

@server
iSeries
DB2 Universal Database for iSeries SQL Reference

Version 5

© Copyright International Business Machines Corporation 1998, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About DB2 UDB for iSeries SQL

Reference .

Standards Compliance

Who should read the SQL Reference book
Assumptions Relating to Examples of SQL
Statements o
How to Read Syntax Dlagrams

Conventions for Describing Mixed Data Values

SQL Accessibility .

What's new for V5R2 in the SQL Reference book

Chapter 1. Concepts

Relational Database .

Structured Query Language
Static SQL . . .
Dynamic SQL . . .
Extended Dynamic SQL
Interactive SQL

. XHI
. xiil
. xiil

. Xiv

. XV
xvii

. xvii

xviii

»pﬁwwco._\—h

SQL Call Level Interface (CLI) and Open Database

Connectivity (ODBC)

Java Database Connectivity (]DBC) and Embedded

SQL for Java (SQL]) Programs
Schemas .
Tables
Keys . . .
Primary Keys and Unlque Keys .
Referential Integrity .
Check Constraints
Triggers .
Indexes .
Views
Aliases .
Packages and Access Plans
Procedures
Catalog . .
Application Processes Concurrency, and Recovery
Locking, Commit, and Rollback
Unit of Work . .o
Rolling Back Work .
Rolling back all changes . o
Rolling back selected changes using savepoints
Threads
Isolation Level .
Distributed Relational Database
Database Servers
CONNECT (Type 1) and CONNECT (Type 2)
Remote Unit of Work .
Application-Directed Dlstrlbuted Un1t of Work
Data Representation Considerations . .
Character Conversion .
Character Sets and Code Pages
Coded Character Sets and CCSIDs.
Default CCSID
Sort Sequence
Authorization and Pr1v1leges

© Copyright IBM Corp. 1998, 2002

e~

= O O N1 O O U1 U =

_

Storage Structures .

Chapter 2. Language Elements

Characters.

Tokens .

Identifiers .

SQL Identifiers
System identifiers
Host Identifiers .

Naming Conventions . . .
Qualification of Unqualified Ob]ect Names .
SQL Names and System Names: Spec1al
Considerations . . .o

Schemas and the SQL Path .

Aliases . .

Authorization IDs and Authorlzatlon—Names .
Examples .

Data Types
Binary Strings
Character Strings
Character Subtypes.

Graphic Strings .
Graphic Subtypes
Large Objects (LOBs) .
Numbers . .
Datetime Values .
DataLink Values.

Row ID Values
User-Defined Types.

Promotion of Data Types .

Casting Between Data Types.

Assignments and Comparisons .

Numeric Assignments .
String Assignments .
Datetime Assignments.
DataLink Assignments.
Row ID Assignments .
Distinct Type Assignments
Numeric Comparisons.
String Comparisons.
Datetime Comparisons
Distinct Type Comparisons .
Rules for Result Data Types .
Binary String Operands
Character and Graphic Strmg Operands
Numeric Operands . .
Datetime Operands.
DATALINK Operands .
DISTINCT Type Operands

Conversion Rules for Operations That Comblne

Strings .

Constants .
Integer Constants
Floating-Point Constants .
Decimal Constants .

. 36

. 39
. 40
.41
.43
.43
.43
.44
. 45
. 52

. 53
. 55
. 56
. 57
. 58
. 59
. 61
. 61
. 62
. 63
. 64
. 64
. 65
. 66
.71
.72
.73
. 74
.75
. 78
. 80
.81
. 83
. 84
. 86
. 86
. 87
. 88
. 89
.90
.91
.91
.92
.92
. 93
. 94
.94

. 95
. 97
.97
.97
. 97

iii

Binary-String Constants
Character-String Constants
Graphic-String Constants .
Decimal Point .
Delimiters

Special Registers .
CURRENT DATE or CURRENT DATE
CURRENT PATH, CURRENT_PATH, or
CURRENT FUNCTION PATH.
CURRENT SCHEMA..

CURRENT SERVER or CURRENT SERVER .

CURRENT TIME or CURRENT_TIME .
CURRENT TIMESTAMP or
CURRENT_TIMESTAMP
CURRENT TIMEZONE or
CURRENT_TIMEZONE .
USER .

Column Names.
Qualified Column Names
Correlation Names

Column Name Qualifiers to AV01d Amblgulty

Column Name Qualifiers in Correlated

References .

Unqualified Column Names
References to Variables

References to Host Variables

Host Structures in C, C++, COBOL, PL/I, and RPG
Host Structure Arrays in C, C++, COBOL, PL/I,

and RPG .
Functions.
Types of Functlons
Function resolution
Method of finding the best f1t
Function Invocation .
Expressions . .
Without Operators
With the Concatenation Operator
With Arithmetic Operators .
Two Integer Operands
Integer and Decimal Operands
Two Decimal Operands .
Decimal Arithmetic in SQL .
Floating-Point Operands.
Distinct Types as Operands.
Scalar Subselect
Datetime Operands and Duratlons
Datetime Arithmetic in SQL
Precedence of Operations
CASE Expressions .
CAST Specification
Predicates -
Basic Predicate .
Quantified Predicate .
BETWEEN Predicate .
EXISTS Predicate .
IN Predicate.
LIKE Predicate .
NULL Predicate
Search Conditions .
Examples.

iV DB2 UDB for iSeries SQL Reference V5R2

.97
. 98
099
. 100
. 101
. 102
. 102

. 102
. 103
. 103
. 103

. 104

. 104
. 104
. 105
. 105
. 105

107

. 108
. 109
. 111

111
116

. 118
. 119
. 119
. 120
. 121
. 123
. 125
. 126
. 126
. 127
. 128
. 128
. 128
. 129
. 129
. 129
. 130
. 130
. 131
. 134
. 135
. 137
. 141
. 142
. 143
. 145
. 146
. 147
. 151
. 154
. 155
. 156

Chapter 3. Built-In Functions.

Column Functions.
AVG
COUNT .
COUNT_BIG
MAX .
MIN
STDDEV or STDDEV_POP .
SUM
VAR_POP or VARIANCE or VAR
Scalar Functions
Example .
ABS .
ACOS .
ANTILOG
ASIN .
ATAN .
ATANH .
ATAN2
BIGINT
BLOB .
CEILING .
CHAR. .
CHARACTER_ LENGTH
CLOB .
COALESCE .
CONCAT.
COs
COSH .
CcOoT
CURDATE
CURTIME
DATE .
DAY
DAYOFMONTH
DAYOFWEEK .
DAYOFWEEK_ISO
DAYOFYEAR
DAYS .
DBCLOB . .
DECIMAL or DEC
DEGREES
DIFFERENCE
DIGITS
DLCOMMENT .
DLLINKTYPE .
DLURLCOMPLETE
DLURLPATH
DLURLPATHONLY
DLURLSCHEME .
DLURLSERVER
DLVALUE

DOUBLE_ PRECISION or DOUBLE .

EXP .

FLOAT

FLOOR

GRAPHIC

HASH.

