYSCATALOGS 863
SYSCHKCST 865
SYSCOLUMNS 866
SYSCST 875
SYSCSTCOL. 876
SYSCSTDEP 877
SYSFUNCS 878
SYSINDEXES 884
SYSJARCONTENTS 885
SYSJAROBJECTS 886
SYSKEYCST 887
SYSKEYS 888
SYSPACKAGE 889
SYSPARMS 891
SYSPROCS 895
SYSREFCST 900
SYSROUTINEDEP. 901
SYSROUTINES 902
SYSTABLES 910
SYSTRIGCOL 912
SYSTRIGDEP 913
SYSTRIGGERS 914
SYSTRIGUPD 918
SYSTYPES 919

SYSVIEWDEP 924
SYSVIEWS 926

ODBC and JDBC Catalog Views 927
SQLCOLPRIVILEGES 928
SQLCOLUMNS 929
SQLFOREIGNKEYS 934
SQLPRIMARYKEYS 935
SQLPROCEDURECOLS 936
SQLPROCEDURES 940
SQLSCHEMAS 941
SQLSPECIALCOLUMNS 942
SQLSTATISTICS 944
SQLTABLEPRIVILEGES 945
SQLTABLES 946
SQLTYPEINFO 947
SQLUDTS 952

ANS and ISO Catalog Views 954
CHARACTER_SETS 955
CHECK_CONSTRAINTS 956
COLUMNS 957
INFORMATION_SCHEMA_CATALOG_NAME 961
PARAMETERS 962
REFERENTIAL_CONSTRAINTS 966
ROUTINES 967
SCHEMATA. 975
SQL_FEATURES 976
SQL_LANGUAGES 977
SQL_SIZING 978
TABLE_CONSTRAINTS 979
TABLES 980
USER_DEFINED_TYPES 981
VIEWS 985

Bibliography. 987

Index 989

Contents xi

||
||

||

||

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

xii DB2 UDB for iSeries SQL Reference V5R2

About DB2 UDB for iSeries SQL Reference

This book defines Structured Query Language (SQL) as supported by DB2 Query
Manager and SQL Development Kit. It contains reference information for the tasks
of system administration, database administration, application programming, and
operation. This manual includes syntax, usage notes, keywords, and examples for
each of the SQL statements used on the system.

For more information about this guide, see the following sections:
v “Standards Compliance”
v “Who should read the SQL Reference book”
v “Assumptions Relating to Examples of SQL Statements” on page xiv
v “How to Read Syntax Diagrams” on page xv
v “Conventions for Describing Mixed Data Values” on page xvii
v “SQL Accessibility” on page xvii
v “What’s new for V5R2 in the SQL Reference book” on page xviii

Standards Compliance
DB2 UDB for iSeries Version 5 Release 2 complies with the following IBM and
Industry SQL Standards:
v ISO (International Standards Organization) 9075: 1992, Database Language SQL -

Entry Level
v ISO (International Standards Organization) 9075-4: 1996, Database Language SQL

- Part 4: Persistent Stored Modules (SQL/PSM)
v ISO (International Standards Organization) 9075: 1999, Database Language SQL -

Core
v ANSI (American National Standards Institute) X3.135-1992, Database Language

SQL - Entry Level
v ANSI (American National Standards Institute) X3.135–4: 1996, Database

Language SQL - Part 4: Persistent Stored Modules (SQL/PSM)
v ANSI (American National Standards Institute) X3.135-1999, Database Language

SQL - Core
v IBM SQL Reference Version 2, SC26-8416.

For strict adherence to the standards, consider using the standards option. For
more information, see SQLCURRULE in “SET OPTION” on page 715 and on the
SQL precompiler commands.

Who should read the SQL Reference book
This book is intended for programmers who want to write applications that will
use SQL to access an iSeries database.

It is assumed that you possess an understanding of system administration,
database administration, or application programming for the iSeries server, as
provided by the SQL Programming Concepts book and that you have some
knowledge of the following:
v COBOL for iSeries

© Copyright IBM Corp. 1998, 2002 xiii

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|

../sqlp/rbafymst02.htm

v ILE C compiler
v ILE C++ compiler
v ILE COBOL compiler
v Toolbox for Java or Developer Kit for Java
v ILE RPG compiler
v iSeries PL/I
v REXX
v RPG III (part of RPG for iSeries)
v Structured Query Language (SQL)

References in this book to RPG and COBOL refer to the RPG or COBOL language
in general. References to COBOL for iSeries, ILE COBOL for iSeries, RPG for
iSeries, or RPG III (part of RPG for iSeries) refer to specific elements of the product
where they differ from each other.

This manual is a reference rather than a tutorial. It assumes you are already
familiar with SQL programming. This manual also assumes that you will be
writing applications solely for the iSeries server.

If you need more information about using SQL statements, statement syntax, and
parameters, see the SQL Programming Concepts book.

If you are planning applications that are portable to other IBM environments, it
will be necessary for you to refer to books for those environments in addition to
this one (such as IBM SQL Reference Version 2, SC26-8416).

See the following sections for more details:
v “Assumptions Relating to Examples of SQL Statements”
v “How to Read Syntax Diagrams” on page xv

Assumptions Relating to Examples of SQL Statements
The examples of SQL statements shown in this guide are based on the sample
tables in Appendix A of the SQL Programming Concepts book and assume the
following:
v They are shown in the interactive SQL environment or written in COBOL. EXEC

SQL and END-EXEC are used to delimit an SQL statement in a COBOL
program. A description of how to use SQL statements in a COBOL program is
provided in the SQL Programming with Host Languages book.

v Each SQL example is shown on several lines, with each clause of the statement
on a separate line.

v SQL keywords are highlighted.
v Table names used in the examples are the sample tables provided in Appendix A

of the SQL Programming Concepts book and use the schema CORPDATA. Table
names that are not provided in that appendix should use schemas that you
create. You can create a set of sample tables in your own schema by issuing the
following SQL statement:
CALL QSYS.CREATE_SQL_SAMPLE (’your-schema-name’)

v Calculated columns are enclosed in parentheses, ().
v The SQL naming convention is used.
v The APOST and APOSTSQL precompiler options are assumed (although they are

not the default in COBOL). Character-string constants within SQL and host
language statements are delimited by apostrophes (’).

xiv DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|

|

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../rzajp/rzajpmst02.htm
../sqlp/rbafymst02.htm

v A sort sequence of *HEX is used.

Whenever the examples vary from these assumptions, it is stated.

See also “Code disclaimer information”.

Code disclaimer information
This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code
examples from which you can generate similar function tailored to your own
specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties
of any kind. The implied warranties of non-infringement, merchantability and
fitness for a particular purpose are expressly disclaimed.

How to Read Syntax Diagrams
Throughout this book, syntax is described using the structure defined as follows:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The ��─── symbol indicates the beginning of a statement.
The ───� symbol indicates that the statement syntax is continued on the next
line.
The �─── symbol indicates that a statement is continued from the previous line.
The ───�� symbol indicates the end of a statement.
Syntax fragments start with the |─── symbol and end with the ───| symbol.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

�� required_item
optional_item

��

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� required_item required_choice1
required_choice2

��

About DB2 UDB for iSeries SQL Reference xv

|
|

|
|
|

|
|
|

|
|
|

|

If choosing one of the items is optional, the entire stack appears below the main
path.

�� required_item
optional_choice1
optional_choice2

��

If one of the items is the default, it will appear above the main path and the
remaining choices will be shown below.

�� required_item
default_choice

optional_choice
optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

�� required_item repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

�� required_item

,

repeatable_item ��

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in all lowercase letters (for example, column-name).
They represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

v The syntax diagrams only contain the preferred or standard keywords. If
non-standard synonyms are supported in addition to the standard keywords,
they are described the Notes sections instead of the syntax diagrams. For
maximum portability, only the preferred or standard keywords should be used.

xvi DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

Conventions for Describing Mixed Data Values
When mixed data values are shown in the examples, the following conventions
apply:

SQL Accessibility
IBM is committed to providing interfaces and documentation that are easily
accessible to the disabled community. For general information on IBM’s
Accessibility support visit the Accessibility Center at http://www.ibm.com/able.

SQL accessibility support falls in two main categories.
v iSeries Navigator is graphical user interface to iSeries and DB2 UDB. For

information about the Accessibility features supported in Windows graphical
user interfaces, see Accessibility in the Windows Help Index.

v Online documentation, online help, and prompted SQL interfaces can be
accessed by a Windows Reader program such as the IBM Home Page Reader.
For information on the IBM Home Page Reader and other tools, visit the

Accessibility Center .

The IBM Home Page Reader can be used to access all descriptive text in this book,
all articles in the SQL Information Center, and all SQL messages. Due to the
complex nature of SQL syntax diagrams, however, the reader will skip syntax
diagrams. Two alternatives are provided for better ease of use:
v Interactive SQL and Query Manager

Interactive SQL and Query Manager are traditional file interfaces that provide
prompting for SQL statements. These are part of the DB2 UDB Query Manager

About DB2 UDB for iSeries SQL Reference xvii

|

|
|
|

|

|

|
|
|

|
|
|

|

|
|
|
|

|

|
|

http://www.ibm.com/able
http://www.ibm.com/able

and SQL Development Kit. For more information about Interactive SQL and
Query Manager, see the SQL Programming Concepts and Query Manager Use

books.v SQL Assist
SQL Assist is a graphical user interface that provides a prompted interface to
SQL statements. This is part of iSeries Navigator. For more information, see the
iSeries Navigator online help and the Information Center.

What’s new for V5R2 in the SQL Reference book
The major new features covered in this book include:
v ROWID data type and ROWID scalar function
v IDENTITY column attribute
v CREATE TABLE AS (subselect)
v DECLARE GLOBAL TEMPORARY tables
v User-defined Table Functions
v COMMIT ON RETURN procedures
v UNION in views
v Scalar subselect enhancements
v READ ONLY and READ WRITE in SET TRANSACTION
v ITERATE and nested Compound statements in SQL procedures, SQL functions,

and SQL triggers
v Fullselect in derived tables and common table expressions
v Parameter markers in labeled durations
v Savepoints
v SET SCHEMA and SET SQLID
v HOLD LOCATOR
v ORDER BY expression not required in the select-list
v ORDER BY and FETCH FIRST n ROWS ONLY in derived tables and common

table expressions
v Length of SQL statements increased to 64K
v Length of delimited column name identifiers increased
v SUBSTRING enhancements
v VARCHAR concatenation enhancement
v Debug of original source statements in SQL procedures, SQL functions, and SQL

triggers
v Multiple relational databases on iSeries
v Standard and ODBC and JDBC catalog views
v C derived variables

xviii DB2 UDB for iSeries SQL Reference V5R2

|
|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

../sqlp/rbafymst02.htm
../../books/c4152125.pdf

Chapter 1. Concepts

DB2 UDB for iSeries SQL Reference describes the following concepts:
v “Relational Database”
v “Structured Query Language” on page 3
v “Schemas” on page 5
v “Tables” on page 5
v “Keys” on page 6
v “Primary Keys and Unique Keys” on page 6
v “Referential Integrity” on page 7
v “Check Constraints” on page 9
v “Triggers” on page 9
v “Indexes” on page 11
v “Views” on page 12
v “Aliases” on page 13
v “Packages and Access Plans” on page 13
v “Procedures” on page 13
v “Catalog” on page 15
v “Application Processes, Concurrency, and Recovery” on page 15
v “Threads” on page 20
v “Isolation Level” on page 21
v “Distributed Relational Database” on page 24
v “Character Conversion” on page 31
v “Sort Sequence” on page 34
v “Authorization and Privileges” on page 35
v “Storage Structures” on page 36

Relational Database
A relational database is a database that can be perceived as a set of tables and can
be manipulated in accordance with the relational model of data. The relational
database contains a set of objects used to store, access, and manage data. The set of
objects includes tables, views, indexes, aliases, distinct types, functions, procedures
and packages.

There are three types of relational databases a user can access from an iSeries
system.

system relational database
There is one default relational database on any iSeries system. The system
relational database is always local to that iSeries system. It consists of all
the database objects that exist on disk attached to the iSeries system that
are not stored on independent auxiliary storage pools. For more
information on independent auxiliary storage pools, see the System
Management category of the iSeries Information Center.

© Copyright IBM Corp. 1998, 2002 1

|
|
|
|
|

|
|

|
|
|
|
|
|
|

../rzahgicbasic2.htm
../rzahgicbasic2.htm

The name of the system relational database is, by default, the same as the
iSeries system name. However, a different name can be assigned through
the use of the ADDRDBDIRE (Add RDB Directory Entry) command or
iSeries Navigator.

user relational database
The user may create additional relational databases on an iSeries system by
configuring independent auxiliary storage pools on the system. Each
primary independent auxiliary storage pool is a relational database. It
consists of all the database objects that exist on the independent auxiliary
storage pool disks. Additionally, all database objects in the system
relational database of the iSeries system to which the independent auxiliary
storage pool is connected are logically included in a user relational
database. Thus, the name of any schema created in a user relational
database must not already exist in that user relational database or in the
associated system relational database.

Although the objects in the system relational database are logically
included in a user relational database, certain dependencies between the
objects in the system relational database and the user relational database
are not allowed:
v A view must be created into a schema that exists in the same relational

database as its referenced tables, views, or functions.
v An index must be created into a schema that exists in the same

relational database as its referenced table.
v A trigger or constraint must be created into a schema that exists in the

same relational database as its base table.
v The parent table and dependent table in a referential constraint must

both exist in the same relational database.
v A table must be created into a schema that exists in the same relational

database as any referenced distinct types.
v The parent table and dependent table in a referential constraint must

both exist in the same relational database.

Other dependencies between the objects in the system relational database
and the user relational database are allowed. For example, a procedure in a
schema in a user relational database may reference objects in the system
relational database. However, operations on such an object may fail if the
other relational database is not available. For example, if a user relational
database is varied off and then varied on to another system.

A user relational database is local to an iSeries system while the
independent auxiliary storage pool is varied on. Independent auxiliary
storage pools can be varied off on one iSeries system and then varied on to
another iSeries system. Hence, a user relational databases may be local to a
given iSeries system at one point in time and remote at a different point in
time. For more information on independent auxiliary storage pools, see the
System Management category of the iSeries Information Center.

The name of the user relational database is, by default, the same as the
independent auxiliary storage pool name. However, a different name can
be assigned through the use of the ADDRDBDIRE (Add RDB Directory
Entry) command or iSeries Navigator.

remote relational database
Relational databases on other iSeries and non-iSeries systems can be

2 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

../rzahgicbasic2.htm

accessed remotely. These relational databases must be registered through
the use of the ADDRDBDIRE (Add RDB Directory Entry) command or
iSeries Navigator.

The database manager is the name used generically to identify the iSeries Licensed
Internal Code and the DB2 UDB for iSeries portion of the code that manages the
relational database.

Structured Query Language
Structured Query Language (SQL) is a standardized language for defining and
manipulating data in a relational database. In accordance with the relational model
of data, the database is perceived as a set of tables, relationships are represented by
values in tables, and data is retrieved by specifying a result table that can be
derived from one or more base tables.

SQL statements are executed by a database manager. One of the functions of the
database manager is to transform the specification of a result table into a sequence
of internal operations that optimize data retrieval. This transformation occurs when
the SQL statement is prepared. This transformation is also known as binding.

All executable SQL statements must be prepared before they can be executed. The
result of preparation is the executable or operational form of the statement. The
method of preparing an SQL statement and the persistence of its operational form
distinguish static SQL from dynamic SQL.

Static SQL
The source form of a static SQL statement is embedded within an application
program written in a host language such as COBOL. The statement is prepared
before the program is executed and the operational form of the statement persists
beyond the execution of the program.

A source program containing static SQL statements must be processed by an SQL
precompiler before it is compiled. The precompiler checks the syntax of the SQL
statements, turns them into host language comments, and generates host language
statements to call the database manager.

The preparation of an SQL application program includes precompilation, the
preparation of its static SQL statements, and compilation of the changed source
program.

Dynamic SQL
A dynamic SQL statement is prepared during the execution of an SQL application.
The operational form of the statement persists until the last SQL program leaves
the call stack. The source form of the statement is a character string that is passed
to the database manager by the program using the static SQL statement PREPARE
or EXECUTE IMMEDIATE.

SQL statements embedded in a REXX application are dynamic SQL statements.
SQL statements submitted to the interactive SQL facility are also dynamic SQL
statements.

Chapter 1. Concepts 3

|
|
|

Extended Dynamic SQL
An extended dynamic SQL statement is neither fully static nor fully dynamic. The
QSQPRCED API provides users with extended dynamic SQL capability. Like
dynamic SQL, statements can be prepared, described, and executed using this API.
Unlike dynamic SQL, SQL statements prepared into a package by this API persist
until the package or statement is explicitly dropped. For more information, see the
OS/400 APIs information in the Programming category of the iSeries Information
Center.

Interactive SQL
An interactive SQL facility is associated with every database manager. Essentially,
every interactive SQL facility is an SQL application program that reads statements
from a terminal, prepares and executes them dynamically, and displays the results
to the user. Such SQL statements are said to be issued interactively. The interactive
facilities for DB2 UDB for iSeries are invoked by the STRSQL command, the
STRQM command, or the SQL Script support of iSeries Navigator. For more
information about the interactive facilities for SQL, see the SQL Programming

Concepts and Query Manager Use books.

SQL Call Level Interface (CLI) and Open Database
Connectivity (ODBC)

The DB2 Call Level Interface is an application programming interface in which
functions are provided to application programs to process dynamic SQL
statements. DB2 CLI allows users of any of the ILE languages to access SQL
functions directly through procedure calls to a service program provided by DB2
UDB for iSeries. CLI programs can also be compiled using an Open Database
Connectivity (ODBC) Software Developer’s Kit, available from Microsoft or other
vendors, enabling access to ODBC data sources. Unlike using embedded SQL, no
precompilation is required. Applications developed using this interface may be
executed on a variety of databases without being compiled against each of the
databases. Through the interface, applications use procedure calls at execution time
to connect to databases, to issue SQL statements, and to get returned data and
status information.

The DB2 CLI interface provides many features not available in embedded SQL. For
example:
v CLI provides function calls which support a consistent way to query and

retrieve database system catalog information across the DB2 family of database
management systems. This reduces the need to write database server specific
catalog queries.

v Stored procedures called from application programs written using CLI can
return result sets to those programs.

For a complete description of all the available functions, and their syntax, see SQL
Call Level Interfaces (ODBC) book.

Java Database Connectivity (JDBC) and Embedded SQL for
Java (SQLJ) Programs

DB2 UDB for iSeries implements two standards-based Java programming APIs:
Java Database Connectivity (JDBC) and embedded SQL for Java (SQLJ). Both can
be used to create Java applications and applets that access DB2.

4 DB2 UDB for iSeries SQL Reference V5R2

../apis/api.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../../books/c4152125.pdf
../cli/rzadpmst02.htm
../cli/rzadpmst02.htm

JDBC calls are translated to calls to DB2 CLI through Java native methods. You can
access iSeries databases through two JDBC drivers: IBM Developer Kit for Java
driver or IBM Toolbox for Java JDBC driver. For specific information about the
IBM Toolbox for Java JDBC driver, see IBM Toolbox for Java.

Static SQL cannot be used by JDBC. SQLJ applications use JDBC as a foundation
for such tasks as connecting to databases and handling SQL errors, but can also
contain embedded static SQL statements in the SQLJ source files. An SQLJ source
file has to be translated with the SQLJ translator before the resulting Java source
code can be compiled.

For more information about JDBC and SQLJ applications, refer to the Developer
Kit for Java book.

Schemas
A schema is a collection of named objects. Schemas provide a logical classification
of objects in a relational database. Some of the objects that a schema may contain
include tables, views, aliases, functions, procedures, types, and packages. A schema
is also called a collection or library.

A schema is also an object in the relational database. It is explicitly created using
the CREATE SCHEMA statement.1

A schema name is used as the high-order part of a two-part object name. An object
that is contained in a schema is assigned to the schema when the object is created.
The schema to which it is assigned is determined by the name of the object if
specifically qualified with a schema name or by the default schema name if not
qualified.

For example, a user creates a schema called C:
CREATE SCHEMA C

The user can then issue the following statement to create a table called X in
schema C:

CREATE TABLE C.X (COL1 INT)

Tables
A table is an object that stores user data. Tables are logical structures maintained
by the database manager. Tables are made up of columns and rows. There is no
inherent order of the rows within a table. At the intersection of every column and
row is a specific data item called a value. A column is a set of values of the same
type. A row is a sequence of values such that the nth value is a value of the nth
column of the table.

A base table is created with the CREATE TABLE statement and is used to hold
persistent user data. A result table is a set of rows that the database manager selects
or generates from one or more base tables.

1. A schema can also be created using the CRTLIB CL command, however, the catalog views and journal created by using the
CREATE SCHEMA statement will not be created with CRTLIB.

Chapter 1. Concepts 5

../rzahh/page1.htm
../rzaha/whatitis.htm
../rzaha/whatitis.htm

A base table has a name and may have a different system name. The system name
is the name used by OS/400. Either name is acceptable wherever a table-name is
specified in SQL statements. For more information see “CREATE TABLE” on
page 507.

A column of a base table has a name and may have a different system column
name. The system column name is the name used by OS/400. Either name is
acceptable wherever column-name is specified in SQL statements. For more
information see “CREATE TABLE” on page 507.

A distributed table is a table whose data is partitioned across a nodegroup. A
nodegroup is an object that provides a logical grouping of a set of two or more
systems. A partitioning key is a set of one or more columns in a distributed table
that are used to determine on which system a row belongs. For more information
about distributed tables, see the DB2 Multisystem book.

A declared temporary table is created with a DECLARE GLOBAL TEMPORARY
TABLE statement and is used to hold temporary data on behalf of a single
application. This table is dropped implicitly when the application disconnects from
the database.

Keys
A key is one or more columns that are identified as such in the description of an
index, unique constraint, or a referential constraint. The same column can be part
of more than one key. A key composed of more than one column is called a
composite key.

A composite key is an ordered set of columns of the same table. The ordering of the
columns is not constrained by their ordering within the table. The term value when
used with respect to a composite key denotes a composite value. Thus, a rule such
as “the value of the foreign key must be equal to the value of the primary key”
means that each component of the value of the foreign key must be equal to the
corresponding component of the value of the primary key.

Primary Keys and Unique Keys
A unique constraint is the rule that the values of a key are valid only if they are
unique. A key that is constrained to have unique values is called a unique key and
can be defined by using the CREATE UNIQUE INDEX statement. The resulting
unique index is used by the database manager to enforce the uniqueness of the key
during the execution of INSERT and UPDATE statements. Alternatively, unique
keys can be defined:
v As a primary key using a CREATE TABLE or ALTER TABLE statement. A table

cannot have more than one primary key. A CHECK constraint will be added
implicitly to enforce the rule that the NULL value is not allowed in the columns
that make up the primary key. A unique index on a primary key is called a
primary index.

v Using the UNIQUE clause of the CREATE TABLE or ALTER TABLE statement.
A table can have an arbitrary number of UNIQUE keys.

A unique key that is referenced by the foreign key of a referential constraint is
called the parent key. A parent key is either a primary key or a UNIQUE key.
When a table is defined as a parent in a referential constraint, the default parent
key is its primary key.

6 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

../dbmult/rzaf3mst02.htm

Referential Integrity
Referential integrity is the state of a database in which all values of all foreign keys
are valid. A foreign key is a key that is part of the definition of a referential
constraint. A referential constraint is the rule that the values of the foreign key are
valid only if:
v They appear as values of a parent key, or
v Some component of the foreign key is null.

The table containing the parent key is called the parent table of the referential
constraint, and the table containing the foreign key is said to be a dependent of that
table.

Referential constraints are optional and can be defined in CREATE TABLE
statements and ALTER TABLE statements. Referential constraints are enforced by
the database manager during the execution of INSERT, UPDATE, and DELETE
statements. The enforcement is effectively performed at the completion of the
statement except for delete and update rules of RESTRICT which are enforced as
rows are processed.

Referential constraints with a delete or update rule of RESTRICT are always
enforced before any other referential constraints. Other referential constraints are
enforced in an order independent manner. That is, the order does not affect the
result of the operation. Within an SQL statement:
v A row can be marked for deletion by any number of referential constraints with

a delete rule of CASCADE.
v A row can only be updated by one referential constraint with a delete rule of

SET NULL or SET DEFAULT.
v A row that was updated by a referential constraint cannot also be marked for

deletion by another referential constraint with a delete rule of CASCADE.

The rules of referential integrity involve the following concepts and terminology:

Parent key A primary key or unique key of a referential
constraint.

Parent row A row that has at least one dependent row.

Parent table A table that is a parent in at least one referential
constraint. A table can be defined as a parent in an
arbitrary number of referential constraints.

Dependent table A table that is a dependent in at least one
referential constraint. A table can be defined as a
dependent in an arbitrary number of referential
constraints. A dependent table can also be a parent
table.

Descendent table A table is a descendent of table T if it is a
dependent of T or a descendent of a dependent of
T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row p if it is a dependent
of p or a descendent of a dependent of p.

Referential cycle A set of referential constraints such that each table
in the set is a descendent of itself.

Chapter 1. Concepts 7

Self-referencing row A row that is a parent of itself.

Self-referencing table A table that is a parent and a dependent in the
same referential constraint. The constraint is called
a self-referencing constraint.

The insert rule of a referential constraint is that a nonnull insert value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null.

The update rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION and RESTRICT. The update rule
applies when a row of the parent or dependent table is updated. The update rule
is that a nonnull update value of a foreign key must match some value of the
parent key of the parent table. The value of a composite foreign key is null if any
component of the value is null.

The delete rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, SET
NULL or SET DEFAULT. SET NULL can be specified only if some column of the
foreign key allows null values.

The delete rule of a referential constraint applies when a row of the parent table is
deleted. More precisely, the rule applies when a row of the parent table is the
object of a delete or propagated delete operation (defined below) and that row has
dependents in the dependent table of the referential constraint. Let P denote the
parent table, let D denote the dependent table, and let p denote a parent row that
is the object of a delete or propagated delete operation. If the delete rule is:
v RESTRICT or NO ACTION, an error occurs and no rows are deleted
v CASCADE, the delete operation is propagated to the dependents of p in D
v SET NULL, each nullable column of the foreign key of each dependent of p in D

is set to null
v SET DEFAULT, each column of the foreign key of each dependent of p in D is

set to its default value

Each referential constraint in which a table is a parent has its own delete rule, and
all applicable delete rules are used to determine the result of a delete operation.
Thus, a row cannot be deleted if it has dependents in a referential constraint with a
delete rule of RESTRICT or NO ACTION, or if the deletion cascades to any of its
descendants that are dependents in a referential constraint with the delete rule of
RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and may affect
rows of these tables:
v If table D is a dependent of P and the delete rule is RESTRICT or NO ACTION,

D is involved in the operation but is not affected by the operation.
v If D is a dependent of P and the delete rule is SET NULL, D is involved in the

operation, and rows of D may be updated during the operation.
v If D is a dependent of P and the delete rule is SET DEFAULT, D is involved in

the operation, and rows of D may be updated during the operation.
v If D is a dependent of P and the delete rule is CASCADE, D is involved in the

operation and rows of D may be deleted during the operation.

8 DB2 UDB for iSeries SQL Reference V5R2

If rows of D are deleted, the delete operation on P is said to be propagated to D. If
D is also a parent table, the actions described in this list apply, in turn, to the
dependents of D.

Any table that may be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent
of P or a dependent of a table to which delete operations from P cascade.

Check Constraints
A check constraint is a rule that specifies the values allowed in one or more columns
of every row of a table. Check constraints are optional and can be defined using
the SQL statements CREATE TABLE and ALTER TABLE. The definition of a check
constraint is a restricted form of a search condition. One of the restrictions is that a
column name in a check constraint on a table T must identify a column of T.

A table can have an arbitrary number of check constraints. They are enforced by
the database manager when:
v A row is inserted into the table.
v A row of the table is updated.

A check constraint is enforced by applying its search condition to each row that is
inserted or updated. An error occurs if the result of the search condition is FALSE
for any row.

Triggers
A trigger defines a set of actions that are executed automatically whenever a delete,
insert, or update operation occurs on a specified table. When such an SQL
operation is executed, the trigger is said to be activated.2

The set of actions can include almost any operation allowed on the system. A few
operations are not allowed, such as:
v Commit or rollback (if the same commitment definition is used for the trigger

actions and the triggering event)
v CONNECT, SET CONNECTION, DISCONNECT, and RELEASE statements

For a complete list of restrictions, see the Database Programming book.

Triggers can be used along with referential constraints and check constraints to
enforce data integrity rules. Triggers are more powerful than constraints because
they can also be used to cause updates to other tables, automatically generate or
transform values for inserted or updated rows, or invoke functions that perform
operations both inside and outside of DB2. For example, instead of preventing an
update to a column if the new value exceeds a certain amount, a trigger can
substitute a valid value and send a notice to an administrator about the invalid
update.

Triggers are a useful mechanism to define and enforce transitional business rules
that involve different states of the data (for example, salary cannot be increased by
more than 10 percent). Such a limit requires comparing the value of a salary before

2. The ADDPFTRG CL command also defines a trigger that is activated on any read operation.

Chapter 1. Concepts 9

../dbp/rbafomst02.htm

and after an increase. For rules that do not involve more than one state of the data,
consider using referential and check constraints.

Triggers also move the application logic that is required to enforce business rules
into the database, which can result in faster application development and easier
maintenance. With the logic in the database, for example, the previously mentioned
limit on increases to the salary column of a table, DB2 checks the validity of the
changes that any application makes to the salary column. In addition, the
application programs do not need to be changed when the logic changes.

Triggers are optional and are defined using the CREATE TRIGGER statement or
the ADDPFTRG (Add Physical File Trigger) CL command. Triggers are dropped
using the DROP TRIGGER statement or the RMVPFTRG (Remove Physical File
Trigger) CL command. For more information about creating triggers, see the
CREATE TRIGGER statement. For more information about triggers in general, see
the “CREATE TRIGGER” on page 538 statement or the SQL Programming
Concepts and the Database Programming books.

There are a number of criteria that are defined when creating a trigger which are
used to determine when a trigger should be activated.
v The subject table defines the table for which the trigger is defined.
v The trigger event defines a specific SQL operation that modifies the subject table.

The operation could be delete, insert, or update.
v The trigger activation time defines whether the trigger should be activated before

or after the trigger event is performed on the subject table.

The statement that causes a trigger to be activated will include a set of affected rows.
These are the rows of the subject table that are being deleted, inserted or updated.
The trigger granularity defines whether the actions of the trigger will be performed
once for the statement or once for each of the rows in the set of affected rows.

The trigger action consists of an optional search condition and a set of SQL
statements that are executed whenever the trigger is activated. The SQL statements
are only executed if the search condition evaluates to true.

The triggered action may refer to the values in the set of affected rows. This is
supported through the use of transition variables. Transition variables use the names
of the columns in the subject table qualified by a specified name that identifies
whether the reference is to the old value (prior to the update) or the new value
(after the update). The new value can also be changed using the SET
transition-variable statement in before update or insert triggers. Another means of
referring to the values in the set of affected rows is using transition tables.
Transition tables also use the names of the columns of the subject table but have a
name specified that allows the complete set of affected rows to be treated as a
table. Transition tables can only be used in after triggers. Separate transition tables
can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or activation
time. The order in which the triggers are activated is the same as the order in
which they were created. Thus, the most recently created trigger will be the last
trigger activated.

The activation of a trigger may cause trigger cascading. This is the result of the
activation of one trigger that executes SQL statements that cause the activation of
other triggers or even the same trigger again. The triggered actions may also cause

10 DB2 UDB for iSeries SQL Reference V5R2

../dbp/rbafomst02.htm
../dbp/rbafomst02.htm
../dbp/rbafomst02.htm

updates as a result of the original modification, which may result in the activation
of additional triggers. With trigger cascading, a significant chain of triggers may be
activated causing significant change to the database as a result of a single delete,
insert or update statement.

The actions performed in the trigger are considered to be part of the operation that
caused the trigger to be executed. Thus, when the isolation level is anything other
than NC (No Commit) and the trigger actions are performed using the same
commitment definition as the trigger event:
v The database manager ensures that the operation and the triggers executed as a

result of that operation either all complete or are backed out. Operations that
occurred prior to the triggering operation are not affected.

v The database manager effectively checks all constraints (except for a constraint
with a RESTRICT delete rule) after the operation and the associated triggers
have been executed.

A trigger has an attribute that specifies whether it is allowed to delete or update a
row that has already been inserted or updated within the SQL statement that
caused the trigger to be executed.
v If ALWREPCHG(*YES) is specified when the trigger is defined, then within an

SQL statement:
– The trigger is allowed to update or delete any row that was inserted or

already updated by that same SQL statement. This also includes any rows
inserted or updated by a trigger or referential constraint caused by the same
SQL statement.

v If ALWREPCHG(*NO) is specified when the trigger is defined, then within an
SQL statement:
– A row can be deleted by a trigger only if that row has not been inserted or

updated by that same SQL statement. If the isolation level is anything other
than NC (No Commit) and the trigger actions are performed using the same
commitment definition as the trigger event, this also includes any inserts or
updates by a trigger or referential constraint caused by the same SQL
statement.

– A row can be updated by a trigger only if that row has not already been
inserted or updated by that same SQL statement. If the isolation level is
anything other than NC (No Commit) and the trigger actions are performed
using the same commitment definition as the trigger event, this also includes
any inserts or updates by a trigger or referential constraint caused by the
same SQL statement.

All triggers created by using the CREATE TRIGGER statement implicitly have the
ALWREPCHG(*YES) attribute.

Indexes
An index is a set of pointers to rows of a base table. Each index is based on the
values of data in one or more table columns. An index is an object that is separate
from the data in the table. When you request an index, the database manager
builds this structure and maintains it automatically.

An index has a name and may have a different system name. The system name is
the name used by OS/400. Either name is acceptable wherever an index-name is
specified in SQL statements. For more information see “CREATE INDEX” on
page 477.

Chapter 1. Concepts 11

The database manager uses two types of indexes:
v Binary radix tree index

Binary radix tree indexes provide a specific order to the rows of a table. The
database manager uses them to:
– Improve performance. In most cases, access to data is faster than without an

index.
– Ensure uniqueness. A table with a unique index cannot have rows with

identical keys.
v Encoded vector index

Encoded vector indexes do not provide a specific order to the rows of a table.
The database manager only uses these indexes to improve performance.

An encoded vector access path works with the help of encoded vector indexes and
provides access to a database file by assigning codes to distinct key values and
then representing these values in an array. The elements of the array can be 1, 2, or
4 bytes in length, depending on the number of distinct values that must be
represented. Because of their compact size and relative simplicity, encoded vector
access paths provide for faster scans that can be more easily processed in parallel.

You create encoded vector access paths by using the SQL CREATE INDEX
statement. For more information about accelerating your queries with encoded

vector indexes , go to the DB2 UDB for iSeries webpages.

Views
A view provides an alternative way of looking at the data in one or more tables.

A view is a named specification of a result table. The specification is a SELECT
statement that is effectively executed whenever the view is referenced in an SQL
statement. Thus, a view can be thought of as having columns and rows just like a
base table. For retrieval, all views can be used just like base tables. Whether a view
can be used in an insert, update, or delete operation depends on its definition as
explained in the description of CREATE VIEW. (See “CREATE VIEW” on page 551
for more information.)

An index cannot be created for a view. However, an index created for a table on
which a view is based may improve the performance of operations on the view.

When the column of a view is directly derived from a column of a base table, that
column inherits any constraints that apply to the column of the base table. For
example, if a view includes a foreign key of its base table, INSERT and UPDATE
operations using that view are subject to the same referential constraints as the
base table. Likewise, if the base table of a view is a parent table, DELETE
operations using that view are subject to the same rules as DELETE operations on
the base table. A view also inherits any triggers that apply to its base table. For
example, if the base table of a view has an update trigger, the trigger is fired when
an update is performed on the view.

A view has a name and may have a different system name. The system name is
the name used by OS/400. Either name is acceptable wherever a view-name is
specified in SQL statements. For more information see “CREATE VIEW” on
page 551.

12 DB2 UDB for iSeries SQL Reference V5R2

http://www.as400.ibm.com/developer/bi/evi.html
http://www.as400.ibm.com/developer/bi/evi.html

A column of a view has a name and may have a different system column name.
The system column name is the name used by OS/400. Either name is acceptable
wherever column-name is specified in SQL statements. For more information, see
“CREATE VIEW” on page 551.

Aliases
An alias is an alternate name for a table or view. You can use an alias to reference a
table or view in those cases where an existing table or view can be referenced.3

Like tables and views, an alias may be created, dropped, and have a comment or
label associated with it. No authority is necessary to use an alias. Access to the
tables and views that are referred to by the alias, however, still require the
appropriate authorization for the current statement.

An alias has a name and may have a different system name. The system name is
the name used by OS/400. Either name is acceptable wherever an alias-name is
specified in SQL statements. For more information see “CREATE ALIAS” on
page 411.

Packages and Access Plans
For distributed SQL programs, a package is an object that contains control structures
used to execute SQL statements. Packages are produced during program
preparation. The control structures can be thought of as the bound or operational
form of SQL statements. All control structures in a package are derived from the
SQL statements embedded in a single source program.

A package can also be created by the QSQPRCED API. Packages created by the
QSQPRCED API can only be used by the QSQPRCED API. They cannot be used at
a server through DRDA protocols. For more information, see the OS/400 APIs
information in the Programming category of the iSeries Information Center.

The QSQPRCED API is used by iSeries Access for Windows to create packages for
caching SQL statements executed via ODBC, JDBC and SQLJ interfaces.

For non-distributed SQL programs, the control structures used to execute SQL
statements are stored in the associated space of the non-distributed SQL program.

The term access plan is used in general to describe the control structures in the
associated space of an SQL program or SQL package used to execute SQL
statements.

Procedures
A procedure (often called a stored procedure) is a programming construct that can
be called to perform a set of operations. The operations can contain host language
statements and SQL statements.

Procedures are typically classified as either SQL procedures or external procedures.
SQL procedures contain only SQL statements. External procedures reference a host

3. You cannot use an alias in all contexts. For example, an alias that refers to an individual member of a database file cannot be used
in data definition language (DDL) statements.

Chapter 1. Concepts 13

../apis/api.htm

language program (or in the case of REXX, a source file member) which may or
may not contain SQL statements. Both external procedures and SQL procedures are
supported in DB2 UDB for iSeries.

Procedures in SQL provide the same benefits as procedures in a host language.
That is, a common piece of code need only be written and maintained once and
can be called from several programs. Both host languages and SQL can call
procedures that exist on the local system. However, SQL can also call a procedure
that exists on a remote system. In fact, the major benefit of procedures in SQL is
that they can be used to enhance the performance characteristics of distributed
applications.

Assume several SQL statements must be executed at a remote system. When the
first SQL statement is executed, the application requester will send a request to a
server to perform the operation. It will then wait for a reply that indicates whether
the statement executed successfully or not and optionally returns results. When the
second and each subsequent SQL statement is executed, the application requester
will send another request and wait for another reply. If the same SQL statements
are stored in a procedure at a server, a CALL statement can be executed that
references the remote procedure. When the CALL statement is executed, the
application requester will send a single request to the current server to call the
procedure. It will then wait for a single reply that indicates whether the procedure
executed successfully or not and optionally returns results.

The following two figures illustrate the way stored procedures can be used in a
distributed application to eliminate some of the remote requests.

Figure 1. Application Without Remote Procedure

14 DB2 UDB for iSeries SQL Reference V5R2

Catalog
The database manager maintains a set of tables containing information about the
data in the database. These tables are collectively known as the catalog. The catalog
tables contain information about tables, parameters, procedures, packages, views,
indexes, and constraints on the system.

The database manager provides views over the catalog tables. The views provide
more consistency with the catalog views of other IBM SQL products and with the
catalog views of the ANSI and ISO standard (called Information Schema in the
standard). The catalog views in QSYS2 contain information about all tables,
packages, views, indexes, and constraints on the system. Additionally, an SQL
schema will contain a set of these views that only contains information about
tables, packages, views, indexes, and constraints in the schema.

Tables and views in the catalog are like any other database tables and views. If you
have authorization, you can use SQL statements to look at data in the catalog
views in the same way that you retrieve data from any other table in the system.
The database manager ensures that the catalog contains accurate descriptions of
the objects in the database at all times.

For more information about catalog tables and views, see Appendix G, “DB2 UDB
for iSeries Catalog Views” on page 859.

Application Processes, Concurrency, and Recovery
All SQL programs execute as part of an application process. In OS/400, an
application process is called a job. In the case of ODBC and JDBC and DRDA, the
application process ends when the connection ends even though the job they are
using does not end and may be reused. An application process is made up of one
or more activation groups. Each activation group involves the execution of one or

Figure 2. Application With Remote Procedure

Chapter 1. Concepts 15

|
|
|
|
|

more programs. Programs run under a non-default activation group or the default
activation group. All programs except those created by ILE compilers run under
the default activation group.

For more information about activation groups, see the book ILE Concepts .

An application process that uses commitment control can run with one or more
commitment definitions. A commitment definition provides a means to scope
commitment control at an activation group level or at a job level. At any given
time, an activation group that uses commitment control is associated with only one
of the commitment definitions.

A commitment definition can be explicitly started through the Start Commitment
Control (STRCMTCTL) command. If not already started, a commitment definition
is implicitly started when the first SQL statement is executed under an isolation
level different than COMMIT(*NONE). More than one activation group can share a
job commitment definition.

Figure 3 shows the relationship of an application process, the activation groups in
that application process, and the commitment definitions. Activation groups A and
B run with commitment control scoped to the activation group. These activation
groups have their own commitment definitions. Activation group C does not run
with any commitment control and does not have a commitment definition.

Figure 4 on page 17 shows an application process, the activation groups in that
application process, and the commitment definitions. Some of the activation groups
are running with the job commitment definition. Activation groups A and B are
running under the job commitment definition. Any commit or rollback operation in

Figure 3. Activation Groups without Job Commitment Definition

16 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|

|
|
|

../../books/c4156066.pdf

activation group A or B affects both because the commitment control is scoped to
the same commitment definition. Activation group C in this example has a
separate commitment definition. Commit and rollback operations performed in this
activation group only affect operations within C.

For more information about commitment definitions, see the Commitment control
topic.

Locking, Commit, and Rollback
Application processes and activation groups that use different commitment
definitions can request access to the same data at the same time. Locking is used to
maintain data integrity under such conditions. Locking prevents such things as
two application processes updating the same row of data simultaneously.

The database manager acquires locks to keep the uncommitted changes of one
activation group undetected by activation groups that use a different commitment
definition. Object locks and other resources are allocated to an activation group.
Row locks are allocated to a commitment definition.

When an activation group other than the default activation group ends normally,
the database manager releases all locks obtained by the activation group. A user
can also explicitly request that most locks be released sooner. This operation is
called commit. Object locks associated with cursors that remain open after commit
are not released.

The recovery functions of the database manager provide a means of backing out of
uncommitted changes made in a commitment definition. The database manager
may implicitly back out uncommitted changes under the following situations:

Figure 4. Activation Groups with Job Commitment Definition

Chapter 1. Concepts 17

../rzakj/rzakjcommitkickoff.htm

v When the application process ends, all changes performed under the
commitment definition associated with the default activation group are backed
out. When an activation group other than the default activation group ends
abnormally, all changes performed under the commitment definition associated
with that activation group are backed out.

v When using Distributed Unit of Work and a failure occurs while attempting to
commit changes on a remote system, all changes performed under the
commitment definition associated with remote connection are backed out.

v When using Distributed Unit of Work and a request to back out is received from
a remote system because of a failure at that site, all changes performed under
the commitment definition associated with remote connection are backed out.

A user can also explicitly request that their database changes be backed out. This
operation is called rollback.

Locks acquired by the database manager on behalf of an activation group are held
until the unit of work is ended. A lock explicitly acquired by a LOCK TABLE
statement can be held past the end of a unit of work if COMMIT HOLD or
ROLLBACK HOLD is used to end the unit of work.

A cursor can implicitly lock the row at which the cursor is positioned. This lock
prevents:
v Other cursors associated with a different commitment definition from locking

the same row.
v A DELETE or UPDATE statement associated with a different commitment

definition from locking the same row.

Unit of Work
A unit of work (also known as a logical unit of work or unit of recovery) is a
recoverable sequence of operations. Each commitment definition involves the
execution of one of more units of work. At any given time, a commitment
definition has a single unit of work.

A unit of work is started either when the commitment definition is started, or
when the previous unit of work is ended by a commit or rollback operation. A unit
of work is ended by a commit operation, a rollback operation, or the ending of the
activation group. A commit or rollback operation affects only the database changes
made within the unit of work that the commit or rollback ends. While changes
remain uncommitted, other activation groups using different commitment
definitions running under isolation levels COMMIT(*CS), COMMIT(*RS), and
COMMIT(*RR) cannot perceive the changes. The changes can be backed out until
they are committed. Once changes are committed, other activation groups running
in different commitment definitions can access them, and the changes can no
longer be backed out.

The start and end of a unit of work defines points of consistency within an
activation group. For example, a banking transaction might involve the transfer of
funds from one account to another. Such a transaction would require that these
funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds are added to the
second account is consistency established again. When both steps are complete, the
commit operation can be used to end the unit of work. After the commit operation,

18 DB2 UDB for iSeries SQL Reference V5R2

|

the changes are available to activation groups that use different commitment
definitions.

Rolling Back Work
The database manager can back out all changes made in a unit of work or only
selected changes. Only backing out all changes results in a point of consistency.

Rolling back all changes
The SQL ROLLBACK statement without the TO SAVEPOINT clause causes a full
rollback operation. If such a rollback operation is successfully executed, the
database manager backs out uncommitted changes to restore the data consistency
that it assumes existed when the unit of work was initiated. That is, the database
manager undoes the work, as shown in the diagram below:

Figure 5. Unit of Work with a Commit Statement

Figure 6. Unit of Work with a Rollback Statement

Chapter 1. Concepts 19

|

|

|
|
|
|
|
|

Rolling back selected changes using savepoints
A savepoint represents the state of data at some particular time during a unit of
work. An application process can set savepoints within a unit of work, and then as
logic dictates, roll back only the changes that were made after a savepoint was set.
For example, part of a reservation transaction might involve booking an airline
flight and then a hotel room. If a flight gets reserved but a hotel room cannot be
reserved, the application process might want to undo the flight reservation without
undoing any database changes made in the transaction prior to making the flight
reservation. SQL programs can use the SQL SAVEPOINT statement to set
savepoints, the SQL ROLLBACK statement with the TO SAVEPOINT clause to
undo changes to a specific savepoint or the last savepoint that was set, and the
RELEASE SAVEPOINT statement to delete a savepoint.

Threads
In OS/400, an application process can also consist of one or more threads. By
default, a thread shares the same commitment definitions and locks as the other
threads in the job. Thus, each thread can operate on the same unit of work so that
when one thread commits or rolls back, it can commit or rollback all changes
performed by all threads. This type of processing is useful if multiple threads are
cooperating to perform a single task in parallel.

In other cases, it is useful for a thread to perform changes independent from other
threads in the job. In this case, the thread would not want to share commitment
definitions or lock with the other threads. Furthermore, a job can use SQL server
mode in order to take more fine grain control of multiple database connections and
transaction information. A typical multi-threaded job may require this control.
There are several ways to accomplish this type of processing:
v Make sure the programs running in the thread use a separate activation group

(be careful not to use ACTGRP(*NEW)).
v Make sure that the job is running in SQL server mode before issuing the first

SQL statement. SQL server mode can be activated for a job by using one of the
following mechanisms before data access occurs in the application:
– Use the ODBC API, SQLSetEnvAttr() and set the SQL_ATTR_SERVER_MODE

attribute to SQL_TRUE before doing any data access.

Figure 7. Unit of Work with a Rollback Statement and a Savepoint Statement

20 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|
|
|
|
|
|
|
|

– Use the Change Job API, QWTCHGJB(), and set the ’Server mode for
Structured Query Language’ key before doing any data access.

– Use JAVA to access the database via JDBC. JDBC automatically uses server
mode to preserve required semantics of JDBC.

When SQL server mode is established, all SQL statements are passed to an
independent server job that will handle the requests. Server mode behavior for
SQL behavior includes:
v For embedded SQL, each thread in a job implicitly gets one and only one

connection to the database (and thus its own commitable transaction).
v For ODBC/CLI and JDBC, each connection represents a stand-alone connection

to the database and can be committed and used as a separate entity.

For more information, see the SQL Call Level Interface (ODBC) book.

The following SQL support is not threadsafe:
v Remote access through DRDA
v ALTER TABLE
v COMMENT
v CREATE ALIAS
v CREATE DISTINCT TYPE
v CREATE FUNCTION
v CREATE INDEX
v CREATE PROCEDURE
v CREATE SCHEMA
v CREATE TABLE
v CREATE TRIGGER
v CREATE VIEW
v DECLARE GLOBAL TEMPORARY TABLE
v DROP
v GRANT
v LABEL
v RENAME
v REVOKE

For more information, see Multithreaded applications in the Programming topic of
the iSeries Information Center.

Isolation Level
The isolation level used during the execution of SQL statements determines the
degree to which the activation group is isolated from concurrently executing
activation groups. Thus, when activation group P executes an SQL statement, the
isolation level determines:
v The degree to which rows retrieved by P and database changes made by P are

available to other concurrently executing activation groups.
v The degree to which database changes made by concurrently executing

activation groups can affect P.

Isolation level is specified as an attribute of an SQL program or SQL package and
applies to the activation groups that use the SQL package or SQL program. DB2
UDB for iSeries provides several ways to specify the isolation level:

Chapter 1. Concepts 21

|

../cli/rzadpmst02.htm
../rzahw/rzahwovepo.htm

v Use the COMMIT parameter on the CRTSQLxxx, STRSQL, and RUNSQLSTM
commands to specify the default isolation level.

v Use the SET OPTION statement to specify the default isolation level within the
source of a module or program that contains embedded SQL.

v Use the SET TRANSACTION statement to override the default isolation level
within a unit of work. When the unit of work ends, the isolation level returns to
the value it had at the beginning of the unit of work.

v Use the isolation-clause on the SELECT, SELECT INTO, INSERT, UPDATE,
DELETE, and DECLARE CURSOR statements to override the default isolation
level for a specific statement or cursor. The isolation level is in effect only for the
execution of the statement containing the isolation-clause and has no effect on
any pending changes in the current unit of work.

These isolation levels are supported by automatically locking the appropriate data.
Depending on the type of lock, this limits or prevents access to the data by
concurrent activation groups that use different commitment definitions. Each
database manager supports at least two types of locks:

Share Limits concurrent activation groups that use different commitment
definitions to read-only operations on the data.

Exclusive
Prevents concurrent activation groups using different commitment
definitions from updating or deleting the data. Prevents concurrent
activation groups using different commitment definitions that are running
COMMIT(*RS), COMMIT(*CS), or COMMIT(*RR) from reading the data.
Concurrent activation groups using different commitment definitions that
are running COMMIT(*UR) or COMMIT(*NC) are allowed to read the
data.

The following descriptions of isolation levels refer to locking data in row units.
Individual implementations can lock data in larger physical units than base table
rows. However, logically, locking occurs at the base-table row level across all
products. Similarly, a database manager can escalate a lock to a higher level. An
activation group is guaranteed at least the minimum requested lock level.

DB2 UDB for iSeries supports five isolation levels. For all isolation levels except
No Commit, the database manager places exclusive locks on every row that is
inserted, updated, or deleted. This ensures that any row changed during a unit of
work is not changed by any other activation group that uses a different
commitment definition until the unit of work is complete. The isolation levels are:
v Repeatable Read (RR)

Level RR ensures:
– Any row read during a unit of work is not changed by other activation

groups that use different commitment definitions until the unit of work is
complete.4

– Any row changed (or a row that is currently locked with an UPDATE row
lock) by another activation group using a different commitment definition
cannot be read until it is committed.

In addition to any exclusive locks, an activation group running at level RR
acquires at least share locks on all the rows it reads. Furthermore, the locking is

4. For WITH HOLD cursors, these rules apply to when the rows were actually read. For read-only WITH HOLD cursors, the rows
may have actually been read in a prior unit of work.

22 DB2 UDB for iSeries SQL Reference V5R2

performed so that the activation group is completely isolated from the effects of
concurrent activation groups that use different commitment definitions.

DB2 UDB for iSeries supports repeatable-read through COMMIT(*RR).
Repeatable-read isolation level is supported by locking the tables containing any
rows that are read or updated. In the ANS and ISO standards, Repeatable Read
is called Serializable.

v Read Stability (RS)
Like level RR, level RS ensures that:
– Any row read during a unit of work is not changed by other activation

groups that use different commitment definitions until the unit of work is
complete. 4

– Any row changed (or a row that is currently locked with an UPDATE row
lock) by another activation group using a different commitment definition
cannot be read until it is committed.

Unlike RR, RS does not completely isolate the activation group from the effects
of concurrent activation groups that use a different commitment definition. At
level RS, activation groups that issue the same query more than once might see
additional rows. These additional rows are called phantom rows.

For example, a phantom row can occur in the following situation:
1. Activation group P1 reads the set of rows n that satisfy some search

condition.
2. Activation group P2 then INSERTs one or more rows that satisfy the search

condition and COMMITs those INSERTs.
3. P1 reads the set of rows again with the same search condition and obtains

both the original rows and the rows inserted by P2.

In addition to any exclusive locks, an activation group running at level RS
acquires at least share locks on all the rows it reads.

DB2 UDB for iSeries supports read stability through COMMIT(*ALL) or
COMMIT(*RS). In the ANS and ISO standards, Read Stability is called
Repeatable Read.

v Cursor Stability (CS)
Like levels RR and RS, level CS ensures that any row that was changed (or a
row that is currently locked with an UPDATE row lock) by another activation
group using a different commitment definition cannot be read until it is
committed. Unlike RR and RS, level CS only ensures that the current row of
every updateable cursor is not changed by other activation groups using
different commitment definitions. Thus, the rows that were read during a unit of
work can be changed by other activation groups that use a different
commitment definition. In addition to any exclusive locks, an activation group
running at level CS may acquire a share lock for the current row of every cursor.
DB2 UDB for iSeries supports cursor stability through COMMIT(*CS). In the
ANS and ISO standards, Cursor Stability is called Read Committed.

v Uncommitted Read (UR)
For a SELECT INTO, a FETCH with a read-only cursor, subquery, or subselect
used in an INSERT statement, level UR allows:
– Any row read during the unit of work to be changed by other activation

groups that run under a different commitment definition.

Chapter 1. Concepts 23

|
|
|
|

– Any row changed (or a row that is currently locked with an UPDATE row
lock) by another activation group running under a different commitment
definition to be read even if the change has not been committed.

For other operations, the rules of level CS apply.

DB2 UDB for iSeries supports uncommitted read through COMMIT(*CHG) or
COMMIT(*UR). In the ANS and ISO standards, Uncommitted Read is called
Read Uncommitted.

v No Commit (NC)
For all operations, the rules of level UR apply except:
– Commit and rollback operations have no effect on SQL statements. Cursors

are not closed, and LOCK TABLE locks are not released. However,
connections in the release-pending state are ended.

– Any changes are effectively committed at the end of each successful change
operation and can be immediately accessed or changed by other application
groups using different commitment definitions.

DB2 UDB for iSeries supports No Commit through COMMIT(*NONE) or
COMMIT(*NC).

For a detailed description of record lock durations, see the discussion and table
in the commitment control topic of the SQL Programming Concepts book.

Note: (For distributed applications.) When a requested isolation level is not
supported by a server, the isolation level is escalated to the next highest
supported isolation level. For example, if RS is not supported by a server,
the RR isolation level is used.

Distributed Relational Database
A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer
system has a relational database manager that manages the tables in its
environment. The database managers communicate and cooperate with each other
in a way that allows a database manager to execute SQL statements on another
computer system.

Distributed relational databases are built on formal requester-server protocols and
functions. An application requester supports the application end of a connection. It
transforms a database request from the application into communication protocols
suitable for use in the distributed database network. These requests are received
and processed by a server at the other end of the connection.5 Working together, the
application requester and server handle the communication and location
considerations so that the application is isolated from these considerations and can
operate as if it were accessing a local database. A simple distributed relational
database environment is illustrated in Figure 8 on page 25.

5. This is also known as a an application server.

24 DB2 UDB for iSeries SQL Reference V5R2

../sqlp/rbafymstdicomm.htm
../sqlp/rbafymst02.htm

For more information about Distributed Relational Database Architecture (DRDA)
communication protocols, see Distributed Relational Database Architecture

Reference

Database Servers
An activation group must be connected to the server of a database manager before
SQL statements that reference tables or views can be executed.

A connection is an association between an activation group and a local or remote
server. Connections are managed by the application. The CONNECT statement can
be used to establish a connection to a server and make that server the current
server of the activation group.

A server can be local to, or remote from, the environment where the activation
group is started. (A server is present, even when distributed relational databases
are not used.) This environment includes a local directory that describes the
servers that can be identified in a CONNECT statement. For more information
about the directory, see the directory commands (ADDRDBDIRE, CHGRDBDIRE,
DSPRDBDIRE, RMVRDBDIRE, and WRKRDBDIRE) in the following iSeries
Information Center topics:
v SQL Programming Concepts
v Distributed Database Programming
v CL commands

To execute a static SQL statement that references tables or views, a server uses the
bound form of the statement. This bound statement is taken from a package that
the database manager previously created through a bind operation. The
appropriate package is determined by the combination of:
v The name of the package specified by the SQLPKG parameter on the

CRTSQLxxx commands. See the SQL Programming with Host Languages book
for a description of the CRTSQLxxx commands.

v The internal consistency token that makes certain the package and program were
created from the same source at the same time.

Figure 8. A Distributed Relational Database Environment

Chapter 1. Concepts 25

http://www.opengroup.org/dbiop/index.htm
http://www.opengroup.org/dbiop/index.htm
../sqlp/rbafymst02.htm
../ddp/rbal1mst02.htm
../rbam6/rbam6clmain.htm
../rzajp/rzajpmst02.htm

All IBM relational database products support extensions to IBM SQL. Some of
these extensions are product-specific, and some are shared by more than one
product.

For the most part, an application can use the statements and clauses that are
supported by the database manager of the server to which it is currently
connected, even though that application is running via the application requester of
a database manager that does not support some of those statements and clauses.
Restrictions are listed in Appendix F, “Characteristics of SQL Statements” on page
845.

CONNECT (Type 1) and CONNECT (Type 2)
There are two types of CONNECT statements with the same syntax but different
semantics:
v CONNECT (Type 1) is used for remote unit of work. See “CONNECT (Type 1)”

on page 402.
v CONNECT (Type 2) is used for distributed unit of work. See “CONNECT (Type

2)” on page 407.

See “CONNECT (Type 1) and CONNECT (Type 2) Differences” on page 857 for a
summary of the differences.

Remote Unit of Work
The remote unit of work facility provides for the remote preparation and execution
of SQL statements. An activation group at computer system A can connect to a
server at computer system B. Then, within one or more units of work, that
activation group can execute any number of static or dynamic SQL statements that
reference objects at B. After ending a unit of work at B, the activation group can
connect to a server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed with the following
restrictions:
v All objects referenced in a single SQL statement must be managed by the same

server.
v All of the SQL statements in a unit of work must be executed by the same

server.

Remote Unit of Work Connection Management
An activation group is in one of three states at any time:

Connectable and connected
Unconnectable and connected
Connectable and unconnected

The following diagram shows the state transitions:

26 DB2 UDB for iSeries SQL Reference V5R2

The initial state of an activation group is connectable and connected. The server to
which the activation group is connected is determined by the RDB parameter on
the CRTSQLxxx and STRSQL commands and may involve an implicit CONNECT
operation. An implicit CONNECT operation cannot occur if an implicit or explicit
CONNECT operation has already successfully or unsuccessfully occurred. Thus, an
activation group cannot be implicitly connected to a server more than once.

The connectable and connected state: An activation group is connected to a
server and CONNECT statements can be executed. The activation group enters this
state when it completes a rollback or successful commit from the unconnectable
and connected state, or a CONNECT statement is successfully executed from the
connectable and unconnected state.

The unconnectable and connected state: An activation group is connected to a
server, but a CONNECT statement cannot be successfully executed to change
servers. The activation group enters this state from the connectable and connected
state when it executes any SQL statement other than CONNECT, COMMIT, or
ROLLBACK.

The connectable and unconnected state: An activation group is not connected to
a server. The only SQL statement that can be executed is CONNECT.

The activation group enters this state when:
v The connection was previously released and a successful COMMIT is executed.
v The connection is disconnected using the SQL DISCONNECT statement.
v The connection was in a connectable state, but the CONNECT statement was

unsuccessful.

Consecutive CONNECT statements can be executed successfully because
CONNECT does not remove the activation group from the connectable state. A
CONNECT to the server to which the activation group is currently connected is
executed like any other CONNECT statement. CONNECT cannot execute
successfully when it is preceded by any SQL statement other than CONNECT,

Figure 9. Remote Unit of Work Activation Group Connection State Transition

Chapter 1. Concepts 27

COMMIT, DISCONNECT, SET CONNECTION, RELEASE, or ROLLBACK (unless
running with COMMIT(*NC)). To avoid an error, execute a commit or rollback
operation before a CONNECT statement is executed.

Application-Directed Distributed Unit of Work
The application-directed distributed unit of work facility also provides for the remote
preparation and execution of SQL statements in the same fashion as remote unit of
work. Like remote unit of work, an activation group at computer system A can
connect to a server at computer system B and execute any number of static or
dynamic SQL statements that reference objects at B before ending the unit of work.
All objects referenced in a single SQL statement must be managed by the same
server. However, unlike remote unit of work, any number of servers can
participate in the same unit of work. A commit or rollback operation ends the unit
of work.

Distributed unit of work is fully supported for APPC and TCP/IP connections.

Application-Directed Distributed Unit of Work Connection
Management
At any time:
v An activation group is always in the connected or unconnected state and has a set

of zero or more connections. Each connection of an activation group is uniquely
identified by the name of the server of the connection.

v An SQL connection is always in one of the following states:
– Current and held
– Current and release-pending
– Dormant and held
– Dormant and release-pending

Initial state of an activation group: An activation group is initially in the
connected state and has exactly one connection. The initial state of a connection is
current and held.

The following diagram shows the state transitions:

28 DB2 UDB for iSeries SQL Reference V5R2

Connection States
If an application process successfully executes a CONNECT statement:
v The current connection is placed in the dormant state and held state.
v The server name is added to the set of connections and the new connection is

placed in the current and held state.

If the server name is already in the set of existing connections of the activation
group, an error occurs.

A connection in the dormant state is placed in the current state using the SET
CONNECTION statement. When a connection is placed in the current state, the
previous current connection, if any, is placed in the dormant state. No more than
one connection in the set of existing connections of an activation group can be
current at any time. Changing the state of a connection from current to dormant or
from dormant to current has no effect on its held or release-pending state.

A connection is placed in the release-pending state by the RELEASE statement.
When an activation group executes a commit operation, every release-pending

Figure 10. Application-Directed Distributed Unit of Work Connection and Activation Group Connection State Transitions

Chapter 1. Concepts 29

connection of the activation group is ended. Changing the state of a connection
from held to release-pending has no effect on its current or dormant state. Thus, a
connection in the release-pending state can still be used until the next commit
operation. There is no way to change the state of a connection from
release-pending to held.

Activation Group Connection States
A different server can be established by the explicit or implicit execution of a
CONNECT statement. The following rules apply:
v An activation group cannot have more than one connection to the same server at

the same time.
v When an activation group executes a SET CONNECTION statement, the

specified location name must be an existing connection in the set of connections
of the activation group.

v When an activation group executes a CONNECT statement, the specified server
name must not be an existing connection in the set of connections of the
activation group.

If an activation group has a current connection, the activation group is in the
connected state. The CURRENT SERVER special register contains the name of the
server of the current connection. The activation group can execute SQL statements
that refer to objects managed by that server.

An activation group in the unconnected state enters the connected state when it
successfully executes a CONNECT or SET CONNECTION statement.

If an activation group does not have a current connection, the activation group is
in the unconnected state. The CURRENT SERVER special register contents are equal
to blanks. The only SQL statements that can be executed are CONNECT,
DISCONNECT, SET CONNECTION, RELEASE, COMMIT, and ROLLBACK.

An activation group in the connected state enters the unconnected state when its
current connection is intentionally ended or the execution of an SQL statement is
unsuccessful because of a failure that causes a rollback operation at the current
server and loss of the connection. Connections are intentionally ended when an
activation group successfully executes a commit operation and the connection is in
the release-pending state, or when an application process successfully executes the
DISCONNECT statement.

When a Connection is Ended
When a connection is ended, all resources that were acquired by the activation
group through the connection and all resources that were used to create and
maintain the connection are deallocated. For example, if application process P has
placed the connection to server X in the release-pending state, all cursors of P at X
will be closed and deallocated when the connection is ended during the next
commit operation.

A connection can also be ended as a result of a communications failure in which
case the activation group is placed in the unconnected state. All connections of an
activation group are ended when the activation group ends.

30 DB2 UDB for iSeries SQL Reference V5R2

Data Representation Considerations
Different systems represent data in different ways. When data is moved from one
system to another, data conversion must sometimes be performed. Products
supporting DRDA will automatically perform any necessary conversions at the
receiving system.

With numeric data, the information needed to perform the conversion is the data
type and the sending system’s environment type. For example, when a
floating-point variable from a DB2 UDB for iSeries application requester is
assigned to a column of a table at an OS/390 server, the number is converted from
IEEE format to System/370* format.

With character and graphic data, the data type and the environment type of the
sending system are not sufficient. Additional information is needed to convert
character and graphic strings. String conversion depends on both the coded
character set of the data and the operation to be done with that data. String
conversions are done in accordance with the IBM Character Data Representation
Architecture (CDRA). For more information about character conversion, refer to the
book Character Data Representation Architecture Level 1 Reference, SC09-1390.

Character Conversion
A string is a sequence of bytes that may represent characters. Within a string, all
the characters are represented by a common coding representation. In some cases,
it might be necessary to convert these characters to a different coding
representation. The process of conversion is known as character conversion.6

Character conversion can occur when an SQL statement is executed remotely.
Consider, for example, these two cases:
v The values of host variables sent from the application requester to the current

server.
v The values of result columns sent from the current server to the application

requester.

In either case, the string could have a different representation at the sending and
receiving systems. Conversion can also occur during string operations on the same
system.

The following list defines some of the terms used when discussing character
conversion.

character set A defined set of characters. For example, the
following character set appears in several code
pages:
v 26 non-accented letters A through Z
v 26 non-accented letters a through z
v digits 0 through 9
v . , : ; ? () ’ ″ / - _ (underscore) & + % * = < >

code page A set of assignments of characters to code points.
In EBCDIC, for example, "A" is assigned code point

6. Character conversion, when required, is automatic and is transparent to the application when it is successful. A knowledge of
conversion is, therefore, unnecessary when all the strings involved in a statement’s execution are represented in the same way.
Thus, for many readers, character conversion may be irrelevant.

Chapter 1. Concepts 31

X'C1' and "B" is assigned code point X'C2'. Within a
code page, each code point has only one specific
meaning.

code point A unique bit pattern that represents a character.

coded character set A set of unambiguous rules that establish a
character set and the one-to-one relationships
between the characters of the set and their coded
representations.

encoding scheme A set of rules used to represent character data. For
example:
v Single-byte EBCDIC
v Single-byte ASCII7

v Mixed single- and double-byte EBCDIC
v Mixed single- and double-byte ASCII
v UCS-2 (universal coded character set).

substitution character A unique character that is substituted during
character conversion for any characters in the
source coding representation that do not have a
match in the target coding representation.

Character Sets and Code Pages
The following example shows how a typical character set might map to different
code points in two different code pages.

7. The term ASCII is used throughout this book to refer to IBM-PC data or ISO 8 data.

32 DB2 UDB for iSeries SQL Reference V5R2

Even with the same encoding scheme there are many different coded character
sets, and the same code point can represent a different character in different coded
character sets. Furthermore, a byte in a character string does not necessarily
represent a character from a single-byte character set (SBCS). Character strings are
also used for mixed data (a mixture of single-byte characters and double-byte
characters) and for data that is not associated with any character set (called bit
data). This is not the case with graphic strings; the database manager assumes that
every pair of bytes in every graphic string represents a character from a
double-byte character set (DBCS) or universal coded character set (UCS-2).

A CCSID in a native encoding scheme is one of the coded character sets in which
data may be stored at that site. A CCSID in a foreign encoding scheme is one of
the coded character sets in which data cannot be stored at that site. For example,
DB2 UDB for iSeries can store data in a CCSID with an EBCDIC encoding scheme,
but not in an ASCII encoding scheme.

A host variable containing data in a foreign encoding scheme is always converted
to a CCSID in the native encoding scheme when the host variable is used in a
function or in the select-list. A host variable containing data in a foreign encoding
scheme is also effectively converted to a CCSID in the native encoding scheme
when used in comparison or in an operation that combines strings. Which CCSID
in the native encoding scheme the data is converted to is based on the foreign
CCSID and the default CCSID.

Coded Character Sets and CCSIDs
IBM’s Character Data Representation Architecture (CDRA) deals with the
differences in string representation and encoding. The Coded Character Set

Chapter 1. Concepts 33

Identifier (CCSID) is a key element of this architecture. A CCSID is a 2-byte
(unsigned) binary number that uniquely identifies an encoding scheme and one or
more pairs of character sets and code pages.

A CCSID is an attribute of strings, just as length is an attribute of strings. All
values of the same string column have the same CCSID.

In each database manager, character conversion involves the use of a CCSID
Conversion Selection Table. The Conversion Selection Table contains a list of valid
source and target combinations. For each pair of CCSIDs, the Conversion Selection
Table contains information used to perform the conversion from one coded
character set to the other. This information includes an indication of whether
conversion is required. (In some cases, no conversion is necessary even though the
strings involved have different CCSIDs.)

Default CCSID
Every server and application requester has a default CCSID (or default CCSIDs in
installations that support DBCS data). The CCSID of the following types of strings
is determined at the current server:
v String constants (including string constants that represent datetime values) when

the CCSID of the source is in a foreign encoding scheme
v Special registers with string values (such as USER and CURRENT SERVER)
v Results of CAST, CHAR, DIGITS, and HEX scalar functions8

v Results of VARCHAR, GRAPHIC, and VARGRAPHIC scalar functions when a
CCSID is not specified as an argument

v Results of the CLOB and DBCLOB scalar functions when a CCSID is not
specified as an argument

v String columns defined by the CREATE TABLE or ALTER TABLE statements
when an explicit CCSID is not specified for the column9

In a distributed SQL program, the default CCSID of host variables is determined
by the application requester. In a non-distributed SQL program, the default CCSID
of host variables is determined by the server. On OS/400, the default CCSID is
determined by the CCSID job attribute. For more information about CCSIDs, see
the Work with CCSIDs topic in the Globalization section of the iSeries Information
Center.

Sort Sequence
A sort sequence defines how characters in a character set relate to each other when
they are compared and ordered. Different sort sequences are useful for those who
want their data ordered for a specific language. For example, lists can be ordered
as they are normally seen for a specific language. A sort sequence can also be used
to treat certain characters as equivalent, for instance, a and A. A sort sequence
works on all comparisons that involve:
v SBCS character data (including bit data)
v the SBCS portion of mixed data
v UCS-2 graphic data.

8. If the default CCSID is 65535, and the function is a CAST to a CLOB or DBCLOB, the CCSID used will be the value of the
DFTCCSID job attribute.

9. If the default CCSID is 65535, the character string columns will not use 65535. Instead, the CCSID used will be the value of the
DFTCCSID job attribute.

34 DB2 UDB for iSeries SQL Reference V5R2

../nls/rbagscdra.htm

SBCS sort sequence support is implemented using a 256-byte table. Each byte in
the table corresponds to a code point or character in a SBCS code page. Because
the sort sequence is applicable to character data, a CCSID must be associated with
the table. The bytes in the sort sequence table are set based on how each code
point is to compare to other code points in that code page. For example, if the
characters a and A are to be treated as equivalents for comparisons, the bytes in
the sort sequence table for their code points contain the same value, or weight.

UCS-2 sort sequence support is implemented using a multi-byte table. A pair of
bytes within the table corresponds to a character in the UCS-2 code page. Only a
subset of the thousands of characters in UCS-2 are typically represented in the
table. Only those characters that are to compare differently (and possibly other
characters in the same ward) will be represented in the table. The bytes in the sort
sequence table are set based on how each character is to compare with other
characters in UCS-2.

When two or more bytes (or pair of bytes for UCS-2) in a sort sequence table have
the same value, the sort sequence is a shared-weight sort sequence. If every byte
(or pair of bytes for UCS-2) in a sort sequence table has a unique value, the sort
sequence is a unique-weight sort sequence. For many languages, unique- and
shared-weight sort sequences are shipped on the system as part of the operating
system. If you need sort sequences for other languages or needs, you define them
using the Create Table (CRTTBL) command.

It is important to remember that the data itself is not altered by the sort sequence.
A weighted representation of the data is used for the comparison. In SQL, a sort
sequence is specified on the CRTSQLxxx, STRSQL, and RUNSQLSTM commands.
The SET OPTION statement can be used to specify the sort sequence within the
source of a program containing embedded SQL. The sort sequence applies to all
character comparisons performed in the SQL statements. The default sort sequence
on the system is the internal sequence that occurs when the hexadecimal
representation of characters are used. This is the sequence you get when the
SRTSEQ(*HEX) is specified. For programs precompiled with a release of the
product that is earlier than Version 2 Release 3, the sort sequence is *HEX.

Sort sequences do not apply to FOR BIT DATA or BLOB columns.

For more information about CCSIDs, see the Work with CCSIDs topic in the
Globalization section of the iSeries Information Center. For more information about
sort sequences and the sequences shipped with the system, see the Sort Sequence
tables topic in the iSeries Information Center.

Authorization and Privileges
Users can successfully execute SQL statements only if they have the authority to
do the specified function. To create a table, a user must be authorized to create
tables; to drop a table, a user must be authorized to drop the table, and so on.

The people holding administrative authority are charged with the task of
controlling the database manager and are responsible for the safety and integrity of
the data. Those with administrative authority control both who has access to the
database manager and the extent of that access. Those with administrative
authority have the authority to perform all operations on all objects regardless of
whether they have been granted specific privileges or not. The security officer and
all users with *ALLOBJ authority have administrative authority.

Chapter 1. Concepts 35

../nls/rbagscdra.htm
../nls/rbagssrtseq.htm
../nls/rbagssrtseq.htm

Privileges are those activities that the administrative authority has allowed a user to
perform. Authorized users can create any object, have access to objects they own,
and can pass on privileges on their own objects to other users by using the
GRANT statement. The REVOKE statement can be used to revoke previously
granted privileges.

When an object is created, one authorization ID is assigned ownership of the object.
Ownership gives the user complete control over the object, including the privilege
to drop the object. The owner may revoke a privilege to an object that he owns
from himself. In this case, the owner may temporarily be unable to perform an
operation that requires that privilege. Because he is the owner, however, he is
always allowed to grant the privilege back to himself.

Authority granted to *PUBLIC on SQL objects depends on the naming convention
that is used at the time of object creation. If *SYS naming convention is used,
*PUBLIC acquires the create authority (CRTAUT) of the library into which the
object was created. If *SQL naming convention is used, *PUBLIC acquires
*EXCLUDE authority.

In the Authorization sections of this book, it is assumed that the owner of an object
has not had any privileges revoked from that object since it was initially created. If
the object is a view, it is also assumed that the owner of the view has not had the
system authority *READ revoked from any of the tables or views that this view is
directly or indirectly dependent on. The owner has system authority *READ for all
tables and views referenced in the view definition, and if a view is referenced, all
tables and views referenced in its definition, and so forth. For more information

about authority and privileges, see the book iSeries Security Reference .

Storage Structures
The iSeries system is an object-based system. All database objects in DB2 UDB for
iSeries (tables and indexes for example) are objects in OS/400. The single-level
storage manager manages all storage of objects of the database, so database
specific storage structures (for example, table spaces) are unnecessary.

A partitioned or distributed table allows data to be spread across different database
partitions. The partitions included are determined by the nodegroup specified
when the table is created or altered. A nodegroup is a group of one or more iSeries
systems. A partitioning map is associated with each nodegroup. The partitioning
map is used by the database manager to determine which system from the
nodegroup will store a given row of data. For more information about nodegroups
and data partitioning see the DB2 Multisystem book.

A table can also include columns that register links to data that are stored in
external files. The mechanism for this is the DataLink data type. A DataLink value
which is recorded in a regular table points to a file that is stored in an external file
server.

The DB2 File Manager on a file server works in conjunction with DB2 to provide
the following optional functionality:
v Referential integrity to ensure that files currently linked to DB2 are not deleted

or renamed.
v Security to ensure that only those with suitable SQL privileges on the DataLink

column can read the files linked to that column.

36 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

../../books/c4153026.pdf
../dbmult/rzaf3mst02.htm

The DataLinker comprises the following facilities:

DataLinks File Manager
Registers all the files in a particular file server that are linked to DB2.

DataLinks Filter
Filters file system commands to ensure that registered files are not deleted
or renamed. Optionally, filters commands to ensure that proper access
authority exists.

Chapter 1. Concepts 37

38 DB2 UDB for iSeries SQL Reference V5R2

Chapter 2. Language Elements

This chapter defines the basic syntax of SQL and language elements that are
common to many SQL statements.

For details, see the following sections:
v “Characters”
v “Tokens” on page 41
v “Identifiers” on page 43
v “Naming Conventions” on page 45
v “Schemas and the SQL Path” on page 55
v “Aliases” on page 56
v “Authorization IDs and Authorization-Names” on page 57
v “Data Types” on page 59
v “Promotion of Data Types” on page 74
v “Casting Between Data Types” on page 75
v “Assignments and Comparisons” on page 78
v “Rules for Result Data Types” on page 91
v “Conversion Rules for Operations That Combine Strings” on page 95
v “Constants” on page 97
v “Special Registers” on page 102
v “References to Variables” on page 111
v “Host Structures in C, C++, COBOL, PL/I, and RPG” on page 116
v “Host Structure Arrays in C, C++, COBOL, PL/I, and RPG” on page 118
v “Functions” on page 119
v “Expressions” on page 125
v “Predicates” on page 141

Characters
The basic symbols of keywords and operators in the SQL language are single-byte
characters10 that are part of all character sets supported by the IBM relational
database products. Characters of the language are classified as letters, digits, or
special characters.

A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through z)
letters of the English alphabet. 11

A digit is any of the characters 0 through 9.

A special character is any of the characters listed below: 12

10. Note that if the SQL statement is encoded as UCS-2 data, all characters of the statement except for string constants will be
converted to single-byte characters prior to processing. Tokens representing string constants may be processed as UCS-2 graphic
strings without conversion to single-byte.

11. Letters also include three code points reserved as alphabetic extenders for national languages (#, @, and $ in the United States).
These three code points should be avoided because they represent different characters depending on the CCSID.

© Copyright IBM Corp. 1998, 2002 39

space - minus sign
″ quotation mark or double-quote . period
% percent / slash
& ampersand : colon
’ apostrophe or single quote ; semicolon
(left parenthesis < less than
) right parenthesis = equals
* asterisk > greater than
+ plus sign ? question mark
, comma _ underline or underscore
| 13 vertical bar

12. The not symbol (¬) and the exclamation point symbol (!) are also special characters used by DB2 UDB for iSeries. You should
avoid using them because they are variant characters.

13. Using the vertical bar (|) character might inhibit code portability between IBM relational database products. It is preferable to
use the CONCAT operator instead of the concatenation operator (||). Use of the vertical bar should be avoided because it is a
variant character.

Characters

40 DB2 UDB for iSeries SQL Reference V5R2

Tokens
The basic syntactical units of the language are called tokens. A token consists of one
or more characters, excluding blanks, control characters, and characters within a
string constant or delimited identifier. (These terms are defined later.)

Tokens are classified as ordinary or delimiter tokens:
v An ordinary token is a numeric constant, an ordinary identifier, a host identifier,

or a keyword.
v A delimiter token is a string constant, a delimited identifier, an operator symbol,

or any of the special characters shown in the syntax diagrams. A question mark
(?) is also a delimiter token when it serves as a parameter marker, as explained
under “PREPARE” on page 674.

Spaces: A space is a sequence of one or more blank characters.

Control Characters: A control character is a special character that is used for string
alignment. The following table contains the control characters that are handled by
the database manager:

Table 1. Control Characters

Control Character EBCDIC Hex Value UCS-2 Hex Value

Tab 05 0009

Form Feed 0C 000C

Carriage Return 0D 000D

New Line 15 0085

Line Feed (New line) 25 000A

Tokens, other than string constants and certain delimited identifiers, must not
include a control character or space. A control character or space can follow a
token. A delimiter token, a control character, or a space must follow every ordinary
token. If the syntax does not allow a delimiter token to follow an ordinary token,
then a control character or a space must follow that ordinary token. The following
examples illustrate the rule that is stated in this paragraph.

Here are some examples of ordinary tokens:
1 .1 +2 SELECT E 3

Here are some examples of combinations of the above ordinary tokens that, in
effect, change the tokens:

1.1 .1+2 SELECTE .1E E3 SELECT1

This demonstrates why ordinary tokens must be followed by a delimiter token or a
space.

Here are some examples of delimiter tokens:
, ’string’ "fld1" = .

Here are some examples of combinations of the above ordinary tokens and the
above delimiter tokens that, in effect, change the tokens:

1. .3

Tokens

Chapter 2. Language Elements 41

The period (.) is a delimiter token when it is used as a separator in the
qualification of names. Here the dot is used in combination with an ordinary token
of a numeric constant. Thus, the syntax does not allow an ordinary token to be
followed by a delimiter token. Instead, the ordinary token must be followed by a
space.

If the decimal point has been defined to be the comma, as described in “Decimal
Point” on page 100, the comma is interpreted as a decimal point in numeric
constants. Here are some examples of these numeric constants:

1,2 ,1 1, 1,e1

If '1,2' and '1,e1' are meant to be two items, both the ordinary token (1) and the
delimiter token (,) must be followed by a space, to prevent the comma from being
interpreted as a decimal point. Although the comma is usually a delimiter token,
the comma is part of the number when it is interpreted as a decimal point.
Therefore, the syntax does not allow an ordinary token (1) to be followed by a
delimiter token (,). Instead, an ordinary token must be followed by a space.

Comments: Static SQL statements can include host language comments or SQL
comments. Dynamic SQL statements can include SQL comments. Either type of
comment can be specified wherever a space may be specified, except within a
delimiter token or between the keywords EXEC and SQL. There are two types of
SQL comments:

simple comments
Simple comments are introduced by two consecutive hyphens (--). Simple
comments cannot continue past the end of the line. For more information,
see “SQL Comments” on page 355.

bracketed comments
Bracketed comments are introduced by /* and end with */. A bracketed
comment can continue past the end of the line. For more information, see
“SQL Comments” on page 355.

Uppercase and Lowercase: Lowercase letters used in an ordinary token other than
a C host variable will be folded to uppercase. Delimiter tokens are never folded to
uppercase. Thus, the statement:

select * from EMP where lastname = ’Smith’;

is equivalent, after folding, to:
SELECT * FROM EMP WHERE LASTNAME = ’Smith’;

Tokens

42 DB2 UDB for iSeries SQL Reference V5R2

Identifiers
An identifier is a token used to form a name. An identifier in an SQL statement is
one of the following types:
v “SQL Identifiers”
v “System identifiers”
v “Host Identifiers” on page 44

Note: $, @, #, and all other variant characters should not be used in identifiers
because the code points used to represent them vary depending on the
CCSID of the string in which they are contained. If they are used,
unpredictable results may occur. For more information about variant
characters, see the Variant characters topic in the iSeries Information Center.

SQL Identifiers

There are two types of SQL identifiers: ordinary identifiers and delimited identifiers.
v An ordinary identifier is an uppercase letter followed by zero or more characters,

each of which is an uppercase letter, a digit, or the underscore character. Note
that ordinary identifiers are converted to uppercase. An ordinary identifier
should not be a reserved word. See Appendix D, “Reserved Words” on page 829
for a list of reserved words. If a reserved word is used as an identifier in SQL, it
should be specified in uppercase and enclosed within the SQL escape characters.

v A delimited identifier is a sequence of one or more characters enclosed within SQL
escape characters. The sequence must consist of one or more characters. Leading
blanks in the sequence are significant. Trailing blanks in the sequence are not
significant. The length of a delimited identifier does not include the two SQL
escape characters. Note that delimited identifiers are not converted to uppercase.
The escape character is the quotation mark (") except in the following cases
where the escape character is the apostrophe ('):
– Interactive SQL when the SQL string delimiter is set to the quotation mark in

COBOL syntax checking statement mode
– Dynamic SQL in a COBOL program when the CRTSQLCBL or CRTSQLCBLI

parameter OPTION(*QUOTESQL) specifies that the string delimiter is the
quotation mark (")

– COBOL application program when the CRTSQLCBL or CRTSQLCBLI
parameter OPTION(*QUOTESQL) specifies that the string delimiter is the
quotation mark (")

The following characters are not allowed within delimited identifiers:
– X'00' through X'3F' and X'FF'

System identifiers
A system identifier is used to form the name of system objects in OS/400. There
are two types of system identifiers: ordinary identifiers and delimited identifiers.
v The rules for forming a system ordinary identifier are identical to the rules for

forming an SQL ordinary identifier.
v The rules for forming a system delimited identifier are identical to those for

forming SQL delimited identifiers, except:
– The following special characters are not allowed in a delimited system

identifier:
- A blank (X'40')

Identifiers

Chapter 2. Language Elements 43

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|

|

../nls/rbagsdb2qrysqldevkitgde.htm

- An asterisk (X'5C')
- An apostrophe (X'7D')
- A question mark (X'6F')
- A quotation mark (X'7F')

– The bytes required for the escape characters are included in the length of the
identifier unless the characters within the delimiters would form an ordinary
identifier.
For example, “PRIVILEGES” is in uppercase and the characters within the
delimiters form an ordinary identifier; therefore, it has a length of 10 bytes
and is a valid system name for a column. On the other hand, “privileges” is
in lowercase, has a length of 12 bytes, and is not a valid system name for a
column because the bytes required for the delimiters must be included in the
length of the identifier.

Examples
WKLYSAL WKLY_SAL "WKLY_SAL" "UNION" "wkly_sal"

Host Identifiers
A host-identifier is a name declared in the host program. The rules for forming a
host-identifier are the rules of the host language; except that DBCS characters
cannot be used. For example, the rules for forming a host-identifier in a COBOL
program are the same as the rules for forming a user-defined word in COBOL.
Names beginning with the characters 'SQ'14, 'SQL', 'sql', 'RDI', or 'DSN' should not
be used because precompilers generate host variables that begin with these
characters.

14. 'SQ' is allowed in C, COBOL, and PL/I; it should not be used in RPG.

Identifiers

44 DB2 UDB for iSeries SQL Reference V5R2

Naming Conventions
The rules for forming a name depend on the type of the object designated by the
name and the naming option (*SQL or *SYS). The naming option is specified on
the CRTSQLxxx, RUNSQLSTM, and STRSQL commands. The SET OPTION
statement can be used to specify the naming option within the source of a program
containing embedded SQL. The syntax diagrams use different terms for different
types of names. The following list defines these terms.

alias-name A qualified or unqualified name that designates an
alias. The qualified form of an alias-name depends
on the naming option. For SQL naming, the
qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

An alias-name can specify either the name of the
alias or the system object name of the alias.

authorization-name A system identifier that designates a user or group
of users. An authorization name is a user profile
name on the server. It must not be a delimited
identifier that includes lowercase letters or special
characters. See “Authorization IDs and
Authorization-Names” on page 57 for the
distinction between an authorization name and an
authorization ID.

column-name A qualified or unqualified name that designates a
column of a table or a view. The unqualified form
of a column name is an SQL identifier. The
qualified form is a qualifier followed by a period
and an SQL identifier. The qualifier is a table name,
a view name, or a correlation name.

Column names cannot be qualified with system
names in the form schema-name/table-name.column-
name, except in the COMMENT and LABEL
statements. If column names need to be qualified,
and correlation names are allowed in the
statement, a correlation name must be used to
qualify the column.

A column-name can specify either the column
name or the system column name of a column of a
table or view. If a column name is delimited, the
delimiters are considered to be part of the name
when determining the length of the name.

constraint-name A qualified or unqualified name that designates a
constraint on a table. The qualified form of a
constraint name depends on the naming option.
For SQL naming, the qualified form is a

Naming Conventions

Chapter 2. Language Elements 45

schema-name followed by a period (.) and a
system identifier. For system naming, the qualified
form is a schema-name followed by a slash (/)
followed by an SQL identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

correlation-name An SQL identifier that designates a table, a view, or
individual rows of a table or view.

cursor-name An SQL identifier that designates an SQL cursor.

descriptor-name A colon followed by a host-identifier that
designates an SQL descriptor area (SQLDA). See
“References to Host Variables” on page 111 for a
description of a host identifier. A host variable that
designates an SQL descriptor area must not have
an indicator variable. The form
:host-variable:indicator-variable is not allowed.

distinct-type-name A qualified or unqualified name that designates a
distinct type. The qualified form of a
distinct-type-name depends upon the naming
option. For SQL naming, the qualified form is a
schema-name followed by a period (.) and an SQL
identifier. For system naming, the qualified form is
a schema-name followed by a slash (/) followed by
an SQL identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

For system naming, distinct type names cannot be
qualified when used in a parameter data type of an
SQL routine or in an SQL variable declaration in an
SQL function, SQL procedure, or trigger.

external-program-name A qualified name, unqualified name, or a character
string that designates an external program. The
qualified form of an external-program-name
depends on the naming option. For SQL naming,
the qualified form is a schema-name followed by a
period (.) and a system identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by a system
identifier.

The unqualified form is a system identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

The format of the character string form is either:
v An OS/400 qualified program name

(’library-name/program-name’).

Naming Conventions

46 DB2 UDB for iSeries SQL Reference V5R2

v An OS/400 qualified source file name, followed
by a left parenthesis, followed by an OS/400
member name, and a right parenthesis
(’library-name/source-file-name(member-name)’).
This form is only valid when calling a REXX
procedure.

v An OS/400 qualified service program name,
followed by a left parenthesis, followed by an
OS/400 entry-point-name, followed by a right
parenthesis (’library-name/service-program-
name(entry-point-name)’). This form is only
valid for functions.

v An optional jar-id, followed by a class identifier,
followed by an exclamation point or period,
followed by a method identifier
(’class-id!method-id’ or ’class-id.method-id’).

��
jar-id :

�

� class-id ! method-id
.

��

The jar-id identifies the jar schema when it was
installed in the database. It can be either a
simple identifier, or a schema qualified identifier.
Examples are ’myJar’ and ’myCollection.myJar’.
The class-id identifies the class identifier of the
Java object. If the class is part of a package, the
class identifier must include the complete
package prefix. For example, if the class
identifier is ’myPackage.StoredProcs’, the Java
Virtual machine will look in the following
directory for the StoredProcs class:

’/QIBM/UserData/OS400/SQLLib/
Function/myPackage/StoredProcs/’

The method-id identifies the method name of the
Java object to be invoked.

This form is only valid for Java procedures and
Java functions.

function-name A qualified or unqualified name that designates a
user-defined function, a cast function that was
generated when a distinct type was created, or a
built-in function. The qualified form of a
function-name depends upon the naming option.
For SQL naming, the qualified form is a
schema-name followed by a period (.) and an SQL
identifier. For system naming, the qualified form is
a schema-name followed by a slash (/) followed by
an SQL identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on

Naming Conventions

Chapter 2. Language Elements 47

the rules specified in “Qualification of Unqualified
Object Names” on page 52.

For system naming, functions names can only be
qualified in the form schema-name/function-name
when the name is used in a CREATE, COMMENT,
DROP, GRANT, or REVOKE statement.

host-label A token that designates a label in a host program.

host-variable A sequence of tokens that designates a host
variable. A host-variable includes at least one
host-identifier, as explained in “References to Host
Variables” on page 111.

index-name A qualified or unqualified name that designates an
index. The qualified form of an index-name
depends upon the naming option. For SQL naming,
the qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

nodegroup-name A qualified or unqualified name that designates a
nodegroup. A nodegroup is a group of iSeries
servers across which a table will be distributed. For
more information about distributed tables and
nodegroups, see the DB2 Multisystem book.

The qualified form of a nodegroup-name depends
on the naming option. For SQL naming, the
qualified form is a schema-name followed by a
period (.) and a system identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by a system
identifier.

The unqualified form is a system identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

package-name A qualified or unqualified name that designates a
package. The qualified form of a package-name
depends upon the naming option. For SQL naming,
the qualified form is a schema-name followed by a
period (.) and a system identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by a system
identifier.

The unqualified form is a system identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

Naming Conventions

48 DB2 UDB for iSeries SQL Reference V5R2

../dbmult/rzaf3mst02.htm

parameter-name An ordinary identifier that designates a parameter
for a function or procedure. If the parameter is for
a procedure, the identifier may be preceded by a
colon.

procedure-name A qualified or unqualified name that designates a
procedure. The qualified form of a procedure-name
depends upon the naming option. For SQL naming,
the qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

savepoint-name An unqualified identifier that designates a
savepoint.

schema-name A qualified or unqualified name that provides a
logical grouping for SQL objects. A schema name is
used as a qualifier of the name of a table, view,
index, procedure, function, trigger, constraint, alias,
type, or package. The unqualified form of a
schema-name is a system identifier. The qualified
form of a schema-name depends on the naming
option.

For SQL names, the unqualified schema name in
an SQL statement is implicitly qualified by the
server-name. The qualified form is a server-name
followed by a (.) and a system identifier. The
server-name must identify the current server.

For system names, the unqualified schema name in
an SQL statement is implicitly qualified by the
server-name. The qualified form is a server-name
followed by a slash (/) and a system identifier. The
server-name must identify the current server.

Note: Schema-name refers to either a schema
created by the CREATE SCHEMA statement
or to an OS/400 library.

server-name An SQL identifier that designates a server. The
identifier must not include lowercase letters or
special characters.

specific-name A qualified or unqualified name that uniquely
identifies a procedure or function. The qualified
form of a specific-name depends upon the naming
option. For SQL naming, the qualified form is a
schema-name followed by a period (.) and an SQL
identifier. For system naming, the qualified form is
a schema-name followed by a slash (/) followed by
an SQL identifier.

Naming Conventions

Chapter 2. Language Elements 49

||
|

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

SQL-label An unqualified name that designates a label in an
SQL procedure, SQL function, or trigger body. An
SQL label name is an SQL identifier.

SQL-parameter-name A qualified or unqualified name that designates a
parameter in an SQL routine body. The unqualified
form of an SQL parameter name is an SQL
identifier. The qualified form is a procedure-name
followed by a period (.) and an SQL identifier.

SQL-variable-name A qualified or unqualified name that designates a
variable in an SQL routine body. The unqualified
form of an SQL variable name is an SQL identifier.
The qualified form is an SQL label followed by a
period (.) and an SQL identifier.

statement-name An SQL identifier that designates a prepared SQL
statement.

system-column-name An unqualified name that designates the OS/400
column name of a table or a view. A
system-column-name is a system identifier.
System-column-names can be delimited identifiers,
but the characters within the delimiters must not
include lowercase letters or special characters.

system-object-name An unqualified name that designates the OS/400
name of a table, view, index, or alias. A
system-object-name is a system identifier.

If the unqualified name of the table, view, index, or
alias is a valid system identifier, the
system-object-name of the table, view, index, or
alias is the unqualified name of the table, view,
index, or alias.

table-name A qualified or unqualified name that designates a
table. The qualified form of a table-name depends
upon the naming option. For SQL naming, the
qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

A table-name can specify either the name of the
table or the system object name of the table.

trigger-name A qualified or unqualified name that designates a
trigger on a table. The qualified form of a trigger
name depends on the naming option. For SQL

Naming Conventions

50 DB2 UDB for iSeries SQL Reference V5R2

naming, the qualified form is a schema-name
followed by a period (.) and a system identifier.
For system naming, the qualified form is a
schema-name followed by a slash (/) followed by
an SQL identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

view-name A qualified or unqualified name that designates a
view. The qualified form of a view-name depends
upon the naming option. For SQL naming, the
qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in “Qualification of Unqualified
Object Names” on page 52.

A view-name can specify either the name of the
view or the system object name of the view.

Table 2. Identifier Length Limits (in bytes)

Identifier Type Maximum Length

Alias name 128

Authorization name 10

Correlation name 128

Cursor name 18

Host identifier 64

Savepoint name 128

Server name 18

SQL label 128

Statement name 18

Unqualified schema name 10

Unqualified column name 30

Unqualified constraint name 128

Unqualified distinct type name 128

Unqualified external program name 15 10

Unqualified function name 128

Unqualified nodegroup name 10

Unqualified package name 10

Unqualified parameter name 128

Unqualified procedure name 128

Unqualified specific name 128

Unqualified SQL parameter name 128

Naming Conventions

Chapter 2. Language Elements 51

||

Table 2. Identifier Length Limits (in bytes) (continued)

Identifier Type Maximum Length

Unqualified SQL variable name 128

Unqualified system column name 10

Unqualified system object name 10

Unqualified table, view, and index name 128

Unqualified trigger name 128

Qualification of Unqualified Object Names
Unqualified object names are implicitly qualified. The rules for qualifying a name
differ depending on the type of object that the name identifies.

Unqualified Alias, Constraint, External Program, Index,
Nodegroup, Package, Table, Trigger, and View Names
Unqualified alias, constraint, external program, index, nodegroup, package, table,
trigger, and view names are implicitly qualified as follows:
v For static SQL statements:

– If the DFTRDBCOL parameter is specified on the CRTSQLxxx command (or
with the SET OPTION statement), the implicit qualifier is the schema-name
that is specified for that parameter.

– In all other cases, the implicit qualifier is based on the naming convention.
- For SQL naming, the implicit qualifier is the authorization identifier of the

statement.
- For system naming, the implicit qualifier is the job library list (*LIBL).

v For dynamic SQL statements the implicit qualifier depends on whether or not a
default schema name has been explicitly specified. The mechanism for explicitly
specifying this depends on the interface used to dynamically prepare and
execute SQL statements.
– If a default schema name is not explicitly specified:

- For SQL naming, the implicit qualifier is the run-time authorization
identifier.

- For system naming, the implicit qualifier is the job library list (*LIBL).
– If a default schema name is explicitly specified, the implicit qualifier is that

default schema. The default schema name can be specified through the
following interfaces:

Table 3. Default Schema Interfaces

SQL Interface Specification

Embedded SQL DFTRDBCOL parameter and DYNDFTCOL(*YES) on
the Create SQL Program (CRTSQLxxx) and Create
SQL Package (CRTSQLPKG) commands. The SET
OPTION statement can also be used to set the
DFTRDBCOL and DYNDFTCOL values.
(For more information about CRTSQLxxx commands,
see the SQL Programming with Host Languages
book.)

15. For REXX procedures, the limit is 33.

Naming Conventions

52 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

||

||

||
|
|
|
|
|
|
|

../rzajp/rzajpmst02.htm

Table 3. Default Schema Interfaces (continued)

SQL Interface Specification

Run SQL Statements DFTRDBCOL parameter on the Run SQL Statements
(RUNSQLSTM) command.
(For more information about the RUNSQLSTM
command, see the SQL Programming Concepts book.)

Call Level Interface (CLI) on the
server

SQL_ATTR_DEFAULT_LIB or
SQL_ATTR_DBC_DEFAULT_LIB environment or
connection variables
(For more information about CLI, see the SQL Call
Level Interfaces (ODBC) book.)

JDBC or SQLJ on the server using
Developer Kit for Java

libraries property object
(For more information about JDBC and SQLJ, see the
IBM Developer Kit for Java topic in the iSeries
Information Center.)

ODBC on a client using the iSeries
Access ODBC Driver

SQL Default Library in ODBC Setup
(For more information about ODBC, see the iSeries
Access category in the iSeries Information Center.)

JDBC on a client using the IBM
Toolbox for Java

SQL Default Library in JDBC Setup
(For more information about JDBC, see the iSeries
Access category in the iSeries Information Center.)
(For more information about the IBM Toolbox for
Java, see IBM Toolbox for Java topic in the iSeries
Information Center .)

All interfaces SET SCHEMA or QSQCHGDC (Change Dynamic
Default Collection) API
(For more information about QSQCHGDC, see the
File APIs category in the iSeries Information Center.)

Unqualified Function, Procedure, Specific, and Distinct Type
Names
The qualification of data type (both built-in types and distinct types), function,
procedure, and specific names depends on the SQL statement in which the
unqualified name appears:
v If an unqualified name is the main object of a CREATE, COMMENT, DROP,

GRANT, or REVOKE statement, the name is implicitly qualified using the same
rules as for qualifying unqualified table names (See “Unqualified Alias,
Constraint, External Program, Index, Nodegroup, Package, Table, Trigger, and
View Names” on page 52).

v Otherwise, the implicit schema name is determined as follows:
– For distinct type names, the database manager searches the SQL path and

selects the first schema in the path such that the data type exists in the
schema.

– For procedure names, the database manager searches the SQL path and
selects the first schema in the path such that the schema contains a procedure
with the same name and number of parameters.

– For function names and for specific names specified for sourced functions, the
database manager uses the SQL path in conjunction with function resolution,
as described under “Function resolution” on page 120.

SQL Names and System Names: Special Considerations
The CL command Override Database File (OVRDBF) can be specified to override
an SQL or system name with another object name for local data manipulation SQL

Naming Conventions

Chapter 2. Language Elements 53

|

||

||
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

||
|
|
|

../sqlp/rbafymst02.htm
../cli/rzadpmst02.htm
../cli/rzadpmst02.htm
../rzaha/whatitis.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahh/page1.htm
../apis/file1.htm

statements. Overrides are ignored for data definition SQL statements and data
manipulation SQL statements executing at a remote relational database. See the File
Management book for more information about the override function.

Naming Conventions

54 DB2 UDB for iSeries SQL Reference V5R2

../dm/rbal3mst02.htm
../dm/rbal3mst02.htm

Schemas and the SQL Path
The SQL path is an ordered list of schema names. The database manager uses the
path to resolve the schema name for unqualified distinct type names (both built-in
types and distinct types), function names, and procedure names that appear in any
context other than as the main object of a CREATE, DROP, COMMENT, GRANT or
REVOKE statement. Searching through the path from left to right, the database
manager implicitly qualifies the object name with the first schema name in the
path that contains the same object with the same unqualified name. For
procedures, the database manager selects a matching procedure name only if the
number of parameters is also the same. For functions, the database manager uses a
process called function resolution in conjunction with the SQL path to determine
which function to choose because several functions with the same name can reside
in a schema. (For details, see “Function resolution” on page 120.)

For example, if the SQL path is SMITH, XGRAPHIC, QSYS, QSYS2 and an
unqualified distinct type name MYTYPE was specified, the database manager looks
for MYTYPE first in schema SMITH, then XGRAPHIC, and then QSYS and QSYS2.

The path used is determined as follows:
v For all static SQL statements (except for a CALL :host-variable statement), the

path used is the path specified in the SQLPATH parameter on the CRTSQLxxx
command. The SQLPATH can also be set using the SET OPTION statement.

v For dynamic SQL statements (and for a CALL :host-variable statement), the path
used is the path specified in the CURRENT PATH special register. For more
information about the CURRENT PATH special register, see “CURRENT PATH,
CURRENT_PATH, or CURRENT FUNCTION PATH” on page 102.

Schemas and the SQL Path

Chapter 2. Language Elements 55

Aliases
Think of an alias as an alternative name for a table, view, or member of a database
file. Aliases help you avoid using file overrides. Not only does an alias perform
better than an override, but an alias is also a permanent object that you only need
to create once.

You can refer to a table or view in an SQL statement by its name or by a table
alias. You can only refer to a database file member in an SQL statement through
using an alias. An alias can only refer to a table, view, or database file member
within the same relational database.

You can use an alias wherever you would use a table or view name, except:
v Do not use an alias name where a new table or view name is expected, such as

in the CREATE TABLE or CREATE VIEW statements. For example, if an alias
name of PERSONNEL is created, then a subsequent statement such as CREATE
TABLE PERSONNEL will cause an error.

v An alias that refers to an individual member of a database file member can only
be used in a select statement, DELETE, INSERT, SELECT INTO, SET variable,
UPDATE, or VALUES INTO statement.

You can create an alias even though the object the alias refers to does not exist.
However, the object must exist when a statement that references the alias is
executed. A warning is returned if the object does not exist when you create the
alias. An alias cannot refer to another alias. An alias can only refer to a table, view,
or database file member within the same relational database.

The option of referring to a table, view, or database file member by an alias name
is not explicitly shown in the syntax diagrams or mentioned in the description of
the SQL statements.

A new alias cannot have the same fully-qualified name as an existing table, view,
index, file, or alias.

The effect of using an alias in an SQL statement is similar to that of text
substitution. The alias, which you must define when you execute the SQL
statement, is replaced by the qualified base table, view, or database file member
name. For example, if PBIRD.SALES is an alias for DSPN014.DIST4_SALES_148,
then at statement run time:

SELECT * FROM PBIRD.SALES

effectively becomes
SELECT * FROM DSPN014.DIST4_SALES_148

If an alias is dropped and recreated to refer to another table, any SQL statements
that refer to that alias will be implicitly rebound when they are next run. If a
CREATE VIEW or CREATE INDEX statement refers to an alias, dropping and
re-creating the alias has no effect on the view or index.

For syntax toleration of existing DB2 UDB for OS/390 and z/OS applications, you
can use SYNONYM in place of ALIAS in the CREATE ALIAS and DROP ALIAS
statements.

Aliases

56 DB2 UDB for iSeries SQL Reference V5R2

Authorization IDs and Authorization-Names
An authorization ID is a character string that is obtained by the database manager
when a connection is established between the database manager and either an
application process or a program preparation process. It designates a set of
privileges. It may also designate a user or a group of users, but this property is not
controlled by the database manager.

Authorization ID’s apply to every statement and are used by the database manager
to provide:
v Implicit qualifiers for the names of tables, views, constraints, packages, and

indexes.
v Authorization checking of SQL statements

An authorization ID applies to every SQL statement. The implicit qualification
depends on whether you use static or dynamic SQL:
v For static SQL, the implicit qualifier is the owner of the program.
v For dynamic SQL, the implicit qualifier is the user running the program.

The authorization ID that is used for authorization checking for a static SQL
statement depends on the USRPRF value specified on the precompiler command:
v If USRPRF(*OWNER) is specified, or if USRPRF(*NAMING) is specified and

SQL naming mode is used, the authorization ID of the statement is the owner of
the non-distributed SQL program. For distributed SQL programs, it is the owner
of the SQL package.

v If USRPRF(*USER) is specified, or if USRPRF(*NAMING) is specified and system
naming mode is used, the authorization ID of the statement is the authorization
ID of the user running the non-distributed SQL program. For distributed SQL
programs, it is the authorization ID of the user at the current server.

The authorization ID that is used for authorization checking for a dynamic SQL
statement also depends on where and how the statement is executed:
v If the statement is prepared and executed from a non-distributed program:

– If the USRPRF value is *USER and the DYNUSRPRF value is *USER for the
program, the authorization ID that applies is the ID of the user running the
non-distributed program. This is called the run-time authorization ID.

– If the USRPRF value is *OWNER and the DYNUSRPRF value is *USER for
the program, the authorization ID that applies is the ID of the user running
the non-distributed program.

– If the USRPRF value is *OWNER and the DYNUSRPRF value is *OWNER for
the program, the authorization ID that applies is the ID of the owner of the
non-distributed program.

v If the statement is prepared and executed from a distributed program:
– If the USRPRF value is *USER and the DYNUSRPRF value is *USER for the

SQL package, the authorization ID that applies is the ID of the user running
the SQL package at the current server. This is also called the run-time
authorization ID.

– If the USRPRF value is *OWNER and the DYNUSRPRF value is *USER for
the SQL package, the authorization ID that applies is the ID of the user
running the SQL package at the current server.

– If the USRPRF value is *OWNER and the DYNUSRPRF value is *OWNER for
the SQL package, the authorization ID that applies is the ID of the owner of
the SQL package at the current server.

Authorization IDs and Names

Chapter 2. Language Elements 57

v If the statement is issued interactively, the authorization ID that applies is the ID
of the user that issued the Start SQL (STRSQL) command.

v If the statement is executed from the RUNSQLSTM command, the authorization
ID that applies is the ID of the user that issued the RUNSQLSTM command.

v If the statement is executed from REXX, the authorization ID that applies is the
ID of the user that issued the STRREXPRC command.

On OS/400, the run-time authorization ID is the user profile of the job.

An authorization-name specified in an SQL statement should not be confused with
the authorization ID of the statement. An authorization-name is an identifier that is
used in GRANT and REVOKE statements to designate a target of the grant or
revoke. The premise of a grant of privileges X is that X will subsequently be the
authorization ID of statements which require those privileges. A group user profile
can also be used when checking authority for an SQL statement. For information

on group user profiles, see the book iSeries Security Reference .

Examples
v Assume SMITH is your user ID; then SMITH is the authorization ID when you

execute the following statement interactively:
GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Thus, the authority to execute
the statement is checked against SMITH and SMITH is the implicit qualifier of
TDEPT.

KEENE is an authorization-name specified in the statement. KEENE is given the
SELECT privilege on SMITH.TDEPT.

v Assume SMITH has administrative authority and is the authorization ID of the
following statements:

DROP TABLE TDEPT

Removes the SMITH.TDEPT table.
DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.
DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table.

Authorization IDs and Names

58 DB2 UDB for iSeries SQL Reference V5R2

../../books/c4153026.pdf

Data Types
The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the data type of their source. The sources of
values are:
v Columns
v Constants
v Expressions
v Functions
v Host variables
v Special registers

DB2 supports both IBM-supplied data types (built-in data types) and user-defined
data types (distinct types). This section describes the built-in data types. For a
description of distinct types, see “User-Defined Types” on page 73.

The following figure illustrates the various built-in data types supported by the
DB2 UDB for iSeries program.

Data Types

Chapter 2. Language Elements 59

|
|
|

Nulls: All data types include the null value. The null value is a special value that
is distinct from all nonnull values and thereby denotes the absence of a (nonnull)
value. Although all data types include the null value, some sources of values
cannot provide the null value. For example, constants, columns that are defined as
NOT NULL, and special registers cannot contain null values; the COUNT and
COUNT_BIG functions cannot return a null value; and ROWID columns cannot
store a null value although a null value can be returned for a ROWID column as
the result of a query.

For more details on data types, see the following topics:
v “Binary Strings” on page 61

Data Types

60 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|
|

v “Character Strings”
v “Character Subtypes” on page 62
v “Graphic Strings” on page 63
v “Graphic Subtypes” on page 64
v “Large Objects (LOBs)” on page 64
v “Numbers” on page 65
v “Datetime Values” on page 66
v “DataLink Values” on page 71
v “Row ID Values” on page 72
v “User-Defined Types” on page 73

For information about specifying the data types of columns, see “CREATE TABLE”
on page 507.

Binary Strings
A binary string is a sequence of bytes. The length of a binary string (BLOB string) is
the number of bytes in the sequence. A binary string has a CCSID of 65535.

For a BLOB column, the length attribute must be between 1 and 2 147 483 647
bytes inclusive. For more information about BLOBs, see “Large Objects (LOBs)” on
page 64.

A host variable with a BLOB string type can be defined in all host languages
except REXX, RPG/400, and COBOL/400.

Character Strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string. The
empty string should not be confused with the null value.

Fixed-Length Character Strings
All values of a fixed-length character-string column have the same length. This is
determined by the length attribute of the column. The length attribute must be
between 1 through 32766 inclusive.

Varying-Length Character Strings
The types of varying-length character strings are:
v VARCHAR (or synonyms CHAR VARYING and CHARACTER VARYING)
v CLOB (or synonyms CHAR LARGE OBJECT and CHARACTER LARGE

OBJECT)

The values of a column with any one of these string types can have different
lengths. The length attribute of the column determines the maximum length a
value can have.

For a VARCHAR column, the length attribute must be between 1 through 32740
inclusive. For a CLOB column, the length attribute must be between 1 through
2 147 483 647 inclusive. For more information about CLOBs, see “Large Objects
(LOBs)” on page 64.

Character-String Host Variables
v Fixed-length character-string variables can be used in all host languages except

REXX. (In C, fixed-length character-string variables are limited to a length of 1.)

Data Types

Chapter 2. Language Elements 61

|

v VARCHAR varying-length character-string variables can be used in C, COBOL,
PL/I, REXX, and RPG:
– In PL/I, REXX, and ILE RPG, there is a varying-length character-string data

type.
– In COBOL and C, varying-length character strings are represented as

structures.
– In C, varying-length character-string variables can also be represented by

NUL-terminated strings.
– In RPG/400, varying-length character-string variables can only be represented

by VARCHAR columns included as a result of an externally described data
structure.

v CLOB varying-length character-string variables can be defined in all host
languages except REXX, RPG/400, and COBOL/400.
– In ILE RPG, a CLOB varying-length character string is declared using the

SQLTYPE keyword.
– In all other languages, an SQL TYPE IS CLOB clause is used.

Character Subtypes
Each character string is further defined as one of:

bit data Data that is not associated with a coded character set and is never
converted. The CCSID for bit data is 65535.

SBCS data Data in which every character is represented by a single byte. Each
SBCS data character string has an associated CCSID. If necessary,
an SBCS data character string is converted before it is used in an
operation with a character string that has a different CCSID.

mixed data Data that may contain a mixture of characters from a single-byte
character set (SBCS) and a double-byte character set (DBCS). Each
mixed data character string has an associated CCSID. If necessary,
a mixed data character string is converted before an operation with
a character string that has a different CCSID. If mixed data
contains a DBCS character, it cannot be converted to SBCS data.

The database manager does not recognize subclasses of double-byte characters, and
it does not assign any specific meaning to particular double-byte codes. However,
if you choose to use mixed data, then two single-byte EBCDIC codes are given
special meanings:
v X'0E', the “shift-out” character, is used to mark the beginning of a sequence of

double-byte codes.
v X'0F', the “shift-in” character, is used to mark the end of a sequence of

double-byte codes.

In order for the database manager to recognize double-byte characters in a mixed
data character string, the following condition must be met:

Within the string, the double-byte characters must be enclosed between paired
shift-out and shift-in characters.
The pairing is detected as the string is read from left to right. The code X'0E' is
recognized as a shift out character if X'0F' occurs later; otherwise, it is invalid.
The first X'0F' following the X'0E' that is on a double-byte boundary is the
paired shift-in character. Any X'0F' that is not on a double-byte boundary is not
recognized.

Data Types

62 DB2 UDB for iSeries SQL Reference V5R2

There must be an even number of bytes between the paired characters, and
each pair of bytes is considered to be a double-byte character. There can be
more than one set of paired shift-out and shift-in characters in the string.

The length of a mixed data character string is its total number of bytes, counting
two bytes for each double-byte character and one byte for each shift-out or shift-in
character.

When the job CCSID indicates that DBCS is allowed, CREATE TABLE will create
character columns as DBCS-Open fields, unless FOR BIT DATA, FOR SBCS DATA,
or an SBCS CCSID is specified. The SQL user will see these as character fields, but
the system database support will see them as DBCS-Open fields. For a definition of
a DBCS-Open field, see the Database Programming book.

Graphic Strings
A graphic string is a sequence of two-byte characters. The length of the string is
the number of its characters. Like character strings, graphic strings can be empty.

Fixed-Length Graphic Strings
All values of a fixed-length graphic-string column have the same length, which is
determined by the length attribute of the column. The length attribute must be
between 1 through 16383 inclusive.

Varying-Length Graphic Strings
The types of varying-length graphic strings are:
v VARGRAPHIC (or synonym GRAPHIC VARYING)
v DBCLOB

The values of a column with any one of these string types can have different
lengths. The length attribute of the column determines the maximum length a
value can have.

For a VARGRAPHIC column, the length attribute must be between 1 through
16370 inclusive. For a DBCLOB column, the length attribute must be between 1
through 1 073 741 823 inclusive. For more information about DBCLOBs, see “Large
Objects (LOBs)” on page 64.

Graphic-String Host Variables
v Fixed-length graphic-string host variables can be defined in C, ILE COBOL, and

ILE RPG/400. (In C, fixed-length graphic-string host variables are limited to a
length of 1.)
Although fixed-length graphic-string host variables cannot be defined in PL/I,
COBOL/400, and RPG/400, a character-string host variable will be treated like a
fixed-length graphic-string host variable if it was generated in the source from a
GRAPHIC column in the external definition of a file.

v Varying-length graphic-string host variables can be defined in C, ILE COBOL,
REXX, and ILE RPG.
– In REXX and ILE RPG, there is a varying-length graphic-string data type.
– In C and ILE COBOL, varying-length graphic strings are represented as

structures.
– In C, varying-length graphic-string variables can also be represented by

NUL-terminated graphic strings.
– Although varying-length graphic-string host variables cannot be defined in

PL/I, COBOL/400, and RPG/400, a character-string host variable will be

Data Types

Chapter 2. Language Elements 63

|

../dbp/rbafomst02.htm

treated like a varying-length graphic-string host variable if it was generated
in the source from a VARGRAPHIC column in the external definition of a file.

v DBCLOB varying-length character-string variables can be defined in all host
languages except REXX, RPG/400, and COBOL/400.
– In ILE RPG, a DBCLOB varying-length character string is declared using the

SQLTYPE keyword.
– In all other languages, an SQL TYPE IS DBCLOB clause is used.

Graphic Subtypes
Each graphic string is further defined as DBCS data or UCS-2 data.

DBCS data Data in which every character is represented by a character from
the double-byte character set (DBCS) that does not include the
shift-out or shift-in characters.

Every DBCS graphic string has a CCSID that identifies a
double-byte coded character set. If necessary, a DBCS graphic
string is converted before it is used in an operation with a DBCS
graphic string that has a different DBCS CCSID.

UCS-2 data Data in which every character is represented by a character from
the Universal Coded Character Set (UCS-2).

When graphic-string host variables are not explicitly tagged with a CCSID, the
associated DBCS CCSID for the job CCSID is used. If no associated DBCS CCSID
exists, the host variable is tagged with 65535. A graphic-string host variable is
never implicitly tagged with a UCS-2 CCSID. See the DECLARE VARIABLE
statement for information on how to tag a graphic host variable with a CCSID.

Large Objects (LOBs)
The term large object (LOB) refers to any of the following data types:

Binary Large Object (BLOB) Strings
A Binary Large OBject (BLOB) is a varying-length string with a maximum length of
2 147 483 647. A BLOB is designed to store non-traditional data such as pictures,
voice, and mixed media. BLOBs can also store structured data for use by distinct
types and user-defined functions. A BLOB is considered to be a binary string.

Although BLOB strings and FOR BIT DATA character strings might be used for
similar purposes, the two data types are not compatible. The BLOB function can be
used to change a FOR BIT DATA character string into a binary string.

The CCSID of a BLOB is 65535.

Character Large Object (CLOB) Strings
A Character Large OBject (CLOB) is a varying-length character string with a
maximum length of 2 147 483 647. A CLOB is designed to store large SBCS data or
mixed data, such as lengthy documents. For example, you can store information
such as an employee resume, the script of a play, or the text of novel in a CLOB.

The CCSID of a CLOB cannot be 65535.

Double-byte Character Large Object (DBCLOB) Strings
A Double-Byte Character Large OBject (DBCLOB) is a varying-length graphic string
with a maximum length of 1 073 741 823 double-byte characters. A DBCLOB is
designed to store large DBCS data, such as lengthy documents in UCS-2.

Data Types

64 DB2 UDB for iSeries SQL Reference V5R2

The CCSID of a DBCLOB cannot be 65535.

Manipulating Large Objects (LOBs) With Locators
When an application does not want an entire LOB value to be moved into a host
variable, the application can use a large object locator (LOB locator) to reference
the LOB value.

A LOB locator is a host variable with a value that represents a single LOB value in
the database server. LOB locators provide users with a mechanism by which very
large objects can be manipulated in application programs without requiring the
entire LOB value to be stored in a host variable or transferred to the application
requester (client) where the application program may be running.

For example, when selecting a LOB value, an application program could select the
entire LOB value and place it into an equally large host variable (which is
acceptable if the application program is going to process the entire LOB value at
once), or it could instead select the LOB value into a LOB locator. Then, using the
LOB locator, the application program can issue subsequent database operations on
the LOB value (such as applying the scalar functions SUBSTR, CONCAT, VALUE,
LENGTH, doing an assignment, searching the LOB with LIKE or POSSTR, or
applying UDFs against the LOB) by supplying the locator value as input. The
resulting output of the locator operation, for example the amount of data assigned
to a client host variable, would then typically be a small subset of the input LOB
value.

A LOB locator can also represent a LOB expression, such as:
SUBSTR((lob1) CONCAT (lob2) CONCAT (lob3), start, length)

For normal host variables in an application program, when a null value is selected
into that host variable, the indicator variable is set to -1, signifying that the value is
null. In the case of LOB locators, however, the meaning of indicator variables is
slightly different. Since a locator host variable itself can never be null, a negative
indicator variable value indicates that the LOB value represented by the LOB
locator is null. The null information is kept local to the client by virtue of the
indicator variable value -- the server does not track null values with valid locators.

It is important to understand that a LOB locator represents a value, not a row or
location in the database. Once a value is selected into a locator, there is no
operation that one can perform on the original row or table that will affect the
value which is referenced by the locator. The value associated with a locator is
valid until the transaction ends, or until the locator is explicitly freed, whichever
comes first.

A LOB locator is only a mechanism used to refer to a LOB value during a
transaction; it does not persist beyond the transaction in which it was created.
Also, it is not a database type; it is never stored in the database and, as a result,
cannot participate in views or check constraints. However, since a locator is a
representation of a LOB type, there are SQLTYPEs for LOB locators so that they
can be described within an SQLDA structure that is used by FETCH, OPEN,
CALL, and EXECUTE statements.

Numbers
All numbers have a sign and a precision. The precision is the total number of binary
or decimal digits excluding the sign. The sign is positive if the value is zero.

Data Types

Chapter 2. Language Elements 65

Small Integer
A small integer is a binary number composed of 2 bytes (16 bits) with a precision of
5 digits. The range of small integers is −32768 to +32767.

For small integers, decimal precision and scale are supported by COBOL, RPG,
and iSeries system files. For information concerning the precision and scale of
binary integers, see the DDS Reference book.

Large Integer
A large integer is a binary number composed of 4 bytes (32 bits) with a precision of
10 digits. The range of large integers is −2147483648 to +2147483647.

For large integers, decimal precision and scale are supported by COBOL, RPG, and
iSeries system files. For information concerning the precision and scale of binary
integers, see the DDS Reference book.

Big Integer (BIGINT)
A big integer is a binary number composed of 8 bytes (64 bits) with a precision of
19 digits. The range of big integers is −9223372036854775808 to
+9223372036854775807.

Floating-Point
A single-precision floating-point number is a 32-bit approximate representation of a
real number. The range of magnitude is approximately 1.17549436 × 10−38 to
3.40282356 × 1038.

A double-precision floating-point number is a IEEE 64-bit approximate representation
of a real number. The range of magnitude is approximately 2.2250738585072014 ×
10−308 to 1.7976931348623158 × 10308.

Decimal
A decimal value is a packed-decimal or zoned-decimal number with an implicit
decimal point. The position of the decimal point is determined by the precision
and the scale of the number. The scale, which is the number of digits in the
fractional part of the number, cannot be negative or greater than the precision. The
maximum precision is 31 digits.

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is -n to +n, where the
absolute value of n is the largest number that can be represented with the
applicable precision and scale. The maximum range is negative 1031+1 to 1031

minus 1.

Numeric Host Variables
Small and large binary integer variables can be used in all host languages. Big
integer variables can only be used in C, C++, ILE COBOL, and ILE RPG.
Floating-point variables can be used in all host languages except RPG/400 and
COBOL/400. Decimal variables can be used in all supported host languages.

Datetime Values
Although datetime values can be used in certain arithmetic and string operations
and are compatible with certain strings, they are neither strings nor numbers.
However, strings can represent datetime values; see “String Representations of
Datetime Values” on page 67.

Data Types

66 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

../dds/rbafpmst02.htm
../dds/rbafpmst02.htm

Date
A date is a three-part value (year, month, and day) designating a point in time
under the Gregorian calendar16, which is assumed to have been in effect from the
year 1 A.D. The range of the year part is 0001 to 9999. The date formats *JUL,
*MDY, *DMY, and *YMD can only represent dates in the range 1940 through 2039.
The range of the month part is 1 to 12. The range of the day part is 1 to x, where x
is 28, 29, 30, or 31, depending on the month and year.

The internal representation of a date is a string of 4 bytes that contains an integer.
The integer (called the Scaliger number) represents the date.

The length of a DATE column as described in the SQLDA is 6, 8, or 10 bytes,
depending on which format is used. These are the appropriate lengths for
character-string representations for the value.

Time
A time is a three-part value (hour, minute, and second) designating a time of day
using a 24-hour clock. The range of the hour part is 0 to 24, while the range of the
minute and second parts is 0 to 59. If the hour is 24, the minute and second
specifications are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of
two packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column as described in the SQLDA is 8 bytes, which is the
appropriate length for a character-string representation of the value.

Timestamp
A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) that designates a date and time as defined previously, except that the
time includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes. The first 4 bytes
represent the date, the next 3 bytes the time, and the last 3 bytes the microseconds
(the last 3 bytes contain 6 packed digits).

The length of a TIMESTAMP column as described in the SQLDA is 26 bytes, which
is the appropriate length for the character-string representation of the value.

Datetime Host Variables
Character string host variables are normally used to contain date, time, and
timestamp values. However, date, time, and timestamp host variables can also be
specified in ILE COBOL and ILE RPG.

String Representations of Datetime Values
Values whose data types are DATE, TIME, or TIMESTAMP are represented in an
internal form that is transparent to the user of SQL. Dates, times, and timestamps,
however, can also be represented by character or UCS-2 graphic strings. These
representations directly concern the user of SQL since there are no constants whose
data types are DATE, TIME, or TIMESTAMP. Only ILE RPG and ILE COBOL
support datetime variables. To be retrieved, a datetime value can be assigned to a
character-string variable. The format of the resulting string will depend on the
default date format and the default time format in effect when the statement was

16. Note that historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15 are accepted as
valid dates although they never existed in the Gregorian calendar.

Data Types

Chapter 2. Language Elements 67

|
|
|
|

prepared. The default date and time formats is set based on the date format
(DATFMT), the date separator (DATSEP), the time format (TIMFMT), and the time
separator (TIMSEP) parameters.

When a valid string representation of a datetime value is used in an operation with
an internal datetime value, the string representation is converted to the internal
form of the date, time, or timestamp before the operation is performed. If the
CCSID of the string represents a foreign encoding scheme (for example, ASCII), it
is first converted to the coded character set identified by the default CCSID before
the string is converted to the internal form of the datetime value.

The following sections define the valid string representations of datetime values.

Date Strings: A string representation of a date is a character string that starts
with a digit and has a length of at least 6 characters. Trailing blanks can be
included. Leading zeros can be omitted from the month and day portions when
using the IBM SQL standard formats. Each IBM SQL standard format is identified
by name and includes an associated abbreviation (for use by the CHAR function).
Other formats do not have an abbreviation to be used by the CHAR function. The
separators for two-digit year formats are controlled by the date separator
(DATSEP) parameter. Valid string formats for dates are listed in Table 4.

The database manager recognizes the string as a date when it is either:
v In the format specified by the default date format, or
v In one of the IBM SQL standard date formats, or
v In the unformatted Julian format

Table 4. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International
Standards
Organization (*ISO)

ISO yyyy-mm-dd 1987-10-12

IBM USA standard
(*USA)

USA mm/dd/yyyy 10/12/1987

IBM European
standard (*EUR)

EUR dd.mm.yyyy 12.10.1987

Japanese industrial
standard Christian
era (*JIS)

JIS yyyy-mm-dd 1987-10-12

Unformatted Julian – yyyyddd 1987285

Julian (*JUL) – yy/ddd 87/285

Month, day, year
(*MDY)

– mm/dd/yy 10/12/87

Day, month, year
(*DMY)

– dd/mm/yy 12/10/87

Year, month, day
(*YMD)

– yy/mm/dd 87/12/10

Data Types

68 DB2 UDB for iSeries SQL Reference V5R2

|

The default date format can be specified through the following interfaces:

Table 5. Default Date Format Interfaces

SQL Interface Specification

Embedded SQL The DATFMT and DATSEP parameters are specified
on the Create SQL Program (CRTSQLxxx) commands.
The SET OPTION statement can also be used to
specify the DATFMT and DATSEP parameters within
the source of a program containing embedded SQL.
(For more information about CRTSQLxxx commands,
see the SQL Programming with Host Languages
book.)

Interactive SQL and Run SQL
Statements

The DATFMT and DATSEP parameters on the Start
SQL (STRSQL) command or by changing the session
attributes. The DATFMT and DATSEP parameters on
the Run SQL Statements (RUNSQLSTM) command.
(For more information about STRSQL and
RUNSQLSTM commands, see the SQL Programming
Concepts book.)

Call Level Interface (CLI) on the
server

SQL_ATTR_DATE_FMT and SQL_ATTR_DATE_SEP
environment or connection variables
(For more information about CLI, see the SQL Call
Level Interfaces (ODBC) book.)

JDBC or SQLJ on the server using
Developer Kit for Java

Date Format and Date Separator connection property
(For more information about JDBC and SQLJ, see the
IBM Developer Kit for Java topic in the iSeries
Information Center.)

ODBC on a client using the iSeries
Access ODBC Driver

Date Format and Date Separator in the Advanced
Server Options in ODBC Setup
(For more information about ODBC, see the iSeries
Access category in the iSeries Information Center.)

JDBC on a client using the IBM
Toolbox for Java

Format in JDBC Setup
(For more information about ODBC, see the iSeries
Access category in the iSeries Information Center.)
(For more information about the IBM Toolbox for
Java, see IBM Toolbox for Java topic in the iSeries
Information Center .)

Time Strings: A string representation of a time is a character string that starts
with a digit and has a length of at least 4 characters. Trailing blanks can be
included; a leading zero can be omitted from the hour part of the time and
seconds can be omitted entirely. If you choose to omit seconds, an implicit
specification of 0 seconds is assumed. Thus, 13.30 is equivalent to 13.30.00.

Valid string formats for times are listed in Table 6 on page 70. Each IBM SQL
standard format is identified by name and includes an associated abbreviation (for
use by the CHAR function). The other format (*HMS) does not have an
abbreviation to be used by the CHAR function. The separator for the *HMS format
is controlled by the time separator (TIMSEP) parameter.

The database manager recognizes the string as a time when it is either:
v In the format specified by the default time format, or
v In one of the IBM SQL standard time formats

Data Types

Chapter 2. Language Elements 69

|

||

||

||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

../rzajp/rzajpmst02.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../cli/rzadpmst02.htm
../cli/rzadpmst02.htm
../rzaha/whatitis.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahh/page1.htm

The TIMFMT and TIMSEP parameters are specified on the CRTSQLxxx,
RUNSQLSTM, and STRSQL commands. The SET OPTION statement can be used
to specify TIMFMT and TIMSEP within the source of a program containing
embedded SQL.

Table 6. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International
Standards
Organization (*ISO)

ISO hh.mm.ss 17 13.30.05

IBM USA standard
(*USA)

USA hh:mm AM or PM 1:30 PM

IBM European
standard (*EUR)

EUR hh.mm.ss 13.30.05

Japanese industrial
standard Christian
era (*JIS)

JIS hh:mm:ss 13:30:05

Hours, minutes,
seconds (*HMS)

– hh:mm:ss 13:30:05

In the USA time format, the hour must not be greater than 12 and cannot be 0
except for the special case of 00:00 AM. Using the 24-hour clock, the
correspondence between the USA format and the 24-hour clock is as follows:

Table 7. USA Time Format
USA Format 24-Hour Clock
12:01 AM through 11:59 AM 00.01.00 through 00.59.00
01:00 AM through 11:59 AM 01:00.00 through 11:59.00
12:00 PM (noon) through 11:59 PM 12:00.00 through 23.59.00
12:00 AM (midnight) 24.00.00
00:00 AM (midnight) 00.00.00

In the USA format, a single space character exists between the minutes portion of
the time of day and the AM or PM.

The default time format can be specified through the following interfaces:

Table 8. Default Time Format Interfaces

SQL Interface Specification

Embedded SQL The TIMFMT and TIMSEP parameters are specified
on the Create SQL Program (CRTSQLxxx) commands.
The SET OPTION statement can also be used to
specify the TIMFMT and TIMSEP parameters within
the source of a program containing embedded SQL.
(For more information about CRTSQLxxx commands,
see the SQL Programming with Host Languages
book.)

17. This is an earlier version of the ISO format. JIS can be used to get the current ISO format.

Data Types

70 DB2 UDB for iSeries SQL Reference V5R2

|

||

||

||
|
|
|
|
|
|
|

../rzajp/rzajpmst02.htm

Table 8. Default Time Format Interfaces (continued)

SQL Interface Specification

Interactive SQL and Run SQL
Statements

The TIMFMT and TIMSEP parameters on the Start
SQL (STRSQL) command or by changing the session
attributes. The TIMFMT and TIMSEP parameters on
the Run SQL Statements (RUNSQLSTM) command.
(For more information about STRSQL and
RUNSQLSTM commands, see the SQL Programming
Concepts book.)

Call Level Interface (CLI) on the
server

SQL_ATTR_TIME_FMT and SQL_ATTR_TIME_SEP
environment or connection variables
(For more information about CLI, see the SQL Call
Level Interfaces (ODBC) book.)

JDBC or SQLJ on the server using
Developer Kit for Java

Time Format and Time Separator connection property
object
(For more information about JDBC and SQLJ, see the
IBM Developer Kit for Java topic in the iSeries
Information Center.)

ODBC on a client using the iSeries
Access ODBC Driver

Time Format and Time Separator in the Advanced
Server Options in ODBC Setup
(For more information about ODBC, see the iSeries
Access category in the iSeries Information Center.)

JDBC on a client using the IBM
Toolbox for Java

Format in JDBC Setup
(For more information about ODBC, see the iSeries
Access category in the iSeries Information Center.)
(For more information about the IBM Toolbox for
Java, see IBM Toolbox for Java topic in the iSeries
Information Center .)

Timestamp Strings: A string representation of a timestamp is a character string
that starts with a digit and has a length of at least 16 characters. The complete
string representation of a timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn or
yyyymmddhhmmss. Trailing blanks can be included. Leading zeros can be omitted
from the month, day, and hour part of the timestamp when using the timestamp
form with separators. Trailing zeros can be truncated or omitted entirely from
microseconds. If you choose to omit any digit of the microseconds portion, an
implicit specification of 0 is assumed. Thus, 1990-3-2-8.30.00.10 is equivalent to
1990-03-02-08.30.00.100000.

A timestamp whose time part is 24.00.00.000000 is also accepted.

DataLink Values

A DataLink value is an encapsulated value that contains a logical reference from
the database to a file stored outside the database. The attributes of this
encapsulated value are as follows:

link type
The currently supported type of link is a URL (Uniform Resource Locator).

scheme
For URLs, this is a value such as HTTP or FILE. The value, no matter what
case it is entered in, is stored in the database in upper case.

Data Types

Chapter 2. Language Elements 71

|

||

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../cli/rzadpmst02.htm
../cli/rzadpmst02.htm
../rzaha/whatitis.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahh/page1.htm

file server name
The complete address of the file server. The value, no matter what case it is
entered in, is stored in the database in upper case.

file path
The identity of the file within the server. The value is case sensitive and
therefore it is not converted to upper case when stored in the database.

access control token
When appropriate, the access token is embedded within the file path. It is
generated dynamically and is not a permanent part of the DataLink value
that is stored in the database.

comment
Up to 254 bytes of descriptive information. This is intended for application
specific uses such as further or alternative identification of the location of
the data.

The characters used in a DataLink value are limited to the set defined for a URL.
These characters include the uppercase (A through Z) and lower case (a through z)
letters, the digits (0 through 9) and a subset of special characters ($, -, _, @, ., &, +,
!, *, ″, ’, (,), =, ;, /, #, ?, :, space, and comma).

The first four attributes are collectively known as the linkage attributes. It is
possible for a DataLink value to have only a comment attribute and no linkage
attributes. Such a value may even be stored in a column but, of course, no file will
be linked to such a column.

It is important to distinguish between these DataLink references to files and the
LOB file reference variables described in “References to LOB File Reference
Variables” on page 115. The similarity is that they both contain a representation of
a file. However:
v DataLinks are retained in the database and both the links and the data in the

linked files can be considered as a natural extension of data in the database.
v File reference variables exist temporarily and they can be considered as an

alternative to a host program buffer.

Built-in scalar functions are provided to build a DataLink value (DLVALUE) and to
extract the encapsulated values from a DataLink value (DLCOMMENT,
DLLINKTYPE, DLURLCOMPLETE, DLURLPATH, DLURLPATHONLY,
DLURLSCHEME, DLURLSERVER).

Row ID Values
A row ID is a value that uniquely identifies a row in a table. A column or a host
variable can have a row ID data type. A ROWID column enables queries to be
written that navigate directly to a row in the table. Each value in a ROWID column
must be unique. The database manager maintains the values permanently, even
across table reorganizations. When a row is inserted into the table, the database
manager generates a value for the ROWID column unless one is supplied. If a
value is supplied, it must be a valid row ID value that was previously generated
by either DB2 UDB for OS/390 and z/OS or DB2 UDB for iSeries.

The internal representation of a row ID value is transparent to the user. The value
is never subject to CCSID conversion because it is considered to contain BIT data.
The length attribute of a ROWID column is 40.

Data Types

72 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|
|
|
|

|
|
|

User-Defined Types

Distinct Types
A distinct type is a user-defined data type that shares its internal representation
with a built-in data type (its ″source type″), but is considered to be a separate and
incompatible type for most operations. For example, the semantics for a picture
type, a text type, and an audio type that all use the built-in data type BLOB for
their internal representation are quite different. A distinct type is created with the
SQL statement CREATE DISTINCT TYPE.

For example, the following statement creates a distinct type named AUDIO:
CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB, it is
considered to be a separate type that is not comparable to a BLOB or to any other
type. This inability to compare AUDIO to other data types allows functions to be
created specifically for AUDIO and assures that these functions cannot be applied
to other data types.

The name of a distinct type is qualified with a schema name. The implicit schema
name for an unqualified name depends upon the context in which the distinct type
appears. If an unqualified distinct type name is used:
v In a CREATE DISTINCT TYPE or the object of DROP, COMMENT, GRANT, or

REVOKE statement, the database manager uses the normal process of
qualification by authorization ID to determine the schema name. For more
information about qualification rules, see “Unqualified Function, Procedure,
Specific, and Distinct Type Names” on page 53.

v In any other context, the database manager uses the SQL path to determine the
schema name. The database manager searches the schemas in the path, in
sequence, and selects the first schema that has a distinct type that matches. For a
description of the SQL path, see “CURRENT PATH, CURRENT_PATH, or
CURRENT FUNCTION PATH” on page 102.

A distinct type does not automatically acquire the functions and operators of its
source type, since these may not be meaningful. (For example, the LENGTH
function of the AUDIO type might return the length of its object in seconds rather
than in bytes.) Instead, distinct types support strong typing. Strong typing ensures
that only the functions and operators that are explicitly defined for a distinct type
can be applied to that distinct type. However, a function or operator of the source
type can be applied to the distinct type by creating an appropriate user-defined
function. The user-defined function must be sourced on the existing function that
has the source type as a parameter.

A distinct type is subject to the same restrictions as its source type. For example, a
table can only have one ROWID column. Therefore, a table with a ROWID column
cannot also have a column with distinct type that is sourced on a row ID.

The comparison operators are automatically generated for distinct types, except for
distinct types that are sourced on a DataLink. In addition, the database manager
automatically generates functions for a distinct type that support casting from the
source type to the distinct type and from the distinct type to the source type. For
example, for the AUDIO type created above, these cast functions are generated:

FUNCTION schema-name.BLOB (schema-name.AUDIO) RETURNS BLOB (1M)

FUNCTION schema-name.AUDIO (BLOB (1M)) RETURNS AUDIO

Data Types

Chapter 2. Language Elements 73

|
|
|

Promotion of Data Types
Data types can be classified into groups of related data types. Within such groups,
an order of precedence exists in which one data type is considered to precede
another data type. This precedence enables the database manager to support the
promotion of one data type to another data type that appears later in the
precedence order. For example, the database manager can promote the data type
CHAR to VARCHAR and the data type INTEGER to DOUBLE PRECISION;
however, the database manager cannot promote a CLOB to a VARCHAR.

The database manager considers the promotion of data types when:
v Performing function resolution (see “Function resolution” on page 120)
v Casting distinct types (see “Casting Between Data Types” on page 75)
v Assigning distinct types to built-in data types (see “Distinct Type Assignments”

on page 86)

For each data type, Table 9 shows the precedence list (in order) that the database
manager uses to determine the data types to which each data type can be
promoted. The table indicates that the best choice is the same data type and not
promotion to another data type. Note that the table also shows data types that are
considered equivalent during the promotion process. For example, CHARACTER
and GRAPHIC are considered to be equivalent data types.

Table 9. Precedence of Data Types

Data Type * Data Type Precedence List (in best-to-worst order)

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB or DBCLOB

VARCHAR or VARGRAPHIC VARCHAR or VARGRAPHIC, CLOB or DBCLOB

CLOB or DBCLOB CLOB or DBCLOB

BLOB BLOB

SMALLINT SMALLINT, INTEGER, BIGINT, DECIMAL or NUMERIC, REAL, DOUBLE

INTEGER INTEGER, BIGINT, DECIMAL or NUMERIC, REAL, DOUBLE

BIGINT BIGINT, DECIMAL or NUMERIC, REAL, DOUBLE

DECIMAL or NUMERIC DECIMAL or NUMERIC, REAL, DOUBLE

REAL REAL, DOUBLE

DOUBLE DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

ROWID ROWID

A distinct type The same distinct type

Notes:

* Other synonyms for the listed data types are considered to be the same as the synonym listed.

Promotion of Data Types

74 DB2 UDB for iSeries SQL Reference V5R2

||

Casting Between Data Types
There are many occasions when a value with a given data type needs to be cast
(changed) to a different data type or to the same data type with a different length,
precision, or scale. Data type promotion, as described in “Promotion of Data
Types” on page 74, is one example of when a value with one data type needs to be
cast to a new data type. A data type that can be changed to another data type is
castable from the source data type to the target data type.

The casting of one data type to another can occur implicitly or explicitly. You can
use cast functions or CAST specifications to explicitly cast a data type. The
database manager might implicitly cast data types during assignments that involve
a distinct type (see “Distinct Type Assignments” on page 86). In addition, when
you create a sourced user-defined function, the data types of the parameters of the
source function must be castable to the data types of the function that you are
creating (see “CREATE FUNCTION” on page 421).

If truncation occurs when a character or graphic string is cast to another data type,
a warning occurs if any non-blank characters are truncated. This truncation
behavior is unlike the assignment of character or graphic strings to a target when
an error occurs if any non-blank characters are truncated.

For casts that involve a distinct type as either the data type to be cast to or from,
Table 10 shows the supported casts. For casts between built-in data types, Table 11
on page 76 shows the supported casts.

Table 10. Supported Casts When a Distinct Type is Involved

Data Type ... Is Castable to Data Type ...

Distinct type DT Source data type of distinct type DT

Source data type of distinct type DT Distinct type DT

Distinct type DT Distinct type DT

Data type A
Distinct type DT where A is promotable to the source data type of distinct
type DT (see “Promotion of Data Types” on page 74)

INTEGER Distinct type DT if DT’s source type is SMALLINT

DOUBLE Distinct type DT if DT’s source data type is REAL

VARCHAR or VARGRAPHIC Distinct type DT if DT’s source data type is CHAR or GRAPHIC

When a distinct type that is not explicitly qualified with a schema name is
involved in a cast, the database manager uses the SQL path to determine a schema
name. The database manager chooses the name of the first schema in the SQL path
that contains a distinct type by that name. For more information about the SQL
path, see “Schemas and the SQL Path” on page 55.

The following table describes the supported casts between data types:

Casting Between Data Types

Chapter 2. Language Elements 75

Table 11. Supported Casts Between Built-In Data Types

Source Data
Type

SMALLINT
INTEGER
BIGINT

DECIMAL
NUMERIC

REAL
DOUBLE

CHAR
VARCHAR
CLOB

GRAPHIC
VARGRAPHIC
DBCLOB DATE TIME

TIME
STAMP BLOB

ROW
ID

SMALLINT Y Y Y Y — — — — — —

INTEGER Y Y Y Y — — — — — —

BIGINT Y Y Y Y — — — — — —

DECIMAL Y Y Y Y — — — — — —

NUMERIC Y Y Y Y — — — — — —

REAL Y Y Y Y — — — — — —

DOUBLE Y Y Y Y — — — — — —

CHAR Y Y Y Y * Y Y Y Y Y

VARCHAR Y Y Y Y * Y Y Y Y Y

CLOB Y Y Y Y * — — — Y —

GRAPHIC — — — Y* Y — — — Y —

VARGRAPHIC— — — Y* Y — — — Y —

DBCLOB — — — Y* Y — — — Y —

DATE — — — Y** — Y — Y — —

TIME — — — Y** — — Y Y — —

TIMESTAMP — — — Y** — Y Y Y — —

BLOB — — — — — — — — Y —

ROWID — — — Y — — — — Y Y

Notes: * Conversion is only supported for UCS-2 graphic.

** Casting from DATE, TIME, TIMESTAMP, or ROWID to CLOB is not supported.

Only a DATALINK can be cast to a DATALINK type.

The following table describes the rules for casting to a data type:

Casting Between Data Types

76 DB2 UDB for iSeries SQL Reference V5R2

|
|

|||||||||||

|

Table 12. Rules for Casting to a Data Type

Target Data Type Source Data Type Rules

SMALLINT Any See the SMALLINT scalar function.

INTEGER Any See the INTEGER scalar function.

BIGINT Any See the BIGINT scalar function.

DECIMAL Any See the DECIMAL scalar function.

NUMERIC Any See the ZONED scalar function.

REAL Any See the REAL scalar function.

DOUBLE Any See the DOUBLE scalar function.

CHAR Any See the CHAR scalar function.

VARCHAR Any See the VARCHAR scalar function.

CLOB Any See the CLOB scalar function.

GRAPHIC Any See the rules for string assignment to a host variable.

VARGRAPHIC Any See the rules for string assignment to a host variable.

DBCLOB Any See the DBCLOB scalar function.

DATE Any See the DATE scalar function.

TIME Any See the TIME scalar function.

TIMESTAMP CHAR
See the TIMESTAMP scalar function, where one operand is
specified.

TIMESTAMP DATE
The timestamp is composed of the specified date and a time of
00:00:00.

TIMESTAMP TIME
The timestamp is composed of the CURRENT_DATE and the
specified time.

BLOB Any See the BLOB scalar function.

DATALINK DATALINK See the rules for DataLink assignments.

ROWID Any See the ROWID scalar function.

Casting Between Data Types

Chapter 2. Language Elements 77

|||

Assignments and Comparisons
The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of CALL, INSERT, UPDATE,
FETCH, SELECT, SET variable, and VALUES INTO statements. Comparison
operations are performed during the execution of statements that include
predicates and other language elements such as MAX, MIN, DISTINCT, GROUP
BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands involved
must be compatible. The compatibility rule also applies to UNION, concatenation,
CASE expressions, and the CONCAT, VALUE, COALESCE, IFNULL, MIN, and
MAX scalar functions. The compatibility matrix is as follows:

Assignments and Comparisons

78 DB2 UDB for iSeries SQL Reference V5R2

Table 13. Data Type Compatibility

Operands
Binary
Integer

Decimal
Number4

Floating
Point

Character
String

Graphic
String

Binary
String Date Time Timestamp

Distinct
Type

Binary
Integer

Yes Yes Yes No No No No No No 2

Decimal
Number

Yes Yes Yes No No No No No No 2

Floating
Point

Yes Yes Yes No No No No No No 2

Character
String

No No No Yes Yes 5 No 3 1 1 1 2

Graphic
String

No No No Yes 5 Yes No No No No 2

Binary
String

No No No No 3 No Yes No No No 2

Date No No No 1 No No Yes No No 2

Time No No No 1 No No No Yes No 2

Timestamp No No No 1 No No No No Yes 2

Distinct
Type

2 2 2 2 2 2 2 2 2 2

Notes:

1. The compatibility of datetime values and character strings is limited to assignment, comparison, and the VALUE,
COALESCE, IFNULL, MIN, and MAX scalar functions.

v Datetime values can be assigned to character-string columns and to character-string variables as explained in
“Datetime Assignments” on page 83.

v A valid string representation of a date can be assigned to a date column, compared with a date, or used in a
VALUE, COALESCE, IFNULL, MIN, or MAX scalar function with a date.

v A valid string representation of a time can be assigned to a time column, compared with a time, or used in a
VALUE, COALESCE, IFNULL, MIN, or MAX scalar function with a time.

v A valid string representation of a timestamp can be assigned to a timestamp column, compared with a
timestamp, or used in a VALUE, COALESCE, IFNULL, MIN, or MAX scalar function with a timestamp.

2. A value with a distinct type is comparable only to a value that is defined with the same distinct type. In general,
the database manager supports assignments between a distinct type value and its source data type. For
additional information, see “Distinct Type Assignments” on page 86.

3. All character strings, even those with subtype FOR BIT DATA, are not compatible with binary strings.

4. Decimal refers to both packed and zoned decimal.

5. Bit data and graphic strings are not compatible.

6. A DATALINK operand can only be assigned to another DATALINK operand. The DATALINK value can only be
assigned to a column if the column is defined with NO LINK CONTROL or the file exists and is not already
under file link control. A DATALINK operand can not be directly compared to any data type. The
DLCOMMENT, DLLINKTYPE, DLURLCOMPLETE, DLURLPATH, DLURLPATHONLY, DLURLSCHEME, and
DLURLSERVER scalar functions can be used to extract character string values from a datalink which can then be
compared to other strings.

7. A ROWID operand can only be assigned to another ROWID operand.

A basic rule for assignment operations is that a null value cannot be assigned to a
column that cannot contain null values, nor to a host variable that does not have
an associated indicator variable. See “References to Host Variables” on page 111 for
a discussion of indicator variables.

Assignments and Comparisons

Chapter 2. Language Elements 79

|

Numeric Assignments
The basic rule for numeric assignments is that the whole part of a decimal or
integer number cannot be truncated. If necessary, the fractional part of a decimal
number is truncated. In the case of the assignment to a host variable, a positive
value may be returned in the SQLCODE.

An error occurs if:
v Truncation of the whole part of the number occurs on assignment to a column
v Truncation of the whole part of the number occurs on assignment to a host

variable that does not have an indicator variable

A warning occurs if:
Truncation of the whole part of the number occurs on assignment to a host
variable with an indicator variable. In this case, the number is not assigned to
the host variable and the indicator variable is set to negative 2.

Note: Decimal refers to both packed and zoned decimal.

Note: When fetching decimal data from a file that was not created by an SQL
CREATE TABLE statement, a decimal field may contain data that is not
valid. In this case, the data will be returned as stored, without any warning
or error message being issued. A table that is created by the SQL CREATE
TABLE statement does not allow decimal data that is not valid.

Decimal or Integer to Floating-Point
Floating-point numbers are approximations of real numbers. Hence, when a
decimal or integer number is assigned to a floating-point column or variable, the
result may not be identical to the original number.

The approximation is more accurate if the receiving column or variable is defined
as double precision (64 bits) rather than single precision (32 bits).

Floating-Point or Decimal to Integer
When a decimal or floating-point number is assigned to a binary integer column or
variable, the number is converted, if necessary, to the precision and the scale of the
target. If the scale of the target is zero, the fractional part of the number is lost. The
necessary number of leading zeros is added or eliminated, and, in the fractional
part of the number, the necessary number of trailing zeros is added, or the
necessary number of trailing digits is eliminated.

Decimal to Decimal
When a decimal number is assigned to a decimal column or variable, the number
is converted, if necessary, to the precision and the scale of the target. The necessary
number of leading zeros is added or eliminated, and, in the fractional part of the
number, the necessary number of trailing zeros is added, or the necessary number
of trailing digits is eliminated.

Integer to Decimal
When an integer is assigned to a decimal column or variable, the number is
converted first to a temporary decimal number and then, if necessary, to the
precision and scale of the target. If the scale of the integer is zero, the precision of
the temporary decimal number is 5,0 for a small integer, 11,0 for a large integer, or
19,0 for a big integer.

Assignments and Comparisons

80 DB2 UDB for iSeries SQL Reference V5R2

Floating-Point to Decimal
When a floating-point number is assigned to a decimal column or variable, the
number is first converted to a temporary decimal number of precision 31 and then,
if necessary, truncated to the precision and scale of the target. In this conversion,
the number is rounded (using floating-point arithmetic) to a precision of 31
decimal digits. As a result, a number less than 0.5*10─31 is reduced to 0. The scale
is given the largest possible value that allows the whole part of the number to be
represented without loss of significance.

To COBOL and RPG Integers
Assignment to COBOL and RPG small or large integer host variables takes into
account any scale specified for the host variable. However, assignment to integer
host variables uses the full size of the integer. Thus, the value placed in the
COBOL data item or RPG field may be larger than the maximum precision
specified for the host variable.

In COBOL, for example, if COL1 contains a value of 12345, the statements:
01 A PIC S9999 BINARY.
EXEC SQL SELECT COL1

INTO :A
FROM TABLEX

END-EXEC.

result in the value 12345 being placed in A, even though A has been defined with
only 4 digits.

Notice that the following COBOL statement:
MOVE 12345 TO A.

results in 2345 being placed in A.

String Assignments

Binary String Assignments
There are two types of binary string assignments:
v Storage assignment is when a value is assigned to a column or a parameter of a

function or stored procedure.
v Retrieval assignment is when a value is assigned to a host variable.

Storage Assignment: The basic rule is that the length of a string assigned to a
column or parameter of a function or procedure must not be greater than the
length attribute of the column or parameter. If the string is longer than the length
attribute of that column, a negative SQLCODE is returned. For a description of the
SQLCA, see Appendix B, “SQL Communication Area” on page 803.

Retrieval Assignment: The length of a string assigned to a host variable can be
greater than the length attribute of the host variable. When a string is assigned to a
variable and the string is longer than the length attribute of the variable, the string
is truncated on the right by the necessary number of characters. When this occurs,
the value 'W' is assigned to the SQLWARN1 field of the SQLCA.

When a string of length n is assigned to a varying-length string variable with a
maximum length greater than n, the bytes after the nth byte of the variable are
undefined.

Assignments and Comparisons

Chapter 2. Language Elements 81

Character and Graphic String Assignments
The following rules apply when both the source and the target are strings. When a
datetime data type is involved, see “Datetime Assignments” on page 83.

There are two types of character and graphic string assignments:
v Storage assignment is when a value is assigned to a column or a parameter of a

function or stored procedure.
v Retrieval assignment is when a value is assigned to a host variable.

Storage Assignment: The basic rule is that the length of a string assigned to a
column or parameter of a function or procedure must not be greater than the
length attribute of the column or parameter. If the string is longer than the length
attribute of that column, a negative SQLCODE is returned. (Trailing blanks are
normally included in the length of the string. For storage assignments, however,
trailing blanks are not included in the length of the string.)

For a description of the SQLCA, see Appendix B, “SQL Communication Area” on
page 803.

When a string is assigned to a fixed-length string column or parameter and the
length of the string is less than the length attribute of the target, the string is
padded on the right with the necessary number of single-byte, double-byte, or
UCS-2 blanks.18 The pad character is always a blank, even for bit data.

Retrieval Assignment: The length of a string assigned to a host variable can be
greater than the length attribute of the host variable. When a string is assigned to a
variable and the string is longer than the length attribute of the variable, the string
is truncated on the right by the necessary number of characters. When this occurs,
the value 'W' is assigned to the SQLWARN1 field of the SQLCA. Furthermore, if an
indicator variable is provided, it is set to the original length of the string. If only
the NUL-terminator is truncated for a C NUL-terminated host variable and the
*NOCNULRQD option was specified on the CRTSQLCI or CRTSQLCPPI command
(or CNULRQD(*NO) on the SET OPTION statement), the value of 'N' is assigned
to the SQLWARN1 field of the SQLCA and a NUL is not placed in the variable.

When a string is assigned to a fixed-length variable and the length of the string is
less than the length attribute of the target, the string is padded on the right with
the necessary number of single-byte, double-byte, or UCS-2 blanks.18 The pad
character is always a blank, even for bit data.

When a string of length n is assigned to a varying-length string variable with a
maximum length greater than n, the characters after the nth character of the
variable are undefined.

Assignments Involving Mixed Strings: If a string contains mixed data, the
assignment rules may require truncation within a sequence of double-byte codes.
To prevent the loss of the shift-in character that ends the double-byte sequence,
additional characters may be truncated from the end of the string, and a shift-in
character added. In the truncated result, there is always an even number of bytes
between each shift-out character and its matching shift-in character.

18. UCS-2 defines a blank character at code point X’0020’ and X’3000’. The database manager pads with the blank at code point
X’0020’.

Assignments and Comparisons

82 DB2 UDB for iSeries SQL Reference V5R2

Assignments Involving C NUL-terminated Strings: When a string of length n is
assigned to a C NUL-terminated string variable with a length greater than n+1:
v If the *CNULRQD option was specified on the CRTSQLCI or CRTSQLCPPI

command (or CNULRQD(*YES) on the SET OPTION statement), the string is
padded on the right with x-n-1 blanks where x is the length of the variable. The
padded string is then assigned to the variable and the NUL-terminator is placed
in the next character position.

v If the *NOCNULRQD precompiler option was specified on the CRTSQLCI or
CRTSQLCPPI command (or CNULRQD(*NO) on the SET OPTION statement),
the string is not padded on the right. The string is assigned to the variable and
the NUL-terminator is placed in the next character position.

Conversion Rules for Assignments: A string assigned to a column or host
variable is first converted, if necessary, to the coded character set of the target.
Character conversion is necessary only if all of the following are true:
v The CCSIDs are different.
v Neither CCSID is 65535.
v The string is neither null nor empty.
v The CCSID Conversion Selection Table indicates that conversion is necessary.

An error occurs if:
v The CCSID Conversion Selection Table is used but does not contain any

information about the pair of CCSIDs.
v A character of the string cannot be converted, and the operation is assignment to

a column or assignment to a host variable without an indicator variable. For
example, a double-byte character (DBCS) cannot be converted to a column or
host variable with a single-byte character (SBCS) CCSID.

A warning occurs if:
v A character of the string is converted to the substitution character.
v A character of the string cannot be converted, and the operation is assignment to

a host variable with an indicator variable. For example, a DBCS character cannot
be converted to a host variable with an SBCS CCSID. In this case, the string is
not assigned to the host variable and the indicator variable is set to −2.

Datetime Assignments
A value assigned to a DATE column must be a date or a valid string representation
of a date. A date can only be assigned to a DATE column, a character-string
column, a character-string variable or an ILE RPG/400 timestamp variable. A value
assigned to a TIME column must be a time or a valid string representation of a
time. A time can only be assigned to a TIME column, a character-string column, a
character-string variable or an ILE RPG/400 timestamp variable. A value assigned
to a TIMESTAMP column must be a timestamp or a valid string representation of a
timestamp. A timestamp can only be assigned to a TIMESTAMP column, a
character-string column, a character-string variable or an ILE RPG/400 timestamp
variable.

When a datetime value is assigned to a character-string variable or column, it is
converted to its string representation. Leading zeros are not omitted from any part
of the date, time, or timestamp. The required length of the target varies depending
on the format of the string representation. If the length of the target is greater than

Assignments and Comparisons

Chapter 2. Language Elements 83

required, it is padded on the right with blanks. If the length of the target is less
than required, the result depends on the type of datetime value involved and on
the type of target.
v If the target is a character-string column, truncation is not allowed. The

following rules apply:
DATE

The length attribute of the column must be at least 10 if the date format is
*ISO, USA, *EUR, or *JIS. If the date format is *YMD, *MDY, or *DMY, the
length attribute of the column must be at least 8. If the date format is *JUL,
the length of the host variable must be at least 6.

TIME
The length attribute of the column must be at least 8.

TIMESTAMP
The length attribute of the column must be at least 26.

v When the target is a host variable, the following rules apply:
DATE

The length of the host variable must be at least 10 if the date format is *ISO,
*USA, *EUR, or *JIS. If the date format is *YMD, *MDY, or *DMY, the length
of the host variable must be at least 8. If the date format is *JUL, the length
of the host variable must be at least 6.

TIME

– If the *USA format is used, the length of the host variable must not be less
than 8. This format does not include seconds.

– If the *ISO, *EUR, *JIS, or *HMS time format is used, the length of the host
variable must not be less than 5. If the length is 5, 6, or 7, the seconds part of
the time is omitted from the result, and SQLWARN1 is set to 'W'. In this case,
the seconds part of the time is assigned to the indicator variable if one is
provided, and, if the length is 6 or 7, blank padding occurs so that the value
is a valid string representation of a time.

TIMESTAMP
The length of the host variable must not be less than 19. If the length is
between 19 and 25, the timestamp is truncated like a string, causing the
omission of one or more digits of the microsecond part. If the length is 20,
the trailing decimal point is replaced by a blank so that the value is a valid
string representation of a timestamp.

DataLink Assignments
The assignment of a value to a DataLink column results in the establishment of a
link to a file unless the linkage attributes of the value are empty or the column is
defined with NO LINK CONTROL. In cases where a linked value already exists in
the column, that file is unlinked. Assigning a null value where a linked value
already exists also unlinks the file associated with the old value.

If the application provides the same data location as already exists in the column,
the link is retained. There are two reasons that this might be done:
v the comment is being changed
v if the table is placed in link pending state, the links in the table can be reinstated

by providing linkage attributes identical to the ones in the column.

Assignments and Comparisons

84 DB2 UDB for iSeries SQL Reference V5R2

A DataLink value may be assigned to a column by using the DLVALUE scalar
function. The DLVALUE scalar function creates a new DataLink value which can
then be assigned a column. Unless the value contains only a comment or the URL
is exactly the same, the act of assignment will link the file.

When assigning a value to a DataLink column, the following error conditions can
occur:
v Data Location (URL) format is invalid
v File server is not registered with this database
v Invalid link type specified
v Invalid length of comment or URL

Note that the size of a URL parameter or function result is the same on both
input or output and is bound by the length of the DataLink column. However,
in some cases the URL value returned has an access token attached. In situations
where this is possible, the output location must have sufficient storage space for
the access token and the length of the DataLink column. Hence, the actual
length of the comment and URL in its fully expanded form provided on input
should be restricted to accommodate the output storage space. If the restricted
length is exceeded, this error is raised.

When the assignment is also creating a link, the following errors can occur:
v File server not currently available.
v File does not exist.
v Referenced file cannot be accessed for linking.
v File already linked to another column.

Note that this error will be raised even if the link is to a different relational
database.

In addition, when the assignment removes an existing link, the following errors
can occur:
v File server not currently available.
v File with referential integrity control is not in a correct state according to the

DB2 DataLinks File Manager.

A DataLink value may be retrieved from the database through the use of scalar
functions (such as DLLINKTYPE and DLURLPATH). The results of these scalar
functions can then be assigned to host variables.

Note that usually no attempt is made to access the file server at retrieval time. 19It
is therefore possible that subsequent attempts to access the file server through file
system commands might fail.

A warning may be returned when retrieving a DataLink value because the table is
in link pending state.

19. It may be necessary to access the file server to determine the prefix name associated with a path. This can be changed at the file
server when the mount point of a file system is moved. First access of a file on a server will cause the required values to be
retrieved from the file server and cached at the database server for the subsequent retrieval of DataLink values for that file
server. An error is returned if the file server cannot be accessed.

Assignments and Comparisons

Chapter 2. Language Elements 85

Row ID Assignments
A row ID value can only be assigned to a column, parameter, or host variable with
a row ID data type. For the value of the ROWID column, the column must be
defined as GENERATED BY DEFAULT or OVERRIDING SYSTEM VALUE must be
specified. A unique constraint is implicitly added to every table that has a ROWID
column that guarantees that every ROWID value is unique. The value that is
specified for the column must be a valid row ID value that was previously
generated by DB2 UDB for OS/390 and z/OS or DB2 UDB for iSeries.

Distinct Type Assignments
The rules that apply to the assignments of distinct types to host variables are
different than the rules for all other assignments that involve distinct types.

Assignments to Host Variables
The assignment of a distinct type to a host variable is based on the source data
type of the distinct type. Therefore, the value of a distinct type is assignable to a
host variable only if the source data type of the distinct type is assignable to the
host variable.

Example: Assume that distinct type AGE was created with the following SQL
statement and column STU_AGE in table STUDENTS was defined with that
distinct type. Using the CL_SCHED table, select all the classes (CLASS_CODE) that
start (STARTING) later today. Today’s classes have a value of 3 in the DAY column.

CREATE DISTINCT TYPE AGE AS SMALLINT WITH COMPARISONS

Next, consider this valid assignment of a student’s age to host variable HV_AGE,
which has an INTEGER data type.

SELECT STU_AGE INTO :HV_AGE FROM STUDENTS WHERE STU_NUMBER = 200

The distinct type value is assignable to the host variable HV_AGE because the
source data type of the distinct type (SMALLINT) is assignable to the host variable
(INTEGER). If distinct type AGE had been sourced on a character data type such
as CHAR(5), the above assignment would be invalid because a character type
cannot be assigned to an integer type.

Assignments Other Than to Host Variables
A distinct type can be either the source or target of an assignment. Assignment is
based on whether the data type of the value to be assigned is castable to the data
type of the target. “Casting Between Data Types” on page 75 shows which casts are
supported when a distinct type is involved. Therefore, a distinct type value can be
assigned to any target other than a host variable when:
v The target of the assignment has the same distinct type, or
v The distinct type is castable to the data type of the target

Any value can be assigned to a distinct type when:
v The value to be assigned has the same distinct type as the target, or
v The data type of the assigned value is castable to the target distinct type

Example: Assume that the source data type for distinct type AGE is SMALLINT:
CREATE DISTINCT TYPE AGE AS SMALLINT WITH COMPARISONS

Next, assume that two tables TABLE1 and TABLE2 were created with four
identical column descriptions:

Assignments and Comparisons

86 DB2 UDB for iSeries SQL Reference V5R2

AGECOL AGE
SMINTCOL SMALLINT
INTCOL INTEGER
DECCOL DEC(6,2)

Using the following SQL statement and substituting various values for X and Y to
insert values into various columns of TABLE1 from TABLE2, Table 14 shows
whether the assignments are valid.

INSERT INTO TABLE1 (Y) SELECT X FROM TABLE2

Table 14. Assessment of various assignments (for example on INSERT)

TABLE2.X TABLE1.Y Valid Reason

AGECOL AGECOL Yes Source and target are same distinct
type

SMINTCOL AGECOL Yes SMALLINT can be cast to AGE
(because AGE’s source type is
SMALLINT)

INTCOL AGECOL Yes INTEGER can be cast to AGE
(because AGE’s source type is
SMALLINT)

DECCOL AGECOL No DECIMAL cannot be cast to AGE

AGECOL SMINTCOL Yes AGE can be cast to its source type
SMALLINT

AGECOL INTCOL No AGE cannot be cast to INTEGER

AGECOL DECCOL No AGE cannot be cast to DECIMAL

Numeric Comparisons
Numbers are compared algebraically; that is, with regard to sign. For example,
negative 2 is less than +1.

If one number is an integer and the other number is decimal, the comparison is
made with a temporary copy of the integer, which has been converted to decimal.

When decimal or nonzero scale binary numbers with different scales are compared,
the comparison is made with a temporary copy of one of the numbers that has
been extended with trailing zeros so that its fractional part has the same number of
digits as the other number.

If one number is floating point and the other number is integer, decimal, or
single-precision floating point, the comparison is made with a temporary copy of
the second number converted to a double-precision floating-point number.
However, if a single-precision floating-point column is compared to a constant and
the constant can be represented by a single-precision floating-point number, the
comparison is made with a single-precision form of the constant.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

Assignments and Comparisons

Chapter 2. Language Elements 87

String Comparisons

Binary String Comparisons
Binary string comparisons always use a sort sequence of *HEX and the
corresponding bytes of each string are compared. Additionally, two binary strings
are equal only if the length of the two strings is identical.

Character and Graphic String Comparisons
Character and UCS-2 graphic string comparisons use the sort sequence in effect
when the statement is executed for all SBCS data and the single-byte portion of
mixed data. If the sort sequence is *HEX, the corresponding bytes of each string
are compared. For all other sort sequences, the corresponding bytes of the
weighted value of each string are compared. If the strings have different lengths, a
temporary copy of the shorter string is padded on the right with blanks before
comparison. The padding makes each string the same length. The pad character is
always a blank, regardless of the sort sequence. For bit data, the pad character is
also a blank. For DBCS graphic data, the pad character is a DBCS blank (x’4040’).
For UCS-2 graphic data, the pad character is a UCS-2 blank. 20

Two strings are equal if any of the following are true:
v Both strings are empty.
v A *HEX sort sequence is used and all corresponding bytes are equal.
v A sort sequence other than *HEX is used and all corresponding bytes of the

weighted value are equal.

An empty string is equal to a blank string. The relationship between two unequal
strings is determined by a comparison of the first pair of unequal bytes (or bytes
of the weighted value) from the left end of the string. This comparison is made
according to the sort sequence in effect when the statement is executed.

Two varying-length strings with different lengths are equal if they differ only in
the number of trailing blanks. In operations that select one value from a set of such
values, the value selected is arbitrary. The operations that can involve such an
arbitrary selection are DISTINCT, MAX, MIN, UNION and references to a
grouping column. See the description of GROUP BY for further information about
the arbitrary selection involved in references to a grouping column.

Conversion Rules for Comparison: When two strings are compared, one of the
strings is first converted, if necessary, to the coded character set of the other string.
Character conversion is necessary only if all of the following are true:
v The CCSIDs of the two strings are different.
v Neither CCSID is 65535.
v The string selected for conversion is neither null nor empty.
v The CCSID Conversion Selection Table indicates that conversion is necessary.

If two strings with different encoding schemes are compared and the operands are
the same type, any necessary conversion applies to the string as follows:

20. UCS-2 defines a blank character at code point X’0020’ and X’3000’. The database manager pads with the blank at code point
X’0020’.

Assignments and Comparisons

88 DB2 UDB for iSeries SQL Reference V5R2

Table 15. Selecting the Encoding Scheme for Character Conversion

First Operand

Second Operand

SBCS Data DBCS Data Mixed Data UCS-2 Data

SBCS Data See below Second Second Second

DBCS Data First See below Second Second

Mixed Data First First See below Second

UCS-2 Data First First First See below

Otherwise, the string selected for conversion depends on the type of each operand.
The following table shows which operand is selected for conversion, given the
operand types:

Table 16. Selecting the Operand for Character Conversion

First
Operand

Second Operand

Column
Value

Derived
Value

Special
Register Constant Host Variable

Column
Value

Second Second Second Second Second

Derived
Value

First Second Second Second Second

Special
Register

First First Second Second Second

Constant First First First Second Second

Host Variable First First First First Second

A host variable containing data in a foreign encoding scheme is always effectively
converted to the native encoding scheme before it is used in any operation. The
above rules are based on the assumption that this conversion has already occurred.

An error occurs if a character of the string cannot be converted or the CCSID
Conversion Selection Table is used but does not contain any information about the
pair of CCSIDs. A warning occurs if a character of the string is converted to the
substitution character.

Datetime Comparisons
A DATE, TIME, or TIMESTAMP value can be compared either with another value
of the same data type or with a string representation of that data type. All
comparisons are chronological, which means the farther a point in time is from
January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero seconds
are implied. The time 24:00:00 compares greater than the time 00:00:00.

Comparisons involving TIMESTAMP values are chronological without regard to
representations that might be considered equivalent. Thus, the following predicate
is true:

TIMESTAMP(’1990-02-23-00.00.00’) > ’1990-02-22-24.00.00’

Assignments and Comparisons

Chapter 2. Language Elements 89

Distinct Type Comparisons
A value with a distinct type can be compared only to another value with exactly
the same distinct type.

For example, assume that distinct type YOUTH and table CAMP_DB2_ROSTER
table were created with the following SQL statements:

CREATE DISTINCT TYPE YOUTH AS INTEGER WITH COMPARISONS

CREATE TABLE CAMP_DB2_ROSTER
(NAME VARCHAR(20),

ATTENDEE_NUMBER INTEGER NOT NULL,
AGE YOUTH,
HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid because AGE and HIGH_SCHOOL_LEVEL have
the same distinct type:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:
SELECT * FROM CAMP_DB2_ROSTER

WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a cast function
or CAST specification to cast between the distinct type and the source type. All of
the following comparisons are valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > YOUTH(ATTENDEE_NUMBER)

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

SELECT * FROM CAMP_DB2_ROSTER
WHERE INTEGER(AGE) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

Assignments and Comparisons

90 DB2 UDB for iSeries SQL Reference V5R2

Rules for Result Data Types
The data types of a result are determined by rules which are applied to the
operands in an operation. This section explains those rules.

These rules apply to:
v Corresponding columns in UNION or UNION ALL operations
v Result expressions of a CASE expression
v Arguments of the scalar functions COALESCE, IFNULL, MAX, MIN, and

VALUE
v Expression values of the IN list of an IN predicate

The data type of the result is determined by the data type of the operands. The
data types of the first two operands determine an intermediate result data type,
this data type and the data type of the next operand determine a new intermediate
result data type, and so on. The last intermediate result data type and the data
type of the last operand determine the data type of the result. For each pair of data
types, the result data type is determined by the sequential application of the rules
summarized in the following table:

If neither operand column allows nulls, the result does not allow nulls. Otherwise,
the result allows nulls. If the description of any operand column is not the same as
the description of the result, its values are converted to conform to the description
of the result.

The conversion operation is exactly the same as if the values were assigned to the
result. For example,
v If one operand column is CHAR(10), and the other operand column is CHAR(5),

the result is CHAR(10), and the values derived from the CHAR(5) column are
padded on the right with five blanks.

v An error occurs if the whole part of a number cannot be preserved.

Binary String Operands
Binary strings (BLOBs) are compatible only with other binary strings (BLOBs). The
data type of the result is a BLOB. Other data types can be treated as a BLOB data
type by using the BLOB scalar function to cast the data type to a BLOB. The length
of the result BLOB is the largest length of all the data types.

If one operand
column is...

And the other
operand is... The data type of the result column is...

BLOB(x) BLOB(y) BLOB(z) where z = max(x,y)

Character and Graphic String Operands
Character and graphic strings are compatible with other character and graphic
strings when there is a defined conversion between their corresponding CCSIDs.

Rules for Result Data Types

Chapter 2. Language Elements 91

If one operand
column is...

And the other
operand is... The data type of the result column is...

DBCLOB(x) CHAR(y) or
VARCHAR(y) or
CLOB(y) or
GRAPHIC(y) or
VARGRAPHIC(y) or
DBCLOB(y)

DBCLOB(z) where z = max(x,y)

CLOB(x) GRAPHIC(y) or
VARGRAPHIC(y)

DBCLOB(z) where z = max(x,y)

VARGRAPHIC(x) VARGRAPHIC(y) or
GRAPHIC(y) or
VARCHAR(y) or
CHAR(y)

VARGRAPHIC(z) where z = max(x,y)

VARCHAR(x) GRAPHIC(y) VARGRAPHIC(z) where z = max(x,y)

GRAPHIC(x) GRAPHIC(y) or
CHAR(y)

GRAPHIC(z) where z = max(x,y)

CLOB(x) CLOB(y) or
VARCHAR(y) or
CHAR(y)

CLOB(z) where z = max(x,y)

VARCHAR(x) VARCHAR(y) or
CHAR(y)

VARCHAR(z) where z = max(x,y)

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

The CCSID of the result also determines the resulting subtypes based on the
following table:

If one operand
column is...

And the other
operand is... The subtype of the result column is...

UCS-2 data DBCS or mixed or
SBCS data

UCS-2 data

DBCS data DBCS or mixed or
SBCS data

DBCS data

bit data mixed, SBCS, or bit
data

bit data

mixed data mixed or SBCS data mixed data

SBCS data SBCS data SBCS data

Numeric Operands
Numeric types are compatible only with other numeric types.

If one operand
column is...

And the other
operand is... The data type of the result column is...

FLOAT (double) any numeric type FLOAT (double)

FLOAT (single) FLOAT (single) FLOAT (single)

FLOAT (single) DECIMAL,
NUMERIC, BIGINT,
INTEGER, or
SMALLINT

FLOAT (double)

Rules for Result Data Types

92 DB2 UDB for iSeries SQL Reference V5R2

If one operand
column is...

And the other
operand is... The data type of the result column is...

DECIMAL(w,x) DECIMAL(y,z) or
NUMERIC(y,z,)

DECIMAL(p,s) where p = min(31,
max(x,z)+max(w-x,y-z)) s = max(x,z)

DECIMAL(w,x) BIGINT DECIMAL(p,x) where p = min(31,
x+max(w-x,19))

DECIMAL(w,x) INTEGER DECIMAL(p,x) where p = min(31,
x+max(w-x,11))

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where p = min(31,
x+max(w-x,5))

NUMERIC(w,x) NUMERIC(y,z) NUMERIC(p,s) where p = min(31, max(x,z)
+ max(w-x, y-z)) s = max(x,z)

NUMERIC(w,x) BIGINT NUMERIC(p,x) where p = min(31, x +
max(w-x,19))

NUMERIC(w,x) INTEGER NUMERIC(p,x) where p = min(31, x +
max(w-x,11))

NUMERIC(w,x) SMALLINT NUMERIC(p,x) where p = min(31, x +
max(w-x,5))

BIGINT BIGINT BIGINT

BIGINT INTEGER BIGINT

BIGINT SMALLINT BIGINT

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

SMALLINT SMALLINT SMALLINT

NONZERO SCALE
BINARY

NONZERO SCALE
BINARY

NONZERO SCALE BINARY (If either
operand is nonzero scale binary, both
operands must be binary with the same
scale.)

Datetime Operands
A DATE type is compatible with another DATE type, or any CHAR or VARCHAR
expression that contains a valid string representation of a date. The data type of
the result is DATE.

A TIME type is compatible with another TIME type, or any CHAR or VARCHAR
expression that contains a valid string representation of a time. The data type of
the result is TIME.

A TIMESTAMP type is compatible with another TIMESTAMP type, or any CHAR
or VARCHAR expression that contains a valid string representation of a
timestamp. The data type of the result is TIMESTAMP.

If one operand
column is...

And the other
operand is... The data type of the result column is...

DATE DATE DATE

TIME TIME TIME

TIMESTAMP TIMESTAMP TIMESTAMP

Rules for Result Data Types

Chapter 2. Language Elements 93

DATALINK Operands
A DataLink is compatible with another DataLink. However, DataLinks with NO
LINK CONTROL are only compatible with other DataLinks with NO LINK
CONTROL; DataLinks with FILE LINK CONTROL READ PERMISSION FS are
only compatible with other DataLinks with FILE LINK CONTROL READ
PERMISSION FS; and DataLinks with FILE LINK CONTROL READ PERMISSION
DB are only compatible with other DataLinks with FILE LINK CONTROL READ
PERMISSION DB. The data type of the result is DATALINK. The length of the
result DATALINK is the largest length of all the data types.

If one operand
column is...

And the other
operand is... The data type of the result column is...

DATALINK(x) DATALINK(y) DATALINK(z) where z = max(x,y)

DISTINCT Type Operands
A distinct type is compatible only with itself. The data type of the result is the
distinct type.

If one operand
column is...

And the other
operand is... The data type of the result column is...

Distinct Type Distinct Type Distinct Type

Rules for Result Data Types

94 DB2 UDB for iSeries SQL Reference V5R2

Conversion Rules for Operations That Combine Strings
The operations that combine strings are concatenation, UNION, and UNION ALL.
(These rules also apply to the MAX, MIN, VALUE, COALESCE, IFNULL, and
CONCAT scalar functions and CASE expressions.) In each case, the CCSID of the
result is determined at bind time, and the execution of the operation may involve
conversion of strings to the coded character set identified by that CCSID.

The CCSID of the result is determined by the CCSIDs of the operands. The CCSIDs
of the first two operands determine an intermediate result CCSID, this CCSID and
the CCSID of the next operand determine a new intermediate result CCSID, and so
on. The last intermediate result CCSID and the CCSID of the last operand
determine the CCSID of the result string or column. For each pair of CCSIDs, the
result CCSID is determined by the sequential application of the following rules:
v If the CCSIDs are equal, the result is that CCSID.
v If either CCSID is 65535, the result is 65535.21

v If one CCSID denotes data in an encoding scheme different from the other
CCSID, the result is determined by the following table:

Table 17. Selecting the Encoding Scheme of the Intermediate Result

First Operand

Second Operand

SBCS Data DBCS Data Mixed Data UCS-2 Data

SBCS Data See below Second Second Second

DBCS Data First See below Second Second

Mixed Data First First See below Second

UCS-2 Data First First First See below

v Otherwise, the resulting CCSID is determined by the following table:

Table 18. Selecting the CCSID of the Intermediate Result

First Operand

Second Operand

Column
Value

Derived
Value Constant

Special
Register

Host
Variable

Column Value First First First First First

Derived Value Second First First First First

Constant Second Second First First First

Special Register Second Second First First First

Host Variable Second Second Second Second First

However, a host variable containing data in a foreign encoding scheme is
effectively converted to the native encoding scheme before it is used in any
operation. The above rules are based on the assumption that this conversion has
already occurred.

Note that an intermediate result is considered to be a derived value operand. For
example, assume COLA, COLB, and COLC are columns with CCSIDs 37, 278, and
500, respectively. The result CCSID of COLA CONCAT COLB CONCAT COLC is
determined as follows:

21. If either operand is a CLOB or DBCLOB, the resulting CCSID is the job default CCSID.

Conversion Rules for Operations That Combine Strings

Chapter 2. Language Elements 95

1. The result CCSID of COLA CONCAT COLB is first determined to be 37
because both operands are columns, so the CCSID of the first operand is
chosen.

2. The result CCSID of the concatenation of the result from step 1 and COLC is
determined to be 500. The result CCSID of 500 is determined because the first
operand is a derived value and the second operand is a column, so the CCSID
of the second operand is chosen.

An operand of concatenation or the selected argument of the MAX, MIN, VALUE,
COALESCE, IFNULL, and CONCAT scalar function is converted, if necessary, to
the coded character set of the result string. Each string of an operand of UNION or
UNION ALL is converted, if necessary, to the coded character set of the result
column. Character conversion is necessary only if all of the following are true:
v The CCSIDs are different.
v Neither CCSID is 65535.
v The string is neither null nor empty.
v The CCSID Conversion Selection Table indicates that conversion is necessary.

An error occurs if a character of a string cannot be converted or if the CCSID
Conversion Selection Table is used but does not contain any information about the
CCSID pair. A warning occurs if a character of a string is converted to the
substitution character.

Conversion Rules for Operations That Combine Strings

96 DB2 UDB for iSeries SQL Reference V5R2

Constants
A constant (sometimes called a literal) specifies a value. Constants are classified as
string constants or numeric constants. String constants are further classified as
character or graphic. Numeric constants are further classified as integer, floating
point, or decimal.

All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored.

Integer Constants
An integer constant specifies an integer as a signed or unsigned number with a
maximum of 19 digits that does not include a decimal point. The data type of an
integer constant is large integer if its value is within the range of a large integer.
The data type of an integer constant is big integer if its value is outside the range
of a large integer, but within the range of a big integer. A constant that is defined
outside the range of big integer values is considered a decimal constant.

In syntax diagrams, the term integer is used for a large integer constant that must
not include a sign.

Examples
64 -15 +100 32767 720176 12345678901

Floating-Point Constants
A floating-point constant specifies a double-precision floating-point number as two
numbers separated by an E. The first number can include a sign and a decimal
point; the second number can include a sign but not a decimal point. The value of
the constant is the product of the first number and the power of 10 specified by
the second number; it must be within the range of floating-point numbers. The
number of characters in the constant must not exceed 24. Excluding leading zeros,
the number of digits in the first number must not exceed 17 and the number of
digits in the second must not exceed 3.

Examples
15E1 2.E5 2.2E-1 +5.E+2

Decimal Constants
A decimal constant specifies a decimal number as a signed or unsigned number that
includes at most 31 digits. The constant must either:
v Include a decimal point, or
v Be larger than 2147483647 or smaller than -2147483647

The precision is the total number of digits (including leading and trailing zeros);
the scale is the number of digits to the right of the decimal point (including
trailing zeros).

Examples
25.5 1000. -15. +37589.3333333333 12345678901

Binary-String Constants
A binary-string constant specifies a varying-length binary string. The form of a
binary-string constant follows:

Constants

Chapter 2. Language Elements 97

v An X followed by a sequence of characters that starts and ends with a string
delimiter. The characters between the string delimiters must be an even number
of hexadecimal digits. The number of hexadecimal digits must not exceed 32740.
A hexadecimal digit is a digit or any of the letters A through F (uppercase or
lowercase).

The CCSID assigned to the constant is 65535.

Note that the syntax of a binary string constant is identical to the second form of a
character constant. A constant of this form is only treated as a binary string
constant if the SET OPTION statement was specified with the binary string option
(SQLCURRULE = *STD) or the SQLCURRULE(*STD) parameter on the CRTSQLxxx
command.

Example
X’FFFF’

Character-String Constants
A character-string constant specifies a varying-length character string. The two forms
of character-string constant follow:
v A sequence of characters that starts and ends with a string delimiter. The

number of bytes between the string delimiters cannot be greater than 32740. Two
consecutive string delimiters are used to represent one string delimiter within
the character string. Two consecutive string delimiters that are not contained
within a string represent the empty string.

v An X followed by a sequence of characters that starts and ends with a string
delimiter. The characters between the string delimiters must be an even number
of hexadecimal digits. The number of hexadecimal digits must not exceed 32740.
A hexadecimal digit is a digit or any of the letters A through F (uppercase or
lowercase). Under the conventions of hexadecimal notation, each pair of
hexadecimal digits represents a character. This form of string constant allows
you to specify characters that do not have a keyboard representation.

Character-string constants can contain mixed data. If the job CCSID supports
mixed data, a character-string constant is classified as mixed data if it includes a
DBCS substring. In all other cases, a character-string constant is classified as SBCS
data.

The CCSID assigned to the constant is the CCSID of the source containing the
constant unless the source is encoded in a foreign encoding scheme (such as
ASCII). The data in the host variable is converted from the foreign encoding
scheme to the default CCSID of the current server. In this case, the CCSID assigned
to the constant is the default CCSID of the current server.

The CCSID of the source is determined by the application requester. The CCSID of
the source is:
v For STRSQL, the default CCSID of the application requester
v For the RUNSQLSTM or STRREXPRC commands, the CCSID of the specified

source file
v For CRTSQLxxx:

– For static SQL, the CCSID of the source is the CCSID of the source file used
on the CRTSQLxxx command.

Constants

98 DB2 UDB for iSeries SQL Reference V5R2

– For dynamic SQL, the CCSID of the source is the CCSID of the host variable
specified on the PREPARE statement, or if a string constant is specified on the
PREPARE statement, the default CCSID of the current server.

Examples
’Peggy’ ’14.12.1990’ ’32’ ’DON’’T CHANGE’ ’’ X’FFFF’

Graphic-String Constants

DBCS Graphic-String Constants
A graphic-string constant is a varying-length graphic string. The length of the
specified string cannot be greater than 16370. The three forms of DBCS
graphic-string constants are:

In the normal form, the SQL delimiters and the G or the N are SBCS characters.
The SBCS ’ is the EBCDIC apostrophe, X’7D’.

In the PL/I form, the apostrophes and the G are DBCS characters. Two consecutive
DBCS string delimiters are used to represent one string delimiter within the string.
Note that this PL/I form is only valid for static statements embedded in PL/I
programs.

A hexadecimal DBCS graphic constant is also supported. The form of the
hexadecimal DBCS graphic constant is:

GX’ssss’

In the constant, ssss represents a string from 0 to 32766 hexadecimal digits. The
number of characters between the string delimiters must be an even multiple of 4.
Each group of 4 digits represents a single DBCS graphic character. The
hexadecimal for shift-in and shift-out (’0E’X and ’0F’X) are not included in the
string.

Constants

Chapter 2. Language Elements 99

The CCSID assigned to constants is the DBCS CCSID associated with the CCSID of
the source unless the source is encoded in a foreign encoding scheme (such as
ASCII). In this case, the CCSID assigned to the constant is the DBCS CCSID
associated with the default CCSID of the current server when the SQL statement
containing the constant is prepared. If there is no DBCS CCSID associated with the
CCSID of the source, the CCSID is 65535.

For information on associated DBCS CCSIDs, see the Globalization DBCS CCSIDs
topic in the iSeries Information Center. For information on the CCSID of the
source, see Character String Constants.

UCS-2 Graphic-String Constants
A hexadecimal UCS-2 graphic constant is supported. The form of the hexadecimal
UCS-2 graphic constant is:

UX’ssss’

In the constant, ssss represents a string from 0 to 32766 hexadecimal digits. The
number of characters between the string delimiters must be an even multiple of 4.
Each group of 4 digits represents a single UCS-2 graphic character.

The CCSID of a UCS-2 constant is 13488.

Decimal Point
The default decimal point can be specified:
v To interpret numeric constants
v To determine the decimal point character to use when casting a character string

to a number (for example, in the DECIMAL, DOUBLE_PRECISION, FLOAT, and
REAL scalar functions and the CAST expression)

v to determine the decimal point character to use in the result when casting a
number to a string (for example, in the CHAR, CLOB, and VARGRAPHIC scalar
functions and the CAST expression)

The default decimal point can be specified through the following interfaces:

Table 19. Default Date Format Interfaces

SQL Interface Specification

Embedded SQL The *JOB, *PERIOD, *COMMA, or *SYSVAL value in
the OPTION parameter is specified on the Create
SQL Program (CRTSQLxxx) commands. The SET
OPTION statement can also be used to specify the
DECMPT parameter within the source of a program
containing embedded SQL.
(For more information about CRTSQLxxx commands,
see the SQL Programming with Host Languages
book.)

Interactive SQL and Run SQL
Statements

The DECPNT parameter on the Start SQL (STRSQL)
command or by changing the session attributes. The
DECMPT parameter on the Run SQL Statements
(RUNSQLSTM) command.
(For more information about STRSQL and
RUNSQLSTM commands, see the SQL Programming
Concepts book.)

Constants

100 DB2 UDB for iSeries SQL Reference V5R2

|

|

|

|

|
|
|

|
|
|

|

||

||

||
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

 ../nls/rbagsuseccsiddesign.htm
../rzajp/rzajpmst02.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Table 19. Default Date Format Interfaces (continued)

SQL Interface Specification

Call Level Interface (CLI) on the
server

SQL_ATTR_DATE_FMT and SQL_ATTR_DATE_SEP
environment or connection variables
(For more information about CLI, see the SQL Call
Level Interfaces (ODBC) book.)

JDBC or SQLJ on the server using
Developer Kit for Java

Decimal Separator conneciton property
(For more information about JDBC and SQLJ, see the
IBM Developer Kit for Java topic in the iSeries
Information Center.)

ODBC on a client using the iSeries
Access ODBC Driver

Decimal Separator in the Advanced Server Options in
ODBC Setup
(For more information about ODBC, see the iSeries
Access category in the iSeries Information Center.)

JDBC on a client using the IBM
Toolbox for Java

Format in JDBC Setup
(For more information about ODBC, see the iSeries
Access category in the iSeries Information Center.)
(For more information about the IBM Toolbox for
Java, see IBM Toolbox for Java topic in the iSeries
Information Center .)

If the comma is the decimal point, the following rules apply:
v A period will also be allowed as a decimal point.
v A comma intended as a separator of numeric constants in a list must be

followed by a space.
v A comma intended as a decimal point must not be followed by a space.

Thus, to specify a decimal constant without a fractional part, the trailing comma
must be followed by a non-blank character. The non-blank character can be a
separator comma, as in:

VALUES(9999999999,, 111)

Delimiters
*APOST and *QUOTE are mutually exclusive COBOL precompiler options that
name the string delimiter within COBOL statements. *APOST names the
apostrophe (') as the string delimiter; *QUOTE names the quotation mark (").
*APOSTSQL and *QUOTESQL are mutually exclusive COBOL precompiler options
that play a similar role for SQL statements embedded in COBOL programs.
*APOSTSQL names the apostrophe (') as the SQL string delimiter; with this option,
the quotation mark (") is the SQL escape character. *QUOTESQL names the
quotation mark as the SQL string delimiter; with this option, the apostrophe is the
SQL escape character. The values of *APOSTSQL and *QUOTESQL are respectively
the same as the values of *APOST and *QUOTE.

In host languages other than COBOL, the usages are fixed. The string delimiter for
the host language and for static SQL statements is the apostrophe ('); the SQL
escape character is the quotation mark (").

Constants

Chapter 2. Language Elements 101

|

||

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|
|

|

|
|
|

|

|

../cli/rzadpmst02.htm
../cli/rzadpmst02.htm
../rzaha/whatitis.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahh/page1.htm

Special Registers
A special register is a storage area that is defined for an application process by the
database manager and is used to store information that can be referenced in SQL
statements. A reference to a special register is a reference to a value provided by
the current server. If the value is a string, its CCSID is a default CCSID of the
current server. DB2 UDB for iSeries includes the following special registers.

CURRENT DATE or CURRENT_DATE
The CURRENT DATE special register specifies a date that is based on a reading of
the time-of-day clock when the SQL statement is executed at the current server. All
values are based on a single clock reading in the following situations:
v This special register is used more than once within a single SQL statement.
v This special register is used with the CURRENT TIME or CURRENT

TIMESTAMP special registers or the CURDATE, CURTIME, or NOW scalar
functions within a single statement.

Example
Using the PROJECT table, set the project end date (PRENDATE) of the MA2111
project (PROJNO) to the current date.

UPDATE PROJECT
SET PRENDATE = CURRENT DATE
WHERE PROJNO = ’MA2111’

CURRENT PATH, CURRENT_PATH, or CURRENT FUNCTION
PATH

The CURRENT PATH special register specifies the SQL path used to resolve
unqualified distinct type names (both built-in types and distinct types), procedure
names, and function names in dynamically prepared SQL statements. It is also
used to resolve unqualified procedure names that are specified as host variables in
SQL CALL statements (CALL host-variable). The data type is VARCHAR(3483).

The CURRENT PATH special register contains a list of one or more schema names,
where each schema name is enclosed in delimiters and separated from the
following schema by a comma. The delimiters and commas are included in the
3483 character length. The maximum number of schema names in the path is 268.

For information on when the SQL path is used to resolve unqualified names in
both dynamic and static SQL statements and the effect of its value, see “Schemas
and the SQL Path” on page 55.

The initial value of the CURRENT PATH special register in an activation group is
established by the first SQL statement that is executed.
v If the first SQL statement in an activation group is executed from an SQL

program or SQL package and the SQLPATH parameter was specified on the
CRTSQLxxx command, the path is the value specified in the SQLPATH
parameter. The SQLPATH value can also be specified using the SET OPTION
statement.

v Otherwise,
– For SQL naming, ″QSYS″, ″QSYS2″, ″the value of the authorization ID of the

statement″ .
– For system naming, ″*LIBL″.

Special Registers

102 DB2 UDB for iSeries SQL Reference V5R2

You can change the value of the register by executing the statement SET PATH. For
details about this statement, see “SET PATH” on page 729.

Example
Set the special register so that schema SMITH is searched before schemas QSYS
and QSYS2 (SYSTEM PATH).

SET CURRENT PATH SMITH, SYSTEM PATH

CURRENT SCHEMA
The CURRENT SCHEMA special register specifies a VARCHAR(128) value that
identifies the schema name used to qualify unqualified database object references
where applicable in dynamically prepared SQL statements.22 CURRENT SCHEMA
is not used to qualify names in programs where the DYNDFTCOL has been
specified. If DYNDFTCOL is specified in a program, its schema name is used
instead of the CURRENT SCHEMA schema name.

The initial value of CURRENT SCHEMA is the authorization ID of the current
session user.

The DFTRDBCOL keyword controls the schema name used to qualify unqualified
database object references where applicable for static SQL statements.

Example
Set the schema for object qualification to ’D123’.

SET CURRENT SCHEMA = ’D123’

CURRENT SERVER or CURRENT_SERVER
The CURRENT SERVER special register specifies a VARCHAR(18) value that
identifies the current server.

CURRENT SERVER can be changed by the CONNECT (Type 1), CONNECT (Type
2), or SET CONNECTION statements, but only under certain conditions. See the
description in “CONNECT (Type 1)” on page 402, “CONNECT (Type 2)” on page
407, and “SET CONNECTION” on page 712.

CURRENT SERVER cannot be specified unless the local relational database is
named by adding the entry to the relational database directory using the
ADDRDBDIRE or WRKRDBDIRE command.

Example
Set the host variable APPL_SERVE (VARCHAR(18)) to the name of the current
server.

SELECT CURRENT SERVER
INTO :APPL_SERVE
FROM ROW1_TABLE

CURRENT TIME or CURRENT_TIME
The CURRENT TIME special register specifies a time that is based on a reading of
the time-of-day clock when the SQL statement is executed at the current server. All
values are based on a single clock reading in the following situations:
v This special register is used more than once within a single SQL statement

22. For compatibility with DB2 UDB for OS/390 and z/OS, the special register CURRENT SQLID is treated as a synonym for
CURRENT SCHEMA.

Special Registers

Chapter 2. Language Elements 103

|

|
|
|
|
|
|

|
|

|
|

|
|

|

|

v This special register is used with the CURRENT DATE or CURRENT
TIMESTAMP special registers or the CURDATE, CURTIME, or NOW scalar
functions within a single statement

Example
Using the CL_SCHED table, select all the classes (CLASS_CODE) that start
(STARTING) later today. Today’s classes have a value of 3 in the DAY column.

SELECT CLASS_CODE FROM CL_SCHED
WHERE STARTING > CURRENT TIME AND DAY = 3

CURRENT TIMESTAMP or CURRENT_TIMESTAMP
The CURRENT TIMESTAMP special register specifies a timestamp that is based on
a reading of the time-of-day clock when the SQL statement is executed at the
current server. All values are based on a single clock reading in the following
situations:
v This special register is used more than once within a single SQL statement
v This special register is used with the CURRENT DATE or CURRENT TIME

special registers or the CURDATE, CURTIME, or NOW scalar functions within a
single statement

Example
Insert a row into the IN_TRAY table. The value of the RECEIVED column should
be a timestamp that indicates when the row was inserted. The values for the other
three columns come from the host variables SRC (CHAR(8)), SUB (CHAR(64)), and
TXT (VARCHAR(200)).

INSERT INTO IN_TRAY
VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

CURRENT TIMEZONE or CURRENT_TIMEZONE
The CURRENT TIMEZONE special register specifies the difference between
Universal Time Coordinated (UTC)23 and local time at the current server. The
difference is represented by a time duration (a decimal number in which the first
two digits are the number of hours, the next two digits are the number of minutes,
and the last two digits are the number of seconds). The number of hours is
between -24 and 24 exclusive. Subtracting CURRENT TIMEZONE from a local
time converts that local time to UTC.

Example
Using the IN_TRAY table, select all the rows from the table and adjust the value to
UTC.

SELECT RECEIVED - CURRENT TIMEZONE, SOURCE,
SUBJECT, NOTE_TEXT FROM IN_TRAY

USER
The USER special register specifies the run-time authorization ID at the current
server. The data type of the special register is VARCHAR(18).

Example
Select all notes from the IN_TRAY table that the user placed there himself.

SELECT * FROM IN_TRAY
WHERE SOURCE = USER

23. Formerly known as Greenwich Mean Time (GMT).

Special Registers

104 DB2 UDB for iSeries SQL Reference V5R2

Column Names
The meaning of a column name depends on its context. A column name can be
used to:
v Declare the name of a column, as in a CREATE TABLE statement.
v Identify a column, as in a CREATE INDEX statement.
v Specify values of the column, as in the following contexts:

– In a column function a column name specifies all values of the column in the
group or intermediate result table to which the function is applied. Groups
and intermediate result tables are explained under “SELECT INTO” on
page 709. For example, MAX(SALARY) applies the function MAX to all
values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in
the intermediate result table to which the clause is applied. For example,
ORDER BY DEPT orders an intermediate result table by the values of the
column DEPT.

– In an expression, a search condition, or a scalar function, a column name specifies
a value for each row or group to which the construct is applied. For example,
when the search condition CODE = 20 is applied to some row, the value
specified by the column name CODE is the value of the column CODE in that
row.

Qualified Column Names
A qualifier for a column name can be a table name, a view name, an alias name, or
a correlation name.

Whether a column name can be qualified depends on its context:
v In the COMMENT and LABEL statements, the column name must be qualified.
v Where the column name specifies values of the column, a column name can be

qualified at the user’s option.
v In all other contexts, a column name must not be qualified.

Where a qualifier is optional it can serve two purposes. See “Column Name
Qualifiers to Avoid Ambiguity” on page 107 and “Column Name Qualifiers in
Correlated References” on page 108 for details.

Correlation Names
A correlation name can be defined in the FROM clause of a query and in the first
clause of an UPDATE or DELETE statement. For example, the clause shown below
establishes Z as a correlation name for X.MYTABLE:

FROM X.MYTABLE Z

A correlation name is associated with a table, view, or alias only within the context
in which it is defined. Hence, you can define the same correlation name for
different purposes in different statements, or in different clauses of the same
statement.

As a qualifier, you can use a correlation name to avoid ambiguity or to establish a
correlated reference. You can also use a correlation name as a shorter name for a
table, view, or alias. In the example that is shown above, Z might have been used
merely to avoid having to enter X.MYTABLE more than once.

Column Names

Chapter 2. Language Elements 105

If a correlation name is specified for a table name, view name or alias name, any
qualified reference to a column of that instance of the table, view or alias must use
the correlation name, rather than the table name, view name, or alias name. For
example, the reference to EMPLOYEE.PROJECT in the following example is
incorrect, because a correlation name has been specified for EMPLOYEE:

FROM EMPLOYEE E ***INCORRECT***
WHERE EMPLOYEE.PROJECT=’ABC’

The qualified reference to PROJECT should instead use the correlation name, “E”,
as shown below:

FROM EMPLOYEE E
WHERE E.PROJECT='ABC'

Names specified in a FROM clause are either exposed or non-exposed. A correlation
name is always an exposed name. A table name, view name, or alias name is said
to be exposed in that FROM clause if a correlation name is not specified. For
example, in the following FROM clause, a correlation name is specified for
EMPLOYEE but not for DEPARTMENT, so DEPARTMENT is an exposed name,
and EMPLOYEE is not:

FROM EMPLOYEE E, DEPARTMENT

A table name, view name, or alias name that is exposed in a FROM clause must
not be the same as any other table name or view name exposed in that FROM
clause or any correlation name in the FROM clause. The names are compared after
qualifying any unqualified table or view names.

The first two FROM clauses shown below are correct, because each one contains no
more than one reference to EMPLOYEE that is exposed:
1. Given the FROM clause:

FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the
second instance of EMPLOYEE in the FROM clause. A qualified reference to the
first instance of EMPLOYEE must use the correlation name “E1” (E1.PROJECT).

2. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the
first instance of EMPLOYEE in the FROM clause. A qualified reference to the
second instance of EMPLOYEE must use the correlation name “E2”
(E2.PROJECT).

3. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE ***INCORRECT***

the two exposed table names included in this clause (EMPLOYEE and
EMPLOYEE) are the same, and this is not allowed.

4. Given the following statement:
SELECT *

FROM EMPLOYEE E1, EMPLOYEE E2 ***INCORRECT***
WHERE EMPLOYEE.PROJECT=’ABC’

the qualified reference EMPLOYEE.PROJECT is incorrect, because both
instances of EMPLOYEE in the FROM clause have correlation names. Instead,
references to PROJECT must be qualified with either correlation name
(E1.PROJECT or E2.PROJECT).

Column Names

106 DB2 UDB for iSeries SQL Reference V5R2

5. Given the FROM clause:
FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use
X.EMPLOYEE (X.EMPLOYEE.PROJECT). This FROM clause is only valid if the
authorization ID of the statement is not X.

A correlation name specified in a FROM clause must not be the same as:
v Any other correlation name in that FROM clause
v Any unqualified table name or view name exposed in the FROM clause
v The second SQL identifier of any qualified table name or view name in the

FROM clause.

For example, the following FROM clauses are incorrect:
FROM EMPLOYEE E, EMPLOYEE E
FROM EMPLOYEE DEPARTMENT, DEPARTMENT ***INCORRECT***
FROM X.T1, EMPLOYEE T1

The following FROM clause is technically correct, though potentially confusing:
FROM EMPLOYEE DEPARTMENT, DEPARTMENT EMPLOYEE

The use of a correlation name in the FROM clause also allows the option of
specifying a list of column names to be associated with the columns of the result
table. As with a correlation name, these listed column names become the exposed
names of the columns that must be used for references to the columns throughout
the query. If a column name list is specified, then the column names of the
underlying table become non-exposed.

Given the FROM clause:
FROM DEPARTMENT D (NUM,NAME,MGR,ANUM,LOC)

a qualified reference such as D.NUM denotes the first column of the
DEPARTMENT table that is defined in the table as DEPTNO. A reference to
D.DEPTNO using this FROM clause is incorrect since the column name DEPTNO
is a non-exposed column name.

If a list of columns is specified, it must consist of as many names as there are
columns in the table-reference. Each column name must be unique and
unqualified.

Column Name Qualifiers to Avoid Ambiguity
In the context of a function, a GROUP BY clause, ORDER BY clause, an expression,
or a search condition, a column name refers to values of a column in some table or
view. The tables and views that might contain the column are called the object
tables of the context. Two or more object tables might contain columns with the
same name. One reason for qualifying a column name is to designate the object
from which the column comes.

Table Designators
A qualifier that designates a specific object table is called a table designator. The
clause that identifies the object tables also establishes the table designators for
them. For example, the object tables of an expression in a SELECT clause are
named in the FROM clause that follows it:

SELECT CORZ.COLA, OWNY.MYTABLE.COLA
FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Column Names

Chapter 2. Language Elements 107

This is how you establish table designators in the FROM clause:
v A name that follows a table or view name is both a correlation name and a table

designator. Thus, CORZ is a table designator. CORZ is used to qualify the first
column name in the select list.

v In SQL naming, an exposed table or view name is a table designator. Thus,
OWNY.MYTABLE is a table designator. OWNY.MYTABLE is used to qualify the
second column name in the select list.

v In system naming, the table designator for an exposed table or view name is the
unqualified table or view name. In the following example MYTABLE is the table
designator for OWNY/MYTABLE.

SELECT CORZ.COLA, MYTABLE.COLA
FROM OWNX/MYTABLE CORZ, OWNY/MYTABLE

Avoiding undefined or ambiguous references
When a column name refers to values of a column, exactly one object table must
include a column with that name. The following situations are considered errors:
v No object table contains a column with the specified name. The reference is

undefined.
v The column name is qualified by a table designator, but the table designated

does not include a column with the specified name. Again the reference is
undefined.

v The name is unqualified and more than one object table includes a column with
that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely defined
table designator. If the column is contained in several object tables with different
names, the object table names can be used as designators.

Two or more object tables can be instances of the same table. In this case, distinct
correlation names must be used to unambiguously designate the particular
instances of the table. In the following FROM clause, X and Y are defined to refer,
respectively, to the first and second instances of the table CORPDATA.EMPLOYEE:

FROM CORPDATA.EMPLOYEE X, CORPDATA.EMPLOYEE Y

When qualifying a column with the exposed table name form of a table designator,
either the qualified or unqualified form of the exposed table name may be used.
However, the qualifier used and the table used must be the same after fully
qualifying the table name or view name and the table designator.
1. If the authorization ID of the statement is CORPDATA, then:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE

is a valid statement.
2. If the authorization ID of the statement is REGION, then:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE ***INCORRECT***

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE, but
the qualifier for WORKDEPT represents a different table,
CORPDATA.EMPLOYEE.

Column Name Qualifiers in Correlated References
A subselect is a form of a query that can be used as a component of various SQL
statements. Refer to Chapter 4, “Queries” on page 323 for more information about

Column Names

108 DB2 UDB for iSeries SQL Reference V5R2

|
|

subselects. A subquery is a form of a fullselect that is enclosed within parenthesis.
For example, a subquery can be used in a search condition.

A subquery can include search conditions of its own, and these search conditions
can, in turn, include subqueries. Therefore, an SQL statement can contain a
hierarchy of subqueries. Those elements of the hierarchy that contain subqueries
are said to be at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table
designators. This is the FROM clause, except in the highest level of an UPDATE or
DELETE statement. A search condition, the select list, the join clause, or an
argument of a table function in a subquery can reference not only columns of the
tables identified by the FROM clause of its own element of the hierarchy, but also
columns of tables identified at any level along the path from its own element to
the highest level of the hierarchy. A reference to a column of a table identified at a
higher level is called a correlated reference.

A correlated reference to column C of table T can be of the form C, T.C, or Q.C, if
Q is a correlation name defined for T. However, a correlated reference in the form
of an unqualified column name is not good practice. The following explanation is
based on the assumption that a correlated reference is always in the form of a
qualified column name and that the qualifier is a correlation name.

Q.C is a correlated reference only if these three conditions are met:
v Q.C is used in a search condition, select list, join clause, or an argument of a

table function in a subquery.
v Q does not designate a table used in the FROM clause of that subquery, selection

list, join clause, or an argument of a table function in a subquery.
v Q does designate a table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the
table designator of that table or view. Because the same table or view can be
identified at many levels, unique correlation names are recommended as table
designators. If Q is used to designate a table at more than one level, Q.C refers to
the lowest level that contains the subquery that includes Q.C.

In the following statement, Q is used as a correlation name for T1 and T2, but Q.C
refers to the correlation name associated with T2, because it is the lowest level that
contains the subquery that includes Q.C.
SELECT *

FROM T1 Q
WHERE A < ALL (SELECT B

FROM T2 Q
WHERE B < ANY (SELECT D

FROM T3
WHERE D = Q.C))

Unqualified Column Names
An unqualified column name can also be a correlated reference if the column:
v Is used in a search condition of a subquery
v Is not contained in a table used in the FROM clause of that subquery
v Is contained in a table used at some higher level

Unqualified correlated references are not recommended because it makes the SQL
statement difficult to understand. The column will be implicitly qualified when the
statement is prepared depending on which table the column was found in. Once

Column Names

Chapter 2. Language Elements 109

|
|

|
|
|
|
|
|
|
|

|
|

|
|

this implicit qualification is determined it will not change until the statement is
re-prepared. An SQL precompiler issues a warning message in the precompile
listing and the database manager issues a positive SQLCODE (+12) and SQLSTATE
(01545) when an SQL statement that has an unqualified correlated reference is
prepared or executed.

Column Names

110 DB2 UDB for iSeries SQL Reference V5R2

References to Variables
A variable in an SQL statement specifies a value that can be changed when the SQL
statement is executed. There are several types of variables used in SQL statements:

host variable
Host variables are defined by statements of a host language. For more
information about how to refer to host variables see “References to Host
Variables” on page 111.

transition variable
Transition variables are defined in a trigger and refer to either the old or
new values of columns. For more information about how to refer to
transition variables see “CREATE TRIGGER” on page 538.

SQL variable
SQL variables are defined by an SQL compound statement in an SQL
function, SQL procedure, or trigger. For more information about SQL
variables, see “References to SQL Parameters and Variables” on page 761.

SQL parameter
SQL parameters are defined in an CREATE FUNCTION (SQL Scalar),
CREATE FUNCTION (SQL Table), or CREATE PROCEDURE (SQL)
statement. For more information about SQL variables, see “References to
SQL Parameters and Variables” on page 761.

parameter marker
Variables cannot be referenced in dynamic SQL statements. Parameter
markers are defined in an SQLDA and used instead. For more information
about parameter markers, see “Parameter markers” on page 677.

In this book, unless otherwise noted, the term host variable in syntax diagrams is
used to describe where a host variable, transition variable, SQL variable, SQL
parameter, or parameter marker can be used.

References to Host Variables
A host variable is a COBOL data item, an RPG field, or a PLI, REXX, C++, or C
variable that is referenced in an SQL statement. Host variables are defined by
statements of the host language. For more information about how to refer to host
structures in C, C++, COBOL, PL/I, and RPG, see “Host Structures in C, C++,
COBOL, PL/I, and RPG” on page 116. For more information about host variables
in REXX, see the SQL Programming with Host Languages book.

A host-variable in an SQL statement must identify a host variable described in the
program according to the rules for declaring host variables. All host variables used
in an SQL statement should be declared in an SQL declare section in all host
languages other than REXX and RPG. (Variables do not have to be declared in
REXX. In RPG, there is no declare section, and host variables may be declared
throughout the program.) No variables may be declared outside an SQL declare
section with names identical to variables declared inside an SQL declare section.
An SQL declare section begins with BEGIN DECLARE SECTION and ends with
END DECLARE SECTION.

For further information about using host variables, see the SQL Programming
Concepts book.

The term host-variable, as used in the syntax diagrams, shows a reference to a host
variable. A host-variable in the INTO clause of a FETCH, SELECT INTO, SET

References to Variables

Chapter 2. Language Elements 111

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

../rzajp/rzajpmst02.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

variable, or VALUES INTO statement identifies a host variable to which a value
from a column of a row is assigned. A host variable in a CALL statement or in an
EXECUTE statement identifies either or both a host variable to which an output
parameter value is assigned, and a host variable that specifies an input argument
value to be passed to the database manager from the application program. In all
other contexts a host-variable specifies a value to be passed to DB2 UDB for iSeries
from the application program.

The general form of a host-variable reference is:

Each host-identifier must be declared in the source program. The variable
designated by the second host-identifier must have a data type of small integer with
zero scale.

The first host-identifier designates the main variable; the second host-identifier
designates its indicator variable. The purposes of the indicator variable are to:
v Specify the null value. A negative value of the indicator variable specifies the

null value.
v Indicate one of the following data mapping errors:

– Characters could not be converted
– Numeric conversion error (underflow or overflow)
– Arithmetic expression error (division by 0)
– Date or timestamp conversion error (a date or timestamp that is not within

the valid range of the dates for the specified format)
– String representation of the datetime value is not valid
– Mixed data not properly formed
– A numeric value that is not valid
– Argument of SUBSTR scalar function is out of range

v Record the original length of a truncated string.
v Record the seconds portion of a time if the time is truncated on assignment to a

host variable.

For example, if :V1:V2 is used to specify an insert or update value, and if V2 is
negative, the value specified is the null value. If V2 is not negative the value
specified is the value of V1.

Similarly, if :V1:V2 is specified in a CALL, FETCH, or SELECT INTO statement
and the value returned is null, V1 is undefined, and V2 is set to a negative value.
The negative value is:
v -1 if the value selected was the null value, or
v -2 if the null value was returned due to data mapping errors in the select list of

an outer subselect. 24

24. It should be noted that although the null value returned for data mapping errors can be returned on certain scalar functions and
for arithmetic expressions, the result column is not considered null capable unless an argument of the arithmetic expression or
scalar function is null capable.

�� :host-identifier
INDICATOR

:host-identifier

��

References to Host Variables

112 DB2 UDB for iSeries SQL Reference V5R2

If the value returned is not null, that value is assigned to V1 and V2 is set to zero
(unless the assignment to V1 requires string truncation, in which case, V2 is set to
the original length of the string). If an assignment requires truncation of the
seconds part of time, V2 is set to the number of seconds.

If the second host-identifier is omitted, the host variable does not have an indicator
variable. The value specified by the host-variable :V1 is always the value of V1, and
null values cannot be assigned to the variable. Thus, this form should not be used
in an INTO clause unless the corresponding result column cannot contain null
values. If this form is used and the column contains nulls, the database manager
returns a negative value (-407) in the SQLCODE field of the SQLCA. If your data
is truncated and there is no indicator variable, no error condition results.

A host variable must always be preceded by a colon when it is used in an SQL
statement.

In C, C++, ILE RPG, and PL/I, an SQL statement that references host variables
must be within the scope of the declaration of those host variables. For host
variables referenced in the SELECT statement of a cursor, that rule applies to the
OPEN statement rather than to the DECLARE CURSOR statement.

The CCSID of a string host variable is either:
v The CCSID specified in the DECLARE VARIABLE statement, or
v If a DECLARE VARIABLE with a CCSID clause is not specified for the host

variable, the default CCSID of the application requester at the time the SQL
statement that contains the host variable is executed unless the CCSID is for a
foreign encoding scheme (such as ASCII). In this case, the host variable is
converted to the default CCSID of the current server.

Example
Using the PROJECT table, set the host variable PNAME (VARCHAR(26)) to the
project name (PROJNAME), the host variable STAFF (DECIMAL(5,2)) to the mean
staffing level (PRSTAFF), and the host variable MAJPROJ (CHAR(6)) to the major
project (MAJPROJ) for project (PROJNO) ‘IF1000’. Columns PRSTAFF and
MAJPROJ may contain null values, so provide indicator variables STAFF_IND
(SMALLINT) and MAJPROJ_IND (SMALLINT).

SELECT PROJNAME, PRSTAFF, MAJPROJ
INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND
FROM PROJECT
WHERE PROJNO = ’IF1000’

Host Variables in Dynamic SQL
In dynamic SQL statements, parameter markers are used instead of host variables.
A parameter marker is a question mark (?) that represents a position in a dynamic
SQL statement where the application will provide a value; that is, where a host
variable would be found if the statement string were a static SQL statement. The
following examples shows a static SQL that uses host variables and a dynamic
statement that uses parameter markers:

INSERT INTO DEPT VALUES(:HV_DEPTNO, :HV_DEPTNAME, :HV_MGRNO, :HV_ADMRDEPT)

INSERT INTO DEPT VALUES(?, ?, ?, ?)

For more information about parameter markers, see “Parameter markers” on
page 677.

References to Host Variables

Chapter 2. Language Elements 113

|
|
|
|

References to LOB Host Variables
Regular LOB variables, LOB locator variables (see “References to LOB Locator
Variables”) and LOB file reference variables (see “References to LOB File Reference
Variables” on page 115), can be defined in the following host languages:
v C
v C++
v ILE RPG
v ILE COBOL
v PL/I

Where LOBs are allowed, the term host-variable in a syntax diagram can refer to a
regular host variable, a locator variable, or a file reference variable. Since these
variables are not native data types in host programming languages, SQL extensions
are used and the precompilers generate the host language constructs necessary to
represent each variable.

When it is possible to define a host variable that is large enough to hold an entire
LOB value and the performance benefit of delaying the transfer of data from the
server is not required, a LOB locator is not needed. However, it is often not
acceptable to store an entire LOB value in temporary storage due to host language
restrictions, storage restrictions, or performance requirements. When storing a
entire LOB value at one time is not acceptable, a LOB value can be referred to by a
LOB locator and portions of the LOB value can be selected into or updated from
host variables that contain only a portion of the LOB value.

Like all other host variables, a LOB locator variable or LOB file reference variable
can have an associated indicator variable. Indicator variables for LOB locator
variables and LOB file reference variables behave in the same way as indicator
variables for other data types. When a null value is returned from the database, the
indicator variable is set and the host variable is unchanged. This means that a
locator can never point to a null value.

References to LOB Locator Variables
A LOB locator variable is a host variable that contains the locator representing a
LOB value on the server, which can be defined in the following host languages:
v C
v C++
v ILE RPG
v ILE COBOL
v PL/I

See “Manipulating Large Objects (LOBs) With Locators” on page 65 for information
on how locators can be used to manipulate LOB values.

A locator variable in an SQL statement must identify a LOB locator variable
described in the program according to the rules for declaring locator variables.
This is always indirectly through an SQL statement. For example, in C:

static volatile SQL TYPE IS CLOB_LOCATOR *loc1;

The term locator-variable, as used in the syntax diagrams, shows a reference to a
LOB locator variable. The meta-variable locator-variable can be expanded to include
a host-identifier the same as that for host-variable.

When the indicator variable associated with a LOB locator is null, the value of the
referenced LOB is null.

References to Host Variables

114 DB2 UDB for iSeries SQL Reference V5R2

If a locator variable does not currently represent any value, an error occurs when
the locator variable is referenced.

At transaction commit or any transaction termination, all LOB locators that were
acquired by the transaction are released.

It is the application programmer’s responsibility to guarantee that any LOB locator
is only used in SQL statements that are executed at the same server that originally
generated the LOB locator. For example, assume that a LOB locator is returned
from one server and assigned to a LOB locator variable. If that LOB locator
variable is subsequently used in an SQL statement that is executed at a different
server, unpredictable results will occur.

References to LOB File Reference Variables
A LOB file reference variable is used for direct file input and output for a LOB,
which can be defined in the following host languages:
v C
v C++
v ILE RPG
v ILE COBOL
v PL/I

Since these are not native data types, SQL extensions are used and the
precompilers generate the host language constructs necessary to represent each
variable.

A file reference variable represents (rather than contains) the file, just as a LOB
locator represents, rather than contains, the LOB data. Database queries, updates,
and inserts may use file reference variables to store or to retrieve single column
values. The file referenced must exist at the application requester.

As with all other host variables, a file reference variable may have an associated
indicator variable.

The length attribute of a file reference variable is assumed to be the maximum
length of a LOB.

File reference variables are currently supported in the root (/), QOpenSys, and
UDFS file systems. When a file is created, it is given the CCSID of the data that is
being written to the file. Currently, mixed CCSIDs are not supported. To use a file
created with a file reference variable, the file should be opened in binary mode.

For more information about file reference variables, see the SQL Programming
Concepts book.

References to Host Variables

Chapter 2. Language Elements 115

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Host Structures in C, C++, COBOL, PL/I, and RPG
A host structure is a COBOL group, PL/I, C, or C++ structure, or RPG data
structure that is referenced in an SQL statement. Host structures are defined by
statements of the host language, as explained in the SQL Programming with Host
Languages book. As used here, the term host structure does not include an SQLCA
or SQLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :S1:S2 is a host structure reference if S1 names a host
structure. If S1 designates a host structure, S2 must be either a small integer
variable, or an array of small integer variables. S1 is the host structure and S2 is its
indicator array.

A host structure can be referenced in any context where a list of host variables can
be referenced. A host structure reference is equivalent to a reference to each of the
host variables contained within the structure in the order which they are defined in
the host language structure declaration. The nth variable of the indicator array is
the indicator variable for the nth variable of the host structure.

In PL/I, for example, if V1, V2, and V3 are declared as variables within the
structure S1, the statement:

EXEC SQL FETCH CURSOR1 INTO :S1;

is equivalent to:
EXEC SQL FETCH CURSOR1 INTO :V1, :V2, :V3;

If the host structure has m more variables than the indicator array, the last m
variables of the host structure do not have indicator variables. If the host structure
has m fewer variables than the indicator array, the last m variables of the indicator
array are ignored. These rules also apply if a reference to a host structure includes
an indicator variable or if a reference to a host variable includes an indicator array.
If an indicator array or indicator variable is not specified, no variable of the host
structure has an indicator variable.

In addition to structure references, individual host variables in the host structure or
indicator variables in the indicator array can be referenced by qualified names. The
qualified form is a host identifier followed by a period and another host identifier.
The first host identifier must name a host structure, and the second host identifier
must name a host variable within that host structure.

The following diagram specifies the syntax of references to host variables and host
structures:

A host-variable in an expression must identify a host variable (not a structure)
described in the program according to the rules for declaring host variables.

�� : host-identifier
host-identifier.

�

�
INDICATOR

: host-identifier
host-identifier.

��

Host Structures in C, C++, COBOL, PL/I, and RPG

116 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm
../rzajp/rzajpmst02.htm

Host structures are not supported in REXX.

The following examples show references to host variables and host structures:
:V1 :S1.V1 :S1.V1:V2 :S1.V2:S2.V4

Host Structures in C, C++, COBOL, PL/I, and RPG

Chapter 2. Language Elements 117

Host Structure Arrays in C, C++, COBOL, PL/I, and RPG
In PL/I, C++, and C, a host structure array is a structure name having a dimension
attribute. In COBOL, it is a one-dimensional table. In RPG, it is an occurrence data
structure. A host structure array can only be referenced in the FETCH statement
when using a multiple-row fetch, or in an INSERT statement when using a blocked
insert. Host structure arrays are defined by statements of the host language, as
explained in the SQL Programming with Host Languages book.

The form of a host structure array is identical to the form of a host variable
reference. The reference :S1:S2 is a reference to host structure array if S1 names a
host structure array. If S1 designates a host structure, S2 must be either a small
integer host variable, an array of small integer host variables, or a two dimensional
array of small integer host variables. In the following example, S1 is the host
structure array and S2 is its indicator array.

EXEC SQL FETCH CURSOR1 FOR 5 ROWS
INTO :S1:S2;

The dimension of the host structure and the indicator array must be equal.

If the host structure has m more variables than the indicator array, the last m
variables of the host structure do not have indicator variables. If the host structure
has m fewer variables than the indicator array, the last m variables of the indicator
array are ignored. If an indicator array or variable is not specified, no variable of
the host structure array has an indicator variable.

The following diagram specifies the syntax of references to an array of host
structures:

Arrays of host structures are not supported in REXX.

�� : host-identifier
INDICATOR

: host-identifier

��

Host Structure Arrays in C, C++, COBOL, PL/I, and RPG

118 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm

Functions
A function is an operation denoted by a function name followed by one or more
operands that are enclosed in parentheses. It represents a relationship between a
set of input values and a set of result values. The input values to a function are
called arguments. For example, a function can be passed two input arguments that
have date and time data types and return a value with a timestamp data type as
the result.

Types of Functions
There are several ways to classify functions. One way to classify functions is as
built-in, user-defined, or user-defined functions that are generated for distinct
types.
v Built-in functions are IBM-supplied functions that come with DB2 UDB for

iSeries. These functions provide a single-value result. Built-in functions include
operator functions such as ″+″, column functions such as AVG, and scalar
functions such as SUBSTR. For a list of the built-in column and scalar functions
and information on these functions, see Chapter 3, “Built-In Functions” on
page 157.25

v User-defined functions are functions that are created using the CREATE
FUNCTION statement and registered to the database manager in catalog table
QSYS2.SYSROUTINES and catalog view QSYS2.SYSFUNCS. These functions
allow users to extend the function of the database manager by adding their own
or third party vendor function definitions.
A user-defined function is either SQL, external, or sourced. An SQL function is
defined to the database using only SQL statements. An external function is
defined to the database with a reference to an external program or service
program that is executed when the function is invoked. A sourced function is
defined to the database with a reference to a built-in function or another
user-defined function. Sourced functions can be used to extend built-in column
and scalar functions for use on distinct types.
A user-defined function resides in the schema in which it was created. The
schema cannot be QSYS, QSYS2, or QTEMP.

v The database manager automatically generates some user-defined functions
when a distinct type is created using the CREATE DISTINCT TYPE statement.
These functions support casting from the distinct type to the source type and
from the source type to the distinct type. The ability to cast between the data
types is important because a distinct type is compatible only with itself.
The generated cast functions reside in the same schema as the distinct type for
which they were created. The schema cannot be QSYS, QSYS2, or QTEMP. For
more information about the functions that are generated for a distinct type, see
“CREATE DISTINCT TYPE” on page 414.

Another way to classify functions is as column, scalar, or table functions,
depending on the input data values and result values.

A column function receives a set of values for each argument (such as the values of
a column) and returns a single-value result for the set of input values. Column
functions are sometimes called aggregating functions. Built-in functions and
user-defined sourced functions can be column functions.

25. Built-in functions are implemented internally by the database manager, so an associated program or service program object does
not exist for a built-in function. Furthermore, the catalog does not contain information about built-in functions. However, built-in
functions can be treated as if they exist in QSYS2 and a built-in function name can be qualified with QSYS2.

Functions

Chapter 2. Language Elements 119

|
|

A scalar function receives a single value for each argument and returns a
single-value result. Built-in functions and user-defined functions can be scalar
functions. The functions that are created for distinct types are also scalar functions.

A table function returns a table for the set of arguments it receives. Each argument
is a single value. A table function can only be referenced in the FROM clause of a
subselect. A table function can be defined as an external function or as an SQL
function (a table function cannot be a sourced function.).

Table functions can be used to apply SQL language processing power to data that
is not DB2 data or to convert such data into a DB2 table. For example, a table
function can take a file and convert it to a table, get data from the World Wide
Web and tabularize it, or access a Lotus Notes database and return information
about mail messages.

Each reference to a scalar or column function (either built-in or user-defined)
conforms to the following syntax:

The ALL or DISTINCT keyword can only be specified for a column function or a
user-defined function that is sourced on a column function.

Each reference to a table function conforms to the following syntax:

In the above syntax, expression is the same as it is for a scalar or column function.
For more details on referencing a table function, see the description of the FROM
clause on “from-clause” on page 328.

Function resolution
A function is invoked by its function name, which is implicitly or explicitly
qualified with a schema name, followed by parentheses that enclose the arguments
to the function. Within the database, each function is uniquely identified by its
function signature, which is its schema name, function name, the number of
parameters, and the data types of the parameters. Thus, a schema can contain
several functions that have the same name but each of which have a different
number of parameters, or parameters with different data types. Or, a function with
the same name, number of parameters, and types of parameters can exist in
multiple schemas. When you invoke any function, the database manager must
determine which function to execute. This process is called function resolution.

Function resolution is similar for functions that are invoked with a qualified or
unqualified function name with the exception that for an unqualified name, the
database manager needs to search more than one schema.

Qualified function resolution: When a function is invoked with a function name and
a schema name, the database manager only searches the specified schema to

��

function-name ()
ALL ,
DISTINCT

expression

��

��

TABLE (function-name ()) correlation-clause
,

expression

��

Functions

120 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|
|
|

|

resolve which function to execute. The database manager finds the appropriate
function instance when all of the following conditions are true:
v The name of the function instance matches the name in the function invocation.
v The number of input parameters in the function instance matches the number of

arguments in the function invocation.
v The data type of each input argument of the function invocation matches or is

promotable to the data type of the corresponding parameter of the function
instance.
This comparison of data types results in one best fit, which is the choice for
execution (see “Method of finding the best fit”). For information on the
promotion of data types, see “Promotion of Data Types” on page 74.
If no function in the schema meets these criteria, an error occurs.

Unqualified function resolution: When a function is invoked with only a function
name, the database manager needs to search more than one schema to resolve the
function instance to execute. The SQL path contains the list of schemas to search.
For each schema in the path (for information on paths see “Schemas and the SQL
Path” on page 55), the database manager selects a candidate function based on the
following criteria:
v The name of the function instance matches the name in the function invocation.
v The number of input parameters in the function instance matches the number of

function arguments in the function invocation.
v The data type of each input argument of the function invocation matches or is

promotable to the data type of the corresponding parameter of the function
instance.
This comparison of data types results in one best fit, which is the choice for
execution (see “Method of finding the best fit”). For information on the
promotion of data types, see “Promotion of Data Types” on page 74.
If no function in the schema meets these criteria, an error occurs.

A candidate function is not selected for a schema if one or more of the criteria is
not met.

After the database manager identifies the candidate functions, it selects the
candidate with the best fit as the function instance to execute (see “Method of
finding the best fit”). If more than one schema contains the function instance with
the best fit (the function signatures are identical except for the schema name), the
database manager selects the function whose schema is earliest in the SQL path.

Function resolution applies to all functions, including built-in functions. Built-in
functions logically exist in schema QSYS2. If schema QSYS2 is not explicitly
specified in the SQL path, the schema is implicitly assumed at the front of the
path. Therefore, when an unqualified function name is specified, ensure that the
path is specified so that the intended function is selected.

Method of finding the best fit
There might be more than one function with the same name that is a candidate for
execution. In that case, the database manager determines which function is the best
fit for the invocation by comparing the argument and parameter data types. Note
that neither the data type of the result of the function nor the type of function
(column or scalar) under consideration enters into this determination.

Functions

Chapter 2. Language Elements 121

If the data types of all the parameters for a given function are the same as those of
the arguments in the function invocation, that function is the best fit. If there is no
exact match, the database manager compares the data types in the parameter lists
from left to right, using the following method:
1. Compare the data type of the first argument in the function invocation to the

data type of the first parameter in each function. (Any length, precision, scale,
and CCSID attributes of the data types are not considered in the comparison.)

2. For this argument, if one function has a data type that fits the function
invocation better than the data types in the other functions, that function is the
best fit. The precedence list for the promotion of data types in “Promotion of
Data Types” on page 74 shows the data types that fit each data type in
best-to-worst order.

3. If the data type of the first parameter for more than one candidate function fits
the function invocation equally well, repeat this process for the next argument
of the function invocation. Continue for each argument until a best fit is found.

The following examples illustrate function resolution.

Example 1: Assume that MYSCHEMA contains two functions, both named FUNA,
that were created with these partial CREATE FUNCTION statements.

CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), INT, DOUBLE) ...
CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), REAL, DOUBLE) ...

Also assume that a function with three arguments of data types VARCHAR(10),
SMALLINT, and DECIMAL is invoked with a qualified name:

MYSCHEMA.FUNA(VARCHARCOL, SMALLINTCOL, DECIMALCOL) ...

Both MYSCHEMA.FUNA functions are candidates for this function invocation
because they meet the criteria specified in “Function resolution” on page 120. The
data types of the first parameter for the two function instances in the schema,
which are both VARCHAR, fit the data type of the first argument of the function
invocation, which is VARCHAR, equally well. However, for the second parameter,
the data type of the first function (INT) fits the data type of the second argument
(SMALLINT) better than the data type of second function (REAL). Therefore, the
database manager selects the first MYSCHEMA.FUNA function as the function
instance to execute.

Example 2: Assume that functions were created with these partial CREATE
FUNCTION statements:

1. CREATE FUNCTION SMITH.ADDIT (CHAR(5), INT, DOUBLE) ...
2. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE) ...
3. CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE, INT) ...
4. CREATE FUNCTION JOHNSON.ADDIT (INT, DOUBLE, DOUBLE) ...
5. CREATE FUNCTION JOHNSON.ADDIT (INT, INT, DOUBLE) ...
6. CREATE FUNCTION TODD.ADDIT (REAL) ...
7. CREATE FUNCTION TAYLOR.SUBIT (INT, INT, DECIMAL) ...

Also assume that the SQL path at the time an application invokes a function is
″TAYLOR″, ″JOHNSON″, ″SMITH″. The function is invoked with three data types
(INT, INT, DECIMAL) as follows:

SELECT ... ADDIT(INTCOL1, INTCOL2, DECIMALCOL) ...

Function 5 is chosen as the function instance to execute based on the following
evaluation:
v Function 6 is eliminated as a candidate because schema TODD is not in the SQL

path.

Functions

122 DB2 UDB for iSeries SQL Reference V5R2

v Function 7 in schema TAYLOR is eliminated as a candidate because it does not
have the correct function name.

v Function 1 in schema SMITH is eliminated as a candidate because the INT data
type is not promotable to the CHAR data type of the first parameter of Function
1.

v Function 3 in schema SMITH is eliminated as a candidate because it has the
wrong number of parameters.

v Function 2 is a candidate because the data types of its parameters match or are
promotable to the data types of the arguments.

v Both Function 4 and 5 in schema JOHNSON are candidates because the data
types of their parameters match or are promotable to the data types of the
arguments. However, Function 5 is chosen as the better candidate because
although the data types of the first parameter of both functions (INT) match the
first argument (INT), the data type of the second parameter of Function 5 (INT)
is a better match of the second argument (INT) than the data type of Function 4
(DOUBLE).

v Of the remaining candidates, Function 2 and 5, the database manager selects
Function 5 because schema JOHNSON comes before schema SMITH in the SQL
path.

Example 3: Assume that functions were created with these partial CREATE
FUNCTION statements:

1. CREATE FUNCTION BESTGEN.MYFUNC (INT, DECIMAL(9,0)) ...
2. CREATE FUNCTION KNAPP.MYFUNC (INT, NUMERIC(8,0))...
3. CREATE FUNCTION ROMANO.MYFUNC (INT, FLOAT) ...

Also assume that the SQL path at the time an application invokes a function is
″ROMANO″, ″KNAPP″, ″BESTGEN″. The function is invoked with two data types
(SMALLINT, DECIMAL) as follows:

SELECT ... MYFUNC(SINTCOL1, DECIMALCOL) ...

Function 2 is chosen as the function instance to execute based on the following
evaluation:
v All three functions are candidates for this function invocation because they meet

the criteria specified in “Function resolution” on page 120.
v Function 3 in schema ROMANO is eliminated because the second parameter

(FLOAT) is not as good a fit for the second argument (DECIMAL) as the second
parameter of either Function 1 (DECIMAL) or Function 2 (NUMERIC).

v The second parameters of Function 1 (DECIMAL) and Function 2 (NUMERIC)
are equally good fits for the second argument (DECIMAL).

v Function 2 is finally chosen because ″KNAPP″ precedes ″BESTGEN″ in the SQL
path.

Function Invocation
Once the function is selected, there are still possible reasons why the use of the
function may not be permitted. Each function is defined to return a result with a
specific data type. If this result data type is not compatible within the context in
which the function is invoked, an error will occur. For example, given functions
named STEP defined with different data types as the result:

STEP(SMALLINT) RETURNS CHAR(5)
STEP(DOUBLE) RETURNS INTEGER

and the following function reference (where S is a SMALLINT column):

Functions

Chapter 2. Language Elements 123

SELECT ... 3 +STEP(S)

then, because there is an exact match on argument type, the first STEP is chosen.
An error occurs on the statement because the result type is CHAR(5) instead of a
numeric type as required for an argument of the addition operator.

In cases where the arguments of the function invocation were not an exact match
to the data types of the parameters of the selected function, the arguments are
converted to the data type of the parameter at execution using the same rules as
assignment to columns (see “Assignments and Comparisons” on page 78). This
includes the case where precision, scale, length, or CCSID differs between the
argument and the parameter.

Functions

124 DB2 UDB for iSeries SQL Reference V5R2

Expressions
An expression specifies a value.

��

operator

function
+ (expression)
− constant

column-name
host-variable
special-register

(1)
(scalar-subselect)

(2)
labeled-duration

(3)
cast-specification

(4)
case-expression

��

Notes:

1 See “Scalar Subselect” on page 130 for more information.

2 See “Datetime Operands and Durations” on page 130 for more information.

3 See “CAST Specification” on page 137 for more information.

4 See “CASE Expressions” on page 135 for more information.

operator:

�� CONCAT
\

/
*
**
+
−

��

labeled-duration:

�� function
(expression)
constant
column-name
host-variable

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

��

Expressions

Chapter 2. Language Elements 125

|

Without Operators

If no operators are used, the result of the expression is the specified value.

Example
SALARY :SALARY ’SALARY’ MAX(SALARY)

With the Concatenation Operator
The concatenation operator (CONCAT or ||) combines two strings. The result of
the expression is a string.

The operands of concatenation must be compatible strings. Binary strings are only
compatible with other binary strings.

The data type of the result is determined by the data types of the operands. The
data type of the result is summarized in the following table:

Table 20. Result Data Types With Concatenation

If one operand
column is ...

And the other
operand is ... The data type of the result column is ...

DBCLOB(x) CHAR(y) or
VARCHAR(y) or
CLOB(y) or
GRAPHIC(y) or
VARGRAPHIC(y) or
DBCLOB(y)

DBCLOB(z) where z = MIN(x + y,
maximum length of a DBCLOB)

CLOB(x) GRAPHIC(y) or
VARGRAPHIC(y)

DBCLOB(z) where z = MIN(x + y,
maximum length of a DBCLOB)

VARGRAPHIC(x) CHAR(y) or
VARCHAR(y) or
GRAPHIC(y) or
VARGRAPHIC(y)

VARGRAPHIC(z) where z = MIN(x + y,
maximum length of a VARGRAPHIC)

VARCHAR(x) GRAPHIC(y) VARGRAPHIC(z) where z = MIN(x + y,
maximum length of a VARGRAPHIC)

GRAPHIC(x) CHAR(y) mixed data VARGRAPHIC(z) where z = MIN(x + y,
maximum length of a VARGRAPHIC)

GRAPHIC(x) CHAR(y) SBCS data
or GRAPHIC(y)

GRAPHIC(z) where z = MIN(x + y,
maximum length of a GRAPHIC)

UCS-2 data UCS-2 or DBCS or
mixed or SBCS data

UCS-2 data

DBCS data DBCS or mixed or
SBCS data

DBCS data

CLOB(x) CHAR(y) or
VARCHAR(y) or
CLOB(y)

CLOB(z) where z = MIN(x + y, maximum
length of a CLOB)

VARCHAR(x) CHAR(y) or
VARCHAR(y)

VARCHAR(z) where z = MIN(x + y,
maximum length of a VARCHAR)

CHAR(x) mixed data CHAR(y) VARCHAR(z) where z = MIN(x + y,
maximum length of a VARCHAR)

CHAR(x) SBCS data CHAR(y) CHAR(z) where z = MIN(x + y, maximum
length of a CHAR)

Expressions

126 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

Table 20. Result Data Types With Concatenation (continued)

If one operand
column is ...

And the other
operand is ... The data type of the result column is ...

bit data mixed or SBCS or bit
data

bit data

mixed data mixed or SBCS data mixed data

SBCS data SBCS data SBCS data

BLOB(x) BLOB(y) BLOB(z) where z = MIN(x + y, maximum
length of a BLOB)

If the sum of the lengths of the operands exceeds the maximum length attribute of
the resulting data type:
v The length atttribute of the result is the maximum length of the resulting data

type.26

v If only blanks are truncated no warning or error occurs.
v If non-blanks are truncated, an error occurs.

If either operand can be null, the result can be null, and if either is null, the result
is the null value. Otherwise, the result consists of the first operand string followed
by the second.

With mixed data this result will not have redundant shift codes “at the seam”.
Thus, if the first operand is a string ending with a “shift-in” character (X'0F'),
while the second operand is a character string beginning with a “shift-out”
character (X'0E'), these two bytes are eliminated from the result.

The actual length of the result is the sum of the lengths of the operands unless
redundant shifts are eliminated; in which case, the actual length is two less than
the sum of the lengths of the operands.

The CONCAT operator should be used instead of the || operator. The code point
for the | character varies, depending on the CCSID.

The CCSID of the result is determined by the CCSID of the operands as explained
under “Conversion Rules for Operations That Combine Strings” on page 95. Note
that as a result of these rules:
v If any operand is bit data, the result is bit data.
v If one operand is mixed data and the other is SBCS data, the result is mixed

data. However, this does not necessarily mean that the result is well-formed
mixed data.

Example
Concatenate the column FIRSTNME with a blank and the column LASTNAME.

FIRSTNME CONCAT ’ ’ CONCAT LASTNAME

With Arithmetic Operators
If arithmetic operators are used, the result of the expression is a number derived
from the application of the operators to the values of the operands.

26. If the expression is in the select-list, the length attribute may be further reduced in order to fit within the maximum record size.
For more information, see “Maximum row sizes” on page 532.

Expressions

Chapter 2. Language Elements 127

|
|

|
|

|
|

|

|

If any operand can be null, the result can be null. If any operand has the null
value, the result of the expression is the null value. Arithmetic operators must not
be applied to character strings. For example, USER+2 is invalid.

The prefix operator + (unary plus) does not change its operand. The prefix operator
- (unary minus) reverses the sign of a nonzero operand. If the data type of A is
small integer, the data type of - A is large integer. The first character of the token
following a prefix operator must not be a plus or minus sign.

The infix operators, +, -, *, /, and **, specify addition, subtraction, multiplication,
division, and exponentiation, respectively. The value of the second operand of
division must not be zero.

The result of an exponentiation (**) operator is a double-precision floating-point
number. The result of the other operators depends on the type of the operand.

Two Integer Operands
If both operands of an arithmetic operator are integers with zero scale, the
operation is performed in binary, and the result is a large integer unless either (or
both) operand is a big integer, in which case the result is a big integer. Any
remainder of division is lost. The result of an integer arithmetic operation
(including unary minus) must be within the range of large integers. If either
integer operand has nonzero scale, it is converted to a decimal operand with the
same precision and scale.

Integer and Decimal Operands
If one operand is an integer with zero scale and the other is decimal, the operation
is performed in decimal using a temporary copy of the integer that has been
converted to a decimal number with precision and scale 0 as defined in the
following table:

Operand Precision of Decimal Copy

Column or variable: big integer 19

Column or variable: large integer 11

Column or variable: small integer 5

Constant (including leading zeros) Same as the number of digits in the constant

If one operand is an integer with nonzero scale, it is first converted to a decimal
operand with the same precision and scale.

Two Decimal Operands
If both operands are decimal, the operation is performed in decimal. The result of
any decimal arithmetic operation is a decimal number with a precision and scale
that are dependent on the operation and the precision and scale of the operands. If
the operation is addition or subtraction and the operands do not have the same
scale, the operation is performed with a temporary copy of one of the operands.
The copy of the shorter operand is extended with trailing zeros so that its
fractional part has the same number of digits as the longer operand.

Unless specified otherwise, all functions and operations that accept decimal
numbers allow a precision of up to 31 digits. The result of a decimal operation
must not have a precision greater than 31.

Expressions

128 DB2 UDB for iSeries SQL Reference V5R2

Decimal Arithmetic in SQL
The following formulas define the precision and scale of the result of decimal
operations in SQL. The symbols p and s denote the precision and scale of the first
operand and the symbols p' and s' denote the precision and scale of the second
operand.

Addition and Subtraction
The scale of the result of addition and subtraction is max (s,s’). The precision is
min(31,max(p-s,p’-s’) +max(s,s’)+1).

Multiplication
The precision of the result of multiplication is min (31,p+p’) and the scale is
min(31,s+s’).

Division
The precision of the result of division is 31. The scale is 31-p+s-s'. The scale must
not be negative.

Floating-Point Operands
If either operand of an arithmetic operator is floating point, the operation is
performed in floating point. The operands are first converted to double-precision
floating-point numbers, if necessary. Thus, if any element of an expression is a
floating-point number, the result of the expression is a double-precision
floating-point number.

An operation involving a floating-point number and an integer is performed with
a temporary copy of the integer converted to double-precision floating point. An
operation involving a floating-point number and a decimal number is performed
with a temporary copy of the decimal number converted to double-precision
floating point. The result of a floating-point operation must be within the range of
floating-point numbers.

The order in which floating-point operands (or arguments to functions) are
processed can slightly affect results because floating-point operands are
approximate representations of real numbers. Since the order in which operands
are processed may be implicitly modified by the optimizer (for example, the
optimizer may decide what degree of parallelism to use and what access plan to
use), an application should not depend on the results being precisely the same
each time an SQL statement is executed that uses floating-point operands.

Distinct Types as Operands
A distinct type cannot be used with arithmetic operators even if its source data
type is numeric. To perform an arithmetic operation, create a function with the
arithmetic operator as its source. For example, if there were distinct types
INCOME and EXPENSES, both of which had DECIMAL(8,2) data types, then the
following user-defined function, REVENUE, could be used to subtract one from the
other.

CREATE FUNCTION REVENUE (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a user-defined
function to subtract the new data types.

CREATE FUNCTION "-" (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Expressions

Chapter 2. Language Elements 129

|
|
|
|
|
|
|

Scalar Subselect
A scalar subselect as supported in an expression is a subselect, enclosed in
parentheses, that returns a single row consisting of a single column value. If the
subselect does not return a row, the result of the expression is the null value. If the
select list element is an expression that is simply a column name, the result column
name is based on the name of the column. See “subselect” on page 324 for more
information.

Datetime Operands and Durations
Datetime values can be incremented, decremented, and subtracted. These
operations may involve decimal numbers called durations. A duration is a positive
or negative number representing an interval of time. There are four types of
durations:

Labeled Durations (see diagram on page 125)
A labeled duration represents a specific unit of time
as expressed by a number (which can be the result
of an expression) followed by one of the seven
duration keywords: YEARS, MONTHS, DAYS,
HOURS, MINUTES, SECONDS, or
MICROSECONDS27. The number specified is
converted as if it were assigned to a
DECIMAL(15,0) number. A labeled duration can
only be used as an operand of an arithmetic
operator in which the other operand is a value of
data type DATE, TIME, or TIMESTAMP. Thus, the
expression HIREDATE + 2 MONTHS + 14 DAYS is
valid whereas the expression HIREDATE + (2
MONTHS + 14 DAYS) is not. In both of these
expressions, the labeled durations are 2 MONTHS
and 14 DAYS.

Date Duration A date duration represents a number of years,
months, and days, expressed as a DECIMAL(8,0)
number. To be properly interpreted, the number
must have the format yyyymmdd, where yyyy
represents the number of years, mm the number of
months, and dd the number of days. The result of
subtracting one date value from another, as in the
expression HIREDATE - BRTHDATE, is a date
duration.

Time Duration A time duration represents a number of hours,
minutes, and seconds, expressed as a
DECIMAL(6,0) number. To be properly interpreted,
the number must have the format hhmmss where hh
represents the number of hours, mm the number of
minutes, and ss the number of seconds. The result
of subtracting one time value from another is a
time duration.

Timestamp duration A timestamp duration represents a number of years,
months, days, hours, minutes, seconds, and
microseconds, expressed as a DECIMAL(20,6)

27. Note that the singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and
MICROSECOND.

Expressions

130 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|
|

number. To be properly interpreted, the number
must have the format yyyymmddhhmmsszzzzzz,
where yyyy, mm, dd, hh, mm, ss, and zzzzzz
represent, respectively, the number of years,
months, days, hours, minutes, seconds, and
microseconds. The result of subtracting one
timestamp value from another is a timestamp
duration.

Datetime Arithmetic in SQL
The only arithmetic operations that can be performed on datetime values are
addition and subtraction. If a datetime value is the operand of addition, the other
operand must be a duration. The specific rules governing the use of the addition
operator with datetime values follow:
v If one operand is a date, the other operand must be a date duration or labeled

duration of years, months, or days.
v If one operand is a time, the other operand must be a time duration or a labeled

duration of hours, minutes, or seconds.
v If one operand is a timestamp, the other operand must be a duration. Any type

of duration is valid.
v Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not the
same as those for addition because a datetime value cannot be subtracted from a
duration, and because the operation of subtracting two datetime values is not the
same as the operation of subtracting a duration from a datetime value. The specific
rules governing the use of the subtraction operator with datetime values follow:
v If the first operand is a date, the second operand must be a date, a date

duration, a string representation of a date, or a labeled duration of years,
months, or days.

v If the second operand is a date, the first operand must be a date, or a string
representation of a date.

v If the first operand is a time, the second operand must be a time, a time
duration, a string representation of a time, or a labeled duration of hours,
minutes, or seconds.

v If the second operand is a time, the first operand must be a time, or string
representation of a time.

v If the first operand is a timestamp, the second operand must be a timestamp, a
string representation of a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a timestamp or
a string representation of a timestamp.

v Neither operand of the subtraction operator can be a parameter marker.

Date Arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting Dates: The result of subtracting one date (DATE2) from another
(DATE1) is a date duration that specifies the number of years, months, and days
between the two dates. The data type of the result is DECIMAL(8,0). If DATE1 is
greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is
less than DATE2, however, DATE1 is subtracted from DATE2, and the sign of the
result is made negative. The following procedural description clarifies the steps
involved in the operation RESULT = DATE1 - DATE2.

Expressions

Chapter 2. Language Elements 131

If DAY(DATE2) <= DAY(DATE1)
then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

If DAY(DATE2) > DAY(DATE1)
then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)

where N = the last day of MONTH(DATE2).
MONTH(DATE2) is then incremented by 1.

If MONTH(DATE2) <= MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

If MONTH(DATE2) > MONTH(DATE1)
then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2).
YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

For example, the result of DATE('3/15/2000') - '12/31/1999' is 215 (or, a duration
of 0 years, 2 months, and 15 days).

Incrementing and Decrementing Dates: The result of adding a duration to a
date, or of subtracting a duration from a date, is itself a date. (For the purposes of
this operation, a month denotes the equivalent of a calendar page. Adding months
to a date, then, is like turning the pages of a calendar, starting with the page on
which the date appears.) The result must fall between the dates January 1, 0001
and December 31, 9999 inclusive. If a duration of years is added or subtracted,
only the year portion of the date is affected. The month is unchanged, as is the day
unless the result would be February 29 of a non-leap-year. In this case, the day is
changed to 28, and SQLWARN6 in the SQLCA is set to ’W’ to indicate the
end-of-month adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless the
result would be invalid (September 31, for example). In this case, the day is set to
the last day of the month, and SQLWARN6 in the SQLCA is set to ’W’ to indicate
the end-of-month adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of
the date, and potentially the month and year. Adding a labeled duration of DAYS
will not cause an end-of-month adjustment.

Date durations, whether positive or negative, may also be added to and subtracted
from dates. As with labeled durations, the result is a valid date, and a warning
indicator is set in the SQLCA whenever an end-of-month adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration is
subtracted from a date, the date is incremented by the specified number of years,
months, and days, in that order. Thus DATE1 + X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:
DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS

When a positive date duration is subtracted from a date, or a negative date
duration is added to a date, the date is decremented by the specified number of
days, months, and years, in that order. Thus, DATE1 - X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:
DATE1 - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS

Expressions

132 DB2 UDB for iSeries SQL Reference V5R2

When adding durations to dates, adding one month to a given date gives the same
date one month later unless that date does not exist in the later month. In that case,
the date is set to that of the last day of the later month. For example, January 28
plus one month gives February 28; and one month added to January 29, 30, or 31
results in either February 28 or, for a leap year, February 29.

Note: If one or more months is added to a given date and then the same number
of months is subtracted from the result, the final date is not necessarily the
same as the original date.

Time Arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting Times: The result of subtracting one time (TIME2) from another
(TIME1) is a time duration that specifies the number of hours, minutes, and
seconds between the two times. The data type of the result is DECIMAL(6,0). If
TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If
TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign
of the result is made negative. The following procedural description clarifies the
steps involved in the operation RESULT = TIME1 - TIME2.

If SECOND(TIME2) <= SECOND(TIME1)
then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

If SECOND(TIME2) > SECOND(TIME1)
then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).
MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIME1)
then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

If MINUTE(TIME2) > MINUTE(TIME1)
then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).
HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26') - '00:32:56' is 102930 (a duration of 10
hours, 29 minutes, and 30 seconds).

Incrementing and Decrementing Times: The result of adding a duration to a
time, or of subtracting a duration from a time, is itself a time. Any overflow or
underflow of hours is discarded, thereby ensuring that the result is always a time.
If a duration of hours is added or subtracted, only the hours portion of the time is
affected. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds
portion of the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted
from times. The result is a time that has been incremented or decremented by the
specified number of hours, minutes, and seconds, in that order. TIME1 + X, where
“X” is a DECIMAL(6,0) number, is equivalent to the expression:

Expressions

Chapter 2. Language Elements 133

TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Timestamp Arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting Timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years, months,
days, hours, minutes, seconds, and microseconds between the two timestamps. The
data type of the result is DECIMAL(20,6). If TS1 is greater than or equal to TS2,
TS2 is subtracted from TS1. If TS1 is less than TS2, however, TS1 is subtracted from
TS2 and the sign of the result is made negative. The following procedural
description clarifies the steps involved in the operation RESULT = TS1 - TS2.

If MICROSECOND(TS2) <= MICROSECOND(TS1)
then MICROSECOND(RESULT) = MICROSECOND(TS1) -
MICROSECOND(TS2).

If MICROSECOND(TS2) >MICROSECOND(TS1)
then MICROSECOND(RESULT) = 1000000 +
MICROSECOND(TS1) - MICROSECOND(TS2)
and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified
in the rules for subtracting times.

If HOUR(TS2) <= HOUR(TS1)
then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)
then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)
and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified
in the rules for subtracting dates.

Incrementing and Decrementing Timestamps: The result of adding a duration to
a timestamp, or of subtracting a duration from a timestamp, is itself a timestamp.
Date and time arithmetic is performed as previously defined, except that an
overflow or underflow of hours is carried into the date part of the result, which
must be within the range of valid dates. Microseconds overflow into seconds.

Precedence of Operations
Expressions within parentheses are evaluated first. When the order of evaluation is
not specified by parentheses, exponentiation is applied after prefix operators (such
as -, unary minus) and before multiplication and division. Multiplication and
division are applied before addition and subtraction. Operators at the same
precedence level are applied from left to right. The following table shows the
priority of all operators.

Priority Operators

1 +, - (when used for signed numeric values)
2 **
3 *, /, CONCAT, ||
4 +, - (when used between two operands)

Expressions

134 DB2 UDB for iSeries SQL Reference V5R2

Example
In the following example, operators are applied in the order shown by the
numbers in the second row.

1.10 * (SALARY + BONUS) + SALARY / :VAR3
2 1 4 3

CASE Expressions

CASE expressions allow an expression to be selected based on the evaluation of
one or more conditions. In general, the value of the case-expression is the value of
the result-expression following the first (leftmost) when-clause that evaluates to true.
If no when-clause evaluates to true and the ELSE keyword is present then the
result is the value of the ELSE result-expression or NULL. If no when-clause
evaluates to true and the ELSE keyword is not present then the result is NULL.
Note that when a when-clause evaluates to unknown (because of nulls), the
when-clause is not true and hence is treated the same way as a when-clause that
evaluates to false.

When using the simple-when-clause, the value of the expression prior to the first
WHEN keyword is tested for equality with the value of the expression following the
WHEN keyword(s). The data type of the expression prior to the first WHEN
keyword must therefore be compatible with the data types of each expression
following the WHEN keyword(s).

A result-expression is an expression following the THEN or ELSE keywords. There
must be at least one result-expression in the CASE expression (NULL cannot be
specified for every case). All result-expressions must have compatible data types,
where the attributes of the result are determined based on the “Rules for Result
Data Types” on page 91.

There are two scalar functions, NULLIF and COALESCE, that are specialized to
handle a subset of the functionality provided by CASE. The following table shows
the equivalent expressions using CASE or these functions.

��
ELSE NULL

CASE searched-when-clause END
simple-when-clause ELSE result-expression

��

searched-when-clause:

 WHEN search-condition THEN result-expression
NULL

simple-when-clause:

expression WHEN expression THEN result-expression
NULL

Expressions

Chapter 2. Language Elements 135

Table 21. Equivalent CASE Expressions

CASE Expression Equivalent Expression

CASE WHEN e1=e2 THEN NULL ELSE e1 END NULLIF(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE e2 END COALESCE(e1,e2)

CASE WHEN e1 IS NOT NULL THEN e1 ELSE
COALESCE(e2,...,eN) END COALESCE(e1,e2,...,eN)

Examples
v If the first character of a department number is a division in the organization,

then a CASE expression can be used to list the full name of the division to
which each employee belongs:

SELECT EMPNO, LASTNAME,
CASE SUBSTR(WORKDEPT,1,1)
WHEN ’A’ THEN ’Administration’
WHEN ’B’ THEN ’Human Resources’
WHEN ’C’ THEN ’Accounting’
WHEN ’D’ THEN ’Design’
WHEN ’E’ THEN ’Operations’
END

FROM EMPLOYEE

v The number of years of education are used in the EMPLOYEE table to give the
education level. A CASE expression can be used to group these and to show the
level of education.

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
CASE
WHEN EDLEVEL < 15 THEN ’SECONDARY’
WHEN EDLEVEL < 19 THEN ’COLLEGE’
ELSE ’POST GRADUATE’
END

FROM EMPLOYEE

v Another interesting example of CASE statement usage is in protecting from
division by 0 errors. For example, the following code finds the employees who
earn more than 25% of their income from commission, but who are not fully
paid on commission:

SELECT EMPNO, WORKDEPT, SALARY+COMM
FROM EMPLOYEE
WHERE (CASE WHEN SALARY=0 THEN NULL

ELSE COMM/SALARY
END) > 0.25

v The following CASE expressions are equivalent:
SELECT LASTNAME,
CASE
WHEN LASTNAME = ’Haas’ THEN ’President’
...

SELECT LASTNAME,
CASE LASTNAME
WHEN ’Haas’ THEN ’President’
...

Expressions

136 DB2 UDB for iSeries SQL Reference V5R2

CAST Specification

��
(1)

CAST (expression AS data-type)
NULL
parameter-marker

��

Notes:

1 The data type names may be qualified. For more information see “Naming
Conventions” on page 45.

Expressions

Chapter 2. Language Elements 137

data-type:

built-in-type
distinct-type

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
(integer) CCSID integer

ROWID

Expressions

138 DB2 UDB for iSeries SQL Reference V5R2

|||||

The CAST specification returns the cast operand (the first operand) cast to the type
specified by the data type. If the data type of either operand is a distinct type, the
privileges held by the authorization ID of the statement must include USAGE
authority on the distinct type.

expression
If the cast operand is an expression (other than parameter marker or NULL),
the result is the argument value converted to the specified target data type.

The supported casts are shown in Table 11 on page 76, where the first column
represents the data type of the cast operand (source data type) and the data
types across the top represent the target data type of the CAST specification. If
the cast is not supported, an error will occur.

When casting character or graphic strings to a character or graphic string with
a different length, a warning is returned if truncation of other than trailing
blanks occurs.

NULL
If the cast operand is the keyword NULL, the result is a null value that has the
specified data type.

parameter-marker
A parameter marker (specified as a question mark character) is normally
considered an expression, but is documented separately in this case because it
has a special meaning. If the cast operand is a parameter-marker, the specified
data type is considered a promise that the replacement will be assignable to the
specified data type (using the same rules as assignment to a column). Such a
parameter marker is considered a typed parameter marker. Typed parameter
markers will be treated like any other typed value for the purpose of
DESCRIBE of a select list or for column assignment.

data-type
Specifies the data type of the result. If the data type is not qualified, the SQL
path is used to find the appropriate data type. See “CREATE TABLE” on
page 507 for a description of data-type.

If length, precision, scale, or CCSID attributes are specified, the specified
attributes are used. If the length, precision, or scale attributes are not specified,
the default values are used. For example, the default for CHAR is a length of
1, and the default for DECIMAL is a precision of 5 and a scale of 0. For the
default attribute values of the other data types, see “CREATE TABLE” on
page 507. (For portability across operating systems, when specifying a
floating-point data type, use REAL or DOUBLE instead of FLOAT.)

If the CCSID attribute is not specified, then:
v If the data-type is BLOB, a CCSID of 65535 is used.
v If the expression is a character string, and the data-type is CHAR, VARCHAR,

or CLOB; the CCSID of the expression is used.
v If the expression is a graphic string, and the data-type is GRAPHIC,

VARGRAPHIC, or DBCLOB; the CCSID of the expression is used.
v Otherwise, the default CCSID for the data-type is used.

Restrictions on the supported data types are based on the specified cast
operand.
v For a cast operand that is an expression, see Table 11 on page 76 for the target

data types that are supported based on the data type of the cast operand.

Expressions

Chapter 2. Language Elements 139

v For a cast operand that is the keyword NULL, the target data type can be
any data type.

v For a cast operand that is a parameter marker, the target data type can be
any data type. If the data type is a distinct type, the application that uses the
parameter marker will use the source data type of the distinct type.

For information on which casts between data types are supported and the rules for
casting to a data type see “Casting Between Data Types” on page 75.

Examples
v An application is only interested in the integer portion of the SALARY column

(defined as DECIMAL(9,2)) from the EMPLOYEE table. The following CAST
specification will convert the SALARY column to INTEGER.
SELECT EMPNO, CAST(SALARY AS INTEGER)
FROM EMPLOYEE

v Assume that two distinct types exist. T_AGE was sourced on SMALLINT and is
the data type for the AGE column in the PERSONNEL table. R_YEAR was
sourced on INTEGER and is the data type for the RETIRE_YEAR column in the
same table. The following UPDATE statement could be prepared.
UPDATE PERSONNEL SET RETIRE_YEAR = ?

WHERE AGE = CAST(? AS T_AGE)

Expressions

140 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|

Predicates
A predicate specifies a condition that is true, false, or unknown about a given row
or group. The following rules apply to all types of predicates:
v All values specified in a predicate must be compatible.
v The CCSID conversion of operands of predicates involving two or more

operands are done according to “Conversion Rules for Comparison” on page 88.
v Use of a DataLink value is limited to the NULL predicate.

Predicates

Chapter 2. Language Elements 141

Basic Predicate

A basic predicate compares two values. If the operands of the predicate contain
SBCS data or mixed data, and if the sort sequence in effect at the time the
statement is executed is not *HEX, then the comparison of the operands is
performed using weighted values for the operands. The weighted values are based
on the sort sequence.

If the value of either operand is null, the result of the predicate is unknown.
Otherwise the result is either true or false.

For values x and y:

Predicate
Is True If and Only If...

x = y x is equal to y

x<> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x>= y x is greater than or equal to y

x<= y x is less than or equal to y

Examples
EMPNO = ’528671’
PRTSTAFF <> :VAR1
SALARY + BONUS + COMM < 20000
SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)

28. The following forms of the comparison operators are also supported in basic and quantified predicates: !=, !<, !>, ¬=,¬<, and¬>
are supported. All these product-specific forms of the comparison operators are intended only to support existing SQL
statements that use these operators and are not recommended for use when writing new SQL statements. Some keyboards must
use the hex values for the not (¬) symbol. The hex value varies and is dependent on the keyboard that is used. A not sign (¬) or
the character that must be used in its place in certain countries, can cause parsing errors in statements passed from one database
server to another. The problem occurs if the statement undergoes character conversion with certain combinations of source and
target CCSIDs. To avoid this problem, substitute an equivalent operator for any operator that includes a not sign. For example,
substitute ’<>’ for ’¬=’, ’<=’ for ’¬>’, and ’>=’ for ’¬<’.

�� expression
(1)

=
<>
<
>
<=
>=

expression ��

Notes:

1 Other comparison operators are also supported. 28

Basic Predicate

142 DB2 UDB for iSeries SQL Reference V5R2

|
|

Quantified Predicate

A quantified predicate compares a value with a set of values.

The subselect must specify a single result column and can return any number of
values, whether null or not null. If the operands of the predicate contain SBCS data
or mixed data, and if the sort sequence in effect at the time the statement is
executed is not *HEX, then the comparison is performed using weighted values for
the operands. The weighted values are based on the sort sequence.

When ALL is specified, the result of the predicate is:
v True if the result of the subselect is empty, or if the specified relationship is true

for every value returned by the subselect.
v False if the specified relationship is false for at least one value returned by the

subselect.
v Unknown if the specified relationship is not false for any values returned by the

subselect and at least one comparison is unknown because of a null value.

When SOME or ANY is specified, the result of the predicate is:
v True if the specified relationship is true for at least one value returned by the

subselect.
v False if the result of the subselect is empty, or if the specified relationship is false

for every value returned by the subselect.
v Unknown if the specified relationship is not true for any of the values returned

by the subselect and at least one comparison is unknown because of a null
value.

Examples
Use the tables below when referring to the following examples.

Table 22. Description of tables.

TBLA

COLA

TBLB

COLB

1 2

2 3

3

4

null

v The following select statement results in 2,3. The subselect returns (2,3). COLA
in rows 2 and 3 equals at least one of these values.

�� expression
(1)

=
<>
<
>
<=
>=

SOME
ANY
ALL

(subselect) ��

Notes:

1 Other comparison operators are also supported. 28

Quantified Predicate

Chapter 2. Language Elements 143

SELECT * FROM TBLA WHERE COLA = ANY(SELECT COLB FROM TBLB)

v The following select statement results in 3,4. The subselect returns (2,3). COLA
in rows 3 and 4 is greater than at least one of these values.

SELECT * FROM TBLA WHERE COLA > ANY(SELECT COLB FROM TBLB)

v The following select statement results in 4. The subselect returns (2,3). COLA in
row 4 is the only one that is greater than both these values.

SELECT * FROM TBLA WHERE COLA > ALL(SELECT COLB FROM TBLB)

v The following select statement results in 1,2,3,4, and null. The result of the
subselect is empty. Thus, the predicate is true for all rows in TBLA.

SELECT * FROM TBLA WHERE COLA > ALL(SELECT COLB FROM TBLB WHERE COLB<0)

v The following select statement results in the empty set. The result of the
subselect is empty. Thus, the predicate is false for all rows in TBLA.

SELECT * FROM TBLA WHERE COLA > ANY(SELECT COLB FROM TBLB WHERE COLB<0)

Quantified Predicate

144 DB2 UDB for iSeries SQL Reference V5R2

BETWEEN Predicate

The BETWEEN predicate compares a value with a range of values. If a sort
sequence other than *HEX is in effect when the statement is executed and the
BETWEEN predicate involves SBCS data or mixed data, the weighted values of the
strings are compared instead of the values. The weighted value is based on the sort
sequence.

The BETWEEN predicate:
value1 BETWEEN value2 AND value3

is logically equivalent to the search condition:
value1 >= value2 AND value1 <= value3

The BETWEEN predicate:
value1 NOT BETWEEN value2 AND value3

is equivalent to the search condition:
NOT(value1 BETWEEN value2 AND value3);that is,
value1 < value2 OR value1 > value3.

If the operands of the BETWEEN predicate are strings with different CCSIDs,
operands are converted as if the above logically-equivalent search conditions were
specified.

Given a mixture of datetime values and string representations of datetime values,
all values are converted to the data type of the datetime operand.

Examples
EMPLOYEE.SALARY BETWEEN 20000 AND 40000

SALARY NOT BETWEEN 20000 + :HV1 AND 40000

�� expression BETWEEN expression AND expression
NOT

��

BETWEEN Predicate

Chapter 2. Language Elements 145

EXISTS Predicate

The EXISTS predicate tests for the existence of certain rows. The subselect may
specify any number of columns, and
v The result is true only if the number of rows specified by the subselect is not

zero.
v The result is false only if the number of rows specified by the subselect is zero.
v The result cannot be unknown.

The values returned by the subselect are ignored.

Example
EXISTS (SELECT * FROM EMPLOYEE WHERE SALARY > 60000)

�� EXISTS (subselect) ��

EXISTS Predicate

146 DB2 UDB for iSeries SQL Reference V5R2

IN Predicate

The IN predicate compares a value with a set of values. If a sort sequence other
than *HEX is in effect when the statement is executed and the IN predicate
involves SBCS data or mixed data, the weighted values of the strings are compared
instead of the actual values. The weighted values are based on the sort sequence.

In the subselect form, the subselect must identify a single result column and may
return any number of values, whether null or not null.

An IN predicate of the form:

expression IN (subselect)

is equivalent to a quantified predicate of the form:

expression = ANY (subselect)

An IN predicate of the form:

expression NOT IN (subselect)

is equivalent to a quantified predicate of the form:

expression <> ALL (subselect)

An IN predicate of the form:

expression IN expression

is equivalent to a basic predicate of the form:

expression = expression

An IN predicate of the form:

expression IN (value1, value2, ..., valueN)

is logically equivalent to:

expression IN (SELECT * FROM R)

Assume T is a table with a single row. R is a temporary table formed by the
following fullselect:

SELECT value1 FROM T
UNION

SELECT value2 FROM T
UNION

�� expression IN
NOT

(subselect)
,

(expression)
expression

��

IN Predicate

Chapter 2. Language Elements 147

.

.

.
UNION

SELECT valueN FROM T

Each host variable must identify a structure or variable that is described in
accordance with the rule for declaring host structures or variables.

If the operands of the IN predicate have different data types or attributes, the rules
used to determine the data type for evaluation of the IN predicate are those for
UNION and UNION ALL. For a description, see “Rules for Result Data Types” on
page 91.

If the operands of the IN predicate are strings with different CCSIDs, the rules
used to determine which operands are converted are those for operations that
combine strings. For a description, see “Conversion Rules for Operations That
Combine Strings” on page 95.

Examples
DEPTNO IN (’D01’, ’B01’, ’C01’)

EMPNO IN(SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = ’E11’)

IN Predicate

148 DB2 UDB for iSeries SQL Reference V5R2

LIKE Predicate

The LIKE predicate searches for strings that have a certain pattern. The pattern is
specified by a string in which the underscore and percent sign have special
meanings. Trailing blanks in a pattern are a part of the pattern.

If the value of any of the arguments is null, the result of the LIKE predicate is
unknown.

The match-expression, pattern-expression, and escape-expression must identify strings.
The values for match-expression, pattern-expression, and escape-expression must either
all be binary strings or none can be binary strings. The three arguments can
include a mixture of character strings and graphic strings.

None of the expressions can yield a distinct type. However, it can be a function
that casts a distinct type to its source type.

If a sort sequence other than *HEX is in effect when the statement is executed and
the LIKE predicate involves SBCS data or mixed data, the weighted values of the
strings are compared instead of the actual values. The weighted values are based
on the sort sequence.

With character strings, the terms character, percent sign, and underscore in the
following discussion refer to single-byte characters. With graphic strings, the terms
refer to double-byte or UCS-2 characters. With binary strings, the terms refer to the
code points of those single-byte characters.

match-expression
An expression that specifies the string that is to be examined to see if it
conforms to a certain pattern of characters.

LIKE pattern-expression
An expression that specifies the string that is to be matched.

A simple description of the pattern

The pattern is used to specify the conformance criteria for values in the
match-expression where:
v The underscore sign (_) represents any single character.
v The percent sign (%) represents a string of zero or more characters.
v Any other character represents itself.

If the pattern-expression needs to include either the underscore or the percent
character, the escape-expression is used to specify a character to precede either
the underscore or percent character in the pattern.

A rigorous description of the pattern

This more rigorous description of the pattern ignores the use of the
escape-expression, which is covered the later.

�� match-expression LIKE pattern-expression
NOT ESCAPE escape-expression

��

LIKE Predicate

Chapter 2. Language Elements 149

Let m denote a value of match-expression and p denote the value of
pattern-expression. The string p is interpreted as a sequence of the minimum
number of substring specifiers, so each character of p is part of exactly one
substring specifier. A substring specifier is an underscore, a percent sign, or
any nonempty sequence of characters other than an underscore or a percent
sign.

The result of the predicate is unknown if m or p is the null value; otherwise,
the result of the predicate is either true or false. The result is true either if both
m and p are empty strings, or there exists a partitioning of m into substrings
such that:
v A substring of m is a sequence of zero or more contiguous characters and

each character of m is part of exactly one substring.
v If the nth substring specifier is an underscore, the nth substring of m is any

single character.
v If the nth substring specifier is a percent sign, the nth substring of m is any

sequence of zero or more characters.
v If the nth substring specifier is neither an underscore nor a percent sign, the

nth substring of m is equal to that substring specifier and has the same
length as that substring specifier.

v The number of substrings of m is the same as the number of substring
specifiers.

It follows that if y is an empty string and m is not an empty string; the result is
false. Similarly, it follows that if m is an empty string and p is not an empty
string consisting of other than percent signs, the result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT(m
LIKE p).

If necessary, the CCSID of the match-expression, pattern-expression, and
escape-expression are converted to the compatible CCSID between the
match-expression and pattern-expression.

Mixed data

If the expression is mixed data, the expression might contain double-byte
characters, and the pattern can include both SBCS and DBCS characters. In that
case the special characters in p are interpreted as follows:
v An SBCS underscore refers to one SBCS character.
v A DBCS underscore refers to one DBCS character.
v A percent sign (either SBCS or DBCS) refers to any number of characters of

any type, either SBCS or DBCS.
v Redundant shifts in match-expression and pattern-expression are ignored.

UCS-2 data

If the expression is UCS-2 graphic data, the pattern can include either or both
of the supported code points for the UCS-2 underscore and percent sign. The
supported code points for the UCS-2 underscore are X’005F’ and X’FF3F’. The
supported code points for the UCS-2 percent sign are X’0025’ and X’FF05’.

Parameter Marker

LIKE Predicate

150 DB2 UDB for iSeries SQL Reference V5R2

When the pattern specified in a LIKE predicate is a parameter marker, and a
fixed-length character host variable is used to replace the parameter marker;
specify a value for the host variable that is the correct length. If you do not
specify the correct length, the select will not return the intended results.

For example, if the host variable is defined as CHAR(10), and the value
WYSE% is assigned to that host variable, the host variable is padded with
blanks on assignment. The pattern used is

’WYSE% ’

This pattern requests the database manager to search for all values that start
with WYSE and end with five blank spaces. If you intended to search for only
the values that start with ’WYSE’ you should assign the value
’WSYE%%%%%%’ to the host variable.

ESCAPE escape-expression
An expression that specifies a character to be used to modify the special
meaning of the underscore (_) and percent (%) characters in the
pattern-expression. This allows the LIKE predicate to be used to match values
that contain the actual percent and underscore characters. The following rules
apply the use of the ESCAPE clause and the escape-expression:
v The escape-expression must be a string of length 1.29

v The pattern-expression must not contain the escape character except when
followed by the escape character, percent, or underscore. For example, if '+'
is the escape character, any occurrences of '+' other than '++', '+_', or '+%' in
the pattern-expression is an error.

v The escape-expression can be a parameter marker.

The following example shows the effect of successive occurrences of the escape
character, which in this case is the plus sign (+).

When the pattern string is... The actual pattern is...

+% A percent sign

++% A plus sign followed by zero or more arbitrary
characters

+++% A plus sign followed by a percent sign

Examples

Example 1: Search for the string ‘SYSTEMS’ appearing anywhere within the
PROJNAME column in the PROJECT table.

SELECT PROJNAME
FROM PROJECT
WHERE PROJECT.PROJNAME LIKE ’%SYSTEMS%’

Example 2: Search for a string with a first character of ‘J’ that is exactly two
characters long in the FIRSTNME column of the EMPLOYEE table.
SELECT FIRSTNME

FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE ’J_’

29. If it is NUL-terminated, a C character string variable of length 2 can be specified.

LIKE Predicate

Chapter 2. Language Elements 151

Example 3: Search for a string of any length, with a first character of ‘J’ in the
FIRSTNME column of the EMPLOYEE table.
SELECT FIRSTNME

FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE ’J%’

Example 4: In this example:
SELECT *

FROM TABLEY
WHERE C1 LIKE ’AAAA+%BBB%’ ESCAPE ’+’

'+' is the escape character and indicates that the search is for a string that starts
with 'AAAA%BBB'. The '+%' is interpreted as a single occurrence of '%' in the
pattern.

Example 5: Assume that a distinct type named ZIP_TYPE with a source data type
of CHAR(5) exists and an ADDRZIP column with data type ZIP_TYPE exists in
some table TABLEY. The following statement selects the row if the zip code
(ADDRZIP) begins with ’9555’.

SELECT *
FROM TABLEY
WHERE CHAR(ADDRZIP) LIKE ’9555%’

Example 6: The RESUME column in sample table EMP_RESUME is defined as a
CLOB. If the host variable LASTNAME has a value of ’JONES’, the following
statement selects the RESUME column when the string JONES appears anywhere
in the column.

SELECT RESUME
FROM EMP_RESUME
WHERE RESUME LIKE ’%’||LASTNAME||’%’

Example 7: In the following table of EBCDIC examples, assume COL1 is mixed
data. The table shows the results when the predicates in the first column are
evaluated using the COL1 values from the second column:

LIKE Predicate

152 DB2 UDB for iSeries SQL Reference V5R2

LIKE Predicate

Chapter 2. Language Elements 153

NULL Predicate

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the expression
is null, the result is true. If the value is not null, the result is false. If NOT is
specified, the result is reversed.

Examples
EMPLOYEE.PHONE IS NULL

SALARY IS NOT NULL

�� expression IS NULL
NOT

��

NULL Predicate

154 DB2 UDB for iSeries SQL Reference V5R2

Search Conditions

A search condition specifies a condition that is true, false, or unknown about a given

row or group.

The result of a search condition is derived by application of the specified logical
operators (AND, OR, NOT) to the result of each specified predicate. If logical
operators are not specified, the result of the search condition is the result of the
specified predicate.

AND and OR are defined in the following table in which P and Q are any
predicates:

Table 23. Truth Tables for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation
is not specified by parentheses, NOT is applied before AND, and AND is applied
before OR. The order in which operators at the same precedence level are
evaluated is undefined to allow for optimization of search conditions.

��
NOT

predicate
(search-condition)

�

�

AND predicate
OR NOT (search-condition)

��

Search Conditions

Chapter 2. Language Elements 155

Examples
In the examples, the numbers on the second line indicate the order in which the
operators are evaluated.

Example 1
MAJPROJ = ’MA2100’ AND DEPTNO = ’D11’ OR DEPTNO = ’B03’ OR DEPTNO = ’E11’

1 2 or 3 2 or 3

Example 2
MAJPROJ = ’MA2100’ AND (DEPTNO = ’D11’ OR DEPTNO = ’B03’) OR DEPTNO = ’E11’

2 1 3

Search Conditions

156 DB2 UDB for iSeries SQL Reference V5R2

Chapter 3. Built-In Functions

A built-in function is a function that is supplied with DB2 UDB for iSeries. A
built-in function is denoted by a function name followed by one or more operands
which are enclosed in parentheses. The operands of functions are called arguments,
and each argument is specified by an expression. The result of a function is a single
value derived by applying the operation of the function to the arguments.

The built-in functions are part of schema QSYS2. A built-in function can be invoked
with or without its schema name. Regardless of whether a schema name qualifies
the function name, the database manager uses function resolution to determine
which function to use. For more information on functions and the process of
function resolution, see “Function resolution” on page 120.

Built-in functions are classified as column functions or scalar functions. The argument
of a column function is a set of values. An argument of a scalar function is a single
value.

In the syntax of SQL, the term function is used only in the definition of an
expression. Thus, a function can be used only where an expression can be used.
Additional restrictions apply to the use of column functions as specified in the
following section and in Chapter 4, “Queries” on page 323.

The following tables list the different types of built-in functions:

Table 24. Column Functions

“AVG” on page 163 Returns the average of a set of numbers

“COUNT” on page 164 Returns the number of rows or values in a set of rows or
values

“COUNT_BIG” on page 165 Returns the number of rows or values in a set of rows or
values. It is similar to COUNT except that the result can
be greater than the maximum value of integer.

“MAX” on page 167 Returns the maximum value in a set of values in a group

“MIN” on page 168 Returns the minimum value in a set of values in a group

“STDDEV or STDDEV_POP” on page 169 Returns the biased standard deviation (/n) of a set of
numbers.

“SUM” on page 170 Returns the sum of a set of numbers

“VAR_POP or VARIANCE or VAR” on page 171 Returns the biased variance (/n) of a set of numbers.

Table 25. Cast Scalar Functions

“BIGINT” on page 180 Returns a big integer representation of a number

“BLOB” on page 181 Returns a BLOB representation of a string of any type

“CHAR” on page 183 Returns a CHARACTER representation of a value

“CLOB” on page 189 Returns a CLOB representation of a value

“DATE” on page 200 Returns a DATE from a value

“DBCLOB” on page 208 Returns a DBCLOB representation of a string expression

“DECIMAL or DEC” on page 210 Returns a DECIMAL representation of a number

© Copyright IBM Corp. 1998, 2002 157

|
|
|
|
|

|
|
|
|
|

|
|
|

|

||

||

||
|

||
|
|

||

||

||
|

||

||
|

||

||

||

||

||

||

||

||

Table 25. Cast Scalar Functions (continued)

“DOUBLE_PRECISION or DOUBLE” on page 224 Return a DOUBLE_PRECISION representation of a
number

“FLOAT” on page 226 Return a FLOAT representation of a number

“GRAPHIC” on page 228 Returns a GRAPHIC representation of a string expression

“INTEGER or INT” on page 239 Returns an INTEGER representation of a number

“REAL” on page 277 Returns a REAL representation of a number

“ROWID” on page 280 Returns a Row ID from a value.

“SMALLINT” on page 287 Returns a SMALLINT representation of a number

“TIME” on page 297 Returns a TIME from a value

“TIMESTAMP” on page 298 Returns a TIMESTAMP from a value or a pair of values

“VARCHAR” on page 310 Returns a VARCHAR representative of a value

“VARGRAPHIC” on page 314 Returns a VARGRAPHIC representation of a string
expression

“ZONED” on page 321 Returns a zoned decimal representation of a number

Table 26. Datalink Scalar Functions

“DLCOMMENT” on page 215 Returns the comment value from a DataLink value

“DLLINKTYPE” on page 216 Returns the link type value from a DataLink value

“DLURLCOMPLETE” on page 217 Returns the complete URL value from a DataLink value
with a link type of URL

“DLURLPATH” on page 218 Returns the path and file name necessary to access a file
within a given server from a DataLink value with a
linktype of URL. When appropriate, the value returned
includes a file access token.

“DLURLPATHONLY” on page 219 Returns the path and file name necessary to access a file
within a given server from a DataLink value with a
linktype of URL. The value returned NEVER includes a
file access token.

“DLURLSCHEME” on page 220 Returns the scheme from a DataLink value with a
linktype of URL

“DLURLSERVER” on page 221 Returns the file server from a DataLink value with a
linktype of URL

“DLVALUE” on page 222 Returns a DataLink value

Table 27. Datetime Scalar Functions

“CURDATE” on page 198 Returns a date based on a reading of the time-of-day
clock

“CURTIME” on page 199 Returns a time based on a reading of the time-of-day
clock

“DAYS” on page 207 Returns the day part of a value

“DAYOFMONTH” on page 203 Returns the day part of a value

“DAYOFWEEK” on page 204 Returns an integer that represents the day of the week,
where 1 is Sunday and 7 is Saturday

“DAYOFWEEK_ISO” on page 205 Returns an integer that represents the day of the week,
where 1 is Monday and 7 is Sunday

“DAYOFYEAR” on page 206 Returns an integer that represents the day of the year

Built-In Functions

158 DB2 UDB for iSeries SQL Reference V5R2

|

||
|

||

||

||

||

||

||

||

||

||

||
|

||
|

||

||

||

||
|

||
|
|
|

||
|
|
|

||
|

||
|

||
|

||

||
|

||
|

||

||

||
|

||
|

||

Table 27. Datetime Scalar Functions (continued)

“DAYS” on page 207 Returns an integer representation of a date

“HOUR” on page 233 Returns the hour part of a value

“JULIAN_DAY” on page 241 Returns an integer value representing a number of days
from January 1, 4712 B.C. to the date specified in the
argument

“MICROSECOND” on page 257 Returns the microsecond part of a value

“MIDNIGHT_SECONDS” on page 258 Returns an integer value representing the number of
seconds between midnight and a specified time value

“MINUTE” on page 261 Returns the minute part of a value

“MONTH” on page 264 Returns the month part of a value

“NOW” on page 267 Returns a timestamp based on a reading of the
time-of-day clock

“QUARTER” on page 274 Returns an integer that represents the quarter of the year
in which the date resides

“SECOND” on page 283 Returns the seconds part of a value

“TIMESTAMPDIFF” on page 300 Returns an estimated number of intervals based on the
difference between two timestamps

“WEEK” on page 317 Returns an integer that represents the week of the year.
The week starts with Sunday.

“WEEK_ISO” on page 318 Returns an integer that represents the week of the year.
The week starts with Monday.

“YEAR” on page 320 Returns the year part of a value

Table 28. Partitioning Scalar Functions

“HASH” on page 231 Returns the partition number of a set of values

“NODENAME” on page 265 Returns the relational database name of where a row is
located

“NODENUMBER” on page 266 Returns the node number of a row

“PARTITION” on page 269 Returns the partition number of a row

Table 29. Miscellaneous Scalar Functions

“COALESCE” on page 193 Returns the first argument that is not null

“HEX” on page 232 Returns a hexadecimal representation of a value

“IDENTITY_VAL_LOCAL” on page 234 Returns the most recently assigned value for an identity
column

“IFNULL” on page 238 Returns the first argument that is not null

“LENGTH” on page 246 Returns the length of a value

“MAX” on page 255 Returns the maximum value in a set of values

“MIN” on page 259 Returns the minimum value in a set of values

“NULLIF” on page 268 Returns a null value if the arguments are equal,
otherwise it returns the value of the first argument

“RRN” on page 281 Returns the relative record number of a row

“VALUE” on page 309 Returns the first argument that is not null

Built-In Functions

Chapter 3. Built-In Functions 159

|

||

||

||
|
|

||

||
|

||

||

||
|

||
|

||

||
|

||
|

||
|

||
|

||

||

||
|

||

||
|

||

||

||

||
|

||

||

||

||

||
|

||

||
|

Table 30. Numeric Scalar Functions

“ABS” on page 173 Return the absolute value of a number

“ACOS” on page 174 Returns the arc cosine of a number, in radians

“ANTILOG” on page 175 Returns the anti-logarithm (base 10) of a number

“ASIN” on page 176 Returns the arc sine of a number, in radians

“ATAN” on page 177 Returns the arc tangent of a number, in radians

“ATANH” on page 178 Returns the hyperbolic arc tangent of a number, in
radians

“ATAN2” on page 179 Returns the arc tangent of x and y coordinates as an
angle expressed in radians

“CEILING” on page 182 Returns the smallest integer value that is greater than or
equal to a numeric-expression

“COS” on page 195 Returns the cosine of a number

“COSH” on page 196 Returns the hyperbolic cosine of a number

“COT” on page 197 Returns the cotangent of a number

“DEGREES” on page 212 Returns the number of degrees of an angle

“DIGITS” on page 214 Returns a character-string representation of the absolute
value of a number

“EXP” on page 225 Returns a value that is the base of the natural logarithm
(e) raised to a power specified by the argument

“FLOOR” on page 227 Returns the largest integer value less than or equal to a
numeric-expression

“LN” on page 248 Returns the natural logarithm of a number

“LOG10” on page 251 Return the common logarithm (base 10) of a number

“MOD” on page 262 Divides the first argument by the second argument and
returns the remainder

“PI” on page 270 Returns the value of PI

“POWER” on page 273 Returns the result of raising the first argument to the
power of the second argument

“RADIANS” on page 275 Returns the number of radians for an argument that is
expressed in degrees

“RAND” on page 276 Returns a random number

“ROUND” on page 278 Returns a numeric value that has been rounded to the
specified number of decimal places

“SIGN” on page 284 Returns an indicator of the sign of an expression

“SIN” on page 285 Returns the sine of a number

“SINH” on page 286 Returns the hyperbolic sine of a number

“SQRT” on page 290 Returns the square root of a number

“TAN” on page 295 Returns the tangent of a number

“TANH” on page 296 Returns the hyperbolic tangent of a number

“TRUNCATE or TRUNC” on page 305 Returns a number value that as been truncated at a
specified number of decimal places

Table 31. String Scalar Functions

“CHARACTER_LENGTH” on page 188 Returns the length of a string expression.

Built-In Functions

160 DB2 UDB for iSeries SQL Reference V5R2

||

||

||

||

||

||

||
|

||
|

||
|

||

||

||

||

||
|

||
|

||
|

||

||

||
|

||

||
|

||
|

||

||
|

||

||

||

||

||

||

||
|
|

||

||

Table 31. String Scalar Functions (continued)

“CONCAT” on page 194 Concatenates two strings.

“LCASE” on page 243 Returns a string in which all the characters have been
converted to lowercase characters

“DIFFERENCE” on page 213 Returns a value representing the difference between the
sounds of two strings

“LAND” on page 242 Returns a string that is the logical ’AND’ of the
argument strings

“LCASE” on page 243 Returns a string in which all the characters have been
converted to lowercase characters

“LEFT” on page 244 Returns the leftmost characters from the string

“LNOT” on page 249 Returns a string that is the logical NOT of the argument
string

“LOCATE” on page 250 Returns the starting position of one string within another
string

“LOR” on page 252 Returns a string that is the logical OR of the argument
strings

“LOWER” on page 253 Returns a string in which all the characters have been
converted to lowercase characters

“LTRIM” on page 254 Removes blanks or hexadecimal zeros from the
beginning of a string expression

“POSITION or POSSTR” on page 271 Return the starting position of one string within another
string

“STRIP” on page 291 Removes blanks or another specified character from the
end or beginning of a string expression

“RTRIM” on page 282 Removes blanks or hexadecimal zeroes from the end of a
string expression

“SOUNDEX” on page 288 Returns a character code representing the sound of the
words in the argument

“SPACE” on page 289 Returns a character string that consists of the number of
blanks that the argument specifies

“SUBSTRING or SUBSTR” on page 292 Returns a substring of a string

“TRANSLATE” on page 301 Translates one or more characters in a string

“TRIM” on page 303 Removes blanks or another specified character from the
end or beginning of a string expression

“UCASE” on page 307 Returns a string in which all the characters have been
converted to uppercase characters

“UCASE” on page 307 Returns a string in which all the characters have been
converted to uppercase characters

“UPPER” on page 308 Returns a string in which all the characters have been
converted to uppercase characters

“XOR” on page 319 Returns a string that is the logical XOR of the argument
strings

Built-In Functions

Chapter 3. Built-In Functions 161

|

||

||
|

||
|

||
|

||
|

||

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||

||

||
|

||
|

||
|

||
|

||
|
|

Column Functions
The following information applies to all column functions other than COUNT(*)
and COUNT_BIG(*).
v The argument of a column function is a set of values derived from an expression.

The expression may include columns but cannot include another column function.
The scope of the set is a group or an intermediate result table as explained in
Chapter 4, ″Queries″.

v If a GROUP BY clause is specified in a query and the intermediate result of the
FROM, WHERE, GROUP BY, and HAVING clauses is the empty set, then the
column functions are not applied, the result of the query is the empty set, the
SQLCODE is set to +100, and the SQLSTATE is set to ’02000’.

v If a GROUP BY clause is not specified in a query and the intermediate result of
the FROM, WHERE, and HAVING clauses is the empty set, then the column
functions are applied to the empty set.

v For example, the result of the following SELECT statement is the number of
distinct values of JOB for employees in department D01:

SELECT COUNT(DISTINCT JOB)
FROM EMPLOYEE
WHERE WORKDEPT = ’D01’

v The keyword DISTINCT is not considered an argument of the function, but
rather a specification of an operation that is performed before the function is
applied. If DISTINCT is specified, duplicate values are eliminated. If ALL is
implicitly or explicitly specified, duplicate values are not eliminated.

v A column function can be used in a WHERE clause only if that clause is part of
a subquery of a HAVING clause and the column name specified in the
expression is a correlated reference to a group. If the expression includes more
than one column name, each column name must be a correlated reference to the
same group.

Built-In Functions

162 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

AVG

The AVG function returns the average of a set of numbers.

The argument values must be any built-in numeric data type and their sum must
be within the range of the data type of the result.

The data type of the result is the same as the data type of the argument values,
except that:
v The result is double-precision floating point if the argument values are

single-precision floating point.
v The result is large integer if the argument values are small integers.
v The result is decimal with precision 31 and scale 31-p+s if the argument values

are decimal or nonzero scale binary with precision p and scale s.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is used, duplicate values are
eliminated.

The result can be null. If set of values is empty, the result is the null value.
Otherwise, the result is the average value of the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Examples
v Using the PROJECT table, set the host variable AVERAGE (DECIMAL(5,2)) to

the average staffing level (PRSTAFF) of projects in department (DEPTNO) ‘D11’.
SELECT AVG(PRSTAFF)

INTO :AVERAGE
FROM PROJECT
WHERE DEPTNO = ’D11’

Results in AVERAGE being set to 4.25 (that is, 17/4).
v Using the PROJECT table, set the host variable ANY_CALC to the average of

each unique staffing value (PRSTAFF) of projects in department (DEPTNO)
’D11’.

SELECT AVG(DISTINCT PRSTAFF)
INTO :ANY_CALC
FROM PROJECT
WHERE DEPTNO = ’D11’

Results in ANY_CALC being set to 4.66 (that is, 14/3).

�� AVG
ALL

(numeric-expression)
DISTINCT

��

AVG

Chapter 3. Built-In Functions 163

COUNT

The COUNT function returns the number of rows or values in a set of rows or
values.

The result of the function is a large integer and it must be within the range of large
integers. The result cannot be null. If the table is a distributed table, then the result
is DECIMAL(15,0). For more information about distributed tables, see the DB2
Multisystem book.

The argument of COUNT(*) is a set of rows. The result is the number of rows in
the set. A row that includes only null values is included in the count.

The argument of COUNT(expression) is a set of values. The function is applied to
the set derived from the argument values by the elimination of null values. The
result is the number of values in the set.

The argument of COUNT(DISTINCT expression) is a set of values. The argument
values can be any values except character strings with a length attribute greater
than 2000, graphic strings with a length attribute greater than 1000 DBCS or UCS-2
characters, LOBs, or DataLinks. The function is applied to the set of values derived
from the argument values by the elimination of null values and duplicate values.
The result is the number of values in the set.

If a sort sequence other than *HEX is in effect when the statement that contains the
COUNT(DISTINCT expression) is executed and the arguments contain SBCS, UCS-2,
or mixed data, then the result is obtained by comparing weighted values for each
value in the set. The weighted values are based on the sort sequence.

Examples
v Using the EMPLOYEE table, set the host variable FEMALE (INTEGER) to the

number of rows where the value of the SEX column is ‘F’.
SELECT COUNT(*)

INTO :FEMALE
FROM EMPLOYEE
WHERE SEX = ’F’

Results in FEMALE being set to 13.
v Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT

(INTEGER) to the number of departments (WORKDEPT) that have at least one
female as a member.

SELECT COUNT(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT
FROM EMPLOYEE
WHERE SEX=’F’

Results in FEMALE_IN_DEPT being set to 5. (There is at least one female in
departments A00, C01, D11, D21, and E11.)

��
ALL

COUNT (expression)
DISTINCT

*

��

COUNT

164 DB2 UDB for iSeries SQL Reference V5R2

../dbmult/rzaf3mst02.htm
../dbmult/rzaf3mst02.htm

COUNT_BIG

The COUNT_BIG function returns the number of rows or values in a set of rows
or values. It is similar to COUNT except that the result can be greater than the
maximum value of integer.

The result of the function is a decimal with precision 31 and scale 0. The result
cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows
in the set. A row that includes only null values is included in the count.

The argument of COUNT_BIG(expression) is a set of values. The function is applied
to the set derived from the argument values by the elimination of null values. The
result is the number of values in the set.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The
argument values can be any values except character strings with a length attribute
greater than 2000, graphic strings with a length attribute greater than 1000 DBCS
or UCS-2 characters, LOBs, or DataLinks. The function is applied to the set of
values derived from the argument values by the elimination of null values and
duplicate values. The result is the number of values in the set.

If a sort sequence other than *HEX is in effect when the statement that contains the
COUNT_BIG(DISTINCT expression) is executed and the arguments contain SBCS,
UCS-2, or mixed data, then the result is obtained by comparing weighted values
for each value in the set. The weighted values are based on the sort sequence.

Examples
v Refer to COUNT examples and substitute COUNT_BIG for occurrences of

COUNT. The results are the same except for the data type of the result.
v To count on a specific column, a sourced function must specify the type of the

column. In this example, the CREATE FUNCTION statement creates a sourced
function that takes any column defined as CHAR, uses COUNT_BIG to perform
the counting, and returns the result as a double precision floating-point number.
The query shown counts the number of unique departments in the sample
employee table.

CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE
SOURCE QSYS2.COUNT_BIG(CHAR());

SET CURRENT PATH RICK, SYSTEM PATH

SELECT COUNT(DISTINCT WORKDEPT FROM EMPLOYEE;

The empty parenthesis in the parameter list for the new function
(RICK.COUNT) means that the input parameter for the new function is the same
type as the input parameter for the function named in the SOURCE clause. The
empty parenthesis in the parameter list in the SOURCE clause (COUNT_BIG)

��
ALL

COUNT_BIG (expression)
DISTINCT

*

��

COUNT_BIG

Chapter 3. Built-In Functions 165

|
|
|
|

means that the length attribute of the CHAR parameter of the COUNT_BIG
function is ignored when DB2 locates the COUNT_BIG function.

COUNT_BIG

166 DB2 UDB for iSeries SQL Reference V5R2

MAX

The MAX column function returns the maximum value in a set of values in a
group.

The argument values can be any built-in data types except LOB and DataLink
values.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument values. When the argument is a string, the result
has the same CCSID as the argument. The result can be null.

If a sort sequence other than *HEX is in effect when the statement that contains the
MAX function is executed and the arguments contain SBCS, UCS-2, or mixed data,
then the result is obtained by comparing weighted values for each value in the set.
The weighted values are based on the sort sequence.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Examples
v Using the EMPLOYEE table, set the host variable MAX_SALARY

(DECIMAL(7,2)) to the maximum monthly salary (SALARY / 12) value.
SELECT MAX(SALARY) /12
INTO :MAX_SALARY
FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83.
v Using the PROJECT table, set the host variable LAST_PROJ (CHAR(24)) to the

project name (PROJNAME) that comes last in the sort sequence.
SELECT MAX(PROJNAME)
INTO :LAST_PROJ
FROM PROJECT

Results in LAST_PROJ being set to 'WELD LINE PLANNING '.

�� MAX
ALL

(expression)
DISTINCT

��

MAX

Chapter 3. Built-In Functions 167

MIN

The MIN column function returns the minimum value in a set of values in a
group.

The argument values can be any built-in data types except LOB and DataLink
values.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument values. When the argument is a string, the result
has the same CCSID as the argument. The result can be null.

If a sort sequence other than *HEX is in effect when the statement that contains the
MIN function is executed and the arguments contain SBCS, UCS-2, or mixed data,
then the result is obtained by comparing weighted values for each value in the set.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Examples
v Using the EMPLOYEE table, set the host variable COMM_SPREAD

(DECIMAL(7,2)) to the difference between the maximum and minimum
commission (COMM) for the members of department (WORKDEPT) ‘D11’.

SELECT MAX(COMM) - MIN(COMM)
INTO :COMM_SPREAD
FROM EMPLOYEE
WHERE WORKDEPT = ’D11’

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462).
v Using the PROJECT table, set the host variable FIRST_FINISHED (CHAR(10)) to

the estimated ending date (PRENDATE) of the first project scheduled to be
completed.

SELECT MIN(PRENDATE)
INTO :FIRST_FINISHED
FROM PROJECT

Results in FIRST_FINISHED being set to ‘1982-09-15’.

�� MIN
ALL

(expression)
DISTINCT

��

MIN

168 DB2 UDB for iSeries SQL Reference V5R2

STDDEV or STDDEV_POP

The STDDEV_POP function returns the biased standard deviation (/n) of a set of
numbers. The formula used to calculate the biased standard deviation is:
STDDEV_POP = SQRT(VAR_POP)

where SQRT(VAR_POP) is the square root of the variance.

The argument values must be any built-in numeric data type and the sum must be
within the range of the data type of the result.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, duplicate values are
eliminated.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the standard deviation of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

STDDEV can be specified as a synonym for STDEV_POP.

Example
v Using the EMPLOYEE table, set the host variable DEV (double-precision floating

point) to the standard deviation of the salaries for those employees in
department A00.

SELECT STDDEV_POP(SALARY)
INTO :DEV
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’;

Results in DEV being set to approximately 9938.00.

�� STDDEV_POP
STDDEV

ALL
(numeric-expression)

DISTINCT
��

STDDEV or STDDEV_POP

Chapter 3. Built-In Functions 169

|

|
|

|
|

|

|

|
|

|
|

|
|
|

|
|

|
|

|

|
|
|
|

|
|
|
|

|

SUM

The SUM function returns the sum of a set of numbers.

The argument values must be any built-in numeric data type and their sum must
be within the range of the data type of the result.

The data type of the result is the same as the data type of the argument values
except that the result is:
v Double-precision floating point if the argument values are single-precision

floating point
v Large integer if the argument values are small integers
v Decimal if the argument values are nonzero scale binary

The result can be null.

If the data type of the argument values is decimal or nonzero scale binary, the
precision of the result is 31 and the scale is the same as the scale of the argument
values.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, duplicate values are
eliminated.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the sum of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

Example
v Using the EMPLOYEE table, set the host variable JOB_BONUS (DECIMAL(9,2))

to the total bonus (BONUS) paid to clerks (JOB='CLERK').
SELECT SUM(BONUS)

INTO :JOB_BONUS
FROM EMPLOYEE
WHERE JOB = ’CLERK’

Results in JOB_BONUS being set to 2800.

�� SUM
ALL

(numeric-expression)
DISTINCT

��

SUM

170 DB2 UDB for iSeries SQL Reference V5R2

VAR_POP or VARIANCE or VAR

The VAR_POP function returns the biased variance (/n) of a set of numbers. The
formula used to calculate the biased variance is:

VAR_POP = SUM(X**2)/COUNT(X) - (SUM(X)/COUNT(X))**2

The argument values must be any built-in numeric data type and the sum must be
within the range of the data type of the result.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, duplicate values are
eliminated.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

VARIANCE and VAR can be specified as synonyms for VAR_POP.

Example
v Using the EMPLOYEE table, set the host variable VARNCE (double-precision

floating point) to the variance of the salaries for those employees in department
A00.

SELECT VAR_POP(SALARY)
INTO :VARNCE
FROM EMPLOYEE
WHERE WORKDEPT = ’A00’;

Results in VARNCE being set to approximately 98763888.88.

�� VAR_POP
VARIANCE
VAR

ALL
(numeric-expression)

DISTINCT
��

VAR_POP or VARIANCE or VAR

Chapter 3. Built-In Functions 171

|
|

|

|

|
|
|
|

Scalar Functions
A scalar function can be used wherever an expression can be used. The restrictions
on the use of column functions do not apply to scalar functions, because a scalar
function is applied to single parameter values rather than to sets of values. The
argument of a scalar function can be a function. However, the restrictions that
apply to the use of expressions and column functions also apply when an
expression or column function is used within a scalar function. For example, the
argument of a scalar function can be a column function only if a column function
is allowed in the context in which the scalar function is used.

Example
The result of the following SELECT statement has as many rows as there are
employees in department D01:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BIRTHDATE)
FROM EMPLOYEE
WHERE WORKDEPT = ’D01’

Scalar Functions

172 DB2 UDB for iSeries SQL Reference V5R2

ABS

The ABS function returns the absolute value of a number.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument value, except that the result is a large integer if
the argument value is a small integer, and the result is double-precision floating
point if the argument value is single-precision floating point.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Note
ABSVAL is a synonym for ABS. It is supported only for compatibility with
previous DB2 releases.

Example
v Assume the host variable PROFIT is a large integer with a value of -50000.

SELECT ABS(:PROFIT)
FROM SYSIBM.SYSDUMMY1

Returns the value 50000.

�� ABS (numeric-expression) ��

ABS

Chapter 3. Built-In Functions 173

|
|
|

ACOS

The ACOS function returns the arc cosine of the argument as an angle expressed in
radians. The ACOS and COS functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type. The value must be greater than or equal to -1 and less than or equal to
1.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to 0 and less than or equal to PI.

Example
v Assume the host variable ACOSINE is a DECIMAL(10,9) host variable with a

value of 0.070737202.
SELECT ACOS(:ACOSINE)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.49.

�� ACOS (numeric-expression) ��

ACOS

174 DB2 UDB for iSeries SQL Reference V5R2

ANTILOG

The ANTILOG function returns the anti-logarithm (base 10) of a number. The
ANTILOG and LOG functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable ALOG is a DECIMAL(10,9) host variable with a value

of 1.499961866.
SELECT ANTILOG(:ALOG)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 31.62.

�� ANTILOG (numeric-expression) ��

ANTILOG

Chapter 3. Built-In Functions 175

ASIN

The ASIN function returns the arc sine of the argument as an angle expressed in
radians. The ASIN and SIN functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type. The value must be greater than or equal to -1 and less than or equal to
1.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -PI /2 and less than or equal to PI /2.

Example
v Assume the host variable ASINE is a DECIMAL(10,9) host variable with a value

of 0.997494987.
SELECT ASIN(:ASINE)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

�� ASIN (numeric-expression) ��

ASIN

176 DB2 UDB for iSeries SQL Reference V5R2

ATAN

The ATAN function returns the arc tangent of the argument as an angle expressed
in radians. The ATAN and TAN functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -PI/2 and less than or equal to PI/2.

Example
v Assume the host variable ATANGENT is a DECIMAL(10,8) host variable with a

value of 14.10141995.
SELECT ATAN(:ATANGENT)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

�� ATAN (numeric-expression) ��

ATAN

Chapter 3. Built-In Functions 177

ATANH

The ATANH function returns the hyperbolic arc tangent of a number, in radians.
The ATANH and TANH functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type. The value must be greater than -1 and less than 1.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable HATAN is a DECIMAL(10,9) host variable with a

value of 0.905148254.
SELECT ATANH(:HATAN)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

�� ATANH (numeric-expression) ��

ATANH

178 DB2 UDB for iSeries SQL Reference V5R2

ATAN2

The ATAN2 function returns the arc tangent of x and y coordinates as an angle
expressed in radians. The first and second arguments specify the x and y
coordinates, respectively.

Each argument is an expression that returns the value of any built-in numeric data
type. Both arguments must not be 0.

The data type of the result is double-precision floating point. If any argument can
be null, the result can be null; if any argument is null, the result is the null value.

Example
v Assume that host variables HATAN2A and HATAN2B are DOUBLE host

variables with values of 1 and 2, respectively.
SELECT ATAN2(:HATAN2A,:HATAN2B)

FROM SYSIBM.SYSDUMMY1

Returns a double precision floating-point number with an approximate value of
1.1071487.

�� ATAN2 (numeric-expression1 , numeric-expression2) ��

ATAN2

Chapter 3. Built-In Functions 179

BIGINT

The BIGINT function returns a big integer representation of:
v A number
v A character string representation of a decimal number
v A character string representation of an integer
v A character string representation of a floating-point number

Note: The CAST expression can also be used to return a big integer value. For
more information, see “CAST Specification” on page 137.

Numeric to Big Integer

numeric-expression
An expression that returns a numeric value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a big integer column or variable.
If the whole part of the argument is not within the range of big integers, an
error occurs. The fractional part of the argument is truncated.

Character to Big Integer

character-expression
An expression that returns a value that is a character-string representation of
an integer. The expression must not be a CLOB.

If the argument is a character-expression, the result is the same number that
would result from CAST(character-expression AS BIGINT). Leading and trailing
blanks are eliminated and the resulting string must conform to the rules for
forming a floating-point, integer, or decimal constant. If the whole part of the
argument is not within the range of integers, an error occurs. Any fractional
part of the argument is truncated.

The result of the function is a big integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example
v Using the EMPLOYEE table, select the EMPNO column in big integer form for

further processing in the application.
SELECT BIGINT(SALARY)

FROM EMPLOYEE

Numeric to Big Integer

�� BIGINT (numeric-expression) ��

Character to Big Integer

�� BIGINT (character-expression) ��

BIGINT

180 DB2 UDB for iSeries SQL Reference V5R2

BLOB

The BLOB function returns a BLOB representation of a string of any type.

Note: The CAST expression can also be used to return a binary-string value. For
more information, see “CAST Specification” on page 137.

The result of the function is a BLOB. If the first argument can be null, the result
can be null; if the first argument is null, the result is the null value.

string-expression
A string-expression whose value can be a character string, graphic string, binary
string, or row ID.

integer
Specifies the length attribute for the resulting binary string. The value must be
between 1 and 2 147 483 647.

If integer is not specified:
v If the string-expression is the empty string constant, the length attribute of the

result is 1.
v Otherwise, the length attribute of the result is the same as the length

attribute of the first argument, unless the argument is a graphic string. In
this case, the length attribute of the result is twice the length attribute of the
argument.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of the expression (or twice the length of the
expression when the input is graphic data). If the length of the string-expression
is greater than the length attribute of the result, truncation is performed. A
warning (SQLSTATE 01004) is returned unless the first input argument is a
character string and all the truncated characters are blanks, or the first input
argument is a graphic string and all the truncated characters are double-byte
blanks.

Example
v The following function returns a BLOB for the string ’This is a BLOB’.

SELECT BLOB(’This is a BLOB’)
FROM SYSIBM.SYSDUMMY1

v The following function returns a BLOB for the large object that is identified by
locator myclob_locator.

SELECT BLOB(:myclob_locator)
FROM SYSIBM.SYSDUMMY1

v Assume that a table has a BLOB column named TOPOGRAPHIC_MAP and a
VARCHAR column named MAP_NAME. Locate any maps that contain the
string ’Pellow Island’ and return a single binary string with the map name
concatenated in front of the actual map. The following function returns a BLOB
for the large object that is identified by locator myclob_locator.

SELECT BLOB(MAP_NAME CONCAT ’: ’ CONCAT TOPOGRAPHIC_MAP)
FROM ONTARIO_SERIES_4
WHERE TOPOGRAPHIC_MAP LIKE ’%Pellow Island%’

�� BLOB (string-expression)
, integer

��

BLOB

Chapter 3. Built-In Functions 181

|
|

CEILING

The CEIL or CEILING function returns the smallest integer value that is greater
than or equal to numeric-expression.

The argument is an expression that returns a value of any built-in numeric data
type.

The result of the function has the same data type and length attribute of the
argument except that the scale is 0 if the argument is DECIMAL or NUMERIC. For
example, an argument with a data type of DECIMAL(5,5) will result in
DECIMAL(5,0).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Examples
v Find the highest monthly salary for all the employees. Round the result up to

the next integer. The SALARY column has a decimal data type
SELECT CEIL(MAX(SALARY)/12
FROM EMPLOYEE

This example returns 4396.00 because the highest paid employee is Christine
Haas who earns $52750.00 per year. Her average monthly salary before applying
the CEIL function is 4395.83.

v Use CEILING on both positive and negative numbers.
SELECT CEILING(3.5),

CEILING(3.1),
CEILING(-3.1),
CEILING(-3.5),

FROM SYSIBM.SYSDUMMY1

This example returns:
04. 04. -03. -03.

respectively.

�� CEILING (numeric-expression)
CEIL

��

CEILING

182 DB2 UDB for iSeries SQL Reference V5R2

CHAR

The CHAR function returns a fixed-length character-string representation of:
v An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT.
v A decimal number if the first argument is a decimal number.
v A double-precision floating-point number if the first argument is a DOUBLE or

REAL.
v A character string if the first argument is any type of character string.
v A date value if the first argument is a DATE.
v A time value if the first argument is a TIME.
v A timestamp value if the first argument is a TIMESTAMP.
v A row ID value if the first argument is a ROWID.

Note: The CAST expression can also be used to return a fixed-length
character-string value. For more information, see “CAST Specification” on
page 137.

The first argument must be a built-in data type other than a BLOB, GRAPHIC,
VARGRAPHIC, or DBCLOB.

Datetime to Character

�� CHAR (datetime-expression)
, ISO

USA
EUR
JIS

��

Character to Character

�� CHAR (character-expression)
, integer

��

Integer to Character

�� CHAR (integer-expression) ��

Decimal to Character

�� CHAR (decimal-expression)
, decimal-character

��

Floating-point to Character

�� CHAR (floating-point-expression)
, decimal-character

��

CHAR

Chapter 3. Built-In Functions 183

|

The result of the function is a fixed-length character string. If the first argument
can be null, the result can be null; if the first argument is null, the result is the null
value.

Datetime to Character

datetime-expression
An expression that is one of the following three built-in data types

date The result is the character-string representation of the date in the
format specified by the second argument. If the second argument is not
specified, the format used is the default date format. If the format is
ISO, USA, EUR, or JIS, the length of the result is 10. Otherwise the
length of the result is the length of the default date format. For more
information see “String Representations of Datetime Values” on
page 67.

time The result is the character-string representation of the time in the
format specified by the second argument. If the second argument is not
specified, the format used is the default time format. The length of the
result is 8.

timestamp
The second argument is not applicable and must not be specified.

The result is the character-string representation of the timestamp. The
length of the result is 26.

The CCSID of the string is the default SBCS CCSID at the current server.

ISO, EUR, USA, or JIS
Specifies the date or time format of the resulting character string. For more
information, see “String Representations of Datetime Values” on page 67.

Character to Character

character-expression
An expression that returns a value that is a built-in character-string data type.

integer
Specifies the length attribute for the resulting fixed length character string. The
value must be between 1 and 32766 (32765 if nullable). If the first argument is
mixed data, the second argument cannot be less than 4.

If the second argument is not specified:
v If the character-expression is the empty string constant, the length attribute of

the result is 1.
v Otherwise, the length attribute of the result is the same as the length

attribute of the first argument.

The actual length is the same as the length attribute of the result. If the length
of the character-expression is less than the length of the result, the result is
padded with blanks up to the length of the result. If the length of the
character-expression is greater than the length attribute of the result, truncation
is performed. A warning (SQLSTATE 01004) is returned unless the truncated
characters were all blanks.

The CCSID of the string is the CCSID of the character-expression.

Integer to Character

CHAR

184 DB2 UDB for iSeries SQL Reference V5R2

||
|
|
|
|
|
|

||
|
|
|

|
|
|

integer-expression
An expression that returns a value that is an integer data type (either
SMALLINT, INTEGER, or BIGINT).

The result is the fixed-length character-string representation of the argument in the
form of an SQL integer constant. The result consists of n characters that are the
significant digits that represent the value of the argument with a preceding minus
sign if the argument is negative. The result is left justified.
v If the argument is a small integer:

The length of the result is 6. If the number of characters in the result is less than
6, then the result is padded on the right with blanks.

v If the argument is a large integer:
The length of the result is 11. If the number of characters in the result is less
than 11, then the result is padded on the right with blanks.

v If the argument is a big integer:
The length of the result is 20. If the number of characters in the result is less
than 20, then the result is padded on the right with blanks.

The CCSID of the string is the default SBCS CCSID at the current server.

Decimal to Character

decimal-expression
An expression that returns a value that is a built-in decimal data type (either
DECIMAL or NUMERIC). If a different precision and scale is desired, the
DECIMAL scalar function can be used to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see “Decimal Point” on page 100.

The result is a fixed-length character string representation of the argument. The
result includes a decimal character and up to p digits, where p is the precision of
the decimal-expression with a preceding minus sign if the argument is negative.
Leading zeros are not returned. Trailing zeros are returned.

The length of the result is 2+p where p is the precision of the decimal-expression.
This means that a positive value will always include one trailing blank.

The CCSID of the string is the default SBCS CCSID at the current server.

Floating-point to Character

floating-point expression
An expression that returns a value that is a built-in floating-point data type.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see “Decimal Point” on page 100.

The result is a fixed-length character-string representation of the argument in the
form of a floating-point constant. The length of the result is 24. If the argument is
negative, the first character of the result is a minus sign. Otherwise, the first

CHAR

Chapter 3. Built-In Functions 185

character is a digit. If the argument is zero, the result is 0E0. Otherwise, the result
includes the smallest number of characters that can be used to represent the value
of the argument such that the mantissa consists of a single digit other than zero
followed by a period and a sequence of digits.

If the number of characters in the result is less than 24, then the result is padded
on the right with blanks.

The CCSID of the string is the default SBCS CCSID at the current server.

Examples
v Assume the column PRSTDATE has an internal value equivalent to 1988-12-25.

The date format is *MDY and the date separator is a slash (/).
SELECT CHAR(PRSTDATE, USA)

FROM PROJECT

Results in the value ‘12/25/1988’.
SELECT CHAR(PRSTDATE)

FROM PROJECT

Results in the value ‘12/25/88’.
v Assume the column STARTING has an internal value equivalent to 17.12.30, the

host variable HOUR_DUR (DECIMAL(6,0)) is a time duration with a value of
050000 (that is, 5 hours).

SELECT CHAR(STARTING, USA)
FROM CL_SCHED

Results in the value ‘5:12 PM’.
SELECT CHAR(STARTING + :HOUR_DUR, JIS)

FROM CL_SCHED

Results in the value ‘10:12:00’.
v Assume the column RECEIVED (timestamp) has an internal value equivalent to

the combination of the PRSTDATE and STARTING columns.
SELECT CHAR(RECEIVED)

FROM IN_TRAY

Results in the value ‘1988-12-25-17.12.30.000000’.
v Use the CHAR function to make the type fixed-length character and reduce the

length of the displayed results to 10 characters for the LASTNAME column
(defined as VARCHAR(15)) of the EMPLOYEE table.

SELECT CHAR(LASTNAME,10)
FROM EMPLOYEE

For rows having a LASTNAME with a length greater than 10 characters
(excluding trailing blanks), a warning (SQLSTATE 01004) that the value is
truncated is returned.

v Use the CHAR function to return the values for EDLEVEL (defined as
SMALLINT) as a fixed length string.

SELECT CHAR(EDLEVEL)
FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value ’18����’ (18
followed by 4 blanks).

CHAR

186 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|

|
|

|
|

|
|

|
|

|
|

v Assume that the STAFF table has a SALARY column defined as decimal with
precision of 9 and scale of 2. The current value is 18357.50 and it is to be
returned with a comma as the decimal character (18357,50).

SELECT CHAR(SALARY, ’,’)
FROM EMPLOYEE

returns the value ’18357,50���’ (18357,50 followed by 3 blanks).
v Assume the same SALARY column subtracted from 20000.25 is to be returned

with the default decimal character, and the default is period.
SELECT CHAR(20000.25 − SALARY)

FROM EMPLOYEE

returns the value ’-1642.75���’ (-1642.75 followed by 3 blanks).
v Assume a host variable, DOUBLE_NUM, has a double precision floating-point

data type and a value of -987.654321E-35.
SELECT CHAR(:DOUBLE_NUM)

FROM SYSIBM.SYSDUMMY1

Results in the character value ’-9.8765432100000002E-33 ’.

CHAR

Chapter 3. Built-In Functions 187

|
|

|
|

CHARACTER_LENGTH

The CHARACTER_LENGTH or CHAR_LENGTH function returns the length of a
string expression. See “LENGTH” on page 246 for a similar function.

The argument is an expression that returns a value of any built-in string data type.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the number of characters in the argument (not the number of bytes).
A single character is either an SBCS or DBCS character. The length of strings
includes trailing blanks. The length of a varying-length string is the actual length,
not the maximum length.

Example
v Assume the host variable ADDRESS is a varying-length character string with a

value of ‘895 Don Mills Road’.
SELECT CHARACTER_LENGTH(:ADDRESS)

FROM SYSIBM.SYSDUMMY1

Returns the value 18.

�� CHARACTER_LENGTH
CHAR_LENGTH

(string-expression) ��

CHARACTER_LENGTH

188 DB2 UDB for iSeries SQL Reference V5R2

CLOB

The CLOB function returns a character-string representation of:
v An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
v A decimal number if the first argument is a packed or zoned decimal number
v A double-precision floating-point number if the first argument is a DOUBLE or

REAL
v A character string if the first argument is any type of character string
v A graphic string if the first argument is an UCS-2 graphic string

Note: The CAST expression can also be used to return a character large object
value. For more information, see “CAST Specification” on page 137.

The result of the function is a CLOB string. If the first argument can be null, the
result can be null; if the first argument is null, the result is the null value.

Character to CLOB

character-expression
An expression that returns a value that is a built-in character-string data type.

length
Specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 2 147 483 647. If the first argument is mixed
data, the second argument cannot be less than 4.

Character to CLOB

�� CLOB (character-expression
, length

DEFAULT , integer

) ��

Graphic to CLOB

�� CLOB (graphic-expression
, length

DEFAULT , integer

) ��

Integer to CLOB

�� CLOB (integer-expression) ��

Decimal to CLOB

�� CLOB (decimal-expression)
, decimal-character

��

Floating-point to CLOB

�� CLOB (floating-point-expression)
, decimal-character

��

CLOB

Chapter 3. Built-In Functions 189

|
|
|
|

If the second argument is not specified or DEFAULT is specified:
v If the character-expression is the empty string constant, the length attribute of

the result is 1.
v Otherwise, the length attribute of the result is the same as the length

attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of character-expression. If the length of the
character-expression is greater than the length attribute of the result, truncation
is performed. A warning (SQLSTATE 01004) is returned unless the truncated
characters were all blanks.

integer
Specifies the CCSID of the result. It must be a valid SBCS CCSID or mixed
data CCSID. If the third argument is an SBCS CCSID, then the result is SBCS
data. If the third argument is a mixed CCSID, then the result is mixed data. If
the third argument is a SBCS CCSID, then the first argument cannot be a
DBCS-either or DBCS-only string. The third argument cannot be 65535.

If the third argument is not specified, the first argument must not have a
CCSID of 65535:
v If the first argument is bit data, an error occurs.
v If the first argument is SBCS data, then the result is SBCS data. The CCSID

of the result is the same as the CCSID of the first argument.
v If the first argument is mixed data (DBCS-open, DBCS-only, or DBCS-either),

then the result is mixed data. The CCSID of the result is the same as the
CCSID of the first argument.

Graphic to CLOB

graphic-expression
An expression that returns a value that is a built-in graphic-string data type. It
must not be DBCS-graphic data.

length
Specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 2 147 483 647. If the result is mixed data, the
second argument cannot be less than 4.

If the second argument is not specified or DEFAULT is specified, the length
attribute of the result is determined as follows (where n is the length attribute
of the first argument):
v If the graphic-expression is the empty graphic string constant, the length

attribute of the result is 1.
v If the result is SBCS data, the result length is n.
v If the result is mixed data, the result length is (2.5*(n-1)) + 4.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of graphic-expression. If the length of the
graphic-expression is greater than the length attribute of the result, truncation is
performed. A warning (SQLSTATE 01004) is returned unless the truncated
characters were all blanks.

integer
Specifies the CCSID of the result. It must be a valid SBCS CCSID or mixed

CLOB

190 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|

|

|
|
|
|
|

data CCSID. If the third argument is an SBCS CCSID, then the result is SBCS
data. If the third argument is a mixed CCSID, then the result is mixed data.
The third argument cannot be 65535.

If the third argument is not specified, the CCSID of the result is the default
CCSID at the current server. If the default CCSID is mixed data, then the result
is mixed data. If the default CCSID is SBCS data, then the result is SBCS data.

Integer to CLOB

integer-expression
An expression that returns a value that is a built-in integer data type (either
SMALLINT, INTEGER, or BIGINT).

The result is a varying-length character string of the argument in the form of an
SQL integer constant. The result consists of n characters that are the significant
digits that represent the value of the argument with a preceding minus sign if the
argument is negative. The result is left justified.
v If the argument is a small integer, the length attribute of the result is 6.
v If the argument is a large integer, the length attribute of the result is 11.
v If the argument is a big integer, the length attribute of the result is 20.

The actual length of the result is the smallest number of characters that can be
used to represent the value of the argument. Leading zeroes are not included. If
the argument is negative, the first character of the result is a minus sign.
Otherwise, the first character is a digit.

The CCSID of the result is the default SBCS CCSID at the current server.

Decimal to CLOB

decimal-expression
An expression that returns a value that is a built-in decimal data type (either
DECIMAL or NUMERIC). If a different precision and scale is desired, the
DECIMAL scalar function can be used to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see “Decimal Point” on page 100.

The result is a varying-length character string representation of the argument. The
result includes a decimal character and up to p digits, where p is the precision of
the decimal-expression with a preceding minus sign if the argument is negative.
Leading zeros are not returned. Trailing zeros are returned.

The length attribute of the result is 2+p where p is the precision of the
decimal-expression. The actual length of the result is the smallest number of
characters that can be used to represent the result, except that trailing characters
are included. Leading zeros are not included. If the argument is negative, the result
begins with a minus sign. Otherwise, the result begins with a digit.

The CCSID of the result is the default SBCS CCSID at the current server.

Floating-point to CLOB

CLOB

Chapter 3. Built-In Functions 191

|
|
|
|
|

floating-point expression
An expression that returns a value that is a built-in floating-point data type
(DOUBLE or REAL).

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see “Decimal Point” on page 100.

The result is a varying-length character string representation of the argument in
the form of a floating-point constant.

The length attribute of the result is 24. The actual length of the result is the
smallest number of characters that can represent the value of the argument such
that the mantissa consists of a single digit other than zero followed by the
decimal-character and a sequence of digits. If the argument is negative, the first
character of the result is a minus sign; otherwise, the first character is a digit. If the
argument is zero, the result is 0E0.

The CCSID of the result is the default SBCS CCSID at the current server.

Example
v The following function returns a CLOB for the string ’This is a CLOB’.

SELECT CLOB(’This is a CLOB’)
FROM SYSIBM.SYSDUMMY1

CLOB

192 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

COALESCE

The COALESCE function returns the value of the first non-null expression.

The arguments must be compatible. Character-string arguments are compatible
with datetime values. For more information about data type compatibility, see
“Assignments and Comparisons” on page 78. The arguments can be of either a
built-in data type or a distinct type.30

The arguments are evaluated in the order in which they are specified, and the
result of the function is the first argument that is not null. The result can be null
only if all arguments can be null, and the result is null only if all arguments are
null.

The selected argument is converted, if necessary, to the attributes of the result. The
attributes of the result are determined by all the operands as explained in “Rules
for Result Data Types” on page 91.

Examples
v When selecting all the values from all the rows in the DEPARTMENT table, if

the department manager (MGRNO) is missing (that is, null), then return a value
of 'ABSENT'.

SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, ’ABSENT’), ADMRDEPT
FROM DEPARTMENT

v When selecting the employee number (EMPNO) and salary (SALARY) from all
the rows in the EMPLOYEE table, if the salary is missing (that is null), then
return a value of zero.

SELECT EMPNO, COALESCE(SALARY,0)
FROM EMPLOYEE

30. This function cannot be used as a source function when creating a user-defined function. Because it accepts any compatible data
types as arguments, it is not necessary to create additional signatures to support distinct types.

�� COALESCE (expression , expression) ��

COALESCE

Chapter 3. Built-In Functions 193

CONCAT

The CONCAT function combines two string arguments. The arguments must be
compatible strings. For more information about data type compatibility, see
“Assignments and Comparisons” on page 78.

The result of the function is a string that consists of the first argument string
followed by the second. If either argument can be null, the result can be null; if
either argument is null, the result is the null value.

The CONCAT function is identical to the CONCAT operator. For more information,
see “With the Concatenation Operator” on page 126.

Example
v Concatenate the column FIRSTNME with the column LASTNAME.

SELECT CONCAT(FIRSTNME, LASTNAME)
FROM EMPLOYEE
WHERE EMPNO =’000010’

Returns the value ’CHRISTINEHAAS’.

�� CONCAT (string-expression-1 , string-expression-2) ��

CONCAT

194 DB2 UDB for iSeries SQL Reference V5R2

COS

The COS function returns the cosine of the argument, where the argument is an
angle expressed in radians. The COS and ACOS functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable COSINE is a DECIMAL(2,1) host variable with a value

of 1.5.
SELECT COS(:COSINE)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.07.

�� COS (numeric-expression) ��

COS

Chapter 3. Built-In Functions 195

COSH

The COSH function returns the hyperbolic cosine of the argument, where the
argument is an angle expressed in radians.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable HCOS is a DECIMAL(2,1) host variable with a value

of 1.5.
SELECT COSH(:HCOS)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 2.35.

�� COSH (numeric-expression) ��

COSH

196 DB2 UDB for iSeries SQL Reference V5R2

COT

The COT function returns the cotangent of the argument, where the argument is an
angle expressed in radians.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable COTAN is a DECIMAL(2,1) host variable with a value

of 1.5.
SELECT COT(:COTAN)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.07.

�� COT (numeric-expression) ��

COT

Chapter 3. Built-In Functions 197

CURDATE

The CURDATE function returns a date based on a reading of the time-of-day clock
when the SQL statement is executed at the current server. The value returned by
the CURDATE function is the same as the value returned by the CURRENT DATE
special register.

The data type of the result is a date. The result cannot be null.

If this function is used more than once within a single SQL statement, or used with
the CURTIME or NOW scalar functions or the CURRENT DATE, CURRENT TIME,
or CURRENT TIMESTAMP special registers within a single statement, all values
are based on a single clock reading.

Example
v Return the current date based on the time-of-day clock.

SELECT CURDATE()
FROM SYSIBM.SYSDUMMY1

�� CURDATE () ��

CURDATE

198 DB2 UDB for iSeries SQL Reference V5R2

CURTIME

The CURTIME function returns a time based on a reading of the time-of-day clock
when the SQL statement is executed at the current server. The value returned by
the CURTIME function is the same as the value returned by the CURRENT TIME
special register.

The data type of the result is a time. The result cannot be null.

If this function is used more than once within a single SQL statement, or used with
the CURDATE or NOW scalar functions or the CURRENT DATE, CURRENT
TIME, or CURRENT TIMESTAMP special registers within a single statement, all
values are based on a single clock reading.

Example
v Return the current time based on the time-of-day clock.

SELECT CURTIME()
FROM SYSIBM.SYSDUMMY1

�� CURTIME () ��

CURTIME

Chapter 3. Built-In Functions 199

DATE

The DATE function returns a date from a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or any numeric data
type.
v If expression is a character string, it must not be a CLOB and its value must be

one of the following:
– A valid character-string representation of a date or timestamp. For the valid

formats of string representations of dates and timestamps, see “String
Representations of Datetime Values” on page 67.

– A character string with an actual length of 7 that represents a valid date in
the form yyyynnn, where yyyy are digits denoting a year, and nnn are digits
between 001 and 366 denoting a day of that year.

v If expression is a number, it must be a positive number less than or equal to
3652059.

Note: The CAST expression can also be used to return a date value. For more
information, see “CAST Specification” on page 137.

The result of the function is a date. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a timestamp:

The result is the date part of the timestamp.
v If the argument is a date:

The result is that date.
v If the argument is a number:

The result is the date that is n-1 days after January 1, 0001, where n is the
integral part of the number.

v If the argument is a character string:
The result is the date represented by the string or the date part of the timestamp
value represented by the string.
When a string representation of a date is SBCS data with a CCSID that is not the
same as the default CCSID for SBCS data, that value is converted to adhere to
the default CCSID for SBCS data before it is interpreted and converted to a date
value.
When a string representation of a date is mixed data with a CCSID that is not
the same as the default CCSID for mixed data, that value is converted to adhere
to the default CCSID for mixed data before it is interpreted and converted to a
date value.

Examples
v Assume that the column RECEIVED (TIMESTAMP) has an internal value

equivalent to ‘1988-12-25-17.12.30.000000’.

�� DATE (expression) ��

DATE

200 DB2 UDB for iSeries SQL Reference V5R2

SELECT DATE(RECEIVED)
FROM IN_TRAY

Results in an internal representation of ‘1988-12-25’.
v The following DATE scalar function applied to an ISO string representation of a

date:
SELECT DATE(’1988-12-25’)

FROM SYSIBM.SYSDUMMY1

Results in an internal representation of ‘1988-12-25’.
v The following DATE scalar function applied to an EUR string representation of a

date:
SELECT DATE(’25.12.1988’)

FROM SYSIBM.SYSDUMMY1

Results in an internal representation of ‘1988-12-25’.
v The following DATE scalar function applied to a positive number:

SELECT DATE(35)
FROM SYSIBM.SYSDUMMY1

Results in an internal representation of ‘0001-02-04’.

DATE

Chapter 3. Built-In Functions 201

|
|

DAY

The DAY function returns the day part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a date or timestamp. For the valid
formats of string representations of dates and timestamps, see “String
Representations of Datetime Values” on page 67.

v If expression is a number, it must be a date duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime Operands and Durations”
on page 130.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, timestamp, or valid character-string representation of a

date or timestamp:
The result is the day part of the value, which is an integer between 1 and 31.

v If the argument is a date duration or timestamp duration:
The result is the day part of the value, which is an integer between −99 and 99.
A nonzero result has the same sign as the argument.

Examples
v Using the PROJECT table, set the host variable END_DAY (SMALLINT) to the

day that the WELD LINE PLANNING project (PROJNAME) is scheduled to stop
(PRENDATE).
SELECT DAY(PRENDATE)
INTO :END_DAY
FROM PROJECT
WHERE PROJNAME = ’WELD LINE PLANNING’

Results in END_DAY being set to 15.
v Return the day part of the difference between two dates:

SELECT DAY(DATE(’2000-03-15’) - DATE(’1999-12-31’))
FROM SYSIBM.SYSDUMMY1

Results in the value 15.

�� DAY (expression) ��

DAY

202 DB2 UDB for iSeries SQL Reference V5R2

DAYOFMONTH

The DAYOFMONTH function returns an integer between 1 and 31 that represents
the day of the month.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see “String Representations of
Datetime Values” on page 67.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Using the PROJECT table, set the host variable END_DAY (SMALLINT) to the

day that the WELD LINE PLANNING project (PROJNAME) is scheduled to stop
(PRENDATE).
SELECT DAYOFMONTH(PRENDATE)
INTO :END_DAY
FROM PROJECT
WHERE PROJNAME = ’WELD LINE PLANNING’

Results in END_DAY being set to 15.

�� DAYOFMONTH (expression) ��

DAYOFMONTH

Chapter 3. Built-In Functions 203

DAYOFWEEK

The DAYOFWEEK function returns an integer between 1 and 7 that represents the
day of the week, where 1 is Sunday and 7 is Saturday. For another alternative, see
“DAYOFWEEK_ISO” on page 205.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see “String Representations of
Datetime Values” on page 67.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example
v Using the EMPLOYEE table, set the host variable DAY_OF_WEEK (INTEGER) to

the day of the week that Christine Haas (EMPNO=‘000010’) started
(HIREDATE).

SELECT DAYOFWEEK(HIREDATE)
INTO :DAY_OF_WEEK
FROM EMPLOYEE
WHERE EMPNO = ’000010’

Results in DAY_OF_WEEK being set to 6, which represents Friday.
v The following query returns four values: 1, 2, 1, and 2.

SELECT DAYOFWEEK(CAST(’10/11/1998’ AS DATE)),
DAYOFWEEK(TIMESTAMP(’10/12/1998’,’01.02’)),
DAYOFWEEK(CAST(CAST(’10/11/1998’ AS DATE)) AS CHAR(20))),
DAYOFWEEK(CAST(TIMESTAMP(’10/12/1998’,’01.02’) AS CHAR(20))),

FROM SYSIBM.SYSDUMMY1

�� DAYOFWEEK (expression) ��

DAYOFWEEK

204 DB2 UDB for iSeries SQL Reference V5R2

DAYOFWEEK_ISO

The DAYOFWEEK_ISO function returns an integer between 1 and 7 that represents
the day of the week, where 1 is Monday and 7 is Sunday. For another alternative,
see “DAYOFWEEK” on page 204.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see “String Representations of
Datetime Values” on page 67.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Using the EMPLOYEE table, set the host variable DAY_OF_WEEK (INTEGER) to

the day of the week that Christine Haas (EMPNO=‘000010’) started
(HIREDATE).

SELECT DAYOFWEEK_ISO(HIREDATE)
INTO :DAY_OF_WEEK
FROM EMPLOYEE
WHERE EMPNO = ’000010’

Results in DAY_OF_WEEK being set to 5, which represents Friday.
v The following query returns four values: 7, 1, 7, and 1.

SELECT DAYOFWEEK_ISO(CAST(’10/11/1998’ AS DATE)),
DAYOFWEEK_ISO(TIMESTAMP(’10/12/1998’,’01.02’)),
DAYOFWEEK_ISO(CAST(CAST(’10/11/1998’ AS DATE)) AS CHAR(20))),
DAYOFWEEK_ISO(CAST(TIMESTAMP(’10/12/1998’,’01.02’) AS CHAR(20))),

FROM SYSIBM.SYSDUMMY1

�� DAYOFWEEK_ISO (expression) ��

DAYOFWEEK_ISO

Chapter 3. Built-In Functions 205

DAYOFYEAR

The DAYOFYEAR function returns an integer between 1 and 366 that represents
the day of the year where 1 is January 1.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see “String Representations of
Datetime Values” on page 67.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example
v Using the EMPLOYEE table, set the host variable AVG_DAY_OF_YEAR

(INTEGER) to the average of the day of the year that employees started on
(HIREDATE).

SELECT AVG(DAYOFYEAR(HIREDATE))
INTO :AVG_DAY_OF_YEAR
FROM EMPLOYEE

Results in AVG_DAY_OF_YEAR being set to 202.

�� DAYOFYEAR (expression) ��

DAYOFYEAR

206 DB2 UDB for iSeries SQL Reference V5R2

DAYS

The DAYS function returns an integer representation of a date.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see “String Representations of
Datetime Values” on page 67.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D
is the date that would occur if the DATE function were applied to the argument.

Examples
v Using the PROJECT table, set the host variable EDUCATION_DAYS (INTEGER)

to the number of elapsed days (PRENDATE - PRSTDATE) estimated for the
project (PROJNO) ‘IF2000’.

SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)
INTO :EDUCATION_DAYS
FROM PROJECT
WHERE PROJNO = ’IF2000’

Results in EDUCATION_DAYS being set to 396.
v Using the PROJECT table, set the host variable TOTAL_DAYS (INTEGER) to the

sum of elapsed days (PRENDATE - PRSTDATE) estimated for all projects in
department (DEPTNO) ‘E21’.
SELECT SUM(DAYS(PRENDATE) - DAYS(PRSTDATE))
INTO :TOTAL_DAYS
FROM PROJECT
WHERE DEPTNO = ’E21’

Results in TOTAL_DAYS being set to 1484.

�� DAYS (expression) ��

DAYS

Chapter 3. Built-In Functions 207

DBCLOB

The DBCLOB function returns a DBCLOB representation of a string expression.

Note: The CAST expression can also be used to return a double-byte character
large object value. For more information, see “CAST Specification” on
page 137.

string-expression
An expression that returns a value that is a character-string or graphic-string. It
cannot be a BLOB. It cannot be CHAR or VARCHAR bit data. It cannot be
GRAPHIC or VARGRAPHIC with a CCSID of 65535 unless a third argument is
specified.

length
Specifies the length attribute for the resulting varying-length graphic string.
The value must be between 1 and 1 073 741 823.

If the second argument is not specified or DEFAULT is specified:
v If the expression is an empty string constant, the length attribute of the result

is 1.
v Otherwise, the length attribute of the result is the same as the length

attribute of the first argument.

integer
Specifies the CCSID for the resulting varying-length graphic string. It must be
a DBCS or UCS-2 CCSID. The CCSID cannot be 65535.

In the following rules, S denotes one of the following:
v If the string expression is a host variable containing data in a foreign

encoding scheme, S is the result of the expression after converting the data
to a CCSID in a native encoding scheme. (See “Character Conversion” on
page 31 for more information.)

v If the string expression is data in a native encoding scheme, S is that string
expression.

If the third argument is not specified and the first argument is character, then
the CCSID of the result is determined by a mixed CCSID. Let M denote that
mixed CCSID. M is determined as follows:
v If the CCSID of S is a mixed CCSID, M is that CCSID.
v If the CCSID of S is an SBCS CCSID:

– If the CCSID of S has an associated mixed CCSID, M is that CCSID.
– Otherwise the operation is not allowed.

The following table summarizes the result CCSID based on M.

M Result CCSID Description DBCS Substitution Character

930 300 Japanese EBCDIC X’FEFE’

933 834 Korean EBCDIC X’FEFE’

�� DBCLOB (string-expression
, length

DEFAULT , integer

) ��

DBCLOB

208 DB2 UDB for iSeries SQL Reference V5R2

M Result CCSID Description DBCS Substitution Character

935 837 S-Chinese EBCDIC X’FEFE’

937 835 T-Chinese EBCDIC X’FEFE’

939 300 Japanese EBCDIC X’FEFE’

5026 4396 Japanese EBCDIC X’FEFE’

5035 4396 Japanese EBCDIC X’FEFE’

If the third argument is not specified and the first argument is not character,
then the CCSID of the result is the same as the CCSID of the first argument.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of expression. If the length attribute of the resulting DBCLOB
is less than the actual length of the first argument, truncation is performed and no
warning is returned.

The result of the function is a DBCLOB string. If the expression can be null, the
result can be null. If the expression is null, the result is the null value. If the
expression is an empty string or the EBCDIC string X’0E0F’, the result is an empty
string.

If the result is DBCS-graphic data, the equivalence of SBCS and DBCS characters
depends on M. Regardless of the CCSID, every double-byte code point in the
argument is considered a DBCS character, and every single-byte code point in the
argument is considered an SBCS character with the exception of the EBCDIC
mixed data shift codes X’0E’ and X’0F’.
v If the nth character of the argument is a DBCS character, the nth character of the

result is that DBCS character.
v If the nth character of the argument is an SBCS character that has an equivalent

DBCS character, the nth character of the result is that equivalent DBCS character.
v If the nth character of the argument is an SBCS character that does not have an

equivalent DBCS character, the nth character of the result is the DBCS
substitution character.

If the result is UCS-2 graphic data, each character of the argument determines a
character of the result. The nth character of the result is the UCS-2 equivalent of
the nth character of the argument.

Example
v Using the EMPLOYEE table, set the host variable VAR_DESC

(VARGRAPHIC(24)) to the DBCLOB equivalent of the first name (FIRSTNME)
for employee number (EMPNO) ’000050’.

SELECT DBCLOB(FIRSTNME)
INTO :VAR_DESC
FROM EMPLOYEE
WHERE EMPNO = ’000050’

DBCLOB

Chapter 3. Built-In Functions 209

DECIMAL or DEC

The DECIMAL function returns a decimal representation of:
v A number
v A character string representation of a decimal number
v A character string representation of an integer
v A character string representation of a floating-point number

Note: The CAST expression can also be used to return a decimal value. For more
information, see “CAST Specification” on page 137.

The result of the function is a decimal number with precision of p and scale of s,
where p and s are the second and third arguments. If the first argument can be
null, the result can be null; if the first argument is null, the result is the null value.

Numeric to Decimal

numeric-expression
An expression that returns a value of any built-in numeric data type.

precision
An integer constant with a value greater than or equal to 1 and less than or
equal to 31.

The default for precision depends on the data type of the numeric-expression:
v 15 for floating point, decimal, numeric, or nonzero scale binary
v 19 for big integer
v 11 for large integer
v 5 for small integer

scale
An integer constant that is greater than or equal to 0 and less than or equal to
precision. If not specified, the default is 0.

The result is the same number that would occur if the first argument were
assigned to a decimal column or variable with a precision of p and a scale of s. An

Numeric to Decimal

�� DECIMAL
DEC

(numeric-expression)
, precision

, scale

��

Character to Decimal

�� DECIMAL
DEC

�

� (character-expression)
, precision

, scale
, decimal-character

��

DECIMAL

210 DB2 UDB for iSeries SQL Reference V5R2

error occurs if the number of significant decimal digits required to represent the
whole part of the number is greater than p-s.

Character to Decimal

character-expression
An expression that must contain a character-string representation of a number.
Leading and trailing blanks are eliminated and the resulting string must
conform to the rules for forming an integer or decimal constant. The
expression must not be a CLOB.

precision
An integer constant that is greater than or equal to 1 and less than or equal to
31. If not specified, the default is 15.

scale
An integer constant that is greater than or equal to 0 and less than or equal to
precision. If not specified, the default is 0.

decimal-character
Specifies the single-byte character constant that was used to delimit the
decimal digits in character-expression from the whole part of the number. The
character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal separator character. For more
information, see “Decimal Point” on page 100.

The result is the same number that would result from CAST(character-expression AS
DECIMAL(p,s)). Digits are truncated from the end if the number of digits to the
right of the decimal separator character is greater than the scale s. An error occurs
if the number of significant digits to the left of the decimal separator character (the
whole part of the number) in character-expression is greater than p-s. The default
decimal separator character is not valid in the substring if the decimal-character
argument is specified.

Examples
v Use the DECIMAL function in order to force a DECIMAL data type (with a

precision of 5 and a scale of 2) to be returned in a select-list for the EDLEVEL
column (data type = SMALLINT) in the EMPLOYEE table. The EMPNO column
should also appear in the select list.

SELECT EMPNO, DECIMAL(EDLEVEL,5,2)
FROM EMPLOYEE

v Using the PROJECT table, select all of the starting dates (PRSTDATE) that have
been incremented by a duration that is specified in a host variable. Assume the
host variable PERIOD is of type INTEGER. Then, in order to use its value as a
date duration it must be “cast” as DECIMAL(8,0).

SELECT PRSTDATE + DECIMAL(:PERIOD,8)
FROM PROJECT

v Assume that updates to the SALARY column are input through a window as a
character string using comma as a decimal character (for example, the user
inputs 21400,50). Once validated by the application, it is assigned to the host
variable newsalary which is defined as CHAR(10).

UPDATE STAFF
SET SALARY = DECIMAL(:newsalary, 9, 2, ’,’)
WHERE ID = :empid

The value of SALARY becomes 21400.50.

DECIMAL

Chapter 3. Built-In Functions 211

|

|

DEGREES

The DEGREES function returns the number of degrees of the argument which is an
angle expressed in radians.

The argument is an expression that returns the value of any built-in numeric data
type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable RAD is a DECIMAL(4,3) host variable with a value of

3.142.
SELECT DEGREES(:RAD)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 180.0.

�� DEGREES (numeric-expression) ��

DEGREES

212 DB2 UDB for iSeries SQL Reference V5R2

DIFFERENCE

The DIFFERENCE function returns a value from 0 to 4 representing the difference
between the sounds of two strings based on applying the SOUNDEX function to
the strings. A value of 4 is the best possible sound match.

The arguments must be a built-in string data types, but not BLOBs, CLOBs, and
DBCLOBs.

The data type of the result is INTEGER. If any argument can be null, the result can
be null; if any argument is null, the result is the null value.

Examples
v Assume the following statement:

SELECT DIFFERENCE(’CONSTRAINT’,’CONSTANT’),
SOUNDEX(’CONSTRAINT’),
SOUNDEX(’CONSTANT’)

FROM SYSIBM.SYSDUMMY1

Returns 4, C523, and C523. Since the two strings return the same SOUNDEX
value, the difference is 4 (the highest value possible).

v Assume the following statement:
SELECT DIFFERENCE(’CONSTRAINT’,’CONTRITE’),

SOUNDEX(’CONSTRAINT’),
SOUNDEX(’CONTRITE’)

FROM SYSIBM.SYSDUMMY1

Returns 2, C523, and C536. In this case, the two strings return different
SOUNDEX values, and hence, a lower difference value.

�� DIFFERENCE (string-expression-1 , string-expression-2) ��

DIFFERENCE

Chapter 3. Built-In Functions 213

DIGITS

The DIGITS function returns a character-string representation of the absolute value
of a number.

The argument must be a built-in numeric data type of SMALLINT, INTEGER,
BIGINT, or DECIMAL.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a fixed-length character string representing the
absolute value of the argument without regard to its scale. The result does not
include a sign or a decimal point. Instead, it consists exclusively of digits,
including, if necessary, leading zeros to fill out the string. The length of the string
is:
v 5, if the argument is a small zero scale integer
v 10, if the argument is a large zero scale integer
v 19, if the argument is a big integer
v p, if the argument is a decimal or nonzero scale integer with a precision of p

The CCSID of the character string is the default SBCS CCSID at the current server.

Examples
v Assume that a table called TABLEX contains an INTEGER column called

INTCOL containing 10-digit numbers. List all combinations of the first four
digits contained in column INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
FROM TABLEX

v Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of its
values is -6.28.

SELECT DIGITS(COLUMNX)
FROM TABLEX

Returns the value '000628'.

The result is a string of length six (the precision of the column) with leading
zeros padding the string out to this length. Neither sign nor decimal point
appear in the result.

�� DIGITS (numeric-expression) ��

DIGITS

214 DB2 UDB for iSeries SQL Reference V5R2

DLCOMMENT

The DLCOMMENT function returns the comment value, if it exists, from a
DataLink value.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is VARCHAR(254).

The CCSID of the character string is the same as that of DataLink-expression.

Examples
v Prepare a statement to select the date, the description and the comment from the

link to the ARTICLES column from the HOCKEY_GOALS table. The rows to be
selected are those for goals scored by either of the Richard brothers (Maurice or
Henri).
stmtvar = "SELECT DATE_OF_GOAL, DESCRIPTION, DLCOMMENT(ARTICLES)

FROM HOCKEY_GOALS
WHERE BY_PLAYER = ’Maurice Richard’ OR BY_PLAYER = ’Henri Richard’ ";

EXEC SQL PREPARE HOCKEY_STMT FROM :stmtvar;

v Given a DataLink value that was inserted into column COLA of a row in table
TBLA using the scalar function:

INSERT INTO TBLA
VALUES (DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’A comment’))

then the following function operating on that value:
SELECT DLCOMMENT(COLA)

FROM TBLA

Returns the value ’A comment’.

�� DLCOMMENT (DataLink-expression) ��

DLCOMMENT

Chapter 3. Built-In Functions 215

DLLINKTYPE

The DLLINKTYPE function returns the link type value from a DataLink value.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is VARCHAR(4).

The CCSID of the character string is the same as that of DataLink-expression.

Examples
v Given a DataLink value that was inserted into column COLA of a row in table

TBLA using the scalar function:
INSERT INTO TABLA

VALUES(DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’A comment’))

then the following function operating on that value:
SELECT DLLINKTYPE(COLA)

FROM TBLA

Returns the value ’URL’.

�� DLLINKTYPE (DataLink-expression) ��

DLLINKTYPE

216 DB2 UDB for iSeries SQL Reference V5R2

DLURLCOMPLETE

The DLURLCOMPLETE function returns the complete URL value from a DataLink
value with a link type of URL. The value is the same as what would be returned
by the concatenation of DLURLSCHEME with ’://’, then DLURLSERVER, and
then DLURLPATH. If the DataLink has an attribute of FILE LINK CONTROL and
READ PERMISSION DB, the value includes a file access token.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a varying-length string. The length attribute depends
on the attributes of the DataLink:
v If the DataLink has an attribute of FILE LINK CONTROL and READ

PERMISSION DB, the length attribute of the result is the length attribute of the
argument plus 19.

v Otherwise, the length attribute of the result is the length attribute of the
argument.

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples
v Given a DataLink value that was inserted into column COLA of a row in table

TBLA using the scalar function:
INSERT INTO TABLA
VALUES(DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’A comment’))

then the following function operating on that value:
SELECT DLURLCOMPLETE(COLA)

FROM TBLA

Returns the value
’HTTP://DLFS.ALMADEN.IBM.COM/x/y/****************;a.b’, where
**************** represents the access token.

�� DLURLCOMPLETE (DataLink-expression) ��

DLURLCOMPLETE

Chapter 3. Built-In Functions 217

DLURLPATH

The DLURLPATH function returns the path and file name necessary to access a file
within a given server from a DataLink value with a linktype of URL. When
appropriate, the value includes a file access token.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a varying-length string. The length attribute depends
on the attributes of the DataLink:
v If the DataLink has an attribute of FILE LINK CONTROL and READ

PERMISSION DB, the length attribute of the result is the length attribute of the
argument plus 19.

v Otherwise, the length attribute of the result is the length attribute of the
argument.

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples
v Given a DataLink value that was inserted into column COLA of a row in table

TBLA using the scalar function:
INSERT INTO TABLA

VALUES(DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’A comment’))

then the following function operating on that value:
SELECT DLURLPATH(COLA)

FROM TBLA

Returns the value ’/x/y/****************;a.b’, where **************** represents the
access token.

�� DLURLPATH (DataLink-expression) ��

DLURLPATH

218 DB2 UDB for iSeries SQL Reference V5R2

DLURLPATHONLY

The DLURLPATHONLY function returns the path and file name necessary to
access a file within a given server from a DataLink value with a linktype of URL.
The value returned NEVER includes a file access token.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a varying-length string with a length attribute of that
is equal to the length attribute of the argument.

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples
v Given a DataLink value that was inserted into column COLA of a row in table

TBLA using the scalar function:
INSERT INTO TABLA
VALUES(DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’A comment’))

then the following function operating on that value:
SELECT DLURLPATHONLY(COLA)

FROM TBLA

Returns the value ’/x/y/a.b’.

�� DLURLPATHONLY (DataLink-expression) ��

DLURLPATHONLY

Chapter 3. Built-In Functions 219

DLURLSCHEME

The DLURLSCHEME function returns the scheme from a DataLink value with a
linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is VARCHAR(20).

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples
v Given a DataLink value that was inserted into column COLA of a row in table

TBLA using the scalar function:
INSERT INTO TABLA

VALUES(DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’A comment’))

then the following function operating on that value:
SELECT DLURLSCHEME(COLA)

FROM TBLA

Returns the value ’HTTP’.

�� DLURLSCHEME (DataLink-expression) ��

DLURLSCHEME

220 DB2 UDB for iSeries SQL Reference V5R2

DLURLSERVER

The DLURLSERVER function returns the file server from a DataLink value with a
linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a varying-length string with a length attribute of that
is equal to the length attribute of the argument.

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples
v Given a DataLink value that was inserted into column COLA of a row in table

TBLA using the scalar function:
INSERT INTO TABLA
VALUES(DLVALUE(’http://dlfs.almaden.ibm.com/x/y/a.b’,’URL’,’A comment’))

then the following function operating on that value:
SELECT DLURLSERVER(COLA)

FROM TBLA

Returns the value ’DLFS.ALMADEN.IBM.COM’.

�� DLURLSERVER (DataLink-expression) ��

DLURLSERVER

Chapter 3. Built-In Functions 221

DLVALUE

The DLVALUE function returns a DataLink value. When the function is on the
right hand side of a SET clause in an UPDATE statement or is in a VALUES clause
in an INSERT statement, it usually also creates a link to a file. However, if only a
comment is specified (in which case the data-location is a zero-length string), the
DataLink value is created with empty linkage attributes so there is no file link.

data-location
If the link type is URL, then this is a character string expression that contains a
complete URL value. If the expression is not an empty string, it must include
the URL scheme and URL server. The actual length of the character string
expression must be less than or equal to 32718 characters.

linktype-string
An optional character string expression that specifies the link type of the
DataLink value. The only valid value is ’URL’.

comment-string
An optional character string expression that provides a comment or additional
location information. The actual length of the character string expression must
be less than or equal to 254 characters.

The comment-string cannot be the null value. If a comment-string is not specified,
the comment-string is the empty string.

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

The result of the function is a DataLink value.

The CCSID of the DataLink is the same as that of data-location except in the
following cases:
v If the comment string is mixed data and data-location is not mixed data, the

CCSID of the result will be the CCSID of the comment string.31

v If the data-location has a CCSID of bit data (65535), UCS-2 graphic data (13488),
Turkish data (905 or 1026), or Japanese data (290, 930, or 5026); the CCSID of the
result is described in the following table:

CCSID of
data-location

CCSID of
comment-string Result CCSID

65535 65535 Job Default CCSID

65535 non-65535 comment-string CCSID (unless the CCSID is
290, 930, 5026, 905, 1026, or 13488 where the
CCSID will then be further modified as
described in the following rows.)

290 any 4396

930 or 5026 any 939

31. If the CCSID of comment string is 5026 or 930, the CCSID of the results will be 939.

�� DLVALUE (data-location)
, linktype-string

, comment-string

��

DLVALUE

222 DB2 UDB for iSeries SQL Reference V5R2

CCSID of
data-location

CCSID of
comment-string Result CCSID

905 or 1026 any 500

13488 any 500

When defining a DataLink value using this function, consider the maximum length
of the target of the value. For example, if a column is defined as DataLink(200),
then the maximum length of the data-location plus the comment is 200 bytes.

Examples
v Insert a row into the table. The URL values for the first two links are contained

in the variables named url_article and url_snapshot. The variable named
url_snapshot_comment contains a comment to accompany the snapshot link.
There is, as yet, no link for the movie, only a comment in the variable named
url_movie_comment.

INSERT INTO HOCKEY_GOALS
VALUES(’Maurice Richard’,

’Montreal canadian’,
’?’,
’Boston Bruins,
’1952-04-24’,
’Winning goal in game 7 of Stanley Cup final’,
DLVALUE(:url_article),
DLVALUE(:url_snapshot, ’URL’, :url_snapshot_comment),
DLVALUE(’’, ’URL’, :url_movie_comment))

DLVALUE

Chapter 3. Built-In Functions 223

DOUBLE_PRECISION or DOUBLE

The DOUBLE_PRECISION and DOUBLE functions return a floating-point
representation of:
v A number
v A character string representation of a decimal number
v A character string representation of an integer
v A character string representation of a floating-point number

Note: The CAST expression can also be used to return a double-precision
floating-point value. For more information, see “CAST Specification” on
page 137.

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the expression were
assigned to a double-precision floating-point column or variable.

character-expression
An expression that returns a character string value. The argument must not be
a CLOB.

The result is the same number that would result from CAST(
character-expression AS DOUBLE PRECISION). Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an
floating-point, integer, or decimal constant.

The result of the function is a double-precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result is
the null value.

FLOAT is a synonym for DOUBLE_PRECISION and DOUBLE.

Example
v Using the EMPLOYEE table, find the ratio of salary to commission for

employees whose commission is not zero. The columns involved (SALARY and
COMM) have DECIMAL data types. To eliminate the possibility of out-of-range
results, DOUBLE_PRECISION is applied to SALARY so that the division is
carried out in floating point:

SELECT EMPNO, DOUBLE_PRECISION(SALARY)/COMM
FROM EMPLOYEE
WHERE COMM > 0

Numeric to Double

�� DOUBLE_PRECISION
DOUBLE

(numeric-expression) ��

Character to Double

�� DOUBLE_PRECISION
DOUBLE

(character-expression) ��

DOUBLE_PRECISION or DOUBLE

224 DB2 UDB for iSeries SQL Reference V5R2

EXP

The EXP function returns a value that is the base of the natural logarithm (e)
raised to a power specified by the argument. The EXP and LN functions are
inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable E is a DECIMAL(10,9) host variable with a value of

3.453789832.
SELECT EXP(:E)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 31.62.

�� EXP (numeric-expression) ��

EXP

Chapter 3. Built-In Functions 225

FLOAT

The FLOAT function returns a floating point representation of a number.

FLOAT is a synonym for the DOUBLE_PRECISION and DOUBLE functions. For
more information, see “DOUBLE_PRECISION or DOUBLE” on page 224.

Numeric to Float

�� FLOAT (numeric-expression) ��

Character to Float

�� FLOAT (character-expression) ��

FLOAT

226 DB2 UDB for iSeries SQL Reference V5R2

FLOOR

The FLOOR function returns the largest integer value less than or equal to
numeric-expression.

The argument is an expression that returns a value of any built-in numeric data
type.

The result of the function has the same data type and length attribute of the
argument except that the scale is 0 if the argument is a decimal number. For
example, an argument with a data type of DECIMAL(5,5) will result in
DECIMAL(5,0).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example
v Use the FLOOR function to truncate any digits to the right of the decimal point.

SELECT FLOOR(SALARY)
FROM EMPLOYEE

v Use FLOOR on both positive and negative numbers.
SELECT FLOOR(3.5),

FLOOR(3.1),
FLOOR(-3.1),
FLOOR(-3.5),

FROM SYSIBM.SYSDUMMY1

This example returns:
3. 3. -4. -4.

respectively.

�� FLOOR (numeric-expression) ��

FLOOR

Chapter 3. Built-In Functions 227

GRAPHIC

The GRAPHIC function returns a fixed-length graphic-string representation of a
string expression.

Note: The CAST expression can also be used to return a fixed-length
graphic-string value. For more information, see “CAST Specification” on
page 137.

The result of the function is a fixed-length graphic string (GRAPHIC).

If the expression can be null, the result can be null. If the expression is null, the
result is the null value.

Character to Graphic

character-expression
Specifies a character string expression. It cannot be a CHAR or VARCHAR bit
data. If the expression is an empty string or the EBCDIC string X’0E0F’, the
result is an empty string.

length
Specifies the length attribute of the result and must be an integer constant
between 1 and 16383 if the first argument is not nullable or between 1 and
16382 if the first argument is nullable. If the length of character-expression is less
than the length specified, the result is padded with double-byte blanks to the
length of the result.

If the second argument is not specified, or if DEFAULT is specified, the length
attribute of the result is the same as the length attribute of the first argument.

Each character of the argument determines a character of the result. If the
length attribute of the resulting fixed-length string is less than the actual length
of the first argument, truncation is performed and no warning is returned.

integer
Specifies the CCSID of the result. It must be a DBCS or UCS-2 CCSID. The
CCSID cannot be 65535. If the CCSID represents UCS-2 graphic data, each
character of the argument determines a character of the result. The nth
character of the result is the UCS-2 equivalent of the nth character of the
argument.

If integer is not specified then the CCSID of the result is determined by a
mixed CCSID. Let M denote that mixed CCSID.

Character to Graphic

�� GRAPHIC (character-expression
, length

DEFAULT , integer

) ��

Graphic to Graphic

�� GRAPHIC (graphic-expression
, length

DEFAULT , integer

) ��

GRAPHIC

228 DB2 UDB for iSeries SQL Reference V5R2

In the following rules, S denotes one of the following:
v If the string expression is a host variable containing data in a foreign

encoding scheme, S is the result of the expression after converting the data
to a CCSID in a native encoding scheme. (See “Character Conversion” on
page 31 for more information.)

v If the string expression is data in a native encoding scheme, S is that string
expression.

M is determined as follows:
v If the CCSID of S is a mixed CCSID, M is that CCSID.
v If the CCSID of S is an SBCS CCSID:

– If the CCSID of S has an associated mixed CCSID, M is that CCSID.
– Otherwise the operation is not allowed.

The following table summarizes the result CCSID based on M.

M Result CCSID Description DBCS Substitution Character

930 300 Japanese EBCDIC X’FEFE’

933 834 Korean EBCDIC X’FEFE’

935 837 S-Chinese EBCDIC X’FEFE’

937 835 T-Chinese EBCDIC X’FEFE’

939 300 Japanese EBCDIC X’FEFE’

5026 4396 Japanese EBCDIC X’FEFE’

5035 4396 Japanese EBCDIC X’FEFE’

The equivalence of SBCS and DBCS characters depends on M. Regardless of
the CCSID, every double-byte code point in the argument is considered a
DBCS character, and every single-byte code point in the argument is
considered an SBCS character with the exception of the EBCDIC mixed data
shift codes X’0E’ and X’0F’.
v If the nth character of the argument is a DBCS character, the nth character of

the result is that DBCS character.
v If the nth character of the argument is an SBCS character that has an

equivalent DBCS character, the nth character of the result is that equivalent
DBCS character.

v If the nth character of the argument is an SBCS character that does not have
an equivalent DBCS character, the nth character of the result is the DBCS
substitution character.

Graphic to Graphic

graphic-expression
Specifies a graphic string expression.

length
Specifies the length attribute of the result and must be an integer constant
between 1 and 16383 if the first argument is not nullable or between 1 and
16382 if the first argument is nullable. If the length of graphic-expression is less
than the length specified, the result is padded with double-byte blanks to the
length of the result.

GRAPHIC

Chapter 3. Built-In Functions 229

If the second argument is not specified, or if DEFAULT is specified, the length
attribute of the result is the same as the length attribute of the first argument.

If the length of the graphic-expression is greater than the length attribute of the
result, truncation is performed. A warning (SQLSTATE 01004) is returned
unless the truncated characters were all blanks.

integer
Specifies the CCSID of the result. It must be a DBCS or UCS-2 CCSID. The
CCSID cannot be 65535.

If integer is not specified then the CCSID of the result is the CCSID of the first
argument.

Example
v Using the EMPLOYEE table, set the host variable DESC (GRAPHIC(24)) to the

GRAPHIC equivalent of the first name (FIRSTNME) for employee number
(EMPNO) ’000050’.

SELECT GRAPHIC(VARGRAPHIC(FIRSTNME))
INTO :DESC
FROM EMPLOYEE
WHERE EMPNO = ’000050’

GRAPHIC

230 DB2 UDB for iSeries SQL Reference V5R2

HASH

The HASH function returns the partition number of a set of values. Also see the
PARTITION function. For more information about partition numbers, see the DB2
Multisystem book.

The arguments can be any built-in data type except date, time, timestamp,
floating-point, or DataLink values.

The result of the function is a large integer with a value between 0 and 1023.

If any of the arguments are null, the result is zero. The result cannot be null.

Example
v Use the HASH function to determine what the partitions would be if the

partitioning key was composed of EMPNO and LASTNAME. This query returns
the partition number for every row in EMPLOYEE.

SELECT HASH(EMPNO, LASTNAME)
FROM EMPLOYEE

�� HASH (

,

expression) ��

HASH

Chapter 3. Built-In Functions 231

../dbmult/rzaf3mst02.htm
../dbmult/rzaf3mst02.htm

HEX

The HEX function returns a hexadecimal representation of a value.

The argument can be of any built-in data type.

The result of the function is a character string. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is a string of hexadecimal digits, the first two digits represent the first
byte of the argument, the next two digits represent the second byte of the
argument, and so forth. If the argument is a datetime value, the result is the
hexadecimal representation of the internal form of the argument.32

If the argument is a varying-length string, the result is a varying-length string.
Otherwise, the result is a fixed-length string. The length attribute of the result is
twice the storage length attribute of the argument. For information on the storage
length attribute see “CREATE TABLE” on page 507.

The length attribute of the result cannot be greater than 32766 for fixed-length
results or greater than 32740 for varying-length results.

The CCSID of the string is the default SBCS CCSID at the current server.

Example
v Use the HEX function to return a hexadecimal representation of the education

level for each employee.
SELECT FIRSTNME, MIDINIT, LASTNAME, HEX(EDLEVEL)

FROM EMPLOYEE

32. This hexadecimal representation for DATE, TIMESTAMP, and NUMERIC data types is different from other database products
because the internal form for these data types is different.

�� HEX (expression) ��

HEX

232 DB2 UDB for iSeries SQL Reference V5R2

HOUR

The HOUR function returns the hour part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a time or timestamp. For the valid
formats of string representations of times and timestamps, see “String
Representations of Datetime Values” on page 67.

v If expression is a number, it must be a time duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime Operands and Durations”
on page 130.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, timestamp, or valid character-string representation of a

time or timestamp:
The result is the hour part of the value, which is an integer between 0 and 24.

v If the argument is a time duration or timestamp duration:
The result is the hour part of the value, which is an integer between −99 and 99.
A nonzero result has the same sign as the argument.

Example
v Using the CL_SCHED sample table, select all the classes that start in the

afternoon.
SELECT *

FROM CL_SCHED
WHERE HOUR(STARTING) BETWEEN 12 AND 17

�� HOUR (expression) ��

HOUR

Chapter 3. Built-In Functions 233

IDENTITY_VAL_LOCAL

IDENTITY_VAL_LOCAL is a non-deterministic function that returns the most
recently assigned value for an identity column.

The function has no input parameters. The result is a DECIMAL(31,0) regardless of
the actual data type of the identity column that the result value corresponds to.

The value returned is the value that was assigned to the identity column of the
table identified in the most recent INSERT statement for a table containing an
identity column. The INSERT statement has to be issued at the same level; that is,
the value has to be available locally within the level at which it was assigned until
replaced by the next assigned value. A new level is initiated when a trigger,
function, or stored procedure is invoked. A trigger condition is at the same level as
the associated triggered action.

The assigned value can be a value supplied by the user (if the identity column is
defined as GENERATED BY DEFAULT) or an identity value that was generated by
the database manager.

The result can be null. The result is null if an INSERT statement has not been
issued for a table containing an identity column at the current processing level.
This includes invoking the function in a before or after insert trigger.

The result of the IDENTITY_VAL_LOCAL function is not affected by the following
statements:
v An INSERT statement for a table which does not contain an identity column
v An UPDATE statement
v A COMMIT statement
v A ROLLBACK statement

Notes
The following notes explain the behavior of the function when it is invoked in
various situations:

Invoking the function within the VALUES clause of an INSERT statement
Expressions in an INSERT statement are evaluated before values are
assigned to the target columns of the INSERT statement. Thus, when you
invoke IDENTITY_VAL_LOCAL in an INSERT statement, the value that is
used is the most recently assigned value for an identity column from a
previous INSERT statement. The function returns the null value if no such
INSERT statement had been executed within the same level as the
invocation of the IDENTITY_VAL_LOCAL function.

Invoking the function following a failed INSERT statement
The function returns an unpredictable result when it is invoked after the
unsuccessful execution of an INSERT statement for a table with an identity
column. The value might be the value that would have been returned from
the function had it been invoked before the failed INSERT or the value that
would have been assigned had the INSERT succeeded. The actual value
returned depends on the point of failure and is therefore unpredictable.

�� IDENTITY_VAL_LOCAL () ��

IDENTITY_VAL_LOCAL

234 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Invoking the function within the SELECT statement of a cursor
Because the results of the IDENTITY_VAL_LOCAL function are not
deterministic, the result of an invocation of the IDENTITY_VAL_LOCAL
function from within the SELECT statement of a cursor can vary for each
FETCH statement.

Invoking the function within the trigger condition of an insert trigger
The result of invoking the IDENTITY_VAL_LOCAL function from within
the condition of an insert trigger is the null value.

Invoking the function within a triggered action of an insert trigger
Multiple before or after insert triggers can exist for a table. In such cases,
each trigger is processed separately, and identity values generated by SQL
statements issued within a triggered action are not available to other
triggered actions using the IDENTITY_VAL_LOCAL function. This is the
case even though the multiple triggered actions are conceptually defined at
the same level.

Do not use the IDENTITY_VAL_LOCAL function in the triggered action of
a before insert trigger. The result of invoking the IDENTITY_VAL_LOCAL
function from within the triggered action of a before insert trigger is the
null value. The value for the identity column of the table for which the
trigger is defined cannot be obtained by invoking the
IDENTITY_VAL_LOCAL function within the triggered action of a before
insert trigger. However, the value for the identity column can be obtained
in the triggered action by referencing the trigger transition variable for the
identity column.

The result of invoking the IDENTITY_VAL_LOCAL function in the
triggered action of an after insert trigger is the value assigned to an
identity column of the table identified in the most recent INSERT statement
invoked in the same triggered action for a table containing an identity
column. If an INSERT statement for a table containing an identity column
was not executed within the same triggered action before invoking the
IDENTITY_VAL_LOCAL function, then the function returns a null value.

Invoking the function following an INSERT with triggered actions
The result of invoking the function after an INSERT that activates triggers
is the value actually assigned to the identity column (that is, the value that
would be returned on a subsequent SELECT statement). This value is not
necessarily the value provided in the INSERT statement or a value
generated by the database manager. The assigned value could be a value
that was specified in a SET transition variable statement within the
triggered action of a before insert trigger for a trigger transition variable
associated with the identity column.

Examples
v Set the variable IVAR to the value assigned to the identity column in the

EMPLOYEE table. The value returned from the function in the VALUES
statement should be 1.

CREATE TABLE EMPLOYEE
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(5,2),
DEPT SMALLINT)

INSERT INTO EMPLOYEE
(NAME, SALARY, DEPTNO)

IDENTITY_VAL_LOCAL

Chapter 3. Built-In Functions 235

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

VALUES(’Rupert’, 989.99, 50)

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

v Assume two tables, T1 and T2, have an identity column named C1. The database
manager generates values 1, 2, 3,...for the C1 column in table T1, and values 10,
11, 12,...for the C1 column in table T2.

CREATE TABLE T1
(C1 SMALLINT GENERATED ALWAYS AS IDENTITY,
C2 SMALLINT)

CREATE TABLE T2
(C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY (START WITH 10) ,
C2 SMALLINT)

INSERT INTO T1 (C2) VALUES(5)

INSERT INTO T1 (C2) VALUES(5)

SELECT * FROM T1

C1 C2

1 5

2 5

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

At this point, the IDENTITY_VAL_LOCAL function would return a value of 2 in
IVAR. The following INSERT statement inserts a single row into T2 where
column C2 gets a value of 2 from the IDENTITY_VAL_LOCAL function.

INSERT INTO T2 (C2) VALUES(IDENTITY_VAL_LOCAL())

SELECT * FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(), 15, 0)

C1 C2

10 2

Invoking the IDENTITY_VAL_LOCAL function after this INSERT would result
in a value of 10, which is the value generated by the database manager for
column C1 of T2. Assume another single row is inserted into T2. For the
following INSERT statement, the database manager assigns a value of 13 to
identity column C1 and gives C2 a value of 10 from IDENTITY_VAL_LOCAL.
Thus, C2 is given the last identity value that was inserted into T2.

INSERT INTO T2 (C2, C1) VALUES(IDENTITY_VAL_LOCAL(), 13)

SELECT * FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(), 15, 0)

C1 C2

13 10

v The IDENTITY_VAL_LOCAL function can also be invoked in an INSERT
statement that both invokes the IDENTITY_VAL_LOCAL function and causes a
new value for an identity column to be assigned. The next value to be returned
is thus established when the IDENTITY_VAL_LOCAL function is invoked after
the INSERT statement completes. For example, consider the following table
definition:

IDENTITY_VAL_LOCAL

236 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|||

||

||
|

|

|
|
|

|
|
|
|

|||

||
|

|
|
|
|
|
|

|
|
|
|

|||

||
|

|
|
|
|
|
|

CREATE TABLE T3
(C1 SMALLINT GENERATED BY DEFAULT AS IDENTITY,
C2 SMALLINT)

For the following INSERT statement, specify a value of 25 for the C2 column,
and the database manager generates a value of 1 for C1, the identity column.
This establishes 1 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

INSERT INTO T3 (C2) VALUES(25)

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is
invoked to provide a value for the C2 column. A value of 1 (the identity value
assigned to the C1 column of the first row) is assigned to the C2 column, and
the database manager generates a value of 2 for C1, the identity column. This
establishes 2 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

INSERT INTO T3 (C2) VALUES(IDENTITY_VAL_LOCAL())

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is
again invoked to provide a value for the C2 column, and the user provides a
value of 11 for C1, the identity column. A value of 2 (the identity value assigned
to the C1 column of the second row) is assigned to the C2 column. The
assignment of 11 to C1 establishes 11 as the value that will be returned on the
next invocation of the IDENTITY_VAL_LOCAL function.

INSERT INTO T3 (C2, C1) VALUES(IDENTITY_VAL_LOCAL(), 11)

After the 3 INSERT statements have been processed, table T3 contains the
following:

C1 C2

1 25

2 1

11 2

The contents of T3 illustrate that the expressions in the VALUES clause are
evaluated before the assignments for the columns of the INSERT statement.
Thus, an invocation of an IDENTITY_VAL_LOCAL function invoked from a
VALUES clause of an INSERT statement uses the most recently assigned value
for an identity column in a previous INSERT statement.

IDENTITY_VAL_LOCAL

Chapter 3. Built-In Functions 237

|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|

|||

||

||

||
|

|
|
|
|
|

IFNULL

The IFNULL function returns the value of the first non-null expression.

The IFNULL function is identical to the COALESCE scalar function with two
arguments. For more information, see “COALESCE” on page 193.

Example
v When selecting the employee number (EMPNO) and salary (SALARY) from all

the rows in the EMPLOYEE table, if the salary is missing (that is, null), then
return a value of zero.

SELECT EMPNO, IFNULL(SALARY,0)
FROM EMPLOYEE

�� IFNULL (expression , expression) ��

IFNULL

238 DB2 UDB for iSeries SQL Reference V5R2

INTEGER or INT

The INTEGER function returns an integer representation of:
v A number
v A character string representation of a decimal number
v A character string representation of an integer
v A character string representation of a floating-point number

Note: The CAST expression can also be used to return an integer value. For more
information, see “CAST Specification” on page 137.

Numeric to Integer

numeric-expression
An expression that returns a numeric value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a large integer column or
variable. If the whole part of the argument is not within the range of integers,
an error occurs. The fractional part of the argument is truncated.

Character to Integer

character-expression
An expression that returns a character string value.

An expression that returns a value that is a character-string representation of
an integer. The expression must not be a CLOB.

The result is the same number that would result from CAST(
character-expression AS INTEGER). Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming a floating-point,
integer, or decimal constant. If the whole part of the argument is not within
the range of integers, an error occurs. Any fractional part of the argument is
truncated.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example
v Using the EMPLOYEE table, select a list containing salary (SALARY) divided by

education level (EDLEVEL). Truncate any decimal in the calculation. The list
should also contain the values used in the calculation and the employee number
(EMPNO).

Numeric to Integer

�� INTEGER
INT

(numeric-expression) ��

Character to Integer

�� INTEGER
INT

(character-expression) ��

INTEGER

Chapter 3. Built-In Functions 239

SELECT INTEGER(SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE

INTEGER

240 DB2 UDB for iSeries SQL Reference V5R2

JULIAN_DAY

The JULIAN_DAY function returns an integer value representing a number of days
from January 1, 4712 B.C. (the start of the Julian date calendar) to the date
specified in the argument.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a valid character-string representation
of a date or timestamp. An argument with a character string data type must not be
a CLOB. For the valid formats of string representations of dates and timestamps,
see “String Representations of Datetime Values” on page 67.

The result of the function is a large integer. The result can be null; if the argument
is null, the result is the null value.

Examples
v Using sample table EMPLOYEE, set the integer host variable JDAY to the Julian

day of the day that Christine Haas (EMPNO = ’000010’) was employed
(HIREDATE = ’1965-01-01’).

SELECT JULIAN_DAY(HIREDATE)
INTO :JDAY
FROM EMPLOYEE
WHERE EMPNO = ’000010’

The result is that JDAY is set to 2438762.
v Set integer host variable JDAY to the Julian day for January 1, 1998.

SELECT JULIAN_DAY(’1998-01-01’)
INTO :JDAY
FROM SYSIBM.SYSDUMMY1

The result is that JDAY is set to 2450815.

�� JULIAN_DAY (expression) ��

JULIAN_DAY

Chapter 3. Built-In Functions 241

LAND

The LAND function returns a string that is the logical ’AND’ of the argument
strings. This function takes the first argument string, does an AND comparison
with the next string, and then continues to do AND comparisons with each
successive argument using the previous result. If an argument is encountered that
is shorter than the previous result, it is padded with blanks.

The arguments must be character strings but cannot be LOBs. The arguments
cannot be mixed data character strings or graphic strings.

The arguments are converted, if necessary, to the attributes of the result. The
attributes of the result are determined as follows:
v If all the arguments are fixed-length strings, the result is a fixed-length string of

length n, where n is the length of the longest argument.
v If any argument is a varying-length string, the result is a varying-length string

with length attribute n, where n is the length attribute of the argument with
greatest length attribute. The actual length of the result is m, where m is the
actual length of the longest argument.

If an argument can be null, the result can be null; if an argument is null, the result
is the null value.

The CCSID of the result is 65535.

Example
v Assume the host variable L1 is a CHARACTER(2) host variable with a value of

X’A1B1’, host variable L2 is a CHARACTER(3) host variable with a value of
X’F0F040’, and host variable L3 is a CHARACTER(4) host variable with a value
of X’A1B10040’.

SELECT LAND(:L1,:L2,:L3)
FROM SYSIBM.SYSDUMMY1

Returns the value X’A0B00000’.
v Likewise,

SELECT LAND(:L3,:L2,:L1)
FROM SYSIBM.SYSDUMMY1

Returns the value X’A0B00040’. In this case, the shorter arguments are padded
with blanks (X’40’), so the logical AND result differs from the first example.

�� LAND (character-expression , character-expression) ��

LAND

242 DB2 UDB for iSeries SQL Reference V5R2

LCASE

The LCASE function returns a string in which all the characters have been
converted to lowercase characters, based on the CCSID of the argument.

The LCASE function is identical to the LOWER function. For more information, see
“LOWER” on page 253.

�� LCASE (string-expression) ��

LCASE

Chapter 3. Built-In Functions 243

|

|
|

|
|

|
|

LEFT

The LEFT function returns the leftmost integer bytes of string-expression.

If string-expression is a character string, the result is a character string, and each
character is one byte. If string-expression is a graphic string, the result is a graphic
string, and each character is a DBCS or UCS-2 character. If string-expression is a
binary string, the result is a binary string, and each character is one byte.

string-expression
An expression that specifies the string from which the result is derived.
String-expression must be a character string, graphic string, or a binary string
with a built-in data type.

A substring of string-expression is zero or more contiguous characters of
string-expression. If string-expression is a graphic string, a character is a DBCS or
UCS-2 character. If string-expression is a character string or binary string, a
character is a byte.33

integer
An expression that specifies the length of the result. integer must be an integer
greater than or equal to 0 and less than or equal to n, where n is the length
attribute of string-expression. It must not, however, be the integer constant 0.

The string-expression is effectively padded on the right with the necessary
number of blank characters (or hexadecimal zeroes for binary strings) so that
the specified substring of string-expression always exists.

The result of the function is a varying-length string with a length attribute that is
the same as the length attribute of string-expression and a data type that depends
on the data type of string-expression:
v VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC
v VARCHAR if string-expression is CHAR or VARCHAR
v DBCLOB if string-expression is DBCLOB
v CLOB if string-expression is CLOB
v BLOB if string-expression is BLOB

If integer is an integer constant and the argument is not a BLOB, CLOB, or
DBCLOB, the result of the function is a fixed-length string.

The actual length of the result is integer.

If any argument can be null, the result can be null; if any argument is null, the
result is the null value.

The CCSID of the result is the same as that of string-expression.

33. The LEFT function accepts mixed data strings. However, because LEFT operates on a strict byte-count basis, the result will not
necessarily be a properly formed mixed data string.

�� LEFT (string-expression , integer) ��

LEFT

244 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

Example
v Assume the host variable NAME (VARCHAR(50)) has a value of 'KATIE

AUSTIN' and the host variable FIRSTNAME_LEN (int) has a value of 5.
SELECT LEFT(:NAME, :FIRSTNAME_LEN)

FROM SYSIBM.SYSDUMMY1

Returns the value 'KATIE'

LEFT

Chapter 3. Built-In Functions 245

LENGTH

The LENGTH function returns the length of a value. See
“CHARACTER_LENGTH” on page 188 for a similar function.

The argument is an expression that returns a value of any built-in data type.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length of strings includes blanks. The
length of a varying-length string is the actual length, not the length attribute.

The length of a graphic string is the number of double-byte characters (the number
of bytes divided by 2). The length of all other values is the number of bytes used
to represent the value:

Numbers:
v 2 for small integer
v 4 for large integer
v 8 for big integer
v p for zoned decimal numbers with precision p

v The integral part of (p/2)+1 for packed decimal numbers with precision p

v 4 for single-precision float
v 8 for double-precision float
v 26 for row ID

Character strings:
v The length of the string

Graphic strings:
v The number of DBCS or UCS-2 characters in the string

Datetime values:
v 3 for time
v 4 for date
v 10 for timestamp

DataLink values:
v The actual number of bytes used to store the DataLink value (plus 19 if the

DataLink is FILE LINK CONTROL and READ PERMISSION DB).

Examples
v Assume the host variable ADDRESS is a varying-length character string with a

value of ‘895 Don Mills Road’.
SELECT LENGTH(:ADDRESS)

FROM SYSIBM.SYSDUMMY1

Returns the value 18.
v Assume that PRSTDATE is a column of type DATE.

�� LENGTH (expression) ��

LENGTH

246 DB2 UDB for iSeries SQL Reference V5R2

|

|

SELECT LENGTH(PRSTDATE)
FROM PROJECT

Returns the value 4.
v Assume that PRSTDATE is a column of type DATE.

SELECT LENGTH(CHAR(PRSTDATE, EUR))
FROM PROJECT

Returns the value 10.

LENGTH

Chapter 3. Built-In Functions 247

|
|

|

|

|
|

|

LN

The LN function returns the natural logarithm of a number. The LN and EXP
functions are inverse operations.

The argument is an expression that returns a value of any built-in numeric data
type. The value of the argument must be greater than zero.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable NATLOG is a DECIMAL(4,2) host variable with a

value of 31.62.
SELECT LN(:NATLOG)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 3.45.

�� LN (numeric-expression) ��

LN

248 DB2 UDB for iSeries SQL Reference V5R2

LNOT

The LNOT function returns a string that is the logical NOT of the argument string.

The argument must be a character string but cannot be a LOB. The argument
cannot be a MIXED character string or a graphic string.

The data type and length attribute of the result is the same as the data type and
length attribute of the argument value. If the argument is a varying-length string,
the actual length of the result is the same as the actual length of the argument
value. If the argument can be null, the result can be null; if the argument is null,
the result is the null value.

The CCSID of the result is 65535.

Example
v Assume the host variable L1 is a CHARACTER(2) host variable with a value of

X’F0F0’.
SELECT LNOT(:L1)
FROM SYSIBM.SYSDUMMY1

Returns the value X’0F0F’.

�� LNOT (character-expression) ��

LNOT

Chapter 3. Built-In Functions 249

LOCATE

The LOCATE function returns the starting position of the first occurrence of one
string (called the search-string) within another string (called the source-string). If the
search-string is not found and neither argument is null, the result is zero. If the
search-string is found, the result is a number from 1 to the actual length of the
source-string. If the optional start is specified, it indicates the character position in
the source-string at which the search is to begin.

search-string
An expression that specifies the string that is to be searched for. Search-string
may be a character-string, a graphic-string, or a binary-string expression. It
must be compatible with the source-string.

source-string
An expression that specifies the source string in which the search is to take
place. Source-string may be a character-string, a graphic-string, or a
binary-string expression.

start
An expression that specifies the position within source-string at which the
search is to start. It must be a positive integer.

The result of the function is a large integer. If any of the arguments can be null, the
result can be null; if any of the arguments is null, the result is the null value.

If start is specified, the function is similar to:
POSSTR(SUBSTR(source-string,start) , search-string)

If start is not specified, the function is equivalent to:
POSSTR(source-string , search-string)

For more information, see “POSITION or POSSTR” on page 271.

If the CCSID of the search-string is different than the CCSID of the source-string, it is
converted to the CCSID of the source-string.

Example
v Select RECEIVED and SUBJECT columns as well as the starting position of the

words ’GOOD’ within the NOTE_TEXT column for all entries in the IN_TRAY
table that contain these words.

SELECT RECEIVED, SUBJECT, LOCATE(’GOOD’, NOTE_TEXT)
FROM IN_TRAY
WHERE LOCATE(’GOOD’, NOTE_TEXT) <> 0

�� LOCATE (search-string , source-string)
, start

��

LOCATE

250 DB2 UDB for iSeries SQL Reference V5R2

LOG10

The LOG10 function returns the common logarithm (base 10) of a number. The
LOG10 and ANTILOG functions are inverse operations.

The argument value can be of any built-in numeric data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

LOG is a synonym for LOG10. It is supported only for compatibility with previous
DB2 releases. LOG10 should be used instead of LOG because some database
managers and applications implement LOG as the natural logarithm of a number
instead of the common logarithm of a number.

Example
v Assume the host variable L is a DECIMAL(4,2) host variable with a value of

31.62.
SELECT LOG10(:L)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.49.

�� LOG10 (numeric-expression) ��

LOG10

Chapter 3. Built-In Functions 251

|
|
|
|

LOR

The LOR function returns a string that is the logical OR of the argument strings.
This function takes the first argument string, does an OR comparison with the next
string, and then continues to do OR comparisons for each successive argument
using the previous result. If an argument is encountered that is shorter than the
previous result, it is padded with blanks.

The arguments must be character strings but cannot be LOBs. The arguments
cannot be mixed data character strings or graphic strings.

The arguments are converted, if necessary, to the attributes of the result. The
attributes of the result are determined as follows:
v If all the arguments are fixed-length strings, the result is a fixed-length string of

length n, where n is the length of the longest argument.
v If any argument is a varying-length string, the result is a varying-length string

with length attribute n, where n is the length attribute of the argument with
greatest length attribute. The actual length of the result is m, where m is the
actual length of the longest argument.

If an argument can be null, the result can be null; if an argument is null, the result
is the null value.

The CCSID of the result is 65535.

Example
v Assume the host variable L1 is a CHARACTER(2) host variable with a value of

X’0101’, host variable L2 is a CHARACTER(3) host variable with a value of
X’F0F000’, and host variable L3 is a CHARACTER(4) host variable with a value
of X’0000000F’.

SELECT LOR(:L1,:L2,:L3)
FROM SYSIBM.SYSDUMMY1

Returns the value X’F1F1000F’.
v Likewise,

SELECT LOR(:L3,:L2,:L1)
FROM SYSIBM.SYSDUMMY1

Returns the value X’F1F1404F’. In this case, the shorter arguments are padded
with blanks (X’40’), so the logical OR result differs from the first example.

�� LOR (character-expression , character-expression) ��

LOR

252 DB2 UDB for iSeries SQL Reference V5R2

LOWER

The LOWER function returns a string in which all the characters have been
converted to lowercase characters, based on the CCSID of the argument. Only
SBCS and UCS-2 graphic characters are converted. The characters A-Z are
converted to a-z, and characters with diacritical marks are converted to their
lowercase equivalent, if any. Refer to the UCS-2 level 1 mapping tables section of
the Globalization topic in the iSeries Information Center for a description of the
monocasing tables that are used for this translation.

string-expression
An expression that specifies the string to be converted. String-expression must
be a character or UCS-2 graphic string.

The result of the function has the same data type, length attribute, actual length,
and CCSID as the argument. If the argument can be null, the result can be null. If
the argument is null, the result is the null value.

LCASE is a synonym for LOWER.

Examples
v Ensure that the characters in the value of host variable NAME are lowercase.

NAME has a data type of VARCHAR(30) and a value of ’Christine Smith’.
SELECT LOWER(:NAME)

FROM SYSIBM.SYSDUMMY1

The result is the value ’christine smith’.

�� LOWER (string-expression) ��

LOWER

Chapter 3. Built-In Functions 253

|

../nls/rbagsucslevel1maptble.htm
../nls/rbagsglobalmain.htm

LTRIM

The LTRIM function removes blanks or hexadecimal zeros from the beginning of a
string expression. 34

The argument must be a string expression.
v If the argument is a binary string, then the leading hexadecimal zeros (X’00’) are

removed.
v If the argument is a DBCS graphic string, then the leading DBCS blanks are

removed.
v If the first argument is a UCS-2 graphic string, then the leading UCS-2 blanks

are removed
v Otherwise, leading SBCS blanks are removed.

The data type of the result depends on the data type of expression:

Data type of expression Data type of the Result

CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC VARGRAPHIC

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

The length attribute of the result is the same as the length attribute of
string-expression. The actual length of the result is the length of string-expression
minus the number of bytes removed. If all characters are removed, the result is an
empty string.

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

The CCSID of the result is the same as that of the string.

Example
v Assume the host variable HELLO of type CHAR(9) has a value of ’ Hello’.

SELECT LTRIM(:HELLO)
FROM SYSIBM.SYSDUMMY1

Results in: ’Hello’.

34. The LTRIM function returns the same results as: STRIP(expression,LEADING)

�� LTRIM (string-expression) ��

LTRIM

254 DB2 UDB for iSeries SQL Reference V5R2

MAX

The MAX scalar function returns the maximum value in a set of values.