HEX

HOUR.
IDENTITY_VAL_ LOCAL

. 157
. 162
. 163
. 164
. 165
. 167
. 168
. 169
. 170
. 171
. 172
. 172
. 173
. 174
. 175
. 176
. 177
. 178
. 179
. 180
. 181
. 182
. 183
. 188
. 189
. 193
. 194
. 195
. 196
. 197
. 198
. 199
. 200
. 202
. 203
. 204
. 205
. 206
. 207
. 208
. 210
. 212
. 213
. 214
. 215
. 216
. 217
. 218
. 219
. 220
. 221
. 222
. 224
. 225
. 226
. 227
. 229
. 231
. 232
. 233
. 234

IENULL . .
INTEGER or INT .
JULIAN_DAY .
LAND.

LCASE

LEFT .
LENGTH.

LN. .

LNOT.

LOCATE .

LOG10

LOR

LOWER .

LTRIM

MAX
MICROSECOND .

MIDNIGHT_SECONDS .

MIN
MINUTE .
MOD .
MONTH .
NODENAME
NODENUMBER
NOW .
NULLIF .
PARTITION .
pPr . . .
POSITION or POSSTR
POWER .
QUARTER
RADIANS
RAND.
REAL .
ROUND .
ROWID
RRN .
RTRIM
SECOND.
SIGN .

SIN.

SINH .
SMALLINT .
SOUNDEX .
SPACE
SQRT .
STRIP .

SUBSTRING or SUBSTR .

TAN .

TANH.

TIME .
TIMESTAMP
TIMESTAMPDIFEF .
TRANSLATE
TRIM .

TRUNCATE or TRUNC .

UCASE

UPPER

VALUE
VARCHAR .
VARGRAPHIC .
WEEK.

. 238
. 239
. 241
. 242
. 243
. 244
. 246
. 248
. 249
. 250
. 251
. 252
. 253
. 254
. 255
. 257
. 258
. 259
. 261
. 262
. 264
. 265
. 266
. 267
. 268
. 269
. 270
. 271
. 273
. 274
. 275
. 276
. 277
. 278
. 280
. 281
. 282
. 283
. 284
. 285
. 286
. 287
. 288
. 289
. 290
. 291
. 293
. 295
. 296
. 297
. 298
. 300
. 301
. 303
. 305
. 307
. 308
. 309
. 310
. 315
. 317

WEEK_ISO .
XOR

YEAR .
ZONED .

Chapter 4. Queries .

Authorization .

subselect .
select-clause .
from-clause .
where-clause
group-by-clause
having-clause .
Examples of a subselect .

fullselect . .
Examples of a fullselect .

select-statement
common-table- expressmn
order-by-clause.
fetch-first-clause
update-clause
read-only-clause
optimize-clause.
isolation-clause .

Examples of a select—statement

Chapter 5. Statements
How SQL Statements Are Invoked

. 318
. 319
. 320
. 321

. 323
. 323
. 324
. 324
. 328
. 333
. 333
. 335
. 335
. 337
. 338
. 339
. 339
. 340
. 341
. 342
. 342
. 343
. 343
. 344

. 347
. 352

Embedding a Statement in an Application

Program .

Dynamic Preparatlon and Executlon
Static Invocation of a select-statement .
Dynamic Invocation of a select-statement .

Interactive Invocation

SQL Return Codes.
SQLCODE
SQLSTATE

SQL Comments.
Example .

ALTER TABLE .
Invocation
Authorization .
Syntax.

Description .

ADD COLUMN

ALTER COLUMN .
DROP COLUMN .
ADD unique-constraint .

ADD referential-constraint .

ADD check-constraint
DROP .

Notes .

Cascaded Effects
Examples.

BEGIN DECLARE SECTION .

Invocation
Authorization .
Syntax.
Description .
Examples.

. 352
. 353
. 353

. 354

. 354
. 354
. 355
. 355
. 355
. 356
. 357
. 357
. 357
. 358
. 364
. 366
. 370
. 371
. 372
. 373
. 375
. 375
. 376
. 377
. 379
. 381
. 381
. 381
. 381
. 381
. 382

Contents

\'%

CALL .
Invocation
Authorization
Syntax.
Description .
Notes .
Example .
CLOSE
Invocation
Authorization .
Syntax.
Description .
Notes .
Example .
COMMENT .
Invocation
Authorization
Syntax.
Description .
Examples.
COMMIT.
Invocation
Authorization
Syntax.
Description .
Notes .
Example . .
CONNECT (Type 1)
Invocation
Authorization .
Syntax.
Description .
Notes .
Examples. .
CONNECT (Type 2) .
Invocation .
Authorization .
Syntax.
Description .
Notes .
Examples.
CREATE ALIAS
Invocation
Authorization
Syntax.
Description .
Notes .
Examples.

CREATE DISTINCT TYPE .

Invocation
Authorization
Syntax.
Description .
Notes .
Examples.
CREATE FUNCTION

Notes .

CREATE FUNCTION (External Scalar)

Invocation
Authorization
Syntax.

vi DB2 UDB for iSeries SQL Reference V5R2

. 383
. 383
. 383
. 383
. 385
. 386
. 387
. 388
. 388
. 388
. 388
. 388
. 388
. 389
. 390
. 390
. 390
. 392
. 395
. 398
. 399
. 399
. 399
. 399
. 399
. 400
. 401
. 402
. 402
. 402
. 402
. 402
. 403
. 406
. 407
. 407
. 407
. 407
. 407
. 409
. 410
. 411
. 411
. 411
. 411
. 411
. 412
. 413
. 414
. 414
. 414
. 414
. 416
. 417
. 420
. 421
. 421
. 424
. 424
. 424
. 425

Description .
Notes .
Example 1
Example 2

CREATE FUNCTION (External Table) .

Invocation
Authorization
Syntax.
Description .
Notes .

Example 1 .

CREATE FUNCTION (Sourced)
Invocation
Authorization
Syntax.

Description .
Notes .

Example 1
Example 2 . .

CREATE FUNCTION (SQL Scalar)
Invocation
Authorization
Syntax.

Description .
Notes .
Example 1 .

CREATE FUNCTION (SQL Table)
Invocation
Authorization
Syntax.

Description .
Notes .
Example .

CREATE INDEX
Invocation
Authorization
Syntax.

Description .
Notes .
Examples. .

CREATE PROCEDURE .
Notes .

CREATE PROCEDURE (External)
Invocation
Authorization
Syntax.

Description .
Notes .
Example . .

CREATE PROCEDURE (SQL)
Invocation .
Authorization
Syntax.

Description .
Notes .
Example .

CREATE SCHEMA
Invocation
Authorization
Syntax.

Description .

. 428
. 437
. 438
. 438
. 440
. 440
. 440
. 441
. 444
. 452
. 453
. 454
. 454
. 454
. 455
. 456
. 459
. 460
. 460
. 461
. 461
. 461
. 461
. 464
. 467
. 468
. 469
. 469
. 469
. 469
. 472
. 475
. 476
. 477
. 477
. 477
. 477
. 478
. 479
. 480
. 481
. 481
. 482
. 482
. 482
. 482
. 485
. 491
. 492
. 493
. 493
. 493
. 494
. 497
. 500
. 501
. 502
. 502
. 502
. 502
. 503

| Notes .
| Examples.
CREATE TABLE
Invocation
Authorization
Syntax.
Description .
column-definition .
LIKE
I as- subquery-clause
| copy-options
unique-constraint .
referential-constraint .
check-constraint
nodegroup-clause .
Notes . .
Rules for System Name Generatlon .
Examples.
CREATE TRIGGER
Invocation
Authorization
Syntax.
Description .
Notes .
Examples.
CREATE VIEW.
Invocation
Authorization
Syntax.
Description .
Notes .
Examples.
DECLARE CURSOR
Invocation
Authorization
Syntax.
Description .
Notes .
Examples.
| DECLARE GLOBAL TEMPORARY TABLE
| Invocation
| Authorization
| Syntax.
| Description .
| column-definition .
| LIKE
| as- subquery-clause
| copy-options
I Notes .
I Examples.
DECLARE PROCEDURE
Invocation
Authorization
Syntax.
Description .
Notes .
Example . .
DECLARE STATEMENT
Invocation
Authorization
Syntax.

. 504
. 505
. 507
. 507
. 507
. 508
. 514
. 520
. 525
. 526
. 528
. 528
. 529
. 530
. 531
. 532
. 535
. 536
. 538
. 538
. 538
. 540
. 544
. 546
. 549
. 551
. 551
. 551
. 552
. 552
. 554
. 556
. 558
. 558
. 558
. 559
. 559
. 561
. 563
. 565
. 565
. 565
. 566
. 569
. 571
. 574
. 575
. 577
. 578
. 579
. 580
. 580
. 580
. 580
. 583
. 588
. 588
. 589
. 589
. 589
. 589

Description .
Example . .

DECLARE VARIABLE
Invocation
Authorization
Syntax.
Description .
Notes .
Example .

DELETE .
Invocation
Authorization
Syntax.
Description .
DELETE Rules .
Notes .
Examples.

DESCRIBE
Invocation
Authorization
Syntax.
Description .
Notes .
Example . .

DESCRIBE TABLE.
Invocation
Authorization
Syntax.
Description .
Notes .
Example .

DISCONNECT .
Invocation
Authorization
Syntax.
Description .
Notes .
Examples.

DROP .

Invocation
Authorization
Syntax.
Description .
Note
Examples.

END DECLARE SECTION
Invocation
Authorization
Syntax.
Description .
Examples.

EXECUTE
Invocation
Authorization
Syntax.
Description .
Notes .
Example . .

EXECUTE IMMEDIATE
Invocation
Authorization

Contents

. 589
. 589
. 591
. 591
. 591
. 591
. 591
. 592
. 592
. 594
. 594
. 594
. 595
. 595
. 596
. 597
. 598
. 600
. 600
. 600
. 600
. 600
. 602
. 603
. 604
. 604
. 604
. 604
. 604
. 606
. 606
. 607
. 607
. 607
. 607
. 607
. 608
. 608
. 609
. 609
. 609
. 610
. 613
. 618
. 618
. 620
. 620
. 620
. 620
. 620
. 620
. 621
. 621
. 621
. 621
. 621
. 622
. 623
. 624
. 624
. 624

vii

Syntax.
Description .
Note
Example .

FETCH
Invocation
Authorization
Syntax.
Description .
single-fetch .
multiple-row-fetch.
Notes .

Example . .

FREE LOCATOR .
Invocation
Authorization
Syntax.
Description .
Example .

GRANT (Distinct Type Perlleges)
Invocation
Authorization .
Syntax.
Description .
Note
Example . .

GRANT (Function or Procedure Prlvﬂeges)
Invocation .
Authorization .
Syntax.
Description .
Note
Example . .

GRANT (Package Prlvﬂeges)
Invocation .
Authorization
Syntax.
Description .
Note
Example . .

GRANT (Table Pr1v1leges)
Invocation
Authorization
Syntax.
Description .
Notes .

Examples.

HOLD LOCATOR .
Invocation
Authorization
Syntax.
Description .
Note
Example .

INCLUDE
Invocation
Authorization .
Syntax.
Description .
Notes .

Example .

viii DB2 UDB for iSeries SQL Reference V5R2

. 624
. 625
. 625
. 625
. 626
. 626
. 626
. 626
. 627
. 628
. 628
. 630
. 631
. 633
. 633
. 633
. 633
. 633
. 633
. 634
. 634
. 634
. 634
. 634
. 635
. 636
. 637
. 637
. 637
. 637
. 639
. 642
. 643
. 644
. 644
. 644
. 644
. 644
. 645
. 645
. 647
. 647
. 647
. 647
. 647
. 649
. 651
. 652
. 652
. 652
. 652
. 652
. 652
. 652
. 654
. 654
. 654
. 654
. 654
. 655
. 655

INSERT
Invocation
Authorization
Syntax.
Description . .
insert-multiple-rows .
INSERT Rules .
Notes .

Examples.

LABEL
Invocation
Authorization
Syntax.
Description .
Notes .

Examples.

LOCK TABLE .
Invocation
Authorization
Syntax.
Description .
Example .

OPEN .

Invocation

Authorization

Syntax.

Description .

Parameter Marker Replacement
Notes .

Examples.

PREPARE
Invocation
Authorization
Syntax.
Description .
Parameter markers
Notes .

Examples.

RELEASE.
Invocation
Authorization
Syntax.
Description .
Notes .

Examples. .

RELEASE SAVEPOINT .
Invocation
Authorization
Syntax.
Description .
Note
Example .

RENAME
Invocation
Authorization
Syntax.
Description .
Notes .

Examples.

REVOKE (Distinct Type Pr1v11eges) .

Invocation

. 656
. 656
. 656
. 657
. 657
. 660
. 660
. 661
. 662
. 664
. 664
. 664
. 664
. 665
. 665
. 666
. 667
. 667
. 667
. 667
. 667
. 668
. 669
. 669
. 669
. 669
. 669
. 670
. 671
. 672
. 674
. 674
. 674
. 674
. 676
. 677
. 680
. 682
. 684
. 684
. 684
. 684
. 684
. 685
. 685
. 686
. 686
. 686
. 686
. 686
. 686
. 686
. 687
. 687
. 687
. 687
. 687
. 688
. 688
. 689
. 689

Authorization
Syntax.
Description .
Notes .
Example . .

REVOKE (Function or Procedure Pr1v11eges)
Invocation e
Authorization
Syntax.
Description .
Notes .

Example . .

REVOKE (Package Perlleges)
Invocation .
Authorization
Syntax.
Description .
Notes .

Example . .

REVOKE (Table Pr1V11eges)
Invocation .
Authorization
Syntax.
Description .
Notes .

Examples.

ROLLBACK .
Invocation
Authorization
Syntax.
Description .
Notes .

Examples.

SAVEPOINT.
Invocation
Authorization
Syntax.
Description .
Note
Example .

SELECT .

SELECT INTO .
Invocation
Authorization
Syntax.
Description .
Examples. .

SET CONNECTION .
Invocation
Authorization
Syntax.
Description .
Notes .

Example .

SET OPTION
Invocation
Authorization
Syntax.
Description .
Notes .

Examples.