The arguments must be compatible. Character-string arguments are compatible
with datetime values, but are not compatible with graphic strings. The arguments
cannot be DataLink values.

The result of the function is the largest argument value. The result can be null if at
least one argument can be null; the result is the null value if one of the arguments
is null. The selected arguments are converted, if necessary, to the attributes of the
result. The attributes of the result are determined as follows:
v If the arguments contain at least one date and the remaining arguments are

dates or valid string representations of dates, the result is a date. If the
arguments contain at least one time and the remaining arguments are times or
valid string representations of times, the result is a time. If the arguments
contain at least one timestamp and the remaining arguments are timestamps or
valid string representations of timestamps, the result is a timestamp.

v If the arguments are strings, the CCSID of the result is the CCSID that would
result if the arguments were concatenated. See “Conversion Rules for Operations
That Combine Strings” on page 95.

v If all the arguments are fixed-length strings, the result is a fixed-length string of
length n, where n is the length of the longest argument.

v If any argument is a varying-length string, the result is a varying-length string
with length attribute n, where n is the length attribute of the argument with
greatest length attribute. The actual length of the result is m, where m is the
actual length of the longest argument.

v If the arguments are numbers, the result data type is the same as if the
arguments were added. In the case of a decimal result:
– The scale is s, where s is the scale of the argument with the greatest scale.
– The precision is the minimum of 31 and s+n, where n is the number of digits

in the argument with the largest difference between its precision and scale.
– The number of digits required to represent the integral part of the largest

argument must not be greater than 31−s.

If a sort sequence other than *HEX is in effect when the statement is executed and
SBCS, UCS-2, or mixed data is involved, the weighted values of the strings are
compared instead of the actual values. The weighted values are based on the sort
sequence.

Examples
v Assume the host variable M1 is a DECIMAL(2,1) host variable with a value of

5.5, host variable M2 is a DECIMAL(3,1) host variable with a value of 4.5, and
host variable M3 is a DECIMAL(3,2) host variable with a value of 6.25.

SELECT MAX(:M1,:M2,:M3)
FROM SYSIBM.SYSDUMMY1

Returns the value 6.25.

�� MAX (expression , expression) ��

MAX

Chapter 3. Built-In Functions 255

v Assume the host variable M1 is a CHARACTER(2) host variable with a value of
’AA’, host variable M2 is a CHARACTER(3) host variable with a value of ’AA ’,
and host variable M3 is a CHARACTER(4) host variable with a value of ’AA A’.

SELECT MAX(:M1,:M2,:M3)
FROM SYSIBM.SYSDUMMY1

Returns the value ’AA A’.

MAX

256 DB2 UDB for iSeries SQL Reference V5R2

|
|

MICROSECOND

The MICROSECOND function returns the microsecond part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a timestamp. For the valid formats of
string representations of timestamps, see “String Representations of Datetime
Values” on page 67.

v If expression is a number, it must be a timestamp duration. For the valid formats
of datetime durations, see “Datetime Operands and Durations” on page 130.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a timestamp or a valid character-string representation of a

timestamp:
The result is the microsecond part of the value, which is an integer between 0
and 999999.

v If the argument is a duration:
The result is the microsecond part of the value, which is an integer between
−999999 and 999999. A nonzero result has the same sign as the argument.

Example
v Assume a table TABLEA contains two columns, TS1 and TS2, of type

TIMESTAMP. Select all rows in which the microseconds portion of TS1 is not
zero and the seconds portion of TS1 and TS2 are identical.

SELECT *
FROM TABLEA
WHERE MICROSECOND(TS1) <> 0 AND SECOND(TS1) = SECOND(TS2)

�� MICROSECOND (expression) ��

MICROSECOND

Chapter 3. Built-In Functions 257

MIDNIGHT_SECONDS

The MIDNIGHT_SECONDS function returns an integer value that is greater than
or equal to 0 and less than or equal to 86 400 representing the number of seconds
between midnight and the time value specified in the argument.

The argument must be an expression that returns a value of one of the following
built-in data types: time, a timestamp, or a valid character-string representation of
a time or timestamp. An argument with a character-string data type must not be a
CLOB. For the valid formats of string representations of timestamps, see “String
Representations of Datetime Values” on page 67.

The result of the function is large integer. The result can be null; if the argument is
null, the result is the null value.

Examples
v Find the number of seconds between midnight and 00:01:00, and midnight and

13:10:10. Assume that host variable XTIME1 has a value of ’00:01:00’, and that
XTIME2 has a value of ’13:10:10’.

SELECT MIDNIGHT_SECONDS(:XTIME1), MIDNIGHT_SECONDS(:XTIME2)
FROM SYSIBM.SYSDUMMY1

This example returns 60 and 47410. Because there are 60 seconds in a minute
and 3600 seconds in an hour, 00:01:00 is 60 seconds after midnight ((60 * 1) + 0),
and 13:10:10 is 47410 seconds ((3600 * 13) + (60 * 10) + 10).

v Find the number of seconds between midnight and 24:00:00, and midnight and
00:00:00.

SELECT MIDNIGHT_SECONDS(’24:00:00’), MIDNIGHT_SECONDS(’00:00:00’)
FROM SYSIBM.SYSDUMMY1

This example returns 86400 and 0. Although these two values represent the same
point in time, different values are returned.

�� MIDNIGHT_SECONDS (expression) ��

MIDNIGHT_SECONDS

258 DB2 UDB for iSeries SQL Reference V5R2

MIN

The MIN scalar function returns the minimum value in a set of values.

The arguments must be compatible. Character-string arguments are compatible
with datetime values, but are not compatible with graphic strings. The arguments
cannot be DataLink values.

The result of the function is the smallest argument value. The result can be null if
at least one argument can be null; the result is the null value if one of the
arguments is null. The selected arguments are converted, if necessary, to the
attributes of the result. The attributes of the result are determined as follows:
v If the arguments contain at least one date and the remaining arguments are

dates or valid string representations of dates, the result is a date. If the
arguments contain at least one time and the remaining arguments are times or
valid string representations of times, the result is a time. If the arguments
contain at least one timestamp and the remaining arguments are timestamps or
valid string representations of timestamps, the result is a timestamp.

v If the arguments are strings, the CCSID of the result is the CCSID that would
result if the arguments were concatenated. See “Conversion Rules for Operations
That Combine Strings” on page 95.

v If all the arguments are fixed-length strings, the result is a fixed-length string of
length n, where n is the length of the longest argument.

v If any argument is a varying-length string, the result is a varying-length string
with length attribute n, where n is the length attribute of the argument with
greatest length attribute. The actual length of the result is m, where m is the
actual length of the smallest argument.

v If the arguments are numbers, the data type of the result is the data type that
would result if the arguments were added. In the case of a decimal result:
– The scale is s, where s is the scale of the argument with the greatest scale.
– The precision is the minimum of 31 and s+n, where n is the number of digits

in the argument with the largest difference between its precision and scale.
– The number of digits required to represent the integral part of the largest

argument must not be greater than 31−s.

If a sort sequence other than *HEX is in effect when the statement is executed and
SBCS, UCS-2, or mixed data is involved, the weighted values of the strings are
compared instead of the actual values. The weighted values are based on the sort
sequence.

Examples
v Assume the host variable M1 is a DECIMAL(2,1) host variable with a value of

5.5, host variable M2 is a DECIMAL(3,1) host variable with a value of 4.5, and
host variable M3 is a DECIMAL(3,2) host variable with a value of 6.25.

SELECT MIN(:M1,:M2,:M3)
FROM SYSIBM.SYSDUMMY1

Returns the value 4.50.

�� MIN (expression , expression) ��

MIN

Chapter 3. Built-In Functions 259

v Assume the host variable M1 is a CHARACTER(2) host variable with a value of
’AA’, host variable M2 is a CHARACTER(3) host variable with a value of
’AAA’, and host variable M3 is a CHARACTER(4) host variable with a value of
’AAAA’.

SELECT MIN(:M1,:M2,:M3)
FROM SYSIBM.SYSDUMMY1

Returns the value ’AA ’.

MIN

260 DB2 UDB for iSeries SQL Reference V5R2

MINUTE

The MINUTE function returns the minute part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a time or timestamp. For the valid
formats of string representations of times and timestamps, see “String
Representations of Datetime Values” on page 67.

v If expression is a number, it must be a time duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime Operands and Durations”
on page 130.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, a timestamp, or a valid character-string representation

of a time or timestamp:
The result is the minute part of the value, which is an integer between 0 and 59.

v If the argument is a time duration or timestamp duration:
The result is the minute part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Example
v Using the CL_SCHED sample table, select all classes with a duration less than 50

minutes.
SELECT *

FROM CL_SCHED
WHERE HOUR(ENDING - STARTING) = 0 AND

MINUTE(ENDING - STARTING) < 50

�� MINUTE (expression) ��

MINUTE

Chapter 3. Built-In Functions 261

MOD

The MOD function divides the first argument by the second argument and returns
the remainder.

The formula used to calculate the remainder is:
MOD(x,y) = x - (x/y) * y

where x/y is the truncated integer result of the division. The result is negative
only if first argument is negative.

The arguments must each be an expression that returns a built-in numeric data
type. numeric-expression-2 cannot be zero.

If an argument can be null, the result can be null; if an argument is null, the result
is the null value.

The attributes of the result are determined as follows:
v If both arguments are large or small integers with zero scale, the data type of the

result is large integer.
v If both arguments are integers with zero scale and at least one of the arguments

is a big integer, the data type of the result is big integer.
v If one argument is an integer with zero scale and the other is decimal, the result

is decimal with the same precision and scale as the decimal argument.
v If both arguments are decimal or integer with scale numbers, the result is

decimal. The precision of the result is min (p-s,p’-s’) + max (s,s’), and the scale
of the result is max (s,s’), where the symbols p and s denote the precision and
scale of the first operand, and the symbols p’ and s’ denote the precision and
scale of the second operand.

v If either argument is floating point, the data type of the result is
double-precision floating point.
The operation is performed in floating point; the operands having been first
converted to double-precision floating-point numbers, if necessary.
An operation involving a floating-point number and an integer is performed
with a temporary copy of the integer that has been converted to
double-precision floating point. An operation involving a floating-point number
and a decimal number is performed with a temporary copy of the decimal
number that has been converted to double-precision floating point. The result of
a floating-point operation must be within the range of floating-point numbers.

Examples
v Assume the host variable M1 is an integer host variable with a value of 5, and

host variable M2 is an integer host variable with a value of 2.
SELECT MOD(:M1,:M2)

FROM SYSIBM.SYSDUMMY1

Returns the value 1.
v Assume the host variable M1 is an integer host variable with a value of 5, and

host variable M2 is a DECIMAL(3,2) host variable with a value of 2.20.

�� MOD (numeric-expression-1 , numeric-expression-2) ��

MOD

262 DB2 UDB for iSeries SQL Reference V5R2

SELECT MOD(:M1,:M2)
FROM SYSIBM.SYSDUMMY1

Returns the value 0.60.
v Assume the host variable M1 is a DECIMAL(4,2) host variable with a value of

5.50, and host variable M2 is a DECIMAL(4,1) host variable with a value of 2.0.
SELECT MOD(:M1,:M2)

FROM SYSIBM.SYSDUMMY1

Returns the value 1.50.

MOD

Chapter 3. Built-In Functions 263

MONTH

The MONTH function returns the month part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a date or timestamp. For the valid
formats of string representations of dates and timestamps, see “String
Representations of Datetime Values” on page 67.

v If expression is a number, it must be a date duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime Operands and Durations”
on page 130.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date, a timestamp, or a valid character-string representation

of a date or timestamp:
The result is the month part of the value, which is an integer between 1 and 12.

v If the argument is a date duration or timestamp duration:
The result is the month part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Example
v Select all rows from the EMPLOYEE table for people who were born

(BIRTHDATE) in DECEMBER.
SELECT *

FROM EMPLOYEE
WHERE MONTH(BIRTHDATE) = 12

�� MONTH (expression) ��

MONTH

264 DB2 UDB for iSeries SQL Reference V5R2

NODENAME

The NODENAME function returns the relational database name of where a row is
located. If the argument identifies a non-distributed table, the value of the
CURRENT SERVER special register is returned. For more information about nodes,
see the DB2 Multisystem book.

The argument is a table designator of the subselect. For more information about
table designators, see “Table Designators” on page 107.

In SQL naming, the table name may be qualified. In system naming, the table
name cannot be qualified.

If the argument identifies a view, common table expression, or derived table, the
function returns the relational database name of its base table. If the argument
identifies a view, common table expression, or derived table derived from more
than one base table, the function returns the relational database name of the first
table in the outer subselect of the view, common table expression, or derived table.

The argument must not identify a view, common table expression, or derived table
whose outer subselect includes a column function, a GROUP BY clause, a HAVING
clause, a UNION clause, or DISTINCT clause. If the subselect contains a GROUP
BY or HAVING clause, the NODENAME function can only be specified in the
WHERE clause or as an operand of a column function. If the argument is a
correlation name, the correlation name must not identify a correlated reference.

The data type of the result is VARCHAR(18). The result can be null.

The CCSID of the result is the default CCSID of the current server.

Example
v Join the EMPLOYEE and DEPARTMENT tables, select the employee number

(EMPNO) and determine the node from which each row involved in the join
originated.

SELECT EMPNO, NODENAME(X), NODENAME(Y)
FROM EMPLOYEE X, DEPARTMENT Y
WHERE X.DEPTNO=Y.DEPTNO

�� NODENAME (table-designator) ��

NODENAME

Chapter 3. Built-In Functions 265

|
|
|
|
|

|
|
|
|
|
|

|

|

../dbmult/rzaf3mst02.htm

NODENUMBER

The NODENUMBER function returns the node number of a row. If the argument
identifies a non-distributed table, the value 0 is returned.35 For more information
about nodes and node numbers, see the DB2 Multisystem book.

The argument is a table designator of the subselect. For more information about
table designators, see “Table Designators” on page 107.

In SQL naming, the table name may be qualified. In system naming, the table
name cannot be qualified.

If the argument identifies a view, common table expression, or derived table, the
function returns the node number of its base table. If the argument identifies a
view, common table expression, or derived table derived from more than one base
table, the function returns the node number of the first table in the outer subselect
of the view, common table expression, or derived table.

The argument must not identify a view, common table expression, or derived table
whose outer subselect includes a column function, a GROUP BY clause, a HAVING
clause, a UNION clause, or DISTINCT clause. If the subselect contains a GROUP
BY or HAVING clause, the NODENUMBER function can only be specified in the
WHERE clause or as an operand of a column function. If the argument is a
correlation name, the correlation name must not identify a correlated reference.

The data type of the result is a large integer. The result can be null.

Example
v Determine the node number and employee name for each row in the

EMPLOYEE table. If this is a distributed table, the number of the node where
the row exists is returned.

SELECT NODENUMBER(EMPLOYEE), LASTNAME
FROM EMPLOYEE

35. If the argument identifies a DDS created logical file that is based on more than one physical file member, NODENUMBER will
not return 0, but instead will return the underlying physical file member number.

�� NODENUMBER (table-designator) ��

NODENUMBER

266 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

|
|
|
|
|
|

|

../dbmult/rzaf3mst02.htm

NOW

The NOW function returns a timestamp based on a reading of the time-of-day
clock when the SQL statement is executed at the current server. The value returned
by the NOW function is the same as the value returned by the CURRENT
TIMESTAMP special register. If this function is used more than once within a
single SQL statement, or used with the CURDATE or CURTIME scalar functions or
the CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP special
registers within a single statement, all values are based on a single clock reading.

The data type of the result is a timestamp. The result cannot be null.

Example
v Return the current timestamp based on the time-of-day clock.

SELECT NOW()
FROM SYSIBM.SYSDUMMY1

�� NOW () ��

NOW

Chapter 3. Built-In Functions 267

NULLIF

The NULLIF function returns a null value if the arguments compare equal,
otherwise it returns the value of the first argument.

The arguments must be compatible and comparable data types. Character-string
arguments are compatible with datetime values. If one operand is a distinct type,
the other operand must be the same distinct type. The arguments cannot be
DataLink values.

The attributes of the result are the attributes of the first argument. The result can
be null. The result is null if the first argument is null or if both arguments are
equal.

The result of using NULLIF(e1,e2) is the same as using the expression
CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments is
NULL), CASE expressions consider this not true. Therefore, in this situation,
NULLIF returns the value of the first operand, e1.

Example
v Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data types

with the values 4500.00, 500.00, and 5000.00 respectively:
SELECT NULLIF (:PROFIT + :CASH, :LOSSES)

FROM SYSIBM.SYSDUMMY1

Returns the null value.

�� NULLIF (expression , expression) ��

NULLIF

268 DB2 UDB for iSeries SQL Reference V5R2

PARTITION

The PARTITION function returns the partition number of a row obtained by
applying the hashing function on the partitioning key value of the row. Also see
the HASH function. If the argument identifies a non-distributed table, the value 0
is returned. For more information about partition numbers and partitioning keys,
see the DB2 Multisystem book.

The argument is a table designator of the subselect. For more information about
table designators, see “Table Designators” on page 107.

In SQL naming, the table name may be qualified. In system naming, the table
name cannot be qualified.

If the argument identifies a view, common table expression, or derived table, the
function returns the partition number of its base table. If the argument identifies a
view, common table expression, or derived table derived from more than one base
table, the function returns the partition number of the first table in the outer
subselect of the view, common table expression, or derived table.

The argument must not identify a view, common table expression, or derived table
whose outer subselect includes a column function, a GROUP BY clause, a HAVING
clause, a UNION clause, or DISTINCT clause. If the subselect contains a GROUP
BY or HAVING clause, the PARTITION function can only be specified in the
WHERE clause or as an operand of a column function. If the argument is a
correlation name, the correlation name must not identify a correlated reference.

The data type of the result is a large integer with a value between 0 and 1023. The
result can be null.

Example
v Select the employee number (EMPNO) from the EMPLOYEE table for all rows

where the partition number is equal to 100.
SELECT EMPNO

FROM EMPLOYEE
WHERE PARTITION(EMPLOYEE) = 100

�� PARTITION (table-designator) ��

PARTITION

Chapter 3. Built-In Functions 269

|
|
|
|
|

|
|
|
|
|
|

|
|

../dbmult/rzaf3mst02.htm

PI

Returns the value of PI 3.141592653589793. There are no arguments.

The result of the function is double-precision floating-point. The result cannot be
null.

Example
v The following returns the circumference of a circle with diameter 10:

SELECT PI()*10
FROM SYSIBM.SYSDUMMY1

�� PI () ��

PI

270 DB2 UDB for iSeries SQL Reference V5R2

POSITION or POSSTR

The POSITION and POSSTR functions return the starting position of the first
occurrence of one string (called the search-string) within another string (called the
source-string). If the search-string is not found and neither argument is null, the
result is zero. If the search-string is found, the result is a number from 1 to the
actual length of the source-string. See the related function, “LOCATE” on page 250.

source-string
An expression that specifies the source string in which the search is to take
place. Source-string may be a binary-string, character-string, or a graphic-string
expression.

search-string
An expression that specifies the string that is to be searched for. Search-string
may be a binary-string, character-string, or a graphic-string expression. It must
be compatible with the source-string.

The result of the function is a large integer. If either of the arguments can be null,
the result can be null. If either of the arguments is null, the result is the null value.

If the CCSID of the search-string is different than the CCSID of the source-string, it is
converted to the CCSID of the source-string.

The POSITION function operates on a character basis. The POSSTR function
operates on a strict byte-count basis. It is recommended that if either the
search-string or source-string contains mixed data, POSITION should be used instead
of POSSTR. Because POSSTR operates on a strict byte-count basis, if the
search-string or source-string contains mixed data, the search-string will only be
found if any shift-in and shift-out characters are also found in the source-string in
exactly the same positions. Because POSITION operates on a character-string basis,
any shift-in and shift-out characters are not required to be in exactly the same
position and their only significance is to indicate which characters are SBCS and
which characters are DBCS.

If a sort sequence other than *HEX is in effect when the statement that contains the
POSSTR or POSITION function is executed and the arguments contain SBCS,
UCS-2, or mixed data, then the result is obtained by comparing weighted values
for each value in the set. The weighted values are based on the sort sequence.

If the search-string has a length of zero, the result returned by the function is 1.
Otherwise:
v if the source-string has a length of zero, the result returned by the function is 0.
v Otherwise,

– If the value of search-string is equal to an identical length of substring of
contiguous positions within the value of source-string, then the result returned
by the function is the starting position of the first such substring within the
source-string value.

�� POSITION (search-string IN source-string)
POSSTR (source-string , search-string)

��

POSITION or POSSTR

Chapter 3. Built-In Functions 271

– Otherwise, the result returned by the function is 0.36

Example
v Select RECEIVED and SUBJECT columns as well as the starting position of the

words ’GOOD’ within the NOTE_TEXT column for all entries in the IN_TRAY
table that contain these words.

SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, ’GOOD’)
FROM IN_TRAY
WHERE POSSTR(NOTE_TEXT, ’GOOD’) <> 0

36. This includes the case where the search-string is longer than the source-string.

POSITION or POSSTR

272 DB2 UDB for iSeries SQL Reference V5R2

POWER

The POWER function returns the result of raising the first argument to the power
of the second argument. 37

Each argument must be an expression that returns the value of any built-in
numeric data type. If the value of numeric-expression-1 is equal to zero, then
numeric-expression-2 must be greater than or equal to zero. If both arguments are 0,
the result is 1.

The result of the function is a double-precision floating-point number. If an
argument can be null, the result can be null; if an argument is null, the result is the
null value.

Example
v Assume the host variable HPOWER is an integer with value 3.

SELECT POWER(2,:HPOWER)
FROM SYSIBM.SYSDUMMY1

Returns the value 8.

37. The result of the POWER function is exactly the same as the result of exponentiation: numeric-expression-1 ** numeric-expression-2.

�� POWER (numeric-expression-1 , numeric-expression-2) ��

POWER

Chapter 3. Built-In Functions 273

QUARTER

The QUARTER function returns an integer between 1 and 4 that represents the
quarter of the year in which the date resides. For example, any dates in January,
February, or March will return the integer 1.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string. If expression is a
character string, it must not be a CLOB and its value must be a valid
character-string representation of a date or timestamp. For the valid formats of
string representations of dates and timestamps, see “String Representations of
Datetime Values” on page 67.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example
v Using the PROJECT table, set the host variable QUART (INTEGER) to the

quarter in which project ‘PL2100’ ended (PRENDATE).
SELECT QUARTER(PRENDATE)

INTO :QUART
FROM PROJECT
WHERE PROJNO = ’PL2100’

Results in QUART being set to 3.

�� QUARTER (expression) ��

QUARTER

274 DB2 UDB for iSeries SQL Reference V5R2

RADIANS

The RADIANS function returns the number of radians for an argument that is
expressed in degrees.

The argument is an expression that returns the value of any built-in numeric data
type. If the argument is not a double precision floating-point number, it is
converted to one for processing by the function.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume that host variable HDEG is an INTEGER with a value of 180. The

following statement:
SELECT RADIANS(:HDEG)

FROM SYSIBM.SYSDUMMY1

Returns a double precision floating-point number with an approximate value of
3.1415926536.

�� RADIANS (numeric-expression) ��

RADIANS

Chapter 3. Built-In Functions 275

RAND

The RAND function returns a floating point value between 0 and 1.

If an expression is specified, it is used as the seed value. The expression must be a
SMALLINT or INTEGER.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume that host variable HRAND is an INTEGER with a value of 100. The

following statement:
SELECT RAND(:HRAND)

FROM SYSIBM.SYSDUMMY1

Returns a random floating-point number between 0 and 1, such as the
approximate value .0121398.

v To generate values in a numeric interval other than 0 to 1, multiply the RAND
function by the size of the desired interval. For example, to get a random
number between 0 and 10, such as the approximate value 5.8731398, multiply
the function by 10:

SELECT RAND(:HRAND) * 10
FROM SYSIBM.SYSDUMMY1

�� RAND ()
numeric-expression

��

RAND

276 DB2 UDB for iSeries SQL Reference V5R2

REAL

The REAL function returns a single-precision floating-point representation of:
v A number
v A character string representation of a decimal number
v A character string representation of an integer
v A character string representation of a floating-point number

Note: The CAST expression can also be used to return a single-precision
floating-point value. For more information, see “CAST Specification” on
page 137.

numeric-expression
The argument is an expression that returns a value of any built-in numeric
data type.

The result is the same number that would occur if the argument were assigned
to a single-precision floating-point column or variable. If the numeric value of
the argument is not within the range of single-precision floating-point, an error
occurs.

character-expression
An expression that returns a character string value.

The result is the same number that would result from CAST(
character-expression AS REAL). Leading and trailing blanks are eliminated and
the resulting string must conform to the rules for forming an floating-point,
integer, or decimal constant. If the numeric value of the argument is not within
the range of single-precision floating-point, an error occurs.

The result of the function is a single-precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result is
the null value.

Example
v Using the EMPLOYEE table, find the ratio of salary to commission for

employees whose commission is not zero. The columns involved (SALARY and
COMM) have DECIMAL data types. To eliminate the possibility of out-of-range
results, REAL is applied to SALARY so that the division is carried out in floating
point:

SELECT EMPNO, REAL(SALARY)/COMM
FROM EMPLOYEE
WHERE COMM > 0

�� REAL (numeric-expression)
character-expression

��

REAL

Chapter 3. Built-In Functions 277

ROUND

The ROUND function returns numeric-expression–1 rounded to some number of
places to the right or left of the decimal point.

numeric-expression–1
An expression that returns a value of any built-in numeric data type.

numeric-expression–2
An expression that returns a small or large integer. The absolute value of
integer specifies the number of places to the right of the decimal point for the
result if numeric-expression–2 is not negative, or to left of the decimal point if
numeric-expression–2 is negative.

If numeric-expression–2 is not negative, numeric-expression–1 is rounded to the
numeric-expression–2 number of places to the right of the decimal point. A digit
value of 5 is rounded to the next higher positive number.

If numeric-expression–2 is negative, numeric-expression–1 is rounded to the
absolute value of (numeric-expression–2+1) number of places to the left of the
decimal point. A digit value of 5 is rounded to the next lower negative
number. If the absolute value of numeric-expression–2 is greater than or equal to
the number of digits to the left of the decimal point, the result is 0.

The data type and length attribute of the result are the same as the data type and
length attribute of the first argument, except that precision is increased by one if
numeric-expression–1 is DECIMAL or NUMERIC and the precision is less than 31.
For example, an argument with a data type of DECIMAL(5,2) will result in
DECIMAL(6,2). An argument with a data type of DECIMAL(31,2) will result in
DECIMAL(31,2).

If either argument can be null, the result can be null. If either argument is null, the
result is the null value.

Examples
v Calculate the number 873.726 rounded to 2, 1, 0, -1, -2, -3, and -4 decimal places

respectively.
SELECT ROUND(873.726, 2),

ROUND(873.726, 1),
ROUND(873.726, 0),
ROUND(873.726, -1),
ROUND(873.726, -2),
ROUND(873.726, -3),
ROUND(873.726, -4)

FROM SYSIBM.SYSDUMMY1

Returns the following values, respectively:
0873.730 0873.700 0874.000 0870.000 0900.000 1000.000 0000.000

v Calculate both positive and negative numbers.
SELECT ROUND(3.5, 0),

ROUND(3.1, 0),
ROUND(-3.1, 0),
ROUND(-3.5, 0)

FROM SYSIBM.SYSDUMMY1

�� ROUND (numeric-expression-1 , numeric-expression-2) ��

ROUND

278 DB2 UDB for iSeries SQL Reference V5R2

Returns the following examples, respectively:
04.0 03.0 -03.0 -04.0

respectively.

ROUND

Chapter 3. Built-In Functions 279

ROWID

The ROWID function casts a character string or binary string to a row ID.

Note: The CAST expression can also be used to return a row ID value. For more
information, see “CAST Specification” on page 137.

string-expression
An expression that returns a character string or binary string value. The
string-expression must not be a CLOB. Although the string can contain any
value, it is recommended that it contain a ROWID value that was previously
generated by DB2 UDB for OS/390 and z/OS or DB2 UDB for iSeries to ensure
a valid ROWID value is returned. For example, the function can be used to
convert a ROWID that value that was cast to CHAR value back to a ROWID
value.

If the actual length of string-expression is less than 40, the result is not padded. If
the actual length of string-expression is greater than 40, the result is truncated. If
non-blank characters are truncated, a warning is returned.

The length attribute of the result is 40. The actual length of the result is the length
of string-expression.

The result of the function is a row ID. If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

Example
v Assume that table EMPLOYEE contains a ROWID column EMP_ROWID. Also

assume that the table contains a row that is identified by a row ID value that is
equivalent to X’F0DFD230E3C0D80D81C201AA0A280100000000000203’. Using
direct row access, select the employee number for that row.

SELECT EMPNO
FROM EMPLOYEE
WHERE EMP_ROWID = ROWID(X’F0DFD230E3C0D80D81C201AA0A280100000000000203’)

�� ROWID (string-expression) ��

ROWID

280 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

|

|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

RRN

The RRN function returns the relative record number of a row.

The argument is a table designator of the subselect. For more information about
table designators, see “Table Designators” on page 107.

In SQL naming, the table name may be qualified. In system naming, the table
name can not be qualified.

If the argument identifies a view, common table expression, or derived table, the
function returns the relative record number of its base table. If the argument
identifies a view, common table expression, or derived table derived from more
than one base table, the function returns the relative record number of the first
table in the outer subselect of the view, common table expression, or derived table.

If the argument identifies a distributed table, the function returns the relative
record number of the row on the node where the row is located. This means that
RRN will not be unique for each row of a distributed table.

The argument must not identify a view, common table expression, or derived table
whose outer subselect includes a column function, a GROUP BY clause, a HAVING
clause, a UNION clause, or DISTINCT clause. The RRN function cannot be
specified in a SELECT clause if the subselect contains a column function, a GROUP
BY clause, or a HAVING clause. If the argument is a correlation name, the
correlation name must not identify a correlated reference.

The data type of the result is a decimal with precision 15 and scale 0. The result
can be null.

Example
v Return the relative record number and employee name from table EMPLOYEE

for those employees in department 20.
SELECT RRN(EMPLOYEE), LASTNAME

FROM EMPLOYEE
WHERE DEPTNO = 20

�� RRN (table-designator) ��

RRN

Chapter 3. Built-In Functions 281

|
|
|
|
|

|
|
|
|
|
|

|
|

RTRIM

The RTRIM function removes blanks or hexadecimal zeroes from the end of a
string expression. 38

The argument must be a string expression.
v If the argument is a binary string, then the trailing hexadecimal zeros (X’00’) are

removed.
v If the argument is a DBCS graphic string, then the trailing DBCS blanks are

removed.
v If the first argument is a UCS-2 graphic string, then the trailing UCS-2 blanks

are removed
v Otherwise, trailing SBCS blanks are removed.

The data type of the result depends on the data type of string-expression:

Data type of expression Data type of the Result

CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC VARGRAPHIC

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

The length attribute of the result is the same as the length attribute of
string-expression. The actual length of the result is the length of the expression
minus the number of bytes removed. If all characters are removed, the result is an
empty string.

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

The CCSID of the result is the same as that of the string.

Example
v Assume the host variable HELLO of type CHAR(9) has a value of ’Hello ’.

SELECT RTRIM(:HELLO)
FROM SYSIBM.SYSDUMMY1

Results in: ’Hello’.

38. The RTRIM function returns the same results as: STRIP(expression,TRAILING)

�� RTRIM (string-expression) ��

RTRIM

282 DB2 UDB for iSeries SQL Reference V5R2

SECOND

The SECOND function returns the seconds part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a time or timestamp. For the valid
formats of string representations of times and timestamps, see “String
Representations of Datetime Values” on page 67.

v If expression is a number, it must be a time duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime Operands and Durations”
on page 130.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time, a timestamp, or a valid character-string representation

of a time or timestamp:
The result is the seconds part of the value, which is an integer between 0 and 59.

v If the argument is a time duration or timestamp duration:
The result is the seconds part of the value, which is an integer between −99 and
99. A nonzero result has the same sign as the argument.

Examples
v Assume that the host variable TIME_DUR (DECIMAL(6,0)) has the value 153045.

SELECT SECOND(:TIME_DUR)
FROM SYSIBM.SYSDUMMY1

Returns the value 45.
v Assume that the column RECEIVED (TIMESTAMP) has an internal value

equivalent to 1988-12-25-17.12.30.000000.
SELECT SECOND(RECEIVED)
FROM IN_TRAY

Returns the value 30.

�� SECOND (expression) ��

SECOND

Chapter 3. Built-In Functions 283

SIGN

The SIGN function returns an indicator of the sign of expression. The returned
value is:

–1 if the argument is less than zero

0 if the argument is zero

1 if the argument is greater than zero

The argument is an expression that returns a value of any built-in numeric data
type.

The result has the same data type and length attribute as the argument, except that
precision is increased by one if the argument is DECIMAL or NUMERIC and the
scale of the argument is equal to its precision. For example, an argument with a
data type of DECIMAL(5,5) will result in DECIMAL(6,5). If the precision is already
31, the scale will be decreased by one. For example, DECIMAL(31,31) will result in
DECIMAL(31,30).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example
v Assume that host variable PROFIT is a large integer with a value of 50000.

SELECT SIGN(:PROFIT)
FROM EMPLOYEE

Returns the value 1.

�� SIGN (numeric-expression) ��

SIGN

284 DB2 UDB for iSeries SQL Reference V5R2

SIN

The SIN function returns the sine of the argument, where the argument is an angle
expressed in radians. The SIN and ASIN functions are inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable SINE is a decimal (2,1) host variable with a value of

1.5.
SELECT SIN(:SINE)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.99.

�� SIN (numeric-expression) ��

SIN

Chapter 3. Built-In Functions 285

SINH

The SINH function returns the hyperbolic sine of the argument, where the
argument is an angle expressed in radians.

The argument is an expression that returns the value of any built-in numeric data
type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable HSINE is a decimal (2,1) host variable with a value of

1.5.
SELECT SINH(:HSINE)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 2.12.

�� SINH (numeric-expression) ��

SINH

286 DB2 UDB for iSeries SQL Reference V5R2

SMALLINT

The SMALLINT function returns a small integer representation of
v A number
v A character string representation of a decimal number
v A character string representation of an integer
v A character string representation of a floating-point number

Note: The CAST expression can also be used to return a small integer value. For
more information, see “CAST Specification” on page 137.

Numeric to Smallint

numeric-expression
An expression that returns a numeric value of any built-in numeric data type.

The result is the same number that would occur if the argument were assigned
to a small integer column or variable. If the whole part of the argument is not
within the range of small integers, an error occurs. The fractional part of the
argument is truncated.

Character to Smallint

character-expression
An expression that returns a value that is a character-string representation of
an integer. The expression must not be a CLOB.

The result is the same number that would result from CAST(
character-expression AS SMALLINT). Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming a floating-point,
integer, or decimal constant. If the whole part of the argument is not within
the range of small integers, an error occurs. Any fractional part of the
argument is truncated. The fractional part of the argument is truncated.

The result of the function is a small integer. If the argument can be null, the result
can be null. If the argument is null, the result is the null value.

Example
v Using the EMPLOYEE table, select a list containing salary (SALARY) divided by

education level (EDLEVEL). Truncate any decimal in the calculation. The list
should also contain the values used in the calculation and the employee number
(EMPNO).

SELECT SMALLINT(SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE

Numeric to Smallint

�� SMALLINT (numeric-expression) ��

Character to Smallint

�� SMALLINT (character-expression) ��

SMALLINT

Chapter 3. Built-In Functions 287

SOUNDEX

The SOUNDEX function returns a 4 character code representing the sound of the
words in the argument. The result can be used to compare with the sound of other
strings.

The argument can be any built-in string data type other than a BLOB, CLOB, or
DBCLOB.

The data type of the result is CHAR(4). If the argument can be null, the result can
be null; if the argument is null, the result is the null value.

The CCSID of the result is the default CCSID of the current server.

The SOUNDEX function is useful for finding strings for which the sound is known
but the precise spelling is not. It makes assumptions about the way that letters and
combinations of letters sound that can help to search out words with similar
sounds. The comparison can be done directly or by passing the strings as
arguments to the DIFFERENCE function. For more information, see
“DIFFERENCE” on page 213.

Example
v Using the EMPLOYEE table, find the EMPNO and LASTNAME of the employee

with a surname that sounds like ’Loucesy’.
SELECT EMPNO, LASTNAME

FROM EMPLOYEE
WHERE SOUNDEX(LASTNAME) = SOUNDEX(’Loucesy’)

Returns the row:
000110 LUCCHESSI

�� SOUNDEX (string-expression) ��

SOUNDEX

288 DB2 UDB for iSeries SQL Reference V5R2

|

SPACE

The SPACE function returns a character string that consists of the number of SBCS
blanks that the argument specifies.

The argument is an expression that results in an integer. The integer specifies the
number of SBCS blanks for the result, and it must be between 0 and 32740. If
numeric-expression is a constant, it must not be the constant 0.

The result of the function is a varying-length character string (VARCHAR) that
contains SBCS data.

If numeric-expression is a constant, the length attribute of the result is the constant.
Otherwise, the length attribute of the result is 4000. The actual length of the result
is the value of numeric-expression. The actual length of the result must not be
greater than the length attribute of the result.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The CCSID is the EBCDIC CCSID for SBCS data of the job.

Example
v The following statement returns a character string that consists of 5 blanks.

SELECT SPACE(5)
FROM SYSIBM.SYSDUMMY1

�� SPACE (numeric-expression) ��

SPACE

Chapter 3. Built-In Functions 289

SQRT

The SQRT function returns the square root of a number.

The argument is an expression that returns a value of any built-in numeric data
type. The value of numeric-expression must be greater than or equal to zero. The
argument is converted to double-precision floating point for processing by the
function.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable SQUARE is a DECIMAL(2,1) host variable with a

value of 9.0.
SELECT SQRT(:SQUARE)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 3.00.

�� SQRT (numeric-expression) ��

SQRT

290 DB2 UDB for iSeries SQL Reference V5R2

STRIP

The STRIP function removes blanks or another specified character from the end
and/or beginning of a string expression.

The STRIP function is identical to the TRIM scalar function. For more information,
see “TRIM” on page 303.

�� STRIP (string-expression)
, BOTH
, B , strip-character
, LEADING
, L
, TRAILING
, T

��

STRIP

Chapter 3. Built-In Functions 291

SUBSTRING or SUBSTR

The SUBSTR and SUBSTRING functions return a substring of a string.

string-expression
An expression that specifies the string from which the result is derived.

String-expression must be a character, graphic, or binary string. If
string-expression is a character string, the result of the function is a character
string. If it is a graphic string, the result of the function is a graphic string. If it
is a binary string, the result of the function is a binary string.

A substring of string-expression is zero or more contiguous characters of
string-expression. If string-expression is a graphic string, a character is a DBCS or
UCS-2 character. If string-expression is a character string or binary string, a
character is a byte. The SUBSTR function accepts mixed data strings. However,
because SUBSTR operates on a strict byte-count basis, the result will not
necessarily be a properly formed mixed data string.

start
An expression that specifies the position within string-expression of the first
character (or byte) of the result. It must be a binary integer. start may be
negative or zero. It may also be greater than the length attribute of
string-expression. (The length attribute of a varying-length string is its
maximum length.)

length
An expression that specifies the length of the result. If specified, length must be
a binary integer. length must be in the range 0 to n, where n is the maximum
length of the resulting data type.

If SUBSTR is specified and length is explicitly specified, string-expression is
effectively padded on the right with the necessary number of blank characters
(or hexadecimal zeroes for binary strings) so that the specified substring of
string-expression always exists.

If SUBSTRING is specified and length is explicitly specified, padding is not
performed.

If string-expression is a fixed-length string, omission of length is an implicit
specification of LENGTH(string-expression) - start + 1, which is the number of
characters (or bytes) from the start character (or byte) to the last character (or
byte) of string-expression. If string-expression is a varying-length string, omission
of length is an implicit specification of zero or LENGTH(string-expression) - start
+ 1, whichever is greater. If the resulting length is zero, the result is the empty
string.

The data type of the result depends on the data type of string-expression and
whether the function is a SUBSTR or SUBSTRING:

�� SUBSTR (string-expression , start)
SUBSTRING , length

SUBSTRING (string-expression FROM start)
FOR length

��

SUBSTRING or SUBSTR

292 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

Data type of
string-expression

Data Type of the
Result for
SUBSTRING Data Type of the Result for SUBSTR

CHAR or VARCHAR VARCHAR CHAR, if length is explicitly specified by an
integer constant or if length is not explicitly
specified, but string-expression is a
fixed-length string and start is an integer
constant. VARCHAR, in all other cases.

GRAPHIC or
VARGRAPHIC

VARGRAPHIC GRAPHIC, if length is explicitly specified
by an integer constant or if length is not
explicitly specified, but string-expression is a
fixed-length string and start is an integer
constant. VARGRAPHIC, in all other cases.

BLOB BLOB BLOB

CLOB CLOB CLOB

DBCLOB DBCLOB DBCLOB

If the SUBSTRING function is specified, the length attribute of the result is equal to
the length attribute of string-expression.

If the SUBSTR function is specified and string-expression is not a LOB, the length
attribute of the result depends on length, start, and the attributes of
string-expression.
v If length is explicitly specified by an integer constant, the length attribute of the

result is length.
v If length is not explicitly specified, but string-expression is a fixed-length string

and start is an integer constant, the length attribute of the result is
LENGTH(string-expression) - start + 1.

In all other cases, the length attribute of the result is the same as the length
attribute of string-expression. (Remember that if the actual length of string-expression
is less than the value for start, the actual length of the substring is zero.)

A sourced function based on SUBSTR will always have a result that is a
varying-length string.

If any argument of the SUBSTR function can be null, the result can be null; if any
argument is null, the result is the null value.

The CCSID of the result is the same as that of string-expression.

Examples
v Assume the host variable NAME (VARCHAR(50)) has a value of 'KATIE

AUSTIN' and the host variable SURNAME_POS (INTEGER) has a value of 7.
SELECT SUBSTR(:NAME, :SURNAME_POS)

FROM SYSIBM.SYSDUMMY1

Returns the value 'AUSTIN'.
v Likewise,

SELECT SUBSTR(:NAME, :SURNAME_POS, 1)
FROM SYSIBM.SYSDUMMY1

Returns the value 'A'.

SUBSTRING or SUBSTR

Chapter 3. Built-In Functions 293

|
|

v Select all rows from the PROJECT table for which the project name
(PROJNAME) starts with the word 'OPERATION '.

SELECT *
FROM PROJECT
WHERE SUBSTR(PROJNAME,1,10) = ’OPERATION ’

The space at the end of the constant is necessary to preclude initial words such
as 'OPERATIONS'.

SUBSTRING or SUBSTR

294 DB2 UDB for iSeries SQL Reference V5R2

TAN

The TAN function returns the tangent of the argument, where the argument is an
angle expressed in radians. The TAN and ATAN functions are inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable TANGENT is a DECIMAL(2,1) host variable with a

value of 1.5.
SELECT TAN(:TANGENT)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 14.10.

�� TAN (numeric-expression) ��

TAN

Chapter 3. Built-In Functions 295

TANH

The TANH function returns the hyperbolic tangent of the argument, where the
argument is an angle expressed in radians. The TANH and ATANH functions are
inverse operations.

The argument is an expression that returns the value of any built-in numeric data
type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example
v Assume the host variable HTANGENT is a DECIMAL(2,1) host variable with a

value of 1.5.
SELECT TANH(:HTANGENT)

FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.90.

�� TANH (numeric-expression) ��

TANH

296 DB2 UDB for iSeries SQL Reference V5R2

TIME

The TIME function returns a time from a value.

Note: The CAST expression can also be used to return a time value. For more
information, see “CAST Specification” on page 137.

The argument must be an expression that returns a value of one of the following
built-in data types: a time, a timestamp, or a character string. If expression is a
character string, it must not be a CLOB and its value must be a valid
character-string representation of a date or timestamp. For the valid formats of
string representations of dates and timestamps, see “String Representations of
Datetime Values” on page 67.

The result of the function is a time. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a time:

The result is that time.
v If the argument is a timestamp:

The result is the time part of the timestamp.
v If the argument is a character string:

When a string representation of a time is SBCS data with a CCSID that is not the
same as the default CCSID for SBCS data, that value is converted to adhere to
the default CCSID for SBCS data before it is interpreted and converted to a time
value.
When a string representation of a time is mixed data with a CCSID that is not
the same as the default CCSID for mixed data, that value is converted to adhere
to the default CCSID for mixed data before it is interpreted and converted to a
time value.

Example
v Select all notes from the IN_TRAY sample table that were received at least one

hour later in the day (any day) than the current time.
SELECT *

FROM IN_TRAY
WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

�� TIME (expression) ��

TIME

Chapter 3. Built-In Functions 297

TIMESTAMP

The TIMESTAMP function returns a timestamp from its argument or arguments.

Note: The CAST expression can also be used to return a timestamp value. For
more information, see “CAST Specification” on page 137.

The rules for the arguments depend on whether the second argument is specified.
v If only one argument is specified:

The argument must be an expression that returns a value of one of the following
built-in data types: a timestamp or a character string.
If expression is a character string, it must not be a CLOB and its value must be
one of the following:
– A valid character-string representation of a date or timestamp. For the valid

formats of string representations of dates and timestamps, see “String
Representations of Datetime Values” on page 67.

– A character string with an actual length of 7 that represents a valid date in
the form yyyynnn, where yyyy are digits denoting a year, and nnn are digits
between 001 and 366 denoting a day of that year.

– A character string with an actual length of 14 that represents a valid date and
time in the form yyyyxxddhhmmss, where yyyy is year, xx is month, dd is
day, hh is hour, mm is minute, and ss is seconds.

v If both arguments are specified:
The first argument must be an expression that returns a value of one of the
following built-in data types: a date or a character string. The second argument
must be an expression that returns a value of one of the following built-in data
types: a time or a character string.
If the first expression is a character string, it must not be a CLOB and its value
must be a valid character-string representation of a date. If the second expression
is a character string, it must not be a CLOB and its value must be a valid
character-string representation of a time. For the valid formats of string
representations of dates and times, see “String Representations of Datetime
Values” on page 67.

The result of the function is a timestamp. If either argument can be null, the result
can be null; if either argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:
v If both arguments are specified:

The result is a timestamp with the date specified by the first argument and the
time specified by the second argument. The microsecond part of the timestamp
is zero.

v If only one argument is specified and it is a timestamp:
The result is that timestamp.

v If only one argument is specified and it is a character string:
The result is the timestamp represented by that character string. If the argument
is a character string of length 14, the timestamp has a microsecond part of zero.

�� TIMESTAMP (expression)
, expression

��

TIMESTAMP

298 DB2 UDB for iSeries SQL Reference V5R2

When a string representation of a timestamp is SBCS data with a CCSID that is not
the same as the default CCSID for SBCS data, that value is converted to adhere to
the default CCSID for SBCS data before it is interpreted and converted to a
timestamp value.

When a string representation of a timestamp is mixed data with a CCSID that is
not the same as the default CCSID for mixed data, that value is converted to
adhere to the default CCSID for mixed data before it is interpreted and converted
to a timestamp value.

Example
v Assume the following date and time values:

SELECT TIMESTAMP(DATE(’1988-12-25’), TIME(’17.12.30’))
FROM SYSIBM.SYSDUMMY1

Returns the value ’1988-12-25-17.12.30.000000’.

TIMESTAMP

Chapter 3. Built-In Functions 299

|

|
|

|

TIMESTAMPDIFF

The TIMESTAMPDIFF function returns an estimated number of intervals of the
type defined by the first argument, based on the difference between two
timestamps.

The first argument must be a built-in data type of either INTEGER or SMALLINT.
Valid values of interval (the first argument) are:

1 Fractions of a second

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

The second argument is the result of subtracting two timestamps types and
converting the result to CHAR(22).

The result of the function is an integer. If either argument can be null, the result
can be null; if either argument is null, the result is the null value.

The following assumptions may be used in estimating the difference:
v there are 365 days in a year
v there are 30 days in a month
v there are 24 hours in a day
v there are 60 minutes in an hour
v there are 60 seconds in a minute

These assumptions are used when converting the information in the second
argument, which is a timestamp duration, to the interval type specified in the first
argument. The returned estimate may vary by a number of days. For example, if
the number of days (interval 16) is requested for a difference in timestamps for
’1997-03-01-00.00.00’ and ’1997-02-01-00.00.00’, the result is 30. This is because the
difference between the timestamps is 1 month so the assumption of 30 days in a
month applies.

Example
v Estimate the age of employees in months.

SELECT
TIMESTAMPDIFF(64,
CAST(CURRENT_TIMESTAMP-CAST(BIRTHDATE AS TIMESTAMP) AS CHAR(22)))

AS AGE_IN_MONTHS
FROM EMPLOYEE

�� TIMESTAMPDIFF (numeric-expression , character-expression) ��

TIMESTAMPDIFF

300 DB2 UDB for iSeries SQL Reference V5R2

TRANSLATE

The TRANSLATE function returns a value in which one or more characters in
string-expression may have been converted into other characters.

string-expression
An expression that specifies the string to be converted string-expression must be
a character string or a UCS-2 graphic string.

to-string
A string that specifies the characters to which certain characters in
string-expression are to be converted. This string is sometimes called the output
translation table. The string must be a character string constant. A character
string argument must have an actual length that is not greater than 256.

If the length attribute of the to-string is less than the length attribute of the
from-string, then the to-string is padded to the longer length using either the
pad or a blank. If the length attribute of the to-string is greater than the length
attribute of the from-string, the extra characters in to-string are ignored without
warning.

from-string
A string that specifies the characters that if found in string-expression are to be
converted. This string is sometimes called the input translation table. When a
character in from-string is found, the character in string-expression is converted
to the character in to-string that is in the corresponding position of the
character in from-string.

The string must be a character string constant. A character string argument
must not have an actual length that is not greater than 256.

If there are duplicate characters in from-string, the first one scanning from the
left is used and no warning is issued. The default value for from-string is a
string starting with the character X’00’ and ending with the character X’FF’
(decimal 255).

pad
A string that specifies the character with which to pad to-string if its length is
less than from-string. The string must be a character string constant with a
length of 1. The default is an SBCS blank.

If the first argument is a UCS-2 graphic string, no other arguments may be
specified.

If only the first argument is specified, the SBCS characters of the argument are
translated to uppercase, based on the CCSID of the argument. Only SBCS
characters are converted. The characters a-z are converted to A-Z, and characters
with diacritical marks are converted to their uppercase equivalent, if any. If the
first argument is UCS-2 graphic, the alphabetic UCS-2 characters are translated to
uppercase. Refer to the UCS-2 level 1 mapping tables section of the Globalization
topic in the iSeries Information Center for a description of the monocasing tables
that are used for this translation.

�� TRANSLATE (string-expression)
, to-string

, from-string
, pad

��

TRANSLATE

Chapter 3. Built-In Functions 301

../nls/rbagsucslevel1maptble.htm
../nls/rbagsglobalmain.htm

If more than one argument is specified, the result string is built character by
character from string-expression, translating characters in from-string to the
corresponding character in to-string. For each character in string-expression, the
same character is searched for in from-string. If the character is found to be the nth
character in from-string, the resulting string will contain the nth character from
to-string. If to-string is less than n characters long, the resulting string will contain
the pad character. If the character is not found in from-string, it is moved to the
result string untranslated.

Translation is done on a byte basis and, if used improperly, may result in an
invalid mixed string. The SRTSEQ attribute does not apply to the TRANSLATE
function.

The result of the function has the same data type, length attribute, actual length,
and CCSID as the argument. If the first argument can be null, the result can be
null. If the argument is null, the result is the null value.

Examples
v Monocase the string ’abcdef’.

SELECT TRANSLATE(’abcdef’)
FROM SYSIBM.SYSDUMMY1

Returns the value ’ABCDEF’.
v Monocase the mixed character string.

SELECT TRANSLATE()

FROM SYSIBM.SYSDUMMY1

Returns the value
v Given that the host variable SITE is a varying-length character string with a

value of ’Pivabiska Lake Place’.
SELECT TRANSLATE(:SITE, ’$’, ’L’)

FROM SYSIBM.SYSDUMMY1

Returns the value ’Pivabiska $ake Place’.
SELECT TRANSLATE(:SITE, ’$$’, ’Ll’)

FROM SYSIBM.SYSDUMMY1

Returns the value ’Pivabiska $ake P$ace’.
SELECT TRANSLATE(:SITE, ’pLA’, ’Place’, ’.’)

FROM SYSIBM.SYSDUMMY1

Returns the value ’pivAbiskA LAk. pLA..’.

TRANSLATE

302 DB2 UDB for iSeries SQL Reference V5R2

TRIM

The TRIM function removes blanks or another specified character from the end or
beginning of a string expression.

The string-expression must be a string expression.

The first argument, if specified, indicates whether characters are removed from the
end or beginning of the string. If the first argument is not specified, then the
characters are removed from both the end and the beginning of the string.

The second argument, if specified, is a single-character constant that indicates the
binary, SBCS, or DBCS character that is to be removed. If string-expression is a
binary string, the second argument must be a binary string constant. If
string-expression is a DBCS graphic or DBCS-only string, the second argument must
be a graphic constant consisting of a single DBCS character. If the second argument
is not specified then:
v If string-expression is a binary string, then the default strip character is a

hexadecimal zero (X’00’).
v If string-expression is a DBCS graphic string, then the default strip character is a

DBCS blank.
v If string-expression is a UCS-2 graphic string, then the default strip character is a

UCS-2 blank.
v Otherwise, the default strip character is an SBCS blank.

The data type of the result depends on the data type of string-expression:

Data type of expression Data type of the Result

CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC VARGRAPHIC

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

The length attribute of the result is the same as the length attribute of
string-expression. The actual length of the result is the length of the expression
minus the number of bytes removed. If all characters are removed, the result is an
empty string.

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

�� TRIM (string-expression)
BOTH

FROM
B strip-character
LEADING
L
TRAILING
T

��

TRIM

Chapter 3. Built-In Functions 303

The CCSID of the result is the same as that of the string.

The SRTSEQ attribute does not apply to the TRIM function.

Examples
v Assume the host variable HELLO of type CHAR(9) has a value of ’ Hello’.

SELECT TRIM(:HELLO), TRIM(TRAILING FROM :HELLO)
FROM SYSIBM.SYSDUMMY1

Results in ’Hello’ and ’ Hello’ respectively.
v Assume the host variable BALANCE of type CHAR(9) has a value of

’000345.50’.
SELECT TRIM(L ’0’ FROM :BALANCE)

FROM SYSIBM.SYSDUMMY1

Results in: ’345.50’
v Assume the string to be stripped contains mixed data.

SELECT TRIM(BOTH FROM
)

FROM SYSIBM.SYSDUMMY1

Results in:

TRIM

304 DB2 UDB for iSeries SQL Reference V5R2

TRUNCATE or TRUNC

The TRUNCATE function returns numeric-expression–1 truncated to some number
of places to the right or left of the decimal point.

numeric-expression1
An expression that returns a value of any built-in numeric data type.

numeric-expression2
An expression that returns a small or large integer. The absolute value of
integer specifies the number of places to the right of the decimal point for the
result if numeric-expression–2 is not negative, or to left of the decimal point if
numeric-expression–2 is negative.

If numeric-expression–2 is not negative, numeric-expression–1 is truncated to the
numeric-expression–2 number of places to the right of the decimal point.

If numeric-expression–2 is negative, numeric-expression–1 is truncated to the
absolute value of (numeric-expression–2+1) number of places to the left of the
decimal point.

If the absolute value of numeric-expression–2 is larger than the number of digits
to the left of the decimal point, the result is 0. For example,
TRUNCATE(748.58,-4) = 0.

The data type and length attribute of the result are the same as the data type and
length attribute of the first argument.

If either argument can be null, the result can be null. If either argument is null, the
result is the null value.

Examples
v Calculate the average monthly salary for the highest paid employee. Truncate

the result to two places to the right of the decimal point.
SELECT TRUNCATE(MAX(SALARY/12, 2)

FROM EMPLOYEE

Because the highest paid employee in the sample employee table earns $52750.00
per year, the example returns the value 4395.83.

v Calculate the number 873.726 truncated to 2, 1, 0, -1, -2, and -3 decimal places
respectively.

SELECT TRUNCATE(873.726, 2),
TRUNCATE(873.726, 1),
TRUNCATE(873.726, 0),
TRUNCATE(873.726, -1),
TRUNCATE(873.726, -2),
TRUNCATE(873.726, -3)

FROM SYSIBM.SYSDUMMY1

Returns the following values respectively:
0873.720 0873.700 0873.000 0870.000 0800.000 0000.000

v Calculate both positive and negative numbers.

�� TRUNCATE (numeric-expression-1 , numeric-expression-2)
TRUNC

��

TRUNCATE

Chapter 3. Built-In Functions 305

SELECT TRUNCATE(3.5, 0),
TRUNCATE(3.1, 0),
TRUNCATE(-3.1, 0),
TRUNCATE(-3.5, 0)

FROM SYSIBM.SYSDUMMY1

Returns the following values respectively:
3.0 3.0 -3.0 -3.0

TRUNCATE

306 DB2 UDB for iSeries SQL Reference V5R2

UCASE

The UPPER function returns a string in which all the characters have been
converted to uppercase characters, based on the CCSID of the argument.

The UCASE function is identical to the UPPER function. For more information, see
“UPPER” on page 308.

�� UCASE (string-expression) ��

UCASE

Chapter 3. Built-In Functions 307

|

|
|

|
|

|
|

UPPER

The UPPER function returns a string in which all the characters have been
converted to uppercase characters, based on the CCSID of the argument. Only
SBCS and UCS-2 graphic characters are converted. The characters a-z are converted
to A-Z, and characters with diacritical marks are converted to their uppercase
equivalent, if any. Refer to the UCS-2 level 1 mapping tables section of the
Globalization topic in the iSeries Information Center for a description of the
monocasing tables that are used for this translation.

string-expression
An expression that specifies the string to be converted. String-expression must
be a character or UCS-2 graphic string.

The result of the function has the same data type, length attribute, actual length,
and CCSID as the argument. If the argument can be null, the result can be null; if
the argument is null, the result is the null value.

UCASE is a synonym for UPPER.

Examples
v Uppercase the string ’abcdef’ using the UPPER scalar function.

SELECT UPPER(’abcdef’)
FROM SYSIBM.SYSDUMMY1

Returns the value ’ABCDEF’.
v Uppercase the mixed character string using the UPPER scalar function.

SELECT UPPER()
FROM SYSIBM.SYSDUMMY1

Returns the value:

�� UPPER (string-expression) ��

UPPER

308 DB2 UDB for iSeries SQL Reference V5R2

../nls/rbagsucslevel1maptble.htm
../nls/rbagsglobalmain.htm

VALUE

The VALUE function returns the value of the first non-null expression.

The VALUE function is identical to the COALESCE scalar function. For more
information, see “COALESCE” on page 193.

�� VALUE (expression , expression) ��

VALUE

Chapter 3. Built-In Functions 309

VARCHAR

The VARCHAR function returns a character-string representation of:
v An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
v A decimal number if the first argument is a packed or zoned decimal number
v A double-precision floating-point number if the first argument is a DOUBLE or

REAL
v A character string if the first argument is any type of character string
v A graphic string if the first argument is a UCS-2 graphic string

Note: The CAST expression can also be used to return a varying-length
character-string value. For more information, see “CAST Specification” on
page 137.

The result of the function is a varying-length string. If the first argument can be
null, the result can be null; if the first argument is null, the result is the null value.

Character to Varchar

character-expression
An expression that returns a value that is a built-in CHAR, VARCHAR, or
CLOB data type.

Character to Varchar

�� VARCHAR (character-expression
, length

DEFAULT , integer

) ��

Graphic to Varchar

�� VARCHAR (graphic-expression
, length

DEFAULT , integer

) ��

Integer to Varchar

�� VARCHAR (integer-expression) ��

Decimal to Varchar

�� VARCHAR (decimal-expression)
, decimal-character

��

Floating-point to Varchar

�� VARCHAR (floating-point-expression)
, decimal-character

��

VARCHAR

310 DB2 UDB for iSeries SQL Reference V5R2

length
Specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 32740 (32739 if nullable). If the first
argument is mixed data, the second argument cannot be less than 4.

If the second argument is not specified or DEFAULT is specified:
v If the character-expression is an empty string constant, the length attribute of

the result is 1.
v Otherwise, the length attribute of the result is the same as the length

attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of character-expression. If the length of the
character-expression is greater than the length attribute of the result, truncation
is performed. A warning (SQLSTATE 01004) is returned unless the truncated
characters were all blanks.

integer
Specifies the CCSID of the result. It must be a valid SBCS CCSID, mixed data
CCSID, or 65535 (bit data). If the third argument is an SBCS CCSID, then the
result is SBCS data. If the third argument is a mixed CCSID, then the result is
mixed data. If the third argument is 65535, then the result is bit data. If the
third argument is a SBCS CCSID, then the first argument cannot be a
DBCS-either or DBCS-only string.

If the third argument is not specified then:
v If the first argument is SBCS data, then the result is SBCS data. The CCSID

of the result is the same as the CCSID of the first argument.
v If the first argument is mixed data (DBCS-open, DBCS-only, or DBCS-either),

then the result is mixed data. The CCSID of the result is the same as the
CCSID of the first argument.

Graphic to Varchar

graphic-expression
An expression that returns a value that is a GRAPHIC, VARGRAPHIC, and
DBCLOB data type. It must not be DBCS-graphic data.

length
Specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 32740 (32739 if nullable). If the first
argument contains DBCS data, the second argument cannot be less than 4.

If the second argument is not specified or DEFAULT is specified, the length
attribute of the result is determined as follows (where n is the length attribute
of the first argument):
v If the graphic-expression is the empty graphic string constant, the length

attribute of the result is 1.
v If the result is SBCS data, the result length is n.
v If the result is mixed data, the result length is (2.5*(n-1)) + 4.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of graphic-expression. If the length of the
character-expression is greater than the length attribute of the result, truncation
is performed. A warning (SQLSTATE 01004) is returned unless the truncated
characters were all blanks.

VARCHAR

Chapter 3. Built-In Functions 311

|
|
|
|

|
|
|

|
|

|

|

|
|
|
|
|

integer
Specifies the CCSID of the result. It must be a valid SBCS CCSID or mixed
data CCSID. If the third argument is an SBCS CCSID, then the result is SBCS
data. If the third argument is a mixed CCSID, then the result is mixed data.
The third argument cannot be 65535.

If the third argument is not specified, the CCSID of the result is the default
CCSID at the current server. If the default CCSID is mixed data, then the result
is mixed data. If the default CCSID is SBCS data, then the result is SBCS data.

Integer to Varchar

integer-expression
An expression that returns a value that is an integer data type (either
SMALLINT, INTEGER, or BIGINT).

The result is a varying-length character string of the argument in the form of an
SQL integer constant. The result consists of n characters that are the significant
digits that represent the value of the argument with a preceding minus sign if the
argument is negative. It is left justified.
v If the argument is a small integer, the length attribute of the result is 6.
v If the argument is a large integer, the length attribute of the result is 11.
v If the argument is a big integer, the length attribute of the result is 20.

The actual length of the result is the smallest number of characters that can be
used to represent the value of the argument. Leading zeroes are not included. If
the argument is negative, the first character of the result is a minus sign.
Otherwise, the first character is a digit.

The CCSID of the result is the default SBCS CCSID at the current server.

Decimal to Varchar

decimal-expression
An expression that returns a value that is a packed or zoned decimal data type
(either DECIMAL or NUMERIC). If a different precision and scale is desired,
the DECIMAL scalar function can be used to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see “Decimal Point” on page 100.

The result is a varying-length character string representation of the argument. The
result includes a decimal character and up to p digits, where p is the precision of
the decimal-expression with a preceding minus sign if the argument is negative.
Leading zeros are not returned. Trailing zeros are returned.

The length attribute of the result is 2+p where p is the precision of the
decimal-expression. The actual length of the result is the smallest number of
characters that can be used to represent the result, except that trailing characters
are included. Leading zeros are not included. If the argument is negative, the result
begins with a minus sign. Otherwise, the result begins with a digit.

The CCSID of the result is the default SBCS CCSID at the current server.

VARCHAR

312 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

Floating-point to Varchar

floating-point expression
An expression that returns a value that is a floating-point data type (DOUBLE
or REAL).

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see “Decimal Point” on page 100.

The result is a varying-length character string representation of the argument in
the form of a floating-point constant.

The length attribute of the result is 24. The actual length of the result is the
smallest number of characters that can represent the value of the argument such
that the mantissa consists of a single digit other than zero followed by the
decimal-character and a sequence of digits. If the argument is negative, the first
character of the result is a minus sign; otherwise, the first character is a digit. If the
argument is zero, the result is 0E0.

The CCSID of the result is the default SBCS CCSID at the current server.

Example
v Make EMPNO varying-length with a length of 10.

SELECT VARCHAR(EMPNO,10)
INTO :VARHV
FROM EMPLOYEE

VARCHAR

Chapter 3. Built-In Functions 313

|
|
|
|
|

VARGRAPHIC

The VARGRAPHIC function returns a graphic string representation of a string
expression.

Note: The CAST expression can also be used to return a varying-length
graphic-string value. For more information, see “CAST Specification” on
page 137.

The result of the function is a varying-length graphic string (VARGRAPHIC).

If the expression can be null, the result can be null. If the expression is null, the
result is the null value. If the expression is an empty string or the EBCDIC string
X’0E0F’, the result is an empty string.

Character to Graphic

character-expression
Specifies a character string expression. It cannot be a CHAR or VARCHAR bit
data.

length
Specifies the length attribute of the result and must be an integer constant
between 1 and 16370 if the first argument is not nullable or between 1 and
16369 if the first argument is nullable.

If the second argument is not specified, or if DEFAULT is specified, the length
attribute of the result is the same as the length attribute of the first argument,
except if the expression is an empty string or the EBCDIC string X’0E0F’, the
length attribute of the result is 1.

The actual length of the result depends on the number of characters in the
argument. Each character of the argument determines a character of the result.
If the length attribute of the resulting varying-length string is less than the
actual length of the first argument, truncation is performed and no warning is
returned.

integer
Specifies the CCSID of the result. It must be a DBCS or UCS-2 CCSID. The
CCSID cannot be 65535. If the CCSID represents UCS-2 graphic data, each
character of the argument determines a character of the result. The nth
character of the result is the UCS-2 equivalent of the nth character of the
argument.

Character to Graphic

�� VARGRAPHIC (character-expression
, length

DEFAULT , integer

) ��

Graphic to Graphic

�� VARGRAPHIC (graphic-expression
, length

DEFAULT , integer

) ��

VARGRAPHIC

314 DB2 UDB for iSeries SQL Reference V5R2

If integer is not specified then the CCSID of the result is determined by a
mixed CCSID. Let M denote that mixed CCSID.

In the following rules, S denotes one of the following:
v If the string expression is a host variable containing data in a foreign

encoding scheme, S is the result of the expression after converting the data
to a CCSID in a native encoding scheme. (See “Character Conversion” on
page 31 for more information.)

v If the string expression is data in a native encoding scheme, S is that string
expression.

M is determined as follows:
v If the CCSID of S is a mixed CCSID, M is that CCSID.
v If the CCSID of S is an SBCS CCSID:

– If the CCSID of S has an associated mixed CCSID, M is that CCSID.
– Otherwise the operation is not allowed.

The following table summarizes the result CCSID based on M.

M Result CCSID Description DBCS Substitution Character

930 300 Japanese EBCDIC X’FEFE’

933 834 Korean EBCDIC X’FEFE’

935 837 S-Chinese EBCDIC X’FEFE’

937 835 T-Chinese EBCDIC X’FEFE’

939 300 Japanese EBCDIC X’FEFE’

5026 4396 Japanese EBCDIC X’FEFE’

5035 4396 Japanese EBCDIC X’FEFE’

The equivalence of SBCS and DBCS characters depends on M. Regardless of
the CCSID, every double-byte code point in the argument is considered a
DBCS character, and every single-byte code point in the argument is
considered an SBCS character with the exception of the EBCDIC mixed data
shift codes X’0E’ and X’0F’.
v If the nth character of the argument is a DBCS character, the nth character of

the result is that DBCS character.
v If the nth character of the argument is an SBCS character that has an

equivalent DBCS character, the nth character of the result is that equivalent
DBCS character.

v If the nth character of the argument is an SBCS character that does not have
an equivalent DBCS character, the nth character of the result is the DBCS
substitution character.

Graphic to Graphic

graphic-expression
Specifies a graphic string expression.

length
Specifies the length attribute of the result and must be an integer constant
between 1 and 16370 if the first argument is not nullable or between 1 and
16369 if the first argument is nullable.

VARGRAPHIC

Chapter 3. Built-In Functions 315

If the second argument is not specified, or if DEFAULT is specified, the length
attribute of the result is the same as the length attribute of the first argument,
except if the expression is an empty string, the length attribute of the result is
1.

The actual length of the result depends on the number of characters in the
argument. Each character of the argument determines a character of the result.
If the length attribute of the resulting varying-length string is less than the
actual length of the first argument, truncation is performed and no warning is
returned.

integer
Specifies the CCSID of the result. It must be a DBCS or UCS-2 CCSID. The
CCSID cannot be 65535.

If integer is not specified then the CCSID of the result is the CCSID of the first
argument.

Example
v Using the EMPLOYEE table, set the host variable VAR_DESC

(VARGRAPHIC(24)) to the VARGRAPHIC equivalent of the first name
(FIRSTNME) for employee number (EMPNO) ’000050’.

SELECT VARGRAPHIC(FIRSTNME)
INTO :VAR_DESC
FROM EMPLOYEE
WHERE EMPNO = ’000050’

VARGRAPHIC

316 DB2 UDB for iSeries SQL Reference V5R2

WEEK

The WEEK function returns an integer between 1 and 54 that represents the week
of the year. The week starts with Sunday, and January 1 is always in the first week.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see “String Representations of
Datetime Values” on page 67.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example
v Using the PROJECT table, set the host variable WEEK (INTEGER) to the week

that project (‘PL2100’) ended.
SELECT WEEK(PRENDATE)

INTO :WEEK
FROM PROJECT
WHERE PROJNO = ’PL2100’

Results in WEEK being set to 38.
v Assume that table X has a DATE column called DATE_1 with various dates from

the list below.
SELECT DATE_1, WEEK(DATE_1)

FROM X

Results in the following list shows what is returned by the WEEK function for
various dates.

1997-12-28 53
1997-12-31 53
1998-01-01 1
1999-01-01 1
1999-01-04 2
1999-12-31 53
2000-01-01 1
2000-01-03 2

�� WEEK (expression) ��

WEEK

Chapter 3. Built-In Functions 317

WEEK_ISO

The WEEK_ISO function returns an integer between 1 and 53 that represents the
week of the year. The week starts with Monday. Week 1 is the first week of the
year to contain a Thursday, which is equivalent to the first week containing
January 4. Thus, it is possible to have up to 3 days at the beginning of the year
appear as the last week of the previous year or to have up to 3 days at the end of
a year appear as the first week of the next year.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see “String Representations of
Datetime Values” on page 67.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples
v Using the PROJECT table, set the host variable WEEK (INTEGER) to the week

that project (‘AD2100’) ended.
SELECT WEEK_ISO(PRENDATE)
INTO :WEEK
FROM PROJECT
WHERE PROJNO = ’AD3100’

Results in WEEK being set to 5.
v Assume that table X has a DATE column called DATE_1 with various dates from

the list below.
SELECT DATE_1, WEEK_ISO(DATE_1)

FROM X

Results in the following:
1997-12-28 52
1997-12-31 1
1998-01-01 1
1999-01-01 53
1999-01-04 1
1999-12-31 52
2000-01-01 52
2000-01-03 1

�� WEEK_ISO (expression) ��

WEEK_ISO

318 DB2 UDB for iSeries SQL Reference V5R2

XOR

The XOR function returns a string that is the logical XOR of the argument strings.
This function takes the first argument string, does an XOR comparison with the
next string, and then continues to do XOR comparisons for each successive
argument using the previous result. If an argument is encountered that is shorter
than the previous result, it is padded with blanks.

The arguments must be character strings but cannot be LOBs. The arguments
cannot be mixed data character strings or graphic strings.

The arguments are converted, if necessary, to the attributes of the result. The
attributes of the result are determined as follows:
v If all the arguments are fixed-length strings, the result is a fixed-length string of

length n, where n is the length of the longest argument.
v If any argument is a varying-length string, the result is a varying-length string

with length attribute n, where n is the length attribute of the argument with
greatest length attribute. The actual length of the result is m, where m is the
actual length of the longest argument.

If an argument can be null, the result can be null; if an argument is null, the result
is the null value.

The CCSID of the result is 65535.

Example
v Assume the host variable L1 is a CHARACTER(2) host variable with a value of

X’E1E1’, host variable L2 is a CHARACTER(3) host variable with a value of
X’F0F000’, and host variable L3 is a CHARACTER(4) host variable with a value
of X’0000000F’.

SELECT XOR(:L1,:L2,:L3)
FROM SYSIBM.SYSDUMMY1

Returns the value X’1111404F’. In this case, the shorter results are padded with
blanks (X’40’), so the logical XOR result differs from the result in the following
example.

SELECT XOR(:L3,:L2,:L1)
FROM SYSIBM.SYSDUMMY1

Returns the value X’1111400F’.

�� XOR (expression , expression) ��

XOR

Chapter 3. Built-In Functions 319

YEAR

The YEAR function returns the year part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a numeric data type.
v If expression is a character string, it must not be a CLOB and its value must be a

valid character-string representation of a date or timestamp. For the valid
formats of string representations of dates and timestamps, see “String
Representations of Datetime Values” on page 67.

v If expression is a number, it must be a date duration or timestamp duration. For
the valid formats of datetime durations, see “Datetime Operands and Durations”
on page 130.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
v If the argument is a date or a timestamp or a valid character-string

representation of a date or timestamp:
The result is the year part of the value, which is an integer between 1 and 9999.

v If the argument is a date duration or timestamp duration:
The result is the year part of the value, which is an integer between −9999 and
9999. A nonzero result has the same sign as the argument.

Examples
v Select all the projects in the PROJECT table that are scheduled to start

(PRSTDATE) and end (PRENDATE) in the same calendar year.
SELECT *

FROM PROJECT
WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

v Select all the projects in the PROJECT table that are scheduled to take less than
one year to complete.

SELECT *
FROM PROJECT
WHERE YEAR(PRENDATE - PRSTDATE) < 1

�� YEAR (expression) ��

YEAR

320 DB2 UDB for iSeries SQL Reference V5R2

ZONED

The ZONED function returns a zoned decimal representation of:
v A number
v A character string representation of an integer
v A character string representation of a decimal number
v A character string representation of a floating-point number

Note: The CAST expression can also be used to return a zoned decimal value. For
more information, see “CAST Specification” on page 137.

The result of the function is a zoned decimal number with precision of p and scale
of s, where p and s are the second and third arguments. If the first argument can
be null, the result can be null; if the first argument is null, the result is the null
value.

Numeric to Zoned Decimal

numeric-expression
An expression that returns a value of any built-in numeric data type.

precision
An integer constant with a value greater than or equal to 1 and less than or
equal to 31.

The default for precision depends on the data type of the numeric-expression:
v 15 for floating point, decimal, numeric, or nonzero scale binary
v 19 for big integer
v 11 for large integer
v 5 for small integer

scale
An integer constant that is greater than or equal to 0 and less than or equal to
precision. If not specified, the default is 0.

The result is the same number that would occur if the first argument were
assigned to a decimal column or variable with a precision of p and a scale of s. An
error occurs if the number of significant decimal digits required to represent the
whole part of the number is greater than p-s.

Numeric to Zoned Decimal

�� ZONED (numeric-expression)
, precision-integer

, scale-integer

��

Character to Zoned Decimal

�� ZONED (character-expression)
, precision

, scale
, decimal-character

��

ZONED

Chapter 3. Built-In Functions 321

Character to Zoned Decimal

character-expression
An expression that must contain a character-string representation of a number.
Leading and trailing blanks are eliminated and the resulting string must
conform to the rules for forming an integer or decimal constant. The
expression must not be a CLOB.

precision
An integer constant that is greater than or equal to 1 and less than or equal to
31. If not specified, the default is 15.

scale
An integer constant that is greater than or equal to 0 and less than or equal to
precision. If not specified, the default is 0.

decimal-character
Specifies the single-byte character constant that was used to delimit the
decimal digits in character-expression from the whole part of the number. The
character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal separator character. For more
information, see “Decimal Point” on page 100.

The result is the same number that would result from CAST(character-expression AS
NUMERIC(p,s)). Digits are truncated from the end if the number of digits to the
right of the decimal-character is greater than the scale s. An error occurs if the
number of significant digits to the left of the decimal-character (the whole part of the
number) in character-expression is greater than p-s. The default decimal separator
character is not valid in the substring if the decimal-character argument is specified.

Examples
v Assume the host variable Z1 is a decimal host variable with a value of 1.123.

SELECT ZONED(:Z1,15,14)
FROM SYSIBM.SYSDUMMY1

Returns the value 1.12300000000000.
v Assume the host variable Z1 is a decimal host variable with a value of 1123.

SELECT ZONED(:Z1,11,2)
FROM SYSIBM.SYSDUMMY1

Returns the value 1123.00.
v Likewise,

SELECT ZONED(:Z1,4)
FROM SYSIBM.SYSDUMMY1

Returns the value 1123.

ZONED

322 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|

Chapter 4. Queries

An SQL query specifies a result table or an intermediate result table.

A query is a component of certain SQL statements. There are three forms of a
query:
v The subselect

v The fullselect

v The select-statement

Another form of select is described under “SELECT INTO” on page 709.

See also, “Authorization”.

Authorization
For any form of a query, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each table or view identified in the statement,

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

The authorization ID of the statement has the SELECT privilege on a table when:
v It is the owner of the table,
v It has been granted the SELECT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *READ on the table

The authorization ID of the statement has the SELECT privilege on a view when:
v It is the owner of the view,
v It has been granted the SELECT privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *READ on the view

and the system authority *READ on all tables and views on which this view is
directly or indirectly dependent. That is, all tables and views referenced in the
view definition, and if a view is referenced, all tables and views referenced in its
definition, and so forth.

If an expression includes a function, the authorization ID of the statement must
include at least one of the following for each user-defined function:
v The EXECUTE privilege on the function
v Administrative authority

The authorization ID of the statement has the EXECUTE privilege on a function
when:
v It is the owner of the function,
v It has been granted the EXECUTE privilege on the function, or
v It has been granted the system authorities of *OBJOPR and *EXECUTE on the

function.

© Copyright IBM Corp. 1998, 2002 323

rbafzmstmark.htm
rbafzmstintsel.htm

subselect

�� select-clause from-clause
where-clause group-by-clause

�

�
having-clause

��

The subselect is a component of the fullselect, the CREATE VIEW statement, and
the INSERT statement. It is also a component of certain predicates, which in turn,
are components of a subselect.

A scalar-subselect is a subselect, enclosed in parentheses, that returns a single result
row and a single result column. If the result of the subselect is no rows, then the
null value is returned. An error is returned if there is more than one row in the
result.

A subselect specifies a result table derived from the tables or views identified in
the FROM clause. The derivation can be described as a sequence of operations in
which the result of each operation is input for the next. (This is only a way of
describing the subselect. The method used to perform the derivation may be quite
different from this description.)

The sequence of the (hypothetical) operations is:
1. FROM clause
2. WHERE clause
3. GROUP BY clause
4. HAVING clause
5. SELECT clause

select-clause

The SELECT clause specifies the columns of the final result table. The column
values are produced by the application of the select list to R. The select list is the
names or expressions specified in the SELECT clause, and R is the result of the
previous operation of the subselect. For example, if the only clauses specified are
SELECT, FROM, and WHERE, R is the result of that WHERE clause.

�� SELECT
ALL

DISTINCT

*
,

expression
AS

column-name
table-name.*
view-name.*
correlation-name.*

��

subselect

324 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

ALL
Selects all rows of the final result table and does not eliminate duplicates. This
is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.

Two rows are duplicates of one another only if each value in the first row is
equal to the corresponding value in the second row. (For determining duplicate
rows, two null values are considered equal.) Sort sequence is also used for
determining distinct values.

DISTINCT is not allowed if the select list contains a LOB or DATALINK
column.

Select List Notation
* Represents a list of names that identify the columns of table R. The first name

in the list identifies the first column of R, the second name identifies the
second column of R, and so on.

The list of names is established when the statement containing the SELECT
clause is prepared. Hence, * does not identify any columns that have been
added to a table after the statement has been prepared.

expression
Can be any expression of the type that is described in “Expressions” on
page 125. Each column-name in the expression must unambiguously identify a
column of R.

column-name or AS column-name
Names or renames the result column. The name must not be qualified and
does not have to be unique.

name.*
Represents a list of names that identify the columns of name. The name can be a
table name, view name, or correlation name, and must designate a table or
view named in the FROM clause. The first name in the list identifies the first
column of the table or view, the second name in the list identifies the second
column of the table or view, and so on.

The list of names is established when the statement containing the SELECT
clause is prepared. Hence, * does not identify any columns that have been
added to a table after the statement has been prepared.

Normally, when SQL statements are implicitly rebound, the list of names is not
re-established. Therefore, the number of columns returned by the statement does
not change. However, there are four cases where the list of names is established
again and the number of columns can change:
v When an SQL program or SQL package is saved and then restored on an iSeries

system that is not the same release as the system from which it was saved.
v When SQL naming is specified for an SQL program or package and the owner of

the program has changed since the SQL program or package was created.
v When an SQL statement is executed for the first time after the install of a more

recent release of OS/400.
v When the SELECT * occurs in the subselect of an INSERT statement or in a

subselect within a predicate, and a table or view referenced in the subselect has
been deleted and recreated with additional columns.

select-clause

Chapter 4. Queries 325

The number of columns in the result of SELECT is the same as the number of
expressions in the operational form of the select list (that is, the list established at
prepare time), and cannot exceed 8000. The result of a subquery must be a single
expression, unless the subquery is used in the EXISTS predicate.

Applying the Select List
Some of the results of applying the select list to R depend on whether or not
GROUP BY or HAVING is used. Those results are described separately.

If GROUP BY or HAVING is used:

v Each expression that contains a column-name in the select list must identify a
grouping expression or be specified within a column function:
– If the grouping expression is a column name, the select list may apply

additional operators to the column name. For example, if the grouping
expression is a column C1, the select list may contain C1+1.

– If the grouping expression is not a column name, the select list may not apply
additional operators to the expression. For example, if the grouping
expression is C1+1, the select list may contain C1+1, but not (C1+1)/8.

v The RRN, PARTITION, NODENAME, and NODENUMBER functions cannot be
specified in the select list.

v The select list is applied to each group of R, and the result contains as many
rows as there are groups in R. When the select list is applied to a group of R,
that group is the source of the arguments of the column functions in the select
list.

If neither GROUP BY nor HAVING is used:

v The select list must not include any column functions, or it must be entirely a
list of column functions.

v If the select list does not include column functions, the select list is applied to
each row of R and the result contains as many rows as there are rows in R.

v If the select list is a list of column functions, R is the source of the arguments of
the functions and the result of applying the select list is one row.

In either case the nth column of the result contains the values specified by
applying the nth expression in the operational form of the select list.

Null attributes of result columns
Result columns allow null values if they are derived from:
v Any column function but COUNT and COUNT_BIG
v Any column that allows null values
v A scalar function or expression with an operand that allows null values
v A host variable that has an indicator variable
v A result of a UNION if at least one of the corresponding items in the select list

is nullable
v An arithmetic expression
v A scalar subselect
v A user-defined scalar or table function

Names of result columns
v If the AS clause is specified, the name of the result column is the name specified

on the AS clause.

select-clause

326 DB2 UDB for iSeries SQL Reference V5R2

|

|

|

v If a column list is specified in the correlation clause, the name of the result
column is the corresponding name in the correlation column list.

v If neither an AS clause nor a column list in the correlation clause is specified
and the result column is derived only from a single column (without any
functions or operators), then the result column name is the unqualified name of
that column.

v All other result columns are unnamed.

Data types of result columns
Each column of the result of SELECT acquires a data type from the expression
from which it is derived.

When the expression
is:

The data type of the result column is:

The name of any
numeric column

The same as the data type of the column, with the same precision
and scale for decimal columns.

An integer constant INTEGER or BIGINT (if the value of the constant is outside the
range of INTEGER, but within the range of BIGINT).

A decimal or
floating-point constant

The same as the data type of the constant, with the same precision
and scale for decimal constants.

The name of any
numeric host variable

The same as the data type of the variable, with the same precision
and scale for decimal variables. If the data type of the variable is
not identical to an SQL data type (for example, DISPLAY SIGN
LEADING SEPARATE in COBOL), the result column is decimal.

An arithmetic
expression

The same as the data type of the result, with the same precision
and scale for decimal results as described under “Expressions” on
page 125.

Any function The data type of the result of the function. For a built-in function,
see Chapter 3 to determine the data type of the result. For a
user-defined function, the data type of the result is what was
defined in the CREATE FUNCTION statement for the function.

The name of any
string column

The same as the data type of the column, with the same length
attribute.

The name of any
string host variable

The same as the data type of the variable, with a length attribute
equal to the length of the variable. If the data type of the variable
is not identical to an SQL data type (for example, a
NUL-terminated string in C), the result column is a varying-length
string.

A character-string
constant of length n

VARCHAR(n)

A graphic-string
constant of length n

VARGRAPHIC(n)

The name of a
datetime column, or
an ILE RPG compiler
or ILE COBOL
compiler datetime
host variable

The same as the data type of the column or host variable.

The name of a
datalink column.

A datalink, with the same length attribute.

The name of a row ID
column or a row ID
host variable.

ROWID

select-clause

Chapter 4. Queries 327

|
|
|
|

|
|
|

|
|
|

|

When the expression
is:

The data type of the result column is:

A scalar-subselect The data type of the expression in the select list of the
scalar-subselect.

from-clause

The FROM clause specifies an intermediate result table.

If only one table-reference is specified, the intermediate result table is simply the
result of that table-reference. If more than one table-reference is specified in the FROM
clause, the intermediate result table consists of all possible combinations of the
rows of the specified table-references (the Cartesian product). Each row of the
result is a row from the first table-reference concatenated with a row from the
second table-reference, concatenated in turn with a row from the third, and so on.
The number of rows in the result is the product of the number of rows in all the
individual table-references. For a description of table-reference, see “table-reference”.

table-reference

�� FROM

,

table-reference ��

select-clause

328 DB2 UDB for iSeries SQL Reference V5R2

||
|

A table-reference specifies an intermediate result table.
v If a single table or view is identified, the intermediate result table is simply that

table or view.
v A fullselect in parentheses in a WITH clause is called a nested table expression.39 If

a nested table expression is specified, the result table is the result of that nested
table expression. The columns of the result do not need unique names, but a
column with a non-unique name cannot be referenced.

v If a function-name is specified, the intermediate result table is the set of rows
returned by the table function.

v If a joined-table is specified, the intermediate result table is the result of one or
more join operations. For more information, see “joined-table” on page 331.

The list of names in the FROM clause must conform to these rules:
v Each table-name and view-name must name an existing table or view at the

current server or the table-name of a common-table expression (see
“common-table-expression” on page 339) defined preceding the subselect
containing the table-reference.

39. A nested table expression is also called a derived table.

�� single-table
nested-table-expression
table-function
joined-table

��

single-table:

table-name
view-name correlation-clause

nested-table-expression:

(fullselect) correlation-clause
order-by-clause fetch-first-clause

table-function:

TABLE (function-name ()) correlation-clause
,

expression

correlation-clause:

AS
correlation-name

,

(column-name)

from-clause

Chapter 4. Queries 329

|
|
|
|

|
|

v The exposed names must be unique. An exposed name is a correlation-name, a
table-name that is not followed by a correlation-name, or a view-name that is
not followed by a correlation-name.

v Each function-name, together with the types of its arguments, must resolve to a
table function that exists at the current server. An algorithm called function
resolution, which is described on “Function resolution” on page 120, uses the
function name and the arguments to determine the exact function to use. Unless
given column names in the correlation-clause, the column names for a table
function are those specified on the RETURNS clause of the CREATE FUNCTION
statement. This is analogous to the column names of a table, which are defined
in the CREATE TABLE.

Each correlation-name is defined as a designator of the intermediate result table
specified by the immediately preceding table-reference. A correlation name must be
specified for a nested table expression and table functions.

The exposed names of all table references should be unique. An exposed name is:
v A correlation-name

v A table-name or view-name that is not followed by a correlation-name

Any qualified reference to a column for a table, view, nested table expression,
derived table, or table function must use the exposed name. If the same table name
or view name is specified twice, at least one specification should be followed by a
correlation-name. The correlation-name is used to qualify references to the columns of
the table or view. When a correlation-name is specified, column-names can also be
specified to give names to the columns of the table-name, view-name,
nested-table-expression or table-function. If a column list is specified, there must be a
name in the column list for each column in the table or view and for each result
column in the nested-table-expression or table-function. For more information, see
“Correlation Names” on page 105.

In general, nested-table-expressions and table-functions can be specified in any
from-clause. Columns from the nested table expressions and table functions can be
referenced in the select list and in the rest of the subselect using the correlation
name which must be specified. The scope of this correlation name is the same as
correlation names for other table or view names in the FROM clause. A nested
table expression can be used:
v In place of a view to avoid creating the view (when general use of the view is

not required)
v When the desired result table is based on host variables.

Correlated References in table-references: Correlated references can be used in
nested table expressions. The basic rule that applies is that the correlated reference
must be from a table-reference at a higher level in the hierarchy of subqueries. This
hierarchy includes the table-references that have already been resolved in the
left-to-right processing of the FROM clause.

A table function can contain one or more correlated references to other tables in the
same FROM clause if the referenced tables precede the reference in the left-to-right
order of the tables in the FROM clause. Otherwise, only references to higher levels
in the hierarchy of subqueries is allowed.

Example 1: The following example is valid:

from-clause

330 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

SELECT D.DEPTNO, D.DEPTNAME, EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPARTMENT D,

(SELECT AVG(E.SALARY) AS AVGSAL,COUNT (*) AS EMPCOUNT, E.WORKDEPT AS DEPT
FROM EMPLOYEE E
WHERE E.WORKDEPT =

(SELECT X.DEPTNO
FROM DEPARTMENT X
WHERE X.DEPTNO = E.WORKDEPT) GROUP BY E.WORKDEPT)

AS EMPINFO
WHERE D.DEPTNO = EMPINFO.DEPT

The following example is not valid because the reference to D.DEPTNO in the
WHERE clause of the nested-table-expression attempts to reference a table that is
outside the hierarchy of subqueries:
SELECT D.DEPTNO, D.DEPTNAME, EMPINFO.AVGSAL, EMPINFO.EMPCOUNT
FROM DEPARTMENT D,

(SELECT AVG(E.SALARY) AS AVGSAL,COUNT (*) AS EMPCOUNT
FROM EMPLOYEE E
WHERE E.WORKDEPT = D.DEPTNO) AS EMPINFO

Example 2: The following example of a table function is valid:
SELECT t.c1, z.c5
FROM t, TABLE(tf3 (t.c2)) AS z WHERE t.c3 = z.c4

The following example is not valid because the reference to t.c2 is for a table that
is to the right of the table function in the FROM clause:
SELECT t.c1, z.c5
FROM TABLE(tf6 (t.c2)) AS z, t
WHERE t.c3 = z.c4

joined-table

A joined-table specifies an intermediate result table that is the result of either an
inner, outer, cross, or exception join. The table is derived by applying one of the
join operators: INNER, LEFT OUTER, RIGHT OUTER, LEFT EXCEPTION, RIGHT
EXCEPTION or CROSS to its operands.

If a join-operator is not specified, INNER is implicit. The order in which multiple
joins are performed can affect the result. Joins can be nested within other joins. The
order of processing for joins is generally from left to right, but based on the
position of the required join-condition. Parentheses are recommended to make the
order of nested joins more readable. For example:

TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1
LEFT JOIN TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1

ON TB1.C1=TB3.C1

is the same as

INNER
table-reference JOIN table-reference ON join-condition

OUTER
LEFT
RIGHT
LEFT

EXCEPTION
RIGHT

CROSS JOIN table-reference
(joined-table)

from-clause

Chapter 4. Queries 331

|||

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|

|

(TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1)
LEFT JOIN (TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1)

ON TB1.C1=TB3.C1

An inner join combines each row of the left table with every row of the right table
keeping only the rows where the join-condition is true. Thus, the result table may
be missing rows of from either or both of the joined tables. Outer joins include the
rows produced by the inner join as well as the missing rows, depending on the
type of outer join. Exception joins include only the missing rows, depending on the
type of exception join as follows:
v Left outer. Includes the rows from the left table that were missing from the inner

join.
v Right outer. Includes the rows from the right table that were missing from the

inner join.
v Left exception. Includes only the rows from the left table that were missing from

the inner join.
v Right exception. Includes only the rows from the right table that were missing

from the inner join.

A joined table can be used in any context in which any form of the SELECT
statement is used. A view or a cursor is read-only if its SELECT statement includes
a joined table.

Join Condition: The join-condition is a search-condition that must conform to these
rules:
v It cannot contain a quantified subquery, IN predicate with a subselect, or EXISTS

subquery. It can contain basic predicate subqueries and scalar-subselects.
v Each column name must unambiguously identify a column in one of the tables

in the from-clause.
v Column functions cannot be used in the expression.

For any type of join, column references in an expression of the join-condition are
resolved using the rules for resolution of column name qualifiers specified in
“Column Names” on page 105 before any rules about which tables the columns
must belong to are applied.

Join Operations: A join-condition specifies pairings of T1 and T2, where T1 and T2
are the left and right operand tables of the JOIN operator of the join-condition. For
all possible combinations of rows of T1 and T2, a row of T1 is paired with a row of
T2 if the join-condition is true. When a row of T1 is joined with a row of T2, a row
in the result consists of the values of that row of T1 concatenated with the values
of that row of T2. The execution might involve the generation of a null row. The
null row of a table consists of a null value for each column of the table, regardless
of whether the columns allow null values.

INNER JOIN or JOIN
The result of T1 INNER JOIN T2 consists of their paired rows.

Using the INNER JOIN syntax with a join-condition will produce the same
result as specifying the join by listing two tables in the FROM clause separated
by commas and using the where-clause to provide the condition.

LEFT JOIN or LEFT OUTER JOIN
The result of T1 LEFT OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T1, the concatenation of that row with the null row of
T2. All columns derived from T2 allow null values.

from-clause

332 DB2 UDB for iSeries SQL Reference V5R2

|
|

RIGHT JOIN or RIGHT OUTER JOIN
The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows and, for
each unpaired row of T2, the concatenation of that row with the null row of
T1. All columns derived from T1 allow null values.

LEFT EXCEPTION JOIN and EXCEPTION JOIN
The result of T1 LEFT EXCEPTION JOIN T2 consists only of each unpaired
row of T1, the concatenation of that row with the null row of T2. All columns
derived from T2 allow null values.

RIGHT EXCEPTION JOIN
The result of T1 RIGHT EXCEPTION JOIN T2 consists only of each unpaired
row of T2, the concatenation of that row with the null row of T1. All columns
derived from T1 allow null values.

CROSS JOIN
The result of T1 CROSS JOIN T2 consists of each row of T1 paired with each
row of T2. CROSS JOIN is also known as cartesian product.

where-clause

The WHERE clause specifies an intermediate result table that consists of those
rows of R for which the search-condition is true. R is the result of the FROM clause
of the statement.

The search-condition must conform to the following rules:
v Each column-name must unambiguously identify a column of R or be a correlated

reference. A column-name is a correlated reference if it identifies a column of a
table, view, common table expression, or derived table identified in an outer
subselect.

v A column function must not be specified unless the WHERE clause is specified
in a subquery of a HAVING clause and the argument of the function is a
correlated reference to a group.

If a sort sequence other than *HEX is in effect when the statement that contains the
WHERE clause is executed and if the search-condition contains predicates that
have SBCS, mixed, or UCS-2 data, then the comparison for those predicates is done
using weighted values. The weighted values are derived by applying the sort
sequence to the operands of the predicate.

Any subquery in the search-condition is effectively executed for each row of R and
the results are used in the application of the search-condition to the given row of R.
A subquery is actually executed for each row of R only if it includes a correlated
reference to a column of R. In fact, a subquery with no correlated reference is
executed just once, whereas a subquery with a correlated reference may have to be
executed once for each row.

group-by-clause

�� WHERE search-condition ��

from-clause

Chapter 4. Queries 333

The GROUP BY clause specifies an intermediate result table that consists of a
grouping of the rows of R. R is the result of the previous clause of the subselect.

In its simplest form, a GROUP BY clause contains a grouping-expression. A
grouping-expression is an expression used in defining the grouping of R. Each
column-name included in a grouping-expression must unambiguously identify a
column of R. LOB and DataLink columns cannot be used in a grouping-expression.
The length attribute of each grouping-expression must not be more than 2000, or
1999 if the column is nullable. A grouping-expression cannot include a function that
is non-deterministic, or the RRN, PARTITION, NODENAME, or NODENUMBER
functions.

The result of the GROUP BY clause is a set of groups of rows. In each group of
more than one row, all values of each grouping-expression are equal, and all rows
with the same set of values of the grouping-expressions are in the same group. For
grouping, all null values for a grouping-expression are considered equal.

If a sort sequence other than *HEX is in effect when the statement that contains the
GROUP BY clause is executed, the rows are placed into groups using the weighted
values. The weighted values are derived by applying the sort sequence to the SBCS
data grouping-expressions, to the SBCS data of mixed data grouping-expressions, and
to UCS-2 data grouping-expressions.

Grouping-expressions can be used in a search condition in a HAVING clause, in the
SELECT clause, or in a sort-key-expression of an ORDER BY clause (see
order-by-clause for details). In each case, the reference specifies only one value for
each group. The grouping-expression specified in these clauses must exactly match
the grouping-expression in the GROUP BY clause, except that blanks are not
significant. For example, a grouping-expression of
SALARY*.10

will match the expression in a having-clause of
HAVING SALARY*.10

but will not match
HAVING .10 *SALARY
or
HAVING (SALARY*.10)+100

If the grouping-expression contains varying-length strings with trailing blanks, the
values in the group can differ in the number of trailing blanks and may not all
have the same length. In that case, a reference to the grouping-expression still
specifies only one value for each group, but the value for a group is chosen
arbitrarily from the available set of values. Thus, the actual length of the result
value is unpredictable.

The GROUP BY clause can contain up to 120 grouping-expressions or 2000 − n bytes,
where n is the number of grouping-expressions specified that allow nulls.

�� GROUP BY

,

grouping-expression ��

group-by-clause

334 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|
|

having-clause

The HAVING clause specifies an intermediate result table that consists of those
groups of R for which the search-condition is true. R is the result of the previous
clause of the subselect. If this clause is not GROUP BY, R is considered a single
group with no grouping expressions.

Each expression that contains a column-name in the search condition must do one of
the following:
v Unambiguously identify a grouping expression of R.
v Be specified within a column function.
v Be a correlated reference. A column-name is a correlated reference if it identifies a

column of a table, view, common table expression, or derived table identified in
an outer subselect.

The RRN, PARTITION, NODENAME, and NODENUMBER functions cannot be
specified in the HAVING clause unless it is within a column function. See
″Functions″ in Chapter 3 for restrictions that apply to the use of column functions.

If a sort sequence other than *HEX is in effect when the statement that contains the
HAVING clause is executed and if the search-condition contains predicates that
have SBCS, mixed, or UCS-2 data, the comparison for those predicates is done
using weighted values. The weighted values are derived by applying the sort
sequence to the operands in the predicate.

A group of R to which the search condition is applied supplies the argument for
each column function in the search condition, except for any function whose
argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as
being executed each time the search condition is applied to a group of R, and the
results used in applying the search condition. In actuality, the subquery is executed
for each group only if it contains a correlated reference. For an illustration of the
difference, see examples 6 and 7 under “Examples of a subselect”.

A correlated reference to a group of R must either identify a grouping column or
be contained within a column function.

When HAVING is used without GROUP BY, any column name in the select list
must appear within a column function.

Examples of a subselect

Example 1
Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2
Join the EMPPROJACT and EMPLOYEE tables, select all the columns from the
EMPPROJACT table and add the employee’s surname (LASTNAME) from the
EMPLOYEE table to each row of the result.

�� HAVING search-condition ��

having-clause

Chapter 4. Queries 335

SELECT EMPPROJACT.*, LASTNAME
FROM EMPPROJACT, EMPLOYEE
WHERE EMPPROJACT.EMPNO = EMPLOYEE.EMPNO

Example 3
Join the EMPLOYEE and DEPARTMENT tables, select the employee number
(EMPNO), employee surname (LASTNAME), department number (WORKDEPT in
the EMPLOYEE table and DEPTNO in the DEPARTMENT table) and department
name (DEPTNAME) of all employees who were born (BIRTHDATE) earlier than
1930.

SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME
FROM EMPLOYEE, DEPARTMENT
WHERE WORKDEPT = DEPTNO
AND YEAR(BIRTHDATE) < 1930

This subselect could also be written as follows:
SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME

FROM EMPLOYEE INNER JOIN DEPARTMENT
ON WORKDEPT = DEPTNO
WHERE YEAR(BIRTHDATE) < 1930

Example 4
Select the job (JOB) and the minimum and maximum salaries (SALARY) for each
group of rows with the same job code in the EMPLOYEE table, but only for groups
with more than one row and with a maximum salary greater than or equal to
27000.

SELECT JOB, MIN(SALARY), MAX(SALARY)
FROM EMPLOYEE
GROUP BY JOB
HAVING COUNT(*) > 1 AND MAX(SALARY) >= 27000

Example 5
Select all the rows of EMPPROJACT table for employees (EMPNO) in department
(WORKDEPT) ‘E11’. (Employee department numbers are shown in the EMPLOYEE
table.)

SELECT * FROM EMPPROJACT
WHERE EMPNO IN (SELECT EMPNO

FROM EMPLOYEE
WHERE WORKDEPT = ’E11’)

Example 6
From the EMPLOYEE table, select the department number (WORKDEPT) and
maximum departmental salary (SALARY) for all departments whose maximum
salary is less than the average salary for all employees.

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
HAVING MAX(SALARY) < (SELECT AVG(SALARY)

FROM EMPLOYEE)

The subquery in the HAVING clause would only be executed once in this example.

Example 7
Using the EMPLOYEE table, select the department number (WORKDEPT) and
maximum departmental salary (SALARY) for all departments whose maximum
salary is less than the average salary in all other departments.

SELECT WORKDEPT, MAX(SALARY)
FROM EMPLOYEE EMP_COR
GROUP BY WORKDEPT

having-clause

336 DB2 UDB for iSeries SQL Reference V5R2

HAVING MAX(SALARY) < (SELECT AVG(SALARY)
FROM EMPLOYEE
WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to example 6, the subquery in the HAVING clause would need to be
executed for each group.

Example 8
Join the EMPLOYEE and EMPPROJACT tables, select all of the employees and
their project numbers. Return even those employees that do not have a project
number currently assigned.

SELECT EMPLOYEE.EMPNO, PROJNO
FROM EMPLOYEE LEFT OUTER JOIN EMPPROJACT
ON EMPLOYEE.EMPNO = EMPPROJACT.EMPNO

Any employee in the EMPLOYEE table that does not have a project number in the
EMPPROJACT table will return one row in the result table containing the EMPNO
value and the null value in the PROJNO column.

fullselect

A fullselect specifies a result table. If UNION is not used, the result of the fullselect
is the result of the specified subselect.

UNION DISTINCT or UNION ALL
Derives a result table by combining two other result tables (R1 and R2). If
UNION ALL is specified, the result consists of all rows in R1 and R2. If
UNION is specified without the ALL option, the result is the set of all rows in
either R1 or R2, with duplicate rows eliminated. In either case, however, each
row of the UNION table is either a row from R1 or a row from R2.

The columns of the result are named as follows:
v If the nth column of R1 and the nth column of R2 have the same result column

name, then the nth column of the result table has that column name.
v If the nth column of R1 and the nth column of R2 do not have the same name,

then the nth column of the result table is unnamed.

Two rows are duplicates if each value in the first is equal to the corresponding
value of the second. If a sort sequence other than *HEX is in effect when the
statement that contains the UNION keyword is executed and if the result tables
contain columns that have SBCS, UCS-2, or mixed data, the comparison for those
columns is done using weighted values. The weighted values are derived by
applying the sort sequence to each value. (For determining duplicates, two null
values are considered equal.)

Both UNION and UNION ALL are associative operations. When you include the
UNION ALL operator in the same SQL statement as a UNION operator, the result

�� subselect
(fullselect)

DISTINCT
UNION subselect

ALL (fullselect)

��

having-clause

Chapter 4. Queries 337

of the operation depends on the order of evaluation. Where there are no
parentheses, evaluation is from left to right. Where parentheses are included, the
parenthesized subselect is evaluated first, followed, from left to right, by the other
components of the statement.

Rules for columns: R1 and R2 must have the same number of columns, and the
data type of the nth column of R1 must be compatible with the data type of the
nth column of R2. Character-string values are not compatible with datetime values.

The nth column of the result of UNION and UNION ALL is derived from the nth
columns of R1 and R2. The attributes of the result columns are determined using
the rules for result columns. For more information see “Rules for Result Data
Types” on page 91.

If UNION is specified, no column can be a LOB or DATALINK column.

A fullselect used that is enclosed in parenthesis is called a subquery. For example, a
subquery can be used in a search condition.

Examples of a fullselect

Example 1
Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2
List the employee numbers (EMPNO) of all employees in the EMPLOYEE table
whose department number (WORKDEPT) either begins with 'E' or who are
assigned to projects in the EMPPROJACT table whose project number (PROJNO)
equals 'MA2100', 'MA2110', or 'MA2112'.

SELECT EMPNO FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION
SELECT EMPNO FROM EMPPROJACT

WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 3
Make the same query as in example 2, and, in addition, ″tag″ the rows from the
EMPLOYEE table with ’emp’ and the rows from the EMPPROJACT table with
’empprojact’. Unlike the result from example 2, this query may return the same
EMPNO more than once, identifying which table it came from by the associated
″tag″.

SELECT EMPNO, ’emp’ FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION
SELECT EMPNO, ’empprojact’ FROM EMPPROJACT

WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 4
Make the same query as in example 2, only use UNION ALL so that no duplicate
rows are eliminated.

SELECT EMPNO FROM EMPLOYEE
WHERE WORKDEPT LIKE ’E%’

UNION ALL
SELECT EMPNO FROM EMPPROJACT

WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

fullselect

338 DB2 UDB for iSeries SQL Reference V5R2

|
|

select-statement

The select-statement is the form of a query that can be directly specified in a
DECLARE CURSOR statement, or prepared and then referenced in a DECLARE
CURSOR statement. It can also be issued interactively, using the interactive facility
(STRSQL command), causing a result table to be displayed at your work station. In
either case, the table specified by a select-statement is the result of the fullselect.

common-table-expression

A common-table-expression permits defining a result table with a table-name that can
be specified as a table name in any FROM clause of the fullselect that follows. The
table-name must be unqualified. Multiple common table expressions can be
specified following the single WITH keyword. Each common table expression
specified can also be referenced by name in the FROM clause of subsequent
common table expressions.

If a list of columns is specified, it must consist of as many names as there are
columns in the result table of the fullselect. Each column-name must be unique and
unqualified. If these column names are not specified, the names are derived from
the select list of the subselect used to define the common table expression.

The table-name of a common table expression must be different from any other
common table expression table-name in the same statement. A common table

��

,

WITH common-table-expression

fullselect
order-by-clause

�

�
fetch-first-clause

(1) (2)

update-clause
read-only-clause
optimize-clause
isolation-clause

��

Notes:

1 The update-clause and read-only-clause cannot both be specified in the same
select-statement.

2 Each clause may be specified only once.

��

table-name
,

(column-name)

�

� AS (fullselect)
order-by-clause fetch-first-clause

��

select-statement

Chapter 4. Queries 339

|
|
|
|

expression table-name can be specified as a table name in any FROM clause
throughout the fullselect. A table-name of a common table expression overrides any
existing table, view, or alias (in the catalog) with the same qualified name.

If more than one common table expression is defined in the same statement, cyclic
references between the common table expressions are not permitted. A cyclic
reference occurs when two common table expressions dt1 and dt2 are created such
that dt1 refers to dt2 and dt2 refers to dt1.

A common-table-expression is also optional prior to the fullselect in the CREATE
VIEW and INSERT statements.

A common-table-expression can be used:
v In place of a view to avoid creating the view (when general use of the view is

not required and positioned updates or deletes are not used
v When the desired result table is based on host variables
v When the same result table needs to be shared in a fullselect

If a fullselect of a common table expression contains a reference to itself in a FROM
clause, the common table expression is a recursive table expression. Recursive
common table expressions are not supported in DB2 UDB for iSeries.

order-by-clause

The ORDER BY clause specifies an ordering of the rows of the result table. If a
single sort-key is identified, the rows are ordered by the values of that sort-key. If
more than one sort-key is identified, the rows are ordered by the values of the first
identified sort-key, then by the values of the second identified sort-key, and so on.

If a sort sequence other than *HEX is in effect when the statement that contains the
ORDER BY clause is executed and if the ORDER BY clause involves sort-keys that
have SBCS, UCS-2, or mixed data, the comparison for those sort-keys is done using
weighted values. The weighted values are derived by applying the sort sequence
to the values of the sort-keys.

A named column in the select list may be identified by a sort-key that is a
simple-integer or a simple-column-name. An unnamed column in the select list may
be identified by a simple-integer or by a sort-key-expression. A column is unnamed if
the AS clause is not specified in the select-list and if it is derived from a constant,

�� ORDER BY

,
ASC

sort-key
DESC

��

sort-key:

simple-column-name
simple-integer
sort-key-expression

common-table-expression

340 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|

an expression with operators, or a function. If the fullselect includes a UNION
operator, see “fullselect” on page 337 for the rules on named columns in a
fullselect.

simple-column-name
Usually identifies a column of the result table. In this case, simple-column-name
must be the name of a named column in the select list. The column must not
be a LOB or DATALINK column. If the fullselect includes a UNION or
UNION ALL, the column name cannot be qualified.

The simple-column-name may also identify a column name of a table, view, or
nested table identified in the FROM clause if the query is a subselect. An error
occurs if the subselect produces a grouped result and the simple-column-name is
not a grouping-expression.

integer
Must be greater than 0 and not greater than the number of columns in the
result table. The integer n identifies the nth column of the result table. The
identified column must not be a LOB or DATALINK column.

sort-key-expression
An expression that is not simply a column name or an unsigned integer
constant. The query to which ordering is applied must be a subselect to use
this form of sort-key.

The sort-key-expression cannot contain RRN, PARTITION, NODENAME, or
NODENUMBER if the fullselect includes a UNION or UNION ALL. The result
of the sort-key-expression must not be a LOB or DATALINK.

If the subselect is grouped, the sort-key-expression can:
v be an expression in the select list of the subselect,
v include a grouping-expression from the GROUP BY clause of the subselect

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

Ordering is performed in accordance with the comparison rules described in
Chapter 2. The null value is higher than all other values. If your ordering
specification does not determine a complete ordering, rows with duplicate values
of the last identified sort-key have an arbitrary order. If the ORDER BY clause is not
specified, the rows of the result table have an arbitrary order.

The ORDER BY clause can contain up to 10000-n sort-keys or 10000-n bytes (where
n is the number of sort-keys specified that allow nulls).

fetch-first-clause

The fetch-first-clause sets a maximum number of rows that can be retrieved. It lets
the database manager know that the application does not want to retrieve more
than integer rows, regardless of how many rows there might be in the result table

�� FETCH FIRST
1

integer
ROW
ROWS

ONLY ��

order-by-clause

Chapter 4. Queries 341

|
|
|
|
|

|
|
|
|

|
|
|

when this clause is not specified. An attempt to fetch beyond integer rows is
handled the same way as normal end of data. The value of integer must be a
positive integer (not zero).

Limiting the result table to the first integer rows can improve performance. The
database manager will cease processing the query once it has determined the first
integer rows.

Specification of the fetch-first-clause in a select-statement makes the result table
read-only. A read-only result table must not be referred to in an UPDATE or
DELETE statement.

The fetch-first-clause cannot appear in a statement containing an UPDATE clause.

If both the fetch-first-clause and order-by-clause are specified, the ordering is
performed on the entire result set prior to returning the first integer rows.

update-clause

The UPDATE clause identifies the columns that can be updated in a subsequent
positioned UPDATE statement. Each column-name must be unqualified and must
identify a column of the table or view identified in the first FROM clause of the
fullselect. If the UPDATE clause is specified without column names, all updateable
columns of the table or view identified in the first FROM clause of the fullselect
are included. The clause can appear either before or after an accompanying
optimize-clause.

The FOR UPDATE OF clause must not be specified if the result table of the
fullselect is read-only (for more information see “DECLARE CURSOR” on
page 558), if the FOR READ ONLY clause is used, or if the SCROLL keyword is
specified without the DYNAMIC keyword on the DECLARE CURSOR statement.

Positioned UPDATE statements identifying the cursor associated with a
select-statement can update all updateable columns, if:
v The select-statement does not contain one of the following:

– An UPDATE clause
– A FOR READ ONLY clause
– An ORDER BY clause

v The DECLARE CURSOR statement does not contain a SCROLL keyword
without the DYNAMIC keyword.

The UPDATE clause is a performance option that is not part of ISO/ANSI SQL.

read-only-clause

�� FOR UPDATE

,

OF column-name

��

fetch-first-clause

342 DB2 UDB for iSeries SQL Reference V5R2

The FOR READ ONLY or FOR FETCH ONLY clause indicates that the result table
is read-only. For example, its cursor is not used for Positioned DELETE or
UPDATE statements.

Some result tables are read-only by nature (for example, a table based on a
read-only view). FOR READ ONLY can still be specified for such tables, but the
specification has no effect.

For result tables in which updates and deletes are allowed, specifying FOR READ
ONLY can possibly improve the performance of FETCH operations by allowing the
database manager to do blocking and avoid exclusive locks. For example, in
programs that contain dynamic SQL statements without the FOR READ ONLY or
ORDER BY clause, the database manager might open cursors that have not
specified SCROLL without the DYNAMIC keyword as if the FOR UPDATE OF
clause was specified.

A read-only result table must not be referred to in an UPDATE or DELETE
statement, whether it is read-only by nature or specified as FOR READ ONLY.

The FOR READ ONLY clause cannot appear in a statement containing an UPDATE
clause. The clause can appear either before or after an accompanying
optimize-clause.

optimize-clause

The optimize-clause tells the database manager to assume that the program does
not intend to retrieve more than integer rows from the result table. Without this
clause, or with the keyword ALL, the database manager assumes that all rows of
the result table are to be retrieved, and it optimizes accordingly. Optimizing for
integer rows, or at a minimum, the number of rows that are fetched, could improve
performance. The clause does not change the result table or the order in which the
rows are fetched. Any number of rows can be fetched, but performance can
possibly degrade after integer fetches. The value of integer must be a positive
integer (not zero). The clause can appear either before or after an accompanying
update-clause or read-only-clause.

isolation-clause

�� FOR READ
FETCH

ONLY ��

�� OPTIMIZE FOR integer
ALL

ROW
ROWS

��

read-only-clause

Chapter 4. Queries 343

The isolation-clause specifies an isolation level on the SELECT, SELECT INTO,
INSERT, UPDATE, DELETE, and DECLARE CURSOR statements. This isolation
level is in effect only for the execution of the statement containing the isolation
clause. For more information about isolation level see Isolation Level.

The KEEP LOCKS clause specifies that any read locks acquired will be held for a
longer duration. Normally, read locks are released when the next row is read. If the
isolation clause is associated with a cursor, the locks will be held until the cursor is
closed or until a COMMIT or ROLLBACK statement is executed. Otherwise, the
locks will be held until the completion of the SQL statement. The KEEP LOCKS
clause is allowed on an SQL SELECT, SELECT INTO, or DECLARE CURSOR
statement. It is not allowed on updateable cursors.

Keyword Synonyms: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword NONE can be used as a synonym for NC.
v The keyword CHG can be used as a synonym for UR.
v The keyword ALL can be used as a synonym for RS.

Examples of a select-statement

Example 1
Select all columns and rows from the EMPLOYEE table.

SELECT * FROM EMPLOYEE

Example 2
Select the project name (PROJNAME), start date (PRSTDATE), and end date
(PRENDATE) from the PROJECT table. Order the result table by the end date with
the most recent dates appearing first.

SELECT PROJNAME, PRSTDATE, PRENDATE
FROM PROJECT
ORDER BY PRENDATE DESC

Example 3
Select the department number (WORKDEPT) and average departmental salary
(SALARY) for all departments in the EMPLOYEE table. Arrange the result table in
ascending order by average departmental salary.

SELECT WORKDEPT, AVG(SALARY)
FROM EMPLOYEE
GROUP BY WORKDEPT
ORDER BY 2

�� WITH NC
UR
CS

(1)
KEEP LOCKS

RS
RR

��

Notes:

1 The KEEP LOCKS clause can only be used on a DECLARE CURSOR, SELECT INTO,
and a fullselect statement.

isolation-clause

344 DB2 UDB for iSeries SQL Reference V5R2

Example 4
Declare a cursor named UP_CUR, to be used in a C program, that updates the
start date (PRSTDATE) and the end date (PRENDATE) columns in the PROJECT
table. The program must receive both of these values together with the project
number (PROJNO) value for each row. The declaration specifies that the access
path for the query be optimized for the retrieval of a maximum of 2 rows. Even so,
the program can retrieve more than 2 rows from the result table. However, when
more than 2 rows are retrieved, performance could possibly degrade.

EXEC SQL DECLARE UP_CUR CURSOR FOR
SELECT PROJNO, PRSTDATE, PRENDATE

FROM PROJECT
FOR UPDATE OF PRSTDATE, PRENDATE
OPTIMIZE FOR 2 ROWS ;

Example 5
This example names the expression SAL+BONUS+COMM as TOTAL_PAY:

SELECT SALARY+BONUS+COMM AS TOTAL_PAY
FROM EMPLOYEE
ORDER BY TOTAL_PAY

Example 6
Determine the employee number and salary of sales representatives along with the
average salary and head count of their departments. Also, list the average salary of
the department with the highest average salary.

Using a common table expression for this case saves the overhead of creating the
DINFO view as a regular view. Because of the context of the rest of the fullselect,
only the rows for the department of the sales representatives need to be considered
by the view.

WITH
DINFO (DEPTNO, AVGSALARY, EMPCOUNT) AS

(SELECT OTHERS.WORKDEPT, AVG(OTHERS.SALARY), COUNT(*)
FROM EMPLOYEE OTHERS
GROUP BY OTHERS.WORKDEPT),

DINFOMAX AS
(SELECT MAX(AVGSALARY) AS AVGMAX

FROM DINFO)
SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT,

DINFOMAX.AVGMAX
FROM EMPLOYEE THIS_EMP, DINFO, DINFOMAX
WHERE THIS_EMP.JOB = ’SALESREP’
AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Example 7
Select items from a table with an isolation level of Repeatable Read (RS, ALL).

SELECT NAME, SALARY
FROM PAYROLL
WHERE DEPT = 704
WITH RS

isolation-clause

Chapter 4. Queries 345

isolation-clause

346 DB2 UDB for iSeries SQL Reference V5R2

Chapter 5. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and examples
of the use of the SQL statements listed in the following table.

Table 32. SQL Schema Statements

SQL Statement Description Page

ALTER TABLE Alters the description of a table 357

COMMENT Replaces or adds a comment to the
description of an alias, column,
function, index, package,
parameter, procedure, table, type or
view

390

CREATE ALIAS Creates an alias 411

CREATE
DISTINCT TYPE

Creates a distinct type 414

CREATE
FUNCTION

Creates a user-defined function 421

CREATE
FUNCTION
(External Scalar)

Creates an external scalar function 424

CREATE
FUNCTION
(External Table)

Creates an external table function 440

CREATE
FUNCTION
(Sourced)

Creates a user-defined function
based on another existing scalar or
column function

454

CREATE
FUNCTION (SQL
Scalar)

Creates an SQL scalar function 461

CREATE
FUNCTION (SQL
Table)

Creates an SQL table function 469

CREATE INDEX Creates an index on a table 477

CREATE
PROCEDURE

Creates a procedure. 481

CREATE
PROCEDURE
(External)

Creates an external procedure. 482

CREATE
PROCEDURE
(SQL)

Creates an SQL procedure. 493

CREATE
SCHEMA

Creates a schema and a set of
objects in that schema

502

CREATE TABLE Creates a table 507

CREATE
TRIGGER

Creates a trigger 538

© Copyright IBM Corp. 1998, 2002 347

|
|
|

||

Table 32. SQL Schema Statements (continued)

SQL Statement Description Page

CREATE VIEW Creates a view of one or more
tables or views

551

DROP Drops an alias, function, index,
package, procedure, schema, table,
trigger, type, or view

609

GRANT (Distinct
Type Privileges)

Grants privileges on a distinct type 634

GRANT
(Function or
Procedure
Privileges)

Grants privileges on a function or
procedure

637

GRANT (Package
Privileges)

Grants privileges on a package 644

GRANT (Table
Privileges)

Grants privileges on a table or
view

647

LABEL Replaces or adds a label on the
description of an alias, column,
package, table, or view

664

RENAME Renames a table, view, or index. 687

REVOKE
(Distinct Type
Privileges)

Revokes the privilege to use a
distinct type

689

REVOKE
(Function or
Procedure
Privileges)

Revokes privileges on a function or
procedure

691

REVOKE
(Package
Privileges)

Revokes the privilege to execute
statements in a package

697

REVOKE (Table
Privileges)

Revokes privileges on a table or
view

699

Table 33. SQL Data Change Statements

SQL Statement Description Page

DELETE Deletes one or more rows from a
table

594

INSERT Inserts one or more rows into a
table

656

UPDATE Updates the values of one or more
columns in one or more rows of a
table

743

Table 34. SQL Data Statements

SQL Statement Description Page

All SQL Data Change statements Table 33

CLOSE Closes a cursor 388

DECLARE
CURSOR

Defines an SQL cursor 558

Statements

348 DB2 UDB for iSeries SQL Reference V5R2

Table 34. SQL Data Statements (continued)

SQL Statement Description Page

FETCH Positions a cursor on a row of the
result table; can also assign values
from one or more rows of the
result table to host variables

626

FREE LOCATOR Removes the association between a
LOB locator variable and its value

633

HOLD
LOCATOR

Allows a LOB locator variable to
retain its association with a value
beyond a unit of work

652

LOCK TABLE Either prevents concurrent
processes from changing a table or
prevents concurrent processes from
using a table

667

OPEN Opens a cursor 669

SELECT Executes a query 708

SELECT INTO Assigns values to host variables 709

SET
transition-
variable

Assigns values to a transition
variable

739

SET variable Assigns values to a host variable 741

VALUES Provides a method to invoke a
user-defined function from a
trigger.

752

VALUES INTO Specifies a result table of no more
than one row and assigns the
values to host variables.

754

Table 35. SQL Transaction Statements

SQL Statement Description Page

COMMIT Ends a unit of work and commits
the database changes made by that
unit of work

399

RELEASE
SAVEPOINT

Releases a savepoint within a unit
of work

686

ROLLBACK Ends a unit of work and backs out
the database changes made by that
unit of work

702

SAVEPOINT Sets a savepoint within a unit of
work

706

SET
TRANSACTION

Changes the isolation level for the
current unit of work

736

Table 36. SQL Connection Statements

SQL Statement Description Page

CONNECT (Type
1)

Connects to a server and
establishes the rules for remote unit
of work

402

Statements

Chapter 5. Statements 349

|
|
|
|
|

|

|
|
|

|
|
|

|||

|
|
|
|
|

||
|
|

Table 36. SQL Connection Statements (continued)

SQL Statement Description Page

CONNECT (Type
2)

Connects to a server and
establishes the rules for
application-directed distributed
unit of work

407

DISCONNECT Immediately ends one or more
connections

607

RELEASE Places one or more connections in
the release-pending state

684

SET
CONNECTION

Establishes the server of the
process by identifying one of its
existing connections

712

Table 37. SQL Dynamic Statements

SQL Statement Description Page

DESCRIBE Describes the result columns of a
prepared statement

600

DESCRIBE
TABLE

Obtains information about a table
or view

604

EXECUTE Executes a prepared SQL statement 621

EXECUTE
IMMEDIATE

Prepares and executes an SQL
statement

624

PREPARE Prepares an SQL statement for
execution

674

Table 38. SQL Session Statements

SQL Statement Description Page

DECLARE
GLOBAL
TEMPORARY
TABLE

Defines a declared global
temporary table

565

SET PATH Assigns a value to the CURRENT
PATH special register

729

SET SCHEMA Assigns a value to the CURRENT
SCHEMA special register

734

Table 39. SQL Embedded Host Language Statements

SQL Statement Description Page

BEGIN
DECLARE
SECTION

Marks the beginning of an SQL
declare section

381

DECLARE
PROCEDURE

Defines an external procedure 580

DECLARE
STATEMENT

Declares the names used to identify
prepared SQL statements

589

DECLARE
VARIABLE

Declares a subtype or CCSID other
than the default for a host variable

591

Statements

350 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|

||
|
|

Table 39. SQL Embedded Host Language Statements (continued)

SQL Statement Description Page

END DECLARE
SECTION

Marks the end of an SQL declare
section

620

INCLUDE Inserts declarations into a source
program

654

SET RESULT SET Identifies the result sets in a
procedure

731

SET OPTION Establishes the options for
processing SQL statements

715

WHENEVER Defines actions to be taken on the
basis of SQL return codes

756

Table 40. SQL Control Statements

SQL Statement Description Page

assignment-
statement

Assigns a value to an output
parameter or to a local variable

763

CALL Calls a procedure 383

CASE Selects an execution path based on
multiple conditions

766

compound-
statement

Groups other statements together
in an SQL routine

768

FOR Executes a statement for each row
of a table

775

GET
DIAGNOSTICS

Obtains information about the
previous SQL statement that was
executed

777

GOTO Branches to a user-defined label
within an SQL routine or trigger

780

IF Provides conditional execution
based on the truth value of a
condition

782

ITERATE Causes the flow of control to return
to the beginning of a labelled loop

784

LEAVE Continues execution by leaving a
block or loop

785

LOOP Repeats the execution of a
statement

786

REPEAT Repeats the execution of a
statement

787

RESIGNAL Resignals an error or warning
condition

789

RETURN Returns from a routine 792

SIGNAL Signals an error or warning
condition

794

WHILE Repeats the execution of a
statement while a specified
condition is true

797

Statements

Chapter 5. Statements 351

See also:
v “How SQL Statements Are Invoked”
v “SQL Return Codes” on page 354
v “SQL Comments” on page 355

How SQL Statements Are Invoked

The SQL statements described in this chapter are classified as executable or
nonexecutable. The Invocation section in the description of each statement indicates
whether or not the statement is executable.

An executable statement can be invoked in any of the following ways:
v Embedded in an application program
v Dynamically prepared and executed
v Issued interactively

Note: Statements embedded in REXX or processed using RUNSQLSTM are
prepared and executed dynamically.

Depending on the statement, you can use some or all of these methods. The
Invocation section in the description of each statement tells you which methods can
be used.

A nonexecutable statement can only be embedded in an application program.

In addition to the statements described in this chapter, there is one more SQL
statement construct: the select-statement. See “select-statement” on page 339. It is not
included in this chapter because it is used in a different way from other
statements.

A select-statement can be invoked in one of the following ways:
v Included in DECLARE CURSOR and implicitly executed by OPEN
v Dynamically prepared, referenced in DECLARE CURSOR, and implicitly

executed by OPEN
v Issued interactively

The first two methods are called, respectively, the static and the dynamic invocation
of select-statement.

Embedding a Statement in an Application Program
SQL statements can be included in a source program that will be submitted to the
precompiler by using the CRTSQLCBL, CRTSQLCBLI, CRTSQLCI, CRTSQLFTN,
CRTSQLCPPI, CRTSQLPLI, CRTSQLRPG, or CRTSQLRPGI commands. Such
statements are said to be embedded in the program. An embedded statement can be
placed anywhere in the program where a host language statement is allowed. Each
embedded statement must be preceded by the keywords EXEC and SQL.

Executable statements
An executable statement embedded in an application program is executed every
time a statement of the host language would be executed if specified in the same
place. This means that a statement within a loop is executed every time the loop is
executed, and a statement within a conditional construct is executed only when the
condition is satisfied.

Statements

352 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|

An embedded statement can contain references to host variables. A host variable
referenced in this way can be used in two ways:
v As input (the current value of the host variable is used in the execution of the

statement)
v As output (the variable is assigned a new value as a result of executing the

statement)

In particular, all references to host variables in expressions and predicates are
effectively replaced by current values of the variables; that is, the variables are
used as input. The treatment of other references is described individually for each
statement.

All executable statements should be followed by a test of an SQL return code.
Alternatively, the WHENEVER statement (which is itself nonexecutable) can be
used to change the flow of control immediately after the execution of an embedded
statement.

Objects referenced in SQL statements need not exist when the statements are
prepared.

Nonexecutable statements
An embedded nonexecutable statement is processed only by the precompiler. The
precompiler reports any errors encountered in such a statement. The statement is
never executed, and acts as a no-operation if placed among executable statements
of the application program. Therefore, such statements should not be followed by a
test of an SQL return code.

Dynamic Preparation and Execution
An application program can dynamically build an SQL statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the program (for example, input from a work station). The
statement can be prepared for execution using the (embedded) statement PREPARE
and executed by the (embedded) statement EXECUTE. Alternatively, the
(embedded) statement EXECUTE IMMEDIATE can be used to prepare and execute
a statement in one step.

A statement that is dynamically prepared must not contain references to host
variables. It can contain parameter markers instead. See “PREPARE” on page 674
for rules concerning the parameter markers. When the prepared statement is
executed, the parameter markers are effectively replaced by the current values of
the host variables specified in the EXECUTE statement. See “EXECUTE” on
page 621 for rules concerning this replacement. After a statement is prepared, it can
be executed several times with different values of host variables. Parameter
markers are not allowed in EXECUTE IMMEDIATE.

The successful or unsuccessful execution of the statement is indicated by the
setting of an SQL return code in the SQLCA after the EXECUTE (or EXECUTE
IMMEDIATE) statement. You should check the SQL return code as described above
for embedded statements. See the topic “SQL Return Codes” on page 354 for more
information.

Static Invocation of a select-statement
A select-statement can be included as a part of the (nonexecutable) statement
DECLARE CURSOR. Such a statement is executed every time the cursor is opened
by means of the (embedded) statement OPEN. After the cursor is open, the result

Statements

Chapter 5. Statements 353

table can be retrieved one row at a time by successive executions of the FETCH
statement or multiple rows at a time by using the multiple-row FETCH statement.

Used in this way, the select-statement can contain references to host variables. These
references are effectively replaced by the values that the variables have at the
moment of executing OPEN.

Dynamic Invocation of a select-statement
An application program can dynamically build a select-statement in the form of a
character string placed in a host variable. In general, the statement is built from
some data available to the program (for example, a query obtained from a work
station). The statement is then executed every time the cursor is opened by means
of the (embedded) statement OPEN. After the cursor is open, the result table can
be retrieved one row at a time by successive executions of the FETCH statement or
multiple rows at a time by using the multiple-row FETCH statement.

Used in this way, the select-statement must not contain references to host variables.
It can instead contain parameter markers. See “PREPARE” on page 674 for rules
concerning the parameter markers. The parameter markers are effectively replaced
by the values of the host variables specified in the OPEN statement. See “OPEN”
on page 669 for rules concerning this replacement.

Interactive Invocation
A capability for entering SQL statements from a work station is part of the
architecture of the database manager. The DB2 UDB for iSeries licensed program
provides the Start Structured Query Language (STRSQL) command, the Start
Query Manager (STRQM) command, and the SQL Script support of iSeries
Navigator for this facility. Other products are also available. A statement entered in
this way is said to be issued interactively. A statement that cannot be dynamically
prepared cannot be issued interactively, with the exception of connection
management statements (CONNECT, DISCONNECT, RELEASE, and SET
CONNECTION).

A statement issued interactively must be an executable statement that does not
contain parameter markers or references to host variables, because these make
sense only in the context of an application program.

SQL Return Codes
An application program containing executable SQL statements must provide at
least one of the following:
v A structure named SQLCA
v A stand-alone integer variable named SQLCODE
v A stand-alone CHAR(5) (CHAR(6) in C) variable named SQLSTATE

Both a stand-alone SQLCODE and SQLSTATE may be provided. If an SQLCA is
provided, neither a stand-alone SQLCODE or SQLSTATE can be provided. A
stand-alone SQLCODE or SQLSTATE must not be declared in a host structure.

An SQLCA is provided automatically in REXX and RPG. In other languages, an
SQLCA can be obtained by using the INCLUDE SQLCA statement. INCLUDE
SQLCA must not be used if a stand-alone SQLCODE or SQLSTATE is provided.
The SQLCA includes an integer variable named SQLCODE (SQLCOD in RPG) and
a character-string variable named SQLSTATE (SQLSTT in RPG).

Statements

354 DB2 UDB for iSeries SQL Reference V5R2

The option of providing a stand-alone SQLSTATE instead of an SQLCA allows for
conformance with the ISO/ANSI SQL standard. The option of providing a
stand-alone SQLCODE instead of a stand-alone SQLSTATE is a deprecated feature
in the ISO/ANSI SQL standard. If conformance with the ISO/ANSI SQL standard
is desired, the stand-alone SQLSTATE should be used.

SQLCODE
Regardless of whether the application program provides an SQLCA or a
stand-alone variable, SQLCODE is set by the database manager after each SQL
statement is executed. DB2 UDB for iSeries conforms to the ISO/ANSI SQL
standard as follows:
v If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.
v If SQLCODE = 100, no data was found. For example, a FETCH statement

returned no data, because the cursor was positioned after the last row of the
result table.

v If SQLCODE > 0 and not = 100, execution was successful with a warning.
v If SQLCODE = 0 and SQLWARN0 = ’W’, execution was successful with a

warning.
v If SQLCODE < 0, execution was not successful.

A complete listing of DB2 UDB for iSeries SQLCODEs and their corresponding
SQLSTATEs is provided in the SQL Messages and Codes book in the iSeries
Information Center.

SQLSTATE
Regardless of whether the application program provides an SQLCA or a
stand-alone variable, SQLSTATE is also set by the database manager after
execution of each SQL statement. Thus, application programs can check the
execution of SQL statements by testing SQLSTATE instead of SQLCODE.

SQLSTATE provides application programs with common codes for common error
conditions. Furthermore, SQLSTATE is designed so that application programs can
test for specific errors or classes of errors. The scheme is the same for all database
managers and is based on the proposed ISO/ANSI standard. A complete list of
SQLSTATE classes and SQLSTATEs associated with each SQLCODE is supplied in
the SQL Messages and Codes book in the iSeries Information Center.

SQL Comments
Static SQL statements can include host language or SQL comments. Dynamic SQL
statements can include SQL comments. There are two types of SQL comments:

simple comments
Simple comments are introduced by two consecutive hyphens.

bracketed comments
Bracketed comments are introduced by /* and end with */.

These rules apply to the use of simple comments:
v The two hyphens must be on the same line and must not be separated by a

space.
v Simple comments can be started wherever a space is valid (except within a

delimiter token or between 'EXEC' and 'SQL').
v Simple comments cannot be continued to the next line.

Statements

Chapter 5. Statements 355

../rzala/rzalamst02.html
../rzala/rzalamst02.html

v The hyphens must be preceded by a space in COBOL.

These rules apply to the use of bracketed comments:
v The /* must be on the same line and not separated by a space.
v The */ must be on the same line and not separated by a space.
v Bracketed comments can be started wherever a space is valid (except within a

delimiter token or between 'EXEC' and 'SQL').
v Bracketed comments can be continued to the next line.
v You can nest a bracketed comment within another bracketed comment.

Example
This example shows how to include simple comments in a statement:

CREATE VIEW PRJ_MAXPER -- PROJECTS WITH MOST SUPPORT PERSONNEL
AS SELECT PROJNO, PROJNAME -- NUMBER AND NAME OF PROJECT

FROM PROJECT
WHERE DEPTNO = ’E21’ -- SYSTEMS SUPPORT DEPT CODE
AND PRSTAFF > 1

This example shows how to include bracketed comments in a statement:
CREATE VIEW PRJ_MAXPER /* PROJECTS WITH MOST SUPPORT

PERSONNEL */
AS SELECT PROJNO, PROJNAME /* NUMBER AND NAME OF PROJECT */

FROM PROJECT
WHERE DEPTNO = ’E21’ /* SYSTEMS SUPPORT DEPT CODE */
AND PRSTAFF > 1

Statements

356 DB2 UDB for iSeries SQL Reference V5R2

ALTER TABLE
The ALTER TABLE statement alters the definition of a table.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the table identified in the statement,

– The ALTER privilege on the table, and
– The system authority *EXECUTE on the library containing the table

v Administrative authority

The authorization ID of the statement has the ALTER privilege on the table when
one of the following is true:
v It is the owner of the table.
v It was granted the ALTER privilege to the table.
v It was granted the system authorities of either *OBJALTER or *OBJMGT to the

table.

To define a foreign key, the privileges held by the authorization ID of the statement
must include at least one of the following on the parent table:
v The REFERENCES privilege or object management authority for the table
v The REFERENCES privilege on each column of the specified parent key
v Ownership of the table
v Administrative authority

The authorization ID of the statement has the REFERENCES privilege on a table
when one of the following is true:
v It is the owner of the table.
v It was granted the REFERENCES privilege to the table.
v It was granted the system authorities of either *OBJREF or *OBJMGT to the

table.

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

ALTER TABLE

Chapter 5. Statements 357

|

Syntax

�� ALTER TABLE table-name �

�

COLUMN
ADD column-definition

COLUMN (2)
ALTER column-name SET DATA TYPE data-type

default-clause
GENERATED ALWAYS (1)

GENERATED BY DEFAULT
NOT NULL

(3)
DROP DEFAULT

NOT NULL
IDENTITY

identity-alteration
COLUMN CASCADE

DROP column-name
RESTRICT

(4)
ADD unique-constraint

referential-constraint
check-constraint

CASCADE
DROP PRIMARY KEY

UNIQUE constraint-name RESTRICT
FOREIGN KEY
CHECK
CONSTRAINT

��

Notes:

1 GENERATED can be specified only if the column has a ROWID data type (or a distinct type that is based on a
ROWID data type), or the column is an identity column.

2 Each clause may be specified only once. If DATA TYPE is specified, it must be specified first.

3 Each clause may be specified only once.

4 If this is the first clause of the ALTER TABLE statement, the ADD keyword is optional, but strongly
recommended. Otherwise, it is required.

ALTER TABLE

358 DB2 UDB for iSeries SQL Reference V5R2

|||||||

column-definition:

column-name
COLUMN

FOR system-column-name

data-type �

�

default-clause
GENERATED ALWAYS (1)

GENERATED BY DEFAULT identity-options
(2)

datalink-options
NOT NULL
column-constraint

Notes:

1 GENERATED can be specified only if the column has a ROWID data type (or a distinct type that is based on a
ROWID data type), or the column is an identity column.

2 The datalink-options can only be specified for DATALINKs and distinct-types sourced on DATALINKs.

ALTER TABLE

Chapter 5. Statements 359

||||||

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(52)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR allocate-clause FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) allocate-clause FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC allocate-clause

(1M)
DBCLOB

(integer) allocate-clause
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer) allocate-clause

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
(integer) allocate-clause CCSID integer

ROWID

allocate-clause:

ALLOCATE (integer)

ALTER TABLE

360 DB2 UDB for iSeries SQL Reference V5R2

|||||

default-clause:

WITH
DEFAULT

constant
USER
NULL
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
cast-function-name (constant)

USER
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

identity-options:

AS IDENTITY
,

1 (1)
(START WITH numeric-constant)

1
INCREMENT BY numeric-constant

NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer
NO ORDER
ORDER

Notes:

1 Each clause may be specified only once.

ALTER TABLE

Chapter 5. Statements 361

||||||||||||||||||||||||||||||||

datalink-options:

LINKTYPE URL NO LINK CONTROL

FILE LINK CONTROL file-link-options
MODE DB2OPTIONS

file-link-options:

(1)

INTEGRITY ALL
READ PERMISSION FS
READ PERMISSION DB
WRITE PERMISSION FS
WRITE PERMISSION BLOCKED

RECOVERY NO
ON UNLINK RESTORE
ON UNLINK DELETE

identity-alteration:

(2)
SET INCREMENT BY numeric-constant

NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
NO CACHE
CACHE integer
NO ORDER
ORDER

RESTART
WITH numeric-constant

Notes:

1 All five file-link-options must be specified, but they can be specified in any order.

2 Each clause may be specified only once.

ALTER TABLE

362 DB2 UDB for iSeries SQL Reference V5R2

|||||||||||||||||||||||||

column-constraint:

PRIMARY KEY
CONSTRAINT constraint-name UNIQUE

references-clause
CHECK (check-condition)

unique-constraint:

CONSTRAINT constraint-name
PRIMARY KEY
UNIQUE

(

,

column-name)

referential-constraint:

CONSTRAINT constraint-name

(1)
FOREIGN KEY

,

(column-name) references-clause

references-clause:

REFERENCES table-name

,

(column-name)

�

�
ON DELETE NO ACTION ON UPDATE NO ACTION (2)

ON DELETE RESTRICT ON UPDATE RESTRICT
CASCADE
SET NULL
SET DEFAULT

check-constraint:

CONSTRAINT constraint-name
CHECK (check-condition)

Notes:

1 For compatibility with other products, constraint-name (without the CONSTRAINT keyword) may be specified
following FOREIGN KEY.

2 The ON DELETE and ON UPDATE clauses may be specified in either order.

ALTER TABLE

Chapter 5. Statements 363

Description
table-name

Identifies the table you want to be altered. The table-name must identify a table
that exists at the current server. It must not be a view, a catalog table, or a
global temporary table.

ADD COLUMN
column-definition

Adds a column to the table. If the table has rows, every value of the column is
set to its default value, unless the column is a ROWID column or an identity
column (a column that is defined AS IDENTITY). The database manager
generates default values for ROWID columns and identity columns. If the table
previously had n columns, the ordinality of the new column is n+1. The value
of n must not exceed 8000.

A table can have only one ROWID column. You cannot add an identity column
to a table that already has an identity column.

Adding a new column must not make the sum of the row buffer byte counts of
the columns be greater than 32766 or, if a VARCHAR or VARGRAPHIC
column is specified, 32740. Additionally, if a LOB is specified, the sum of the
byte counts of the columns must not be greater than 3 758 096 383 at the time
of insert or update. For information on the byte counts of columns according
to data type, see “Notes” on page 532.

column-name
Names the column you want to add to the table. Do not use the same
name for more than one column of the table or for a system-column-name
of the table. Do not qualify column-name.

FOR COLUMN system-column-name
Provides an OS/400 name for the column. Do not use the same name for
more than one column-name or system-column-name of the table.

If the system-column-name is not specified, and the column-name is not a
valid system-column-name, a system column name is generated. For more
information about how system column names are generated, see “Rules for
Column Name Generation” on page 535.

data-type
Specifies the data type of the column.

built-in-type
Specifies a built-in data type. See “CREATE TABLE” on page 507 for a
description of built-in-type.

A DataLink column with FILE LINK CONTROL cannot be added to a table
that is a dependent in a referential constraint with a delete rule of
CASCADE.

DEFAULT
Specifies a default value for the column. This clause cannot be specified
more than once in the column-definition. DEFAULT cannot be specified for a
ROWID column or an identity column (a column that is defined AS
IDENTITY). The database manager generates default values for ROWID
columns and identity columns. If a value is not specified following the
DEFAULT keyword, then:
v if the column is nullable, the default value is the null value.

ALTER TABLE

364 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|

v if the column is not nullable, the default depends on the data type of the
column:

Data type Default value

Numeric 0

Fixed-length string Blanks

Varying-length string A string length of 0

Date For existing rows, a date corresponding
to 1 January 0001. For added rows, the
current date.

Time For existing rows, a time corresponding
to 0 hours, 0 minutes, and 0 seconds. For
added rows, the current time.

Timestamp For existing rows, a date corresponding
to 1 January 0001 and a time
corresponding to 0 hours, 0 minutes, 0
seconds, and 0 microseconds. For added
rows, the current timestamp.

Datalink A value corresponding to
DLVALUE(’’,’URL’,’’).

distinct-type The default value of the corresponding
source type of the distinct type.

Omission of NOT NULL and DEFAULT from a column-definition is an
implicit specification of DEFAULT NULL.

constant
Specifies the constant as the default for the column. The specified
constant must represent a value that could be assigned to the column
in accordance with the rules of assignment as described in
“Assignments and Comparisons” on page 78. A floating-point constant
must not be used for a SMALLINT, INTEGER, BIGINT, DECIMAL, or
NUMERIC column. A decimal constant must not contain more digits to
the right of the decimal point than the specified scale of the column.

USER
Specifies the value of the USER special register at the time of INSERT
or UPDATE as the default value for the column. The data type of the
column must be CHAR or VARCHAR with a length attribute that is
greater than or equal to the length attribute of the USER special
register. For existing rows, the value is that of the USER special register
at the time the ALTER TABLE statement is processed.

NULL
Specifies null as the default for the column. If NOT NULL is specified,
DEFAULT NULL must not be specified within the same
column-definition.

CURRENT_DATE
Specifies the current date as the default for the column. If
CURRENT_DATE is specified, the data type of the column must be
DATE or a distinct type based on a DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If

ALTER TABLE

Chapter 5. Statements 365

|
|

||

||

||

||

||
|
|

||
|
|

||
|
|
|
|

||
|

||
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

CURRENT_TIME is specified, the data type of the column must be
TIME or a distinct type based on a TIME.

CURRENT_TIMESTAMP
Specifies the current timestamp as the default for the column. If
CURRENT_TIMESTAMP is specified, the data type of the column must
be TIMESTAMP or a distinct type based on a TIMESTAMP.

cast-function-name
This form of a default value can only be used with columns defined as
a distinct type, BLOB, CLOB, DBCLOB, DATE, TIME, or TIMESTAMP
data types. The following table describes the allowed uses of these
cast-functions.

Data Type Cast Function Name

Distinct type N based on a BLOB, CLOB,
or DBCLOB

BLOB, CLOB, or DBCLOB *

Distinct type N based on a DATE, TIME,
or TIMESTAMP

N (the user-defined cast function that was
generated when N was created) **
or
DATE, TIME, or TIMESTAMP *

Distinct type N based on other data types N (the user-defined cast function that was
generated when N was created) **

BLOB, CLOB, or DBCLOB BLOB, CLOB, or DBCLOB *
DATE, TIME, or TIMESTAMP DATE, TIME, or TIMESTAMP *
Notes:

* The name of the function must match the name of the data type (or the source type of
the distinct type) with an implicit or explicit schema name of QSYS2.

** The name of the function must match the name of the distinct type for the column. If
qualified with a schema name, it must be the same as the schema name for the distinct
type. If not qualified, the schema name from function resolution must be the same as the
schema name for the distinct type.

constant
Specifies a constant as the argument. The constant must conform to
the rules of a constant for the source type of the distinct type or for
the data type if not a distinct type. For BLOB, CLOB, DBCLOB,
DATE, TIME, and TIMESTAMP functions, the constant must be a
string constant.

USER
Specifies the value of the USER special register at the time of
INSERT or UPDATE as the default value for the column. The data
type of the source type of the distinct type of the column must be
CHAR or VARCHAR with a length attribute that is greater than or
equal to the length attribute of USER. For existing rows, the value
is that of the USER special register at the time the ALTER TABLE
statement is processed.

CURRENT_DATE
Specifies the current date as the default for the column. If
CURRENT_DATE is specified, the data type of the source type of
the distinct type of the column must be DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If

ALTER TABLE

366 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|
|

|
|
|
|
|

|||

|
|
|

|
|
|
|
|
|
||
|
||
||
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

CURRENT_TIME is specified, the data type of the source type of
the distinct type of the column must be TIME.

CURRENT_TIMESTAMP
Specifies the current timestamp as the default for the column. If
CURRENT_TIMESTAMP is specified, the data type of the source
type of the distinct type of the column must be TIMESTAMP.

GENERATED
Specifies that the database manager generates values for the column.
GENERATED must be specified if the column is to be considered an
identity column (defined with the AS IDENTITY clause). It may also be
specified if the data type of the column is a ROWID (or a distinct type that
is based on a ROWID). Otherwise, it must not be specified.

ALWAYS
Specifies that the database manager will always generate a value for
the column when a row is inserted into the table. ALWAYS is the
recommended value.

BY DEFAULT
Specifies that the database manager will generate a value for the
column when a row is inserted only if a value is not specified for the
column. If a value is specified, the database manager uses that value.

For a ROWID column, the database manager uses a specified value,
but it must be a valid unique row ID value that was previously
generated by DB2 UDB for OS/390 and z/OS or DB2 UDB for iSeries.

For an identity column, the database manager inserts a specified value
but does not verify that it is a unique value for the column unless the
identity column has a unique constraint or a unique index that solely
specifies the identity column.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can
have only one identity column. AS IDENTITY can be specified only if the
data type for the column is an exact numeric type with a scale of zero
(SMALLINT, INTEGER, BIGINT, DECIMAL or NUMERIC with a scale of
zero, or a distinct type based on one of these types).

An identity column is implicitly NOT NULL.

START WITH numeric-constant
Specifies the first value that is generated for the identity column. The
value can be any positive or negative value that could be assigned to
the column without non-zero digits existing to the right of the decimal
point.

If a value is not explicitly specified when the identity column is
defined, the default is the MINVALUE for an ascending sequence and
the MAXVALUE for a descending sequence. This value is not
necessarily the value that a sequence would cycle to after reaching the
maximum or minimum value of the sequence. The START WITH
clause can be used to start a sequence outside the range that is used
for cycles. The range used for cycles is defined by MINVALUE and
MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity
column. The value can be any positive or negative value that is not 0,

ALTER TABLE

Chapter 5. Statements 367

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

does not exceed the value of a large integer constant, and could be
assigned to the column without any non-zero digits existing to the
right of the decimal point. The default is 1.

If the value is positive, the sequence of values for the identity column
ascends. If the value is negative, the sequence of values descends.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is
generated for this identity column. This value can be any positive or
negative value that could be assigned to this column, but the value
must be greater than the minimum value.

If a value is not explicitly specified when the identity column is
defined, this is the maximum value of the data type (and precision, if
DECIMAL) for an ascending sequence; or the START WITH value, or
-1 if START WITH was not specified, for a descending sequence.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is
generated for this identity column. This value can be any positive or
negative value that could be assigned to this column, but the value
must be less than the maximum value.

If a value is not explicitly specified when the identity column is
defined, this is the START WITH value, or 1 if START WITH was not
specified, for an ascending sequence; or the minimum value of the data
type (and precision, if DECIMAL) for a descending sequence.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory.
Preallocating and storing values in the cache improves the performance
of inserting rows into a table.

CACHE integer
Specifies the number of values of the identity column sequence
that the database manager preallocates and keeps in memory. The
minimum value that can be specified is 2, and the maximum is the
largest value that can be represented as an integer. The default is
20.

During a system failure, all cached identity column values that are
yet to be assigned are lost, and thus, will never be used. Therefore,
the value specified for CACHE also represents the maximum
number of values for the identity column that could be lost during
a system failure.

NO CACHE
Specifies that values for the identity column are not preallocated.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to generate
values after reaching either the maximum or minimum value of the
sequence.

CYCLE
Specifies that values continue to be generated for this column after
the maximum or minimum value has been reached. If this option
is used, after an ascending sequence reaches the maximum value of
the sequence, it generates its minimum value. After a descending
sequence reaches its minimum value of the sequence, it generates

ALTER TABLE

368 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

its maximum value. The maximum and minimum values for the
column determine the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by the
database manager for an identity column. If a unique constraint or
unique index exists on the identity column, and a non-unique
value is generated for it, an error occurs.

NO CYCLE
Specifies that values will not be generated for the identity column
once the maximum or minimum value for the sequence has been
reached. This is the default.

ORDER or NO ORDER
Specifies whether the identity values must be generated in order of
request.

ORDER
Specifies that the values are generated in order of request.

NO ORDER
Specifies that the values do not need to be generated in order of
request. This is the default.

datalink-options
Specifies the options associated with a DATALINK column. See “CREATE
TABLE” on page 507 for a description of datalink-options.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL
implies that the column can contain null values. If NOT NULL is specified,
DEFAULT must also be specified.

column-constraint

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint
that already exists at the current server.

If the clause is not specified, a unique constraint name is generated by
the database manager.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a
single column. Thus, if PRIMARY KEY is specified in the definition of
column C, the effect is the same as if the PRIMARY KEY(C) clause is
specified as a separate clause.

This clause must not be specified in more than one column-definition
and must not be specified at all if the UNIQUE clause is specified in
the column definition. The column must not be a LOB or DataLink
column.

When a primary key is added, a CHECK constraint is implicitly added
to enforce the rule that the NULL value is not allowed in the column
that makes up the primary key.

UNIQUE
Provides a shorthand method of defining a unique key composed of a
single column. Thus, if UNIQUE is specified in the definition of
column C, the effect is the same as if the UNIQUE(C) clause is
specified as a separate clause.

ALTER TABLE

Chapter 5. Statements 369

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

This clause cannot be specified more than once in a column definition
and must not be specified if PRIMARY KEY is specified in the
column-definition. The column must not be a LOB or DataLink column.

references-clause
The references-clause of a column-definition provides a shorthand
method of defining a foreign key composed of a single column. Thus,
if a references-clause is specified in the definition of column C, the
effect is the same as if that references-clause were specified as part of a
FOREIGN KEY clause in which C is the only identified column.

CHECK(check-condition)
Provides a shorthand method of defining a check constraint whose
check-condition only references a single column. Thus, if CHECK is
specified in the column definition of column C, no columns other than
C can be referenced in the check-condition of the check constraint. The
effect is the same as if the check constraint were specified as a separate
clause.

ROWID or DATALINK with FILE LINK CONTROL columns cannot be
referenced in a CHECK constraint. For additional restrictions see,
“ADD check-constraint” on page 375.

ALTER COLUMN
Alters the definition of an existing column. Only the attributes specified will be
altered. Others will remain unchanged.

column-name
Identifies the column to be altered. The column name must not be qualified.
The name must identify a column of the specified table. The name must not
identify a column that is being added or dropped in this ALTER TABLE
statement.

SET DATA TYPE data-type
Specifies the new data type of the column to be altered. The new data type
must be compatible with the existing data type of the column. For more
information about the compatibility of data types see “Assignments and
Comparisons” on page 78. However, there are two exceptions to the general
rules:
v Changing data types between character and UCS-2 graphic is allowed.
v Changing data types from datetime data types to character is not allowed.

The specified length, precision, and scale may be larger, smaller, or the same as
the existing length, precision, and scale. However, if the new length, precision,
or scale is smaller, truncation or numeric conversion errors may occur.

If the specified column has a default value and a new default value is not
specified, the existing default value must represent a value that could be
assigned to the column in accordance with the rules for assignment as
described in “Assignments and Comparisons” on page 78.

If the column is specified in a unique, primary, or foreign key, the new sum of
the lengths of the columns of the keys must not exceed 2000-n, where n is the
number of columns specified that allow nulls.

ALTER TABLE

370 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

Changing the attributes will cause any existing values in the column to be
converted to the new column attributes according to the rules for assignment
to a column, except that string values will be truncated.

SET default-clause
Specifies the new default value of the column to be altered. The specified
default value must represent a value that could be assigned to the column in
accordance with the rules for assignment as described in “Assignments and
Comparisons” on page 78.

SET NOT NULL
Specifies that the column cannot contain null values. All values for this column
in existing rows of the table must be not null. If the specified column has a
default value and a new default value is not specified, the existing default
value must not be NULL. SET NOT NULL is not allowed if the column is
identified in the foreign key of a referential constraint with a DELETE rule of
SET NULL and no other nullable columns exist in the foreign key.

SET GENERATED ALWAYS or GENERATED BY DEFAULT
Specifies that the database manager generates values for the column.
GENERATED must be specified if the column is to be considered an identity
column (defined with the AS IDENTITY clause) or the data type of the column
is a ROWID (or a distinct type that is based on a ROWID). Otherwise, it must
not be specified.

DROP DEFAULT
Drops the current default for the column. The specified column must have a
default value and must not have NOT NULL as the null attribute. The new
default value is the null value.

DROP NOT NULL
Drops the NOT NULL attribute of the column, allowing the column to have
the null value. If a default value is not specified or does not already exist, the
new default value is the null value. DROP NOT NULL is not allowed if the
column is specified in the primary key of the table.

DROP IDENTITY
Drops the identity attributes of the column, making the column a simple
numeric data type column. DROP IDENTITY is not allowed if the column is
not an identity column.

identity-alteration
Alters the identity attributes of the column. The column must be an identity
column. For a description of the attributes, see 367.

RESTART
Specifies the next value for an identity column. If WITH numeric-constant
is not specified the sequence is restarted at the value specified implicitly or
explicitly as the starting value when the identity column was originally
created. The column must be an identity column.

WITH numeric-constant
Specifies that numeric-constant will be used as the next value for the
column. numeric-constant must be an exact numeric constant. It can be
any positive or negative value that could be assigned to this column as
long as there are no nonzero digits to the right of the decimal point.

DROP COLUMN
Drops the identified column from the table.

ALTER TABLE

Chapter 5. Statements 371

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

column-name
Identifies the column to be dropped. The column name must not be qualified.
The name must identify a column of the specified table. The name must not
identify a column that was already added or altered in this ALTER TABLE
statement. The name must not identify the only column of a table.

CASCADE
Specifies that any views, indexes, triggers, or constraints that are dependent on
the column being dropped are also dropped. 40

RESTRICT
Specifies that the column cannot be dropped if any views, indexes, triggers, or
constraints are dependent on the column. 40

If all the columns referenced in a constraint are dropped in the same ALTER
TABLE statement, RESTRICT does not prevent the drop.

ADD unique-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that
already exists at the current server. The constraint-name must be unique within
a schema.

If not specified, a unique constraint name is generated by the database
manager.

UNIQUE(column-name,...)
Defines a unique key composed of the identified columns. Each column-name
must be an unqualified name that identifies a column of the table. The same
column must not be identified more than once. The column must not be a LOB
or DATALINK column. The number of identified columns must not exceed
120, and the sum of their lengths must not exceed 2000-n, where n is the
number of columns specified that allow nulls. The identified columns cannot
be the same as the columns specified in another UNIQUE constraint or
PRIMARY KEY on the table. For example, UNIQUE(A,B) is not allowed if
UNIQUE(B,A) or PRIMARY KEY(A,B) already exists on the table. Any existing
nonnull values in the set of columns must be unique. Multiple null values are
allowed.

If a unique index already exists on the identified columns, that index is
designated as a unique index. Otherwise, a unique index is created to support
the uniqueness of the unique key. The unique index is created as part of the
system physical file, not as a separate system logical file.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. Each column-name
must be an unqualified name that identifies a column of the table. The same
column must not be identified more than once. The column must not be a LOB
or DATALINK column. The number of identified columns must not exceed
120, and the sum of their lengths must not exceed 2000. The table must not
already have a primary key. The identified columns cannot be the same as the
columns specified in another UNIQUE constraint on the table. For example,
PRIMARY KEY(A,B) is not allowed if UNIQUE(B,A) already exists on the
table. Any existing values in the set of columns must be unique. When a

40. A trigger is dependent on the column if it is referenced in the UPDATE OF column list or anywhere in the triggered action.

ALTER TABLE

372 DB2 UDB for iSeries SQL Reference V5R2

primary key is added, a CHECK constraint is implicitly added to enforce the
rule that the NULL value is not allowed in any of the columns that make up
the primary key.

If a unique index already exists on the identified columns, that index is
designated as a primary index. Otherwise, a primary index is created to
support the uniqueness of the primary key. The unique index is created as part
of the system physical file, not a separate system logical file.

ADD referential-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that
already exists at the current server.

If not specified, a unique constraint name is generated by the database
manager.

FOREIGN KEY
Defines a referential constraint.

Let T1 denote the table being altered.

(column-name,...)
The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T1. The same column must not be identified more than once.
The column must not be a LOB or DATALINK column. The number of the
identified columns must not exceed 120, and the sum of their lengths must
not exceed 2000-n, where n is the number of columns specified that allows
nulls.

REFERENCES table-name
The table-name specified in a REFERENCES clause must identify a base
table that exists at the current server, but it must not identify a catalog
table or a global temporary table. This table is referred to as the parent
table in the constraint relationship.

A referential constraint is a duplicate if its foreign key, parent key, and
parent table are the same as the foreign key, parent key, and parent table of
an existing referential constraint. Duplicate referential constraints are
allowed, but not recommended.

Let T2 denote the identified parent table.

(column-name,...)
The parent key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of T2. The same column must not be identified more than once.
The column must not be a LOB or DATALINK column. The number of
identified columns must not exceed 120, and the sum of their lengths must
not exceed 2000-n, where n is the number of columns specified that allow
nulls.

The list of column names must be identical to the list of column names in
the primary key of T2 or a UNIQUE constraint that exists on T2. The
names may be specified in any order. For example, if (A,B) is specified, a
unique constraint defined as UNIQUE(B,A) would satisfy the requirement.
If a column name list is not specified then T2 must have a primary key.
Omission of the column name list is an implicit specification of the
columns of that primary key.

ALTER TABLE

Chapter 5. Statements 373

|
|
|
|
|

|
|
|
|

The specified foreign key must have the same number of columns as the
parent key of T2. The description of the nth column of the foreign key and
the nth column of the parent key must have identical data types and
lengths.

Unless the table is empty, the values of the foreign key must be validated
before the table can be used. Values of the foreign key are validated during the
execution of the ALTER TABLE statement. Therefore, every nonnull value of
the foreign key must match some value of the parent key of T2.

The referential constraint specified by the FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent.

ON DELETE
Specifies what action is to take place on the dependent tables when a row
of the parent table is deleted. There are five possible actions:
v NO ACTION (default)
v RESTRICT
v CASCADE
v SET NULL
v SET DEFAULT

SET NULL must not be specified unless some column of the foreign key
allows null values.

CASCADE must not be specified if T1 has a delete trigger. SET NULL and
SET DEFAULT must not be specified if T1 has an update trigger.

CASCADE must not be specified if T1 contains a DataLink column with
FILE LINK CONTROL.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p
denote such a row of T2.
v If RESTRICT or NO ACTION is specified, an error occurs and no rows

are deleted.
v If CASCADE is specified, the delete operation is propagated to the

dependents of p in T1.
v If SET NULL is specified, each nullable column of the foreign key of

each dependent of p in T1 is set to null.
v If SET DEFAULT is specified, each column of the foreign key of each

dependent of p in T1 is set to its default value.

ON UPDATE
Specifies what action is to take place on the dependent tables when a row
of the parent table is updated.

The update rule applies when a row of T2 is the object of an UPDATE or
propagated update operation and that row has dependents in T1. Let p
denote such a row of T2.
v If RESTRICT or NO ACTION is specified, an error occurs and no rows

are updated.

ALTER TABLE

374 DB2 UDB for iSeries SQL Reference V5R2

ADD check-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that
already exists at the current server. The constraint-name must be unique within
a schema.

If not specified, a unique constraint name is generated by the database
manager.

CHECK(check-condition)
Defines a check constraint. The check-condition must be true or unknown for
every row of the table.

The check-condition is a search-condition, except:
v It can only refer to columns of the table
v It cannot reference ROWID or DATALINK with FILE LINK CONTROL

columns.
v It must not contain any of the following:

– Subqueries
– Scalar-subselects
– Column functions
– Host variables
– Parameter markers
– Complex expressions that contain LOBs (such as concatenation)
– CURRENT TIMEZONE, CURRENT SCHEMA, CURRENT SERVER,

CURRENT PATH, and USER special registers
– NOW, CURDATE, and CURTIME scalar functions
– NODENAME scalar function
– Expressions that involve LOBs
– User-defined functions other than functions that were implicitly generated

with the creation of a distinct type
– ATAN2, DIFFERENCE, RAND, RADIANS, and SOUNDEX scalar

functions
– DLVALUE, DLURLPATH, DLURLPATHONLY, DLURLSERVER, or

DLURLSCHEME scalar functions
– DLURLCOMPLETE scalar function (for DataLinks with an attribute of

FILE LINK CONTROL and READ PERMISSION DB)

For more information about search-condition, see “Search Conditions” on page 155.

DROP
PRIMARY KEY

Drops the definition of the primary key and all referential constraints in which
the primary key is a parent key. The table must have a primary key.

FOREIGN KEY constraint-name
Drops the referential constraint constraint-name. The constraint-name must
identify a referential constraint in which the table is a dependent.

UNIQUE constraint-name
Drops the unique constraint constraint-name and all referential constraints in

ALTER TABLE

Chapter 5. Statements 375

|
|
|

|

|

|
|

|

|

|

|

|

|

|

|
|

|

|

|

|
|

|
|

|
|

|
|

which the unique key is a parent key. The constraint-name must identify a
unique constraint on the table. DROP UNIQUE will not drop a PRIMARY KEY
unique constraint.

CHECK constraint-name
Drops the check constraint constraint-name. The constraint-name must identify a
check constraint on the table.

CONSTRAINT constraint-name
Drops the constraint constraint-name. The constraint-name must identify a check,
unique, or referential constraint on the table. If the constraint is a PRIMARY
KEY or UNIQUE constraint, all referential constraints in which the primary
key or unique key is a parent are also dropped.

CASCADE
Specifies for unique constraints that any referential constraints that are
dependent on the constraint being dropped are also dropped.

RESTRICT
Specifies for unique constraints that the constraint cannot be dropped if any
referential constraints are dependent on the constraint.

Notes
A column can only be referenced once in an ADD, ALTER, or DROP COLUMN
clause in a single ALTER TABLE statement. However, that same column can be
referenced multiple times for adding or dropping constraints in the same ALTER
TABLE statement.

The order of operations within an ALTER TABLE statement is:
v drop constraints
v drop columns for which the RESTRICT option was specified
v alter all other column definitions

– drop columns for which the CASCADE option was specified
– add alter column attributes
– add columns

v add constraints

Within each of these stages, the order in which the user specifies the clauses is the
order in which they are performed, with one exception. If any columns are being
dropped, that operation is logically done before any column definitions are added
or altered.

Any views or logical files in another job’s QTEMP that are dependent on the table
being altered will be dropped as a result of an ALTER TABLE statement.

Authority checking is performed only on the table being altered. Other objects may
be accessed by the ALTER TABLE statement, but no authority to those objects is
required. For example, no authority is required on views that exist on the table
being altered, nor on dependent tables that reference the table being altered
through a referential constraint.

It is strongly recommended that a current backup of the table and dependent
views and logical files exist prior to altering a table.

The following performance considerations apply to an ALTER TABLE statement
when adding, altering, or dropping columns from a table:

ALTER TABLE

376 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

|

|

|

|

|
|
|
|

v The data in the table may be copied.41

Adding and dropping columns require the data to be copied.
Altering a column usually requires the data to be copied. The data does not
need to be copied, however, if the alter only includes the following changes:
– The length attribute of a VARCHAR column is increasing and the current

length attribute is greater than 20.
– The length attribute of a VARGRAPHIC column is increasing and the current

length attribute is greater than 10.
– The allocated length of a VARCHAR column is changing and the current and

new allocated lengths are both less than or equal to 20.
– The allocated length of a VARGRAPHIC column is changing and the current

and new allocated lengths are both less than or equal to 10.
– The CCSID of a column is changing but no conversion is necessary between

the old and new CCSID. For example, if one CCSID is 65535, no data
conversion is necessary.

– The default value is changing, and the length of the default value is not
greater than the current allocated length.

– DROP DEFAULT is specified.
– DROP NOT NULL is specified, but at least one nullable column will still exist

in the table after the alter table is complete.
v Indexes may need to be rebuilt.42

An index does not need to be rebuilt when columns are added to a table or
when columns are dropped or altered and those columns are not referenced in
the index key.
Altering a column that is used in the key of an index or constraint usually
requires the index to be rebuilt. The index does not need to be rebuilt, however,
in the following cases:
– The length attribute of a VARCHAR or VARGRAPHIC key is increasing.
– The CCSID of a column is changing but no conversion is necessary between

the old and new CCSID. For example, if one CCSID is 65535.

Cascaded Effects
Adding a column has no cascaded effects to SQL views or most logical files.43 For
example, adding a column to a table does not cause the column to be added to any
dependent views, even if those views were created with a SELECT * clause.

Dropping or altering a column may cause several cascaded effects. Table 41 lists
the cascaded effects of dropping a column.

Table 41. Cascaded effects of dropping a column

Operation RESTRICT Effect CASCADE Effect

Drop of a
column
referenced by a
view

The drop of the column is not
allowed.

The view and all views dependent
on that view are dropped.

41. In cases where enough storage does not exist to make a complete copy, a special copy that only requires approximately 16-32
megabytes of free storage is performed.

42. Any indexes that need to be rebuilt are rebuilt asynchronously by database server jobs.

43. A column will also be added to a logical file that shares its physical file’s format when a column is added to that physical file
(unless that format is used again in the logical file with another based-on file).

ALTER TABLE

Chapter 5. Statements 377

Table 41. Cascaded effects of dropping a column (continued)

Operation RESTRICT Effect CASCADE Effect

Drop of a
column
referenced by a
non-view logical
file

The drop is allowed, and the
column is dropped from the logical
file if:

v The logical file shares a format
with the file being altered, and

v The dropped column is not used
as a key field or in select/omit
specifications, and

v That format is not used again in
the logical file with another
based-on file.

Otherwise, the drop of the column
is not allowed.

The drop is allowed, and the
column is dropped from the logical
file if:

v The logical file shares a format
with the file being altered, and

v The dropped column is not used
as a key field or in select or omit
specifications, and

v That format is not used again in
the logical file with another
based-on file.

Otherwise, the logical file is
dropped.

Drop of a
column
referenced in the
key of an index

The drop of the index is not
allowed.

The index is dropped.

Drop of a
column
referenced in a
unique constraint

If all the columns referenced in the
unique constraint are dropped in
the same ALTER COLUMN
statement and the unique
constraint is not referenced by a
referential constraint, the columns
and the constraint are dropped.
(Hence, the index used to satisfy
the constraint is also dropped.) For
example, if column A is dropped,
and a unique constraint of
UNIQUE(A) or PRIMARY KEY(A)
exists and no referential constraints
reference the unique constraint, the
operation is allowed.

Otherwise, the drop of the column
is not allowed.

The unique constraint is dropped
as are any referential constraints
that refer to that unique constraint.
(Hence, any indexes used by those
constraints are also dropped).

Drop of a
column
referenced in a
referential
constraint

If all the columns referenced in the
referential constraint are dropped
at the same time, the columns and
the constraint are dropped. (Hence,
the index used by the foreign key
is also dropped). For example, if
column B is dropped and a
referential constraint of FOREIGN
KEY (A) exists, the operation is
allowed.

Otherwise, the drop of the column
is not allowed.

The referential constraint is
dropped. (Hence, the index used
by the foreign key is also
dropped).

Table 42 on page 379 lists the cascaded effects of altering a column. (Alter of a
column in the following chart means altering a data type, precision, scale, length,
or nullability characteristic.)

ALTER TABLE

378 DB2 UDB for iSeries SQL Reference V5R2

Table 42. Cascaded effects of altering a column

Operation Effect

Alter of a column
referenced by a
view

The alter is allowed.

The views that are dependent on the table will be recreated. The new
column attributes will be used when recreating the views.

Alter of a column
referenced by a
non-view logical
file

The alter is allowed.

The non-view logical files that are dependent on the table will be
recreated. If the logical file shares a format with the file being altered,
and that format is not used again in the logical file with another
based-on file, the new column attributes will be used when recreating
the logical file.

Otherwise, the new column attributes will not be used when recreating
the logical file. Instead, the current logical file attributes are used.

Alter of a column
referenced in the
key of an index.

The alter is allowed. (Hence, the index will usually be rebuilt.)

Alter of a column
referenced in a
unique constraint

The alter is allowed. (Hence, the index will usually be rebuilt.)

If the unique constraint is referenced by a referential constraint, the
attributes of the foreign keys no longer match the attributes of the
unique constraint. The constraint will be placed in a defined and
check-pending state.

Alter of a column
referenced in a
referential
constraint

The alter is allowed.

v If the referential constraint is in the defined but check-pending state,
the alter is allowed and an attempt is made to put the constraint in
the enabled state. (Hence, the index used to satisfy the unique
constraint will usually to be rebuilt.)

v If the referential constraint is in the enabled state, the constraint is
placed in the defined and check-pending state.

Examples

Example 1
Assume a new table EQUIPMENT has been created with the following columns:

Column Name Data Type
EQUIP_NO INT
EQUIP_DESC VARCHAR(50)
LOCATION VARCHAR(50)
EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner
(EQUIP_OWNER) must be a department number (DEPTNO) that is present in the
DEPARTMENT table. If a department is removed from the DEPARTMENT table,
the owner (EQUIP_OWNER) values for all equipment owned by that department
should become unassigned (or set to null). Give the constraint the name,
DEPTQUIP. Assume the DEPARTMENT table has a primary key defined as
(DEPTNO).

ALTER TABLE EQUIPMENT
ADD CONSTRAINT DEPTQUIP
FOREIGN KEY (EQUIP_OWNER)
REFERENCES DEPARTMENT
ON DELETE SET NULL

ALTER TABLE

Chapter 5. Statements 379

Example 2
Assume the same table EQUIPMENT exists as in the first example.
v Add a column to table EQUIPMENT containing the quantity in stock of each

equipment number. Call the column QUANTITY.
ALTER TABLE EQUIPMENT
ADD COLUMN QUANTITY INT

v Change the default value for the EQUIP_OWNER column to ’ABC’.
ALTER TABLE EQUIPMENT
ALTER COLUMN EQUIP_OWNER
SET DEFAULT ’ABC’

v Drop the LOCATION column. Also drop any views, indexes, or constraints that
are built on that column.

ALTER TABLE EQUIPMENT
DROP COLUMN LOCATION CASCADE

v Alter the table so that a new column called SUPPLIER is added, the existing
column called LOCATION is dropped, a unique constraint over the new column
SUPPLIER is added, and a primary key is built over the existing column
EQUIP_NO.

ALTER TABLE EQUIPMENT
ADD COLUMN SUPPLIER INT
DROP COLUMN LOCATION
ADD UNIQUE SUPPLIER
ADD PRIMARY KEY EQUIP_NO

v Notice that the column EQUIP_DESC is a variable length column. If an allocated
length of 25 was specified, the following ALTER TABLE statement would not
change that allocated length.

ALTER TABLE EQUIPMENT
ALTER COLUMN EQUIP_DESC
SET DATA TYPE VARCHAR(60)

ALTER TABLE

380 DB2 UDB for iSeries SQL Reference V5R2

BEGIN DECLARE SECTION
The BEGIN DECLARE SECTION statement marks the beginning of an SQL declare
section.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java, RPG, or REXX.

Authorization
None required.

Syntax

�� BEGIN DECLARE SECTION ��

Description
The BEGIN DECLARE SECTION statement can be coded in the application
program wherever variable declarations can appear in accordance with the rules of
the host language. It cannot be coded in the middle of a host structure declaration.
The statement is used to indicate the beginning of an SQL declare section.

An SQL declare section ends with an END DECLARE SECTION statement. For
more information about the END DECLARE SECTION statement, see “END
DECLARE SECTION” on page 620.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements
must be paired and cannot be nested.

SQL statements should not be included within a declare section, with the exception
of the DECLARE VARIABLE and INCLUDE statements.

If SQL declare sections are specified in the program, only the variables declared
within the SQL declare sections can be used as host variables. If SQL declare
sections are not specified in the program, all variables in the program are eligible
for use as host variables.

SQL declare sections should be specified for host languages, other than RPG and
REXX, so that the source program conforms to the IBM SQL standard of SQL. SQL
declare sections are required for all host variables in C++. The SQL declare section
should appear before the first reference to the variable. Host variables are declared
without the use of these statements in JAVA and RPG, and they are not declared at
all in REXX.

Variables declared outside an SQL declare section should not have the same name
as variables declared within an SQL declare section.

More than one SQL declare section can be specified in the program.

BEGIN DECLARE SECTION

Chapter 5. Statements 381

|

|
|

|
|
|
|
|
|

Examples

Example 1
Define the host variables hv_smint (SMALLINT), hv_vchar24 (VARCHAR(24)), and
hv_double (FLOAT) in a C program.

EXEC SQL BEGIN DECLARE SECTION;
static short hv_smint;
static struct {

short hv_vchar24_len;
char hv_vchar24_value[24];

} hv_vchar24;
static double hv_double;

EXEC SQL END DECLARE SECTION;

Example 2
Define the host variables HV-SMINT (SMALLINT), HV-VCHAR24
(VARCHAR(24)), and HV-DEC72 (DECIMAL(7,2)) in a COBOL program.

WORKING-STORAGE SECTION.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 HV-SMINT PIC S9(4) BINARY.
01 HV-VCHAR24.

49 HV-VCHAR24-LENGTH PIC S9(4) BINARY.
49 HV-VCHAR24-VALUE PIC X(24).

01 HV-DEC72 PIC S9(5)V9(2) PACKED-DECIMAL.
EXEC SQL END DECLARE SECTION END-EXEC.

BEGIN DECLARE SECTION

382 DB2 UDB for iSeries SQL Reference V5R2

CALL
The CALL statement calls a procedure.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v If the procedure is a REXX external procedure:

– The system authorities *OBJOPR, *READ, and *EXECUTE on the source file
associated with the procedure,

– The system authority *EXECUTE on the library containing the source file, and
– The system authority *USE to the CL command,

v If the procedure is a Java external procedure:
– Read authority (*R) to the integrated file system file that contains the Java

class.
– Read and execute authority (*RX) to all directories that must be accessed in

order to find the integrated file system file.
v If the procedure is an external procedure, but not a REXX or Java external

procedure:
– The system authority *EXECUTE on the program associated with the

procedure, and
– The system authority *EXECUTE on the library containing the program

associated with the procedure
v If the procedure is an SQL procedure:

– The EXECUTE privilege on the procedure, and
– The system authority *EXECUTE on the library containing the SQL procedure

v Administrative authority

The authorization ID of the statement has the EXECUTE privilege on a procedure
when:
v It is the owner of the procedure,
v It has been granted the EXECUTE privilege on the procedure, or
v It has been granted the system authorities of *OBJOPR and *EXECUTE on the

procedure.

Syntax

�� CALL procedure-name
host-variable

�

CALL

Chapter 5. Statements 383

|

|
|

|
|

|
|

|

|

|

|
|

|

|

|
|

�

()
,

host-variable
constant
NULL
special-register
DLVALUE (arguments)
cast-function-name (constant)

host-variable
USING DESCRIPTOR descriptor-name

��

Description
procedure-name or host-variable

Identifies the procedure to call by the specified procedure name or the
procedure name contained in the host variable. The procedure-name must
identify a procedure that exists at the current server. If a host variable is
specified:
v It must be a character-string variable or UCS-2 graphic-string and must not

include an indicator variable.
v The procedure name that is contained within the host variable must be

left-justified and must be padded on the right with blanks if its length is less
than that of the host variable.

v The name of the procedure must be in uppercase unless it is a delimited
name.

If the procedure name is unqualified, it is implicitly qualified based on the
path and number of parameter. For more information see “Qualification of
Unqualified Object Names” on page 52.

If the procedure-name identifies a procedure that was defined by a CREATE
PROCEDURE or DECLARE PROCEDURE statement, and the current server is
a DB2 UDB for iSeries server, then:
v The CREATE PROCEDURE or DECLARE PROCEDURE statement

determines the name of the external program, language, and calling
convention.

v The attributes of the parameters of the procedure are defined by the
CREATE PROCEDURE or DECLARE PROCEDURE statement.

Otherwise:
v The current server determines the name of the external program, language,

and calling convention.
v If the current server is DB2 UDB for iSeries:

– The external program name is assumed to be the same as the external
procedure name.

– If the program attribute information associated with the program
identifies a recognizable language, then that language is used. Otherwise,
the language is assumed to be C.

– The calling convention is assumed to be GENERAL.
v The application requester assumes all parameters that are host variables or

parameter markers are INOUT. All parameters that are not host variables are
assumed to be IN.

CALL

384 DB2 UDB for iSeries SQL Reference V5R2

v The actual attributes of the parameters are determined by the current server.
If the current server is a DB2 UDB for iSeries, the attributes of the
parameters will be the same as the attributes of the arguments specified on
the CALL statement. 44

host-variable or constant or NULL or special-register
Identifies a list of values to be passed as parameters to the procedure. The nth
value corresponds to the nth parameter in the procedure.

When the CALL statement is executed, the value of each of its parameters is
assigned to the corresponding parameter of the procedure. Control is passed to
the procedure according to the calling conventions of the host language. When
execution of the procedure is complete, the value of each parameter of the
procedure is assigned to the corresponding parameter of the CALL statement
defined as OUT or INOUT. For details on the rules used to assign parameters,
see“String Assignments” on page 81.45

DLVALUE(arguments)
Specifies the value for the parameter is the value resulting from a DLVALUE
scalar function. A DLVALUE scalar function can only be specified for a
DataLink parameter. The DLVALUE function requires a link value on insert
(scheme, server, and path/file). The first argument of DLVALUE must be a
constant, host variable, or a typed parameter marker (CAST(? AS data-type)).
The second and third arguments of DLVALUE must be constants or
host-variables.

cast-function-name
This form of an argument can only be used with parameters defined as a
distinct type, BLOB, CLOB, DBCLOB, DATE, TIME or TIMESTAMP data types.
The following table describes the allowed uses of these cast-functions.

Parameter Type Cast Function Name

Distinct type N based on a BLOB, CLOB,
or DBCLOB

BLOB, CLOB, or DBCLOB *

Distinct type N based on a DATE, TIME,
or TIMESTAMP

DATE, TIME, or TIMESTAMP *

BLOB, CLOB, or DBCLOB BLOB, CLOB, or DBCLOB *
DATE, TIME, or TIMESTAMP DATE, TIME, or TIMESTAMP *
Notes:

* The name of the function must match the name of the data type (or the source type of
the distinct type) with an implicit or explicit schema name of QSYS2.

constant
Specifies a constant as the argument. The constant must conform to the
rules of a constant for the source type of the distinct type or for the data
type if not a distinct type. For BLOB, CLOB, DBCLOB, DATE, TIME, and
TIMESTAMP functions, the constant must be a string constant.

host-variable
Specifies a host variable as the argument. The host variable must conform
to the rules of a constant for the source type of the distinct type or for the
data type if not a distinct type.

44. Note that in the case of decimal constants, leading zeroes are significant when determining the attributes of the argument.
Normally, leading zeroes are not significant.

45. If the CALL statement is prepared and then executed by an embedded SQL EXECUTE statement, the OUT and INOUT
parameters are not assigned.

CALL

Chapter 5. Statements 385

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host variables.

Before the CALL statement is processed, you must set the following fields in
the SQLDA. (The rules for REXX are different. For more information, see the
SQL Programming with Host Languages book.)
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(80), where 80 is the length of an SQLVAR occurrence. If LOBs or
distinct types are specified, there must be two SQLVAR entries for each
parameter marker and SQLN must be set to two times the number of
parameter markers.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers in
the CALL statement. The nth variable described by the SQLDA corresponds to
the nth parameter marker in the prepared statement. (For a description of an
SQLDA, see Appendix C, “SQL Descriptor Area (SQLDA)” on page 813.)

Note that RPG/400 does not provide the function for setting pointers. Because
the SQLDA uses pointers to locate the appropriate host variables, you have to
set these pointers outside your RPG/400 application.

Notes
If the procedure-name identifies a procedure that was defined by a CREATE
PROCEDURE or DECLARE PROCEDURE statement, each OUT or INOUT
parameter must be specified as a host variable.

If the procedure-name identifies a procedure that was defined by a CREATE
PROCEDURE or DECLARE PROCEDURE statement, the number of arguments
specified must be the same as the number of parameters defined by that CREATE
PROCEDURE or DECLARE PROCEDURE statement.

For an explanation of constant and host-variable, see “Constants” on page 97 and
“References to Host Variables” on page 111. For a description of special-register, see
“Special Registers” on page 102. NULL specifies the null value.

If the external procedure to be called is a REXX procedure, then the procedure
must be declared using the CREATE PROCEDURE or DECLARE PROCEDURE
statement.

Host variables cannot be used in the CALL statement within a REXX procedure.
Instead, the CALL must be the object of a PREPARE and EXECUTE using
parameter markers.

CALL

386 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm

When an SQL or an external procedure is called, an attribute is set for SQL
data-access that was defined when the procedure was created. The possible values
for the attribute are:

NONE
CONTAINS
READS
MODIFIES

If a second procedure is invoked within the execution of the current procedure, an
error is issued if:
v The invoked procedure possibly contains SQL and the invoking procedure does

not allow SQL
v The invoked procedure reads SQL data and the invoking procedure does not

allow reading SQL data
v The invoked procedure modifies SQL data and the invoking procedure does not

allow modifying SQL data

Result sets are only returned from a procedure when the procedure is called from a
client using the iSeries Access Open Database Connectivity (ODBC) driver, a client
using the iSeries Access Optimized SQL API, from the SQL Call Level Interface, or
from JDBC. There are three ways to return result sets from a procedure:
v If a SET RESULT SETS statement is executed in the procedure, the SET RESULT

SETS statement identifies the result sets. The result sets are returned in the order
specified on the SET RESULT SETS statement.

v If a SET RESULT SETS statement is not executed in the procedure,
– If no cursors have specified a WITH RETURN clause, each cursor that the

procedure opens and leaves open when it returns identifies a result set. The
result sets are returned in the order in which the cursors are opened.

– If any cursors have specified a WITH RETURN clause, each cursor that is
defined with the WITH RETURN clause that the procedure opens and leaves
open when it returns identifies a result set. The result sets are returned in the
order in which the cursors are opened.

When a result set is returned using an open cursor, the rows are returned starting
with the current cursor position.

Nesting CALL Statements
A program that is executing as a procedure, a user-defined function, or a trigger
can issue a CALL statement. When a procedure, user-defined function, or trigger
calls a procedure, user-defined function, or trigger, the call is considered to be
nested. There is no limit on how many levels procedures and functions can be
nested, but triggers can only be nested up to 300 levels deep.

If a procedure returns any query result sets, the result sets are returned to the
caller of the procedure. If the SQL CALL statement is nested, the result sets are
visible only to the program that is at the previous nesting level. For example, if a
client program calls procedure PROCA, which in turn calls procedure PROCB.
Only PROCA can access any result sets that PROCB returns; the client program has
no access to the query result sets.

Example
Call procedure PGM1 and pass two parameters.

CALL PGM1 (:hv1,:hv2)

CALL

Chapter 5. Statements 387

CLOSE
The CLOSE statement closes a cursor. If a result table was created when the cursor
was opened, that table is destroyed.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in JAVA.

Authorization
None required. See “DECLARE CURSOR” on page 558 for the authorization
required to use a cursor.

Syntax

�� CLOSE cursor-name ��

Description
cursor-name

Identifies the cursor to be closed. The cursor-name must identify a declared
cursor as explained in the DECLARE CURSOR statement. When the CLOSE
statement is executed, the cursor must be in the open state.

Notes
All cursors in a program are in the closed state when:
v The program is called.

– If CLOSQLCSR(*ENDPGM) is specified, all cursors are in the closed state
each time the program is called.

– If CLOSQLCSR(*ENDSQL) is specified, all cursors are in the closed state only
the first time the program is called as long as one SQL program remains on
the call stack.

– If CLOSQLCSR(*ENDJOB) is specified, all cursors are in the closed state only
the first time the program is called in the job.

– If CLOSQLCSR(*ENDMOD) is specified, all cursors are in the closed state
each time the module is initiated.

– If CLOSQLCSR(*ENDACTGRP) is specified, all cursors are in the closed state
the first time the module in the program is initiated within the activation
group.

v A program starts a new unit of work by executing a COMMIT or ROLLBACK
statement without a HOLD option. Cursors declared with the HOLD option are
not closed by a COMMIT statement.

Note: The DB2 UDB for iSeries database manager will open files in order to
implement queries. The closing of the files can be separate from the SQL
CLOSE statement. For more information, see the SQL Programming
Concepts book.

Explicitly closing cursors as soon as possible can improve performance.

CLOSE

388 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Example
In a COBOL program, use the cursor C1 to fetch the values from the first four
columns of the EMPPROJACT table a row at a time and put them in the following
host variables:
v EMP (CHAR(6))
v PRJ (CHAR(6))
v ACT (SMALLINT)
v TIM (DECIMAL(5,2))

Finally, close the cursor.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

77 EMP PIC X(6).
77 PRJ PIC X(6).
77 ACT PIC S9(4) BINARY.
77 TIM PIC S9(3)V9(2) PACKED-DECIMAL.

EXEC SQL END DECLARE SECTION END-EXEC.
.
.
.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT EMPNO, PROJNO, ACTNO, EMPTIME

FROM EMPPROJACT END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM END-EXEC.

IF SQLSTATE = ’02000’
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST UNTIL SQLSTATE IS NOT EQUAL TO ’00000’.

EXEC SQL CLOSE C1 END-EXEC.

GET-REST
EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM END-EXEC.
.
.
.

CLOSE

Chapter 5. Statements 389

COMMENT
The COMMENT statement adds or replaces comments in the catalog descriptions
of various database objects.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
To comment on a table, view, alias, index, column, distinct type, or package, the
privileges held by the authorization ID of the statement must include at least one
of the following:
v For the table, view, alias, index, distinct type, or package in the statement,

– The ALTER privilege on the table, view, alias, index, distinct type, or package,
and

– The system authority *EXECUTE on the library that contains the table, view,
alias, index, distinct type, or package

v Administrative authority

The authorization ID of the statement has the ALTER privilege on the table, view,
alias, index, distinct type, or package when:
v It is the owner of the table, view, alias, index, distinct type, or package
v It has been granted the ALTER privilege to the table, view, alias, distinct type, or

package, or
v It has been granted the system authorities of either *OBJALTER or *OBJMGT to

the table, view, alias, index, distinct type, or package

To comment on a trigger, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For the subject table of the trigger in the statement:

– The ALTER privilege on the subject table, and
– The system authority *EXECUTE on the library that contains the subject table

v Administrative authority

To comment on a function, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For the SYSFUNCS catalog view:

– The UPDATE privilege on the view
– The system authority *EXECUTE on library QSYS2

v Administrative authority

To comment on a procedure, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For the SYSPROCS catalog view:

– The UPDATE privilege on the view, and
– The system authority *EXECUTE on library QSYS2

v Administrative authority

COMMENT

390 DB2 UDB for iSeries SQL Reference V5R2

To comment on a parameter, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For the SYSPARMS catalog table:

– The UPDATE privilege on the table, and
– The system authority *EXECUTE on library QSYS2

v Administrative authority

The authorization ID of the statement has the UPDATE privilege on a table when
any of these are true:
v It is the owner of the table
v It has been granted the UPDATE privilege on the table
v It has been granted the system authorities of *OBJOPR and *UPD on the table.

COMMENT

Chapter 5. Statements 391

Syntax

�� COMMENT ON �

�

ALIAS alias-name IS string-constant
COLUMN table-name.column-name

view-name.column-name
FUNCTION function-name
ROUTINE ()

,

parameter-type
SPECIFIC FUNCTION specific-name

ROUTINE
INDEX index-name
PACKAGE package-name
PARAMETER routine-name.parameter-name

SPECIFIC FUNCTION specific-name.parameter-name
PROCEDURE
ROUTINE

PROCEDURE procedure-name
ROUTINE ()

,

parameter-type
SPECIFIC PROCEDURE specific-name

ROUTINE
TABLE table-name

view-name
TRIGGER trigger-name

TYPE distinct-type-name
DISTINCT

multiple-columns
multiple-parameters

��

COMMENT

392 DB2 UDB for iSeries SQL Reference V5R2

multiple-columns:

,
COLUMN

table-name (column-name IS string-constant)
view-name

multiple-parameters:

PARAMETER SPECIFIC FUNCTION specific-name
PROCEDURE
ROUTINE

ROUTINE
routine-name

FUNCTION ()
PROCEDURE ,

parameter-type

�

�

,

(parameter-name IS string-constant)

parameter-type:

built-in-type
distinct-type-name AS LOCATOR

COMMENT

Chapter 5. Statements 393

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC ()

NUMERIC integer
, integer

(53)
FLOAT

(1)
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR () FOR BIT DATA

integer FOR SBCS DATA
CHARACTER VARYING () FOR MIXED DATA
CHAR integer CCSID integer

VARCHAR
(1M)

CLOB
CHAR LARGE OBJECT () FOR SBCS DATA AS LOCATOR
CHARACTER LARGE OBJECT integer K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

() CCSID integer
integer

VARGRAPHIC ()
GRAPHIC VARYING integer

(1M)
DBCLOB

() CCSID integer AS LOCATOR
integer K

M
G

(1M)
BLOB
BINARY LARGE OBJECT () AS LOCATOR

integer K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
() CCSID integer

integer
ROWID

Notes:

1 The value that is specified for precision does not have to match the value that was specified when the function
was created because matching is based on data type (REAL or DOUBLE).

COMMENT

394 DB2 UDB for iSeries SQL Reference V5R2

Description
ALIAS alias-name

Identifies the alias to which the comment applies. The name must identify an
alias that exists at the current server.

COLUMN
Specifies that a comment will be added to or replaced for a column.

table-name.column-name or view-name.column-name
Identifies the column to which the comment applies. The table-name or
view-name must identify a table or view that exists at the current server, but
must not identify a global temporary table. The column-name must identify
a column of that table or view.

DISTINCT TYPE distinct-type-name
Identifies the distinct type to which the comment applies. The name must
identify a distinct type that exists at the current server.

FUNCTION
Specifies that a comment will be added to or replaced for a function. Identifies
the function to which the comment applies. You can identify the particular
function by its name, function signature, or specific name. The rules for
function resolution (and the SQL path) are not used.

FUNCTION function-name
The function-name must identify exactly one function that exists at the
current server. The function may have any number of parameters defined
for it. If there is more than one function of the specified name in the
specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
The function-name (parameter-type, ...) must identify a function with the
specified function signature that exists at the current server. The specified
parameters must match the data types, that were specified on the CREATE
FUNCTION statement in the corresponding position. The number of data
types, and the logical concatenation of the data types is used to identify
the specific function instance to which the comment is applied. If
function-name () is specified, the function identified must have zero
parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses.
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match.
v If you use a specific value for a length, precision, or scale attribute,

the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. For example:

COMMENT

Chapter 5. Statements 395

|
|
|
|
|

CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE
TABLE” on page 507.

For data types with a subtype or CCSID attribute, specifying the FOR
DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE FUNCTION statement.

SPECIFIC FUNCTION specific-name
The specific-name must identify a specific function that exists at the current
server.

INDEX
Specifies that a comment will be added to or replaced for an index.

index-name
Identifies the index to which the comment applies. The name must identify
an index that exists at the current server.

PACKAGE
Specifies that a comment will be added to or replaced for a package.

package-name
Identifies the package to which the comment applies. The name must
identify a package that exists at the current server.

PARAMETER
Specifies that a comment will be added to or replaced for a parameter.

routine-name.parameter-name
Identifies the parameter to which the comment applies. The parameter
could be for a procedure or a function. The routine-name must identify a
procedure or function that exists at the current server, and the
parameter-name must identify a parameter of that procedure or function.

specific-name.parameter-name
Identifies the parameter to which the comment applies. The parameter
could be for a procedure or a function. The specific-name must identify a
procedure or function that exists at the current server, and the
parameter-name must identify a parameter of that procedure or function.

PROCEDURE
Specifies that a comment will be added to or replaced for a procedure.
Identifies the procedure to which the comment applies. You can identify the
particular procedure by its name, procedure signature, or specific name. The
rules for procedure resolution (and the SQL path) are not used.

PROCEDURE procedure-name
The procedure-name must identify exactly one procedure that exists at the
current server. The procedure may have any number of parameters defined
for it. If there is more than one procedure of the specified name in the
specified or implicit schema, an error is returned.

COMMENT

396 DB2 UDB for iSeries SQL Reference V5R2

PROCEDURE procedure-name (parameter-type, ...)
The procedure-name (parameter-type, ...) must identify a procedure with the
specified procedure signature that exists at the current server. The specified
parameters must match the data types, that were specified on the CREATE
PROCEDURE statement in the corresponding position. The number of data
types, and the logical concatenation of the data types is used to identify
the specific procedure instance which is to be dropped. If procedure-name ()
is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses.
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match.
v If you use a specific value for a length, precision, or scale attribute,

the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE PROCEDURE statement.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE PROCEDURE statement. For
a complete list of the default lengths of data types, see “CREATE
TABLE” on page 507.

For data types with a subtype or CCSID attribute, specifying the FOR
DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE PROCEDURE statement.