. 689
. 689
. 689
. 690
. 690
. 691
. 691
. 691
. 691
. 693
. 696
. 696
. 697
. 697
. 697
. 697
. 697
. 698
. 698
. 699
. 699
. 699
. 699
. 699
. 700
. 701
. 702
. 702
. 702
. 702
. 702
. 703
. 704
. 706
. 706
. 706
. 706
. 706
. 707
. 707
. 708
. 709
. 709
. 709
. 709
. 710
. 711
. 712
. 712
. 712
. 712
. 712
. 713
. 713
. 715
. 715
. 715
. 715
. 719
. 728
. 728

SET PATH
Invocation
Authorization
Syntax.
Description .
Notes .
Example . .

SET RESULT SETS
Invocation
Authorization
Syntax.
Description .
Notes .
Example .

SET SCHEMA .
Invocation
Authorization
Syntax.
Description .
Notes .
Examples.

SET TRANSACTION
Invocation
Authorization
Syntax.
Description .
Notes .
Examples. .

SET transition-variable
Invocation
Authorization
Syntax.
Description .
Notes .
Examples.

SET variable.
Invocation
Authorization
Syntax.
Description .
Notes .
Examples.

UPDATE .
Invocation
Authorization
Syntax.
Description .
UPDATE Rules .
Notes .
Examples.

VALUES .
Invocation
Authorization
Syntax.
Description .
Notes .
Examples.

VALUES INTO .
Invocation
Authorization
Syntax.

Contents

. 729
. 729
. 729
. 729
. 729
. 730
. 730
. 731
. 731
. 731
. 731
. 731
. 732
. 733
. 734
. 734
. 734
. 734
. 734
. 734
. 735
. 736
. 736
. 736
. 736
. 736
. 737
. 738
. 739
. 739
. 739
. 739
. 739
. 740
. 740
. 741
. 741
. 741
. 741
. 741
. 742
. 742
. 743
. 743
. 743
. 745
. 746
. 749
. 749
. 750
. 752
. 752
. 752
. 752
. 752
. 752
. 753
. 754
. 754
. 754
. 754

ix

Description .
Notes .
Examples.
WHENEVER
Invocation
Authorization .
Syntax.
Description .
Notes .
Example .

Chapter 6. SQL Control Statements

Syntax.

References to SQL Parameters and Varlables .

SQL procedure statement
Syntax.

a531gnment—statemer1t
Syntax.
Description .
Notes .

Example .

CALL statement
Syntax.
Description .
Notes .
Example .

CASE statement
Syntax.
Description .
Notes .
Examples.

compound-statement .
Syntax.
Description .
Notes .
Example .

FOR statement .
Syntax.
Description .
Notes .
Example . .

GET DIAGNOSTICS statement
Syntax.
Description .
Notes .
Example .

GOTO statement
Syntax.
Description .
Notes .
Example .

IF statement.
Syntax.
Description .
Example . .

ITERATE statement
Syntax.
Description .
Example . .

LEAVE statement .
Syntax.

X DB2 UDB for iSeries SQL Reference V5R2

. 754
. 755
. 755
. 756
. 756
. 756
. 756
. 756
. 756
. 757

759
. 759
. 761
. 762
. 762
. 763
. 763
. 763
. 764
. 764
. 765
. 765
. 765
. 765
. 765
. 766
. 766
. 766
. 767
. 767
. 768
. 768
. 770
. 773
. 773
. 775
. 775
. 775
. 776
. 776
. 777
. 777
. 777
. 778
. 778
. 780
. 780
. 780
. 780
. 780
. 782
. 782
. 782
. 782
. 784
. 784
. 784
. 784
. 785
. 785

Description78
Notes78
Example78
LOOP statement786
Syntax.786
Description786
Example786
REPEAT statement787
Syntax.787
Description787
Example787
RESIGNAL statement.78
Syntax.78
Description78
Notes79
Example79
RETURN statement792
Syntax.792
Description792
Notes79
Example79
SIGNAL statement7%
Syntax. 7%
Description7%
Notes79
Example79
WHILE statement797
Syntax.79
Description797
Example79

Appendix A. SQL Limits. 799

Appendix B. SQL Communication
Area803

Field Descriptions803
INCLUDE SQLCA Declaratlons808

Appendix C. SQL Descriptor Area

(SQLDA)813

Field Descriptions 813

Field Descriptions in an Occurrence of SQLVAR 814
Determining How Many SQLVAR Occurrences

are Needed86
SQLTYPE and SQLLEN819
SQLDATA or SQLNAME . . . A
Unrecognized and Unsupported SQLTYPES ..o 821
INCLUDE SQLDA Declarations 822

ForCand C++.82

ForCcOBOL.84

ForILECOBOL84

ForPL/T.825

For ILE RPG/400826

Appendix D. Reserved Words 829

Appendix E. CCSID Values. 831

Appendix F. Characteristics of SQL
Statements 845
Actions allowed on SQL statements 845
SQL Statement Data Access Indication in Routmes 847
Considerations for Using Distributed Relational

Database 848
CONNECT (Type 1) and CONNECT (Type 2)
Differences 857

Appendix G. DB2 UDB for iSeries

Catalog Views 859
Notes86l
iSeries Catalog Tables and Vlews L. 862
SYSCATALOGS863
SYSCHKCST865
SYSCOLUMNS.866
syscsT87
syscsrcoL.876
SYSCSTDEP.877
SYSFUNCS878
SYSINDEXES88
SYSJARCONTENTS88
SYSJAROBJECTS886
SYSKEYCST.887
SYSKEYS.88
SYSPACKAGE88
SYSPARMS89
SYSPROCS89%
SYSREFCST900
SYSROUTINEDEP.901
SYSROUTINES.902
SYSTABLES.910
SYSTRIGCOL912
SYSTRIGDEP913
SYSTRIGGERS914
SYSTRIGUPD918
SYSTYPES919

SYSVIEWDEP .
SYSVIEWS . .
ODBC and JDBC Catalog Vlews .
SQLCOLPRIVILEGES
SQLCOLUMNS
SQLFOREIGNKEYS .
SQLPRIMARYKEYS .
SQLPROCEDURECOQOLS .
SQLPROCEDURES
SQLSCHEMAS . .
SQLSPECIALCOLUMNS
SQLSTATISTICS
SQLTABLEPRIVILEGES .
SQLTABLES.
SQLTYPEINFO .
SQLUDTS . .
ANS and ISO Catalog Vlews .
CHARACTER_SETS .
CHECK_CONSTRAINTS
COLUMNS .

INFORMATION _ SCHEMA CATALOG NAME

PARAMETERS . .
REFERENTIAL _ CONSTRAINTS
ROUTINES .
SCHEMATA.
SQL_FEATURES
SQL_LANGUAGES
SQL_SIZING .
TABLE_CONSTRAINTS .
TABLES . . .
USER_DEFINED _ TYPES
VIEWS

Bibliography.

Index .

. 924
. 926
. 927
. 928
. 929
. 934
. 935
. 936
. 940
. 941
. 942
. 944
. 945
. 946
. 947
. 952
. 954
. 955
. 956
. 957

961

. 962
. 966
. 967
. 975
. 976
. 977
. 978
. 979
. 980
. 981
. 985

. 987

. 989

Contents

xi

xil DB2 UDB for iSeries SQL Reference V5R2

About DB2 UDB for iSeries SQL Reference

This book defines Structured Query Language (SQL) as supported by DB2 Query
Manager and SQL Development Kit. It contains reference information for the tasks
of system administration, database administration, application programming, and
operation. This manual includes syntax, usage notes, keywords, and examples for
each of the SQL statements used on the system.

For more information about this guide, see the following sections:

“Standards Compliance”]
“Who should read the SQL Reference book’|
“Assumptions Relating to Examples of SQL Statements” on page xiv|

“How to Read Syntax Diagrams” on page xv|

[“Conventions for Describing Mixed Data Values” on page xvii|

[“SQL Accessibility” on page xvii
[“What’s new for V5R2 in the SQL Reference book” on page xviiil

| Standards Compliance

DB2 UDB for iSeries Version 5 Release 2 complies with the following IBM and
Industry SQL Standards:

ISO (International Standards Organization) 9075: 1992, Database Language SQL -
Entry Level

ISO (International Standards Organization) 9075-4: 1996, Database Language SQL
- Part 4: Persistent Stored Modules (SQL/PSM)

ISO (International Standards Organization) 9075: 1999, Database Language SQL -
Core

ANSI (American National Standards Institute) X3.135-1992, Database Language
SQL - Entry Level

ANSI (American National Standards Institute) X3.135-4: 1996, Database
Language SQL - Part 4: Persistent Stored Modules (SQL/PSM)

ANSI (American National Standards Institute) X3.135-1999, Database Language
SQL - Core
IBM SQL Reference Version 2, SC26-8416.

For strict adherence to the standards, consider using the standards option. For
more information, see SQLCURRULE in [“SET OPTION” on page 715(and on the
SQL precompiler commands.

Who should read the SQL Reference book

This book is intended for programmers who want to write applications that will
use SQL to access an iSeries database.

It is assumed that you possess an understanding of system administration,
database administration, or application programming for the iSeries server, as
provided by the [SQL Programming Concepts book and that you have some
knowledge of the following:

COBOL for iSeries

© Copyright IBM Corp. 1998, 2002 xiii

../sqlp/rbafymst02.htm

e ILE C compiler

* ILE C++ compiler

e ILE COBOL compiler

* Toolbox for Java or Developer Kit for Java

* ILE RPG compiler

* iSeries PL/I

¢ REXX

* RPG III (part of RPG for iSeries)

e Structured Query Language (SQL)

References in this book to RPG and COBOL refer to the RPG or COBOL language
in general. References to COBOL for iSeries, ILE COBOL for iSeries, RPG for

iSeries, or RPG III (part of RPG for iSeries) refer to specific elements of the product
where they differ from each other.

This manual is a reference rather than a tutorial. It assumes you are already
familiar with SQL programming. This manual also assumes that you will be
writing applications solely for the iSeries server.

If you need more information about using SQL statements, statement syntax, and
parameters, see the [SOL Programming Concepts book.

If you are planning applications that are portable to other IBM environments, it
will be necessary for you to refer to books for those environments in addition to
this one (such as IBM SQL Reference Version 2, SC26-8416).

See the following sections for more details:

* [“Assumptions Relating to Examples of SQL Statements”|

+ |"How to Read Syntax Diagrams” on page xv|

Assumptions Relating to Examples of SQL Statements

The examples of SQL statements shown in this guide are based on the sample
tables in Appendix A of the [SQL Programming Concepts|book and assume the
following:

* They are shown in the interactive SQL environment or written in COBOL. EXEC
SQL and END-EXEC are used to delimit an SQL statement in a COBOL
program. A description of how to use SQL statements in a COBOL program is
provided in the [SQL Programming with Host Languages| book.

* Each SQL example is shown on several lines, with each clause of the statement
on a separate line.

* SQL keywords are highlighted.

* Table names used in the examples are the sample tables provided in Appendix A
of the SQL Programming Concepts|book and use the schema CORPDATA. Table
names that are not provided in that appendix should use schemas that you
create. You can create a set of sample tables in your own schema by issuing the
following SQL statement:

CALL QSYS.CREATE_SQL_SAMPLE ('your-schema-name')

* Calculated columns are enclosed in parentheses, ().

* The SQL naming convention is used.

¢ The APOST and APOSTSQL precompiler options are assumed (although they are
not the default in COBOL). Character-string constants within SQL and host
language statements are delimited by apostrophes ().

xiv DB2 UDB for iSeries SQL Reference V5R2

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../rzajp/rzajpmst02.htm
../sqlp/rbafymst02.htm

* A sort sequence of *HEX is used.

Whenever the examples vary from these assumptions, it is stated.

See also [’Code disclaimer information”}

Code disclaimer information
This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code
examples from which you can generate similar function tailored to your own
specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs.

All programs contained herein are provided to you "AS IS” without any warranties
of any kind. The implied warranties of non-infringement, merchantability and
fitness for a particular purpose are expressly disclaimed.

How to Read Syntax Diagrams
Throughout this book, syntax is described using the structure defined as follows:

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a statement.

The — symbol indicates that the statement syntax is continued on the next
line.

The »— symbol indicates that a statement is continued from the previous line.
The —>< symbol indicates the end of a statement.
Syntax fragments start with the |— symbol and end with the —| symbol.

* Required items appear on the horizontal line (the main path).

»>—required_item >

* Optional items appear below the main path.

»>—required_item |_0 _| <
ptional item

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

|—optional_i tem—l
»>—required_item ><

 If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

v
A

»>—required i tem—[requ ired choicel
required_choi ceZ—|

About DB2 UDB for iSeries SQL Reference XV

xvi

If choosing one of the items is optional, the entire stack appears below the main
path.

Y
A

»>—required_item
bptional_choicel:‘
ptional choice2

If one of the items is the default, it will appear above the main path and the
remaining choices will be shown below.

|—de faul t_choice—|
»>—required_item izo
0

ptional_choice:‘
ptional_choice

An arrow returning to the left, above the main line, indicates an item that can be
repeated.

»—required_item— —repeatable_item ><

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

H

»>—required_item—

repeatable_item >

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly
as shown. Variables appear in all lowercase letters (for example, column-name).
They represent user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

The syntax diagrams only contain the preferred or standard keywords. If
non-standard synonyms are supported in addition to the standard keywords,
they are described the Notes sections instead of the syntax diagrams. For
maximum portability, only the preferred or standard keywords should be used.

DB2 UDB for iSeries SQL Reference V5R2

Conventions for Describing Mixed Data Values

When mixed data values are shown in the examples, the following conventions

apply:

Convention Meaning

g Fepresents the EBCDIC shiff-out control
character (<'0E")

51 Fepresents the EBCDIC shift-inh control
character (<'0F"

shcs-string Fepresents a string of Zero or maore
single-byte characters

dbcs-string Fepresents a string of zero or more
double-byte characters

r Fepresents a DBCS apostrophe
(EBCDIC X'427D")

G Represents a DBCS G (EBCDIC X'42C7Y

| SQL Accessibility

[IBM is committed to providing interfaces and documentation that are easily
| accessible to the disabled community. For general information on IBM’s
I Accessibility support visit the [Accessibility Center|at http:/ /www.ibm.com/able.