SPECIFIC PROCEDURE specific-name
The specific-name must identify a specific procedure that exists at the
current server.

TABLE table-name or view-name
Identifies the table or view to which the comment applies. The name must
identify a table or view that exists at the current server, but must not identify a
global temporary table.

TRIGGER trigger-name
Identifies the trigger to which the comment applies. The name must identify a
trigger that exists at the current server.

IS
Introduces the comment that to be added.

COMMENT

Chapter 5. Statements 397

|
|
|
|

string-constant
Can be any character-string constant of up to 2000 characters. The constant
may contain SBCS or DBCS characters.

multiple-columns
To comment on more than one column in a table or view, specify the table or view
name and then, in parenthesis, a list of the form:

column-name IS string-constant,
column-name IS string-constant, ...

The column name must not be qualified, each name must identify a column of the
specified table or view, and that table or view must exist at the current server.

multiple-parameters
To comment on more than one parameter in a procedure or function, specify the
procedure name, function name, or specific name, and then, in parenthesis, a list of
the form:

parameter-name IS string-constant,
parameter-name IS string-constant, ...

The parameter name must not be qualified, each name must identify a parameter
of the specified procedure or function, and that procedure or function must exist at
the current server.

Keyword Synonyms
The following keywords are synonyms supported for compatibility to prior
releases. These keywords are non-standard and should not be used:
v The keyword PROGRAM can be used as a synonym for PACKAGE.
v The keyword DATA can be used as a synonym for DISTINCT.

Examples

Example 1
Insert a comment for the EMPLOYEE table.

COMMENT ON TABLE EMPLOYEE
IS ’Reflects first quarter 1981 reorganization’

Example 2
Insert a comment for the EMP_VIEW1 view.

COMMENT ON TABLE EMP_VIEW1
IS ’View of the EMPLOYEE table without salary information’

Example 3
Insert a comment for the EMPNO column of the EMPLOYEE table.

COMMENT ON COLUMN EMPLOYEE.EMPN
IS ’Highest grade level passed in school’

Example 4
Enter comments on two columns in the DEPARTMENT table.

COMMENT ON DEPARTMENT
(MGRNO IS ’EMPLOYEE NUMBER OF DEPARTMENT MANAGER’,
ADMRDEPT IS ’DEPARTMENT NUMBER OF ADMINISTERING DEPARTMENT’)

Example 5
Insert a comment for the CORPDATA.PAYROLL package.

COMMENT ON PACKAGE CORPDATA.PAYROLL
IS ’This package is used for distributed payroll processing.’

COMMENT

398 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

|

COMMIT
The COMMIT statement ends a unit of work and commits the database changes
that were made by that unit of work.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared. It must not be
specified in Java.

COMMIT is not allowed in a trigger if the trigger program and the triggering
program run under the same commitment definition. COMMIT is not allowed in a
procedure if the procedure is called on a remote server.

Authorization
None required.

Syntax

��
WORK

COMMIT
HOLD

��

Description
The COMMIT statement ends the unit of work in which it is executed and starts a
new unit of work. It commits all changes made by SQL schema statements (except
DROP SCHEMA) and SQL data change statements during the unit of work. For
information on SQL schema statements and SQL data change statements see
Table 32 on page 347 and Table 33 on page 348.

Connections in the release-pending state are ended.

WORK
COMMIT WORK has the same effect as COMMIT.

HOLD
Specifies a hold on resources. If specified, currently open cursors are not closed
and all resources acquired during the unit of work are held. Locks on specific
rows and objects implicitly acquired during the unit of work are released.

If HOLD is omitted:
v Cursors opened under this unit of work’s commitment definition are closed

unless the cursors were declared with the WITH HOLD clause.
v Table locks acquired by the LOCK TABLE statement under this unit of

work’s commitment definition are released.

All implicitly acquired locks are released; except for object level locks required for
the cursors that are not closed.

All locators that are not held are released. For more information on held locators,
see “HOLD LOCATOR” on page 652.

COMMIT

Chapter 5. Statements 399

|
|
|
|
|

|
|

Notes
An implicit COMMIT may be performed under some circumstances. However, it is
recommended that an explicit COMMIT or ROLLBACK be issued before the
application ends.
v For the default activation group:

– An implicit COMMIT is not performed when applications that run in the
default activation group end. Interactive SQL, Query Manager, and non-ILE
programs are examples of programs that run in the default activation group.

– In order to commit work, you must issue a COMMIT.
v For non-default activation groups when the scope of the commitment definition

is to the activation group:
– If the activation group ends normally, the commitment definition is implicitly

committed.
– If the activation group ends abnormally, the commitment definition is

implicitly rolled back.
v Regardless of the type of activation group, if the scope of the commitment

definition is the job, an implicit commit is never performed.

A unit of work can include the processing of up to 4 million rows, including rows
retrieved during a SELECT or FETCH statement46, and rows inserted, deleted, or
updated as part of INSERT, DELETE, and UPDATE statements.47

The commit and rollback operations do not affect the DROP SCHEMA statement,
and this statement is not, therefore, allowed in an application program that also
specifies COMMIT(*CHG), COMMIT(*CS), COMMIT(*ALL), or COMMIT(*RR).

The commitment definition used by SQL is determined as follows:
v If the activation group of the program calling SQL is already using an activation

group level commitment definition, then SQL uses that commitment definition.
v If the activation group of the program calling SQL is using the job level

commitment definition, then SQL uses the job level commitment definition.
v If the activation group of the program calling SQL is not currently using a

commitment definition but the job commitment definition is started, then SQL
uses the job commitment definition.

v If the activation group of the program calling SQL is not currently using a
commitment definition and the job commitment definition is not started, then
SQL implicitly starts a commitment definition. SQL uses the Start Commitment
Control (STRCMTCTL) command with:
– A CMTSCOPE(*ACTGRP) parameter
– A LCKLVL parameter based on the COMMIT option specified on either the

CRTSQLxxx, STRSQL, or RUNSQLSTM commands. In REXX, the LCKLVL
parameter is based on the commit option in the SET OPTION statement.

46. This limit also includes:

v Any rows accessed or changed through files opened under commitment control through high-level language file processing

v Any rows deleted, updated, or inserted as a result of a trigger or CASCADE, SET NULL, or SET DEFAULT referential
integrity delete rule.

47. Unless you specified COMMIT(*CHG) or COMMIT(*CS), in which case these rows are not included in this total.

COMMIT

400 DB2 UDB for iSeries SQL Reference V5R2

Example
In a C program, compiled with COMMIT (*CHG), transfer a certain amount of
commission (COMM) from one employee (EMPNO) to another in the EMPLOYEE
table. Subtract the amount from one row and add it to the other. Use the COMMIT
WORK statement to ensure that no permanent changes are made to the database
until both operations are completed successfully.
void main ()

{

EXEC SQL BEGIN DECLARE SECTION;
decimal(5,2) AMOUNT;
char FROM_EMPNO[7];
char TO_EMPNO[7];
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER SQLERROR GOTO SQLERR;
...
EXEC SQL UPDATE EMPLOYEE

SET COMM = COMM - :AMOUNT
WHERE EMPNO = :FROM_EMPNO;

EXEC SQL UPDATE EMPLOYEE
SET COMM = COMM + :AMOUNT
WHERE EMPNO = :TO_EMPNO;

FINISHED:
EXEC SQL COMMIT WORK;
return;

SQLERR:
...
EXEC SQL WHENEVER SQLERROR CONTINUE; /* continue if error on rollback */
EXEC SQL ROLLBACK WORK;
return;

}

COMMIT

Chapter 5. Statements 401

CONNECT (Type 1)
The CONNECT (TYPE 1) statement connects an activation group within an
application process to the identified server using the rules for remote unit of work.
This server is then the current server for the activation group. This type of
CONNECT statement is used if RDBCNNMTH(*RUW) was specified on the
CRTSQLxxx command. Differences between the two types of statements are
described in “CONNECT (Type 1) and CONNECT (Type 2) Differences” on page
857. Refer to “Application-Directed Distributed Unit of Work” on page 28 for more
information about connection states.

Invocation
This statement can only be embedded within an application program or issued
interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in Java or REXX.

CONNECT is not allowed in a trigger, a function, or a procedure if the procedure
is called on a remote server.

Authorization
The privileges held by the authorization ID of the statement must include
communications-level security. (See the section about security in the Distributed
Database Programming book.)

If the server is DB2 UDB for iSeries, the user profile of the person issuing the
statement must also be a valid user profile on the server system, UNLESS:
v User is specified. In this case, the USER clause must specify a valid user profile

on the server system.
v TCP/IP is used with a server authorization entry for the server. In this case, the

server authorization entry must specify a valid user profile on the server system.

Syntax

�� CONNECT
TO server-name authorization

host-variable
RESET

��

authorization:

USER authorization-name USING password
host-variable host variable

Description
TO server-name or host-variable

Identifies the server by the specified server name or the server name contained
in the host variable. If a host variable is specified:
v It must be a character-string variable.
v It must not be followed by an indicator variable.

CONNECT (Type 1)

402 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|

|
|

../ddp/rbal1mst02.htm
../ddp/rbal1mst02.htm

v The server name must be left-justified within the host variable and must
conform to the rules for forming an ordinary identifier.

v If the length of the server name is less than the length of the host variable, it
must be padded on the right with blanks.

If the server-name is a local relational database and an authorization-name is
specified, it must be the authorization-name of the job. If the specified
authorization-name is different than the authorization-name of the job, an error
occurs and the application is left in the unconnected state.

When the CONNECT statement is executed, the specified server name or the
server name contained in the host variable must identify a server described in
the local directory and the activation group must be in the connectable state.

RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the local server
name.

CONNECT with no operand
This form of the CONNECT statement returns information about the current
server and has no effect on connection states, open cursors, prepared
statements, or locks. The information is returned in the SQLCA as described
above.

USER authorization-name or host-variable
Identifies the authorization-name by the specified authorization-name or a
host-variable which contains the authorization name that will be used to start
the remote job.

If a host-variable is specified,
v It must be a character string variable.
v It must not be followed by an indicator variable.
v The authorization name must be left-justified within the host variable and

must conform to the rules of forming an authorization name.
v If the length of the authorization name is less than the length of the host

variable, it must be padded on the right with blanks.

USING password or host-variable
Identifies the password by the specified password or a host-variable, which
contains the password for the authorization-name that will be used to start the
remote job.

If password is specified as a literal, it must be a character string. The
maximum length is 128 characters. It must be left justified.

If a host-variable is specified,
v It must be a character-string variable.
v It must not be followed by an indicator variable.
v The password must be left-justified within the host variable.
v If the length of the password is less than that of the host variable, it must be

padded on the right with blanks.

Notes
Successful connect: If the CONNECT statement is successful:
v All open cursors are closed, all prepared statements are destroyed, and all locks

are released from the current connection.

CONNECT (Type 1)

Chapter 5. Statements 403

|
|

v The activation group is disconnected from all current and dormant connections,
if any, and connected to the identified server.

v The name of the server is placed in the CURRENT SERVER special register.
v Information about the server is placed in the SQLERRP and SQLERRD(4) fields

of the SQLCA. If the server is an IBM relational database product, the
information in the SQLERRP field has the form pppvvrrm, where:
– ppp identifies the product as follows:

ARI for DB2 for VM and VSE
DSN for DB2 UDB for OS/390 and z/OS
QSQ for DB2 UDB for iSeries
SQL for all other DB2 UDB products

– vv is a two-digit version identifier such as '07'
– rr is a two-digit release identifier such as '01'
– m is a one-digit modification level such as '0'

For example, if the server is Version 7 of DB2 UDB for OS/390 and z/OS, the
value of SQLERRP is 'DSN07010'.

The SQLERRD(4) field of the SQLCA contains values indicating whether the
server allows commitable updates to be performed. For a CONNECT (Type 1)
statement SQLERRD(4) will always contain the value 1. The value 1 indicates
that commitable updates can be performed, and the connection:
– Uses an unprotected conversation,48 or
– Is a connection to an application requester driver program using the *RUW

connection method, or
– Is a local connection using the *RUW connection method.

v Additional information about the connection is placed in the SQLERRMC field
of the SQLCA. Refer to Appendix B, “SQL Communication Area” on page 803

Unsuccessful connect: If the CONNECT statement is unsuccessful, the SQLERRP
field of the SQLCA is set to the name of the module at the application requester
that detected the error. Note that the first three characters of the module name
identify the product. For example, if the application requester is DB2 UDB UWO
for NT the first three characters are ’SQL’.

If the CONNECT statement is unsuccessful because the activation group is not in
the connectable state, the connection state of the activation group is unchanged. If
the CONNECT statement is unsuccessful for any other reason:
v The activation group remains in a connectable, but unconnected state
v All open cursors are closed, all prepared statements are destroyed, and all locks

are released from all current and dormant connections.

An application in a connectable but unconnected state can only execute the
CONNECT or SET CONNECTION statements.

Implicit connect:

v When running in the default activation group, the SQL program implicitly
connects to a remote relational database when:
– The activation group is in a connectable state.

48. To reduce the possibility of confusion between network connections and SQL connections, in this book the term ’conversation’
will be used to apply to network connections over TCP/IP as well as over APPC, even though it formally applies only to APPC
connections.

CONNECT (Type 1)

404 DB2 UDB for iSeries SQL Reference V5R2

– The first SQL statement in the first SQL program on the program stack is
executed.

v When running in a non-default activation group, the SQL program implicitly
connects to a remote relational database when the first SQL statement in the first
SQL program for that activation group is executed.

Note: It is a good practice for the first SQL statement executed by an activation
group to be the CONNECT statement.

When APPC is used for connecting to an RDB, implicit connect always sends the
authorization-name of the application requester job and does not send passwords. If
the authorization-name of the server job is different, or if a password must be sent,
an explicit connect statement must be used.

When TCP/IP is used for connecting to an RDB, an implicit connect is not bound
by the above restrictions. Use of the ADDSVRAUTE and other -SVRAUTE
commands allows one to specify, for a given user under which the implicit (or
explicit) CONNECT is done, the remote authorization-name and password to be
used in connecting to a given RDB.

In order for the password to be stored with the ADDSVRAUTE or CHGSVRAUTE
command, the QRETSVRSEC system value must be set to ’1’ rather than the
default of ’0’. When using these commands for DRDA connection, it is very
important to realize that the value of the RDB name entered into the SERVER
parameter must be in UPPER CASE. For more information, see Example 2 under
Type 2 CONNECT.

For more information about implicit connect, refer to the SQL Programming
Concepts book. Once a connection to a relational database for a user profile is
established, the password, if specified, may not be validated again on subsequent
connections to the same relational database with the same user profile.
Revalidation of the password depends on if the conversation is still active. See the
Distributed Database Programming book for more details.

Connection states: For a description of connection states, see “Remote Unit of
Work Connection Management” on page 26. Consecutive CONNECT statements
can be executed successfully because CONNECT does not remove the activation
group from the connectable state.

A CONNECT to either a current or dormant connection in the application group is
executed as follows:
v If the connection identified by the server-name was established using a

CONNECT (Type 1) statement, then no action is taken. Cursors are not closed,
prepared statements are not destroyed, and locks are not released.

v If the connection identified by the server-name was established using a
CONNECT (Type 2) statement, then the CONNECT statement is executed like
any other CONNECT statement.

CONNECT cannot execute successfully when it is preceded by any SQL statement
other than CONNECT, COMMIT, DISCONNECT, SET CONNECTION, RELEASE,
or ROLLBACK. To avoid an error, execute a commit or rollback operation before a
CONNECT statement is executed.

If any previous current or dormant connections were established using protected
conversations, then the CONNECT (Type 1) statement will fail. Either, a

CONNECT (Type 1)

Chapter 5. Statements 405

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../ddp/rbal1mst02.htm

CONNECT (Type 2) statement must be used, or the connections using protected
conversations must be ended by releasing the connections and successfully
committing.

For more information about connecting to a remote relational database and the
local directory, see the SQL Programming Concepts book and the Distributed
Database Programming book.

Examples
For an example of the additional flexibility available in doing connects using the
TCP/IP protocol with DRDA, see Example 2 under the discussion of CONNECT
Type 2. This example applies also to CONNECT Type 1.

Example 1
In a C program, user JOE will connect to the server TOROLAB3. JOE’s password is
XYZ1. Following a successful connection, copy the 3 character product identifier of
the server to the host variable product.
void main ()

{
char product[4] = " ";
EXEC SQL BEGIN DECLARE SECTION ;
char username[11];
char userpass[129];
EXEC SQL END DECLARE SECTION ;
EXEC SQL INCLUDE SQLCA ;

strcpy(username,"JOE");
strcpy(userpass,"XYZ1";
EXEC SQL CONNECT TO TOROLAB3

USER :username USING :userpass;
if (strncmp(SQLSTATE, "00000", 5))

{ strncpy(product,sqlca.sqlerrp,3); }
...
return;
}

CONNECT (Type 1)

406 DB2 UDB for iSeries SQL Reference V5R2

../sqlp/rbafymst02.htm
../ddp/rbal1mst02.htm
../ddp/rbal1mst02.htm

CONNECT (Type 2)
The CONNECT (Type 2) statement connects an activation group within an
application process to the identified server using the rules for application directed
distributed unit of work. This server is then the current server for the activation
group. This type of CONNECT statement is used if RDBCNNMTH(*DUW) was
specified on the CRTSQLxxx command. Differences between the two types of
statements are described in “CONNECT (Type 1) and CONNECT (Type 2)
Differences” on page 857. Refer to “Application-Directed Distributed Unit of Work”
on page 28 for more information about connection states.

Invocation
This statement can only be embedded in an application program or issued
interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in Java or REXX.

CONNECT is not allowed in a trigger, a function, or a procedure if the procedure
is called on a remote server.

Authorization
The privileges held by the authorization ID of the statement must include
communications-level security. (See the section about security in the Distributed
Database Programming book.)

If the server is DB2 UDB for iSeries, the profile ID of the person issuing the
statement must also be a valid user profile on the server system, UNLESS:
v USER is specified. If USER is specified, the USER clause must specify a valid

user profile on the server system.
v TCP/IP is used with a server authorization entry for the server. If this is the

case, the server authorization entry must specify a valid user profile on the
server system.

Syntax

�� CONNECT
TO server-name authorization

host-variable
RESET

��

authorization:

USER authorization-name USING password
host-variable host variable

Description
TO server-name or host-variable

Identifies the server by the specified server name or the server name contained
in the host variable. If a host variable is specified:
v It must be a character-string variable.

CONNECT (Type 2)

Chapter 5. Statements 407

|

|
|
|

|
|

../ddp/rbal1mst02.htm
../ddp/rbal1mst02.htm

v It must not be followed by an indicator variable
v The server name must be left-justified within the host variable and must

conform to the rules for forming an ordinary identifier
v If the length of the server name is less than the length of the host variable, it

must be padded on the right with blanks.

When the CONNECT statement is executed, the specified server name or the
server name contained in the host variable must identify a server described in
the local directory.

Let S denote the specified server name or the server name contained in the
host variable. S must not identify an existing connection of the application
process.

RESET
CONNECT RESET is equivalent to CONNECT TO x where x is the local server
name.

CONNECT with no operand
This form of the CONNECT statement returns information about the current
server and has no effect on connection states, open cursors, prepared
statements, or locks. The information is returned in the fields of the SQLCA as
described above.

In addition, the SQLERRD(3) field of the SQLCA will indicate the status of
connection for this unit of work. It will have one of the following values:
v 1 - commitable updates can be performed on the connection for this unit of

work.
v 2 - No commitable updates can be performed on the connection for this

unit of work.

USER authorization-name or host-variable
Identifies the authorization-name by the specified authorization-name or a
host-variable, which contains the authorization name that will be used to start
the remote job.

If a host-variable is specified,
v It must be a character string variable.
v It must not be followed by an indicator variable. The authorization name

must be left-justified within the host variable and must conform to the rules
of forming an authorization name.

v If the length of the authorization name is less than the length of the host
variable, it must be padded on the right with blanks.

USING password or host-variable
Identifies the password by the specified password or a host-variable, which
contains the password for the authorization-name that will be used to start the
remote job.

If password is specified as a literal, it must be a character string. The
maximum length is 128 characters. It must be left justified.

If a host-variable is specified,
v It must be a character-string variable.
v It must not be followed by an indicator variable.
v The password must be left-justified within the host variable.

CONNECT (Type 2)

408 DB2 UDB for iSeries SQL Reference V5R2

v If the length of the password is less than that of the host variable, it must be
padded on the right with blanks.

Notes
Successful connect: If the CONNECT statement is successful:
v A connection to server S is created and placed in the current and held states.

The previous connection, if any, is placed in the dormant state.
v S is placed in the CURRENT SERVER special register.
v Information about server S is placed in the SQLERRP and SQLERRD(4) fields of

the SQLCA. If the server is an IBM relational database product, the information
in the SQLERRP field has the form pppvvrrm, where:
– ppp identifies the product as follows:

ARI for DB2 for VM and VSE
DSN for DB2 UDB for OS/390 and z/OS
QSQ for DB2 UDB for iSeries
SQL for all other DB2 UDB products

– vv is a two-digit version identifier such as '07'
– rr is a two-digit release identifier such as '01'
– m is a one-digit modification level such as '0'

For example, if the server is Version 7 of DB2 UDB for OS/390 and z/OS, the
value of SQLERRP is 'DSN07010'.

The SQLERRD(4) field of the SQLCA contains values indicating whether server
S allows commitable updates to be performed. Following is a list of values and
their meanings for the SQLERRD(4) field of the SQLCA on the CONNECT:
– 1 - commitable updates can be performed. Conversation is unprotected. 48

– 2 - No commitable updates can be performed. Conversation is unprotected.
– 3 - It is unknown if commitable updates can be performed. Conversation is

protected.
– 4 - It is unknown if commitable updates can be performed. Conversation is

unprotected.
– 5 - It is unknown if commitable updates can be performed. The connection is

either a local connection or a connection to an application requester driver
program.

v Additional information about the connection is placed in the SQLERRMC field
of the SQLCA. Refer to Appendix B, “SQL Communication Area” on page 803.

Unsuccessful connect: If the CONNECT statement is unsuccessful, the connection
state of the activation group and the states of its connections are unchanged.

Implicit connect:Implicit connect will always send the authorization-name of the
application requester job and will not send passwords. If the authorization-name of
the server job is different or if a password must be sent, an explicit connect
statement must be used.

When TCP/IP is used for connecting to an RDB, an implicit connect is not bound
by the above restrictions. Use of the ADDSVRAUTE and other -SVRAUTE
commands allows one to specify, for a given user under which the implicit (or
explicit) CONNECT is done, the remote authorization-name and password to be
used in connecting to a given RDB.

CONNECT (Type 2)

Chapter 5. Statements 409

In order for the password to be stored with the ADDSVRAUTE or CHGSVRAUTE
command, the QRETSVRSEC system value must be set to ’1’ rather than the
default of ’0’. When using these commands for DRDA connection, it is very
important to realize that the value of the RDB name entered into the SERVER
parameter must be in UPPER CASE. For more information, see Example 2 under
Type 2 CONNECT.

For more information about implicit connect, refer to the SQL Programming
Concepts book. Once a connection to a relational database for a user profile is
established, the password, if specified, may not be validated again on subsequent
connections to the same relational database with the same user profile.
Revalidation of the password depends on if the conversation is still active. See the
Distributed Database Programming book for more details.

Examples

Example 1
Execute SQL statements at TOROLAB1 and TOROLAB2. The first CONNECT
statement creates the TOROLAB1 connection and the second CONNECT statement
places it in the dormant state.

EXEC SQL CONNECT TO TOROLAB1;

(execute statements referencing objects at TOROLAB1)

EXEC SQL CONNECT TO TOROLAB2;

(execute statements referencing objects at TOROLAB2)

Example 2
User JOE wants to connect to TOROLAB3 and execute SQL statements under the
user ID ANONYMOUS which has a password of SHIBBOLETH. The RDB
directory entry for TOROLAB3 specifies *IP for the connection type.

Before running the application, some setup must be done.

This command will be required to allow server security information to be retained
in OS/400, if it has not been previously run:

CHGSYSVAL SYSVAL(QRETSVRSEC) VALUE(’1’)

This command adds the required server authorization entry:
ADDSVRAUTE USRPRF(JOE) SERVER(TOROLAB3) USRID(ANONYMOUS) +

PASSWORD(SHIBBOLETH)

This statement, run under JOE’s user profile, will now make the desired
connection:

EXEC SQL CONNECT TO TOROLAB3;
(execute statements referencing objects at TOROLAB3)

CONNECT (Type 2)

410 DB2 UDB for iSeries SQL Reference V5R2

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../ddp/rbal1mst02.htm

CREATE ALIAS
The CREATE ALIAS statement defines an alias on a table, view, or member of a
database file at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The following system authorities:

– *USE to the Create DDM File (CRTDDMF) command
– *EXECUTE, *READ and *ADD to the library into which the alias is created

v Administrative authority

If SQL names are specified and a user profile exists that has the same name as the
library into which the alias is created, and that name is different from the
authorization ID of the statement, then the privileges held by the authorization ID
of the statement must include at least one of the following:
v The system authority *ADD to the user profile with that name
v Administrative authority

Syntax

�� CREATE ALIAS alias-name FOR table-name
view-name (member-name)

��

Description
alias-name

Names the alias. The name, including the implicit or explicit qualifier, must not
be the same as an index, table, view, alias or file that already exists at the
current server.

If SQL names were specified, the alias will be created in the schema specified
by the implicit or explicit qualifier.

If system names were specified, the alias will be created in the schema that is
specified by the qualifier. If not qualified, the alias will be created in the same
schema as the table or view for which the alias was created. If the table is not
qualified and does not exist at the time the alias is created, the alias will be
created in the current library (*CURLIB).

If the alias name is not a valid system name, DB2 UDB for iSeries will generate
a system name. For information on the rules for generating a name, see “Rules
for Table Name Generation” on page 535.

FOR table-name or view-name
Identifies the table or view at the current server for which the alias is to be
defined. An alias name cannot be specified (an alias cannot refer to another
alias).

CREATE ALIAS

Chapter 5. Statements 411

The table-name or view-name need not identify a table or view that exists at the
time the alias is created. If the table or view does not exist when the alias is
created, a warning is returned. If the table or view does not exist when the
alias is used, an error is returned.

If SQL names were specified and the table-name or view-name was not qualified,
then the qualifier is the implicit qualifier. For more information, see “Naming
Conventions” on page 45.

If system names were specified and the table-name or view-name is not qualified
and does not exist when the alias is created, the table-name or view-name is
qualified by the library in which the alias is created.

member-name
Identifies a member of a database file.

If a member is specified, you can only use the alias in data manipulation
(DML) SQL statements. If a member name is not specified, *FIRST is used.

Notes
The Override Database File (OVRDBF) CL command allows the database manager
to process individual members of a database file. Creating an alias over a member
of a database file, however, is easier and performs better by eliminating the need
to perform the override.

An alias can be defined to reference either the system name or SQL name.
However, since system names are generated during create processing, it is
recommended that the SQL name be specified.

Alias attributes: An alias is created as a special form of a DDM file.

An alias created over a distributed table is only created on the current server. For
more information about distributed tables, see the DB2 Multisystem book.

Alias ownership: If SQL names were specified, the owner of the alias is the user
profile with the same name as the schema into which the alias is created.
Otherwise, the owner of the alias is the user profile or group user profile of the job
executing the statement.

If system names were specified, the owner of the alias is the user profile or group
user profile of the job executing the statement.

Alias authority: If SQL names are used, aliases are created with the system
authority of *EXCLUDE on *PUBLIC. If system names are used, aliases are created
with the authority to *PUBLIC as determined by the create authority (CRTAUT)
parameter of the schema.

If the owner of the alias is a member of a group profile (GRPPRF keyword) and
group authority is specified (GRPAUT keyword), that group profile will also have
authority to the alias.

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword SYNONYM can be used as a synonym for ALIAS.

CREATE ALIAS

412 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|

../dbmult/rzaf3mst02.htm

Examples

Example 1
Create an alias named CURRENT_PROJECTS for the PROJECT table.
CREATE ALIAS CURRENT_PROJECTS

FOR PROJECT

Example 2
Create an alias named SALES_JANUARY on the JANUARY member of the SALES
table. The sales table has 12 members (one for each month of the year).
CREATE ALIAS SALES_JANUARY

FOR SALES(JANUARY)

CREATE ALIAS

Chapter 5. Statements 413

CREATE DISTINCT TYPE
The CREATE DISTINCT TYPE statement defines a distinct type at the current
server. The distinct type is always sourced on one of the built-in data types.
Successful execution of the statement also generates functions to cast between the
distinct type and its source type and generates support for the comparison
operators (except for datalinks) for use with the distinct type.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The system authorities *EXECUTE, *READ and *ADD to the library into which

the distinct type is created, and
v Administrative authority

The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the SYSTYPES catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

v Administrative authority

The authorization ID of the statement has the INSERT privilege on a table when:
v It is the owner of the table,
v It has been granted the INSERT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *ADD on the table.

If SQL names are specified and a user profile exists that has the same name as the
library into which the distinct type is created, and that name is different from the
authorization ID of the statement, then the privileges held by the authorization ID
of the statement must include at least one of the following:
v The system authority *ADD to the user profile with that name
v Administrative authority

Syntax

CREATE DISTINCT TYPE

414 DB2 UDB for iSeries SQL Reference V5R2

Description
distinct-type-name

Names the distinct type. The name, including the implicit or explicit qualifier,
must not be the same as a distinct type that already exists at the current server.

If SQL names were specified, the distinct type will be created in the schema
specified by the implicit or explicit qualifier.

�� CREATE
DISTINCT

TYPE distinct-type-name AS built-in-data-type
WITH COMPARISONS

��

built-in-data-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR allocate-clause FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) allocate-clause FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC allocate-clause

(1M)
DBCLOB

(integer) allocate-clause
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer) allocate-clause

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
(integer) allocate-clause CCSID integer

ROWID

CREATE DISTINCT TYPE

Chapter 5. Statements 415

|||||

If system names were specified, the distinct type will be created in the schema
that is specified by the qualifier. If not qualified, the distinct type will be
created in the current library (*CURLIB).

If the distinct type name is not a valid system name, DB2 UDB for iSeries will
generate a system name. For information on the rules for generating a name,
see “Rules for Table Name Generation” on page 535.

distinct-type-name must not be the name of a built-in data type, or any of the
following system-reserved keywords even if you specify them as delimited
identifiers.

= < > >=

<= <> ¬= ¬<
¬< != !< !>

ALL FALSE ONLY TABLE
AND FOR OR THEN
ANY FROM OVERLAPS TRIM

BETWEEN IN PARTITION TRUE
BOOLEAN IS POSITION TYPE

CASE LIKE RRN UNIQUE
CAST MATCH SELECT UNKNOWN

CHECK NODENAME SIMILAR WHEN
DISTINCT NODENUMBER SOME
EXCEPT NOT STRIP
EXISTS NULL SUBSTRING

If a qualified distinct-type-name is specified, the schema name cannot be QSYS,
QSYS2, QTEMP, or SYSIBM.

built-in-data-type
Specifies the data type that is used as the basis for the internal representation
of the distinct type. The data type must be a built-in data type. You can use
any of the built-in data types that are allowed for the CREATE TABLE
statement except for LONG VARCHAR or LONG VARGRAPHIC.

If length, precision, or scale is not explicitly specified, the default attributes of
the data type are implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

If the distinct type is sourced on a string data type, a CCSID is associated with
the distinct data type at the time the distinct type is created. For more
information about data types, see “CREATE TABLE” on page 507.

WITH COMPARISONS
Specifies that system-generated comparison functions are to be created for
comparing two instances of the distinct type. WITH COMPARISONS is the
default. Comparison functions will be generated for all source types with the
exception of a DATALINK whether or not WITH COMPARISONS is
specified.49 For compatibility with other DB2 products, WITH COMPARISONS
should be specified.

49. Service programs are not created for these comparison functions. These comparison functions are not registered in the
SYSROUTINES catalog table.

CREATE DISTINCT TYPE

416 DB2 UDB for iSeries SQL Reference V5R2

|
|

The comparison functions do not support the LIKE predicate. In order to use
the LIKE predicate on a distinct type, it must be cast to a built-in type.

Notes
The successful execution of the CREATE DISTINCT TYPE statement causes the
database manager to generate the following cast functions:
v One function to convert from the distinct type to the source type
v One function to convert from the source type to the distinct type
v One function to convert from INTEGER to the distinct type if the source type is

SMALLINT
v One function to convert from DOUBLE to the distinct type if the source type is

REAL
v One function to convert from VARCHAR to the distinct type if the source type is

CHAR
v One function to convert from VARGRAPHIC to the distinct type if the source

type is GRAPHIC.

The cast functions are created as if the following statements were executed (except
that the service programs are not created, so you cannot grant or revoke privileges
to these functions):
CREATE FUNCTION distinct-type-name (source-type-name)

RETURNS distinct-type-name

CREATE FUNCTION source-type-name (distinct-type-name)
RETURNS source-type-name

Even if you specified a length, precision, or scale for the source data type in the
CREATE DISTINCT TYPE statement, the name of the cast function that converts
from the distinct type to the source type is simply the name of the source data
type. The data type of the value that the cast function returns includes any length,
precision, or scale values that you specified for the source data type. (See Table 43
on page 418.)

The name of the cast function that converts from the source type to the distinct
type is the name of the distinct type. The input parameter of the cast function has
the same data type as the source data type, including the length, precision, and
scale.

The cast functions that are generated are created in the same schema as that of the
distinct type. A function with the same name and same function signature must
not already exist in the current server.

For example, assume that a distinct type named T_SHOESIZE is created with the
following statement:
CREATE DISTINCT TYPE CLAIRE.T_SHOESIZE AS VARCHAR(2) WITH COMPARISONS

When the statement is executed, the database manager also generates the following
cast functions. VARCHAR converts from the distinct type to the source type, and
T_SHOESIZE converts from the source type to the distinct type.
FUNCTION CLAIRE.VARCHAR (CLAIRE.T_SHOESIZE) RETURNS VARCHAR(2)

FUNCTION CLAIRE.T_SHOESIZE (VARCHAR(2) RETURNS CLAIRE.T_SHOESIZE

CREATE DISTINCT TYPE

Chapter 5. Statements 417

|
|
|

|
|
|
|
|

Notice that function VARCHAR returns a value with a data type of VARCHAR(2)
and that function T_SHOESIZE has an input parameter with a data type of
VARCHAR(2).

You cannot explicitly drop a generated cast function. The cast functions that are
generated for a distinct type are implicitly dropped when the distinct type is
dropped with the DROP statement.

For each built-in data type that can be the source data type for a distinct type, the
following table gives the names of the generated cast functions, the data types of
the input parameters, and the data types of the values that the functions returns.

Table 43. CAST Functions on Distinct Types

Source Type Name Function Name Parameter Type Return Type

SMALLINT distinct-type-name SMALLINT distinct-type-name

distinct-type-name INTEGER distinct-type-name

SMALLINT distinct-type-name SMALLINT

INTEGER distinct-type-name INTEGER distinct-type-name

INTEGER distinct-type-name INTEGER

BIGINT distinct-type-name BIGINT distinct-type-name

BIGINT distinct-type-name BIGINT

DECIMAL distinct-type-name DECIMAL(p,s) distinct-type-name

DECIMAL distinct-type-name DECIMAL(p,s)

NUMERIC distinct-type-name NUMERIC(p,s) distinct-type-name

NUMERIC distinct-type-name NUMERIC(p,s)

REAL distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

FLOAT(n) where n
<= 24

distinct-type-name REAL distinct-type-name

distinct-type-name DOUBLE distinct-type-name

REAL distinct-type-name REAL

FLOAT(n) where n >
24

distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

DOUBLE or
DOUBLE
PRECISION

distinct-type-name DOUBLE distinct-type-name

DOUBLE distinct-type-name DOUBLE

CHAR distinct-type-name CHAR(n) distinct-type-name

distinct-type-name VARCHAR(n) distinct-type-name

CHAR distinct-type-name CHAR(n)

VARCHAR distinct-type-name VARCHAR(n) distinct-type-name

VARCHAR distinct-type-name VARCHAR(n)

CLOB distinct-type-name CLOB(n) distinct-type-name

CLOB distinct-type-name CLOB(n)

CREATE DISTINCT TYPE

418 DB2 UDB for iSeries SQL Reference V5R2

Table 43. CAST Functions on Distinct Types (continued)

Source Type Name Function Name Parameter Type Return Type

GRAPHIC distinct-type-name GRAPHIC(n) distinct-type-name

distinct-type-name VARGRAPHIC(n) distinct-type-name

GRAPHIC distinct-type-name GRAPHIC(n)

VARGRAPHIC distinct-type-name VARGRAPHIC(n) distinct-type-name

VARGRAPHIC distinct-type-name VARGRAPHIC(n)

DBCLOB distinct-type-name DBCLOB(n) distinct-type-name

DBCLOB distinct-type-name DBCLOB(n)

BLOB distinct-type-name BLOB(n) distinct-type-name

BLOB distinct-type-name BLOB(n)

DATE distinct-type-name DATE distinct-type-name

DATE distinct-type-name DATE

TIME distinct-type-name TIME distinct-type-name

TIME distinct-type-name TIME

TIMESTAMP distinct-type-name TIMESTAMP distinct-type-name

TIMESTAMP distinct-type-name TIMESTAMP

DATALINK distinct-type-name DATALINK distinct-type-name

DATALINK distinct-type-name DATALINK

ROWID distinct-type-name ROWID distinct-type-name

ROWID distinct-type-name ROWID

Notes:

* Conversion is only supported for UCS-2 graphic.

Only a DATALINK can be cast to a DATALINK type.

NUMERIC and FLOAT are not recommended when creating a distinct type for a
portable application. DECIMAL and DOUBLE should be used instead.

Distinct type attributes: A distinct type is created as a *SQLUDT object.

Distinct type ownership: If SQL names were specified, the owner of the distinct
type is the user profile with the same name as the schema into which the distinct
type is created. Otherwise, the owner of the distinct type is the user profile or
group user profile of the job executing the statement.

If system names were specified, the owner of the distinct type is the user profile or
group user profile of the job executing the statement.

Distinct type authority: If SQL names are used, distinct types are created with the
system authority of *EXCLUDE on *PUBLIC. If system names are used, distinct
types are created with the authority to *PUBLIC as determined by the create
authority (CRTAUT) parameter of the schema.

If the owner of the distinct type is a member of a group profile (GRPPRF keyword)
and group authority is specified (GRPAUT keyword), that group profile will also
have authority to the distinct type.

CREATE DISTINCT TYPE

Chapter 5. Statements 419

||||

||||

|
|
|
|

|
|
|
|

Examples

Example 1
Create a distinct type named SHOESIZE that is sourced on an INTEGER data type.
CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS

The successful execution of this statement also generates two cast functions.
Function INTEGER(SHOESIZE) returns a value with data type INTEGER, and
function SHOESIZE(INTEGER) returns a value with distinct type SHOESIZE.

Example 2
Create a distinct type named MILES that is sourced on a DOUBLE data type.
CREATE DISTINCT TYPE MILES AS DOUBLE WITH COMPARISONS

The successful execution of this statement also generates two cast functions.
Function DOUBLE(MILES) returns a value with data type DOUBLE, and function
MILES(DOUBLE) returns a value with distinct type MILES.

CREATE DISTINCT TYPE

420 DB2 UDB for iSeries SQL Reference V5R2

CREATE FUNCTION
You can use the CREATE FUNCTION statement to create a user-defined function
which is registered at the current server.

The following types of functions can be defined:
v External Scalar

The function is written in a programming language such as C or Java and
returns a scalar value. The external program is referenced by a function defined
at the current server along with various attributes of the function. See “CREATE
FUNCTION (External Scalar)” on page 424.

v External Table
The function is written in a programming language such as C or Java and
returns a set of rows. The external program is referenced by a function defined
at the current server along with various attributes of the function. See “CREATE
FUNCTION (External Table)” on page 440.

v Sourced
The function is implemented by invoking another function (built-in, external,
sourced, or SQL) that already exists at the current server. A sourced function can
return a scalar result, or the result of a column function. See “CREATE
FUNCTION (Sourced)” on page 454. The function inherits attributes of the
underlying source function.

v SQL Scalar
The function is written exclusively in SQL and returns a scalar value. The
function body is defined at the current server along with various attributes of
the function. See “CREATE FUNCTION (SQL Scalar)” on page 461.

v SQL TABLE
The function is written exclusively in SQL and returns a set of rows. The
function body is defined at the current server along with various attributes of
the function. See “CREATE FUNCTION (SQL Table)” on page 469.

Notes

Choosing the Function Name
If a qualified function name is specified, the schema-name cannot be QSYS2, QSYS,
QTEMP, or SYSIBM.

The function name cannot be one of the following names reserved for system use:

= < > >=

<= <> ¬= ¬<
¬< != !> !<

ALL FALSE ONLY TABLE
AND FOR OR THEN
ANY FROM OVERLAPS TRIM

BETWEEN IN PARTITION TRUE
BOOLEAN IS POSITION TYPE

CASE LIKE RRN UNIQUE
CAST MATCH SELECT UNKNOWN

CHECK NODENAME SIMILAR WHEN
DISTINCT NODENUMBER SOME
EXCEPT NOT STRIP
EXISTS NULL SUBSTRING

CREATE FUNCTION

Chapter 5. Statements 421

|

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|

|

|
|
|

|

|
|
|

|
|
|

|

|||||

Choosing Data Types for Input Parameters
When you choose the data types of the input parameters for your function,
consider the rules of promotion that can affect the values of the input parameters
(See “Promotion of Data Types” on page 74). For example, a constant that is one of
the input arguments to the function might have a built-in data type that is
different from the data type that the function expects, and more significantly, might
not be promotable to that expected data type. Based on the rules of promotion, we
recommend using the following data types for parameters:
v INTEGER instead of SMALLINT
v DOUBLE instead of REAL
v VARCHAR instead of CHAR
v VARGRAPHIC instead of GRAPHIC

For portability of functions across platforms that are not DB2 UDB for iSeries, do
not use the following data types, which might have different representations on
different platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying AS LOCATOR for a Parameter
Passing a locator instead of a value can result in fewer bytes being passed in or
out of the function. This can be useful when the value of the parameter is very
large. The AS LOCATOR clause specifies that a locator to the value of the
parameter is passed instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB data type.

The AS LOCATOR clause has no effect on determining whether data types can be
promoted, nor does it affect the function signature, which is used in function
resolution.

AS LOCATOR can not be specified for SQL functions.

Determining the Uniqueness of Functions in a Schema
At the current server, each function signature must be unique. The signature of a
function is the qualified function name combined with the number and data types
of the input parameters. This means that two different schemas can each contain a
function with the same name that have the same data types for all of their
corresponding data types. However, a schema must not contain two functions with
the same name that have the same data types for all of their corresponding data
types.

When determining whether corresponding data types match, the database manager
does not consider any length, precision, scale, or CCSID attributes in the
comparison. The database manager considers the synonyms of data types (REAL
and FLOAT, and DOUBLE and FLOAT) a match. Therefore, CHAR(8) and
CHAR(35) are considered to be the same, as are DECIMAL(11,2) and
DECIMAL(4,3).

Assume that the following statements are executed to create four functions in the
same schema. The second and fourth statements fail because they create functions
that are duplicates of the functions that the first and third statements created.

CREATE FUNCTION

422 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|

|
|
|

|

CREATE FUNCTION PART (INT, CHAR(15) ...
CREATE FUNCTION PART (INTEGER, CHAR(40) ...

CREATE FUNCTION ANGLE (DECIMAL(12,2)) ...
CREATE FUNCTION ANGLE (DEC(10,7)) ...

The Specific Name for a Function
When defining multiple functions with the same name and schema (with different
parameter lists), it is recommended that a specific name also be specified. The
specific name can be used to uniquely identify the function when sourcing on this
function, dropping, granting to, revoking from, or commenting on the function.
However, the function cannot be invoked by its specific name.

If the SPECIFIC clause is not specified, a specific name is generated.

Extending or Overriding a Built-in Function
Giving a user-defined function the same name as a built-in function is not a
recommended practice unless the functionality of the built-in function needs to be
extended or overridden.

Extending the functionality of existing built-in functions: Create the new
user-defined function with the same name as the built-in function, and a unique
function signature. For example, a user-defined function similar to the built-in
function ROUND that accepts the distinct type MONEY as input rather than the
built-in numeric types might be necessary.

In this case, the signature for the new user-defined function named ROUND is
different from all the function signatures supported by the built-in ROUND
function.

Overriding a built-in function: Create the new user-defined function with the
same name and signature as an existing built-in function. The new function has the
same name and data type as the corresponding parameters of the built-in function
but implements different logic. For example, a user-defined function similar to the
built-in function ROUND that uses different rules for rounding than the built-in
ROUND function might be necessary.

In this case, the signature for the new user-defined function named ROUND will
be the same as a signature that is supported by the built-in ROUND function.

Once a built-in function has been overridden, an application that uses the
unqualified function name and was previously successful using the built-in
function of that name might fail, or perhaps even worse, appear to run successfully
but provide a different result if the user-defined function is chosen by the data
base manager rather than the built-in function.

CREATE FUNCTION

Chapter 5. Statements 423

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

CREATE FUNCTION (External Scalar)
This CREATE FUNCTION (External Scalar) statement creates an external scalar
function at the current server. The function returns a single result.

Invocation
You can embed this statement in an application program, or you can issue this
statement interactively. It is an executable statement that can be dynamically
prepared.

Authorization
The privileges held by the authorization id of the statement must include at least
one of the following:
v For the SYSFUNCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

v Administrative Authority

The authorization ID of the statement has the INSERT privilege on a table when:
v It is the owner of the table,
v It has been granted the INSERT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *ADD on the table.

If the external program or service program exists, the privileges held by the
authorization ID of the statement must include at least one of the following:
v For the external program or service program that is referenced in the SQL

statement:
– The system authority *EXECUTE on the library that contains the external

program or service program.
– The system authority *EXECUTE on the external program or service program,

and
– The system authority *CHANGE on the program or service program. The

system needs this authority to update the program object to contain the
information necessary to save/restore the function to another system. If user
does not have this authority, the function is still created, but the program
object is not updated.

v Administrative Authority

If SQL names are specified and a user profile exists that has the same name as the
library into which the function is created, and that name is different from the
authorization ID of the statement, then the privileges held by the authorization ID
of the statement must include at least one of the following:
v The system authority *ADD to the user profile with that name
v Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

CREATE FUNCTION (External Scalar)

424 DB2 UDB for iSeries SQL Reference V5R2

|
|

|

|

|

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

Syntax

�� CREATE FUNCTION function-name

()
,

parameter-declaration

�

� RETURNS data-type2
AS LOCATOR

data-type3 CAST FROM data-type4
AS LOCATOR

option-list ��

parameter-declaration:

data-type1
parameter-name AS LOCATOR

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 425

|||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||

|
|
|

||||||||||||||||||||||

|
|

|

|
|

|

|

|
|

option-list:

EXTERNAL

EXTERNAL NAME external-program-name

PARAMETER STYLE
SQL

PARAMETER STYLE
DB2GENERAL
DB2SQL
GENERAL
GENERAL WITH NULLS
JAVA

�

�
LANGUAGE C

C++
CL
COBOL
COBOLLE
FORTRAN
JAVA
PLI
RPG
RPGLE

SPECIFIC specific-name

NOT DETERMINISTIC

IS
DETERMINISTIC

�

�
READS SQL DATA

NO SQL
CONTAINS SQL
MODIFIES SQL DATA

FENCED

NOT FENCED

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

EXTERNAL ACTION

NO EXTERNAL ACTION
�

�
NO SCRATCHPAD

100
SCRATCHPAD

integer

NO FINAL CALL

FINAL CALL ALLOW PARALLEL
DISALLOW PARALLEL

NO DBINFO

DBINFO
�

�
STATIC DISPATCH

CREATE FUNCTION (External Scalar)

426 DB2 UDB for iSeries SQL Reference V5R2

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
ROWID

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 427

|||||

Description
function-name

Names the user-defined function. The combination of name, schema name, the
number of parameters, and the data type of each parameter (without regard
for any length, precision, scale, or CCSID attributes of the data type) must not
identify a user-defined function that exists at the current server.

For SQL naming, the function will be created in the schema specified by the
implicit or explicit qualifier.

For system naming, the function will be created in the schema that is specified
by the qualifier. If no qualifier is specified, the function will be created in the
current library (*CURLIB). If there is no current library, the function will be
created in QGPL.

In general, more than one function can have the same name if the function
signature of each function is unique.

Certain function names are reserved for system use. For more information see
“Choosing the Function Name” on page 421.

(parameter-declaration,...)
Specifies the number of parameters of the function and the data type of each
parameter. Although not required, you can give each parameter a name.

The maximum number of parameters allowed in CREATE FUNCTION is 90.
For external functions created with PARAMETER STYLE SQL, the input and
result parameters specified and the implicit parameters for indicators,
SQLSTATE, function name, specific name, and message text, as well as any
optional parameters are included. The maximum number of parameters is also
limited by the maximum number of parameters allowed by the licensed
program that is used to compile the external program.

parameter-name
Specifies the name of the input parameter. Do not specify the same name
more than once.

data-type1
Specifies the number of input parameters of the function and the data type
of each input parameter. All the parameters for a function are input
parameters. There must be one entry in the list for each parameter that the
function expects to receive. Although not required, you can give each
parameter a name.

Parameters with a large object (LOB) data type are not supported when
PARAMETER STYLE JAVA is specified.

A function can have no parameters. In this case, you must code an empty
set of parentheses, for example:
CREATE FUNCTION WOOFER()

If a CCSID is specified, the parameter will be converted to that CCSID
prior to passing it to the function. If a CCSID is not specified, the CCSID is
determined by the default CCSID at the current server at the time the
function is invoked.

AS LOCATOR
Specifies that the input parameter is a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the input parameter
has a LOB data type or a distinct type based on a LOB data type.

CREATE FUNCTION (External Scalar)

428 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|

RETURNS
Specifies the output of the function.

data-type2
Specifies the data type and attributes of the output.

You can specify any built-in data type (except LONG VARCHAR, LONG
VARGRAPHIC, or DataLink) or a distinct type (that is not based on a
DataLink).

If a CCSID is specified,
v If AS LOCATOR is not specified, the result returned is assumed to be

encoded in that CCSID.
v If AS LOCATOR is specified and the CCSID of the data the locator

points to is encoded in a different CCSID, the data is converted to the
specified CCSID.

If a CCSID is not specified,
v If AS LOCATOR is not specified, the result returned is assumed to be

encoded in the CCSID of the job (or associated graphic CCSID of the job
for graphic string return values).

v If AS LOCATOR is specified, the data the locator points to is converted
to the CCSID of the job, if the CCSID of the data the locator points to is
encoded in a different CCSID. To avoid any potential loss of characters
during the conversion, consider explicitly specifying a CCSID that can
represent any characters that will be returned from the function. This is
especially important if the data type is graphic string data. In this case,
consider using CCSID 13488 (UCS-2 graphic string data).

data-type3 CAST FROM data-type4
Specifies the data type and attributes of the output (data-type4) and the
data type in which that output is returned to the invoking statement
(data-type3). The two data types can be different. For example, for the
following definition, the function returns a CHAR(10) value, which the
database manager converts to a DATE value and then passes to the
statement that invoked the function:
CREATE FUNCTION GET_HIRE_DATE (CHAR6)

RETURNS DATE CAST FROM CHAR(10)

The value of data-type4 must not be a distinct type and must be castable to
data-type3. The value for data-type3 can be any built-in data type or distinct
type. (For information on casting data types, see “Casting Between Data
Types” on page 75).

For CCSID information, see the description of data-type2 above.

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the output from the
function has a LOB data type or a distinct type based on a LOB data type.

SPECIFIC specific-name
Provides a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another function or procedure that exists at
the current server. If unqualified, the implicit qualifier is the same as the
qualifier of the function name. If qualified, the qualifier must be the same as
the qualifier of the function name.

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 429

If specific name is not specified, it is set to the function name. If a function or
procedure with that specific name already exists, a unique name is generated
similar to the rules used to generate unique table names.

LANGUAGE (language clause)
The language clause specifies the language of the external program.

If LANGUAGE is not specified, the LANGUAGE is determined from the
program attribute information associated with the external program at the time
the function is created. The language of the program is assumed to be C if:
v The program attribute information associated with the program does not

identify a recognizable language
v The program cannot be found

C
The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL or ILE CL.

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

FORTRAN
The external program is written in FORTRAN.

JAVA
The external program is written in JAVA. The database manager will call
the user-defined function, which must be a public static method of the
specified Java class

PLI
The external program is written in PL/I.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the function is deterministic.

NOT DETERMINISTIC
Specifies that the function will not always return the same result from
successive function invocations with identical input arguments. NOT
DETERMINISTIC should be specified if the function contains a reference to
a special register or a non-deterministic function.

DETERMINISTIC
Specifies that the function will always return the same result from
successive invocations with identical input arguments.

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA, or NO SQL
Specifies whether the function can execute any SQL statements and, if so, what
type. The database manager verifies that the SQL issued by the function is
consistent with this specification. See Appendix F, “Characteristics of SQL

CREATE FUNCTION (External Scalar)

430 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|
|
|

|
|
|
|

Statements” on page 845 for a detailed list of the SQL statements that can be
executed under each data access indication.

CONTAINS SQL
The function does not execute SQL statements that read or modify data.

NO SQL
The function does not execute SQL statements.

READS SQL DATA
The function does not execute SQL statements that modify data.

MODIFIES SQL DATA
The function can execute any SQL statement except those statements that
are not supported in any function.

FENCED or NOT FENCED
Specifies whether the function will run in the same thread as the invoking SQL
statement or in a separate thread.

FENCED
The function will run in a separate thread.

NOT FENCED
The function may run in the same thread as the invoking SQL statement.
NOT FENCED functions can keep SQL cursors open across individual calls
to the function. Since cursors can be kept open, the cursor position will
also be preserved between calls to the function.

NULL INPUT
Specifies whether the function needs to be called if an input parameter is
NULL.

CALLED ON NULL INPUT
Always call the function.

RETURNS NULL ON NULL INPUT
The function need not be called if a null value is passed and the output of
the function would be the NULL value.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function contains an external action.

EXTERNAL ACTION
The function performs some external action (outside the scope of the
function program). Thus, the function must be invoked with each
successive function invocation. EXTERNAL ACTION should be specified if
the function contains a reference to another function that has an external
action.

NO EXTERNAL ACTION
The function does not perform an external action. It need not be called
with each successive function invocation.

This parameter implies that the function

SCRATCHPAD
Specifies whether the function requires a static memory area.

SCRATCHPAD integer
Specifies that the function requires a persistent memory area of length
integer. The integer can range from 1 to 16,000,000. If the memory area is
not specified, the size of the area is 100 bytes. If parameter style DB2SQL is

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 431

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|

specified, a pointer is passed following the required parameters that points
to a static storage area. If PARALLEL is specified, a memory area is
allocated for each user-defined function reference in the statement. If
DISALLOW PARALLEL is specified, only 1 memory area will be allocated
for the function.

The scope of a scratchpad is the SQL statement. For each reference to the
function in an SQL statement, there is one scratchpad. For example,
assuming that function UDFX was defined with the SCRATCHPAD
keyword, three scratchpads are allocated for the three references to UDFX
in the following SQL statement:
SELECT A, UDFX(A)

FROM TABLEB
WHERE UDFX(A) > 103 OR UDFX(A) < 19

If the function is run under parallel tasks, one scratchpad is allocated for
each parallel task of each reference to the function in the SQL statement.
This can lead to unpredictable results. For example, if a function uses the
scratchpad to count the number of times that it is invoked, the count
reflects the number of invocations done by the parallel task and not the
SQL statement. Specify the DISALLOW PARALLEL clause for functions
that will not work correctly with parallelism.

SCRATCHPAD is only allowed with PARAMETER STYLE DB2SQL or
PARAMETER STYLE DB2GENERAL.

NO SCRATCHPAD
Specifies that the function does not require a persistent memory area.

FINAL CALL
Specifies whether the function requires special call indication. If PARAMETER
STYLE DB2SQL is specified and FINAL CALL is specified, an additional
parameter is passed to the function indicating first call, normal call, or final
call.

NO FINAL CALL
Specifies that a final call is not made to the function.

FINAL CALL
Specifies that a final call is made to the function. To differentiate between
final calls and other calls, the function receives an additional argument that
specifies the type of call.

FINAL CALL is only allowed with PARAMETER STYLE DB2SQL or
PARAMETER STYLE DB2GENERAL.

The types of calls are:

First Call
Specifies the first call to the function for this reference to the
function in this SQL statement. A first call is a normal call. SQL
arguments are passed and the function is expected to return a
result.

Normal Call
Specifies that SQL arguments are passed and the function is
expected to return a result.

Final Call
Specifies the last call to the function to enable the function to free

CREATE FUNCTION (External Scalar)

432 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|

|
|
|

|
|

resources. A final call is not a normal call. If an error occurs, the
database manager attempts to make the final call.

A final call occurs at these times:
v End of statement: When the cursor is closed for cursor-oriented

statements, or the execution of the statement has completed.
v End of a parallel task: When the function is executed by parallel

tasks.
v End of transaction: When normal end of statement processing

does not occur. For example, the logic of an application, for
some reason, bypasses closing the cursor.

If a commit operation occurs while a cursor defined as WITH
HOLD is open, a final call is made when the cursor is closed or the
application ends. If a commit occurs at the end of a parallel task, a
final call is made regardless of whether a cursor defined as WITH
HOLD is open.

Commitable operations should not be performed during a FINAL CALL,
because the FINAL CALL may occur during a close invoked as part of a
COMMIT operation.

PARALLEL
Specifies whether the function can be run in parallel.

ALLOW PARALLEL
Specifies that the function can be run in parallel.

DISALLOW PARALLEL
Specifies that the function cannot be run in parallel.

The default is DISALLOW PARALLEL, if you specify one or more of the
following clauses:
v NOT DETERMINISTIC
v EXTERNAL ACTION
v FINAL CALL
v MODIFIES SQL DATA
v SCRATCHPAD

Otherwise, ALLOW PARALLEL is the default.

DBINFO
Specifies whether or not the function requires the database information be
passed.

DBINFO
Specifies that the database manager should pass a structure containing
status information to the function. Table 44 contains a description of the
DBINFO structure. Detailed information about the DBINFO structure can
be found in include file SQLUDF in QSYSINC.H.

DBINFO is only allowed with PARAMETER STYLE DB2SQL or
PARAMETER STYLE DB2GENERAL.

Table 44. DBINFO fields

Field Data Type Description

Relational database VARCHAR(128) The name of the current server.

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 433

|
|

|

|
|

|
|

|
|
|

|
|
|
|
|

Table 44. DBINFO fields (continued)

Field Data Type Description

Authorization ID VARCHAR(128) The run-time authorization ID.

CCSID Information INTEGER
INTEGER
INTEGER
INTEGER
CHAR(8)

The CCSID information of the job. The following information
identifies the CCSID:

v SBCS CCSID

v DBCS CCSID

v Mixed CCSID

v Indication of which of the first three CCSIDs is appropriate.

v Reserved

If a CCSID is not explicitly specified for a parameter on the CREATE
FUNCTION statement, the input string is assumed to be encoded in
the CCSID of the job at the time the function is executed. If the CCSID
of the input string is not the same as the CCSID of the parameter, the
input string passed to the external function will be converted before
calling the external program.

Target column VARCHAR(128)
VARCHAR(128)
VARCHAR(128)

If a user-defined function is specified on the right-hand side of a SET
clause in an UPDATE statement, the following information identifies
the target column:

v Schema name

v Base table name

v Column name

If the user-defined function is not on the right-hand side of a SET
clause in an UPDATE statement, these fields are blank.

Version and release CHAR(8) The version, release, and modification level of the database manager.

Platform INTEGER The server’s platform type.

NO DBINFO
Specifies that the function does not require the database information to be
passed.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are statically
dispatched.

EXTERNAL NAME external-program-name
Specifies the program, service program, or java class that will be executed
when the function is invoked in an SQL statement. The name must identify a
program, service program, or java class that exists at the server at the time the
function is invoked. If the naming option is *SYS and the name is not
qualified, the current path will be used to search for the program or service
program at the time the function is invoked.

The validity of the name is checked at the server. If the format of the name is
not correct, an error is returned.

If external-program-name is not specified, the external program name is
assumed to be the same as the function name.

The program, service program, or java class need not exist at the time the
function is created, but it must exist at the time the function is invoked.

A CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT,
ROLLBACK and SET TRANSACTION statement is not allowed in the external
program of the function.

CREATE FUNCTION (External Scalar)

434 DB2 UDB for iSeries SQL Reference V5R2

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

PARAMETER STYLE
Specifies the conventions used for passing parameters to and returning the
values from functions:

SQL
All applicable parameters are passed. The parameters are defined to be in
the following order:
v The first N parameters are the input parameters that are specified on the

CREATE FUNCTION statement.
v A parameter for the result of the function.
v N parameters for indicator variables for the input parameters.
v A parameter for the indicator variable for the result.
v A CHAR(5) output parameter for SQLSTATE. The SQLSTATE returned

indicates the success or failure of the function. The SQLSTATE returned
is an SQLSTATE that is assigned by the external program.
The user may set the SQLSTATE to any valid value in the external
program to return an error or warning from the function.

v A VARCHAR(517) input parameter for the fully qualified function name.
v A VARCHAR(128) input parameter for the specific name.
v A VARCHAR(70) output parameter for the message text.

When control is returned to the invoking program, the message text can
be found in the 6th token of the SQLERRMC field of the SQLCA. Only a
portion of the message text is available. The information on the layout of
the message data in the SQLERRMC, see the replacement data
descriptions for message SQL0443 in message file QSQLMSG.

For more information about the parameters passed, see the include sqludf
in the appropriate source file. For example, for C, sqludf can be found in
QSYSINC/H.

DB2GENERAL
This parameter style is used to specify the conventions for passing
parameters to and returning the value from external functions that are
defined as a method in a Java class. All applicable parameters are passed.
The parameters are defined to be in the following order:
v The first N parameters are the input parameters that are specified on the

CREATE FUNCTION statement.
v A parameter for the result of the function.

DB2GENERAL is only allowed when the LANGUAGE is JAVA.

GENERAL
All applicable parameters are passed. The parameters are defined to be in
the following order:
v The first N parameters are the input parameters that are specified on the

CREATE FUNCTION statement.

Note that the result is returned through as a value of a value returning
function. For example:
return_val func(parameter-1, parameter-2, ...)

GENERAL is only allowed when EXTERNAL NAME identifies a service
program.

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 435

GENERAL WITH NULLS
All applicable parameters are passed. The parameters are defined to be in
the following order:
v The first N parameters are the input parameters that are specified on the

CREATE FUNCTION statement.
v An additional argument is passed for an indicator variable array.
v A parameter for the indicator variable for the result.

Note that the result is returned through as a value of a value returning
function. For example:
return_val func(parameter-1, parameter-2, ...)

GENERAL WITH NULLS is only allowed when EXTERNAL NAME
identifies a service program.

JAVA
This parameter style is specifies a parameter passing convention that
conforms to the Java language and SQLJ routines specification. All
applicable parameters are passed. The parameters are defined to be in the
following order:
v The first N parameters are the input parameters that are specified on the

CREATE FUNCTION statement.

Note that the result is returned through as a value of a value returning
function. For example:
return_val func(parameter-1, parameter-2, ...)

JAVA is only allowed when the LANGUAGE is JAVA.

DB2SQL
All applicable parameters are passed. The parameters are defined to be in
the following order:
v The first N parameters are the input parameters that are specified on the

CREATE FUNCTION statement.
v A parameter for the result of the function.
v N parameters for indicator variables for the input parameters.
v A parameter for the indicator variable for the result.
v A CHAR(5) output parameter for SQLSTATE. The SQLSTATE returned

indicates the success or failure of the function. The SQLSTATE returned
either be:
– the SQLSTATE from the last SQL statement executed in the external

program,
– an SQLSTATE that is assigned by the external program.

The user may set the SQLSTATE to any valid value in the external
program to return an error or warning from the function.

v A VARCHAR(517) input parameter for the fully qualified function name.
v A VARCHAR(128) input parameter for the specific name.
v A VARCHAR(70) output parameter for the message text.
v Zero to three optional parameters:

– A VARCHAR(n) input and output parameter for the scratchpad, if
SCRATCH PAD was specified on the CREATE FUNCTION statement.

– An INTEGER input parameter for the call type, if FINAL CALL was
specified on the CREATE FUNCTION statement.

CREATE FUNCTION (External Scalar)

436 DB2 UDB for iSeries SQL Reference V5R2

– A structure for the dbinfo structure, if DBINFO was specified on the
CREATE FUNCTION statement.

For more information about the parameters passed, see the include sqludf
in the appropriate source file. For example, for C, sqludf can be found in
QSYSINC/H.

Note that language of the external function determines how the parameters are
passed. For example, in C, any VARCHAR or CHAR parameters are passed as
NUL-terminated strings. For more information, see the SQL Programming
Concepts book.

Notes

Creating the Function
When an external function associated with an ILE external program or service
program is created, an attempt is made to save the function’s attributes in the
associated program or service program object. If the *PGM or *SRVPGM object is
saved and then restored to this or another system, the catalogs are automatically
updated with those attributes.

The attributes can be saved for external functions subject to the following
restrictions:
v The external program library must not be SYSIBM, QSYS, or QSYS2.
v The external program must exist when the CREATE FUNCTION statement is

issued.
v The external program must be an ILE *PGM or *SRVPGM object.
v The external program or service program must contain at least one SQL

statement.

If the object cannot be updated, the function will still be created.

During restore of the function:
v If the specific name was specified when the function was originally created and

it is not unique, an error is issued.
v If the specific name was not specified, a unique name is generated if necessary.
v If the signature is not unique, the function cannot be registered, and an error is

issued.

Invoking the Function
When an external function is invoked, it runs in whatever activation group was
specified when the external program or service program was created. However,
ACTGRP(*CALLER) should normally be used so that the function runs in the same
activation group as the calling program. ACTGRP(*NEW) is not allowed.

Notes for Java Functions
To be able to run Java functions, you must have the Developer Kit for Java
(5722-JV1) installed on your system. Otherwise, an SQLCODE of -443 will be
returned and a CPDB521 message will be placed in the job log.

If an error occurs while running a Java procedure, an SQLCODE of -443 will be
returned. Depending on the error, other messages may exist in the job log of the
job where the procedure was run.

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 437

|

|
|
|

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Keyword Synonyms
The following keywords are synonyms supported for compatibility to prior
releases. These keywords are non-standard and should not be used:
v The keywords VARIANT and NOT VARIANT can be used as synonyms for

NOT DETERMINISTIC and DETERMINISTIC.
v The keywords NULL CALL and NOT NULL CALL can be used as synonyms for

CALLED ON NULL INPUT and RETURNS NULL ON NULL INPUT.
v The keywords SIMPLE CALL can be used as a synonym for GENERAL.
v The value DB2GENRL may be used as a synonym for DB2GENERAL.

Example 1
Assume that you want to write an external function service program in C that
implements the following logic:
output = 2 * input - 4

The function should return a null value if and only if one of the input arguments
is null. The simplest way to avoid a function call and get a null result when an
input value is null is to specify RETURNS NULL ON NULL INPUT on the
CREATE FUNCTION statement. The following example, however, includes the
code to return null if the input parameter is null. Write the statement needed to
create the function, using the specific name MINENULL1.
CREATE FUNCTION NTEST1 (INTEGER)

RETURNS INTEGER
EXTERNAL NAME ’MYLIB/NTESTMOD(nudft1)’
SPECIFIC MINENULL1
LANGUAGE C
DETERMINISTIC
NO SQL
PARAMETER STYLE DB2SQL
CALLED ON NULL INPUT
NO EXTERNAL ACTION

The program code:
void nudft1

(int *input, /* ptr to input arg */
int *output, /* ptr to output arg */
short *input_ind, /* ptr to input indicator */
short *output_ind, /* ptr to output indicator */
char sqlstate[6], /* sqlstate */
char fname[140], /* fully qualified function name */
char finst[129], /* function specific name */
char msgtext[71]) /* msg text buffer */

{
if (*input_ind == -1)

*output_ind = -1;
else

{
output = 2(*input)-4;
*output_ind = 0;

}
return;

}

Example 2
Assume that user McBride (who has administrative authority) wants to create an
external function named CENTER in the SMITH schema. McBride plans to give the
function specific name FOCUS98. The function program uses a scratchpad to
perform some initialization and save the results. The function program returns a

CREATE FUNCTION (External Scalar)

438 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|

|
|

|

|

value with a FLOAT data type. Write the statement McBride needs to create the
function and ensure that when the function is invoked, it returns a value with a
data type of DECIMAL(8,4).
CREATE FUNCTION SMITH.CENTER (FLOAT, FLOAT, FLOAT)

RETURNS DECIMAL(8,4) CAST FROM FLOAT
EXTERNAL NAME CMOD
SPECIFIC FOCUS98
LANGUAGE C
DETERMINISTIC
NO SQL
PARAMETER STYLE DB2SQL
RETURNS NULL ON NULL INPUT
NO EXTERNAL ACTION
SCRATCHPAD
NO FINAL CALL

CREATE FUNCTION (External Scalar)

Chapter 5. Statements 439

CREATE FUNCTION (External Table)
This CREATE FUNCTION (External Table) statement creates an external table
function at the current server. The function returns a result table.

A table function may be used in the FROM clause of a SELECT, and returns a table
to the SELECT by returning one row at a time.

Invocation
You can embed this statement in an application program, or you can issue this
statement interactively. It is an executable statement that can be dynamically
prepared.

Authorization
The privileges held by the authorization id of the statement must include at least
one of the following:
v For the SYSFUNCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

v Administrative Authority

The authorization ID of the statement has the INSERT privilege on a table when:
v It is the owner of the table,
v It has been granted the INSERT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *ADD on the table.

If the external program or service program exists, the privileges held by the
authorization ID of the statement must include at least one of the following:
v For the external program or service program that is referenced in the SQL

statement:
– The system authority *EXECUTE on the library that contains the external

program or service program.
– The system authority *EXECUTE on the external program or service program,

and
– The system authority *CHANGE on the program or service program. The

system needs this authority to update the program object to contain the
information necessary to save/restore the function to another system. If user
does not have this authority, the function is still created, but the program
object is not updated.

v Administrative Authority

If SQL names are specified and a user profile exists that has the same name as the
library into which the function is created, and that name is different from the
authorization ID of the statement, then the privileges held by the authorization ID
of the statement must include at least one of the following:
v The system authority *ADD to the user profile with that name
v Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

CREATE FUNCTION (External Table)

440 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

|
|

|

|
|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

|
|

|
|

|
|

|
|
|
|
|

|

|
|
|
|

|

|

|
|

|

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

Syntax

�� CREATE FUNCTION function-name

()
,

parameter-declaration

�

�

,

RETURNS TABLE (column-name data-type2)
AS LOCATOR

option-list ��

parameter-declaration:

data-type1
parameter-name AS LOCATOR

CREATE FUNCTION (External Table)

Chapter 5. Statements 441

|||||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||

|
|
|

||||||||||||||||||||||

|
|

|

|

|

|
|

|

|

|
|

|

|
|||

option-list:

EXTERNAL

EXTERNAL NAME external-program-name

PARAMETER STYLE
DB2GENERAL
DB2SQL

�

�
LANGUAGE C

C++
CL
COBOL
COBOLLE
FORTRAN
JAVA
PLI
RPG
RPGLE

SPECIFIC specific-name

NOT DETERMINISTIC

IS
DETERMINISTIC

�

�
READS SQL DATA

NO SQL
CONTAINS SQL
MODIFIES SQL DATA

FENCED

NOT FENCED

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

EXTERNAL ACTION

NO EXTERNAL ACTION
�

�
NO SCRATCHPAD

100
SCRATCHPAD

integer

NO FINAL CALL

FINAL CALL
DISALLOW PARALLEL

NO DBINFO

DBINFO
�

�
STATIC DISPATCH

CARDINALITY integer

CREATE FUNCTION (External Table)

442 DB2 UDB for iSeries SQL Reference V5R2

|

|||||||||||||||||||||||||||||||||
|

|
||
|

|
||
|

|
|||
|

|
||||||||||||||||||||||

|
|
|

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
ROWID

CREATE FUNCTION (External Table)

Chapter 5. Statements 443

|

||||||||||||||||

|

|

|||

|
|

Description
function-name

Names the user-defined function. The combination of name, schema name, the
number of parameters, and the data type of each parameter (without regard
for any length, precision, scale, or CCSID attributes of the data type) must not
identify a user-defined function that exists at the current server.

For SQL naming, the function will be created in the schema specified by the
implicit or explicit qualifier.

For system naming, the function will be created in the schema that is specified
by the qualifier. If no qualifier is specified, the function will be created in the
current library (*CURLIB). If there is no current library, the function will be
created in QGPL.

In general, more than one function can have the same name if the function
signature of each function is unique.

Certain function names are reserved for system use. For more information see
“Choosing the Function Name” on page 421.

(parameter-declaration,...)
Specifies the number of parameters of the function and the data type of each
parameter. Although not required, you can give each parameter a name.

The maximum number of parameters allowed in CREATE FUNCTION
(External Table) is 90. The maximum number of parameters may be
additionally limited by the maximum number of parameters allowed by the
licensed program that is used to compile the external program.

parameter-name
Specifies the name of the input parameter. Do not specify the same name
more than once.

data-type1
Specifies the number of input parameters of the function and the data type
of each input parameter. All the parameters for a function are input
parameters. There must be one entry in the list for each parameter that the
function expects to receive. Although not required, you can give each
parameter a name.

Parameters with a large object (LOB) data type are not supported when
PARAMETER STYLE JAVA is specified.

A function can have no parameters. In this case, you must code an empty
set of parentheses, for example:
CREATE FUNCTION WOOFER()

If a CCSID is specified, the parameter will be converted to that CCSID
prior to passing it to the function. If a CCSID is not specified, the CCSID is
determined by the default CCSID at the current server at the time the
function is invoked.

AS LOCATOR
Specifies that the input parameter is a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the input parameter
has a LOB data type or a distinct type based on a LOB data type.

RETURNS TABLE
Specifies the output table of the function.

CREATE FUNCTION (External Table)

444 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|
|
|

|
|
|
|

|
|

Assume the number of parameters is N. For PARAMETER STYLE
DB2GENERAL, there must be no more than (255-(N*2))/2 columns. For
PARAMETER STYLE DB2SQL, there must be no more than (247-(N*2))/2
columns.

column-name
Specifies the name of a column of the output table. Do not specify the
same name more than once.

data-type2
Specifies the data type and attributes of the output.

You can specify any built-in data type (except LONG VARCHAR, LONG
VARGRAPHIC, or DataLink) or a distinct type (that is not based on a
DataLink).

If a DATE or TIME is specified, the table function must return the date or
time in ISO format.

If a CCSID is specified,
v If AS LOCATOR is not specified, the result returned is assumed to be

encoded in that CCSID.
v If AS LOCATOR is specified and the CCSID of the data the locator

points to is encoded in a different CCSID, the data is converted to the
specified CCSID.

If a CCSID is not specified,
v If AS LOCATOR is not specified, the result returned is assumed to be

encoded in the CCSID of the job (or associated graphic CCSID of the job
for graphic string return values).

v If AS LOCATOR is specified, the data the locator points to is converted
to the CCSID of the job, if the CCSID of the data the locator points to is
encoded in a different CCSID. To avoid any potential loss of characters
during the conversion, consider explicitly specifying a CCSID that can
represent any characters that will be returned from the function. This is
especially important if the data type is graphic string data. In this case,
consider using CCSID 13488 (UCS-2 graphic string data).

AS LOCATOR
Specifies that the function returns a locator to the value for the column
rather than the actual value. You can specify AS LOCATOR only for a
LOB data type or a distinct type based on a LOB data type.

SPECIFIC specific-name
Provides a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another function or procedure that exists at
the current server. If unqualified, the implicit qualifier is the same as the
qualifier of the function name. If qualified, the qualifier must be the same as
the qualifier of the function name.

If specific name is not specified, it is set to the function name. If a function or
procedure with that specific name already exists, a unique name is generated
similar to the rules used to generate unique table names.

LANGUAGE (language clause)
The language clause specifies the language of the external program.

CREATE FUNCTION (External Table)

Chapter 5. Statements 445

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

If LANGUAGE is not specified, the LANGUAGE is determined from the
program attribute information associated with the external program at the time
the function is created. The language of the program is assumed to be C if:
v The program attribute information associated with the program does not

identify a recognizable language
v The program cannot be found

C
The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL or ILE CL.

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

FORTRAN
The external program is written in FORTRAN.

JAVA
The external program is written in JAVA. The database manager will call
the user-defined function as a method in a Java class.

PLI
The external program is written in PL/I.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the function is deterministic.

NOT DETERMINISTIC
Specifies that the function will not always return the same result from
successive function invocations with identical input arguments. NOT
DETERMINISTIC should be specified if the function contains a reference to
a special register or a non-deterministic function.

DETERMINISTIC
Specifies that the function will always return the same result from
successive invocations with identical input arguments.

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA, or NO SQL
Specifies whether the function can execute any SQL statements and, if so, what
type. The database manager verifies that the SQL issued by the function is
consistent with this specification. See Appendix F, “Characteristics of SQL
Statements” on page 845 for a detailed list of the SQL statements that can be
executed under each data access indication.

CONTAINS SQL
The function does not execute SQL statements that read or modify data.

NO SQL
The function does not execute SQL statements.

CREATE FUNCTION (External Table)

446 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

READS SQL DATA
The function does not execute SQL statements that modify data.

MODIFIES SQL DATA
The function can execute any SQL statement except those statements that
are not supported in any function.

FENCED or NOT FENCED
Specifies whether the function will run in the same thread as the invoking SQL
statement or in a separate thread.

FENCED
The function will run in a separate thread. FENCED is the safest option if
the function contains SQL cursors, because multiple invocations of the
same function in the same SQL statement may conflict with each other.

NOT FENCED
The function may run in the same thread as the invoking SQL statement.
NOT FENCED functions can keep SQL cursors open across individual calls
to the function. Since cursors can be kept open, the cursor position will
also be preserved between calls to the function.

NULL INPUT
Specifies whether the function needs to be called if an input parameter is
NULL.

CALLED ON NULL INPUT
Always call the function.

RETURNS NULL ON NULL INPUT
If at table function OPEN time, any of the function’s arguments are null,
then the user-defined table function is not called and the output of the
function is an empty table (a table with no rows).

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function contains an external action.

EXTERNAL ACTION
The function performs some external action (outside the scope of the
function program). Thus, the function must be invoked with each
successive function invocation. EXTERNAL ACTION should be specified if
the function contains a reference to another function that has an external
action.

NO EXTERNAL ACTION
The function does not perform an external action. It need not be called
with each successive function invocation.

SCRATCHPAD
Specifies whether the function requires a static memory area.

SCRATCHPAD integer
Specifies that the function requires a persistent memory area of length
integer. The integer can range from 1 to 16,000,000. If the memory area is
not specified, the size of the area is 100 bytes. If parameter style DB2SQL is
specified, a pointer is passed following the required parameters that points
to a static storage area. Only 1 memory area will be allocated for the
function.

The scope of a scratchpad is the SQL statement. For each reference to the
function in an SQL statement, there is one scratchpad. For example,

CREATE FUNCTION (External Table)

Chapter 5. Statements 447

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

assuming that function UDFX was defined with the SCRATCHPAD
keyword, two scratchpads are allocated for the two references to UDFX in
the following SQL statement:
SELECT A.C1, B.C1

FROM TABLE(UDFX(:hv1)) AS A, TABLE(UDFX(:hv1)) AS B

NO SCRATCHPAD
Specifies that the function does not require a persistent memory area.

FINAL CALL
Specifies whether the function requires a final call (and a separate first call).
For table functions, the call-type argument is ALWAYS present, regardless of
which FINAL CALL option is chosen. The call-type argument indicates first
call, open call, fetch call, close call, or final call.

FINAL CALL
Specifies that the function requires a final call (and a separate first call). It
also controls when the scratchpad is re-initialized. If NO FINAL CALL is
specified, then the database manager can only make three types of calls to
the table function: open, fetch and close. However, if FINAL CALL is
specified, then in addition to open, fetch and close, a first call and a final
call can be made to the table function.Specifies that a final call is made to
the function. To differentiate between final calls and other calls, the
function receives an additional argument that specifies the type of call.

The types of calls are:

First Call
Specifies the first call to the function for this reference to the
function in this SQL statement.

Open Call
Specifies a call to open the table function result in this SQL
statement.

Fetch Call
Specifies a call to fetch a row from the table function in this SQL
statement.

Close Call
Specifies a call to close the table function result in this SQL
statement.

Final Call
Specifies the last call to the function to enable the function to free
resources. If an error occurs, the database manager attempts to
make the final call.

A final call occurs at these times:
v End of statement: When the cursor is closed for cursor-oriented

statements, or the execution of the statement has completed.
v End of transaction: When normal end of statement processing

does not occur. For example, the logic of an application, for
some reason, bypasses closing the cursor.

If a commit operation occurs while a cursor defined as WITH
HOLD is open, a final call is made when the cursor is closed or the
application ends.

CREATE FUNCTION (External Table)

448 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|

Commitable operations should not be performed during a FINAL CALL,
because the FINAL CALL may occur during a close invoked as part of a
COMMIT operation.

NO FINAL CALL
Specifies that the function does not require a final call (and a separate first
call). However the open, fetch, and close calls are still made.

DISALLOW PARALLEL
Specifies that the function cannot be run in parallel. Table functions cannot run
in parallel.

DBINFO
Specifies whether or not the function requires the database information be
passed.

DBINFO
Specifies that the database manager should pass a structure containing
status information to the function. Table 45 contains a description of the
DBINFO structure. Detailed information about the DBINFO structure can
be found in include file SQLUDF in QSYSINC.H.

Table 45. DBINFO fields

Field Data Type Description

Relational database VARCHAR(128) The name of the current server.

Authorization ID VARCHAR(128) The run-time authorization ID.

CCSID Information INTEGER
INTEGER
INTEGER
INTEGER
CHAR(8)

The CCSID information of the job. The following information
identifies the CCSID:

v SBCS CCSID

v DBCS CCSID

v Mixed CCSID

v Indication of which of the first three CCSIDs is appropriate.

v Reserved

If a CCSID is not explicitly specified for a parameter on the CREATE
FUNCTION statement, the input string is assumed to be encoded in
the CCSID of the job at the time the function is executed. If the CCSID
of the input string is not the same as the CCSID of the parameter, the
input string passed to the external function will be converted before
calling the external program.

Target column VARCHAR(128)
VARCHAR(128)
VARCHAR(128)

If a user-defined function is specified on the right-hand side of a SET
clause in an UPDATE statement, the following information identifies
the target column:

v Schema name

v Base table name

v Column name

If the user-defined function is not on the right-hand side of a SET
clause in an UPDATE statement, these fields are blank.

Version and release CHAR(8) The version, release, and modification level of the database manager.

Platform INTEGER The server’s platform type.

Number of table
function column list
entries

SMALLINT The number of non-zero entries in the table function column list
specified in the ″Table function column list″ field below.

Reserved CHAR(24) Reserved for future use.

CREATE FUNCTION (External Table)

Chapter 5. Statements 449

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

||

|||

|||

|||

||
|
|
|
|

|
|

|

|

|

|

|

|
|
|
|
|
|

||
|
|

|
|
|

|

|

|

|
|

|||

|||

|
|
|

||
|

|||

Table 45. DBINFO fields (continued)

Field Data Type Description

Table function column
list

Pointer (16 Bytes) This field is a pointer to an array of short integers which is
dynamically allocated by the database manager. Only the first n
entries, where n is specified in the ″Number of table function column
list entries″ field, are of interest, n may be equal to 0, and is less than
or equal to the number of result columns defined for the function in
the RETURNS TABLE clause. The values correspond to the ordinal
numbers of the columns which this statement needs from the table
function. A value of 1 means the first defined result column, 2 means
the second defined result column, and so on. The values may be in
any order. Note that n could be equal to zero for a statement that is
similar to SELECT COUNT(*) FROM TABLE(TF(...)) AS QQ, where no
actual column values are needed by the query.

This array represents an opportunity for optimization. The function
need not return all values for all the result columns of the table
function. Only a subset of the values may be needed in a particular
context, and these are the columns identified (by number) in the array.
Since this optimization may complicate the function logic, the function
can choose to return every defined column.

NO DBINFO
Specifies that the function does not require the database information to be
passed.

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows to be
returned by the function for optimization purposes. Valid values for integer
range from 0 to 2 147 483 647 inclusive.

If the CARDINALITY clause is not specified for a table function, the database
manager will assume a finite value as a default.

Warning: If a function does in fact have infinite cardinality, i.e. it returns a row
every time it is called and never returns the end-of-table condition, then
queries which require the end-of-table condition will also be infinite and will
have to be interrupted. Examples of such queries are those involving GROUP
BY and ORDER BY. The user is advised to not write such UDFs.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are statically
dispatched.

EXTERNAL NAME external-program-name
Specifies the program, service program, or java class that will be executed
when the function is invoked in an SQL statement. The name must identify a
program, service program, or java class that exists at the server at the time the
function is invoked. If the naming option is *SYS and the name is not
qualified, the current path will be used to search for the program or service
program at the time the function is invoked.

The validity of the name is checked at the server. If the format of the name is
not correct, an error is returned.

If external-program-name is not specified, the external program name is
assumed to be the same as the function name.

The program, service program, or java class need not exist at the time the
function is created, but it must exist at the time the function is invoked.

CREATE FUNCTION (External Table)

450 DB2 UDB for iSeries SQL Reference V5R2

|

|||

|
|
||
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

A CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT,
ROLLBACK and SET TRANSACTION statement is not allowed in the external
program of the function.

PARAMETER STYLE
Specifies the conventions used for passing parameters to and returning the
values from functions:

DB2GENERAL
This parameter style is used to specify the conventions for passing
parameters to and returning the value from external functions that are
defined as a method in a Java class. All applicable parameters are passed.
The parameters are defined to be in the following order:
v The first N parameters are the input parameters that are specified on the

CREATE FUNCTION statement.
v The next M parameters are the result columns of the function that are

specified on the RETURNS TABLE clause.

DB2GENERAL is only allowed when the LANGUAGE is JAVA.

DB2SQL
All applicable parameters are passed. The parameters are defined to be in
the following order:
v The first N parameters are the input parameters that are specified on the

CREATE FUNCTION statement.
v The next M parameters are the result columns of the function that are

specified on the RETURNS TABLE clause.
v N parameters for indicator variables for the input parameters.
v M parameters for the indicator variables of the result columns of the

function that are specified on the RETURNS TABLE clause
v A CHAR(5) output parameter for SQLSTATE. The SQLSTATE returned

indicates the success or failure of the function. The SQLSTATE returned
either be:
– the SQLSTATE from the last SQL statement executed in the external

program,
– an SQLSTATE that is assigned by the external program.

The user may set the SQLSTATE to any valid value in the external
program to return an error or warning from the function.

v A VARCHAR(517) input parameter for the fully qualified function name.
v A VARCHAR(128) input parameter for the specific name.
v A VARCHAR(70) output parameter for the message text.
v A VARCHAR(n) input and output parameter for the scratchpad, if

SCRATCH PAD was specified on the CREATE FUNCTION statement.
v An INTEGER input parameter for the call type.
v A structure for the dbinfo structure, if DBINFO was specified on the

CREATE FUNCTION statement.

For more information about the parameters passed, see the include sqludf
in the appropriate source file. For example, for C, sqludf can be found in
QSYSINC/H.

CREATE FUNCTION (External Table)

Chapter 5. Statements 451

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|

|

|
|

|

|

|

|
|

|

|
|

|
|
|

Note that language of the external function determines how the parameters are
passed. For example, in C, any VARCHAR or CHAR parameters are passed as
NUL-terminated strings. For more information, see the SQL Programming
Concepts book.

Notes

Creating the Function
When an external function associated with an ILE external program or service
program is created, an attempt is made to save the function’s attributes in the
associated program or service program object. If the *PGM or *SRVPGM object is
saved and then restored to this or another system, the catalogs are automatically
updated with those attributes.

The attributes can be saved for external functions subject to the following
restrictions:
v The external program library must not be SYSIBM, QSYS, or QSYS2.
v The external program must exist when the CREATE FUNCTION statement is

issued.
v The external program must be an ILE *PGM or *SRVPGM object.
v The external program or service program must contain at least one SQL

statement.

If the object cannot be updated, the function will still be created.

During restore of the function:
v If the specific name was specified when the function was originally created and

it is not unique, an error is issued.
v If the specific name was not specified, a unique name is generated if necessary.
v If the signature is not unique, the function cannot be registered, and an error is

issued.

Invoking the Function
When an external function is invoked, it runs in whatever activation group was
specified when the external program or service program was created. However,
ACTGRP(*CALLER) should normally be used so that the function runs in the same
activation group as the calling program. ACTGRP(*NEW) is not allowed.

Notes for Java Functions
To be able to run Java functions, you must have the Developer Kit for Java
(5722-JV1) installed on your system. Otherwise, an SQLCODE of -443 will be
returned and a CPDB521 message will be placed in the job log.

If an error occurs while running a Java procedure, an SQLCODE of -443 will be
returned. Depending on the error, other messages may exist in the job log of the
job where the procedure was run.

Keyword Synonyms
The following keywords are synonyms supported for compatibility to prior
releases. These keywords are non-standard and should not be used:
v The keywords VARIANT and NOT VARIANT can be used as synonyms for

NOT DETERMINISTIC and DETERMINISTIC.
v The keywords NULL CALL and NOT NULL CALL can be used as synonyms for

CALLED ON NULL INPUT and RETURNS NULL ON NULL INPUT.
v The value DB2GENRL may be used as a synonym for DB2GENERAL.

CREATE FUNCTION (External Table)

452 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|

|
|
|
|
|
|

|
|

|

|
|

|

|
|

|

|

|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Example 1
The following creates a table function written to return a row consisting of a single
document identifier column for each known document in a text management
system. The first parameter matches a given subject area and the second parameter
contains a given string.

Within the context of a single session, the UDF will always return the same table,
and therefore it is defined as DETERMINISTIC. Note the RETURNS clause which
defines the output from DOCMATCH. FINAL CALL must be specified for each
table function. In addition, the DISALLOW PARALLEL keyword is added as table
functions cannot operate in parallel. Although the size of the output for
DOCMATCH is highly variable, CARDINALITY 20 is a representative value, and
is specified to help the optimizer.
CREATE FUNCTION DOCMATCH (VARCHAR(30), VARCHAR(255))

RETURNS TABLE (DOCID CHAR(16))
EXTERNAL NAME ’MYLIB/RAJIV(UDFMATCH)’
LANGUAGE C
PARAMETER STYLE DB2SQL
NO SQL
DETERMINISTIC
NO EXTERNAL ACTION
NOT FENCED
SCRATCHPAD
FINAL CALL
DISALLOW PARALLEL
CARDINALITY 20

CREATE FUNCTION (External Table)

Chapter 5. Statements 453

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

CREATE FUNCTION (Sourced)
This CREATE FUNCTION statement is used to create a user-defined function,
based on another existing scalar or column function, at the current server.

Invocation
You can embed this statement in an application program, or you can issue this
statement interactively. It is an executable statement that can be dynamically
prepared.

Authorization
The privileges held by the authorization id of the statement must include at least
one of the following:
v For the SYSFUNCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

v Administrative authority

The authorization ID of the statement has the INSERT privilege on a table when:
v It is the owner of the table,
v It has been granted the INSERT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *ADD on the table.

If the source function is a user-defined function, the authorization ID of the
statement must include at least one of the following for the source function:
v The EXECUTE privilege on the function
v Administrative authority

The authorization ID of the statement has the EXECUTE privilege on a function
when:
v It is the owner of the function,
v It has been granted the EXECUTE privilege on the function, or
v It has been granted the system authorities of *OBJOPR and *EXECUTE on the

function.

To create a sourced function, the privileges held by the authorization ID of the
statement must also include at least one of the following:
v The following system authorities:

– *USE to the Create Service Program (CRTSRVPGM) command or
– *USE to the Create Program (CRTPGM) command
– *EXECUTE and *ADD to the library into which the function is created.

v Administrative authority

If SQL names are specified and a user profile exists that has the same name as the
library into which the function is created, and that name is different from the
authorization ID of the statement, then the privileges held by the authorization ID
of the statement must include at least one of the following:
v The system authority *ADD to the user profile with that name
v Administrative authority

CREATE FUNCTION (Sourced)

454 DB2 UDB for iSeries SQL Reference V5R2

|

|

|

|

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

Syntax

�� CREATE FUNCTION function-name

()
,

parameter-declaration

�

�
(1)

RETURNS data-type
AS LOCATOR SPECIFIC specific-name

�

�

SOURCE function-name
SPECIFIC specific-name
function-name ()

,

parameter-type2

��

parameter-declaration:

data-type1
parameter-name AS LOCATOR

data-type:

built-in-type
distinct-type-name

Notes:

1 The RETURNS, SPECIFIC, and SOURCE clauses can be specified in any order.

CREATE FUNCTION (Sourced)

Chapter 5. Statements 455

|
|

|

|

|

|

|
|

|

|

|
|

Description
function-name

Names the user-defined function. The combination of name, schema name, the

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
(integer) CCSID integer

ROWID

CREATE FUNCTION (Sourced)

456 DB2 UDB for iSeries SQL Reference V5R2

|||||

number of parameters, and the data type of each parameter (without regard
for any length, precision, scale, or CCSID attributes of the data type) must not
identify a user-defined function that exists at the current server.

For SQL naming, the function will be created in the schema specified by the
implicit or explicit qualifier.

For system naming, the function will be created in schema that is specified by
the qualifier. If no qualifier is specified, the function will be created in the
current library (*CURLIB). If there is no current library, the function will be
created in QGPL.

If the function is sourced on an existing function to enable the use of the
existing function with a distinct type, the name can be the same name as the
existing function. In general, more than one function can have the same name
if the function signature of each function is unique.

Certain function names are reserved for system use. For more information see
“Choosing the Function Name” on page 421.

(parameter-declaration,...)
Specifies the number of parameters of the function and the data type of each
parameter. Although not required, you can give each parameter a name.

parameter-name
Specifies the name of the input parameter. Do not specify the same name
more than once.

data-type1
Specifies the number of input parameters of the function and the data type
of each input parameter. All the parameters for a function are input
parameters. There must be one entry in the list for each parameter that the
function expects to receive. Although not required, you can give each
parameter a name. DataLinks are not allowed for external functions.

A function can have no parameters. In this case, you must code an empty
set of parentheses, for example:
CREATE FUNCTION WOOFER()

If a CCSID is specified, the parameter will be converted to that CCSID
prior to passing it to the function. If a CCSID is not specified, the CCSID is
determined by the default CCSID at the current server at the time the
function is invoked.

AS LOCATOR
Specifies that the input parameter is a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the input parameter
has a LOB data type or a distinct type based on a LOB data type.

RETURNS
Specifies the output of the function.

data-type
Specifies the data type and attributes of the output.

You can specify any built-in data type (except LONG VARCHAR, LONG
VARGRAPHIC, or a DataLink) or distinct type (that is not based on a
DataLink), provided it is castable from the result type of the source
function. (For information on casting data types, see “Casting Between
Data Types” on page 75)

CREATE FUNCTION (Sourced)

Chapter 5. Statements 457

|
|

AS LOCATOR
Specifies that the function returns a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the output from the
function has a LOB data type or a distinct type based on a LOB data type.
The AS LOCATOR clause is not allowed for functions sourced on SQL
functions.

SPECIFIC specific-name
Provides a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another function or procedure that exists at
the current server. If unqualified, the implicit qualifier is the same as the
qualifier of the function name. If qualified, the qualifier must be the same as
the qualifier of the function name.

If specific name is not specified, it is set to the function name. If a function or
procedure with that specific name already exists, a unique name is generated
similar to the rules used to generate unique table names.

SOURCE
Specifies that the function that you are creating is a sourced function. A
sourced function is implemented by another function (the source function). The
source function can be any built-in scalar or column function except
COALESCE, HASH, IFNULL, LAND, LOR, MAX, MIN, NODENAME,
NODENUMBER, NULLIF, PARTITION, POSITION, RRN, STRIP, SUBSTRING,
TRIM, VALUE, and XOR, or any previously created user-defined function. It
can be a system-generated user-defined function (generated when a distinct
type was created).

The source function can be one of the following built-in functions only if one
argument is specified: BLOB, CHAR, CLOB, DBCLOB, DECIMAL, GRAPHIC,
TRANSLATE, VARCHAR, VARGRAPHIC, and ZONED.

If you base the sourced function directly or indirectly on a scalar function, the
sourced function inherits the attributes of the scalar function. This can involve
several layers of sourced functions. For example, assume that function A is
sourced on function B, which in turn is sourced on function C. Function C is a
scalar function. Functions A and B inherit all of the attributes that are specified
on CREATE FUNCTION statement for function C.

If unqualified, the default schema is used to locate the function.

FUNCTION function-name
The function-name must identify exactly one function that exists at the
current server. The function may have any number of parameters defined
for it. If there is more than one function of the specified name in the
specified or implicit schema, an error is returned.

Most built-in functions are defined to accept multiple data types as input
parameters. To use one of these as a source, the parameter types must be
specified.

FUNCTION function-name (parameter-type2, ...)
The function-name (parameter-type2, ...) must identify a function with the
specified function signature that exists at the current server. The specified
parameters must match the data types that were specified on the CREATE
FUNCTION statement in the corresponding position. The number of data
types, and the logical concatenation of the data types is used to identify
the specific function instance which is to be used as the source function.

CREATE FUNCTION (Sourced)

458 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision or scale attribute, you can
specify a value or use a set of empty parentheses.
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match.
v If you use a specific value for a length, precision, or scale attribute, the

value must exactly match the value that was specified (implicitly or
explicitly) in the CREATE FUNCTION statement.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type is
implied. For more information about the default attributes see “CREATE
TABLE” on page 507.

For data types with a subtype or CCSID attribute, specifying the FOR
DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when
determining whether the data types match. If you specify either clause, it
must match the value that was implicitly or explicitly specified in the
CREATE FUNCTION statement.

SPECIFIC specific-name
The specific-name must identify a specific function that exists at the current
server.

The number of input parameters in the function that is being created must be the
same as the number of parameters in the source function. If the data type of each
input parameter is not the same as or castable to the corresponding parameter of
the source function, an error occurs. The data type of the final result of the source
function must match or be castable to the result of the sourced function.

If a CCSID is specified and the CCSID of the return data is encoded in a different
CCSID, the data is converted to the specified CCSID.

If a CCSID is not specified the return data is converted to the CCSID of the job (or
associated graphic CCSID of the job for graphic string return values), if the CCSID
of the return data is encoded in a different CCSID. To avoid any potential loss of
characters during the conversion, consider explicitly specifying a CCSID that can
represent any characters that will be returned from the function. This is especially
important if the data type is graphic string data. In this case, consider using CCSID
13488 (UCS-2 graphic string data).

Notes
When a sourced function is created, a small service program object is created that
represents the function. When this service program is saved and restored to
another system, the attributes from the CREATE FUNCTION statement are
automatically added to the catalog on that system.

Any attributes specified on the source function are propagated to the new sourced
function (for example, PARAMETER STYLE, STATIC DISPATCH, etc.).

CREATE FUNCTION (Sourced)

Chapter 5. Statements 459

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

Example 1
Assume that you created a distinct type HATSIZE which is based on the built-in
INTEGER data type. Create an AVG function to compute the average hat size of
different departments.
EXEC SQL

CREATE FUNCTION AVG (HATSIZE) RETURNS HATSIZE
SOURCE AVG (INTEGER);

Example 2
After Smith registered the external scalar function CENTER in his schema, you
decide that you want to use this function, but you want it to accept two INTEGER
arguments instead of one INTEGER argument and one FLOAT argument. Create a
sourced function that is based on CENTER.
EXEC SQL

CREATE FUNCTION MYCENTERG (INTEGER, INTEGER)
RETURNS FLOAT
SOURCE SMITH.CENTER (INTEGER, FLOAT);

CREATE FUNCTION (Sourced)

460 DB2 UDB for iSeries SQL Reference V5R2

CREATE FUNCTION (SQL Scalar)
This CREATE FUNCTION (SQL Scalar) statement creates an SQL function at the
current server. The function returns a single result.

Invocation
You can embed this statement in an application program, or you can issue this
statement interactively. It is an executable statement that can be dynamically
prepared.

Authorization
The privileges held by the authorization id of the statement must include at least
one of the following:
v For the SYSFUNCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

v Administrative Authority

The authorization ID of the statement has the INSERT privilege on a table when:
v It is the owner of the table,
v It has been granted the INSERT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *ADD on the table.

The privileges held by the authorization ID of the statement must also include at
least one of the following:
v The following system authorities:

– *USE to the Create Service Program (CRTSRVPGM) command or
– *EXECUTE and *ADD to the library into which the function is created.

v Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

Syntax

CREATE FUNCTION (SQL Scalar)

Chapter 5. Statements 461

|

|

|

|
|

|

|

|

|

|
|

|

|

|
|

�� CREATE FUNCTION function-name

()
,

parameter-declaration

RETURNS data-type2 �

� LANGUAGE SQL option-list SQL-routine-body
SET OPTION-statement

��

parameter-declaration:

parameter-name data-type1

option-list:

SPECIFIC specific-name

NOT DETERMINISTIC

IS
DETERMINISTIC

READS SQL DATA

CONTAINS SQL
MODIFIES SQL DATA

FENCED

NOT FENCED
�

�
CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

EXTERNAL ACTION

NO EXTERNAL ACTION ALLOW PARALLEL
DISALLOW PARALLEL

STATIC DISPATCH

SQL-routine-body:

SQL-control-statement

CREATE FUNCTION (SQL Scalar)

462 DB2 UDB for iSeries SQL Reference V5R2

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
(integer) CCSID integer

ROWID

CREATE FUNCTION (SQL Scalar)

Chapter 5. Statements 463

|||||

Description
function-name

Names the user-defined function. The combination of name, schema name, the
number of parameters, and the data type of each parameter (without regard
for any length, precision, scale, or CCSID attributes of the data type) must not
identify a user-defined function that exists at the current server.

For SQL naming, the function will be created in the schema specified by the
implicit or explicit qualifier.

For system naming, the function will be created in the schema that is specified
by the qualifier. If no qualifier is specified, the function will be created in the
current library (*CURLIB). If there is no current library, the function will be
created in QGPL.

In general, more than one function can have the same name if the function
signature of each function is unique.

Certain function names are reserved for system use. For more information see
“Choosing the Function Name” on page 421.

(parameter-declaration,...)
Specifies the number of parameters of the function and the data type of each
parameter. Although not required, you can give each parameter a name.

The maximum number of parameters allowed is 90.

parameter-name
Specifies the name of the input parameter. Do not specify the same name
more than once. A parameter name must be specified for parameters in
SQL functions.

data-type1
Specifies the number of input parameters of the function and the data type
of each input parameter. All the parameters for a function are input
parameters. There must be one entry in the list for each parameter that the
function expects to receive.

A function can have no parameters. In this case, you must code an empty
set of parentheses, for example:
CREATE FUNCTION WOOFER()

If a CCSID is specified, the parameter will be converted to that CCSID
prior to passing it to the function. If a CCSID is not specified, the CCSID is
determined by the default CCSID at the current server at the time the
function is invoked.

RETURNS
Specifies the output of the function.

data-type2
Specifies the data type and attributes of the output.

You can specify any built-in data type (except LONG VARCHAR, or
LONG VARGRAPHIC) or a distinct type.

If a CCSID is specified and the CCSID of the return data is encoded in a
different CCSID, the data is converted to the specified CCSID.

If a CCSID is not specified the return data is converted to the CCSID of the
job (or associated graphic CCSID of the job for graphic string return
values), if the CCSID of the return data is encoded in a different CCSID. To

CREATE FUNCTION (SQL Scalar)

464 DB2 UDB for iSeries SQL Reference V5R2

|
|

|

avoid any potential loss of characters during the conversion, consider
explicitly specifying a CCSID that can represent any characters that will be
returned from the function. This is especially important if the data type is
graphic string data. In this case, consider using CCSID 13488 (UCS-2
graphic string data).

SPECIFIC specific-name
Provides a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another function or procedure that exists at
the current server. If unqualified, the implicit qualifier is the same as the
qualifier of the function name. If qualified, the qualifier must be the same as
the qualifier of the function name.

If specific name is not specified, it is set to the function name. If a function or
procedure with that specific name already exists, a unique name is generated
similar to the rules used to generate unique table names.

LANGUAGE SQL
Specifies that this is an SQL function.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the function is deterministic.

NOT DETERMINISTIC
Specifies that the function will not always return the same result from
successive function invocations with identical input arguments. NOT
DETERMINISTIC should be specified if the function contains a reference to
a special register or a non-deterministic function.

DETERMINISTIC
Specifies that the function will always return the same result from
successive invocations with identical input arguments.

CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA
Specifies whether the function can execute any SQL statements and, if so, what
type. The database manager verifies that the SQL issued by the function is
consistent with this specification. See Appendix F, “Characteristics of SQL
Statements” on page 845 for a detailed list of the SQL statements that can be
executed under each data access indication.

CONTAINS SQL
The function does not execute SQL statements that read or modify data.

READS SQL DATA
The function does not execute SQL statements that modify data.

MODIFIES SQL DATA
The function can execute any SQL statement except those statements that
are not supported in any function.

FENCED or NOT FENCED
Specifies whether the function will run in the same thread as the invoking SQL
statement or in a separate thread.

FENCED
The function will run in a separate thread. FENCED is the safest option if
the function contains SQL cursors, because multiple invocations of the
same function in the same SQL statement may conflict with each other.

NOT FENCED
The function may run in the same thread as the invoking SQL statement.

CREATE FUNCTION (SQL Scalar)

Chapter 5. Statements 465

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

NOT FENCED functions can keep SQL cursors open across individual calls
to the function. Since cursors can be kept open, the cursor position will
also be preserved between calls to the function.

NULL INPUT
Specifies whether the function needs to be called if an input parameter is
NULL.

CALLED ON NULL INPUT
Always call the function.

RETURNS NULL ON NULL INPUT
The function need not be called if a null value is passed and the output of
the function would be the NULL value.

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function contains an external action.

EXTERNAL ACTION
The function performs some external action (outside the scope of the
function program). Thus, the function must be invoked with each
successive function invocation. EXTERNAL ACTION should be specified if
the function contains a reference to another function that has an external
action.

NO EXTERNAL ACTION
The function does not perform an external action. It need not be called
with each successive function invocation.

PARALLEL
Specifies whether the function can be run in parallel.

ALLOW PARALLEL
Specifies that the function can be run in parallel.

DISALLOW PARALLEL
Specifies that the function cannot be run in parallel.

The default is DISALLOW PARALLEL, if you specify one or more of the
following clauses:
v NOT DETERMINISTIC
v EXTERNAL ACTION
v MODIFIES SQL DATA

Otherwise, ALLOW PARALLEL is the default.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are statically
dispatched.

SET OPTION-statement
Specifies the options that will be used to create the function. For example, to
create a debuggable function, the following statement could be included:
SET OPTION DBGVIEW = *STMT

For more information, see “SET OPTION” on page 715.

The options CLOSQLCSR, CNULRQD, DFTRDBCOL, DYNDFTCOL, and
NAMING are not allowed in the CREATE FUNCTION statement.

CREATE FUNCTION (SQL Scalar)

466 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|

|

|
|

SQL-routine-body
Specifies a single SQL statement, including a compound statement. See
Chapter 6, “SQL Control Statements” on page 759 for more information about
defining SQL functions.

A call to a procedure that issues a CONNECT, SET CONNECTION, RELEASE,
DISCONNECT, COMMIT, ROLLBACK and SET TRANSACTION statement is
not allowed in a function.

If the SQL-routine-body is a compound statement, it must contain at least one
RETURN statement and a RETURN statement must be executed when the
function is called.

Notes
Function ownership: If SQL names were specified, the owner of the function is the
user profile with the same name as the schema into which the function is created.
Otherwise, the owner of the function is the user profile or group user profile of the
job executing the statement.

If system names were specified, the owner of the function is the user profile or
group user profile of the job executing the statement.

Function authority: If SQL names are used, functions are created with the system
authority of *EXCLUDE on *PUBLIC. If system names are used, functions are
created with the authority to *PUBLIC as determined by the create authority
(CRTAUT) parameter of the schema.

If the owner of the function is a member of a group profile (GRPPRF keyword)
and group authority is specified (GRPAUT keyword), that group profile will also
have authority to the function.

Creating the Function
When an SQL function is created, the database manager creates a temporary source
file that will contain C source code with embedded SQL statements. A *SRVPGM
object is then created using the CRTSRVPGM command. The SQL options used to
create the service program are the options that are in effect at the time the
CREATE FUNCTION statement is executed. The service program is created with
ACTGRP(*CALLER).

The specific name is used to determine the name of the source file member and
*SRVPGM object. If the specific name is a valid system name, it will used as the
name of member and program. If the member already exists, it will be overlaid. If
a program already exists in the specified library, a unique name is generated using
the rules for generating system table names. If the specific name is not a valid
system name, a unique name is generated using the rules for generating system
table names.

The function’s attributes are saved in the associated service program object. If the
*SRVPGM object is saved and then restored to this or another system, the catalogs
are automatically updated with those attributes.

During restore of the function:
v If the specific name was specified when the function was originally created and

it is not unique, an error is issued.
v If the specific name was not specified, a unique name is generated if necessary.

CREATE FUNCTION (SQL Scalar)

Chapter 5. Statements 467

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

v If the signature is not unique, the function cannot be registered, and an error is
issued.

Identifier Resolution
If the tables specified in a routine body exist, all references in the routine body of
an SQL routine are resolved to identify a particular column, SQL parameter, or
SQL variable at the time the SQL routine is created. If the tables do not exist, all
names that exist as SQL variables or parameters are resolved to identify the
variable or parameter when the function is created. The remaining names are
assumed to be columns bound to the tables when the function is invoked.

If duplicate names are used for columns and SQL variables and parameters,
qualify the duplicate names by using the table designator for columns, the function
name for parameters, and the label name for SQL variables.

Invoking the Function
When an SQL function is invoked, it runs in the activation group of the calling
program.

If a function is specified in the select-list of a select-statement and if the function
specifies EXTERNAL ACTION or MODIFIES SQL DATA, the function will only be
invoked for each row returned. Otherwise, the UDF may be invoked for rows that
are not selected.

Keyword Synonyms
The following keywords are synonyms supported for compatibility to prior
releases. These keywords are non-standard and should not be used:
v The keywords VARIANT and NOT VARIANT can be used as synonyms for

NOT DETERMINISTIC and DETERMINISTIC.
v The keywords NULL CALL and NOT NULL CALL can be used as synonyms for

CALLED ON NULL INPUT and RETURNS NULL ON NULL INPUT.

Example 1
Create the SQL function NTEST1 to implement the rule:
output = 2 * input - 4

CREATE FUNCTION NTEST1 (p_input INTEGER)
RETURNS INTEGER
LANGUAGE SQL
SPECIFIC MINENULL1
func1_lab:

BEGIN
DECLARE p_output INT;
IF p_input IS NULL THEN

SET p_output = NULL;
ELSE

SET p_output = 2 * p_input - 4;
END IF;
RETURN p_output;
END

CREATE FUNCTION (SQL Scalar)

468 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|

|
|

CREATE FUNCTION (SQL Table)
This CREATE FUNCTION (SQL table) statement creates an SQL table function at
the current server. The function returns a single result table.

Invocation
You can embed this statement in an application program, or you can issue this
statement interactively. It is an executable statement that can be dynamically
prepared.

Authorization
The privileges held by the authorization id of the statement must include at least
one of the following:
v For the SYSFUNCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

v Administrative Authority

The authorization ID of the statement has the INSERT privilege on a table when:
v It is the owner of the table,
v It has been granted the INSERT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *ADD on the table.

The privileges held by the authorization ID of the statement must also include at
least one of the following:
v The following system authorities:

– *USE to the Create Service Program (CRTSRVPGM) command or
– *EXECUTE and *ADD to the library into which the function is created.

v Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

Syntax

CREATE FUNCTION (SQL Table)

Chapter 5. Statements 469

|

|
|

|

|
|
|

|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|
|

|

|
|

�� CREATE FUNCTION function-name

()
,

parameter-declaration

�

�

,

RETURNS TABLE (column-name data-type2) �

� LANGUAGE SQL option-list SQL-routine-body
SET OPTION-statement

��

parameter-declaration:

parameter-name data-type1

option-list:

SPECIFIC specific-name

NOT DETERMINISTIC

IS
DETERMINISTIC

READS SQL DATA

CONTAINS SQL
MODIFIES SQL DATA

FENCED

NOT FENCED
�

�
CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

EXTERNAL ACTION

NO EXTERNAL ACTION
DISALLOW PARALLEL �

�
CARDINALITY integer

STATIC DISPATCH

SQL-routine-body:

SQL-control-statement

CREATE FUNCTION (SQL Table)

470 DB2 UDB for iSeries SQL Reference V5R2

|||||||||||||||||||||||
|

|
||||||||||||||||||||
|

|
|||||||||||||||||||

|
|

|

|||||||||||
|
|
|

|||
|

|
||||||||||||||||||||||||||||||||||||
|

|
||||||||||||||||||||||

|
|
|

|||||||||
|
|

||||

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
(integer) CCSID integer

ROWID

CREATE FUNCTION (SQL Table)

Chapter 5. Statements 471

|

||||||||||||||||

|

|

|||

|
|

Description
function-name

Names the user-defined function. The combination of name, schema name, the
number of parameters, and the data type of each parameter (without regard
for any length, precision, scale, or CCSID attributes of the data type) must not
identify a user-defined function that exists at the current server.

For SQL naming, the function will be created in the schema specified by the
implicit or explicit qualifier.

For system naming, the function will be created in the schema that is specified
by the qualifier. If no qualifier is specified, the function will be created in the
current library (*CURLIB). If there is no current library, the function will be
created in QGPL.

In general, more than one function can have the same name if the function
signature of each function is unique.

Certain function names are reserved for system use. For more information see
“Choosing the Function Name” on page 421.

(parameter-declaration,...)
Specifies the number of parameters of the function and the data type of each
parameter. Although not required, you can give each parameter a name.

The maximum number of parameters allowed is 90.

parameter-name
Specifies the name of the input parameter. Do not specify the same name
more than once. A parameter name must be specified for parameters in
SQL functions.

data-type1
Specifies the number of input parameters of the function and the data type
of each input parameter. All the parameters for a function are input
parameters. There must be one entry in the list for each parameter that the
function expects to receive.

A function can have no parameters. In this case, you must code an empty
set of parentheses, for example:
CREATE FUNCTION WOOFER()

If a CCSID is specified, the parameter will be converted to that CCSID
prior to passing it to the function. If a CCSID is not specified, the CCSID is
determined by the default CCSID at the current server at the time the
function is invoked.

RETURNS TABLE
Specifies the output table of the function.

Assume the number of parameters is N. There must be no more than
(247-(N*2))/2 columns.

column-name
Specifies the name of a column of the output table. Do not specify the
same name more than once.

data-type2
Specifies the data type and attributes of the output.

You can specify any built-in data type (except LONG VARCHAR, or
LONG VARGRAPHIC) or a distinct type.

CREATE FUNCTION (SQL Table)

472 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|

If a CCSID is specified and the CCSID of the return data is encoded in a
different CCSID, the data is converted to the specified CCSID.

If a CCSID is not specified the return data is converted to the CCSID of the
job (or associated graphic CCSID of the job for graphic string return
values), if the CCSID of the return data is encoded in a different CCSID. To
avoid any potential loss of characters during the conversion, consider
explicitly specifying a CCSID that can represent any characters that will be
returned from the function. This is especially important if the data type is
graphic string data. In this case, consider using CCSID 13488 (UCS-2
graphic string data).

SPECIFIC specific-name
Provides a unique name for the function. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another function or procedure that exists at
the current server. If unqualified, the implicit qualifier is the same as the
qualifier of the function name. If qualified, the qualifier must be the same as
the qualifier of the function name.

If specific name is not specified, it is set to the function name. If a function or
procedure with that specific name already exists, a unique name is generated
similar to the rules used to generate unique table names.

LANGUAGE SQL
Specifies that this is an SQL function.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the function is deterministic.

NOT DETERMINISTIC
Specifies that the function will not always return the same result from
successive function invocations with identical input arguments. NOT
DETERMINISTIC should be specified if the function contains a reference to
a special register or a non-deterministic function.

DETERMINISTIC
Specifies that the function will always return the same result from
successive invocations with identical input arguments.

CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA
Specifies whether the function can execute any SQL statements and, if so, what
type. The database manager verifies that the SQL issued by the function is
consistent with this specification. See Appendix F, “Characteristics of SQL
Statements” on page 845 for a detailed list of the SQL statements that can be
executed under each data access indication.

CONTAINS SQL
The function does not execute SQL statements that read or modify data.

READS SQL DATA
The function does not execute SQL statements that modify data.

MODIFIES SQL DATA
The function can execute any SQL statement except those statements that
are not supported in any function.

FENCED or NOT FENCED
Specifies whether the function will run in the same thread as the invoking SQL
statement or in a separate thread.

CREATE FUNCTION (SQL Table)

Chapter 5. Statements 473

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|

FENCED
The function will run in a separate thread. FENCED is the safest option if
the function contains SQL cursors, because multiple invocations of the
same function in the same SQL statement may conflict with each other.

NOT FENCED
The function may run in the same thread as the invoking SQL statement.
NOT FENCED functions can keep SQL cursors open across individual calls
to the function. Since cursors can be kept open, the cursor position will
also be preserved between calls to the function.

NULL INPUT
Specifies whether the function needs to be called if an input parameter is
NULL.

CALLED ON NULL INPUT
Always call the function.

RETURNS NULL ON NULL INPUT
If at table function OPEN time, any of the function’s arguments are null,
then the user-defined table function is not called and the output of the
function is an empty table (a table with no rows.)

EXTERNAL ACTION or NO EXTERNAL ACTION
Specifies whether the function contains an external action.

EXTERNAL ACTION
The function performs some external action (outside the scope of the
function program). Thus, the function must be invoked with each
successive function invocation. EXTERNAL ACTION should be specified if
the function contains a reference to another function that has an external
action.

NO EXTERNAL ACTION
The function does not perform an external action. It need not be called
with each successive function invocation.

DISALLOW PARALLEL
Specifies that the function cannot be run in parallel. Table functions cannot run
in parallel.

CARDINALITY integer
This optional clause provides an estimate of the expected number of rows to be
returned by the function for optimization purposes. Valid values for integer
range from 0 to 2 147 483 647 inclusive.

If the CARDINALITY clause is not specified for a table function, the database
manager will assume a finite value as a default.

STATIC DISPATCH
Specifies that the function is dispatched statically. All functions are statically
dispatched.

SET OPTION-statement
Specifies the options that will be used to create the function. For example, to
create a debuggable function, the following statement could be included:
SET OPTION DBGVIEW = *STMT

For more information, see “SET OPTION” on page 715.

The options CLOSQLCSR, CNULRQD, DFTRDBCOL, DYNDFTCOL, and
NAMING are not allowed in the CREATE FUNCTION statement.

CREATE FUNCTION (SQL Table)

474 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|

|

|
|

SQL-routine-body
Specifies a single SQL statement, including a compound statement. See
Chapter 6, “SQL Control Statements” on page 759 for more information about
defining SQL functions.

A call to a procedure that issues a CONNECT, SET CONNECTION, RELEASE,
DISCONNECT, COMMIT, ROLLBACK and SET TRANSACTION statement is
not allowed in a function.

If the SQL-routine-body is a compound statement, it must contain exactly one
RETURN statement and it must be executed when the function is called.

Notes
Function ownership: If SQL names were specified, the owner of the function is the
user profile with the same name as the schema into which the function is created.
Otherwise, the owner of the function is the user profile or group user profile of the
job executing the statement.

If system names were specified, the owner of the function is the user profile or
group user profile of the job executing the statement.

Function authority: If SQL names are used, functions are created with the system
authority of *EXCLUDE on *PUBLIC. If system names are used, functions are
created with the authority to *PUBLIC as determined by the create authority
(CRTAUT) parameter of the schema.

If the owner of the function is a member of a group profile (GRPPRF keyword)
and group authority is specified (GRPAUT keyword), that group profile will also
have authority to the function.

Creating the Function
When an SQL function is created, the database manager creates a temporary source
file that will contain C source code with embedded SQL statements. A *SRVPGM
object is then created using the CRTSRVPGM command. The SQL options used to
create the service program are the options that are in effect at the time the
CREATE FUNCTION statement is executed. The service program is created with
ACTGRP(*CALLER).

The specific name is used to determine the name of the source file member and
*SRVPGM object. If the specific name is a valid system name, it will used as the
name of member and program. If the member already exists, it will be overlaid. If
a program already exists in the specified library, a unique name is generated using
the rules for generating system table names. If the specific name is not a valid
system name, a unique name is generated using the rules for generating system
table names.

The function’s attributes are saved in the associated service program object. If the
*SRVPGM object is saved and then restored to this or another system, the catalogs
are automatically updated with those attributes.

During restore of the function:
v If the specific name was specified when the function was originally created and

it is not unique, an error is issued.
v If the specific name was not specified, a unique name is generated if necessary.
v If the signature is not unique, the function cannot be registered, and an error is

issued.

CREATE FUNCTION (SQL Table)

Chapter 5. Statements 475

|
|
|
|

|
|
|

|
|

|

|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

|

|
|

Identifier Resolution
If the tables specified in a routine body exist, all references in the routine body of
an SQL routine are resolved to identify a particular column, SQL parameter, or
SQL variable at the time the SQL routine is created. If the tables do not exist, all
names that exist as SQL variables or parameters are resolved to identify the
variable or parameter when the function is created. The remaining names are
assumed to be columns bound to the tables when the function is invoked.

If duplicate names are used for columns and SQL variables and parameters,
qualify the duplicate names by using the table designator for columns, the function
name for parameters, and the label name for SQL variables.

Invoking the Function
When an SQL function is invoked, it runs in the activation group of the calling
program.

Keyword Synonyms
The following keywords are synonyms supported for compatibility to prior
releases. These keywords are non-standard and should not be used:
v The keywords VARIANT and NOT VARIANT can be used as synonyms for

NOT DETERMINISTIC and DETERMINISTIC.
v The keywords NULL CALL and NOT NULL CALL can be used as synonyms for

CALLED ON NULL INPUT and RETURNS NULL ON NULL INPUT.

Example
Define a table function that returns the employees in a specified department
number.
CREATE FUNCTION DEPTEMPLOYEES (DEPTNO CHAR(3))

RETURNS TABLE (EMPNO CHAR(6),
LASTNAME VARCHAR(15),
FIRSTNAME VARCHAR(12))

LANGUAGE SQL
READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
DISALLOW PARALLEL
RETURN

SELECT EMPNO,LASTNAME,FIRSTNME
FROM EMPLOYEE
WHERE EMPLOYEE.WORKDEPT =DEPTEMPLOYEES.DEPTNO

CREATE FUNCTION (SQL Table)

476 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

CREATE INDEX
The CREATE INDEX statement creates an index on a table at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The following system authorities:

– *USE to the Create Logical File (CRTLF) command
– *EXECUTE and *ADD to the library into which the index is created
– *CHANGE to the data dictionary if the library into which the index is created

is an SQL schema with a data dictionary
v Administrative authority

The privileges held by the authorization ID of the statement must also include at
least one of the following:
v The INDEX privilege on the table
v Administrative authority

The authorization ID of the statement has the INDEX privilege on the table when:
v It is the owner of the table,
v It has been granted the INDEX or ALTER privilege to the table, or
v It has been granted the system authorities of either *OBJALTER or *OBJMGT to

the table

If SQL names are specified and a user profile exists that has the same name as the
library into which the table is created, and that name is different from the
authorization ID of the statement, then the privileges held by the authorization ID
of the statement must include at least one of the following:
v The system authority *ADD to the user profile with that name
v Administrative authority

Syntax

�� CREATE
UNIQUE

WHERE NOT NULL
ENCODED VECTOR

INDEX index-name �

�

,
ASC

ON table-name (column-name)
DESC

�

CREATE INDEX

Chapter 5. Statements 477

�
DISTINCT

WITH integer VALUES

��

Description
UNIQUE

Prevents the table from containing two or more rows with the same value of
the index key. The constraint is enforced when rows of the table are updated
or new rows are inserted.

The constraint is also checked during the execution of the CREATE INDEX
statement. If the table already contains rows with duplicate key values, the
index is not created.

When UNIQUE is used, null values are treated as any other values. For
example, if the key is a single column that can contain null values, that column
can contain no more than one null value.

UNIQUE WHERE NOT NULL
Prevents the table from containing two or more rows with the same nonnull
value of the index key. Multiple null values are allowed; otherwise, this is
identical to UNIQUE.

ENCODED VECTOR
Specifies that the resulting index will be an encoded vector index (EVI).

An encoded vector index cannot be used to ensure an ordering of rows. It is
used by the database manager to improve the performance of queries. For
more information, see the Database Performance and Query Optimization
book.

index-name
Names the index. The name, including the implicit or explicit qualifier, must
not be the same as an index, table, view, alias, or file that already exists at the
current server.

If SQL names were specified, the index will be created in the schema specified
by the implicit or explicit qualifier.

If system names were specified, the index name will be created in the schema
that is specified by the qualifier. If not qualified, the index name will be
created in the same schema as the table over which the index is created.

If the index name is not a valid system name, DB2 UDB for iSeries will
generate a system name. For information on the rules for generating a name,
see “Rules for Table Name Generation” on page 535.

ON table-name
Identifies the table on which the index is to be created. The table-name must
identify a base table (not a view) that exists at the current server.

(column-name, ...)
Identifies the list of columns that will be part of the index key.

Each column-name must be an unqualified name that identifies a column of the
table. The same column may be specified more than once. A column-name must
not identify a LOB or DATALINK column, or a distinct type based on a LOB

CREATE INDEX

478 DB2 UDB for iSeries SQL Reference V5R2

../rzajq/rzajqmst02.htm

or datalink column. The number of columns must not exceed 120, and the sum
of their byte lengths must not exceed 2000−n, where n is the number of
columns specified that allows nulls.

ASC
Puts the index entries in ascending order by the column. That is the
default.

DESC
Puts the index entries in descending order by the column.

WITH integer DISTINCT VALUES
Specifies the estimated number of distinct key values. This clause may be
specified for any type of index.

For encoded vector indexes this is used to determine the initial size of the
codes assigned to each distinct key value. The default value is 256.

For non-encoded vector indexes, this is used as a hint to the optimizer.

Notes
If the named table already contains data, CREATE INDEX creates the index entries
for it. If the table does not yet contain data, CREATE INDEX creates a description
of the index. The index entries are created when data is inserted into the table. The
index always reflects the current condition of the table.

Sort sequence: Any index created over columns containing SBCS or mixed data is
created with the sort sequence in effect at the time the statement is executed. For
sort sequences other than *HEX, the key for SBCS data or mixed data is the
weighted value of the key based on the sort sequence.

Index attributes: An index is created as a keyed logical file. When an index is
created, the file wait time and record wait time attributes are set to the default that
is specified on the WAITFILE and WAITRCD keywords of the Create Logical File
(CRTLF) command.

An index created over a distributed table is created on all of the servers across
which the table is distributed. For more information about distributed tables, see
the DB2 Multisystem book.

Index ownership: If SQL names were specified, the owner of the index is the user
profile with the same name as the schema into which the index is created.
Otherwise, the owner of the index is the user profile or group user profile of the job
executing the statement.

If system names were specified, the owner of the index is the user profile or group
user profile of the job executing the statement.

Index authority: If SQL names are used, indexes are created with the system
authority of *EXCLUDE on *PUBLIC. If system names are used, indexes are
created with the authority to *PUBLIC as determined by the create authority
(CRTAUT) parameter of the schema.

If the owner of the index is a member of a group profile (GRPPRF keyword) and
group authority is specified (GRPAUT keyword), that group profile will also have
authority to the index.

CREATE INDEX

Chapter 5. Statements 479

../dbmult/rzaf3mst02.htm

Examples

Example 1
Create an index named UNIQUE_NAM on the PROJECT table. The purpose of the
index is to ensure that there are not two entries in the table with the same value
for project name (PROJNAME). The index entries are to be in ascending order.
CREATE UNIQUE INDEX UNIQUE_NAME

ON PROJECT(PROJNAME)

Example 2
Create an index named JOB_BY_DPT on the EMPLOYEE table. Arrange the index
entries in ascending order by job title (JOB) within each department (WORKDEPT).
CREATE INDEX JOB_BY_DPT

ON EMPLOYEE (WORKDEPT, JOB)

CREATE INDEX

480 DB2 UDB for iSeries SQL Reference V5R2

CREATE PROCEDURE

The CREATE PROCEDURE statement defines a procedure at the current server.

The following types of procedures can be defined:
v External

The procedure program is written in a programming language such as C,
COBOL or Java. The external executable is referenced by a procedure defined at
the current server along with various attributes of the procedure. See “CREATE
PROCEDURE (External)” on page 482.

v SQL
The procedure is written exclusively in SQL. The procedure body is defined at
the current server along with various attributes of the procedure. See “CREATE
PROCEDURE (SQL)” on page 493.

Notes

Choosing Data Types for Parameters
For portability of procedures across platforms that are not DB2 UDB for iSeries, do
not use the following data types, which might have different representations on
different platforms:
v FLOAT. Use DOUBLE or REAL instead.
v NUMERIC. Use DECIMAL instead.

Specifying AS LOCATOR for a Parameter
Passing a locator instead of a value can result in fewer bytes being passed in or
out of the procedure. This can be useful when the value of the parameter is very
large. The AS LOCATOR clause specifies that a locator to the value of the
parameter is passed instead of the actual value. Specify AS LOCATOR only for
parameters with a LOB data type or a distinct type based on a LOB data type.

AS LOCATOR can not be specified for SQL procedures.

Determining the Uniqueness of Procedures in a Schema
At the current server, each procedure signature must be unique. The signature of a
procedure is the qualified procedure name combined with the number of the input
parameters (the data types of the parameters are not part of a procedure’s
signature). This means that two different schemas can each contain a procedure
with the same name that have the same number of parameters. However, a schema
must not contain two procedures with the same name that have the same number
of parameters.

The Specific Name for a Procedure
When defining multiple procedures with the same name and schema (with
different number of parameters), it is recommended that a specific name also be
specified. The specific name can be used to uniquely identify the procedure when
dropping, granting to, revoking from, or commenting on the procedure.

If the SPECIFIC clause is not specified, a specific name is generated.

CREATE PROCEDURE

Chapter 5. Statements 481

|

|

|

|

|
|
|
|

|

|
|
|

|

|
|
|
|

|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

|

CREATE PROCEDURE (External)
The CREATE PROCEDURE (External) statement defines an external procedure at
the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the SYSPROCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

v Administrative authority

The authorization ID of the statement has the INSERT privilege on a table when:
v It is the owner of the table,
v It has been granted the INSERT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *ADD on the table.

If the external program exists, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For the external program referenced in the SQL statement:

– The system authority *EXECUTE on the external program, and
– The system authority *EXECUTE on the library containing the external

program
v Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

Syntax

CREATE PROCEDURE (External)

482 DB2 UDB for iSeries SQL Reference V5R2

|
|

|

|

|

|

|
|

|

|

|
|

�� CREATE PROCEDURE procedure-name

()
,

parameter-declaration

option-list ��

parameter-declaration:

IN
data-type

OUT parameter-name AS LOCATOR
INOUT

option-list:

(1) EXTERNAL

EXTERNAL NAME external-program-name

PARAMETER STYLE
SQL

PARAMETER STYLE
DB2GENERAL
DB2SQL
GENERAL
GENERAL WITH NULLS
JAVA

�

�
DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer LANGUAGE C
C++
CL
COBOL
COBOLLE
FORTRAN
JAVA
PLI
REXX
RPG
RPGLE

SPECIFIC specific-name
�

�
NOT DETERMINISTIC

DETERMINISTIC

MODIFIES SQL DATA

NO SQL
CONTAINS SQL
READS SQL DATA

FENCED

NOT FENCED

PROGRAM TYPE MAIN
�

�
CALLED ON NULL INPUT NO DBINFO

DBINFO

OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL

COMMIT ON RETURN NO

COMMIT ON RETURN YES

Notes:

1 The optional clauses can be specified in a different order.

CREATE PROCEDURE (External)

Chapter 5. Statements 483

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
ROWID

CREATE PROCEDURE (External)

484 DB2 UDB for iSeries SQL Reference V5R2

|||||

Description
procedure-name

Names the procedure. The combination of name, schema name, the number of
parameters must not identify a procedure that exists at the current server.

For SQL naming, the procedure will be created in the schema specified by the
implicit or explicit qualifier.

For system naming, the procedure will be created in the schema specified by
the qualifier. If no qualifier is specified, the procedure will be created in the
current library (*CURLIB).

(parameter-declaration,...)
Specifies the number of parameters of the procedure and the data type of each
parameter. A parameter for a procedure can be used only for input, only for
output, or for both input and output. Although not required, you can give each
parameter a name.

The maximum number of parameters allowed in CREATE PROCEDURE is 255.
If GENERAL WITH NULLS is specified, the maximum is 254. If parameter
style SQL is specified, only 90 parameters are allowed. The maximum number
of parameters is also limited by the maximum number of parameters allowed
by the licensed program used to compile the external program.

IN Identifies the parameter as an input parameter to the procedure. Any
changes made to the parameter within the procedure are not available to
the calling SQL application when control is returned.50

OUT
Identifies the parameter as an output parameter that is returned by the
procedure.

A DataLink or a distinct type based on a DataLink may not be specified as
an output parameter.

INOUT
Identifies the parameter as both an input and output parameter for the
procedure.

A DataLink or a distinct type based on a DataLink may not be specified as
an input and output parameter.

parameter-name
Names the parameter. The name cannot be the same as any other
parameter-name for the procedure.

data-type
Specifies the data type of the parameter.

The data type must be valid for the language specified in the language
clause. DataLinks are not valid for external procedures. For more
information about data types, see “CREATE TABLE” on page 507, and the
SQL Programming Concepts book.

Parameters with a large object (LOB) data type are not supported when
PARAMETER STYLE JAVA is specified.

50. When the language type is REXX, all parameters must be input parameters.

CREATE PROCEDURE (External)

Chapter 5. Statements 485

|
|

../sqlp/rbafymst02.htm

If a CCSID is specified, the parameter will be converted to that CCSID
prior to passing it to the procedure. If a CCSID is not specified, the CCSID
is determined by the default CCSID at the current server at the time the
procedure is called.

AS LOCATOR
Specifies that the input parameter is a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the input parameter
has a LOB data type or a distinct type based on a LOB data type.

LANGUAGE
Specifies the language that the external program is written in. The language
clause is required if the external program is a REXX procedure.

If LANGUAGE is not specified, the LANGUAGE is determined from the
program attribute information associated with the external program at the time
the procedure is created. If the program attribute information associated with
the program does not identify a recognizable language or the program cannot
be found, then the language is assumed to be C.

C The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL.

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

FORTRAN
The external program is written in FORTRAN.

JAVA
The external program is written in JAVA.

PLI
The external program is written in PL/I.

REXX
The external program is a REXX procedure.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

PARAMETER STYLE
Specifies the conventions used for passing parameters to and returning the
values from procedures:

SQL
Specifies that in addition to the parameters on the CALL statement, several
additional parameters are passed to the procedure. The parameters are
defined to be in the following order:
v The first N parameters are the parameters that are specified on the

CREATE PROCEDURE statement.
v N parameters for indicator variables for the parameters.

CREATE PROCEDURE (External)

486 DB2 UDB for iSeries SQL Reference V5R2

v A CHAR(5) output parameter for SQLSTATE. The SQLSTATE returned
indicates the success or failure of the procedure. The SQLSTATE
returned is assigned by the external program.
The user may set the SQLSTATE to any valid value in the external
program to return an error or warning from the function.

v A VARCHAR(517) input parameter for the fully qualified procedure
name.

v A VARCHAR(128) input parameter for the specific name.
v A VARCHAR(70) output parameter for the message text.

For more information about the parameters passed, see the include sqludf
in the appropriate source file. For example, for C, sqludf can be found in
QSYSINC/H.

PARAMETER STYLE SQL cannot be used with LANGUAGE JAVA.

DB2GENERAL
Specifies that the procedure will use a parameter passing convention that
is defined for use with Java methods.

PARAMETER STYLE DB2GENERAL can only be specified with
LANGUAGE JAVA. For details on passing parameters in JAVA, see the
Developer Kit for Java book.

DB2SQL
Specifies that in addition to the parameters on the CALL statement, several
additional parameters are passed to the procedure. DB2SQL is identical to
the SQL parameter style, except that the following additional parameter
may be passed as the last parameter:
v A parameter for the dbinfo structure, if DBINFO was specified on the

CREATE PROCEDURE statement.

For more information about the parameters passed, see the include sqludf
in the appropriate source file. For example, for C, sqludf can be found in
QSYSINC/H.

PARAMETER STYLE DB2SQL cannot be used with LANGUAGE JAVA.

GENERAL
Specifies that the procedure will use a parameter passing mechanism
where the procedure receives the parameters specified on the CALL.
Additional arguments are not passed for indicator variables.

PARAMETER STYLE GENERAL cannot be used with LANGUAGE JAVA.

GENERAL WITH NULLS
Specifies that in addition to the parameters on the CALL statement as
specified in GENERAL, another argument is passed to the procedure. This
additional argument contains an indicator array with an element for each
of the parameters of the CALL statement. In C, this would be an array of
short ints. For more information about how the indicators are handled, see
the SQL Programming Concepts book.

PARAMETER STYLE GENERAL WITH NULLS cannot be used with
LANGUAGE JAVA.

JAVA
Specifies that the procedure will use a parameter passing convention that
conforms to the Java language and SQLJ Routines specification. INOUT
and OUT parameters will be passed as single entry arrays to facilitate

CREATE PROCEDURE (External)

Chapter 5. Statements 487

|
|

|
|
|

|
|
|

../sqlp/rbafymst02.htm

returning values. For increased portability, you should write Java
procedures that use the PARAMETER STYLE JAVA conventions.

PARAMETER STYLE JAVA can only be specified with LANGUAGE JAVA.
For details on passing parameters in JAVA, see the Developer Kit for Java
book.

Note that language of the external procedure determines how the parameters
are passed. For example, in C, any VARCHAR or CHAR parameters are passed
as NUL-terminated strings. For more information, see the SQL Programming
Concepts book.

EXTERNAL NAME external-program-name
Specifies the program that will be executed when the procedure is called by
the CALL statement. The program name must identify a program that exists at
the server at the time the procedure is called. If the naming option is *SYS and
the program name is not qualified, the library list will be used to search for the
program at the time the procedure is called. The program cannot be an ILE
service program.

The validity of the name is checked at the server. If the format of the name is
not correct, an error is returned.

If external-program-name is not specified, the external program name is
assumed to be the same as the procedure name.

The external program need not exist at the time the procedure is created, but it
must exist at the time the procedure is called.

CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT,
ROLLBACK and SET TRANSACTION statements are not allowed in a
procedure that is running on a remote server. COMMIT and ROLLBACK
statements are not allowed in an ATOMIC SQL procedure.

DYNAMIC RESULT SETS integer
Specifies the maximum number of result sets that can be returned from the
procedure. integer must be greater than or equal to zero. If zero is specified, no
result sets are returned. A procedure can have any number of result sets, but at
any time, only 100 result sets can have result sets that are waiting to be
fetched. If the SET RESULT SETS statement is issued, the number of results
returned is the minimum of the number of result sets specified on this
keyword and the SET RESULTS SET statement.

The result sets are scrollable. If a cursor is used to return a result set, the result
set starts with the current position. Thus, if 5 FETCH NEXT operations have
been performed prior to returning from the procedure, the result set will start
with the 6th row of the result set.

Result sets are only returned if both the following ar true:
v the procedure is called from a iSeries Access client ODBC or JDBC driver,

JDBC on the iSeries server, or the SQL Call Level Interface, and
v the external program does not have an attribute of ACTGRP(*NEW).

For more information about result sets see “SET RESULT SETS” on page 731.

SPECIFIC specific-name
Provides a unique name for the procedure. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another procedure or function that exists at

CREATE PROCEDURE (External)

488 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|

|

|

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

the current server. If unqualified, the implicit qualifier is the same as the
qualifier of the procedure name. If qualified, the qualifier must be the same as
the qualifier of the procedure name.

If specific-name is not specified, it is the same as the procedure name. If a
function or procedure with that specific name already exists, a unique name is
generated similar to the rules used to generate unique table names.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time the
procedure is called with the same IN and INOUT arguments.

NOT DETERMINISTIC
The procedure always returns the same results each time the procedure is
called with the same IN and INOUT arguments, provided the referenced
data in the database has not changed.

DETERMINISTIC
The procedure may not return the same result each time the procedure is
called with the same IN and INOUT arguments, even when the referenced
data in the database has not changed.

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA, or NO SQL
Specifies which SQL statements, if any, may be executed in the procedure or
any routine called from this procedure. See Appendix F, “Characteristics of
SQL Statements” on page 845 for a detailed list of the SQL statements that can
be executed under each data access indication.

CONTAINS SQL
Specifies that SQL statements that neither read nor modify SQL data can be
executed by the procedure.

NO SQL
Specifies that the procedure cannot execute any SQL statements.

READS SQL DATA
Specifies that SQL statements that do not modify SQL data can be included
in the procedure.

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

CALLED ON NULL INPUT
Specifies that the procedure will be called if any parameter values are null.

FENCED or NOT FENCED
This parameter is allowed for compatibility with other products and is not
used by DB2 UDB for iSeries.

PROGRAM TYPE MAIN
Specifies that the procedure executes as a main routine.

DBINFO
Specifies that the database manager should pass a structure containing status
information to the procedure. Table 46 on page 490 contains a description of the
DBINFO structure. Detailed information about the DBINFO structure can be
found in include file SQLUDF in QSYSINC.H.

DBINFO is only allowed with PARAMETER STYLE DB2SQL.

CREATE PROCEDURE (External)

Chapter 5. Statements 489

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

Table 46. DBINFO fields

Field Data Type Description

Relational database VARCHAR(128) The name of the current server.

Authorization ID VARCHAR(128) The run-time authorization ID.

CCSID Information INTEGER
INTEGER
INTEGER
INTEGER
CHAR(8)

The CCSID information of the job. The following information
identifies the CCSID:

v SBCS CCSID

v DBCS CCSID

v Mixed CCSID

v Indication of which of the first three CCSIDs is appropriate.

v Reserved

If a CCSID is not explicitly specified for a parameter on the CREATE
PROCEDURE statement, the input string is assumed to be encoded in
the CCSID of the job at the time the function is executed. If the CCSID
of the input string is not the same as the CCSID of the parameter, the
input string passed to the external function will be converted before
calling the external program.

Target Column VARCHAR(128)
VARCHAR(128)
VARCHAR(128)

Not applicable for a call to a procedure.

Version and release CHAR(8) The version, release, and modification level of the database manager.

Platform INTEGER The server’s platform type.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL
Specifies whether a new savepoint level is to be created on entry to the
procedure.

OLD SAVEPOINT LEVEL
A new savepoint level is not created. Any SAVEPOINT statements issued
within the procedure with OLD SAVEPOINT LEVEL implicitly or explicitly
specified on the SAVEPOINT statement are created at the same savepoint
level as the caller of the procedure. This is the default.

NEW SAVEPOINT LEVEL
A new savepoint level is created on entry to the procedure. Any savepoints
set within the procedure are created at a savepoint level that is nested
deeper than the level at which this procedure was invoked. Therefore, the
name of any new savepoint set within the procedure will not conflict with
any existing savepoints set in higher savepoint levels (such as the
savepoint level of the calling program) with the same name.

COMMIT ON RETURN
Specifies whether the database manager commits the transaction immediately
on return from the procedure.

NO
The database manager does not issue a commit when the procedure
returns. NO is the default.

YES
The database manager issues a commit if the procedure returns
successfully. If the procedure returns with an error, a commit is not issued.

CREATE PROCEDURE (External)

490 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

The commit operation includes the work that is performed by the calling
application process and the procedure.51

If the procedure returns result sets, the cursors that are associated with the
result sets must have been defined as WITH HOLD to be usable after the
commit.

Notes

Creating the Procedure
When an external procedure associated with an ILE external program is created, an
attempt is made to save the procedure’s attributes in the associated program object.
If the *PGM object is saved and then restored to this or another system, the
catalogs are automatically updated with those attributes.

The attributes can saved for external procedures subject to the following
restrictions:
v The external program library must not be SYSIBM, QSYS, or QSYS2.
v The external program must exist when the CREATE PROCEDURE statement is

issued.
v The external program must be an ILE *PGM object.
v The external program must contain at least one SQL statement.

If the object cannot be updated, the procedure will still be created.

During restore of the procedure:
v If the specific name was specified when the procedure was originally created

and it is not unique, an error is issued.
v If the specific name was not specified, a unique name is generated if necessary.
v If the procedure name and number of parameters is not unique, the procedure

cannot be registered, and an error is issued.

Invoking the Procedure
If a DECLARE PROCEDURE statement defines a procedure with the same name as
a created procedure, and a static CALL statement where the procedure name is not
identified by a host variable is executed from the same source program, the
attributes from the DECLARE PROCEDURE statement will be used rather than the
attributes from the CREATE PROCEDURE statement.

The CREATE PROCEDURE statement applies to static and dynamic CALL
statements as well as to a CALL statement where the procedure name is identified
by a host variable.

When an external procedure is invoked, it runs in whatever activation group was
specified when the external program was created. However, ACTGRP(*CALLER)
should normally be used so that the procedure runs in the same activation group
as the calling program.

Notes for Java Procedures
To be able to run Java procedures, you must have the Developer Kit for Java
(5722-JV1) installed on your system. Otherwise, an SQLCODE of -443 will be
returned and a CPDB521 message will be placed in the job log.

51. If the external program was created with ACTGRP(*NEW) and the job commitment definition is not used, the work that is
performed in the procedure will be committed or rolled back as a result of the activation group ending.

CREATE PROCEDURE (External)

Chapter 5. Statements 491

|
|

|
|
|

|

|
|
|

If an error occurs while running a Java procedure, an SQLCODE of -443 will be
returned. Depending on the error, other messages may exist in the job log of the
job where the procedure was run.

Keyword Synonyms
The following keywords are synonyms supported for compatibility to prior
releases. These keywords are non-standard and should not be used:
v The keywords VARIANT and NOT VARIANT can be used as synonyms for

NOT DETERMINISTIC and DETERMINISTIC.
v The keywords NULL CALL and NOT NULL CALL can be used as synonyms for

CALLED ON NULL INPUT and RETURNS NULL ON NULL INPUT.
v The keywords SIMPLE CALL can be used as a synonym for GENERAL.
v The value DB2GENRL may be used as a synonym for DB2GENERAL.
v DYNAMIC RESULT SET, RESULT SETS, and RESULT SET may be used as

synonymns for DYNAMIC RESULT SETS.

Example
Create an external procedure PROC1 in a COBOL program. When the procedure is
called using the CALL statement, a COBOL program named PGM1 in library LIB1
will be called.

EXEC SQL
CREATE PROCEDURE PROC1

(CHAR(10), CHAR(10))
EXTERNAL NAME LIB1.PGM1
LANGUAGE COBOL GENERAL;

EXEC SQL
CALL PROC1 (’FIRSTNAME ’,’LASTNAME ’);

CREATE PROCEDURE (External)

492 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|

|
|

|

|

|
|

CREATE PROCEDURE (SQL)
The CREATE PROCEDURE (SQL) statement creates an SQL procedure at the
current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the SYSPROCS catalog view and SYSPARMS catalog table:

– The INSERT privilege on the table, and
– The system authority *EXECUTE on library QSYS2

v Administrative authority

The authorization ID of the statement has the INSERT privilege on a table when:
v It is the owner of the table,
v It has been granted the INSERT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *ADD on the table.

The privileges held by the authorization ID of the statement must include at least
one of the following:
v The following system authorities:

– *USE on the Create Program (CRTPGM) command, and
– *EXECUTE and *ADD on the library into which the procedure is created.

v Administrative authority

If SQL names are specified and a user profile exists that has the same name as the
library into which the procedure is created, and that name is different from the
authorization ID of the statement, then the privileges held by the authorization ID
of the statement must include at least one of the following:
v The system authority *ADD to the user profile with that name
v Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

CREATE PROCEDURE (SQL)

Chapter 5. Statements 493

|

|

|

|
|

|

|

|

|

|
|

|

|

|
|

Syntax

�� CREATE PROCEDURE procedure-name

()
,

parameter-declaration

�

� LANGUAGE SQL option-list SQL-routine-body
SET OPTION-statement

��

parameter-declaration:

IN
parameter-name data-type

OUT
INOUT

option-list:

(1) DYNAMIC RESULT SETS 0

DYNAMIC RESULT SETS integer SPECIFIC specific-name

NOT DETERMINISTIC

DETERMINISTIC
�

�
MODIFIES SQL DATA

CONTAINS SQL
READS SQL DATA

FENCED

NOT FENCED

CALLED ON NULL INPUT OLD SAVEPOINT LEVEL

NEW SAVEPOINT LEVEL
�

�
COMMIT ON RETURN NO

COMMIT ON RETURN YES

Notes:

1 The optional clauses can be specified in a different order.

CREATE PROCEDURE (SQL)

494 DB2 UDB for iSeries SQL Reference V5R2

SQL-routine-body:

SQL-control-statement
ALTER-statement
COMMENT-statement
COMMIT-statement
CONNECT-statement
CREATE ALIAS-statement
CREATE DISTINCT TYPE-statement
CREATE FUNCTION (External Scalar)-statement
CREATE FUNCTION (External Table)-statement
CREATE FUNCTION (Sourced)-statement
CREATE INDEX-statement
CREATE PROCEDURE (External)-statement
CREATE SCHEMA-statement
CREATE TABLE-statement
CREATE VIEW-statement
DECLARE GLOBAL TEMPORARY TABLE-statement
DELETE-statement
DISCONNECT-statement
DROP-statement
EXECUTE IMMEDIATE-statement
GRANT-statement
INSERT-statement
LABEL-statement
LOCK TABLE-statement
RELEASE-statement
RELEASE SAVEPOINT-statement
RENAME-statement
REVOKE-statement
ROLLBACK-statement
SAVEPOINT-statement
SELECT INTO-statement
SET CONNECTION-statement
SET PATH-statement
SET SCHEMA-statement
SET RESULT SETS-statement
SET TRANSACTION-statement
UPDATE-statement
VALUES INTO-statement

CREATE PROCEDURE (SQL)

Chapter 5. Statements 495

|||||||||||

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
(integer) CCSID integer

ROWID

CREATE PROCEDURE (SQL)

496 DB2 UDB for iSeries SQL Reference V5R2

|||||

Description
procedure-name

Names the procedure. The combination of name, schema name, the number of
parameters must not identify a procedure that exists at the current server.

For SQL naming, the procedure will be created in the schema specified by the
implicit or explicit qualifier.

For system naming, the procedure will be created in the schema specified by
the qualifier. If no qualifier is specified, the procedure will be created in the
current library (*CURLIB). If there is no current library, the procedure will be
created in QGPL.

(parameter-declaration,...)
Specifies the number of parameters of the procedure and the data type of each
parameter. A parameter for a procedure can be used only for input, only for
output, or for both input and output. Although not required, you can give each
parameter a name.

The maximum number of parameters allowed in an SQL procedure is 253.

IN Identifies the parameter as an input parameter to the procedure. Any
changes made to the parameter within the procedure are not available to
the calling SQL application when control is returned.

OUT
Identifies the parameter as an output parameter that is returned by the
procedure. If the parameter is not set within the procedure, the null value
is returned.

INOUT
Identifies the parameter as both an input and output parameter for the
procedure.

parameter-name
Names the parameter. The name cannot be the same as any other
parameter-name for the procedure.

data-type
Specifies the data type of the parameter.

The data type must be valid for the language specified in the language
clause. For more information about data types, see “CREATE TABLE” on
page 507, and the SQL Programming Concepts book.

If a CCSID is specified, the parameter will be converted to that CCSID
prior to passing it to the procedure. If a CCSID is not specified, the CCSID
is determined by the default CCSID at the current server at the time the
procedure is called.

LANGUAGE SQL
Specifies that this is an SQL procedure.

DYNAMIC RESULT SETS integer
Specifies the maximum number of result sets that can be returned from the
procedure. integer must be greater than or equal to zero. If zero is specified, no
result sets are returned. A procedure can have any number of result sets, but at
any time, only 100 procedures can have result sets that are waiting to be
fetched. If the SET RESULT SETS statement is issued, the number of results
returned is the minimum of the number of result sets specified on this
keyword and the SET RESULTS SET statement.

CREATE PROCEDURE (SQL)

Chapter 5. Statements 497

|
|
|
|
|
|
|

../sqlp/rbafymst02.htm

The result sets are scrollable. If a cursor is used to return a result set, the result
set starts with the current position. Thus, if 5 FETCH NEXT operations have
been performed prior to returning from the procedure, the result set will start
with the 6th row of the result set.

Result sets are only returned if:
v the procedure is called from a iSeries Access client ODBC or JDBC driver,

JDBC on the iSeries server, or the SQL Call Level Interface, and

For more information about result sets, see “SET RESULT SETS” on page 731.

SPECIFIC specific-name
Provides a unique name for the procedure. The name is implicitly or explicitly
qualified with a schema name. The name, including the schema name, must
not identify the specific name of another procedure or function that exists at
the current server. If unqualified, the implicit qualifier is the same as the
qualifier of the procedure name. If qualified, the qualifier must be the same as
the qualifier of the procedure name.

If specific-name is not specified, it is the same as the procedure name. If a
function or procedure with that specific name already exists, a unique name is
generated similar to the rules used to generate unique table names.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time the
procedure is called with the same IN and INOUT arguments.

NOT DETERMINISTIC
The procedure always returns the same results each time the procedure is
called with the same IN and INOUT arguments, provided the referenced
data in the database has not changed.

DETERMINISTIC
The procedure may not return the same result each time the procedure is
called with the same IN and INOUT arguments, even when the referenced
data in the database has not changed.

CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA
Specifies which SQL statements may be executed in the procedure or any
routine called from this procedure. See Appendix F, “Characteristics of SQL
Statements” on page 845 for a detailed list of the SQL statements that can be
executed under each data access indication.

CONTAINS SQL
Specifies that SQL statements that neither read nor modify SQL data can be
executed by the procedure.

READS SQL DATA
Specifies that SQL statements that do not modify SQL data can be included
in the procedure.

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

CALLED ON NULL INPUT
Specifies that the procedure will be called if any parameter values are null.

FENCED or NOT FENCED
This parameter is allowed for compatibility with other products and is not
used by DB2 UDB for iSeries.

CREATE PROCEDURE (SQL)

498 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|

|
|

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

SET OPTION-statement
Specifies the options that will be used to create the procedure. For example, to
create a debuggable procedure, the following statement could be included:
SET OPTION DBGVIEW = *STMT

For more information, see “SET OPTION” on page 715.

The options CLOSQLCSR, CNULRQD, DFTRDBCOL, DYNDFTCOL, and
NAMING are not allowed in the CREATE PROCEDURE statement.

OLD SAVEPOINT LEVEL or NEW SAVEPOINT LEVEL
Specifies whether a new savepoint level is to be created on entry to the
procedure.

OLD SAVEPOINT LEVEL
A new savepoint level is not created. Any SAVEPOINT statements issued
within the procedure with OLD SAVEPOINT LEVEL implicitly or explicitly
specified on the SAVEPOINT statement are created at the same savepoint
level as the caller of the procedure. This is the default.

NEW SAVEPOINT LEVEL
A new savepoint level is created on entry to the procedure. Any savepoints
set within the procedure are created at a savepoint level that is nested
deeper than the level at which this procedure was invoked. Therefore, the
name of any new savepoint set within the procedure will not conflict with
any existing savepoints set in higher savepoint levels (such as the
savepoint level of the calling program) with the same name.

COMMIT ON RETURN
Specifies whether the database manager commits the transaction immediately
on return from the procedure.

NO
The database manager does not issue a commit when the procedure
returns. NO is the default.

YES
The database manager issues a commit if the procedure returns
successfully. If the procedure returns with an error, a commit is not issued.

The commit operation includes the work that is performed by the calling
application process and the procedure.

If the procedure returns result sets, the cursors that are associated with the
result sets must have been defined as WITH HOLD to be usable after the
commit.

SQL-routine-body
Specifies a single SQL statement, including a compound statement. See
Chapter 6, “SQL Control Statements” on page 759 for more information about
defining SQL procedures.

CONNECT, SET CONNECTION, RELEASE, DISCONNECT, COMMIT,
ROLLBACK and SET TRANSACTION statements are not allowed in a
procedure that is running on a remote server. COMMIT and ROLLBACK
statements are not allowed in an ATOMIC SQL procedure.

CREATE PROCEDURE (SQL)

Chapter 5. Statements 499

|
|
|

|

|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

Notes
Procedure ownership: If SQL names were specified, the owner of the procedure is
the user profile with the same name as the schema into which the procedure is
created. Otherwise, the owner of the procedure is the user profile or group user
profile of the job executing the statement.

If system names were specified, the owner of the procedure is the user profile or
group user profile of the job executing the statement.

Procedure authority: If SQL names are used, procedures are created with the
system authority of *EXCLUDE on *PUBLIC. If system names are used, procedures
are created with the authority to *PUBLIC as determined by the create authority
(CRTAUT) parameter of the schema.

If the owner of the procedure is a member of a group profile (GRPPRF keyword)
and group authority is specified (GRPAUT keyword), that group profile will also
have authority to the procedure.

Creating the Procedure
When an SQL procedure is created, SQL creates a temporary source file that will
contain C source code with embedded SQL statements. A program object is then
created using the CRTPGM command. The SQL options used to create the program
are the options that are in effect at the time the CREATE PROCEDURE statement is
executed. The program is created with ACTGRP(*CALLER).

When an SQL procedure is created, the procedure’s attributes are stored in the
created program object. If the *PGM object is saved and then restored to this or
another system, the catalogs are automatically updated with those attributes.

During restore of the procedure:
v If the specific name was specified when the procedure was originally created

and it is not unique, an error is issued.
v If the specific name was not specified, a unique name is generated if necessary.
v If the procedure name and number of parameters is not unique, the procedure

cannot be registered, and an error is issued.

The procedure name is used as the name of the member in the source file and the
name of the program object, if it is a valid system name. If the procedure name is
not a valid system name, a unique name is generated. If a source file member with
the same name already exists, the member is overlaid. If a module or a program
with the same name already exists, the objects are not overlaid, and a unique name
is generated. The unique names are generated according to the rules for generating
system table names.

Invoking the Procedure
If a DECLARE PROCEDURE statement defines a procedure with the same name as
a created procedure, and a static CALL statement where the procedure name is not
identified by a host variable is executed from the same source program, the
attributes from the DECLARE PROCEDURE statement will be used rather than the
attributes from the CREATE PROCEDURE statement.

The CREATE PROCEDURE statement applies to static and dynamic CALL
statements as well as to a CALL statement where the procedure name is identified
by a host variable.

CREATE PROCEDURE (SQL)

500 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|
|

|
|
|
|
|

SQL procedures must be called using the SQL CALL statement. When called, the
SQL procedure runs in the activation group of the calling program.

Keyword Synonyms
The following keywords are synonyms supported for compatibility to prior
releases. These keywords are non-standard and should not be used:
v The keywords VARIANT and NOT VARIANT can be used as synonyms for

NOT DETERMINISTIC and DETERMINISTIC.
v The keywords NULL CALL and NOT NULL CALL can be used as synonyms for

CALLED ON NULL INPUT and RETURNS NULL ON NULL INPUT.
v DYNAMIC RESULT SET, RESULT SETS, and RESULT SET may be used as

synonyms for DYNAMIC RESULT SETS.

Example
Create the definition for an SQL procedure. The procedure accepts an employee
number and a multiplier for a pay raise as input. The following tasks are
performed in the procedure body:
v Calculate the employee’s new salary.
v Update the employee table with the new salary value.

EXEC SQL
CREATE PROCEDURE UPDATE_SALARY_1

(IN EMPLOYEE_NUMBER CHAR(10),
IN RATE DECIMAL(6,2))
LANGUAGE SQL
MODIFIES SQL DATA
UPDATE EMP

SET SALARY = SALARY + RATE
WHERE EMPNO = EMPLOYEE_NUMBER

CREATE PROCEDURE (SQL)

Chapter 5. Statements 501

|
|
|

|
|

|
|

|
|

CREATE SCHEMA
The CREATE SCHEMA statement defines a schema at the current server and
optionally creates tables, views, aliases, indexes, and distinct types. Comments and
labels may be added in the catalog description of tables, views, aliases, indexes,
columns, and distinct types. Table, view, and distinct type privileges can be
granted to users.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The *USE system authority to the following CL commands:

– Create Library (CRTLIB)
– If WITH DATA DICTIONARY is specified, Create Data Dictionary

(CRTDTADCT)
v Administrative authority

The privileges held by the authorization ID of the statement must include at least
one of the following:
v The privileges defined for each SQL statement included in the CREATE

SCHEMA statement
v Administrative authority

If the AUTHORIZATION clause is specified, the privileges held by the
authorization ID of the statement must also include at least one of the following:
v The system authority *ADD to the user profile identified by authorization-name
v Administrative authority

Syntax

�� CREATE SCHEMA schema-name
AUTHORIZATION authorization-name

�

�
IN ASP integer

ASP-name
WITH DATA DICTIONARY

�

CREATE SCHEMA

502 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|

|

|
|

|

|
|

|

|

|
|

|

|
|

|
|

|

|
|

|

|

|

|

|||||||||||||||||
|

|
|||||||||||||||||||||||||||
|

||

�

 COMMENT statement
CREATE ALIAS statement
CREATE DISTINCT TYPE statement
CREATE INDEX statement
CREATE TABLE statement
CREATE VIEW statement
GRANT (Table Privileges) statement
GRANT (Distinct Type Privileges) statement

(1)
LABEL statement

��

Notes:

1 Labels and comments on packages, procedures, functions, and parameters are
not supported in the CREATE SCHEMA statement.

Description
schema-name

Names the schema. A schema is created using this name. If schema-name is
specified, the authorization ID of the statement is the run-time authorization
ID. The name must not be the same as the name of an existing schema at the
current server. The owner of the schema is the user profile or group user profile
of the job executing the statement.

If the owner of the schema is a member of a group profile (GRPPRF keyword)
and group authority is specified (GRPAUT keyword), that group profile will
also have authority to the schema.

authorization-name
Identifies the authorization ID of the statement. This authorization name is also
the schema-name. The name must not be the same as the name of an existing
schema at the current server.

IN ASP integer
Specifies the auxiliary storage pool (ASP) in which to create the schema. The
integer must be between 1 and 32. If 1 is specified, the schema is created on
the system ASP. If this clause is omitted, an ASP of 1 is assumed.

IN ASP ASP-name
Specifies the auxiliary storage pool (ASP) in which to create the schema. The
name must identify an auxiliary stroage pool that exists at the current server.

WITH DATA DICTIONARY
If this clause is specified, an IDDU data dictionary is created in the schema.

A schema created with a data dictionary cannot contain tables with LOB or
DATALINK columns.

COMMENT statement
Adds or replaces comments in the catalog descriptions of tables, views, or
columns. Comments on packages are not allowed. See the COMMENT
statement “COMMENT” on page 390.

CREATE ALIAS statement
Creates an alias into the schema. See the CREATE ALIAS statement on page
411.

CREATE SCHEMA

Chapter 5. Statements 503

|||

|

|

||
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|

CREATE DISTINCT TYPE statement
Creates a user-defined distinct type into the schema. See the CREATE
DISTINCT TYPE statement “CREATE DISTINCT TYPE” on page 414.

CREATE INDEX statement
Creates an index into the schema. See the CREATE INDEX statement on page
477.

CREATE TABLE statement
Creates a table into the schema. See the CREATE TABLE statement on page
507.

CREATE VIEW statement
Creates a view into the schema. See the CREATE VIEW statement 551.

GRANT (Table Privileges) statement
Grants privileges for tables and views in the schema. See the GRANT
statement “GRANT (Table Privileges)” on page 647.

GRANT (Distinct Type Privileges) statement
Grants privileges for distinct types in the schema. See the GRANT statement
“GRANT (Distinct Type Privileges)” on page 634.

LABEL statement
Adds or replaces labels in the catalog descriptions of tables, views, or columns
in the schema. Labels on packages are not allowed. See the LABEL statement
on page 664.

Notes
Schema attributes: A schema is created as:
v A library: A library groups related objects, and allows you to find objects by

name.
v A catalog: A catalog contains descriptions of the tables, views, indexes, and

packages in the schema. A catalog consists of a set of views and if WITH DATA
DICTIONARY is specified, an IDDU data dictionary. For more information, see
the SQL Programming Concepts book.

v A journal and journal receiver: A journal QSQJRN and journal receiver
QSQJRN0001 is created in the schema, and is used to record changes to all tables
subsequently created in the schema. For more information, see the Journal
Management topic in the iSeries Information Center.

An index created over a distributed table is created on all of the servers across
which the table is distributed. For more information about distributed tables, see
the DB2 Multisystem book.

Object ownership: The owner of the created objects is determined as follows:
v If an AUTHORIZATION clause is specified, the specified authorization ID owns

all objects created by the statement.
v If an AUTHORIZATION clause is not specified and SQL names are specified, the

owner of all objects created by the statement is the user profile with the same
name as the schema-name (if a user profile with that name exists).

v Otherwise, the owner of all objects created by the statement is the user profile or
the group user profile of the job executing the statement.

Object authority: If SQL names are used, the schema and any other objects are
created with the system authority of *EXCLUDE on *PUBLIC and the library is
created with the create authority parameter CRTAUT(*EXCLUDE). The owner is

CREATE SCHEMA

504 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|

|
|

|
|
|

../sqlp/rbafymst02.htm
../rzaki/rzakikickoff.htm
../rzaki/rzakikickoff.htm
../dbmult/rzaf3mst02.htm

the only user having any authority to the schema. If other users require authority
to the schema, the owner can grant authority to the objects created; using the CL
command Grant Object Authority (GRTOBJAUT).

If system names are used, the schema and any other objects are created with the
system authority given to *PUBLIC is determined by the system value QCRTAUT,
and the library is created with CRTAUT(*SYSVAL). For more information about

system security, see the books iSeries Security Reference , and the SQL
Programming Concepts book.

If the owner of the schema is a member of a group profile (GRPPRF keyword) and
group authority is specified (GRPAUT keyword), that group profile will also have
authority to the schema.

Object names: If a CREATE TABLE, CREATE INDEX, CREATE ALIAS, CREATE
DISTINCT TYPE, or CREATE VIEW statement contains a qualified name for the
table, index, alias, distinct type, or view being created, the schema name specified
in that qualified name must be the same as the name of the schema being created.
Any other table or view names referenced within the schema definition may be
qualified by any schema name. Unqualified table, index, alias, distinct type, or
view names in any SQL statement are implicitly qualified with the name of the
created schema.

Delimiters are not used between the SQL statements.

SQL statement length: The maximum length of any individual CREATE TABLE,
CREATE INDEX, CREATE DISTINCT TYPE, CREATE VIEW, COMMENT, LABEL,
or GRANT statements within the CREATE SCHEMA statement is 65536.

Keyword synonyms: The COLLECTION keyword can be used as a synonym for
SCHEMA for compatibility to prior releases. This keyword is non-standard and
should not be used.

Examples

Example 1
Create a schema that has an inventory part table and an index over the part
number. Give authority to the schema to the user profile JONES.

CREATE SCHEMA INVENTORY

CREATE TABLE PART (PARTNO SMALLINT NOT NULL,
DESCR VARCHAR(24),
QUANTITY INT)

CREATE INDEX PARTIND ON PART (PARTNO)

GRANT ALL ON PART TO JONES

Example 2
Create a schema using the authorization ID of SMITH. Create a student table that
has a comment on the student number column.

CREATE SCHEMA AUTHORIZATION SMITH

CREATE TABLE SMITH.STUDENT (STUDNBR SMALLINT NOT NULL UNIQUE,
LASTNAME CHAR(20),
FIRSTNAME CHAR(20),

CREATE SCHEMA

Chapter 5. Statements 505

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

../../books/c4153026.pdf
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

ADDRESS CHAR(50))

COMMENT ON STUDENT (STUDNBR IS ’THIS IS A UNIQUE ID#’)

CREATE SCHEMA

506 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

CREATE TABLE
The CREATE TABLE statement defines a table at the current server. The definition
must include its name and the names and attributes of its columns. The definition
may include other attributes of the table such as primary key.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The following system authorities:

– *USE to the Create Physical File (CRTPF) command
– *EXECUTE and *ADD to the library into which the table is created
– *OBJOPR and *OBJMGT to the journal
– *CHANGE to the data dictionary if the library into which the table is created

is an SQL schema with a data dictionary
v Administrative authority

If SQL names are specified and a user profile exists that has the same name as the
library into which the table is created, and that name is different from the
authorization ID of the statement, then the privileges held by the authorization ID
of the statement must include at least one of the following:
v The system authority *ADD to the user profile with that name
v Administrative authority

To define a foreign key, the privileges held by the authorization ID of the statement
must include at least one of the following on the parent table:
v The REFERENCES privilege or object management authority for the table
v The REFERENCES privilege on each column of the specified parent key
v Ownership of the table
v Administrative authority

The authorization ID of the statement has the REFERENCES privilege on a table
when one of the following is true:
v It is the owner of the table.
v It was granted the REFERENCES privilege to the table.
v It was granted the system authorities of either *OBJREF or *OBJMGT to the

table.

The authorization ID of the statement has the REFERENCES privilege on a column
of the table when one of the following is true:
v It is the owner of the table.
v It was granted the REFERENCES privilege to the column.
v It was granted the system authority of *OBJREF to the column or the system

authority of *OBJMGT to the table.

CREATE TABLE

Chapter 5. Statements 507

If the LIKE clause or AS-select-statement is specified, the privileges held by the
authorization ID of the statement must include at least one of the following on the
tables or views specified in these clauses:
v The SELECT privilege for the table or view
v Ownership of the table or view
v Administrative authority

The authorization ID of the statement has the SELECT privilege on a table when:
v It is the owner of the table,
v It has been granted the SELECT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *READ on the table.

The authorization ID of the statement has the SELECT privilege on a view when:
v It is the owner of the view,
v It has been granted the SELECT privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *READ on the view

and the system authority *READ on all tables and views that this view is
directly or indirectly dependent on. That is, all tables and views referenced in
the view definition, and if a view is referenced, all tables and views referenced
in its definition, and so forth.

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

Syntax

CREATE TABLE

508 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

|

|

��

,

CREATE TABLE table-name (column-definition)
LIKE table-name

view-name copy-options
unique-constraint
referential-constraint
check-constraint

LIKE table-name
view-name copy-options

as-subquery-clause

�

�
nodegroup-clause

��

column-definition:

column-name
COLUMN

FOR system-column-name

data-type �

�

default-clause
GENERATED ALWAYS (1)

GENERATED BY DEFAULT identity-options
(2)

datalink-options
NOT NULL
column-constraint

Notes:

1 GENERATED can be specified only if the column has a ROWID data type (or a distinct type that is based on a
ROWID data type), or the column is an identity column.

2 The datalink-options can only be specified for DATALINKs and distinct-types sourced on DATALINKs.

CREATE TABLE

Chapter 5. Statements 509

||||||

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR allocate-clause FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) allocate-clause FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC allocate-clause

(1M)
DBCLOB

(integer) allocate-clause
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer) allocate-clause

K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
(integer) allocate-clause CCSID integer

ROWID

allocate-clause:

ALLOCATE (integer)

CREATE TABLE

510 DB2 UDB for iSeries SQL Reference V5R2

|||||

default-clause:

WITH
DEFAULT

constant
USER
NULL
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

(1)
cast-function-name (constant)

USER
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

identity-options:

AS IDENTITY
,

1 (2)
(START WITH numeric-constant)

1
INCREMENT BY numeric-constant

NO MINVALUE
MINVALUE numeric-constant
NO MAXVALUE
MAXVALUE numeric-constant
NO CYCLE
CYCLE
CACHE 20
NO CACHE
CACHE integer
NO ORDER
ORDER

Notes:

1 This form of the DEFAULT value can only be used with columns that are defined as a distinct type.

2 Each clause may be specified only once.

CREATE TABLE

Chapter 5. Statements 511

||||||||||||||||||||||||||||||||

datalink-options:

LINKTYPE URL NO LINK CONTROL

FILE LINK CONTROL file-link-options
MODE DB2OPTIONS

file-link-options:

(1)

INTEGRITY ALL
READ PERMISSION FS
READ PERMISSION DB
WRITE PERMISSION FS
WRITE PERMISSION BLOCKED

RECOVERY NO
ON UNLINK RESTORE
ON UNLINK DELETE

copy-options:

COLUMN ATTRIBUTES (2)

EXCLUDING IDENTITY
INCLUDING COLUMN

DEFAULTS
USING TYPE DEFAULTS

as-subquery-clause:

,

(column-name)
COLUMN

FOR system-column-name

�

� AS (select-statement) DEFINITION ONLY
WITH NO DATA copy-options
WITH DATA

Notes:

1 All five file-link-options must be specified, but they can be specified in any order.

2 Each clause may be specified only once.

CREATE TABLE

512 DB2 UDB for iSeries SQL Reference V5R2

||||||||||

column-constraint:

PRIMARY KEY
CONSTRAINT constraint-name UNIQUE

references-clause
CHECK (check-condition)

unique-constraint:

CONSTRAINT constraint-name
PRIMARY KEY
UNIQUE

(

,

column-name)

referential-constraint:

CONSTRAINT constraint-name

(1)
FOREIGN KEY

,

(column-name) references-clause

references-clause:

REFERENCES table-name

,

(column-name)

�

�
ON DELETE NO ACTION ON UPDATE NO ACTION (2)

ON DELETE RESTRICT ON UPDATE RESTRICT
CASCADE
SET NULL
SET DEFAULT

check-constraint:

CONSTRAINT constraint-name
CHECK (check-condition)

nodegroup-clause:

IN nodegroup-name
,

USING HASHING
PARTITIONING KEY (column-name)

Notes:

1 For compatibility with other products, constraint-name (without the CONSTRAINT keyword) may be specified
following FOREIGN KEY.

2 The ON DELETE and ON UPDATE clauses may be specified in either order.

CREATE TABLE

Chapter 5. Statements 513

Description
table-name

Names the table. The name, including the implicit or explicit qualifier, must
not be the same as an index, table, view, alias, or file that already exists at the
current server.

If SQL names were specified, the table will be created in the schema specified
by the implicit or explicit qualifier.

If system names were specified, the table will be created in the schema that is
specified by the qualifier. If not qualified, the table will be created in the
current library (*CURLIB). If there is no current library, the table will be
created in QGPL.

column-definition
Defines the attributes of a column. There must be at least one column definition
and no more than 8000 column definitions.

The sum of the row buffer byte counts of the columns must not be greater than
32766 or, if a VARCHAR or VARGRAPHIC column is specified, 32740.
Additionally, if a LOB is specified, the sum of the row data byte counts of the
columns must not be greater than 3 758 096 383 at the time of insert or update. For
information on the byte counts of columns according to data type, see “Notes” on
page 532.

column-name
Names a column of the table. Do not qualify column-name and do not use the
same name for more than one column of the table or for a
system-column-name of the table.

FOR COLUMN system-column-name
Provides an OS/400 name for the column. Do not use the same name for more
than one column of the table or for a column-name of the table.

If the system-column-name is not specified, and the column-name is not a
valid system-column-name, a system column name is generated. For more
information about how system column names are generated, see “Rules for
Column Name Generation” on page 535.

data-type
Specifies the data type of the column.

built-in-type
For built-in-types, use:

SMALLINT
For a small integer.

INTEGER or INT
For a large integer.

BIGINT
For a big integer.

DECIMAL(integer,integer) or DEC(integer,integer)
DECIMAL(integer) or DEC(integer)
DECIMAL or DEC

For a packed decimal number. The first integer is the precision of the

CREATE TABLE

514 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

number; that is, the total number of digits; it can range from 1 to 31. The
second integer is the scale of the number (the number of digits to the right
of the decimal point). It can range from 0 to the precision of the number.

You can use DECIMAL(p) for DECIMAL(p,0), and DECIMAL for
DECIMAL(5,0).

NUMERIC(integer,integer)
NUMERIC(integer)
NUMERIC

For a zoned decimal number. The first integer is the precision of the
number, that is, the total number of digits; it may range from 1 to 31. The
second integer is the scale of the number, (the number of digits to the right
of the decimal point). It may range from 0 to the precision of the number.

You can use NUMERIC(p) for NUMERIC(p,0), and NUMERIC for
NUMERIC(5,0).

FLOAT
For a double-precision floating-point number.

FLOAT(integer)
For a single- or double-precision floating-point number, depending on the
value of integer. The value of integer must be in the range 1 through 53.
The values 1 through 24 indicate single-precision, the values 25 through 53
indicate double-precision. The default is 53.

REAL
For single-precision floating point.

DOUBLE PRECISION or DOUBLE
For double-precision floating point.

CHARACTER(integer) or CHAR(integer)
CHARACTER or CHAR

For a fixed-length character string of length integer. The integer can range
from 1 through 32766 (32765 if null capable). If FOR MIXED DATA or a
mixed data CCSID is specified, the range is 4 through 32766 (32765 if null
capable). If the length specification is omitted, a length of 1 character is
assumed.

CHARACTER VARYING (integer) or CHAR VARYING (integer) or
VARCHAR(integer)

For a varying-length character string of maximum length integer, which can
range from 1 through 32740 (32739 if null capable). If FOR MIXED DATA
or a mixed data CCSID is specified, the range is 4 through 32740 (32739 if
null capable).

CLOB(integer[K|M|G]) or CHAR LARGE OBJECT(integer[K|M|G]) or
CHARACTER LARGE OBJECT(integer[K|M|G])
CLOB or CHAR LARGE OBJECT or CHARACTER LARGE OBJECT

For a character large object string of the specified maximum length. The
maximum length must be in the range of 1 through 2 147 483 647. If FOR
MIXED DATA or a mixed data CCSID is specified, the range is 4 through 2
147 483 647. If the length specification is omitted, a length of 1 megabyte is
assumed. A CLOB is not allowed in a distributed table.

52. This option is provided for compatibility with other products. It is recommended that VARCHAR(integer) or
VARGRAPHIC(integer) be specified instead.

CREATE TABLE

Chapter 5. Statements 515

|
|
|

|
|

|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

integer
The maximum value for integer is 2 147 483 647. The maximum length
of the string is integer.

integer K
The maximum value for integer is 2 097 152. The maximum length of
the string is 1024 times integer.

integer M
The maximum value for integer is 2 048. The maximum length of the
string is 1 048 576 times integer.

integer G
The maximum value for integer is 2. The maximum length of the string
is 1 073 741 824 times integer.

GRAPHIC(integer)
GRAPHIC

For a fixed-length graphic string of length integer, which can range from 1
through 16383 (16382 if null capable). If the length specification is omitted,
a length of 1 character is assumed.

VARGRAPHIC(integer) or GRAPHIC VARYING(integer)
For a varying-length graphic string of maximum length integer, which can
range from 1 through 16370 (16369 if null capable).

DBCLOB(integer[K|M|G])
DBCLOB

For a double-byte character large object string of the specified maximum
length.

The maximum length must be in the range of 1 through 1 073 741 823. If
the length specification is omitted, a length of 1 megabyte is assumed. A
DBCLOB is not allowed in a distributed table.

integer
The maximum value for integer is 1 073 741 823. The maximum length
of the string is integer.

integer K
The maximum value for integer is 1 028 576. The maximum length of
the string is 1024 times integer.

integer M
The maximum value for integer is 1 024. The maximum length of the
string is 1 048 576 times integer.

integer G
The maximum value for integer is 1. The maximum length of the string
is 1 073 741 824 times integer.

BLOB(integer[K|M|G]) or BINARY LARGE OBJECT(integer[K|M|G])
BLOB or BINARY LARGE OBJECT

For a binary large object string of the specified maximum length. The
maximum length must be in the range of 1 through 2 147 483 647. If the
length specification is omitted, a length of 1 megabyte is assumed. A BLOB
is not allowed in a distributed table.

integer
The maximum value for integer is 2 147 483 647. The maximum length
of the string is integer.

CREATE TABLE

516 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

integer K
The maximum value for integer is 2 097 152. The maximum length of
the string is 1024 times integer.

integer M
The maximum value for integer is 2 048. The maximum length of the
string is 1 048 576 times integer.

integer G
The maximum value for integer is 2. The maximum length of the string
is 1 073 741 824 times integer.

DATE
For a date.

TIME
For a time.

TIMESTAMP
For a timestamp.

DATALINK(integer) or DATALINK
For a DataLink of the specified maximum length. The maximum length
must be in the range of 1 through 32717. If FOR MIXED DATA or a mixed
data CCSID is specified, the range is 4 through 32717. The specified length
must be sufficient to contain both the largest expected URL and any
DataLink comment. If the length specification is omitted, a length of 200 is
assumed. A DATALINK is not allowed in a distributed table.

A DATALINK value is an encapsulated value with a set of built-in scalar
functions. The DLVALUE function creates a DATALINK value. The
following functions can be used to extract attributes from a DATALINK
value.
v DLCOMMENT
v DLLINKTYPE
v DLURLCOMPLETE
v DLURLPATH
v DLURLPATHONLY
v DLURLSCHEME
v DLURLSERVER

A DataLink cannot be part of any index. Therefore, it cannot be included
as a column of a primary key, foreign key, or unique constraint.

ROWID
For a row ID. Only one ROWID column is allowed in a table.

distinct-type-name
Specifies that the data type of the column is a distinct type (a user-defined
data type). The length, precision, and scale of the column are respectively
the length, precision, and scale of the source type of the distinct type. If a
distinct type name is specified without a schema name, the distinct type
name is resolved by searching the schemas on the SQL path.

ALLOCATE(integer)
Specifies for VARCHAR, VARGRAPHIC, and LOB types the space to be
reserved for the column in each row. Column values with lengths less than
or equal to the allocated value are stored in the fixed-length portion of the
row. Column values with lengths greater than the allocated value are

CREATE TABLE

Chapter 5. Statements 517

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|

|

|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

stored in the variable-length portion of the row and require additional
input/output operations to retrieve. The allocated value may range from 1
to maximum length of the string, subject to the maximum row buffer size
limit. For information on the maximum row buffer size, see “Maximum
row sizes” on page 532. If FOR MIXED or a mixed data CCSID is specified,
the range is 4 to the maximum length of the string. If the allocated length
specification is omitted, an allocated length of 0 is assumed. For
VARGRAPHIC, the integer is the number of DBCS or UCS-2 characters. If
a constant is specified for the default value and the ALLOCATE length is
less than the length of the default value, the ALLOCATE length is assumed
to be the length of the default value.

FOR BIT DATA
Specifies that the values of the column are not associated with a coded
character set and are never converted. FOR BIT DATA is only valid for
CHARACTER or VARCHAR columns. The CCSID of a FOR BIT DATA
column is 65535. FOR BIT DATA is not allowed for CLOB columns.

FOR SBCS DATA
Specifies that the values of the column contain SBCS (single-byte character
set) data. FOR SBCS DATA is the default for CHAR, VARCHAR, and
CLOB columns if the default CCSID at the current server at the time the
table is created is not DBCS-capable or if the length of the column is less
than 4. FOR SBCS DATA is only valid for CHARACTER, VARCHAR, or
CLOB columns. The CCSID of FOR SBCS DATA is determined by the
default CCSID at the current server at the time the table is created.

FOR MIXED DATA
Specifies that the values of the column contain both SBCS data and DBCS
data. FOR MIXED DATA is the default for CHAR, VARCHAR, and CLOB
columns if the default CCSID at the current server at the time the table is
created is DBCS-capable and the length of the column is greater than 3.
Every FOR MIXED DATA column is a DBCS-open database field. FOR
MIXED DATA is only valid for CHARACTER, VARCHAR, or CLOB
columns. The CCSID of FOR MIXED DATA is determined by the default
CCSID at the current server at the time the table is created.

CCSID integer
Specifies that the values of the column contain data of CCSID integer. If
the integer is an SBCS CCSID, the column is SBCS data. If the integer is a
mixed data CCSID, the column is mixed data and the length of the column
must be greater than 3. For character columns, the CCSID must be an SBCS
CCSID or a mixed data CCSID. For graphic columns, the CCSID must be a
DBCS or UCS-2 CCSID. If a CCSID is not specified for a graphic column,
the CCSID is determined by the default CCSID at the current server at the
time the table is created. For a list of valid CCSIDs, see Appendix E,
“CCSID Values” on page 831.

DEFAULT
Specifies a default value for the column. This clause cannot be specified more
than once in a column-definition. DEFAULT cannot be specified for a ROWID
column or an identity column (a column that is defined AS IDENTITY). The
database manager generates default values for ROWID columns and identity
columns. If a value is not specified following the DEFAULT keyword, then:
v if the column is nullable, the default value is the null value.
v if the column is not nullable, the default depends on the data type of the

column:

CREATE TABLE

518 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

Data type Default value

Numeric 0

Fixed-length string Blanks

Varying-length string A string length of 0

Date The current date at the time of INSERT

Time The current time at the time of INSERT

Timestamp The current timestamp at the time of INSERT

Datalink A value corresponding to DLVALUE(’’,’URL’,’’)

distinct-type The default value of the corresponding source type of
the distinct type.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit
specification of DEFAULT NULL.

constant
Specifies the constant as the default for the column. The specified constant
must represent a value that could be assigned to the column in accordance
with the rules of assignment as described in “Assignments and
Comparisons” on page 78. A floating-point constant must not be used for a
SMALLINT, INTEGER, DECIMAL, or NUMERIC column. A decimal
constant must not contain more digits to the right of the decimal point
than the specified scale of the column.

USER
Specifies the value of the USER special register at the time of INSERT or
UPDATE as the default value of the column. The data type of the column
must be CHAR or VARCHAR with a length attribute that is greater than
or equal to the length attribute of the USER special register.

NULL
Specifies null as the default for the column. If NOT NULL is specified,
DEFAULT NULL must not be specified within the same column definition.

CURRENT_DATE
Specifies the current date as the default for the column. If
CURRENT_DATE is specified, the data type of the column must be DATE
or a distinct type based on a DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If
CURRENT_TIME is specified, the data type of the column must be TIME
or a distinct type based on a TIME.

CURRENT_TIMESTAMP
Specifies the current timestamp as the default for the column. If
CURRENT_TIMESTAMP is specified, the data type of the column must be
TIMESTAMP or a distinct type based on a TIMESTAMP.

cast-function-name
This form of a default value can only be used with columns defined as a
distinct type, BLOB, CLOB, DBCLOB, DATE, TIME or TIMESTAMP data
types. The following table describes the allowed uses of these cast-functions.

CREATE TABLE

Chapter 5. Statements 519

|||

||

||

||

||

||

||

||

||
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

Data Type Cast Function Name

Distinct type N based on a BLOB, CLOB,
or DBCLOB

BLOB, CLOB, or DBCLOB *

Distinct type N based on a DATE, TIME,
or TIMESTAMP

N (the user-defined cast function that was
generated when N was created) **
or
DATE, TIME, or TIMESTAMP *

Distinct type N based on other data types N (the user-defined cast function that was
generated when N was created) **

BLOB, CLOB, or DBCLOB BLOB, CLOB, or DBCLOB *
DATE, TIME, or TIMESTAMP DATE, TIME, or TIMESTAMP *
Notes:

* The name of the function must match the name of the data type (or the source type of
the distinct type) with an implicit or explicit schema name of QSYS2.

** The name of the function must match the name of the distinct type for the column. If
qualified with a schema name, it must be the same as the schema name for the distinct
type. If not qualified, the schema name from function resolution must be the same as the
schema name for the distinct type.

constant
Specifies a constant as the argument. The constant must conform to the
rules of a constant for the source type of the distinct type or for the
data type if not a distinct type. For BLOB, CLOB, DBCLOB, DATE,
TIME, and TIMESTAMP functions, the constant must be a string
constant.

USER
Specifies the value of the USER special register at the time of INSERT
or UPDATE as the default value for the column. The data type of the
source type of the distinct type of the column must be CHAR or
VARCHAR with a length attribute greater than or equal to the length
attribute of the USER special register.

CURRENT_DATE
Specifies the current date as the default for the column. If
CURRENT_DATE is specified, the data type of the source type of the
distinct type of the column must be DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If
CURRENT_TIME is specified, the data type of the source type of the
distinct type of the column must be TIME.

CURRENT_TIMESTAMP
Specifies the current timestamp as the default for the column. If
CURRENT_TIMESTAMP is specified, the data type of the source type
of the distinct type of the column must be TIMESTAMP.

GENERATED
Specifies that the database manager generates values for the column.
GENERATED must be specified if the column is to be considered an identity
column (defined with the AS IDENTITY clause). It may also be specified if the
data type of the column is a ROWID (or a distinct type that is based on a
ROWID). Otherwise, it must not be specified.

CREATE TABLE

520 DB2 UDB for iSeries SQL Reference V5R2

|||

|
|
|

|
|
|
|
|
|
||
|
||
||
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

ALWAYS
Specifies that the database manager will always generate a value for the
column when a row is inserted into the table. ALWAYS is the
recommended value.

BY DEFAULT
Specifies that the database manager will generate a value for the column
when a row is inserted only if a value is not specified for the column. If a
value is specified, the database manager uses that value.

For a ROWID column, the database manager uses a specified value, but it
must be a valid unique row ID value that was previously generated by
DB2 UDB for OS/390 and z/OS or DB2 UDB for iSeries.

For an identity column, the database manager inserts a specified value but
does not verify that it is a unique value for the column unless the identity
column has a unique constraint or a unique index that solely specifies the
identity column.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have
only one identity column. AS IDENTITY can be specified only if the data type
for the column is an exact numeric type with a scale of zero (SMALLINT,
INTEGER, BIGINT, DECIMAL or NUMERIC with a scale of zero, or a distinct
type based on one of these types).

An identity column is implicitly NOT NULL.

START WITH numeric-constant
Specifies the first value that is generated for the identity column. The value
can be any positive or negative value that could be assigned to the column
without non-zero digits existing to the right of the decimal point.

If a value is not explicitly specified when the identity column is defined,
the default is the MINVALUE for an ascending sequence and the
MAXVALUE for a descending sequence. This value is not necessarily the
value that a sequence would cycle to after reaching the maximum or
minimum value of the sequence. The START WITH clause can be used to
start a sequence outside the range that is used for cycles. The range used
for cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column.
The value can be any positive or negative value that is not 0, does not
exceed the value of a large integer constant, and could be assigned to the
column without any non-zero digits existing to the right of the decimal
point. The default is 1.

If the value is positive, the sequence of values for the identity column
ascends. If the value is negative, the sequence of values descends.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is generated
for this identity column. This value can be any positive or negative value
that could be assigned to this column, but the value must be greater than
the minimum value.

If a value is not explicitly specified when the identity column is defined,
this is the maximum value of the data type (and precision, if DECIMAL)
for an ascending sequence; or the START WITH value, or -1 if START
WITH was not specified, for a descending sequence.

CREATE TABLE

Chapter 5. Statements 521

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is generated
for this identity column. This value can be any positive or negative value
that could be assigned to this column, but the value must be less than the
maximum value.

If a value is not explicitly specified when the identity column is defined,
this is the START WITH value, or 1 if START WITH was not specified, for
an ascending sequence; or the minimum value of the data type (and
precision, if DECIMAL) for a descending sequence.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory.
Preallocating and storing values in the cache improves the performance of
inserting rows into a table.

CACHE integer
Specifies the number of values of the identity column sequence that the
database manager preallocates and keeps in memory. The minimum
value that can be specified is 2, and the maximum is the largest value
that can be represented as an integer. The default is 20.

During a system failure, all cached identity column values that are yet
to be assigned are lost, and thus, will never be used. Therefore, the
value specified for CACHE also represents the maximum number of
values for the identity column that could be lost during a system
failure.

NO CACHE
Specifies that values for the identity column are not preallocated.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to generate values
after reaching either the maximum or minimum value of the sequence.

CYCLE
Specifies that values continue to be generated for this column after the
maximum or minimum value has been reached. If this option is used,
after an ascending sequence reaches the maximum value of the
sequence, it generates its minimum value. After a descending sequence
reaches its minimum value of the sequence, it generates its maximum
value. The maximum and minimum values for the column determine
the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by the
database manager for an identity column. If a unique constraint or
unique index exists on the identity column, and a non-unique value is
generated for it, an error occurs.

NO CYCLE
Specifies that values will not be generated for the identity column once
the maximum or minimum value for the sequence has been reached.
This is the default.

ORDER or NO ORDER
Specifies whether the identity values must be generated in order of
request.

ORDER
Specifies that the values are generated in order of request.

CREATE TABLE

522 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

NO ORDER
Specifies that the values do not need to be generated in order of
request. This is the default.

datalink-options
Specifies the options associated with a DATALINK data type.

LINKTYPE URL
Defines the type of link as a Uniform Resource Locator (URL).

NO LINK CONTROL
Specifies that there will not be any check made to determine that the
linked files exist. Only the syntax of the URL will be checked. There is no
database manager control over the linked files.

FILE LINK CONTROL
Specifies that a check should be made for the existence of the linked files.
Additional options may be used to give the database manager further
control over the linked files.

If FILE LINK CONTROL is specified, each file can only be linked once.
That is, its URL can only be specified in a single FILE LINK CONTROL
column in a single table.

file-link-options
Additional options to define the level of database manager control of the
linked files.

INTEGRITY
Specifies the level of integrity of the link between a DATALINK value
and the actual file.

ALL
Any file specified as a DATALINK value is under the control of the
database manager and may NOT be deleted or renamed using
standard file system programming interfaces.

READ PERMISSION
Specifies how permission to read the file specified in a DATALINK
value is determined.

FS The read access permission is determined by the file system
permissions. Such files can be accessed without retrieving the file
name from the column.

DB
The read access permission is determined by the database. Access
to the file will only be allowed by passing a valid file access token,
returned on retrieval of the DATALINK value from the table, in the
open operation. If READ PERMISSION DB is specified, WRITE
PERMISSION BLOCKED must be specified.

WRITE PERMISSION
Specifies how permission to write to the file specified in a DATALINK
value is determined.

FS The write access permission is determined by the file system
permissions. Such files can be accessed without retrieving the file
name from the column.

BLOCKED
Write access is blocked. The file cannot be directly updated
through any interface. An alternative mechanism must be used to

CREATE TABLE

Chapter 5. Statements 523

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

||
|
|

|
|
|
|
|
|

|
|
|

||
|
|

|
|
|

perform updates to the information. For example, the file is copied,
the copy updated, and then the DATALINK value updated to point
to the new copy of the file.

RECOVERY
Specifies whether or not the database manager will support point in
time recovery of files referenced by values in this column.

NO
Specifies that point in time recovery will not be supported.

ON UNLINK
Specifies the action taken on a file when a DATALINK value is
changed or deleted (unlinked). Note that this is not applicable when
WRITE PERMISSION FS is used.

RESTORE
Specifies that when a file is unlinked, the DataLink File Manager
will attempt to return the file to the owner with the permissions
that existed at the time the file was linked. In the case where the
user is no longer registered with the file server, the result depends
on the file system that contains the files. If the files are in the AIX
file system, the owner is ″dfmunknown″. If the files are in IFS, the
owner is QDLFM. This can only be specified when INTEGRITY
ALL and WRITE PERMISSION BLOCKED are also specified.

DELETE
Specifies that the file will be deleted when it is unlinked. This can
only be specified when READ PERMISSION DB and WRITE
PERMISSION BLOCKED are also specified.

MODE DB2OPTIONS
This mode defines a set of default file link options. The defaults defined by
DB2OPTIONS are:
v INTEGRITY ALL
v READ PERMISSION FS
v WRITE PERMISSION FS
v RECOVERY NO

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL
implies that the column can be null.

column-constraint

CONSTRAINT constraint-name
Names the constraint. A constraint-name must not identify a constraint that
was previously specified in the CREATE TABLE statement and that already
exists at the current server.

If the clause is not specified, a unique constraint name is generated by the
database manager.

PRIMARY KEY
Provides a shorthand method of defining a primary key composed of a
single column. Thus, if PRIMARY KEY is specified in the definition of
column C, the effect is the same as if the PRIMARY KEY(C) clause is
specified as a separate clause.

CREATE TABLE

524 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

|

|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|

This clause must not be specified in more than one column definition and
must not be specified at all if the UNIQUE clause is specified in the
column definition. The column must not be a LOB or DATALINK column.

When a primary key is added, a CHECK constraint is implicitly added to
enforce the rule that the NULL value is not allowed in the column that
makes up the primary key.

UNIQUE
Provides a shorthand method of defining a unique key composed of a
single column. Thus, if UNIQUE is specified in the definition of column C,
the effect is the same as if the UNIQUE(C) clause is specified as a separate
clause.