O

SQL accessibility support falls in two main categories.

[

I * iSeries Navigator is graphical user interface to iSeries and DB2 UDB. For

[information about the Accessibility features supported in Windows graphical
[user interfaces, see Accessibility in the Windows Help Index.
[
[
[

* Online documentation, online help, and prompted SQL interfaces can be
accessed by a Windows Reader program such as the IBM Home Page Reader.
For information on the IBM Home Page Reader and other tools, visit the

I [Accessibility Centerﬁ& .

[The IBM Home Page Reader can be used to access all descriptive text in this book,
| all articles in the SQL Information Center, and all SQL messages. Due to the

[complex nature of SQL syntax diagrams, however, the reader will skip syntax

I diagrams. Two alternatives are provided for better ease of use:

| * Interactive SQL and Query Manager

I
I

Interactive SQL and Query Manager are traditional file interfaces that provide
prompting for SQL statements. These are part of the DB2 UDB Query Manager

About DB2 UDB for iSeries SQL Reference xvii

http://www.ibm.com/able
http://www.ibm.com/able

and SQL Development Kit. For more information about Interactive SQL and
Query Manager, see the SQL Programming Concepts|and [Query Manager Use|

S wyssist

SQL Assist is a graphical user interface that provides a prompted interface to
SQL statements. This is part of iSeries Navigator. For more information, see the
iSeries Navigator online help and the Information Center.

What’s new for V5R2 in the SQL Reference book

The major new features covered in this book include:

xviii

ROWID data type and ROWID scalar function
IDENTITY column attribute

CREATE TABLE AS (subselect)

DECLARE GLOBAL TEMPORARY tables

User-defined Table Functions

COMMIT ON RETURN procedures

UNION in views

Scalar subselect enhancements

READ ONLY and READ WRITE in SET TRANSACTION

ITERATE and nested Compound statements in SQL procedures, SQL functions,
and SQL triggers

Fullselect in derived tables and common table expressions
Parameter markers in labeled durations

Savepoints

SET SCHEMA and SET SQLID

HOLD LOCATOR

ORDER BY expression not required in the select-list

ORDER BY and FETCH FIRST n ROWS ONLY in derived tables and common
table expressions

Length of SQL statements increased to 64K

Length of delimited column name identifiers increased
SUBSTRING enhancements

VARCHAR concatenation enhancement

Debug of original source statements in SQL procedures, SQL functions, and SQL
triggers

Multiple relational databases on iSeries
Standard and ODBC and JDBC catalog views
C derived variables

DB2 UDB for iSeries SQL Reference V5R2

../sqlp/rbafymst02.htm
../../books/c4152125.pdf

Chapter 1. Concepts

DB2 UDB for iSeries SQL Reference describes the following concepts:

“Relational Database”]

“Structured Query Language” on page 3

“Schemas” on page 5|

“Tables” on page 5|

“Keys” on page 6|

“Primary Keys and Unique Keys” on page 6|

“Referential Integrity” on page 7|

“Check Constraints” on page 9|

“Triggers” on page 9

[“Indexes” on page 11|

[“Views” on page 12|

[“Aliases” on page 13|

[“Packages and Access Plans” on page 13|

[“Procedures” on page 13|

[“Catalog” on page 15

[“Application Processes, Concurrency, and Recovery” on page 15|
[“Threads” on page 20|
[“Isolation Level” on page 21|

[“Distributed Relational Database” on page 24|

[“Character Conversion” on page 31|

[“Sort Sequence” on page 34|

[“Authorization and Privileges” on page 35|

[“Storage Structures” on page 36|

Relational Database

A relational database is a database that can be perceived as a set of tables and can
be manipulated in accordance with the relational model of data. The relational
database contains a set of objects used to store, access, and manage data. The set of
objects includes tables, views, indexes, aliases, distinct types, functions, procedures
and packages.

There are three types of relational databases a user can access from an iSeries
system.

system relational database

There is one default relational database on any iSeries system. The system
relational database is always local to that iSeries system. It consists of all
the database objects that exist on disk attached to the iSeries system that
are not stored on independent auxiliary storage pools. For more
information on independent auxiliary storage pools, see the
category of the iSeries Information Center.

© Copyright IBM Corp. 1998, 2002 1

../rzahgicbasic2.htm
../rzahgicbasic2.htm

The name of the system relational database is, by default, the same as the
iSeries system name. However, a different name can be assigned through
the use of the ADDRDBDIRE (Add RDB Directory Entry) command or
iSeries Navigator.

user relational database

The user may create additional relational databases on an iSeries system by
configuring independent auxiliary storage pools on the system. Each
primary independent auxiliary storage pool is a relational database. It
consists of all the database objects that exist on the independent auxiliary
storage pool disks. Additionally, all database objects in the system
relational database of the iSeries system to which the independent auxiliary
storage pool is connected are logically included in a user relational
database. Thus, the name of any schema created in a user relational
database must not already exist in that user relational database or in the
associated system relational database.

Although the objects in the system relational database are logically
included in a user relational database, certain dependencies between the
objects in the system relational database and the user relational database
are not allowed:

* A view must be created into a schema that exists in the same relational
database as its referenced tables, views, or functions.

* An index must be created into a schema that exists in the same
relational database as its referenced table.

* A trigger or constraint must be created into a schema that exists in the
same relational database as its base table.

¢ The parent table and dependent table in a referential constraint must
both exist in the same relational database.

e A table must be created into a schema that exists in the same relational
database as any referenced distinct types.

* The parent table and dependent table in a referential constraint must
both exist in the same relational database.

Other dependencies between the objects in the system relational database
and the user relational database are allowed. For example, a procedure in a
schema in a user relational database may reference objects in the system
relational database. However, operations on such an object may fail if the
other relational database is not available. For example, if a user relational
database is varied off and then varied on to another system.

A user relational database is local to an iSeries system while the
independent auxiliary storage pool is varied on. Independent auxiliary
storage pools can be varied off on one iSeries system and then varied on to
another iSeries system. Hence, a user relational databases may be local to a
given iSeries system at one point in time and remote at a different point in
time. For more information on independent auxiliary storage pools, see the
System Management] category of the iSeries Information Center.

The name of the user relational database is, by default, the same as the
independent auxiliary storage pool name. However, a different name can
be assigned through the use of the ADDRDBDIRE (Add RDB Directory
Entry) command or iSeries Navigator.

remote relational database

Relational databases on other iSeries and non-iSeries systems can be

2 DB2 UDB for iSeries SQL Reference V5R2

../rzahgicbasic2.htm

accessed remotely. These relational databases must be registered through
the use of the ADDRDBDIRE (Add RDB Directory Entry) command or
iSeries Navigator.

The database manager is the name used generically to identify the iSeries Licensed
Internal Code and the DB2 UDB for iSeries portion of the code that manages the
relational database.

Structured Query Language

Structured Query Language (SQL) is a standardized language for defining and
manipulating data in a relational database. In accordance with the relational model
of data, the database is perceived as a set of tables, relationships are represented by
values in tables, and data is retrieved by specifying a result table that can be
derived from one or more base tables.

SQL statements are executed by a database manager. One of the functions of the
database manager is to transform the specification of a result table into a sequence
of internal operations that optimize data retrieval. This transformation occurs when
the SQL statement is prepared. This transformation is also known as binding.

All executable SQL statements must be prepared before they can be executed. The
result of preparation is the executable or operational form of the statement. The
method of preparing an SQL statement and the persistence of its operational form
distinguish static SQL from dynamic SQL.

Static SQL

The source form of a static SQL statement is embedded within an application
program written in a host language such as COBOL. The statement is prepared
before the program is executed and the operational form of the statement persists
beyond the execution of the program.

A source program containing static SQL statements must be processed by an SQL
precompiler before it is compiled. The precompiler checks the syntax of the SQL
statements, turns them into host language comments, and generates host language
statements to call the database manager.

The preparation of an SQL application program includes precompilation, the
preparation of its static SQL statements, and compilation of the changed source
program.

Dynamic SQL

A dynamic SQL statement is prepared during the execution of an SQL application.
The operational form of the statement persists until the last SQL program leaves
the call stack. The source form of the statement is a character string that is passed
to the database manager by the program using the static SQL statement PREPARE
or EXECUTE IMMEDIATE.

SQL statements embedded in a REXX application are dynamic SQL statements.
SQL statements submitted to the interactive SQL facility are also dynamic SQL
statements.

Chapter 1. Concepts 3

Extended Dynamic SQL
An extended dynamic SQL statement is neither fully static nor fully dynamic. The
QSQPRCED API provides users with extended dynamic SQL capability. Like
dynamic SQL, statements can be prepared, described, and executed using this APL
Unlike dynamic SQL, SQL statements prepared into a package by this API persist
until the package or statement is explicitly dropped. For more information, see the
information in the Programming category of the iSeries Information

Center.

Interactive SQL

An interactive SQL facility is associated with every database manager. Essentially,
every interactive SQL facility is an SQL application program that reads statements
from a terminal, prepares and executes them dynamically, and displays the results
to the user. Such SQL statements are said to be issued interactively. The interactive
facilities for DB2 UDB for iSeries are invoked by the STRSQL command, the
STRQM command, or the SQL Script support of iSeries Navigator. For more
information about the interactive facilities for SQL, see the [SQL Programming]

(Concepts|and [Query Manager UselQl books.

SQL Call Level Interface (CLI) and Open Database
Connectivity (ODBC)

The DB2 Call Level Interface is an application programming interface in which
functions are provided to application programs to process dynamic SQL
statements. DB2 CLI allows users of any of the ILE languages to access SQL
functions directly through procedure calls to a service program provided by DB2
UDB for iSeries. CLI programs can also be compiled using an Open Database
Connectivity (ODBC) Software Developer’s Kit, available from Microsoft or other
vendors, enabling access to ODBC data sources. Unlike using embedded SQL, no
precompilation is required. Applications developed using this interface may be
executed on a variety of databases without being compiled against each of the
databases. Through the interface, applications use procedure calls at execution time
to connect to databases, to issue SQL statements, and to get returned data and
status information.

The DB2 CLI interface provides many features not available in embedded SQL. For

example:

* CLI provides function calls which support a consistent way to query and
retrieve database system catalog information across the DB2 family of database
management systems. This reduces the need to write database server specific
catalog queries.

* Stored procedures called from application programs written using CLI can
return result sets to those programs.

For a complete description of all the available functions, and their syntax, see
[Call Level Interfaces (ODBC)| book.

Java Database Connectivity (JDBC) and Embedded SQL for
Java (SQLJ) Programs

DB2 UDB for iSeries implements two standards-based Java programming APIs:
Java Database Connectivity (JDBC) and embedded SQL for Java (SQLJ). Both can
be used to create Java applications and applets that access DB2.

4 DB2 UDB for iSeries SQL Reference V5R2

../apis/api.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../../books/c4152125.pdf
../cli/rzadpmst02.htm
../cli/rzadpmst02.htm

JDBC calls are translated to calls to DB2 CLI through Java native methods. You can
access iSeries databases through two JDBC drivers: IBM Developer Kit for Java
driver or IBM Toolbox for Java JDBC driver. For specific information about the
IBM Toolbox for Java JDBC driver, see [[BM Toolbox for Javal

Static SQL cannot be used by JDBC. SQLJ applications use JDBC as a foundation
for such tasks as connecting to databases and handling SQL errors, but can also
contain embedded static SQL statements in the SQL]J source files. An SQLJ source
file has to be translated with the SQL]J translator before the resulting Java source
code can be compiled.

For more information about JDBC and SQLJ applications, refer to the

book.

Schemas

A schema is a collection of named objects. Schemas provide a logical classification
of objects in a relational database. Some of the objects that a schema may contain
include tables, views, aliases, functions, procedures, types, and packages. A schema
is also called a collection or library.

A schema is also an object in the relational database. It is explicitly created using
the CREATE SCHEMA statement.

A schema name is used as the high-order part of a two-part object name. An object
that is contained in a schema is assigned to the schema when the object is created.
The schema to which it is assigned is determined by the name of the object if
specifically qualified with a schema name or by the default schema name if not
qualified.

For example, a user creates a schema called C:
CREATE SCHEMA C

The user can then issue the following statement to create a table called X in
schema C:

CREATE TABLE C.X (COL1 INT)

Tables

A table is an object that stores user data. Tables are logical structures maintained
by the database manager. Tables are made up of columns and rows. There is no
inherent order of the rows within a table. At the intersection of every column and
row is a specific data item called a value. A column is a set of values of the same
type. A row is a sequence of values such that the nth value is a value of the nth
column of the table.

A base table is created with the CREATE TABLE statement and is used to hold
persistent user data. A result table is a set of rows that the database manager selects
or generates from one or more base tables.

1. A schema can also be created using the CRTLIB CL command, however, the catalog views and journal created by using the
CREATE SCHEMA statement will not be created with CRTLIB.

Chapter 1. Concepts 5

../rzahh/page1.htm
../rzaha/whatitis.htm
../rzaha/whatitis.htm

A base table has a name and may have a different system name. The system name
is the name used by OS/400. Either name is acceptable wherever a table-name is
specified in SQL statements. For more information see ["CREATE TABLE” on|

A column of a base table has a name and may have a different system column
name. The system column name is the name used by OS/400. Either name is
acceptable wherever column-name is specified in SQL statements. For more
information see [“CREATE TABLE” on page 507

A distributed table is a table whose data is partitioned across a nodegroup. A
nodegroup is an object that provides a logical grouping of a set of two or more
systems. A partitioning key is a set of one or more columns in a distributed table
that are used to determine on which system a row belongs. For more information
about distributed tables, see the [DB2 Multisystem|book.

A declared temporary table is created with a DECLARE GLOBAL TEMPORARY
TABLE statement and is used to hold temporary data on behalf of a single
application. This table is dropped implicitly when the application disconnects from
the database.