This clause cannot be specified more than once in a column definition and
must not be specified if PRIMARY KEY is specified in the column
definition. The column must not be a LOB or DATALINK column.

references-clause
The references-clause of a column-definition provides a shorthand method of
defining a foreign key composed of a single column. Thus, if a
references-clause is specified in the definition of column C, the effect is the
same as if that references-clause were specified as part of a FOREIGN KEY
clause in which C is the only identified column.

CHECK(check-condition)
The CHECK(check-condition) of a column-definition provides a shorthand
method of defining a check constraint whose check-condition only references
a single column. Thus, if CHECK is specified in the column definition of
column C, no columns other than C can be referenced in the check-condition
of the check constraint. The effect is the same as if the check constraint
were specified as a separate clause.

ROWID or DATALINK with FILE LINK CONTROL columns cannot be
referenced in a CHECK constraint. For additional restrictions see,
“check-constraint” on page 530.

LIKE
table-name or view-name

Specifies that the columns defined in the specified table or view are included
in this table. The specified table-name or view-name must identify the table or
view that already exists at the server.

The use of LIKE is an implicit definition of n columns, where n is the number
of columns in the identified table or view. The implicit definition includes the
following attributes of the n columns (if applicable to the data type):
v Column name (and system column name)
v Data type, length, precision, and scale
v CCSID

If the LIKE clause is specified immediately following the table-name and not
enclosed in parenthesis, the following column attributes are also included,
otherwise they are not included (the default value and identity attributes can
also be controlled by using the copy-options):
v Default value, if a table-name is specified (view-name is not specified)
v Nullability
v Identity attributes

CREATE TABLE

Chapter 5. Statements 525

|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|

|

|

|
|
|
|

|

|

|

v Column heading and text (see “LABEL” on page 664)

The implicit definition does not include any other optional attributes of the
identified table or view. For example, the new table does not automatically
include primary keys, foreign keys, or triggers. The new table has these and
other optional attributes only if the optional clauses are explicitly specified.

If the specified table or view is a non-SQL created physical file or logical file,
any non-SQL attributes are removed. For example, the date and time format
will be changed to ISO.

as-subquery-clause
column-name

Names a column of the table. Do not qualify column-name and do not use the
same name for more than one column of the table or for a
system-column-name of the table.

FOR COLUMN system-column-name
Provides an OS/400 name for the column. Do not use the same name for more
than one column of the table or for a column-name of the table.

If the system-column-name is not specified, and the column-name is not a
valid system-column-name, a system column name is generated. For more
information about how system column names are generated, see “Rules for
Column Name Generation” on page 535.

select-statement
Specifies that the columns of the table are to have the same name and
description as the columns that would appear in the derived result table of the
select-statement if the select-statement were to be executed. The use of AS
select-statement is an implicit definition of n columns for the table, where n is
the number of columns that would result from the select-statement. The
implicit definition includes the following attributes of the n columns (if
applicable to the data type):
v Column name (and system column name)
v Data type, length, precision, and scale
v CCSID
v Nullability
v Column heading and text (see “LABEL” on page 664)

The following attributes are not included (the default value and identity
attributes may be included by using the copy-options):
v Default value
v Identity attributes

The implicit definition does not include any other optional attributes of the
identified table or view. For example, the new table does not automatically
include a primary key or foreign key from a table. The new table has these and
other optional attributes only if the optional clauses are explicitly specified.

The implicitly defined columns of the table inherit the names of the columns
from the result table of the select-statement. Therefore, a column name must be
specified in the select-statement or in the column name list for all result
columns. For result columns that are derived from expressions, constants, and

CREATE TABLE

526 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

|

|

|
|
|
|

|
|
|
|

functions, the select-statement must include the AS column-name clause
immediately after the result column or a name must be specified in the column
list preceding the select-statement.

The select-statement must not refer to host variables or include parameter
markers (question marks).

WITH DATA
Specifies that the select-statement is executed. After the table is created, the
result table rows of the select-statement are automatically inserted into the table.

WITH NO DATA or DEFINITION ONLY
Specifies that the select-statement is not executed. Therefore, there is no result
table with a set of rows with which to automatically populate the table.

copy-options
INCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies that the table inherits the identity attribute, if any, of the columns
resulting from select-statement, table-name or view-name. In general, the identity
attribute is copied if the element of the corresponding column in the table,
view, or select-statement is the name of a table column or the name of a view
column that directly or indirectly maps to the name of a base table column
with the identity attribute.

If the INCLUDING IDENTITY COLUMN ATTRIBUTES clause is specified with
the AS select-statement clause, the columns of the new table do not inherit the
identity attribute in the following cases:
v The select list of the select-statement includes multiple instances of an identity

column name (that is, selecting the same column more than once).
v The select list of the select-statement includes multiple identity columns (that

is, it involves a join).
v The identity column is included in an expression in the select list.
v The select-statement includes a set operation (union).

If INCLUDING IDENTITY is not specified, the table will not have an identity
column.

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the table does not inherit the identity attribute, if any, of the
columns resulting from the select-statement, table-name, or view-name.

INCLUDING COLUMN DEFAULTS
Specifies that the table inherits the default values of the columns resulting from
the select-statement, table-name, or view-name. A default value is the value
assigned to a column when a value is not specified on an INSERT.

Do not specify INCLUDING COLUMN DEFAULTS, if you specify USING
TYPE DEFAULTS.

If INCLUDING COLUMN DEFAULTS is not specified, the default values are
not inherited.

EXCLUDING COLUMN DEFAULTS
Specifies that the table does not inherit the default values of the columns
resulting from the select-statement, table-name, or view-name.

USING TYPE DEFAULTS
Specifies that the default values for the table depend on the data type of the
columns that result from the select-statement, table-name, or view-name. If the

CREATE TABLE

Chapter 5. Statements 527

|
|
|

|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

|

|

|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|

column is nullable, then the default value is the null value. Otherwise, the
default value is as follows:

Data type Default value

Numeric 0

Fixed-length string Blanks

Varying-length string A string length of 0

Date The current date at the time of INSERT

Time The current time at the time of INSERT

Timestamp The current timestamp at the time of INSERT

Datalink A value corresponding to DLVALUE(’’,’URL’,’’)

distinct-type The default value of the corresponding source type of
the distinct type.

Do not specify USING TYPE DEFAULTS, if INCLUDING COLUMN
DEFAULTS is specified.

unique-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that was
previously specified in the CREATE TABLE statement and that already exists
at the current server.

If the clause is not specified, a unique constraint name is generated by the
database manager.

PRIMARY KEY(column-name,...)
Defines a primary key composed of the identified columns. A table can only
have one primary key. Thus, this clause cannot be specified more than once
and cannot be specified at all if the shorthand form has been used to define a
primary key for the table. The identified columns cannot be the same as the
columns specified in another UNIQUE constraint specified earlier in the
CREATE TABLE statement. For example, PRIMARY KEY(A,B) would not be
allowed if UNIQUE(B,A) had already been specified.

Each column-name must be an unqualified name that identifies a column of the
table. The same column must not be identified more than once. The column
must not be a LOB or DATALINK column. The number of identified columns
must not exceed 120, and the sum of their byte counts must not exceed 2000-n,
where n is the number of columns specified that allow nulls. For information
on byte-counts see Table 47 on page 533.

The unique index is created as part of the system physical file, not a separate
system logical file. When a primary key is added, a CHECK constraint is
implicitly added to enforce the rule that the NULL value is not allowed in any
of the columns that make up the primary key.

UNIQUE(column-name,...)
Defines a unique key composed of the identified columns. The UNIQUE clause
can be specified more than once. The identified columns cannot be the same as
the columns specified in another UNIQUE constraint or PRIMARY KEY that
was specified earlier in the CREATE TABLE statement. For determining if a
unique constraint is the same as another constraint specification, the column
lists are compared. For example, UNIQUE(A,B) is the same as UNIQUE(B,A).

CREATE TABLE

528 DB2 UDB for iSeries SQL Reference V5R2

|
|

|||

||

||

||

||

||

||

||

||
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

Each column-name must be an unqualified name that identifies a column of
the table. The same column must not be identified more than once. The
column must not be a LOB or DATALINK column. The number of identified
columns must not exceed 120, and the sum of their byte counts must not
exceed 2000-n, where n is the number of columns specified that allows nulls.
For information on byte-counts see Table 47 on page 533.

A unique index on the identified column is created during the execution of the
CREATE TABLE statement. The unique index is created as part of the system
physical file, not as a separate system logical file.

referential-constraint
CONSTRAINT constraint-name

Names the constraint. A constraint-name must not identify a constraint that was
previously specified in the CREATE TABLE statement and that already exists
at the current server.

If the clause is not specified, a unique constraint name is generated by the
database manager.

FOREIGN KEY
Each specification of the FOREIGN KEY clause defines a referential constraint.

(column-name,...)
The foreign key of the referential constraint is composed of the identified
columns. Each column-name must be an unqualified name that identifies a
column of the table. The same column must not be identified more than
once. The column must not be a LOB or DATALINK column. The number
of identified columns must not exceed 120, and the sum of their lengths
must not exceed 2000-n, where n is the number of columns specified that
allow nulls.

REFERENCES table-name
The table-name specified in a REFERENCES clause must identify the table
being created or a base table that already exists at the server, but it must
not identify a catalog table or a global temporary table.

A referential constraint is a duplicate if its foreign key, parent key, and
parent table are the same as the foreign key, parent key, and parent table of
a previously specified referential constraint. Duplicate referential
constraints are allowed, but not recommended.

Let T2 denote the identified parent table and let T1 denote the table being
created.

The specified foreign key must have the same number of columns as the
parent key of T2. The description of the nth column of the foreign key and
the description of the nth column of that parent key must have identical
data types and lengths.

(column-name,...)
The parent key of the referential constraint is composed of the
identified columns. Each column-name must be an unqualified name
that identifies a column of T2. The same column must not be identified
more than once. The column must not be a LOB or DATALINK
column. The number of identified columns must not exceed 120, and
the sum of their byte counts must not exceed 2000-n, where n is the
number of columns specified that allow nulls. For information on
byte-counts see Table 47 on page 533.

CREATE TABLE

Chapter 5. Statements 529

|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

The list of column names must be identical to the list of column names
in the primary key of T2 or a UNIQUE constraint that exists on T2.
The names need not be specified in the same order as in the primary
key; however, they must be specified in corresponding order to the list
of columns in the foreign key clause. If a column name list is not
specified, then T2 must have a primary key. Omission of the column
name list is an implicit specification of the columns of that primary
key.

The referential constraint specified by a FOREIGN KEY clause defines a
relationship in which T2 is the parent and T1 is the dependent.

ON DELETE
Specifies what action is to take place on the dependent tables when a row
of the parent table is deleted. There are five possible actions:
v NO ACTION (default)
v RESTRICT
v CASCADE
v SET NULL
v SET DEFAULT

SET NULL must not be specified unless some column of the foreign key
allows null values.

CASCADE must not be specified if T1 contains a DataLink column with
FILE LINK CONTROL.

The delete rule applies when a row of T2 is the object of a DELETE or
propagated delete operation and that row has dependents in T1. Let p
denote such a row of T2.
v If RESTRICT or NO ACTION is specified, an error occurs and no rows

are deleted.
v If CASCADE is specified, the delete operation is propagated to the

dependents of p in T1.
v If SET NULL is specified, each nullable column of the foreign key of

each dependent of p in T1 is set to null.
v If SET DEFAULT is specified, each column of the foreign key of each

dependent of p in T1 is set to its default value.

ON UPDATE
Specifies what action is to take place on the dependent tables when a row
of the parent table is updated.

The update rule applies when a row of T2 is the object of an UPDATE or
propagated update operation and that row has dependents in T1. Let p
denote such a row of T2.
v If RESTRICT or NO ACTION is specified, an error occurs and no rows

are updated.

check-constraint
CONSTRAINT constraint-name

Names the check constraint. A constraint-name must not identify a constraint
that was previously specified in the CREATE TABLE statement and that
already exists at the current server.

CREATE TABLE

530 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|
|

|
|

|
|
|

|

|

|

|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

If the clause is not specified, a unique constraint name is generated by the
database manager.

CHECK (check-condition)
Defines a check constraint. At any time, the check-condition must be true or
unknown for every row of the table.

The check-condition is a search-condition except:
v It can only refer to columns of the table
v It cannot reference ROWID or DATALINK with FILE LINK CONTROL

columns.
v It must not contain any of the following:

– Subqueries
– Scalar-subselect
– Column functions
– Host variables
– Parameter markers
– Complex expressions that contain LOBs (such as concatenation)
– CURRENT TIMEZONE, CURRENT SCHEMA, CURRENT SERVER,

CURRENT PATH, and USER special registers
– NOW, CURDATE, and CURTIME scalar functions
– NODENAME scalar function
– User-defined functions other than functions that were implicitly generated

with the creation of a distinct type
– ATAN2, DIFFERENCE, RADIANS, RAND, and SOUNDEX scalar

functions
– DLVALUE, DLURLPATH, DLURLPATHONLY, DLURLSERVER, or

DLURLSCHEME scalar functions
– DLURLCOMPLETE scalar function (for DataLinks with an attribute of

FILE LINK CONTROL and READ PERMISSION DB)

For more information about search-condition, see “Search Conditions” on page 155.
For more information about check constraints involving LOB data types and
expressions, see the Database Programming book.

nodegroup-clause
IN nodegroup-name

Specifies the nodegroup across which the data in the table will be partitioned.
The name must identify a nodegroup that exists at the current server. If this
clause is specified, the table is created as a distributed table across all the
systems in the nodegroup.

A LOB or DATALINK column is not allowed in a distributed table.

The DB2 Multisystem product must be installed to create a distributed table.
For more information about distributed tables, see the DB2 Multisystem book.

PARTITIONING KEY(column-name,...)
Specifies the partitioning key. The partitioning key is used to determine on
which node in the nodegroup a row will be placed. Each column-name must be
an unqualified name that identifies a column of the table. The same column
must not be identified more than once. If the PARTITIONING KEY clause is
not specified, the first column of the primary key is used as the partitioning

CREATE TABLE

Chapter 5. Statements 531

|
|

|

|

|
|

|

|

|

|

|

|

|

|
|

|

|

|
|

|
|

|
|

|
|

../dbp/rbafomst02.htm
../dbmult/rzaf3mst02.htm

key. If there is no primary key, the first column of the table that is not floating
point, date, time, or timestamp is used as the partitioning key.

The columns that make up the partitioning key must be a subset of the
columns that make up any unique constraints over the table. Floating point,
date, time, and timestamp columns cannot be used in a partitioning key.

USING HASHING
Specifies that the data in the partitioning key will be hashed in order to
distribute the row to the appropriate server in the nodegroup.

Notes
Table attributes: Tables are created as physical files. When an table is created, the
file wait time and record wait time attributes are set to the default that is specified
on the WAITFILE and WAITRCD keywords of the Create Physical File (CRTLF)
command.

SQL tables are created so that space used by deleted rows will be reclaimed by
future insert requests. This attribute can be changed via the command CHGPF and
specifying the REUSEDLT(*NO) parameter. For more information about the CHGPF
command, see the CL Reference information in the Programming category of the
iSeries Information Center.

When a table is created, journaling is automatically started on the journal named
QSQJRN in the schema.

A distributed table is created on all of the servers across which the table is
distributed. For more information about distributed tables, see the DB2
Multisystem book.

Table ownership: If SQL names were specified, the owner of the table is the user
profile with the same name as the schema into which the table is created.
Otherwise, the owner of the table is the user profile or group user profile of the job
executing the statement.

If system names were specified, the owner of the table is the user profile or group
user profile of the job executing the statement.

Table authority: If SQL names are used, tables are created with the system
authority of *EXCLUDE on *PUBLIC. If system names are used, tables are created
with the authority to *PUBLIC as determined by the create authority (CRTAUT)
parameter of the schema.

If the owner of the table is a member of a group profile (GRPPRF keyword) and
group authority is specified (GRPAUT keyword), that group profile will also have
authority to the table.

Maximum row sizes
There are two maximum row size restrictions referred to in the description of
column-definition.
v The maximum row buffer size is 32766 or, if a VARCHAR, VARGRAPHIC, or

LOB column is specified, 32740.
v The maximum row data size is 3 758 096 383, if a LOB is specified. If a LOB is

not specified, then the maximum row data size is 32766 or, if a VARCHAR or
VARGRAPHIC column is specified, 32740.

CREATE TABLE

532 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|
|

|
|
|

../rbam6/rbam6clmain.htm
../dbmult/rzaf3mst02.htm
../dbmult/rzaf3mst02.htm

To determine the length of a row buffer and/or row data add the corresponding
length of each column of that row based on the byte counts of the data type.

The follow table gives the byte counts of columns by data type for columns that do
not allow null values. If any column allows null values, one byte is required for
every eight columns.

Table 47. Byte Counts of Columns by Data Type

Data Type Row Buffer Byte Count Row Data Byte Count

SMALLINT 2 2

INTEGER 4 4

BIGINT 8 8

DECIMAL(p, s) The integral part of (p/2) + 1 The integral part of (p/2) + 1

NUMERIC(p, s) p p

FLOAT (single precision) 4 4

FLOAT (double precision) 8 8

CHAR(n) n n

VARCHAR(n) n+2 n+2

CLOB(n) 29+pad n+29

GRAPHIC(n) n*2 n*2

VARGRAPHIC (n) n*2+2 n*2+2

DBCLOB(n) 29+pad n*2+29

BLOB(n) 29+pad n+29

DATE 10 4

TIME 8 3

TIMESTAMP 26 10

DATALINK(n) n+24 n+24

ROWID 42 28

distinct-type The byte count for the source
type.

The byte count for the source
type.

Notes:

pad is a value from 1 to 15 necessary for boundary alignment.

Precision as described to the database:
v Floating-point fields are defined in the iSeries database with a decimal precision,

not a bit precision. The algorithm used to convert the number of bits to decimal
is decimal precision = CEILING(n/3.31), where n is the number of bits to convert.
The decimal precision is used to determine how many digits to display using
interactive SQL.

v SMALLINT fields are stored with a decimal precision of 4,0.
v INTEGER fields are stored with a decimal precision of 9,0.
v BIGINT fields are stored with a decimal precision of 19,0.

LONG VARCHAR and LONG VARGRAPHIC
The non-standard syntax of LONG VARCHAR and LONG VARGRAPHIC is
supported, but deprecated. The alternative standard syntax of VARCHAR(integer)
and VARGRAPHIC(integer), is preferred. VARCHAR(integer) and

CREATE TABLE

Chapter 5. Statements 533

|||

|
|
|
|

VARGRAPHIC(integer) are recommended. After the CREATE TABLE statement is
processed, the database manager considers a LONG VARCHAR column to be
VARCHAR and a LONG VARGRAPHIC column to be VARGRAPHIC. The
maximum length is calculated in a product-specific fashion that is not portable.

LONG VARCHAR 52

For a varying length character string whose maximum length is determined by
the amount of space available in the row.

LONG VARGRAPHIC 52

For a varying length graphic string whose maximum length is determined by
the amount of space available in the row.

The maximum length of a LONG column is determined as follows. Let:
v m be the maximum row size
v i be the sum of the byte counts of all columns in the table that are not LONG

VARCHAR or LONG VARGRAPHIC
v j be the number of LONG VARCHAR and LONG VARGRAPHIC columns in

the table
v k be the number of columns in the row that allow nulls.

The length of each LONG VARCHAR column is INTEGER((m-24-i-((k+7)/8))/j).

The length of each LONG VARGRAPHIC column is determined by taking the
length calculated for a LONG VARCHAR column and dividing it by 2. The integer
portion of the result is the length.

Using an Identity Column
When a table has an identity column, the database manager can automatically
generate sequential numeric values for the column as rows are inserted into the
table. Thus, identity columns are ideal for primary keys. Identity columns and
ROWID columns are similar in that both types of columns contain values that the
database manager generates. ROWID columns can be useful in direct-row access.
ROWID columns contain values of the ROWID data type, which returns a 40-byte
VARCHAR value that is not regularly ascending or descending. ROWID data
values are therefore not well suited to many application uses, such as generating
employee numbers or product numbers. For data that does not require direct-row
access, identity columns are usually a better approach, because identity columns
contain existing numeric data types and can be used in a wide variety of uses for
which ROWID values would not be suitable.

When a table is recovered to a point-in-time (using RMVJRNCHG), it is possible
that a large gap in the sequence of generated values for the identity column might
result. For example, assume a table has an identity column that has an incremental
value of 1 and that the last generated value at time T1 was 100 and the database
manager subsequently generates values up to 1000. Now, assume that the table is
recovered back to time T1. The generated value of the identity column for the next
row that is inserted after the recovery completes will be 1001, leaving a gap from
100 to 1001 in the values of the identity column.

When CYCLE is specified duplicate values for a column may be generated even
when the column is GENERATED ALWAYS, unless a unique constraint or unique
index is defined on the column.

CREATE TABLE

534 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|

|
|
|

|

|

|
|

|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

Rules for System Name Generation
There are specific instances when the system generates a system table, view, index,
or column name. These instances and the name generation rules are described in
the following sections.

Rules for Column Name Generation
A system-column-name is generated if the system-column-name is not specified
when a table or view is created and the column-name is not a valid
system-column-name.

If the column-name does not contain special characters and is longer than 10
characters, a 10-character system-column-name will be generated as:
v The first 5 characters of the name
v A 5 digit unique number

For example:
The system-column-name for LONGCOLUMNNAME would be LONGC00001

If the column name is delimited:
v The first 5 characters from within the delimiters will be used as the first 5

characters of the system-column-name. If there are fewer than 5 characters
within the delimiters, the name will be padded on the right with underscore (_)
characters. Lower case characters are folded to upper case characters. The only
valid characters in a system-column-name are: A-Z, 0-9, @, #, $, and _. Any other
characters will be changed to the underscore (_) character. If the first character
ends up as an underscore, it will be changed to the letter Q.

v A 5 digit unique number is appended to the 5 characters.

For example:
The system-column-name for "abc" would be ABC__00001
The system-column-name for "COL2.NAME" would be COL2_00001
The system-column-name for "C 3" would be C_3__00001
The system-column-name for "??" would be Q____00001
The system-column-name for "*column1" would be QCOLU00001

Rules for Table Name Generation
A system name will be generated if a table, view, alias, or index is created with
either:
v A name longer than 10 characters
v A name that contains characters not valid in a system name

The SQL name or its corresponding system name may both be used in SQL
statements to access the file once it is created. However, the SQL name is only
recognized by DB2 UDB for iSeries and the system name must be used in other
environments.

If the name does not contain special characters and is longer than 10 characters, a
10-character system name will be generated as:
v The first 5 characters of the name
v A 5 digit unique number

For example:
The system name for LONGTABLENAME would be LONGT00001

If the SQL name contains special characters, the system name is generated as:

CREATE TABLE

Chapter 5. Statements 535

v The first 4 characters of the name
v A 4 digit unique number

In addition:
v All special characters are replaced by the underscore (_)
v Any trailing blanks are removed from the name
v The name is delimited by double quotes (″) if the delimiters are required for the

name to be a valid system name.

For example:
The system name for "??" would be "__0001"
The system name for "longtablename" would be "long0001"
The system name for "LONGTableName" would be LONG0001
The system name for "A b " would be "A_b0001"

SQL ensures the system name is unique by searching the cross reference file. If the
name already exists in the cross reference file, the number is incremented until the
name is no longer a duplicate.

If a unique name cannot be determined using the above rules, an additional
character is added to the counter in the name, and the number is incremented until
a unique name can be found or the range is exhausted. For example, if creating
″longtablename″ and names ″long0001″ through ″long9999″ already exist, the name
would become ″lon00001″.

Examples

Example 1
Given that you have administrative authority, create a table named
‘ROSSITER.INVENTORY’ with the following columns:
v Part number: Small integer, must not be null
v Description: Character of length 0 to 24, allows nulls
v Quantity on hand: Integer, allows nulls

CREATE TABLE ROSSITER.INVENTORY
(PARTNO SMALLINT NOT NULL,
DESCR VARCHAR(24),
QONHAND INT)

Example 2
Create a table named DEPARTMENT with the following columns:
v Department number: Character of length 3, must not be null
v Department name: Character of length 0 through 36, must not be null
v Manager number: Character of length 6, allows nulls
v Administrative department: Character of length 3, must not be null
v Location: Character of length 16, allows nulls

CREATE TABLE DEPARTMENT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
MGRNO CHAR(6),
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16),
PRIMARY KEY(DEPTNO))

CREATE TABLE

536 DB2 UDB for iSeries SQL Reference V5R2

Example 3
Create a table named REORG_PROJECTS which has the same column definitions
as the columns in the view PRJ_LEADER.

CREATE TABLE REORG_PROJECTS
LIKE PRJ_LEADER

CREATE TABLE

Chapter 5. Statements 537

CREATE TRIGGER

The CREATE TRIGGER statement defines a trigger at the current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The authorities for the table identified in the statement, and the trigger name

qualifier:
– *EXECUTE on the library containing the subject table,
– The ALTER (*OBJALTER), or WITH GRANT OPTION privilege(*OBJMGT) on

the subject table,
– The SELECT(*OBJOPR and *READ) on the subject table,
– UPDATE (*UPD and *OBJOPR) on the subject table if the BEFORE UPDATE

trigger contains a SET statement that modifies the NEW correlation variable,
– SELECT(*OBJOPR and *READ) and INSERT(*OBJOPR and *ADD) privilege

on the trigger name library,
– *USE on the Add Physical File Trigger (ADDPFTRG) command,
– If SQL naming is in effect, and if a user profile exists that matches the schema

qualifier of the trigger name, and the name is different from the authorization
ID of the statement, then *ALLOBJ and *SECADM special authority is
required.

v Administrative authority

The authorization ID of the statement has the ALTER privilege on a table when:
v It is the owner of the table,
v It has been granted the ALTER privilege to the table, or
v It has been granted the system authorities of either *OBJALTER or *OBJMGT to

the table.

The authorization ID of the statement has the SELECT privilege on a table when:
v It is the owner of the table,
v It has been granted the SELECT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *READ on the table.

The authorization ID of the statement has the UPDATE privilege on a table when:
v It is the owner of the table,
v It has been granted the UPDATE privilege on the table or on the columns of the

table, or
v It has been granted the system authorities of *OBJOPR and *UPD on the table.

In addition, the privileges held by the authorization ID of the statement must
include at least one of the following:
v The following system authorities:

– *USE on the Create Program (CRTPGM) command

CREATE TRIGGER

538 DB2 UDB for iSeries SQL Reference V5R2

|

|

v Administrative authority

If SQL names are specified, and a user profile exists that has the same name as the
library into which the trigger is created, and the name is different from the
authorization ID of the statement, then the privileges held by the authorization ID
of the statement must include at least one of the following:
v *ALLOBJ and *SECADM special authority
v Administrative authority

For each table or view identified in an SQL statement in the SQL-trigger-body, the
privileges held by the authorization ID must include the privileges required to
perform that SQL statement.

CREATE TRIGGER

Chapter 5. Statements 539

Syntax

�� CREATE TRIGGER trigger-name
NO CASCADE

BEFORE
AFTER

�

�

INSERT ON table-name
DELETE
UPDATE

,

OF column-name

�

�

(1) (2) ROW AS

REFERENCING OLD correlation-name
ROW AS

NEW correlation-name
AS

OLD TABLE table-identifier
OLD_TABLE

AS
NEW TABLE table-identifier
NEW_TABLE

�

�

(3)
FOR EACH STATEMENT

FOR EACH ROW

MODE DB2SQL

MODE DB2ROW
triggered-action ��

Notes:

1 The same clause must not be specified more than once.

2 OLD TABLE and NEW TABLE may be specified only once each and only for AFTER
triggers.

3 FOR EACH STATEMENT must not be specified for BEFORE triggers.

CREATE TRIGGER

540 DB2 UDB for iSeries SQL Reference V5R2

Description
trigger-name

Names the trigger. The name, including the implicit or explicit qualifier, must
not be the same as a trigger that already exists at the current server. QTEMP
cannot be used as the trigger-name schema qualifier.

If SQL names were specified, the trigger will be created in the schema specified
by the implicit or explicit qualifier.

If system names were specified, the trigger will be created in the schema that
is specified by the qualifier. If not qualified, the trigger will be created in the
same schema as the subject table.

If the trigger name is not a valid system name, or if a program with the same
name already exists, the database manager will generate a system name. For
information on the rules for generating a name, see “Rules for Table Name
Generation” on page 535.

triggered-action:

SQL-trigger-body
SET OPTION-statement WHEN (search-condition)

SQL-trigger-body:

SQL-control-statement
ALTER-statement
COMMENT statement
CREATE ALIAS-statement
CREATE DISTINCT TYPE-statement
CREATE FUNCTION (External Scalar)-statement
CREATE FUNCTION (External Table)-statement
CREATE INDEX-statement
CREATE PROCEDURE (External)-statement
CREATE SCHEMA-statement
CREATE TABLE-statement
CREATE VIEW-statement
DECLARE GLOBAL TEMPORARY TABLE-statement
DELETE-statement
DROP-statement
EXECUTE IMMEDIATE-statement
GRANT-statement
INSERT-statement
LABEL-statement
LOCK TABLE-statement
RELEASE-statement
RELEASE SAVEPOINT-statement
RENAME-statement
REVOKE-statement
SAVEPOINT-statement
SELECT INTO-statement
SET SCHEMA-statement
SET PATH-statement
SET TRANSACTION-statement
UPDATE-statement

CREATE TRIGGER

Chapter 5. Statements 541

|||||||||||||

NO CASCADE
NO CASCADE is allowed for compatibility with other products and is not
used by DB2 UDB for iSeries.

BEFORE
Specifies that the trigger is a before trigger. The database manager executes the
triggered-action before it applies any changes caused by an insert, delete, or
update operation on the subject table. It also specifies that the triggered-action
does not activate other triggers because the triggered-action of a before trigger
cannot contain any updates.

AFTER
Specifies that the trigger is an after trigger. The database manager executes the
triggered-action after it applies any changes caused by an insert, delete, or
update operation on the subject table.

INSERT
Specifies that the trigger is an insert trigger. The database manager executes
the triggered-action whenever there is an insert operation on the subject table.

DELETE
Specifies that the trigger is a delete trigger. The database manager executes the
triggered-action whenever there is a delete operation on the subject table.

UPDATE
Specifies that the trigger is an update trigger. The database manager executes
the triggered-action whenever there is an update operation on the subject table.

If an explicit column-name list is not specified, an update operation on any
column of the subject table, including columns that are subsequently added
with the ALTER TABLE statement, activates the triggered-action.

OF column-name, ...
Each column-name specified must be a column of the subject table, and
must appear in the list only once. An update operation on any of the listed
columns activates the triggered-action.

ON table-name
Identifies the subject table of the trigger definition. The name must identify a
base table that exists at the current server, but must not identify a catalog table,
a table in QTEMP, or a global temporary table.

REFERENCING
Specifies the correlation names for the transition variables and the table names
for the transition tables. Correlation-names identify a specific row in the set of
rows affected by the triggering SQL operation. Table-identifiers identify the
complete set of affected rows.

Each row affected by the triggering SQL operation is available to the
triggered-action by qualifying columns with correlation-names specified as
follows:

OLD ROW AS correlation-name
Specifies a correlation name that identifies the values in the row prior to
the triggering SQL operation.

NEW ROW AS correlation-name
Specifies a correlation name which identifies the values in the row as
modified by the triggering SQL operation and any SET statement in a
BEFORE trigger that has already executed.

CREATE TRIGGER

542 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

The complete set of rows affected by the triggering SQL operation is available
to the triggered-action by using a temporary table name specified as follows:

OLD TABLE AS table-identifier
Specifies the name of a temporary table that identifies the values in the
complete set of affected rows prior to the triggering SQL operation. The
OLD TABLE includes the rows that were affected by the trigger if the
current activation of the trigger was caused by statements in the
SQL-trigger-body of a trigger.

NEW TABLE AS table-identifier
Specifies the name of a temporary table that identifies the state of the
complete set of affected rows as modified by the triggering SQL operation
and by any SET statement in a BEFORE trigger that has already been
executed.

At most, the trigger definition can include two correlation names, OLD ROW
and NEW ROW, and two table names, OLD TABLE and NEW TABLE. All of
the names must be unique from one another.

The OLD ROW correlation-name and the OLD TABLE table-identifier are valid
only if the triggering event is either a DELETE operation or an UPDATE
operation. For a DELETE operation, the OLD ROW correlation-name captures
the values of the columns in the deleted row, and the OLD TABLE
table-identifier captures the values in the set of deleted rows. For an UPDATE
operation, OLD ROW correlation-name captures the values of the columns of a
row before the UPDATE operation, and the OLD TABLE table-identifier captures
the values in the set of updated rows.

The NEW ROW correlation-name and the NEW TABLE table-identifier are valid
only if the triggering event is either an INSERT operation or an UPDATE
operation. For both operations, the NEW ROW correlation-name captures the
values of the columns in the inserted or updated row, and the NEW TABLE
table-identifier captures the values in the set of inserted or updated rows. For
BEFORE triggers, the values of the updated rows include the changes from any
SET statements in the triggered-action of BEFORE triggers.

OLD TABLE and NEW TABLE cannot be specified for a BEFORE trigger or for
MODE DB2ROW.

OLD ROW and NEW ROW cannot be specified for a FOR EACH STATEMENT
trigger.

The OLD ROW and NEW ROW correlation-name variables cannot be modified
in an AFTER trigger.

The tables below summarizes the allowable combinations of correlation
variables and transition tables.

Granularity: FOR EACH ROW

MODE Activation
Time

Triggering
Operation

Correlation
Variables
Allowed

Transition Tables
Allowed

CREATE TRIGGER

Chapter 5. Statements 543

DB2ROW BEFORE DELETE OLD NONE

INSERT NEW

UPDATE OLD, NEW

AFTER DELETE OLD

INSERT NEW

UPDATE OLD, NEW

DB2SQL BEFORE DELETE OLD

INSERT NEW

UPDATE OLD, NEW

AFTER DELETE OLD OLD TABLE

INSERT NEW NEW TABLE

UPDATE OLD, NEW OLD TABLE, NEW
TABLE

Granularity: FOR EACH STATEMENT

MODE Activation Time Triggering
Operation

Correlation
Variables
Allowed

Transition
Tables Allowed

DB2SQL AFTER DELETE NONE OLD TABLE

INSERT NEW TABLE

UPDATE OLD TABLE,
NEW TABLE

A transition variable that has a character data type inherits the CCSID of the
column of the subject table. During the execution of the triggered-action, the
transition variables are treated like host variables. Therefore, character
conversion might occur.

The temporary transition tables are read-only. They cannot be modified.

The scope of each correlation-name and each table-identifier is the entire trigger
definition.

FOR EACH ROW
Specifies that the database manager executes the triggered-action for each row of
the subject table that the triggering operation modifies. If the triggering
operation does not modify any rows, the triggered-action is not executed.

FOR EACH STATEMENT
Specifies that the database manager executes the triggered-action only once for
the triggering operation. An UPDATE or DELETE FOR EACH STATEMENT
trigger is activated even when no rows are affected by the triggering UPDATE
or DELETE statement.

FOR EACH STATEMENT cannot be specified for a BEFORE trigger.

FOR EACH STATEMENT cannot be specified for a MODE DB2ROW trigger.

MODE DB2SQL
MODE DB2SQL triggers are activated after all of the row operations have
occurred.

CREATE TRIGGER

544 DB2 UDB for iSeries SQL Reference V5R2

MODE DB2ROW
MODE DB2ROW triggers are activated on each row operation.

MODE DB2ROW is valid for both the BEFORE and AFTER activation time.

triggered-action
Specifies the action to be performed when a trigger is activated. The
triggered-action is composed of one or more SQL statements and by an optional
condition that controls whether the statements are executed.

SET OPTION-statement
Specifies the options that will be used to create the trigger. For example, to
create a debuggable trigger, the following statement could be included:
SET OPTION DBGVIEW = *LIST

For more information, see “SET OPTION” on page 715.

The options CLOSQLCSR, CNULRQD, DFTRDBCOL, DYNDFTCOL, and
NAMING are not allowed in the CREATE TRIGGER statement.

The options DATFMT, DATSEP, TIMFMT, and TIMSEP cannot be used if
OLD ROW or NEW ROW is specified.

WHEN (search-condition)
Specifies a condition that evaluates to true, false, or unknown. The
triggered SQL statements are executed only if the search-condition evaluates
to true. If the WHEN clause is omitted, the associated SQL statements are
always executed.

SQL-trigger-body
Specifies a single SQL statement, including a compound statement. See
Chapter 6, “SQL Control Statements” on page 759 for more information
about defining SQL triggers.

A call to a procedure that issues a CONNECT, SET CONNECTION,
RELEASE, DISCONNECT, COMMIT, ROLLBACK, SET TRANSACTION,
and SET RESULT SETS statement is not allowed in the triggered-action of a
trigger.

If the trigger is a BEFORE trigger, then the SQL-trigger-body must not
contain an INSERT, UPDATE, DELETE, ALTER TABLE, COMMENT, any
CREATE statement, DROP, any GRANT statement, LABEL, RENAME, or
any REVOKE statement. It must not contain a reference to a procedure or
function that modifies SQL data.

An UNDO handler is not allowed in a trigger.

All tables, views, aliases, distinct types, user-defined functions, and
procedures referenced in the triggered-action must exist at the current server
when the trigger is created. The table or view that an alias refers to must
also exist when the trigger is created. This includes objects in library
QTEMP. While objects in QTEMP can be referenced in the triggered-action,
dropping those objects in QTEMP will not cause the trigger to be dropped.

At the time the trigger is created, the triggered-action is modified as a result
of the CREATE trigger statement:
v Naming mode is switched to SQL naming.
v All unqualified object references are explicitly qualified
v All implicit column lists (e.g. SELECT *, INSERT with no column list,

UPDATE SET ROW) are expanded to be the list of actual column names.

CREATE TRIGGER

Chapter 5. Statements 545

|
|

|

|

|
|

|
|

|
|
|
|
|

The modified triggered-action is stored in the catalog.

The statements in the triggered-action can invoke a procedure or a
user-defined function that can access a server other than the current server
if the procedure or user-defined function runs in a different activation
group.

Notes
Activating a trigger

Only insert, delete, or update operations can activate a trigger. A delete
operation that occurs as a result of a referential constraint will not activate a
trigger. Hence,
v A trigger with a DELETE trigger event cannot be added to a table with a

referential constraint of ON DELETE CASCADE.
v A trigger with an UPDATE trigger event cannot be added to a table with a

referential constraint of ON DELETE SET NULL or ON DELETE SET
DEFAULT.

The activation of a trigger may cause trigger cascading. This is the result of the
activation of one trigger that executes SQL statements that cause the activation
of other triggers or even the same trigger again. The triggered actions may also
cause updates as a result of the original modification, which may result in the
activation of additional triggers. With trigger cascading, a significant chain of
triggers may be activated causing significant change to the database as a result
of a single delete, insert or update statement. The number of levels of
cascading is limited to 200 or the maximum amount of storage allowed in the
job or process, whichever comes first.

Adding triggers to enforce constraints
Adding a trigger to a table that already has rows in it will not cause the
triggered actions to be executed. Thus, if the trigger is designed to enforce
constraints on the data in the table, the data in the existing rows might not
satisfy those constraints.

Multiple triggers
Multiple triggers that have the same triggering SQL operation and activation
time can be defined on a table. The triggers are activated in the order in which
they were created. For example, the trigger that was created first is executed
first, the trigger that was created second is executed second.

A maximum of 300 triggers can be added to any given source table.

Adding columns to a subject table or a table referenced in the triggered action
If a column is added to the subject table after triggers have been defined, the
following rules apply:
v If the trigger is an UPDATE trigger that was defined without an explicit

column list, then an update to the new column will cause the activation of
the trigger.

v If the SQL statements in the triggered-action refer to the triggering table, the
new column is not accessible to the SQL statements until the trigger is
recreated.

v The OLD_TABLE and NEW_TABLE transition tables will contain the new
column, but the column cannot be referenced unless the trigger is recreated.

CREATE TRIGGER

546 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

If a column is added to any table referenced by the SQL statements in the
triggered-action, the new column is not accessible to the SQL statements until
the trigger is recreated.

Renaming or moving a table referenced in the triggered action
Any table (including the subject table) referenced in a triggered-action can be
moved or renamed. However, the triggered-action will continue to reference the
old name or schema. An error will occur if the referenced table is not found
when the triggered-action is executed. Hence, you should drop the trigger and
then re-create the trigger so that it refers to the renamed or moved table.

Dependent objects
When a trigger is created, all referenced objects must exist.

Datetime Considerations
If OLD ROW or NEW ROW is specified, the date or time constants and the
string representation of dates and times in variables that are used in SQL
statements in the triggered-action must have a format of ISO, EUR, JIS, USA, or
must match the date and time formats specified when the table was created if
it was created using DDS and the CRTPF CL command. If the DDS
specifications contain multiple different date or time formats, the trigger cannot
be created.

Dropping or revoking privileges on a table referenced in the triggered action
If an object such as a table, view or alias, referenced in the triggered-action is
dropped, the access plans of the statements that reference the object will be
rebuilt when the trigger is fired. If the object does not exist at that time, the
corresponding INSERT, UPDATE or DELETE operation on the subject table
will fail.

If a privilege that the creator of the trigger is required to have for the trigger to
execute is revoked, the access plans of the statements that reference the object
will be rebuilt when the trigger is fired. If the appropriate privilege does not
exist at that time, the corresponding INSERT, UPDATE or DELETE operation
on the subject table will fail.

Operations that invalidate triggers
An invalid trigger is a trigger that is no longer available to be activated. If a
trigger becomes invalid, no INSERT, UPDATE or DELETE operations will be
allowed on the subject table. A trigger becomes invalid if:
v The SQL statements in the triggered-action reference the subject table, the

trigger is a self-referencing trigger, and the table is duplicated using the
system CRTDUPOBJ CL command, or

v If the SQL statements in the triggered-action reference tables or views in the
from library and the objects are not found in the new library when the table
is duplicated using the system CRTDUPOBJ CL command, or

v If the table is restored to a new library using the system RSTOBJ or RSTLIB
CL commands, and the triggered-action references the subject-table, the
trigger is a self-referencing trigger.

An invalid trigger must first be dropped before it can be recreated by issuing a
CREATE TRIGGER statement. Note that dropping and recreating a trigger will
affect the activation order of a trigger if multiple triggers for the same
triggering operation and activation time are defined for the subject table.

Errors executing triggers
Errors that occur during the execution of SQL-trigger-body statements are
returned using SQLCODE -723 and SQLSTATE 09000.

CREATE TRIGGER

Chapter 5. Statements 547

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

A SQL-trigger-body statement could include a SIGNAL statement. An
SQLCODE -438 and the SQLSTATE specified in the SIGNAL statement will be
returned.

Trigger program object
When a trigger is created, SQL creates a temporary source file that will contain
C source code with embedded SQL statements. A program object is then
created using the CRTPGM command. The SQL options used to create the
program are the options that are in effect at the time the CREATE TRIGGER
statement is executed. The program is created with ACTGRP(*CALLER).

The trigger will execute with the adopted authority of the owner of the trigger.

Trigger ownership
If SQL names were specified, the owner of the trigger is the user profile with
the same name as the schema into which the trigger is created. Otherwise, the
owner of the trigger is the user profile or group user profile of the job executing
the statement.

If system names were specified, the owner of the trigger is the user profile or
group user profile of the job executing the statement.

Trigger authority
The trigger program object authorities are:
v When SQL naming is in effect, the trigger program will be created with the

public authority of *EXCLUDE, and adopt authority from the schema
qualifier of the trigger-name if a user profile with that name exists. If a user
profile for the schema qualifier does exist, then the owner of the trigger
program will be the user profile for the schema qualifier. Note that the
special authorities *ALLOBJ and *SECADM are required to create the trigger
program object in the schema qualifier library if a user profile exists that has
the same name as the schema qualifier, and the name is different from the
authorization ID of the statement. If a user profile for the schema qualifier
does not exist, then the owner of the trigger program will be the user profile
or group user profile of the job executing the SQL CREATE TRIGGER
statement. The group user profile will be the owner of the trigger program
object, only if OWNER(*GRPPRF) was specified on the user’s profile who is
executing the statement. If the owner of the trigger program is a member of
a group profile, and if OWNER(*GRPPRF) was specified on the user’s
profile, the program will run with the adopted authority of the group
profile.

v When System naming is in effect, the trigger program will be created with
public authority of *EXCLUDE, and adopt authority from the user or group
user profile of the job executing the SQL CREATE TRIGGER statement.

Transaction isolation
All triggers, when they are activated, perform a SET TRANSACTION
statement so that all of the operations by the trigger are performed with the
same isolation level as the application program that caused the trigger to be
run. The user may put their own SET TRANSACTION statements in an
SQL-control-statement in the SQL-trigger-body of the trigger. If the user places a
SET TRANSACTION statement within the SQL-trigger-body of the trigger, then
the trigger will run with the isolation level specified in the SET
TRANSACTION statement, instead of the isolation level of the application
program that caused the trigger to be run.

If the application program that caused a trigger to be activated, is running
with an isolation level other than No Commit (COMMIT(*NONE) or
COMMIT(*NC)), the operations within the trigger will be run under

CREATE TRIGGER

548 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|

|

|
|
|
|
|

|
|

commitment control and will not be committed or rolled back until the
application commits its current unit of work. If ATOMIC is specified in the
SQL-trigger-body of the trigger, and the application program that caused the
ATOMIC trigger to be activated is running with an isolation level of No
Commit (COMMIT(*NONE) or COMMIT(*NC)), the operations within the
trigger will not be run under commitment control. If the application that
caused the trigger to be activated is running with an isolation level of No
Commit (COMMIT(*NONE) or COMMIT(*NC)), then the operations of a
trigger are written to the database immediately, and cannot be rolled back.

If both system triggers defined by the Add Physical File Trigger (ADDPFTRG)
CL command and SQL triggers defined by the CREATE TRIGGER statement
are defined for a table, it is recommended that the system triggers perform a
SET TRANSACTION statement so that they are run with the same isolation
level as the original application that caused the triggers to be activated. It is
also recommended that the system triggers run in the Activation Group of the
calling application. If system triggers run in a separate Activation Group
(ACTGRP(*NEW)), then those system triggers will not participate in the unit of
the work for the calling application, nor in the unit of work for any SQL
triggers. System triggers that run in a separate Activation Group are
responsible for committing or rolling back any database operations they
perform under commitment control. Note that SQL triggers defined by the
CREATE TRIGGER statement always run in the caller’s Activation Group.

If the triggering application is running with commitment control, the
operations of an SQL trigger, and any cascaded SQL triggers, will be captured
into a sub-unit of work. If the operations of the trigger and any cascaded
triggers are successful, the operations captured in the sub-unit of work will be
committed or rolled back when the triggering application commits or rolls
back its current unit of work. Any system triggers that run in the same
Activation Group as the caller, and perform a SET TRANSACTION to the
isolation level of the caller, will also participate in the sub-unit of work. If the
triggering application is running without commit control, then the operations
of the SQL triggers will also be run without commitment control.

If an application that causes a trigger to be activated, is running with an
isolation level of No Commit (COMMIT(*NONE) or COMMIT(*NC)), and it
issues an INSERT, UPDATE, or DELETE statement that encounters an error
during the execution of the statement, no other the system and SQL triggers
will still be activated following the error for that operation. However, some
number of changes will already have been performed. If the triggering
application is running with commitment control, the operations of any triggers
that are captured in a sub-unit of work will be rolled back when the first error
is encountered, and no additional triggers will be activated for the current
INSERT, UPDATE, or DELETE statement.

Examples

Example 1
Create two triggers that track the number of employees that a company manages.
The triggering table is the EMPLOYEE table, and the triggers increment and
decrement a column with the total number of employees in the COMPANY_STATS
table. The COMPANY_STATS table has the following properties:
CREATE TABLE COMPANY_STATS

(NBEMP INTEGER,
NBPRODUCT INTEGER,
REVENUE DECIMAL(15,0))

CREATE TRIGGER

Chapter 5. Statements 549

This example uses row triggers to maintain summary data in another table.

Create the first trigger, NEW_HIRE, so that it increments the number of employees
each time a new person is hired; that is, each time a new row is inserted into the
EMPLOYEE table, increase the value of column NBEMP in table
COMPANY_STATS by 1.
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1;
END

Create the second trigger, FORM_EMP, so that it decrements the number of
employees each time an employee leaves the company; that is, each time a row is
deleted from the table EMPLOYEE, decrease the value of column NBEMP in table
COMPANY_STATS by 1.
CREATE TRIGGER FORM_EMP

AFTER DELETE ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

UPDATE COMPANY_STATS SET NBEMP = NBEMP - 1;
END

Example 2
Create a trigger, REORDER, that invokes user-defined function
ISSUE_SHIP_REQUEST to issue a shipping request whenever a parts row is
updated and the on-hand quantity for the affected part is less than 10% of its
maximum stocked quantity. User-defined function ISSUE_SHIP_REQUEST orders a
quantity of the part that is equal to the part’s maximum stocked quantity minus its
on-hand quantity; the function also ensures that the request is sent to the
appropriate supplier.

The parts rows are in the PARTS table. Although the table has more columns, the
trigger is activated only when columns ON_HAND or MAX_STOCKED are
updated.
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS NROW
FOR EACH ROW MODE DB2SQL
WHEN (NROW.ON_HAND < 0.10 * NROW.MAX_STOCKED)
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(NROW.MAX_STOCKED - NROW.ON_HAND, NROW.PARTNO));
END

Example 3
Repeat the scenario in Example 2 except use a fullselect instead of a VALUES
statement to invoke the user-defined function. This example also shows how to
define the trigger as a statement trigger instead of a row trigger. For each row in
the transition table that evaluates to true for the WHERE clause, a shipping request
is issued for the part.
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW TABLE AS NTABLE
FOR EACH STATEMENT MODE DB2SQL
BEGIN ATOMIC

SELECT ISSUE_SHIP_REQUEST(MAX_STOCKED - ON_HAND, PARTNO)
FROM NTABLE
WHERE ON_HAND < 0.10 * MAX_STOCKED;

END

CREATE TRIGGER

550 DB2 UDB for iSeries SQL Reference V5R2

CREATE VIEW
The CREATE VIEW statement creates a view on one or more tables or views at the
current server.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The following system authorities:

– *USE to the Create Logical File (CRTLF) CL command
– *EXECUTE and *ADD to the library into which the view is created
– *CHANGE to the data dictionary if the library into which the view is created

is an SQL schema with a data dictionary
v Administrative authority

The privileges held by the authorization ID of the statement must also include at
least one of the following:
v For each table and view referenced directly through the fullselect, or indirectly

through views referenced in the fullselect:
– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

The authorization ID of the statement has the SELECT privilege on a table when:
v It is the owner of the table,
v It has been granted the SELECT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *READ on the table.

The authorization ID of the statement has the SELECT privilege on a view when:
v It is the owner of the view,
v It has been granted the SELECT privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *READ on the view

and the system authority *READ on all tables and views that this view is
directly or indirectly dependent on. That is, all tables and views referenced in
the view definition, and if a view is referenced, all tables and views referenced
in its definition, and so forth.

CREATE VIEW

Chapter 5. Statements 551

|
|

|
|

|

|

Syntax

�� CREATE VIEW view-name �

�

,

(column-name)
COLUMN

FOR system-column-name

�

�

AS fullselect
,

WITH common-table-expression

�

�
CASCADED

WITH CHECK OPTION
LOCAL

��

Description
view-name

Names the view. The name, including the implicit or explicit qualifier, must
not be the same as any table, view, index, alias, or file that already exists at the
server.

If SQL names were specified, the view will be created in the schema specified
by the implicit or explicit qualifier.

If system names were specified, the view will be created in the schema that is
specified by the qualifier. If not qualified, the view name will be created in the
same schema as the first table specified on the first FROM clause (including
FROM clauses in any common table expressions or nested table expression).

If a view name is not a valid system name, DB2 UDB for iSeries SQL will
generate a system name. For information on the rules for generating the name,
see “Rules for Table Name Generation” on page 535.

(column-name, ...)
Names the columns in the view. If a list of column names is specified, it must
consist of as many names as there are columns in the result table of the
fullselect. Each column-name and system-column-name must be unique and
unqualified. If a list of column names is not specified, the columns of the view
inherit the names of the columns and system names of the columns of the
result table of the fullselect.

A list of column names (and system column names) must be specified if the
result table of the subselect has duplicate column names, duplicate system
column names, or an unnamed column. For more information about unnamed
columns, see “Names of result columns” on page 326.

FOR COLUMN system-column-name
Provides an OS/400 name for the column. Do not use the same name for more
than one column of the view or for a column-name of the view.

CREATE VIEW

552 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|

|
|
|
|

If the system-column-name is not specified, and the column-name is not a
valid system-column-name, a system column name is generated. For more
information about how system column names are generated, see “Rules for
Column Name Generation” on page 535.

AS fullselect
Defines the view. At any time, the view consists of the rows that would result
if the fullselect were executed.

common-table-expression defines a common table expression for use with the
fullselect that follows. For more information see “common-table-expression” on
page 339.

fullselect must not reference host variables. For an explanation of fullselect, see
“fullselect” on page 337.

WITH CASCADED CHECK OPTION
Specifies that every row that is inserted or updated through the view must
conform to the definition of the view. A row that does not conform to the
definition of the view is a row that cannot be retrieved using that view.

WITH CHECK OPTION must not be specified if:
v the view is read-only
v the definition of the view includes a subquery
v the WHERE clause in the definition of the view contains a scalar-subselect
v the definition of the view contains a non-deterministic function

If WITH CHECK OPTION is specified for an updateable view that does not
allow inserts, then the check option applies to updates only.

If WITH CHECK OPTION is omitted, the definition of the view is not used in
the checking of any insert or update operations that use the view. Some
checking might still occur during insert or update operations if the view is
directly or indirectly dependent on another view that includes WITH CHECK
OPTION. Because the definition of the view is not used, rows that do not
conform to the definition of the view might be inserted or updated through the
view.

WITH CHECK OPTION on a view V is inherited by any updateable view that
is directly or indirectly dependent on V. Thus, if an updateable view is defined
on V, the check option on V also applies to that view, even if WITH CHECK
OPTION is not specified on that view. For example, consider the following
updateable views:
CREATE VIEW V1 AS SELECT COL1 FROM T1 WHERE COL1 > 10

CREATE VIEW V2 AS SELECT COL1 FROM V1 WITH CHECK OPTION

CREATE VIEW V3 AS SELECT COL1 FROM V2 WHERE COL1 < 100

The following INSERT statement using V1 will succeed because V1 does not
have a WITH CHECK OPTION and V1 is not dependent on any other view
that has a WITH CHECK OPTION.
INSERT INTO V1 VALUES(5)

The following INSERT statement using V2 will result in an error because V2
has a WITH CHECK OPTION and the insert would produce a row that did
not conform to the definition of V2.
INSERT INTO V2 VALUES(5)

CREATE VIEW

Chapter 5. Statements 553

|
|
|

|
|
|

|
|

|

|

|

|

|

|
|

The following INSERT statement using V3 will result in an error even though
it does not have WITH CHECK OPTION because V3 is dependent on V2
which does have a WITH CHECK OPTION.
INSERT INTO V3 VALUES(5)

The following INSERT statement using V3 will succeed because even though it
does not conform to the definition of V3 (V3 does not have a WITH CHECK
OPTION), it does conform to the definition of V2 (which does have a WITH
CHECK OPTION).
INSERT INTO V3 VALUES(200)

WITH LOCAL CHECK OPTION
WITH LOCAL CHECK OPTION is identical to WITH CASCADED CHECK
OPTION except that it is still possible to update a row so that it no longer
conforms to the definition of the view when the view is defined with the
WITH LOCAL CHECK OPTION. This can only happen when the view is
directly or indirectly dependent on a view that was defined without either
WITH CASCADED CHECK OPTION or WITH LOCAL CHECK OPTION
clauses.

WITH LOCAL CHECK OPTION specifies that the search conditions of only
those dependent views that have the WITH LOCAL CHECK OPTION or
WITH CASCADED CHECK OPTION are checked when a row is inserted or
updated. In contrast, WITH CASCADED CHECK OPTION specifies that the
search conditions of all dependent views are checked when a row is inserted
or updated.

The difference between CASCADED and LOCAL is best shown by example.
Consider the following updateable views where x and y represent either LOCAL
or CASCADED:
v V1 defined on T0
v V2 defined on V1 WITH x CHECK OPTION
v V3 defined on V2
v V4 defined on V3 WITH y CHECK OPTION
v V5 defined on V4

The following table describes which views search conditions are checked during an
INSERT or UPDATE operation:

Table 48. Views whose search conditions are checked during INSERT and UPDATE

View used in
INSERT or UPDATE

x = LOCAL

y = LOCAL

x = CASCADED

y = CASCADED

x = LOCAL

y = CASCADED

x = CASCADED

y = LOCAL

V1 none none none none

V2 V2 V2 V1 V2 V2 V1

V3 V2 V2 V1 V2 V2 V1

V4 V4 V2 V4 V3 V2 V1 V4 V3 V2 V1 V4 V2 V1

V5 V4 V2 V4 V3 V2 V1 V4 V3 V2 V1 V4 V2 V1

Notes
Deletable views: A cursor is deletable if all of the following are true:
v The outer fullselect identifies only one base table or deletable view.

CREATE VIEW

554 DB2 UDB for iSeries SQL Reference V5R2

|

|

v The outer fullselect does not include a GROUP BY clause or HAVING clause.
v The outer fullselect does not include column functions in the select list.
v The outer fullselect does not include a UNION or UNION ALL operator.
v The outer fullselect does not include the DISTINCT clause.

Updatable views: A column of a view is updatable if all of the following are true:
v The view is deletable.
v The column is derived solely from a column of a table or an updatable column

of another view. That is, at least one result column must not be derived from an
expression that contains an operator, scalar function, constant, or a column that
itself is derived from such expressions.

A view cannot be the object table in an UPDATE statement unless the first SELECT
clause contains at least one result column that is derived solely from a column.
That is, at least one result column must not be derived from an expression that
contains an operator, scalar function, constant, or a column that itself is derived
from such expressions.

A view is updatable if ANY column of the view is updatable.

Insertable views: A view is insertable if at least one of the columns of the view are
updatable.

Read-only views: A view is read-only if it is not deletable. A read-only view cannot
be the object of an INSERT, UPDATE, or DELETE statement.

A cursor is read-only if it is not deletable.

Sort sequence: The view is created with the sort sequence in effect at the time the
CREATE VIEW statement is executed. The sort sequence of the view applies to all
comparisons involving SBCS data and mixed data in the view fullselect. When the
view is included in a query, an intermediate result table is generated from the view
fullselect. The sort sequence in effect when the query is executed applies to any
selection specified in the query.

View attributes: Views are created as nonkeyed logical files. When a view is
created, the file wait time and record wait time attributes are set to the default that
is specified on the WAITFILE and WAITRCD keywords of the Create Logical File
(CRTLF) command.

A view created over a distributed table is created on all of the systems across
which the table is distributed. If a view is created over more than one distributed
table, and those tables are not distributed using the same nodegroup, then the
view is created only on the system that performs the CREATE VIEW statement.
For more information about distributed tables, see the DB2 Multisystem book.

View ownership: If SQL names were specified, the owner of the view is the user
profile with the same name as the schema into which the view is created.
Otherwise, the owner of the view is the user profile or group user profile of the job
executing the statement.

If system names were specified, the owner of the view is the user profile or group
user profile of the job executing the statement.

CREATE VIEW

Chapter 5. Statements 555

|

|

|

|

|

|

|
|
|
|

|
|
|
|
|

|

|
|

|
|

|

|
|
|
|
|
|

|
|
|
|

../dbmult/rzaf3mst02.htm

View authority: If SQL names are used, views are created with the system
authority of *EXCLUDE on *PUBLIC. If system names are used, views are created
with the authority to *PUBLIC as determined by the create authority (CRTAUT)
parameter of the schema.

If the owner of the view is a member of a group profile (GRPPRF keyword) and
group authority is specified (GRPAUT keyword), that group profile will also have
authority to the view.

The owner always acquires the SELECT privilege on the view and the
authorization to drop the view. The SELECT privilege can be granted to others
only if the owner also has the authority to grant the SELECT privilege on every
table or view identified in the fullselect.

The owner can also acquire the INSERT, UPDATE, and DELETE privileges on the
view. If the view is not read-only, then the same privileges will be acquired on the
new view as the owner has on the table or view identified in the first FROM
clause of the fullselect. These privileges can be granted only if the privileges from
which they are derived can also be granted.

Identity columns: A column of a view is considered an identity column if the
element of the corresponding column in the fullselect of the view definition is the
name of an identity column of a table, or the name of a column of a view which
directly or indirectly maps to the name of an identity column of a base table. In all
other cases, the columns of a view will not get the identity property. For example:
v the select-list of the view definition includes multiple instances of the name of

an identity column (that is, selecting the same column more than once)
v the view definition involves a join
v a column in the view definition includes an expression that refers to an identity

column
v the view definition includes a UNION

View restrictions: A view cannot be the object table in an UPDATE statement
unless the first SELECT clause contains at least one result column that is derived
solely from a column. That is, at least one result column must not be derived from
an expression that contains an operator, scalar function, constant, or a column that
itself is derived from such expressions.

A view cannot refer to more than 32 real tables, including real tables referred to by
underlying views.

A view cannot address more than 8000 columns. The number of tables referred to
in the view, the column name lengths, and the length of the WHERE clause also
reduce this number.

Testing a view definition: You can test the semantics of your view definition by
executing SELECT * FROM view-name.

Examples

Example 1
Create a view named MA_PROJ over the PROJECT table that contains only those
rows with a project number (PROJNO) starting with the letters ‘MA’.

CREATE VIEW

556 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|

|

CREATE VIEW MA_PROJ
AS SELECT * FROM PROJECT

WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 2
Create a view as in example 1, but select only the columns for project number
(PROJNO), project name (PROJNAME) and employee in charge of the project
(RESPEMP).
CREATE VIEW MA_PROJ2

AS SELECT PROJNO, PROJNAME, RESPEMP FROM PROJECT
WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 3
Create a view as in example 2, but, in the view, call the column for the employee
in charge of the project IN_CHARGE.
CREATE VIEW MA_PROJ (PROJNO, PROJNAME, IN_CHARGE)

AS SELECT PROJNO, PROJNAME, RESPEMP FROM PROJECT
WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Note: Even though you are changing only one of the column names, the names of
all three columns in the view must be listed in the parentheses that follow
MA_PROJ.

Example 4
Create a view named PRJ_LEADER that contains the first four columns (PROJNO,
PROJNAME, DEPTNO, RESPEMP) from the PROJECT table together with the last
name (LASTNAME) of the person who is responsible for the project (RESPEMP).
Obtain the name from the EMPLOYEE table by matching EMPNO in EMPLOYEE
to RESEMP in PROJECT.
CREATE VIEW PRJ_LEADER

AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME
FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO

Example 5
Create a view as in example 4, but in addition to the columns PROJNO,
PROJNAME, DEPTNO, RESEMP and LASTNAME, show the total pay (SALARY +
BONUS +COMM) of the employee who is responsible. Also select only those
projects with mean staffing (PRSTAFF) greater than one.
CREATE VIEW PRJ_LEADER (PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY)

AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM
FROM PROJECT, EMPLOYEE
WHERE RESPEMP = EMPNO AND PRSTAFF > 1

CREATE VIEW

Chapter 5. Statements 557

DECLARE CURSOR
The DECLARE CURSOR statement defines a cursor.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java.

Authorization
No authorization is required to use this statement. However to use OPEN or
FETCH for the cursor, the privileges held by the authorization ID of the statement
must include at least one of the following:
v For each table or view identified in the SELECT statement of the cursor:

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

The authorization ID of the statement has the SELECT privilege on a table when:
v It is the owner of the table,
v It has been granted the SELECT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *READ on the table

The authorization ID of the statement has the SELECT privilege on a view when:
v It is the owner of the view,
v It has been granted the SELECT privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *READ on the view

and the system authority *READ on all tables and views that this view is
directly or indirectly dependent on. That is, all tables and views referenced in
the view definition, and if a view is referenced, all tables and views referenced
in its definition, and so forth.

The SELECT statement of the cursor is one of the following:
v The prepared select-statement identified by the statement-name.
v The specified select-statement.

If statement-name is specified:
v The authorization ID of the statement is the run-time authorization ID unless

DYNUSRPRF(*OWNER) was specified on the CRTSQLxxx command when the
program was created. For more information, see “Authorization IDs and
Authorization-Names” on page 57.

v The authorization check is performed when the select-statement is prepared
unless DLYPRP(*YES) is specified on the CRTSQLxxx command.

v The authorization check is performed when the cursor is opened for programs
compiled with the DLYPRP(*YES) parameter.

If the select-statement is specified:
v If USRPRF(*OWNER) or USRPRF(*NAMING) with SQL naming was specified

on the CRTSQLxxx command, the authorization ID of the statement is the owner
of the SQL program or package.

DECLARE CURSOR

558 DB2 UDB for iSeries SQL Reference V5R2

|
|

v If USRPRF(*USER) or USRPRF(*NAMING) with system naming was specified
on the CRTSQLxxx command, the authorization ID of the statement is the
run-time authorization ID.

v In REXX, the authorization ID of the statement is the run-time authorization ID.
v The authorization check is performed when the cursor is opened.

Syntax

�� DECLARE cursor-name
INSENSITIVE SCROLL

DYNAMIC

�

� CURSOR FOR
WITH HOLD
WITH RETURN

select-statement
statement-name

��

Description
cursor-name

Names a cursor. The name must not be the same as the name of another cursor
declared in your source program.

INSENSITIVE
Specifies that once the cursor is opened, it does not have sensitivity to inserts,
updates, or deletes performed by this or any other activation group. If
INSENSITIVE is specified, the cursor is read-only and a temporary result is
created when the cursor is opened. In addition, the SELECT statement cannot
contain a FOR UPDATE clause and the application must allow a copy of the
data (ALWCPYDTA(*OPTIMIZE) or ALWCPYDTA(*YES)).

SCROLL
Specifies that the cursor is scrollable. The cursor may or may not have
immediate sensitivity to inserts, updates, and deletes done by other activation
groups. If DYNAMIC is not specified, the cursor is read-only. In addition, the
SELECT statement cannot contain a FOR UPDATE clause.

DYNAMIC SCROLL
Specifies that the cursor is updateable if the result table is updateable, and that
the cursor will usually have immediate sensitivity to inserts, updates, and
deletes done by other application processes. However, in the following cases,
the keyword DYNAMIC is ignored and the cursor will not have immediate
sensitivity to the inserts, updates, and deletes:

v Queries that are implemented as temporary result tables. A temporary result
table is created when:
– INSENSITIVE was specified
– The total length in bytes of storage for the columns specified in an ORDER

BY clause exceeds 2000 bytes.
– The ORDER BY and GROUP BY clauses specify different columns or columns

in a different order.

DECLARE CURSOR

Chapter 5. Statements 559

– The ORDER BY and GROUP BY clauses include a user-defined function or
one of the following scalar functions: DLVALUE, DLURLPATH,
DLURLPATHONLY, DLURLSERVER, DLURLSCHEME, or
DLURLCOMPLETE for DataLinks with an attribute of FILE LINK CONTROL
and READ PERMISSION DB.

– The UNION or DISTINCT clauses are specified.
– The ORDER BY or GROUP BY clauses specify columns which are not all from

the same table.
– A logical file defined by the JOINDFT data definition specifications (DDS)

keyword is joined to another file.
– A logical file that is based on multiple database file members is specified.
– The CURRENT or RELATIVE scroll options are specified on the FETCH

statement when the select statement of the DECLARE CURSOR contains a
GROUP BY clause.

v Queries that include a subquery where:
– The outermost query does not provide correlated values to any inner

subselects.
– No IN, = ANY, = SOME, or <> ALL subqueries are referenced by the

outermost query.

WITH HOLD
Prevents the cursor from being closed as a consequence of a commit operation.
A cursor declared using the WITH HOLD clause is implicitly closed at commit
time only if the connection associated with the cursor is ended during the
commit operation.

When WITH HOLD is specified, a commit operation commits all the changes
in the current unit of work, but releases only locks that are not required to
maintain the cursor. Afterwards, a FETCH statement is required before a
Positioned UPDATE or DELETE statement can be executed.

All cursors are implicitly closed by a CONNECT (Type 1) or rollback
operation. All cursors associated with a connection are implicitly closed by a
disconnect of the connection. A cursor is also implicitly closed by a commit
operation if WITH HOLD is not specified, or if the connection associated with
the cursor is in the release-pending state.

If a cursor is closed before the commit operation, the effect is the same as if the
cursor was declared without the WITH HOLD option.

WITH RETURN
This clause indicates that the cursor is intended for use as a result set from a
procedure. WITH RETURN is relevant only if the DECLARE CURSOR
statement is contained with the source code for a procedure. In other cases, the
precompiler may accept the clause, but it has no effect.

Within an SQL procedure, cursors declared using the WITH RETURN clause
that are still open when the SQL procedure ends define the result sets from the
SQL procedure. All other open cursors in an SQL procedure are closed when
the SQL procedure ends. Within an external procedure (one not defined using
LANGUAGE SQL), the WITH RETURN clause has no effect, and any cursors
open at the end of an external procedure are considered the result sets.

The result set consists of all rows from the current cursor position to the end of
the result set when the procedure returns to the caller.

DECLARE CURSOR

560 DB2 UDB for iSeries SQL Reference V5R2

select-statement
Specifies the SELECT statement of the cursor. See “select-statement” on
page 339 for more information.

The select-statement must not include parameter markers (except for REXX), but
can include references to host variables. In host languages, other than RPG,
PL/I, and REXX, the declarations of the host variables must precede the
DECLARE CURSOR statement in the source program. Host variable
declarations can follow the DECLARE CURSOR statement in RPG and PL/I. In
REXX, parameter markers must be used in place of host variables and the
statement must be prepared.

statement-name
The SELECT statement of the cursor is the prepared select-statement identified
by the statement-name when the cursor is opened. The statement-name must not
be identical to a statement-name specified in another DECLARE CURSOR
statement of the source program. See “PREPARE” on page 674 for an
explanation of prepared statements.

Notes
The DECLARE CURSOR statement must precede all statements that explicitly
reference the cursor by name.

Result table of a cursor: A cursor in the open state designates a result table and a
position relative to the rows of that table. The table is the result table specified by
the SELECT statement of the cursor.

A cursor is deletable if all of the following are true:
v The outer fullselect identifies only one base table or deletable view.
v The outer fullselect does not include a GROUP BY clause or HAVING clause.
v The outer fullselect does not include column functions in the select list.
v The outer fullselect does not include a UNION or UNION ALL operator.
v The outer fullselect does not include the DISTINCT clause.
v The select-statement contains an ORDER BY clause, and the FOR UPDATE OF

clause or DYNAMIC SCROLL are specified.
v The select-statement does not include a FOR READ ONLY clause.
v The select-statement does not include a FETCH FIRST n ROWS ONLY clause.
v The result of the outer fullselect does not make use of a temporary table.
v The select-statement does not include the SCROLL keyword unless the

DYNAMIC keyword is also specified.
v The select list does not includes a DATALINK column unless a FOR UPDATE

OF clause is specified.

A result column in the select list of the outer fullselect associated with a cursor is
updatable if all of the following are true:
v The cursor is deletable.
v The result column is derived solely from a column of a table or an updatable

column of a view. That is, at least one result column must not be derived from
an expression that contains an operator, scalar function, constant, or a column
that itself is derived from such expressions.

A cursor is read-only if it is not deletable.

DECLARE CURSOR

Chapter 5. Statements 561

|
|
|

|

|

|

|

|

|

|
|

|

|

|

|
|

|
|

|
|

|

|
|
|
|

|

If ORDER BY is specified and FOR UPDATE OF is specified, the columns in the
FOR UPDATE OF clause cannot be the same as any columns specified in the
ORDER BY clause.

If the FOR UPDATE OF clause is omitted, only the columns in the SELECT clause
of the subselect that can be updated can be changed.

Scope of a cursor: The scope of cursor-name is the source program in which it is
defined, that is, the program submitted to the precompiler. Thus, you can only
reference a cursor by statements that are precompiled with the cursor declaration.
For example, a program called from another separately compiled program cannot
use a cursor that was opened by the calling program.

The scope of cursor-name is also limited to the thread in which the program that
contains the cursor is running. For example, if the same program is running in two
separate threads in the same job, the second thread cannot use a cursor that was
opened by the first thread.

A cursor can only be referred to in the same instance of the program in the
program stack unless CLOSQLCSR(*ENDJOB), CLOSQLCSR(*ENDSQL), or
CLOSQLCSR(*ENDACTGRP) is specified on the CRTSQLxxx commands.
v If CLOSQLCSR(*ENDJOB) is specified, the cursor can be referred to by any

instance of the program on the program stack.
v If CLOSQLCSR(*ENDSQL) is specified, the cursor can be referred to by any

instance of the program on the program stack until the last SQL program on the
program stack ends.

v If CLOSQLCSR(*ENDACTGRP) is specified, the cursor can be referred to by all
instances of the module in the activation group until the activation group ends.

Although the scope of a cursor is the program in which it is declared, each
package created from the program includes a separate instance of the cursor and
more than one cursor can exist at run time. For example, assume a program using
CONNECT (Type 2) statements connects to location X and location Y in the
following sequence:
EXEC SQL DECLARE C CURSOR FOR...
EXEC SQL CONNECT TO X;
EXEC SQL OPEN C;
EXEC SQL FETCH C INTO...
EXEC SQL CONNECT TO Y;
EXEC SQL OPEN C;
EXEC SQL FETCH C INTO...

The second OPEN C statement does not cause an error because it refers to a
different instance of cursor C.

A SELECT statement is evaluated at the time the cursor is opened. If the same
cursor is opened, closed, and then opened again, the results may be different.
Multiple cursors using the same SELECT statement can be opened concurrently.
They are each considered independent activities.

Blocking of data: For more efficient processing of data, the database manager can
block data for read-only cursors. If a cursor is not going to be used in a Positioned
UPDATE or DELETE statement, it should be declared as FOR READ ONLY.

DECLARE CURSOR

562 DB2 UDB for iSeries SQL Reference V5R2

Cursor sensitivity: The ALWCPYDTA precompile option is ignored for DYNAMIC
SCROLL cursors. If sensitivity to inserts, updates, and deletes must be maintained,
a temporary copy of the data is never made unless a temporary result is required
to implement the query.

REXX cursors: If host variables are used on the DECLARE CURSOR statement
within a REXX procedure, then the DECLARE CURSOR must be the object of a
PREPARE and EXECUTE.

Examples

Example 1
Declare C1 as the cursor of a query to retrieve data from the table DEPARTMENT.
The query itself appears in the DECLARE CURSOR statement.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO

FROM DEPARTMENT
WHERE WHERE ADMRDEPT = ’A00’;

Example 2
Declare C2 as the cursor for a statement named STMT2.

EXEC SQL DECLARE C2 CURSOR FOR STMT2;

Example 3
Declare C3 as the cursor for a query to be used in positioned updates of the table
EMPLOYEE. Allow the completed updates to be committed from time to time
without closing the cursor.

EXEC SQL DECLARE C3 CURSOR WITH HOLD FOR
SELECT *

FROM EMPLOYEE
FOR UPDATE OF WORKDEPT, PHONENO, JOB, EDLEVEL, SALARY;

Instead of explicitly specifying the columns to be updated, a FOR UPDATE clause
could have been used without naming the columns. This would allow all the
updatable columns of the table to be updated. Since this cursor is updatable, it can
also be used to delete rows from the table.

Example 4
In a PL/I program, use the cursor C1 to fetch the values for a given project
(PROJNO) from the first four columns of the EMPPROJACT table a row at a time
and put them into the following host variables: EMP (CHARACTER(6)), PRJ
(CHARACTER(6)), ACT (SMALLINT), and TIM (DECIMAL(5,2)). Obtain the value
of the project to search for from the host variable SEARCH_PRJ (CHARACTER(6)).

EXEC SQL BEGIN DECLARE SECTION;
DCL EMP CHAR(6);
DCL PRJ CHAR(6);
DCL SEARCH_PRJ CHAR(6);
DCL ACT BINARY FIXED(15);
DCL TIM DEC FIXED(5,2);
DCL SELECT_STMT CHAR(200) VARYING;

EXEC SQL END DECLARE SECTION;

SELECT_STMT = ’SELECT EMPNO, PROJNO, ACTNO, EMPTIME ’ ||
’FROM EMPPROJACT ’ ||
’WHERE PROJNO = ?’;

.

.

.
EXEC SQL PREPARE SELECT_PRJ FROM :SELECT_STMT;

DECLARE CURSOR

Chapter 5. Statements 563

|
|

|
|
|
|

|

|

|
|
|

|
|
|
|

|

EXEC SQL DECLARE C1 CURSOR FOR SELECT_PRJ;

EXEC SQL OPEN C1 USING :SEARCH_PRJ;

EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM;

IF SQLSTATE = ’02000’ THEN
CALL DATA_NOT_FOUND;

ELSE
DO WHILE (SUBSTR(SQLSTATE,1,2) = ’00’
| SUBSTR(SQLSTATE,1,2) = ’01’);

EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM;
END;

EXEC SQL CLOSE C1;
.
.
.

Example 6
The DECLARE CURSOR statement associates the cursor name C1 with the results
of the SELECT. C1 is an updateable, scrollable cursor.

EXEC SQL DECLARE C1 DYNAMIC SCROLL CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM CORPDATA.TDEPT
WHERE ADMRDEPT = ’A00’;

Example 7
Declare a cursor in order to fetch values from four columns and assign the values
to host variables using the Serializable (RR) isolation level:

DECLARE CURSOR1 CURSOR FOR
SELECT COL1, COL2, COL3, COL4
FROM TBLNAME WHERE COL1 = :varname
WITH RR

DECLARE CURSOR

564 DB2 UDB for iSeries SQL Reference V5R2

DECLARE GLOBAL TEMPORARY TABLE
The DECLARE GLOBAL TEMPORARY TABLE statement defines a declared
temporary table for the current application process. The declared temporary table
description does not appear in the system catalog. It is not persistent and cannot
be shared with other sessions. Each session that defines a declared global
temporary table of the same name has its own unique description of the temporary
table. When the application process ends, the temporary table is dropped.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
If the LIKE or AS select-statement clause is specified, the privileges held by the
authorization ID of the statement must include at least one of the following on any
table or view specified in the LIKE clause or as-subquuery clause:
v The SELECT privilege for the table or view
v Ownership of the table or view
v Administrative authority

If a distinct type is referenced, the privileges held by the authorization ID of the
statement must include at least one of the following:
v For each distinct type identified in the statement:

– The USAGE privilege on the distinct type, and
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

The authorization ID of the statement has the USAGE privilege on a distinct type
when one of the following is true:
v It is the owner of the distinct type.
v It was granted the USAGE privilege to the distinct type.
v It was granted the system authorities of *OBJOPR and *EXECUTE to the distinct

type.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 565

|

|
|
|
|
|
|

|

|
|

|

|
|
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|
|

|

Syntax

�� DECLARE GLOBAL TEMPORARY TABLE table-name �

�

,

(column-definition)
LIKE table-name

view-name copy-options
LIKE table-name

view-name copy-options
as-subquery-clause

�

�
(1)

WITH REPLACE
ON COMMIT DELETE ROWS

ON COMMIT PRESERVE ROWS
ON ROLLBACK DELETE ROWS

NOT LOGGED
ON ROLLBACK PRESERVE ROWS

��

Notes:

1 Each clause may be specified only once.

column-definition:

column-name
COLUMN

FOR system-column-name

data-type �

�

NOT NULL
default-clause

GENERATED ALWAYS (1)

GENERATED BY DEFAULT identity-options
(2)

datalink-options

Notes:

1 GENERATED can be specified only if the column is an identity column.

2 The datalink-options can only be specified for DATALINKs and distinct-types sourced on DATALINKs.

DECLARE GLOBAL TEMPORARY TABLE

566 DB2 UDB for iSeries SQL Reference V5R2

||||||||||
|

|
||
|

|
|||

|

|

||
|
|

|||||||||||||||||||||||
|

|
||

|

|

||

||
|

|

|
|||

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(52)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR allocate-clause FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) allocate-clause FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC allocate-clause

(1M)
DBCLOB

(integer) allocate-clause
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer) allocate-clause

K
M
G

DATE
TIME
TIMESTAMP

(200)
DATALINK

(integer) allocate-clause CCSID integer

allocate-clause:

ALLOCATE (integer)

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 567

|

||||||||||||||||

|

|

||

|

|

|||||||||||
|
|
|

default-clause:

WITH
DEFAULT

constant
USER
NULL
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
cast-function-name (constant)

USER
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

identity-options:

AS IDENTITY
,

1 (1)
(START WITH numeric-constant)

1
INCREMENT BY numeric-constant

NO MINVALUE

MINVALUE numeric-constant
NO MAXVALUE

MAXVALUE numeric-constant
NO CYCLE

CYCLE
CACHE 20

NO CACHE
CACHE integer
NO ORDER

ORDER

Notes:

1 Each clause may be specified only once.

DECLARE GLOBAL TEMPORARY TABLE

568 DB2 UDB for iSeries SQL Reference V5R2

|

|||

|

|

|||

|

|

||
|
|

Description
table-name

Names the temporary table. The qualifier, if specified explicitly, must be
SESSION. If the qualifier is not specified, it is implicitly defined to be
SESSION. If a table, view, index, or alias already exists with the same name in
a permanent library called SESSION:
v The declared temporary table is still defined with SESSION.table-name. An

error is not issued because the resolution of a declared temporary table
name does not include a permanent library.

v Any references to SESSION.table-name will resolve to the declared
temporary table rather than to a permanent table, view, index, or alias with
a name of SESSION.table-name.

The table will be created in library QTEMP.

column-definition
Defines the attributes of a column. There must be at least one column definition
and no more than 8000 column definitions.

The sum of the row buffer byte counts of the columns must not be greater than
32766 or, if a VARCHAR or VARGRAPHIC column is specified, 32740.

datalink-options:

LINKTYPE URL NO LINK CONTROL

copy-options:

,
COLUMN ATTRIBUTES (1)

EXCLUDING IDENTITY
INCLUDING COLUMN

DEFAULTS
USING TYPE DEFAULTS

as-subquery-clause:

 (column-name)
COLUMN

FOR system-column-name

�

� AS (select-statement) DEFINITION ONLY
WITH NO DATA copy-options
WITH DATA

Notes:

1 Each clause may be specified only once.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 569

|

||||||||||||||||||||||

|

|

||

|

|

||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|

|

||
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|

|

|
|

|
|

Additionally, if a LOB is specified, the sum of the row data byte counts of the
columns must not be greater than 3.5 gigabytes. For information on the byte counts
of columns according to data type, see “Notes” on page 532.

column-name
Names a column of the table. Do not qualify column-name and do not use the
same name for more than one column of the table or for a
system-column-name of the table.

FOR COLUMN system-column-name
Provides an OS/400 name for the column. Do not use the same name for more
than one column of the table or for a column-name of the table.

If the system-column-name is not specified, and the column-name is not a
valid system-column-name, a system column name is generated. For more
information about how system column names are generated, see “Rules for
Column Name Generation” on page 535.

data-type
Specifies the data type of the column.

built-in-type
Specifiesa built-in data type. See “CREATE TABLE” on page 507 for a
description of built-in-type.

A ROWID column or a DATALINK column with FILE LINK CONTROL cannot
be specified for a global temporary table.

NOT NULL
Prevents the column from containing null values. Omission of NOT NULL
implies that the column can be null.

DEFAULT
Specifies a default value for the column. This clause cannot be specified more
than once in a column-definition. DEFAULT cannot be specified an identity
column (a column that is defined AS IDENTITY). The database manager
generates default values for identity columns. If a value is not specified
following the DEFAULT keyword, then:
v if the column is nullable, the default value is the null value.
v if the column is not nullable, the default depends on the data type of the

column:

Data type Default value

Numeric 0

Fixed-length string Blanks

Varying-length string A string length of 0

Date The current date at the time of INSERT

Time The current time at the time of INSERT

Timestamp The current timestamp at the time of INSERT

Datalink A value corresponding to DLVALUE(’’,’URL’,’’)

distinct-type The default value of the corresponding source type of
the distinct type.

Omission of NOT NULL and DEFAULT from a column-definition is an implicit
specification of DEFAULT NULL.

DECLARE GLOBAL TEMPORARY TABLE

570 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

|

|
|

|||

||

||

||

||

||

||

||

||
|
|

|
|

constant
Specifies the constant as the default for the column. The specified constant
must represent a value that could be assigned to the column in accordance
with the rules of assignment as described in “Assignments and
Comparisons” on page 78. A floating-point constant must not be used for a
SMALLINT, INTEGER, DECIMAL, or NUMERIC column. A decimal
constant must not contain more digits to the right of the decimal point
than the specified scale of the column.

USER
Specifies the value of the USER special register at the time of INSERT or
UPDATE as the default value of the column. The data type of the column
must be CHAR or VARCHAR with a length attribute greater than or equal
to the length attribute of the USER special register.

NULL
Specifies null as the default for the column. If NOT NULL is specified,
DEFAULT NULL must not be specified within the same column definition.

CURRENT_DATE
Specifies the current date as the default for the column. If
CURRENT_DATE is specified, the data type of the column must be DATE
or a distinct type based on a DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If
CURRENT_TIME is specified, the data type of the column must be TIME
or a distinct type based on a TIME..

CURRENT_TIMESTAMP
Specifies the current timestamp as the default for the column. If
CURRENT_TIMESTAMP is specified, the data type of the column must be
TIMESTAMP or a distinct type based on a TIMESTAMP.

cast-function-name
This form of a default value can only be used with columns defined as a
distinct type, BLOB, CLOB, DBCLOB, DATE, TIME or TIMESTAMP data
types. The following table describes the allowed uses of these cast-functions.

Data Type Cast Function Name

Distinct type N based on a BLOB, CLOB,
or DBCLOB

BLOB, CLOB, or DBCLOB *

Distinct type N based on a DATE, TIME,
or TIMESTAMP

N (the user-defined cast function that was
generated when N was created) **
or
DATE, TIME, or TIMESTAMP *

Distinct type N based on other data types N (the user-defined cast function that was
generated when N was created) **

BLOB, CLOB, or DBCLOB BLOB, CLOB, or DBCLOB *
DATE, TIME, or TIMESTAMP DATE, TIME, or TIMESTAMP *
Notes:

* The name of the function must match the name of the data type (or the source type of
the distinct type) with an implicit or explicit schema name of QSYS2.

** The name of the function must match the name of the distinct type for the column. If
qualified with a schema name, it must be the same as the schema name for the distinct
type. If not qualified, the schema name from function resolution must be the same as the
schema name for the distinct type.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 571

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|||

|
|
|

|
|
|
|
|
|
||
|
||
||
|

|
|

|
|
|
|
|

constant
Specifies a constant as the argument. The constant must conform to the
rules of a constant for the source type of the distinct type or for the
data type if not a distinct type. For BLOB, CLOB, DBCLOB, DATE,
TIME, and TIMESTAMP functions, the constant must be a string
constant.

USER
Specifies the value of the USER special register at the time of INSERT
or UPDATE as the default value for the column. The data type of the
source type of the distinct type of the column must be CHAR or
VARCHAR with a length attribute greater than or equal to the length
attribute of the USER special register.

CURRENT_DATE
Specifies the current date as the default for the column. If
CURRENT_DATE is specified, the data type of the source type of the
distinct type of the column must be DATE.

CURRENT_TIME
Specifies the current time as the default for the column. If
CURRENT_TIME is specified, the data type of the source type of the
distinct type of the column must be TIME.

CURRENT_TIMESTAMP
Specifies the current timestamp as the default for the column. If
CURRENT_TIMESTAMP is specified, the data type of the source type
of the distinct type of the column must be TIMESTAMP.

GENERATED
Specifies that the database manager generates values for the column.
GENERATED must be specified if the column is to be considered an identity
column (defined with the AS IDENTITY clause).

ALWAYS
Specifies that the database manager will always generate a value for the
column when a row is inserted into the table. ALWAYS is the
recommended value.

BY DEFAULT
Specifies that the database manager will generate a value for the column
when a row is inserted only if a value is not specified for the column. If a
value is specified, the database manager uses that value.

For an identity column, the database manager inserts a specified value but
does not verify that it is a unique value for the column unless the identity
column has a unique constraint or a unique index that solely specifies the
identity column.

AS IDENTITY
Specifies that the column is an identity column for the table. A table can have
only one identity column. AS IDENTITY can be specified only if the data type
for the column is an exact numeric type with a scale of zero (SMALLINT,
INTEGER, BIGINT, DECIMAL or NUMERIC with a scale of zero, or a distinct
type based on one of these types).

An identity column is implicitly NOT NULL.

START WITH numeric-constant
Specifies the first value that is generated for the identity column. The value

DECLARE GLOBAL TEMPORARY TABLE

572 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

can be any positive or negative value that could be assigned to the column
without non-zero digits existing to the right of the decimal point.

If a value is not explicitly specified when the identity column is defined,
the default is the MINVALUE for an ascending sequence and the
MAXVALUE for a descending sequence. This value is not necessarily the
value that a sequence would cycle to after reaching the maximum or
minimum value of the sequence. The START WITH clause can be used to
start a sequence outside the range that is used for cycles. The range used
for cycles is defined by MINVALUE and MAXVALUE.

INCREMENT BY numeric-constant
Specifies the interval between consecutive values of the identity column.
The value can be any positive or negative value that is not 0, does not
exceed the value of a large integer constant, and could be assigned to the
column without any non-zero digits existing to the right of the decimal
point. The default is 1.

If the value is positive, the sequence of values for the identity column
ascends. If the value is negative, the sequence of values descends.

MAXVALUE numeric-constant
Specifies the numeric constant that is the maximum value that is generated
for this identity column. This value can be any positive or negative value
that could be assigned to this column, but the value must be greater than
the minimum value.

If a value is not explicitly specified when the identity column is defined,
this is the maximum value of the data type (and precision, if DECIMAL)
for an ascending sequence; or the START WITH value, or -1 if START
WITH was not specified, for a descending sequence.

MINVALUE numeric-constant
Specifies the numeric constant that is the minimum value that is generated
for this identity column. This value can be any positive or negative value
that could be assigned to this column, but the value must be less than the
maximum value.

If a value is not explicitly specified when the identity column is defined,
this is the START WITH value, or 1 if START WITH was not specified, for
an ascending sequence; or the minimum value of the data type (and
precision, if DECIMAL) for a descending sequence.

CACHE or NO CACHE
Specifies whether to keep some preallocated values in memory.
Preallocating and storing values in the cache improves the performance of
inserting rows into a table.

CACHE integer
Specifies the number of values of the identity column sequence that the
database manager preallocates and keeps in memory. The minimum
value that can be specified is 2, and the maximum is the largest value
that can be represented as an integer. The default is 20.

During a system failure, all cached identity column values that are yet
to be assigned are lost, and thus, will never be used. Therefore, the
value specified for CACHE also represents the maximum number of
values for the identity column that could be lost during a system
failure.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 573

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

NO CACHE
Specifies that values for the identity column are not preallocated.

CYCLE or NO CYCLE
Specifies whether this identity column should continue to generate values
after reaching either the maximum or minimum value of the sequence.

CYCLE
Specifies that values continue to be generated for this column after the
maximum or minimum value has been reached. If this option is used,
after an ascending sequence reaches the maximum value of the
sequence, it generates its minimum value. After a descending sequence
reaches its minimum value of the sequence, it generates its maximum
value. The maximum and minimum values for the column determine
the range that is used for cycling.

When CYCLE is in effect, duplicate values can be generated by the
database manager for an identity column. If a unique constraint or
unique index exists on the identity column, and a non-unique value is
generated for it, an error occurs.

NO CYCLE
Specifies that values will not be generated for the identity column once
the maximum or minimum value for the sequence has been reached.
This is the default.

ORDER or NO ORDER
Specifies whether the identity values must be generated in order of
request.

ORDER
Specifies that the values are generated in order of request.

NO ORDER
Specifies that the values do not need to be generated in order of
request. This is the default.

datalink-options
Specifies the options associated with a DATALINK data type.

LINKTYPE URL
Defines the type of link as a Uniform Resource Locator (URL).

NO LINK CONTROL
Specifies that there will not be any check made to determine that the
linked files exist. Only the syntax of the URL will be checked. There is no
database manager control over the linked files.

LIKE
table-name or view-name

Specifies that the columns defined in the specified table or view are included
in this table. The table-name or view-name specified in a LIKE clause must
identify the table or view that already exists at the server.

The use of LIKE is an implicit definition of n columns, where n is the number
of columns in the identified table or view. The implicit definition includes the
following attributes of the n columns (if applicable to the data type):
v Column name (and system column name)
v Data type, length, precision, and scale
v CCSID

DECLARE GLOBAL TEMPORARY TABLE

574 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

|

|
|
|
|

|
|
|

|

|

|

If the LIKE clause is specified immediately following the table-name and not
enclosed in parenthesis, the following column attributes are also included,
otherwise they are not included (the default value and identity attributes can
also be controlled by using the copy-options):
v Default value, if a table-name is specified (view-name is not specified)
v Identity attributes
v Nullability
v Column heading and text (see “LABEL” on page 664)

If the specified table or view is a non-SQL created physical file or logical file,
any non-SQL attributes are removed. For example, the date and time format
will be changed to ISO.

The implicit definition does not include any other optional attributes of the
identified table or view. For example, the new table does not automatically
include a primary key or foreign key from a table. The new table has these and
other optional attributes only if the optional clauses are explicitly specified.

as-subquery-clause
column-name

Names a column of the table. Do not qualify column-name and do not use the
same name for more than one column of the table or for a
system-column-name of the table.

FOR COLUMN system-column-name
Provides an OS/400 name for the column. Do not use the same name for more
than one column of the table or for a column-name of the table.

If the system-column-name is not specified, and the column-name is not a
valid system-column-name, a system column name is generated. For more
information about how system column names are generated, see “Rules for
Column Name Generation” on page 535.

select-statement
Specifies that the columns of the table are to have the same name and
description as the columns that would appear in the derived result table of the
select-statement if the select-statement were to be executed. The use of AS
select-statement is an implicit definition of n columns for the table, where n is
the number of columns that would result from the select-statement. The
implicit definition includes the following attributes of the n columns (if
applicable to the data type):
v Column name (and system column name)
v Data type, length, precision, and scale
v CCSID
v Nullability
v Column heading and text (see “LABEL” on page 664)

The following attributes are not included (the default value and identity
attributes may be included by using the copy-options):
v Default value
v Identity attributes

The implicit definition does not include any other optional attributes of the
identified table or view. For example, the new table does not automatically

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 575

|
|
|
|

|

|

|

|

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

|

|

|
|

include a primary key or foreign key from a table. The new table has these and
other optional attributes only if the optional clauses are explicitly specified.

The implicitly defined columns of the table inherit the names of the columns
from the result table of the select-statement. Therefore, a column name must be
specified in the select-statement or in the column name list for all result
columns. For result columns that are derived from expressions, constants, and
functions, the select-statement must include the AS column-name clause
immediately after the result column or a name must be specified in the column
list preceding the select-statement.

The select-statement must not refer to host variables or include parameter
markers (question marks).

WITH DATA
Specifies that the select-statement is executed. After the table is created, the
result table rows of the select-statement are automatically inserted into the table.

WITH NO DATA or DEFINITION ONLY
Specifies that the select-statement is not executed. Therefore, there is no result
table with a set of rows with which to automatically populate the table.

copy-options
INCLUDING IDENTITY COLUMN ATTRIBUTES

Specifies that the table inherits the identity attribute, if any, of the columns
resulting from select-statement, table-name or view-name. In general, the identity
attribute is copied if the element of the corresponding column in the table,
view, or select-statement is the name of a table column or the name of a view
column that directly or indirectly maps to the name of a base table column
with the identity attribute.

If the INCLUDING IDENTITY COLUMN ATTRIBUTES clause is specified with
the AS select-statement clause, the columns of the new table do not inherit the
identity attribute in the following cases:
v The select list of the select-statement includes multiple instances of an identity

column name (that is, selecting the same column more than once).
v The select list of the select-statement includes multiple identity columns (that

is, it involves a join).
v The identity column is included in an expression in the select list.
v The select-statement includes a set operation (union).

If INCLUDING IDENTITY is not specified, the table will not have an identity
column.

EXCLUDING IDENTITY COLUMN ATTRIBUTES
Specifies that the table does not inherit the identity attribute, if any, of the
columns resulting from the select-statement, table-name, or view-name.

INCLUDING COLUMN DEFAULTS
Specifies that the table inherits the default values of the columns resulting from
the select-statement, table-name, or view-name. A default value is the value
assigned to a column when a value is not specified on an INSERT.

Do not specify INCLUDING COLUMN DEFAULTS, if you specify USING
TYPE DEFAULTS.

If INCLUDING COLUMN DEFAULTS is not specified, the table will not
inherit the default values.

DECLARE GLOBAL TEMPORARY TABLE

576 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

|

|

|
|

|
|
|

|
|
|
|

|
|

|
|

EXCLUDING COLUMN DEFAULTS
Specifies that the table does not inherit the default values of the columns
resulting from the select-statement, table-name, or view-name.

USING TYPE DEFAULTS
Specifies that the default values for the table depend on the data type of the
columns that result from the select-statement, table-name, or view-name. If the
column is nullable, then the default value is the null value. Otherwise, the
default value is as follows:

Data type Default value

Numeric 0

Fixed-length string Blanks

Varying-length string A string length of 0

Date The current date at the time of INSERT

Time The current time at the time of INSERT

Timestamp The current timestamp at the time of INSERT

Datalink A value corresponding to DLVALUE(’’,’URL’,’’)

distinct-type The default value of the corresponding source type of
the distinct type.

Do not specify USING TYPE DEFAULTS, if INCLUDING COLUMN
DEFAULTS is specified.

WITH REPLACE
Specifies that, in the case that a declared global temporary table already exists
with the specified name, the existing table is replaced with the temporary table
defined by this statement (and all rows of the existing table are deleted).

When WITH REPLACE is not specified, then the name specified must not
identify a declared global temporary table that already exists in the current
session.

ON COMMIT
Specifies the action taken on the global temporary table when a COMMIT
operation is performed.

The ON COMMIT clause does not apply if the declared global temporary table
is opened under isolation level No Commit (NC) or if a COMMIT HOLD
operation is performed.

DELETE ROWS
All rows of the table will be deleted if no WITH HOLD cursor is open on
the table. This is the default.

PRESERVE ROWS
Rows of the table will be preserved.

NOT LOGGED
Changes to the table are not logged, including creation of the table. When a
ROLLBACK (or ROLLBACK TO SAVEPOINT) operation is performed and the
table was changed in the unit of work (or savepoint), the changes are not
rolled back. If the table was created in the unit of work (or savepoint), then
that table will be dropped. If the table was dropped in the unit of work (or
savepoint) then the table will be restored, but with no rows.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 577

|
|
|

|
|
|
|
|

|||

||

||

||

||

||

||

||

||
|
|

|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

ON ROLLBACK
Specifies the action taken on the global temporary table when a
ROLLBACK operation is performed.

The ON ROLLBACK clause does not apply if the declared global
temporary table was opened under isolation level No Commit (NC) or if a
ROLLBACK HOLD operation is performed.

DELETE ROWS
All rows of the table will be deleted. This is the default.

PRESERVE ROWS
Rows of the table will be preserved.

Notes
v Instantiation, scope, and termination: Let P denote an application process and

let T be a declared temporary table in an application program in P:
– When a program in P issues a DECLARE GLOBAL TEMPORARY TABLE

statement, an empty instance of T is created.
– Any program in P can reference T, and any of those references is a reference

to that same instance of T. (If a DECLARE GLOBAL TEMPORARY statement
is specified within a compound statement of an SQL function, SQL procedure,
or trigger; the scope of the declared temporary table is the application process
and not the compound statement.)
If T was declared at a remote server, the reference to T must use the same
connection that was used to declare T and that connection must not have
been terminated after T was declared. When the connection to the database
server at which T was declared terminates, T is dropped, and its instantiated
rows are destroyed.

– If T is defined with the ON COMMIT DELETE ROWS clause, when a commit
operation terminates a unit of work in P and no program in P has a WITH
HOLD cursor open that is dependent on T, all rows are deleted.

– If T is defined with the ON ROLLBACK DELETE ROWS clause, when a
rollback operation terminates a unit of work in P, all rows are deleted.

– When the application process that declared T terminates, T is dropped, and
its rows are destroyed.

v Temporary table ownership: The owner of the table is the user profile of the job
executing the statement.

v Temporary table authority: When a declared temporary table is defined,
PUBLIC implicitly is granted all table privileges on the table and authority to
drop the table.

v Referring to a declared temporary table in other SQL statements: Many SQL
statements support declared temporary tables. To refer to a declared temporary
table in an SQL statement other than DECLARE GLOBAL TEMPORARY TABLE,
the table must be implicitly or explicitly qualified with SESSION.
If you use SESSION as the qualifier for a table name but the application process
does not include a DECLARE GLOBAL TEMPORARY TABLE statement for the
table name, the database manager assumes that you are not referring to a
declared temporary table. The database manager resolves such table references
to a permanent table.

v Restrictions on the use of declared temporary tables:

– Declared temporary tables cannot be specified in an ALTER TABLE,
COMMENT, CREATE TRIGGER, GRANT, LABEL, LOCK, RENAME or
REVOKE statement.

DECLARE GLOBAL TEMPORARY TABLE

578 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|

|
|

|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

– Declared temporary tables cannot be specified as the parent table in
referential constraints

– If a declared temporary table is referenced in a CREATE INDEX or CREATE
VIEW statement, the index or view must be created in SESSION (or library
QTEMP).

Examples

Example 1
Define a declared temporary table with column definitions for an employee
number, salary, commission, and bonus.

DECLARE GLOBAL TEMPORARY TABLE SESSION.TEMP_EMP
(EMPNO CHAR(6) NOT NULL,

SALARY DECIMAL(9, 2),
BONUS DECIMAL(9, 2),
COMM DECIMAL(9, 2))

ON COMMIT PRESERVE ROWS

Example 2
Assume that base table USER1.EMPTAB exists and that it contains three columns,
one of which is an identity column. Declare a temporary table that has the same
column names and attributes (including identity attributes) as the base table.

DECLARE GLOBAL TEMPORARY TABLE TEMPTAB1
LIKE USER1.EMPTAB
INCLUDING IDENTITY
ON COMMIT PRESERVE ROWS

In the above example, the database manager uses SESSION as the implicit qualifier
for TEMPTAB1.

DECLARE GLOBAL TEMPORARY TABLE

Chapter 5. Statements 579

|
|

|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

DECLARE PROCEDURE
The DECLARE PROCEDURE statement defines an external procedure.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in REXX.

Authorization
None.

Syntax

�� DECLARE procedure-name PROCEDURE

()
,

parameter-declaration

option-list ��

parameter-declaration:

IN
data-type

OUT parameter-name AS LOCATOR
INOUT

DECLARE PROCEDURE

580 DB2 UDB for iSeries SQL Reference V5R2

option-list:

(1) EXTERNAL

EXTERNAL NAME external-program-name

PARAMETER STYLE
SQL

PARAMETER STYLE
DB2GENERAL
DB2SQL
GENERAL
GENERAL WITH NULLS
JAVA

�

�
DYNAMIC

RESULT SET integer
SETS

LANGUAGE C
C++
CL
COBOL
COBOLLE
FORTRAN
JAVA
PLI
REXX
RPG
RPGLE

SPECIFIC specific-name
�

�
NOT DETERMINISTIC

DETERMINISTIC

MODIFIES SQL DATA

NO SQL
CONTAINS SQL
READS SQL DATA

FENCED

NOT FENCED

PROGRAM TYPE MAIN
�

�
CALLED ON NULL INPUT NO DBINFO

DBINFO

Notes:

1 The optional clauses can be specified in a different order.

DECLARE PROCEDURE

Chapter 5. Statements 581

data-type:

built-in-type
distinct-type-name

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC

NUMERIC (integer)
, integer

(53)
FLOAT

(integer)
REAL

PRECISION
DOUBLE

(1)
CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
TIME
TIMESTAMP

(200)
DATALINK

CCSID integer
(integer)

ROWID

DECLARE PROCEDURE

582 DB2 UDB for iSeries SQL Reference V5R2

|||||

Description
procedure-name

Names the procedure. The name must not be the same as the name of another
procedure declared in your source program.

(parameter-declaration,...)
Specifies the number of parameters of the procedure and the data type of each
parameter. A parameter for a procedure can be used only for input, only for
output, or for both input and output. Although not required, you can give each
parameter a name.

The maximum number of parameters allowed in an SQL procedure is 255.

IN
Identifies the parameter as an input parameter to the procedure. Any
changes made to the parameter within the procedure are not available to
the calling SQL application when control is returned.53

OUT
Identifies the parameter as an output parameter that is returned by the
procedure.

A DataLink or a distinct type based on a DataLink may not be specified as
an output parameter.

INOUT
Identifies the parameter as both an input and output parameter for the
procedure.

A DataLink or a distinct type based on a DataLink may not be specified as
an input and output parameter.

parameter-name
Names the parameter. The name cannot be the same as any other
parameter-name for the procedure.

data-type
Specifies the data type of the parameter.

The data type must be valid for the language specified in the language
clause. All data types are valid for SQL procedures. DataLinks are not
valid for external procedures. For more information about data types, see
“CREATE TABLE” on page 507, and the SQL Programming Concepts book.

If a CCSID is specified, the parameter will be converted to that CCSID
prior to passing it to the procedure. If a CCSID is not specified, the CCSID
is determined by the default CCSID at the current server at the time the
procedure is called.

AS LOCATOR
Specifies that the input parameter is a locator to the value rather than the
actual value. You can specify AS LOCATOR only if the input parameter
has a LOB data type or a distinct type based on a LOB data type.

DYNAMIC RESULT SETS integer
Specifies the maximum number of result sets that can be returned from the
procedure. integer must be greater than or equal to zero. If zero is specified, no
result sets are returned. A procedure can have any number of result sets, but at
any time, only 100 procedures can have result sets that are waiting to be

53. When the language type is REXX, all parameters must be input parameters.

DECLARE PROCEDURE

Chapter 5. Statements 583

|
|
|
|

../sqlp/rbafymst02.htm

fetched. If the SET RESULT SETS statement is issued, the number of results
returned is the minimum of the number of result sets specified on this
keyword and the SET RESULTS SET statement.

Result sets are only returned if the procedure is called from a iSeries Access
client or the SQL Call Level Interface. For more information about result sets
see “SET RESULT SETS” on page 731.

LANGUAGE
Specifies the language that the external program is written in. The language
clause is required if the external program is a REXX procedure.

If LANGUAGE is not specified, the LANGUAGE is determined from the
program attribute information associated with the external program. If the
program attribute information associated with the program does not identify a
recognizable language, then the language is assumed to be C.

C
The external program is written in C.

C++
The external program is written in C++.

CL
The external program is written in CL.

COBOL
The external program is written in COBOL.

COBOLLE
The external program is written in ILE COBOL.

FORTRAN
The external program is written in FORTRAN.

JAVA
The external program is written in JAVA.

PLI
The external program is written in PL/I.

REXX
The external program is a REXX procedure.

RPG
The external program is written in RPG.

RPGLE
The external program is written in ILE RPG.

SPECIFIC specific-name
Specifies a qualified or unqualified name that uniquely identifies the
procedure. The specific-name, including the implicit or explicit qualifier, must be
the same as the procedure-name.

If no qualifier is specified, the implicit or explicit qualifier of the procedure-name
is used. If a qualifier is specified, the qualifier must be the same as the explicit
or implicit qualifier of the procedure-name.

If specific-name is not specified, it is the same as the procedure name.

DETERMINISTIC or NOT DETERMINISTIC
Specifies whether the procedure returns the same results each time the
procedure is called with the same IN and INOUT arguments.

DECLARE PROCEDURE

584 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|

NOT DETERMINISTIC
The procedure always returns the same results each time the procedure is
called with the same IN and INOUT arguments, provided the referenced
data in the database has not changed.

DETERMINISTIC
The procedure may not return the same result each time the procedure is
called with the same IN and INOUT arguments, even when the referenced
data in the database has not changed.

CONTAINS SQL, READS SQL DATA, MODIFIES SQL DATA, or NO SQL
Specifies which SQL statements, if any, may be executed in the procedure or
any routine called from this procedure. See Appendix F, “Characteristics of
SQL Statements” on page 845 for a detailed list of the SQL statements that can
be executed under each data access indication.

CONTAINS SQL
Specifies that SQL statements that neither read nor modify SQL data can be
executed by the procedure.

NO SQL
Specifies that the procedure cannot execute any SQL statements.

READS SQL DATA
Specifies that SQL statements that do not modify SQL data can be included
in the procedure.

MODIFIES SQL DATA
Specifies that the procedure can execute any SQL statement except
statements that are not supported in procedures.

CALLED ON NULL INPUT
Specifies that the procedure will be called if any parameter values are null.

FENCED or NOT FENCED
This parameter is allowed for compatibility with other products and is not
used by DB2 UDB for iSeries.

PROGRAM TYPE MAIN
Specifies that the procedure executes as a main routine.

DBINFO
Specifies that the database manager should pass a structure containing status
information to the procedure. Table 49 contains a description of the DBINFO
structure. Detailed information about the DBINFO structure can be found in
include file SQLUDF in QSYSINC.H.

DBINFO is only allowed with PARAMETER STYLE DB2SQL.

Table 49. DBINFO fields

Field Data Type Description

Relational database VARCHAR(128) The name of the current server.

Authorization ID VARCHAR(128) The run-time authorization ID.

DECLARE PROCEDURE

Chapter 5. Statements 585

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

Table 49. DBINFO fields (continued)

Field Data Type Description

CCSID Information INTEGER
INTEGER
INTEGER
INTEGER
CHAR(8)

The CCSID information of the job. The following information
identifies the CCSID:

v SBCS CCSID

v DBCS CCSID

v Mixed CCSID

v Indication of which of the first three CCSIDs is appropriate.

v Reserved

If a CCSID is not explicitly specified for a parameter on the DECLARE
PROCEDURE statement, the input string is assumed to be encoded in
the CCSID of the job at the time the function is executed. If the CCSID
of the input string is not the same as the CCSID of the parameter, the
input string passed to the external function will be converted before
calling the external program.

Target Column VARCHAR(128)
VARCHAR(128)
VARCHAR(128)

Not applicable for a call to a procedure.

Version and release CHAR(8) The version, release, and modification level of the database manager.

Platform INTEGER The server’s platform type.

EXTERNAL NAME external-program-name
Specifies the program that will be executed when the procedure is called by
the CALL statement. The program name must identify a program that exists at
the server. The program cannot be an ILE service program.

The validity of the name is checked at the server. If the format of the name is
not correct, an error is returned.

If external-program-name is not specified, the external program name is
assumed to be the same as the procedure name.

PARAMETER STYLE
Specifies the conventions used for passing parameters to and returning the
values from procedures:

SQL
Specifies that in addition to the parameters on the CALL statement, several
additional parameters are passed to the procedure. The parameters are
defined to be in the following order:
v The first N parameters are the parameters that are specified on the

DECLARE PROCEDURE statement.
v N parameters for indicator variables for the parameters.
v A CHAR(5) output parameter for SQLSTATE. The SQLSTATE returned

indicates the success or failure of the procedure. The SQLSTATE
returned is assigned by the external program.
The user may set the SQLSTATE to any valid value in the external
program to return an error or warning from the function.

v A VARCHAR(517) input parameter for the fully qualified procedure
name.

v A VARCHAR(128) input parameter for the specific name.
v A VARCHAR(70) output parameter for the message text.

DECLARE PROCEDURE

586 DB2 UDB for iSeries SQL Reference V5R2

For more information about the parameters passed, see the include sqludf
in the appropriate source file. For example, for C, sqludf can be found in
QSYSINC/H.

PARAMETER STYLE SQL cannot be used with LANGUAGE JAVA.

DB2GENERAL
Specifies that the procedure will use a parameter passing convention that
is defined for use with Java methods.

PARAMETER STYLE DB2GENERAL can only be specified with
LANGUAGE JAVA. For details on passing parameters in JAVA, see the
Developer Kit for Java book.

DB2SQL
Specifies that in addition to the parameters on the CALL statement, several
additional parameters are passed to the procedure. DB2SQL is identical to
the SQL parameter style, except that the following additional parameter
may be passed as the last parameter:
v A parameter for the dbinfo structure, if DBINFO was specified on the

DECLARE PROCEDURE statement.

For more information about the parameters passed, see the include sqludf
in the appropriate source file. For example, for C, sqludf can be found in
QSYSINC/H.

PARAMETER STYLE DB2SQL cannot be used with LANGUAGE JAVA.

GENERAL
Specifies that the procedure will use a parameter passing mechanism
where the procedure receives the parameters specified on the CALL.
Additional arguments are not passed for indicator variables.

PARAMETER STYLE GENERAL cannot be used with LANGUAGE JAVA.

GENERAL WITH NULLS
Specifies that in addition to the parameters on the CALL statement as
specified in GENERAL, another argument is passed to the procedure. This
additional argument contains an indicator array with an element for each
of the parameters of the CALL statement. In C, this would be an array of
short ints. For more information about how the indicators are handled, see
the SQL Programming Concepts book.

PARAMETER STYLE GENERAL WITH NULLS cannot be used with
LANGUAGE JAVA.

JAVA
Specifies that the procedure will use a parameter passing convention that
conforms to the Java language and SQLJ Routines specification. INOUT
and OUT parameters will be passed as single entry arrays to facilitate
returning values. For increased portability, you should write Java
procedures that use the PARAMETER STYLE JAVA conventions.

PARAMETER STYLE JAVA can only be specified with LANGUAGE JAVA.
For details on passing parameters in JAVA, see the Developer Kit for Java
book.

Note that language of the external procedure determines how the parameters
are passed. For example, in C, any VARCHAR or CHAR parameters are passed
as NUL-terminated strings. For more information, see the SQL Programming
Concepts book.

DECLARE PROCEDURE

Chapter 5. Statements 587

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Notes
The scope of the procedure-name is the source program in which it is defined; that
is, the program submitted to the precompiler. Thus, a program called from another
separately compiled program or module will not use the attributes from a
DECLARE PROCEDURE statement in the calling program.

The DECLARE PROCEDURE statement should precede all CALL statements that
reference that procedure.

The maximum number of parameters allowed in DECLARE PROCEDURE is 255. If
GENERAL WITH NULLS is specified, the maximum is 254. If parameter style SQL
is specified, only 90 parameters are allowed. The maximum number of parameters
is also limited by the maximum number of parameters allowed by the licensed
program used to compile the external program.

The DECLARE PROCEDURE statement only applies to static CALL statements. It
does not apply to any dynamically prepared CALL statements or a CALL
statement where the procedure name is identified by a host variable.

Keyword Synonyms
The following keywords are synonyms supported for compatibility to prior
releases. These keywords are non-standard and should not be used:
v The keywords VARIANT and NOT VARIANT can be used as synonyms for

NOT DETERMINISTIC and DETERMINISTIC.
v The keywords NULL CALL and NOT NULL CALL can be used as synonyms for

CALLED ON NULL INPUT and RETURNS NULL ON NULL INPUT.
v The keywords SIMPLE CALL can be used as a synonym for GENERAL.
v The value DB2GENRL may be used as a synonym for DB2GENERAL.

Example
Declare an external procedure PROC1 in a C program. When the procedure is
called using the CALL statement, a COBOL program named PGM1 in library LIB1
will be called.

EXEC SQL
DECLARE PROC1 PROCEDURE

(CHAR(10), CHAR(10))
EXTERNAL NAME LIB1.PGM1
LANGUAGE COBOL GENERAL;

EXEC SQL
CALL PROC1 (’FIRSTNAME ’,’LASTNAME ’);

DECLARE PROCEDURE

588 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|

|
|

|

|

DECLARE STATEMENT
The DECLARE STATEMENT statement is used for program documentation. It
declares names that are used to identify prepared SQL statements.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. This statement is not allowed in Java or REXX.

Authorization
None required.

Syntax

�� DECLARE

,

statement-name STATEMENT ��

Description
statement-name

Lists one or more names that are used in your program to identify prepared
SQL statements.

Example
This example shows the use of the DECLARE STATEMENT statement in a C
program.
EXEC SQL INCLUDE SQLDA;
void main ()

{
EXEC SQL BEGIN DECLARE SECTION ;
char src_stmt[32000];
char sqlda[32000]
EXEC SQL END DECLARE SECTION ;
EXEC SQL INCLUDE SQLCA ;

strcpy(src_stmt,"SELECT DEPTNO, DEPTNAME, MGRNO \
FROM DEPARTMENT \
WHERE ADMRDEPT = ’A00’");

EXEC SQL DECLARE OBJ_STMT STATEMENT;

(Allocate storage from SQLDA)

EXEC SQL DECLARE C1 CURSOR FOR OBJ_STMT;

EXEC SQL PREPARE OBJ_STMT FROM :src_stmt;
EXEC SQL DESCRIBE OBJ_STMT INTO :sqlda;

(Examine SQLDA) (Set SQLDATA pointer addresses)

EXEC SQL OPEN C1;

while (strncmp(SQLSTATE, "00000", 5))
{
EXEC SQL FETCH C1 USING DESCRIPTOR :sqlda;

DECLARE STATEMENT

Chapter 5. Statements 589

|
|

(Print results)

}

EXEC SQL CLOSE C1;
return;
}

DECLARE STATEMENT

590 DB2 UDB for iSeries SQL Reference V5R2

DECLARE VARIABLE
The DECLARE VARIABLE statement is used to assign a subtype or CCSID other
than the default to a host variable.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX.

Authorization
None required.

Syntax

�� DECLARE

,

host-variable VARIABLE
FOR SBCS DATA
FOR MIXED DATA
CCSID integer
FOR BIT DATA
DATE
TIME
TIMESTAMP

��

Description
host-variable

Names a character or graphic-string host variable defined in the program. An
indicator variable cannot be specified for the host-variable. The host-variable
definition may either precede or follow a DECLARE VARIABLE statement that
refers to that variable.

FOR BIT DATA
Specifies that the values of the host-variable are not associated with a coded
character set and, therefore, are never converted. The CCSID of a FOR BIT
DATA host variable is 65535. FOR BIT DATA cannot be specified for graphic
host-variables.

FOR SBCS DATA
Specifies that the values of the host variable contain SBCS (single-byte
character set) data. FOR SBCS DATA is the default if the CCSID attribute of the
job at the application requester is not DBCS-capable or if the length of the host
variable is less than 4. The CCSID of FOR SBCS DATA is determined by the
CCSID attribute of the job at the application requester. FOR SBCS DATA
cannot be specified for graphic host-variables.

FOR MIXED DATA
Specifies that the values of the host variable contain both SBCS data and DBCS
data. FOR MIXED DATA is the default if the CCSID attribute of the job at the
application requester is DBCS-capable and the length of the host variable is
greater than 3. The CCSID of FOR DBCS DATA is determined by the CCSID
attribute of the job at the application requester. FOR MIXED DATA cannot be
specified for graphic host-variables.

DECLARE VARIABLE

Chapter 5. Statements 591

|
|

CCSID integer
Specifies that the values of the host variable contain data of CCSID integer. If
the integer is an SBCS CCSID, the host variable is SBCS data. If the integer is a
mixed data CCSID, the host variable is mixed data. For character host
variables, the CCSID specified must be an SBCS or mixed CCSID.

If the variable has a grapihic string data type, the CCSID specified must be a
DBCS or UCS-2 CCSID. For a list of valid CCSIDs, see Appendix E, “CCSID
Values” on page 831. Consider specifying CCSID 13488 to indicate UCS-2 data.
If a CCSID is not specified, the CCSID of the graphic string variable will be the
associated DBCS CCSID for the job.

DATE
Specifies that the values of the host variable contain data that is a date.

TIME
Specifies that the values of the host variable contain data that is a time.

TIMESTAMP
Specifies that the values of the host variable contain data that is a timestamp.

Notes
The DECLARE VARIABLE statement can be specified anywhere in an application
program that SQL statements are valid with the following exceptions:
v If the host language is COBOL or RPG, the DECLARE VARIABLE statement

must occur before an SQL statement that refers to a host variable specified in the
DECLARE VARIABLE statement.

v If DATE, TIME, or TIMESTAMP is specified for a NUL-terminated character
string in C, the length of the C declaration will be reduced by one.

The following situations result in an error message during precompile:
v A reference is made to a variable that does not exist.
v A reference is made to a numeric variable.
v A reference is made to a variable that has been referred to already.
v A reference is made to a variable that is not unique.
v The DECLARE VARIABLE statement occurs after an SQL statement where the

SQL statement and the DECLARE VARIABLE statement refer to the same
variable.

v The FOR BIT DATA, FOR SBCS DATA, or FOR MIXED DATA clause is specified
for a graphic host variable.

v A SBCS or mixed CCSID is specified for a graphic host variable.
v A DBCS or UCS-2 CCSID is specified for a character host variable.
v DATE, TIME, or TIMESTAMP is specified for a host variable that is not

character.
v The length of a host variable used for DATE, TIME, or TIMESTAMP is not long

enough for the minimum date, time, or timestamp value.

Example
In this example, declare C program variables fred and pete as mixed data, and jean
and dave as SBCS data with CCSID 37.
void main ()

{
EXEC SQL BEGIN DECLARE SECTION;
char fred[10];

DECLARE VARIABLE

592 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

EXEC SQL DECLARE :fred VARIABLE FOR MIXED DATA;

decimal(6,0) mary;
char pete[4];
EXEC SQL DECLARE :pete VARIABLE FOR MIXED DATA;

char jean[30];
char dave[9];
EXEC SQL DECLARE :jean, :dave VARIABLE CCSID 37;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;

...

}

DECLARE VARIABLE

Chapter 5. Statements 593

DELETE
The DELETE statement deletes rows from a table or view. Deleting a row from a
view deletes the row from the table on which the view is based.

There are two forms of this statement:
v The Searched DELETE form is used to delete one or more rows (optionally

determined by a search condition).
v The Positioned DELETE form is used to delete exactly one row (as determined by

the current position of a cursor).

Invocation
A Searched DELETE statement can be embedded in an application program or
issued interactively. A positioned DELETE must be embedded in an application
program. Both Searched DELETE and Positioned DELETE are executable
statements that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the table or view identified in the statement:

– The DELETE privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

The authorization ID of the statement has the DELETE privilege on a table when:
v It is the owner of the table,
v It has been granted the DELETE privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *DLT on the table.

The authorization ID of the statement has the DELETE privilege on a view when:54

v It has been granted the DELETE privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *DLT on the view,

and the system authority *DLT on the first table or view that this view is
directly or indirectly dependent on. That is, the first table or view referenced in
the view definition, and if a view is referenced, the first table or view referenced
in its definition, and so forth.

If the search-condition in a Searched DELETE contains a reference to a column of the
table or view, then the privileges held by the authorization ID of the statement
must also include one of the following:
v The SELECT privilege on the table or view
v Administrative authority

If the search-condition includes a subquery, the privileges held by the authorization
ID of the statement must also include at least one of the following:
v For each table or view identified in the subquery:

54. When a view is created, the owner does not necessarily acquire the DELETE privilege on the view. The owner only acquires the
DELETE privilege if the view allows deletes and the owner also has the DELETE privilege on the first table referenced in the
subselect.

DELETE

594 DB2 UDB for iSeries SQL Reference V5R2

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

The authorization ID of the statement has the SELECT privilege on a table when:
v It is the owner of the table,
v It has been granted the SELECT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *READ on the table.

The authorization ID of the statement has the SELECT privilege on a view when:
v It is the owner of the view,
v It has been granted the SELECT privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *READ on the view

and the system authority *READ on all tables and views that this view is
directly or indirectly dependent on. That is, all tables and views referenced in
the view definition, and if a view is referenced, all tables and views referenced
in its definition, and so forth.

Syntax

Searched DELETE:

�� DELETE FROM table-name
view-name correlation-clause

�

�
WHERE search-condition isolation-clause

��

Positioned DELETE:

�� DELETE FROM table-name
view-name correlation-clause

�

� WHERE CURRENT OF cursor-name ��

isolation–clause:

WITH NC
UR
CS
RS
RR

Description
FROM table-name or view-name

Identifies the table or view from which you want to delete. The name must
identify a table or view that exists at the server, but it must not identify a
catalog table, a view of a catalog table, or a read-only view. For an explanation
of read-only views, see “Notes” on page 554.

DELETE

Chapter 5. Statements 595

correlation-clause
Can be used within the search-condition to designate the table or view and
column names of the table or view. For an explanation of correlation-clause, see
Chapter 4, “Queries” on page 323. For an explanation of correlation-name, see
“Correlation Names” on page 105.

WHERE
Specifies the rows to be deleted. You can omit the clause, give a search
condition, or name a cursor. If you omit the clause, all rows of the table or
view are deleted.

search-condition
Is any search condition as described in “Search Conditions” on page 155.
Each column-name in the search-condition, other than in a subquery, must
identify a column of the table or view.

The search-condition is applied to each row of the table or view and the
deleted rows are those for which the result of the search-condition is true.

If the search-condition contains a subquery, the subquery can be thought of
as being executed each time the search condition is applied to a row, and the
results of the subquery used in applying the search condition. In actuality, a
subquery with no correlated references may be executed only once,
whereas a subquery with a correlated reference may have to be executed
once for each row.

If a subquery refers to the object table of the DELETE statement or a
dependent table with a delete rule of CASCADE, SET NULL, or SET
DEFAULT, the subquery is completely evaluated before any rows are
deleted.

CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. The cursor-name
must identify a declared cursor as explained in the Notes for the
DECLARE CURSOR statement.

The table or view named must also be identified in the FROM clause of the
SELECT statement of the cursor, and the result table of the cursor must not
be read-only. For an explanation of read-only result tables, see “DECLARE
CURSOR” on page 558.

When the DELETE statement is executed, the cursor must be positioned on
a row; that row is the one deleted. After the deletion, the cursor is
positioned before the next row of its result table. If there is no next row,
the cursor is positioned after the last row.

isolation-clause
Specifies the isolation level to be used for this statement. If isolation-clause is
not specified the default isolation is used. For an explanation of isolation-clause,
see isolation-clause.

DELETE Rules
Triggers

If the identified table or the base table of the identified view has a delete
trigger, the trigger is activated. A trigger might cause other statements to be
executed or raise error conditions based on the deleted values.

Referential Integrity
If the identified table or the base table of the identified table is a parent table,
the rows selected must not have any dependents in a relationship with a delete

DELETE

596 DB2 UDB for iSeries SQL Reference V5R2

rule of RESTRICT or NO ACTION, and the DELETE must not cascade to
descendent rows that have dependents in a relationship with a delete rule of
RESTRICT or NO ACTION.

If the delete operation is not prevented by a RESTRICT or NO ACTION delete
rule, the selected rows are deleted. Any rows that are dependents of the
selected rows are also affected:
v The nullable columns of the foreign keys of any rows that are their

dependents in a relationship with a delete rule of SET NULL are set to the
null value.

v The columns of the foreign keys of any rows that are their dependents in a
relationship with a delete rule of SET DEFAULT are set to the corresponding
default value.

v Any rows that are their dependents in a relationship with a delete rule of
CASCADE are also deleted, and the above rules apply, in turn to those rows.

The referential constraints (other than a referential constraint with a RESTRICT
delete rule), are effectively checked at the end of the statement. In the case of a
multiple-row delete, this would occur after all rows were deleted and any
associated triggers were activated.

Check Constraints
A check constraint can prevent the deletion of a row in a parent table when
there are dependents in a relationship with a delete rule of SET NULL or SET
DEFAULT. If deleting a row in the parent table would cause a column in a
dependent table to be set to null or a default value and the null or default
value would cause a search condition of a check constraint to evaluate to false,
the row is not deleted.

Notes
If an error occurs while executing any delete operation, actions changes from this
statement, referential constraints, and any triggered SQL statements are rolled back
(unless the isolation level is NC for this statement or any other triggered SQL
statements).

Unless appropriate locks already exist, one or more exclusive locks are acquired
during the execution of a successful DELETE statement. Until the locks are
released by a commit or rollback operation, the effect of the DELETE operation can
only be perceived by:
v The application process that performed the deletion
v Another application process using isolation level UR or NC

The locks can prevent other application processes from performing operations on
the table. For further information about locking, see the description of the
COMMIT, ROLLBACK, and LOCK TABLE statements, and “Isolation Level” on
page 21.

If an application process deletes a row on which any of its non-updateable cursors
are positioned, those cursors are positioned before the next row of their result
table. Let C be a cursor that is positioned before the next row R (as the result of an
OPEN, a DELETE through C, a DELETE through some other cursor, or a Searched
DELETE). In the presence of INSERT, UPDATE, and DELETE operations that affect
the base table from which R is derived, the next FETCH operation referencing C
does not necessarily position C on R. For example, the operation can position C on
R’ where R’ is a new row that is now the next row of the result table.

DELETE

Chapter 5. Statements 597

When a DELETE statement is completed, the number of rows deleted is returned
in SQLERRD(3) in the SQLCA. The value in SQLERRD(3) does not include the
number of rows that were deleted as a result of a CASCADE delete rule or a
trigger.

SQLERRD(5) in the SQLCA shows the number of rows affected by referential
constraints. It includes rows that were deleted as the result of a CASCADE delete
rule and rows in which foreign keys were set to NULL or the default value as the
result of a SET NULL or SET DEFAULT delete rule.

For a description of the SQLCA, see Appendix B, “SQL Communication Area” on
page 803.

A maximum of 4000000 rows can be deleted or changed in any single DELETE
statement when COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or
COMMIT(*CHG) was specified. The number of rows changed includes any rows
inserted, updated, or deleted under the same commitment definition as a result of
a trigger, a CASCADE, SET NULL, or SET DEFAULT referential integrity delete
rule.

Host variables cannot be used in the DELETE statement within a REXX procedure.
Instead, the DELETE must be the object of a PREPARE and EXECUTE using
parameter markers.

Keyword Synonyms: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword NONE can be used as a synonym for NC.
v The keyword CHG can be used as a synonym for UR.
v The keyword ALL can be used as a synonym for RS.

Examples

Example 1
Delete department (DEPTNO) ‘D11’ from the DEPARTMENT table.

DELETE FROM DEPARTMENT
WHERE DEPTNO = ’D11’

Example 2
Delete all the departments from the DEPARTMENT table (that is, empty the table).

DELETE FROM DEPARTMENT

Example 3
Use a Java program statement to delete all the subprojects (MAJPROJ is NULL)
from the PROJECT table on the connection context ’ctx’, for a department
(DEPTNO) equal to that in the host variable HOSTDEPT (java.lang.String).

#sql [ctx] { DELETE FROM PROJECT
WHERE DEPTNO = :HOSTDEPT AND MAJPROJ IS NULL };

Example 4
Code a portion of a Java program that will be used to display retired employees
(JOB) and then, if requested to do so, remove certain employees from the
EMPLOYEE table on the connection context ’ctx’.

#sql iterator empIterator implements sqlj.runtime.ForUpdate
(...);

empIterator C1;

DELETE

598 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

|

|

#sql [ctx] C1 = { SELECT * FROM EMPLOYEE
WHERE JOB = ’RETIRED’ };

#sql { FETCH C1 INTO ... };
while (!C1.endFetch()) {

System.out.println(...);
...

if (condition for deleting row) {
#sql [ctx] { DELETE FROM EMPLOYEE

WHERE CURRENT OF C1 };
}
#sql { FETCH C1 INTO ... };

}
C1.close();

DELETE

Chapter 5. Statements 599

DESCRIBE
The DESCRIBE statement obtains information about a prepared statement. For an
explanation of prepared statements, see “PREPARE” on page 674.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
None required. See “PREPARE” on page 674 for the authorization required to
create a prepared statement.

Syntax

�� DESCRIBE statement-name INTO descriptor-name �

�
USING NAMES

SYSTEM NAMES
LABELS
ANY
BOTH
ALL

��

Description
statement-name

Identifies the statement that you want described. When the DESCRIBE
statement is executed, the name must identify a prepared statement at the
server.

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix C,
“SQL Descriptor Area (SQLDA)” on page 813. Before the DESCRIBE statement
is executed, the following variable in the SQLDA must be set. (The rules for
REXX are different. For more information, see the SQL Programming with Host
Languages book.)

SQLN Specifies the number of SQLVAR occurrences provided in the SQLDA.
SQLN must be set to a value greater than or equal to zero before the
DESCRIBE statement is executed. For information on techniques to
determine the number of occurrences requires, see “Determining How
Many SQLVAR Occurrences are Needed” on page 816.

When the DESCRIBE statement is executed, the database manager assigns values
to the variables of the SQLDA as follows:

Variable Information returned by the database manager

SQLDAID The first 6 bytes are set to ’SQLDA ’ (that is, 5 letters followed by
the space character).

The seventh byte, called SQLDOUBLED, is set to ’2’, ’3’, or ’4’ if
the SQLDA contains two, three, or four SQLVAR entries for every
select-list item (or, column of the result table). This technique is

DESCRIBE

600 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm
../rzajp/rzajpmst02.htm

used in order to accommodate LOB, distinct type, labels, and
system names. Otherwise, SQLDOUBLED is set to the space
character.

The doubled flag is set to space if there is not enough room in the
SQLDA to contain the entire DESCRIBE reply.

The eighth byte is set to the space character.

SQLDABC Length of the SQLDA.

SQLD If the prepared statement is a SELECT, the number of columns in
its result table; otherwise, 0.

SQLVAR If the value of SQLD is 0, or greater than the value of SQLN, no
values are assigned to occurrences of SQLVAR.

If the value of SQLD is n, where n is greater than 0 but less than or
equal to the value of SQLN, values are assigned to the first n
occurrences of SQLVAR so that the first occurrence of SQLVAR
contains a description of the first column of the result table, the
second occurrence of SQLVAR contains a description of the second
column of the result table, and so on. For information on the
values assigned to SQLVAR occurrences, see “Field Descriptions in
an Occurrence of SQLVAR” on page 814.

USING
Specifies what value to assign to each SQLNAME variable in the SQLDA. If
the requested value does not exist, SQLNAME is set to a length of 0.

NAMES
Assigns the name of the column. This is the default. For the DESCRIBE of
a prepared statement where the name is explicitly listed in the select-list,
the name specified is returned.

SYSTEM NAMES
Assigns the system column name of the column.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL
statement.) Only the first 20 bytes of the label are returned.

ANY
Assigns the column label. If the column has no label, the column name is
used instead.

BOTH
Assigns both the label and name of the column. In this case, two or three
occurrences of SQLVAR per column, depending on whether the result set
contains distinct types, are needed to accommodate the additional
information. To specify this expansion of the SQLVAR array, set SQLN to
2*n or 3*n(where n is the number of columns in the table or view). The
first n occurrences of SQLVAR contain the column names. Either the
second or third n occurrences contain the column labels. If there are no
distinct types, the labels are returned in the second set of SQLVAR entries.
Otherwise, the labels are returned in the third set of SQLVAR entries.

ALL
Assigns the label, column name, and system column name. In this case
three or four occurrences of SQLVAR per column, depending on whether
the result set contains distinct types, are needed to accommodate the
additional information. To specify this expansion of the SQLVAR array, set

DESCRIBE

Chapter 5. Statements 601

SQLN to 3*n or 4*n (where n is the number of columns in the result table).
The first n occurrences of SQLVAR contain the system column names. The
second or third n occurrences contain the column labels. The third or
fourth n occurrences contain the column names. If there are no distinct
types, the labels are returned in the second set of SQLVAR entries and the
column names are returned in the third set of SQLVAR entries. Otherwise,
the labels are returned in the third set of SQLVAR entries and the column
names are returned in the fourth set of SQLVAR entries.

Notes
Information about a prepared statement can also be obtained by using the INTO
clause of the PREPARE statement.

Allocating the SQLDA
Before the DESCRIBE or PREPARE INTO statement is executed, the value of SQLN
must be set to a value greater than or equal to zero to indicate how many
occurrences of SQLVAR are provided in the SQLDA and enough storage must be
allocated to contain SQLN occurrences. (In REXX, storage does not need to be
allocated for the SQLDA.) To obtain the description of the columns of the result
table of a prepared SELECT statement, the number of occurrences of SQLVAR must
not be less than the number of columns. Furthermore, if USING BOTH or USING
ALL is specified, or if the columns include LOBs or distinct types, the number of
occurrences of SQLVAR should be two, three, or four times the number of
columns. See “Determining How Many SQLVAR Occurrences are Needed” on
page 816 for more information.

If not enough occurrences are provided to return all sets of occurrences, SQLN is
set to the total number of occurrences necessary to return all information.
Otherwise, SQLN is set to the number of columns.

Among the possible ways to allocate the SQLDA are the three described below.

First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to
accommodate any select list that the application will have to process. At the
extreme, the number of SQLVARs could equal four times the maximum number of
columns allowed in a result table. Having done the allocation, the application can
use this SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when
most of this storage is not used for a particular select list.

Second Technique: Repeat the following three steps for every processed select
list:
1. Execute a DESCRIBE statement with an SQLDA that has no occurrences of

SQLVAR; that is, an SQLDA for which SQLN is zero. The value returned for
SQLD is the number of columns in the result table. This is either the required
number of occurrences of SQLVAR or one half, one third, or one quarter the
required number. Because there were no SQLVAR entries, a warning will be
issued. If the SQLSTATE accompanying that warning is equal to 01005, the
number of SQLVAR entries should be double, triple, or quadruple the value
returned in SQLD. See “Determining How Many SQLVAR Occurrences are
Needed” on page 816 for more information.

2. Use the returned value of SQLD to allocate an SQLDA with enough
occurrences of SQLVAR.

3. Execute the DESCRIBE statement again, using the new SQLDA.

DESCRIBE

602 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|
|
|
|
|
|
|

|
|

|

This technique allows better storage management than the first technique, but it
doubles the number of DESCRIBE statements.

Third Technique: Allocate an SQLDA that is large enough to handle most, and
perhaps all, select lists but is also reasonably small. If an execution of DESCRIBE
fails because the SQLDA is too small, allocate a larger SQLDA and execute
DESCRIBE again. For the new SQLDA, use the value of SQLD returned from the
first execution of DESCRIBE for the number of occurrences of SQLVAR.

This technique is a compromise between the first two techniques. Its effectiveness
depends on a good choice of size for the original SQLDA.

Example
In a C program, execute a DESCRIBE statement with an SQLDA that has no
occurrences of SQLVAR. If SQLD is greater than zero, use the value to allocate an
SQLDA with the necessary number of occurrences of SQLVAR and then execute a
DESCRIBE statement using that SQLDA.

EXEC SQL BEGIN DECLARE SECTION;
char stmt1_str [200];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

... /* code to prompt user for a query, then to generate */
/* a select-statement in the stmt1_str */

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

... /* code to set SQLN to zero and to allocate the SQLDA */
EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

... /* code to check that SQLD is greater than zero, to set */
/* SQLN to SQLD, then to re-allocate the SQLDA */

EXEC SQL DESCRIBE STMT1_NAME INTO :sqlda;

... /* code to prepare for the use of the SQLDA */
EXEC SQL OPEN DYN_CURSOR;

... /* loop to fetch rows from result table */
EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :sqlda;
.
.
.

DESCRIBE

Chapter 5. Statements 603

DESCRIBE TABLE

The DESCRIBE TABLE statement obtains information about a table or view.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the table or view identified in the statement:

– The system authority of *OBJOPR on the table or view
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

Syntax

�� DESCRIBE TABLE host-variable INTO descriptor-name �

�
USING NAMES

SYSTEM NAMES
LABELS
ANY
BOTH
ALL

��

Description
host-variable

Identifies the table or view about which you want to obtain information. When
the DESCRIBE TABLE statement is executed:
v The name must identify a table or view that exists at the server.
v The host-variable must be a character-string or UCS-2 graphic-string variable

and must not include an indicator variable.
v The table name that is contained within the host-variable must be

left-justified and must be padded on the right with blanks if its length is less
than that of the host-variable.

v The name of the table must be in uppercase unless it is a delimited name.

When the DESCRIBE TABLE statement is executed, the database manager
assigns values to the variables of the SQLDA as follows:

INTO descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in Appendix C,
“SQL Descriptor Area (SQLDA)” on page 813. Before the DESCRIBE TABLE
statement is executed, the following variable in the SQLDA must be set. (The
rules for REXX are different. For more information, see the SQL Programming
with Host Languages book.)

SQLN Specifies the number of SQLVAR occurrences provided in the SQLDA.

DESCRIBE TABLE

604 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm
../rzajp/rzajpmst02.htm

SQLN must be set to a value greater than or equal to zero before the
DESCRIBE TABLE statement is executed. For information on
techniques to determine the number of occurrences requires, see
“Determining How Many SQLVAR Occurrences are Needed” on
page 816.

Variable Information returned by the database manager

SQLDAID The first 6 bytes are set to ’SQLDA’ (that is, 5 letters
followed by the space character).

The seventh byte, called SQLDOUBLED, is set to ’2’,
’3’, or ’4’ if the SQLDA contains two, three, or four
SQLVAR entries for every select-list item (or, column of
the result table). This technique is used in order to
accommodate LOB, distinct type, labels, and system
names. Otherwise, SQLDOUBLED is set to the space
character. The doubled flag is set to space if there is
not enough room in the SQLDA to contain the entire
DESCRIBE reply.

SQLDABC Length of the SQLDA.

SQLD The number of columns in the referenced table or view.

SQLVAR If the value of SQLD is 0, or greater than the value of
SQLN, no values are assigned to occurrences of
SQLVAR.

If the value of SQLD is n, where n is greater than 0 but
less than or equal to the value of SQLN, values are
assigned to the first n occurrences of SQLVAR so that
the first occurrence of SQLVAR contains a description
of the first column of the table or view, the second
occurrence of SQLVAR contains a description of the
second column of the table or view, and so on. For
information on the values assigned to SQLVAR
occurrences, see “Field Descriptions in an Occurrence
of SQLVAR” on page 814.

USING
Specifies what value to assign to each SQLNAME variable in the SQLDA. If
the requested value does not exist, SQLNAME is set to a length of 0.

NAMES
Assigns the name of the column. This is the default.

SYSTEM NAMES
Assigns the system column name of the column.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL
statement.) Only the first 20 bytes of the label are returned.

ANY
Assigns the column label. If the column has no label, the column name is
used instead.

BOTH
Assigns both the label and name of the column. In this case, two or three
occurrences of SQLVAR per column, depending on whether the result set
contains distinct types, are needed to accommodate the additional

DESCRIBE TABLE

Chapter 5. Statements 605

information. To specify this expansion of the SQLVAR array, set SQLN to
2*n or 3*n(where n is the number of columns in the table or view). The
first n occurrences of SQLVAR contain the column names. Either the
second or third n occurrences contain the column labels. If there are no
distinct types, the labels are returned in the second set of SQLVAR entries.
Otherwise, the labels are returned in the third set of SQLVAR entries.

ALL
Assigns the label, column name, and system column name. In this case
three or four occurrences of SQLVAR per column, depending on whether
the result set contains distinct types, are needed to accommodate the
additional information. To specify this expansion of the SQLVAR array, set
SQLN to 3*n or 4*n (where n is the number of columns in the result table).
The first n occurrences of SQLVAR contain the system column names. The
second or third n occurrences contain the column labels. The third or
fourth n occurrences contain the column names. If there are no distinct
types, the labels are returned in the second set of SQLVAR entries and the
column names are returned in the third set of SQLVAR entries. Otherwise,
the labels are returned in the third set of SQLVAR entries and the column
names are returned in the fourth set of SQLVAR entries.

Notes
Before the DESCRIBE TABLE statement is executed, the value of SQLN must be set
to a value greater than or equal to zero to indicate how many occurrences of
SQLVAR are provided in the SQLDA and enough storage must be allocated to
contain SQLN occurrences. To obtain the description of the columns of the table or
view, the number of occurrences of SQLVAR must not be less than the number of
columns. Furthermore, if USING BOTH or USING ALL is specified, or if the
columns include LOBs or distinct types, the number of occurrences of SQLVAR
should be two, three, or four times the number of columns. See “Determining How
Many SQLVAR Occurrences are Needed” on page 816 for more information.

If not enough occurrences are provided to return all sets of occurrences, SQLN is
set to the total number of occurrences necessary to return all information.
Otherwise, SQLN is set to the number of columns.

For a description of techniques that can be used to allocate the SQLDA, see
“Allocating the SQLDA” on page 602.

Example
In a C program, execute a DESCRIBE statement with an SQLDA that has no
occurrences of SQLVAR. If SQLD is greater than zero, use the value to allocate an
SQLDA with the necessary number of occurrences of SQLVAR and then execute a
DESCRIBE statement using that SQLDA.

EXEC SQL BEGIN DECLARE SECTION;
char table_name[201];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

.../*code to prompt user for a table or view */

.../*code to set SQLN to zero and to allocate the SQLDA */
EXEC SQL DESCRIBE TABLE :table_name INTO :sqlda;

... /* code to check that SQLD is greater than zero, to set */
/* SQLN to SQLD, then to re-allocate the SQLDA */

EXEC SQL DESCRIBE TABLE :table_name INTO :sqlda;

DESCRIBE TABLE

606 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|
|
|
|
|
|
|

.

.

.

DISCONNECT
The DISCONNECT statement ends one or more connections for unprotected
conversations.

Invocation
This statement can only be embedded in an application program or issued
interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in Java or REXX.

DISCONNECT is not allowed in a trigger. DISCONNECT is not allowed in an
external procedure if the external procedure is called on a remote server.

Authorization
None required.

Syntax

�� DISCONNECT server-name
host-variable
CURRENT

SQL
ALL

��

Description
server-name or host-variable

Identifies the server by the specified server name or the server name contained
in the host variable. If a host variable is specified:
v It must be a character-string variable.
v It must not be followed by an indicator variable
v The server name must be left-justified within the host variable and must

conform to the rules for forming an ordinary identifier
v If the length of the server name is less than the length of the host variable, it

must be padded on the right with blanks.

When the DISCONNECT statement is executed, the specified server name or
server name contained in the host variable must identify an existing dormant
or current connection of the activation group. The identified connection cannot
use a protected conversation.

CURRENT
Identifies the current connection of the activation group. The activation group
must be in the connected state. The current connection must not use a
protected conversation.

ALL or ALL SQL
Identifies all existing connections of the activation group (local as well as

DESCRIBE TABLE

Chapter 5. Statements 607

|
|
|
|

|
|
|

remote connections). An error or warning does not occur if no connections
exist when the statement is executed. None of the connections can use
protected conversations.

Notes
An identified connection must not be a connection that was used to execute SQL
statements during the current unit of work and must not be a connection for a
protected conversation. To end connections on protected conversations, use the
RELEASE statement. Local connections are never considered to be protected
conversations.

If the DISCONNECT statement is successful, each identified connection is ended. If
the current connection is destroyed, the activation group is placed in the
unconnected state.

If the DISCONNECT statement is unsuccessful, the connection state of the
activation group and the states of its connections are unchanged.

Using CONNECT (Type 1) semantics does not prevent using DISCONNECT.

DISCONNECT closes cursors, releases resources, and prevents further use of the
connection.

ROLLBACK does not reconnect a connection that has been ended by
DISCONNECT.

Resources are required to create and maintain remote connections. Thus, a remote
connection that is not going to be reused should be ended as soon as possible and
a remote connection that is going to be reused should not be destroyed.

The DISCONNECT statement should be executed immediately after a commit
operation. If DISCONNECT is used to end the current connection, the next
executed SQL statement must be CONNECT or SET CONNECTION.

DISCONNECT ALL ends the connection to the local server. A connection is ended
even though it has an open cursor defined with the WITH HOLD clause.

Examples
Example 1: The connection to TOROLAB1 is no longer needed. The following
statement is executed after a commit operation.

EXEC SQL DISCONNECT TOROLAB1;

Example 2: The current connection is no longer needed. The following statement is
executed after a commit operation.

EXEC SQL DISCONNECT CURRENT;

Example 3: The existing connections are no longer needed. The following statement
is executed after a commit operation.

EXEC SQL DISCONNECT ALL;

DISCONNECT

608 DB2 UDB for iSeries SQL Reference V5R2

DROP
The DROP statement deletes an object. Any objects that are directly or indirectly
dependent on that object are also deleted. Whenever an object is deleted, its
description is deleted from the catalog.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
To drop a table, view, index, alias or package, the privileges held by the
authorization ID of the statement must include at least one of the following:
v The following system authorities:

– The system authorities of *OBJOPR and *OBJEXIST on the object to be
dropped

– If the object is a table or view, the system authorities of *OBJOPR and
*OBJEXIST on any views, indexes, and logical files that are dependent on that
table or view

– The system authority *EXECUTE on the library that contains the object to be
dropped

v Administrative authority

To drop a schema, the privileges held by the authorization ID of the statement
must include at least one of the following:
v The following system authorities:

– The system authorities of *OBJEXIST, *OBJOPR, *EXECUTE, and *READ on
the library to be dropped.

– The system authorities of *OBJOPR and *OBJEXIST on all objects in the
schema and *OBJOPR and *OBJEXIST on any views, indexes and logical files
that are dependent on tables and views in the schema.

– Any additional authorities required to delete other object types that exist in
the schema. For example, *OBJMGT to the data dictionary if the schema
contains a data dictionary, and some system data authority to the journal

receiver. For more information, see the iSeries Security Reference book.
v Administrative authority

To drop a distinct type, the privileges held by the authorization ID of the statement
must include at least one of the following:
v The following system authorities:

– The system authorities of *OBJOPR and *OBJEXIST on the distinct type to be
dropped

– The DELETE privilege on the SYSTYPES, SYSPARMS, and SYSROUTINES
catalog tables, and

– The system authority *EXECUTE on library QSYS2
v Administrative authority

To drop a function, the privileges held by the authorization ID of the statement
must include at least one of the following:
v The following system authorities:

DROP

Chapter 5. Statements 609

../../books/c4153026.pdf

– For SQL functions, the system authority *OBJEXIST on the program object
associated with the function, and

– The DELETE privilege on the SYSFUNCS and SYSPARMS catalog tables, and
– The system authority *EXECUTE on library QSYS2

v Administrative authority

To drop a procedure, the privileges held by the authorization ID of the statement
must include at least one of the following:
v The following system authorities:

– For SQL procedures, the system authority *OBJEXIST on the program object
associated with the procedure, and

– The DELETE privilege on the SYSPROCS and SYSPARMS catalog tables, and
– The system authority *EXECUTE on library QSYS2

v Administrative authority

The authorization ID of the statement has the DELETE privilege on a table when:
v It is the owner of the table,
v It has been granted the DELETE privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *DLT on the table.

To drop a trigger, the privileges held by the authorization ID of the statement must
include at least one of the following:
v The following privileges:

– The system authority *USE to the Remove Physical File Trigger (RMVPFTRG)
command, and

– For the subject table of the trigger:
- The ALTER privilege to the subject table, and
- The system authority *EXECUTE on the library containing the subject table,

– If the trigger being dropped is an SQL trigger:
- The system authority *OBJEXIST on the trigger program object, and
- The system authority *EXECUTE on the library containing the trigger.

v Administrative authority

The authorization ID of the statement has the ALTER privilege on the table when
one of the following is true:
v It is the owner of the table.
v It was granted the ALTER privilege to the table.
v It was granted the system authorities of either *OBJALTER or *OBJMGT to the

table.

Syntax

DROP

610 DB2 UDB for iSeries SQL Reference V5R2

��

DROP ALIAS alias-name
FUNCTION function-name
ROUTINE ()

,

parameter-type
SPECIFIC FUNCTION specific-name

ROUTINE
INDEX index-name
PACKAGE package-name

PROCEDURE procedure-name
ROUTINE ()

,

parameter-type
SPECIFIC PROCEDURE specific-name

ROUTINE
SCHEMA schema-name

RESTRICT
CASCADE

TABLE table-name
RESTRICT
CASCADE

TRIGGER trigger-name
TYPE distinct-type-name

DISTINCT RESTRICT
CASCADE

VIEW view-name
RESTRICT
CASCADE

��

parameter-type:

built-in-type
distinct-type-name AS LOCATOR

DROP

Chapter 5. Statements 611

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC ()

NUMERIC integer
, integer

(53)
FLOAT

(1)
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR () FOR BIT DATA

integer FOR SBCS DATA
CHARACTER VARYING () FOR MIXED DATA
CHAR integer CCSID integer

VARCHAR
(1M)

CLOB
CHAR LARGE OBJECT () FOR SBCS DATA AS LOCATOR
CHARACTER LARGE OBJECT integer K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

() CCSID integer
integer

VARGRAPHIC ()
GRAPHIC VARYING integer

(1M)
DBCLOB

() CCSID integer AS LOCATOR
integer K

M
G

(1M)
BLOB
BINARY LARGE OBJECT () AS LOCATOR

integer K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
() CCSID integer

integer
ROWID

Notes:

1 The value that is specified for precision does not have to match the value that was specified when the function
was created because matching is based on data type (REAL or DOUBLE).

DROP

612 DB2 UDB for iSeries SQL Reference V5R2

Description
ALIAS alias-name

Identifies the alias you want to drop. The alias-name must identify an alias that
exists at the current server. The specified alias is deleted from the schema.

Dropping an alias has no effect on any constraint or view that was defined
using the alias. An alias can be dropped whether or not it is referenced in a
function, package, procedure, program, or trigger. Any access plans that
reference the alias are implicitly prepared again when the access plan is next
used. If the alias does not exist at that time, an error is returned.

FUNCTION
Identifies the function you want to drop. You can identify the particular
function to be dropped by its name, function signature, or specific name. The
rules for function resolution (and the path) are not used. The specified function
is deleted from the schema. If this is an SQL function or sourced function, the
service program (*SRVPGM) associated with the function is also dropped. If
this is an external function, the information that was saved in the program or
service program specified on the CREATE FUNCTION statement is removed
from the object. All privileges on the function are also dropped.

Functions implicitly generated by the CREATE DISTINCT TYPE statement
cannot be dropped.

The function cannot be dropped if another function is dependent on it. A
function is dependent on another function if it was identified in the SOURCE
clause of the CREATE FUNCTION statement. A function can be dropped
whether or not it is referenced in a function, package, procedure, program,
trigger, or view. Any access plans that reference the function are implicitly
prepared again when the access plan is next used. If the function does not exist
at that time, an error is returned.

FUNCTION function-name
The function-name must identify exactly one function that exists at the
current server. If there is more than one function of the specified name in
the specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
The function-name (parameter-type, ...) must identify a function with the
specified function signature that exists at the current server. The specified
parameters must match the data types, that were specified on the CREATE
FUNCTION statement in the corresponding position. The number of data
types, and the logical concatenation of the data types is used to identify
the specific function instance which is to be dropped. If function-name () is
specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses.
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match.

DROP

Chapter 5. Statements 613

v If you use a specific value for a length, precision, or scale attribute,
the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE
TABLE” on page 507.

For data types with a subtype or CCSID attribute, specifying the FOR
DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE FUNCTION statement.

SPECIFIC FUNCTION specific-name
The specific-name must identify a specific function that exists at the current
server.

INDEX index-name
Identifies the index you want to drop. The index-name must identify an index
that exists at the current server. The specified index is deleted from the
schema.

An index can be dropped whether or not it is referenced in a function,
package, procedure, program, or trigger. Any access plans that reference the
index are implicitly prepared again when the access plan is next used.

PACKAGE package-name
Identifies the package you want to drop. The package-name must identify a
package that exists at the current server. The specified package is deleted from
the schema. All privileges on the package are also dropped.

A package can be dropped whether or not it is referenced in a function,
package, procedure, program, or trigger. Any access plans that reference the
index are implicitly prepared again when the access plan is next used. If the
package does not exist at that time, an error is returned.

PROCEDURE
Identifies the procedure you want to drop. You can identify the particular
procedure to be dropped by its name, procedure signature, or specific name.
The rules for procedure resolution (and the path) are not used.

A procedure can be dropped whether or not it is referenced in a function,
package, procedure, program, trigger, or view. Any access plans that reference
the procedure are implicitly prepared again when the access plan is next used.
If the procedure does not exist at that time, an error is returned.

PROCEDURE procedure-name
The procedure-name must identify exactly one procedure that exists at the
current server. The procedure may have any number of parameters defined

DROP

614 DB2 UDB for iSeries SQL Reference V5R2

for it. If there is more than one procedure of the specified name in the
specified or implicit schema, an error is returned.

PROCEDURE procedure-name (parameter-type, ...)
The procedure-name (parameter-type, ...) must identify a procedure with the
specified procedure signature that exists at the current server. The specified
parameters must match the data types, that were specified on the CREATE
PROCEDURE statement in the corresponding position. The number of data
types, and the logical concatenation of the data types is used to identify
the specific procedure instance which is to be dropped. If procedure-name ()
is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses.
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match.
v If you use a specific value for a length, precision, or scale attribute,

the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE PROCEDURE statement.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE PROCEDURE statement. For
a complete list of the default lengths of data types, see “CREATE
TABLE” on page 507.

For data types with a subtype or CCSID attribute, specifying the FOR
DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE PROCEDURE statement.

SPECIFIC PROCEDURE specific-name
The specific-name must identify a specific procedure that exists at the
current server.

The specified procedure is deleted from the catalog tables SYSPROCS and
SYSPARMS. If this is an SQL procedure, the program (*PGM) object associated
with the SQL procedure is also dropped. All privileges on the procedure are
also dropped.

SCHEMA schema-name
Identifies the schema you want to drop. The schema-name must identify a

DROP

Chapter 5. Statements 615

schema that exists at the current server. The specified schema is deleted. Each
object in the schema is dropped as if the appropriate DROP statement was
executed with the specified drop option (CASCADE, RESTRICT, or neither).
See the DROP description of these object types for information on the handling
of objects dependent on these objects.

DROP SCHEMA is only valid when the commit level is *NONE.

Neither CASCADE nor RESTRICT
Specifies that the schema will dropped even if it is referenced in a function,
package, procedure, program, table, or trigger in another schema. Any
access plans that reference the schema are implicitly prepared again when
the access plan is next used. If the schema does not exist at that time, an
error is returned.

CASCADE
Specifies that any triggers that reference the schema will be dropped. If the
schema is referenced in a function, package, procedure, or program in
another schema, any access plans that reference the schema are implicitly
prepared again when the access plan is next used. If the schema does not
exist at that time, an error is returned.

RESTRICT
Specifies that the schema cannot be dropped if it is referenced in an SQL
trigger in another schema. If the schema is referenced in a function,
package, procedure, or program in another schema, any access plans that
reference the schema are implicitly prepared again when the access plan is
next used. If the schema does not exist at that time, an error is returned.

TABLE table-name
Identifies the table you want to drop. The table-name must identify a base table
that exists at the current server, but must not identify a catalog table. The
specified table is deleted from the schema. All privileges, constraints, and
triggers on the table are also dropped.

Neither CASCADE nor RESTRICT
Specifies that the table will dropped even if it is referenced in a constraint,
index, trigger, or view. All indexes and views that reference the table are
dropped. If the table is referenced in a function, package, procedure,
program, or trigger, any access plans that reference the table are implicitly
prepared again when the access plan is next used. If the table does not
exist at that time, an error is returned.

CASCADE
Specifies that the table will dropped even if it is referenced in a constraint,
index, trigger, or view. All constraints, indexes, triggers, and views that
reference the table are dropped. If the table is referenced in a function,
package, procedure, or program, any access plans that reference the table
are implicitly prepared again when the access plan is next used. If the table
does not exist at that time, an error is returned.

RESTRICT
Specifies that the table cannot be dropped if it is referenced in a constraint,
index, trigger, or view. If the table is referenced in a function, package,
procedure, or program, any access plans that reference the table are
implicitly prepared again when the access plan is next used. If the table
does not exist at that time, an error is returned.

TRIGGER trigger-name
Identifies the trigger you want to drop. The trigger-name must identify a trigger

DROP

616 DB2 UDB for iSeries SQL Reference V5R2

that exists at the current server. The specified trigger is deleted from the
schema. If the trigger is an SQL trigger, the program object associated with the
trigger is also deleted from the schema.

DISTINCT TYPE distinct-type-name
Identifies the distinct type; you want to drop. The distinct-type-name must
identify a distinct type that exists at the current server. The specified type is
deleted from the schema.

Neither CASCADE nor RESTRICT
Specifies that the type cannot be dropped if any constraints, indexes,
tables, and views reference the type.

For every procedure or function R that has parameters or a return value of
the type being dropped, or a reference to the type being dropped, the
following DROP statement is effectively executed:

DROP ROUTINE R

For every trigger T that references the type being dropped, the following
DROP statement is effectively executed:

DROP TRIGGER T

It is possible that this statement would cascade to drop dependent
functions or procedures. If all of these functions or procedures are in the
list to be dropped because of a dependency on the distinct type, the drop
of the distinct type will succeed.If the type is referenced in a package or
program, any access plans that reference the type are implicitly prepared
again when the access plan is next used. If the type does not exist at that
time, an error is returned.

CASCADE
Specifies that the type will dropped even if it is referenced in a constraint,
function, index, procedure, table, trigger, or view. All constraints, functions,
indexes, procedures, tables, triggers, and views that reference the type are
dropped. If the type is referenced in a package or program, any access
plans that reference the type are implicitly prepared again when the access
plan is next used. If the type does not exist at that time, an error is
returned.

RESTRICT
Specifies that the type cannot be dropped if it is referenced in a constraint,
function (other than a function that was created when the type was
created), index, procedure, table, trigger, or view. If the type is referenced
in a package or program, any access plans that reference the type are
implicitly prepared again when the access plan is next used. If the type
does not exist at that time, an error is returned.

VIEW view-name
Identifies the view you want to drop. The view-name must identify a view that
exists at the current server, but must not identify a catalog view. The specified
view is deleted from the schema. When a view is dropped, all privileges on
that view are dropped.

Neither CASCADE nor RESTRICT
Specifies that the view will dropped even if it is referenced in a trigger or
another view. All views that reference the view are dropped. If the view is
referenced in a function, package, procedure, program, or trigger, any

DROP

Chapter 5. Statements 617

access plans that reference the view are implicitly prepared again when the
access plan is next used. If the view does not exist at that time, an error is
returned.

CASCADE
Specifies that the view will dropped even if it is referenced in a trigger or
another view. All triggers and views that reference the view are dropped. If
the view is referenced in a function, package, procedure, or program, any
access plans that reference the view are implicitly prepared again when the
access plan is next used. If the view does not exist at that time, an error is
returned.

RESTRICT
Specifies that the view cannot be dropped if it is referenced in a trigger or
another view. If the view is referenced in a function, package, procedure,
or program, any access plans that reference the table are implicitly
prepared again when the access plan is next used. If the view does not
exist at that time, an error is returned.

Note
Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword SYNONYM can be used as a synonym for ALIAS.
v The keyword DATA can be used as a synonym for DISTINCT.
v The keyword PROGRAM can be used as a synonym for PACKAGE.
v The keyword COLLECTION can be used as a synonym for SCHEMA.

Examples

Example 1
Drop your table named MY_IN_TRAY. Do not allow the drop if any views or
indexes are created over this table.

DROP TABLE MY_IN_TRAY RESTRICT

Example 2
Drop your view named MA_PROJ.

DROP VIEW MA_PROJ

Example 3
Drop the package named PERS.PACKA.

DROP PACKAGE PERS.PACKA

Example 4
Drop the distinct type DOCUMENT, if it is not currently in use:

DROP DISTINCT TYPE DOCUMENT RESTRICT

Example 5
Assume that you are SMITH and that ATOMIC_WEIGHT is the only function with
that name in schema CHEM. Drop ATOMIC_WEIGHT.

DROP FUNCTION CHEM.ATOMIC_WEIGHT RESTRICT

Example 6
Assume that you are SMITH and that you created the function CENTER in schema
SMITH. Drop CENTER, using the function signature to identify the function
instance to be dropped.

DROP

618 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|

|

|

|

|

DROP FUNCTION CENTER (INTEGER, FLOAT) RESTRICT

Example 7
Assume that you are SMITH and that you created another function named
CENTER, which you gave the specific name FOCUS97, in schema JOHNSON.
Drop CENTER, using the specific name to identify the function instance to be
dropped.

DROP SPECIFIC FUNCTION JOHNSON.FOCUS97

Example 8
Assume that you are SMITH and that stored procedure OSMOSIS is in schema
BIOLOGY. Drop OSMOSIS.

DROP PROCEDURE BIOLOGY.OSMOSIS

Example 9
Assume that you are SMITH and that trigger BONUS is in your schema. Drop
BONUS.

DROP TRIGGER BONUS

DROP

Chapter 5. Statements 619

END DECLARE SECTION
The END DECLARE SECTION statement marks the end of an SQL declare section.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in RPG, Java, or REXX.

Authorization
None required.

Syntax

�� END DECLARE SECTION ��

Description
The END DECLARE SECTION statement can be coded in the application program
wherever declarations can appear in accordance with the rules of the host
language. It is used to indicate the end of an SQL declare section. An SQL declare
section starts with a BEGIN DECLARE SECTION statement. For more information
about the BEGIN DECLARE SECTION statement, see“BEGIN DECLARE
SECTION” on page 381.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements
must be paired and cannot be nested.

SQL statements should not be included within the declare section, with the
exception of the DECLARE VARIABLE and INCLUDE statement.

If SQL declare sections are specified in the program, only the variables declared
within the SQL declare sections can be used as host variables. When SQL declare
sections are not specified, all variables in the program are eligible for use as host
variables.

SQL declare sections should be specified for host languages, other than RPG and
REXX, so that the source program conforms to the IBM SQL standard. The SQL
declare section should appear before the first reference to the variable. Host
variables are declared without the use of these statements in RPG, and they are not
declared at all in REXX.

Variables declared outside an SQL declare section should not have the same name
as variables declared within an SQL declare section.

More than one SQL declare section can be specified in the program.

Examples
See “BEGIN DECLARE SECTION” on page 381 for examples using the END
DECLARE SECTION statement.

END DECLARE SECTION

620 DB2 UDB for iSeries SQL Reference V5R2

|
|

EXECUTE
The EXECUTE statement executes a prepared SQL statement.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
The authorization rules are those defined for the SQL statement specified by
EXECUTE. For example, see the description of INSERT

for the authorization rules that apply when an INSERT statement is executed using
EXECUTE.

The authorization ID of the statement is the run-time authorization ID unless
DYNUSRPRF(*OWNER) was specified on the CRTSQLxxx command when the
program was created. For more information, see “Authorization IDs and
Authorization-Names” on page 57.

Syntax

�� EXECUTE statement-name

,

USING host-variable
USING DESCRIPTOR descriptor-name

��

Description
statement-name

Identifies the prepared statement to be executed. Statement-name must identify
a statement that was previously prepared. The prepared statement cannot be a
SELECT statement.

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) in the prepared statement. For an
explanation of parameter markers, see “PREPARE” on page 674. If the prepared
statement includes parameter markers, the USING clause must be used.
USING is ignored if there are no parameter markers.

host-variable,...
Identifies one of more host structures or variables that must be declared in
the program in accordance with the rules for declaring host structures and
variables. A reference to a host structure is replaced by a reference to each
of its variables. The number of variables must be the same as the number
of parameter markers in the prepared statement. The nth variable
corresponds to the nth parameter marker in the prepared statement.

DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host
variables.

EXECUTE

Chapter 5. Statements 621

Before the EXECUTE statement is processed, the user must set the
following fields in the SQLDA. (The rules for REXX are different. For more
information, see the SQL Programming with Host Languages book.)
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA.
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA.
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement.
v SQLVAR occurrences to indicate the attributes of the variables.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
If LOBs or distinct types are present in the results, there must be additional
SQLVAR entries for each parameter. For more information about the
SQLDA, which includes a description of the SQLVAR and an explanation
on how to determine the number of SQLVAR occurrences, see Appendix C,
“SQL Descriptor Area (SQLDA)” on page 813.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers
in the prepared statement. The nth variable described by the SQLDA
corresponds to the nth parameter marker in the prepared statement.

Note that RPG/400 does not provide the function for setting pointers. Because
the SQLDA uses pointers to locate the appropriate host variables, you have to
set these pointers outside your RPG/400 application.

Notes

Parameter Marker Replacement
Before the prepared statement is executed, each parameter marker in the statement
is effectively replaced by its corresponding host variable. The replacement of a
parameter marker is an assignment operation in which the source is the value of
the host variable, and the target is a variable within the database manager. For a
typed parameter marker, the attributes of the target variable are those specified by
the CAST specification. For an untyped parameter marker, the attributes of the
target variable are determined according to the context of the parameter marker.
For the rules that affect parameter markers, see Table 57 on page 677.

Let V denote a host variable that corresponds to parameter marker P. The value of
V is assigned to the target variable for P in accordance with the rules for assigning
a value to a column. Thus:
v V must be compatible with the target.
v If V is a number, the absolute value of its integral part must not be greater than

the maximum absolute value of the integral part of the target.
v If the attributes of V are not identical to the attributes of the target, the value is

converted to conform to the attributes of the target.
v If the target cannot contain nulls, the value of V must not be null.

However, unlike the rules for assigning a value to a column:
v If V is a string, the value will be truncated (without an error), if its length is

greater than the length attribute of the target.

EXECUTE

622 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm

When the prepared statement is executed, the value used in place of P is the value
of the target variable for P. For example, if V is CHAR(6) and the target is
CHAR(8), the value used in place of P is the value of V padded with two blanks.

Example
This example of portions of a COBOL program shows how an INSERT statement
with parameter markers is prepared and executed.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
77 EMP PIC X(6).
77 PRJ PIC X(6).
77 ACT PIC S9(4) COMP-4.
77 TIM PIC S9(3)V9(2).
01 HOLDER.

49 HOLDER-LENGTH PIC S9(4) COMP-4.
49 HOLDER-VALUE PIC X(80).

EXEC SQL END DECLARE SECTION END-EXEC.
.
.
.
MOVE 70 TO HOLDER-LENGTH.
MOVE "INSERT INTO EMPPROJACT (EMPNO, PROJNO, ACTNO, EMPTIME)

- "VALUES (?, ?, ?, ?)" TO HOLDER-VALUE.
EXEC SQL PREPARE MYINSERT FROM :HOLDER END-EXEC.

IF SQLCODE = 0
PERFORM DO-INSERT THRU END-DO-INSERT

ELSE
PERFORM ERROR-CONDITION.

DO-INSERT.
MOVE "000010" TO EMP.
MOVE "AD3100" TO PRJ.
MOVE 160 TO ACT.
MOVE .50 TO TIM.
EXEC SQL EXECUTE MYINSERT USING :EMP, :PRJ, :ACT, :TIM END-EXEC.

END-DO-INSERT.
.
.
.

EXECUTE

Chapter 5. Statements 623

EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement:
v Prepares an executable form of an SQL statement from a character string form of

the statement
v Executes the SQL statement

EXECUTE IMMEDIATE combines the basic functions of the PREPARE and
EXECUTE statements. It can be used to prepare and execute SQL statements that
contain neither host variables nor parameter markers.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
The authorization rules are those defined for the SQL statement specified by
EXECUTE IMMEDIATE. For example, see “INSERT” on page 656 for the
authorization rules that apply when an INSERT statement is executed using
EXECUTE IMMEDIATE.

The authorization ID of the statement is the run-time authorization ID unless
DYNUSRPRF(*OWNER) was specified on the CRTSQLxxx command when the
program was created. For more information, see “Authorization IDs and
Authorization-Names” on page 57.

Syntax

�� EXECUTE IMMEDIATE host-variable
string-expression

��

Description
host-variable

Identifies a host variable that must be declared in accordance with the rules for
declaring character-string or UCS-2 graphic host variables. The host variable
must not have a CLOB or DBCLOB data type, and an indicator variable must
not be specified.

string-expression
A string-expression is any PL/I string-expression that yields a character string.
SQL expressions that yield a character string are not allowed. A
string-expression is only allowed in PL/I.

The value of the identified host variable or string expression is called a statement
string.

The statement string must be one of the following SQL statements:55

55. A select-statement is not allowed. To dynamically process a select-statement, use the PREPARE, DECLARE CURSOR, and OPEN
statements.

EXECUTE IMMEDIATE

624 DB2 UDB for iSeries SQL Reference V5R2

ALTER DROP REVOKE
CALL GRANT ROLLBACK
COMMENT INSERT SET PATH
COMMIT LABEL SET TRANSACTION
CREATE LOCK TABLE UPDATE
DELETE RENAME

The statement string must not:
v Begin with EXEC SQL and end with END-EXEC or a semicolon (;).
v Include references to host variables.
v Include parameter markers.

When an EXECUTE IMMEDIATE statement is executed, the specified statement
string is parsed and checked for errors. If the SQL statement is not valid, it is not
executed and the error condition that prevents its execution is reported in the
SQLCA. If the SQL statement is valid, but an error occurs during its execution, that
error condition is reported in the SQLCA.

Note
If the same SQL statement is to be executed more than once, it is more efficient to
use the PREPARE and EXECUTE statements rather than the EXECUTE
IMMEDIATE statement.

Example
Use C to execute the SQL statement in the host variable Qstring.
void main ()

{

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

char Qstring[100] = "INSERT INTO WORK_TABLE SELECT * FROM EMPPROJACT
WHERE ACTNO >= 100";

EXEC SQL END DECLARE SECTION END-EXEC.
EXEC SQL INCLUDE SQLCA;

.

.

.
EXEC SQL EXECUTE IMMEDIATE :Qstring;

return;
}

EXECUTE IMMEDIATE

Chapter 5. Statements 625

FETCH
The FETCH statement positions a cursor on a row of the result table. It can return
zero, one, or multiple rows, and it assigns the values of the rows returned to host
variables.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. Multiple row fetch is
not allowed in a REXX procedure.

Authorization
See “DECLARE CURSOR” on page 558 for an explanation of the authorization
required to use a cursor.

Syntax

�� FETCH
NEXT
PRIOR
FIRST
LAST

(1)
BEFORE

(2)
AFTER
CURRENT
RELATIVE host-variable

integer

FROM
cursor-name �

�
single-fetch
multiple-row-fetch

��

single-fetch:

,

INTO host-variable
INTO DESCRIPTOR descriptor-name

multiple-row-fetch:

FOR host-variable
integer

ROWS �

� INTO host-structure-array
USING DESCRIPTOR descriptor-name INTO row-storage-area

FETCH

626 DB2 UDB for iSeries SQL Reference V5R2

row-storage-area:

: host-identifier-1
INDICATOR

: host-identifier-2

Notes:

1 If BEFORE is specified, a single-fetch-clause or multiple-row-fetch-
clause must not be specified.

2 If AFTER is specified, a single-fetch-clause or multiple-row-fetch-clause must
not be specified.

Description
The following keywords specify a new position for the cursor: NEXT, PRIOR,
FIRST, LAST, BEFORE, AFTER, CURRENT, and RELATIVE. Of those keywords,
only NEXT may be used for cursors that have not been declared SCROLL.

NEXT
Positions the cursor on the next row of the result table relative to the current
cursor position. NEXT is the default if no other cursor orientation is specified.

PRIOR
Positions the cursor on the previous row of the result table relative to the
current cursor position.

FIRST
Positions the cursor on the first row of the result table.

LAST
Positions the cursor on the last row of the result table.

BEFORE
Positions the cursor before the first row of the result table.

AFTER
Positions the cursor after the last row of the result table.

CURRENT
Does not reposition the cursor, but maintains the current cursor position. If the
cursor has been declared as DYNAMIC SCROLL and the current row has been
updated so its place within the sort order of the result table is changed, an
error is returned.

RELATIVE
Host-variable or integer is assigned to an integer value k. RELATIVE positions
the cursor to the row in the result table that is either k rows after the current
row if k>0, or k rows before the current row if k<0. If a host-variable is specified,
it must be a numeric variable with zero scale and it must not include an
indicator variable.

Table 50. Synonymous Scroll Specifications

Specification Alternative

RELATIVE +1 NEXT

RELATIVE -1 PRIOR

RELATIVE 0 CURRENT

FETCH

Chapter 5. Statements 627

FROM
This keyword is provided for clarity only. If a scroll position option is
specified, then this keyword is required. If no scrolling option is specified, then
the FROM keyword is optional.

cursor-name
Identifies the cursor to be used in the fetch operation. The cursor-name must
identify a declared cursor as explained in “Description” on page 559 for the
DECLARE CURSOR statement. When the FETCH statement is executed, the
cursor must be in the open state.

If a single- or multiple-row fetch clause is not specified, no data is returned to
the user. However, the cursor is positioned and a row lock may be acquired.
For more information about locking, see “Isolation Level” on page 21.

single-fetch
INTO host-variable,...

Identifies one or more host structures or host variables that must be declared
in accordance with the rules for declaring host structures and host variables. In
the operational form of INTO, a host structure is replaced by a reference to
each of its variables. The first value in the result row is assigned to the first
host variable in the list, the second value to the second host variable, and so
on.

INTO DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more host
variables.

Before the FETCH statement is processed, the user must set the following fields in
the SQLDA. (The rules for REXX are different. For more information see the SQL
Programming with Host Languages book.)
v SQLN to indicate the number of SQLVAR occurrences provided in the SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the SQLDA
v SQLD to indicate the number of variables used in the SQLDA when processing

the statement
v SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(80), where 80 is the length of an SQLVAR occurrence.

SQLD must be set to a value greater than or equal to zero and less than or equal to
SQLN. For more information, see Appendix C, “SQL Descriptor Area (SQLDA)” on
page 813.

multiple-row-fetch
FOR k ROWS

Evaluates host-variable or integer to an integral value k. If a host-variable is
specified, it must be a numeric host variable with zero scale and it must not
include an indicator variable. k must be in the range of 1 to 32767. The cursor
is positioned on the row specified by the orientation keyword (for example,
NEXT), and that row is fetched. Then the next k-1 rows are fetched (moving
forward in the table), until the end of the cursor is reached. After the fetch
operation, the cursor is positioned on the last row fetched.

FETCH

628 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm
../rzajp/rzajpmst02.htm

For example, FETCH PRIOR FROM C1 FOR 3 ROWS causes the previous row,
the current row, and the next row to be returned, in that order. The cursor is
positioned on the next row. FETCH RELATIVE -1 FROM C1 FOR 3 ROWS
returns the same result. FETCH FIRST FROM C1 FOR :x ROWS returns the
first x rows, and leaves the cursor positioned on row number x.

When a multiple-row-fetch is successfully executed, three variables are set in
the SQLCA:
v SQLERRD(3) shows the number of rows retrieved.
v SQLERRD(4) contains the length of the row retrieved.
v SQLERRD(5) contains +100 if the last row was fetched. 56

INTO host-structure-array
host-structure-array identifies an array of host structures defined in accordance
with the rules for declaring host structures.

The first structure in the array corresponds to the first row, the second
structure in the array corresponds to the second row, and so on. In addition,
the first value in the row corresponds to the first item in the structure, the
second value in the row corresponds to the second item in the structure, and
so on. The number of rows to be fetched must be less than or equal to the
dimension of the host structure array.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of zero or more host
variables that describe the format of a row in the row-storage-area.

Before the FETCH statement is processed, the user must set the following
fields in the SQLDA:
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA.
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA.
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement.
v SQLVAR occurrences to indicate the attributes of the host variables.

The values of the other fields of the SQLDA (such as SQLNAME) may not be
defined after the FETCH statement is executed and should not be used.

The SQLDA must have enough storage to contain all SQLVAR occurrences.
Therefore, the value in SQLDABC must be greater than or equal to 16 +
SQLN*(80), where 80 is the length of an SQLVAR occurrence. If LOBs or
distinct types are specified, there must be two SQLVAR entries for each
parameter marker and SQLN must be set to two times the number of
parameter markers.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. For more information, see Appendix C, “SQL Descriptor Area
(SQLDA)” on page 813.

On completion of the FETCH, the SQLDATA pointer in the first SQLVAR entry
addresses the returned value for the first column in the allocated storage in the

56. If the number of rows returned is equal to the number of rows requested, then an end of data warning has not occurred and
SQLERRD(5) does not contain +100.

FETCH

Chapter 5. Statements 629

first row, the SQLDATA pointer in the second SQLVAR entry addresses the
returned value for the second column in the allocated storage in the first row,
and so on. The SQLIND pointer in the first nullable SQLVAR entry addresses
the first indicator value, the SQLIND pointer in the second nullable SQLVAR
entry addresses the second indicator value, and so on. The SQLDA must be
allocated on a 16-byte boundary.

INTO row-storage-area
host-identifier-1 specified with a host variable identifies an allocation of storage
in which to return the rows. The rows are returned into the storage area in the
format described by the SQLDA. host-identifier-1 must be large enough to hold
all the rows requested.

host-identifier-2 identifies the optional indicator area. It should be specified if
the SQLTYPE of any SQLVAR occurrence is nullable. The indicators are
returned as small integers. host-identifier-2 must be large enough to contain an
indicator for each nullable value for each row to be returned.

The nth host variable identified by the INTO clause or described in the SQLDA
corresponds to the nth column of the result table of the cursor. The data type of
each host variable must be compatible with its corresponding column.

Each assignment to a variable is made according to the rules described in
Chapter 2, “Language Elements” on page 39. If the number of variables is less than
the number of values in the row, the SQLWARN3 field of the SQLCA is set to 'W'.
Note that there is no warning if there are more variables than the number of result
columns. If the value is null, an indicator variable must be provided. If an
assignment error occurs, the value is not assigned to the variable, and no more
values are assigned to variables. Any values that have already been assigned to
variables remain assigned.

If an error occurs as the result of an arithmetic expression in the SELECT list of an
outer SELECT statement (division by zero, or overflow) or a character conversion
error occurs, the result is the null value. As in any other case of a null value, an
indicator variable must be provided. The value of the host variable is undefined. In
this case, however, the indicator variable is set to -2. Processing of the statement
continues as if the error had not occurred. (However, this error causes a positive
SQLCODE.) If you do not provide an indicator variable, a negative value is
returned in the SQLCODE field of the SQLCA. It is possible that some values have
already been assigned to host variables and will remain assigned when the error
occurs.

Multiple-row-fetch is not allowed if any of the result columns are LOBs or if the
current connection is to a remote server.

Notes
An open cursor has three possible positions:
v Before a row
v On a row
v After the last row

If a cursor is positioned on a row, that row is called the current row of the cursor.
A cursor referenced in an UPDATE or DELETE statement must be positioned on a
row. A cursor can only be positioned on a row as a result of a FETCH statement.

It is possible for an error to occur that makes the state of the cursor unpredictable.

FETCH

630 DB2 UDB for iSeries SQL Reference V5R2

If the specified host variable is character and is not large enough to contain the
result, 'W' is assigned to SQLWARN1 in the SQLCA. The actual length of the result
is returned in the indicator variable associated with the host-variable, if an
indicator variable is provided.

If the specified host variable is a C NUL-terminated host variable and is not large
enough to contain the result and the NUL-terminator:
v If the *CNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI

command (or CNULRQD(*YES) on the SET OPTION statement), the following
occurs:
– The result is truncated.
– The last character is the NUL-terminator.
– The value ‘W’ is assigned to SQLWARN1 in the SQLCA.

v If the *NOCNULRQD option on the CRTSQLCI or CRTSQLCPPI command (or
CNULRQD(*NO) on the SET OPTION statement) is specified, the following
occurs:
– The NUL-terminator is not returned.
– The value ‘N’ is assigned to SQLWARN1 in the SQLCA.

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v USING DESCRIPTOR may be used as a synonym for INTO DESCRIPTOR in the

single-fetch-clause.

Example
Two tables, FORUM and ARCHIVE, each have the following columns:

Name: FORUM RECEIVED SOURCE TOPIC ENTRY_TEXT

Type: char(8)
not null

timestamp
not null

char(8)
not null

char(64)
not null

varchar(4000)
not null

Description: Forum name Date and
time entry
received

User ID of
person
adding entry

Topic within
the forum

The text
added in this
entry table

The FORUM table contains a number of named forums. Each forum contains one
or more topics and each topic contains one or more entries. When a topic is no
longer current, its entries are either deleted or moved to the ARCHIVE table.

The following PL/I program is used to perform maintenance on the forum table. A
user can invoke the program with one of three commands. Each command is
accompanied by a string of text that can be found within the TOPIC column of the
entries for a given topic (this need not be the entire TOPIC value). The three
commands are:
v 1 (changes the contents of the TOPIC value for all that topic’s entries)
v 2 (moves all entries for that topic to the ARCHIVE table)
v 3 (deletes all entries for that topic without archiving them)

FETCH

Chapter 5. Statements 631

|
|
|

|
|

CLEANUP: PROC OPTIONS(MAIN);
DCL NOT_END BIT(1);

EXEC SQL BEGIN DECLARE SECTION;
DCL ACTION BINARY FIXED(15); /* 1=chg-topic 2=archive 3=delete */
DCL SRCH_FORUM CHAR(8);
DCL SRCH_TOPIC CHAR(66) VARYING;
DCL NEW_TOPIC CHAR(64) VARYING;
DCL FORUM CHAR(8);
DCL TSTMP CHAR(26);
DCL PERSON CHAR(8);
DCL TOPIC CHAR(64) VARYING;
DCL TXT CHAR(2000) VARYING;

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA;
EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL WHENEVER SQLWARNING CONTINUE;
EXEC SQL WHENEVER SQLERROR GOTO ERRCHK;

EXEC SQL CONNECT TO TOROLAB3;
GET LIST (ACTION, SRCH_FORUM, SRCH_TOPIC, NEW_TOPIC);
SRCH_TOPIC = ’%’ || SRCH_TOPIC || ’%’;
EXEC SQL DECLARE CUR CURSOR FOR

SELECT * FROM FORUM
WHERE FORUM = :SRCH_FORUM AND TOPIC LIKE :SRCH_TOPIC
FOR UPDATE OF TOPIC;

EXEC SQL OPEN CUR;

NOT_END = ’1’B;
DO WHILE (NOT_END);

EXEC SQL FETCH CUR INTO :FORUM, :TSTMP, :PERSON, :TOPIC, :TXT;
IF SQLSTATE = ’02000’ THEN

NOT_END = ’0’B;
ELSE DO;

SELECT;
WHEN (ACTION = 1) /* change topic value */

EXEC SQL UPDATE FORUM
SET TOPIC = :NEW_TOPIC
WHERE CURRENT OF CUR;

WHEN (ACTION = 2) /* archive entry to another table */
DO;

EXEC SQL INSERT INTO ARCHIVE
VALUES (:FORUM, :TSTMP, :PERSON, :TOPIC, :TXT);

EXEC SQL DELETE FROM FORUM WHERE CURRENT OF CUR;
END;

WHEN (ACTION = 3) /* delete topic */
EXEC SQL DELETE FROM FORUM WHERE CURRENT OF CUR;

END; /* select */
END; /* else do */

END; /* do while */

FINISHED:
EXEC SQL CLOSE CUR;
EXEC SQL COMMIT WORK;
RETURN;

ERRCHK:
DISPLAY (’Unexpected Error -changes will be backed out’);
PUT SKIP LIST (SQLCA);
EXEC SQL WHENEVER SQLERROR CONTINUE; /* continue if error on rollback */
EXEC SQL ROLLBACK WORK;
RETURN;

END; /* CLEANUP */

FETCH

632 DB2 UDB for iSeries SQL Reference V5R2

FREE LOCATOR
The FREE LOCATOR statement removes the association between a locator variable
and its value.

Invocation
This statement can only be embedded in an application program. It cannot be
issued interactively. It is an executable statement that can be dynamically prepared.
However, the EXECUTE statement with the USING clause must be used to execute
the prepared statement. FREE LOCATOR cannot be used with the EXECUTE
IMMEDIATE statement.

Authorization
None required.

Syntax

�� FREE LOCATOR

,

host-variable ��

Description
host-variable,...

Identifies one or more host variables that must be declared in accordance with
the rules for declaring locator variables. An indicator variable must not be
specified. The locator variable type must be a binary large object locator, a
character large object locator, or a double-byte character large object locator.

The host variable must currently have a locator assigned to it. That is, a locator
must have been assigned during this unit of work (by a CALL, FETCH,
SELECT INTO, SET variable, or VALUES INTO statement) and must not
subsequently have been freed (by a FREE LOCATOR statement); otherwise, an
error is raised.

If more than one host variable is specified in the FREE LOCATOR statement
and an error occurs on one of the locators, no locators will be freed.

Example
Assume that the employee table contains columns RESUME, HISTORY, and
PICTURE and that locators have been established in a program to represent the
column values. In a COBOL program, free the CLOB locator variables LOCRES
and LOCHIST, and the BLOB locator variable LOCPIC.

EXEC SQL FREE LOCATOR :LOCRES, :LOCHIST, :LOCPIC END-EXEC.

FREE LOCATOR

Chapter 5. Statements 633

|
|
|
|
|

GRANT (Distinct Type Privileges)
This form of the GRANT statement grants privileges on a distinct type.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each distinct type identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the distinct type
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID
of the statement must include at least one of the following:
v Ownership of the distinct type
v Administrative authority

Syntax

�� GRANT

PRIVILEGES
ALL

,

ALTER
USAGE

ON TYPE
DISTINCT

�

�

,

distinct-type-name

,

TO authorization-name
PUBLIC

�

�
WITH GRANT OPTION

��

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable
privileges that the authorization ID of the statement has on the specified
distinct types. Note that granting ALL PRIVILEGES on a distinct type is not
the same as granting the system authority of *ALL.

GRANT (Distinct Type Privileges)

634 DB2 UDB for iSeries SQL Reference V5R2

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword grants the privilege described.

ALTER
Grants the privilege to use the COMMENT statement.

USAGE
Grants the privilege to use the distinct type in tables, functions, or procedures.

ON DISTINCT TYPE distinct-type-name
Identifies the distinct types on which you are granting the privilege. The
distinct-type-name must identify a distinct type that exists at the current server.

TO
Specifies to whom the privileges are granted.

authorization-name,...
Lists one or more authorization IDs. Do not specify the same
authorization-name more than once.

PUBLIC
Grants the privileges to a set of users (authorization IDs).

The set consists of those users who do not have privately granted
privileges on the distinct type. For example, if ALTER has been granted to
PUBLIC, and USAGE is then granted to HERNANDEZ, this private grant
prevents HERNANDEZ from having the ALTER privilege.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the distinct types
specified in the ON clause to other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot
grant privileges on the distinct types specified in the ON clause to another
user unless they have received that authority from some other source (for
example, from a grant of the system authority *OBJMGT).

Note
GRANT and REVOKE statements assign and remove system authorities for SQL
objects. The following table describes the system authorities that correspond to the
SQL privileges:

Table 51. Privileges Granted to or Revoked from Distinct Types

SQL Privilege

Corresponding System Authorities when
Granting to or Revoking from a Distinct
Type

ALL (Grant or revoke of ALL grants or
revokes only those privileges the
authorization ID of the statement has)

*OBJALTER
*OBJOPR
*EXECUTE
*OBJMGT (Revoke only)

ALTER *OBJALTER

USAGE *EXECUTE
*OBJOPR

WITH GRANT OPTION *OBJMGT

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:

GRANT (Distinct Type Privileges)

Chapter 5. Statements 635

|
|

|
|
|

|
|
|

v The keyword DATA can be used as a synonym for DISTINCT.

Example
Grant the USAGE privilege on distinct type SHOE_SIZE to user JONES. This
GRANT statement does not give JONES the privilege to execute the cast functions
that are associated with the distinct type SHOE_SIZE.
GRANT USAGE

ON DISTINCT TYPE SHOE_SIZE
TO JONES

GRANT (Distinct Type Privileges)

636 DB2 UDB for iSeries SQL Reference V5R2

|

GRANT (Function or Procedure Privileges)
This form of the GRANT statement grants privileges on a function or procedure.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each function or procedure identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the function or procedure
– The system authority *EXECUTE on the library (or directory if this is a Java

routine) containing the function or procedure
v Administrative authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID
of the statement must include at least one of the following:
v Ownership of the function or procedure
v Administrative authority

Syntax

GRANT (Function or Procedure Privileges)

Chapter 5. Statements 637

�� GRANT

PRIVILEGES
ALL

,

ALTER
EXECUTE

ON �

�

,

FUNCTION function-name
ROUTINE ()

,

parameter-type
SPECIFIC FUNCTION specific-name

ROUTINE
PROCEDURE procedure-name
ROUTINE ()

,

parameter-type
SPECIFIC PROCEDURE specific-name

ROUTINE

�

�

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

parameter-type:

built-in-type
distinct-type-name AS LOCATOR

GRANT (Function or Procedure Privileges)

638 DB2 UDB for iSeries SQL Reference V5R2

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable
privileges that the authorization ID of the statement has on the specified

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC ()

NUMERIC integer
, integer

(53)
FLOAT

(1)
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR () FOR BIT DATA

integer FOR SBCS DATA
CHARACTER VARYING () FOR MIXED DATA
CHAR integer CCSID integer

VARCHAR
(1M)

CLOB
CHAR LARGE OBJECT () FOR SBCS DATA AS LOCATOR
CHARACTER LARGE OBJECT integer K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

() CCSID integer
integer

VARGRAPHIC ()
GRAPHIC VARYING integer

(1M)
DBCLOB

() CCSID integer AS LOCATOR
integer K

M
G

(1M)
BLOB
BINARY LARGE OBJECT () AS LOCATOR

integer K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
() CCSID integer

integer
ROWID

Notes:

1 The value that is specified for precision does not have to match the value that was specified when the function
was created because matching is based on data type (REAL or DOUBLE).

GRANT (Function or Procedure Privileges)

Chapter 5. Statements 639

functions or procedures. Note that granting ALL PRIVILEGES on a function or
procedure is not the same as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword grants the privilege described.

ALTER
Grants the privilege to use the COMMENT statement.

EXECUTE
Grants the privilege to execute the function or procedure.

FUNCTION
Identifies the function on which you are granting the privilege. You can
identify the particular function by its name, function signature, or specific
name. The rules for function resolution (and the path) are not used.

FUNCTION function-name
The function-name must identify exactly one function that exists at the
current server. The function may have any number of parameters defined
for it. If there is more than one function of the specified name in the
specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
The function-name (parameter-type, ...) must identify a function with the
specified function signature that exists at the current server. The specified
parameters must match the data types that were specified on the CREATE
FUNCTION statement in the corresponding position. The number of data
types, and the logical concatenation of the data types is used to identify
the specific function instance which is to be granted. If function-name () is
specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses.
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match.
v If you use a specific value for a length, precision, or scale attribute,

the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE
TABLE” on page 507.

GRANT (Function or Procedure Privileges)

640 DB2 UDB for iSeries SQL Reference V5R2

For data types with a subtype or CCSID attribute, specifying the FOR
DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE FUNCTION statement.

SPECIFIC FUNCTION specific-name
The specific-name must identify a specific function that exists at the current
server.

PROCEDURE
Identifies the procedure on which you are granting the privilege. You can
identify the particular procedure by its name, procedure signature, or specific
name. The rules for procedure resolution (and the path) are not used.

PROCEDURE procedure-name
The procedure-name must identify exactly one procedure that exists at the
current server. The procedure may have any number of parameters defined
for it. If there is more than one procedure of the specified name in the
specified or implicit schema, an error is returned.

PROCEDURE procedure-name (parameter-type, ...)
The procedure-name (parameter-type, ...) must identify a procedure with the
specified procedure signature that exists at the current server. The specified
parameters must match the data types, that were specified on the CREATE
PROCEDURE statement in the corresponding position. The number of data
types, and the logical concatenation of the data types is used to identify
the specific procedure instance which is to be granted. If procedure-name ()
is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses.
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match.
v If you use a specific value for a length, precision, or scale attribute,

the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE PROCEDURE statement.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE PROCEDURE statement. For
a complete list of the default lengths of data types, see “CREATE
TABLE” on page 507.

GRANT (Function or Procedure Privileges)

Chapter 5. Statements 641

For data types with a subtype or CCSID attribute, specifying the FOR
DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE PROCEDURE statement.

SPECIFIC PROCEDURE specific-name
The specific-name must identify a specific procedure that exists at the
current server.

TO
Specifies to whom the privileges are granted.

authorization-name,...
Lists one or more authorization IDs. Do not specify the same
authorization-name more than once.

PUBLIC
Grants the privileges to a set of users (authorization IDs).

The set consists of those users who do not have privately granted
privileges on the function or procedure. For example, if ALTER has been
granted to PUBLIC, and EXECUTE is then granted to HERNANDEZ, this
private grant prevents HERNANDEZ from having the ALTER privilege.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the functions or
procedures specified in the ON clause to other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot
grant privileges on the functions or procedures specified in the ON clause to
another user unless they have received that authority from some other source
(for example, from a grant of the system authority *OBJMGT).

Note
Privileges granted to either an SQL or external function or procedure are granted
to its associated program (*PGM) or service program (*SRVPGM) object. Privileges
granted to a Java external function or procedure are granted to the associated class
file or jar file.

GRANT and REVOKE statements assign and remove system authorities for SQL
objects. The following table describes the system authorities that correspond to the
SQL privileges:

Table 52. Privileges Granted to or Revoked from Non-Java Functions or Procedures

SQL Privilege

Corresponding System Authorities when
Granting to or Revoking from a Function
or Procedure

ALL (Grant or revoke of ALL grants or
revokes only those privileges the
authorization ID of the statement has)

*OBJALTER
*OBJOPR
*EXECUTE
*OBJMGT (Revoke only)

ALTER *OBJALTER

EXECUTE *EXECUTE
*OBJOPR

WITH GRANT OPTION *OBJMGT

GRANT (Function or Procedure Privileges)

642 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

Table 53. Privileges Granted to or Revoked from Java Functions or Procedures

SQL Privilege

Corresponding Data
Authorities when Granting
to or Revoking from a Java
Function or Procedure

Corresponding Object
Authorities when Granting
to or Revoking from a Java
Function or Procedure

ALL (Grant or revoke of ALL
grants or revokes only those
privileges the authorization
ID of the statement has)

*RWX *OBJEXIST
*OBJALTER
*OBJMGT (Revoke only)

ALTER *R *OBJALTER

EXECUTE *RX *EXECUTE

WITH GRANT OPTION *RWX *OBJMGT

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword RUN can be used as a synonym for EXECUTE.

Example
Grant the EXECUTE privilege on procedure CORPDATA.PROCA to PUBLIC.
GRANT EXECUTE

ON PROCEDURE CORPDATA.PROCA
TO PUBLIC

GRANT (Function or Procedure Privileges)

Chapter 5. Statements 643

|
|
|

|

GRANT (Package Privileges)
This form of the GRANT statement grants privileges on a package.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each package identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the package
– The system authority *EXECUTE on the library containing the package

v Administrative authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID
of the statement must include at least one of the following:
v Ownership of the package
v Administrative authority

Syntax

�� GRANT

PRIVILEGES
ALL

,

ALTER
EXECUTE

ON PACKAGE

,

package-name �

�

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable
privileges that the authorization ID of the statement has on the specified
packages. Note that granting ALL PRIVILEGES on a package is not the same
as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword grants the privilege described.

ALTER
Grants the privilege to use the COMMENT and LABEL statements.

GRANT (Package Privileges)

644 DB2 UDB for iSeries SQL Reference V5R2

EXECUTE
Grants the privilege to execute statements in a package.

ON PACKAGE package-name
Identifies the packages on which you are granting the privilege. The
package-name must identify a package that exists at the current server.

TO
Specifies to whom the privileges are granted.

authorization-name,...
Lists one or more authorization IDs. Do not specify the same
authorization-name more than once.

PUBLIC
Grants the privileges to a set of users (authorization IDs).

The set consists of those users who do not have privately granted
privileges on the package. For example, if ALTER has been granted to
PUBLIC, and EXECUTE is then granted to HERNANDEZ, this private
grant prevents HERNANDEZ from having the ALTER privilege.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the packages
specified in the ON clause to other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot
grant privileges on the packages specified in the ON clause to another user
unless they have received that authority from some other source (for example,
from a grant of the system authority *OBJMGT).

Note
GRANT and REVOKE statements assign and remove system authorities for SQL
objects. The following table describes the system authorities that correspond to the
SQL privileges:

Table 54. Privileges Granted to or Revoked from Packages

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from a Package

ALL (Grant or revoke of ALL grants or
revokes only those privileges the
authorization ID of the statement has)

*OBJALTER
*OBJOPR
*EXECUTE
*OBJMGT (Revoke only)

ALTER *OBJALTER

EXECUTE *EXECUTE
*OBJOPR

WITH GRANT OPTION *OBJMGT

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword RUN can be used as a synonym for EXECUTE.
v The keyword PROGRAM can be used as a synonym for PACKAGE.

Example
Grant the EXECUTE privilege on package CORPDATA.PKGA to PUBLIC.

GRANT (Package Privileges)

Chapter 5. Statements 645

|
|
|

|
|
|

|

|

GRANT EXECUTE
ON PACKAGE CORPDATA.PKGA
TO PUBLIC

GRANT (Package Privileges)

646 DB2 UDB for iSeries SQL Reference V5R2

GRANT (Table Privileges)
This form of the GRANT statement grants privileges on tables or views.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each table or view identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the table or view
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

If WITH GRANT OPTION is specified, the privileges held by the authorization ID
of the statement must include at least one of the following:
v Ownership of the table
v Administrative authority

Syntax

�� GRANT

PRIVILEGES
ALL

,

ALTER
DELETE
INDEX
INSERT
REFERENCES

,

(column-name)
SELECT
UPDATE

,

(column-name)

TABLE
ON �

�

,

table-name
view-name

,

TO authorization-name
PUBLIC WITH GRANT OPTION

��

Description
ALL or ALL PRIVILEGES

Grants one or more privileges. The privileges granted are all those grantable
privileges that the authorization ID of the statement has on the specified tables

GRANT (Table Privileges)

Chapter 5. Statements 647

or views. Note that granting ALL PRIVILEGES on a table or view is not the
same as granting the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword grants the privilege described, but only as it applies each
table or view named in the ON clause. For example, the UPDATE, DELETE,
and INSERT privileges do not apply to a read-only view.

ALTER
Grants the privilege to use the ALTER TABLE, CREATE TRIGGER, and DROP
TRIGGER statements on tables. Grants the privilege to use the COMMENT
and LABEL statements on tables and views.

DELETE
Grants the privilege to use the DELETE statement. DELETE cannot be granted
to read-only views.

INDEX
Grants the privilege to use the CREATE INDEX statement. This privilege
cannot be granted on a view.

INSERT
Grants the privilege to use the INSERT statement. INSERT cannot be granted
to a view that does not allow inserts.

REFERENCES
Grants the privilege to add a referential constraint in which the table is a
parent. If a list of columns is not specified or if REFERENCES is granted to all
columns of the table or view via the specification of ALL PRIVILEGES, the
grantee(s) can add referential constraints using all columns of each table
specified in the ON clause as a parent key, even those added later via the
ALTER TABLE statement. This privilege can be granted on a view, but the
privilege is not used for a view.

REFERENCES (column-name,...)
Grants the privilege to add a referential constraint using only those columns
specified in the column list as a parent key. Each column-name must be an
unqualified name that identifies a column of each table specified in the ON
clause. This privilege can be granted on the columns of a view, but the
privilege is not used for a view.

SELECT
Grants the privilege to use the SELECT or CREATE VIEW statement.

UPDATE
Grants the privilege to use the UPDATE statement. If a list of columns is not
specified or if UPDATE is granted to all columns of the table or view via the
specification of ALL PRIVILEGES, the grantee(s) can update all updateable
columns on each table specified in the ON clause, even those added later via
the ALTER TABLE statement. UPDATE cannot be granted to a view that does
not allow updates.

UPDATE (column-name,...)
Grants the privilege to use the UPDATE statement to update only those
columns that are identified in the column list. Each column-name must be an
unqualified name that identifies a column of each table and view specified in
the ON clause. UPDATE cannot be granted to columns of a view that do not
allow updates.

ON table-name or view-name,...
Identifies the tables or views on which you are granting the privileges. The

GRANT (Table Privileges)

648 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|

table-name or view-name must identify a table or view that exists at the
current server, but must not identify a global temporary table.

TO
Specifies to whom the privileges are granted.

authorization-name,...
Lists one or more authorization IDs. Do not specify the same
authorization-name more than once.

PUBLIC
Grants the privileges to a set of users (authorization IDs).

The set consists of those users who do not have privately granted
privileges on the table or view. For example, if SELECT has been granted
to PUBLIC, and UPDATE is then granted to HERNANDEZ, this private
grant prevents HERNANDEZ from having the SELECT privilege.

WITH GRANT OPTION
Allows the specified authorization-names to grant privileges on the tables and
views specified in the ON clause to other users.

If WITH GRANT OPTION is omitted, the specified authorization-names cannot
grant privileges on the tables and views specified in the ON clause unless they
have received that authority from some other source (for example, from a grant
of the system authority *OBJMGT).

Notes
The GRANT and REVOKE statements assign and remove system authorities for
SQL objects. The following table describes the system authorities that correspond
to the SQL privileges when granting to a table. The left column lists the SQL
privilege. The right column lists the equivalent system authorities that are granted
or revoked.

GRANT (Table Privileges)

Chapter 5. Statements 649

|
|

|
|
|

Table 55. Privileges Granted to or Revoked from Tables

SQL Privilege
Corresponding System Authorities when
Granting to or Revoking from a Table

ALL (GRANT or revoke of ALL only grants
or revokes those privileges the authorization
ID of the statement has)

*OBJALTER 57

*OBJMGT (Revoke only)
*OBJOPR
*OBJREF
*ADD
*DLT
*READ
*UPD

ALTER *OBJALTER 58

DELETE *OBJOPR
*DLT

INDEX *OBJALTER 58

INSERT *OBJOPR
*ADD

REFERENCES *OBJREF 58

SELECT *OBJOPR
*READ

UPDATE *OBJOPR
*UPD

WITH GRANT OPTION *OBJMGT

The following table describes the system authorities that correspond to the SQL
privileges when granting to a view. The left column lists the SQL privilege. The
middle column lists the equivalent system authorities that are granted to or
revoked from the view itself. The right column lists the system authorities that are
granted to all tables and views referenced in the views definition, and if a view is
referenced, all tables and views referenced in its definition, and so on. 59

If a view references more than one table or view, the *DLT, *ADD, and *UPD
system authorities are only granted to the first table or view in the subselect of the
view definition. The *READ system authority is granted to all tables and views
referenced in the view definition.

If more than one system authority will be granted with an SQL privilege, and any
one of the authorities cannot be granted, then a warning occurs and no authorities
will be granted for that privilege. Unlike GRANT, REVOKE only revokes system
authorities to the view. No system authorities are revoked from the referenced
tables and views.

57. The SQL INDEX and ALTER privilege correspond to the same system authority of *OBJALTER. Granting both INDEX and
ALTER will not provide the user with any additional authorities.

58. If the WITH GRANT OPTION is given to a user, the user will also be able to perform the functions given by ALTER and
REFERENCES authority.

59. The specified rights are only granted to the tables and views referenced in the view definition if the user to whom the rights are
being granted doesn’t already have the rights from another authority source, for example public authority.

GRANT (Table Privileges)

650 DB2 UDB for iSeries SQL Reference V5R2

Table 56. Privileges Granted to or Revoked from Views

SQL Privilege

Corresponding System
Authorities Granted to or
Revoked from View

Corresponding System
Authorities Granted to or
Revoked from Referenced
Tables and Views

ALL (GRANT or REVOKE of
ALL only grants or revokes
those privileges the
authorization ID of the
statement has)

*OBJALTER
*OBJMGT (Revoke only)
*OBJOPR
*OBJREF
*ADD
*DLT
*READ
*UPD

*ADD
*DLT
*READ
*UPD

ALTER *OBJALTER 60 None

DELETE *OBJOPR
*DLT

*DLT

INDEX Not Applicable Not Applicable

INSERT *OBJOPR
*ADD

*ADD

REFERENCES *OBJREF 60 None

SELECT *OBJOPR
*READ

*READ

UPDATE *OBJOPR
*UPD

*UPD

WITH GRANT OPTION *OBJMGT None

Examples

Example 1
Given that you have authority, grant all the privileges that you have on the table
WESTERN_CR (in schema KATHLEEN) to PUBLIC.

GRANT ALL ON KATHLEEN.WESTERN_CR
TO PUBLIC

Example 2
Grant the appropriate privileges on the CALENDAR table so that ROANNA and
EMMA can read it and insert new entries into it. Do not allow them to change or
remove any existing entries.

GRANT SELECT, INSERT ON CALENDAR
TO ROANNA, EMMA

Example 3
Grant column privileges on TABLE1 and VIEW1 to FRED. Note that both columns
specified in this GRANT statement must be found in both TABLE1 and VIEW1.

GRANT UPDATE(column_1, column_2)
ON TABLE1, VIEW1
TO FRED WITH GRANT OPTION

60. If the WITH GRANT OPTION is given to a user, the user will also be able to perform the functions given by ALTER and
REFERENCES authority.

GRANT (Table Privileges)

Chapter 5. Statements 651

HOLD LOCATOR
The HOLD LOCATOR statement allows a LOB locator variable to retain its
association with a value beyond a unit of work.

Invocation
This statement can only be embedded in an application program. It cannot be
issued interactively. It is an executable statement that can be dynamically prepared.
However, the EXECUTE statement with the USING clause must be used to execute
the prepared statement. HOLD LOCATOR cannot be used with the EXECUTE
IMMEDIATE statement.

Authorization
None required.

Syntax

�� HOLD LOCATOR

,

host-variable ��

Description
host-variable,...

Identifies a host variable that must be declared in accordance with the rules for
declaring host variable locator variables. An indicator variable must not be
specified. The locator variable type must be a binary large object locator, a
character large object locator, or a double-byte character large object locator.

After the HOLD LOCATOR statement is executed, each locator variable in the
host-variable list has the hold property.

The host variable must currently have a locator assigned to it. That is, a locator
must have been assigned during this unit of work (by a CALL, FETCH,
SELECT INTO, SET variable, or VALUES INTO statement) and must not
subsequently have been freed (by a FREE LOCATOR statement); otherwise, an
error is raised.

If more than one host variable is specified in the HOLD LOCATOR statement
and an error occurs on one of the locators, no locators will be held.

Note
A host-variable LOB locator variable that has the hold property is freed (has its
association between it and its value removed) when:
v The SQL FREE LOCATOR statement is executed for the locator variable.
v The SQL ROLLBACK statement is executed.
v The SQL session is terminated.

Example
Assume that the employee table contains columns RESUME, HISTORY, and
PICTURE and that locators have been established in a program to represent the

HOLD LOCATOR

652 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

|

|
|
|
|
|

|

|

|

|

||||||||||||||||||

|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

|

|
|

|

|

|

|

|
|

values represented by the columns. Give the CLOB locator variables LOCRES and
LOCHIST, and the BLOB locator variable LOCPIC the hold property.

HOLD LOCATOR :LOCRES,:LOCHIST,:LOCPIC

HOLD LOCATOR

Chapter 5. Statements 653

|
|

|

|

INCLUDE
The INCLUDE statement inserts declarations or statements into a source program.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX.

Authorization
The authorization ID of the statement must have the system authorities *OBJOPR
and *READ on the file that contains the member.

Syntax

�� INCLUDE SQLCA
SQLDA
member-name

��

Description
SQLCA

Specifies the description of an SQL communication area (SQLCA) is to be
included. INCLUDE SQLCA must not be specified more than once in the same
program. Include SQLCA must not be specified if the program includes a
stand-alone SQLCODE or a stand-alone SQLSTATE.

An SQLCA can be specified for C, COBOL, and PL/I. If the SQLCA is not
specified, the variable SQLCODE or SQLSTATE must appear in the program.
For more information, see “SQL Return Codes” on page 354.

The SQLCA should not be specified for RPG programs. In an RPG program,
the precompiler automatically includes the SQLCA.

For a description of the SQLCA, see Appendix B, “SQL Communication Area”
on page 803.

SQLDA
Specifies the description of an SQL descriptor area (SQLDA) is to be included.
INCLUDE SQLDA can be specified in C, COBOL, PL/I, and ILE RPG/400.

For a description of the SQLDA, see Appendix C, “SQL Descriptor Area
(SQLDA)” on page 813.

member-name
Identifies a member to be included from the file specified on the INCFILE
parameter of the CRTSQLxxx command.

The member can contain any host language statements and any SQL
statements other than an INCLUDE statement. In COBOL, INCLUDE
member-name must not be specified in other than the DATA DIVISION or
PROCEDURE DIVISION.

When your program is precompiled, the INCLUDE statement is replaced by source
statements.

INCLUDE

654 DB2 UDB for iSeries SQL Reference V5R2

|
|

The INCLUDE statement must be specified at a point in your program where the
resulting source statements are acceptable to the compiler.

Notes
If the CCSID of the source file specified on the SRCFILE parameter is different
from the CCSID of the source file specified on the INCFILE parameter, the source
from the INCLUDE statement is converted to the CCSID of the source file.

Example
Include an SQL communication area in a C program.

EXEC SQL INCLUDE SQLCA;

INCLUDE

Chapter 5. Statements 655

INSERT
The INSERT statement inserts rows into a table or view. Inserting a row into a
view also inserts the row into the table on which the view is based.

There are three forms of this statement:
v The INSERT using VALUES form is used to insert a single row into the table or

view using the values provided or referenced.
v The INSERT using SELECT form is used to insert one or more rows into the table

or view using values from other tables or views.
v The INSERT using n ROWS form is used to insert multiple rows into the table or

view using the values provided in a host-structure-array.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared with the exception
of the n ROWS form, which must be a static statement embedded in an application
program. The n ROWS form is not allowed in a REXX procedure.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the table or view identified in the statement:

– The INSERT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

The authorization ID of the statement has the INSERT privilege on a table when:
v It is the owner of the table,
v It has been granted the INSERT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *ADD on the table.

The authorization ID of the statement has the INSERT privilege on a view when:61

v It has been granted the INSERT privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *ADD on the view

and the system authority *ADD on the first table or view in the first FROM
clause of the view definition; and if this is a view, then the system authority
*ADD on the first table or view in the first FROM clause of that view definition;
and so forth.

If a subselect is specified, the privileges held by the authorization ID of the
statement must also include one of the following:
v For each table or view identified in the subselect:

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

61. When a view is created, the owner does not necessarily acquire the INSERT privilege on the view. The owner only acquires the
INSERT privilege if the view allows inserts and the owner also has the INSERT privilege on the first table referenced in the
subselect.

INSERT

656 DB2 UDB for iSeries SQL Reference V5R2

The authorization ID of the statement has the SELECT privilege on a table when:
v It is the owner of the table,
v It has been granted the SELECT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *READ on the table

The authorization ID of the statement has the SELECT privilege on a view when:
v It is the owner of the view,
v It has been granted the SELECT privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *READ on the view

and the system authority *READ on all tables and views that this view is
directly or indirectly dependent on. That is, all tables and views referenced in
the view definition, and if a view is referenced, all tables and views referenced
in its definition, and so forth.

Syntax

Description
INTO table-name or view-name

Identifies the object of the insert operation. The name must identify a table or
view that exists at the current server, but it must not identify a catalog table, a
view of a catalog table, or a read-only view.

�� INSERT INTO table-name
view-name

,

(column-name)

OVERRIDING SYSTEM VALUE
OVERRIDING USER VALUE

�

�

VALUES expression
NULL isolation-clause
DEFAULT

,

(expression)
NULL
DEFAULT

insert-multiple-rows
isolation-clause

select-statement

��

insert-multiple-rows:

integer
host-variable

ROWS VALUES (host-structure-array)

isolation–clause:

WITH NC
UR
CS
RS
RR

INSERT

Chapter 5. Statements 657

A value cannot be inserted into a view column that is derived from:
v A constant, expression, or scalar function.
v The same base table column as some other column of the view.

If the object of the insert operation is a view with such columns, a list of
column names must be specified, and the list must not identify these columns.

(column-name,...)
Specifies the columns for which insert values are provided. Each name must be
an unqualified name that identifies a column of the table or view. The same
column must not be identified more than once. A view column that cannot
accept insert values must not be identified.

Omission of the column list is an implicit specification of a list in which every
column of the table or view is identified in left-to-right order. This list is
established when the statement is prepared and, therefore, does not include
columns that were added to a table after the statement was prepared.

If the INSERT statement is embedded in an application and the referenced
table or view exists at create program time, the statement is prepared at create
program time. Otherwise, the statement is prepared at the first successful
execute of the INSERT statement.

OVERRIDING SYSTEM VALUE or OVERRIDING USER VALUE
Specifies whether system generated values or user-specified values for a
ROWID or identity column are used. If OVERRIDING SYSTEM VALUE is
specified, the implicit or explicit list of columns for the INSERT statement must
contain a column defined as GENERATED ALWAYS. If OVERRIDING USER
VALUE is specified, the implicit or explicit list of columns for the INSERT
statement must contain a column defined as either GENERATED ALWAYS or
GENERATED BY DEFAULT.

OVERRIDING SYSTEM VALUE
Specifies that the value specified in the VALUES clause or produced by a
fullselect for a column that is defined as GENERATED ALWAYS is used. A
system-generated value is not inserted.

OVERRIDING USER VALUE
Specifies that the value specified in the VALUES clause or produced by a
fullselect for a column that is defined as either GENERATED ALWAYS or
GENERATED BY DEFAULT is ignored. Instead, a system-generated value
is inserted, overriding the user-specified value.

If neither OVERRIDING SYSTEM VALUE nor OVERRIDING USER VALUE is
specified:
v A value cannot be specified for a ROWID or identity column that is defined

as GENERATED ALWAYS.
v A value can be specified for a ROWID or identity column that is defined as

GENERATED BY DEFAULT. If a value is specified that value is assigned to
the column. However, a value can be inserted into a ROWID column defined
BY DEFAULT only if the specified value is a valid row ID value that was
previously generated by DB2 UDB for OS/390 and z/OS or DB2 UDB for
iSeries. When a value is inserted into an identity column defined BY
DEFAULT, the database manager does not verify that the specified value is a
unique value for the column unless the identity column is the sole key in a
unique constraint or unique index. Without a unique constraint or unique
index, the database manager can guarantee unique values only among the
set of system-generated values as long as NO CYCLE is in effect.

INSERT

658 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

If a value is not specified the database manager generates a new value.

VALUES
Specifies one new row in the form of a list of values.

The number of values in the VALUES clause must equal the number of names
in the column list. The first value is inserted in the first column in the list, the
second value in the second column, and so on.

expression
Specifies the value for a column is assigned from an expression. The
expression is any expression of the type described in “Expressions” on page
125. It must not include a column function or column name.

If expression is a single host variable, the host variable can identify a
structure. Each host variable in the clause must identify a host structure or
host variable that is declared in accordance with the rules for declaring
host structures and host variables. In the operational form of the statement,
a reference to a host structure is replaced by a reference to each of its
variables. For an explanation of host-variable, see Chapter 2.

NULL
Specifies the value for a column is the null value. NULL should only be
specified for nullable columns.

DEFAULT
Specifies that the default value is assigned to a column. The value that is
inserted depends on how the column was defined, as follows:
v If the WITH DEFAULT clause is used, the default inserted is as defined

for the column (see default-clause in column-definition in “CREATE
TABLE” on page 507).

v If the WITH DEFAULT clause or the NOT NULL clause is not used, the
value inserted is NULL.

v If the NOT NULL clause is used and the WITH DEFAULT clause is not
used or DEFAULT NULL is used, the DEFAULT keyword cannot be
specified for that column.

v If the column is a ROWID or identity column, the database manager will
generate a new value.

For a ROWID or an identity column that was defined as GENERATED
ALWAYS, you must specify DEFAULT unless you specify the
OVERRIDING USER VALUE clause to indicate that any user-specified
value will be ignored and a unique system-generated value will be
inserted.

select-statement
Specifies a set of new rows in the form of the result table of a select-statement.
The FOR READ ONLY, FOR UPDATE, and OPTIMIZE clauses are not valid for
a select-statement used with insert. If an ORDER BY clause is specified on the
select-statement, the rows are inserted according to the values of the columns
identified in the ORDER BY clause. For an explanation of select-statement, see
“select-statement” on page 339.

There can be one, more than one, or zero rows inserted when using the
select-statement. If no rows are inserted, SQLCODE is set to +100 and
SQLSTATE is set to '02000'.

INSERT

Chapter 5. Statements 659

|

|
|

When the base object of the INSERT and a base object of any subselect in the
select statement are the same table, the select statement is completely evaluated
before any rows are inserted.

The number of columns in the result table must equal the number of names in
the column list. The value of the first column of the result is inserted in the
first column in the list, the second value in the second column, and so on.

isolation-clause
Specifies the isolation level you want to use for the INSERT statement. For an
explanation of isolation-clause, see “isolation-clause” on page 343.

insert-multiple-rows
integer or host-variable ROWS

Specifies the number of rows to be inserted. If a host-variable is specified, it
must be numeric with zero scale and cannot include an indicator variable.

VALUES (host-structure-array)
Specifies a set of new rows in the form of an array of host structures. The
host-structure-array must be declared in the program in accordance with the
rules for declaring host structure arrays. A parameter marker may be used in
place of the host-structure-array name.

The number of variables in the host structure must equal the number of names
in the column-list. The first host structure in the array corresponds to the first
row, the second host structure in the array corresponds to the second row, and
so on. In addition, the first variable in the host structure corresponds with the
first column of the row, the second variable in the host structure corresponds
with the second column of the row, and so on.

For an explanation of arrays of host structures see “Host Structure Arrays in C,
C++, COBOL, PL/I, and RPG” on page 118.

Insert-multiple-rows is not allowed if any of the insert values are LOBs or if the
current connection is to a non-iSeries remote server.

INSERT Rules
Default values

The value inserted in any column that is not in the column list is the default
value of the column. Columns without a default value must be included in the
column list. Similarly, if you insert into a view, the default value is inserted
into any column of the base table that is not included in the view. Hence, all
columns of the base table that are not in the view must have default values.

Assignment
Insert values are assigned to columns in accordance with the assignment rules
described in Chapter 2

Validity
If the identified table or the base table of the identified view has one or more
unique indexes or unique constraints, each row inserted into the table must
conform to the constraints imposed by those indexes.

The unique indexes and unique constraints are effectively checked at the end
of the statement unless COMMIT(*NONE) was specified. In the case of a
multiple-row insert, this would occur after all rows were inserted and any
associated triggers were activated. If COMMIT(*NONE) is specified, checking
is performed as each row is inserted.

INSERT

660 DB2 UDB for iSeries SQL Reference V5R2

If the identified table or the base table of the identified view has one or more
check constraints, each check constraint must be true or unknown for each row
inserted into the table.

The check constraints are effectively checked at the end of the statement. In the
case of a multiple-row insert, this would occur after all rows were inserted.

If a view is identified, the inserted rows must conform to any applicable WITH
CHECK OPTION. For more information, see “CREATE VIEW” on page 551.

Triggers
If the identified table or the base table of the identified view has an insert
trigger, the trigger is activated. A trigger might cause other statements to be
executed or raise error conditions based on the insert values.

Referential Integrity
Each nonnull insert value of a foreign key must equal some value of the parent
key of the parent table in the relationship.

The referential constraints (other than a referential constraint with a RESTRICT
delete rule) are effectively checked at the end of the statement. In the case of a
multiple-row insert, this would occur after all rows were inserted and any
associated triggers were activated.

Notes
If an insert value violates any constraints, or if any other error occurs during the
execution of an INSERT statement and COMMIT(*NONE) was not specified, all
changes made during the execution of the statement are backed out. However,
other changes in the unit of work made prior to the error are not backed out. If
COMMIT(*NONE) is specified, changes are not backed out.

After executing an INSERT statement, the value of SQLERRD(3) of the SQLCA is
the number of rows that the database manager inserted. The value in SQLERRD(3)
does not include the number of rows that were inserted as a result of a trigger.

If COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or COMMIT(*CHG) is
specified, one or more exclusive locks are acquired during the execution of a
successful INSERT statement. Until the locks are released by a commit or rollback
operation, an inserted row can only be accessed by:
v The application process that performed the insert
v Another application process using COMMIT(*NONE) or COMMIT(*CHG)

through a read-only cursor, SELECT INTO statement, or subquery

The locks can prevent other application processes from performing operations on
the table. For further information about locking, see the description of the
COMMIT, ROLLBACK, and LOCK TABLE statements. Also, see “Isolation Level”
on page 21 and the Database Programming book.

A maximum of 500 000 000 rows can be inserted or changed in any single INSERT
statement when COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or
COMMIT(*CHG) was specified. The number of rows changed includes any rows
inserted, updated, or deleted under the same commitment definition as a result of
a trigger.

Host variables cannot be used in the INSERT statement within a REXX procedure.
Instead, the INSERT must be the object of a PREPARE and EXECUTE using
parameter markers.

INSERT

Chapter 5. Statements 661

|
|
|
|

|
|
|

|
|
|
|
|

../dbp/rbafomst02.htm

Keyword Synonyms: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword NONE can be used as a synonym for NC.
v The keyword CHG can be used as a synonym for UR.
v The keyword ALL can be used as a synonym for RS.

Examples

Example 1
Insert a new department with the following specifications into the DEPARTMENT
table:
v Department number (DEPTNO) is ‘E31’
v Department name (DEPTNAME) is ‘ARCHITECTURE’
v Managed by (MGRNO) a person with number ‘00390’
v Reports to (ADMRDEPT) department ‘E01’

INSERT INTO DEPARTMENT
VALUES (’E31’, ’ARCHITECTURE’, ’00390’, ’E01’)

Example 2
Insert a new department into the DEPARTMENT table as in example 1, but do not
assign a manager to the new department.

INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)
VALUES (’E31’, ’ARCHITECTURE’, ’E01’)

Example 3
Create a table MA_EMPPROJACT with the same columns as the EMPPROJACT
table. Load MA_EMPPROJACT with the rows from the EMPPROJACT table with a
project number (PROJNO) starting with the letters ‘MA’.

CREATE TABLE MA_EMPPROJACT
LIKE EMPPROJACT

INSERT INTO MA_EMPPROJACT
SELECT * FROM EMPPROJACT

WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 4
Use a C program statement to add a skeleton project to the PROJECT table. Obtain
the project number (PROJNO), project name (PROJNAME), department number
(DEPTNO), and responsible employee (RESPEMP) from host variables. Use the
current date as the project start date (PRSTDATE). Assign a NULL value to the
remaining columns in the table.

EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)
VALUES (:PRJNO, :PRJNM, :DPTNO, :REMP, CURRENT DATE);

Example 5
In a PL/I program, use a blocked insert to add 10 rows to table DEPARTMENT.
The host structure array DEPT contains the data to be inserted.

DCL 1 DEPT(10),
3 DEPT CHAR(3),
3 LASTNAME CHAR(29) VARYING,
3 WORKDEPT CHAR(6),
3 JOB CHAR(3);

EXEC SQL INSERT INTO DEPARTMENT 10 ROWS VALUES (:DEPT);

INSERT

662 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

|

|

|
|
|

|
|
|
|
|

Example 6
Insert a new project into the EMPPROJACT table using the Read Uncommitted
(UR, CHG) option:

INSERT INTO EMPPROJACT
VALUES (’000140’, ’PL2100’, 30)
WITH CHG

INSERT

Chapter 5. Statements 663

LABEL
The LABEL statement adds or replaces labels in the catalog descriptions of tables,
views, aliases, packages, or columns.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the table, view, alias, or package identified in the statement,

– The ALTER privilege on the table, view, alias, or package, and
– The system authority *EXECUTE on the library containing the table, view,

alias, or package
v Administrative authority

The authorization ID of the statement has the ALTER privilege on the table, view
or package when:
v It is the owner of the table, view or package,
v It has been granted the ALTER privilege to the table, view or package, or
v It has been granted the system authorities of either *OBJALTER or *OBJMGT to

the table, view, or package

The authorization ID of the statement has the ALTER privilege on an alias when:
v It is the owner of the alias, or
v It has been granted the system authorities of either *OBJALTER or *OBJMGT to

the alias

Syntax

�� LABEL ON

ALIAS alias-name IS string-constant
COLUMN table-name.column-name

view-name.column-name TEXT
PACKAGE package-name
TABLE table-name

view-name
,

COLUMN
table-name (column-name IS string-constant)
view-name

,
COLUMN

table-name (column-name TEXT IS string-constant)
view-name

��

LABEL

664 DB2 UDB for iSeries SQL Reference V5R2

Description
ALIAS

Specifies that the label is for an alias. Labels on aliases are implemented as
system object text.

alias-name
Identifies the alias to which the label applies. The name must identify an
alias that exists at the current server.

COLUMN
Specifies that the label is for a column. Labels on columns are implemented as
system column headings or column text. Column headings are used when
displaying or printing query results.

table-name.column-name or view-name.column-name
Identifies the column to which the label applies. The table-name or
view-name must identify a table or view that exists at the current server, but
must not identify a global temporary table. The column-name must identify
a column of that table or view.

TEXT
Specifies that OS/400 column text is specified. If TEXT is omitted, a column
heading is specified.

PACKAGE
Specifies that the label is for a package. Labels on packages are implemented
as system object text.

package-name
Identifies the package to which the label applies. The name must identify a
package that exists at the current server.

TABLE
Specifies that the label is for a table or a view. Labels on tables or views are
implemented as system object text.

table-name or view-name
Identifies the table or view on which you want to add a label. The
table-name or view-name must identify a table or view that exists at the
current server, but must not identify a global temporary table.

IS
Introduces the label you want to provide.

string-constant
Can be any SQL character-string constant of up to either 50 bytes in length
for tables, views, aliases, SQL packages, or column text, or 60 bytes in
length for column headings. The constant may contain single-byte and
double-byte characters.

The label for a column heading consists of three 20-byte segments.
Interactive SQL, the Query/400 program, DB2 Query Manager and SQL
Development Kit for iSeries, and other products can display or print each
20-byte segment on a separate line. If the label for a column contains
mixed data, each 20-byte segment must be a valid mixed data character
string. The shift characters must be paired within each 20-byte segment.

Notes
Column headings are used when displaying or printing query results. The first
column heading is displayed or printed on the first line, the second column

LABEL

Chapter 5. Statements 665

|
|
|
|
|

|

heading is displayed or printed on the second line, and the third column heading
is displayed or printed on the third line. The column headings can be up to 60
bytes in length, where the first 20 bytes is the first column heading, the second 20
bytes is the second column heading, and the third 20 bytes is the third column
heading. Blanks are trimmed from the end of each 20-byte column heading.

All 60 bytes of column heading information are available in the catalog view
SYSCOLUMNS; however, only the first column heading is returned in an SQLDA
on a DESCRIBE or DESCRIBE TABLE statement.

Column text is not returned on a DESCRIBE or DESCRIBE TABLE statement.
When the database manager changes the column heading information in a record
format description that is shared, the change is reflected in all files sharing the
format description. To find out if a file shares a format with another file, use the
RCDFMT parameter on the CL command, Display Database Relations (DSPDBR).

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword PROGRAM can be used as a synonym for PACKAGE.

Examples
v Enter a label on the DEPTNO column of table DEPARTMENT.

LABEL ON COLUMN DEPARTMENT.DEPTNO
IS ’DEPARTMENT NUMBER’

v Enter a label on the DEPTNO column of table DEPARTMENT where the column
heading is shown on two separate lines.

LABEL ON COLUMN DEPARTMENT.DEPTNO
IS ’Department Number’

v Enter a label on the PAYROLL package.
LABEL ON PACKAGE CORPDATA.PAYROLL

IS ’Payroll Package’

LABEL

666 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

LOCK TABLE
The LOCK TABLE statement either prevents concurrent application processes from
changing a table or prevents concurrent application processes from using a table.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the table identified in the statement,

– The system authority of *OBJOPR on the table, and
– The system authority *EXECUTE on the library containing the table

v Administrative authority

Syntax

�� LOCK TABLE table-name IN SHARE MODE
EXCLUSIVE MODE ALLOW READ
EXCLUSIVE MODE

��

Description
table-name

Identifies the table to be locked. The table-name must identify a base table that
exists at the current server, but must not identify a catalog table or a global
temporary table.

IN SHARE MODE
Prevents concurrent application processes from executing any but read-only
operations on the table. A shared lock (*SHRNUP) is acquired for the
application process in which the statement is executed. Other application
processes may also acquire a shared lock (*SHRNUP) and prevent this
application process from executing any but read-only operations.

IN EXCLUSIVE MODE ALLOW READ
Prevents concurrent application processes from executing any but read-only
operations on the table. An exclusive allow read lock (*EXCLRD) is acquired
for the application process in which the statement is executed. Other
application processes may not acquire a shared lock (*SHRNUP) and cannot
prevent this application process from executing updates, deletes, and inserts on
the table.

IN EXCLUSIVE MODE
Prevents concurrent application processes from executing any operations at all
on the table. An exclusive lock (*EXCL) is acquired for the application process
in which the statement is executed.

The lock is acquired when the LOCK TABLE statement is executed.

The lock is released:

LOCK TABLE

Chapter 5. Statements 667

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

v When the unit of work ends, unless the unit of work is ended by a COMMIT
HOLD or ROLLBACK HOLD

v When the first SQL program in the program stack ends, unless
CLOSQLCSR(*ENDJOB) or CLOSQLCSR(*ENDACTGRP) was specified on the
CRTSQLxxx command

v When the activation group ends
v When the connection is changed using a CONNECT (Type 1) statement
v When the connection associated with the lock is disconnected using the

DISCONNECT statement
v When the connection is in the release-pending state and a successful COMMIT

occurs

You may also issue the Deallocate Object (DLCOBJ) command to unlock the table.

Because the statement is synchronous, conflicting locks already held by other
application processes will cause your application to wait up to the default wait
time.

Example
Obtain a lock on the DEPARTMENT table. Do not allow others to either update or
read from DEPARTMENT while it is locked.

LOCK TABLE DEPARTMENT IN EXCLUSIVE MODE

LOCK TABLE

668 DB2 UDB for iSeries SQL Reference V5R2

OPEN
The OPEN statement opens a cursor.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
See “DECLARE CURSOR” on page 558 for the authorization required to use a
cursor.

Syntax

�� OPEN cursor-name

,

USING host-variable
USING DESCRIPTOR descriptor-name

��

Description
cursor-name

Identifies the cursor to be opened. The cursor-name must identify a declared
cursor as explained in the Notes for the DECLARE CURSOR statement. When
the OPEN statement is executed, the cursor must be in the closed state.

The SELECT statement associated with the cursor is either:
v The select-statement specified in the DECLARE CURSOR statement, or
v The prepared select-statement identified by the statement-name specified in the

DECLARE CURSOR statement. If the statement has not been successfully
prepared, or is not a select-statement, the cursor cannot be successfully
opened.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any special registers specified in the
SELECT statement and the current values of any host variables specified in the
SELECT statement or the USING clause of the OPEN statement. The rows of
the result table can be derived during the execution of the OPEN statement
and a temporary table can be created to hold them; or they can be derived
during the execution of subsequent FETCH statements. In either case, the
cursor is placed in the open state and positioned before the first row of its
result table. If the table is empty the position of the cursor is effectively “after
the last row.”

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) of a prepared statement. For an
explanation of parameter markers, see “PREPARE” on page 674. If the
DECLARE CURSOR statement names a prepared statement that includes
parameter markers, you must use USING. If the prepared statement does not
include parameter markers, USING is ignored.

OPEN

Chapter 5. Statements 669

host-variable,...
Identifies host structures or host variables that must be declared in the
program in accordance with the rules for declaring host structures and host
variables. A reference to a host structure is replaced by a reference to each
of its variables. The number of variables must be the same as the number
of parameter markers in the prepared statement. The nth variable
corresponds to the nth parameter marker in the prepared statement.

DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host
variables.

Before the OPEN statement is processed, the user must set the following
fields in the SQLDA. (The rules for REXX are different. For more
information see the SQL Programming with Host Languages book.)
v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA
v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA
v SQLD to indicate the number of variables used in the SQLDA when

processing the statement
v SQLVAR occurrences to indicate the attributes of the variables

The SQLDA must have enough storage to contain all SQLVAR occurrences.
If LOBs or distinct types are present in the results, there must be additional
SQLVAR entries for each parameter. For more information about the
SQLDA, which includes a description of the SQLVAR and an explanation
on how to determine the number of SQLVAR occurrences, see Appendix C,
“SQL Descriptor Area (SQLDA)” on page 813.

SQLD must be set to a value greater than or equal to zero and less than or
equal to SQLN. It must be the same as the number of parameter markers
in the prepared statement. The nth variable described by the SQLDA
corresponds to the nth parameter marker in the prepared statement.

Note that because RPG/400 does not provide the facility for setting pointers
and the SQLDA uses pointers to locate the appropriate host variables, you will
have to set these pointers outside your RPG/400 application.

Parameter Marker Replacement
When the SELECT statement of the cursor is evaluated, each parameter marker in
the statement is effectively replaced by its corresponding host variable. The
replacement of a parameter marker is an assignment operation in which the source
is the value of the host variable, and the target is a variable within the database
manager. For a typed parameter marker, the attributes of the target variable are
those specified by the CAST specification. For an untyped parameter marker, the
attributes of the target variable are determined according to the context of the
parameter marker. For the rules that affect parameter markers, see Table 57 on
page 677.

Let V denote a host variable that corresponds to parameter marker P. The value of
V is assigned to the target variable for P in accordance with the rules for assigning
a value to a column. Thus:
v V must be compatible with the target.

OPEN

670 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm

v If V is a number, the absolute value of its integral part must not be greater than
the maximum absolute value of the integral part of the target.

v If the attributes of V are not identical to the attributes of the target, the value is
converted to conform to the attributes of the target.

v If the target cannot contain nulls, the value of V must not be null.

However, unlike the rules for assigning a value to a column:
v If V is a string, the value will be truncated (without an error), if its length is

greater than the length attribute of the target.

When the SELECT statement of the cursor is evaluated, the value used in place of
P is the value of the target variable for P. For example, if V is CHAR(6), and the
target is CHAR(8), the value used in place of P is the value of V padded with two
blanks.

The USING clause is intended for a prepared SELECT statement that contains
parameter markers. However, it can also be used when the SELECT statement of
the cursor is part of the DECLARE CURSOR statement. In this case the OPEN
statement is executed as if each host variable in the SELECT statement were a
parameter marker, except that the attributes of the target variables are the same as
the attributes of the host variables in the SELECT statement. The effect is to
override the values of the host variables in the SELECT statement of the cursor
with the values of the host variables specified in the USING clause.

Notes

Closed state of cursors
All cursors in a program are in the closed state when:
v The program is called:

– If CLOSQLCSR(*ENDPGM) is specified, all cursors are in the closed state
each time the program is called.

– If CLOSQLCSR(*ENDSQL) is specified, all cursors are in the closed state only
the first time the program is called as long as one SQL program remains on
the call stack.

– If CLOSQLCSR(*ENDJOB) is specified, all cursors are in the closed state only
the first time the program is called as long as the job remains active.

– If CLOSQLCSR(*ENDMOD) is specified, all cursors are in the closed state
each time the module is initiated.

– If CLOSQLCSR(*ENDACTGRP) is specified, all cursors are in the closed state
only the first time the module in the program is initiated in the activation
group.

v A program starts a new unit of work by executing a COMMIT or ROLLBACK
statement without a HOLD option. Cursors declared with the HOLD option are
not closed by a COMMIT statement.

v A CONNECT (Type 1) statement was executed.

A cursor can also be in the closed state because:
v A CLOSE statement was executed.
v A DISCONNECT statement disconnected the connection with which the cursor

was associated.
v The connection with which the cursor was associated was in the release-pending

state and a successful COMMIT occurred.

OPEN

Chapter 5. Statements 671

You must execute a FETCH statement when the cursor is open to retrieve rows
from the result table of a cursor. The only way to change the state of a cursor from
closed to open is to execute an OPEN statement.

Effect of temporary tables
If the result table of a cursor is not read-only, its rows are derived during the
execution of subsequent FETCH statements. The same method may be used for a
read-only result table. However, if a result table is read-only, DB2 UDB for iSeries
may choose to use the temporary table method instead. With this method the
entire result table is inserted into a temporary table during the execution of the
OPEN statement. When a temporary table is used, the results of a program can
differ in these two ways:
v An error can occur during OPEN that would otherwise not occur until some

later FETCH statement.
v The INSERT, UPDATE, and DELETE statements that are executed while the

cursor is open cannot affect the result table.

Conversely, if a temporary table is not used, INSERT, UPDATE, and DELETE
statements executed while the cursor is open can affect the result table. The effect
of such operations is not always predictable. For example, if cursor C is positioned
on a row of its result table defined as SELECT * FROM T, and you insert a row
into T, the effect of that insert on the result table is not predictable because its rows
are not ordered. A subsequent FETCH C might or might not retrieve the new row
of T.

Examples

Example 1
Write the embedded statements in a COBOL program that will:
1. Define a cursor C1 that is to be used to retrieve all rows from the

DEPARTMENT table for departments that are administered by (ADMRDEPT)
department ‘A00’

2. Place the cursor C1 before the first row to be fetched.
EXEC SQL DECLARE C1 CURSOR FOR

SELECT DEPTNO, DEPTNAME, MGRNO FROM DEPARTMENT
WHERE ADMRDEPT = ’A00’ END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

Example 2
Code an OPEN statement to associate a cursor DYN_CURSOR with a dynamically
defined select-statement in a C program. Assume each prepared select-statement
always defines two items in its select list with the first item having a data type of
integer and the second item having a data type of VARCHAR(64). (The related
host variable definitions, PREPARE statement, and DECLARE CURSOR statement
are also shown in the example below.)

EXEC SQL BEGIN DECLARE SECTION;
static short hv_int;
char hv_vchar64[64];
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;

EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING :hv_int, :hv_vchar64;

OPEN

672 DB2 UDB for iSeries SQL Reference V5R2

Example 3
Code an OPEN statement as in example 3, but in this case the number and data
types of the items in the select statement are not known.

EXEC SQL BEGIN DECLARE SECTION;
char stmt1_str[200];

EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLDA;

EXEC SQL PREPARE STMT1_NAME FROM :stmt1_str;
EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :sqlda;

OPEN

Chapter 5. Statements 673

PREPARE
The PREPARE statement creates an executable form of an SQL statement from a
character-string form of the statement. The character-string form is called a
statement string, and the executable form is called a prepared statement.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
The authorization rules are the same as those defined for the SQL statement
specified by the PREPARE statement. For example, see “select-statement” on page
339 for the authorization rules that apply when a SELECT statement is prepared.

If DLYPRP(*NO) is specified on the CRTSQLxxx command, the authorization
checking is performed when the statement is prepared, except:
v If a DROP SCHEMA statement is prepared, the system authority *OBJEXIST on

all objects in the schema is not checked until the statement is executed.
v If a DROP TABLE statement is prepared, the system authority *OBJEXIST on all

views, indexes, and logical files that reference the table is not checked until the
statement is executed.

v If a DROP VIEW statement is prepared, the system authority of *OBJEXIST on
all views that reference the view is not checked until the statement is executed.

If DLYPRP(*YES) is specified on the CRTSQLxxx command, all authorization
checking is deferred until the statement is executed or used in an OPEN statement.

The authorization ID of the statement is the run-time authorization ID unless
DYNUSRPRF(*OWNER) was specified on the CRTSQLxxx command when the
program was created. For more information, see “Authorization IDs and
Authorization-Names” on page 57.

Syntax

�� PREPARE statement-name �

�
INTO descriptor-name

USING NAMES
SYSTEM NAMES
LABELS
ANY
BOTH
ALL

FROM �

� string-expression
host-variable

��

PREPARE

674 DB2 UDB for iSeries SQL Reference V5R2

Description
statement-name

Names the prepared statement. If the name identifies an existing prepared
statement, that prepared statement is destroyed if:
v it was prepared in the same instance of the same program, or
v CLOSQLCSR(*ENDJOB), CLOSQLCSR(*ENDACTGRP), or

CLOSQLCSR(*ENDSQL) are specified on the CRTSQLxxx commands
associated with both prepared statements.

The name must not identify a prepared statement that is the SELECT statement
of an open cursor of this instance of the program.

INTO
If INTO is used, and the PREPARE statement is successfully executed,
information about the prepared statement is placed in the SQLDA specified by
the descriptor-name. Thus, the PREPARE statement:

EXEC SQL PREPARE S1 INTO :SQLDA FROM :V1;

is equivalent to:
EXEC SQL PREPARE S1 FROM :V1;
EXEC SQL DESCRIBE S1 INTO :SQLDA;

descriptor-name
Identifies an SQL descriptor area (SQLDA), which is described in
Appendix C, “SQL Descriptor Area (SQLDA)” on page 813. Before the
PREPARE statement is executed, the following variable in the SQLDA must
be set (The rules for REXX are different. For more information, see the SQL
Programming with Host Languages book.) :

SQLN
Specifies the number of variables represented by SQLVAR. (SQLN
provides the dimension of the SQLVAR array.) SQLN must be set to a
value greater than or equal to zero before the PREPARE statement is
executed. For information on techniques to determine the number of
occurrences required, see “Determining How Many SQLVAR
Occurrences are Needed” on page 816.

See “DESCRIBE” on page 600 for an explanation of the information that is
placed in the SQLDA.

USING
Specifies what value to assign to each SQLNAME variable in the SQLDA. If
the requested value does not exist, SQLNAME is set to length 0.

NAMES
Assigns the name of the column. This is the default. For a prepared
statement where the names are explicitly specified in the select-list, the
name specified is returned.

SYSTEM NAMES
Assigns the system column name of the column.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL
statement.) Only the first 20 bytes of the label are returned.

ANY
Assigns the column label. If the column has no label, the label is the
column name.

PREPARE

Chapter 5. Statements 675

|
|
|
|
|
|

../rzajp/rzajpmst02.htm
../rzajp/rzajpmst02.htm

BOTH
Assigns both the label and name of the column. In this case, two or three
occurrences of SQLVAR per column, depending on whether the result set
contains distinct types, are needed to accommodate the additional
information. To specify this expansion of the SQLVAR array, set SQLN to
2*n or 3*n(where n is the number of columns in the table or view). The
first n occurrences of SQLVAR contain the column names. Either the
second or third n occurrences contain the column labels. If there are no
distinct types, the labels are returned in the second set of SQLVAR entries.
Otherwise, the labels are returned in the third set of SQLVAR entries.

If the same SQLDA is used on a subsequent FETCH statement, set SQLN
to n after the PREPARE is complete.

ALL
Assigns the label, column name, and system column name. In this case
three or four occurrences of SQLVAR per column, depending on whether
the result set contains distinct types, are needed to accommodate the
additional information. To specify this expansion of the SQLVAR array, set
SQLN to 3*n or 4*n (where n is the number of columns in the result table).
The first n occurrences of SQLVAR contain the system column names. The
second or third n occurrences contain the column labels. The third or
fourth n occurrences contain the column names. If there are no distinct
types, the labels are returned in the second set of SQLVAR entries and the
column names are returned in the third set of SQLVAR entries. Otherwise,
the labels are returned in the third set of SQLVAR entries and the column
names are returned in the fourth set of SQLVAR entries.

If the same SQLDA is used on a subsequent FETCH statement, set SQLN
to n after the PREPARE is complete.

FROM
Introduces the statement string. The statement string is the value of the
specified string-expression or the identified host-variable.

string-expression
A string-expression is any PL/I string-expression that yields a character
string. SQL expressions that yield a character string are not allowed. A
string-expression is only allowed in PL/I.

host-variable
Identifies a host variable that is declared in the program in accordance
with the rules for declaring character-string or UCS-2 graphic host
variables. The host variable must not have a CLOB or DBCLOB data type,
and an indicator variable must not be specified.

The statement string must be one of the following SQL statements:

ALTER GRANT SAVEPOINT
CALL HOLD LOCATOR select-statement
COMMENT INSERT SET PATH
COMMIT LABEL SET SCHEMA
CREATE LOCK TABLE SET TRANSACTION
DECLARE GLOBAL
TEMPORARY TABLE

RELEASE SAVEPOINT UPDATE

DELETE RENAME VALUES INTO
DROP REVOKE
FREE LOCATOR ROLLBACK

PREPARE

676 DB2 UDB for iSeries SQL Reference V5R2

|
|

|

|

The statement string must not:
v Begin with EXEC SQL and end with END-EXEC or a semicolon (;).
v Include references to host variables.

Parameter markers
Although a statement string cannot include references to host variables, it may
include parameter markers. These can be replaced by the values of host variables
when the prepared statement is executed. A parameter marker is a question mark
(?) that is used where a host variable could be used if the statement string were a
static SQL statement. For an explanation of how parameter markers are replaced
by values, see “OPEN” on page 669 and “EXECUTE” on page 621.

There are two types of parameter markers:

Typed parameter marker
A parameter marker that is specified along with its target data type. It has the
general form:

CAST(? AS data-type)

This notation is not a function call, but a “promise” that the type of the
parameter at run time will be of the data type specified or some data type that
can be converted to the specified data type. For example, in:

UPDATE EMPLOYEE
SET LASTNAME = TRANSLATE(CAST(? AS VARCHAR(12)))
WHERE EMPNO = ?

the value of the argument of the TRANSLATE function will be provided at run
time. The data type of that value will either be VARCHAR(12), or some type
that can be converted to VARCHAR(12). For more information, refer to “CAST
Specification” on page 137.

Untyped parameter marker
A parameter marker that is specified without its target data type. It has the
form of a single question mark. The data type of an untyped parameter marker
is provided by context. For example, the untyped parameter marker in the
predicate of the above update statement is the same as the data type of the
EMPNO column.

Typed parameter markers can be used in dynamic SQL statements wherever a host
variable is supported and the data type is based on the promise made in the CAST
function.

Untyped parameters markers can be used in dynamic SQL statements in selected
locations where host variables are supported. These locations and the resulting
data type are found in Table 57. The locations are grouped in this table into
expressions, predicates and functions to assist in determining applicability of an
untyped parameter marker.

Table 57. Untyped Parameter Marker Usage

Untyped Parameter Marker Location Data Type

Expressions (including select list, CASE, and VALUES)

Alone in a select list that is not in a subquery Error

Alone in a select list that is in an EXISTS
subquery

Error

PREPARE

Chapter 5. Statements 677

|
|
|

Table 57. Untyped Parameter Marker Usage (continued)

Untyped Parameter Marker Location Data Type

Alone in a select list that is in a subquery The data type of the other operand of the
subquery.62

Alone in a select list that is in a
select-statement of an INSERT statement

The data type of the associated column of the
target table. 62

Both operands of a single arithmetic
operator, after considering operator
precedence and order of operation rules.

Includes cases such as:

? + ? + 10

Error

One operand of a single operator in an
arithmetic expression (not a datetime
expression)

Includes cases such as:

? + ? * 10

The data type of the other operand.

Labelled duration within a datetime
expression. (Note that the portion of a
labelled duration that indicates the type of
units cannot be a parameter marker.)

DECIMAL(15,0)

Any other operand of a datetime expression
(for instance ’timecol + ?’ or ’? - datecol’).

Error

Any operands of a CONCAT operator Error

As a value on the right hand side of a SET
clause of an UPDATE statement.

The data type of the column. If the column is
defined as a user-defined distinct type, then
it is the source data type of the user-defined
distinct type. 62

The expression following the CASE keyword
in a simple CASE expression

Error

At least one of the result-expressions in a
CASE expression (both Simple and Searched)
with the rest of the result-expressions either
untyped parameter marker or NULL.

Error

Any or all expressions following WHEN in a
simple CASE expression.

Result of applying the “Rules for Result Data
Types” on page 91 to the expression
following CASE and the expressions
following WHEN that are not untyped
parameter markers.

A result-expression in a CASE expression
(both Simple and Searched) where at least
one result-expression is not NULL and not
an untyped parameter marker.

Result of applying the “Rules for Result Data
Types” on page 91 to all result-expressions
that are other than NULL or untyped
parameter markers.

Alone as a column-expression in a single-row
VALUES clause that is not within an INSERT
statement.

Error.

Alone as a column-expression in a single-row
VALUES clause within an INSERT statement.

The data type of the column. If the column is
defined as a user-defined distinct type, then
it is the source data type of the user-defined
distinct type. 62

As a value on the right side of a SET special
register statement

The data type of the special register.

PREPARE

678 DB2 UDB for iSeries SQL Reference V5R2

|

Table 57. Untyped Parameter Marker Usage (continued)

Untyped Parameter Marker Location Data Type

As a value in the INTO clause of the
VALUES INTO statement

The data type of the associated expression. 62

As a value in a FREE LOCATOR or HOLD
LOCATOR statement

Locator.

Predicates

Both operands of a comparison operator Error

One operand of a comparison operator
where the other operand is other than an
untyped parameter marker or a distinct type.

The data type of the other operand.62

One operand of a comparison operator
where the other operand is a distinct type.

Error

All operands of a BETWEEN predicate Error

Two operands of a BETWEEN predicate
(either the first and second, or the first and
third)

Same as that of the only non-parameter
marker.

Only one operand of a BETWEEN predicate Result of applying the “Rules for Result Data
Types” on page 91 on all operands that are
other than untyped parameter markers,
except the CCSID attribute is the CCSID of
the value specified at execution time.

All operands of an IN predicate, for example,
? IN (?,?,?)

Error

The first operand of an IN predicate where
the right hand side is a subselect, for
example, ? IN (subselect).

Data type of the selected column

The first operand of an IN predicate where
the right hand side is not a subselect, for
example, ? IN (?,A,B) or for example, ? IN
(A,?,B,?).

Result of applying the “Rules for Result Data
Types” on page 91 on all operands of the IN
list (operands to the right of IN keyword)
that are other than untyped parameter
markers, except the CCSID attribute is the
CCSID of the value specified at execution
time.

Any or all operands of the IN list of the IN
predicate, for example, for example, A IN
(?,B,?).

Result of applying the “Rules for Result Data
Types” on page 91 on all operands of the IN
predicate (operands to the left and right of
the IN predicate) that are other than untyped
parameter markers, except the CCSID
attribute is the CCSID of the value specified
at execution time.

All three operands of the LIKE predicate. Error

The match expression of the LIKE predicate. Error

The pattern expression of the LIKE predicate. Either VARCHAR(32740) or
VARGRAPHIC(16370) or BLOB(32740)
depending on the data type of the match
expression.

For information about using fixed-length
host variables for the value of the pattern see
page “LIKE Predicate” on page 149.

PREPARE

Chapter 5. Statements 679

|
|
|

|
|
|
|

|
|
|

Table 57. Untyped Parameter Marker Usage (continued)

Untyped Parameter Marker Location Data Type

The escape expression of the LIKE predicate. Either VARCHAR(1) or VARGRAPHIC(1) or
BLOB(1) depending on the data type of the
match expression.

Operand of the NULL predicate Error

Functions

All operands of COALESCE, IFNULL,
LAND, LOR, MIN, MAX, NULLIF, VALUE,
or XOR

Error

Any operand of COALESCE, IFNULL,
LAND, LOR, MIN, MAX, NULLIF, VALUE,
or XOR where at least the first operand is
other than an untyped parameter marker.

Result of applying the “Rules for Result Data
Types” on page 91 on all operands that are
other than untyped parameter markers.

The first operand of POSITION or the second
operand of POSSTR.

Either VARCHAR(32740) or
VARGRAPHIC(16370) or BLOB(32740)
depending on the data type of the other
operand.

All other operands of all other scalar
functions including user-defined functions.

Error

Operand of a column function Error

Notes
Error Checking

When a PREPARE statement is executed, the statement string is parsed and
checked for errors. If the statement string is invalid, a prepared statement is not
created and the error condition that prevents its creation is reported in the SQLCA.

In local and remote processing, the DLYPREP(*YES) option can cause some SQL
statements to receive ″delayed″ errors. For example, DESCRIBE, EXECUTE, and
OPEN might receive an SQLCODE that normally occurs during PREPARE
processing.

Reference and Execution Rules

Prepared statements can be referred to in the following kinds of statements, with
the following restrictions shown:
Statement The prepared statement restrictions
DESCRIBE None
DECLARE CURSOR Must be SELECT when the cursor is opened
EXECUTE Must not be SELECT

A prepared statement can be executed many times. If a prepared statement is not
executed more than once and does not contain parameter markers, it is more
efficient to use the EXECUTE IMMEDIATE statement rather than the PREPARE
and EXECUTE statements.

Prepared Statement Persistence

62. If the data type is DATE, TIME, or TIMESTAMP, then VARCHAR(32740) is used.

PREPARE

680 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|

All prepared statements are destroyed when:63

v A CONNECT (Type 1) statement is executed.
v A DISCONNECT statement disconnects the connection with which the prepared

statement is associated.
v A prepared statement is associated with a release-pending connection and a

successful commit occurs.
v The associated scope (job, activation group, or program) of the SQL statement

ends.

Scope of a Statement

The scope of statement-name is the source program in which it is defined. You can
only reference a prepared statement by other SQL statements that are precompiled
with the PREPARE statement. For example, a program called from another
separately compiled program cannot use a prepared statement that was created by
the calling program.

The scope of statement-name is also limited to the thread in which the program
that contains the statement is running. For example, if the same program is
running in two separate threads in the same job, the second thread cannot use a
statement that was prepared by the first thread.

Although the scope of a statement is the program in which it is defined, each
package created from the program includes a separate instance of the prepared
statement and more than one prepared statement can exist at run time. For
example, assume a program using CONNECT (Type 2) statements connects to
location X and location Y in the following sequence:

EXEC SQL CONNECT TO X;
EXEC SQL PREPARE S FROM :hv1;
EXEC SQL EXECUTE S;
.
.
.
EXEC SQL CONNECT TO Y;
EXEC SQL PREPARE S FROM :hv1;
EXEC SQL EXECUTE S;

The second prepare of S prepares another instance of S at Y.

A prepared statement can only be referenced in the same instance of the program
in the program stack, unless CLOSQLCSR(*ENDJOB),
CLOSQLCSR(*ENDACTGRP), or CLOSQLCSR(*ENDSQL) is specified on the
CRTSQLxxx commands.
v If CLOSQLCSR(*ENDJOB) is specified, the prepared statement can be referred to

by any instance of the program (that prepared the statement) on the program
stack. In this case, the prepared statement is destroyed at the end of the job.

v If CLOSQLCSR(*ENDSQL) is specified, the prepared statement can be referred
to by any instance of the program (that prepared the statement) on the program
stack until the last SQL program on the program stack ends. In this case, the
prepared statement is destroyed when the last SQL program on the program
stack ends.

63. Prepared statements may be cached and not actually destroyed. However, a cached statement can only be used if the same
statement is prepared again.

PREPARE

Chapter 5. Statements 681

v If CLOSQLCSR(*ENDACTGRP) is specified, the prepared statement can be
referred to by all instances of the module in the program that prepared the
statement until the activation group ends. In this case, the prepared statement is
destroyed when the activation group ends.

Examples

Example 1
Prepare and execute a non-select-statement in a COBOL program. Assume the
statement is contained in a host variable HOLDER and that the program will place
a statement string into the host variable based on some instructions from the user.
The statement to be prepared does not have any parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :HOLDER END-EXEC.

EXEC SQL EXECUTE STMT_NAME END-EXEC.

Example 2
Prepare and execute a non-select-statement as in example 1, except assume the
statement to be prepared can contain any number of parameter markers.

EXEC SQL PREPARE STMT_NAME FROM :HOLDER END-EXEC.

EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR :INSERT_DA END-EXEC.

Assume that the following statement is to be prepared:
INSERT INTO DEPARTMENT VALUES(?, ?, ?, ?)

To insert department number G01 named COMPLAINTS, which has no manager
and reports to department A00, the structure INSERT_DA should have the
following values before executing the EXECUTE statement.

PREPARE

682 DB2 UDB for iSeries SQL Reference V5R2

PREPARE

Chapter 5. Statements 683

RELEASE
The RELEASE statement places one or more connections in the release-pending
state.

Invocation
This statement can only be embedded within an application program or issued
interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in Java or REXX.

RELEASE is not allowed in a trigger. RELEASE is not allowed in an external
procedure if the external procedure is called on a remote server.

Authorization
None required.

Syntax

�� RELEASE server-name
host-variable
CURRENT

SQL
ALL

��

Description
server-name or host-variable

Identifies the server by the specified server name or the server name contained
in the host variable. If a host variable is specified:
v It must be a character-string variable.
v It must not be followed by an indicator variable.
v The server name must be left-justified within the host variable and must

conform to the rules for forming an ordinary identifier.
v If the length of the server name is less than the length of the host variable, it

must be padded on the right with blanks.

When the RELEASE statement is executed, the specified server name or the
server name contained in the host variable must identify an existing connection
of the activation group.

CURRENT
Identifies the current connection of the activation group. The activation group
must be in the connected state.

ALL or ALL SQL
Identifies all existing connections of the activation group (local as well as
remote connections).

An error or warning does not occur if no connections exist when the statement
is executed.

If the RELEASE statement is successful, each identified connection is placed in the
release-pending state and will therefore be ended during the next commit

RELEASE

684 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

operation. If the RELEASE statement is unsuccessful, the connection state of the
activation group and the states of its connections are unchanged.

Notes
Using CONNECT (Type 1) semantics does not prevent using RELEASE.

RELEASE does not close cursors, does not release any resources, and does not
prevent further use of the connection.

ROLLBACK does not reset the state of a connection from release-pending to held.

Resources are required to create and maintain remote connections. Thus, a remote
connection that is not going to be reused should be in the release-pending state
and one that is going to be reused should not be in the release-pending state.

If the current connection is in the release-pending state when a commit operation
is performed, the connection is ended and the activation group is in the
unconnected state. In this case, the next executed SQL statement must be
CONNECT or SET CONNECTION.

RELEASE ALL places the connection to the local server in the release-pending
state. A connection in the release-pending state is ended during a commit
operation even though it has an open cursor defined with the WITH HOLD clause.

Examples
Example 1: The connection to TOROLAB1 is not needed in the next unit of work.
The following statement will cause it to be ended during the next commit
operation.

EXEC SQL RELEASE TOROLAB1;

Example 2: The current connection is not needed in the next unit of work. The
following statement will cause it to be ended during the next commit operation.

EXEC SQL RELEASE CURRENT;

Example 3: None of the existing connections are needed in the next unit of work.
The following statement will cause it to be ended during the next commit
operation.

EXEC SQL RELEASE ALL;

RELEASE

Chapter 5. Statements 685

RELEASE SAVEPOINT
The RELEASE SAVEPOINT statement releases the identified savepoint and any
subsequently established savepoints within a unit of work.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

��
TO

RELEASE SAVEPOINT savepoint-name ��

Description
savepoint-name

Identifies a savepoint to release. If the named savepoint does not exist, an error
occurs. The named savepoint and all the savepoints that were subsequently
established in the unit of work are released. After a savepoint is released, it is
no longer maintained and rollback to the savepoint is no longer possible.

Note
The name of the savepoint that was released can be re-used in another
SAVEPOINT statement, regardless of whether the UNIQUE keyword was specified
on an earlier SAVEPOINT statement specifying this same savepoint name.

A RELEASE SAVEPOINT statement is not allowed if commitment control is not
active for the activation group. For information on determining which commitment
definition is used, see “Notes” on page 400.

Example
Assume that a main routine sets savepoint A and then invokes a subroutine that
sets savepoints B and C. When control returns to the main routine, release
savepoint A and any subsequently set savepoints. Savepoints B and C, which were
set by the subroutine, are released in addition to A.

RELEASE SAVEPOINT A

RELEASE SAVEPOINT

686 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

|

|
|

|

|

|

|

||||||||||||||||

|

|

|
|
|
|
|

|

|
|
|

|
|
|

|

|
|
|
|

|

|

RENAME
The RENAME statement renames a table, view, or index. The name and/or the
system object name of the table, view, or index can be changed.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v The following system authorities:

– If the name of the object is changed:
- The system authority of *OBJMGT on the table, view, or index to be

renamed
- The system authority *EXECUTE on the library containing the table, view,

or index to be renamed
– If the system name of the object is changed:

- The system authority of *OBJMGT on the table, view, or index to be
renamed

- The system authorities *EXECUTE and *UPD on the library containing the
table, view, or index to be renamed

v Administrative authority

Syntax

��
TABLE

RENAME table-name
view-name

INDEX index-name

�

� TO new-table-identifier
FOR SYSTEM NAME system-object-identifier

SYSTEM NAME system-object-identifer

��

Description
TABLE table-name or view-name

Identifies the table or view that will be renamed. The table-name or view-name
must identify a table or view that exists at the current server, but must not
identify a catalog table or a global temporary table. The specified name can be
an alias name. The specified table or view is renamed to the new name. All
privileges, constraints, indexes, triggers, views, and logical files on the table or
view are preserved.

Any access plans that reference the table or view are implicitly prepared again
when a program that uses the access plan is next run. Since the program refers
to a table or view with the original name, if a table or view with the original
name does not exist at that time, a negative value will be returned in the
SQLCODE field of the SQLCA.

RENAME

Chapter 5. Statements 687

|
|
|
|
|
|

|
|
|
|
|

INDEX index-name
Identifies the index that will be renamed. The index-name must identify an
index that exists at the current server. The specified index is renamed to the
new name.

Any access plans that reference the index are not affected by rename.

new-table-identifier
Identifies the new table-name, view-name, or index-name of the table, view, or
index, respectively. new-table-identifier must not be the same as a table, view,
alias, or index that already exists at the current server. The new-table-identifier
must be an unqualified SQL identifier.

SYSTEM NAME system-object-identifier
Identifies the new system-object-identifier of the table, view, or index,
respectively. system-object-identifier must not be the same as a table, view, alias,
or index that already exists at the current server. The system-object-identifier
must be an unqualified system identifier.

If the name of the object and the system name of the object are the same and
name is not specified, specifying system-object-identifier will be the new name
and system object name. Otherwise, specifying system-object-identifier will only
affect the system name of the object and not affect the name of the object.

If both new-table-identifier and system-object-identifier are specified, they cannot
both be valid system object names.

Notes
The rename operation performed depends on the new name specified.
v If the new name is a valid system identifier,

– the alternative name (if any) is removed, and
– the system object name is changed to the new name.

v If the new name is not a valid system identifier,
– the alternative name is added or changed to the new name, and
– a new system object name is generated if the system object name (of the table

or view) was specified as the table, view, or index to rename. For more
information about generated table name rules, see “Rules for Table Name
Generation” on page 535.

If an alias name is specified for table-name, the alias must exist at the current server,
and the table that is identified by the alias is renamed. The name of the alias is not
changed and continues to refer to the old table after the rename. There is no
support for changing the name of an alias.

Examples

Example 1
Rename a table named MY_IN_TRAY to MY_IN_TRAY_94. The system object
name will remain unchanged (MY_IN_TRAY).

RENAME TABLE MY_IN_TRAY TO MY_IN_TRAY_94
FOR SYSTEM NAME MY_IN_TRAY

Example 2
Rename a table named MA_PROJ to MA_PROJ_94.

RENAME TABLE MA_PROJ
TO SYSTEM NAME MA_PROJ_94

RENAME

688 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

REVOKE (Distinct Type Privileges)
This form of the REVOKE statement removes the privileges on a distinct type.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each distinct type identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the distinct type
– The system authority *EXECUTE on the library containing the distinct type

v Administrative authority

Syntax

�� REVOKE

PRIVILEGES
ALL

,

ALTER
USAGE

ON TYPE
DISTINCT

�

�

,

distinct-type-name

,

FROM authorization-name
PUBLIC

��

Description
ALL or ALL PRIVILEGES

Revokes one or more distinct type privileges from each authorization-name. The
privileges revoked are those privileges on the identified distinct types that
were granted to the authorization-names. Note that revoking ALL PRIVILEGES
on a distinct type is not the same as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword revokes the privilege described.

ALTER
Revokes the privilege to use the COMMENT statement.

USAGE
Revokes the privilege to use distinct types in tables, functions, procedures, or
as the source type in a CREATE DISTINCT TYPE statement.

ON DISTINCT TYPE distinct-type-name
Identifies the distinct types from which you are revoking privileges. The
distinct-type-name must identify a distinct type that exists at the current server.

REVOKE (Distinct Type Privileges)

Chapter 5. Statements 689

FROM
Identifies from whom the privileges are revoked.

authorization-name,...
Lists one or more authorization IDs. Do not specify the same
authorization-name more than once.

PUBLIC
Revokes the specified privileges from PUBLIC.

Notes
If you revoke a privilege on a distinct type, it nullifies any grant of the privilege
on that distinct type, regardless of who granted it.

When a distinct type privilege is revoked, the corresponding system authorities are
revoked. For information on the system authorities that correspond to SQL
privileges see “GRANT (Distinct Type Privileges)” on page 634.

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword DATA can be used as a synonym for DISTINCT.

Example
Revoke the USAGE privilege on distinct type SHOESIZE from user JONES.

REVOKE USAGE
ON DISTINCT TYPE SHOESIZE
FROM JONES

REVOKE (Distinct Type Privileges)

690 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

REVOKE (Function or Procedure Privileges)
This form of the REVOKE statement removes the privileges on a function or
procedure.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each function or procedure identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the function or procedure
– The system authority *EXECUTE on the library (or directory if this is a Java

routine) containing the function or procedure
v Administrative authority

Syntax

�� REVOKE

PRIVILEGES
ALL

,

ALTER
EXECUTE

�

�

,

ON FUNCTION function-name
ROUTINE ()

,

parameter-type
SPECIFIC FUNCTION specific-name

ROUTINE
PROCEDURE procedure-name
ROUTINE ()

,

parameter-type
SPECIFIC PROCEDURE specific-name

ROUTINE

�

�

,

FROM authorization-name
PUBLIC

��

REVOKE (Function or Procedure Privileges)

Chapter 5. Statements 691

parameter-type:

built-in-type
distinct-type-name AS LOCATOR

REVOKE (Function or Procedure Privileges)

692 DB2 UDB for iSeries SQL Reference V5R2

Description
ALL or ALL PRIVILEGES

Revokes one or more function or procedure privileges from each

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC ()

NUMERIC integer
, integer

(53)
FLOAT

(1)
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR () FOR BIT DATA

integer FOR SBCS DATA
CHARACTER VARYING () FOR MIXED DATA
CHAR integer CCSID integer

VARCHAR
(1M)

CLOB
CHAR LARGE OBJECT () FOR SBCS DATA AS LOCATOR
CHARACTER LARGE OBJECT integer K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

() CCSID integer
integer

VARGRAPHIC ()
GRAPHIC VARYING integer

(1M)
DBCLOB

() CCSID integer AS LOCATOR
integer K

M
G

(1M)
BLOB
BINARY LARGE OBJECT () AS LOCATOR

integer K
M
G

DATE
(0)

TIME
(6)

TIMESTAMP
(200)

DATALINK
() CCSID integer

integer
ROWID

Notes:

1 The value that is specified for precision does not have to match the value that was specified when the function
was created because matching is based on data type (REAL or DOUBLE).

REVOKE (Function or Procedure Privileges)

Chapter 5. Statements 693

authorization-name. The privileges revoked are those privileges on the identified
functions or procedures that were granted to the authorization-names. Note that
revoking ALL PRIVILEGES on a function or procedure is not the same as
revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword revokes the privilege described.

ALTER
Revokes the privilege to use the COMMENT statement.

EXECUTE
Revokes the privilege to execute a function or procedure.

FUNCTION
Identifies the function to which you are revoking the privilege. You can
identify the particular function by its name, function signature, or specific
name. The rules for function resolution (and the path) are not used.

FUNCTION function-name
The function-name must identify exactly one function that exists at the
current server. The function may have any number of parameters defined
for it. If there is more than one function of the specified name in the
specified or implicit schema, an error is returned.

FUNCTION function-name (parameter-type, ...)
The function-name (parameter-type, ...) must identify a function with the
specified function signature that exists at the current server. The specified
parameters must match the data types that were specified on the CREATE
FUNCTION statement in the corresponding position. The number of data
types, and the logical concatenation of the data types is used to identify
the specific function instance which is to be revoked. If function-name () is
specified, the function identified must have zero parameters.

function-name
Identifies the name of the function.

(parameter-type, ...)
Identifies the parameters of the function.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses.
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match.
v If you use a specific value for a length, precision, or scale attribute,

the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE FUNCTION statement.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

REVOKE (Function or Procedure Privileges)

694 DB2 UDB for iSeries SQL Reference V5R2

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE FUNCTION statement. For a
complete list of the default lengths of data types, see “CREATE
TABLE” on page 507.

For data types with a subtype or CCSID attribute, specifying the FOR
DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE FUNCTION statement.

SPECIFIC FUNCTION specific-name
The specific-name must identify a specific function that exists at the current
server.

PROCEDURE
Identifies the procedure to which you are revoking the privilege. You can
identify the particular procedure by its name, procedure signature, or specific
name. The rules for procedure resolution (and the path) are not used.

PROCEDURE procedure-name
The procedure-name must identify exactly one procedure that exists at the
current server. The procedure may have any number of parameters defined
for it. If there is more than one procedure of the specified name in the
specified or implicit schema, an error is returned.

PROCEDURE procedure-name (parameter-type, ...)
The procedure-name (parameter-type, ...) must identify a procedure with the
specified procedure signature that exists at the current server. The specified
parameters must match the data types, that were specified on the CREATE
PROCEDURE statement in the corresponding position. The number of data
types, and the logical concatenation of the data types is used to identify
the specific procedure instance which is to be dropped. If procedure-name ()
is specified, the procedure identified must have zero parameters.

procedure-name
Identifies the name of the procedure.

(parameter-type, ...)
Identifies the parameters of the procedure.

If an unqualified distinct type name is specified, the database manager
searches the SQL path to resolve the schema name for the distinct type.

For data types that have a length, precision, or scale attribute, you can
specify a value or use a set of empty parentheses.
v Empty parentheses indicate that the database manager ignores the

attribute when determining whether the data types match.
v If you use a specific value for a length, precision, or scale attribute,

the value must exactly match the value that was specified (implicitly
or explicitly) in the CREATE PROCEDURE statement.

v If length, precision, or scale is not explicitly specified, and empty
parentheses are not specified, the default attributes of the data type
are implied. For example:
CHAR CHAR(1)
GRAPHIC GRAPHIC(1)
DECIMAL DECIMAL(5,0)
FLOAT DOUBLE (length of 8)

REVOKE (Function or Procedure Privileges)

Chapter 5. Statements 695

The implicit length must exactly match the value that was specified
(implicitly or explicitly) in the CREATE PROCEDURE statement. For
a complete list of the default lengths of data types, see “CREATE
TABLE” on page 507.

For data types with a subtype or CCSID attribute, specifying the FOR
DATA clause or CCSID clause is optional. Omission of either clause
indicates that the database manager ignores the attribute when
determining whether the data types match. If you specify either clause,
it must match the value that was implicitly or explicitly specified in the
CREATE PROCEDURE statement.

SPECIFIC PROCEDURE specific-name
The specific-name must identify a specific procedure that exists at the
current server.

FROM
Identifies from whom the privileges are revoked.

authorization-name,...
Lists one or more authorization IDs. Do not specify the same
authorization-name more than once.

PUBLIC
Revokes the specified privileges from PUBLIC.

Notes
If you revoke a privilege on a function or procedure, it nullifies any grant of the
privilege on that function or procedure, regardless of who granted it.

Privileges revoked from either an SQL or external function or procedure are
revoked from its associated program (*PGM) or service program (*SRVPGM)
object.

When a function or procedure privilege is revoked, the corresponding system
authorities are revoked. For information on the system authorities that correspond
to SQL privileges see “GRANT (Function or Procedure Privileges)” on page 637.

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword RUN can be used as a synonym for EXECUTE.

Example
Revoke the EXECUTE privilege on procedure CORPDATA.PROCA from PUBLIC.

REVOKE EXECUTE
ON PROCEDURE CORPDATA.PROCA
FROM PUBLIC

REVOKE (Function or Procedure Privileges)

696 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

REVOKE (Package Privileges)
This form of the REVOKE statement removes the privileges on a package.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each package identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the package
– The system authority *EXECUTE on the library containing the package

v Administrative authority

Syntax

�� REVOKE

PRIVILEGES
ALL

,

ALTER
EXECUTE

ON PACKAGE

,

package-name �

�

,

FROM authorization-name
PUBLIC

��

Description
ALL or ALL PRIVILEGES

Revokes one or more package privileges from each authorization-name. The
privileges revoked are those privileges on the identified packages that were
granted to the authorization-names. Note that revoking ALL PRIVILEGES on a
package is not the same as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword revokes the privilege described.

ALTER
Revokes the privilege to use the COMMENT and LABEL statements.

EXECUTE
Revokes the privilege to execute statements in a package.

ON PACKAGE package-name
Identifies the packages from which you are revoking privileges. The
package-name must identify a package that exists at the current server.

FROM
Identifies from whom the privileges are revoked.

REVOKE (Package Privileges)

Chapter 5. Statements 697

authorization-name,...
Lists one or more authorization IDs. Do not specify the same
authorization-name more than once.

PUBLIC
Revokes the specified privileges from PUBLIC.

Notes
If you revoke a privilege on a package, it nullifies any grant of the privilege on
that package, regardless of who granted it.

When a package privilege is revoked, the corresponding system authorities are
revoked. For information on the system authorities that correspond to SQL
privileges see “GRANT (Package Privileges)” on page 644.

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword RUN can be used as a synonym for EXECUTE.
v The keyword PROGRAM can be used as a synonym for PACKAGE.

Example
Revoke the EXECUTE privilege on package CORPDATA.PKGA from PUBLIC.

REVOKE EXECUTE
ON PACKAGE CORPDATA.PKGA
FROM PUBLIC

REVOKE (Package Privileges)

698 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

|

REVOKE (Table Privileges)
This form of the REVOKE statement removes privileges on a table or view.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each table or view identified in the statement:

– Every privilege specified in the statement
– The system authority of *OBJMGT on the table or view
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

Syntax

�� REVOKE

PRIVILEGES
ALL

,

ALTER
DELETE
INDEX
INSERT
REFERENCES

,

(column-name)
SELECT
UPDATE

,

(column-name)

�

�

,
TABLE

ON table-name
view-name

FROM

,

authorization-name
PUBLIC

��

Description
ALL or ALL PRIVILEGES

Revokes one or more privileges from each authorization-name. The privileges
revoked are those privileges on the identified tables and views that were
granted to the authorization-names. Note that revoking ALL PRIVILEGES on a
table or view is not the same as revoking the system authority of *ALL.

If you do not use ALL, you must use one or more of the keywords listed
below. Each keyword revokes the privilege described, but only as it applies to
the tables and views named in the ON clause.

REVOKE (Table Privileges)

Chapter 5. Statements 699

ALTER
Revokes the privilege to use the ALTER TABLE statement on tables. Revokes
the privilege to use the COMMENT and LABEL statements on tables and
views.

DELETE
Revokes the privilege to use the DELETE statement.

INDEX
Revokes the privilege to use the CREATE INDEX statement.

INSERT
Revokes the privilege to use the INSERT statement.

REFERENCES
Revokes the privilege to add a referential constraint in which the table is a
parent.

REFERENCES (column-name,...)
Revokes the privilege to add a referential constraint using the specified
column(s) in the parent key. Each column name must be an unqualified name
that identifies a column in each table identified in the ON clause.

SELECT
Revokes the privilege to use the SELECT or CREATE VIEW statement.

UPDATE
Revokes the privilege to use the UPDATE statement.

UPDATE (column-name,...)
Revokes the privilege to update the specified columns. Each column name
must be an unqualified name that identifies a column in each table identified
in the ON clause.

ON table-name or view-name, ...
Identifies the table or view on which you are revoking the privileges. The
table-name or view-name must identify a table or view that exists at the current
server, but must not identify a global temporary table.

FROM
Identifies from whom the privileges are revoked.

authorization-name,...
Lists one or more authorization IDs. Do not specify the same
authorization-name more than once.

PUBLIC
Revokes the specified privileges from PUBLIC.

Notes

System authorities
Revoking either the INDEX or ALTER privilege, revokes the system authority
*OBJALTER.

When a table or view privilege is revoked, the corresponding system authorities
are revoked, except:
v When revoking authorities to a table or view, *OBJOPR is revoked only when

*ADD, *DLT, *READ, and *UPD have all been revoked.
v When revoking authorities to a view, authorities will not be revoked from any

tables or views referenced in the subselect of the view definition.

REVOKE (Table Privileges)

700 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

If more than one system authority will be revoked with an SQL privilege, and any
one of the authorities cannot be revoked, then a warning occurs and no authorities
will be revoked for that privilege.

For information on the system authorities that correspond to SQL privileges see
“GRANT (Table Privileges)” on page 647.

Multiple Grants
If the same privilege is granted to the same user more than once, revoking that
privilege from that user nullifies all those grants.

If you revoke a privilege, it nullifies any grant of that privilege, regardless of who
granted it.

The only way to revoke the WITH GRANT OPTION is to revoke ALL.

Examples

Example 1
Revoke SELECT privileges on table EMPLOYEE from user PULASKI.

REVOKE SELECT
ON EMPLOYEE
FROM PULASKI

Example 2
Revoke update privileges on table EMPLOYEE, previously granted to all local
users. Note that grants to specific users are not affected.

REVOKE UPDATE
ON EMPLOYEE
FROM PUBLIC

Example 3
Revoke all privileges on table EMPLOYEE, from users KWAN and THOMPSON.

REVOKE ALL
ON EMPLOYEE
FROM KWAN,THOMPSON

Example 4
Revoke the privilege to update column_1 in VIEW1 from FRED.

REVOKE UPDATE(column_1)
ON VIEW1
FROM FRED

REVOKE (Table Privileges)

Chapter 5. Statements 701

ROLLBACK
The ROLLBACK statement can be used to either:
v End a unit of work and back out all the relational database changes that were

made by that unit of work. If relational databases are the only recoverable
resources used by the application process, ROLLBACK also ends the unit of
work.

v Back out only the changes made after a savepoint was set within the unit of
work without ending the unit of work. Rolling back to a savepoint enables
selected changes to be undone.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

ROLLBACK is not allowed in a trigger if the trigger program and the triggering
program are run under the same commitment definition. ROLLBACK is not
allowed in an external procedure if the external procedure and the program that
issued the CALL statement run under the same commitment definition.

Authorization
None required.

Syntax

��
WORK

ROLLBACK
HOLD
TO SAVEPOINT

savepoint-name

��

Description
When ROLLBACK is used without the SAVEPOINT clause, the unit of work in
which it is executed is ended and a new unit of work is started. All changes made
by ALTER, CALL, COMMENT, CREATE, DECLARE GLOBAL TEMPORARY
TABLE, DELETE, DROP (except for DROP SCHEMA), GRANT, INSERT, LABEL,
RENAME, REVOKE, and UPDATE statements executed during the unit of work
are backed out.

The following statements, however, are not under transaction control and changes
made by them are independent of issuing the ROLLBACK statement:
v CONNECT
v DISCONNECT
v RELEASE CONNECTION
v SET CONNECTION
v SET PATH
v SET SCHEMA

ROLLBACK

702 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

The impact of ROLLBACK or ROLLBACK TO SAVEPOINT on the contents of a
declared global temporary table is determined by the setting of the ON
ROLLBACK clause of the DECLARE GLOBAL TEMPORARY TABLE statement.

WORK
ROLLBACK WORK has the same effect as ROLLBACK.

HOLD
Specifies a hold on resources. If specified, currently open cursors are not closed
and all resources acquired during the unit of work, except locks on the rows of
tables, are held. Locks on specific rows implicitly acquired during the unit of
work, however, are released.

If HOLD is omitted, ROLLBACK without the TO SAVEPOINT clause also
causes the following to occur under this unit of work’s commitment definition:
v Cursors opened under this unit of work’s commitment definition are closed.
v Table locks acquired by the LOCK TABLE statement under this unit of

work’s commitment definition are released.
v All LOB locators, including those that are held, are freed.

At the end of a ROLLBACK HOLD, the cursor position is the same as it was at
the start of the unit of work, unless ALWBLK(*ALLREAD) was specified when
the program or routine that contains the cursor was created

TO SAVEPOINT
Specifies that the unit of work is not to be ended and that only a partial
rollback (to a savepoint) is to be performed. If a savepoint name is not
specified, rollback is to the last active savepoint. For example, if in a unit of
work, savepoints A, B, and C are set in that order and then C is released,
ROLLBACK TO SAVEPOINT causes a rollback to savepoint B.

savepoint-name
Identifies the savepoint to which to roll back. If the named savepoint does
not exist, an error occurs.

After a successful ROLLBACK TO SAVEPOINT, the savepoint continues to
exist.

All database changes (including changes made to declared temporary tables)
that were made after the savepoint was set are backed out. All locks and LOB
locators are retained.

The impact on cursors resulting from a ROLLBACK TO SAVEPOINT depends
on the statements within the savepoint:
v If the savepoint contains DDL on which a cursor is dependent, the cursor is

closed. Attempts to use such a cursor after a ROLLBACK TO SAVEPOINT
results in an error.

v Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it
remains open and positioned).

Any savepoints that are set after the one to which rollback is performed are
released. The savepoint to which rollback is performed is not released.

Notes
The ending of the default activation group causes an implicit rollback. Thus, an
explicit COMMIT or ROLLBACK statement should be issued before the end of the
default activation group.

ROLLBACK

Chapter 5. Statements 703

|
|

|

|
|

|

|
|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

A ROLLBACK is automatically performed when:
1. The default activation group ends without a final COMMIT being issued.]
2. A failure occurs that prevents the activation group from completing its work

(for example, a power failure).
If the unit of work is in the prepared state because a COMMIT was in progress
when the failure occurred, a rollback is not performed. Instead,
resynchronization of all the connections involved in the unit of work will occur.
For more information, see the Commitment control topic.

3. A failure occurs that causes a loss of the connection to a server (for example, a
communications line failure).
If the unit of work is in the prepared state because a COMMIT was in progress
when the failure occurred, a rollback is not performed. Instead,
resynchronization of all the connections involved in the unit of work will occur.
For more information, see the Commitment control topic.

4. A nondefault activation group ends abnormally.

A unit of work may include the processing of up to and including 4 million rows,
including rows retrieved during a SELECT INTO or FETCH statement64, and rows
inserted, deleted, or updated as part of INSERT, DELETE, and UPDATE
operations.65

The commit and rollback operations do not affect the DROP SCHEMA statement,
and this statement is not, therefore, allowed in an application program that also
specifies COMMIT(*CHG), COMMIT(*CS), COMMIT(*ALL), or COMMIT(*RR).

A ROLLBACK statement is not allowed if commitment control is not active for the
activation group. For information on determining which commitment definition is
used, see the commitment definition discussion in the COMMIT statement.

Any cursors associated with a prepared statement that is destroyed cannot be
opened until the statement is prepared again. ROLLBACK has no effect on the
state of connections.

If, within a unit of work, a CLOSE is followed by a ROLLBACK, all changes made
within the unit of work are backed out. The CLOSE itself is not backed out and the
file is not reopened.

Examples

Example 1
See the examples under COMMIT on page 399 for examples using the ROLLBACK
statement.

Example 2
After a unit of recovery started, assume that three savepoints A, B, and C were set
and that C was released:

64. Unless you specified COMMIT(*CHG) or COMMIT(*CS), in which case these rows are not included in this total.

65. This limit also includes:

v Any rows accessed or changed through files opened under commitment control through high-level language file processing

v Any rows deleted, updated, or inserted as a result of a trigger or CASCADE, SET NULL, or SET DEFAULT referential
integrity delete rule.

ROLLBACK

704 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

../rzakj/rzakjcommitkickoff.htm
../rzakj/rzakjcommitkickoff.htm

SAVEPOINT A ON ROLLBACK RETAIN CURSORS;
...
SAVEPOINT B ON ROLLBACK RETAIN CURSORS;
....
SAVEPOINT C ON ROLLBACK RETAIN CURSORS;
...
RELEASE SAVEPOINT C

Roll back all DB2 database changes only to savepoint A:
ROLLBACK WORK TO SAVEPOINT A

If a savepoint name was not specified (that is, ROLLBACK WORK TO
SAVEPOINT), the rollback would be to the last active savepoint that was set,
which is B.

ROLLBACK

Chapter 5. Statements 705

|
|
|
|
|
|
|

|

|

|
|
|

SAVEPOINT
The SAVEPOINT statement sets a savepoint within a unit of work to identify a
point in time within the unit of work to which relational database changes can be
rolled back.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

�� SAVEPOINT savepoint-name
UNIQUE

ON ROLLBACK RETAIN CURSORS �

�

(1)
ON ROLLBACK RETAIN LOCKS

��

Notes:

1 The ROLLBACK options can be specified in any order.

Description
savepoint-name

Identifies a new savepoint.

UNIQUE
Specifies that the application program cannot reuse the savepoint name within
the unit of work. An error occurs if a savepoint with the same name as
savepoint-name already exists within the unit of work.

Omitting UNIQUE indicates that the application can reuse the savepoint name
within the unit of work. If savepoint-name identifies a savepoint that already
exists within the unit of work and the savepoint was not created with the
UNIQUE option, the existing savepoint is destroyed and a new savepoint is
created. Destroying a savepoint to reuse its name for another savepoint is not
the same as releasing the savepoint. Reusing a savepoint name destroys only
one savepoint. Releasing a savepoint with the RELEASE SAVEPOINT
statement releases the savepoint and all savepoints that have been
subsequently set.

ON ROLLBACK RETAIN CURSORS
Specifies that cursors that are opened after the savepoint is set are not closed
upon rollback to the savepoint.
v If the savepoint contains DDL on which a cursor is dependent, the cursor is

closed. Attempts to use such a cursor after a ROLLBACK TO SAVEPOINT
results in an error.

SAVEPOINT

706 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|

|

|
|

|

|

|

|

|||||||||||||||||||
|

|
||||||||||||||||

|

|

||

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

v Otherwise, the cursor is not affected by the ROLLBACK TO SAVEPOINT (it
remains open and positioned).

Although these cursors remain open after rollback to the savepoint, they might
not be usable. For example, if rolling back to the savepoint causes the insertion
of a row on which the cursor is positioned to be rolled back, using the cursor
to update or delete the row results in an error.

ON ROLLBACK RETAIN LOCKS
Specifies that any locks that are acquired after the savepoint is set are not
released on rollback to the savepoint.

Note
In an application, inserts may be buffered. The buffer will be flushed when
SAVEPOINT, ROLLBACK, or RELEASE TO SAVEPOINT statements are issued.

A SAVEPOINT statement is not allowed if commitment control is not active for the
activation group. For information on determining which commitment definition is
used, see “Notes” on page 400.

Example
Assume that you want to set three savepoints at various points in a unit of work.
Name the first savepoint A and allow the savepoint name to be reused. Name the
second savepoint B and do not allow the name to be reused. Because you no
longer need savepoint A when you are ready to set the third savepoint, reuse A as
the name of the savepoint.

SAVEPOINT A ON ROLLBACK RETAIN CURSORS;
.
.
.
SAVEPOINT B UNIQUE ON ROLLBACK RETAIN CURSORS;
.
.
.
SAVEPOINT A ON ROLLBACK RETAIN CURSORS;

SAVEPOINT

Chapter 5. Statements 707

|
|

|
|
|
|

|
|
|

|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

SELECT
The SELECT statement is a form of query. It can be only be issued interactively.
For detailed information, see “select-statement” on page 339 and Chapter 4,
“Queries” on page 323.

SELECT

708 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|

SELECT INTO
The SELECT INTO statement produces a result table consisting of at most one row,
and assigns the values in that row to host variables. If the table is empty, the
statement assigns +100 to SQLCODE and '02000' to SQLSTATE and does not assign
values to the host variables. If more than one row satisfies the search condition,
statement processing is terminated, and an error occurs.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It must not be specified
in REXX.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For each table or view identified in the statement,

– The SELECT privilege on the table or view, and
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

The authorization ID of the statement has the SELECT privilege on a table when:
v It is the owner of the table,
v It has been granted the SELECT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *READ on the table.

The authorization ID of the statement has the SELECT privilege on a view when:
v It is the owner of the view,
v It has been granted the SELECT privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *READ on the view

and the system authority *READ on all tables and views that this view is
directly or indirectly dependent on. That is, all tables and views referenced in
the view definition, and if a view is referenced, all tables and views referenced
in its definition, and so forth.

Syntax

�� select-clause INTO

,

host-variable �

� from-clause
where-clause group-by-clause having-clause

�

SELECT INTO

Chapter 5. Statements 709

�
order-by-clause isolation-clause (1)

fetch-first-clause

��

Notes:

1 Only one row may be specified in the fetch-first-clause.

Description
The result table is derived by evaluating the isolation-clause, from-clause,
where-clause, group-by-clause, having-clause, select-clause, order-by-clause, and
fetch-first-clause, in this order.

See Chapter 4, “Queries” on page 323 for a description of the select-clause,
from-clause, where-clause, group-by-clause, having-clause, order-by-clause,
fetch-first-clause, and isolation-clause.

Note that the grouping, as specified by the group-by-clause, strongly implies a result
table of more than one row, and that a having-clause is probably needed to reduce
the table to at most one row.

INTO host variable,...
Identifies one or more host structures or variables that must be declared in the
program in accordance with the rules for declaring host structures and
variables. In the operational form of the INTO clause, a reference to a host
structure is replaced by a reference to each of its variables. The first value in
the result row is assigned to the first host variable in the list, the second value
to the second host variable, and so on. The data type of each host variable
must be compatible with its corresponding column.

Each assignment to a host variable is performed according to the rules
described in Chapter 2. If the number of variables is less than the number of
values in the row, the SQLWARN3 field of the SQLCA is set to 'W'. Note that
there is no warning if there are more host variables than the number of result
columns. If the value is null, an indicator variable must be provided. If an
assignment error occurs, the value of that host variable and any following host
variables is unpredictable. Any values that have already been assigned to
variables remain assigned.

If any of the following data mapping errors occur, when evaluating a result
column in the select-clause, the result is a null value:
v Characters could not be converted
v Numeric conversion error (underflow or overflow)
v Arithmetic expression error (division by 0)
v Date or timestamp conversion error (a date or timestamp that is not within

the valid range of the dates for the specified format)
v String representation of the datetime value is not valid
v Mixed data not properly formed
v A numeric value is not valid
v Argument of SUBSTR scalar function is out of range

As in any other case of a null value, an indicator variable must be provided.
The value of the host variable is undefined. In this case, however, the indicator

SELECT INTO

710 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|

variable is set to -2. Processing of the statement continues as if the error had
not occurred. (However, this error causes a positive SQLCODE.) If you do not
provide an indicator variable, a negative value is returned in the SQLCODE
field of the SQLCA. The value of the variable or any following variables is
unpredictable. Any values that have already been assigned to variables remain
assigned.

If an error occurs (SQLSTATE 21000) because the result table has more than
one row, values are assigned to all host variables, but the row that is the
source of the values is undefined and not predictable.

Examples

Example 1
Using a COBOL program statement, put the maximum salary (SALARY) from the
EMPLOYEE table into the host variable MAX-SALARY (DECIMAL(9,2)) with
isolation level Read Committed (CS).

EXEC SQL SELECT MAX(SALARY)
INTO :MAX-SALARY
FROM EMPLOYEE WITH CS

END-EXEC.

Example 2
Using a Java program statement, select the row from the EMPLOYEE table on the
connection context ’ctx’ with a employee number (EMPNO) value the same as that
stored in the host variable HOST_EMP (java.lang.String). Then put the last name
(LASTNAME) and education level (EDLEVEL) from that row into the host
variables HOST_NAME (String) and HOST_EDUCATE (Integer).

#sql [ctx] { SELECT LASTNAME, EDLEVEL
INTO :HOST_NAME, :HOST_EDUCATE
FROM EMPLOYEE
WHERE EMPNO = :HOST_EMP };

SELECT INTO

Chapter 5. Statements 711

|
|
|

|
|
|
|
|

|
|
|
|

|

SET CONNECTION
The SET CONNECTION statement establishes the current server of the activation
group by identifying one of its existing connections.

Invocation
This statement can only be embedded within an application program or issued
interactively. It is an executable statement that cannot be dynamically prepared. It
must not be specified in Java or REXX.

SET CONNECTION is not allowed in a trigger. SET CONNECTION is not allowed
in an external procedure if the external procedure is called on a remote server.

Authorization
None required.

Syntax

�� SET CONNECTION server-name
host-variable

��

Description
server-name or host-variable

Identifies the connection by the specified server name or the server name
contained in the host variable. If a host variable is specified:
v It must be a character-string variable.
v It must not be followed by an indicator variable.
v The server name must be left-justified within the host variable and must

conform to the rules for forming an ordinary identifier.
v If the length of the server name is less than the length of the host variable, it

must be padded on the right with blanks.

Let S denote the specified server name or the server name contained in the host
variable. S must identify an existing connection of the application process. If S
identifies the current connection, the state of S and all other connections of the
application process are unchanged, but information about S is placed in the
SQLERRP field of the SQLCA. The following rules apply when S identifies a
dormant connection.

If the SET CONNECTION statement is successful:
v Connection S is placed in the current state.
v S is placed in the CURRENT SERVER special register.
v Information about server S is placed in the SQLERRP field of the SQLCA. If the

server is an IBM relational database product, the information has the form
pppvvrrm, where:
– ppp identifies the product as follows:

ARI for DB2 for VSE and VM
DSN for DB2 UDB for OS/390 and z/OS
QSQ for DB2 UDB for iSeries
SQL for all other DB2 products

SET CONNECTION

712 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

– vv is a two-digit version identifier such as '04'
– rr is a two-digit release identifier such as '01'
– m is a one-digit modification level such as '0'

For example, if the server is Version 4 of DB2 UDB for OS/390 and z/OS, the
value of SQLERRP is 'DSN04010'.

v Additional information about the connection is placed in the SQLERRD(4) field
of the SQLCA. SQLERRD(4) will contain values indicating whether the server
allows commitable updates to be performed. Following is a list of values and
their meanings for the SQLERRD(4) field of the SQLCA on the CONNECT :
– 1 - commitable updates can be performed and either the connection uses an

unprotected conversation, is a connection established to an application
requester driver program using a CONNECT (Type 1) statement, or is a local
connection established using a CONNECT (Type 1) statement.

– 2 - No commitable updates can be performed; conversation is unprotected.
– 3 - It is unknown if commitable updates can be performed; conversation is

protected.
– 4 - It is unknown if commitable updates can be performed; conversation is

unprotected.
– 5 - It is unknown if commitable updates can be performed and the

connection is either a local connection established using a CONNECT (Type
2) statement or a connection to an application requester driver program
established using a CONNECT (Type 2) statement.

v Additional information about the connection is placed in the SQLERRMC field
of the SQLCA. Refer to Appendix B, ″SQL Communication Area″ for a
description of the information in the SQLERRMC field.

v Any previously current connection is placed in the dormant state.

If the SET CONNECTION statement is unsuccessful, the connection state of the
activation group and the states of its connections are unchanged.

Notes
When a connection is used, made dormant, and then restored to the current state
in the same unit of work, the status of locks, cursors, and prepared statements for
that connection reflects its last use by the activation group.

A SET CONNECTION to a local connection will fail if the current independent
auxiliary Storage pool (IASP) name space does not match the local connection’s
relational database.

Example
Execute SQL statements at TOROLAB1, execute SQL statements at TOROLAB2,
and then execute more SQL statements at TOROLAB1.

EXEC SQL CONNECT TO TOROLAB1;

(Execute statements referencing objects at TOROLAB1)

EXEC SQL CONNECT TO TOROLAB2;

(Execute statements referencing objects at TOROLAB2)

SET CONNECTION

Chapter 5. Statements 713

|
|
|

EXEC SQL SET CONNECTION TOROLAB1;

(Execute statements referencing objects at TOROLAB1)

The first CONNECT statement creates the TOROLAB1 connection, the second
CONNECT statement places it in the dormant state, and the SET CONNECTION
statement returns it to the current state.

SET CONNECTION

714 DB2 UDB for iSeries SQL Reference V5R2

SET OPTION
The SET OPTION statement establishes the processing options to be used for SQL
statements.

Invocation
This statement can be used in a REXX procedure or embedded in an application
program. If used in a REXX procedure, it is an executable statement. If embedded
in an application program, it is not executable and must precede any other SQL
statements. This statement cannot be dynamically prepared.

Authorization
None required.

Syntax

�� SET OPTION

,

ALWBLK = alwblk-option
ALWCPYDTA = alwcpydta-option
CLOSQLCSR = closqlcsr-option
CNULRQD = cnulrqd-option
COMMIT = commit-option
DATFMT = datfmt-option
DATSEP = datsep-option
DBGVIEW = dbgview-option
DECMPT = decmpt-option
DFTRDBCOL = dftrdbcol-option
DLYPRP = dlyprp-option
DYNDFTCOL = dyndftcol-option
DYNUSRPRF = dynusrprf-option
EVENTF = eventf-option
LANGID = langid-option
NAMING = naming-option
OPTLOB = optlob-option
OUTPUT = output-option
RDBCNNMTH = rdbcnnmth-option
SQLCURRULE = sqlcurrule-option
SQLPATH = sqlpath-option
SRTSEQ = srtseq-option
TGTRLS = tgtrls-option
TIMFMT = timfmt-option
TIMSEP = timsep-option
USRPRF = usrprf-option

��

alwblk-option:

*READ
*NONE
*ALLREAD

SET OPTION

Chapter 5. Statements 715

||

alwcpydta-option:

*YES
*NO
*OPTIMIZE

closqlcsr-option:

*ENDACTGRP
*ENDMOD
*ENDPGM
*ENDSQL
*ENDJOB

cnulrqd-option:

*YES
*NO

commit-option:

*CHG
*NONE
*CS
*ALL
*RR

datfmt-option:

*JOB
*ISO
*EUR
*USA
*JIS
*MDY
*DMY
*YMD
*JUL

datsep-option:

*JOB
*SLASH
’/’
*PERIOD
’.’
*COMMA
’,’
*DASH
’-’
*BLANK
’ ’

SET OPTION

716 DB2 UDB for iSeries SQL Reference V5R2

decmpt-option:

*PERIOD
*COMMA
*SYSVAL
*JOB

dbgview-option:

*NONE
*SOURCE
*STMT
*LIST

dftrdbcol-option:

*NONE
schema-name

dlyprp-option:

*YES
*NO

dyndftcol-option:

*YES
*NO

dynusrprf-option:

*OWNER
*USER

eventf-option:

*YES
*NO

langid-option:

*JOB
*JOBRUN
language-ID

naming-option:

*SYS
*SQL

SET OPTION

Chapter 5. Statements 717

|

optlob-option:

*YES
*NO

output-option:

*NONE
*PRINT

rdbcnnmth-option:

*DUW
*RUW

sqlcurrule-option:

*DB2
*STD

sqlpath-option:

*LIBL
path-string-constant

srtseq-option:

*JOB
*HEX
*JOBRUN
*LANGIDUNQ
*LANGIDSHR

*LIBL/
srtseq-table-name

*CURLIB/
library-name/

tgtrls-option:

VxRxMx

timfmt-option:

*HMS
*ISO
*EUR
*USA
*JIS

SET OPTION

718 DB2 UDB for iSeries SQL Reference V5R2

timsep-option:

*JOB
*COLON
’:’
*PERIOD
’.’
*COMMA
’,’
*BLANK
’ ’

usrprf-option:

*OWNER
*USER
*NAMING

Description
ALWBLK

Specifies whether the database manager can use row blocking and the extent to
which blocking can be used for read-only cursors. This option will be ignored
in REXX.

*ALLREAD
Rows are blocked for read-only cursors if COMMIT is *NONE or *CHG.
All cursors in a program that are not explicitly able to be updated are
opened for read-only processing even though EXECUTE or EXECUTE
IMMEDIATE statements may be in the program.

Specifying *ALLREAD:
v Allows row blocking under commitment control level *CHG in addition

to the blocking allowed for *READ.
v Can improve the performance of almost all read-only cursors in

programs, but limits queries in the following ways:
– The Rollback (ROLLBACK) command, a ROLLBACK statement in

host languages, or the ROLLBACK HOLD SQL statement does not
reposition a read-only cursor when *ALLREAD is specified.

– Dynamic running of a positioned UPDATE or DELETE statement (for
example, using EXECUTE IMMEDIATE), cannot be used to update a
row in a cursor unless the DECLARE statement for the cursor
includes the FOR UPDATE clause.

*NONE
Rows are not blocked for retrieval of data for cursors.

Specifying *NONE:
v Guarantees that the data retrieved is current.
v May reduce the amount of time required to retrieve the first row of data

for a query.
v Stops the database manager from retrieving a block of data rows that is

not used by the program when only the first few rows of a query are
retrieved before the query is closed.

SET OPTION

Chapter 5. Statements 719

v Can degrade the overall performance of a query that retrieves a large
number of rows.

*READ
Rows are blocked for read-only retrieval of data for cursors when:
v *NONE is specified on the COMMIT parameter, which indicates that

commitment control is not used.
v The cursor is declared with a FOR READ ONLY clause or there are no

dynamic statements that could run a positioned UPDATE or DELETE
statement for the cursor.

Specifying *READ can improve the overall performance of queries that
meet the above conditions and retrieve a large number of rows.

ALWCPYDTA
Specifies whether a copy of the data can be used in a SELECT statement. This
option will be ignored in REXX.

*OPTIMIZE
The system determines whether to use the data retrieved directly from the
database or to use a copy of the data. The decision is based on which
method provides the best performance. If COMMIT is *CHG or *CS and
ALWBLK in not *ALLREAD, or if COMMIT is *ALL or *RR, then a copy of
the data is used only when it is necessary to run a query.

*YES
A copy of the data is used only when necessary.

*NO
A copy of the data is not allowed. If a temporary copy of the data is
required to perform the query, an error message is returned.

CLOSQLCSR
Specifies when SQL cursors are implicitly closed, SQL prepared statements are
implicitly discarded, and LOCK TABLE locks are released. SQL cursors are
explicitly closed when you issue the CLOSE, COMMIT, or ROLLBACK
(without HOLD) SQL statements. This option will be ignored in REXX.
*ENDACTGRP and *ENDMOD are for use by ILE programs and modules.
*ENDPGM, *ENDSQL, and *ENDJOB are for use by non-ILE programs.

This option is not allowed in an SQL function, SQL procedure, or SQL trigger.

*ENDACTGRP
SQL cursors are closed, SQL prepared statements are implicitly discarded,
and LOCK TABLE locks are released when the activation group ends.

*ENDMOD
SQL cursors are closed and SQL prepared statements are implicitly
discarded when the module is exited. LOCK TABLE locks are released
when the first SQL program on the call stack ends.

*ENDPGM
SQL cursors are closed and SQL prepared statements are discarded when
the program ends. LOCK TABLE locks are released when the first SQL
program on the call stack ends.

*ENDSQL
SQL cursors remain open between calls and can be fetched without
running another SQL OPEN. One of the programs higher on the call stack
must have run at least one SQL statement. SQL cursors are closed, SQL
prepared statements are discarded, and LOCK TABLE locks are released

SET OPTION

720 DB2 UDB for iSeries SQL Reference V5R2

when the first SQL program on the call stack ends. If *ENDSQL is specified
for a program that is the first SQL program called (the first SQL program
on the call stack), the program is treated as if *ENDPGM was specified.

*ENDJOB
SQL cursors remain open between calls and can be fetched without
running another SQL OPEN. The programs higher on the call stack do not
need to have run SQL statements. SQL cursors are left open, SQL prepared
statements are preserved, and LOCK TABLE locks are held when the first
SQL program on the call stack ends. SQL cursors are closed, SQL prepared
statements are discarded, and LOCK TABLE locks are released when the
job ends.

CNULRQD
Specifies whether a NUL-terminator is returned for character and graphic host
variables. This option will only be used for SQL statements in C and C++
programs.

This option is not allowed in an SQL function, SQL procedure, or SQL trigger.

*YES
Output character and graphic host variables always contain the
NUL-terminator. If there is not enough space for the NUL-terminator, the
data is truncated and the NUL-terminator is added. Input character and
graphic host variables require a NUL-terminator.

*NO
For output character and graphic host variables, the NUL-terminator is not
returned when the host variable is exactly the same length as the data.
Input character and graphic host variables do not require a
NUL-terminator.

COMMIT
Specifies the isolation level to be used. In REXX, files that are referred to in the
source are not affected by this option. Only tables, views, and packages
referred to in SQL statements are affected. For more information about
isolation levels, see “Isolation Level” on page 21

*CHG
Specifies the isolation level of Uncommitted Read.

*NONE
Specifies the isolation level of No Commit. If the DROP SCHEMA
statement is included in a REXX procedure, *NONE must be used.

*CS
Specifies the isolation level of Cursor Stability.

*ALL
Specifies the isolation level of Read Stability.

*RR
Specifies the isolation level of Repeatable Read.

DATFMT
Specifies the format used when accessing date result columns. All output date
fields are returned in the specified format. For input date strings, the specified
value is used to determine whether the date is specified in a valid format.

Note: An input date string that uses the format *USA, *ISO, *EUR, or *JIS is
always valid.

SET OPTION

Chapter 5. Statements 721

*JOB:
The format specified for the job is used. Use the Display Job (DSPJOB)
command to determine the current date format for the job.

*ISO
The International Organization for Standardization (ISO) date format
(yyyy-mm-dd) is used.

*EUR
The European date format (dd.mm.yyyy) is used.

*USA
The United States date format (mm/dd/yyyy) is used.

*JIS
The Japanese Industrial Standard date format (yyyy-mm-dd) is used.

*MDY
The date format (mm/dd/yy) is used.

*DMY
The date format (dd/mm/yy) is used.

*YMD
The date format (yy/mm/dd) is used.

*JUL
The Julian date format (yy/ddd) is used.

DATSEP
Specifies the separator used when accessing date result columns.

Note: This parameter applies only when *JOB, *MDY, *DMY, *YMD, or *JUL is
specified on the DATFMT parameter.

*JOB
The date separator specified for the job is used. Use the Display Job
(DSPJOB) command to determine the current value for the job.

*SLASH or ’/’
A slash (/) is used.

*PERIOD or ’.’
A period (.) is used.

*COMMA or ’,’
A comma (,) is used.

*DASH or ’-’
A dash (-) is used.

*BLANK or ’ ’
A blank () is used.

DBGVIEW
Specifies the type of debug information to be provided by the compiler. The
DBGVIEW parameter can only be specified in the body of SQL functions,
procedures, and triggers. The possible choices are:

*NONE
A debug view will not be generated.

*SOURCE
Allows the compiled module object to be debugged using SQL statement
source.

SET OPTION

722 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

*STMT
Allows the compiled module object to be debugged using program
statement numbers and symbolic identifiers.

*LIST
Generates the listing view for debugging the compiled module object.

DECMPT
Specifies the symbol that you want to represent the decimal point. The possible
choices are:

*PERIOD
The representation for the decimal point is a period.

*COMMA
The representation for the decimal point is a comma.

*SYSVAL
The representation for the decimal point is the system value (QDECFMT).

*JOB
The representation for the decimal point is the job value (DECFMT).

DFTRDBCOL
Specifies the schema name used for the unqualified names of tables, views,
indexes, and SQL packages. This parameter applies only to static SQL
statements. This option will be ignored in REXX.

This option is not allowed in an SQL function, SQL procedure, or SQL trigger.

*NONE
The naming convention specified on the OPTION precompile parameter or
by the SET OPTION NAMING option will be used.

schema-name
Specify the name of the schema. This value is used instead of the naming
convention specified on the OPTION precompile parameter or by the SET
OPTION NAMING option.

DLYPRP
Specifies whether the dynamic statement validation for a PREPARE statement
is delayed until an OPEN, EXECUTE, or DESCRIBE statement is run. Delaying
validation improves performance by eliminating redundant validation. This
option will be ignored in REXX.

*NO
Dynamic statement validation is not delayed. When the dynamic statement
is prepared, the access plan is validated. When the dynamic statement is
used in an OPEN or EXECUTE statement, the access plan is revalidated.
Because the authority or the existence of objects referred to by the dynamic
statement may change, you must still check the SQLCODE or SQLSTATE
after issuing the OPEN or EXECUTE statement to ensure that the dynamic
statement is still valid.

*YES
Dynamic statement validation is delayed until the dynamic statement is
used in an OPEN, EXECUTE, or DESCRIBE SQL statement. When the
dynamic statement is used, the validation is completed and an access plan
is built. If you specify *YES, you should check the SQLCODE and
SQLSTATE after running an OPEN, EXECUTE, or DESCRIBE statement to
ensure that the dynamic statement is valid.

SET OPTION

Chapter 5. Statements 723

Note: If you specify *YES, performance is not improved if the INTO clause
is used on the PREPARE statement or if a DESCRIBE statement uses
the dynamic statement before an OPEN is issued for the statement.

DYNDFTCOL
Specifies the schema name specified for the DFTRDBCOL parameter is also
used for dynamic statements. This option will be ignored in REXX.

This option is not allowed in an SQL function, SQL procedure, or SQL trigger.

*NO
Do not use the value specified for DFTRDBCOL for unqualified names of
tables, views, indexes, and SQL packages for dynamic SQL statements. The
naming convention specified on the OPTION precompile parameter or by
the SET OPTION NAMING option will be used.

*YES
The schema name specified for DFTRDBCOL will be used for the
unqualified names of the tables, views, indexes, and SQL packages in
dynamic SQL statements.

DYNUSRPRF
Specifies the user profile to be used for dynamic SQL statements. This option
will be ignored in REXX.

*USER
Local dynamic SQL statements are run under the user profile of the job.
Distributed dynamic SQL statements are run under the user profile of the
server job.

*OWNER
Local dynamic SQL statements are run under the user profile of the
program’s owner. Distributed dynamic SQL statements are run under the
user profile of the SQL package’s owner.

EVENTF
Specifies whether an event file will be generated. CoOperative Development
Environment/400 (CODE/400) uses the event file to provide error feedback
integrated with the CODE/400 editor.

*YES
The compiler produces an event file for use by CoOperative Development
Environment/400 (CODE/400).

*NO
The compiler will not produce an event file for use by CoOperative
Development Environment/400 (CODE/400).

LANGID
Specifies the language identifier to be used when SRTSEQ(*LANGIDUNQ) or
SRTSEQ(*LANGIDSHR) is specified.

*JOB or *JOBRUN
The LANGID value for the job is used.

For distributed applications, LANGID(*JOBRUN) is valid only when
SRTSEQ(*JOBRUN) is also specified.

language-id
Specify a language identifier to be used. For information on the values that
can be used for the language identifier, see the Language identifier topic in
the iSeries Information Center.

SET OPTION

724 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|

|
|
|

../nls/rbagslangcntrycodeids.htm

NAMING
Specifies whether the SQL naming convention or the system naming
convention is to be used. This option is not allowed in an SQL function, SQL
procedure, or SQL trigger.

The possible choices are:

*SYS
The system naming convention will be used.

*SQL
The SQL naming convention will be used.

OPTLOB
Specifies whether accesses to LOBs can be optimized when accessing through
DRDA. The possible choices are:

*YES
LOB accesses should be optimized. The first FETCH for a cursor
determines how the cursor will be used for LOBs on all subsequent
FETCHes. This option remains in effect until the cursor is closed.

If the first FETCH uses a LOB locator to access a LOB column, no
subsequent FETCH for that cursor can fetch that LOB column into a LOB
host variable.

If the first FETCH places the LOB column into a LOB host variable, no
subsequent FETCH for that cursor can use a LOB locator for that column.

*NO
LOB accesses should not be optimized. There is no restriction on whether a
column is retrieved into a LOB locator or into a LOB host variable. This
option can cause performance to degrade.

OUTPUT
Specifies whether the precompiler and compiler listings are generated. The
OUTPUT parameter can only be specified in the body of SQL functions,
procedures, and triggers. The possible choices are:

*NONE
The precompiler and compiler listings are not generated.

*PRINT
The precompiler and compiler listings are generated.

RDBCNNMTH
Specifies the semantics used for CONNECT statements. This option will be
ignored in REXX.

*DUW
CONNECT (Type 2) semantics are used to support distributed unit of
work. Consecutive CONNECT statements to additional relational databases
do not result in disconnection of previous connections.

*RUW
CONNECT (Type 1) semantics are used to support remote unit of work.
Consecutive CONNECT statements result in the previous connection being
disconnected before a new connection is established.

SQLCURRULE
Specifies the semantics used for SQL statements.

SET OPTION

Chapter 5. Statements 725

*DB2
The semantics of all SQL statements will default to the rules established for
DB2. The following semantics are controlled by this option:
v Hexadecimal constants are treated as character data.

*STD
The semantics of all SQL statements will default to the rules established by
the ISO and ANSI SQL standards. The following semantics are controlled
by this option:
v Hexadecimal constants are treated as binary data.

SQLPATH
Specifies the path to be used to find procedures, functions, and user defined
types in static SQL statements. This option will be ignored in REXX.

*LIBL
The path used is the library list at runtime.

character-string
A character constant with one or more schema names that are separated by
commas.

SRTSEQ
Specifies the sort sequence table to be used for string comparisons in SQL
statements.

Note: *HEX must be specified if a REXX procedure connects to a server that is
not a DB2 UDB for iSeries or an iSeries system whose release level is
prior to V2R3M0.

*JOB or *JOBRUN
The SRTSEQ value for the job is used.

*HEX
A sort sequence table is not used. The hexadecimal values of the characters
are used to determine the sort sequence.

*LANGIDUNQ
The sort sequence table must contain a unique weight for each character in
the code page.

*LANGIDSHR
The shared-weight sort table for the LANGID specified is used.

srtseq-table-name
Specify the name of the sort sequence table to be used with this program.
The name of the sort sequence table can be qualified by one of the
following library values:

*LIBL
All libraries in the user and system portions of the job’s library list are
searched until the first match is found.

*CURLIB
The current library for the job is searched. If no library is specified as
the current library for the job, the QGPL library is used.

library-name
Specify the name of the library to be searched.

TGTRLS
Specifies the release of the operating system on which the user intends to use

SET OPTION

726 DB2 UDB for iSeries SQL Reference V5R2

the object being created. The TGTRLS parameter can only be specified in the
body of SQL functions, procedures, and triggers. The possible choices are:

VxRxMx
Specify the release in the format VxRxMx, where Vx is the version, Rx is
the release, and Mx is the modification level. For example, V5R1M0 is
version 5, release 1, modification level 0. The object can be used on a
system with the specified release or with any subsequent release of the
operating system installed.

Valid values depend on the current version, release, and modification level,
and they change with each new release. If you specify a release-level which
is earlier than the earliest release level supported by the database manager,
an error message is sent indicating the earliest supported release.

The TGTRLS option can only be specified for SQL functions, SQL procedures,
and triggers.

TIMFMT
Specifies the format used when accessing time result columns. All output time
fields are returned in the specified format. For input time strings, the specified
value is used to determine whether the time is specified in a valid format.

Note: An input time string that uses the format *USA, *ISO, *EUR, or *JIS is
always valid.

*HMS
The (hh:mm:ss) format is used.

*ISO
The International Organization for Standardization (ISO) time format
(hh.mm.ss) is used.

*EUR
The European time format (hh.mm.ss) is used.

*USA
The United States time format (hh:mm xx) is used, where xx is AM or PM.

*JIS
The Japanese Industrial Standard time format (hh:mm:ss) is used.

TIMSEP
Specifies the separator used when accessing time result columns.

Note: This parameter applies only when *HMS is specified on the TIMFMT
parameter.

*JOB
The time separator specified for the job is used. Use the Display Job
(DSPJOB) command to determine the current value for the job.

*COLON or ’:’
A colon (:) is used.

*PERIOD or ’.’
A period (.) is used.

*COMMA or ’,’
A comma (,) is used.

*BLANK or ’ ’
A blank () is used.

SET OPTION

Chapter 5. Statements 727

USRPRF
Specifies the user profile that is used when the compiled program object is run,
including the authority that the program object has for each object in static
SQL statements. The profile of either the program owner or the program user
is used to control which objects can be used by the program object. This option
will be ignored in REXX.

*NAMING
The user profile is determined by the naming convention. If the naming
convention is *SQL, USRPRF(*OWNER) is used. If the naming convention
is *SYS, USRPRF(*USER) is used.

*USER
The profile of the user running the program object is used.

*OWNER
The user profiles of both the program owner and the program user are
used when the program is run.

Notes
At the start of a REXX procedure the options are set to their default value. The
default value for each option is the first value listed in the syntax diagram. When
an option is changed by a SET OPTION statement, the new value will stay in
effect until the option is changed again or the REXX procedure ends.

For application programs, the processing options are initially set to the values
specified on the CRTSQLxxx command. Each option is updated as it is
encountered within a SET OPTION statement. All SET OPTION statements must
precede any other embedded SQL statements.

Keyword Synonym: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v *UR can be used as a synonym for *CHG.
v *NC can be used as a synonym for *NONE.
v *RS can be used as a synonym for *ALL.

Examples
Example 1: Set the isolation level to *ALL and the naming mode to SQL names.

EXEC SQL SET OPTION COMMIT =*ALL, NAMING =*SQL

Example 2: Set the date format to European, the isolation level to *CS, and the
decimal point to the comma.

EXEC SQL SET OPTION DATFMT = *EUR, COMMIT = *CS, DECMPT = *COMMA

SET OPTION

728 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|

|

|

SET PATH
The SET PATH statement changes the value of the CURRENT PATH special
register.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��

FUNCTION
CURRENT

SET PATH
CURRENT_PATH

=
�

�

,

schema-name
SYSTEM PATH
USER

FUNCTION
CURRENT

PATH
CURRENT_PATH

host-variable
string-constant

*LIBL

��

Description
The value of the CURRENT PATH special register is replaced by the values
specified.

schema-name
Identifies a schema. No validation that the schema exists is made at the time
the path is set.

SYSTEM PATH
This value is the same as specifying the schema names ″QSYS″,″QSYS2″.

USER
This value is the USER special register.

CURRENT PATH
The value of the CURRENT PATH special register before the execution of this
statement.

host-variable
A host variable which contains one or more schema names, separated by
commas.

The host variable:
v Must be a character-string variable.

SET PATH

Chapter 5. Statements 729

v Must not be followed by an indicator variable.
v Must include a schema that is left justified and must conform to the rules for

forming an ordinary identifier.
v Must be padded on the right with blanks.
v Must not be the null value.

string-constant
A character constant with 1 or more schema names that are separated by
commas.

Notes
A schema name must not appear more than once in the path.

The SET PATH statement is not a commitable operation. ROLLBACK has no effect
on the CURRENT PATH.

The number of schemas that can be specified is limited by the total length of the
CURRENT PATH special register. The special register string is built by taking each
schema name specified and removing trailing blanks, delimiting with double
quotes, and separating each schema name by a comma. An error is returned if the
length of the resulting string exceeds 3483 bytes. A maximum of 268 schema names
can be represented in the path.

The initial value of the CURRENT PATH special register is *LIBL if system naming
was used for the first SQL statement run in the activation group. The initial value
is ″QSYS″,″QSYS2″, ″X″ (where X is the value of the USER special register) if SQL
naming was used for the first SQL statement.

The schemas QSYS and QSYS2 do not need to be specified. If not included in the
path, they are implicitly assumed as the first schemas (in this case, it is not
included in the CURRENT PATH special register.

The CURRENT PATH special register is used to resolve user-defined distinct types
and functions in dynamic SQL statements. For more information see “Schemas and
the SQL Path” on page 55.

Example
The following statement sets the CURRENT PATH special register.

SET PATH = FUNC_XYZ, "NewFun98", QSYS2

SET PATH

730 DB2 UDB for iSeries SQL Reference V5R2

SET RESULT SETS
The SET RESULT SETS statement identifies one or more result sets that can be
returned from an external procedure when the procedure is called by a iSeries
Access client, the SQL Call Level Interface, or when accessed from a remote system
using DRDA.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared. It is not allowed in a
Java or REXX procedure.

Authorization
None required.

Syntax

�� SET RESULT SETS �

�

,

ARRAY host-structure-array FOR host-variable ROWS
CURSOR cursor-name

NONE

��

Description
CURSOR cursor-name

Identifies a cursor to be used to define a result set that can be returned from a
procedure. The cursor-name must identify a declared cursor as explained in
“Description” on page 559 for the DECLARE CURSOR statement. When the
SET RESULT SETS statement is executed, the cursor must be in the open state.

ARRAY host-structure-array
host-structure-array identifies an array of host structures defined in accordance
with the rules for declaring host structures. The array cannot contain a C
NUL-terminated host variable.

The first structure in the array corresponds to the first row of the result set, the
second structure in the array corresponds to the second row of the result set,
and so on. In addition, the first value in the row corresponds to the first item
in the structure, the second value in the row corresponds to the second item in
the structure, and so on.

LOBs cannot be returned in an array when using DRDA.

Only one array can be specified in a SET RESULT SETS statement.

FOR host-variable ROWS
Specifies the number of rows in the result set. The host-variable must be a
numeric host variable with zero scale, and it must not include an indicator
variable. The number of rows specified must be in the range of 0 to 32767 and
must be less than or equal to the dimension of the host structure array.

SET RESULT SETS

Chapter 5. Statements 731

|
|
|

NONE
Specifies that no result sets will be returned. Cursors left open when the
procedure ends will not be returned.

Notes
Result sets are only returned from a procedure when the procedure is called from a
client using the iSeries Access Open Database Connectivity (ODBC) driver, a client
using the iSeries Access Optimized SQL API, from the SQL Call Level Interface, or
from JDBC. Result sets are also returned whenever a non-iSeries client accesses the
iSeries as a server using a Distributed Relational Database Architecture (DRDA)
connection.

External procedures: There are three ways to return result sets from an external
procedure:
v If a SET RESULT SETS statement is executed in the procedure, the SET RESULT

SETS statement identifies the result sets. The result sets are returned in the order
specified on the SET RESULT SETS statement.

v If a SET RESULT SETS statement is not executed in the procedure,
– If no cursors have specified a WITH RETURN clause, each cursor that the

procedure opens and leaves open when it returns identifies a result set. The
result sets are returned in the order in which the cursors are opened.

– If any cursors have specified a WITH RETURN clause, each cursor that is
defined with the WITH RETURN clause that the procedure opens and leaves
open when it returns identifies a result set. The result sets are returned in the
order in which the cursors are opened.

When a result set is returned using an open cursor, the rows are returned starting
with the current cursor position.

The RESULT SETS clause should be specified on the CREATE PROCEDURE
(External) statement or DECLARE PROCEDURE statement to return result sets
from a procedure. The maximum number of result sets returned cannot be larger
than the number specified on the CREATE PROCEDURE (External) statement or
DECLARE PROCEDURE statement.

SQL procedures: In order to return result sets from an SQL procedure, the
procedure must be created with the RESULT SETS clause. Each cursor that is
defined with the WITH RETURN clause that the procedure opens and leaves open
when it returns identifies a result set.
v If a SET RESULT SETS statement is executed in the procedure, the SET RESULT

SETS statement identifies which of these result sets to return. The result sets are
returned in the order specified on the SET RESULT SETS statement.

v If a SET RESULT SETS statement is not executed in the procedure the result sets
are returned in the order in which the cursors are opened.

When a result set is returned using an open cursor, the rows are returned starting
with the current cursor position.

The RESULT SETS clause must be specified on the CREATE PROCEDURE (SQL)
statement to return any result sets from an SQL procedure. The maximum number
of result sets returned cannot be larger than the number specified on the CREATE
PROCEDURE statement.

SET RESULT SETS

732 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

Example
The following SET RESULT SETS statement specifies cursor X as the result set that
will be returned when the procedure is called. For more information and complete
examples showing the use of result sets from ODBC clients, see the iSeries Access
category in the iSeries Information Center.

EXEC SQL SET RESULT SETS CURSOR X;

SET RESULT SETS

Chapter 5. Statements 733

../rzahgicia.htm

SET SCHEMA
The SET SCHEMA statement changes the value of the CURRENT SCHEMA special
register.

Invocation
This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorization
No authorization is required to execute this statement.

Syntax

��
CURRENT

SET SCHEMA
=

schema-name
USER
host-variable
string-constant
DEFAULT

��

Description
The value of the CURRENT SCHEMA special register is replaced by the value
specified.

schema-name
Identifies a schema. No validation that the schema exists is made at the time
the CURRENT SCHEMA is set.

USER
This value is the USER special register.

host-variable
A host variable which contains a schema name.

The host variable:
v Must be a character-string variable.
v Must not be followed by an indicator variable.
v Must include a schema that is left justified and must conform to the rules for

forming an ordinary identifier.
v Must be padded on the right with blanks.
v Must not be the null value.

string-constant
A character constant with a schema name.

DEFAULT
The CURRENT SCHEMA is set to its initial value. The initial value for SQL
naming is USER. The initial value for system naming is *LIBL.

Notes
The value of the CURRENT SCHEMA special register is used as the qualifier for
all unqualified names in all dynamic SQL statements except in programs where the

SET SCHEMA

734 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

|

|
|

|

|

|

|

|||||||||||||||||||||||||||||||||||||||

|

|

|
|

|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|

|
|
|

|

|
|

DYNDFTCOL has been specified. If DYNDFTCOL is specified in a program, its
schema name is used instead of the CURRENT SCHEMA schema name.

The SET SCHEMA statement is not a commitable operation. ROLLBACK has no
effect on the CURRENT SCHEMA.

For SQL naming, the initial value of the CURRENT SCHEMA special register is
equivalent to USER. For system naming, the initial value of the CURRENT
SCHEMA special register is ’*LIBL’.

Setting the CURRENT SCHEMA special register does not effect the CURRENT
PATH special register. Hence, the CURRENT SCHEMA will not be included in the
SQL path and functions, procedures and distinct type resolution may not find
these objects. To include the current schema value in the SQL path, whenever the
SET SCHEMA statement is issued, also issue the SET PATH statement including
the schema name from the SET SCHEMA statement.

CURRENT SQLID is accepted as a synonym for CURRENT SCHEMA and the
effect of a SET CURRENT SQLID statement will be identical to that of a SET
CURRENT SCHEMA statement. No other effects, such as statement authorization
changes, will occur.

SET SCHEMA in equivalent to calling the QSQCHGDC API.

Examples

Example 1
The following statement sets the CURRENT SCHEMA special register.

SET SCHEMA = RICK

Example 2
The following example retrieves the current value of the CURRENT SCHEMA
special register into the host variable called CURSCHEMA.

EXEC SQL VALUES(CURRENT SCHEMA) INTO :CURSCHEMA

The value would be RICK, set by the previous example.

SET SCHEMA

Chapter 5. Statements 735

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|

|

|
|

|

|
|
|

|

|

SET TRANSACTION
The SET TRANSACTION statement sets the isolation level and read only attribute
for the current unit of work.

Invocation
This statement can be embedded within an application program or issued
interactively. It is an executable statement that can be dynamically prepared.

Authorization
None required.

Syntax

�� SET TRANSACTION

,
SERIALIZABLE (1)

ISOLATION LEVEL NO COMMIT
READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ

READ ONLY
READ WRITE

��

Notes:

1 Only one ISOLATION LEVEL clause and one READ WRITE or READ ONLY
clause may be specified.

Description
ISOLATION LEVEL

Specifies the isolation level of the transaction. If the ISOLATION LEVEL clause
is not specified, ISOLATION LEVEL SERIALIZABLE is implicit

NO COMMIT
Specifies isolation level NC (COMMIT(*NONE)).

READ UNCOMMITTED
Specifies isolation level UR (COMMIT(*CHG)).

READ COMMITTED
Specifies isolation level CS (COMMIT(*CS)).

REPEATABLE READ 66

Specifies isolation level RS (COMMIT(*ALL)).

SERIALIZABLE
Specifies isolation level RR (COMMIT(*RR)).

READ WRITE or READ ONLY
Specifies whether the transaction allows data change operations.

66. REPEATABLE READ is the ISO and ANS standard term that corresponds to the isolation level of *ALL for DB2 UDB for iSeries
and the isolation level of Read Stability (RS) in IBM SQL. SERIALIZABLE is used in the ISO and ANS standard for what IBM
SQL calls Repeatable Read (RR).

SET TRANSACTION

736 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

READ WRITE
Specifies that all SQL operations are allowed. This is the default unless
ISOLATION LEVEL READ UNCOMMITTED is specified.

READ ONLY
Specifies that only SQL operations that do not change SQL data are
allowed. If ISOLATION LEVEL READ UNCOMMITTED is specified, this is
the default.

Notes
The SET TRANSACTION statement sets the isolation level for SQL statements for
the current activation group of the process. If that activation group has
commitment control scoped to the job, then the SET TRANSACTION statement
sets the isolation level of all other activation groups with job commit scoping as
well.

The SET TRANSACTION statement can only be executed when it is the first SQL
statement in a unit of work, unless it is executed in a trigger. In a trigger program,
SET TRANSACTION with READ ONLY is allowed only on a COMMIT boundary.
The SET TRANSACTION statement can be executed in a trigger at any time, but it
is recommended that it be executed as the first statement in the trigger. The SET
TRANSACTION statement is useful within triggers to set the isolation level for
SQL statements in the trigger to the same level as the application which caused the
trigger to be activated.

A SET TRANSACTION statement is not allowed if the current connection is to a
remote server unless it is in a trigger at the current server. Once a SET
TRANSACTION statement is executed, CONNECT and SET CONNECTION
statements are not allowed until the unit of work is committed or rolled back.

The scope of the SET TRANSACTION statement is based on the context in which
it is run. If the SET TRANSACTION statement is run in a trigger, the isolation
level specified applies to all subsequent SQL statements until another SET
TRANSACTION statement occurs or until the trigger completes, whichever
happens first. If the SET TRANSACTION statement is run outside a trigger, the
isolation level specified applies to all subsequent SQL statements (except those
statements within a trigger that are executed after a SET TRANSACTION
statement in the trigger) until a COMMIT or ROLLBACK operation occurs.

The SET TRANSACTION statement has no effect on WITH HOLD cursors that are
still open when the SET TRANSACTION statement is executed.

For more information about isolation levels, see “Isolation Level” on page 21.

Keyword Synonyms
The following keywords are synonyms supported for compatibility to prior
releases. These keywords are non-standard and should not be used:
v The keywords NC or NONE can be used as synonyms for NO COMMIT.
v The keywords UR and CHG can be used as synonyms for READ

UNCOMMITTED.
v The keyword CS can be used as a synonym for READ COMMITTED.
v The keywords RS or ALL can be used as synonyms for REPEATABLE READ.
v The keyword RR can be used as a synonym for SERIALIZABLE.

SET TRANSACTION

Chapter 5. Statements 737

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|

|

|

|

Examples

Example 1
The following SET TRANSACTION statement sets the isolation level to NONE
(equivalent to specifying *NONE on the SQL precompiler command).

EXEC SQL SET TRANSACTION ISOLATION LEVEL NO COMMIT;

Example 2
The following SET TRANSACTION statement sets the isolation level to
SERIALIZABLE.

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

SET TRANSACTION

738 DB2 UDB for iSeries SQL Reference V5R2

SET transition-variable
The SET transition-variable statement assigns values to new transition-variables.

Invocation
This statement can only be used as an SQL statement in a BEFORE trigger. It is an
executable statement that cannot be dynamically prepared.

Authorization
If a row-subselect is specified, see Chapter 4, “Queries” on page 323 for an
explanation of the authorization required for each subselect.

Syntax

Description
transition-variable

Identifies the column to be updated in the new row. A transition-variable must
identify a column in the subject table of a trigger, optionally qualified by a
correlation name that identifies the new value. An OLD transition-variable must
not be identified.

The data type of each transition-variable must be compatible with its
corresponding result column. Values are assigned to transition-variables
according to the assignment rules to a column. For more information see
“Assignments and Comparisons” on page 78.

expression
Specifies the new value of the transition-variable. The expression is any
expression of the type described in “Expressions” on page 125. The expression
cannot include a column function.

An expression may contain references to OLD and NEW transition-variables. If
the CREATE TRIGGER statement contains both OLD and NEW clauses,
references to transition-variables must be qualified by the correlation-name to
specify which transition-variable.

��

,

SET transition-variable = expression
NULL
DEFAULT

, ,
(1)

(transition-variable) = (expression)
NULL
DEFAULT

(2)
row-subselect

��

Notes:

1 The number of expressions, NULLs, and DEFAULTs must match the number of transition-variables.

2 The number of columns in the select list must match the number of transition-variables.

SET transition-variable

Chapter 5. Statements 739

|

|

|

|
|

|

|
|

|

|

||

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

NULL
Specifies the null value. NULL can only be specified for nullable columns.

DEFAULT
Specifies that the default value of the column associated with the
transition-variable will be used. If the column in an IDENTITY column or has a
ROWID data type, the value is generated by the database manager.

row-subselect
A subselect that returns a single result row. The result column values are
assigned to each corresponding transition-variable. If the result of the subselect
is no rows, then null values are assigned. An error is returned if there is more
than one row in the result.

Notes
Multiple Assignments

If more than one assignment is included in the same SET transition-variable
statement, all expressions are evaluated before the assignments are performed.
Thus, references to transition-variables in an expression are always the value of
the transition-variable prior to any assignment in the single SET statement.

Examples

Example 1
Ensure that the salary column is never greater than 50000. If the new value is
greater than 50000, set it to 50000.
CREATE TRIGGER LIMIT_SALARY

BEFORE INSERT ON EMPLOYEE
REFERENCING NEW AS NEW_VAR
FOR EACH ROW MODE DB2SQL
WHEN (NEW_VAR.SALARY > 50000)

BEGIN ATOMIC
SET NEW_VAR.SALARY = 50000;

END

Example 2
When the job title is updated, increase the salary based on the new job title. Assign
the years in the position to 0.
CREATE TRIGGER SET_SALARY

BEFORE UPDATE OF JOB ON STAFF
REFERENCING OLD AS OLD_VAR

NEW AS NEW_VAR
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

SET (NEW_VAR.SALARY, NEW_VAR.YEARS) =
(OLD_VAR.SALARY * CASE NEW_VAR.JOB

WHEN ’Sales’ THEN 1.1
WHEN ’Mgr’ THEN 1.05
ELSE 1 END ,0);

END

SET transition-variable

740 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

SET variable
The SET variable statement produces a result table consisting of at most one row
and assigns the values in that row to host variables.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

Authorization
If a row-subselect is specified, see Chapter 4, “Queries” on page 323 for an
explanation of the authorization required for each subselect.

Syntax

Description
host-variable, ...

Identifies one or more host variables or host structures that must be declared
in accordance with the rules for declaring host variables (see “References to
Host Variables” on page 111). A host structure is logically replaced by a list of
host variables that represent each of the elements of the host structure.

The value to be assigned to each host-variable can be specified immediately
following the host-variable, for example, host-variable = expression, host-variable =
expression. Or, sets of parentheses can be used to specify all the host-variables
and then all the values, for example, (host-variable, host-variable) = (expression,
expression).

The data type of each host variable must be compatible with its corresponding
result column. Each assignment is made according to the rules described in
“Assignments and Comparisons” on page 78. The number of host-variables
specified to the left of the equal operator must equal the number of values in
the corresponding result specified to the right of the equal operator. If the
value is null, an indicator variable must be provided. If an assignment error
occurs, the value is not assigned to the variable, and no more values are
assigned to variables. Any values that have already been assigned to variables
remain assigned.

If an error occurs as the result of an arithmetic expression in the expression or
SELECT list of the subselect (division by zero, or overflow) or a character
conversion error occurs, the result is the null value. As in any other case of a
null value, an indicator variable must be provided. The value of the host
variable is undefined. In this case, however, the indicator variable is set to -2.

��

,

SET host-variable = expression
NULL

, ,

(host-variable) = (expression)
NULL

row-subselect

��

SET variable

Chapter 5. Statements 741

Processing of the statement continues as if the error had not occurred.
(However, this error causes a positive SQLCODE.) If you do not provide an
indicator variable, a negative value is returned in the SQLCODE field of the
SQLCA. It is possible that some values have already been assigned to host
variables and will remain assigned when the error occurs.

expression
Specifies the new value of the host variable. The expression is any expression of
the type described in “Expressions” on page 125. It must not include a column
name.

NULL
Specifies that the new value for the host variable is the null value.

row-subselect
A subselect that returns a single result row. The result column values are
assigned to each corresponding host-variable. If the result of the subselect is no
rows, then null values are assigned. An error is returned if there is more than
one row in the result.

Notes
If the specified host variable is character and is not large enough to contain the
result, 'W' is assigned to SQLWARN1 in the SQLCA. The actual length of the result
is returned in the indicator variable associated with the host-variable, if an
indicator variable is provided.

If the specified host variable is a C NUL-terminated host variable and is not large
enough to contain the result and the NUL-terminator:
v If the *CNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI

command (or CNULRQD(*YES) on the SET OPTION statement), the following
occurs:
– The result is truncated.
– The last character is the NUL-terminator.
– The value ‘W’ is assigned to SQLWARN1 in the SQLCA.

v If the *NOCNULRQD option on the CRTSQLCI or CRTSQLCPPI command (or
CNULRQD(*NO) on the SET OPTION statement) is specified, the following
occurs:
– The NUL-terminator is not returned.
– The value ‘N’ is assigned to SQLWARN1 in the SQLCA.

Examples

Example 1
Assign the value of the CURRENT PATH special register to host variable HV1.

EXEC SQL SET :HV1 = CURRENT PATH;

Example 2
Assume that LOB locator LOB1 is associated with a CLOB value. Assign a portion
of the CLOB value to host variable DETAILS using the LOB locator.

EXEC SQL SET :DETAILS = SUBSTR(:LOB1,1,35);

SET variable

742 DB2 UDB for iSeries SQL Reference V5R2

UPDATE
The UPDATE statement updates the values of specified columns in rows of a table
or view. Updating a row of a view updates a row of its base table.

There are two forms of this statement:
v The Searched UPDATE form is used to update one or more rows (optionally

determined by a search condition).
v The Positioned UPDATE form is used to update exactly one row (as determined

by the current position of a cursor).

Invocation
A Searched UPDATE statement can be embedded in an application program or
issued interactively. A Positioned UPDATE must be embedded in an application
program. Both forms are executable statements that can be dynamically prepared.

Authorization
The privileges held by the authorization ID of the statement must include at least
one of the following:
v For the table or view identified in the statement:

– The UPDATE privilege on the table or view, or
– The UPDATE privilege on each column to be updated, or
– Ownership of the table; and
– The system authority *EXECUTE on the library containing the table or view

v Administrative authority

The authorization ID of the statement has the UPDATE privilege on a table (or the
specified columns of a table) when:
v It is the owner of the table,
v It has been granted the UPDATE privilege on the table or on the columns of the

table, or
v It has been granted the system authorities of *OBJOPR and *UPD on the table.

The authorization ID of the statement has the UPDATE privilege on a view (or the
specified columns of a view) when: 67

v It has been granted the UPDATE privilege on the view or on the columns of the
view, or

v It has been granted the system authorities of *OBJOPR and *UPD on the view
and the system authority *UPD on the first table or view in the first FROM
clause of the view definition; and if this is a view, then the system authority
*UPD on the first table or view in the first FROM clause of that view definition;
and so forth.

If the expression in the assignment-clause contains a reference to a column of the
table or view, or if the search-condition in a Searched UPDATE contains a reference
to a column of the table or view, then the privileges held by the authorization ID
of the statement must also include one of the following:

67. When a view is created, the owner does not necessarily acquire the UPDATE privilege on the view. The owner only acquires the
UPDATE privilege if the view allows updates and the owner also has the UPDATE privilege on the first table referenced in the
subselect.

UPDATE

Chapter 5. Statements 743

v The SELECT privilege on the table or view
v Administrative authority

The authorization ID of the statement has the SELECT privilege on a table when:
v It is the owner of the table,
v It has been granted the SELECT privilege on the table, or
v It has been granted the system authorities of *OBJOPR and *READ on the table.

The authorization ID of the statement has the SELECT privilege on a view when:
v It is the owner of the view,
v It has been granted the SELECT privilege on the view, or
v It has been granted the system authorities of *OBJOPR and *READ on the view

and the system authority *READ on all tables and views that this view is
directly or indirectly dependent on. That is, all tables and views referenced in
the view definition, and if a view is referenced, all tables and views referenced
in its definition, and so forth.

If the search-condition includes a subquery or if the assignment-clause includes a
scalar-subselect or row-subselect, see Chapter 4, “Queries” on page 323 for an
explanation of the authorization required for each subselect.

UPDATE

744 DB2 UDB for iSeries SQL Reference V5R2

Syntax

Searched UPDATE:

�� UPDATE table-name
view-name correlation-clause

�

�
OVERRIDING SYSTEM VALUE
OVERRIDING USER VALUE

SET assignment-clause �

�
WHERE search-condition isolation-clause

��

Positioned UPDATE:

�� UPDATE table-name
view-name correlation-clause

�

�
OVERRIDING SYSTEM VALUE
OVERRIDING USER VALUE

SET assignment-clause �

� WHERE CURRENT OF cursor-name ��

assignment-clause:

��

,

column-name = expression
NULL
DEFAULT

, ,

(column-name) = (expression)
NULL
DEFAULT

row-subselect
,

ROW = (expression)
NULL
DEFAULT

row-subselect

��

isolation–clause:

WITH NC
UR
CS
RS
RR

UPDATE

Chapter 5. Statements 745

Description
table-name or view-name

Identifies the table or view to be updated. The name must identify a table or
view that exists at the current server, but it must not identify a catalog table, a
view of a catalog table, or a read-only view. For an explanation of read-only
views and updateable views, see “CREATE VIEW” on page 551.

correlation-clause
Can be used within search-condition or assignment-clause to designate the table
or view. For an explanation of correlation-clause, see “table-reference” on
page 328. For an explanation of correlation-name, see “Correlation Names” on
page 105.

OVERRIDING SYSTEM VALUE or OVERRIDING USER VALUE
Specifies whether system-generated values or user-specified values for a
ROWID or identity column are used. If OVERRIDING SYSTEM VALUE is
specified, the implicit or explicit list of columns in the SET clause must contain
a column defined as GENERATED ALWAYS. If OVERRIDING USER VALUE is
specified, the implicit or explicit list of columns for the INSERT statement must
contain a column defined as either GENERATED ALWAYS or GENERATED BY
DEFAULT.

OVERRIDING SYSTEM VALUE
Specifies that the value specified in the SET clause for a column that is
defined as GENERATED ALWAYS is used. A system-generated value is not
used.

OVERRIDING USER VALUE
Specifies that the value specified in the SET clause for a column that is
defined as either GENERATED ALWAYS or GENERATED BY DEFAULT is
ignored. Instead, a system-generated value is used, overriding the
user-specified value.

If neither OVERRIDING SYSTEM VALUE or OVERRIDING USER VALUE is
specified:
v A value cannot be specified for a ROWID or identity column that is defined

as GENERATED ALWAYS.
v A value can be specified for a ROWID or identity column that is defined as

GENERATED BY DEFAULT. If a value is specified, that value is assigned to
the column. However, a value in a ROWID column defined BY DEFAULT
can be updated only if the specified value is a valid row ID value that was
previously generated by DB2 UDB for OS/390 and z/OS or DB2 UDB for
iSeries. When a value of an identity column defined BY DEFAULT is
updated, the database manager does not verify that the specified value is a
unique value for the column unless the identity column is the sole key in a
unique constraint or unique index. Without a unique constraint or unique
index, the database manager can guarantee unique values only among the
set of system-generated values as long as NO CYCLE is in effect.
If a value is not specified the database manager generates a new value.

SET
Introduces the assignment of values to column names.

column-name
Identifies a column to be updated. The column-name must identify a

UPDATE

746 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|

column of the specified table or view, but must not identify a view column
derived from a scalar function, constant, or expression. A column must not
be specified more than once.

For a Positioned UPDATE:
v If the UPDATE clause was specified in the SELECT statement of the

cursor, each column name in the SET list must also appear in the
UPDATE clause.

v If the UPDATE clause was not specified in the SELECT statement of the
cursor, the name of any updateable column may be specified.

For more information, see “update-clause” on page 342.

A view column derived from the same column as another column of the
view can be updated, but both columns cannot be updated in the same
UPDATE statement.

If a list of column-names is specified, the number of expressions, NULLs, and
DEFAULTS must match the number of column-names.

ROW
Identifies all the columns of the specified table or view. If a view is
specified, none of the columns of the view may be derived from a scalar
function, constant, or expression.

The number of expressions, NULLs, and DEFAULTs (or the number of result
columns from a row-subselect) must match the number of columns in the
row.

For a Positioned UPDATE, if the UPDATE clause was specified in the
SELECT statement of the cursor, each column of the table or view must
also appear in the UPDATE clause. For more information, see
″update-clause″ on page 341.

ROW may not be specified for a view that contains a view column derived
from the same column as another column of the view, because both
columns cannot be updated in the same UPDATE statement.

expression
Specifies the new value of the column. The expression is any expression of
the type described in “Expressions” on page 125. It must not include a
column function.

A column-name in an expression must name a column of the named table or
view. For each row updated, the value of the column in the expression is
the value of the column in the row before the row is updated.

NULL
Specifies the new value for a column is the null value. NULL should only
be specified for nullable columns.

DEFAULT
Specifies that the default value is assigned to a column. The value that is
used depends on how the column was defined, as follows:
v If the WITH DEFAULT clause is used, the default used is as defined for

the column (see default-clause in column-definition in “CREATE TABLE” on
page 507).

v If the WITH DEFAULT clause or the NOT NULL clause is not used, the
value used is NULL.

UPDATE

Chapter 5. Statements 747

|
|

v If the NOT NULL clause is used and the WITH DEFAULT clause is not
used or DEFAULT NULL is used, the DEFAULT keyword cannot be
specified for that column.

row-subselect
A subselect that returns a single result row. The number of result columns
in the select list must match the number of column-names (or if ROW is
specified, the number of columns in the row) specified for assignment. The
result column values are assigned to each corresponding column-name. If
the result of the subselect is no rows, then null values are assigned. An
error is returned if there is more than one row in the result.

The row-subselect may contain references to columns of the target table of
the UPDATE statement. For each row updated, the value of such a column
in the expression is the value of the column in the row before the row is
updated.

WHERE
Specifies the rows to be updated. The clause can be omitted, a search-condition
can be given or a cursor can be named. If the clause is omitted, all rows of the
table or view are updated.

search-condition
Is any search described in “Search Conditions” on page 155. Each
column-name in the search condition, other than in a subquery, must name
a column of the table or view. When the search condition includes a
subquery in which the same table is the base object of both the UPDATE
and the subquery, the subquery is completely evaluated before any rows
are updated.

The search-condition is applied to each row of the table or view. The
updated rows are those for which the results of the search-condition are
true.

If the search-condition contains a subquery, the subquery can be thought of
as being executed each time the search-condition is applied to a row, and the
results of that subquery used in applying the search-condition. In actuality, a
subquery with no correlated references may be executed only once. A
subquery with a correlated reference may have to be executed once for
each row.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation. The cursor-name
must identify a declared cursor as explained in “DECLARE CURSOR” on
page 558.

The table or view named must also be named in the FROM clause of the
SELECT statement of the cursor, and the result table of the cursor must not
be read-only. For an explanation of read-only result tables, see “DECLARE
CURSOR” on page 558.

When the UPDATE statement is executed, the cursor must be positioned
on a row; that row is updated.

isolation-clause
Specifies the isolation level to be used for this statement. For an explanation of
isolation-clause, see isolation-clause.

UPDATE

748 DB2 UDB for iSeries SQL Reference V5R2

UPDATE Rules
Assignment

Update values are assigned to columns under the assignment rules described
in Chapter 2

Validity
If the identified table, or the base table of the identified view, has one or more
unique indexes or unique constraints, each row updated in the table must
conform to the constraints imposed by those unique indexes.

The unique indexes and unique constraints are effectively checked at the end
of the statement unless COMMIT(*NONE) was specified. In the case of a
multiple-row update, this would occur after all rows were updated. If
COMMIT(*NONE) is specified, checking is performed as each row is updated.

If the identified table or the base table of the identified view has one or more
check constraints, each check constraint must be true or unknown for each row
of the updated table.

The check constraints are effectively checked at the end of the statement. In the
case of a multiple-row update, this would occur after all rows were updated.

If a view is identified, the updated rows must conform to any applicable
WITH CHECK OPTION. For more information, see “CREATE VIEW” on page
551.

Triggers
If the identified table or the base table of the identified view has an update
trigger, the trigger is activated. A trigger might cause other statements to be
executed or raise error conditions based on the updated values.

Referential Integrity
The value of the parent key in a parent row must not be changed.

If the update values produce a foreign key that is nonnull, the foreign key
must be equal to some value of the parent key of the parent table of the
relationship.

The referential constraints (other than a referential constraint with a RESTRICT
delete rule) are effectively checked at the end of the statement. In the case of a
multiple-row update, this would occur after all rows were updated.

Notes
If an update value violates any constraints, or if any other error occurs during the
execution of the UPDATE statement and COMMIT(*NONE) was not specified, all
changes made during the execution of the statement are backed out. However,
other changes in the unit of work made prior to the error are not backed out. If
COMMIT(*NONE) is specified, changes are not backed out.

It is possible for an error to occur that makes the state of the cursor unpredictable.

When an UPDATE statement completes execution, the value of SQLERRD(3) in the
SQLCA is the number of rows updated. For a description of the SQLCA, see
Appendix B, “SQL Communication Area” on page 803.

Unless appropriate locks already exist, one or more exclusive locks are acquired by
the execution of a successful UPDATE statement. Until these locks are released by
a commit or rollback operation, the updated rows can only be accessed by:
v The application process that performed the update.

UPDATE

Chapter 5. Statements 749

|
|
|

v Another application process using COMMIT(*NONE) or COMMIT(*CHG)
through a read-only cursor, SELECT INTO statement, or subquery.

The locks can prevent other application processes from performing operations on
the table. For further information about locking, see the description of the
COMMIT, ROLLBACK, and LOCK TABLE statements, and isolation levels in
“Isolation Level” on page 21. Also, see the Database Programming book.

A maximum of 500 000 000 rows can be updated or changed in any single
UPDATE statement when COMMIT(*RR), COMMIT(*ALL), COMMIT(*CS), or
COMMIT(*CHG) has been specified. The number of rows changed includes any
rows inserted, updated, or deleted under the same commitment definition as a
result of a trigger.

Host variables cannot be used in the UPDATE statement within a REXX procedure.
Instead, the UPDATE must be the object of a PREPARE and EXECUTE using
parameter markers.

If the URL value of a DATALINK column is updated, this is the same as deleting
the old DATALINK value then inserting the new one. First, if the old value was
linked to a file, that file is unlinked. Then, unless the linkage attributes of the
DATALINK value are empty, the specified file is linked to that column.

The comment value of a DATALINK column can be updated without relinking the
file by specifying an empty string as the URL path (for example, as the
data-location argument of the DLVALUE scalar function or by specifying the new
value to be the same as the old value). If a DATALINK column is updated with a
null, it is the same as deleting the existing DATALINK value.

An error may occur when attempting to update a DATALINK value if the file
server of either the existing value or the new value is no longer registered with the
database server

Keyword Synonyms: The following keywords are synonyms supported for
compatibility to prior releases. These keywords are non-standard and should not
be used:
v The keyword NONE can be used as a synonym for NC.
v The keyword CHG can be used as a synonym for UR.
v The keyword ALL can be used as a synonym for RS.

Examples

Example 1
Change the job (JOB) of employee number (EMPNO) ‘000290’ in the EMPLOYEE
table to ‘LABORER’.

UPDATE EMPLOYEE
SET JOB = ’LABORER’
WHERE EMPNO = ’000290’

Example 2
Increase the project staffing (PRSTAFF) by 1.5 for all projects that department
(DEPTNO) ‘D21’ is responsible for in the PROJECT table.

UPDATE PROJECT
SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = ’D21’

UPDATE

750 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|

|

|

../dbp/rbafomst02.htm

Example 3
All the employees except the manager of department (WORKDEPT) ‘E21’ have
been temporarily reassigned. Indicate this by changing their job (JOB) to NULL
and their pay (SALARY, BONUS, COMM) values to zero in the EMPLOYEE table.

UPDATE EMPLOYEE
SET JOB=NULL, SALARY=0, BONUS=0, COMM=0
WHERE WORKDEPT = ’E21’ AND JOB <> ’MANAGER’

Example 4
In a C program display the rows from the EMPLOYEE table and then, if requested
to do so, change the job (JOB) of certain employees to the new job keyed in.
void main ()

{
EXEC SQL BEGIN DECLARE SECTION ;
char change[4];
char newjob[20];
EXEC SQL END DECLARE SECTION ;
EXEC SQL INCLUDE SQLCA ;

EXEC SQL DECLARE C1 CURSOR FOR
SELECT *

FROM EMPLOYEE
FOR UPDATE OF JOB;

EXEC SQL OPEN C1;

EXEC SQL FETCH C1 INTO ... ;

getlist(change);
if (strcmp(change, "YES"))

{
EXEC SQL UPDATE EMPLOYEE

SET JOB = :newjob
WHERE CURRENT OF C1;

}

EXEC SQL CLOSE C1;
return;

}

UPDATE

Chapter 5. Statements 751

VALUES
The VALUES statement provides a method for invoking a user-defined function
from a trigger. Transition variables can be passed to the user-defined function.

Invocation
This statement can only be used in the triggered action of a trigger.

Authorization
If a row-subselect is specified, see Chapter 4, “Queries” on page 323 for an
explanation of the authorization required for each subselect.

Syntax

Description
VALUES

Introduces a single row consisting of one of more columns.

expression
Any expression of the type described in “Expressions” on page 125. It must
not include a host variable.

NULL
Specifies the null value.

row-subselect
A subselect that returns a single result row. If the result of the subselect is
no rows, then null values are returned. An error is returned if there is
more than one row in the result.

Notes
The expressions are evaluated, but the resulting values are discarded and are not
assigned to any output variables. If a user-defined function is specified as part of
an expression, the user-defined function is invoked. If a negative SQLCODE is
returned when the function is invoked, the database manager stops executing the
trigger and rolls back any triggered actions that were performed (unless the trigger
is running under isolation level *NONE).

��

VALUES expression
NULL

,

(expression)
NULL

row-subselect

��

VALUES

752 DB2 UDB for iSeries SQL Reference V5R2

Examples

Example
Create an after trigger EMPISRT1 that invokes user-defined function NEWEMP
when the trigger is activated. An insert operation on table EMP activates the
trigger. Pass transition variables for the new employee number, last name, and first
name to the user-defined function.

CREATE TRIGGER EMPISRT1
AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS N
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC

VALUES(NEWEMP(N.EMPNO, N.LASTNAME, N.FIRSTNAME));
END

VALUES

Chapter 5. Statements 753

VALUES INTO
The VALUES INTO statement produces a result table consisting of at most one row
and assigns the values in that row to host variables.

Invocation
This statement can only be embedded in an application program. It is an
executable statement that can be dynamically prepared.

Authorization
If a row-subselect is specified, see Chapter 4, “Queries” on page 323 for an
explanation of the authorization required for each subselect.

Syntax

Description
VALUES

Introduces a single row consisting of one of more columns.

expression
Specifies the new value of the host variable. The expression is any
expression of the type described in “Expressions” on page 125. It must not
include a column name. Host structures are not supported.

NULL
Specifies that the new value for the host variable is the null value.

row-subselect
A subselect that returns a single result row. The result column values are
assigned to each corresponding host-variable. If the result of the subselect is
no rows, then null values are assigned. An error is returned if there is
more than one row in the result.

INTO
Introduces a list of host variables and host structures. The first value in the
result row is assigned to the first host variable in the list, the second value to
the second host variable, and so on. Each assignment is made according to the
rules described in “Assignments and Comparisons” on page 78.

If there are fewer host variables than values, the value ’W’ is assigned to the
SQLWARN3 field of the SQLCA. (See Appendix B, “SQL Communication Area”
on page 803.) Note that there is no warning if there are more variables than

the number of result columns. If the value is null, an indicator variable must
be provided. If an assignment error occurs, the value is not assigned to the

��

,

VALUES expression INTO host-variable
NULL

,

(expression)
NULL

row-subselect

��

VALUES INTO

754 DB2 UDB for iSeries SQL Reference V5R2

|
|

variable, and no more values are assigned to variables. Any values that have
already been assigned to variables remain assigned.

If an error occurs as the result of an arithmetic expression in the expression or
SELECT list of the subselect (division by zero, or overflow) or a character
conversion error occurs, the result is the null value. As in any other case of a
null value, an indicator variable must be provided. The value of the host
variable is undefined. In this case, however, the indicator variable is set to -2.
Processing of the statement continues as if the error had not occurred.
(However, this error causes a positive SQLCODE.) If you do not provide an
indicator variable, a negative value is returned in the SQLCODE field of the
SQLCA. It is possible that some values have already been assigned to host
variables and will remain assigned when the error occurs.

host-variable, ...
Identifies one or more host structures or host variables that must be
declared in accordance with the rules for declaring host structures and host
variables, see “References to Host Variables” on page 111. In the operational
form of INTO, a host structure is replaced by a reference to each of its
variables.

Notes
If an error occurs, no value is assigned to the current host variable. However, if
LOB values are involved, there is a possibility that the corresponding host variable
was modified, but the variable’s contents are unpredictable.

If the specified host variable is character and is not large enough to contain the
result, 'W' is assigned to SQLWARN1 in the SQLCA. The actual length of the result
is returned in the indicator variable associated with the host-variable, if an
indicator variable is provided.

If the specified host variable is a C NUL-terminated host variable and is not large
enough to contain the result and the NUL-terminator:
v If the *CNULRQD option is specified on the CRTSQLCI or CRTSQLCPPI

command (or CNULRQD(*YES) on the SET OPTION statement), the following
occurs:
– The result is truncated.
– The last character is the NUL-terminator.
– The value ‘W’ is assigned to SQLWARN1 in the SQLCA.

v If the *NOCNULRQD option on the CRTSQLCI or CRTSQLCPPI command (or
CNULRQD(*NO) on the SET OPTION statement) is specified, the following
occurs:
– The NUL-terminator is not returned.
– The value ‘N’ is assigned to SQLWARN1 in the SQLCA.

Examples

Example 1
Assign the value of the CURRENT PATH special register to host variable HV1.

EXEC SQL VALUES CURRENT PATH INTO :HV1;

Example 2
Assume that LOB locator LOB1 is associated with a CLOB value. Assign a portion
of the CLOB value to host variable DETAILS using the LOB locator.

EXEC SQL VALUES (SUBSTR(:LOB1,1,35)) INTO :DETAILS;

VALUES INTO

Chapter 5. Statements 755

WHENEVER
The WHENEVER statement specifies the action to be taken when a specified
exception condition occurs.

Invocation
This statement can only be embedded in an application program. It is not an
executable statement. It must not be specified in Java or REXX. See the SQL
Programming with Host Languages book for information on handling errors in
REXX.

Authorization
None required.

Syntax

�� WHENEVER NOT FOUND
SQLERROR
SQLWARNING

CONTINUE
GOTO host-label
GO TO :

��

Description
The NOT FOUND, SQLERROR, or SQLWARNING clause is used to identify the
type of exception condition.

NOT FOUND
Identifies any condition that results in an SQLCODE of +100 or an SQLSTATE
of '02000'.

SQLERROR
Identifies any condition that results in a negative SQLCODE.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARN0 is
'W'), or that results in a positive SQLCODE other than +100 or in an
SQLSTATE of class code 01.

The CONTINUE or GO TO clause are used to specify the next statement to be
executed when the identified type of exception condition exists.

CONTINUE
Specifies the next sequential instruction of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a single
token, optionally preceded by a colon. The form of the token depends on the
host language. In a COBOL program, for example, it can be a section-name or
an unqualified paragraph-name.

Notes
There are three types of WHENEVER statements:

WHENEVER NOT FOUND
WHENEVER SQLERROR
WHENEVER SQLWARNING

WHENEVER

756 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

../rzajp/rzajpmst02.htm
../rzajp/rzajpmst02.htm

Every executable SQL statement in a program is within the scope of one implicit or
explicit WHENEVER statement of each type. The scope of a WHENEVER
statement is related to the listing sequence of the statements in the program, not
their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each
type that is specified before that SQL statement in the source program. If a
WHENEVER statement of some type is not specified before an SQL statement, that
SQL statement is within the scope of an implicit WHENEVER statement of that
type in which CONTINUE is specified.

SQL does support nested programs in COBOL, C, and RPG. However, SQL does
not honor normal COBOL, C, and RPG scoping rules. That is, the last WHENEVER
statement specified in the program source prior to the nested procedure is still in
effect for that nested program. The label referenced in the WHENEVER statement
must be duplicated within that inner program. Alternatively, the inner program
could specify a new WHENEVER statement.

In FORTRAN, the scope of a WHENEVER statement is limited to SQL statements
within the same subprogram.

Example
Write the statements that need to be embedded in a COBOL program in order to:
1. Go to the label HANDLER for any statement that produces an error.

EXEC SQL WHENEVER SQLERROR GOTO HANDLER END-EXEC.

2. Continue processing for any statement that produces a warning.
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.

3. Go to the label ENDDATA for any statement that does not return data when
expected to do so.

EXEC SQL WHENEVER NOT FOUND GOTO ENDDATA END-EXEC.

WHENEVER

Chapter 5. Statements 757

|
|
|
|
|
|

WHENEVER

758 DB2 UDB for iSeries SQL Reference V5R2

Chapter 6. SQL Control Statements

Control statements are SQL statements that allow SQL to be used in a manner
similar to writing a program in a structured programming language. SQL control
statements provide the capability to control the logic flow, declare and set
variables, and handle warnings and exceptions. Some SQL control statements
include other nested SQL statements.

Syntax

�� assignment-statement
CALL-statement
CASE-statement
compound-statement
FOR-statement
GET DIAGNOSTICS-statement
GOTO-statement
IF-statement
ITERATE-statement
LEAVE-statement
LOOP-statement
REPEAT-statement
RESIGNAL-statement
RETURN-statement
SIGNAL-statement
WHILE-statement

��

Control statements are supported in SQL procedures, SQL functions, and SQL
triggers.

SQL procedures are created by specifying LANGUAGE SQL and an SQL routine
body on the CREATE PROCEDURE statement. SQL functions are created by
specifying LANGUAGE SQL and an SQL routine body on the CREATE
FUNCTION statement. SQL routines are SQL procedures or SQL functions. SQL
triggers are created by specifying an SQL routine body on the CREATE TRIGGER
statement.

An SQL routine body must be a single SQL procedure statement which may be an
SQL control statement.

The SQL routine body is the executable part of the procedure, function, or trigger
that is transformed by the database manager into a program or service program.
When an SQL routine or trigger is created, SQL creates a temporary source file
(QTEMP/QSQLSRC) that will contain C source code with embedded SQL
statements. If DBGVIEW(*SOURCE) is specified, SQL creates the root source for
the routine or trigger in temporary source file QTEMP/QSQDSRC.

An SQL procedure or SQL trigger is created as a program (*PGM) object using the
CRTPGM command. An SQL function is created as a service program (*SRVPGM)

© Copyright IBM Corp. 1998, 2002 759

|

|
|
|
|
|
|

object using the CRTSRVPGM command. The program or service program is
created in the library that is the implicit or explicit qualifier of the procedure,
function, or trigger name.

When the program or service program is created, the SQL statements other than
control statements become embedded SQL statements in the program or service
program.

The specified procedure or function is registered in the SYSROUTINES and
SYSPARMS catalog tables, and an internal link is created from SYSROUTINES to
the program. When the procedure is called using the SQL CALL statement or
when the function is invoked in an SQL statement, the program associated with
the routine is called. The specified SQL trigger is registered in the SYSTRIGGER
catalog table.

The remainder of this chapter contains a description of the control statements
including syntax diagrams, semantic descriptions, usage notes, and examples of the
use of the statements that constitute the SQL routine body.

There is also a section on referencing SQL parameters and variables found in
“References to SQL Parameters and Variables” on page 761. There are two common
elements that are used in describing specific SQL control statements. These are:
v SQL control statements as described above
v “SQL procedure statement” on page 762

For syntax and additional information on the SQL control statements see the
following topics:
v “assignment-statement” on page 763
v “CALL statement” on page 765
v “CASE statement” on page 766
v “compound-statement” on page 768
v “IF statement” on page 782
v “FOR statement” on page 775
v “GET DIAGNOSTICS statement” on page 777
v “GOTO statement” on page 780
v “ITERATE statement” on page 784
v “LEAVE statement” on page 785
v “LOOP statement” on page 786
v “REPEAT statement” on page 787
v “RESIGNAL statement” on page 789
v “RETURN statement” on page 792
v “SIGNAL statement” on page 794
v “WHILE statement” on page 797

SQL control statements

760 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

References to SQL Parameters and Variables
SQL parameters and SQL variables can be referenced anywhere in an SQL
procedure statement where a host-variable can be specified.

SQL parameters can be referenced anywhere in the routine and can be qualified
with the routine name. SQL variables can be referenced anywhere in the
compound statement in which they are declared and can be qualified with the
label name specified at the beginning of the compound statement.

All SQL parameters and SQL variables are considered nullable. SQL variables can
be explicitly declared as NOT NULL. The name of an SQL parameter or SQL
variable in an SQL routine can be the same as the name of a column in a table or
view referenced in the routine. In this case, the name should be explicitly qualified
to indicate whether it is a column, SQL variable, or SQL parameter.

If the name is not qualified, the following rules describe whether the name refers
to the column or to the SQL variable or SQL parameter:
v If the tables and views specified in an SQL routine body exist at the time the

routine is created, the name will first be checked as a column name. If not found
as a column, it will then be checked as an SQL variable name in the compound,
and then checked as an SQL parameter name.

v If the referenced tables or views do not exist at the time the routine is created,
the name will first be checked as an SQL variable name and then as an SQL
parameter name. If not found, it will be assumed to be a column.

The name of an SQL parameter or SQL variable in an SQL routine can be the same
as the name of an identifier used in certain SQL statements. If the name is not
qualified, the following rules describe whether the name refers to the identifier or
to the SQL parameter or SQL variable:
v In the SET PATH and SET SCHEMA statements, the name is checked as an SQL

parameter name or SQL variable name. If not found as an SQL variable or SQL
parameter name, it will then be used as an identifier.

v In the CONNECT statement, the name is used as an identifier.

The names used for SQL procedures, functions, triggers, SQL parameters, and SQL
variables should not begin with ’SQL.’

SQL Parameters and Variables

Chapter 6. SQL Control Statements 761

|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

|

|
|

SQL procedure statement
An SQL control statement may allow multiple SQL statements to be specified
within the SQL control statement. These statements are defined as SQL procedure
statements.

Syntax

��
(1)

SQL-control-statement
ALTER-statement
CLOSE-statement
COMMENT-statement
COMMIT-statement
CONNECT-statement
CREATE ALIAS-statement
CREATE DISTINCT TYPE-statement
CREATE FUNCTION (External Scalar)-statement
CREATE FUNCTION (External Table)-statement
CREATE FUNCTION (Sourced)-statement
CREATE INDEX-statement
CREATE PROCEDURE (External)-statement
CREATE SCHEMA-statement
CREATE TABLE-statement
CREATE VIEW-statement
DECLARE GLOBAL TEMPORARY TABLE-statement
DELETE-statement
DISCONNECT-statement
DROP-statement
EXECUTE-statement
EXECUTE IMMEDIATE-statement
FETCH-statement
GRANT-statement
INSERT-statement
LABEL-statement
LOCK TABLE-statement
OPEN-statement
PREPARE-statement
RELEASE-statement
RENAME-statement
REVOKE-statement
ROLLBACK-statement
SELECT INTO-statement
SET CONNECTION-statement
SET PATH-statement
SET RESULT SETS-statement
SET SCHEMA-statement
SET TRANSACTION-statement
UPDATE-statement

��

Notes:

1 COMMIT, ROLLBACK, CONNECT, DISCONNECT, SET CONNECTION, and
SET RESULT SETS statements are only allowed in SQL procedures. The SET
TRANSACTION statement is allowed in SQL procedures and triggers.

SQL procedure statement

762 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

||||||

assignment-statement
The assignment-statement assigns a value to an SQL parameter or SQL variable.

Syntax

��
label:

SET assignment-clause ��

Description
label

Specifies the label for the assignment-statement. The label must be unique
within the SQL function, SQL procedure, or SQL trigger and cannot be the
same as the name of the SQL function, SQL procedure, or SQL trigger in which
the label is used.

SQL-parameter-name
Identifies the SQL parameter that is the assignment target. The SQL parameter
must be specified in parameter-declaration in the CREATE PROCEDURE or
CREATE FUNCTION statement.

SQL-variable-name
Identifies the SQL variable that is the assignment target. SQL variables can be
defined in a compound statement or be a transition variable.

expression or NULL
Specifies the expression or value that is the source for the assignment.

DEFAULT
Specifies that the default value for the column associated with the transition
variable will be used. This can only be specified in SQL triggers for transition
variables.

row-subselect
A subselect that returns a single result row. The result column values are
assigned to the corresponding SQL variable or parameter. If the result of the
subselect is no rows, then null values are assigned. An error is returned if there
is more than one row in the result.

assignment-clause:

��

,

SQL-parameter-name = expression
SQL-variable-name NULL

DEFAULT
, ,

(SQL-parameter-name) = (expression)
SQL-variable-name NULL

DEFAULT
row-subselect

��

assignment-statement

Chapter 6. SQL Control Statements 763

|
|
|
|
|

|
|
|

|
|

Notes
Assignments statements must conform to the SQL assignment rules. See
“Assignments and Comparisons” on page 78 for assignment rules.

The data type of the target and source must be compatible.

When a string is assigned to a fixed-length variable and the length of the string is
less than the length attribute of the target, the string is padded on the right with
the necessary number of single-byte, double-byte, or UCS-2 blanks.

When a string is assigned to a variable and the string is longer than the length
attribute of the variable, a negative SQLCODE is set.

A string assigned to a variable is first converted, if necessary, to the coded
character set of the target.

If truncation of the whole part of the number occurs on assignment to a numeric
variable, a negative SQLCODE is set.

If a variable has been declared with an identifier that matches the name of a
special register (such as PATH), then the variable must be delimited to distinguish
it from assignment to the special register (for example, SET ″PATH″ = 1; for a
variable called PATH declared as an integer).

If the target of the assignment is a variable and source is a variable or constant, the
assignment may be performed inline. In this case, the SQLCODE and SQLSTATE
will not be reset.

Assignment rules for SQL parameters: An IN parameter can appear on the left or
right side of an assignment-statement. When control returns to the caller, the
original value of the IN parameter is retained. An OUT parameter can also appear
on the left or right side of an assignment-statement. If used without first being
assigned a value, the value is undefined. When control returns to the caller, the last
value that is assigned to an OUT parameter is returned to the caller. For an INOUT
parameter, the first value of the parameter is determined by the caller, and the last
value that is assigned to the parameter is returned to the caller.

Example
Increase the SQL variable p_salary by 10 percent.

SET p_salary = p_salary + (p_salary * .10)

Set SQL variable p_salary to the null value
SET p_salary = NULL

assignment-statement

764 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|
|
|
|
|
|

CALL statement
The CALL statement invokes a procedure. Please refer to “CALL” on page 383.

Syntax

�� CALL
label:

procedure-name

()
,

SQL-variable-name
SQL-parameter-name
constant
NULL
special-register

��

Description
label

Specifies the label for the CALL statement. The label must be unique within
the SQL function, SQL procedure, or SQL trigger and cannot be the same as
the name of the SQL function, SQL procedure, or SQL trigger in which the
label is used.

procedure-name
Identifies the procedure to call. The procedure-name must identify a procedure
that exists at the current server.

SQL-variable-name or SQL-parameter-name or constant or NULL or special-register
Identifies a list of values to pass as parameters to the procedure.

Each OUT or INOUT parameter must be specified as an SQL parameter or
SQL variable.

Notes
The number of arguments specified must be the same as the number of parameters
defined by that procedure.

The initial value of a special register in a procedure is inherited from the caller of
the procedure. A value assigned to a special register within the procedure is used
for the entire SQL procedure and will be inherited by any procedure subsequently
called from that procedure. When a procedure returns to its caller, the special
registers are restored to the original values of the caller.

See “CALL” on page 383 for more information.

Example
Call procedure proc1 and pass SQL variables as parameters.

CALL proc1(v_empno, v_salary)

CALL

Chapter 6. SQL Control Statements 765

|
|
|
|
|

|
|
|
|
|

CASE statement
The CASE statement selects an execution path based on multiple conditions.

Syntax

�� CASE
label:

simple-when-clause
searched-when-clause else-clause

END CASE ��

simple-when-clause:

expression WHEN expression THEN SQL-procedure-statement ;

searched-when-clause:

 WHEN search-condition THEN SQL-procedure-statement ;

else-clause:

 ELSE SQL-procedure-statement ;

Description
label

Specifies the label for the CASE statement. The label must be unique within
the SQL function, SQL procedure, or SQL trigger and cannot be the same as
the name of the SQL function, SQL procedure, or SQL trigger in which the
label is used.

simple-when-clause
The value of the expression prior to the first WHEN keyword is tested for
equality with the value of each expression that follows the WHEN keyword. If
the comparison is true, the THEN statement is executed. If the result is
unknown or false, processing continues to the next comparison. If the result
does not match any of the comparisons, and an ELSE clause is present, the
statements in the ELSE clause are processed.

searched-when-clause
The search-condition following the WHEN keyword is evaluated. If it evaluates
to true, the statements in the associated THEN clause are processed. If it
evaluates to false, or unknown, the next search-condition is evaluated. If no
search-condition evaluates to true and an ELSE clause is present, the statements
in the ELSE clause are processed.

CASE

766 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

else-clause
If none of the conditions specified in the simple-when-clause or
searched-when-clause are true, then the statements in the else-clause are executed.

If none of the conditions specified in the WHEN are true, and an ELSE clause
is not specified, an error is issued at runtime, and the execution of the CASE
statement is terminated (SQLSTATE 20000).

SQL-procedure-statement
Specifies a statement that should be executed. See “SQL procedure statement”
on page 762.

Notes
Ensure that the CASE statement covers all possible execution conditions.

Nesting of CASE statements: CASE statements that use a simple-when-clause can be
nested up to three levels. CASE statements that use a searched-when-clause have no
limit to the number of nesting levels.

Examples
Depending on the value of SQL variable v_workdept, update column DEPTNAME
in table DEPARTMENT with the appropriate name.

The following example shows how to do this using the syntax for a
simple-when-clause.

CASE v_workdept
WHEN ’A00’

THEN UPDATE department SET
deptname = ’DATA ACCESS 1’;

WHEN ’B01’
THEN UPDATE department SET

deptname = ’DATA ACCESS 2’;
ELSE UPDATE department SET

deptname = ’DATA ACCESS 3’;
END CASE

The following example shows how to do this using the syntax for a
searched-when-clause:

CASE
WHEN v_workdept = ’A00’

THEN UPDATE department SET
deptname = ’DATA ACCESS 1’;

WHEN v_workdept = ’B01’
THEN UPDATE department SET

deptname = ’DATA ACCESS 2’;
ELSE UPDATE department SET

deptname = ’DATA ACCESS 3’;
END CASE

CASE

Chapter 6. SQL Control Statements 767

|
|
|

|
|
|

|

|
|
|

compound-statement
The compound statement groups other statements together in an SQL routine.
Within a compound statement, SQL variables, cursors, and handlers can be
declared.

Syntax

��
label:

BEGIN
NOT ATOMIC

ATOMIC
�

�

 SQL-variable-declaration ;
condition-declaration
return-codes-declaration

�

�

 DECLARE CURSOR-statement ; handler-declaration ;

�

� SQL-procedure-statement ; END
label

��

SQL-variable-declaration:

DECLARE

,

SQL-variable-name �

�
DEFAULT NULL

data-type
DEFAULT constant

(1)
NOT NULL

condition-declaration:

DECLARE condition-name �

compound-statement

768 DB2 UDB for iSeries SQL Reference V5R2

�

VALUE
SQLSTATE

CONDITION FOR string-constant

return-codes-declaration:

DECLARE
DEFAULT ’00000’

SQLSTATE CHARACTER(5)
CHAR(5) DEFAULT string-constant

DEFAULT 0
SQLCODE INTEGER

INT DEFAULT integer-constant

handler-declaration:

DECLARE CONTINUE
EXIT
UNDO

HANDLER FOR
(2)

specific-condition-value
general-condition-value

�

� SQL-procedure-statement

specific-condition-value:

,
VALUE

SQLSTATE string
condition-name

general-condition-value:

SQLEXCEPTION
SQLWARNING
NOT FOUND

data-type:

built-in-type
distinct-type-name

Notes:

1 The DEFAULT and NOT NULL clauses can be specified in either order.

2 specific-condition-value and general-condition-value cannot be specified in the
same handler declaration.

compound-statement

Chapter 6. SQL Control Statements 769

Description
label

Defines the label for the code block. The label must be unique within the SQL

built-in-type:

SMALLINT
INTEGER
INT
BIGINT

(5,0)
DECIMAL
DEC (integer)

NUMERIC , integer
(53)

FLOAT
(integer)

REAL
PRECISION

DOUBLE
(1)

CHARACTER
CHAR (integer) FOR BIT DATA

CHARACTER VARYING (integer) FOR SBCS DATA
CHAR FOR MIXED DATA

VARCHAR CCSID integer
(1M)

CLOB
CHAR LARGE OBJECT (integer) FOR SBCS DATA
CHARACTER LARGE OBJECT K FOR MIXED DATA

M CCSID integer
G

(1)
GRAPHIC

(integer) CCSID integer
GRAPHIC VARYING (integer)
VARGRAPHIC

(1M)
DBCLOB

(integer)
K
M
G
(1M)

BLOB
BINARY LARGE OBJECT (integer)

K
M
G

DATE
TIME
TIMESTAMP

(200)
DATALINK

(integer) CCSID integer
ROWID

compound-statement

770 DB2 UDB for iSeries SQL Reference V5R2

|||||

function, SQL procedure, or SQL trigger and cannot be the same as the name
of the SQL function, SQL procedure, or SQL trigger in which the label is used.
If the beginning label is specified, it can be used to qualify SQL variables
declared in the compound statement and can also be specified on a LEAVE
statement.

If the ending label is specified, it must be the same as the beginning label.

ATOMIC or NOT ATOMIC
ATOMIC indicates that if an error occurs in the compound statement, all SQL
statements in the compound statement will be rolled back. If ATOMIC is
specified, COMMIT or ROLLBACK statements cannot be specified in the
compound statement (ROLLBACK TO SAVEPOINT may be specified).

NOT ATOMIC indicates that an error within the compound statement does not
cause the compound statement to be rolled back. If NOT ATOMIC is specified
in the outermost compound statement of an SQL trigger, it is treated as
ATOMIC.

SQL-variable-declaration
Declares a variable that is local to the compound statement.

SQL-variable-name
Defines the name of a local variable. The database manager converts all
undelimited SQL variable names to uppercase. The SQL-variable-name must
be unique within the compound-statement (excluding any declarations in
compound-statements nested within the compound-statement). SQL variable
names should not be the same as column names or SQL parameter names.
See “References to SQL Parameters and Variables” on page 761 for how
SQL variable names are resolved when there are columns with the same
name involved in a statement. Variable names should not begin with
’SQL’.

An SQL-variable-name can only be referenced within the compound-statement
in which it is declared (including any compound-statements nested within
the compound-statement).

data-type
Specifies the data type of the variable. See “CREATE TABLE” on page 507
for a description of data type.

If the data-type is a graphic string data type, consider specifying CCSID
13488 to indicate UCS-2 data. If a CCSID is not specified, the CCSID of the
graphic string variable will be the associated DBCS CCSID for the job.

DEFAULT constant or NULL
Defines the default for the SQL variable. The variable will be initialized
when the SQL procedure, SQL function, or SQL trigger is invoked. If a
default value is not specified, the SQL variable is initialized to NULL.

NOT NULL
Prevents the SQL variable from containing the NULL value. Omission of
NOT NULL implies that the column can be null.

condition-declaration
Declares a condition name and corresponding SQLSTATE value.

condition-name
Specifies the name of the condition. The condition name must be unique
within the compound-statement (excluding any declarations in
compound-statements nested within the compound-statement).

compound-statement

Chapter 6. SQL Control Statements 771

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

A condition-name can only be referenced within the compound-statement in
which it is declared (including any compound-statements nested within the
compound-statement).

FOR SQLSTATE string-constant
Specifies the SQLSTATE associated with this condition. The string constant
must be specified as 5 characters, and cannot be ’00000’.

return-codes-declaration
Declares special variables called SQLSTATE and SQLCODE that are set
automatically to the SQL return codes returned after executing an SQL
statement. Both the SQLSTATE and SQLCODE variables can only be declared
in the outermost compound-statement of an SQL procedure, SQL function, or
SQL trigger.

Assignment to these variables is not prohibited. However, the assignment will
not be useful since the next SQL statement will replace the assigned value. The
SQLCODE and SQLSTATE variables cannot be set to NULL.

SQLCODE and SQLSTATE variables should be saved immediately to another
SQL variable if there is any intention to use the values. If a handler exists for
the SQLSTATE, this assignment must be the first statement in the handler to
avoid having the value replaced by the next SQL procedure statement.

declare-cursor-statement
Declares a cursor. The cursor name must be unique within the
compound-statement (excluding any declarations in compound-statements nested
within the compound-statement).

A cursor-name can only be referenced within the compound-statement in which it
is declared (including any compound-statements nested within the
compound-statement).

Use an OPEN statement to open the cursor, and a FETCH statement to read
rows using the cursor. If the declare-cursor-statement is in an SQL procedure,
and a CLOSE statement is not specified and RESULT SET was not specified
when the procedure was created, the cursor is closed at the end of the
compound-statement. For more information, see “DECLARE CURSOR” on
page 558.

handler-declaration
Specifies a handler, an SQL procedure statement to execute when an exception
or completion condition occurs in the compound statement. There are three
types of condition handlers:

CONTINUE
After the handler is invoked successfully, control is returned to the SQL
statement following the one that raised the exception. If the error occurs
while executing a comparison as in an IF, CASE, FOR, WHILE, or REPEAT,
control returns to the statement following the corresponding END IF, END
CASE, END FOR, END WHILE, or END REPEAT.

EXIT
Once the handler is invoked successfully, control is returned to the end of
the compound statement that declared the handler.

UNDO
ROLLBACK the changes made by the compound-statement and invoke the
handler. Once the handler is invoked successfully, control is returned to the
end of the compound-statement. If UNDO is specified, then ATOMIC must
be specified.

compound-statement

772 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

UNDO cannot be specified in the outermost compound-statement of an SQL
function or SQL trigger.

The conditions under which the handler is activated are:

SQLSTATE string
Specifies that the handler is invoked when the specific SQLSTATE
condition occurs. The SQLSTATE cannot be ’00000’.

condition-name
Specifies that the handler is invoked when the condition occurs. The
condition name must be previously defined in a condition-declaration.

SQLEXCEPTION
Specifies that the handler is invoked when an SQLEXCEPTION occurs.
SQLEXCEPTION corresponds to SQLSTATE values with a class value other
than ″00″, ″01″, and ″02″.

SQLWARNING
Specifies that the handler is invoked when an SQLWARNING occurs.
SQLWARNING corresponds to SQLSTATE values with a class value of
″01″.

NOT FOUND
Specifies that the handler is invoked when a NOT FOUND condition
occurs. NOT FOUND corresponds to SQLSTATE values with a class value
of ″02″.

The same condition cannot be specified more than once in the
handler-declaration.

Notes
Rules for handler-declaration:
v Handler declarations within the same compound statement cannot contain

duplicate conditions.
v A handler declaration cannot contain the same condition value or SQLSTATE

value more than once, and cannot contain a SQLSTATE value and a condition
name that represents the same SQLSTATE value. For a list of SQLSTATE values
as well as more information, see the SQL Programming Concepts book.

v A handler is activated when it is the most appropriate handler for an exception
or completion condition. The most appropriate handler is a handler (for the
exception or completion condition) that is defined in the compound-statement
which most closely matches the SQLSTATE of the exception or completion
condition. For example, if a handler exists for SQLSTATE 22001 as well as a
handler for SQLEXCEPTION, the handler for SQLSTATE 22001 would be the
most appropriate handler when an SQLSTATE 22001 is signalled. If an exception
occurs for which there is no handler, execution of the compound-statement is
terminated. If a warning or not found condition occurs for which there is no
handler, processing continues with the next statement.

Example
The following example creates an SQL procedure PROC1. The routine body of the
procedure is a compound statement. The compound statement declares SQL
variables, a condition for the SQLSTATE ’02000’, a continue handler, and a declare
cursor statement. The WHILE statement loops on the FETCH statement. If a
condition of ’02000’, end of file, is returned, the handler gets invoked, and SQL

compound-statement

Chapter 6. SQL Control Statements 773

|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

../sqlp/rbafymst02.htm

variable at_end is set to 1. Control is returned from the handler, and the WHILE
loop is exited because at_end is no longer 0.

CREATE PROCEDURE PROC1 () LANGUAGE SQL
BEGIN
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE v_edlevel SMALLINT;
DECLARE v_salary DECIMAL(9,2);
DECLARE at_end INT DEFAULT 0;
DECLARE not_found

CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname,
edlevel, salary

FROM employee;
DECLARE CONTINUE HANDLER FOR not_found

SET at_end = 1;
OPEN c1;
FETCH c1 INTO v_firstnme, v_midinit,

v_lastname, v_edlevel, v_salary;
WHILE at_end = 0 DO

FETCH c1 INTO
v_firstname, v_midinit,
v_lastname, v_edlevel, v_salary;

END WHILE;
CLOSE c1;
END

compound-statement

774 DB2 UDB for iSeries SQL Reference V5R2

FOR statement
The FOR statement executes a statement for each row of a table.

Syntax

��
label:

FOR
SQL-variable-name

AS cursor-name CURSOR FOR �

� select-statement DO SQL-procedure-statement ; END FOR
label

��

Description
label

Defines the label for the code block. The label must be unique within the SQL
function, SQL procedure, or SQL trigger and cannot be the same as the name
of the SQL function, SQL procedure, or SQL trigger in which the label is used.

If the ending label is specified, it must be the same as the beginning label.

SQL-variable-name
The SQL-variable-name can be used to qualify variables in the statement. The
SQL-variable-name must not be the same as any label within the SQL function,
SQL procedure, or SQL trigger and cannot be the same as the name of the SQL
function, SQL procedure, or SQL trigger in which the SQL-variable-name is
used. Either the SQL-variable-name or label can be used to qualify other SQL
variable names in the statement.

If SQL-variable-name is specified, then it should be used to qualify any other
SQL variable names in the statement when debugging the SQL function, SQL
procedure, or SQL trigger.

cursor-name
Names a cursor. If not specified, a unique cursor name is generated.

select-statement
Specifies the select statement of the cursor.

Each expression in the select list must have a name. If an expression is not a
simple column name, the AS clause must be used to name the expression. If
the AS clause is specified, that name is used for the variable and must be
unique.

SQL-procedure-statement
SQL statements to be executed for each row of the table. The SQL statements
cannot include a LEAVE statement specifying the label on the FOR statement
and should not include an OPEN, FETCH, or CLOSE specifying the cursor
name of the FOR statement.

FOR

Chapter 6. SQL Control Statements 775

|
|
|

|

|
|
|
|
|
|

|
|
|

|

|
|
|
|

Notes
The FOR statement executes one or multiple statements for each row in a table.
The cursor is defined by specifying a select list that describes the columns and
rows selected. The statements within the FOR statement are executed for each row
selected.

The select list must consist of unique column names and the table specified in the
select list must exist when the function, procedure, or trigger is created.

The cursor specified in a FOR statement cannot be referenced outside the FOR
statement and cannot be specified on an OPEN, FETCH, or CLOSE statement.

Example
In this example, the FOR statement is used to specify a cursor that selects 3
columns from the employee table. For every row selected, SQL variable fullname is
set to the last name followed by a comma, the first name, a blank, and the middle
initial. Each value for fullname is inserted into table TNAMES.

BEGIN
DECLARE fullname CHAR(40);
FOR vl AS

c1 CURSOR FOR
SELECT firstnme, midinit, lastname FROM employee
DO

SET fullname =
lastname || ’, ’ || firstnme ||’ ’ || midinit;

INSERT INTO TNAMES VALUE (fullname);
END FOR;

END;

FOR

776 DB2 UDB for iSeries SQL Reference V5R2

GET DIAGNOSTICS statement

The GET DIAGNOSTICS statement obtains information about the previous SQL
statement that was executed.

Syntax

��

,

GET DIAGNOSTICS SQL-variable-name = ROW_COUNT
label: SQL-variable-name = RETURN_STATUS

condition-information

��

condition-information:

EXCEPTION 1

,

SQL-variable-name = MESSAGE_TEXT
SQL-variable-name = MESSAGE_LENGTH
SQL-variable-name = MESSAGE_OCTET_LENGTH

Description
label

Specifies the label for the GET DIAGNOSTIC statement. The label must be
unique within the SQL function, SQL procedure, or SQL trigger and cannot be
the same as the name of the SQL function, SQL procedure, or SQL trigger in
which the label is used.

SQL-variable-name
Identifies the SQL variable or SQL parameter that is the assignment target. If
MESSAGE_TEXT is specified, the variable must have a CHAR or VARCHAR
data type. Otherwise, the SQL variable must be an integer variable.

ROW_COUNT
Identifies the number of rows associated with the previous SQL statement that
was executed. If the previous SQL statement is a DELETE, INSERT, or
UPDATE statement, ROW_COUNT identifies the number of rows deleted,
inserted, or updated by that statement, excluding rows affected by either
triggers or referential integrity constraints. If the previous statement is a
PREPARE statement, ROW_COUNT identifies the estimated number of result
rows in the prepared statement.

RETURN_STATUS
Identifies the status value returned from the previous SQL CALL statement. If
the previous statement is not a CALL statement, the value returned has no
meaning and is unpredictable. For more information, see “RETURN statement”
on page 792.

condition-information
Specifies that error or warning information will be returned about the previous
SQL statement.

If information is desired about an error, the GET DIAGNOSTICS statement
must be the first statement specified in the handler that will handle the error.

If information is desired about a warning,

GET DIAGNOSTICS

Chapter 6. SQL Control Statements 777

|
|
|
|
|

|
|
|
|
|
|
|

v If a handler will get control for the warning condition, the GET
DIAGNOSTICS statement must be the first statement specified in that
handler.

v If a handler will not get control for the warning condition, the GET
DIAGNOSTICS statement must be the next statement executed after that
previous statement.

MESSAGE_TEXT
Identifies the message text of the error or warning returned from the
previous SQL statement that was executed. If the previous SQL statement
completes with an SQLCODE equal to zero, an empty string or blanks is
returned. If the message text is longer than the length attribute of the
SQL-variable-name, no warning is returned.

MESSAGE_LENGTH or MESSAGE_OCTET_LENGTH
Identifies the length of the message text of the error or warning returned
from the previous SQL statement that was executed. If the previous SQL
statement completes with an SQLCODE equal to zero, a length of 0 is
returned.

Notes
The GET DIAGNOSTICS statement does not change the contents of the diagnostics
area (SQLCA). If an SQLSTATE or SQLCODE special variable is declared in an
SQL procedure, SQL function, or SQL trigger, these are set to the SQLSTATE or
SQLCODE returned from issuing the GET DIAGNOSTICS statement.

Example
In an SQL procedure, execute a GET DIAGNOSTICS statement to determine how
many rows were updated.

CREATE PROCEDURE sqlprocg (IN deptnbr VARCHAR(3)) LANGUAGE SQL
BEGIN

DECLARE SQLSTATE CHAR(5);
DECLARE rcount INTEGER;
UPDATE CORPDATA.PROJECT

SET PRSTAFF = PRSTAFF + 1.5
WHERE DEPTNO = deptnbr;

GET DIAGNOSTICS rcount = ROW_COUNT;
/* At this point, rcount contains the number of rows that were updated. */

END;

Within an SQL procedure, handle the returned status value from the invocation of
a stored procedure called TRYIT. TRYIT could use the RETURN statement to
explicitly return a status value or a status value could be implicitly returned by the
database manager. If the procedure is successful, it returns a value of zero.

CREATE PROCEDURE TESTIT ()
LANGUAGE SQL
A1: BEGIN

DECLARE RETVAL INTEGER DEFAULT 0;
...
CALL TRYIT
GET DIAGNOSTICS RETVAL = RETURN_STATUS;
IF RETVAL <> 0 THEN

...
LEAVE A1;

ELSE
...

END IF;
END A1

GET DIAGNOSTICS

778 DB2 UDB for iSeries SQL Reference V5R2

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

In an SQL procedure, execute a GET DIAGNOSTICS statement to retrieve the
message text for an error.

CREATE PROCEDURE divide2 (IN numerator INTEGER,
IN denominator INTEGER,

OUT divide_result INTEGER,
OUT divide_error VARCHAR(70))

LANGUAGE SQL
BEGIN

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
GET DIAGNOSTICS EXCEPTION 1

divide_error = MESSAGE_TEXT;
SET divide_result = numerator / denominator;

END;

GET DIAGNOSTICS

Chapter 6. SQL Control Statements 779

|

GOTO statement
The GOTO statement branches to a user-defined label within an SQL routine or
SQL trigger.

Syntax

�� GOTO label2
label1:

��

Description
label1

Defines the label for the code block. The label must be unique within the SQL
function, SQL procedure, or SQL trigger and cannot be the same as the name
of the SQL function, SQL procedure, or SQL trigger in which the label is used.

label2
Specifies the labelled statement where processing is to continue. The labelled
statement and the GOTO statement must both be in the same scope:
v If the GOTO statement is defined in a FOR statement, label must be defined

inside the same FOR statement, excluding a nested FOR statement.
v If the GOTO statement is defined outside a FOR statement, label must not be

defined within a FOR statement.
v If the GOTO statement is defined in a handler, label must be defined inside

the same handler.
v If the GOTO statement is defined outside a handler, label must not be

defined within a handler.

If label2 is not defined within a scope that the GOTO statement can reach, an
error is returned.

Notes
Use the GOTO statement sparingly. This statement interferes with the normal
sequence of processing, thus making a routine more difficult to read and maintain.
Often, another statement, such as IF or LEAVE, can eliminate the need for a GOTO
statement.

Example
In the following statement, the parameters rating and v_empno are passed in to the
procedure. The time in service is returned as a date duration in output parameter
return_parm. If the time in service with the company is less then 6 months, the
GOTO statement transfers control to the end of the procedure and new_salary is left
unchanged.
CREATE PROCEDURE adjust_salary (IN v_empno CHAR(6),

IN rating INTEGER,
OUT return_parm DECIMAL(8,2))

LANGUAGE SQL
MODIFIES SQL DATA

BEGIN
DECLARE new_salary DECIMAL(9,2);
DECLARE service DECIMAL(8,2);

SELECT salary, current_date - hiredate

GOTO

780 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|
|

INTO new_salary, service
FROM employee
WHERE empno = v_empno;

IF service < 600
THEN GOTO exit1;

END IF;
IF rating = 1
THEN SET new_salary =

new_salary + (new_salary * .10);
ELSEIF rating = 2
THEN SET new_salary =

new_salary + (new_salary * .05);
END IF;
UPDATE employee

SET salary = new_salary
WHERE empno = v_empno;

exit1: SET return_parm = service;
END

GOTO

Chapter 6. SQL Control Statements 781

IF statement
The IF statement executes different sets of SQL statements based on the result of
search conditions.

Syntax

�� IF
label:

search-condition THEN SQL-procedure-statement ; �

�

 ELSEIF search-condition THEN SQL-procedure-statement ;

�

�

 ELSE SQL-procedure-statement ;

END IF ��

Description
label

Specifies the label for the IF statement. The label must be unique within the
SQL function, SQL procedure, or SQL trigger and cannot be the same as the
name of the SQL function, SQL procedure, or SQL trigger in which the label is
used.

search-condition
Specifies the search-condition for which the SQL statement should be executed.
If the condition is unknown or false, processing continues to the next search
condition or ELSE clause.

SQL-procedure-statement
Specifies an SQL statement that should be executed if the preceding
search-condition is true.

Example
The following SQL procedure accepts two IN parameters: an employee number
and an employee rating. Depending on the value of rating, the employee table is
updated with new values in the salary and bonus columns.
CREATE PROCEDURE UPDATE_SALARY_IF

(IN employee_number CHAR(6), INOUT rating SMALLINT)
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN

DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE EXIT HANDLER FOR not_found

SET rating = -1;
IF rating = 1

THEN UPDATE employee
SET salary = salary * 1.10, bonus = 1000
WHERE empno = employee_number;

IF

782 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|
|

|
|
|

ELSEIF rating = 2
THEN UPDATE employee
SET salary = salary * 1.05, bonus = 500
WHERE empno = employee_number;

ELSE UPDATE employee
SET salary = salary * 1.03, bonus = 0
WHERE empno = employee_number;

END IF;
END

IF

Chapter 6. SQL Control Statements 783

ITERATE statement
The ITERATE statement causes the flow of control to return to the beginning of a
labelled loop.

Syntax

�� ITERATE
label1:

label2 ��

Description
label1

Defines the label for the code block. The label must be unique within the SQL
function, SQL procedure, or SQL trigger and cannot be the same as the name
of the SQL function, SQL procedure, or SQL trigger in which the label is used.

label2
Specifies the label of the FOR, LOOP, REPEAT, or WHILE statement to which
the database manager passes the flow of control.

Example
This example uses a cursor to return information for a new department. If the
not_found condition handler was invoked, the flow of control passes out of the
loop. If the value of v_dept is ’D11’, an ITERATE statement passes the flow of
control back to the top of the LOOP statement. Otherwise, a new row is inserted
into the DEPARTMENT table.

CREATE PROCEDURE ITERATOR ()
LANGUAGE SQL
MODIFIES SQL DATA
BEGIN

DECLARE v_dept CHAR(3);
DECLARE v_deptname VARCHAR(29);
DECLARE v_admdept CHAR(3);
DECLARE at_end INTEGER DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT deptno,deptname,admrdept
FROM department
ORDER BY deptno;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
ins_loop:
LOOP

FETCH c1 INTO v_dept, v_deptname, v_admdept;
IF at_end = 1 THEN

LEAVE ins_loop;
ELSEIF v_dept =’D11’ THEN

ITERATE ins_loop;
END IF;
INSERT INTO department (deptno,deptname,admrdept)

VALUES(’NEW’, v_deptname, v_admdept);
END LOOP;
CLOSE c1;

END

ITERATE

784 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

LEAVE statement
The LEAVE statement continues execution by leaving a block or loop.

Syntax

�� LEAVE
label1:

label2 ��

Description
label1

Defines the label for the code block. The label must be unique within the SQL
function, SQL procedure, or SQL trigger and cannot be the same as the name
of the SQL function, SQL procedure, or SQL trigger in which the label is used.

label2
Specifies the label of the compound, FOR, LOOP, REPEAT, or WHILE
statement to exit.

Notes
When a LEAVE statement transfers control out of a compound statement, all open
cursors in the compound statement, except cursors that are used to return result
sets, are closed.

Example
The example contains a loop that fetches data for cursor c1. If the value of SQL
variable at_end is not zero, the LEAVE statement transfers control out of the loop.
CREATE PROCEDURE LEAVE_LOOP (OUT COUNTER INTEGER)

LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

SET v_counter = 0;
OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF at_end <> 0 THEN

LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

LEAVE

Chapter 6. SQL Control Statements 785

|
|
|

LOOP statement
The LOOP statement repeats the execution of a statement or a group of statements.

Syntax

��
label:

LOOP SQL-procedure-statement ; END LOOP
label

��

Description
label

Names the label for the LOOP statement. The label must be unique within the
SQL function, SQL procedure, or SQL trigger and cannot be the same as the
name of the SQL function, SQL procedure, or SQL trigger in which the label is
used. If the beginning label is specified, that label can be specified on the
LEAVE statement.

If the ending label is specified, it must be the same as the beginning label.

SQL-procedure statement
Specifies an SQL statement to be executed in the loop

Example
This procedure uses a LOOP statement to fetch values from the employee table.
Each time the loop iterates, the OUT parameter counter is incremented and the
value of v_midinit is checked to ensure that the value is not a single space (’ ’). If
v_midinit is a single space, the LEAVE statement passes the flow of control outside
of the loop.
CREATE PROCEDURE LOOP_UNTIL_SPACE (OUT COUNTER INTEGER)

LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET counter = -1;

OPEN c1;
fetch_loop:
LOOP

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
IF v_midinit = ’ ’ THEN

LEAVE fetch_loop;
END IF;
SET v_counter = v_counter + 1;

END LOOP fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

LOOP

786 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|

|

REPEAT statement
The REPEAT statement executes a statement or group of statements until a search
condition is true.

Syntax

��
label:

REPEAT SQL-procedure-statement ; �

� UNTIL search-condition END REPEAT
label

��

Description
label

Names the label for the REPEAT statement. The label must be unique within
the SQL function, SQL procedure, or SQL trigger and cannot be the same as
the name of the SQL function, SQL procedure, or SQL trigger in which the
label is used. If the beginning label is specified, that label can be specified on
the LEAVE statements.

If the ending label is specified, it must be the same as the beginning label.

SQL-procedure-statement
Specifies an SQL statement to be executed in the REPEAT loop.

search-condition
The search-condition is evaluated after each execution of the REPEAT loop. If
the condition is true, the REPEAT loop will exit. If the condition is unknown or
false, the looping continues.

Example
A REPEAT statement fetches rows from a table until the not_found condition
handler is invoked.
CREATE PROCEDURE REPEAT_STMT (OUT COUNTER INTEGER)

LANGUAGE SQL
BEGIN

DECLARE v_counter INTEGER DEFAULT 0;
DECLARE v_firstnme VARCHAR(12);
DECLARE v_midinit CHAR(1);
DECLARE v_lastname VARCHAR(15);
DECLARE at_end SMALLINT DEFAULT 0;
DECLARE not_found CONDITION FOR SQLSTATE ’02000’;
DECLARE c1 CURSOR FOR

SELECT firstnme, midinit, lastname
FROM employee;

DECLARE CONTINUE HANDLER FOR not_found
SET at_end = 1;

OPEN c1;
fetch_loop:
REPEAT

FETCH c1 INTO v_firstnme, v_midinit, v_lastname;
SET v_counter = v_counter + 1;

REPEAT

Chapter 6. SQL Control Statements 787

|
|

|
|
|
|
|

|

UNTIL at_end > 0
END REPEAT fetch_loop;
SET counter = v_counter;
CLOSE c1;

END

REPEAT

788 DB2 UDB for iSeries SQL Reference V5R2

RESIGNAL statement
The RESIGNAL statement is used within a handler to return an error or warning
condition.

Syntax

�� RESIGNAL
label:

�

�
VALUE

SQLSTATE sqlstate-string-constant
condition-name signal-information

��

signal-information:

SET MESSAGE_TEXT = SQL-variable-name
diagnostic-string-constant

Description
label

Specifies the label for the RESIGNAL statement. The label must be unique
within the SQL function, SQL procedure, or SQL trigger and cannot be the
same as the name of the SQL function, SQL procedure, or SQL trigger in which
the label is used.

SQLSTATE VALUE sqlstate-string-constant
Specifies the SQLSTATE error code that will be returned. The string must be a
character string constant with exactly 5 characters that follow the rules for
SQLSTATEs:
v Each character must be from the set of digits (’0’ through ’9’) or

non-accented upper case letters (’A’ through ’Z’).
v The SQLSTATE class (first two characters) cannot be ’00’ since this represents

successful completion.

If the SQLSTATE does not conform to these rules, an error is returned.

condition-name
Specifies the name of the condition that will be returned. The condition-name
must be declared within the compound statement.

MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in
the SQLERRMC field of the SQLCA. If the actual length of the string is longer
than 70 bytes, it is truncated without a warning.

SQL-variable-name
Identifies an SQL variable that must be declared within the compound
statement. The SQL variable must be defined as CHAR or VARCHAR data
type.

diagnostic-string-constant
Specifies a character string constant that contains the message text.

RESIGNAL

Chapter 6. SQL Control Statements 789

|
|

|
|
|
|
|

Notes
Any valid SQLSTATE value can be used in the RESIGNAL statement. However, it
is recommended that programmers define new SQLSTATEs based on ranges
reserved for applications. This prevents the unintentional use of an SQLSTATE
value that might be defined by the database manager in a future release. For more
information about SQLSTATEs, see the SQL Messages and Codes book in the
iSeries Information Center.

If the RESIGNAL statement is specified without a SQLSTATE clause or a
condition-name, the RESIGNAL statement must be in a handler. The SQL routine
returns to the caller with the identical condition that invoked the handler.

When a RESIGNAL statement is issued and an SQLSTATE or condition-name is
specified, the SQLCODE returned in the SQLCA is based on the SQLSTATE value
as follows:
v If the specified SQLSTATE class is either ’01’ or ’02’, a warning or not found is

signalled and the SQLCODE is set to +438.
v Otherwise, an exception is returned and the SQLCODE is set to –438.

When a RESIGNAL statement is issued and neither an SQLSTATE value or
condition-name is specified, the SQLCODE is not changed.

If the SQLSTATE or condition indicates that an exception is signalled (SQLSTATE
class other than ’01’ or ’02’):,
v If a handler exists in the same compound statement as the RESIGNAL

statement, and the compound-statement contains a handler for SQLEXCEPTION or
the specified SQLSTATE or condition; the exception is handled and control is
transferred to that handler.

v If the compound-statement is nested and an outer level compound-statement has a
handler for SQLEXCEPTION or the specified SQLSTATE or condition; the
exception is handled and control is transferred to that handler.

v Otherwise, the exception is not handled and control is immediately returned to
the end of the compound statement.

If the SQLSTATE or condition indicates that a warning (SQLSTATE class ’01’) or
not found (SQLSTATE class ’02’) is signalled:
v If a handler exists in the same compound statement as the RESIGNAL

statement, and the compound-statement contains a handler for SQLWARNING (if
the SQLSTATE class is ’01’), NOT FOUND (if the SQLSTATE class is ’02’), or the
specified SQLSTATE or condition; the warning or not found condition is
handled and control is transferred to that handler.

v If the compound-statement is nested and an outer level compound statement
contains a handler for SQLWARNING (if the SQLSTATE class is ’01’), NOT
FOUND (if the SQLSTATE class is ’02’), or the specified SQLSTATE or condition;
the warning or not found condition is handled and the exception is handled and
control is returned to that handler.

v Otherwise, the warning is not handled and processing continues with the next
statement.

SQLSTATE values are comprised of a two-character class code value, followed by a
three-character subclass code value. Class code values represent classes of
successful and unsuccessful execution conditions.

RESIGNAL

790 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

../rzala/rzalamst02.html

Example
This example detects a division by zero error. The IF statement uses a SIGNAL
statement to invoke the overflow condition handler. The condition handler uses a
RESIGNAL statement to return a different SQLSTATE value to the client
application.
CREATE PROCEDURE divide (IN numerator INTEGER,

IN denominator INTEGER,
OUT divide_result INTEGER)

LANGUAGE SQL
BEGIN

DECLARE overflow CONDITION FOR ’22003’;
DECLARE CONTINUE HANDLER FOR overflow

RESIGNAL SQLSTATE ’22375’;
IF denominator = 0 THEN

SIGNAL overflow;
ELSE

SET divide_result = numerator / denominator;
END IF;

END;

RESIGNAL

Chapter 6. SQL Control Statements 791

RETURN statement
The RETURN statement returns from a routine. For SQL functions, it returns the
result of the function. For an SQL procedure, it optionally returns an integer status
value. For SQL table functions, it returns a table as the result of the function.

Syntax

�� RETURN
label: expression

NULL
query-expression

��

query-expression:

fullselect
,

WITH common-table-expression

Description
label

Specifies the label for the RETURN statement. The label must be unique within
the SQL function, SQL procedure, or SQL trigger and cannot be the same as
the name of the SQL function, SQL procedure, or SQL trigger in which the
label is used.

expression
Specifies a value that is returned from the routine:
v If the routine is a function, expression must be specified. The value must be

compatible with the data type that is specified on the RETURNS clause of
the CREATE FUNCTION statement.

v If the routine is a procedure, the data type of expression must be INTEGER. If
the expression is the null value, a value of 0 is returned.

NULL
The null value is returned from the SQL function. NULL is not allowed in SQL
procedures.

query-expression
Identifies the table returned from the SQL table function. fullselect is not
allowed for SQL scalar functions and SQL procedures.

common-table-expression
Specifies a common-table-expression for use with the fullselect.

fullselect
Specifies the rows to be returned for the table function. The number of
columns in the fullselect must match the number of columns in the
function result. The fullselect can return zero or more rows with one or
more columns.

Notes
When a value is returned from a procedure, the caller may access the value using:

RETURN

792 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

v the GET DIAGNOSTICS statement to retrieve the RETURN_STATUS when the
SQL procedure was called from another SQL procedure or SQL function, or

v the parameter bound for the return value parameter marker in the escape clause
CALL syntax (?=CALL...) in an ODBC application

v directly from the SQLCA returned from processing the CALL of an SQL
procedure by retrieving the value of sqlerrd[0] when the SQLCODE is not less
than zero. When the SQLCODE is less than zero, sqlerrd[0] is not set and the
application should assume a RETURN_STATUS value of -1.

If a RETURN statement was not used to return from a procedure or if a value is
not specified on the RETURN statement,
v if the procedure returns with an SQLCODE that is greater or equal to zero, the

RETURN_STATUS will be set to a value of 0
v if the procedure returns with an SQLCODE that is less than zero, the

RETURN_STATUS will be set to a value of –1

If a RETURN statement with a specified return value was used to return from a
procedure, the SQLCODE, SQLSTATE, and message text in the SQLCA are
initialized to zeros. An error is not returned to the caller.

RETURN is not allowed in SQL triggers.

Only one RETURN statement is allowed in an SQL table function statement
routine-body.

Example
Use a RETURN statement to return from an SQL procedure with a status value of
zero if successful, and –200 if not.
BEGIN

...
GOTO fail;
...
success: RETURN 0
failure: RETURN -200

...
END

Define a scalar function that returns the tangent of a value using the existing sine
and cosine functions.
CREATE FUNCTION mytan (x DOUBLE)

RETURNS DOUBLE
LANGUAGE SQL
CONTAINS SQL
NO EXTERNAL ACTION
DETERMINISTIC
RETURN SIN(x)/COS(x)

RETURN

Chapter 6. SQL Control Statements 793

|
|

|
|
|
|

|
|
|

|
|

SIGNAL statement
The SIGNAL statement signals an error or warning condition. It causes an error or
warning to be returned with the specified SQLSTATE and optional message text.

Syntax

�� SIGNAL
label:

�

�
VALUE

SQLSTATE sqlstate-string-constant
condition-name signal-information

��

signal-information:

SET MESSAGE_TEXT = SQL-variable-name
diagnostic-string-constant

(diagnostic-string-constant)

Description
label

Specifies the label for the SIGNAL statement. The label must be unique within
the SQL function, SQL procedure, or SQL trigger and cannot be the same as
the name of the SQL function, SQL procedure, or SQL trigger in which the
label is used.

SQLSTATE VALUE sqlstate-string-constant
Specifies the SQLSTATE that will be signalled. The string must be a character
string constant with exactly 5 characters that follow the rules for SQLSTATEs:
v Each character must be from the set of digits (’0’ through ’9’) or

non-accented upper case letters (’A’ through ’Z’).
v The SQLSTATE class (first two characters) cannot be ’00’ since this represents

successful completion.

If the SQLSTATE does not conform to these rules, an error is returned.

condition-name
Specifies the name of the condition that will be signalled. The condition-name
must be declared within the compound statement.

MESSAGE_TEXT
Specifies a string that describes the error or warning. The string is returned in
the SQLERRMC field of the SQLCA. If the actual length of the string is longer
than 70 bytes, it is truncated without a warning.

SQL-variable-name
Identifies an SQL variable that must be declared within the compound
statement. The SQL variable must be defined as CHAR or VARCHAR data
type.

diagnostic-string-constant
Specifies a character string constant that contains the message text.

SIGNAL

794 DB2 UDB for iSeries SQL Reference V5R2

|
|

|
|
|
|
|

(diagnostic-string-constant)
Specifies a string constant that contains the message text. This form is only
supported in the body of an SQL trigger. To conform with the ANS and
ISO standards, this form should not be used. It is provided for
compatibility with other products.

Notes
Any valid SQLSTATE value can be used in the SIGNAL statement. However, it is
recommended that programmers define new SQLSTATEs based on ranges reserved
for applications. This prevents the unintentional use of an SQLSTATE value that
might be defined by the database manager in a future release. For more
information about SQLSTATEs, see the SQL Messages and Codes book in the
iSeries Information Center.

When a SIGNAL statement is issued, the SQLCODE returned in the SQLCA is
based on the SQLSTATE value as follows:
v If the specified SQLSTATE class is either ’01’ or ’02’, a warning or not found is

signalled and the SQLCODE is set to +438.
v Otherwise, an exception is signalled and the SQLCODE is set to –438.

If the SQLSTATE or condition indicates that an exception (SQLSTATE class other
than ’01’ or ’02’) is signalled,
v If a handler exists in the same compound statement as the SIGNAL statement,

and the compound statement contains a handler for SQLEXCEPTION or the
specified SQLSTATE or condition; the exception is handled and control is
transferred to that handler.

v Otherwise, the exception is not handled and control is immediately returned to
the end of the compound statement.

If the SQLSTATE or condition indicates that a warning (SQLSTATE class ’01’) or
not found (SQLSTATE class ’02’) is signalled,
v If a handler exists in the same compound statement as the SIGNAL statement,

and the compound statement contains a handler for SQLWARNING (if the
SQLSTATE class is ’01’), NOT FOUND (if the SQLSTATE class is ’02’), or the
specified SQLSTATE or condition; the warning or not found condition is
handled and control is transferred to that handler.

v Otherwise, the warning is not handled and processing continues with the next
statement.

SQLSTATE values are comprised of a two-character class code value, followed by a
three-character subclass code value. Class code values represent classes of
successful and unsuccessful execution conditions.

Any valid SQLSTATE value can be used in the SIGNAL statement. However, it is
recommended that programmers define new SQLSTATEs based on ranges reserved
for applications. This prevents the unintentional use of an SQLSTATE value that
might be defined by the database manager in a future release.
v SQLSTATE classes that begin with the characters ’7’ through ’9’ or ’I’ through ’Z’

may be defined. Within these classes, any subclass may be defined.
v SQLSTATE classes that begin with the characters ’0’ through ’6’ or ’A’ through

’H’ are reserved for the database manager. Within these classes, subclasses that
begin with the characters ’0’ through ’H’ are reserved for the database manager.
Subclasses that begin with the characters ’I’ through ’Z’ may be defined.

SIGNAL

Chapter 6. SQL Control Statements 795

../rzala/rzalamst02.html

For more information about SQLSTATEs, see the SQL Messages and Codes book in
the iSeries Information Center.

Example
In the following compound statement, the parameter rating is passed in to the
procedure. If the time in service with the company is less then 6 months, the
exception II001 is immediately returned to the caller.
CREATE PROCEDURE raise (IN rating INTEGER)

LANGUAGE SQL
BEGIN

DECLARE new_salary DECIMAL(9,2);
DECLARE service DECIMAL(8,0);
DECLARE v_empno CHAR(6) DEFAULT ’123456’;

SELECT salary, current_date - hiredate
INTO new_salary, service
FROM employee
WHERE empno = v_empno;

IF service < 600
THEN SIGNAL SQLSTATE ’II001’

SET MESSAGE_TEXT = ’Insufficient time in service.’;
END IF;
IF rating = 1
THEN SET new_salary =

new_salary + (new_salary * .10);
ELSEIF rating = 2
THEN SET new_salary =

new_salary + (new_salary * .05);
END IF;
UPDATE employee

SET salary = new_salary
WHERE empno = v_empno;

END;

SIGNAL

796 DB2 UDB for iSeries SQL Reference V5R2

../rzala/rzalamst02.html

WHILE statement
The WHILE statement repeats the execution of a statement while a specified
condition is true.

Syntax

��
label:

WHILE search-condition DO SQL-procedure-statement ; �

� END WHILE
label

��

Description
label

Defines the label for the code block. The label must be unique within the SQL
function, SQL procedure, or SQL trigger and cannot be the same as the name
of the SQL function, SQL procedure, or SQL trigger in which the label is used.
If the beginning label is specified, it can be specified on a LEAVE statement.

If the ending label is specified, it must be the same as the beginning label.

search-condition
The search-condition is evaluated before each execution of the WHILE loop. If
the condition is true, the SQL-procedure-statements in the WHILE loop will be
executed.

SQL-procedure-statement
Specifies an SQL statement to execute within the WHILE loop.

Example
This example uses a WHILE statement to iterate through FETCH and SET
statements. While the value of SQL variable v_counter is less than half of number
of employees in the department identified by the IN parameter deptNumber, the
WHILE statement continues to perform the FETCH and SET statements. When the
condition is no longer true, the flow of control leaves the WHILE statement and
closes the cursor.
CREATE PROCEDURE dept_median

(IN deptNumber SMALLINT, OUT medianSalary DECIMAL(7,2))
LANGUAGE SQL
BEGIN

DECLARE v_numRecords INTEGER DEFAULT 1;
DECLARE v_counter INTEGER DEFAULT 0;
DECLARE c1 CURSOR FOR

SELECT salary
FROM staff
WHERE dept = deptNumber
ORDER BY salary;

DECLARE EXIT HANDLER FOR NOT FOUND
SET medianSalary = 6666;

SET medianSalary = 0;
SELECT COUNT(*) INTO v_numRecords

WHILE

Chapter 6. SQL Control Statements 797

|
|
|
|

|

FROM staff
WHERE dept = deptNumber;

OPEN c1;
WHILE v_counter < (v_numRecords/2 + 1) DO

FETCH c1 INTO medianSalary;
SET v_counter = v_counter +1;

END WHILE;
CLOSE c1;

END

WHILE

798 DB2 UDB for iSeries SQL Reference V5R2

Appendix A. SQL Limits

The following tables describe certain limits imposed by the DB2 UDB for iSeries
database manager.

Table 58. Identifier Length Limits

Identifier Limits DB2 UDB for iSeries Limit

Longest alias name 128

Longest authorization name 10

Longest column label 60

Longest correlation name 128

Longest cursor name 18

Longest host identifier 64

Longest savepoint name 128

Longest server name 18

Longest SQL routine label 128

Longest statement name 18

Longest table, package, or alias label 50

Longest unqualified schema name 10

Longest unqualified column name 30

Longest unqualified constraint name 128

Longest unqualified data type name 128

Longest unqualified external program name68 10

Longest unqualified function name 128

Longest unqualified nodegroup name 10

Longest unqualified package name 10

Longest unqualified procedure name 128

Longest unqualified specific name 128

Longest unqualified SQL parameter name 128

Longest unqualified SQL variable name 128

Longest unqualified table, view, and index name 128

Longest unqualified trigger name 128

Unqualified system column name 10

Unqualified system table, view, and index name 10

Table 59. Numeric Limits

Numeric Limits DB2 UDB for iSeries Limit

Smallest BIGINT value −9 223 372 036 854 775 808

68. For a service program entry point name, the limit is 279. For REXX procedures, the limit is 33.

© Copyright IBM Corp. 1998, 2002 799

||

Table 59. Numeric Limits (continued)

Numeric Limits DB2 UDB for iSeries Limit

Largest BIGINT value +9 223 372 036 854 775 807

Smallest INTEGER value −2 147 483 648

Largest INTEGER value +2 147 483 647

Smallest SMALLINT value −32 768

Largest SMALLINT value +32 767

Largest decimal precision 31

Smallest FLOAT value70 −1.79x10308

Largest FLOAT value70 +1.79x10308

Smallest positive FLOAT value70 +2.23x10−308

Largest negative FLOAT value70 −2.23x10−308

Smallest REAL value70 −3.4x1038

Largest REAL value70 +3.4x1038

Smallest positive REAL value70 +1.18x10−38

Largest negative REAL value70 −1.18x10−38

Table 60. String Limits

String Limits DB2 UDB for iSeries Limit

Maximum length of BLOB 2 147 483 647

Maximum length of CHAR71 32765

Maximum length of VARCHAR71 32739

Maximum length of CLOB 2 147 483 647

Maximum length of C NUL-terminated71 32739

Maximum length of GRAPHIC71 16382

Maximum length of VARGRAPHIC71 16369

Maximum length of DBCLOB 1 073 741 823

Maximum length of C NUL-terminated graphic71 16369

Maximum length of character constant 32740

Maximum length of a graphic constant 16370

Longest concatenated character string71 32765

Longest concatenated graphic string71 16369

Table 61. Datetime Limits

Datetime Limits DB2 UDB for iSeries Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

SQL Limits

800 DB2 UDB for iSeries SQL Reference V5R2

|

|

Table 62. DataLink Limits

Datalink Limits DB2 UDB for iSeries Limit

Maximum length of DATALINK 32718

Maximum length of DATALINK comment 254

Table 63. Database Manager Limits

Database Manager Limits DB2 UDB for iSeries Limit

Most columns in a table 8000

Most columns in a view 8000

Maximum number of parameters in a function 90

Maximum number of parameters in a procedure 25473

Maximum length of a row without LOBs including all
overhead

32766

Maximum length of a row with LOBs including all
overhead

3 758 096 383

Maximum size of a table 1 terabyte

Maximum size of an index 1 terabyte

Most rows in a table 4 294 967 288

Longest index key 2000

Most columns in an index key 120

Most indexes on a table approximately 4000

Most tables referenced in an SQL statement 256

Most tables referenced in an SQL view 32

Most host variable declarations in a precompiled
program69

storage

Most host variables and constants in an SQL statement 409674

Longest host variable used for insert or update 32766

Longest SQL statement 65535

Most elements in a select list72 approximately 8000

Most predicates in a WHERE or HAVING clause 4690

Maximum number of columns in a GROUP BY clause 120

Maximum total length of columns in a GROUP BY clause 2000

Maximum number of columns in an ORDER BY clause 10000

Maximum total length of columns in an ORDER BY
clause

10000

Maximum size of an SQLDA 16 777 215

Maximum number of prepared statements storage

Most declared cursors in a program storage

Maximum number of cursors opened at one time storage

Most tables in a relational database storage

Maximum number of constraints on a table 300

Maximum levels allowed for a subselect 32

Maximum length of a comment 2000

SQL Limits

Appendix A. SQL Limits 801

|

|

|

Table 63. Database Manager Limits (continued)

Database Manager Limits DB2 UDB for iSeries Limit

Maximum length of a path 3483

Maximum number of schemas in a path 268

Maximum number of rows changed in a unit of work 500 000 000

Maximum number of triggers on a table 300

Maximum number of nested trigger invocations 200

Maximum procedures with result sets waiting to be
fetched

100

Maximum length of a password 128

Maximum number of locators in a transaction 250 000

Maximum number of savepoints active at one time storage

Maximum number of simultaneously allocated CLI
handles in a process

80 000

69. In RPG/400 and PL/I programs when the old parameter passing technique is used, the limit is approximately 4000. The limit is
based on the number of pointers allowed in the program. In all other cases, the limit is based on architectural constraints within
the operating system.

70. The values shown are approximate.

71. If the column is NOT NULL, the maximum is one more.

72. The limit is based on the size of internal structures generated for the parsed SQL statement.

73. Procedures with PARAMETER STYLE SQL are limited to 90 parameters. SQL procedures with PARAMETER STYLE GENERAL
are limited to 253. Procedures with PARAMETER STYLE GENERAL WITH NULLS are limited to 254. External procedures with
PARAMETER STYLE GENERAL are limited to 255. The maximum number of parameters is also limited by the maximum
number of parameters allowed by the licensed program used to compile the external program.

74. If the statement is not read-only, the limit is 2048. The limit is approximate and may be less if very large string constants or
string variables are used.

75. The maximum number of allocated handles per DRDA connection is 500.

SQL Limits

802 DB2 UDB for iSeries SQL Reference V5R2

||

||

||

|
|
|

Appendix B. SQL Communication Area

An SQLCA is a set of variables that is updated at the end of the execution of every
SQL statement. A program that contains executable SQL statements must provide
exactly one SQLCA (unless a stand-alone SQLCODE or a stand-alone SQLSTATE
variable is used instead).

The SQL INCLUDE statement can be used to provide the declaration of the
SQLCA in all host languages except RPG or REXX. For information on the use of
the SQLCA in a REXX procedure, see the SQL Programming with Host Languages
book.

In C, COBOL, FORTRAN, and PL/I, the name of the storage area must be SQLCA.
In PL/I, and C, the name of the structure must be SQLCA. Every SQL statement
must be within the scope of its declaration.

When a stand-alone SQLCODE is specified in the program, the SQLCA must not
be included. The precompiler will include an SQLCA with the name of the variable
SQLCODE changed to SQLCADE (or SQLCOD changed to SQLCAD). The
precompiler will add statements to the program to ensure that the stand-alone
SQLCODE contains the correct values.

When a stand-alone SQLSTATE is specified in the program, the SQLCA must not
be included. The precompiler will include an SQLCA with the name of the variable
SQLSTATE changed to SQLSTATE. The precompiler will add statements to the
program to ensure that the stand-alone SQLSTATE contains the correct values.

The stand-alone SQLCODE and stand-alone SQLSTATE must not be specified in
RPG or REXX.

Field Descriptions
The names in the following table are those provided by the SQL INCLUDE
statement. For the most part, C (and C++), COBOL, FORTRAN and PL/I use the
same names. RPG names are different, because in RPG/400, they are limited to 6
characters. Note one instance where PL/I names differ from the COBOL names.

Table 64. Names Provided by the SQL INCLUDE Statement

C Name,
COBOL & PL/I
Name

FORTRAN1

Name RPG Name Field Data Type Field Value

SQLCAID
sqlcaid

Not used
SQLCAID

SQLAID CHAR(8) An “eye catcher” for storage dumps,
containing 'SQLCA'.

SQLCABC
sqlcabc

Not used
SQLCABC

SQLABC INTEGER Contains the length of the SQLCA, 136.

© Copyright IBM Corp. 1998, 2002 803

../rzajp/rzajpmst02.htm

Table 64. Names Provided by the SQL INCLUDE Statement (continued)

C Name,
COBOL & PL/I
Name

FORTRAN1

Name RPG Name Field Data Type Field Value

SQLCODE
sqlcode

SQLCOD
SQLCODE

SQLCOD INTEGER Contains an SQL return code.

Code Meaning

0 Successful execution although
SQLWARN indicators might have
been set.

positive
Successful execution, but with a
warning condition.

negative
Error condition.

SQLERRML2

sqlerrml
SQLTXL
SQLERRML

SQLERL SMALLINT Length indicator for SQLERRMC, in the
range 0 through 70. 0 means that the value
of SQLERRMC is not pertinent.

SQLERRMC2

sqlerrmc
SQLTXT
SQLERRMC

SQLERM CHAR (70) Contains message replacement text
associated with the SQLCODE. For
CONNECT and SET CONNECTION, the
SQLERRMC field contains information
about the connection, see Table 67 on
page 808 for a description of the
replacement text.

SQLERRP
sqlerrp

SQLERP
SQLERRP

SQLERP CHAR(8) Contains the name of the product and
module returning the error. The first three
characters identify the product:

ARI for DB2 for VM and VSE
DSN for DB2 UDB for OS/390 and
z/OS
QSQ for DB2 UDB for iSeries
SQL for all other DB2 products

See “CONNECT (Type 1)” on page 402 or
“CONNECT (Type 2)” on page 407 for
additional information.

SQLERRD
sqlerrd

SQLERR
SQLERRD

SQLERR3 Array Contains six INTEGER variables that
provide diagnostic information, see Table 66
on page 806 for a description of the

diagnostic information.

SQLWARN
sqlwarn

SQLWRN
SQLWARN

SQLWRN4 CHAR(11) A set of 11 CHAR(1) warning indicators,
each containing blank or 'W' or 'N'.

SQLSTATE
sqlstate

SQLSTT
SQLSTATE

SQLSTT CHAR(5) A return code that indicates the outcome of
the most recently executed SQL statement.

SQLCA

804 DB2 UDB for iSeries SQL Reference V5R2

Table 64. Names Provided by the SQL INCLUDE Statement (continued)

C Name,
COBOL & PL/I
Name

FORTRAN1

Name RPG Name Field Data Type Field Value

Notes:
1 The first name indicates the IBM SQL SQLCA names for the FORTRAN SQLCA. The second name

indicates an alternative name that is available due to the DB2 UDB for iSeries implementation of the
SQLCA in FORTRAN.

2 In COBOL, SQLERRM includes SQLERRML and SQLERRMC. In PL/I, the varying-length string SQLERRM
is equivalent to SQLERRML prefixed to SQLERRMC.

3 In RPG/400 and ILE RPG/400, SQLERR is defined as 24 characters (not an array) that are redefined by the
fields SQLER1 through SQLER6. The fields are full-word binary. In ILE RPG/400, SQLERR is also
redefined as an array. The name of the array is SQLERRD.

4 Defined as 11 characters (not an array).

Table 65. SQLWARN Diagnostic Information

C Name
COBOL &
PL/I Name

FORTRAN1 Name RPG Name Field Value

SQLWARN0
sqlwarn[0]

SQLWRN(0)
SQLWARN(1:1)

SQLWN0 Blank if all other indicators are blank;
contains 'W' if at least one other indicator
contains 'W' or 'N'.

SQLWARN1
sqlwarn[1]

SQLWRN(1)
SQLWARN(2:2)

SQLWN1 Contains 'W' if the value of a string column
was truncated when assigned to a host
variable. Contains ’N’ if *NOCNULRQD
was specified an the CRTSQLCI or
CRTSQLCPPI command (or
CNULRQD(*NO) on the SET OPTION
statement) and if the value of a string
column was assigned to a C
NUL-terminated host variable and if the
host variable was large enough to contain
the result but not large enough to contain
the NUL-terminator.

SQLWARN2
sqlwarn[2]

SQLWRN(2)
SQLWARN(3:3)

SQLWN2 Contains 'W' if the null values were
eliminated from the argument of a
function; not necessarily set to 'W' for the
MIN function because its results are not
dependent on the elimination of null
values.

SQLWARN3
sqlwarn[3]

SQLWRN(3)
SQLWARN(4:4)

SQLWN3 Contains 'W' if the number of columns is
larger than the number of host variables.

SQLWARN4
sqlwarn[4]

SQLWRN(4)
SQLWARN(5:5)

SQLWN4 Contains 'W' if a prepared UPDATE or
DELETE statement does not include a
WHERE clause.

SQLWARN5
sqlwarn[5]

SQLWRN(5)
SQLWARN(6:6)

SQLWN5 Reserved

SQLWARN6
sqlwarn[6]

SQLWRN(6)
SQLWARN(7:7)

SQLWN6 Contains ’W’ if date arithmetic results in an
end-of-month adjustment.

SQLWARN7
sqlwarn[7]

SQLWRN(7)
SQLWARN(8:8)

SQLWN7 Reserved

SQLCA

Appendix B. SQL Communication Area 805

Table 65. SQLWARN Diagnostic Information (continued)

C Name
COBOL &
PL/I Name

FORTRAN1 Name RPG Name Field Value

SQLWARN8
sqlwarn[8]

SQLWRX(1)
SQLWARN(9:9)

SQLWN8 Contains ’W’ if the result of a character
conversion contains the substitution
character.

SQLWARN9
sqlwarn[9]

SQLWRX(2)
SQLWARN(10:10)

SQLWN9 Reserved

SQLWARNA
sqlwarn[10]

SQLWRX(3)
SQLWARN(11:11)

SQLWNA Reserved

Table 66. SQLERRD Diagnostic Information

C Name
COBOL &
PL/I Name FORTRAN1 Name RPG Name Field Value

SQLERRD(1)
sqlerrd[0]

SQLERR(1) SQLER1 Contains the last four characters of the CPF
escape message if SQLCODE is less than 0.
For example, if the message is CPF5715,
X'F5F7F1F5' is placed in SQLERRD(1).1

For a call to a procedure, contains the return
status value specified on the RETURN
statement. If a return status value is not
specified on the RETURN statement,

v 0 is returned if the call statement is
successful, or

v –200 is returned if the call statement is not
successful.

SQLERRD(2)
sqlerrd[1]

SQLERR(2) SQLER2 Contains the last four characters of a CPD
diagnostic message if the SQL code is less
than 0.1

For a CALL statement, SQLERRD(2) contains
the number of result sets.

SQLERRD(3)
sqlerrd[2]

SQLERR(3) SQLER3 For a CONNECT for status statement,
SQLERRD(3) contains information on the
connection status. See “CONNECT (Type 2)”
on page 407 for more information.

For INSERT, UPDATE, and DELETE, shows
the number of rows affected.

For a FETCH statement, SQLERRD(3)
contains the number of rows fetched.

For the PREPARE statement, contains the
estimated number of rows selected. If the
number of rows is greater than 2 147 483 647,
then 2 147 483 647 is returned.

SQLCA

806 DB2 UDB for iSeries SQL Reference V5R2

Table 66. SQLERRD Diagnostic Information (continued)

C Name
COBOL &
PL/I Name FORTRAN1 Name RPG Name Field Value

SQLERRD(4)
sqlerrd[3]

SQLERR(4) SQLER4 For the PREPARE statement, contains a
relative number estimate of the resources
required for every execution. This number
varies depending on the current availability
of indexes, file sizes, CPU model, etc. It is an
estimated cost for the access plan chosen by
the DB2 UDB for iSeries Query Optimizer.

For a CONNECT and SET CONNECTION
statement, SQLERRD(4) contains the type of
conversation used and whether or not
committable updates can be performed. See
“CONNECT (Type 2)” on page 407 for more
information.

For a CALL statement, SQLERRD(4) contains
the message key of the error that caused the
procedure to fail. The QMHRTVPM API can
be used to return the message description for
the message key.

For a trigger error in a DELETE, INSERT or
UPDATE statement, SQLERRD(4) contains
the message key of the error that was
signaled from the trigger program. The
QMHRTVPM API can be used to return the
message description for the message key.

For a FETCH statement, SQLERRD(4)
contains the length of the row retrieved.

SQLERRD(5)
sqlerrd[4]

SQLERR(5) SQLER5 For a CALL statement, SQLERRD(5) contains
the number of result sets returned from the
procedure.

For a CONNECT or SET CONNECTION
statement, SQLERRD(5) contains:

v -1 if the connection is unconnected

v 0 if the connection is local

v 1 if the connection is remote

For a DELETE statement, shows the number
of rows affected by referential constraints.

For an EXECUTE IMMEDIATE or PREPARE
statement, may contain the position of a
syntax error.

For a multiple-row FETCH statement,
SQLERRD(5) contains +100 if the last row
currently in the table has been fetched.

For a PREPARE statement, SQLERRD(5)
contains the number of parameter markers in
the prepared statement.

SQLCA

Appendix B. SQL Communication Area 807

|
|
|

Table 66. SQLERRD Diagnostic Information (continued)

C Name
COBOL &
PL/I Name FORTRAN1 Name RPG Name Field Value

SQLERRD(6)
sqlerrd[5]

SQLERR(6) SQLER6 Contains the SQL completion message
identifier when the SQLCODE is 0.

In all other cases, it is undefined.

Note:
1 SQLERRD(1) and SQLERRD(2) are set only if appropriate and only if the current server is DB2 UDB for

iSeries.

Table 67. SQLERRMC Replacement Text for CONNECT and SET CONNECTION

Description Data type

Relational Database Name CHAR(18)

Product Identification (same as SQLERRP) CHAR(8)

User ID of the server job CHAR(10)

Connection method (*DUW or *RUW) CHAR(10)

DDM server class name

QAS DB2 UDB for iSeries

QDB2 DB2 UDB for OS/390 and z/OS

QDB2/2 DB2 for OS/2

QDB2/6000 DB2 for AIX/6000

QDB2/HPUX DB2 for HP-UX**

QDB2/NT DB2 for NT

QDB2/SUN DB2 for SUN** Solaris**

QSQLDS/VM DB2 for VM and VSE

QSQLDS/VSE DB2 for VM and VSE

CHAR(10)

Connection type (same as SQLERRD(4)) SMALLINT

INCLUDE SQLCA Declarations
In C and C++, INCLUDE SQLCA declarations are equivalent to the following:
#ifndef SQLCODE
struct sqlca
{

unsigned char sqlcaid[8];
long sqlcabc;
long sqlcode;
short sqlerrml;
unsigned char sqlerrmc[70];
unsigned char sqlerrp[8];
long sqlerrd[6];
unsigned char sqlwarn[11];
unsigned char sqlstate[5];

};
#define SQLCODE sqlca.sqlcode
#define SQLWARN0 sqlca.sqlwarn[0]
#define SQLWARN1 sqlca.sqlwarn[1]
#define SQLWARN2 sqlca.sqlwarn[2]

SQLCA

808 DB2 UDB for iSeries SQL Reference V5R2

#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARN8 sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[10]
#define SQLSTATE sqlca.sqlstate
#endif
struct sqlca sqlca;

In COBOL, INCLUDE SQLCA declarations are equivalent to the following:
01 SQLCA.

05 SQLCAID PIC X(8).
05 SQLCABC PIC S9(9) BINARY.
05 SQLCODE PIC S9(9) BINARY.
05 SQLERRM.

49 SQLERRML PIC S9(4) BINARY.
49 SQLERRMC PIC X(70).

05 SQLERRP PIC X(8).
05 SQLERRD OCCURS 6 TIMES

PIC S9(9) BINARY.
05 SQLWARN.

10 SQLWARN0 PIC X(1).
10 SQLWARN1 PIC X(1).
10 SQLWARN2 PIC X(1).
10 SQLWARN3 PIC X(1).
10 SQLWARN4 PIC X(1).
10 SQLWARN5 PIC X(1).
10 SQLWARN6 PIC X(1).
10 SQLWARN7 PIC X(1).
10 SQLWARN8 PIC X(1).
10 SQLWARN9 PIC X(1).
10 SQLWARNA PIC X(1).

05 SQLSTATE PIC X(5).

Note: In COBOL, INCLUDE SQLCA must not be specified outside the Working
Storage Section.

In FORTRAN, INCLUDE SQLCA declarations are equivalent to the following:
CHARACTER SQLCA(136)
CHARACTER SQLCAID*8
INTEGER*4 SQLCABC
INTEGER*4 SQLCODE
INTEGER*2 SQLERRML
CHARACTER SQLERRMC*70
CHARACTER SQLERRP*8
INTEGER*4 SQLERRD(6)
CHARACTER SQLWARN*11
CHARACTER SQLSTOTE*5
EQUIVALENCE (SQLCA(1), SQLCAID)
EQUIVALENCE (SQLCA(9), SQLCABC)
EQUIVALENCE (SQLCA(13), SQLCODE)
EQUIVALENCE (SQLCA(17), SQLERRML)
EQUIVALENCE (SQLCA(19), SQLERRMC)
EQUIVALENCE (SQLCA(89), SQLERRP)
EQUIVALENCE (SQLCA(97), SQLERRD)
EQUIVALENCE (SQLCA(121), SQLWARN)
EQUIVALENCE (SQLCA(132), SQLSTOTE)

INTEGER*4 SQLCOD,
C SQLERR(6)
INTEGER*2 SQLTXL
CHARACTER SQLERP*8,

SQLCA

Appendix B. SQL Communication Area 809

C SQLWRN(0:7)*1,
C SQLWRX(1:3)*1,
C SQLTXT*70,
C SQLSTT*5,
C SQLWRNWK*8,
C SQLWRXWK*3,
C SQLERRWK*24,
C SQLERRDWK*24
EQUIVALENCE (SQLWRN(1), SQLWRNWK)
EQUIVALENCE (SQLWRX(1), SQLWRXWK)
EQUIVALENCE (SQLCA(97), SQLERRDWK)
EQUIVALENCE (SQLERR(1), SQLERRWK)
COMMON /SQLCA1/SQLCOD,SQLERR,SQLTXL
COMMON /SQLCA2/SQLERP,SQLWRN,SQLTXT,SQLWRX,SQLSTT

In PL/I; INCLUDE SQLCA declarations are equivalent to the following:
DCL 1 SQLCA,

2 SQLCAID CHAR(8),
2 SQLCABC BIN FIXED(31),
2 SQLCODE BIN FIXED(31),
2 SQLERRM CHAR(70) VAR,
2 SQLERRP CHAR(8),
2 SQLERRD(6) BIN FIXED(31),
2 SQLWARN,

3 SQLWARN0 CHAR(1),
3 SQLWARN1 CHAR(1),
3 SQLWARN2 CHAR(1),
3 SQLWARN3 CHAR(1),
3 SQLWARN4 CHAR(1),
3 SQLWARN5 CHAR(1),
3 SQLWARN6 CHAR(1),
3 SQLWARN7 CHAR(1),
3 SQLWARN8 CHAR(1),
3 SQLWARN9 CHAR(1),
3 SQLWARNA CHAR(1),

2 SQLSTATE CHAR(5);

In RPG/400; SQLCA declarations are equivalent to the following:
ISQLCA DS
I 1 8 SQLAID SQL
I B 9 120SQLABC SQL
I B 13 160SQLCOD SQL
I B 17 180SQLERL SQL
I 19 88 SQLERM SQL
I 89 96 SQLERP SQL
I 97 120 SQLERR SQL
I B 97 1000SQLER1 SQL
I B 101 1040SQLER2 SQL
I B 105 1080SQLER3 SQL
I B 109 1120SQLER4 SQL
I B 113 1160SQLER5 SQL
I B 117 1200SQLER6 SQL
I 121 131 SQLWRN SQL
I 121 121 SQLWN0 SQL
I 122 122 SQLWN1 SQL
I 123 123 SQLWN2 SQL
I 124 124 SQLWN3 SQL
I 125 125 SQLWN4 SQL
I 126 126 SQLWN5 SQL
I 127 127 SQLWN6 SQL
I 128 128 SQLWN7 SQL
I 129 129 SQLWN8 SQL
I 130 130 SQLWN9 SQL
I 131 131 SQLWNA SQL
I 132 136 SQLSTT SQL

SQLCA

810 DB2 UDB for iSeries SQL Reference V5R2

In ILE RPG/400; SQLCA declarations are equivalent to the following:
D* SQL Communications area
D SQLCA DS
D SQLAID 1 8A
D SQLABC 9 12B 0
D SQLCOD 13 16B 0
D SQLERL 17 18B 0
D SQLERM 19 88A
D SQLERP 89 96A
D SQLERRD 97 120B 0 DIM(6)
D SQLERR 97 120A
D SQLER1 97 100B 0
D SQLER2 101 104B 0
D SQLER3 105 108B 0
D SQLER4 109 112B 0
D SQLER5 113 116B 0
D SQLER6 117 120B 0
D SQLWRN 121 131A
D SQLWN0 121 121A
D SQLWN1 122 122A
D SQLWN2 123 123A
D SQLWN3 124 124A
D SQLWN4 125 125A
D SQLWN5 126 126A
D SQLWN6 127 127A
D SQLWN7 128 128A
D SQLWN8 129 129A
D SQLWN9 130 130A
D SQLWNA 131 131A
D SQLSTT 132 136A
D* End of SQLCA

SQLCA

Appendix B. SQL Communication Area 811

SQLCA

812 DB2 UDB for iSeries SQL Reference V5R2

Appendix C. SQL Descriptor Area (SQLDA)

An SQLDA is a set of variables that is required for execution of the SQL
DESCRIBE statement, and it may optionally be used by the PREPARE, OPEN,
CALL, FETCH, and EXECUTE statements. An SQLDA can be used in a DESCRIBE
statement, altered with the addresses of host variables, and then used again in a
FETCH statement.

SQLDAs are supported for all languages, but predefined declarations are provided
only for C (and C++), COBOL, ILE RPG/400, PL/I, and REXX. In REXX, the
SQLDA is somewhat different than in the other languages; for information on the
use of SQLDAs in REXX, see the SQL Programming with Host Languages book.

The meaning of the information in an SQLDA depends on its use. In PREPARE
and DESCRIBE, an SQLDA provides information to an application program about
a prepared statement. In OPEN, CALL, EXECUTE, and FETCH, an SQLDA
provides information to the database manager about host variables.

Field Descriptions
An SQLDA consists of four variables in a header structure followed by an arbitrary
number of occurrences of a sequence of five variables collectively named SQLVAR.
In OPEN, CALL, FETCH, and EXECUTE, each occurrence of SQLVAR describes a
host variable. In PREPARE and DESCRIBE, each occurrence describes a column of
a result table.

The SQL INCLUDE statement provides the following field names:

Table 68. Field Descriptions for an SQLDA Header

C Name 76

PL/I Name
COBOL Name

Field Data
Type

Usage in DESCRIBE and PREPARE
(set by the database manager
except for SQLN)

Usage in FETCH, OPEN, CALL, or
EXECUTE (set by the user prior to
executing the statement)

sqldaid
SQLDAID

CHAR(8) An 'eye catcher' for storage dumps,
containing 'SQLDA '.

The 7th byte of the SQLDAID can
be used to determine whether more
than one SQLVAR entry is needed
for each column. For details, see
“Determining How Many SQLVAR
Occurrences are Needed” on
page 816.

A ’2’ in the 7th byte indicates that
two SQLVAR entries were allocated
for each column.

A ’3’ in the 7th byte indicates that
three SQLVAR entries were allocated
for each column.

A ’4’ in the 7th byte indicates that
four SQLVAR entries were allocated
for each column.

76. In this column, the lowercase name is the C Name. The uppercase name is the COBOL, PL/I, or RPG Name.

© Copyright IBM Corp. 1998, 2002 813

../rzajp/rzajpmst02.htm

Table 68. Field Descriptions for an SQLDA Header (continued)

C Name 76

PL/I Name
COBOL Name

Field Data
Type

Usage in DESCRIBE and PREPARE
(set by the database manager
except for SQLN)

Usage in FETCH, OPEN, CALL, or
EXECUTE (set by the user prior to
executing the statement)

sqldabc
SQLDABC

INTEGER Length of the SQLDA. Number of bytes of storage allocated
for the SQLDA. Enough storage must
be allocated to contain SQLN
occurrences. SQLDABC must be set
to a value greater than or equal to
16+SQLN*(80), where 80 is the length
of an SQLVAR occurrence. If LOBs or
distinct types are specified, there
must be two SQLVAR entries for
each parameter marker.

sqln
SQLN

SMALLINT Unchanged by the database
manager. Must be set to a value
greater than or equal to zero before
the PREPARE or DESCRIBE
statement is executed. It should be
set to a value that is greater than or
equal to the number of columns in
the result or a multiple of the
number of columns in the result
when multiple sets of SQLVAR
entries are necessary. Indicates the
total number of occurrences of
SQLVAR.

Total number of occurrences of
SQLVAR provided in the SQLDA.
SQLN must be set to a value greater
than or equal to zero.

If LOBs or distinct types are
specified, there must be two SQLVAR
entries for each parameter marker
and SQLN must be set to two times
the number of parameter markers.

sqld
SQLD

SMALLINT The number of columns described
by occurrences of SQLVAR (zero if
the statement being described is not
a select-statement).

Number of host variables described
by SQLVAR to be used in the SQLDA
when executing this statement. SQLD
must be set to a value greater than or
equal to zero and less than or equal
to SQLN.

Field Descriptions in an Occurrence of SQLVAR
For each column or host variable described by the SQLDA, there are two types of
SQLVAR entries:

Base SQLVAR entry
The base SQLVAR entry is always present. The fields of this entry contain
the base information about the column or host variable such as data type
code, length attribute (except for LOBs), column name (or label), CCSID,
host variable address, and indicator variable address.

Extended SQLVAR entry
The extended SQLVAR entry is needed (for each column) if the result
includes any LOB or distinct type columns. For distinct types, the extended
SQLVAR contains the distinct type name. For LOBs, the extended SQLVAR
contains the length attribute of the host variable and a pointer to the buffer
that contains the actual length. If locators or file reference variables are
used to represent LOBs, an extended SQLVAR is not necessary.

The extended SQLVAR entry is also needed for each column when:
v USING BOTH is specified, which indicates that column names and

labels are returned.

SQLDA

814 DB2 UDB for iSeries SQL Reference V5R2

v USING ALL is specified, which indicates that column names, labels, and
system column names are returned.

The fields in the extended SQLVAR that return LOB and distinct type
information do not overlap, and the fields that return LOB and label
information do not overlap. Depending on the combination of labels, LOBs
and distinct types, more than one extended SQLVAR entry per column
may be required to return the information. See “Determining How Many
SQLVAR Occurrences are Needed” on page 816.

Table 69, Table 70, and Table 71 on page 816 show how to map the base and
extended SQLVAR entries. For an SQLDA that contains both base and extended
SQLVAR entries, the base SQLVAR entries are in the first block, followed by a
block of extended SQLVAR entries, which if necessary, are followed by a second or
third block of extended SQLVAR entries. In each block, the number of occurrences
of the SQLVAR entry is equal to the value in SQLD even though many of the
extended SQLVAR entries might be unused.

Table 69. Contents of SQLVAR Arrays for USING NAMES, USING SYSTEM NAMES, USING LABELS or USING
ANY

LOBs
DISTINCT
types

7th byte
of
SQLDAID

SQLN
Minimum First Set (Base)

Second Set
(Extended)

Third Set
(Extended)

Fourth Set
(Extended)

No No Blank n Column names,
system column
names, or
labels

Not used Not used Not used

Yes No 2 2n Column names,
system column
names, or
labels

LOBs Not used Not used

No Yes 2 2n Column names,
system column
names, or
labels

Distinct types Not used Not used

Yes Yes 2 2n Column names,
system column
names, or
labels

LOBs and
distinct types

Not used Not used

Table 70. Contents of SQLVAR Arrays for USING BOTH

LOBs
DISTINCT
types

7th byte
of
SQLDAID

SQLN
Minimum First Set (Base)

Second Set
(Extended)

Third Set
(Extended)

Fourth Set
(Extended)

No No 2 2n Column names Labels Not used Not used

Yes No 2 2n Column names LOBs and
labels

Not used Not used

No Yes 3 3n Column names Distinct types Labels Not used

Yes Yes 3 3n Column names LOBs and
distinct types

Labels Not used

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 815

Table 71. Contents of SQLVAR Arrays for USING ALL

LOBs
DISTINCT
types

7th byte
of
SQLDAID

SQLN
Minimum First Set (Base)

Second Set
(Extended)

Third Set
(Extended)

Fourth Set
(Extended)

No No 3 3n System column
names

Labels Column names Not used

Yes No 3 3n System column
names

LOBs and
labels

Column names Not used

No Yes 4 4n System column
names

Distinct types Labels Column names

Yes Yes 4 4n System column
names

LOBs and
distinct types

Labels Column names

Determining How Many SQLVAR Occurrences are Needed
The number of SQLVAR occurrences needed depends on the statement that the
SQLDA was provided for and the data types of the columns or parameters being
described. See the tables above for more information.

The 7th byte of SQLDAID is always set to the number of sets of SQLVARs
necessary.

If SQLD is not set to a sufficient number of SQLVAR occurrences:
v SQLD is set to the total number of SQLVAR occurrences needed for all sets.
v A warning (SQLSTATE 01594) is returned in the SQLCODE field of the SQLCA

if at least enough SQLVARs were specified for the Base SQLVAR Entries. The
Base SQLVAR entries are returned, but no extended SQLVARs are returned.

v A warning (SQLSTATE 01005) is returned in the SQLCODE field of the SQLCA
if enough SQLVARs were not specified for even the Base SQLVAR Entries. No
SQLVAR entries are returned.

Table 72. Field Descriptions for an SQLVAR

C Name 77

COBOL Name
PL/I Name
RPG Name Field Data Type

Usage in DESCRIBE and
PREPARE (set by the database
manager)

Usage in FETCH, OPEN, CALL,
and EXECUTE (set by the user
prior to executing the statement)

sqltype
SQLTYPE

SMALLINT Indicates the data type of the
column and whether it can
contain nulls. For a description
of the type codes, see Table 74 on
page 819.

For a distinct type, the data type
on which the distinct type is
based is placed in this field. The
base SQLVAR contains no
indication that this is part of the
description of a distinct type.

Indicates the data type of the
host variable and whether an
indicator variable is provided.
For a description of the type
codes, see Table 74 on page 819.

SQLDA

816 DB2 UDB for iSeries SQL Reference V5R2

|
|
|

|
|
|

Table 72. Field Descriptions for an SQLVAR (continued)

C Name 77

COBOL Name
PL/I Name
RPG Name Field Data Type

Usage in DESCRIBE and
PREPARE (set by the database
manager)

Usage in FETCH, OPEN, CALL,
and EXECUTE (set by the user
prior to executing the statement)

sqllen
SQLLEN

SMALLINT The length attribute of the
column. For datetime columns,
the length of the string
representation of the values. See
Table 74 on page 819.

For a LOB, the value is 0
regardless of the length attribute
of the LOB. Field SQLLONGLEN
in the extended SQLVAR entry
contains the length attribute of
the LOB.

The length attribute of the host
variable. See Table 74 on
page 819.

For a LOB, the value is 0
regardless of the length attribute
of the LOB. Field SQLLONGLEN
in the extended SQLVAR entry
contains the length attribute of
the LOB.

sqlres
SQLRES

CHAR(12) Reserved. Provides boundary
alignment for SQLDATA.

Reserved. Provides boundary
alignment for SQLDATA.

sqldata
SQLDATA

pointer The CCSID of a string column as
described in Table 75 on
page 821.

Contains the address of the host
variable.

For LOB host variables, if the
SQLDATALEN field in the
extended SQLVAR is null, this
points to the four-byte LOB
length, followed immediately by
the LOB data.

If the SQLDATALEN field in the
extended SQLVAR is not null,
this points to the LOB data and
the SQLDATALEN field points to
the four-byte LOB length.

sqlind
SQLIND

pointer Reserved Contains the address of the
indicator variable. Not used if
there is no indicator variable (as
indicated by an even value of
SQLTYPE).

sqlname
SQLNAME

VARCHAR (30) The unqualified name of the
column. If the column does not
have a name, a string is
constructed from the expression
and returned.

The name is case sensitive and
does not contain surrounding
delimiters.

Contains the CCSID of the host
variable as described in Table 75
on page 821.

77. In this column, the lowercase name is the C Name. The uppercase name is the PL/I, COBOL, and RPG Name.

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 817

|
|
|

Table 73. Field Descriptions for an Extended SQLVAR

C Name 78

COBOL Name
PL/I Name
RPG Name Field Data Type

Usage in DESCRIBE and
PREPARE (set by the database
manager)

Usage in FETCH, OPEN, CALL,
and EXECUTE (set by the user
prior to executing the statement)

len.sqllonglen
SQLLONGL
SQLLONGLEN

INTEGER The length attribute of a LOB
column.

The length attribute of a LOB
host variable. The database
manager ignores the SQLLEN
field in the base SQLVAR for
these data types. The length
attribute indicates the number of
bytes for a BLOB or CLOB, and
the number of characters for a
DBCLOB.

* CHAR(12) Reserved. Provides boundary
alignment for SQLDATALEN.

Reserved. Provides boundary
alignment for SQLDATALEN.

* pointer Reserved. Reserved.

sqldatalen
SQLDATAL
SQLDATALEN

pointer Not used. Used only for LOB host
variables.

If the value of this field is null,
the actual length of the LOB is
stored in the first four bytes
pointed to by the SQLDATA field
in the matching base SQLVAR,
and the LOB data immediately
follows the four-byte length. The
actual length indicates the
number of bytes for a BLOB or
CLOB and the number of
double-byte characters for a
DBCLOB.

If the value of this field is not
null, this field points to a
four-byte long buffer that
contains the actual length of the
LOB in bytes (even for
DBCLOBs). The SQLDATA field
in the matching base SQLVAR
then points to the LOB data.

Regardless of whether this field
is used, field SQLLONGLEN
must be set.

SQLDA

818 DB2 UDB for iSeries SQL Reference V5R2

Table 73. Field Descriptions for an Extended SQLVAR (continued)

C Name 78

COBOL Name
PL/I Name
RPG Name Field Data Type

Usage in DESCRIBE and
PREPARE (set by the database
manager)

Usage in FETCH, OPEN, CALL,
and EXECUTE (set by the user
prior to executing the statement)

sqldatatype_name
SQLTNAME
SQLDATATYPE-NAME

VARCHAR (30) The SQLTNAME field of the
extended SQLVAR is set to one
of the following:

v For a distinct type column, the
database manager sets this to
the fully qualified distinct type
name. If the qualified name is
longer than 30 bytes, it is
truncated.

v For a label, the database
manager sets this to the first
20 bytes of the label.

v For a column name, the
database manager sets this to
the column name.

Not used.

SQLTYPE and SQLLEN
The following table shows the values that may appear in the SQLTYPE and
SQLLEN fields of the SQLDA. In PREPARE and DESCRIBE, an even value of
SQLTYPE means the column does not allow nulls, and an odd value means the
column does allow nulls.

Note: In PREPARE and DESCRIBE statements, an odd value is returned for an
expression if one operand is nullable or if the expression may result in a -2
mapping-error null value.

In FETCH, OPEN, CALL, and EXECUTE, an even value of SQLTYPE means no
indicator variable is provided, and an odd value means that SQLIND contains the
address of an indicator variable.

Table 74. SQLTYPE and SQLLEN values for PREPARE, DESCRIBE, FETCH, OPEN, CALL, or EXECUTE

SQLTYPE

For PREPARE and DESCRIBE For FETCH, OPEN, CALL, and EXECUTE

COLUMN DATA
TYPE SQLLEN

HOST VARIABLE
DATA TYPE SQLLEN

384/385 Date 10 Fixed-length
character-string
representation of a
date

Length attribute of
the host variable

388/389 Time 8 Fixed-length
character-string
representation of a
time

Length attribute of
the host variable

392/393 Timestamp 26 Fixed-length
character-string
representation of a
time stamp

Length attribute of
the host variable

78. In this column, the lowercase name is the C Name. The first uppercase name is the PL/I and RPG Name. The second uppercase
name is the COBOL Name.

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 819

Table 74. SQLTYPE and SQLLEN values for PREPARE, DESCRIBE, FETCH, OPEN, CALL, or
EXECUTE (continued)

SQLTYPE

For PREPARE and DESCRIBE For FETCH, OPEN, CALL, and EXECUTE

COLUMN DATA
TYPE SQLLEN

HOST VARIABLE
DATA TYPE SQLLEN

396/397 DataLink Length attribute of
the column

DataLink Length attribute of
the host variable

400/401 Not Applicable Not Applicable NUL-terminated
graphic string

Length attribute of
the host variable

404/405 BLOB 0 80 BLOB Not used. 80

408/409 CLOB 0 80 CLOB Not used. 80

412/413 DBCLOB 0 80 DBCLOB Not used. 80

448/449 Varying-length
character string

Length attribute of
the column

Varying-length
character string

Length attribute of
the host variable

452/453 Fixed-length character
string

Length attribute of
the column

Fixed-length character
string

Length attribute of
the host variable

456/457 Long varying-length
character string

Length attribute of
the column

Long varying-length
character string

Length attribute of
the host variable

460/461 Not Applicable Not Applicable NUL-terminated
character string

Length attribute of
the host variable

464/465 Varying-length
graphic string

Length attribute of
the column

Varying-length
graphic string

Length attribute of
the host variable

468/469 Fixed-length graphic
string

Length attribute of
the column

Fixed-length graphic
string

Length attribute of
the host variable

472/473 Long varying-length
graphic string

Length attribute of
the column

Long graphic string Length attribute of
the host variable

476/477 Not Applicable Not Applicable PASCAL L-string Length attribute of
the host variable

480/481 Floating point 4 for single precision,
8 for double precision

Floating point 4 for single precision,
8 for double precision

484/485 Packed decimal Precision in byte 1;
scale in byte 2

Packed decimal Precision in byte 1;
scale in byte 2

488/489 Zoned decimal Precision in byte 1;
scale in byte 2

Zoned decimal Precision in byte 1;
scale in byte 2

492/493 Big integer 8 79 Big integer 8

496/497 Large integer 4 79 Large integer 4

500/501 Small integer 2 79 Small integer 2

504/505 Not Applicable Not Applicable DISPLAY SIGN
LEADING
SEPARATE

Precision in byte 1;
scale in byte 2

904/905 ROWID 40 ROWID 40

960/961 Not Applicable Not Applicable BLOB locator 4

964/965 Not Applicable Not Applicable CLOB locator 4

968/969 Not Applicable Not Applicable DBCLOB locator 4

916/917 Not Applicable Not Applicable BLOB file reference
variable

267

920/921 Not Applicable Not Applicable CLOB file reference
variable

267

SQLDA

820 DB2 UDB for iSeries SQL Reference V5R2

|||||

Table 74. SQLTYPE and SQLLEN values for PREPARE, DESCRIBE, FETCH, OPEN, CALL, or
EXECUTE (continued)

SQLTYPE

For PREPARE and DESCRIBE For FETCH, OPEN, CALL, and EXECUTE

COLUMN DATA
TYPE SQLLEN

HOST VARIABLE
DATA TYPE SQLLEN

924/925 Not Applicable Not Applicable DBCLOB file
reference variable

267

SQLDATA or SQLNAME
In the OPEN, FETCH, CALL, and EXECUTE statements, the SQLNAME field of
the SQLVAR element can be used to specify a CCSID for string host variables. If
the SQLNAME field is used to specify a CCSID, the SQLNAME length must be set
to 8. In addition, the first 4 bytes of SQLNAME must be set as described in the
table below. If no CCSID is specified, the job CCSID is used.

In the DESCRIBE, DESCRIBE TABLE, and PREPARE statements, the SQLDATA
field of the SQLVAR element contains the CCSID of the column of the result table
if that column is a string column. The CCSID is located in bytes 3 and 4 as
described in Table 75.

Table 75. CCSID values for SQLDATA or SQLNAME

Data Type Subtype Bytes 1 & 2 Bytes 3 & 4

Character SBCS data X'0000' ccsid

Character Mixed data X'0000' ccsid

Character Bit data X'0000' 65535

Graphic Not Applicable X'0000' ccsid

Any other data type Not Applicable Not Applicable Not Applicable

Unrecognized and Unsupported SQLTYPES
The values that appear in the SQLTYPE field of the SQLDA are dependent on the
level of data type support available at the sender as well as the receiver of the
data. This is particularly important as new data types are added to the product.

New data types may or may not be supported by the sender or receiver of the data
and may or may not even be recognized by the sender or receiver of the data.
Depending on the situation, the new data type may be returned, or a compatible
data type agreed upon by both the sender and receiver of the data may be
returned or an error may result.

When the sender and receiver agree to use a compatible data type, the following
indicates the mapping that will take place. This mapping will take place when at
least one of the sender or receiver does not support the data type provided. The
unsupported data type can be provided by either the application or the database
manager.

79. Binary numbers can be represented in the SQLDA with a length of 2, 4, or 8, or with the precision in byte 1 and the scale in byte
2. If the first byte is greater than x’00’, it indicates precision and scale.

80. Field SQLLONGLEN in the extended SQLVAR contains the length attribute of the column.

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 821

Table 76. Compatible Data Types for Unsupported Data Types

Data Type Compatible Data Type

BIGINT DECIMAL(19,0)

ROWID VARCHAR(40) FOR BIT DATA

INCLUDE SQLDA Declarations

For C and C++
In C and C++, INCLUDE SQLDA declarations are equivalent to the following:

#ifndef SQLDASIZE
struct sqlda
{

unsigned char sqldaid[8];
long sqldabc;
short sqln;
short sqld;
struct sqlvar
{

short sqltype;
short sqllen;
unsigned char *sqldata;
short *sqlind;
struct sqlname
{

short length;
unsigned char data[30];

} sqlname;
} sqlvar[1];

};

struct sqlvar2
{ struct

{ long sqllonglen;
char reserve1[28];

} len;
char *sqldatalen;
struct sqldistinct_type

{ short length;
unsigned char data[30];

} sqldatatype_name;
};

#define SQLDASIZE(n) (sizeof(struct sqlda)+(n-1) * sizeof(struct sqlvar))
#endif

Figure 11. INCLUDE SQLDA Declarations for C and C++ (Part 1 of 3)

SQLDA

822 DB2 UDB for iSeries SQL Reference V5R2

/***/
/* Macros for using the sqlvar2 fields. */
/***/

/***/
/* ’2’ in the 7th byte of sqldaid indicates a doubled number of */
/* sqlvar entries. */
/* ’3’ in the 7th byte of sqldaid indicates a tripled number of */
/* sqlvar entries. */
/***/
#define SQLDOUBLED ’2’
#define SQLSINGLED ’ ’

/***/
/* GETSQLDOUBLED(daptr) returns 1 if the SQLDA pointed to by */
/* daptr has been doubled, or 0 if it has not been doubled. */
/***/
#define GETSQLDOUBLED(daptr) (((daptr)->sqldaid[6]== \
(char) SQLDOUBLED) ? \

(1) : \
(0))

/***/
/* SETSQLDOUBLED(daptr, SQLDOUBLED) sets the 7th byte of sqldaid */
/* to ’2’. */
/* SETSQLDOUBLED(daptr, SQLSINGLED) sets the 7th byte of sqldaid */
/* to be a ’ ’. */
/***/
#define SETSQLDOUBLED(daptr, newvalue) \

(((daptr)->sqldaid[6] =(newvalue)))

/***/
/* GETSQLDALONGLEN(daptr,n) returns the data length of the nth */
/* entry in the sqlda pointed to by daptr. Use this only if the */
/* sqlda was doubled or tripled and the nth SQLVAR entry has a */
/* LOB datatype. */
/***/
#define GETSQLDALONGLEN(daptr,n) ((long) (((struct sqlvar2 *) \
&((daptr)->sqlvar[(n) +((daptr)->sqld)])) ->len.sqllonglen))

/***/
/* SETSQLDALONGLEN(daptr,n,len) sets the sqllonglen field of the */
/* sqlda pointed to by daptr to len for the nth entry. Use this only */
/* if the sqlda was doubled or tripled and the nth SQLVAR entry has */
/* a LOB datatype. */
/***/
#define SETSQLDALONGLEN(daptr,n,length) { \
struct sqlvar2 *var2ptr; \
var2ptr = (struct sqlvar2 *) &((daptr)->sqlvar[(n)+ \

((daptr)->sqld)]); \
var2ptr->len.sqllonglen = (long) (length); \
}

/***/
/* SETSQLDALENPTR(daptr,n,ptr) sets a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. */
/* Use this only if the sqlda has been doubled or tripled. */
/***/
#define SETSQLDALENPTR(daptr,n,ptr) { \
struct sqlvar2 *var2ptr; \
var2ptr = (struct sqlvar2 *) &((daptr)->sqlvar[(n)+ \

((daptr)->sqld)]); \
var2ptr->sqldatalen = (char *) ptr; \
}

Figure 11. INCLUDE SQLDA Declarations for C and C++ (Part 2 of 3)

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 823

For COBOL
In COBOL, INCLUDE SQLDA declarations are equivalent to the following:

For ILE COBOL
In ILE COBOL, INCLUDE SQLDA declarations are equivalent to the following:

/***/
/* GETSQLDALENPTR(daptr,n) returns a pointer to the data length for */
/* the nth entry in the sqlda pointed to by daptr. Unlike the inline */
/* value (union sql8bytelen len), which is 8 bytes, the sqldatalen */
/* pointer field returns a pointer to a long (4 byte) integer. */
/* If the SQLDATALEN pointer is zero, a NULL pointer is be returned. */
/* */
/* NOTE: Use this only if the sqlda has been doubled or tripled. */
/***/
#define GETSQLDALENPTR(daptr,n) (\

(((struct sqlvar2 *) &(daptr)->sqlvar[(n) + \
(daptr)->sqld])->sqldatalen == NULL) ? \
((long *) NULL) : ((long *) ((struct sqlvar2 *) \
&(daptr)->sqlvar[(n) + (daptr) ->sqld])->sqldatalen))

Figure 11. INCLUDE SQLDA Declarations for C and C++ (Part 3 of 3)

1 SQLDA.
05 SQLDAID PIC X(8).
05 SQLDABC PIC S9(9) BINARY.
05 SQLN PIC S9(4) BINARY.
05 SQLD PIC S9(4) BINARY.
05 SQLVAR OCCURS 0 TO 409 TIMES DEPENDING ON SQLD.

10 SQLTYPE PIC S9(4) BINARY.
10 SQLLEN PIC S9(4) BINARY.
10 FILLER REDEFINES SQLLEN.

15 SQLPRECISION PIC X.
15 SQLSCALE PIC X.

10 SQLRES PIC X(12).
10 SQLDATA POINTER.
10 SQLIND POINTER.
10 SQLNAME.

49 SQLNAMEL PIC S9(4) BINARY.
49 SQLNAMEC PIC X(30).

Figure 12. INCLUDE SQLDA Declarations for COBOL

SQLDA

824 DB2 UDB for iSeries SQL Reference V5R2

For PL/I
In PL/I, INCLUDE SQLDA declarations are equivalent to the following:

1 SQLDA.
05 SQLDAID PIC X(8).
05 SQLDABC PIC S9(9) BINARY.
05 SQLN PIC S9(4) BINARY.
05 SQLD PIC S9(4) BINARY.
05 SQLVAR OCCURS 0 TO 409 TIMES DEPENDING ON SQLD.

10 SQLVAR1.
15 SQLTYPE PIC S9(4) BINARY.
15 SQLLEN PIC S9(4) BINARY.
15 FILLER REDEFINES SQLLEN.

20 SQLPRECISION PIC X.
20 SQLSCALE PIC X.

15 SQLRES PIC X(12).
15 SQLDATA POINTER.
15 SQLIND POINTER.
15 SQLNAME.

49 SQLNAMEL PIC S9(4) BINARY.
49 SQLNAMEC PIC X(30).

10 SQLVAR2 REDEFINES SQLVAR1.
15 SQLVAR2-RESERVED-1 PIC S9(9) BINARY.
15 SQLLONGLEN REDEFINES SQLVAR2-RESERVED-1

PIC S9(9) BINARY.
15 SQLVAR2-RESERVED-2 PIC X(28).
15 SQLDATALEN POINTER.
15 SQLDATATYPE-NAME.

49 SQLDATATYPE-NAMEL PIC S9(4) BINARY.
49 SQLDATATYPE-NAMEC PIC X(30).

Figure 13. INCLUDE SQLDA Declarations for ILE COBOL

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 825

For ILE RPG/400
In ILE RPG/400, INCLUDE SQLDA declarations are equivalent to the following:

DCL 1 SQLDA BASED(SQLDAPTR),
2 SQLDAID CHAR(8),
2 SQLDABC BIN FIXED(31),
2 SQLN BIN FIXED,
2 SQLD BIN FIXED,
2 SQLVAR (99),

3 SQLTYPE BIN FIXED,
3 SQLLEN BIN FIXED,
3 SQLRES CHAR(12),
3 SQLDATA PTR,
3 SQLIND PTR,
3 SQLNAME CHAR(30) VAR,

1 SQLDA2 BASED(SQLDAPTR),
2 SQLDAID2 CHAR(8),
2 SQLDABC2 FIXED(31) BINARY,
2 SQLN2 FIXED(15) BINARY,
2 SQLD2 FIXED(15) BINARY,
2 SQLVAR2 (99),

3 SQLBIGLEN,
4 SQLLONGL FIXED(31) BINARY,
4 SQLRSVDL FIXED(31) BINARY,

3 SQLDATAL POINTER,
3 SQLTNAME CHAR(30) VAR;

DECLARE SQLSIZE FIXED(15) BINARY;
DECLARE SQLDAPTR PTR;
DECLARE SQLDOUBLED CHAR(1) INITIAL(’2’) STATIC;
DECLARE SQLSINGLED CHAR(1) INITIAL(’ ’) STATIC;

Figure 14. INCLUDE SQLDA Declarations for PL/I

SQLDA

826 DB2 UDB for iSeries SQL Reference V5R2

The user is responsible for the definition of SQL_NUM. SQL_NUM must be
defined as a numeric constant with the dimension required for SQL_VAR.

Since RPG does not support structures within arrays, the SQLDA generates three
data structures. The second and third data structures are used to setup/reference
the part of the SQLDA which contains the field descriptions.

To set the field descriptions of the SQLDA the program sets up the field
description in the subfields of SQLVAR (or SQLVAR2) and then does a MOVEA of
SQLVAR (or SQLVAR2) to SQL_VAR, n where n is the number of the field in the
SQLDA. This is repeated until all the field descriptions are set.

When the SQLDA field descriptions are to be referenced the user does a MOVEA
of SQL_VAR, n to SQLVAR (or SQLVAR2) where n is the number of the field
description to be processed.

D* SQL Descriptor area
D SQLDA DS
D SQLDAID 1 8A
D SQLDABC 9 12B 0
D SQLN 13 14B 0
D SQLD 15 16B 0
D SQL_VAR 80A DIM(SQL_NUM)
D 17 18B 0
D 19 20B 0
D 21 32A
D 33 48*
D 49 64*
D 65 66B 0
D 67 96A
D*
D SQLVAR DS
D SQLTYPE 1 2B 0
D SQLLEN 3 4B 0
D SQLRES 5 16A
D SQLDATA 17 32*
D SQLIND 33 48*
D SQLNAMELEN 49 50B 0
D SQLNAME 51 80A
D*
D SQLVAR2 DS
D SQLLONGL 1 4B 0
D SQLRSVDL 5 32A
D SQLDATAL 33 48*
D SQLTNAMELN 49 50B 0
D SQLTNAME 51 80A
D* End of SQLDA

Figure 15. INCLUDE SQLDA Declarations for ILE RPG/400

SQLDA

Appendix C. SQL Descriptor Area (SQLDA) 827

828 DB2 UDB for iSeries SQL Reference V5R2

Appendix D. Reserved Words

This is the list of currently reserved DB2 UDB for iSeries words. Words may be
added at any time. For a list of additional words that may become reserved in the
future, see the IBM SQL and ANSI reserved words in the IBM SQL Reference
Version 1 SC26-3255.

Table 77. SQL Reserved Words

ADD
ALIAS
ALL
ALLOCATE
ALLOW
ALTER
AND
ANY
AS
AUTHORIZATION
BEGIN
BETWEEN
BINARY
BY
CACHE
CALL
CALLED
CARDINALITY
CASE
CAST
CCSID
CHAR
CHARACTER
CHECK
CLOSE
COLLECTION
COLUMN
COMMENT
COMMIT
CONCAT
CONDITION
CONNECT
CONNECTION
CONSTRAINT
CONTAINS
CONTINUE
COUNT
COUNT_BIG
CREATE
CROSS
CURRENT
CURRENT_DATE
CURRENT_PATH
CURRENT_SERVER
CURRENT_TIME
CURRENT_TIMESTAMP

CURRENT_TIMEZONE
CURRENT_USER
CURSOR
CYCLE
DATABASE
DAY
DAYS
DBINFO
DB2GENERAL
DB2GENRL
DB2SQL
DECLARE
DEFAULT
DEFAULTS
DEFINITION
DELETE
DESCRIPTOR
DETERMINISTIC
DISALLOW
DISCONNECT
DISTINCT
DO
DOUBLE
DROP
DYNAMIC
EACH
ELSE
ELSEIF
END
END-EXEC (COBOL only)
ESCAPE
EXCEPTION
EXCLUDING
EXECUTE
EXISTS
EXIT
EXTERNAL
FENCED
FETCH
FILE
FINAL
FOR
FOREIGN
FREE
FROM
FUNCTION

GENERAL
GENERATED
GET
GLOBAL
GO
GOTO
GRANT
GRAPHIC
GROUP
HANDLER
HAVING
HOLD
HOUR
HOURS
IDENTITY
IF
IMMEDIATE
IN
INCLUDING
INCREMENT
INDEX
INDICATOR
INNER
INOUT
INSENSITIVE
INSERT
INTEGRITY
INTO
IS
ISOLATION
ITERATE
JAVA
JOIN
KEY
LABEL
LANGUAGE
LEAVE
LEFT
LIKE
LINKTYPE
LOCK
LONG
LOOP
MAXVALUE
MICROSECOND
MICROSECONDS

MINUTE
MINUTES
MINVALUE
MODE
MODIFIES
MONTH
MONTHS
NEW
NEW_TABLE
NO
NOCACHE
NOCYCLE
NODENAME
NODENUMBER
NOMAXVALUE
NOMINVALUE
NOORDER
NOT
NULL
OF
OLD
OLD_TABLE
ON
OPEN
OPTIMIZE
OPTION
OR
ORDER
OUT
OUTER
OVERRIDING
PACKAGE
PARAMETER
PARTITION
PATH
POSITION
PREPARE
PRIMARY
PRIVILEGES
PROCEDURE
PROGRAM
READ
READS
RECOVERY
REFERENCES
REFERENCING

© Copyright IBM Corp. 1998, 2002 829

|

|

|
|
|
|

||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 78. SQL Reserved Words (continued)

RELEASE
RENAME
REPEAT
RESET
RESIGNAL
RESTART
RESULT
RETURN
RETURNS
REVOKE
RIGHT
ROLLBACK
ROUTINE
ROW
ROWS

RRN
RUN
SAVEPOINT
SCHEMA
SCRATCHPAD
SECOND
SECONDS
SELECT
SET
SIGNAL
SIMPLE
SOME
SOURCE
SPECIFIC
SQL

SQLID
START
STATIC
SUBSTRING
SYNONYM
TABLE
THEN
TO
TRANSACTION
TRIGGER
TRIM
TYPE
UNDO
UNION
UNIQUE

UNTIL
UPDATE
USAGE
USER
USING
VALUES
VARIABLE
VARIANT
VIEW
WHEN
WHERE
WHILE
WITH
WRITE
YEAR
YEARS

Reserved Words

830 DB2 UDB for iSeries SQL Reference V5R2

||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Appendix E. CCSID Values

The following tables describe the CCSIDs and conversions provided by the IBM
relational database products.
v For DB2 UDB for OS/390 and z/OS and DB2 for VM and VSE, these tables

represent the only CCSIDs and pairs of CCSID conversion tables that are
initially supplied in the catalog. A user with administrative authority can add
any SBCS CCSIDs and SBCS conversion tables at any time. It is also possible to
provide user exit routines that perform SBCS or DBCS conversions.

v For DB2 UDB for iSeries and DB2 UDB UWO, these charts represent the only
CCSIDs and conversion tables that are available. There is no way to add
additional CCSIDs or conversion tables.

The following list defines the symbols used in the IBM relational database product
column in the following tables:

X Indicates that the conversion tables exist to convert from and to that
CCSID.

C Indicates that conversion tables exist to convert from that CCSID to
another CCSID. This also implies that this CCSID cannot be used to tag
local data, because the CCSID is in a foreign encoding scheme (for
example, a PC-Data CCSID such as 850 cannot be used to tag local data in
DB2 UDB for iSeries).

T Indicates that while data may be tagged with this CCSID, conversion tables
are not shipped with the product.

The information in this appendix refers to the following product versions:
v DB2 Universal Database for OS/390 Version 7
v DB2 for VM and VSE Version 7.1
v DB2 Universal Database for AS/400 Version 5 Release 2
v DB2 Universal Database for OS/2 Version 7
v DB2 Universal Database for AIX/6000 Version 7
v DB2 Universal Database for HP Version 7
v DB2 Universal Database for SUN Version 7
v DB2 Universal Database for NT and Windows 95 Version 7
v DB2 Universal Database for SCO Open Server Version 7

Table 79. Universal Character Set (UCS-2, UTF-16 and UTF-8)

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

1200 UTF-16 X C C C C C C

1208 UTF-8 Level 3 X C X X X X X

13488 UCS-2 Level 1 C X X X X X X

© Copyright IBM Corp. 1998, 2002 831

|

|||||||||||

||||||||||

||||||||||

Table 80. CCSIDs for EBCDIC Group 1 (Latin-1) Countries

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

37 USA, Canada
(S/370),
Netherlands,
Portugal, Brazil,
Australia, New
Zealand

X X X C C C C C C

256 Word Processing,
Netherlands

T T X

273 Austria,
Germany

X X X C C C C C C

277 Denmark,
Norway

X X X C C C C C C

278 Finland, Sweden X X X C C C C C C

280 Italy X X X C C C C C C

284 Spain, Latin
America
(Spanish)

X X X C C C C C C

285 United Kingdom X X X C C C C C C

297 France X X X C C C C C C

500 Belgium, Canada
(AS/400),
Switzerland,
International
Latin-1

X X X C C C C C C

871 Iceland X X X C C C C C C

924 Latin-0 T T X

1140 USA, Canada
(S/370),
Netherlands,
Portugal, Brazil,
Australia, New
Zealand

T T X

1141 Austria,
Germany

T T X

1142 Denmark,
Norway

T T X

1143 Finland, Sweden T T X

1144 Italy T T X

1145 Spain, Latin
America
(Spanish)

T T X

1146 United Kingdom T T X

1147 France T T X

CCSID Values

832 DB2 UDB for iSeries SQL Reference V5R2

Table 80. CCSIDs for EBCDIC Group 1 (Latin-1) Countries (continued)

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

1148 Belgium, Canada
(AS/400),
Switzerland,
International
Latin-1

T T X

1149 Iceland T T X

Table 81. CCSIDs for PC-Data and ISO Group 1 (Latin-1) Countries

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

437 USA X C C X C C C C C

819 Latin-1 countries
(ISO 8859-1)

X C C C X X X C X

850 Latin Alphabet
Number 1;
Latin-1 countries

X C C X X C C C C

858 Latin Alphabet
Number 1;
Latin-1 countries
(with Euro)

T T C

860 Portugal (850
subset)

C C C X C C C C C

861 Iceland C C

863 Canada (850
subset)

C C C X C C C C C

865 Denmark,
Norway,
Finland, Sweden

C C C

923 Latin-0 C

1009 IRV 7-bit C

1010 France 7-bit C

1011 Germany 7-bit C

1012 Italy 7-bit C

1013 United Kingdom
7-bit

C

1014 Spain 7-bit C

1015 Portugal 7-bit C

1016 Norway 7-bit C

1017 Denmark 7-bit C

1018 Finland and
Sweden 7-bit

C

CCSID Values

Appendix E. CCSID Values 833

||
|
|
|

|||||||||

Table 81. CCSIDs for PC-Data and ISO Group 1 (Latin-1) Countries (continued)

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

1019 Belgium and
Netherlands
7-bit

C

1051 HP Emulation X C C C X C C

1252 Windows**
Latin-1

X C C C C C C X C

1275 Macintosh**
Latin-1

X C C C C C C C

Table 82. CCSIDs for EBCDIC Group 1a (Non-Latin-1 SBCS) Countries

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

420 Arabic (Type
4)Visual LTR

X X X C C C C C C

423 Greek X X X C C C C C C

424 Hebrew(Type 4) X X X C C C C C C

870 Latin-2
Multilingual

X X X C C C C C C

875 Greek X X X C C C C C C

880 Cyrillic
Multilingual

T T X

905 Turkey Latin-3
Multilingual

T T X

918 Urdu T T X

1025 Cyrillic
Multilingual

X X X C C C C C C

1026 Turkey Latin-5 X T X C C C C C C

1097 Farsi T T X

1112 Baltic
Multilingual

X X X C C C C C C

1122 Estonia T X X C C C C C C

1123 Ukraine T X X C C C C C C

1137 Devanagari T T X

1153 Latin-2 (with
Euro)

T T X

1154 Cyrillic (with
Euro)

T T X

1155 Turkey Latin-5
(with Euro)

T T X

1156 Balitic (with
Euro)

T T X

CCSID Values

834 DB2 UDB for iSeries SQL Reference V5R2

|||||||||||

||
|
|||||||||

||
|
|||||||||

||
|
|||||||||

||
|
|||||||||

Table 82. CCSIDs for EBCDIC Group 1a (Non-Latin-1 SBCS) Countries (continued)

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

1157 Estonia (with
Euro)

T T X

1158 Ukraine (with
Euro)

T T X

4971 Greek (with
Euro)

T T X

8612 Arabic (Type 5) X

8616 Hebrew (Type 6) X

12708 Arabic (Type 7) X

62211 Hebrew (Type 5) X C C C C C C

62224 Arabic (Type 6) X C C C C C C

62229 Hebrew (Type 8) C C C C C C

62233 Arabic (Type 8) C C C C C C

62234 Arabic (Type 9) C C C C C C

62235 Hebrew (Type
10)

X C C C C C C

62240 Hebrew (Type
11)

C C C C C C

62245 Hebrew (Type
10)

X

String Types:

4 Visual / Left-to-Right / Shaped

5 Implicit / Left-to-Right / Unshaped

6 Implicit / Right-to-Left / Unshaped

7 Visual / Contextual / Unshaped

8 Visual / Right-to-Left / Shaped

9 Visual / Right-to-Left / Shaped

10 Implicit / Contextual-Left

11 Implicit / Contextual-Right

Table 83. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

720 Arabic (MS-Dos) C

737 Greek (MS-Dos) C C C C C C C

775 Baltic (MS-Dos) C

813 Greek/Latin
(ISO 8859-7)

C C C X X X C C X

CCSID Values

Appendix E. CCSID Values 835

||
|
|||||||||

||
|
|||||||||

||
|
|||||||||

||
|
|||||||||

Table 83. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries (continued)

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

851 Greek C

852 Latin-2
Multilingual

C C C X C C C C C

855 Cyrillic
Multilingual

C C X C C C C C

856 Arabic (Type 5) C

857 Turkey Latin-5 C C X C C C C C

862 Hebrew (Type
10)

C C C X C C C C C

864 Arabic (Type 5) C C C X C C C C C

866 Cyrillic C C X C C C C C

868 Urdu C

869 Greek C C C X C C C C C

878 Russian Internet C

912 Latin-2 (ISO
8859-2)

C C C C X X C C X

914 Latin-4 (ISO
8859-4)

C

915 Cyrillic
Multilingual
(ISO 8859-5)

C C X X X C C X

916 Hebrew/Latin
(ISO 8859-8)
(Type 5)

C C C C X C C C C

920 Turkey Latin-5
(ISO 8859-9)

C C C X X C C X

921 Baltic 8-bit C C X X C C X C

922 Estonia 8-bit C X X C C X C

1008 Arabic 8-bit ISO C

1046 Arabic (Type 5) C C C X C C C C

1089 Arabic (ISO
8859-6) (Type 5)

C C C X X C C C

1098 Farsi C

1124 Ukraine 8-bit
ISO

C

1125 Ukraine C X C C C C C

1131 Belarus C X C C C C C

1250 Windows Latin-2 C C C C C C C X C

1251 Windows
Cyrillic

C C C C C C C X C

1253 Windows Greek C C C C C C C X C

CCSID Values

836 DB2 UDB for iSeries SQL Reference V5R2

||
|
|||||||||

Table 83. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries (continued)

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

1254 Windows Turkey C C C C C C X C

1255 Windows
Hebrew (Type 5)

C C C C C C C X C

1256 Windows Arabic
(Type 5)

C C C C C C C X C

1257 Windows Baltic C C

1280 Macintosh**
Greek

C C C C C C C C

1281 Macintosh**
Turkish

C C C C C C C C

1282 Macintosh**
Latin-2

C C C C C C C C

1283 Macintosh**
Cyrillic

C C C C C C C C

4948 Latin-2
Multilingual

C

4951 Cyrillic
Multilingual

C

4952 Hebrew C

4953 Turkey Latin-5 C

9056 Arabic (Storage
Interchange)

C

4960 Arabic C

4965 Greek C

62208 Hebrew (Type 4) X X X X X X

62209 Hebrew (Type 4) C X C C C C C

62210 Hebrew/Latin
(ISO 8859-8)
(Type 4)

C C X X C C C

62213 Hebrew (Type 5) C X C C C C C

62215 Windows
Hebrew (Type 4)

C C C C C X C

62218 Arabic (Type 4) C X C C C C C

62220 Hebrew (Type 6) X X X X X X

62221 Hebrew (Type 6) C X C C C C C

62222 Hebrew/Latin
(ISO 8859-8)
(Type 6)

C C X X C C C

62223 Windows
Hebrew (Type 6)

C C C C C X C

62225 Arabic (Type 6) X C C C C C

62226 Arabic (Type 6) C X C C C C

CCSID Values

Appendix E. CCSID Values 837

Table 83. CCSIDs for PC-Data and ISO Group 1a (Non-Latin-1 SBCS) Countries (continued)

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

62227 Arabic (ISO
8859-6) (Type 6)

C X X C C C

62228 Windows Arabic
(Type 6)

C C C C C X C

62230 Hebrew (Type 8) X X X X X X

62231 Hebrew (Type 8) X C C C C C

62232 Hebrew/Latin
(ISO 8859-8)
(Type 8)

C X X C C C

62236 Hebrew (Type
10)

X X X X X X

62238 Hebrew/Latin
(ISO 8859-8)
(Type 10)

C C X X C C C

62239 Windows
Hebrew (Type
10)

C C C C C X C

62241 Hebrew (Type
11)

X X X X X X

62242 Hebrew (Type
11)

X C C C C C

62243 Hebrew/Latin
(ISO 8859-8)
(Type 11)

C X X C C C

62244 Windows
Hebrew (Type
11)

C C C C X C

String Types:

4 Visual / Left-to-Right / Shaped

5 Implicit / Left-to-Right / Unshaped

6 Implicit / Right-to-Left / Unshaped

7 Visual / Contextual / Unshaped

8 Visual / Right-to-Left / Shaped

9 Visual / Right-to-Left / Shaped

10 Implicit / Contextual-Left

11 Implicit / Contextual-Right

CCSID Values

838 DB2 UDB for iSeries SQL Reference V5R2

Table 84. SBCS CCSIDs for EBCDIC Group 2 (DBCS) Countries

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

290 Japan Katakana
(extended)

X X X C C C C C C

833 Korea (extended) X X X C C C C C C

836 Simplified
Chinese
(extended)

X X X C C C C C C

838 Thailand
(extended)

X X X C C C C C C

1027 Japan English
(extended)

X X X C C C C C C

1130 Vietnam T X X

1132 Lao T X X

1160 Thai (with Euro) T T X

1164 Vietnam (with
Euro)

T T X

5123 Japan (with
Euro)

T T X

9030 Thailand
(extended)

T T X

13121 Korea Windows T T X

13124 Traditional
Chinese

T T X

28709 Traditional
Chinese
(extended)

X X X C C C C C C

Table 85. SBCS CCSIDs for PC-Data Group 2 (DBCS) Countries

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

367 Korea and
Simplified
Chinese EUC

X C C X C

874 Thailand
(extended)

C C C X X X

891 Korea
(non-extended)

C C

895 Japan EUC -
JISX201 Roman
Set

C C

896 Japan EUC -
JISX201
Katakana Set

C

CCSID Values

Appendix E. CCSID Values 839

|||||||||||

||
|
|||||||||

||
|
|||||||||

Table 85. SBCS CCSIDs for PC-Data Group 2 (DBCS) Countries (continued)

CCSID Description DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

897 Japan
(non-extended)

X C C

903 Simplified
Chinese
(non-extended)

C C

904 Traditional
Chinese
(non-extended)

C C C

1040 Korea (extended) C C

1041 Japan (extended) X C C

1042 Simplified
Chinese
(extended)

C C

1043 Traditional
Chinese
(extended)

C C C

1088 Korea (KS Code
5601-89)

X C C

1114 Traditional
Chinese (Big-5)

C C C

1115 Simplified
Chinese
GB-Code

C C C

1126 Korea Windows C C

1129 Vietnam C

1133 Lao ISO C

1258 Vietnam C

4970 Thailand
(extended)

C X X X

5210 Traditional
Chinese

C

9066 Thailand
(extended)

C

Table 86. DBCS CCSIDs for EBCDIC Group 2 (DBCS) Countries

CCSID Description

DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

300 Japan - including
4370
user-defined
characters (UDC)

X X X C C C C C C

CCSID Values

840 DB2 UDB for iSeries SQL Reference V5R2

Table 86. DBCS CCSIDs for EBCDIC Group 2 (DBCS) Countries (continued)

CCSID Description

DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

834 Korea -
including 1880
UDC

X X X C C C C C C

835 Traditional
Chinese -
including 6204
UDC

X X X C C C C C C

837 Simplified
Chinese -
including 1880
UDC

X X X C C C C C C

4396 Japan - including
1880 UDC

X X X C C C C C C

4930 Korea Windows X C C C C C C

4933 Simplified
Chinese

X C C C C C C

Table 87. DBCS CCSIDs for PC-Data Group 2 (DBCS) Countries

CCSID Description

DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

301 Japan - including
1880 UDC

X C C X X C C C C

926 Korea -
including 1880
UDC

C C

927 Traditional
Chinese -
including 6204
UDC

C C C X C C C C C

928 Simplified
Chinese -
including 1880
UDC

C C

941 Japan Windows X C C C C C C X C

947 Traditional
Chinese (Big-5)

C C C X X C C X C

951 Korea (KS Code
5601-89) -
including 1880
UDC

X C C X C C C X C

952 Japan (EUC)
X208-1990 set

C

953 Japan (EUC)
X212-1990 set

C

CCSID Values

Appendix E. CCSID Values 841

Table 87. DBCS CCSIDs for PC-Data Group 2 (DBCS) Countries (continued)

CCSID Description

DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

971 Korea (EUC) -
including 188
UDC

X C C C X X X C C

1351 Japan HP-UX
(J15)

X C C C X C C C

1362 Korea Windows C C C C C C X C

1380 Simplified
Chinese
(GB-Code) -
including 1880
UDC

C C C X C C C X X

1382 Simplified
Chinese (EUC) -
including 1360
UDC

C C C C X X X C X

1385 Traditional
Chinese

C C C C C X C

Table 88. Mixed CCSIDs for EBCDIC Group 2 (DBCS) Countries

CCSID Description

DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

930 Japan
Katakana/Kanji
(extended) -
including 4370
UDC

X X X C C C C C C

933 Korea (extended)
- including 1880
UDC

X X X C C C C C C

935 Simplified
Chinese
(extended) -
including 1880
UDC

X X X C C C C C C

937 Traditional
Chinese
(extended) -
including 4370
UDC

X X X C C C C C C

939 Japan
English/Kanji
(extended) -
including 4370
UDC

X X X C C C C C C

1364 Korea (extended) X C C C C C C

CCSID Values

842 DB2 UDB for iSeries SQL Reference V5R2

Table 88. Mixed CCSIDs for EBCDIC Group 2 (DBCS) Countries (continued)

CCSID Description

DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

1388 Simplified
Chinese

X C C C C C C

5026 Japan
Katakana/Kanji
(extended) -
including 1880
UDC)

X X X C C C C C C

5035 Japan
English/Kanji
(extended) -
including 1880
UDC

X X X C C C C C C

Table 89. Mixed CCSIDs for PC-Data Group 2 (DBCS) Countries

CCSID Description

DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

932 Japan
(non-extended) -
including 1880
UDC

X C C X X C C C C

934 Korea
(non-extended)
including 1880
UDC

C C

936 Simplified
Chinese
(non-extended) -
including 1880
UDC

C C

938 Traditional
Chinese
(non-extended) -
including 6204
UDC)

C C C X C C C C C

942 Japan (extended)
- including 1880
UDC

X C C X C C C C C

943 Japan NT X C C X C C C X C

944 Korea (extended)
- including 1880
UDC

C C C

946 Simplified
Chinese
(extended) -
including 1880
UDC

C C

CCSID Values

Appendix E. CCSID Values 843

Table 89. Mixed CCSIDs for PC-Data Group 2 (DBCS) Countries (continued)

CCSID Description

DB2
UDB
UWO

(OS/390)

DB2 for
VM and

VSE

DB2
UDB
UWO

(AS/400)

DB2
UDB
UWO
(OS/2)

DB2
UDB
UWO

(AIX/6000)

DB2
UDB
UWO
(HP)

DB2
UDB
UWO
(SUN)

DB2
UDB
UWO
(NT)

DB2
UDB
UWO
(SCO)

948 Traditional
Chinese
(extended) -
including 6204
UDC

C C C X C C C C C

949 Korea (KS Code
5601-89) -
including 1880
UDC

X C C X C C C C C

950 Traditional
Chinese (Big-5)

C C C X X X X X C

954 Japan (EUC) C C C C X X X C X

956 Japan 2022 TCP C

957 Japan 2022 TCP C

958 Japan 2022 TCP C

959 Japan 2022 TCP C

964 Traditional
Chinese (EUC)

C C C C X X X C C

965 Traditional
Chinese 2022
TCP

C

970 Korea EUC X C C C X X X C C

1363 Korea Windows C C C C C C X C

1381 Simplified
Chinese
GB-Code

C C C X C C C X C

1383 Simplified
Chinese EUC

C C C C X X X C X

1386 Simplified
Chinese

C X X C C X C

1392 Simplified
Chinese GB18030

C

5039 Japan HP-UX
(J15)

C C C X C C C

5050 Japan (EUC) C

5052 Japan 2022 TCP C

5053 Japan 2022 TCP C

5054 Japan 2022 TCP C

5055 Japan 2022 TCP C

17354 Korea 2022 TCP C

25546 Korea 2022 TCP C

33722 Japan EUC C

CCSID Values

844 DB2 UDB for iSeries SQL Reference V5R2

||
|
|||||||||

Appendix F. Characteristics of SQL Statements

This appendix contains information on the characteristics of SQL statements
pertaining to various places where they are used.
v Actions allowed on SQL statements shows whether an SQL statement can be

executed, prepared interactively or dynamically, and whether the statement is
processed by the requestor, the server, or the precompiler. See “Actions allowed
on SQL statements”.

v Data access indication tables show the level of SQL data access that must be
specified to use the SQL statement in a routine. See “SQL Statement Data Access
Indication in Routines” on page 847.

v Considerations for using distributed relational database provides information
about the use of SQL statements when the application server is not the same as
the application requestor. See Appendix F, “Characteristics of SQL Statements”.

Actions allowed on SQL statements
Table 90 shows whether a specific DB2 statement can be executed, prepared
interactively or dynamically, or processed by the requester, the server, or the
precompiler. The letter Y means yes.

Table 90. Actions allowed on SQL statements

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server Precompiler

ALTER Y Y Y

BEGIN DECLARE SECTION Y

CALL Y Y Y

CLOSE Y Y

COMMENT Y Y Y

COMMIT Y Y Y

CONNECT (Type 1 and Type 2) Y Y

CREATE ... Y Y Y

DECLARE CURSOR Y

DECLARE GLOBAL
TEMPORARY TABLE

Y Y Y

DECLARE PROCEDURE Y

DECLARE STATEMENT Y

DECLARE VARIABLE Y

DELETE Y Y Y

DESCRIBE Y Y

DESCRIBE TABLE Y Y

DISCONNECT Y Y

DROP ... Y Y Y

END DECLARE SECTION Y

© Copyright IBM Corp. 1998, 2002 845

|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|

||

||

|
|
|
|

|

|
|||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

|
|
|||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

Table 90. Actions allowed on SQL statements (continued)

SQL statement Executable

Interactively
or

dynamically
prepared

Processed by

Requesting
system Server Precompiler

EXECUTE Y Y

EXECUTE IMMEDIATE Y Y

FETCH Y Y

FREE LOCATOR Y Y Y

GET DIAGNOSTICS2 Y Y

GRANT ... Y Y Y

HOLD LOCATOR Y Y Y

INCLUDE Y

INSERT Y Y Y

LABEL Y Y Y

LOCK TABLE Y Y Y

OPEN Y Y

PREPARE Y Y

RELEASE CONNECTION Y Y

RELEASE SAVEPOINT Y Y Y

RENAME Y Y Y

REVOKE ... Y Y Y

ROLLBACK Y Y Y

SAVEPOINT Y Y Y

SELECT INTO Y Y

SET CONNECTION Y Y

SET OPTION Y

SET PATH Y Y Y

SET RESULT SETS3 Y Y

SET SCHEMA Y Y Y

SET TRANSACTION Y Y Y

SET variable Y Y

SIGNAL SQLSTATE2 Y Y

UPDATE Y Y Y

VALUES1 Y Y

VALUES INTO Y Y Y

WHENEVER Y

Notes:

1. This statement can only be used in the triggered action of a trigger.

2. This statement can only be used in an SQL function, SQL procedure, or SQL trigger.

3. This statement can only be used in a procedure.

846 DB2 UDB for iSeries SQL Reference V5R2

|

||

|
|
|
|

|

|
|||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

||||||

|

|

|

|
|

SQL Statement Data Access Indication in Routines
The following table indicates whether or not an SQL statement (specified in the
first column) is allowed to execute in a function or procedure with the specified
SQL data access indication. If an executable SQL statement is encountered in a
function or procedure defined with NO SQL, SQLSTATE 38001 is returned. For
other executions contexts, SQL statements that are not supported in any context
return SQLSTATE 38003. For other SQL statements not allowed in a CONTAINS
SQL context, SQLSTATE 38004 is returned and in a READS SQL DATA context,
SQLSTATE 38002 is returned. During creation of an SQL function or SQL
procedure, a statement that does not match the SQL data access indication will
cause SQLSTATE 42895 to be returned.

Table 91. SQL Statement and SQL Data Access Indication

SQL Statement NO SQL CONTAINS
SQL

READS SQL
DATA

MODIFIES
SQL DATA

ALTER TABLE N N N Y

BEGIN DECLARE
SECTION

Y1 Y Y Y

CALL N Y Y Y

CLOSE N N Y Y

COMMENT N N N Y

COMMIT N N N N

CONNECT (Type 1 and
Type 2)3

N N N N

CREATE ... N N N Y

DECLARE CURSOR Y1 Y Y Y

DECLARE GLOBAL
TEMPORARY TABLE

N N N Y

DECLARE PROCEDURE Y1 Y Y Y

DECLARE STATEMENT Y1 Y Y Y

DECLARE VARIABLE Y1 Y Y Y

DELETE N N N Y

DESCRIBE N N Y Y

DESCRIBE TABLE N N Y Y

DISCONNECT3 N N N N

DROP ... N N N Y

END DECLARE SECTION Y1 Y Y Y

EXECUTE N Y2 Y2 Y

EXECUTE IMMEDIATE N Y2 Y2 Y

FETCH N N Y Y

FREE LOCATOR N Y Y Y

GRANT ... N N N Y

HOLD LOCATOR N Y Y Y

INCLUDE Y1 Y Y Y

INSERT N N N Y

LABEL N N N Y

Appendix F. Characteristics of SQL Statements 847

|
|

|
|
|
|
|
|
|
|
|
|

||

|||
|
|
|
|
|

|||||

|
|
||||

|||||

|||||

|||||

|||||

|
|
||||

|||||

|||||

|
|
||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

Table 91. SQL Statement and SQL Data Access Indication (continued)

SQL Statement NO SQL CONTAINS
SQL

READS SQL
DATA

MODIFIES
SQL DATA

LOCK TABLE N Y Y Y

OPEN N N Y Y

PREPARE N Y Y Y

RELEASE CONNECTION3 N N N N

RELEASE SAVEPOINT N N N Y

RENAME N N N Y

REVOKE ... N N N Y

ROLLBACK N Y Y Y

ROLLBACK TO
SAVEPOINT

N N N Y

SAVEPOINT N N N Y

SELECT INTO N N Y Y

SET CONNECTION3 N N N N

SET OPTION Y1 Y Y Y

SET PATH N N Y Y

SET RESULT SETS N Y Y Y

SET SCHEMA N N Y Y

SET TRANSACTION N Y Y Y

SET variable N Y Y Y

UPDATE N N N Y

VALUES N Y Y Y

VALUES INTO N N Y Y

WHENEVER Y1 Y Y Y

Notes:

1. Although the NO SQL option implies that no SQL statements can be specified,
non-executable statements are not restricted.

2. It depends on the statement being executed. The statement specified for the
EXECUTE statement must be a statement that is allowed in the context of the
particular SQL access level in effect. For example, if the SQL access level in
effect is READS SQL DATA, the statement must not be an INSERT, UPDATE, or
DELETE.

3. Connection management statements are not allowed in any stored procedure
execution contexts.

Considerations for Using Distributed Relational Database
These tables contain information that may be useful in developing applications that
use servers which are not the same product as their application requesters.

All IBM relational database products support extensions to IBM SQL. Some of
these extensions are product-specific, and some are shared by more than one
product.

848 DB2 UDB for iSeries SQL Reference V5R2

|

|||
|
|
|
|
|

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|
|
||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||

|||||
|

|

|
|

|
|
|
|
|

|
|

|
|

For the most part, an application can use the statements and clauses that are
supported by the database manager of the current server, even though that
application might be running through the application requester of a database
manager that does not support some of those statements and clauses. Restrictions
to this general rule are identified in Table 92, Table 93 on page 851, Table 94 on
page 853, and Table 95 on page 855.

Note that an 'R' in the table indicates that this SQL function is not supported in the
specified environment. An 'R' in every column of the same row means that the
function is available only if the current server and requester are the same product.

Note that DB2 UDB UWO in the following table refers to any of the DB2 products
other than DB2 UDB for OS/390 and z/OS, DB2 for VM and VSE, or DB2 UDB for
iSeries.

The information in this appendix refers to the following product versions:
v DB2 UDB for OS/390 and z/OS Version 7
v DB2 for VM and VSE Version 7.1
v DB2 UDB for iSeries Version 5 Release 2
v DB2 UDB UWO for OS/2 Version 7
v DB2 UDB UWO for AIX/6000 Version 7
v DB2 UDB UWO for HP Version 7
v DB2 UDB UWO for NT Version 7
v DB2 UDB UWO for SUN Version 7
v DB2 UDB UWO for SCO Open Server Version 7

Table 92. DB2 UDB for OS/390 and z/OS Application Requester

SQL Statement or Function

DB2 UDB for
OS/390 and z/OS
Server

DB2 for VM and
VSE Server

DB2 UDB for
iSeries Server

DB2 UDB UWO
Server

CALL with result sets R

COMMIT HOLD R R R R

COMMIT RELEASE R R R R

CONNECT (Type 2) Note 1 Note 1

DECLARE CURSOR WITH HOLD R

DECLARE STATEMENT

DECLARE TABLE

DECLARE VARIABLE

Deferred Existence (Note 3) R

DESCRIBE TABLE R R

DESCRIBE with USING clause R

DISCONNECT R R R R

Extended Dynamic Statements R R R R

Host Structures

Host Variables - optional colon R R R

Large Object (LOB) Data Types R

DATALINK Data Types R R R R

Distinct Data Types R R

Appendix F. Characteristics of SQL Statements 849

|

Table 92. DB2 UDB for OS/390 and z/OS Application Requester (continued)

SQL Statement or Function

DB2 UDB for
OS/390 and z/OS
Server

DB2 for VM and
VSE Server

DB2 UDB for
iSeries Server

DB2 UDB UWO
Server

ROWID Data Types R R

Non-IBM SQL host declarations Note 2 Note 2 Note 2

PREPARE with INTO clause

PREPARE with USING clause R

PUT R R R R

RELEASE

ROLLBACK HOLD R R R R

ROLLBACK RELEASE R R R R

SET CONNECTION

SET CURRENT PACKAGESET

SET host variable R R R

SET TRANSACTION R R R R

Scrollable Cursor statements R R R R

UPDATE cursor - FOR UPDATE OF
clause not specified

WHENEVER with STOP R R R R

Notes:

1 The server will only be allowed read-only operations unless all the other connections are already read-only.
If the server is DB2 for VM and VSE or DB2 UDB UWO this is only a restriction if a TCP/IP connection is
used.

2 The statement is supported if the application requester understands it.

3 Objects need not exist at bind time when they are referred to in a data manipulation statement.

850 DB2 UDB for iSeries SQL Reference V5R2

|||||

Table 93. DB2 for VM and VSE Application Requester

SQL Statement or Function

DB2 UDB for
OS/390 and z/OS
Server

DB2 for VM and
VSE Server

DB2 UDB for
iSeries Server

DB2 UDB UWO
Server

CALL with result sets R

COMMIT HOLD R R R R

COMMIT RELEASE

CONNECT (Type 2) R R R R

DECLARE CURSOR WITH HOLD R

DECLARE STATEMENT R R R R

DECLARE TABLE R R R R

DECLARE VARIABLE R R R R

Deferred Existence (Note 2) R

DESCRIBE TABLE R R R R

DESCRIBE with USING clause R

DISCONNECT R R R R

Extended Dynamic Statements R
Note 3

R
Note 3

R
Note 3

Host Variables - optional colon R R R R

Host Structures

Large Object (LOB) Data Types R R R R

DATALINK Data Types R R R R

Distinct Data Types R R R R

ROWID Data Types R R R R

Non-IBM SQL host declarations Note 1 Note 1 Note 1

PREPARE with INTO clause R R R R

PREPARE with USING clause R R R R

PUT

RELEASE R R R R

ROLLBACK HOLD R R R R

ROLLBACK RELEASE

SET CONNECTION R R R R

SET CURRENT PACKAGESET R R R R

SET host variable R R R R

SET TRANSACTION R R R R

Scrollable Cursor statements R R R R

UPDATE cursor - FOR UPDATE OF
clause not specified

WHENEVER with STOP

Appendix F. Characteristics of SQL Statements 851

|||||

Table 93. DB2 for VM and VSE Application Requester (continued)

SQL Statement or Function

DB2 UDB for
OS/390 and z/OS
Server

DB2 for VM and
VSE Server

DB2 UDB for
iSeries Server

DB2 UDB UWO
Server

Notes:

1 The statement is supported if the application requester understands it.

2 Objects need not exist at bind time when they are referred to in a data manipulation statement.

3 Most of the extended dynamic statements involving non-modifiable packages will work. See the DB2 for VM
and VSE product library for more information.

852 DB2 UDB for iSeries SQL Reference V5R2

Table 94. DB2 UDB for iSeries Application Requester

SQL Statement or Function

DB2 UDB for
OS/390 and z/OS
Server

DB2 for VM and
VSE Server

DB2 UDB for
iSeries Server

DB2 UDB UWO
Server

CALL with result sets R R R

COMMIT HOLD R R R

COMMIT RELEASE R R R R

CONNECT (Type 2) Note 1 Note 1

DECLARE CURSOR WITH HOLD R

DECLARE PROCEDURE

DECLARE STATEMENT

DECLARE TABLE

DECLARE VARIABLE

Deferred Existence (Note 3) R

DESCRIBE TABLE R R

DESCRIBE with USING clause R

DISCONNECT

Extended Dynamic Statements R R R R

Host Variables - optional colon R R R R

Host Structures

Large Object (LOB) Data Types R R

DATALINK Data Types R R R

Distinct Data Types R R

ROWID Data Types R R

Non-IBM SQL host declarations Note 2 Note 2 Note 2

PREPARE with INTO clause

PREPARE with USING clause R

PUT R R R R

RELEASE

ROLLBACK HOLD R R R

ROLLBACK RELEASE R R R R

SET CONNECTION

SET CURRENT PACKAGESET R R R R

SET host variable R R R R

SET TRANSACTION R R R

Scrollable Cursor statements R R R

UPDATE cursor - FOR UPDATE OF
clause not specified

R R

WHENEVER with STOP R R R R

Appendix F. Characteristics of SQL Statements 853

|||||

Table 94. DB2 UDB for iSeries Application Requester (continued)

SQL Statement or Function

DB2 UDB for
OS/390 and z/OS
Server

DB2 for VM and
VSE Server

DB2 UDB for
iSeries Server

DB2 UDB UWO
Server

Notes:

1 The server will only be allowed read-only operations unless all the other connections are already read-only.
If the server is DB2 for VM and VSE or DB2 UDB UWO this is only a restriction if a TCP/IP connection is
used.

2 The statement is supported if the application requester understands it.

3 Objects need not exist at bind time when they are referred to in a data manipulation statement.

854 DB2 UDB for iSeries SQL Reference V5R2

Table 95. DB2 UDB UWO Application Requester

SQL Statement or Function

DB2 UDB for
OS/390 and z/OS
Server

DB2 for VM and
VSE Server

DB2 UDB for
iSeries Server

DB2 UDB UWO
Server

CALL with result sets

COMMIT HOLD R R R R

COMMIT RELEASE R R R R

CONNECT (Type 2) Note 1 Note 1

DECLARE CURSOR WITH HOLD R

DECLARE STATEMENT R R R R

DECLARE TABLE R R R R

DECLARE VARIABLE R R R R

Deferred Existence (Note 3) R

DESCRIBE TABLE R R R R

DESCRIBE with USING clause R R R R

DISCONNECT

Extended Dynamic Statements R R R R

Host Variables - optional colon R R R R

Host Structures Note 4 Note 4 Note 4 Note 4

Large Object (LOB) Data Types R

DATALINK Data Types R R R R

Distinct Data Types R

ROWID Data Types R R R R

Non-IBM SQL host declarations Note 2 Note 2 Note 2

PREPARE with INTO clause

PREPARE with USING clause R R R R

PUT R R R R

RELEASE

ROLLBACK HOLD R R R R

ROLLBACK RELEASE R R R R

SET CONNECTION

SET CURRENT PACKAGESET

SET host variable R R R R

SET TRANSACTION R R R R

Scrollable Cursor statements R R R R

UPDATE cursor - FOR UPDATE OF
clause not specified

R R

WHENEVER with STOP R R R R

Appendix F. Characteristics of SQL Statements 855

|||||

Table 95. DB2 UDB UWO Application Requester (continued)

SQL Statement or Function

DB2 UDB for
OS/390 and z/OS
Server

DB2 for VM and
VSE Server

DB2 UDB for
iSeries Server

DB2 UDB UWO
Server

Notes:

1 The server will only be allowed read-only operations unless all the other connections are already read-only.
If the server is DB2 for VM and VSE, this is only a restriction if a TCP/IP connection is used.

2 The statement is supported if the application requester understands it.

3 Objects need not exist at bind time when they are referred to in a data manipulation statement.

4 In DB2 UDB UWO host structures are only supported in COBOL.

856 DB2 UDB for iSeries SQL Reference V5R2

CONNECT (Type 1) and CONNECT (Type 2) Differences
There are two types of CONNECT statements. They have the same syntax, but
they have different semantics:
v CONNECT (Type 1) is used for remote unit of work. See “Remote Unit of Work”

on page 26.
v CONNECT (Type 2) is used for distributed unit of work. See “CONNECT (Type

2)” on page 407.

The following table summarizes the differences between CONNECT (Type 1) and
CONNECT (Type 2) rules:

Table 96. CONNECT (Type 1) and CONNECT (Type 2) Differences

Type 1 Rules Type 2 Rules

CONNECT statements can only be executed
when the activation group is in the
connectable state. No more than one
CONNECT statement can be executed within
the same unit of work.

There are no rules about the connectable
state. More than one CONNECT statement
can be executed within the same unit of
work.

If the CONNECT statement fails because the
server name is not listed in the local
directory, the connection state of the
activation group is unchanged.

If a CONNECT statement fails because the
activation group is not in the connectable
state, the SQL connection status of the
activation group is unchanged.

If a CONNECT statement fails for any other
reason, the activation group is placed in the
unconnected state.

If a CONNECT statement fails, the current
SQL connection is unchanged and any
subsequent SQL statements are executed by
the current server.

CONNECT ends all existing connections of
the activation group. Accordingly,
CONNECT also closes any open cursors for
that activation group.

CONNECT does not end connections and
does not close cursors.

A CONNECT to the current server will
succeed if the application group is the
connectable state.

A CONNECT to an existing SQL connection
of the activation group is an error. Thus, a
CONNECT to the current server is an error.

Determining the CONNECT rules that apply
A program preparation option is used to specify the type of CONNECT that will
be performed by a program. The program preparation option is specified using the
RDBCNNMTH parameter on the CRTSQLxxx command.

Connecting to Servers That Only Support Remote Unit of Work
CONNECT (Type 2) connections to servers that only support remote unit of work
might result in connections that are read-only.

If a CONNECT (Type 2) is performed to a server that only supports remote unit of
work81:

81. DB2 UDB for iSeries using the initial DRDA support for native TCP/IP is an example of a server that supports only remote unit
of work.

Appendix F. Characteristics of SQL Statements 857

v The connection allows read-only operations if, at the time of the connect, there
are any dormant connections that allow updates. In this case, the connection
does not allow updates.

v Otherwise, the connection allows updates.

If a CONNECT (Type 2) is performed to a server that supports distributed unit of
work:
v The connection allows read-only operations when there are dormant connections

that allow updates to servers that only support remote unit of work. In this case,
the connection allows updates as soon as the dormant connection is ended.

v Otherwise, the connection allows updates.

858 DB2 UDB for iSeries SQL Reference V5R2

Appendix G. DB2 UDB for iSeries Catalog Views

The views contained in a DB2 UDB for iSeries catalog are described in this section.
The database manager maintains a set of tables containing information about the
data in each relational database. These tables are collectively known as the catalog.
The catalog tables contain information about tables, user-defined functions, distinct
types, parameters, procedures, packages, views, indexes, aliases, constraints,
triggers, and languages supported by DB2 UDB for iSeries. The catalog also
contains information about all relational databases that are accessible from this
system.

There are three classes of catalog views:
v iSeries catalog tables and views

The iSeries catalog tables and views are modeled after the ANS and ISO catalog
views, but are not identical to the ANS and ISO catalog views. These tables and
views are compatible with prior releases of DB2 UDB for iSeries.
These tables and views exist in schemas QSYS and QSYS2.
The catalog tables and views contain information about all tables, parameters,
procedures, functions, distinct types, packages, views, indexes, triggers, and
constraints in the entire relational database. When an SQL schema is created, an
additional set of these views (except SYSPARMS, SYSPROCS, SYSFUNCS,
SYSROUTINES, SYSROUTINEDEP, and SYSTYPES) are created into the schema
that only contain information about tables, packages, views, indexes, and
constraints in that schema.

v ODBC and JDBC catalog views
The ODBC and JDBC catalog views are designed to satisfy ODBC and JDBC
metadata API requests. For example, SQLColumns. These views are compatible
with views on DB2 UDB for OS/390 and z/OS and DB2 UDB UWO Version 8.
These views will be modified as ODBC or JDBC enhances or modifies their
metadata APIs.
These views exist in schema SYSIBM.

v ANS and ISO catalog views
The ANS and ISO catalog views are designed to comply with the ANS and ISO
SQL standard (the Information Schema catalog views). These views are
compatible with views on DB2 UDB UWO Version 8. These views will be
modified as the ANS and ISO standard is enhanced or modified.
These views exist in schema QSYS2 and SYSIBM.
There are several columns in these views that are reserved for future standard
enhancements.

Note: Some of these views use special catalog functions as part of the view
definition. These functions exist in SYSIBM, but should not be used directly
in applications. The functions are created for specific independent auxiliary
storage pools (IASP) and will likely change in future releases.

© Copyright IBM Corp. 1998, 2002 859

|
|
|
|
|
|
|
|

|

|

|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|
|

|

|

|
|
|
|

|

|
|

|
|
|
|

Notes
Names in the Catalog: In general, all names stored in columns of a catalog table
are undelimited and case sensitive. For example, assume the following table was
created:

CREATE TABLE "colname"/"long_table_name"
("long_column_name" CHAR(10),
INTCOL INTEGER)

If the following select statement is used to return information about the mapping
between SQL names and system names, the following select statement could be
used:

SELECT TABLE_NAME, SYSTEM_TABLE_NAME, COLUMN_NAME, SYSTEM_COLUMN_NAME
FROM QSYS2/SYSCOLUMNS
WHERE TABLE_NAME = ’long_table_name’ AND

TABLE_SCHEMA = ’colname’

The following rows would be returned:

TABLE_NAME SYSTEM_TABLE_NAME COLUMN_NAME SYSTEM_COLUMN_NAME

long_table_name ″long0001″ long_column_name LONG_00001

long_table_name ″long0001″ INTCOL INTCOL

System Names in the Catalog: In general, the longer SQL column names should
be used rather than the short system column names. The short system column
names for iSeries catalog tables and views are explicitly maintained for
compatibility with prior releases and other DB2 UDB products. The short system
column names for the ODBC and JDBC catalog views and the ANS and ISO
catalog views are not explicitly maintained and may change between releases.

Null Values in the Catalog: If the information in a column is not applicable, the
null value is returned. Using the table created above, the following select
statement, which queries the NUMERIC_SCALE and the
CHARACTER_MAXIMUM_LENGTH, would return the null value when the data
was not applicable to the data type of the column.

SELECT COLUMN_NAME, NUMERIC_SCALE, CHARACTER_MAXIMUM_LENGTH
FROM QSYS2/SYSCOLUMNS
WHERE TABLE_NAME = ’long_table_name’ AND

TABLE_SCHEMA = ’colname’

The following rows would be returned:

COLUMN_NAME NUMERIC_SCALE CHARACTER_MAXIMUM_LENGTH

long_column_name ? 10

INTCOL 0 ?

Because numeric scale is not valid for a character column, the null value is
returned for NUMERIC_SCALE for the ″long_column_name″ column. Because
character length is not valid for a numeric column, the null value is returned for
CHARACTER_MAXIMUM_LENGTH for the INTCOL column.

Install and Backup Considerations: Certain catalog tables and any views created
over the catalog tables and views should be regularly saved:

Catalog Views

860 DB2 UDB for iSeries SQL Reference V5R2

v The catalog table QSYS.QADBXRDBD contains relational database information.
This table should be regularly saved.

v When an ILE external function or procedure or an SQL function or procedure is
restored, information is automatically inserted into these catalog tables. This
does not occur for non-ILE external functions and procedures. In order to back
up the definitions of non-ILE external functions or procedures, ensure that the
catalog tables SYSROUTINES and SYSPARMS are saved or ensure you have a
back up of the SQL source statements that were used to create these functions
and procedures.

v All catalog views in the QSYS2 or SYSIBM schemas are system objects. This
means that any user views created over these catalog views must be deleted
when the operating system is installed. All dependent objects must be deleted as
well. To avoid this requirement, you can save views before installation and then
restore them afterwards.

v Catalog tables in the QSYS library are also system objects. However, the catalog
tables in the QSYS library are not deleted during installation. Hence, any views
created over these tables are preserved throughout the installation process.

Granting Privileges to Catalog Views: Tables and views in the catalog are like any
other database tables and views. If you have authorization, you can use SQL
statements to look at data in the catalog views in the same way that you retrieve
data from any other table. The tables and views in the catalogs are shipped with
the SELECT privilege to PUBLIC. This privilege may be revoked and the SELECT
privilege granted to individual users.

QSYS Catalog Tables: Most of the catalog views are based on the following tables
in the QSYS library (sometimes called the database cross reference files). These
tables are not shipped with the SELECT privilege to PUBLIC and should not be
used directly:

QADBCCST QADBKFLD QADBXSFLD
QADBFDEP QADBPKG QADBXTRIGB
QADBFCST QADBXRDBD QADBXTRIGC
QADBIFLD QADBXREF QADBXTRIGD

Catalog Views

Appendix G. DB2 UDB for iSeries Catalog Views 861

|
|
|
|
|
|
|

iSeries Catalog Tables and Views
The iSeries catalog includes the following views and tables in the QSYS2 schema:

DB2 UDB for iSeries name Corresponding ANSI/ISO name Description

“SYSCATALOGS” on page 863 CATALOGS Information about relational databases

“SYSCHKCST” on page 865 CHECK_CONSTRAINTS Information about check constraints

“SYSCOLUMNS” on page 866 COLUMNS Information about column attributes

“SYSCST” on page 875 TABLE_CONSTRAINTS Information about all constraints

“SYSCSTCOL” on page 876 CONSTRAINT_COLUMN_USAGE Information about the columns referenced
in a constraint

“SYSCSTDEP” on page 877 CONSTRAINT_TABLE_USAGE Information about constraint
dependencies on tables

“SYSFUNCS” on page 878 ROUTINES Information about user-defined functions

“SYSINDEXES” on page 884 Information about indexes

“SYSJARCONTENTS” on page 885 Information about jars for Java routines.

“SYSJAROBJECTS” on page 886 Information about jars for Java routines.

“SYSKEYCST” on page 887 KEY_COLUMN_USAGE Information about unique, primary, and
foreign keys

“SYSKEYS” on page 888 Information about index keys

“SYSPACKAGE” on page 889 Information about packages

“SYSPARMS” on page 891 PARAMETERS Information about routine parameters

“SYSPROCS” on page 895 ROUTINES Information about procedures

“SYSREFCST” on page 900 REFERENTIAL_CONSTRAINTS Information about referential constraints

“SYSROUTINES” on page 902 ROUTINES Information about functions and
procedures

“SYSROUTINEDEP” on page 901 ROUTINE_TABLE_USAGE Information about function and procedure
dependencies

“SYSTABLES” on page 910 TABLES Information about tables and views

“SYSTRIGCOL” on page 912 TRIGGER_COLUMN_USAGE Information about columns used in a
trigger

“SYSTRIGDEP” on page 913 TRIGGER_TABLE_USAGE Information about objects used in a
trigger

“SYSTRIGGERS” on page 914 TRIGGERS Information about triggers

“SYSTRIGUPD” on page 918 TRIGGERED_UPDATE_COLUMNS Information about columns in the WHEN
clause of a trigger

“SYSTYPES” on page 919 USER_DEFINED_TYPES Information about built-in data types and
distinct types

“SYSVIEWDEP” on page 924 VIEW_TABLE_USAGE Information about view dependencies on
tables

“SYSVIEWS” on page 926 VIEWS Information about definition of a view

iSeries Catalog

862 DB2 UDB for iSeries SQL Reference V5R2

|||

|||
|

SYSCATALOGS
The SYSCATALOGS view contains one row for each relational database that a user
can connect to. The following table describes the columns in the SYSCATALOGS
view.

Table 97. SYSCATALOGS view

Column Name

System
Column
Name Data Type Description

CATALOG_NAME LOCATION VARCHAR(18) Relational database name.

CATALOG_STATUS RDBASPSTAT CHAR(10) Status of a relational database.

ACTIVE
The releational database is
associated with an
independent auxiliary storage
pool (IASP) that is active, but
not yet available.

AVAILABLE
The relational database is
available.

VARYOFF
The releational database is
associated with an
independent auxiliary storage
pool (IASP) that is varied off.

VARYON
The releational database is
associated with an
independent auxiliary storage
pool (IASP) that is varied on,
but not yet available.

UNKNOWN
The status of the relational
database is unknown. The
status of remote relational
databases is always unknown.

CATALOG_TYPE RDBTYPE CHAR(7) Relational database type.

LOCAL
The relational database is local
to this system.

REMOTE
The relational database is on a
remote system.

CATALOG_ASPGRP RDBASPGRP VARCHAR(10)
Nullable

Independent auxiliary storage pool
(IASP) name.

Contains the null value if the relational
database status is UNKNOWN.

CATALOG_ASPNUM RDBASPNUM VARCHAR(10)
Nullable

Independent auxiliary storage pool
(IASP) number.

Contains the null value if the relational
database status is UNKNOWN.

SYSCATALOGS

Appendix G. DB2 UDB for iSeries Catalog Views 863

|

|
|
|

||

|

|
|
|||

||||

||||

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

||||

|
|
|

|
|
|

|||
|
|
|

|
|

|||
|
|
|

|
|

Table 97. SYSCATALOGS view (continued)

Column Name

System
Column
Name Data Type Description

CATALOG_TEXT RDBTEXT CHAR(50) Relational database text description.

SYSCATALOGS

864 DB2 UDB for iSeries SQL Reference V5R2

|

|

|
|
|||

||||

SYSCHKCST
The SYSCHKCST view contains one row for each check constraint in the SQL
schema. The following table describes the columns in the SYSCHKCST view.

Table 98. SYSCHKCST view

Column Name

System
Column
Name Data Type Description

CONSTRAINT_SCHEMA DBNAME VARCHAR(128) Name of the schema containing the
constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint

CHECK_CLAUSE CHECK VARCHAR(2000)
Nullable

Text of the check constraint clause

Contains the null value if the check
clause cannot be expressed without
truncation.

SYSCHKCST

Appendix G. DB2 UDB for iSeries Catalog Views 865

|

|
|
|

SYSCOLUMNS
The SYSCOLUMNS view contains one row for every column of each table and
view in the SQL schema (including the columns of the SQL catalog). The following
table describes the columns in the SYSCOLUMNS view:

Table 99. SYSCOLUMNS view

Column name

System
Column
Name Data Type Description

COLUMN_NAME NAME VARCHAR(128) Name of the column. This will be the
SQL column name if one exists;
otherwise, it will be the system column
name.

TABLE_NAME TBNAME VARCHAR(128) Name of the table or view that
contains the column. This will be the
SQL table or view name if one exists;
otherwise, it will be the system table or
view name.

TABLE_OWNER TBCREATOR VARCHAR(128) The owner of the table or view.

ORDINAL_POSITION COLNO INTEGER Numeric place of the column in the
table or view, ordered from left to
right.

SYSCOLUMNS

866 DB2 UDB for iSeries SQL Reference V5R2

Table 99. SYSCOLUMNS view (continued)

Column name

System
Column
Name Data Type Description

DATA_TYPE COLTYPE VARCHAR(8) Type of column:

BIGINT Big number

INTEGER Large number

SMALLINT Small number

DECIMAL Packed decimal

NUMERIC Zoned decimal

FLOAT Floating point;
FLOAT, REAL, or
DOUBLE PRECISION

CHAR Fixed-length
character string

VARCHAR Varying-length
character string

CLOB Character large object
string

GRAPHIC Fixed-length graphic
string

VARG Varying-length
graphic string

DBCLOB Double-byte character
large object string

BLOB Binary large object
string

DATE Date

TIME Time

TIMESTMP Timestamp

DATALINK Datalink

ROWID Row ID

DISTINCT Distinct type

SYSCOLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 867

|

||

Table 99. SYSCOLUMNS view (continued)

Column name

System
Column
Name Data Type Description

LENGTH LENGTH INTEGER The length attribute of the column; or,
in the case of a decimal, numeric, or
nonzero precision binary column, its
precision:

8 bytes BIGINT

4 bytes INTEGER

2 bytes SMALLINT

Precision of number
DECIMAL

Precision of number
NUMERIC

8 bytes FLOAT, FLOAT(n)
where n = 25 to 53,
or DOUBLE
PRECISION

4 bytes FLOAT(n) where n =
1 to 24, or REAL

Length of string
CHAR

Maximum length of string
VARCHAR or CLOB

Length of graphic string
GRAPHIC

Maximum length of graphic string
VARGRAPHIC or
DBCLOB

Maximum length of binary string
BLOB

4 bytes DATE

3 bytes TIME

10 bytes TIMESTAMP

Maximum length of datalink URL and
comment DATALINK

40 bytes ROWID

Same value as the source type
DISTINCT

NUMERIC_SCALE SCALE INTEGER
Nullable

Scale of numeric data.

Contains the null value if the column is
not decimal, numeric, or binary.

IS_NULLABLE NULLS CHAR(1) If the column can contain null values:

N No

Y Yes

SYSCOLUMNS

868 DB2 UDB for iSeries SQL Reference V5R2

||

Table 99. SYSCOLUMNS view (continued)

Column name

System
Column
Name Data Type Description

IS_UPDATABLE UPDATES CHAR(1) If the column can be updated:

N No

Y Yes

LONG_COMMENT REMARKS VARCHAR(2000)
Nullable

A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

HAS_DEFAULT DEFAULT CHAR(1) If the column has a default value
(DEFAULT clause or null capable):

N No

Y Yes

A The column has a ROWID
data type and the
GENERATED ALWAYS
attribute.

D The column has a ROWID
data type and the
GENERATED BY DEFAULT
attribute.

I The column is defined with
the AS IDENTITY and
GENERATED ALWAYS
attributes.

J The column is defined with
the AS IDENTITY and
GENERATED BY DEFAULT
attributes.

COLUMN_HEADING LABEL VARCHAR(60)
Nullable

A character string supplied with the
LABEL statement (column headings)

Contains the null value if there is no
column heading.

SYSCOLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 869

||
|
|
|

||
|
|
|

||
|
|
|

||
|
|
|

Table 99. SYSCOLUMNS view (continued)

Column name

System
Column
Name Data Type Description

STORAGE STORAGE INTEGER The storage requirements for the
column:

8 bytes BIGINT

4 bytes INTEGER

2 bytes SMALLINT

(Precision/2) + 1
DECIMAL

Precision of number
NUMERIC

8 bytes FLOAT, FLOAT(n)
where n = 25 to 53,
or DOUBLE
PRECISION

4 bytes FLOAT(n) where n =
1 to 24, or REAL

Length of string
CHAR

Maximum length of string + 2
VARCHAR

Maximum length of string + 29
CLOB

Length of string * 2
GRAPHIC

Maximum length of string * 2 + 2
VARGRAPHIC

Maximum length of string * 2 + 29
DBCLOB

4 bytes DATE

3 bytes TIME

10 bytes TIMESTAMP

Maximum length of datalink URL and
comment + 24 DATALINK

42 bytes ROWID

Same value as the source type
DISTINCT

Note: This column supplies the storage
requirements for all data types.

SYSCOLUMNS

870 DB2 UDB for iSeries SQL Reference V5R2

||

Table 99. SYSCOLUMNS view (continued)

Column name

System
Column
Name Data Type Description

NUMERIC_PRECISION PRECISION INTEGER
Nullable

The precision of all numeric columns.

Note: This column supplies the
precision of all numeric data types,
including single-and double-precision
floating point. The
NUMERIC_PRECISION_RADIX
column indicates if the value in this
column is in binary or decimal digits.

Contains the null value if the column is
not numeric.

CCSID CCSID INTEGER
Nullable

The CCSID value for CHAR,
VARCHAR, CLOB, DATE, TIME,
TIMESTAMP, GRAPHIC,
VARGRAPHIC, DBCLOB, and
DATALINK columns.

Contains 65535 if the column is a
BLOB or ROWID.

Contains the null value if the column is
a numeric data type.

TABLE_SCHEMA DBNAME VARCHAR(128) The name of the SQL schema
containing the table or view.

COLUMN_DEFAULT DFTVALUE VARCHAR(2000)
Nullable

The default value of a column, if one
exists. If the default value of the
column cannot be represented without
truncation, then the value of the
column is the string ’TRUNCATED’.
The default value is stored in character
form. The following special values also
exist:

CURRENT_DATE
The default value is the
current date.

CURRENT_TIME
The default value is the
current time.

CURRENT_TIMESTAMP
The default value is the
current timestamp.

NULL The default value is the null
value.

USER The default value is the
current job user.

Contains the null value if the column
has no default value. For example, if
the column has an IDENTITY attribute
or is a row ID.

SYSCOLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 871

|
|

|
|
|
|

Table 99. SYSCOLUMNS view (continued)

Column name

System
Column
Name Data Type Description

CHARACTER_MAXIMUM_LENGTH CHARLEN INTEGER
Nullable

Maximum length of the string for
binary, character and graphic string
data types.

Contains the null value if the column is
not a string.

CHARACTER_OCTET_LENGTH CHARBYTE INTEGER
Nullable

Number of bytes for binary, character
and graphic string data types.

Contains the null value if the column is
not a string.

NUMERIC_PRECISION_RADIX RADIX INTEGER
Nullable

Indicates if the precision specified in
column NUMERIC_PRECISION is
specified as a number of binary or
decimal digits

2 Binary; floating-point
precision is specified in binary
digits.

10 Decimal; all other numeric
types are specified in decimal
digits.

Contains the null value if the column is
not numeric.

DATETIME_PRECISION DATPRC INTEGER
Nullable

The fractional part of a date, time, or
timestamp.

0 For DATE and TIME data
types

6 For TIMESTAMP data types
(number of microseconds).

Contains the null value if the column is
not a date, time, or timestamp.

COLUMN_TEXT LABELTEXT VARCHAR(50)
Nullable

A character string supplied with the
LABEL statement (column text)

Contains the null value if the column
has no column text.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) The system name of the column

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) The system name of the table or view

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) The system name of the schema

USER_DEFINED_TYPE_SCHEMA TYPESCHEMA VARCHAR(128)
Nullable

The name of the schema if this is a the
distinct type.

Contains the null value if the column is
not a distinct type.

USER_DEFINED_TYPE_NAME TYPENAME VARCHAR(128)
Nullable

The name of the distinct type.

Contains the null value if the column is
not a distinct type.

SYSCOLUMNS

872 DB2 UDB for iSeries SQL Reference V5R2

Table 99. SYSCOLUMNS view (continued)

Column name

System
Column
Name Data Type Description

IS_IDENTITY IDENTITY VARCHAR(3) This column identifies whether the
column is an identity column.

NO The column is not an identity
column.

YES The column is an identity
column.

IDENTITY_GENERATION GENERATED VARCHAR(10)
Nullable

This column identifies whether the
column is GENERATED ALWAYS or
GENERATED BY DEFAULT.

ALWAYS
The column value is always
generated.

BY DEFAULT
The column value is generated
by default.

Contains the null value if the column is
not a ROWID or IDENTITY column.

IDENTITY_START START DECIMAL(31,0)
Nullable

Starting value of the identity column.

Contains the null value if the column is
not an IDENTITY column.

IDENTITY_INCREMENT INCREMENT DECIMAL(31,0)
Nullable

Increment value of the identity column.

Contains the null value if the column is
not an IDENTITY column.

IDENTITY_MINIMUM MINVALUE DECIMAL(31,0)
Nullable

Minimum value of the identity column.

Contains the null value if the column is
not an IDENTITY column.

IDENTITY_MAXIMUM MAXVALUE DECIMAL(31,0)
Nullable

Maximum value of the identity
column.

Contains the null value if the column is
not an IDENTITY column.

IDENTITY_CYCLE CYCLE VARCHAR(3)
Nullable

This column identifies whether the
identity column values will continue to
be generated after the minimum or
maximum value has been reached.

NO Values will not continue to be
generated.

YES Values will continue to be
generated.

Contains the null value if the column is
not an IDENTITY column.

SYSCOLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 873

||||
|

||
|

||
|

|||
|
|
|
|

|
|
|

|
|
|

|
|

|||
|
|

|
|

|||
|
|

|
|

|||
|
|

|
|

|||
|
|
|

|
|

|||
|
|
|
|
|

||
|

||
|

|
|

Table 99. SYSCOLUMNS view (continued)

Column name

System
Column
Name Data Type Description

IDENTITY_CACHE CACHE INTEGER
Nullable

Specifies the number of identity values
that may be preallocate for faster
access. Zero indicates that the values
will not be preallocated.

Contains the null value if the column is
not an IDENTITY column.

IDENTITY_ORDER ORDER VARCHAR(3)
Nullable

Specifies whether the identity values
must be generated in order of the
request.

NO Values do not need to be
generated in order of the
request.

YES Values must be generated in
order of the request.

Contains the null value if the column is
not an IDENTITY column.

SYSCOLUMNS

874 DB2 UDB for iSeries SQL Reference V5R2

|||
|
|
|
|
|

|
|

|||
|
|
|
|

||
|
|

||
|

|
|

SYSCST
The SYSCST view contains one row for each constraint in the SQL schema. The
following table describes the columns in the SYSCST view:

Table 100. SYSCST view

Column Name

System
Column
Name Data Type Description

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema containing the
constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

CONSTRAINT_TYPE TYPE VARCHAR(11) Constraint Type
CHECK
UNIQUE
PRIMARY KEY
FOREIGN KEY

TABLE_SCHEMA TDBNAME VARCHAR(128) Name of the schema containing the
table.

TABLE_NAME TBNAME VARCHAR(128) Name of the table which the constraint
is created over. This will be the SQL
table name if it exists; otherwise, it will
be the system table name.

IS_DEFERRABLE ISDEFER VARCHAR(3) Indicates whether the constraint
checking can be deferred. Will always
be ’NO’.

INITIALLY_DEFERRED INITDEFER VARCHAR(3) Indicates whether the constraint was
defined as initially deferred. Will
always be ’NO’.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing
the table.

CONSTRAINT_KEYS COLCOUNT SMALLINT
Nullable

Specifies the number of key columns if
this is a UNIQUE, PRIMARY KEY, or
FOREIGN KEY constraint.

Contains the null value if the
constraint is a CHECK constraint.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

SYSCST

Appendix G. DB2 UDB for iSeries Catalog Views 875

|

|||
|
|
|
|

|
|

||||
|

SYSCSTCOL
The SYSCSTCOL view records the columns on which constraints are defined. There
is one row for every column in a unique or primary key constraint and the
referencing columns of a referential constraint. The following table describes the
columns in the SYSCSTCOL view:

Table 101. SYSCSTCOL view

Column Name

System
Column
Name Data Type Description

TABLE_SCHEMA TDBNAME VARCHAR(128) Name of the SQL schema that contains
the table the constraint is dependent
on.

TABLE_NAME TBNAME VARCHAR(128) Name of the table the constraint is
dependent on. This is the SQL table
name if it exists; otherwise, it is the
system table name.

COLUMN_NAME COLUMN VARCHAR(128) Column that the constraint was created
over. This is the SQL column name if it
exists; otherwise, it is the system
column name.

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema of the constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) System name of the column.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing
the table.

SYSCSTCOL

876 DB2 UDB for iSeries SQL Reference V5R2

SYSCSTDEP
The SYSCSTDEP view records the tables on which constraints are defined. The
following table describes the columns in the SYSCSTDEP view:

Table 102. SYSCSTDEP view

Column Name

System
Column
Name Data Type Description

TABLE_SCHEMA TDBNAME VARCHAR(128) Name of the SQL schema that contains
the table on which the constraint is
dependent

TABLE_NAME TBNAME VARCHAR(128) Name of the table on which the
constraint is dependent. This is the
SQL table name if it exists otherwise it
is the system table name.

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema of the constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing
the table.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

SYSCSTDEP

Appendix G. DB2 UDB for iSeries Catalog Views 877

||||
|

SYSFUNCS
The SYSFUNCS view contains one row for each function created by the CREATE
FUNCTION statement. The following table describes the columns in the
SYSFUNCS view:

Table 103. SYSFUNCS view

Column Name

System
Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine (function)
instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

ROUTINE_SCHEMA FUNCSCHEMAVARCHAR(128) Name of the SQL schema (schema) that
contains the routine.

ROUTINE_NAME FUNCNAME VARCHAR(128) Name of the routine.

ROUTINE_CREATED FUNCCREATE TIMESTAMP Identifies the timestamp when the
routine was created.

ROUTINE_DEFINER DEFINER VARCHAR(128) Name of the user that defined the
routine.

ROUTINE_BODY BODY VARCHAR(8) The type of the routine body:

EXTERNAL This is an external
routine.

SQL This is an SQL
routine.

EXTERNAL_NAME EXTNAME VARCHAR(279)
Nullable

If this is an external routine, this
column identifies the external program
name.

v For ILE service programs, the
external program name is
schema-name/service-program-
name(entry-point-name).

v For Java programs, the external
program name is an optional jar-id
followed by a fully-qualified-class-
name!method-name or
fully-qualified-class-name.method-name.

v For all other languages, the external
program name is
schema-name/program-name.

Contains the null value if this is not an
external routine.

SYSFUNCS

878 DB2 UDB for iSeries SQL Reference V5R2

Table 103. SYSFUNCS view (continued)

Column Name

System
Column
Name Data Type Description

EXTERNAL_LANGUAGE LANGUAGE VARCHAR(8)
Nullable

If this is an external routine, this
column identifies the external program
name.

C The external program
is written in C.

C++ The external program
is written in C++.

CL The external program
is written in CL.

COBOL The external program
is written in COBOL.

COBOLLE The external program
is written in ILE
COBOL.

JAVA The external program
is written in JAVA.

PLI The external program
is written in PL/I.

RPG The external program
is written in RPG.

RPGLE The external program
is written in ILE
RPG.

Contains the null value if this is not an
external routine.

PARAMETER_STYLE PARM_STYLE VARCHAR(7)
Nullable

If this is an external routine, this
column identifies the parameter style
(calling convention).

DB2SQL This is the DB2SQL
calling convention.

DB2GNRL This is the
DB2GENERAL
calling convention.

GENERAL This is the GENERAL
calling convention.

JAVA This is the JAVA
calling convention.

NULLS This is the GENERAL
WITH NULLS calling
convention.

SQL This is the SQL
standard calling
convention.

Contains the null value if this is not an
external routine.

SYSFUNCS

Appendix G. DB2 UDB for iSeries Catalog Views 879

|
|
|

|
|
|

Table 103. SYSFUNCS view (continued)

Column Name

System
Column
Name Data Type Description

IS_DETERMINISTIC DETERMINE VARCHAR(3) This column identifies whether the
routine is deterministic. That is,
whether a call to the routine with the
same arguments will always return the
same result.

NO The routine is not
deterministic.

YES The routine is deterministic.

SQL_DATA_ACCESS DATAACCESS VARCHAR(8) This column identifies whether a
routine contains SQL and whether it
reads or modifies data.

NONE The routine does not
contain any SQL
statements.

CONTAINS The routine contains
SQL statements.

READS The routine possibly
reads data from a
table or view.

MODIFIES The routine possibly
modifies data in a
table or view or
issues SQL DDL
statements.

SQL_PATH SQL_PATH VARCHAR(3483)
Nullable

If this is an SQL routine, this column
identifies the path.

Contains the null value if this is an
external routine.

PARM_SIGNATURE SIGNATURE VARCHAR(510) This column identifies the routine
signature.

NUMBER_OF_RESULTS NUMRESULTS SMALLINT Identifies the number of results.

IN_PARMS IN_PARMS SMALLINT Identifies the number of input
parameters. 0 indicates that there are
no input parameters.

LONG_COMMENT REMARKS VARCHAR(2000)
Nullable

A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

ROUTINE_DEFINITION ROUTINEDEF VARCHAR(24000)
Nullable

If this is an SQL routine, this column
contains the SQL routine body.

Contains the null value if this is not an
SQL routine or if the routine body
cannot be contained in this column
without truncation.

SYSFUNCS

880 DB2 UDB for iSeries SQL Reference V5R2

Table 103. SYSFUNCS view (continued)

Column Name

System
Column
Name Data Type Description

FUNCTION_ORIGIN ORIGIN CHAR(1) Identifies the type of function. If this is
a procedure, this column contains a
blank.

B This is a built-in function
(defined by DB2 UDB for
iSeries).

E This is a user-defined
function.

U This is a user-defined function
that is based on another
function.

S This is a system-generated
function.

FUNCTION_TYPE TYPE CHAR(1) Identifies the form of the function. If
this is a procedure, this column
contains a blank.

S This is a scalar function.

C This is a column function.

T This is a table function.

EXTERNAL_ACTION EXTACTION CHAR(1)
Nullable

Identifies the whether the invocation of
the function has external effects.

E This function has external side
effects.

N This function does not have
any external side effects.

IS_NULL_CALL NULL_CALL VARCHAR(3)
Nullable

Identifies whether the function needs
to be called if an input parameter is the
null value.

NO This function need not be
called if an input parameter is
the null value. If this is a
scalar function, the result of
the function is implicitly null
if any of the operands are
null. If this is a table function,
the result of the function is an
empty table if any of the
operands are the null value.

YES This function must be called
even if an input operand is
null.

SYSFUNCS

Appendix G. DB2 UDB for iSeries Catalog Views 881

||

|
|
|
|
|
|
|
|
|
|

Table 103. SYSFUNCS view (continued)

Column Name

System
Column
Name Data Type Description

SCRATCH_PAD SCRATCHPAD INTEGER
Nullable

Identifies whether the address of a
static memory area (scratch pad) is
passed to the function.

0 The function does not have a
scratch pad.

integer Indicates the size of the
scratch pad passed to the
function.

FINAL_CALL FINAL_CALL VARCHAR(3)
Nullable

Indicates whether a final call to the
function should be made to allow the
function to clean up its work areas
(scratch pads).

NO No final call is made.

YES A final call to the function is
made when the statement is
complete.

PARALLELIZABLE PARALLEL VARCHAR(3)
Nullable

Identifies whether the function can be
run in parallel.

NO The function must be
synchronous.

YES The function can be run in
parallel.

DBINFO DBINFO VARCHAR(3)
Nullable

Identifies whether information about
the database is passed to the function.

NO No database information is
passed to the function.

YES Information about the
database is passed to the
function.

SOURCE_ SPECIFIC_SCHEMA SRCSCHEMA VARCHAR(128)
Nullable

If this is sourced function and the
source is user-defined, this column
contains the name of the source
schema. If this is a sourced function
and the source is built-in, this column
contains ’QSYS2’.

Contains the null value if this is not a
sourced function.

SOURCE_SPECIFIC_NAME SRCNAME VARCHAR(128)
Nullable

If this is sourced function and the
source is user-defined, this column
contains the specific name of the source
function name.

Contains the null value if this is not a
sourced function.

SYSFUNCS

882 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|

Table 103. SYSFUNCS view (continued)

Column Name

System
Column
Name Data Type Description

IS_USER_DEFINED_CAST CAST_FUNC VARCHAR(3)
Nullable

Identifies whether this function is a
cast function created when a distinct
type was created.

NO This function is not a cast
function.

YES This function is a cast
function.

CARDINALITY CARD BIGINT
Nullable

Specifies the cardinality for a table
function.

Contains the null value if the function
is not a table function or if cardinality
was not specified.

FENCED FENCED VARCHAR(3)
Nullable

Identifies whether the function is
fenced.

NO The function is not fenced.

YES The function is fenced.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

SYSFUNCS

Appendix G. DB2 UDB for iSeries Catalog Views 883

|||
|
|
|

|
|
|

|||
|
|
|

||

||

||||
|

SYSINDEXES
The SYSINDEXES view contains one row for every index in the SQL schema
created using the SQL CREATE INDEX statement, including indexes on the SQL
catalog. The following table describes the columns in the SYSINDEXES view:

Table 104. SYSINDEXES view

Column Name

System
Column
Name Data Type Description

INDEX_NAME NAME VARCHAR(128) Name of the index. This will be the
SQL index name if one exists;
otherwise, it will be the system index
name.

INDEX_OWNER CREATOR VARCHAR(128) Owner of the index

TABLE_NAME TBNAME VARCHAR(128) Name of the table on which the index
is defined. This will be the SQL table
name if one exists; otherwise, it will be
the system table name.

TABLE_OWNER TBCREATOR VARCHAR(128) Owner of the table

TABLE_SCHEMA TBDBNAME VARCHAR(128) Name of the SQL schema that contains
the table on which the index is defined

IS_UNIQUE UNIQUERULE CHAR(1) If the index is unique:

D No (duplicates are allowed)

V Yes (duplicate NULL values
are allowed)

U Yes

E Encoded vector index

COLUMN_COUNT COLCOUNT INTEGER Number of columns in the key

INDEX_SCHEMA DBNAME VARCHAR(128) Name of the SQL schema that contains
the index

SYSTEM_INDEX_NAME SYS_IXNAME CHAR(10) System index name

SYSTEM_INDEX_SCHEMA SYS_IDNAME CHAR(10) System index schema name

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System table schema name

LONG_COMMENT REMARKS VARCHAR(2000)
Nullable

A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

SYSINDEXES

884 DB2 UDB for iSeries SQL Reference V5R2

||

||||
|

SYSJARCONTENTS
The SYSJARCONTENTS table contains one row for each class defined by a jarid in
the SQL schema. The following table describes the columns in the
SYSJARCONTENTS view.

Table 105. SYSJARCONTENTS view

Column Name

System
Column
Name Data Type Description

JARSCHEMA JARSCHEMA VARCHAR(128) Name of the schema containing the
jar_id.

JAR_ID JAR_ID VARCHAR(128) Name of the jar_id.

CLASS CLASS VARCHAR(128) Name of the class.

CLASS_SOURCE CLASSSRC DBCLOB(10485760)
Nullable

Reserved. Contains the null value.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

SYSJARCONTENTS

Appendix G. DB2 UDB for iSeries Catalog Views 885

|

||||
|

SYSJAROBJECTS
The SYSJAROBJECTS table contains one row for each jarid in the SQL schema. The
following table describes the columns in the SYSJAROBJECTS view.

Table 106. SYSJAROBJECTS view

Column Name

System
Column
Name Data Type Description

JARSCHEMA JARSCHEMA VARCHAR(128) Name of the schema containing the
jar_id.

JAR_ID JAR_ID VARCHAR(128) Name of the jar_id.

DEFINER DEFINER VARCHAR(128) Name of the owner of the jarid.

JAR_DATA JAR_DATA BLOB(104857600)
Nullable

Byte-codes for the jar.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

JAR_CREATED CREATEDTS TIMESTAMP Jar created timestamp

LAST_ALTERED ALTEREDTS TIMESTAMP
Nullable

Reserved. Contains the null value.

DEBUG_MODE DEBUG_MODE CHAR(1) Identifies whether the function is
debuggable.

0 The function is not
debuggable.

2 The function is debuggable.

DEBUG_DATA DEBUG_DATA CLOB(1048576)
Nullable

Reserved. Contains the null value.

SYSJAROBJECTS

886 DB2 UDB for iSeries SQL Reference V5R2

||||
|

||||

|||
|
|

||||
|

||
|

||

|||
|
|

SYSKEYCST
The SYSKEYCST view contains one or more rows for each UNIQUE KEY,
PRIMARY KEY, or FOREIGN KEY in the SQL schema. There is one row for each
column in every unique or primary key constraint and the referencing columns of
a referential constraint. The following table describes the columns in the
SYSKEYCST view:

Table 107. SYSKEYCST view

Column Name

System
Column
Name Data Type Description

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema containing the
constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

TABLE_SCHEMA TDBNAME VARCHAR(128) Name of the schema containing the
table.

TABLE_NAME TBNAME VARCHAR(128) Name of the table.

COLUMN_NAME COLNAME VARCHAR(128) Name of the column.

ORDINAL_POSITION COLSEQ INTEGER The position of the column within the
key

COLUMN_POSITION COLNO INTEGER The position of the column within the
row

TABLE_OWNER CREATOR VARCHAR(128) Owner of the table.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) System name of the column.

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System name of the table.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing
the schema table.

SYSKEYCST

Appendix G. DB2 UDB for iSeries Catalog Views 887

SYSKEYS
The SYSKEYS view contains one row for every column of an index in the SQL
schema, including the keys for the indexes on the SQL catalog. The following table
describes the columns in the SYSKEYS view:

Table 108. SYSKEYS view

Column Name

System
Column
Name Data Type Description

INDEX_NAME IXNAME VARCHAR(128) Name of the index. This will be the
SQL index name if one exists;
otherwise, it will be the system index
name.

INDEX_OWNER IXCREATOR VARCHAR(128) Owner of the index

COLUMN_NAME COLNAME VARCHAR(128) Name of the column of the key. This
will be the SQL column name if one
exists; otherwise, it will be the system
column name.

COLUMN_POSITION COLNO INTEGER Numeric position of the column in the
row

ORDINAL_POSITION COLSEQ INTEGER Numeric position of the column in the
key

ORDERING ORDERING CHAR(1) Order of the column in the key:

A Ascending

D Descending

INDEX_SCHEMA IXDBNAME VARCHAR(128) Name of the schema containing the
index.

SYSTEM_COLUMN_NAME SYS_CNAME CHAR(10) System name of the column

SYSTEM_INDEX_NAME SYS_IXNAME CHAR(10) System name of the index

SYSTEM_INDEX_SCHEMA SYS_IDNAME CHAR(10) System name of the schema containing
the index

SYSKEYS

888 DB2 UDB for iSeries SQL Reference V5R2

SYSPACKAGE
The SYSPACKAGE view contains one row for each SQL package in the SQL
schema. The following table describes the columns in the SYSPACKAGE view:

Table 109. SYSPACKAGE view

Column Name

System
Column
Name Data Type Description

PACKAGE_CATALOG LOCATION VARCHAR(128) Relational database name (RDBNAME)
of the SQL package

PACKAGE_SCHEMA COLLID VARCHAR(128) Name of the schema

PACKAGE_NAME NAME VARCHAR(128) Name of the SQL package

PACKAGE_OWNER OWNER VARCHAR(128) Owner of the SQL package

PACKAGE_CREATOR CREATOR VARCHAR(128) Creator of the SQL package

CREATION_TIMESTAMP TIMESTAMP CHAR(26) Timestamp of when the SQL package
was created

DEFAULT_SCHEMA QUALIFIER VARCHAR(128) Implicit name for unqualified tables,
views, and indexes

PROGRAM_NAME PROGNAME VARCHAR(128) Name of program the package was
created from

PROGRAM_SCHEMA LIBRARY VARCHAR(128) Name of schema containing the
program

PROGRAM_CATALOG RDB VARCHAR(128) Name of the relational database where
the program resides

ISOLATION ISOLATION CHAR(2) Isolation option specification:
RR Repeatable Read
RS Read Stability (*ALL)
CS Cursor Stability (*CS)
UR Uncommitted Read (*CHG)
NO None (*NONE)

QUOTE QUOTE CHAR(1) Escape character specification (Y/N):
Y = Quotation mark
N = Apostrophe

COMMA COMMA CHAR(1) Comma option specification (Y/N):
Y = Comma
N = Period

PACKAGE_TEXT LABEL VARCHAR(50) A character string you supply with the
LABEL statement.

LONG_COMMENT REMARKS VARCHAR(2000) A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

CONSISTENCY_TOKEN CONTOKEN CHAR(8) FOR BIT
DATA

Consistency token of package

SYSTEM_PACKAGE_NAME SYS_NAME CHAR(10) System name of the package.

SYSTEM_PACKAGE_SCHEMA SYS_DNAME CHAR(10) System name of the schema containing
the package.

SYSTEM_DEFAULT_SCHEMA SYS_DDNAME CHAR(10) System name of the implicit qualifier
for unqualified table, views, indexes,
and packages.

SYSPACKAGE

Appendix G. DB2 UDB for iSeries Catalog Views 889

|
|

Table 109. SYSPACKAGE view (continued)

Column Name

System
Column
Name Data Type Description

SYSTEM_PROGRAM_NAME SYS_PNAME CHAR(10) System name of the program.

SYSTEM_PROGRAM_SCHEMA SYS_PDNAME CHAR(10) System name of the schema containing
the program

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

SYSPACKAGE

890 DB2 UDB for iSeries SQL Reference V5R2

||||
|

SYSPARMS
The SYSPARMS table contains one row for each parameter of a procedure created
by the CREATE PROCEDURE statement or function created by the CREATE
FUNCTION statement. The following table describes the columns in the
SYSPARMS table:

Table 110. SYSPARMS table

Column Name

System
Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

ORDINAL_POSITION PARMNO INTEGER Numeric place of the parameter in the
parameter list, ordered from left to
right.

PARAMETER_MODE PARMMODE VARCHAR(5) Type of the parameter:

IN This is an input parameter.

OUT This is an output parameter.

INOUT
This is an input/output
parameter.

PARAMETER_NAME PARMNAME VARCHAR(128)
Nullable

Name of the parameter.

Contains the null value if the
parameter does not have a name.

SYSPARMS

Appendix G. DB2 UDB for iSeries Catalog Views 891

|
|

Table 110. SYSPARMS table (continued)

Column Name

System
Column
Name Data Type Description

DATA_TYPE DATA_TYPE VARCHAR(128) Type of column:

BIGINT Big number

INTEGER Large number

SMALLINT Small number

DECIMAL Packed decimal

NUMERIC Zoned decimal

DOUBLE PRECISION
Floating point;
DOUBLE PRECISION

REAL Floating point; REAL

CHARACTER Fixed-length
character string

CHARACTER VARYING
Varying-length
character string

CHARACTER LARGE OBJECT
Character large object
string

GRAPHIC Fixed-length graphic
string

GRAPHIC VARYING
Varying-length
graphic string

DOUBLE-BYTE CHARACTER
LARGE OBJECT

Double-byte character
large object string

BINARY LARGE OBJECT
Binary large object
string

DATE Date

TIME Time

TIMESTAMP Timestamp

DATALINK Datalink

ROWID Row ID

DISTINCT Distinct type

NUMERIC_SCALE SCALE INTEGER
Nullable

Scale of numeric data.

Contains the null value if the
parameter is not decimal, numeric, or
binary.

SYSPARMS

892 DB2 UDB for iSeries SQL Reference V5R2

||

Table 110. SYSPARMS table (continued)

Column Name

System
Column
Name Data Type Description

NUMERIC_PRECISION PRECISION INTEGER
Nullable

The precision of all numeric
parameters.

Note: This column supplies the
precision of all numeric data types,
including single-and double-precision
floating point. The
NUMERIC_PRECISION_RADIX
column indicates if the value in this
column is in binary or decimal digits.

Contains the null value if the
parameter is not numeric.

CCSID CCSID INTEGER
Nullable

The CCSID value for CHAR,
VARCHAR, CLOB, DATE, TIME,
TIMESTAMP, GRAPHIC,
VARGRAPHIC, DBCLOB and
DATALINK parameters.

Contains the null value if the
parameter is numeric.

CHARACTER_MAXIMUM_LENGTH CHARLEN INTEGER
Nullable

Maximum length of the string for
binary, character, and graphic string
data types.

Contains the null value if the
parameter is not a string.

CHARACTER_OCTET_LENGTH CHARBYTE INTEGER
Nullable

Number of bytes for binary, character,
and graphic string data types.

Contains the null value if the
parameter is not a string.

NUMERIC_PRECISION_RADIX RADIX INTEGER
Nullable

Indicates if the precision specified in
column NUMERIC_PRECISION is
specified as a number of binary or
decimal digits:

2 Binary; floating-point
precision is specified in binary
digits.

10 Decimal; all other numeric
types are specified in decimal
digits.

Contains the null value if the
parameter is not numeric.

SYSPARMS

Appendix G. DB2 UDB for iSeries Catalog Views 893

Table 110. SYSPARMS table (continued)

Column Name

System
Column
Name Data Type Description

DATETIME_PRECISION DATPRC INTEGER
Nullable

The fractional part of a date, time, or
timestamp.

0 For DATE and TIME data
types

6 For TIMESTAMP data types
(number of microseconds).

Contains the null value if the
parameter is not date, time, or
timestamp.

IS_NULLABLE NULLS VARCHAR(3) Indicates whether the parameter is
nullable.

NO The parameter does not allow
nulls.

YES The parameter does allow
nulls.

LONG_COMMENT REMARKS VARCHAR(2000)
Nullable

A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

ROW_TYPE ROWTYPE CHAR(1) Indicates the type of row. If this is a
parameter to a procedure, this column
contains the null value.

P Parameter.

R Result before casting.

C Result after casting.

DATA_TYPE_SCHEMA TYPESCHEMA VARCHAR(128)
Nullable

Schema of the data type if this is a
distinct type.

Contains the null value if the
parameter is not a distinct type.

DATA_TYPE_NAME TYPENAME VARCHAR(128)
Nullable

Name of the data type if this is a
distinct type.

Contains the null value if the
parameter is not a distinct type.

AS_LOCATOR ASLOCATOR VARCHAR(3) Indicates whether the parameter was
specified as a locator.

NO The parameter was not
specified as a locator.

YES The parameter was specified
as a locator.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

SYSPARMS

894 DB2 UDB for iSeries SQL Reference V5R2

||||
|

SYSPROCS
The SYSPROCS view contains one row for each procedure created by the CREATE
PROCEDURE statement. The following table describes the columns in the
SYSPROCS view:

Table 111. SYSPROCS view

Column Name

System
Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine
(procedure) instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

ROUTINE_SCHEMA PROCSCHEMA VARCHAR(128) Name of the SQL schema (schema) that
contains the routine.

ROUTINE_NAME PROCNAME VARCHAR(128) Name of the routine.

ROUTINE_CREATED RTNCREATE TIMESTAMP Identifies the timestamp when the
routine was created.

ROUTINE_DEFINER DEFINER VARCHAR(128) Name of the user that defined the
routine.

ROUTINE_BODY BODY VARCHAR(8) The type of the routine body:

EXTERNAL This is an external
routine.

SQL This is an SQL
routine.

EXTERNAL_NAME EXTNAME VARCHAR(279)
Nullable

If this is an external routine, this
column identifies the external program
name.

v For REXX, the external program
name is schema-name/source-file-
name(member-name).

v For Java programs, the external
program name is an optional jar-id
followed by a fully-qualified-class-
name!method-name or
fully-qualified-class-name.method-name.

v For all other languages, the external
program name is
schema-name/program-name.

Contains the null value if this is not an
external routine.

SYSPROCS

Appendix G. DB2 UDB for iSeries Catalog Views 895

Table 111. SYSPROCS view (continued)

Column Name

System
Column
Name Data Type Description

EXTERNAL_LANGUAGE LANGUAGE VARCHAR(8)
Nullable

If this is an external routine, this
column identifies the external program
name.

C The external program
is written in C.

C++ The external program
is written in C++.

CL The external program
is written in CL.

COBOL The external program
is written in COBOL.

COBOLLE The external program
is written in ILE
COBOL.

FORTRAN The external program
is written in
FORTRAN.

JAVA The external program
is written in JAVA.

PLI The external program
is written in PL/I.

REXX The external program
is a REXX procedure.

RPG The external program
is written in RPG.

RPGLE The external program
is written in ILE
RPG.

Contains the null value if this is not an
external routine.

SYSPROCS

896 DB2 UDB for iSeries SQL Reference V5R2

Table 111. SYSPROCS view (continued)

Column Name

System
Column
Name Data Type Description

PARAMETER_STYLE PARM_STYLE VARCHAR(7)
Nullable

If this is an external routine, this
column identifies the parameter style
(calling convention).

DB2GNRL This is the
DB2GENERAL
calling convention.

DB2SQL This is the DB2SQL
calling convention.

GENERAL This is the GENERAL
calling convention.

JAVA This is the JAVA
calling convention.

NULLS This is the GENERAL
WITH NULLS calling
convention.

SQL This is the SQL
standard calling
convention.

Contains the null value if this is not an
external routine.

IS_DETERMINISTIC DETERMINE VARCHAR(3) This column identifies whether the
routine is deterministic. That is,
whether a call to the routine with the
same arguments will always return the
same result.

NO The routine is not
deterministic.

YES The routine is deterministic.

SQL_DATA_ACCESS DATAACCESS VARCHAR(8) This column identifies whether a
routine contains SQL and whether it
reads or modifies data.

NONE The routine does not
contain any SQL
statements.

CONTAINS The routine contains
SQL statements.

READS The routine possibly
reads data from a
table or view.

MODIFIES The routine possibly
modifies data in a
table or view or
issues SQL DDL
statements.

SYSPROCS

Appendix G. DB2 UDB for iSeries Catalog Views 897

Table 111. SYSPROCS view (continued)

Column Name

System
Column
Name Data Type Description

SQL_PATH SQL_PATH VARCHAR(3483)
Nullable

If this is an SQL routine, this column
identifies the path.

Contains the null value if this is not an
SQL routine.

PARM_SIGNATURE SIGNATURE VARCHAR(510) This column identifies the routine
signature.

RESULT_SETS RESULTS SMALLINT Identifies the maximum number of
result sets returned. 0 indicates that
there are no result sets.

IN_PARMS IN_PARMS SMALLINT Identifies the number of input
parameters. 0 indicates that there are
no input parameters.

OUT_PARMS OUT_PARMS SMALLINT Identifies the number of output
parameters. 0 indicates that there are
no output parameters.

INOUT_PARMS INOUT_PARM SMALLINT Identifies the number of input/output
parameters. 0 indicates that there are
no input/output parameters.

LONG_COMMENT REMARKS VARCHAR(2000)
Nullable

A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

ROUTINE_DEFINITION ROUTINEDEF VARCHAR(24000)
Nullable

If this is an SQL routine, this column
contains the SQL routine body.

Contains the null value if this is not an
SQL routine or if the routine body
cannot be contained in this column
without truncation.

DBINFO DBINFO VARCHAR(3)
Nullable

Identifies whether information about
the database is passed to the
procedure.

NO No database information is
passed to the procedure.

YES Information about the
database is passed to the
procedure.

COMMIT_ON_RETURN CMTONRET VARCHAR(3)
Nullable

This column identifies whether the
procedure commits on a successful
return from the procedure.

NO A commit is not performed on
successful return from the
procedure.

YES A commit is performed on
successful return from the
procedure.

SYSPROCS

898 DB2 UDB for iSeries SQL Reference V5R2

|||
|
|
|
|

||
|
|

||
|
|

Table 111. SYSPROCS view (continued)

Column Name

System
Column
Name Data Type Description

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

NEW_SAVEPOINT_LEVEL NEWSAVEPTL VARCHAR(3)
Nullable

This column identifies whether the
routine starts a new savepoint level.

NO A new savepoint level is not
started.

YES A new savepoint level is
started.

SYSPROCS

Appendix G. DB2 UDB for iSeries Catalog Views 899

||||
|

|||
|
|
|

||
|

||
|

SYSREFCST
The SYSREFCST view contains one row for each foreign key in the SQL schema.
The following table describes the columns in the SYSREFCST view:

Table 112. SYSREFCST view

Column Name

System
Column
Name Data Type Description

CONSTRAINT_SCHEMA CDBNAME VARCHAR(128) Name of the schema containing the
constraint.

CONSTRAINT_NAME RELNAME VARCHAR(128) Name of the constraint.

UNIQUE_CONSTRAINT_SCHEMA UNQDBNAME VARCHAR(128) Name of the SQL schema containing
the unique constraint referenced by the
referential constraint.

UNIQUE_CONSTRAINT_NAME UNQNAME VARCHAR(128) Name of the unique constraint
referenced by the referential constraint.

MATCH_OPTION MATCH VARCHAR(7) Match option. Will always be NONE.

UPDATE_RULE UPDATE VARCHAR(11) Update Rule.

v NO ACTION

v RESTRICT

DELETE_RULE DELETE VARCHAR(11) Delete Rule

v NO ACTION

v CASCADE

v SET NULL

v SET DEFAULT

v RESTRICT

COLUMN_COUNT COLCOUNT INTEGER Number of columns in the foreign key.

SYSREFCST

900 DB2 UDB for iSeries SQL Reference V5R2

SYSROUTINEDEP
The SYSROUTINEDEP view records the dependencies of routines. The following
table describes the columns in the SYSROUTINEDEP view:

Table 113. SYSROUTINEDEP view

Column name

System
Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

OBJECT_SCHEMA BSCHEMA VARCHAR(128) Name of the SQL schema that contains
the object.

OBJECT_NAME BNAME VARCHAR(128) Name of the object the routine is
dependent on.

OBJECT_TYPE BTYPE CHAR(10) Indicates the object type of the object
referenced in the routine:

ALIAS The object is an alias.

FUNCTION
The object is a function.

INDEX The object is an index.

PROCEDURE
The object is a procedure.

SCHEMA
The object is a schema.

TABLE The object is a table.

TYPE The object is a distinct type.

VIEW The object is a view.

PARM_SIGNATURE SIGNATURE VARCHAR(10000)
Nullable

This column identifies the routine
signature.

Contains the null value if the object is
not a routine.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number of the
object.

NUMBER_OF_PARMS NUMPARMS SMALLINT
Nullable

Identifies the number of parameters.

Contains the null value if the object is
not a routine.

SYSROUTINEDEP

Appendix G. DB2 UDB for iSeries Catalog Views 901

|

|
|

||

|

|
|
|||

||||

||||

||||
|

||||
|

||||
|

||

|
|

||

|
|

|
|

||

||

||

|||
|
|
|

|
|

||||
|
|

|||
|
|

|
|

SYSROUTINES
The SYSROUTINES table contains one row for each procedure created by the
CREATE PROCEDURE statement and each function created by the CREATE
FUNCTION statement. The following table describes the columns in the
SYSROUTINES view:

Table 114. SYSROUTINES view

Column Name

System
Column
Name Data Type Description

SPECIFIC_SCHEMA SPECSCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME SPECNAME VARCHAR(128) Specific name of the routine instance.

ROUTINE_SCHEMA RTNSCHEMA VARCHAR(128) Name of the SQL schema (schema) that
contains the routine.

ROUTINE_NAME RTNNAME VARCHAR(128) Name of the routine.

ROUTINE_TYPE RTNTYPE VARCHAR(9) Type of the routine.

PROCEDURE This is a procedure.

FUNCTION This is a function.

ROUTINE_CREATED RTNCREATE TIMESTAMP Identifies the timestamp when the
routine was created.

ROUTINE_DEFINER DEFINER VARCHAR(128) Name of the user that defined the
routine.

ROUTINE_BODY BODY VARCHAR(8) The type of the routine body:

EXTERNAL This is an external
routine.

SQL This is an SQL
routine.

EXTERNAL_NAME EXTNAME VARCHAR(279)
Nullable

If this is an external routine, this
column identifies the external program
name.

v For REXX, the external program
name is schema-name/source-file-
name(member-name).

v For ILE service programs, the
external program name is
schema-name/service-program-
name(entry-point-name).

v For Java programs, the external
program name is an optional jar-id
followed by a fully-qualified-class-
name!method-name or
fully-qualified-class-name.method-name.

v For all other languages, the external
program name is
schema-name/program-name.

Contains the null value if this is not an
external routine.

SYSROUTINES

902 DB2 UDB for iSeries SQL Reference V5R2

Table 114. SYSROUTINES view (continued)

Column Name

System
Column
Name Data Type Description

EXTERNAL_LANGUAGE LANGUAGE VARCHAR(8)
Nullable

If this is an external routine, this
column identifies the external program
name.

C The external program
is written in C.

C++ The external program
is written in C++.

CL The external program
is written in CL.

COBOL The external program
is written in COBOL.

COBOLLE The external program
is written in ILE
COBOL.

FORTRAN The external program
is written in
FORTRAN.

JAVA The external program
is written in JAVA.

PLI The external program
is written in PL/I.

REXX The external program
is a REXX procedure.

RPG The external program
is written in RPG.

RPGLE The external program
is written in ILE
RPG.

Contains the null value if this is not an
external routine.

SYSROUTINES

Appendix G. DB2 UDB for iSeries Catalog Views 903

Table 114. SYSROUTINES view (continued)

Column Name

System
Column
Name Data Type Description

PARAMETER_STYLE PARM_STYLE VARCHAR(7)
Nullable

If this is an external routine, this
column identifies the parameter style
(calling convention).

DB2GNRL This is the
DB2GENERAL
calling convention.

DB2SQL This is the DB2SQL
calling convention.

GENERAL This is the GENERAL
calling convention.

JAVA This is the JAVA
calling convention.

NULLS This is the GENERAL
WITH NULLS calling
convention.

SQL This is the SQL
standard calling
convention.

Contains the null value if this is not an
external routine.

IS_DETERMINISTIC DETERMINE VARCHAR(3) This column identifies whether the
routine is deterministic. That is,
whether a call to the routine with the
same arguments will always return the
same result.

NO The routine is not
deterministic.

YES The routine is deterministic.

SQL_DATA_ACCESS DATAACCESS VARCHAR(8) This column identifies whether a
routine contains SQL and whether it
reads or modifies data.

NONE The routine does not
contain any SQL
statements.

CONTAINS The routine contains
SQL statements.

READS The routine possibly
reads data from a
table or view.

MODIFIES The routine possibly
modifies data in a
table or view or
issues SQL DDL
statements.

SYSROUTINES

904 DB2 UDB for iSeries SQL Reference V5R2

Table 114. SYSROUTINES view (continued)

Column Name

System
Column
Name Data Type Description

SQL_PATH SQL_PATH VARCHAR(3483)
Nullable

If this is an SQL routine, this column
identifies the path.

Contains the null value if this is not an
SQL routine.

PARM_SIGNATURE SIGNATURE VARCHAR(510) This column identifies the routine
signature.

NUMBER_OF_RESULTS NUMRESULTS SMALLINT Identifies the number of results.

MAX_DYNAMIC_RESULT_SETS RESULTS SMALLINT Identifies the maximum number of
result sets returned. 0 indicates that
there are no result sets.

IN_PARMS IN_PARMS SMALLINT Identifies the number of input
parameters. 0 indicates that there are
no input parameters.

OUT_PARMS OUT_PARMS SMALLINT Identifies the number of output
parameters. 0 indicates that there are
no output parameters.

INOUT_PARMS INOUT_PARM SMALLINT Identifies the number of input/output
parameters. 0 indicates that there are
no input/output parameters.

PARSE_TREE PARSE_TREE VARCHAR(666) FOR
BIT DATA

If this is a routine, this column
identifies the parse tree of the CREATE
FUNCTION or CREATE PROCEDURE
statement. It is only used internally.

PARM_ARRAY PARM_ARRAY VARCHAR(10008)
FOR BIT DATA

If this is an external routine, this
column identifies the parameter array
built from the CREATE FUNCTION or
CREATE PROCEDURE statement. It is
only used internally.

LONG_COMMENT REMARKS VARCHAR(2000)
Nullable

A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

ROUTINE_DEFINITION ROUTINEDEF DBCLOB(1048576)
Nullable

If this is an SQL routine, this column
contains the SQL routine body.

Contains the null value if this is not an
SQL routine or if the routine body
cannot be contained in this column
without truncation.

SYSROUTINES

Appendix G. DB2 UDB for iSeries Catalog Views 905

|
|
|
|

|
|

Table 114. SYSROUTINES view (continued)

Column Name

System
Column
Name Data Type Description

FUNCTION_ORIGIN ORIGIN CHAR(1) Identifies the type of function. If this is
a procedure, this column contains a
blank.

B This is a built-in function
(defined by DB2 UDB for
iSeries).

E This is a user-defined
function.

U This is a user-defined function
that is sourced on another
function.

S This is a system-generated
function.

FUNCTION_TYPE TYPE CHAR(1) Identifies the form of the function. If
this is a procedure, this column
contains a blank.

S This is a scalar function.

C This is a column function.

T This is a table function.

EXTERNAL_ACTION EXTACTION CHAR(1)
Nullable

Identifies whether the invocation of the
function has external effects.

E This function has external side
effects.

N This function does not have
any external side effects.

Contains the null value if the routine is
a procedure.

IS_NULL_CALL NULL_CALL VARCHAR(3)
Nullable

Identifies whether the function needs
to be called if an input parameter is the
null value.

NO This function need not be
called if an input parameter is
the null value. If this is a
scalar function, the result of
the function is implicitly null
if any of the operands are
null. If this is a table function,
the result of the function is an
empty table if any of the
operands are the null value.

YES This function must be called
even if an input operand is
null.

Contains the null value if the routine is
a procedure.

SYSROUTINES

906 DB2 UDB for iSeries SQL Reference V5R2

||

Table 114. SYSROUTINES view (continued)

Column Name

System
Column
Name Data Type Description

SCRATCH_PAD SCRATCHPAD INTEGER
Nullable

Identifies whether the address of a
static memory area (scratch pad) is
passed to the function.

0 The function does not have a
scratch pad.

integer Indicates the size of the
scratch pad passed to the
function.

Contains the null value if the routine is
a procedure.

FINAL_CALL FINAL_CALL VARCHAR(3)
Nullable

Indicates whether a final call to the
function should be made to allow the
function to clean up its work areas
(scratch pads).

NO No final call is made.

YES A final call to the function is
made when the statement is
complete.

Contains the null value if the routine is
a procedure.

PARALLELIZABLE PARALLEL VARCHAR(3)
Nullable

Identifies whether the function can be
run in parallel.

NO The function must be
synchronous.

YES The function can be run in
parallel.

Contains the null value if the routine is
a procedure.

DBINFO DBINFO VARCHAR(3)
Nullable

Identifies whether information about
the database is passed to the routine.

NO No database information is
passed to the routine.

YES Information about the
database is passed to the
routine.

Contains the null value if the routine is
a procedure.

SOURCE_SPECIFIC_SCHEMA SRCSCHEMA VARCHAR(128)
Nullable

If this is sourced function and the
source is user-defined, this column
contains the name of the source
schema. If this is a sourced function
and the source is built-in, this column
contains ’QSYS2’.

Contains the null value if the routine is
not a sourced function.

SYSROUTINES

Appendix G. DB2 UDB for iSeries Catalog Views 907

Table 114. SYSROUTINES view (continued)

Column Name

System
Column
Name Data Type Description

SOURCE_SPECIFIC_NAME SRCNAME VARCHAR(128)
Nullable

If this is sourced function and the
source is user-defined, this column
contains the specific name of the source
function name.

Contains the null value if the routine is
not a sourced function.

IS_USER_ DEFINED_CAST CAST_FUNC VARCHAR(3)
Nullable

Identifies whether the this function is a
cast function created when a distinct
type was created.

NO This function is not a cast
function.

YES This function is a cast
function.

Contains the null value if the routine is
a procedure.

CARDINALITY CARD BIGINT
Nullable

Specifies the cardinality for a table
function.

Contains the null value if the function
is not a table function or if cardinality
was not specified.

FENCED FENCED VARCHAR(3)
Nullable

Identifies whether a function is fenced.

NO The function is not fenced.

YES The function is fenced.

Contains the null value if the routine is
a procedure.

COMMIT_ON_RETURN CMTONRET VARCHAR(3)
Nullable

This column identifies whether the
procedure commits on a successful
return from the procedure.

NO A commit is not performed on
successful return from the
procedure.

YES A commit is performed on
successful return from the
procedure.

Contains the null value if the routine is
a function.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

SYSROUTINES

908 DB2 UDB for iSeries SQL Reference V5R2

|
|
|
|

|
|

|||
|
|
|

|
|
|

|||
|
|

||

||

|
|

|||
|
|
|
|

||
|
|

||
|
|

|
|

||||
|

Table 114. SYSROUTINES view (continued)

Column Name

System
Column
Name Data Type Description

NEW_SAVEPOINT_LEVEL NEWSAVEPTL VARCHAR(3)
Nullable

This column identifies whether the
routine starts a new savepoint level.

NO A new savepoint level is not
started.

YES A new savepoint level is
started.

Contains the null value if the routine is
a function.

LAST_ALTERED ALTEREDTS TIMESTAMP
Nullable

Routine last changed timestamp.

Contains the null value.

DEBUG_MODE DEBUG_MODE CHAR(1) Identifies whether the routine is
debuggable.

0 The routine is not debuggable.

2 The routine is debuggable.

DEBUG_DATA DEBUG_DATA CLOB(1048576)
Nullable

Reserved. Contains the null value.

SYSROUTINES

Appendix G. DB2 UDB for iSeries Catalog Views 909

|||
|
|
|

||
|

||
|

|
|

||||
|

||

||

|||
|
|

SYSTABLES
The SYSTABLES view contains one row for every table, view or alias in the SQL
schema, including the tables and views of the SQL catalog. The following table
describes the columns in the SYSTABLES view:

Table 115. SYSTABLES view

Column name

System
Column
Name Data Type Description

TABLE_NAME NAME VARCHAR(128) Name of the table, view or alias. This
is the SQL table, view or alias name if
it exists; otherwise, it is the system
table, view or alias name.

TABLE_OWNER CREATOR VARCHAR(128) Owner of the table, view or alias

TABLE_TYPE TYPE CHAR(1) If the row describes a table, view, or
alias:

A Alias

L Logical file

P Physical file

T Table

V View

COLUMN_COUNT COLCOUNT INTEGER Number of columns in the table or
view. Zero for an alias.

ROW_LENGTH RECLENGTH
82

INTEGER Maximum length of any record in the
table. Zero for an alias.

TABLE_TEXT LABEL VARCHAR(50) A character string provided with the
LABEL statement.

LONG_COMMENT REMARKS VARCHAR(2000)
Nullable

A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

TABLE_SCHEMA DBNAME VARCHAR(128) Name of the SQL schema that contains
the table, view or alias

LAST_ALTERED_TIMESTAMP ALTEREDTS TIMESTAMP Table last changed timestamp

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10) System table name.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10) System schema name

FILE_TYPE FILETYPE CHAR(1) File type

D Data file or alias

S Source file

BASE_TABLE_SCHEMA TBDBNAME VARCHAR(128)
Nullable

For an alias, this is the name of the
SQL schema that contains the table or
view the alias is based on.

Contains the null value if the table is
not an alias.

SYSTABLES

910 DB2 UDB for iSeries SQL Reference V5R2

Table 115. SYSTABLES view (continued)

Column name

System
Column
Name Data Type Description

BASE_TABLE_NAME TBNAME VARCHAR(128)
Nullable

For an alias, this is the name of the
table or view the alias is based on.

Contains the null value if the table is
not an alias.

BASE_TABLE_MEMBER TBMEMBER VARCHAR(10)
Nullable

For an alias, this is the name of the file
member the alias is based on. Contains
*FIRST if this is an alias, but a member
name was not specified.

Contains the null value if the table is
not an alias.

SYSTEM_TABLE SYSTABLE CHAR(1) System table

N The table is not a system
table.

Y The table is a system table.

SELECT_OMIT SELECTOMIT CHAR(1) Select/omit logical file

N The table is not a select/omit
logical file.

Y The table is a select/omit
logical file.

IS_INSERTABLE_INTO INSERTABLE VARCHAR(3) Identifies whether an INSERT is
allowed on the table.

NO An INSERT is not allowed on
this table.

YES An INSERT is allowed on this
table.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

82. The length is the number of bytes passed in database buffers, not the internal storage length.

SYSTABLES

Appendix G. DB2 UDB for iSeries Catalog Views 911

||||

||
|

||

||||

||
|

||
|

||||
|

||
|

||
|

||||
|

SYSTRIGCOL
The SYSTRIGCOL view contains one row for each column either implicitly or
explicitly referenced in the WHEN clause or the triggered SQL statements of a
trigger. The following table describes the columns in the SYSTRIGCOL view:

Table 116. SYSTRIGCOL view

Column Name

System
Column
Name Data Type Description

TRIGGER_SCHEMA TRIGSCHEMA VARCHAR(128) Name of the schema containing the
trigger.

TRIGGER_NAME TRIGNAME VARCHAR(128) Name of the trigger.

TABLE_SCHEMA TABSCHEMA VARCHAR(128) Name of the schema containing the
table or view that contains the column
that is referenced in the trigger.

TABLE_NAME TABNAME VARCHAR(128) Name of the table or view that
contains the column that is referenced
in the trigger.

COLUMN_NAME TABCOLUMN VARCHAR(128) Name of the column that is referenced
in the trigger.

OBJECT_TYPE BTYPE VARCHAR(10) Indicates the object type of the object
that contains the column referenced in
the trigger:

FUNCTION
The object is a function.

TABLE The object is a table.

VIEW The object is a view.

SYSTRIGCOL

912 DB2 UDB for iSeries SQL Reference V5R2

||||
|
|

|
|

||

||

SYSTRIGDEP
The SYSTRIGDEP view contains one row for each object referenced in the WHEN
clause or the triggered SQL statements of a trigger. The following table describes
the columns in the SYSTRIGDEP view:

Table 117. SYSTRIGDEP view

Column Name

System
Column
Name Data Type Description

TRIGGER_SCHEMA TRIGSCHEMA VARCHAR(128) Name of the schema containing the
trigger.

TRIGGER_NAME TRIGNAME VARCHAR(128) Name of the trigger.

OBJECT_SCHEMA BSCHEMA VARCHAR(128) Name of the schema containing the
object referenced in the trigger.

OBJECT_NAME BNAME VARCHAR(128) Name of the object referenced in the
trigger.

OBJECT_TYPE BTYPE CHAR(10) Indicates the object type of the object
referenced in the trigger:

ALIAS The object is an alias.

FUNCTION
The object is a function.

INDEX The object is an index.

PACKAGE
The object is a package.

PROCEDURE
The object is a procedure.

SCHEMA
The object is a schema.

TABLE The object is a table.

TYPE The object is a distinct type.

VIEW The object is a view.

PARM_SIGNATURE SIGNATURE VARCHAR(10000)
Nullable

This column identifies the routine
signature.

Contains the null value if the object is
not a routine.

SYSTRIGDEP

Appendix G. DB2 UDB for iSeries Catalog Views 913

|
|

|||
|
|
|

|
|

SYSTRIGGERS
The SYSTRIGGERS view contains one row for each trigger in an SQL schema. The
following table describes the columns in the SYSTRIGGERS view:

Table 118. SYSTRIGGERS view

Column Name

System
Column
Name Data Type Description

TRIGGER_SCHEMA TRIGSCHEMA VARCHAR(128) Name of the schema containing the
trigger.

TRIGGER_NAME TRIGNAME VARCHAR(128) Name of the trigger.

EVENT_MANIPULATION TRIGEVENT VARCHAR(6) Indicates the event that causes the
trigger to fire:

DELETE
Trigger fires on a DELETE.

INSERT
Trigger fires on a INSERT.

UPDATE
Trigger fires on a DELETE.

READ Trigger fires when a row is
read. This is only valid for
triggers created via the
ADDPFTRG command.

EVENT_OBJECT_SCHEMA TABSCHEMA VARCHAR(128) Name of the schema containing the
subject table of the trigger.

EVENT_OBJECT_TABLE TABNAME VARCHAR(128) Name of the subject table of the trigger.

ACTION_ORDER ORDERSEQNO INTEGER The ordinal position this trigger in the
list of triggers for the table. This
indicates the order in which the trigger
will be fired.

ACTION_CONDITION CONDITION DBCLOB(1048576)
Nullable

Text of the WHEN clause for the
trigger.

Contains the null value if there is no
WHEN clause.

ACTION_STATEMENT TEXT DBCLOB(1048576)
Nullable

Text of the SQL statements in the
trigger action.

Contains the null value if this is a
trigger created via the ADDPFTRG
command.

ACTION_ORIENTATION GRANULAR VARCHAR(9) Indicates whether this is a ROW or
STATEMENT trigger:

ROW Trigger fires for each ROW.

STATEMENT
Trigger fires for each
statement.

SYSTRIGGERS

914 DB2 UDB for iSeries SQL Reference V5R2

Table 118. SYSTRIGGERS view (continued)

Column Name

System
Column
Name Data Type Description

ACTION_TIMING TRIGTIME VARCHAR(6) Indicates whether this is a BEFORE or
AFTER trigger:

BEFORE
Trigger fires before the
triggering event.

AFTER Trigger fires after the
triggering event.

TRIGGER_MODE TRIGMODE VARCHAR(6) Indicates the firing mode for the
trigger:

DB2SQL
The trigger mode is DB2SQL.

DB2ROW
The trigger mode is DB2ROW.

ACTION_REFERENCE_OLD_ROW OLD_ROW VARCHAR(128)
Nullable

Name of the OLD ROW correlation
name.

Contains the null value if an OLD
ROW correlation name was not
specified.

ACTION_REFERENCE_NEW_ROW NEW_ROW VARCHAR(128)
Nullable

Name of the NEW ROW correlation
name.

Contains the null value if a NEW ROW
correlation name was not specified.

ACTION_REFERENCE_OLD_TABLE OLD_TABLE VARCHAR(128)
Nullable

Name of the OLD TABLE correlation
name.

Contains the null value if an OLD
TABLE correlation name was not
specified.

ACTION_REFERENCE_NEW_TABLE NEW_TABLE VARCHAR(128)
Nullable

Name of the NEW TABLE correlation
name.

Contains the null value if a NEW
TABLE correlation name was not
specified.

SQL_PATH SQL_PATH VARCHAR(3483)
Nullable

SQL path used when the trigger was
created.

Contains the null value if the trigger
was created via the ADDPFTRG
command.

CREATED CREATE_DTS TIMESTAMP Timestamp when the trigger was
created.

TRIGGER_PROGRAM_NAME TRIGPGM VARCHAR(128) Name of the trigger program.

TRIGGER_PROGRAM_LIBRARY TRIGPGMLIB VARCHAR(128) System name of the schema containing
the trigger program.

SYSTRIGGERS

Appendix G. DB2 UDB for iSeries Catalog Views 915

Table 118. SYSTRIGGERS view (continued)

Column Name

System
Column
Name Data Type Description

OPERATIVE OPERATIVE VARCHAR(1) Indicates whether the trigger is
operative (is associated with a file that
has a member).

Y The trigger is operative.

N The trigger is inoperative.

ENABLED ENABLED VARCHAR(1) Indicates whether the trigger is enabled
(see the CL command CHGPFTRG)

Y The trigger is enabled.

N The trigger is disabled.

THREADSAFE THDSAFE VARCHAR(8) Indicates whether the trigger is thread
safe.

YES The trigger is thread safe.

NO The trigger is not thread safe.

UNKNOWN
The thread safety of the
trigger is unknown.

MULTITHREADED_JOB_ACTION MLTTHDACN VARCHAR(8) Indicates the action to take when the
trigger program is called in a
multithreaded job.

SYSVAL
Use the QMLTTHDACN
system value to determine the
action to take.

MSG Run the trigger program in a
multithreaded job, but send a
diagnostic message.

NORUN
Do not run the trigger
program in a multithreaded
job.

RUN Run the trigger program in a
multithreaded job.

ALLOW_REPEATED_CHANGE ALWREPCHG VARCHAR(8) Indicates the condition under which an
update event fires the trigger.

YES The trigger allows repeated
changes to the same row.

NO The trigger does not allow
repeated changes to the same
row.

SYSTRIGGERS

916 DB2 UDB for iSeries SQL Reference V5R2

|

|

|

|
|
|

|

|

Table 118. SYSTRIGGERS view (continued)

Column Name

System
Column
Name Data Type Description

TRIGGER_UPDATE_CONDITION TRGUPDCND CHAR(8)
Nullable

Indicates whether an UPDATE trigger
is always fired on an update event or
only when a column value is actually
changed.

ALWAYS
The trigger is always fired on
an update event.

CHANGE
The trigger is only fired on an
update event if a column
value is actually changed.

Contains the null value if the trigger is
not an UPDATE trigger.

LONG_COMMENT REMARKS VARGRAPHIC(2000)
Nullable

A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

SYSTRIGGERS

Appendix G. DB2 UDB for iSeries Catalog Views 917

SYSTRIGUPD
The SYSTRIGUPD view contains one row for each column identified in the
UPDATE column list, if any. The following table describes the columns in the
SYSTRIGUPD view:

Table 119. SYSTRIGUPD view

Column Name

System
Column
Name Data Type Description

TRIGGER_SCHEMA TRIGSCHEMA VARCHAR(128) Name of the schema containing the
trigger.

TRIGGER_NAME TRIGNAME VARCHAR(128) Name of the trigger.

EVENT_OBJECT_SCHEMA TABSCHEMA VARCHAR(128) Name of the schema containing the
subject table of the trigger.

EVENT_OBJECT_TABLE TABNAME VARCHAR(128) Name of the subject table of the trigger.

TRIGGERED_UPDATE_COLUMNS TABCOLUMN VARCHAR(128) Name of a column specified in the
UPDATE column list of the trigger.

SYSTRIGUPD

918 DB2 UDB for iSeries SQL Reference V5R2

SYSTYPES
The SYSTYPES table contains one row for each built-in data type and each distinct
type created by the CREATE DISTINCT TYPE statement. The following table
describes the columns in the SYSTYPES table:

Table 120. SYSTYPES table

Column Name

System
Column
Name Data Type Description

USER_DEFINED_TYPE_SCHEMA TYPESCHEMA VARCHAR(128) Schema name of the data type.

USER_DEFINED_TYPE_NAME TYPENAME VARCHAR(128) Name of the data type.

USER_DEFINED_TYPE_DEFINER DEFINER VARCHAR(128) Name of the user that created the data
type.

SOURCE_SCHEMA SRCSCHEMA VARCHAR(128)
Nullable

The schema for the source data type of
this data type.

Contains the null value if this is a
built-in data type.

SOURCE_TYPE SRCTYPE VARCHAR(128)
Nullable

Name of the source data type of this
data type.

Contains the null value if this is a
built-in data type.

SYSTEM_TYPE_SCHEMA SYSTSCHEMA CHAR(10) System schema name of the data type.

SYSTEM_TYPE_NAME SYSTNAME CHAR(10) System name of the data type.

METATYPE METATYPE CHAR(1) Indicates the type of data type.

S System predefined data type.

T User-defined distinct type.

SYSTYPES

Appendix G. DB2 UDB for iSeries Catalog Views 919

|
|
|

Table 120. SYSTYPES table (continued)

Column Name

System
Column
Name Data Type Description

LENGTH LENGTH INTEGER The length attribute of the data type;
or, in the case of a decimal, numeric, or
nonzero precision binary column, its
precision:

8 bytes BIGINT

4 bytes INTEGER

2 bytes SMALLINT

Precision of number
DECIMAL

Precision of number
NUMERIC

8 bytes FLOAT, FLOAT(n)
where n = 25 to 53,
or DOUBLE
PRECISION

4 bytes FLOAT(n) where n =
1 to 24, or REAL

Length of string
CHARACTER

Maximum length of string
VARCHAR or CLOB

Length of graphic string
GRAPHIC

Maximum length of graphic string
VARGRAPHIC or
DBCLOB

Maximum length of binary string
BLOB

4 bytes DATE

3 bytes TIME

10 bytes TIMESTAMP

Maximum length of datalink URL and
comment DATALINK

40 bytes ROWID

Same value as the source type
DISTINCT

NUMERIC_SCALE SCALE INTEGER
Nullable

Scale of numeric data.

Contains the null value if the data type
is not decimal, numeric, or binary.

SYSTYPES

920 DB2 UDB for iSeries SQL Reference V5R2

||

Table 120. SYSTYPES table (continued)

Column Name

System
Column
Name Data Type Description

CCSID CCSID INTEGER
Nullable

The CCSID value for CHAR,
VARCHAR, CLOB, DATE, TIME,
TIMESTAMP, GRAPHIC,
VARGRAPHIC, DBCLOB and
DATALINK data types.

Contains the null value if the data type
is numeric.

STORAGE STORAGE INTEGER The storage requirements for the
column:

8 bytes BIGINT

4 bytes INTEGER

2 bytes SMALLINT

(Precision/2) + 1
DECIMAL

Precision of number
NUMERIC

8 bytes FLOAT, FLOAT(n)
where n = 25 to 53,
or DOUBLE
PRECISION

4 bytes FLOAT(n) where n =
1 to 24, or REAL

Length of string
CHAR

Maximum length of string + 2
VARCHAR

Maximum length of string + 29
CLOB

Length of string * 2
GRAPHIC

Maximum length of string * 2 + 2
VARGRAPHIC

Maximum length of string * 2 + 29
DBCLOB

4 bytes DATE

3 bytes TIME

10 bytes TIMESTAMP

Maximum length of datalink URL and
comment + 24 DATALINK

42 bytes ROWID

Same value as the source type
DISTINCT

Note: This column supplies the storage
requirements for all data types.

SYSTYPES

Appendix G. DB2 UDB for iSeries Catalog Views 921

||

Table 120. SYSTYPES table (continued)

Column Name

System
Column
Name Data Type Description

NUMERIC_PRECISION PRECISION INTEGER
Nullable

The precision of all numeric data types.

Note: This column supplies the
precision of all numeric data types,
including single-and double-precision
floating point. The
NUMERIC_PRECISION_RADIX
column indicates if the value in this
column is in binary or decimal digits.

Contains the null value if the data type
is not numeric.

CHARACTER_MAXIMUM_LENGTH CHARLEN INTEGER
Nullable

Maximum length of the string for
binary, character, and graphic string
data types.

Contains the null value if the data type
is not a string.

CHARACTER_OCTET_LENGTH CHARBYTE INTEGER
Nullable

Number of bytes for binary, character,
and graphic string data types.

Contains the null value if the data type
is not a string.

ALLOCATE ALLOCATE INTEGER
Nullable

Allocated length of the string for
binary, varying-length character, and
varying-length graphic string data
types.

Contains the null value if the data type
is numeric or fixed-length.

NUMERIC_PRECISION_RADIX RADIX INTEGER
Nullable

Indicates if the precision specified in
column NUMERIC_PRECISION is
specified as a number of binary or
decimal digits:

2 Binary; floating-point
precision is specified in binary
digits.

10 Decimal; all other numeric
types are specified in decimal
digits.

Contains the null value if the data type
is not numeric.

DATETIME_PRECISION DATPRC INTEGER
Nullable

The fractional part of a date, time, or
timestamp.

0 For DATE and TIME data
types

6 For TIMESTAMP data types
(number of microseconds).

Contains the null value if the data type
is not date, time, or timestamp.

SYSTYPES

922 DB2 UDB for iSeries SQL Reference V5R2

Table 120. SYSTYPES table (continued)

Column Name

System
Column
Name Data Type Description

CREATE_TIME CRTTIME TIMESTAMP Identifies the timestamp when the data
type was created.

LONG_COMMENT REMARKS VARCHAR(2000)
Nullable

A character string supplied with the
COMMENT statement.

Contains the null value if there is no
long comment.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number of the data
type.

LAST_
ALTERED

ALTEREDTS TIMESTAMP
Nullable

Reserved. Contains the null value.

SYSTYPES

Appendix G. DB2 UDB for iSeries Catalog Views 923

||||
|
|

|
|
||
|
|

SYSVIEWDEP
The SYSVIEWDEP view records the dependencies of views on tables, including the
views of the SQL catalog. The following table describes the columns in the
SYSVIEWDEP view:

Table 121. SYSVIEWDEP view

Column name

System
Column
Name Data Type Description

VIEW_NAME DNAME VARCHAR(128) Name of the view. This is the SQL
view name if it exists; otherwise, it is
the system view name.

VIEW_OWNER DCREATOR VARCHAR(128) Owner of the view

OBJECT_NAME ONAME VARCHAR(128) Name of the object the view is
dependent on.

OBJECT_SCHEMA OSCHEMA VARCHAR(128) Name of the SQL schema that contains
the object the view is dependent on.

OBJECT_TYPE OTYPE CHAR(10) Type of object the view was based on:

FUNCTION
Function

TABLE Table

TYPE Distinct Type

VIEW View

VIEW_SCHEMA DDBNAME VARCHAR(128) Name of the schema of the view.

SYSTEM_VIEW_NAME SYS_VNAME CHAR(10) System View name

SYSTEM_VIEW_SCHEMA SYS_VDNAME CHAR(10) System View schema

SYSTEM_TABLE_NAME SYS_TNAME CHAR(10)
Nullable

System Table name.

Contains the null value if the object is
a function or distinct type.

SYSTEM_TABLE_SCHEMA SYS_DNAME CHAR(10)
Nullable

System Table schema.

Contains the null value if the object is
a function or distinct type.

TABLE_NAME BNAME VARCHAR(128)
Nullable

Name of the table or view the view is
dependent on. This is the SQL view
name if it exists; otherwise, it is the
system view name.

Contains the null value if the object is
a function or distinct type.

TABLE_OWNER BCREATOR VARCHAR(128)
Nullable

Owner of the table or view the view is
dependent on.

Contains the null value if the object is
a function or distinct type.

TABLE_SCHEMA BDBNAME VARCHAR(128)
Nullable

Name of the SQL schema that contains
the table or view the view is
dependent on.

Contains the null value if the object is
a function or distinct type.

SYSVIEWDEP

924 DB2 UDB for iSeries SQL Reference V5R2

||||
|

||||
|

||||

|
|

||

||

||

|||
|
|
|
|
|

|
|

|||
|
|
|

|
|

|||
|
|
|
|

|
|

Table 121. SYSVIEWDEP view (continued)

Column name

System
Column
Name Data Type Description

TABLE_TYPE BTYPE CHAR(1)
Nullable

Type of object the view was based on:

T Table

P Physical file

V View

L Logical file

Contains the null value if the object is
a function or distinct type.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

PARM_SIGNATURE SIGNATURE VARCHAR(10000)
Nullable

This column identifies the routine
signature.

Contains the null value if the object is
not a routine.

SYSVIEWDEP

Appendix G. DB2 UDB for iSeries Catalog Views 925

|||
|
|

||

||

||

||

|
|

||||
|

|||
|
|
|

|
|

SYSVIEWS
The SYSVIEWS view contains one row for each view in the SQL schema, including
the views of the SQL catalog. The following table describes the columns in the
SYSVIEWS view:

Table 122. SYSVIEWS view

Column Name

System
Column
Name Data Type Description

TABLE_NAME NAME VARCHAR(128) Name of the view. This is the SQL
view name if it exists; otherwise, it is
the system view name.

VIEW_OWNER CREATOR VARCHAR(128) Owner of the view

SEQNO SEQNO INTEGER Sequence number of this row; will
always be 1.

CHECK_OPTION CHECK CHAR(1) The check option used on the view

N No check option was specified

Y The local option was specified

C The cascaded option was
specified

VIEW_DEFINITION TEXT VARCHAR(10000)
Nullable

The query expression portion of the
CREATE VIEW statement.

Contains the null value if the view
definition cannot be contained in the
column without truncation.

IS_UPDATABLE UPDATES CHAR(1) Specifies if the view is updatable:

Y The view is updatable

N The view is read-only

TABLE_SCHEMA DBNAME VARCHAR(128) Name of the SQL schema that contains
the view.

SYSTEM_VIEW_NAME SYS_VNAME CHAR(10) System View name

SYSTEM_VIEW_SCHEMA SYS_VDNAME CHAR(10) System View schema name

IS_INSERTABLE_INTO INSERTABLE VARCHAR(3) Identifies whether an INSERT is
allowed on the view.

NO An INSERT is not allowed on
this view.

YES An INSERT is allowed on this
view.

IASP_NUMBER IASPNUMBER SMALLINT Specifies the independent auxiliary
storage pool (IASP) number.

SYSVIEWS

926 DB2 UDB for iSeries SQL Reference V5R2

||||
|

||
|

||
|

||||
|

ODBC and JDBC Catalog Views
The catalog includes the following views and tables in the SYSIBM library:

View Name Description

“SQLCOLPRIVILEGES” on page 928 Information about privileges granted on columns

“SQLCOLUMNS” on page 929 Information about column attributes

“SQLFOREIGNKEYS” on page 934 Information about foreign keys

“SQLPRIMARYKEYS” on page 935 Information about primary keys

“SQLPROCEDURECOLS” on page 936 Information about procedure parameters

“SQLPROCEDURES” on page 940 Information about procedures

“SQLSCHEMAS” on page 941 Information about schemas

“SQLSPECIALCOLUMNS” on page 942 Information about columns of a table that can be used to uniquely
identify a row

“SQLSTATISTICS” on page 944 Statistical information about tables

“SQLTABLEPRIVILEGES” on page 945 Information about privileges granted on tables

“SQLTABLES” on page 946 Information about tables

“SQLTYPEINFO” on page 947 Information about the types of tables

“SQLUDTS” on page 952 Information about built-in data types and distinct types

ODBC and JDBC Catalog

Appendix G. DB2 UDB for iSeries Catalog Views 927

|

|

|||

||

||

||

||

||

||

||

||
|

||

||

||

||

||
|

SQLCOLPRIVILEGES
The SQLCOLPRIVILEGES view contains one row for every privileges granted on a
column. Note that this catalog view cannot be used to determine whether a user is
authorized to a column because the privilege to use a column could be acquired
through a group user profile or special authority (such as *ALLOBJ). The following
table describes the columns in the view:

Table 123. SQLCOLPRIVILEGES view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name.

TABLE_SCHEM VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME VARCHAR(128) Table name.

COLUMN_NAME VARCHAR(128) Column name.

GRANTOR VARCHAR(128)
Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

PRIVILEGE VARCHAR(10) The privilege granted:

UPDATE
The privilege to update the column.

REFERENCES
The privilege to reference the column in a
referential constraint.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO The privilege is not grantable.

YES The privilege is grantable.

DBNAME VARCHAR(8)
Nullable

Reserved. The column contains the null value.

SQLCOLPRIVILEGES

928 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|
|

||

|||

|||

|||

|||

|||

||
|
|

|||

|||

|
|

|
|
|

|||
|

||

||

||
|
|

|

SQLCOLUMNS
The SQLCOLUMNS view contains one row for every column in a table, view, or
alias. The following table describes the columns in the view:

Table 124. SQLCOLUMNS view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name.

TABLE_SCHEM VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME VARCHAR(128) Table name.

COLUMN_NAME VARCHAR(128) Column name.

DATA_TYPE SMALLINT The data type of the column:

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

40 CLOB

–95 GRAPHIC

–96 VARGRAPHIC

–350 DBCLOB

30 BLOB

9 DATE

10 TIME

11 TIMESTAMP

70 DATALINK

–100 ROWID

17 DISTINCT

SQLCOLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 929

|

|
|

||

|||

|||

|||

|||

|||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 124. SQLCOLUMNS view (continued)

Column Name Data Type Description

TYPE_NAME VARCHAR(128) The name of the data type of the column:

BIGINT BIGINT

INTeger INTEGER

SMALLINT SMALLINT

DECIMAL DECIMAL

NUMERIC NUMERIC

FLOAT DOUBLE PRECISION

REAL REAL

CHARacter CHARACTER

CHARacter FOR BIT DATA
CHARACTER FOR BIT DATA

VARCHAR VARCHAR

VARCHAR FOR BIT DATA
VARCHAR FOR BIT DATA

CLOB CLOB

GRAPHIC GRAPHIC

VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BLOB BLOB

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

ROWID ROWID

Qualified Type Name
DISTINCT

COLUMN_SIZE INTEGER The length of the column.

BUFFER_LENGTH INTEGER Indicates the length of the column in a buffer.

DECIMAL_DIGITS SMALLINT
Nullable

Indicates the number of digits for a numeric column.

Contains the null value if the object is not numeric.

NUM_PREC_RADIX SMALLINT
Nullable

Indicates the radix of a numeric column.

Contains the null value if the object is not numeric.

NULLABLE SMALLINT Indicates whether the column can contain the null
value.

0 The column does not allow nulls.

1 The column does allow nulls.

REMARKS VARCHAR(2000)
Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

SQLCOLUMNS

930 DB2 UDB for iSeries SQL Reference V5R2

|

|||

|||

||

||

||

||

||

||

||

||

|
|

||

|
|

||

||

||

||

||

||

||

||

||

||

|
|

|||

|||

||
|
|

|

||
|
|

|

|||
|

||

||

||
|
|
|

|

Table 124. SQLCOLUMNS view (continued)

Column Name Data Type Description

COLUMN_DEF VARCHAR(2000)
Nullable

The default value of the column.

Contains the null value if there is no default value.

SQL_DATA_TYPE SMALLINT Indicates the SQL data type of the column.

SQL_DATETIME_SUB SMALLINT
Nullable

The datetime subtype of the data type:

1 DATE

2 TIME

3 TIMESTAMP

Contains the null value if the column is not a datetime
data type.

CHAR_OCTET_LENGTH INTEGER
Nullable

Indicates the length in characters of the column.

Contains the null value if the column is not a string.

ORDINAL_POSITION INTEGER Indicates the ordinal position of the column in the table.

IS_NULLABLE VARCHAR(3) Indicates whether the column can contain the null
value.

NO The column is not nullable.

YES The column is nullable.

SQLCOLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 931

|

|||

||
|
|

|

|||

||
|
|

||

||

||

|
|

||
|
|

|

|||

|||
|

||

||

Table 124. SQLCOLUMNS view (continued)

Column Name Data Type Description

JDBC_DATA_TYPE SMALLINT Indicates the JDBC data type of the column.

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

2005 CLOB

1 GRAPHIC

12 VARGRAPHIC

1111 DBCLOB

2004 BLOB

91 DATE

92 TIME

93 TIMESTAMP

70 DATALINK

1111 ROWID

2001 DISTINCT

SCOPE_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

SCOPE_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

SCOPE_TABLE VARCHAR(128)
Nullable

Reserved. Contains the null value.

SOURCE_DATA_TYPE VARCHAR(128)
Nullable

The source data type if the data type of the column is a
distinct type.

Contains the null value if the data type is not a distinct
type.

DBNAME VARCHAR(8)
Nullable

Reserved. Contains the null value.

COLUMN_TEXT VARCHAR(50)
Nullable

The text of the column.

Contains the null value if the column has no column
text.

SQLCOLUMNS

932 DB2 UDB for iSeries SQL Reference V5R2

|

|||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|
|

||
|
|

||
|
|

||
|
|
|

|
|

||
|
|

||
|
|

|
|

Table 124. SQLCOLUMNS view (continued)

Column Name Data Type Description

PSEUDO_COLUMN SMALLINT Indicates whether this is a ROWID or identity column.

1 The column is not a ROWID or identity
column.

2 The column is a ROWID or identity column.

SQLCOLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 933

|

|||

|||

||
|

||
|

SQLFOREIGNKEYS
The SQLFOREIGNKEYS view contains one row for every referential constraint key
on a table. The following table describes the columns in the view:

Table 125. SQLFOREIGNKEYS view

Column Name Data Type Description

PKTABLE_CAT VARCHAR(128) Relational database name

PKTABLE_SCHEM VARCHAR(128) Name of the SQL schema containing the parent table.

PKTABLE_NAME VARCHAR(128) Parent table name.

PKCOLUMN_NAME VARCHAR(128) Parent key column name.

FKTABLE_CAT VARCHAR(128) Relational database name

FKTABLE_SCHEM VARCHAR(128) Name of the SQL schema containing the dependent
table of the referential constraint.

FKTABLE_NAME VARCHAR(128) Dependent table name of the referential constraint.

FKCOLUMN_NAME VARCHAR(128) Dependent key name.

KEY_SEQ SMALLINT The position of the column within the key.

UPDATE_RULE SMALLINT Update Rule.

1 RESTRICT

3 NO ACTION

DELETE_RULE SMALLINT Delete Rule:

0 CASCADE

1 RESTRICT

2 SET NULL

3 NO ACTION

4 SET DEFAULT

FK_NAME VARCHAR(128) Name of the referential constraint

PK_NAME VARCHAR(128) Name of the unique constraint

DEFERRABILITY SMALLINT Indicates whether the constraint checking can be
deferred. Will always be 7.

SQLFOREIGNKEYS

934 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|||

|||

|||

|||

||

||

|||

||

||

||

||

||

|||

|||

|||
|
|

SQLPRIMARYKEYS
The SQLPRIMARYKEYS view contains one row for every primary constraint key
on a table. The following table describes the columns in the view:

Table 126. SQLPRIMARYKEYS view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the schema containing the table with the
primary key.

TABLE_NAME VARCHAR(128) Name of the table with the primary key.

COLUMN_NAME VARCHAR(128) Name of a primary key column.

KEY_SEQ SMALLINT The position of the column within the key.

PK_NAME VARCHAR(128) Name of the primary key constraint.

SQLPRIMARYKEYS

Appendix G. DB2 UDB for iSeries Catalog Views 935

|

|
|

||

|||

|||

|||
|

|||

|||

|||

|||
|

SQLPROCEDURECOLS
The SQLPROCEDURECOLS view contains one row for every parameter of a
procedure. The following table describes the columns in the view:

Table 127. SQLPROCEDURECOLS view

Column Name Data Type Description

PROCEDURE_CAT VARCHAR(128) Relational database name

PROCEDURE_SCHEM VARCHAR(128) Schema name of the procedure instance.

PROCEDURE_NAME VARCHAR(128) Name of the procedure instance.

COLUMN_NAME VARCHAR(128)
Nullable

Name of a procedure parameter.

Contains the null value if the parameter does not have
a name.

COLUMN_TYPE SMALLINT Type of the parameter:

1 IN

2 INOUT

4 OUT

DATA_TYPE SMALLINT The data type of the parameter:

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

40 CLOB

–95 GRAPHIC

–96 VARGRAPHIC

–350 DBCLOB

30 BLOB

9 DATE

10 TIME

11 TIMESTAMP

70 DATALINK

–100 ROWID

17 DISTINCT

SQLPROCEDURECOLS

936 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

||
|
|

|
|

|||

||

||

||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 127. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

TYPE_NAME VARCHAR(260) The name of the data type of the parameter:

BIGINT BIGINT

INTeger INTEGER

SMALLINT SMALLINT

DECIMAL DECIMAL

NUMERIC NUMERIC

FLOAT DOUBLE PRECISION

REAL REAL

CHARacter CHARACTER

CHARacter FOR BIT DATA
CHARACTER FOR BIT DATA

VARCHAR VARCHAR

VARCHAR FOR BIT DATA
VARCHAR FOR BIT DATA

CLOB CLOB

GRAPHIC GRAPHIC

VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BLOB BLOB

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

ROWID ROWID

Qualified Type Name
DISTINCT

COLUMN_SIZE INTEGER Length of the parameter.

BUFFER_LENGTH INTEGER Indicates the length of the parameter in a buffer.

DECIMAL_DIGITS SMALLINT
Nullable

Scale of numeric or datetime data.

Contains the null value if the parameter is not decimal,
numeric, binary, time or timestamp.

NUM_PREC_RADIX SMALLINT
Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits:

2 Binary; floating-point precision is specified in
binary digits.

10 Decimal; all other numeric types are specified
in decimal digits.

Contains the null value if the parameter is not numeric.

SQLPROCEDURECOLS

Appendix G. DB2 UDB for iSeries Catalog Views 937

|

|||

|||

||

||

||

||

||

||

||

||

|
|

||

|
|

||

||

||

||

||

||

||

||

||

||

|
|

|||

|||

||
|
|

|
|

||
|
|
|
|

||
|

||
|

|

Table 127. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

NULLABLE SMALLINT Indicates whether the parameter is nullable.

0 The parameter does not allow nulls.

1 The parameter does allow nulls.

REMARKS VARCHAR(2000)
Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

COLUMN_DEF VARCHAR(1)
Nullable

The default value for the column.

Contains the null value if there is no default value.

SQL_DATA_TYPE SMALLINT The SQL data type of the parameter:

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

–99 CLOB

–95 GRAPHIC

–96 VARGRAPHIC

–350 DBCLOB

–98 BLOB

9 DATE

10 TIME

11 TIMESTAMP

70 DATALINK

–100 ROWID

17 DISTINCT

SQL_DATETIME_SUB SMALLINT
Nullable

The datetime subtype of the parameter:

1 DATE

2 TIME

3 TIMESTAMP

Contains the null value if the data type is not a
datetime data type.

SQLPROCEDURECOLS

938 DB2 UDB for iSeries SQL Reference V5R2

|

|||

|||

||

||

||
|
|
|

|

||
|
|

|

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|
|

||

||

||

|
|

Table 127. SQLPROCEDURECOLS view (continued)

Column Name Data Type Description

CHAR_OCTET_LENGTH INTEGER
Nullable

Indicates the length in characters of the parameter.

Contains the null value if the column is not a string.

ORDINAL_POSITION INTEGER Numeric place of the parameter in the parameter list,
ordered from left to right.

IS_NULLABLE VARCHAR(3) Indicates whether the parameter is nullable.

NO The parameter does not allow nulls.

YES The parameter does allow nulls.

JDBC_DATA_TYPE SMALLINT The JDBC data type of the parameter:

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

2005 CLOB

1 GRAPHIC

12 VARGRAPHIC

1111 DBCLOB

2004 BLOB

91 DATE

92 TIME

93 TIMESTAMP

70 DATALINK

1111 ROWID

2001 DISTINCT

SQLPROCEDURECOLS

Appendix G. DB2 UDB for iSeries Catalog Views 939

|

|||

||
|
|

|

|||
|

|||

||

||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

SQLPROCEDURES
The SQLPROCEDURES view contains one row for every procedure. The following
table describes the columns in the view:

Table 128. SQLPROCEDURES view

Column Name Data Type Description

PROCEDURE_CAT VARCHAR(128) Relational database name

PROCEDURE_SCHEM VARCHAR(128) Name of the schema of the procedure instance.

PROCEDURE_NAME VARCHAR(128) Name of the procedure.

NUM_INPUT_PARAMS SMALLINT Identifies the number of input parameters. 0 indicates
that there are no input parameters.

NUM_OUTPUT_PARAMS SMALLINT Identifies the number of output parameters. 0 indicates
that there are no output parameters.

NUM_RESULT_SETS SMALLINT Identifies the maximum number of result sets returned.
0 indicates that there are no result sets.

REMARKS VARCHAR(2000)
Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

PROCEDURE_TYPE SMALLINT Reserved. Contains 0.

NUM_INOUT_PARAMS SMALLINT Identifies the number of input/output parameters. 0
indicates that there are no input/output parameters.

SQLPROCEDURES

940 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

|||
|

|||
|

|||
|

||
|
|
|

|

|||

|||
|
|

SQLSCHEMAS
The SQLSCHEMAS view contains one row for every schema. The following table
describes the columns in the view:

Table 129. SQLSCHEMAS view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the schema.

TABLE_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

TABLE_TYPE VARCHAR(128) Reserved. Contains the null value.
Nullable

REMARKS VARCHAR(2000) Reserved. Contains the null value.
Nullable

DBNAME VARCHAR(8) Reserved. Contains the null value.
Nullable

SCHEMA_TEXT VARCHAR(50) A character string that describes the schema.

Contains the empty string if there is no text.

SQLSCHEMAS

Appendix G. DB2 UDB for iSeries Catalog Views 941

|

|
|

||

|||

|||

|||

||
|
|

|||
|

|||
|

|||
|

|||

|
|

SQLSPECIALCOLUMNS
The SQLSPECIALCOLUMNS view contains one row for every column of a
primary key, unique constraint, or unique index that can identify a row of the
table. The following table describes the columns in the view:

Table 130. SQLSPECIALCOLUMNS view

Column Name Data Type Description

SCOPE SMALLINT Reserved. Contains 0.

COLUMN_NAME VARCHAR(128) Column name

DATA_TYPE SMALLINT The data type of the column:

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

40 CLOB

–95 GRAPHIC

–96 VARGRAPHIC

–350 DBCLOB

30 BLOB

9 DATE

10 TIME

11 TIMESTAMP

70 DATALINK

–100 ROWID

17 DISTINCT

TYPE_NAME VARCHAR(260) The name of the data type of the column.

COLUMN_SIZE INTEGER The length of the column.

BUFFER_LENGTH INTEGER Indicates the length of the column in a buffer.

DECIMAL_DIGITS SMALLINT
Nullable

Indicates the number of digits for a numeric column.

Contains the null value if the column is not numeric.

PSEUDO_COLUMN SMALLINT Indicates whether this is a ROWID or identity column.

1 The column is not a ROWID or identity
column.

2 The column is a ROWID or identity column.

TABLE_CAT VARCHAR(128) Relational database name

SQLSPECIALCOLUMNS

942 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|

||

|||

|||

|||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|||

|||

|||

||
|
|

|

|||

||
|

||

|||

Table 130. SQLSPECIALCOLUMNS view (continued)

Column Name Data Type Description

TABLE_SCHEM VARCHAR(128) Name of the SQL schema that contains the table.

TABLE_NAME VARCHAR(128) Name of the table.

NULLABLE SMALLINT Indicates whether the column can contain the null
value.

0 The column is not nullable.

1 The column is nullable.

JDBC_DATA_TYPE SMALLINT Indicates the JDBC data type of the column.

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

2005 CLOB

1 GRAPHIC

12 VARGRAPHIC

1111 DBCLOB

2004 BLOB

91 DATE

92 TIME

93 TIMESTAMP

70 DATALINK

1111 ROWID

2001 DISTINCT

SQLSPECIALCOLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 943

|

|||

|||

|||

|||
|

||

||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

SQLSTATISTICS
The SQLSTATISTICS view contains statistic information on a table. The following
table describes the columns in the view:

Table 131. SQLSTATISTICS view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the SQL schema of the table.

TABLE_NAME VARCHAR(128) Name of the table.

NON_UNIQUE SMALLINT
Nullable

Indicates whether an index prohibits duplicate keys on
the table.

Contains the null value if the TYPE is 0.

INDEX_QUALIFIER VARCHAR(128)
Nullable

Name of the schema of the index.

Contains the null value if the TYPE is 0.

INDEX_NAME VARCHAR(128)
Nullable

Name of the index.

Contains the null value if the TYPE is 0.

TYPE SMALLINT Indicates the type of information returned:

0 The number of rows in the table.

3 An index on the table.

ORDINAL_POSITION SMALLINT
Nullable

Indicates the ordinal position of the key in the index.

Contains the null value if the TYPE is 0.

COLUMN_NAME VARCHAR(128)
Nullable

Name of the column for a key in the index.

Contains the null value if the TYPE is 0.

ASC_OR_DESC CHAR(1)
Nullable

Order of the column in the key:

A Ascending

D Descending

Contains the null value if the TYPE is 0.

CARDINALITY INTEGER
Nullable

Reserved. Contains the null value.

PAGES INTEGER
Nullable

Reserved. Contains the null value.

FILTER_CONDITION VARCHAR(128)
Nullable

Indicates whether the index is a select/omit index.

empty-string
This is a select/omit index.

Contains the null value if the TYPE is 0 or this is not a
select/omit index.

SQLSTATISTICS

944 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

||
|
|
|

|

||
|
|

|

||
|
|

|

|||

||

||

||
|
|

|

||
|
|

|

||
|
|

||

||

|

||
|
|

||
|
|

||
|
|

|
|

|
|
|

SQLTABLEPRIVILEGES
The SQLTABLEPRIVILEGES view contains one row for every privilege granted on
a table. The following table describes the columns in the view:

Table 132. SQLTABLEPRIVILEGES view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the SQL schema of the table.

TABLE_NAME VARCHAR(128) Name of the table.

GRANTOR VARCHAR(128)
Nullable

Reserved. Contains the null value.

GRANTEE VARCHAR(128) The user profile to which the privilege is granted.

PRIVILEGE VARCHAR(10) The privilege granted:

ALTER The privilege to alter the table.

DELETE
The privilege to delete rows from the table.

INDEX The privilege to create an index on the table.

INSERT
The privilege to insert rows into the table.

REFERENCES
The privilege to reference the table in a
referential constraint.

SELECT
The privilege to select rows from the table.

UPDATE
The privilege to update the table.

IS_GRANTABLE VARCHAR(3) Indicates whether the privilege is grantable to other
users.

NO The privilege is not grantable.

YES The privilege is grantable.

DBNAME VARCHAR(8)
Nullable

Reserved. Contains the null value.

SQLTABLEPRIVILEGES

Appendix G. DB2 UDB for iSeries Catalog Views 945

|

|
|

||

|||

|||

|||

|||

||
|
|

|||

|||

||

|
|

||

|
|

|
|
|

|
|

|
|

|||
|

||

||

||
|
|

|

SQLTABLES
The SQLTABLES view contains one row for every table, view, and alias. The
following table describes the columns in the view:

Table 133. SQLTABLES view

Column Name Data Type Description

TABLE_CAT VARCHAR(128) Relational database name

TABLE_SCHEM VARCHAR(128) Name of the schema containing the table.

TABLE_NAME VARCHAR(128) Name of the table.

TABLE_TYPE VARCHAR(10) Indicates the type of the table:

ALIAS The table is an alias.

TABLE The table is an SQL table or physical file.

VIEW The table is an SQL view or logical file.

REMARKS VARCHAR(128)
Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no long comment.

TYPE_CAT VARCHAR(128)
Nullable

Reserved. Contains the null value.

TYPE_SCHEM VARCHAR(128)
Nullable

Reserved. Contains the null value.

TYPE_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

SELF_REF_COL_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

REF_GENERATION VARCHAR(128)
Nullable

Reserved. Contains the null value.

DBNAME VARCHAR(8)
Nullable

Reserved. Contains the null value.

TABLE_TEXT VARCHAR(50) A character string provided with the LABEL statement.

SQLTABLES

946 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

|||

||

||

||

||
|
|
|

|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|||
|

SQLTYPEINFO
The SQLTYPEINFO view contains one row for every built-in data type. The
following table describes the columns in the view:

Table 134. SQLTYPEINFO view

Column Name Data Type Description

TYPE_NAME VARCHAR(128) Name of the built-in data type:

BIGINT BIGINT

INTeger INTEGER

SMALLINT SMALLINT

DECIMAL DECIMAL

NUMERIC NUMERIC

FLOAT DOUBLE PRECISION

REAL REAL

CHARacter CHARACTER

CHARacter FOR BIT DATA
CHARACTER FOR BIT DATA

VARCHAR VARCHAR

VARCHAR FOR BIT DATA
VARCHAR FOR BIT DATA

CLOB CLOB

GRAPHIC GRAPHIC

VARGRAPHIC VARGRAPHIC

DBCLOB DBCLOB

BLOB BLOB

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

ROWID ROWID

SQLTYPEINFO

Appendix G. DB2 UDB for iSeries Catalog Views 947

|

|
|

||

|||

|||

||

||

||

||

||

||

||

||

|
|

||

|
|

||

||

||

||

||

||

||

||

||

||

Table 134. SQLTYPEINFO view (continued)

Column Name Data Type Description

DATA_TYPE SMALLINT The data type of the column:

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

40 CLOB

–95 GRAPHIC

–96 VARGRAPHIC

–350 DBCLOB

30 BLOB

9 DATE

10 TIME

11 TIMESTAMP

70 DATALINK

–100 ROWID

COLUMN_SIZE INTEGER The maximum length of the data type.

LITERAL_PREFIX VARCHAR(128)
Nullable

Indicates the prefix for a string literal.

Contains the null value if the data type is not a string.

LITERAL_SUFFIX VARCHAR(128)
Nullable

Indicates the suffix for a string literal.

Contains the null value if the data type is not a string.

CREATE_PARAMS VARCHAR(128)
Nullable

Indicates the parameters supported with the data type.

LENGTH
The parameter is a length. Returned for all
string data types and DATALINK.

PRECISION,SCALE
The parameters include precision and scale.
Returned for the DECIMAL and NUMERIC
data types.

Contains the null value for all other data types.

NULLABLE SMALLINT Indicates whether the data type is nullable.

0 The data type does not allow nulls.

1 The data type does allow nulls.

SQLTYPEINFO

948 DB2 UDB for iSeries SQL Reference V5R2

|

|||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|||

||
|
|

|

||
|
|

|

||
|
|

|
|
|

|
|
|
|

|

|||

||

||

Table 134. SQLTYPEINFO view (continued)

Column Name Data Type Description

CASE_SENSITIVE SMALLINT Indicates whether the data type is case sensitive.

0 The data type is not case sensitive.

1 The data type is case sensitive.

SEARCHABLE SMALLINT Indicates whether the data type can be used in a
predicate.

0 The data type is cannot be used in predicates.

2 The data type can be used in all predicates
except the LIKE predicate.

3 The data type can be used in all predicates
including the LIKE predicate.

UNSIGNED_ATTRIBUTE SMALLINT
Nullable

Indicates whether the numeric data type is signed or
unsigned.

0 The data type is signed.

1 The data type is unsigned.

Contains the null value if the data type is not numeric.

FIXED_PREC_SCALE SMALLINT Indicates whether the data type has a fixed precision
and scale.

0 The data type does not have a fixed precision
and scale.

1 The data type does have a fixed precision and
scale.

AUTO_UNIQUE_VALUE SMALLINT
Nullable

Indicates whether the numeric data type is
auto-incrementing:

0 The data type is not auto-incrementing.

1 The data type is auto-incrementing.

Contains the null value if the data type is not numeric.

LOCAL_TYPE_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

MINIMUM_SCALE SMALLINT
Nullable

Indicates the minimum scale of numeric data types.

Contains the null value if the data type is not numeric.

MAXIMUM_SCALE SMALLINT
Nullable

Indicates the maximum scale of numeric data types.

Contains the null value if the data type is not numeric.

SQLTYPEINFO

Appendix G. DB2 UDB for iSeries Catalog Views 949

|

|||

|||

||

||

|||
|

||

||
|

||
|

||
|
|
|

||

||

|

|||
|

||
|

||
|

||
|
|
|

||

||

|

||
|
|

||
|
|

|

||
|
|

|

Table 134. SQLTYPEINFO view (continued)

Column Name Data Type Description

SQL_DATA_TYPE SMALLINT Indicates the SQL data type value of the data type:

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

–99 CLOB

–95 GRAPHIC

–96 VARGRAPHIC

–350 DBCLOB

–98 BLOB

9 DATE

10 TIME

11 TIMESTAMP

70 DATALINK

–100 ROWID

SQL_DATETIME_SUB SMALLINT
Nullable

The datetime subtype of the data type:

1 DATE

2 TIME

3 TIMESTAMP

Contains the null value if the data type is not a
datetime data type.

NUM_PREC_RADIX INTEGER
Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits:

2 Binary; floating-point precision is specified in
binary digits.

10 Decimal; all other numeric types are specified
in decimal digits.

Contains the null value if the parameter is not numeric.

INTERVAL_PRECISION SMALLINT
Nullable

Reserved. Contains the null value.

SQLTYPEINFO

950 DB2 UDB for iSeries SQL Reference V5R2

|

|||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|
|

||

||

||

|
|

||
|
|
|
|

||
|

||
|

|

||
|
|

Table 134. SQLTYPEINFO view (continued)

Column Name Data Type Description

JDBC_DATA_TYPE SMALLINT The JDBC data type value of the data type:

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

2005 CLOB

1 GRAPHIC

12 VARGRAPHIC

1111 DBCLOB

2004 BLOB

91 DATE

92 TIME

93 TIMESTAMP

70 DATALINK

1111 ROWID

SQLTYPEINFO

Appendix G. DB2 UDB for iSeries Catalog Views 951

|

|||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

SQLUDTS
The SQLUDTS view contains one row for every distinct type. The following table
describes the columns in the view:

Table 135. SQLUDTS view

Column Name Data Type Description

TYPE_CAT VARCHAR(128) Relational database name

TYPE_SCHEM VARCHAR(128) Name of the schema containing the user-defined type.

TYPE_NAME VARCHAR(128) Name of the user-defined type.

CLASS_NAME VARCHAR(20) Java class name of the user-defined type.

java.math.BigInteger
BIGINT

java.lang.Integer
INTEGER

java.lang.Short SMALLINT

java.math.BigDecimal
DECIMAL

java.sql.BigDecimal
NUMERIC

java.lang.Double
DOUBLE PRECISION

java.lang.Float REAL

java.lang.String CHARACTER

byte[] CHARACTER FOR BIT DATA

java.lang.String VARCHAR

byte[] VARCHAR FOR BIT DATA

java.sql.Clob CLOB

java.lang.String GRAPHIC

java.lang.String VARGRAPHIC

java.sql.Clob DBCLOB

java.sql.Blob BLOB

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp
TIMESTAMP

java.net.URL DATALINK

byte[] ROWID

DATA_TYPE SMALLINT Reserved. Contains 2001.

SQLUDTS

952 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

|||

|
|

|
|

||

|
|

|
|

|
|

||

||

||

||

||

||

||

||

||

||

||

||

|
|

||

||

|||

Table 135. SQLUDTS view (continued)

Column Name Data Type Description

BASE_TYPE SMALLINT The source data type of the user-defined data type:

–5 BIGINT

4 INTEGER

5 SMALLINT

3 DECIMAL

2 NUMERIC

8 DOUBLE PRECISION

7 REAL

1 CHARACTER

–2 CHARACTER FOR BIT DATA

12 VARCHAR

–3 VARCHAR FOR BIT DATA

2005 CLOB

1 GRAPHIC

12 VARGRAPHIC

1111 DBCLOB

2004 BLOB

91 DATE

92 TIME

93 TIMESTAMP

70 DATALINK

1111 ROWID

REMARKS VARCHAR(2000)
Nullable

A character string supplied with the COMMENT
statement.

Contains the null value if there is no comment.

SQLUDTS

Appendix G. DB2 UDB for iSeries Catalog Views 953

|

|||

|||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|
|
|

|

ANS and ISO Catalog Views
There are two versions of some of the ANS and ISO catalog views. The version
documented is the normal set of ANS and ISO views. A second set of views have
names that are limited to no more than 18 characters and other than the view
names are not documented in this book.

The ANS and ISO catalog includes the following tables in the QSYS2 library:

View Name Shorter View Name Description

“SQL_FEATURES” on page 976 Information about features
supported by the database
manager

“SQL_LANGUAGES” on page 977 SQL_LANGUAGES_S Information about the
supported languages

“SQL_SIZING” on page 978 Information about the limits
supported by the database
manager

The ANS and ISO catalog includes the following views and tables in the SYSIBM
library:

View Name Shorter View Name Description

“CHARACTER_SETS” on page 955 CHARACTER_SETS_S Information about supported
CCSIDs

“CHECK_CONSTRAINTS” on page 956 Information about check
constraints

“COLUMNS” on page 957 COLUMNS_S Information about columns

“INFORMATION_SCHEMA_CATALOG_NAME” on
page 961

CATALOG_NAME Information about the
relational database

“PARAMETERS” on page 962 PARAMETERS_S Information about procedure
parameters

“REFERENTIAL_CONSTRAINTS” on page 966 REF_CONSTRAINTS Information about referential
constraints

“ROUTINES” on page 967 ROUTINES_S Information about routines

“SCHEMATA” on page 975 SCHEMATA_S Statistical information about
schemas

“TABLE_CONSTRAINTS” on page 979 Information about constraints

“TABLES” on page 980 TABLES_S Information about tables

“USER_DEFINED_TYPES” on page 981 UDT_S Information about distinct
types

“VIEWS” on page 985 Information about views

ANS and ISO Catalog

954 DB2 UDB for iSeries SQL Reference V5R2

|

|
|
|
|

|

||||

|||
|
|

|||
|

|||
|
|
|

|
|

||||

|||
|

|||
|

|||

|
|
||
|

|||
|

|||
|

|||

|||
|

|||

|||

|||
|

|||
|

CHARACTER_SETS
The CHARACTER_SETS view contains one row for every CCSID supported. The
following table describes the columns in the view:

Table 136. CHARACTER_SETS view

Column Name Data Type Description

CHARACTER_SET_CATALOG VARCHAR(128) Relational database name

CHARACTER_SET_SCHEMA VARCHAR(128) The schema name of the character set. Contains
’SYSIBM’.

CHARACTER_SET_NAME VARCHAR(128) The character set name.

FORM_OF_USE VARCHAR(128)
Nullable

Reserved. Contains the null value.

NUMBER_OF_CHARACTERS INTEGER
Nullable

Reserved. Contains the null value.

DEFAULT_COLLATE_CATALOG VARCHAR(128) Reserved. Contains the relational database name.

DEFAULT_COLLATE_SCHEMA VARCHAR(128) Reserved. Contains SYSIBM.

DEFAULT_COLLATE_NAME VARCHAR(128) Reserved. Contains IBMDEFAULT.

CHARACTER_SETS

Appendix G. DB2 UDB for iSeries Catalog Views 955

|

|
|

||

|||

|||

|||
|

|||

||
|
|

||
|
|

|||

|||

|||
|

CHECK_CONSTRAINTS
The CHECK_CONSTRAINTS view contains one row for every check constraint.
The following table describes the columns in the view:

Table 137. CHECK_CONSTRAINTS view

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(128) Relational database name

CONSTRAINT_SCHEMA VARCHAR(128) Name of the schema containing the constraint

CONSTRAINT_NAME VARCHAR(128) Name of the constraint

CHECK_CLAUSE VARCHAR(2000)
Nullable

Text of the check constraint clause

Contains the null value if the check clause cannot
be contained in the column without truncation.

CHECK_CONSTRAINTS

956 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

||
|
|

|
|
|

COLUMNS
The COLUMNS view contains one row for every column. The following table
describes the columns in the view:

Table 138. COLUMNS view

Column Name Data Type Description

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the SQL schema containing the table or
view

TABLE_NAME VARCHAR(128) Name of the table or view that contains the column

COLUMN_NAME VARCHAR(128) Name of the column

ORDINAL_POSITION INTEGER Numeric place of the column in the table or view,
ordered from left to right

COLUMN_DEFAULT VARCHAR(2000)
Nullable

The default value of a column, if one exists. If the
default value of the column cannot be represented
without truncation, then the value of the column is
the string ’TRUNCATED’. The default value is
stored in character form. The following special
values also exist:

CURRENT_DATE
The default value is the current date.

CURRENT_TIME
The default value is the current time.

CURRENT_TIMESTAMP
The default value is the current timestamp.

NULL The default value is the null value.

USER The default value is the current job user.

Contains the null value if the column has no
default value. For example, if the column has an
IDENTITY attribute or is a row ID.

IS_NULLABLE VARCHAR(3) Indicates whether the column can contain null
values:

NO The column cannot contain null values.

YES The column can contain null values.

COLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 957

|

|
|

||

|||

|||

|||
|

|||

|||

|||
|

||
|
|
|
|
|
|
|

|
|

|
|

|
|

||

||

|
|
|

|||
|

||

||

Table 138. COLUMNS view (continued)

Column Name Data Type Description

DATA_TYPE VARCHAR(128) Type of column:

BIGINT Big number

INTEGER Large number

SMALLINT Small number

DECIMAL Packed decimal

NUMERIC Zoned decimal

DOUBLE PRECISION
Double-precision floating point

REAL Single-precision floating point

CHARACTER Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object
string

BINARY LARGE OBJECT
Binary large object string

DATE Date

TIME Time

TIMESTAMP Timestamp

DATALINK Datalink

ROWID Row ID

USER-DEFINED
Distinct type

CHARACTER_MAXIMUM_LENGTH INTEGER
Nullable

Maximum length of the string for binary, character
and graphic string data types.

Contains the null value if the column is not a
string.

CHARACTER_OCTET_LENGTH INTEGER
Nullable

Number of bytes for binary, character and graphic
string data types.

Contains the null value if the column is not a
string.

COLUMNS

958 DB2 UDB for iSeries SQL Reference V5R2

|

|||

|||

||

||

||

||

||

|
|

||

||

|
|

|
|

||

|
|

|
|
|

|
|

||

||

||

||

||

|
|

||
|
|
|

|
|

||
|
|
|

|
|

Table 138. COLUMNS view (continued)

Column Name Data Type Description

NUMERIC_PRECISION INTEGER
Nullable

The precision of all numeric columns.

Note: This column supplies the precision of all
numeric data types, including single-and
double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if
the value in this column is in binary or decimal
digits.

Contains the null value if the column is not
numeric.

NUMERIC_PRECISION_RADIX INTEGER
Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits

2 Binary; floating-point precision is specified
in binary digits.

10 Decimal; all other numeric types are
specified in decimal digits.

Contains the null value if the column is not
numeric.

NUMERIC_SCALE INTEGER
Nullable

Scale of numeric data.

Contains the null value if the column is not
decimal, numeric, or binary.

DATETIME_PRECISION INTEGER
Nullable

The fractional part of a date, time, or timestamp.

0 For DATE and TIME data types

6 For TIMESTAMP data types (number of
microseconds).

Contains the null value if the column is not a date,
time, or timestamp.

INTERVAL_TYPE VARCHAR(128)
Nullable

Reserved. Contains the null value.

INTERVAL_PRECISION INTEGER
Nullable

Reserved. Contains the null value.

CHARACTER_SET_CATALOG VARCHAR(128)
Nullable

Relational database name

Contains the null value if the column is not a
string.

CHARACTER_SET_SCHEMA VARCHAR(128)
Nullable

The schema name of the character set. Contains
SYSIBM.

Contains the null value if the column is not a
string.

CHARACTER_SET_NAME VARCHAR(128)
Nullable

The character set name.

Contains the null value if the column is not a
string.

COLLATION_CATALOG VARCHAR(128)
Nullable

Relational database name

Contains the null value if the column is not a
string.

COLUMNS

Appendix G. DB2 UDB for iSeries Catalog Views 959

|

|||

||
|
|

|
|
|
|
|
|

|
|

||
|
|
|
|

||
|

||
|

|
|

||
|
|

|
|

||
|
|

||

||
|

|
|

||
|
|

||
|
|

||
|
|

|
|

||
|
|
|

|
|

||
|
|

|
|

||
|
|

|
|

Table 138. COLUMNS view (continued)

Column Name Data Type Description

COLLATION_SCHEMA VARCHAR(128)
Nullable

The schema of the collation. Contains SYSIBM.

Contains the null value if the column is not a
string.

COLLATION_NAME VARCHAR(128)
Nullable

The collation name. Contains IBMBINARY.

Contains the null value if the column is not a
string.

DOMAIN_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

DOMAIN_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

DOMAIN_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

UDT_CATALOG VARCHAR(128)
Nullable

The relational database name if this is a the distinct
type.

Contains the null value if this is not a distinct type.

UDT_SCHEMA VARCHAR(128)
Nullable

The name of the schema if this is a the distinct
type.

Contains the null value if this is not a distinct type.

UDT_NAME VARCHAR(128)
Nullable

The name of the distinct type.

Contains the null value if this is not a distinct type.

SCOPE_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

SCOPE_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

SCOPE_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

MAXIMUM_CARDINALITY INTEGER
Nullable

Reserved. Contains the null value.

DTD_IDENTIFIER VARCHAR(128)
Nullable

A unique internal identifier for the column.

IS_SELF_REFERENCING VARCHAR(3) Reserved. Contains ’NO’.

COLUMNS

960 DB2 UDB for iSeries SQL Reference V5R2

|

|||

||
|
|

|
|

||
|
|

|
|

||
|
|

||
|
|

||
|
|

||
|
|
|

|

||
|
|
|

|

||
|
|

|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|||
|

INFORMATION_SCHEMA_CATALOG_NAME
The INFORMATION_SCHEMA_CATALOG_NAME view contains one row for the
relational database. The following table describes the columns in the view:

Table 139. INFORMATION_SCHEMA_CATALOG_NAME view

Column Name Data Type Description

CATALOG_NAME VARCHAR(128) Relational database name

INFORMATION_SCHEMA_CATALOG_NAME

Appendix G. DB2 UDB for iSeries Catalog Views 961

|

|
|

||

|||

|||
|

PARAMETERS
The PARAMETERS view contains one row for each parameter of a routine in the
relational database. The following table describes the columns in the view:

Table 140. PARAMETERS view

Column Name Data Type Description

SPECIFIC_CATALOG VARCHAR(128) Relational database name

SPECIFIC_SCHEMA VARCHAR(128) Schema name of the routine instance

SPECIFIC_NAME VARCHAR(128) Specific name of the routine instance

ORDINAL_POSITION INTEGER Numeric place of the parameter in the parameter
list, ordered from left to right.

PARAMETER_MODE VARCHAR(5) The type of the parameter:

IN This is an input parameter.

OUT This is an output parameter.

INOUT
This is an input/output parameter.

IS_RESULT VARCHAR(3) Reserved. Contains ’NO’.

AS_LOCATOR VARCHAR(3) Indicates whether the parameter was specified as a
locator.

NO The parameter was not specified as a
locator.

YES The parameter was specified as a locator.

PARAMETER_NAME VARCHAR(128)
Nullable

The name of the parameter

Contains the null value if the parameter does not
have a name.

FROM_SQL_SPECIFIC_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

FROM_SQL_SPECIFIC_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

FROM_SQL_SPECIFIC_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

PARAMETERS

962 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

|||
|

|||

||

||

|
|

|||

|||
|

||
|

||

||
|
|

|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

Table 140. PARAMETERS view (continued)

Column Name Data Type Description

DATA_TYPE VARCHAR(128)
Nullable

Type of the parameter:

BIGINT Big number

INTEGER Large number

SMALLINT Small number

DECIMAL Packed decimal

NUMERIC Zoned decimal

DOUBLE PRECISION
Floating point; DOUBLE
PRECISION

REAL Floating point; REAL

CHARACTER Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object
string

BINARY LARGE OBJECT
Binary large object string

DATE Date

TIME Time

TIMESTAMP Timestamp

DATALINK Datalink

ROWID Row ID

USER-DEFINED
Distinct Type

CHARACTER_MAXIMUM_LENGTH INTEGER
Nullable

Maximum length of the string for binary, character,
and graphic string data types.

Contains the null value if the parameter is not a
string.

CHARACTER_OCTET_LENGTH INTEGER
Nullable

Number of bytes for binary, character, and graphic
string data types.

Contains the null value if the parameter is not a
string.

CHARACTER_SET_CATALOG VARCHAR(128)
Nullable

Relational database name

Contains the null value if the column is not a
string.

PARAMETERS

Appendix G. DB2 UDB for iSeries Catalog Views 963

|

|||

||
|
|

||

||

||

||

||

|
|
|

||

||

|
|

|
|

||

|
|

|
|
|

|
|

||

||

||

||

||

|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|

|
|

Table 140. PARAMETERS view (continued)

Column Name Data Type Description

CHARACTER_SET_SCHEMA VARCHAR(128)
Nullable

The schema name of the character set. Contains
’SYSIBM’.

Contains the null value if the column is not a
string.

CHARACTER_SET_NAME VARCHAR(128)
Nullable

The character set name.

Contains the null value if the column is not a
string.

COLLATION_CATALOG VARCHAR(128)
Nullable

Relational database name

Contains the null value if the column is not a
string.

COLLATION_SCHEMA VARCHAR(128)
Nullable

The schema of the collation. SYSIBM is returned.

Contains the null value if the column is not a
string.

COLLATION_NAME VARCHAR(128)
Nullable

The collation name. IBMBINARY is returned.

Contains the null value if the column is not a
string.

NUMERIC_PRECISION INTEGER
Nullable

The precision of all numeric parameters.

Note: This column supplies the precision of all
numeric data types, including single-and
double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if
the value in this column is in binary or decimal
digits.

Contains the null value if the parameter is not
numeric.

NUMERIC_PRECISION_RADIX INTEGER
Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits:

2 Binary; floating-point precision is specified
in binary digits.

10 Decimal; all other numeric types are
specified in decimal digits.

Contains the null value if the parameter is not
numeric.

NUMERIC_SCALE INTEGER
Nullable

Scale of numeric data.

Contains the null value if not decimal, numeric, or
binary parameter.

DATETIME_PRECISION INTEGER
Nullable

The fractional part of a date, time, or timestamp.

0 For DATE and TIME data types

6 For TIMESTAMP data types (number of
microseconds).

Contains the null value if the parameter is not a
date, time, or timestamp.

PARAMETERS

964 DB2 UDB for iSeries SQL Reference V5R2

|

|||

||
|
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|

|
|
|
|
|
|

|
|

||
|
|
|
|

||
|

||
|

|
|

||
|
|

|
|

||
|
|

||

||
|

|
|

Table 140. PARAMETERS view (continued)

Column Name Data Type Description

INTERVAL_TYPE VARCHAR(128)
Nullable

Reserved. Contains the null value.

INTERVAL_PRECISION INTEGER
Nullable

Reserved. Contains the null value.

UDT_CATALOG VARCHAR(128)
Nullable

The relational database name if this is a distinct
type.

Contains the null value if this is not a distinct type.

UDT_SCHEMA VARCHAR(128)
Nullable

The name of the schema if this is a distinct type.

Contains the null value if this is not a distinct type.

UDT_NAME VARCHAR(128)
Nullable

The name of the distinct type.

Contains the null value if this is not a distinct type.

SCOPE_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

SCOPE_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

SCOPE_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

MAXIMUM_CARDINALITY INTEGER
Nullable

Reserved. Contains the null value.

DTD_IDENTIFIER VARCHAR(128)
Nullable

A unique internal identifier for the parameter.

PARAMETERS

Appendix G. DB2 UDB for iSeries Catalog Views 965

|

|||

||
|
|

||
|
|

||
|
|
|

|

||
|
|

|

||
|
|

|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|

REFERENTIAL_CONSTRAINTS
The REFERENTIAL_CONSTRAINTS view contains one row for each referential
constraint. The following table describes the columns in the view:

Table 141. REFERENTIAL_CONSTRAINTS view

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(128) Relational database name

CONSTRAINT_SCHEMA VARCHAR(128) Name of the schema containing the constraint.

CONSTRAINT_NAME VARCHAR(128) Name of the constraint.

UNIQUE_CONSTRAINT_CATALOG VARCHAR(128) Relational database name containing the unique
constraint referenced by the referential constraint.

UNIQUE_CONSTRAINT_SCHEMA VARCHAR(128) Name of the SQL schema containing the unique
constraint referenced by the referential constraint.

UNIQUE_CONSTRAINT_NAME VARCHAR(128) Name of the unique constraint referenced by the
referential constraint.

MATCH_OPTION VARCHAR(7) Reserved. Contains ’NONE’.

UPDATE_RULE VARCHAR(11) Update Rule.

v NO ACTION

v RESTRICT

DELETE_RULE VARCHAR(11) Delete Rule

v NO ACTION

v CASCADE

v SET NULL

v SET DEFAULT

v RESTRICT

REFERENTIAL_CONSTRAINTS

966 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

|||
|

|||
|

|||
|

|||

|||

|

|

|||

|

|

|

|

|
|
|

ROUTINES
The ROUTINES view contains one row for each routine. The following table
describes the columns in the view:

Table 142. ROUTINES view

Column Name Data Type Description

SPECIFIC_CATALOG VARCHAR(128) Relational database name

SPECIFIC_SCHEMA VARCHAR(128) Schema name of the routine instance.

SPECIFIC_NAME VARCHAR(128) Specific name of the routine.

ROUTINE_CATALOG VARCHAR(128) Relational database name

ROUTINE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the routine.

ROUTINE_NAME VARCHAR(128) Name of the routine.

ROUTINE_TYPE VARCHAR(15) Type of the routine.

PROCEDURE This is a procedure.

FUNCTION This is a function.

INSTANCE METHOD
This is a built-in data type
function created for a distinct
type.

MODULE_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

MODULE_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

MODULE_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

UDT_CATALOG VARCHAR(128)
Nullable

Relational database name.

Contains the null value if this is not an INSTANCE
METHOD.

UDT_SCHEMA VARCHAR(128)
Nullable

Name of the SQL schema that contains the distinct
type related to this function.

Contains the null value if this is not an INSTANCE
METHOD.

UDT_NAME VARCHAR(128)
Nullable

Name of the distinct type name related to this
function.

Contains the null value if this is not an INSTANCE
METHOD.

ROUTINES

Appendix G. DB2 UDB for iSeries Catalog Views 967

|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

||

||

|
|
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|
|

||
|
|
|

|
|

||
|
|
|

|
|

Table 142. ROUTINES view (continued)

Column Name Data Type Description

DATA_TYPE VARCHAR(128)
Nullable

Type of the result of the function:

BIGINT Big number

INTEGER Large number

SMALLINT Small number

DECIMAL Packed decimal

NUMERIC Zoned decimal

DOUBLE PRECISION
Floating point; DOUBLE
PRECISION

REAL Floating point; REAL

CHARACTER Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object
string

BINARY LARGE OBJECT
Binary large object string

DATE Date

TIME Time

TIMESTAMP Timestamp

DATALINK Datalink

ROWID Row ID

USER-DEFINED
Distinct Type

Contains the null value if this is not a scalar
function.

CHARACTER_MAXIMUM_LENGTH INTEGER
Nullable

Maximum length of the result string of the function
for binary, character, and graphic string data types.

Contains the null value if this is not a scalar
function or the parameter is not a string.

CHARACTER_OCTET_LENGTH INTEGER
Nullable

Number of bytes for the result string of the
function for binary, character, and graphic string
data types.

Contains the null value if this is not a scalar
function or the parameter is not a string.

ROUTINES

968 DB2 UDB for iSeries SQL Reference V5R2

|

|||

||
|
|

||

||

||

||

||

|
|
|

||

||

|
|

|
|

||

|
|

|
|
|

|
|

||

||

||

||

||

|
|

|
|

||
|
|
|

|
|

||
|
|
|
|

|
|

Table 142. ROUTINES view (continued)

Column Name Data Type Description

CHARACTER_SET_CATALOG VARCHAR(128)
Nullable

Relational database name of the result of the
function.

Contains the null value if this is not a scalar
function or the result is not a string.

CHARACTER_SET_SCHEMA VARCHAR(128)
Nullable

The schema name of the character set of the result
of the function. Contains ’SYSIBM’.

Contains the null value if this is not a scalar
function or the result is not a string.

CHARACTER_SET_NAME VARCHAR(128)
Nullable

The character set name of the result of the function.

Contains the null value if this is not a scalar
function or the result is not a string.

COLLATION_CATALOG VARCHAR(128)
Nullable

Relational database name of the result of the
function.

Contains the null value if this is not a scalar
function or the result is not a string.

COLLATION_SCHEMA VARCHAR(128)
Nullable

The schema of the collation of the result of the
function. SYSIBM is returned.

Contains the null value if this is not a scalar
function or the result is not a string.

COLLATION_NAME VARCHAR(128)
Nullable

The collation name of the result of the function.
IBMBINARY is returned.

Contains the null value if this is not a scalar
function or the result is not a string.

NUMERIC_PRECISION INTEGER
Nullable

The precision of the result of the function.

Note: This column supplies the precision of all
numeric data types, including single-and
double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if
the value in this column is in binary or decimal
digits.

Contains the null value if this is not a scalar
function or the result is not numeric.

NUMERIC_PRECISION_RADIX INTEGER
Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits:

2 Binary; floating-point precision is specified
in binary digits.

10 Decimal; all other numeric types are
specified in decimal digits.

Contains the null value if this is not a scalar
function or the result is not numeric.

NUMERIC_SCALE INTEGER
Nullable

Scale of numeric result of the function.

Contains the null value if this is not a scalar
function or the result is not numeric.

ROUTINES

Appendix G. DB2 UDB for iSeries Catalog Views 969

|

|||

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|

|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|

|
|
|
|
|
|

|
|

||
|
|
|
|

||
|

||
|

|
|

||
|
|

|
|

Table 142. ROUTINES view (continued)

Column Name Data Type Description

DATETIME_PRECISION INTEGER
Nullable

The fractional part of a date, time, or timestamp
result of the function.

0 For DATE and TIME data types

6 For TIMESTAMP data types (number of
microseconds).

Contains the null value if this is not a scalar
function or the result is not a date, time, or
timestamp.

INTERVAL_TYPE VARCHAR(128)
Nullable

Reserved. Contains the null value.

INTERVAL_PRECISION INTEGER
Nullable

Reserved. Contains the null value.

TYPE_UDT_CATALOG VARCHAR(128)
Nullable

The relational database name if the result of the
function is a distinct type.

Contains the null value if this is not a scalar
function or the result is not a distinct type.

TYPE_UDT_SCHEMA VARCHAR(128)
Nullable

The name of the schema if the result of the function
is a distinct type.

Contains the null value if this is not a scalar
function or the result is not a distinct type.

TYPE_UDT_NAME VARCHAR(128)
Nullable

The name of the distinct type if the result of the
function is a distinct type.

Contains the null value if this is not a scalar
function or the result is not a distinct type.

SCOPE_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

SCOPE_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

SCOPE_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

MAXIMUM_CARDINALITY INTEGER
Nullable

Reserved. Contains the null value.

DTD_IDENTIFIER VARCHAR(128)
Nullable

A unique internal identifier for the result of the
function.

ROUTINE_BODY VARCHAR(8) The type of the routine body:

EXTERNAL This is an external routine.

SQL This is an SQL routine.

ROUTINE_DEFINITION DBCLOB
Nullable

If this is an SQL routine, this column contains the
SQL routine body.

Contains the null value if this is not an SQL routine
or if the routine body cannot be contained in this
column without truncation.

ROUTINES

970 DB2 UDB for iSeries SQL Reference V5R2

|

|||

||
|
|
|

||

||
|

|
|
|

||
|
|

||
|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|
|

|||

||

||

||
|
|
|

|
|
|

Table 142. ROUTINES view (continued)

Column Name Data Type Description

EXTERNAL_NAME VARCHAR(279)
Nullable

If this is an external routine, this column identifies
the external program name.

v For REXX, the external program name is
schema-name/source-file-name(member-name).

v For ILE service programs, the external program
name is schema-name/service-program-name(entry-
point-name).

v For Java programs, the external program name is
an optional jar-id followed by a
fully-qualified-class-name!method-name or
fully-qualified-class-name.method-name.

v For all other languages, the external program
name is schema-name/program-name.

Contains the null value if this is not an external
routine.

EXTERNAL_LANGUAGE VARCHAR(8)
Nullable

If this is an external routine, this column identifies
the external program name.

C The external program is written in
C.

C++ The external program is written in
C++.

CL The external program is written in
CL.

COBOL The external program is written in
COBOL.

COBOLLE The external program is written in
ILE COBOL.

FORTRAN The external program is written in
FORTRAN.

JAVA The external program is written in
JAVA.

PLI The external program is written in
PL/I.

REXX The external program is a REXX
procedure.

RPG The external program is written in
RPG.

RPGLE The external program is written in
ILE RPG.

Contains the null value if this is not an external
routine.

ROUTINES

Appendix G. DB2 UDB for iSeries Catalog Views 971

|

|||

||
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|

||
|
|
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||
|

|
|

Table 142. ROUTINES view (continued)

Column Name Data Type Description

PARAMETER_STYLE VARCHAR(18)
Nullable

If this is an external routine, this column identifies
the parameter style (calling convention).

DB2GENERAL This is the DB2GENERAL calling
convention.

DB2SQL This is the DB2SQL calling
convention.

GENERAL This is the GENERAL calling
convention.

JAVA This is the JAVA calling
convention.

GENERAL WITH NULLS
This is the GENERAL WITH
NULLS calling convention.

SQL This is the SQL standard calling
convention.

Contains the null value if this is not an external
routine.

IS_DETERMINISTIC VARCHAR(3) This column identifies whether the routine is
deterministic. That is, whether a call to the routine
with the same arguments will always return the
same result.

NO The routine is not deterministic.

YES The routine is deterministic.

SQL_DATA_ACCESS VARCHAR(17) This column identifies whether a routine contains
SQL and whether it reads or modifies data.

NO SQL The routine does not contain any
SQL statements.

CONTAINS SQL
The routine contains SQL
statements.

READS SQL DATA
The routine possibly reads data
from a table or view.

MODIFIES SQL DATA
The routine possibly modifies
data in a table or view or issues
SQL DDL statements.

ROUTINES

972 DB2 UDB for iSeries SQL Reference V5R2

|

|||

||
|
|
|

||
|

||
|

||
|

||
|

|
|
|

||
|

|
|

|||
|
|
|

||

||

|||
|

||
|

|
|
|

|
|
|

|
|
|
|

Table 142. ROUTINES view (continued)

Column Name Data Type Description

IS_NULL_CALL VARCHAR(3)
Nullable

Identifies whether the function needs to be called if
an input parameter is the null value.

NO This function need not be called if an input
parameter is the null value. If this is a
scalar function, the result of the function is
implicitly null if any of the operands are
null. If this is a table function, the result of
the function is an empty table if any of the
operands are the null value.

YES This function must be called even if an
input operand is null.

Contains the null value if this is not a function.

SQL_PATH VARCHAR(3483)
Nullable

If this is an SQL routine, this column identifies the
path.

Contains the null value if this is not an SQL
routine.

SCHEMA_LEVEL_ROUTINE VARCHAR(3) Reserved. Contains ’YES’.

MAX_DYNAMIC_RESULT_SETS SMALLINT Identifies the maximum number of result sets
returned. 0 indicates that there are no result sets.

IS_USER_DEFINED_CAST VARCHAR(3)
Nullable

Identifies whether the this function is a cast
function created when a distinct type was created.

NO This function is not a cast function.

YES This function is a cast function.

Contains the null value if the routine is not a
function.

IS_IMPLICITLY_INVOCABLE VARCHAR(3)
Nullable

Identifies whether the this function is a cast
function created when a distinct type was created
and can be implicitly invoked.

NO This function is not a cast function.

YES This function is a cast function and can be
implicitly invoked.

Contains the null value if the routine is not a
function.

SECURITY_TYPE VARCHAR(22)
Nullable

Reserved. Contains ’IMPLEMENTATION
DEFINED’ if this is an external routine.

Contains the null value if the routine is not an
external routine.

TO_SQL_SPECIFIC_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

TO_SQL_SPECIFIC_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

ROUTINES

Appendix G. DB2 UDB for iSeries Catalog Views 973

|

|||

||
|
|
|

||
|
|
|
|
|
|

||
|

|

||
|
|
|

|
|

|||

|||
|

||
|
|
|

||

||

|
|

||
|
|
|
|

||

||
|

|
|

||
|
|
|

|
|

||
|
|

||
|
|

||
|
|

Table 142. ROUTINES view (continued)

Column Name Data Type Description

AS_LOCATOR VARCHAR(3)
Nullable

Indicates whether the result was specified as a
locator.

NO The parameter was not specified as a
locator.

YES The parameter was specified as a locator.

Contains the null value if this is not a scalar
function.

CREATED TIMESTAMP Identifies the timestamp when the routine was
created.

LAST_ALTERED TIMESTAMP Reserved. Contains ’CREATED’.

ROUTINES

974 DB2 UDB for iSeries SQL Reference V5R2

|

|||

||
|
|
|

||
|

||

|
|

|||
|

|||
|

SCHEMATA
The SCHEMATA view contains one row for each schema. The following table
describes the columns in the view:

Table 143. SCHEMATA view

Column Name Data Type Description

CATALOG_NAME VARCHAR(128) Relational database name

SCHEMA_NAME VARCHAR(128) Name of the schema

SCHEMA_OWNER VARCHAR(128) Owner of the schema

DEFAULT_CHARACTER_SET_CATALOG VARCHAR(128) Relational database name

DEFAULT_CHARACTER_SET_SCHEMA VARCHAR(128) The schema name of the default character set.
Contains ’SYSIBM’.

DEFAULT_CHARACTER_SET_NAME VARCHAR(128) The default character set name.

SQL_PATH VARCHAR(3483)
Nullable

Reserved. Contains the null value.

SCHEMATA

Appendix G. DB2 UDB for iSeries Catalog Views 975

|

|
|

||

|||

|||

|||

|||

|||

|||
|

|||

||
|
|

|

SQL_FEATURES
The SQL_FEATURES view contains one row for each feature supported by the
database manager. The following table describes the columns in the view:

Table 144. SQL_FEATURES view

Column Name Data Type Description

FEATURE_ID VARCHAR(7) ANS and ISO feature ID

FEATURE_NAME VARCHAR(128) The name of the ANS and ISO feature.

SUB_FEATURE_ID VARCHAR(7) ANS and ISO subfeature ID

SUB_FEATURE_NAME VARCHAR(256) The name of the ANS and ISO subfeature.

IS_SUPPORTED VARCHAR(3) Indicates whether the feature is supported:

YES This feature is supported.

NO This feature is not supported.

IS_VERIFIED_BY VARCHAR(128)
Nullable

Reserved. Contains the null value.

COMMENTS VARCHAR(2000)
Nullable

Reserved. Contains the null value.

SQL_FEATURES

976 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

|||

|||

|||

||

||

||

||
|
|

||
|
|

|

SQL_LANGUAGES
The SQL_LANGUAGES (system name SYSLANGS) table contains one row for
every SQL language binding and programming language for which conformance is
claimed. The following table describes the columns in the SQL_LANGUAGES
view:

Table 145. SQL_LANGUAGES view

Column Name Data Type Description

SQL_LANGUAGE_SOURCE VARCHAR(254) Name of the standard.

SQL_LANGUAGE_YEAR VARCHAR(254) Year in which the standard was approved.

SQL_LANGUAGE_CONFORMANCE VARCHAR(254)
Nullable

Level of conformance.

2 For the 1987 and 1989 standards, indicates
that Level 2 conformance is claimed.

ENTRY
For the 1992 standard, indicates that Entry
Level conformance is claimed.

CORE For the 1999 standard, indicates that Core
Level is conformance is claimed.

Contains the null value if conformance is not yet
claimed.

SQL_LANGUAGE_INTEGRITY VARCHAR(254)
Nullable

Support of the integrity feature.

YES conformance is claimed to the integrity
feature

NO conformance is not claimed to the integrity
feature

Contains the null value if the standard does not
have a separate integrity feature.

SQL_LANGUAGE_IMPLEMENTATION VARCHAR(254)
Nullable

Reserved. Contains the null value.

SQL_LANGUAGE_BINDING_STYLE VARCHAR(254) The style of binding of the SQL language

EMBEDDED
support for embedded SQL for the
language in
SQL_LANGUAGE_PROGRAMMING_LANG

DIRECT
DIRECT SQL is supported (for example
Interactive SQL)

CLI Support for CLI for the language in
SQL_LANGUAGE_PROGRAMMING_LANG

SQL_LANGUAGE_PROGRAMMING_LANG VARCHAR(254)
Nullable

The language supported by EMBEDDED or CLI.

C The C language is supported.

COBOL
The COBOL language is supported.

PLI The PL/I language is supported.

Contains the null value if the
SQL_LANGUAGE_BINDING_STYLE is DIRECT.

SQL_LANGUAGES

Appendix G. DB2 UDB for iSeries Catalog Views 977

|

|
|
|
|

||

|||

|||

|||

||
|
|

||
|

|
|
|

||
|

|
|

||
|
|

||
|

||
|

|
|

||
|
|

|||

|
|
|
|

|
|
|

||
|
|

||
|
|

||

|
|

||

|
|
|

SQL_SIZING
The SQL_SIZING view contains one row for each limit supported by the database
manager. The following table describes the columns in the view:

Table 146. SQL_SIZING view

Column Name Data Type Description

SIZING_ID INTEGER ANS and ISO sizing ID

SIZING_NAME VARCHAR(128) Name of the ANS and ISO sizing.

SUPPORTED_VALUE INTEGER
Nullable

Indicates the sizing limit.

Contains the null value if the sizing limit is not
applicable.

COMMENTS VARCHAR(2000)
Nullable

Reserved. Contains the null value.

SQL_SIZING

978 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||

||
|
|

|
|

||
|
|

|

TABLE_CONSTRAINTS
The TABLE_CONSTRAINTS view contains one row for each constraint. The
following table describes the columns in the view:

Table 147. TABLE_CONSTRAINTS view

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(128) Relational database name

CONSTRAINT_SCHEMA VARCHAR(128) Name of the schema containing the constraint.

CONSTRAINT_NAME VARCHAR(128) Name of the constraint.

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the schema containing the table.

TABLE_NAME VARCHAR(128) Name of the table which the constraint is created
over.

CONSTRAINT_TYPE VARCHAR(11) Constraint Type
CHECK
UNIQUE
PRIMARY KEY
FOREIGN KEY

IS_DEFERRABLE VARCHAR(3) Indicates whether the constraint checking can be
deferred. Contains ’NO’.

INITIALLY_DEFERRED VARCHAR(3) Indicates whether the constraint was defined as
initially deferred. Contains ’NO’.

TABLE_CONSTRAINTS

Appendix G. DB2 UDB for iSeries Catalog Views 979

|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|||
|
|
|
|

|||
|

|||
|
|

TABLES
The TABLES view contains one row for each table, view, and alias. The following
table describes the columns in the view:

Table 148. TABLES view

Column Name Data Type Description

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the table,
view or alias.

TABLE_NAME VARCHAR(128) Name of the table, view or alias.

TABLE_TYPE VARCHAR(10) Indicates the type of the table:

ALIAS The table is an alias.

BASE_TABLE
The table is an SQL table or physical file.

VIEW The table is an SQL view or logical file.

SELF_REFERENCING_COLUMN_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

REFERENCE_GENERATION VARCHAR(128)
Nullable

Reserved. Contains the null value.

USER_DEFINED_TYPE_CATALOG VARCHAR(128)
Nullable

Reserved. Contains the null value.

USER_DEFINED_TYPE_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains the null value.

USER_DEFINED_TYPE_NAME VARCHAR(128)
Nullable

Reserved. Contains the null value.

IS_INSERTABLE_INTO VARCHAR(3) Identifies whether an INSERT is allowed on the
table.

NO An INSERT is not allowed on this table.

YES An INSERT is allowed on this table.

TABLES

980 DB2 UDB for iSeries SQL Reference V5R2

|

|
|

||

|||

|||

|||
|

|||

|||

||

|
|

||

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|||
|

||

||
|

USER_DEFINED_TYPES
The USER_DEFINED_TYPES view contains one row for each distinct type.83 The
following table describes the columns in the view:

Table 149. USER_DEFINED_TYPES view

Column Name Data Type Description

USER_DEFINED_TYPE_CATALOG VARCHAR(128) Relational database name

USER_DEFINED_TYPE_SCHEMA VARCHAR(128) Schema name of the distinct type.

USER_DEFINED_TYPE_NAME VARCHAR(128) Name of the user that created the distinct type.

USER_DEFINED_TYPE_CATEGORY VARCHAR(128) Indicates the type of user-defined type. Contains
’DISTINCT’.

IS_INSTANTIABLE VARCHAR(3) Reserved. Contains ’YES’.

IS_FINAL VARCHAR(3) Reserved. Contains ’YES’.

ORDERING_FORM VARCHAR(4) Indicates what kind of predicates are allowed when
this distinct type is a comparand:

FULL All predicates are allowed.

NONE No predicates are allowed

ORDERING_CATEGORY VARCHAR(8) Reserved. Contains ’MAP’.

ORDERING_ROUTINE_CATALOG VARCHAR(128)
Nullable

Relational database name

Contains the null value if the ORDERING_FORM is
’NONE’.

ORDERING_ROUTINE_SCHEMA VARCHAR(128)
Nullable

Reserved. Contains ’SYSIBM’.

Contains the null value if the ORDERING_FORM is
’NONE’.

ORDERING_ROUTINE_NAME VARCHAR(128)
Nullable

Reserved. Contains a data type name.

Contains the null value if the ORDERING_FORM is
’NONE’.

REFERENCE_TYPE VARCHAR(16)
Nullable

Reserved. Contains the null value.

83. This view does not contain information about built-in data types.

USER_DEFINED_TYPES

Appendix G. DB2 UDB for iSeries Catalog Views 981

|

|
|

||

|||

|||

|||

|||

|||
|

|||

|||

|||
|

||

||

|||

||
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|

Table 149. USER_DEFINED_TYPES view (continued)

Column Name Data Type Description

DATA_TYPE VARCHAR(128)
Nullable

Source data type of the distinct type:

BIGINT Big number

INTEGER Large number

SMALLINT Small number

DECIMAL Packed decimal

NUMERIC Zoned decimal

DOUBLE PRECISION
Floating point; DOUBLE
PRECISION

REAL Floating point; REAL

CHARACTER Fixed-length character string

CHARACTER VARYING
Varying-length character string

CHARACTER LARGE OBJECT
Character large object string

GRAPHIC Fixed-length graphic string

GRAPHIC VARYING
Varying-length graphic string

DOUBLE-BYTE CHARACTER LARGE OBJECT
Double-byte character large object
string

BINARY LARGE OBJECT
Binary large object string

DATE Date

TIME Time

TIMESTAMP Timestamp

DATALINK Datalink

ROWID Row ID

USER-DEFINED
Distinct Type

CHARACTER_MAXIMUM_LENGTH INTEGER
Nullable

Maximum length of the distinct type for binary,
character, and graphic string data types.

Contains the null value if the distinct type is not a
string.

CHARACTER_OCTET_LENGTH INTEGER
Nullable

Number of bytes of the distinct type for binary,
character, and graphic string data types.

Contains the null value if the distinct type is not a
string.

CHARACTER_SET_CATALOG VARCHAR(128)
Nullable

Relational database name of the distinct type.

Contains the null value if the distinct type is not a
string.

USER_DEFINED_TYPES

982 DB2 UDB for iSeries SQL Reference V5R2

|

|||

||
|
|

||

||

||

||

||

|
|
|

||

||

|
|

|
|

||

|
|

|
|
|

|
|

||

||

||

||

||

|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|

|
|

Table 149. USER_DEFINED_TYPES view (continued)

Column Name Data Type Description

CHARACTER_SET_SCHEMA VARCHAR(128)
Nullable

The schema name of the character set of the distinct
type. Contains ’SYSIBM’.

Contains the null value if the distinct type is not a
string.

CHARACTER_SET_NAME VARCHAR(128)
Nullable

The character set name of the distinct type.

Contains the null value if the distinct type is not a
string.

COLLATION_CATALOG VARCHAR(128)
Nullable

Relational database name of the distinct type.

Contains the null value if the distinct type is not a
string.

COLLATION_SCHEMA VARCHAR(128)
Nullable

The schema of the collation of the distinct type.
SYSIBM is returned.

Contains the null value if the distinct type is not a
string.

COLLATION_NAME VARCHAR(128)
Nullable

The collation name of the distinct type.
IBMBINARY is returned.

Contains the null value if the distinct type is not a
string.

NUMERIC_PRECISION INTEGER
Nullable

The precision of the distinct type.

Note: This column supplies the precision of all
numeric data types, including single-and
double-precision floating point. The
NUMERIC_PRECISION_RADIX column indicates if
the value in this column is in binary or decimal
digits.

Contains the null value if the distinct type is not
numeric.

NUMERIC_PRECISION_RADIX INTEGER
Nullable

Indicates if the precision specified in column
NUMERIC_PRECISION is specified as a number of
binary or decimal digits:

2 Binary; floating-point precision is specified
in binary digits.

10 Decimal; all other numeric types are
specified in decimal digits.

Contains the null value if the distinct type is not
numeric.

NUMERIC_SCALE INTEGER
Nullable

Scale of numeric distinct type.

Contains the null value if the distinct type is not
decimal, numeric, or binary.

USER_DEFINED_TYPES

Appendix G. DB2 UDB for iSeries Catalog Views 983

|

|||

||
|
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|
|

|
|

||
|
|
|

|
|

||
|
|

|
|
|
|
|
|

|
|

||
|
|
|
|

||
|

||
|

|
|

||
|
|

|
|

Table 149. USER_DEFINED_TYPES view (continued)

Column Name Data Type Description

DATETIME_PRECISION INTEGER
Nullable

The fractional part of a date, time, or timestamp
distinct type.

0 For DATE and TIME data types

6 For TIMESTAMP data types (number of
microseconds).

Contains the null value if the distinct type is not
date, time, or timestamp.

INTERVAL_TYPE VARCHAR(128)
Nullable

Reserved. Contains the null value.

INTERVAL_PRECISION INTEGER
Nullable

Reserved. Contains the null value.

SOURCE_DTD_IDENTIFIER VARCHAR(128)
Nullable

A unique internal identifier for the source data
type.

Contains the null value if the distinct type is not
sourced on another distinct type.

REF_DTD_IDENTIFIER VARCHAR(256)
Nullable

Reserved. Contains the null value.

USER_DEFINED_TYPES

984 DB2 UDB for iSeries SQL Reference V5R2

|

|||

||
|
|
|

||

||
|

|
|

||
|
|

||
|
|

||
|
|
|

|
|

||
|
|

|

VIEWS
The VIEWS view contains one row for each view. The following table describes the
columns in the view:

Table 150. VIEWS view

Column Name Data Type Description

TABLE_CATALOG VARCHAR(128) Relational database name

TABLE_SCHEMA VARCHAR(128) Name of the SQL schema that contains the view.

TABLE_NAME VARCHAR(128) Name of the view.

VIEW_DEFINITION VARCHAR(10000)
Nullable

The query expression portion of the CREATE VIEW
statement.

Contains the null value if the view definition
cannot be contained in the column without
truncation.

CHECK_OPTION VARCHAR(8) The check option used on the view

NONE No check option was specified

LOCAL
The local option was specified

CASCADED
The cascaded option was specified

IS_UPDATABLE VARCHAR(3) Specifies if the view is updatable:

YES The view is updatable

NO The view is read-only

VIEWS

Appendix G. DB2 UDB for iSeries Catalog Views 985

|

|
|

||

|||

|||

|||

|||

||
|
|
|

|
|
|

|||

||

|
|

|
|

|||

||

||

VIEWS

986 DB2 UDB for iSeries SQL Reference V5R2

Bibliography

The publications listed here provide additional
information about topics described or referred to
in this guide. These manuals are listed with their
full titles and order numbers. When these
manuals are referred to in this guide, a shortened
version of the title is used.

v Backup and Recovery
The manual contains information about
planning a backup and recovery strategy, the
different types of media available to save and
restore procedures, and disk recovery
procedures. It also describes how to install the
system again from backup.

v ILE COBOL Programmer’s Guide
This guide provides information needed to
design, write, test, and maintain COBOL/400
programs on the iSeries 400 system.

v ILE RPG Programmer’s Guide
This guide provides information you need to
design, write, test, and maintain ILE RPG/400
programs on the iSeries 400 system.

v REXX/400 Programmer’s Guide
This guide provides information you need to
design, write, test, and maintain REXX/400
programs on the iSeries 400 system.

v CL Programming
This guide provides a wide-ranging discussion
of the iSeries 400 programming topics,
including a general discussion of objects and
libraries, CL programming, controlling flow
and communicating between programs,
working with objects in CL programs, and
creating CL programs. Other topics include
predefined and impromptu messages and
handling, defining and creating user-defined
commands and menus, application testing,
including debug mode, breakpoints, traces, and
display functions.

v File Management
This book provides information about using
files in application programs.

v Database Programming

This book provides a detailed description of the
iSeries database organization, including
information on how to create, describe, and
update database files on the system.

v Distributed Database Programming
Provides information on preparing and
managing an iSeries system in a distributed
relational database using the Distributed
Relational Database Architecture (DRDA).
Describes planning, setting up, programming,
administering, and operating a distributed
relational database on more than one iSeries
system in a like-system environment.

v iSeries Security Reference
This guide provides information about system
security concepts, planning for security, and
setting up security on the system. It also gives
information about protecting the system and
data from being used by people who do not
have the proper authorization, protecting the
data from intentional or unintentional damage
or destruction, keeping security up-to-date, and
setting up security on the system.

v SQL Programming Concepts
This book provides an overview of how to
design, write, run, and test DB2 UDB for iSeries
statements. It also describes interactive
Structured Query Language (SQL).

v SQL Programming with Host Languages
This book provides examples of how to write
SQL statements in COBOL, ILE COBOL/400,
ILE RPG/400, ILE C/400, and PL/I programs.

v Database Performance and Query Optimization
This book provides information on optimizing
the performance of your queries using available
tools and techniques.

v IDDU Use
This book describes how to use iSeries
interactive data definition utility (IDDU) to
describe data dictionaries, files, and records to
the system.

v SQL Call Level Interfaces (ODBC)
This book describes how to use X/Open SQL
Call Level Interface to access SQL functions
directly through procedure calls to a service
program provided by DB2 UDB for iSeries.

© Copyright IBM Corp. 1998, 2002 987

../../books/c4153046.pdf
../../books/c0925403.pdf
../../books/c0925074.pdf
../../books/c4157280.pdf
../../books/c4157215.pdf
../dm/rbal3mst02.htm
../dbp/rbafomst02.htm
../ddp/rbal1mst02.htm
../../books/c4153026.pdf
../sqlp/rbafymst02.htm
../rzajp/rzajpmst02.htm
../rzajq/rzajqmst02.htm
../../books/c4157040.pdf
../cli/rzadpmst02.htm

v Client Access Express category in the iSeries
Information Center
This information describes how to set up and
run ODBC applications on a client using Client
Access ODBC. Included in this document are
chapters on performance, examples, and
configuring specific applications to run with
Client Access ODBC.

v IBM Toolbox for Java
This book describes how to set up and run
JDBC applications on a client using IBM
Toolbox for Java. Included in this document are
chapters on performance, examples, and
configuring specific applications to run with
IBM Toolbox for Java.

v IBM Developer Kit for Java
This information provides the details you need
to design, write, test, and maintain JAVA
programs on the iSeries system. The book also
contains information on the IBM Developer Kit
for Java JDBC driver.

v DB2 Multisystem
This book describes the fundamental concepts
of distributed relational database files,
nodegroups, and partitioning. The book
provides the information you need to create
and use database files that are partitioned
across multiple systems. Information is
provided on how to configure the systems, how
to create the files, and how the files can be
used in applications.

988 DB2 UDB for iSeries SQL Reference V5R2

../rzahgicia.htm
../rzahh/page1.htm
../rzaha/whatitis.htm
../dbmult/rzaf3mst02.htm

Index

Special Characters
- (subtraction) 127
? (question mark)

See parameter marker
/ (divide) 127
’ (apostrophe) 43, 97, 98
″ (quotation mark) 43
* (asterisk) 164, 165

in subselect 325
* (multiply) 127
** (exponentiation) 127
*ALL (read stability) precompiler

option 23
*APOST precompiler option 101
*APOSTSQL precompiler option 101
*CHG (uncommitted read) precompiler

option 23
*CNULRQD precompiler option 83, 631,

742, 755
*CS (cursor stability) precompiler

option 23
*DMY date and time format 68
*EUR date and time format 68, 70
*HMS date and time format 70
*ISO date and time format 68, 70
*JIS date and time format 68, 70
*JUL date and time format 68
*MDY date and time format 68
*NC (no commit) precompiler option 24
*NOCNULRQD precompiler option 82,

83, 631, 742, 755
*NONE (no commit) precompiler

option 24
*PUBLIC

authority 36
*QUOTE precompiler option 101
*QUOTESQL precompiler option 101
*RR (repeatable read) precompiler

option 22
*RS (read stability) precompiler

option 23
*UR (uncommitted read) precompiler

option 23
*USA date and time format 68, 70
*YMD date and time format 68
|| (concatenation operator) 126
+ (addition) 127

A
ABS function 173
ABSVAL function 173
access plan and packages 13
ACOS function 174
activation group 15

threads 20
ADD check-constraint clause

ALTER TABLE statement 375
ADD COLUMN clause

in ALTER TABLE statement 364

ADD unique-constraint clause
ALTER TABLE statement 372

AFTER clause
in FETCH statement 627

alias
description 56
dropping 613

ALIAS clause
COMMENT statement 395
CREATE ALIAS statement 411
DROP statement 613
LABEL statement 665

alias-name
description 45
in CREATE ALIAS statement 411
in DROP statement 613
in LABEL statement 665

ALL clause
clause of subselect 325
DISCONNECT statement 607
GRANT (Distinct Type Privileges)

statement 634
GRANT (function or procedure

privileges) statement 639
GRANT (package privileges)

statement 644
in USING clause

DESCRIBE statement 601
DESCRIBE TABLE statement 606
PREPARE statement 676

keyword
AVG function 163
COUNT function 164
COUNT_BIG function 165
MAX function 167
MIN function 168
STDDEV function 169
STDDEV_POP function 169
SUM function 170
VAR function 171
VAR_POP function 171
VARIANCE function 171

quantified predicate 143
RELEASE statement 684
REVOKE (Distinct Type Privileges)

statement 689
REVOKE (function or procedure

privileges) statement 693
REVOKE (package privileges)

statement 697
REVOKE (table privileges)

statement 699
ALL PRIVILEGES clause

GRANT (Distinct Type Privileges)
statement 634

GRANT (function or procedure
privileges) statement 639

GRANT (package privileges)
statement 644

GRANT (table privileges)
statement 647

ALL PRIVILEGES clause (continued)
REVOKE (Distinct Type Privileges)

statement 689
REVOKE (function or procedure

privileges) statement 693
REVOKE (package privileges)

statement 697
REVOKE (table privileges)

statement 699
ALL SQL clause

DISCONNECT statement 607
RELEASE statement 684

ALLOCATE clause
CREATE TABLE statement 517

ALLOW READ clause
in LOCK TABLE statement 667

ALTER clause
GRANT (Distinct Type Privileges)

statement 635
GRANT (function or procedure

privileges) statement 640
GRANT (package privileges)

statement 644
GRANT (table privileges)

statement 648
REVOKE (Distinct Type Privileges)

statement 689
REVOKE (function or procedure

privileges) statement 694
REVOKE (package privileges)

statement 697
REVOKE (table privileges)

statement 700
ALTER COLUMN clause

ALTER TABLE statement 370
ALTER TABLE statement 357, 379
ALWBLK clause

in SET OPTION statement 719
ALWCPYDTA clause

in SET OPTION statement 720
ambiguous reference 108
AND

truth table 155
ANTILOG function 175
ANY clause

in USING clause
DESCRIBE statement 601
DESCRIBE TABLE statement 605
PREPARE statement 675

quantified predicate 143
application process 15
application program

SQLCA 803
C 808
COBOL 809
FORTRAN 809
ILE RPG/400 811
PL/I 810
RPG/400 810

SQLDA
C 822

© Copyright IBM Corp. 1998, 2002 989

application program (continued)
SQLDA (continued)

COBOL 824
description 813
ILE COBOL 824
ILE RPG/400 826
PL/I 825

application requester 24, 848
application server 24
application-directed distributed unit of

work 28
arithmetic operators 127
ARRAY clause

SET RESULT SETS statement 731
AS clause 340

clause of subselect 325
CREATE VIEW statement 553
FROM clause of UPDATE 746
in FROM clause of DELETE 596

AS LOCATOR clause
CREATE PROCEDURE

(External) 486
in CREATE FUNCTION (External

Scalar) 428, 429
in CREATE FUNCTION (External

Table) 444, 445
in CREATE FUNCTION

(Sourced) 457
in DECLARE PROCEDURE

statement 583
AS subquery clause

in CREATE TABLE statement 526
in DECLARE GLOBAL TEMPORARY

TABLE statement 575
ASC clause

CREATE INDEX statement 479
of select-statement 341

ASIN function 176
assignment

binary strings 81
character strings 82
conversion rules 83
DataLink 84
date and time values 83
distinct type 86
graphic strings 82
numbers 80, 81
Row ID 86
strings 81

asterisk (*)
in COUNT function 164
in COUNT_BIG function 165
in subselect 325

ATAN2 function 179
ATANH function 178
authorization

description 35
privileges 36

authorization ID
description 57

authorization-name
definition 45
description 58
in CONNECT (Type 1) statement 403
in CONNECT (Type 2) statement 408
in CREATE SCHEMA statement 503

authorization-name (continued)
in GRANT (Distinct Type Privileges)

statement 635
in GRANT (function or procedure

privileges) statement 642
in GRANT (package privileges)

statement 645
in GRANT (table privileges)

statement 649
in REVOKE (Distinct Type Privileges)

statement 690
in REVOKE (function or procedure

privileges) statement 696
in REVOKE (package privileges)

statement 698
in REVOKE (table privileges)

statement 700
AVG function 163

B
base table 5
basic operations in SQL 78
basic predicate 142
BEFORE clause

in FETCH statement 627
BEGIN DECLARE SECTION

statement 381, 382
BETWEEN predicate 145
bibliography 987
big integers 66
BIGINT

data type for CREATE FUNCTION
(External Scalar) 428

data type for CREATE FUNCTION
(External Table) 444

data type for CREATE FUNCTION
(Sourced) 456

data type for CREATE FUNCTION
(SQL Scalar) 464

data type for CREATE FUNCTION
(SQL Table) 472

data type for CREATE PROCEDURE
(External) 485

data type for CREATE PROCEDURE
(SQL) 497

data type for CREATE TABLE 514
data type for DECLARE

PROCEDURE 583
BIGINT data type 66
BIGINT function 180
binary data string

constants 97
binary large object (BLOB)

data type 64
description 64

binary string
assignment 81
description 61

bind 3
bit data 62
BLOB

data type 61, 64
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444

BLOB (continued)
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(External) 485
data type for CREATE PROCEDURE

(SQL) 497
data type for CREATE TABLE 516
DECLARE PROCEDURE

statement 583
description 64

BLOB function 181
BOTH clause

in USING clause
DESCRIBE statement 601
DESCRIBE TABLE statement 605
PREPARE statement 676

built-in data type
CREATE DISTINCT TYPE

statement 416
built-in function 119

See function
built-in-type

description 514
in CREATE TABLE 514

buit-in-type
in DECLARE GLOBAL TEMPORARY

TABLE statement 570

C
C

application program
host variable 116

host structure arrays 118
host variable 111
SQLCA (SQL communication

area) 808
SQLDA (SQL descriptor area) 822

CACHE clause
in ALTER TABLE statement 368, 371

call level interface (CLI) 4
CALL statement 383, 387
calling

procedures, external 383
CASCADE clause

DROP statement 616, 617, 618
in DROP COLUMN of ALTER TABLE

statement 372
in DROP constraint of ALTER TABLE

statement 376
CASCADE delete rule

description 8
in ALTER TABLE statement 374
in CREATE TABLE statement 530

CASCADED CHECK OPTION clause
CREATE VIEW statement 553

CASE expression 135
CAST specification 137
cast-function

ALTER TABLE statement 366, 385
CREATE TABLE statement 519

990 DB2 UDB for iSeries SQL Reference V5R2

cast-function (continued)
DECLARE GLOBAL TEMPORARY

TABLE statement 571
catalog 15, 859
catalog table

SYSPARMS 891
SYSROUTINES 902
SYSTYPES 919

catalog view
CHARACTER_SETS 955
CHECK_CONSTRAINTS 956
COLUMNS 957
description 859
INFORMATION_SCHEMA

_CATALOG_NAME 961
PARAMETERS 962
REFERENTIAL_CONSTRAINTS 966
ROUTINES 967
SCHEMATA 975
SQL_FEATURES 976
SQL_LANGUAGES 977
SQL_SIZING 978
SQLCOLPRIVILEGES 928
SQLCOLUMNS 929
SQLFOREIGNKEYS 934
SQLPRIMARYKEYS 935
SQLPROCEDURECOLS 936
SQLPROCEDURES 940
SQLSCHEMAS 941
SQLSPECIALCOLUMNS 942
SQLSTATISTICS 944
SQLTABLEPRIVILEGES 945
SQLTABLES 946
SQLTYPEINFO 947
SQLUDTS 952
SYSCATALOGS 863
SYSCHKCST 865
SYSCOLUMNS 866
SYSCST 875
SYSCSTCOL 876
SYSCSTDEP 877
SYSFUNCS 878
SYSINDEXES 884
SYSJARCONTENTS 885
SYSJAROBJECTS 886
SYSKEYCST 887
SYSKEYS 888
SYSPACKAGE 889
SYSPROCS 895
SYSREFCST 900
SYSROUTINEDEP 901
SYSTABLES 910
SYSTRIGCOL 912
SYSTRIGDEP 913
SYSTRIGGERS 914
SYSTRIGUPD 918
SYSVIEWDEP 924
SYSVIEWS 926
TABLE_CONSTRAINTS 979
TABLES 980
USER_DEFINED_TYPES 981
VIEWS 985

CCSID (coded character set identifier)
default 34
definition 33
specifying

in SQLDATA 821

CCSID (coded character set identifier)
(continued)

specifying (continued)
in SQLNAME 821

values 831, 845
CCSID clause

CREATE FUNCTION (Sourced) 456
CREATE FUNCTION (SQL

Scalar) 464
CREATE FUNCTION (SQL

Table) 472
CREATE PROCEDURE

(External) 485
CREATE PROCEDURE (SQL) 497
CREATE TABLE statement 518
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444
DECLARE PROCEDURE

statement 583
DECLARE VARIABLE statement 591

CDRA (Character Data Representation
Architecture) 33

CEILING function 182
CHAR

data type 61
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(External) 485
data type for CREATE PROCEDURE

(SQL) 497
data type for CREATE TABLE 515
data type for DECLARE

PROCEDURE 583
function 183

CHAR_LENGTH function 188
character conversion 31

character set 31
code page 31
code point 32
coded character set 32
encoding scheme 32
substitution character 32

Character Data Representation
Architecture (CDRA) 33

character data string
bit data 62
comparison 88
constants 98
description 61
empty 61
mixed data 62
SBCS data 62

character large object (CLOB)
data type 64
description 64

character set 31

character string
assignment 82

CHARACTER_LENGTH function 188
CHARACTER_SETS view 955
check

ALTER TABLE statement 375
CHECK clause

ALTER TABLE statement 370, 375
CREATE TABLE statement 525, 531

check constraint 9
effect on insert 660
effect on update 749

CHECK OPTION clause
CREATE VIEW statement 553
effect on update 749

CHECK_CONSTRAINTS view 956
check-condition

in CHECK clause of ALTER TABLE
statement 375

CLOB
data type 64
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(External) 485
data type for CREATE PROCEDURE

(SQL) 497
data type for CREATE TABLE 515
DECLARE PROCEDURE

statement 583
description 64

CLOB function 189
CLOSE statement 388, 389
closed state of cursor 672
CLOSQLCSR clause

in SET OPTION statement 720
CNULRQD clause

in SET OPTION statement 721
COALESCE function 193
COBOL

application program
host structure arrays 118
host variable 111, 116
integers 66
varying-length string variables 61

SQLCA (SQL communication
area) 809

SQLDA (SQL descriptor area) 824
code page 31
code point 32
collection

in SQL path 55
collection (see schema)

description 5
column

definition 5
length attribute 61
name

in a result 326

Index 991

column (continued)
name (continued)

qualified 105
rules 338
system column name 6

COLUMN clause
COMMENT statement 395
LABEL statement 665

column function 119
See function

column-name
definition 45
in ADD PRIMARY clause of ALTER

TABLE statement 372
in ADD UNIQUE clause of ALTER

TABLE statement 372
in ALTER TABLE statement 364, 370
in CREATE TABLE statement 514,

528, 529
in CREATE VIEW statement 552
in DECLARE GLOBAL TEMPORARY

TABLE statement 570
in DROP COLUMN of ALTER TABLE

statement 372
in FOREIGN KEY clause of ALTER

TABLE statement 373
in INSERT statement 658
in LABEL statement 665
in REFERENCES clause of ALTER

TABLE statement 373
in UPDATE statement 746

COLUMNS view 957
comment

in catalog table 390
SQL 41, 355

COMMENT statement 390, 399
name qualification 105

COMMIT
effect on SET TRANSACTION 737

COMMIT clause
in SET OPTION statement 721

COMMIT ON RETURN clause
CREATE PROCEDURE

(External) 490
CREATE PROCEDURE (SQL) 499

commit point 399
COMMIT statement 399, 401
commitment definition 16
common table expression clause

of select-statement 339
comparison

compatibility rules 78
conversion rules 88
date and time values 89
distinct type values 90
numbers 87
strings 88

compatibility
data types 78
rules 78

composite key 6
CONCAT (concatenation operator) 126
CONCAT function 194
concatenation operator (CONCAT) 126
concurrency 15

with LOCK TABLE statement 667

CONNECT
differences, type 1 and type 2 857

CONNECT (Type 1) statement 402, 406
CONNECT (Type 2) statement 407, 410
connected state 30
connection

changing with SET
CONNECTION 712

ending 684
releasing 684
SQL 27

connection states
activation group 30
CONNECT (Type 2) statement 27
distributed unit of work 28
remote unit of work 26

constant
DECLARE GLOBAL TEMPORARY

TABLE statement 572
in ALTER TABLE statement 365, 366
in CALL statement 385
in CREATE TABLE statement 520
in LABEL statement 665

constants
binary string 97
character string 98
decimal 97
floating point 97
graphic string 99
hexadecimal 97, 98
integer 97
UCS-2 100

CONSTRAINT clause
in ALTER TABLE statement 369, 372,

373, 375
in CREATE TABLE statement 524,

528, 529, 530
constraint-name

description 45
in ALTER TABLE statement 369, 372,

375
in CONSTRAINT clause of ALTER

TABLE statement 373
in CREATE TABLE statement 524,

528, 529, 530
in DROP CHECK clause of ALTER

TABLE statement 376
in DROP CONSTRAINT clause of

ALTER TABLE statement 376
in DROP FOREIGN KEY clause of

ALTER TABLE statement 375
in DROP UNIQUE clause of ALTER

TABLE statement 375
CONTAINS SQL clause

CREATE PROCEDURE
(External) 489

in CREATE FUNCTION (External
Scalar) 431

in CREATE FUNCTION (External
Table) 446

in CREATE FUNCTION (SQL
Scalar) 465

in CREATE FUNCTION (SQL
Table) 473

in CREATE PROCEDURE (SQL) 498
in DECLARE PROCEDURE 585

CONTINUE clause
WHENEVER statement 756

control characters 41
conversion of numbers

conversion rule for comparisons 83
scale and precision 80

correlated reference 108
correlation name

defining 105
description 46
FROM clause

of subselect 330
qualifying a column name 105

correlation-name
in DELETE statement 596
in UPDATE statement 746

COS function 195
COSH function 196
COT function 197
COUNT function 164
COUNT_BIG function 165
CREATE ALIAS statement 13, 411, 413
CREATE DISTINCT TYPE

statement 414, 420
CREATE FUNCTION (External Scalar)

statement 424
CREATE FUNCTION (External Table)

statement 440
CREATE FUNCTION (Sourced)

statement 454
CREATE FUNCTION (SQL Scalar)

statement 461
CREATE FUNCTION (SQL Table)

statement 469
CREATE INDEX statement 477, 480

*PUBLIC authority 36
CREATE PROCEDURE (External) 492
CREATE PROCEDURE (External)

statement 482
CREATE PROCEDURE (SQL)

statement 493, 501
CREATE SCHEMA statement 502, 506
CREATE TABLE statement 507, 537

*PUBLIC authority 36
CREATE TRIGGER statement 538
CREATE VIEW statement 12, 551, 557

*PUBLIC authority 36
CROSS JOIN clause

in FROM clause 333
CS (cursor stability) 23
CURDATE function 198
CURRENT clause

in DISCONNECT statement 607
in FETCH statement 627
in RELEASE statement 684

current connection state 29
CURRENT DATE special register 102
current path special register 729

SET PATH 729
SET SCHEMA 734

CURRENT PATH special register 102
CURRENT SCHEMA special

register 103
CURRENT SERVER special register 103
CURRENT TIME special register 103
CURRENT TIMESTAMP special

register 104

992 DB2 UDB for iSeries SQL Reference V5R2

CURRENT TIMEZONE special
register 104

CURRENT_DATE
ALTER TABLE statement 365, 366
CREATE TABLE statement 519, 520
DECLARE GLOBAL TEMPORARY

TABLE statement 571, 572
CURRENT_DATE special register 102
CURRENT_PATH special register 102
CURRENT_SERVER special register 103
CURRENT_TIME

ALTER TABLE statement 365, 366
CREATE TABLE statement 519, 520
DECLARE GLOBAL TEMPORARY

TABLE statement 571, 572
CURRENT_TIME special register 103
CURRENT_TIMESTAMP

ALTER TABLE statement 366, 367
CREATE TABLE statement 519, 520
DECLARE GLOBAL TEMPORARY

TABLE statement 571, 572
CURRENT_TIMESTAMP special

register 104
CURRENT_TIMEZONE special

register 104
cursor

active set 669
closed by error

FETCH statement 630
UPDATE 749

closed state 672
closing 388
current row 630
defining 558
deletable 561
moving position 626
positions for open 630
preparing 669
read-only 561
updatable 561

cursor stability 23
cursor-name

description 46
in CLOSE statement 388
in DECLARE CURSOR

statement 559
in DELETE statement 596
in FETCH statement 628
in OPEN statement 669
in SET RESULT SETS statement 731
in UPDATE statement 748

CURTIME function 199
CYCLE clause

in ALTER TABLE statement 368, 371

D
data access indication 847
DATA DICTIONARY clause

CREATE SCHEMA statement 503
data representation

in DRDA 31
data type

binary large object (BLOB) 64
binary string 61
character large object (CLOB) 64
character string 61

data type (continued)
DataLink 71
datetime 66
description 59, 514
distinct types 73
double-byte character large object

(DBCLOB) 64
in SQLDA 813
large object (LOB) 64
numeric 65
result columns 327
Row ID 72
user-defined types (UDTs) 73

data-type 429, 445, 457, 464, 472
CREATE PROCEDURE

(External) 485
in ALTER TABLE 364
in ALTER TABLE statement 364, 370
in CAST specification 139
in CREATE FUNCTION (External

Scalar) 429
in CREATE FUNCTION (External

Table) 445
in CREATE FUNCTION

(Sourced) 456, 457
in CREATE FUNCTION (SQL

Scalar) 464
in CREATE FUNCTION (SQL

Table) 472
in CREATE PROCEDURE (SQL) 497
in CREATE TABLE 514
in DECLARE GLOBAL TEMPORARY

TABLE statement 570
in DECLARE PROCEDURE

statement 583
database manager limits 801
DataLink

assignment 84
data type

description 71
limits 801

DATALINK
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(SQL) 497
data type for CREATE TABLE 517
DECLARE PROCEDURE

statement 583
datalink-options

in ALTER TABLE statement 369
in CREATE TABLE statement 523
in DECLARE GLOBAL TEMPORARY

TABLE statement 574
date

duration 130
strings 68

DATE
arithmetic operations 131
assignment 84
data type 67
data type for CREATE TABLE 517
function 200

date and time 67
arithmetic operations 131, 134
assignments 83
comparisons 89
data types

string representation 68
default date format 69, 100
default time format 70
format 184

day/month/year 68
EUR 68, 70
hours/minutes/seconds 70
ISO 68, 70
JIS 68, 70
Julian 68
month/day/year 68
unformatted Julian 68
USA 68, 70
year/month/day 68

datetime
data types

description 66
limits 800

DATFMT clause
in SET OPTION statement 721

DATSEP clause
in SET OPTION statement 722

DAY function 202
DAYOFMONTH function 203
DAYOFWEEK function 204
DAYOFWEEK_ISO function 205
DAYOFYEAR function 206
DAYS function 207
DB2GENERAL clause

CREATE PROCEDURE
(External) 487

DECLARE PROCEDURE
(External) 587

in CREATE FUNCTION (External
Scalar) 435

in CREATE FUNCTION (External
Table) 451

DB2SQL clause
CREATE PROCEDURE

(External) 487
DECLARE PROCEDURE

(External) 587
in CREATE FUNCTION (External

Scalar) 436
in CREATE FUNCTION (External

Table) 451
DBCLOB

data type 64
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(External) 485
data type for CREATE PROCEDURE

(SQL) 497

Index 993

DBCLOB (continued)
data type for CREATE TABLE 516
DECLARE PROCEDURE

statement 583
description 64
function 208

DBCS (double-byte character set)
description 64
truncated during assignment 83

DBGVIEW clause
in SET OPTION statement 722

decimal
constants 97
data type 66
numbers 66

DECIMAL
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(External) 485
data type for CREATE PROCEDURE

(SQL) 497
data type for CREATE TABLE 514
data type for DECLARE

PROCEDURE 583
decimal data

arithmetic 129
DECIMAL function 210
decimal point 100
declaration

inserting into a program 654
DECLARE CURSOR statement 558, 560,

564
DECLARE GLOBAL TEMPORARY

TABLE statement 565, 579
DECLARE PROCEDURE statement 580,

588
DECLARE STATEMENT statement 589,

590
DECLARE statements

BEGIN DECLARE SECTION
statement 381

END DECLARE SECTION
statement 620

DECLARE VARIABLE statement 591,
593

DECMPT clause
in SET OPTION statement 723

DEFAULT
in SET transition-variable

statement 740
in UPDATE statement 747

DEFAULT clause
ALTER TABLE statement 364
CREATE TABLE statement 518
in DECLARE GLOBAL TEMPORARY

TABLE statement 570
in INSERT statement 659

default date format 67, 69, 100

default schema
name qualification 52, 53

default time format 67, 70
DEGREES function 212
DELETE clause

GRANT (table privileges)
statement 648

in ON DELETE clause of ALTER
TABLE statement 374

in ON DELETE clause of CREATE
TABLE statement 530

REVOKE (table privileges)
statement 700

delete rules
referential constraint 9
referential integrity 596
triggers 596

DELETE statement 594, 599
delete-connected table 9
deleting SQL objects 609
delimited identifier 43

in system names 43
dependent row 7
dependent table 7
derived table 329
DESC clause

CREATE INDEX statement 479
of select-statement 341

descendent row 7
descendent table 7
DESCRIBE statement 600, 603

variables
SQLD 601
SQLDABC 601
SQLDAID 600
SQLN 600
SQLVAR 601

DESCRIBE TABLE statement 604, 607
description 607
variables

SQLD 605
SQLDABC 605
SQLDAID 605
SQLN 604
SQLVAR 605

descriptor-name
description 46
in CALL statement 386
in DESCRIBE statement 600
in EXECUTE statement 621
in FETCH statement 628
in OPEN statement 670
in PREPARE statement 675

designator
table 107, 281

DETERMINISTIC clause
CREATE PROCEDURE

(External) 489
in CREATE FUNCTION (External

Scalar) 430
in CREATE FUNCTION (External

Table) 446
in CREATE FUNCTION (SQL

Scalar) 465
in CREATE FUNCTION (SQL

Table) 473
in CREATE PROCEDURE (SQL) 498

DETERMINISTIC clause (continued)
in DECLARE PROCEDURE 584

DFTRDBCOL clause
in SET OPTION statement 723

DIFFERENCE function 213
DIGITS function 214
DISCONNECT statement 607, 608

DISCONNECT 608
disconnecting SQL objects 607
DISTINCT

AVG function 163
COUNT function 164
COUNT_BIG function 165
MAX function 167
MIN function 168
STDDEV function 169
STDDEV_POP function 169
SUM function 170
VAR function 171
VARIANCE function 171
VARPOP function 171

DISTINCT clause
subselect 325

distinct type
assignment 86
comparisons 90

DISTINCT TYPE clause 390
COMMENT statement 390, 395

distinct types
data types

description 73
distinct-type

data type for CREATE FUNCTION
(External Scalar) 428

data type for CREATE FUNCTION
(External Table) 444

data type for CREATE FUNCTION
(Sourced) 456

data type for CREATE FUNCTION
(SQL Scalar) 464

data type for CREATE FUNCTION
(SQL Table) 472

data type for CREATE PROCEDURE
(External) 485

data type for CREATE PROCEDURE
(SQL) 497

data type for CREATE TABLE 517
DECLARE PROCEDURE

statement 583
distinct-type-name

description 46
in CREATE DISTINCT TYPE

statement 415
in DROP statement 617
in REVOKE (Distinct Type Privileges)

statement 689
distributed data

CONNECT statement 857
distributed relational database

application requester 24
application server 24
application-directed distributed unit

of work 28
considerations for using 848, 850,

852, 854, 856
data representation considerations 31
distributed unit of work 28

994 DB2 UDB for iSeries SQL Reference V5R2

distributed relational database (continued)
isolation level 24
remote unit of work 26
server 24
use of extensions to IBM SQL on

unlike servers 848, 850, 852, 854,
856

distributed relational database
architecture (DRDA) 24

distributed tables
definition 6
syntax 531

distributed unit of work
mixed environment 845

division by zero 136
division operator 127
DLCOMMENT function 215
DLLINKTYPE function 216
DLURLCOMPLETE function 217
DLURLPATH function 218
DLURLPATHONLY function 219
DLURLSCHEME function 220
DLURLSERVER function 221
DLVALUE function 222

in INSERT statement 385
DLYPRP clause

in SET OPTION statement 723
dormant connection state 29
DOUBLE

function 224
DOUBLE PRECISION

data type for CREATE FUNCTION
(External Scalar) 428

data type for CREATE FUNCTION
(External Table) 444

data type for CREATE FUNCTION
(Sourced) 456

data type for CREATE FUNCTION
(SQL Scalar) 464

data type for CREATE FUNCTION
(SQL Table) 472

data type for CREATE PROCEDURE
(External) 485

data type for CREATE PROCEDURE
(SQL) 497

data type for CREATE TABLE 515
data type for DECLARE

PROCEDURE 583
DOUBLE_PRECISION function 224
double-byte character

in COMMENT statement 398
in LIKE predicates 150
truncated during assignment 82

double-byte character large object
(DBCLOB)

data type 64
description 64

double-byte character set (DBCS)
truncated during assignment 83

double-precision floating point 66
DRDA (Distributed Relational Database

Architecture) 24
DROP CHECK clause

ALTER TABLE statement 376
DROP COLUMN clause

ALTER TABLE statement 371

DROP CONSTRAINT clause
ALTER TABLE statement 376

DROP DEFAULT clause
ALTER TABLE statement 371

DROP FOREIGN KEY clause
ALTER TABLE statement 375

DROP IDENTITY clause
ALTER TABLE statement 371

DROP NOT NULL clause
ALTER TABLE statement 371

DROP PRIMARY KEY clause
ALTER TABLE statement 375

DROP statement 609, 619
DROP UNIQUE clause

ALTER TABLE statement 375
duplicate rows with UNION 337
duration

date 130
labeled 130
time 130
timestamp 130

DYNAMIC SCROLL clause
in DECLARE CURSOR

statement 559
dynamic select 354
dynamic SQL

defined 352
description 3
execution

EXECUTE IMMEDIATE
statement 624

EXECUTE statement 621
in USING clause of DESCRIBE

statement 600
obtaining statement information with

DESCRIBE 600
DESCRIBE TABLE 604

preparation and execution 353
PREPARE statement 674
SQLDA (SQL descriptor area) 813
statements allowed 845
use of SQL path 55

DYNDFTCOL clause
in SET OPTION statement 724

DYNUSRPRF clause
in SET OPTION statement 724

E
Embedded SQL for Java (SQLJ) 4
empty character string 61
ENCODED VECTOR clause

CREATE INDEX statement 478
encoding scheme 32
END DECLARE SECTION

statement 620
ending

unit of work 399, 702
error

closes cursor 672
during UPDATE 749
FETCH statement 630

escape character in SQL
delimited identifier 43

ESCAPE clause of LIKE predicate 151
evaluation order 134

EVENTF clause
in SET OPTION statement 724

EXCLUDING clause
in CREATE TABLE statement 527
in DECLARE GLOBAL TEMPORARY

TABLE statement 576
EXCLUSIVE

ALLOW READ clause
LOCK TABLE statement 667

IN EXCLUSIVE MODE clause
LOCK TABLE statement 667

exclusive locks 22
EXCLUSIVE MODE clause

in LOCK TABLE statement 667
executable statement 352
EXECUTE clause

GRANT (function or procedure
privileges) statement 640

GRANT (package privileges)
statement 645

REVOKE (function or procedure
privileges) statement 694

REVOKE (package privileges)
statement 697

EXECUTE IMMEDIATE statement 624,
625

EXECUTE statement 621, 623
EXISTS predicate 146
EXP function 225
exponentiation operator 127
exposed name 329
expression

CASE expression 135
CAST specification 137
date and time operands 130
decimal operands 128
distinct type operands 129
floating-point operands 129
grouping 334
in INSERT statement 659
in statement 739, 742
in subselect 325
in UPDATE statement 747
in VALUES INTO statement 754
in VALUES statement 752
integer operands 128
numeric operands 128
precedence of operation 134
with arithmetic operators 127
with concatenation operator 126
without operators 126

extended dynamic SQL
description 4

external
function 424, 440

EXTERNAL clause
CREATE PROCEDURE

(External) 488
in CREATE FUNCTION (External

Scalar) 434
in CREATE FUNCTION (External

Table) 450
in DECLARE PROCEDURE 586

EXTERNAL NAME clause
CREATE PROCEDURE

(External) 488

Index 995

EXTERNAL NAME clause (continued)
in CREATE FUNCTION (External

Scalar) 434
in CREATE FUNCTION (External

Table) 450
in DECLARE PROCEDURE 586

external-program-name
description 46

F
FETCH FIRST clause

of select-statement 341
FETCH statement 626, 632
fetch-first-clause 341
file reference

variable 114, 115
FIRST clause

in FETCH statement 627
FLOAT

data type for CREATE FUNCTION
(External Scalar) 428

data type for CREATE FUNCTION
(External Table) 444

data type for CREATE FUNCTION
(Sourced) 456

data type for CREATE FUNCTION
(SQL Scalar) 464

data type for CREATE FUNCTION
(SQL Table) 472

data type for CREATE PROCEDURE
(External) 485

data type for CREATE PROCEDURE
(SQL) 497

data type for CREATE TABLE 515
data type for DECLARE

PROCEDURE 583
FLOAT function 226
floating point

constants 97
numbers 66

FLOOR function 227
FOR BIT DATA clause

CREATE FUNCTION (External
Scalar) 428

CREATE FUNCTION (External
Table) 444

CREATE FUNCTION (Sourced) 456
CREATE FUNCTION (SQL

Scalar) 464
CREATE FUNCTION (SQL

Table) 472
CREATE PROCEDURE

(External) 485
CREATE PROCEDURE (SQL) 497
CREATE TABLE statement 518
DECLARE PROCEDURE

statement 583
DECLARE VARIABLE statement 591

FOR clause
CREATE ALIAS statement 411

FOR COLUMN clause
ALTER TABLE statement 364
CREATE TABLE statement 514
CREATE VIEW statement 552
in DECLARE GLOBAL TEMPORARY

TABLE statement 570

FOR FETCH ONLY clause
of select-statement 342

FOR MIXED DATA clause
CREATE FUNCTION (External

Scalar) 428
CREATE FUNCTION (External

Table) 444
CREATE FUNCTION (Sourced) 456
CREATE FUNCTION (SQL

Scalar) 464
CREATE FUNCTION (SQL

Table) 472
CREATE PROCEDURE

(External) 485
CREATE PROCEDURE (SQL) 497
CREATE TABLE statement 518
DECLARE PROCEDURE

statement 583
DECLARE VARIABLE statement 591

FOR READ ONLY clause
of select-statement 342

FOR ROWS clause
FETCH statement 628
SET RESULT SETS statement 731

FOR SBCS DATA clause
CREATE FUNCTION (External

Scalar) 428
CREATE FUNCTION (External

Table) 444
CREATE FUNCTION (Sourced) 456
CREATE FUNCTION (SQL

Scalar) 464
CREATE FUNCTION (SQL

Table) 472
CREATE PROCEDURE

(External) 485
CREATE PROCEDURE (SQL) 497
CREATE TABLE statement 518
DECLARE PROCEDURE

statement 583
DECLARE VARIABLE statement 591

FOR UPDATE OF clause
of select-statement 342

foreign key 7
FOREIGN KEY clause

of ALTER TABLE statement 373
of CREATE TABLE statement 529

FORTRAN
SQLCA (SQL communication

area) 809
FREE LOCATOR statement 633
FROM clause

correlation clause 328
correlation-clause 595
DELETE statement 595
joined-table 331
nested table expression 328
of subselect 328
PREPARE statement 676
REVOKE (Distinct Type Privileges)

statement 690
REVOKE (function or procedure

privileges) statement 696
REVOKE (package privileges)

statement 697
REVOKE (table privileges)

statement 700

FROM clause (continued)
table reference 328

fullselect 337
used in CREATE VIEW

statement 553
function 172

best fit 121
built-in 119
column 119, 162

AVG 163
COUNT 164
COUNT_BIG 165
MAX 167
MIN 168
STDDEV 169
STDDEV_POP 169
SUM 170
VAR 171
VAR_POP 171
VARIANCE 171

creating 421, 424, 440, 454, 461, 469
description 157
dropping 614
extending a built-in function 423
external 119, 424, 440
input parameters 422
invocation 123
locators 422
name restrictions 421
nesting 172
overriding a built-in function 423
resolution 120
scalar 119, 172

ABS 173
ABSVAL 173
ACOS 174
ANTILOG 175
ASIN 176
ATAN 177
ATAN2 179
ATANH 178
BIGINT 180
BLOB 181
CEILING 182
CHAR 183
CHAR_LENGTH 188
CHARACTER_LENGTH 188
CLOB 189
COALESCE 193
CONCAT 194
COS 195
COSH 196
COT 197
CURDATE 198
CURTIME 199
DATE 200
DAY 202
DAYOFMONTH 203
DAYOFWEEK 204
DAYOFWEEK_ISO 205
DAYOFYEAR 206
DAYS 207
DBCLOB 208
DECIMAL 210
DEGREES 212
DIFFERENCE 213
DIGITS 214

996 DB2 UDB for iSeries SQL Reference V5R2

function (continued)
scalar (continued)

DLCOMMENT 215
DLLINKTYPE 216
DLURLCOMPLETE 217
DLURLPATH 218
DLURLPATHONLY 219
DLURLSCHEME 220
DLURLSERVER 221
DLVALUE 222
DOUBLE 224
DOUBLE_PRECISION 224
EXP 225
FLOAT 226
FLOOR 227
GRAPHIC 228
HASH 231
HEX 232
HOUR 233
IDENTITY_VAL_LOCAL 234
IFNULL 238
INTEGER 239
JULIAN_DAY 241
LAND 242
LCASE 243
LEFT 244
LENGTH 246
LN 248
LNOT 249
LOCATE 250
LOG 251
LOG10 251
LOR 252
LOWER 253
LTRIM 254
MAX 255
MICROSECOND 257
MIDNIGHT_SECONDS 258
MIN 259
MINUTE 261
MOD 262
MONTH 264
NODENAME 265
NODENUMBER 266
NOW 267
NULLIF 268
PARTITION 269
PI 270
POSITION 271
POSSTR 271
POWER 273
QUARTER 274
RADIANS 275
RAND 276
REAL 277
ROUND 278
ROWID 280
RRN 281
RTRIM 282
SECOND 283
SIGN 284
SIN 285
SINH 286
SMALLINT 287
SOUNDEX 288
SPACE 289
SQRT 290

function (continued)
scalar (continued)

STRIP 291
SUBSTR (or SUBSTRING) 292
TAN 295
TANH 296
TIME 297
TIMESTAMP 298
TIMESTAMPDIFF 300
TRANSLATE 301
TRIM 303
TRUNCATE 305
UCASE 307
UPPER 308
VALUE 309
VARCHAR 310
VARGRAPHIC 314
WEEK 317
WEEK_ISO 318
XOR 319
YEAR 320
ZONED 321

signature 422
sourced 119, 454
specific name 423
SQL 119, 461, 469
table 120
types 119
user-defined 119

FUNCTION clause 390
COMMENT statement 390, 395
DROP statement 613
GRANT (function or procedure

privileges) statement 640
REVOKE (function or procedure)

statement 694
function reference

syntax 120
function resolution 55
function-name

description 47
in CREATE FUNCTION (External

Scalar) 428
in CREATE FUNCTION (External

Table) 444
in CREATE FUNCTION

(Sourced) 456
in CREATE FUNCTION (SQL

Scalar) 464
in CREATE FUNCTION (SQL

Table) 472
in DROP statement 613

functions
description 119

G
GENERAL clause

CREATE PROCEDURE
(External) 487

DECLARE PROCEDURE
(External) 587

in CREATE FUNCTION (External
Scalar) 435

GENERAL WITH NULLS clause
CREATE PROCEDURE

(External) 487

GENERAL WITH NULLS clause
(continued)

DECLARE PROCEDURE
(External) 587

in CREATE FUNCTION (External
Scalar) 436

GENERATED
in ALTER TABLE statement 367
in CREATE TABLE statement 520
in DECLARE GLOBAL TEMPORARY

TABLE statement 572
GET DIAGNOSTICS statement 777, 779

description 779
GO TO clause

WHENEVER statement 756
GRANT (Distinct Type Privileges)

statement 634, 636
GRANT (function or procedure

privileges) statement 637, 643
GRANT (package privileges)

statement 644, 646
GRANT (table privileges) statement 647,

648, 651
GRAPHIC

data type for CREATE FUNCTION
(External Scalar) 428

data type for CREATE FUNCTION
(External Table) 444

data type for CREATE FUNCTION
(Sourced) 456

data type for CREATE FUNCTION
(SQL Scalar) 464

data type for CREATE FUNCTION
(SQL Table) 472

data type for CREATE PROCEDURE
(External) 485

data type for CREATE PROCEDURE
(SQL) 497

data type for CREATE TABLE 516
data type for DECLARE

PROCEDURE 583
function 228

graphic constant
hexadecimal 99

graphic string
assignment 82
constants 99
definition 63

GROUP BY clause
of subselect 333
results with subselect 326

H
HASH function 231
HASHING

in CREATE TABLE statement 532
HAVING clause

of subselect 335
results with subselect 326

held connection state 29
HEX function 232
hexadecimal constants 97, 98
HOLD clause 560

COMMIT statement 399
ROLLBACK statement 703

HOLD LOCATOR statement 652, 653

Index 997

host identifier 44
host structure

description 116
host structure arrays

description 118
host variable

DECLARE VARIABLE statement 591
description 48, 111
in CALL statement 385
indicator variable 112
LOB file reference 115
LOB locator 114
statement string 624
substitution for parameter

markers 621
host-identifier

in host variable 48
host-label

description 48
in WHENEVER statement 756

host-structure-array
in FETCH statement 629
in INSERT statement 660
in SET RESULT SETS statement 731

host-variable
in CALL statement 384, 385
in CONNECT (Type 1)

statement 402, 403
in CONNECT (Type 2)

statement 407, 408
in DECLARE VARIABLE

statement 591
in DESCRIBE TABLE statement 604
in DISCONNECT statement 607
in EXECUTE IMMEDIATE

statement 624
in EXECUTE statement 621
in FETCH statement 628
in FREE LOCATOR statement 633
in HOLD LOCATOR statement 652
in INSERT statement 660
in OPEN statement 670
in PREPARE statement 676
in RELEASE statement 684
in SELECT INTO statement 710
in SET CONNECTION statement 712
in VALUES INTO statement 754

HOUR function 233

I
identifiers

in SQL
delimited 43
description 43
host 44
ordinary 43
system 43

limits 41, 51, 52, 799
IDENTITY

in ALTER TABLE statement 367
in CREATE TABLE statement 521
in DECLARE GLOBAL TEMPORARY

TABLE statement 572
IDENTITY_VAL_LOCAL function 234
IFNULL function 238

ILE RPG/400
SQLCA (SQL communication

area) 811
SQLDA (SQL descriptor area) 826

IMMEDIATE
EXECUTE IMMEDIATE

statement 624, 625
IN ASP clause

CREATE SCHEMA statement 503
IN clause

CREATE PROCEDURE
(External) 485

DECLARE PROCEDURE
statement 583

in CREATE PROCEDURE (SQL) 497
IN EXCLUSIVE clause

in LOCK TABLE statement 667
IN predicate 147
IN SHARE MODE clause

in LOCK TABLE statement 667
INCLUDE statement 654, 655
INCLUDING clause

in CREATE TABLE statement 527
in DECLARE GLOBAL TEMPORARY

TABLE statement 576
INCREMENT BY clause

ALTER TABLE statement 371
in ALTER TABLE statement 367

index 11
dropping 614, 615

INDEX clause 390
COMMENT statement 390, 396
CREATE INDEX statement 477
DROP statement 614
GRANT (table privileges)

statement 648
RENAME statement 688
REVOKE (table privileges)

statement 700
index-name

description 48
in CREATE INDEX statement 478
in DROP statement 614
in RENAME statement 688

indicator
array 116
variable 116, 624

infix operators 127
INFORMATION_SCHEMA

_CATALOG_NAME view 961
INNER JOIN clause

in FROM clause 332
INOUT clause

CREATE PROCEDURE
(External) 485

DECLARE PROCEDURE
statement 583

in CREATE PROCEDURE (SQL) 497
INSENSITIVE clause

in DECLARE CURSOR
statement 559

INSERT clause
GRANT (table privileges)

statement 648
REVOKE (table privileges)

statement 700
insert rule with referential constraint 8

insert rules
check constraint 660

INSERT statement 656, 663
INTEGER

data type for CREATE FUNCTION
(External Scalar) 428

data type for CREATE FUNCTION
(External Table) 444

data type for CREATE FUNCTION
(Sourced) 456

data type for CREATE FUNCTION
(SQL Scalar) 464

data type for CREATE FUNCTION
(SQL Table) 472

data type for CREATE PROCEDURE
(External) 485

data type for CREATE PROCEDURE
(SQL) 497

data type for CREATE TABLE 514
data type for DECLARE

PROCEDURE 583
integer constants 97
INTEGER data type 66
INTEGER function 239
interactive entry of SQL statements 354
interactive SQL 4
INTO clause

in FETCH statement 628, 629, 630
in PREPARE statement 675
in SELECT INTO statement 710
in VALUES INTO statement 754

INTO DESCRIPTOR clause
FETCH statement 628

INTO keyword
DESCRIBE statement 600
DESCRIBE TABLE statement 604
INSERT statement 657

IS clause
COMMENT statement 397
LABEL statement 665

isolation level
CS 23
cursor stability 23
description 21
in distributed applications 24
NC 24
no commit 24
read stability

phantom rows 23
repeatable read 22
RR 22
RS 23
set using SET TRANSACTION 736
uncommitted read (UR) 23

ISOLATION LEVEL clause
SET TRANSACTION statement 736

isolation-clause 343
in DELETE statement 596
in INSERT statement 660
in SELECT INTO statement 710
in UPDATE statement 748

J
JAVA clause

CREATE PROCEDURE
(External) 487

998 DB2 UDB for iSeries SQL Reference V5R2

JAVA clause (continued)
DECLARE PROCEDURE

(External) 587
in CREATE FUNCTION (External

Scalar) 436
Java Database Connectivity (JDBC) 4
JOIN clause

in FROM clause 332
JULIAN_DAY function 241

K
KEEP LOCKS 344
key

ALTER TABLE statement 372
composite 6
CREATE TABLE statement 528
foreign 7
parent 7
primary 6
primary index 6
unique 6
unique index 6

L
LABEL statement 664, 666
labeled duration 130
LABELS

in catalog tables 664
in USING clause

DESCRIBE statement 601
DESCRIBE TABLE statement 605
PREPARE statement 675

LAND function 242
LANGID clause

in SET OPTION statement 724
LANGUAGE clause

CREATE PROCEDURE
(External) 486

in CREATE FUNCTION (External
Scalar) 430

in CREATE FUNCTION (External
Table) 445

in CREATE FUNCTION (SQL
Scalar) 465

in CREATE FUNCTION (SQL
Table) 473

in CREATE PROCEDURE (SQL) 497
in DECLARE PROCEDURE

statement 584
large integers 66
large object (LOB)

data type 64
description 64
file reference variable 115
locator 65
locator variable 114

LAST clause
in FETCH statement 627

LCASE function 243
LEFT EXCEPTION JOIN clause

in FROM clause 333
LEFT function 244
LEFT JOIN clause

in FROM clause 332

LEFT OUTER JOIN clause
in FROM clause 332

LENGTH function 246
LIKE clause

in CREATE TABLE statement 525
in DECLARE GLOBAL TEMPORARY

TABLE statement 574
LIKE predicate 149
limits

database manager 801
DataLink 801
datetime 800
identifier 51, 52, 799
in SQL 799
numeric 799
string 800

literals 97
LN function 248
LNOT function 249
LOB

data type 64
description 64
file reference variable 115
locator 65
locator variable 114

LOCAL CHECK OPTION clause
CREATE VIEW statement 554

LOCATE function 250
locator

declaring host variable 114
description 65
FREE LOCATOR statement 633
HOLD LOCATOR statement 652

LOCK TABLE statement 667, 668
locking

COMMIT statement 399
during UPDATE 750
LOCK TABLE statement 667
table spaces 667

locks
exclusive 22
share 22

LOG function 251
LOG10 function 251
logical operator 155
LONG VARCHAR

data type for CREATE TABLE 534
LONG VARGRAPHIC

data type for CREATE TABLE 534
LOR function 252
LOWER function 253
LTRIM function 254

M
MAX

column function 167
scalar function 255

MAXVALUE clause
in ALTER TABLE statement 368, 371

member-name
in INCLUDE statement 654

MESSAGE_LENGTH
GET DIAGNOSTICS statement 778

MESSAGE_OCTET_LENGTH
GET DIAGNOSTICS statement 778

MESSAGE_TEXT
GET DIAGNOSTICS statement 778

MICROSECOND function 257
MIDNIGHT_SECONDS function 258
MIN

column function 168
scalar function 259

MINUTE function 261
MINVALUE clause

in ALTER TABLE statement 368, 371
mixed data

description 62
in LIKE predicates 150
in string assignments 82

MOD function 262
MODE

IN EXCLUSIVE MODE clause
LOCK TABLE statement 667

IN SHARE MODE clause
LOCK TABLE statement 667

MODIFIES SQL DATA clause
CREATE PROCEDURE

(External) 489
in CREATE FUNCTION (External

Scalar) 431
in CREATE FUNCTION (External

Table) 447
in CREATE FUNCTION (SQL

Scalar) 465
in CREATE FUNCTION (SQL

Table) 473
in CREATE PROCEDURE (SQL) 498
in DECLARE PROCEDURE 585

MONTH function 264
multiplication operator 127

N
name

exposed 329
for SQL statements 589
subselect 325

name qualification 52
default schema 52, 53

NAMES
in USING clause

DESCRIBE statement 601
DESCRIBE TABLE statement 605
PREPARE statement 675

NAMING clause
in SET OPTION statement 725

naming conventions in SQL 45
NC (no commit) 24
nested programs 757
nested table expression 329
NEXT clause

in FETCH statement 627
NO ACTION delete rule

in ALTER TABLE statement 374
in CREATE TABLE statement 530

NO ACTION update rule
in ALTER TABLE statement 374
in CREATE TABLE statement 530

NO CACHE clause
in ALTER TABLE statement 368, 371

no commit 24

Index 999

NO COMMIT clause
SET TRANSACTION statement 736

NO CYCLE clause
in ALTER TABLE statement 368, 371

NO ORDER clause
in ALTER TABLE statement 369, 371

NO SQL clause
CREATE PROCEDURE

(External) 489
in CREATE FUNCTION (External

Scalar) 431
in CREATE FUNCTION (External

Table) 446
in DECLARE PROCEDURE 585

nodegroup
definition 6
in CREATE TABLE statement 531

nodegroup-name 48
NODENAME function 265
NODENUMBER function 266
NONE clause

SET RESULT SETS statement 732
nonexecutable statement 352, 353
NOT FOUND clause

WHENEVER statement 756
NOT LOGGED clause

in DECLARE GLOBAL TEMPORARY
TABLE statement 577

NOT NULL clause
ALTER TABLE statement 369
CREATE TABLE statement 524
in DECLARE GLOBAL TEMPORARY

TABLE statement 570
NOW function 267
NUL-terminated string variables

allowed 61
NULL

in CAST specification 139
in SET transition-variable

statement 740
in SET variable statement 742
in UPDATE statement 747
in VALUES INTO statement 754
in VALUES statement 752
keyword SET NULL delete rule

description 8
in ALTER TABLE statement 374
in CREATE TABLE statement 530

keyword SET NULL update rule
in ALTER TABLE statement 374

NULL clause
ALTER TABLE statement 365
in CALL statement 385
in INSERT statement 659

NULL predicate 154
null value in SQL

assignment 79
defined 60
in grouping expressions 334
in result columns 326
specified by indicator variable 112

NULLIF function 268
numbers 65
numeric

assignments 80
comparisons 87
data type 65

numeric (continued)
limits 799

NUMERIC
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(External) 485
data type for CREATE PROCEDURE

(SQL) 497
data type for CREATE TABLE 515
data type for DECLARE

PROCEDURE 583

O
object table 107
ON clause

CREATE INDEX statement 478
ON COMMIT clause

in DECLARE GLOBAL TEMPORARY
TABLE statement 577

ON DISTINCT TYPE clause
REVOKE (Distinct Type Privileges)

statement 689
ON PACKAGE clause

GRANT (package privileges)
statement 645

REVOKE (package privileges)
statement 697

ON ROLLBACK clause
in DECLARE GLOBAL TEMPORARY

TABLE statement 578
ON TABLE clause

GRANT (table privileges)
statement 648

REVOKE (table privileges)
statement 700

ON TYPE clause
GRANT (Distinct Type Privileges)

statement 635
open state of cursor 630
OPEN statement 669, 673
operand

date and time 130
decimal 128
distinct type 129
floating point 129
integer 128
numeric 128

operation
assignment 78, 81, 83, 84
comparison 87, 90
description 78

operators 127
arithmetic 127

OPTIMIZE clause 343
OPTLOB clause

in SET OPTION statement 725

OR
truth table 155

ORDER BY clause
of select-statement 340

ORDER clause
in ALTER TABLE statement 369, 371

order of evaluation 134
ordinary identifier

in SQL 43
in system names 43

OUT clause
CREATE PROCEDURE

(External) 485
DECLARE PROCEDURE

statement 583
in CREATE PROCEDURE (SQL) 497

outer join
See also LEFT OUTER JOIN clause
See RIGHT OUTER JOIN clause

OUTPUT clause
in SET OPTION statement 725

OVRDBF (Override with Data Base
file) 53

ownership 36

P
package

description 13
dropping 614
in DRDA 25

PACKAGE clause 390
COMMENT statement 390
DROP statement 614
LABEL statement 665

package view
SYSPACKAGE 889

package-name 48
in DROP statement 614
in LABEL statement 665
in REVOKE (package privileges)

statement 697
PARAMETER clause

COMMENT statement 396
parameter marker

in EXECUTE statement 621
in OPEN statement 670
in PREPARE statement 677
replacement 622, 670
rules 677
typed 677
untyped 677
usage in expressions, predicates and

functions 677
parameter-marker

in CAST specification 139
parameter-name

CREATE PROCEDURE
(External) 485

description 49
in CREATE PROCEDURE (SQL) 497
in DECLARE PROCEDURE 583

PARAMETERS view 962
parent key 7
parent row 7
parent table 7

1000 DB2 UDB for iSeries SQL Reference V5R2

parentheses
with UNION 337

PARTITION function 269
partitioning key

definition 6
in CREATE TABLE statement 531

password
in CONNECT (Type 1) statement 403
in CONNECT (Type 2) statement 408

path
function resolution 121

PI function 270
PL/I

application program
varying-length string variables 61

host structure arrays 118
host variable 111, 116
SQLCA (SQL communication

area) 810
SQLDA (SQL descriptor area) 825

POSITION function 271
POSSTR function 271
POWER function 273
precedence

level 134
operation 134

precision of a number 65
predicate

basic 142
BETWEEN 145
description 141
EXISTS 146
IN 147
LIKE 149
NULL 154
quantified 143

prefix operator 127
PREPARE statement 674, 683
prepared SQL statement

dynamically prepared by
PREPARE 674, 682

executing 621, 623
identifying by DECLARE 589
obtaining information

by INTO with PREPARE 602, 606
with DESCRIBE 600
with DESCRIBE TABLE 604
with SQLDA 813

statements allowed 845
primary index 6
primary key 6
PRIMARY KEY clause

ALTER TABLE statement 369, 372
CREATE TABLE statement 524, 528

PRIOR clause
in FETCH statement 627

privileges
description 35

procedure
choosing parameter data types 481
creating 481, 482, 493
defining 580
dropping 615
locators 481
RELEASE statement 684
ROLLBACK 702
signature 481

procedure (continued)
specific name 481

PROCEDURE clause 390
COMMENT statement 390
DROP statement 614

procedure-name
CREATE PROCEDURE

(External) 485
description 49
in CALL statement 384
in CREATE PROCEDURE (SQL) 497
in DECLARE PROCEDURE 583
in DROP statement 614

procedures 13
SET CONNECTION statement 712

PUBLIC
authority 36

PUBLIC clause
GRANT (table privileges)

statement 649
in GRANT (Distinct Type Privileges)

statement 635
in GRANT (function or procedure

privileges) statement 642
in GRANT (package privileges)

statement 645
in REVOKE (table privileges)

statement 700
REVOKE (Distinct Type Privileges)

statement 690
REVOKE (function or procedure

privileges) statement 696
REVOKE (package privileges)

statement 698

Q
qualification of column names 105
quantified predicate 143
QUARTER function 274
query 323, 345
question mark (?)

See parameter marker

R
RADIANS function 275
RAND function 276
RDBCNNMTH clause

in SET OPTION statement 725
READ COMMITTED clause

SET TRANSACTION statement 736
read stability 23
READ UNCOMMITTED clause

SET TRANSACTION statement 736
read-only-clause 342
READS SQL DATA clause

CREATE PROCEDURE
(External) 489

in CREATE FUNCTION (External
Scalar) 431

in CREATE FUNCTION (External
Table) 447

in CREATE FUNCTION (SQL
Scalar) 465

READS SQL DATA clause (continued)
in CREATE FUNCTION (SQL

Table) 473
in CREATE PROCEDURE (SQL) 498
in DECLARE PROCEDURE 585

REAL
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(External) 485
data type for CREATE PROCEDURE

(SQL) 497
data type for CREATE TABLE 515
data type for DECLARE

PROCEDURE 583
REAL function 277
recovery 15
REFERENCES clause

ALTER TABLE statement 370, 373
CREATE TABLE statement 525, 529
GRANT (table privileges)

statement 648
REVOKE (table privileges)

statement 700
referential constraint 7
referential cycle 7
referential integrity 7

delete rules 596
update rules 749

REFERENTIAL_CONSTRAINTS
view 966

referential-constraint clause
of ALTER TABLE statement 373
of CREATE TABLE statement 529

related information 987
relational database 1
RELATIVE clause

in FETCH statement 559, 627
RELEASE SAVEPOINT statement 686
RELEASE statement 684, 685
release-pending connection state 29
remote unit of work 26

mixed environment 845
RENAME statement 687, 689
renaming SQL objects 687
repeatable read 22
REPEATABLE READ clause

SET TRANSACTION statement 736
reserved words 43, 829
RESET clause

CONNECT (Type 1) statement 403
CONNECT (Type 2) statement 408

RESTART clause
in ALTER TABLE statement 371

RESTRICT clause
DROP statement 616, 617, 618
in DROP COLUMN of ALTER TABLE

statement 372

Index 1001

RESTRICT clause (continued)
in DROP constraint of ALTER TABLE

statement 376
RESTRICT delete rule

description 8
in ALTER TABLE statement 374
in CREATE TABLE statement 530

RESTRICT update rule
in ALTER TABLE statement 374
in CREATE TABLE statement 530

result columns of subselect 327
RESULT SETS clause

CREATE PROCEDURE
(External) 488

in CREATE PROCEDURE (SQL) 497
in DECLARE PROCEDURE 583

result table 5
temporary 559

RETURN clause 560
RETURN_STATUS

GET DIAGNOSTICS statement 777
RETURNS clause

in CREATE FUNCTION (External
Scalar) 429

in CREATE FUNCTION (External
Table) 444

in CREATE FUNCTION (SQL
Scalar) 464

in CREATE FUNCTION (SQL
Table) 472

REVOKE (Distinct Type Privileges)
statement 689, 690

REVOKE (function or procedure
privileges) statement 691, 696

REVOKE (package privileges)
statement 697, 698

REVOKE (table privileges)
statement 699, 701

REXX
host variable 111

RIGHT EXCEPTION JOIN clause
in FROM clause 333

RIGHT JOIN clause
in FROM clause 332

RIGHT OUTER JOIN clause
in FROM clause 332

rollback
definition 17, 19
description 17, 19

ROLLBACK
effect on SET TRANSACTION 737

ROLLBACK statement 702, 705
ROUND function 278
ROUTINES view 967
row

deleting 594
dependent 7
descendent 7
inserting 656
parent 7
self-referencing 7

ROW clause
in UPDATE statement 747

Row ID
assignment 86
data type

description 72

ROW_COUNT
GET DIAGNOSTICS statement 777

row-storage-area
in FETCH statement 630

row-subselect
in SET transition-variable

statement 740
in SET variable statement 742
in UPDATE statement 748
in VALUES INTO statement 754
in VALUES statement 752

ROWID
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(External) 485
data type for CREATE PROCEDURE

(SQL) 497
data type for CREATE TABLE 517
DECLARE PROCEDURE

statement 583
ROWID function 280
ROWS clause

INSERT statement 660
RPG

application program
host variable 116
varying-length string variables not

allowed 61
host structure arrays 118
host variable 111
integers 66

RPG/400
SQLCA (SQL communication

area) 810
RR (repeatable read) 22
RRN function 281
RS (read stability) 23
RTRIM function 282
rules

names in SQL 45
system name generation 535
table name generation 535

run-time authorization ID 58

S
savepoint

RELEASE SAVEPOINT
statement 686

ROLLBACK statement 702
SAVEPOINT statement 706

SAVEPOINT LEVEL clause
CREATE PROCEDURE

(External) 490
CREATE PROCEDURE (SQL) 499

SAVEPOINT statement 706, 707

savepoint–name
in RELEASE SAVEPOINT

statement 686
in SAVEPOINT statement 706

SBCS data 62
scalar function 119

See function
scalar-subselect 324
scale of data

comparisons in SQL 87
conversion of numbers in SQL 80
determined by SQLLEN variable 816
in results of arithmetic

operations 128
in SQL 66

schema
description 5
dropping 615, 616

SCHEMA clause
DROP statement 615

schema-name
definition 49
in CREATE SCHEMA statement 503
in DROP statement 615

SCHEMATA view 975
SCROLL clause

in DECLARE CURSOR
statement 559

search condition
description 155
in JOIN clause 332
order of evaluation 155
with DELETE 596
with HAVING 335
with UPDATE 748
with WHERE 333

search-condition
in UPDATE statement 748

SECOND function 283
SELECT clause

as syntax component 324
GRANT (table privileges)

statement 648
REVOKE (table privileges)

statement 700
SELECT INTO statement 709, 711
select list

application 326
notation 325

SELECT statement 708
fullselect 337
subselect 324

select-statement
in DECLARE CURSOR

statement 561
used in INSERT statement 659

self-referencing row 7
self-referencing table 7
SERIALIZABLE clause

SET TRANSACTION statement 736
server 24, 848
server-name

description 49
in CONNECT (Type 1) statement 402
in CONNECT (Type 2) statement 407
in DISCONNECT statement 607
in RELEASE statement 684

1002 DB2 UDB for iSeries SQL Reference V5R2

server-name (continued)
in SET CONNECTION statement 712

SET clause
UPDATE statement 746

SET CONNECTION statement 712, 714
SET DATA TYPE clause

ALTER TABLE statement 370
SET DEFAULT delete rule

description 8
in ALTER TABLE statement 374
in CREATE TABLE statement 530

SET DEFAULT update rule
in ALTER TABLE statement 374

SET default-clause
ALTER TABLE statement 371

SET GENERATED ALWAYS clause
ALTER TABLE statement 371

SET GENERATED BY DEFAULT clause
ALTER TABLE statement 371

SET NOT NULL clause
ALTER TABLE statement 371

SET NULL delete rule
description 8
in ALTER TABLE statement 374
in CREATE TABLE statement 530

SET NULL update rule
in ALTER TABLE statement 374

SET OPTION statement 715, 728
SET PATH statement 729
SET RESULT SETS statement 731, 733
SET SCHEMA statement 734
SET TRANSACTION statement 736, 738
SET transition-variable statement 739
SET variable statement 741
SHARE

IN SHARE MODE clause
LOCK TABLE statement 667

share locks 22
SHARE MODE clause

in LOCK TABLE statement 667
shift-in character 83

not truncated by assignments 82
SIGN function 284
SIN function 285
single row select 709
single-byte character

in LIKE predicates 150
single-precision floating-point 66
SINH function 286
small integers 66
SMALLINT

data type for CREATE FUNCTION
(External Scalar) 428

data type for CREATE FUNCTION
(External Table) 444

data type for CREATE FUNCTION
(Sourced) 456

data type for CREATE FUNCTION
(SQL Scalar) 464

data type for CREATE FUNCTION
(SQL Table) 472

data type for CREATE PROCEDURE
(External) 485

data type for CREATE PROCEDURE
(SQL) 497

data type for CREATE TABLE 514

SMALLINT (continued)
data type for DECLARE

PROCEDURE 583
SMALLINT data type 66
SMALLINT function 287
SOME quantified predicate 143
sort sequence 34
SOUNDEX function 288
sourced

function 454
SPACE function 289
special register 102

CURRENT DATE 102
CURRENT PATH 102
CURRENT SCHEMA 103
CURRENT SERVER 103
CURRENT TIME 103
CURRENT TIMESTAMP 104
CURRENT TIMEZONE 104
CURRENT_DATE 102
CURRENT_PATH 102
CURRENT_SERVER 103
CURRENT_TIME 103
CURRENT_TIMESTAMP 104
CURRENT_TIMEZONE 104
in CALL statement 385, 386
USER 104

SPECIFIC clause
COMMENT statement 396, 397
CREATE PROCEDURE

(External) 488
DROP statement 614, 615
GRANT (function or procedure)

statement 641, 642
in CREATE FUNCTION (External

Scalar) 429
in CREATE FUNCTION (External

Table) 445
in CREATE FUNCTION

(Sourced) 459
in CREATE FUNCTION (SQL

Scalar) 465
in CREATE FUNCTION (SQL

Table) 473
in CREATE PROCEDURE (SQL) 498
in DECLARE PROCEDURE 584
REVOKE (function or procedure)

statement 695, 696
specific-name

description 49
in COMMENT statement 396, 397
in CREATE FUNCTION

(Sourced) 459
in DROP statement 614, 615
in GRANT (function or procedure)

statement 641, 642
in REVOKE (function or procedure)

statement 695, 696
SQL

function 461, 469
SQL (structured query language)

dynamic SQL 3
extended dynamic SQL 4
static SQL 3

SQL (Structured Query language)
interactive SQL facility 4

SQL (Structured Query Language) 39,
410, 537, 607, 608, 619, 648, 689, 751, 779

assignment operation 78
assignments and comparisons 78
binary large object (BLOB) 64
binary strings 61
bind 3
call level interface (CLI) 4
character large object (CLOB) 64
character strings 61
characters 39
comparison operation 78
constants 97
data types 59
dates and times 66
double-byte character large object

(DBCLOB) 64
dynamic

statements allowed 845
Embedded SQL for Java (SQLJ) 4
escape character 43
identifiers 43
Java Database Connectivity (JDBC) 4
large object (LOB) 64
limits 799
naming conventions 45
null value 60
numbers 65
Open Database Connectivity

(ODBC) 4
tokens 41
variable names used 45

SQL clause
CREATE PROCEDURE

(External) 486
DECLARE PROCEDURE

(External) 586
in CREATE FUNCTION (External

Scalar) 435
SQL path 55

function resolution 121
SET PATH 729
SET SCHEMA 734

SQL server mode
threads 20

SQL statement
CREATE FUNCTION (Sourced) 454
CREATE FUNCTION (SQL

Table) 469
CREATE PROCEDURE

(External) 482
CREATE PROCEDURE (SQL) 493

SQL statements
ALTER TABLE 357, 379
BEGIN DECLARE SECTION 381,

382
CALL 383, 387
characteristics 845
CLOSE 388, 389
COMMENT 390, 399
COMMIT 399, 401
CONNECT (Type 1) 402, 406
CONNECT (Type 2) 407, 410
CONNECT differences 857
CREATE ALIAS 411, 413
CREATE DISTINCT TYPE 414, 420

Index 1003

SQL statements (continued)
CREATE FUNCTION (External

Scalar) 424
CREATE FUNCTION (External

Table) 440
CREATE FUNCTION (SQL

Scalar) 461
CREATE INDEX 477, 480
CREATE PROCEDURE

(External) 492
CREATE PROCEDURE (SQL) 501
CREATE SCHEMA 502, 506
CREATE TABLE 507, 537
CREATE TRIGGER 538
CREATE VIEW 551, 557
data access indication 847
DECLARE CURSOR 558, 564
DECLARE GLOBAL TEMPORARY

TABLE 565
DECLARE GLOBAL TEMPORARY

TABLE statement 579
DECLARE PROCEDURE 580, 588
DECLARE STATEMENT 589, 590
DECLARE VARIABLE 591, 593
DELETE 594, 599
DESCRIBE 600, 603
DESCRIBE TABLE 604, 607
DISCONNECT 607, 608
DROP 609, 619
END DECLARE SECTION 620
EXECUTE 621, 623
EXECUTE IMMEDIATE 624, 625
FETCH 626, 632
FREE LOCATOR 633
GET DIAGNOSTICS 777, 779
GRANT (Distinct Type

Privileges) 634, 636
GRANT (function or procedure

privileges) 637, 643
GRANT (package privileges) 644,

646
GRANT (table privileges) 647, 651
HOLD LOCATOR 652, 653
INCLUDE 654, 655
INSERT 656, 663
LABEL 664, 666
LOCK TABLE 667, 668
names for 589
OPEN 669, 673
PREPARE 674, 683
prepared 3
RELEASE 684, 685
RELEASE SAVEPOINT 686
RENAME 687, 689
REVOKE (Distinct Type

Privileges) 689, 690
REVOKE (function or procedure

privileges) 691, 696
REVOKE (package privileges) 697,

698
REVOKE (table privileges) 699
ROLLBACK 702, 705
SAVEPOINT 706, 707
SELECT 708
SELECT INTO 709, 711
SET CONNECTION 712, 714
SET OPTION 715, 728

SQL statements (continued)
SET PATH 729
SET RESULT SETS 731, 733
SET SCHEMA 734
SET TRANSACTION 736, 738
SET transition-variable 739
SET variable 741
UPDATE 743, 751
VALUES 752
VALUES INTO 754
WHENEVER 756, 759

SQL Statements
REVOKE (table privileges) 701

SQL_FEATURES view 976
SQL_LANGUAGES table 977
SQL_SIZING view 978
SQL-label

description 50
SQL-parameter-name

description 50
SQL-variable-name

description 50
in GET DIAGNOSTICS

statement 777
SQLCA (SQL communication area)

C 808
COBOL 809
contents 803
description 803
entry changed by UPDATE 749
FORTRAN 809
ILE RPG/400 811
PL/I 810
RPG/400 810

SQLCA (SQL communication area) clause
INCLUDE statement 654

SQLCODE 355
SQLCOLPRIVILEGES view 928
SQLCOLUMNS view 929
SQLCURRULE clause

in SET OPTION statement 725
SQLD field of SQLDA 601, 605, 814
SQLDA (SQL descriptor area)

C 822
COBOL 824
contents 813
ILE COBOL 824
ILE RPG/400 826
PL/I 825

SQLDA (SQL descriptor area) clause
INCLUDE statement 654

SQLDABC field of SQLDA 601, 605, 814
SQLDAID field of SQLDA 600, 605, 813
SQLDATA field of SQLDA 821
SQLDATALEN field of SQLDA 817
SQLERRMC field of SQLCA

values for CONNECT 808
values for SET CONNECTION 808

SQLERROR clause
WHENEVER statement 756

SQLFOREIGNKEYS view 934
SQLIND field of SQLDA 816
SQLLEN field of SQLDA 816, 819
SQLLONGLEN field of SQLDA 817
SQLN field of SQLDA 600, 604, 814
SQLNAME field of SQLDA 816, 817,

821

SQLPATH clause
in SET OPTION statement 726

SQLPRIMARYKEYS view 935
SQLPROCEDURECOLUMNS view 936
SQLPROCEDURES view 940
SQLSCHEMAS view 941
SQLSPECIALCOLUMNS view 942
SQLSTATE

description 355
SQLSTATISTICS view 944
SQLTABLEPRIVILEGES view 945
SQLTABLES view 946
SQLTYPE

unsupported 821
SQLTYPE field of SQLDA 816, 819
SQLTYPEINFO view 947
SQLUDTS view 952
SQLVAR field of SQLDA 601, 605, 814
SQLWARNING clause

WHENEVER statement 756
SQRT function 290
SRTSEQ clause

in SET OPTION statement 726
START WITH clause

in ALTER TABLE statement 367
statement string 624
statement-name

description 50
in DECLARE CURSOR

statement 561
in DECLARE STATEMENT

statement 589
in DESCRIBE statement 600
in EXECUTE statement 621
in PREPARE statement 675

states
SQL connection 29

static select 353
static SQL 3, 352

use of SQL path 55
STDDEV function 169
STDDEV_POP function 169
string

assignment 81
columns 61
constant

binary 97
character 98
graphic 99
hexadecimal 97, 98

limits 800
variable

CLOB 61
DBCLOB 64
fixed-length 61
varying-length 61

string delimiter 41, 97, 98
string-expression

in EXECUTE IMMEDIATE
statement 624

in PREPARE statement 676
STRIP function 291
subquery

description 108, 338
in HAVING clause 335

subselect 324
in CREATE VIEW statement 324

1004 DB2 UDB for iSeries SQL Reference V5R2

substitution character 32
SUBSTR function 292
SUBSTRING function 292
subtraction operator 127
SUM function 170
synonym for qualifying a column

name 105
SYSCATALOGS view 863
SYSCHKCST view 865
SYSCOLUMNS view 866
SYSCST view 875
SYSCSTCOL view 876
SYSCSTDEP view 877
SYSFUNCS view 878
SYSINDEXES view 884
SYSJARCONTENTS view 885
SYSJAROBJECTS view 886
SYSKEYCST view 887
SYSKEYS view 888
SYSPACKAGE view 889
SYSPARMS table 891
SYSPROCS view 895
SYSREFCST view 900
SYSROUTINEDEP view 901
SYSROUTINES table 902
SYSTABLES view 910
system column name 6, 12, 514, 552,

570, 601, 606
system identifier 43
SYSTEM NAME clause

RENAME statement 687
system name generation

rules 535
SYSTEM NAMES

in USING clause
DESCRIBE statement 601
DESCRIBE TABLE statement 605
PREPARE statement 675

system path 729
system table name 5
system-column-name 535

description 50
in ALTER TABLE statement 364
in CREATE TABLE statement 514
in CREATE VIEW statement 552
in DECLARE GLOBAL TEMPORARY

TABLE statement 570
system-object-name

definition 50
SYSTRIGCOL view 912
SYSTRIGDEP view 913
SYSTRIGGERS view 914
SYSTRIGUPD view 918
SYSTYPES table 919
SYSVIEWDEP view 924
SYSVIEWS view 926

T
table

altering 357
creating 507
definition 5
dependent 7
descendent 7
designator 107, 281
distributed 6

table (continued)
dropping 615, 616
global temporary 565
parent 7
primary key 6
self-referencing 7
system table name 5
temporary 672

TABLE clause
COMMENT statement 397
DROP statement 616
LABEL statement 665
RENAME statement 687

table function 120
FROM clause

of subselect 330
table name generation

rules 535
TABLE_CONSTRAINTS view 979
table-name

description 50
in ALTER TABLE statement 364
in CREATE ALIAS statement 411
in CREATE INDEX statement 478
in CREATE TABLE statement 514,

529
in DECLARE GLOBAL TEMPORARY

TABLE statement 569
in DELETE statement 595
in DROP statement 616
in GRANT (table privileges)

statement 648
in INSERT statement 657
in LABEL statement 665
in LOCK TABLE statement 667
in REFERENCES clause of ALTER

TABLE statement 373
in RENAME statement 687
in REVOKE (table privileges)

statement 700
in UPDATE statement 746

TABLES view 980
TAN function 295
TANH function 296
temporary

result table 559
temporary tables in OPEN 672
TEXT clause

LABEL statement 665
TGTRLS clause

in SET OPTION statement 726
thread safety 20
time

arithmetic operations 133
duration 130
strings 68

TIME
assignment 84
data type 67
data type for CREATE TABLE 517
function 297

timestamp
arithmetic operations 134
duration 130
strings 71

TIMESTAMP
assignment 84

TIMESTAMP (continued)
data type 67
data type for CREATE TABLE 517
function 298

TIMESTAMPDIFF
function 300

TIMFMT clause
in SET OPTION statement 727

TIMSEP clause
in SET OPTION statement 727

tokens in SQL 41
transition table 542
transition variable 542
TRANSLATE function 301
trigger 9

creating 538
delete rules 596
dropping 616
RELEASE statement 684
ROLLBACK 702
SET CONNECTION statement 712
setting isolation level 737
update rules 749

TRIGGER clause
COMMENT statement 390, 397
DROP statement 616

trigger-name
description 50
in DROP statement 616

TRIM function 303
TRUNCATE function 305
truncation of numbers 80
truth table 155
truth valued logic 155
type

dropping 617
TYPE clause

DROP statement 617

U
UCASE function 307
UCS-2 (universal coded character set)

description 64
UCS-2 graphic constant

hexadecimal 100
UDF (user-defined function) 119

external 119
sourced 119
SQL 119

unary
minus 127
plus 127

uncommitted read 23
unconnected state 30
undefined reference 108
UNION ALL clause

of fullselect 337
UNION clause

of fullselect 337
with duplicate rows 337

UNIQUE clause
ALTER TABLE statement 369, 372
CREATE INDEX statement 478
CREATE TABLE statement 525, 528
in SAVEPOINT statement 706

unique index 6

Index 1005

unique index (continued)
update rules 749

unique key 6
unit of work

COMMIT 399
ending

closes cursors 672
COMMIT 399

referring to prepared statements 674
ROLLBACK 702

UPDATE
in ON UPDATE clause of ALTER

TABLE statement 374
in ON UPDATE clause of CREATE

TABLE statement 530
UPDATE clause 342

GRANT (table privileges)
statement 648

REVOKE (table privileges)
statement 700

update rules 749
check constraint 749
checking of unique constraints 749
effect of commitment control 749
referential integrity 749
trigger 749
views with WITH CHECK

OPTION 749
UPDATE statement 743, 751
UPPER function 308
UR (uncommitted read) 23
USAGE clause

GRANT (Distinct Type Privileges)
statement 635

REVOKE (Distinct Type Privileges)
statement 689

USER clause
ALTER TABLE statement 365, 366
CONNECT (Type 1) statement 403
CONNECT (Type 2) statement 408
CREATE TABLE statement 520
DECLARE GLOBAL TEMPORARY

TABLE statement 572
USER special register 104
USER_DEFINED_TYPES view 981
user-defined function 119

external 119
sourced 119
SQL 119

user-defined types (UDTs)
data types

description 73
USING clause

CONNECT (Type 1) statement 403
CONNECT (Type 2) statement 408
DESCRIBE statement 601
DESCRIBE TABLE statement 605
EXECUTE statement 621
in CREATE TABLE statement 527
in DECLARE GLOBAL TEMPORARY

TABLE statement 576
OPEN statement 669
PREPARE statement 675

USING DESCRIPTOR clause
CALL statement 386
EXECUTE statement 621
OPEN statement 670

USING HASHING
in CREATE TABLE statement 532

USRPRF clause
in SET OPTION statement 728

V
VALUE function 309
VALUES clause

INSERT statement 659, 660
VALUES INTO statement 754
VALUES statement 752
VAR function 171
VAR_POP function 171
VARCHAR

data type for CREATE FUNCTION
(External Scalar) 428

data type for CREATE FUNCTION
(External Table) 444

data type for CREATE FUNCTION
(Sourced) 456

data type for CREATE FUNCTION
(SQL Scalar) 464

data type for CREATE FUNCTION
(SQL Table) 472

data type for CREATE PROCEDURE
(External) 485

data type for CREATE PROCEDURE
(SQL) 497

data type for CREATE TABLE 515
data type for DECLARE

PROCEDURE 583
function 310

VARGRAPHIC
data type for CREATE FUNCTION

(External Scalar) 428
data type for CREATE FUNCTION

(External Table) 444
data type for CREATE FUNCTION

(Sourced) 456
data type for CREATE FUNCTION

(SQL Scalar) 464
data type for CREATE FUNCTION

(SQL Table) 472
data type for CREATE PROCEDURE

(External) 485
data type for CREATE PROCEDURE

(SQL) 497
data type for CREATE TABLE 516
data type for DECLARE

PROCEDURE 583
function 314

variable
file reference 114, 115

VARIANCE function 171
view

catalog 859
creating 551
deletable 554
dropping 617
insertable 555
read-only 555
updatable 555
updating with WITH CHECK

OPTION views 749
VIEW clause

CREATE VIEW statement 551

VIEW clause (continued)
DROP statement 617

view-name
description 51
in CREATE ALIAS statement 411
in CREATE VIEW statement 552
in DELETE statement 595
in DROP statement 617
in GRANT (table privileges)

statement 648
in INSERT statement 657
in LABEL statement 665
in RENAME statement 687
in REVOKE (table privileges)

statement 700
in UPDATE statement 746

VIEWS view 985

W
WEEK function 317
WEEK_ISO function 318
WHENEVER statement 756, 759
WHERE clause

DELETE statement 596
of subselect 333
UPDATE statement 748

WHERE CURRENT OF clause
DELETE statement 596
UPDATE statement 748

WHERE NOT NULL clause
in CREATE INDEX statement 478

WITH CASCADED CHECK OPTION
clause

CREATE VIEW statement 553
WITH CHECK OPTION clause

CREATE VIEW statement 553
effect on update 749

WITH clause 343
WITH COMPARISONS

CREATE DISTINCT TYPE
statement 416

WITH DATA DICTIONARY clause
CREATE SCHEMA statement 503

WITH DEFAULT clause
CREATE TABLE statement 518
in DECLARE GLOBAL TEMPORARY

TABLE statement 570
WITH DISTINCT VALUES clause

CREATE INDEX statement 479
WITH GRANT OPTION clause

in GRANT (Distinct Type Privileges)
statement 635

in GRANT (function or procedure
privileges) statement 642

in GRANT (package privileges)
statement 645

in GRANT (table privileges)
statement 649

WITH HOLD clause
in DECLARE CURSOR

statement 560
WITH LOCAL CHECK OPTION clause

CREATE VIEW statement 554
WITH REPLACE clause

in DECLARE GLOBAL TEMPORARY
TABLE statement 577

1006 DB2 UDB for iSeries SQL Reference V5R2

WITH RETURN clause
in DECLARE CURSOR

statement 560
words

reserved 43, 829
WORK clause

in COMMIT statement 399
ROLLBACK statement 703

X
XOR function 319

Y
YEAR function 320

Z
ZONED function 321

Index 1007

1008 DB2 UDB for iSeries SQL Reference V5R2

����

Printed in U.S.A.

	Contents
	About DB2 UDB for iSeries SQL Reference
	Standards Compliance
	Who should read the SQL Reference book
	Assumptions Relating to Examples of SQL Statements
	Code disclaimer information

	How to Read Syntax Diagrams

	Conventions for Describing Mixed Data Values
	SQL Accessibility
	What's new for V5R2 in the SQL Reference book

	Chapter 1. Concepts
	Relational Database
	Structured Query Language
	Static SQL
	Dynamic SQL
	Extended Dynamic SQL
	Interactive SQL
	SQL Call Level Interface (CLI) and Open Database Connectivity (ODBC)
	Java Database Connectivity (JDBC) and Embedded SQL for Java (SQLJ) Programs

	Schemas
	Tables
	Keys
	Primary Keys and Unique Keys
	Referential Integrity
	Check Constraints
	Triggers
	Indexes
	Views
	Aliases
	Packages and Access Plans
	Procedures
	Catalog
	Application Processes, Concurrency, and Recovery
	Locking, Commit, and Rollback
	Unit of Work
	Rolling Back Work
	Rolling back all changes
	Rolling back selected changes using savepoints

	Threads
	Isolation Level
	Distributed Relational Database
	Database Servers
	CONNECT (Type 1) and CONNECT (Type 2)
	Remote Unit of Work
	Remote Unit of Work Connection Management

	Application-Directed Distributed Unit of Work
	Application-Directed Distributed Unit of Work Connection Management
	Connection States
	Activation Group Connection States
	When a Connection is Ended

	Data Representation Considerations

	Character Conversion
	Character Sets and Code Pages
	Coded Character Sets and CCSIDs
	Default CCSID

	Sort Sequence
	Authorization and Privileges
	Storage Structures

	Chapter 2. Language Elements
	Characters
	Tokens
	Identifiers
	SQL Identifiers
	System identifiers
	Examples

	Host Identifiers

	Naming Conventions
	Qualification of Unqualified Object Names
	Unqualified Alias, Constraint, External Program, Index, Nodegroup, Package, Table, Trigger, and View Names
	Unqualified Function, Procedure, Specific, and Distinct Type Names

	SQL Names and System Names: Special Considerations

	Schemas and the SQL Path
	Aliases
	Authorization IDs and Authorization-Names
	Examples

	Data Types
	Binary Strings
	Character Strings
	Fixed-Length Character Strings
	Varying-Length Character Strings
	Character-String Host Variables

	Character Subtypes
	Graphic Strings
	Fixed-Length Graphic Strings
	Varying-Length Graphic Strings
	Graphic-String Host Variables

	Graphic Subtypes
	Large Objects (LOBs)
	Binary Large Object (BLOB) Strings
	Character Large Object (CLOB) Strings
	Double-byte Character Large Object (DBCLOB) Strings
	Manipulating Large Objects (LOBs) With Locators

	Numbers
	Small Integer
	Large Integer
	Big Integer (BIGINT)
	Floating-Point
	Decimal
	Numeric Host Variables

	Datetime Values
	Date
	Time
	Timestamp
	Datetime Host Variables
	String Representations of Datetime Values

	DataLink Values
	Row ID Values
	User-Defined Types
	Distinct Types

	Promotion of Data Types
	Casting Between Data Types
	Assignments and Comparisons
	Numeric Assignments
	Decimal or Integer to Floating-Point
	Floating-Point or Decimal to Integer
	Decimal to Decimal
	Integer to Decimal
	Floating-Point to Decimal
	To COBOL and RPG Integers

	String Assignments
	Binary String Assignments
	Character and Graphic String Assignments

	Datetime Assignments
	DataLink Assignments
	Row ID Assignments
	Distinct Type Assignments
	Assignments to Host Variables
	Assignments Other Than to Host Variables

	Numeric Comparisons
	String Comparisons
	Binary String Comparisons
	Character and Graphic String Comparisons

	Datetime Comparisons
	Distinct Type Comparisons

	Rules for Result Data Types
	Binary String Operands
	Character and Graphic String Operands
	Numeric Operands
	Datetime Operands
	DATALINK Operands
	DISTINCT Type Operands

	Conversion Rules for Operations That Combine Strings
	Constants
	Integer Constants
	Examples

	Floating-Point Constants
	Examples

	Decimal Constants
	Examples

	Binary-String Constants
	Example

	Character-String Constants
	Examples

	Graphic-String Constants
	DBCS Graphic-String Constants
	UCS-2 Graphic-String Constants

	Decimal Point
	Delimiters

	Special Registers
	CURRENT DATE or CURRENT_DATE
	Example

	CURRENT PATH, CURRENT_PATH, or CURRENT FUNCTION PATH
	Example

	CURRENT SCHEMA
	Example

	CURRENT SERVER or CURRENT_SERVER
	Example

	CURRENT TIME or CURRENT_TIME
	Example

	CURRENT TIMESTAMP or CURRENT_TIMESTAMP
	Example

	CURRENT TIMEZONE or CURRENT_TIMEZONE
	Example

	USER
	Example

	Column Names
	Qualified Column Names
	Correlation Names
	Column Name Qualifiers to Avoid Ambiguity
	Table Designators
	Avoiding undefined or ambiguous references

	Column Name Qualifiers in Correlated References
	Unqualified Column Names

	References to Variables
	References to Host Variables
	Example
	Host Variables in Dynamic SQL
	References to LOB Host Variables
	References to LOB Locator Variables
	References to LOB File Reference Variables

	Host Structures in C, C++, COBOL, PL/I, and RPG
	Host Structure Arrays in C, C++, COBOL, PL/I, and RPG
	Functions
	Types of Functions
	Function resolution
	Method of finding the best fit
	Function Invocation

	Expressions
	Without Operators
	Example

	With the Concatenation Operator
	Example

	With Arithmetic Operators
	Two Integer Operands
	Integer and Decimal Operands
	Two Decimal Operands
	Decimal Arithmetic in SQL
	Addition and Subtraction
	Multiplication
	Division

	Floating-Point Operands
	Distinct Types as Operands
	Scalar Subselect
	Datetime Operands and Durations
	Datetime Arithmetic in SQL
	Date Arithmetic
	Time Arithmetic
	Timestamp Arithmetic

	Precedence of Operations
	Example

	CASE Expressions
	Examples

	CAST Specification
	Examples

	Predicates
	Basic Predicate
	Examples

	Quantified Predicate
	Examples

	BETWEEN Predicate
	Examples

	EXISTS Predicate
	Example

	IN Predicate
	Examples

	LIKE Predicate
	Examples

	NULL Predicate
	Examples

	Search Conditions
	Examples
	Example 1
	Example 2

	Chapter 3. Built-In Functions
	Column Functions
	AVG
	Examples

	COUNT
	Examples

	COUNT_BIG
	Examples

	MAX
	Examples

	MIN
	Examples

	STDDEV or STDDEV_POP
	Example

	SUM
	Example

	VAR_POP or VARIANCE or VAR
	Example

	Scalar Functions
	Example
	ABS
	Note
	Example

	ACOS
	Example

	ANTILOG
	Example

	ASIN
	Example

	ATAN
	Example

	ATANH
	Example

	ATAN2
	Example

	BIGINT
	Example

	BLOB
	Example

	CEILING
	Examples

	CHAR
	Examples

	CHARACTER_LENGTH
	Example

	CLOB
	Example

	COALESCE
	Examples

	CONCAT
	Example

	COS
	Example

	COSH
	Example

	COT
	Example

	CURDATE
	Example

	CURTIME
	Example

	DATE
	Examples

	DAY
	Examples

	DAYOFMONTH
	Examples

	DAYOFWEEK
	Example

	DAYOFWEEK_ISO
	Examples

	DAYOFYEAR
	Example

	DAYS
	Examples

	DBCLOB
	Example

	DECIMAL or DEC
	Examples

	DEGREES
	Example

	DIFFERENCE
	Examples

	DIGITS
	Examples

	DLCOMMENT
	Examples

	DLLINKTYPE
	Examples

	DLURLCOMPLETE
	Examples

	DLURLPATH
	Examples

	DLURLPATHONLY
	Examples

	DLURLSCHEME
	Examples

	DLURLSERVER
	Examples

	DLVALUE
	Examples

	DOUBLE_PRECISION or DOUBLE
	Example

	EXP
	Example

	FLOAT
	FLOOR
	Example

	GRAPHIC
	Example

	HASH
	Example

	HEX
	Example

	HOUR
	Example

	IDENTITY_VAL_LOCAL
	Notes
	Examples

	IFNULL
	Example

	INTEGER or INT
	Example

	JULIAN_DAY
	Examples

	LAND
	Example

	LCASE
	LEFT
	Example

	LENGTH
	Examples

	LN
	Example

	LNOT
	Example

	LOCATE
	Example

	LOG10
	Example

	LOR
	Example

	LOWER
	Examples

	LTRIM
	Example

	MAX
	Examples

	MICROSECOND
	Example

	MIDNIGHT_SECONDS
	Examples

	MIN
	Examples

	MINUTE
	Example

	MOD
	Examples

	MONTH
	Example

	NODENAME
	Example

	NODENUMBER
	Example

	NOW
	Example

	NULLIF
	Example

	PARTITION
	Example

	PI
	Example

	POSITION or POSSTR
	Example

	POWER
	Example

	QUARTER
	Example

	RADIANS
	Example

	RAND
	Example

	REAL
	Example

	ROUND
	Examples

	ROWID
	Example

	RRN
	Example

	RTRIM
	Example

	SECOND
	Examples

	SIGN
	Example

	SIN
	Example

	SINH
	Example

	SMALLINT
	Example

	SOUNDEX
	Example

	SPACE
	Example

	SQRT
	Example

	STRIP
	SUBSTRING or SUBSTR
	Examples

	TAN
	Example

	TANH
	Example

	TIME
	Example

	TIMESTAMP
	Example

	TIMESTAMPDIFF
	Example

	TRANSLATE
	Examples

	TRIM
	Examples

	TRUNCATE or TRUNC
	Examples

	UCASE
	UPPER
	Examples

	VALUE
	VARCHAR
	Example

	VARGRAPHIC
	Example

	WEEK
	Example

	WEEK_ISO
	Examples

	XOR
	Example

	YEAR
	Examples

	ZONED
	Examples

	Chapter 4. Queries
	Authorization
	subselect
	select-clause
	Select List Notation
	Applying the Select List
	Null attributes of result columns
	Names of result columns
	Data types of result columns

	from-clause
	table-reference
	joined-table

	where-clause
	group-by-clause
	having-clause
	Examples of a subselect
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8

	fullselect
	Examples of a fullselect
	Example 1
	Example 2
	Example 3
	Example 4

	select-statement
	common-table-expression
	order-by-clause
	fetch-first-clause
	update-clause
	read-only-clause
	optimize-clause
	isolation-clause
	Examples of a select-statement
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	Chapter 5. Statements
	How SQL Statements Are Invoked
	Embedding a Statement in an Application Program
	Executable statements
	Nonexecutable statements

	Dynamic Preparation and Execution
	Static Invocation of a select-statement
	Dynamic Invocation of a select-statement
	Interactive Invocation

	SQL Return Codes
	SQLCODE
	SQLSTATE

	SQL Comments
	Example

	ALTER TABLE
	Invocation
	Authorization
	Syntax
	Description
	ADD COLUMN
	ALTER COLUMN
	DROP COLUMN
	ADD unique-constraint
	ADD referential-constraint
	ADD check-constraint
	DROP
	Notes
	Cascaded Effects
	Examples
	Example 1
	Example 2

	BEGIN DECLARE SECTION
	Invocation
	Authorization
	Syntax
	Description
	Examples
	Example 1
	Example 2

	CALL
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Nesting CALL Statements

	Example

	CLOSE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	COMMENT
	Invocation
	Authorization
	Syntax
	Description
	multiple-columns
	multiple-parameters
	Keyword Synonyms

	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	COMMIT
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	CONNECT (Type 1)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1

	CONNECT (Type 2)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	CREATE ALIAS
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	CREATE DISTINCT TYPE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	CREATE FUNCTION
	Notes
	Choosing the Function Name
	Choosing Data Types for Input Parameters
	Specifying AS LOCATOR for a Parameter
	Determining the Uniqueness of Functions in a Schema
	The Specific Name for a Function
	Extending or Overriding a Built-in Function

	CREATE FUNCTION (External Scalar)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Creating the Function
	Invoking the Function
	Notes for Java Functions
	Keyword Synonyms

	Example 1
	Example 2

	CREATE FUNCTION (External Table)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Creating the Function
	Invoking the Function
	Notes for Java Functions
	Keyword Synonyms

	Example 1

	CREATE FUNCTION (Sourced)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example 1
	Example 2

	CREATE FUNCTION (SQL Scalar)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Creating the Function
	Identifier Resolution
	Invoking the Function
	Keyword Synonyms

	Example 1

	CREATE FUNCTION (SQL Table)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Creating the Function
	Identifier Resolution
	Invoking the Function
	Keyword Synonyms

	Example

	CREATE INDEX
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	CREATE PROCEDURE
	Notes
	Choosing Data Types for Parameters
	Specifying AS LOCATOR for a Parameter
	Determining the Uniqueness of Procedures in a Schema
	The Specific Name for a Procedure

	CREATE PROCEDURE (External)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Creating the Procedure
	Invoking the Procedure
	Notes for Java Procedures
	Keyword Synonyms

	Example

	CREATE PROCEDURE (SQL)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Creating the Procedure
	Invoking the Procedure
	Keyword Synonyms

	Example

	CREATE SCHEMA
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	CREATE TABLE
	Invocation
	Authorization
	Syntax
	Description
	column-definition
	LIKE
	as-subquery-clause
	copy-options
	unique-constraint
	referential-constraint
	check-constraint
	nodegroup-clause
	Notes
	Maximum row sizes
	Precision as described to the database:
	LONG VARCHAR and LONG VARGRAPHIC
	Using an Identity Column

	Rules for System Name Generation
	Rules for Column Name Generation
	Rules for Table Name Generation

	Examples
	Example 1
	Example 2
	Example 3

	CREATE TRIGGER
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2
	Example 3

	CREATE VIEW
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	DECLARE CURSOR
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 6
	Example 7

	DECLARE GLOBAL TEMPORARY TABLE
	Invocation
	Authorization
	Syntax
	Description
	column-definition
	LIKE
	as-subquery-clause
	copy-options
	Notes
	Examples
	Example 1
	Example 2

	DECLARE PROCEDURE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Keyword Synonyms

	Example

	DECLARE STATEMENT
	Invocation
	Authorization
	Syntax
	Description
	Example

	DECLARE VARIABLE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	DELETE
	Invocation
	Authorization
	Syntax
	Description
	DELETE Rules
	Notes
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	DESCRIBE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Allocating the SQLDA

	Example

	DESCRIBE TABLE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	DISCONNECT
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	DROP
	Invocation
	Authorization
	Syntax
	Description
	Note
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	END DECLARE SECTION
	Invocation
	Authorization
	Syntax
	Description
	Examples

	EXECUTE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Parameter Marker Replacement

	Example

	EXECUTE IMMEDIATE
	Invocation
	Authorization
	Syntax
	Description
	Note
	Example

	FETCH
	Invocation
	Authorization
	Syntax
	Description
	single-fetch
	multiple-row-fetch
	Notes
	Example

	FREE LOCATOR
	Invocation
	Authorization
	Syntax
	Description
	Example

	GRANT (Distinct Type Privileges)
	Invocation
	Authorization
	Syntax
	Description
	Note
	Example

	GRANT (Function or Procedure Privileges)
	Invocation
	Authorization
	Syntax
	Description
	Note
	Example

	GRANT (Package Privileges)
	Invocation
	Authorization
	Syntax
	Description
	Note
	Example

	GRANT (Table Privileges)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2
	Example 3

	HOLD LOCATOR
	Invocation
	Authorization
	Syntax
	Description
	Note
	Example

	INCLUDE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	INSERT
	Invocation
	Authorization
	Syntax
	Description
	insert-multiple-rows
	INSERT Rules
	Notes
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	LABEL
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	LOCK TABLE
	Invocation
	Authorization
	Syntax
	Description
	Example

	OPEN
	Invocation
	Authorization
	Syntax
	Description
	Parameter Marker Replacement
	Notes
	Closed state of cursors
	Effect of temporary tables

	Examples
	Example 1
	Example 2
	Example 3

	PREPARE
	Invocation
	Authorization
	Syntax
	Description
	Parameter markers
	Notes
	Examples
	Example 1
	Example 2

	RELEASE
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	RELEASE SAVEPOINT
	Invocation
	Authorization
	Syntax
	Description
	Note
	Example

	RENAME
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	REVOKE (Distinct Type Privileges)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	REVOKE (Function or Procedure Privileges)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	REVOKE (Package Privileges)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	REVOKE (Table Privileges)
	Invocation
	Authorization
	Syntax
	Description
	Notes
	System authorities
	Multiple Grants

	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	ROLLBACK
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	SAVEPOINT
	Invocation
	Authorization
	Syntax
	Description
	Note
	Example

	SELECT
	SELECT INTO
	Invocation
	Authorization
	Syntax
	Description
	Examples
	Example 1
	Example 2

	SET CONNECTION
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	SET OPTION
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples

	SET PATH
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	SET RESULT SETS
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	SET SCHEMA
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	SET TRANSACTION
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Keyword Synonyms

	Examples
	Example 1
	Example 2

	SET transition-variable
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	SET variable
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	UPDATE
	Invocation
	Authorization
	Syntax
	Description
	UPDATE Rules
	Notes
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	VALUES
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example

	VALUES INTO
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Examples
	Example 1
	Example 2

	WHENEVER
	Invocation
	Authorization
	Syntax
	Description
	Notes
	Example

	Chapter 6. SQL Control Statements
	Syntax
	References to SQL Parameters and Variables
	SQL procedure statement
	Syntax

	assignment-statement
	Syntax
	Description
	Notes
	Example

	CALL statement
	Syntax
	Description
	Notes
	Example

	CASE statement
	Syntax
	Description
	Notes
	Examples

	compound-statement
	Syntax
	Description
	Notes
	Example

	FOR statement
	Syntax
	Description
	Notes
	Example

	GET DIAGNOSTICS statement
	Syntax
	Description
	Notes
	Example

	GOTO statement
	Syntax
	Description
	Notes
	Example

	IF statement
	Syntax
	Description
	Example

	ITERATE statement
	Syntax
	Description
	Example

	LEAVE statement
	Syntax
	Description
	Notes
	Example

	LOOP statement
	Syntax
	Description
	Example

	REPEAT statement
	Syntax
	Description
	Example

	RESIGNAL statement
	Syntax
	Description
	Notes
	Example

	RETURN statement
	Syntax
	Description
	Notes
	Example

	SIGNAL statement
	Syntax
	Description
	Notes
	Example

	WHILE statement
	Syntax
	Description
	Example

	Appendix A. SQL Limits
	Appendix B. SQL Communication Area
	Field Descriptions
	INCLUDE SQLCA Declarations

	Appendix C. SQL Descriptor Area (SQLDA)
	Field Descriptions
	Field Descriptions in an Occurrence of SQLVAR
	Determining How Many SQLVAR Occurrences are Needed

	SQLTYPE and SQLLEN
	SQLDATA or SQLNAME
	Unrecognized and Unsupported SQLTYPES
	INCLUDE SQLDA Declarations
	For C and C++
	For COBOL
	For ILE COBOL
	For PL/I
	For ILE RPG/400

	Appendix D. Reserved Words
	Appendix E. CCSID Values
	Appendix F. Characteristics of SQL Statements
	Actions allowed on SQL statements
	SQL Statement Data Access Indication in Routines
	Considerations for Using Distributed Relational Database
	CONNECT (Type 1) and CONNECT (Type 2) Differences
	Determining the CONNECT rules that apply
	Connecting to Servers That Only Support Remote Unit of Work

	Appendix G. DB2 UDB for iSeries Catalog Views
	Notes
	iSeries Catalog Tables and Views
	SYSCATALOGS
	SYSCHKCST
	SYSCOLUMNS
	SYSCST
	SYSCSTCOL
	SYSCSTDEP
	SYSFUNCS
	SYSINDEXES
	SYSJARCONTENTS
	SYSJAROBJECTS
	SYSKEYCST
	SYSKEYS
	SYSPACKAGE
	SYSPARMS
	SYSPROCS
	SYSREFCST
	SYSROUTINEDEP
	SYSROUTINES
	SYSTABLES
	SYSTRIGCOL
	SYSTRIGDEP
	SYSTRIGGERS
	SYSTRIGUPD
	SYSTYPES
	SYSVIEWDEP
	SYSVIEWS

	ODBC and JDBC Catalog Views
	SQLCOLPRIVILEGES
	SQLCOLUMNS
	SQLFOREIGNKEYS
	SQLPRIMARYKEYS
	SQLPROCEDURECOLS
	SQLPROCEDURES
	SQLSCHEMAS
	SQLSPECIALCOLUMNS
	SQLSTATISTICS
	SQLTABLEPRIVILEGES
	SQLTABLES
	SQLTYPEINFO
	SQLUDTS

	ANS and ISO Catalog Views
	CHARACTER_SETS
	CHECK_CONSTRAINTS
	COLUMNS
	INFORMATION_SCHEMA_CATALOG_NAME
	PARAMETERS
	REFERENTIAL_CONSTRAINTS
	ROUTINES
	SCHEMATA
	SQL_FEATURES
	SQL_LANGUAGES
	SQL_SIZING
	TABLE_CONSTRAINTS
	TABLES
	USER_DEFINED_TYPES
	VIEWS

	Bibliography
	Index