Keys

A key is one or more columns that are identified as such in the description of an
index, unique constraint, or a referential constraint. The same column can be part
of more than one key. A key composed of more than one column is called a
composite key.

A composite key is an ordered set of columns of the same table. The ordering of the
columns is not constrained by their ordering within the table. The term value when
used with respect to a composite key denotes a composite value. Thus, a rule such
as “the value of the foreign key must be equal to the value of the primary key”
means that each component of the value of the foreign key must be equal to the
corresponding component of the value of the primary key.

Primary Keys and Unique Keys

A unique constraint is the rule that the values of a key are valid only if they are
unique. A key that is constrained to have unique values is called a unigque key and
can be defined by using the CREATE UNIQUE INDEX statement. The resulting
unique index is used by the database manager to enforce the uniqueness of the key
during the execution of INSERT and UPDATE statements. Alternatively, unique
keys can be defined:

* As a primary key using a CREATE TABLE or ALTER TABLE statement. A table
cannot have more than one primary key. A CHECK constraint will be added
implicitly to enforce the rule that the NULL value is not allowed in the columns
that make up the primary key. A unique index on a primary key is called a
primary index.

* Using the UNIQUE clause of the CREATE TABLE or ALTER TABLE statement.
A table can have an arbitrary number of UNIQUE keys.

A unique key that is referenced by the foreign key of a referential constraint is
called the parent key. A parent key is either a primary key or a UNIQUE key.
When a table is defined as a parent in a referential constraint, the default parent
key is its primary key.

6 DB2 UDB for iSeries SQL Reference V5R2

../dbmult/rzaf3mst02.htm

Referential Integrity

Referential integrity is the state of a database in which all values of all foreign keys
are valid. A foreign key is a key that is part of the definition of a referential
constraint. A referential constraint is the rule that the values of the foreign key are
valid only if:

* They appear as values of a parent key, or

* Some component of the foreign key is null.

The table containing the parent key is called the parent table of the referential
constraint, and the table containing the foreign key is said to be a dependent of that
table.

Referential constraints are optional and can be defined in CREATE TABLE
statements and ALTER TABLE statements. Referential constraints are enforced by
the database manager during the execution of INSERT, UPDATE, and DELETE
statements. The enforcement is effectively performed at the completion of the
statement except for delete and update rules of RESTRICT which are enforced as
rows are processed.

Referential constraints with a delete or update rule of RESTRICT are always
enforced before any other referential constraints. Other referential constraints are
enforced in an order independent manner. That is, the order does not affect the
result of the operation. Within an SQL statement:

e A row can be marked for deletion by any number of referential constraints with
a delete rule of CASCADE.

* A row can only be updated by one referential constraint with a delete rule of
SET NULL or SET DEFAULT.

* A row that was updated by a referential constraint cannot also be marked for
deletion by another referential constraint with a delete rule of CASCADE.

The rules of referential integrity involve the following concepts and terminology:

Parent key A primary key or unique key of a referential
constraint.

Parent row A row that has at least one dependent row.

Parent table A table that is a parent in at least one referential

constraint. A table can be defined as a parent in an
arbitrary number of referential constraints.

Dependent table A table that is a dependent in at least one
referential constraint. A table can be defined as a
dependent in an arbitrary number of referential
constraints. A dependent table can also be a parent

table.

Descendent table A table is a descendent of table T if it is a
dependent of T or a descendent of a dependent of
T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row p if it is a dependent

of p or a descendent of a dependent of p.

Referential cycle A set of referential constraints such that each table
in the set is a descendent of itself.

Chapter 1. Concepts 7

Self-referencing row A row that is a parent of itself.

Self-referencing table A table that is a parent and a dependent in the
same referential constraint. The constraint is called
a self-referencing constraint.

The insert rule of a referential constraint is that a nonnull insert value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null.

The update rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION and RESTRICT. The update rule
applies when a row of the parent or dependent table is updated. The update rule
is that a nonnull update value of a foreign key must match some value of the
parent key of the parent table. The value of a composite foreign key is null if any
component of the value is null.

The delete rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, SET
NULL or SET DEFAULT. SET NULL can be specified only if some column of the
foreign key allows null values.

The delete rule of a referential constraint applies when a row of the parent table is
deleted. More precisely, the rule applies when a row of the parent table is the
object of a delete or propagated delete operation (defined below) and that row has
dependents in the dependent table of the referential constraint. Let P denote the
parent table, let D denote the dependent table, and let p denote a parent row that
is the object of a delete or propagated delete operation. If the delete rule is:

e RESTRICT or NO ACTION, an error occurs and no rows are deleted

* CASCADE, the delete operation is propagated to the dependents of p in D

¢ SET NULL, each nullable column of the foreign key of each dependent of p in D
is set to null

* SET DEFAULT, each column of the foreign key of each dependent of p in D is
set to its default value

Each referential constraint in which a table is a parent has its own delete rule, and
all applicable delete rules are used to determine the result of a delete operation.
Thus, a row cannot be deleted if it has dependents in a referential constraint with a
delete rule of RESTRICT or NO ACTION, or if the deletion cascades to any of its
descendants that are dependents in a referential constraint with the delete rule of
RESTRICT or NO ACTION.

The deletion of a row from parent table P involves other tables and may affect
rows of these tables:

* If table D is a dependent of P and the delete rule is RESTRICT or NO ACTION,
D is involved in the operation but is not affected by the operation.

e If D is a dependent of P and the delete rule is SET NULL, D is involved in the
operation, and rows of D may be updated during the operation.

e If D is a dependent of P and the delete rule is SET DEFAULT, D is involved in
the operation, and rows of D may be updated during the operation.

* If D is a dependent of P and the delete rule is CASCADE, D is involved in the
operation and rows of D may be deleted during the operation.

8 DB2 UDB for iSeries SQL Reference V5R2

If rows of D are deleted, the delete operation on P is said to be propagated to D. If
D is also a parent table, the actions described in this list apply, in turn, to the
dependents of D.

Any table that may be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent
of P or a dependent of a table to which delete operations from P cascade.

Check Constraints

A check constraint is a rule that specifies the values allowed in one or more columns
of every row of a table. Check constraints are optional and can be defined using
the SQL statements CREATE TABLE and ALTER TABLE. The definition of a check
constraint is a restricted form of a search condition. One of the restrictions is that a
column name in a check constraint on a table T must identify a column of T.

A table can have an arbitrary number of check constraints. They are enforced by
the database manager when:

* A row is inserted into the table.
* A row of the table is updated.

A check constraint is enforced by applying its search condition to each row that is
inserted or updated. An error occurs if the result of the search condition is FALSE
for any row.

Triggers

A trigger defines a set of actions that are executed automatically whenever a delete,
insert, or update operation occurs on a specified table. When such an SQL
operation is executed, the trigger is said to be activated.?

The set of actions can include almost any operation allowed on the system. A few
operations are not allowed, such as:

¢ Commit or rollback (if the same commitment definition is used for the trigger
actions and the triggering event)

« CONNECT, SET CONNECTION, DISCONNECT, and RELEASE statements

For a complete list of restrictions, see the [Database Programming| book.

Triggers can be used along with referential constraints and check constraints to
enforce data integrity rules. Triggers are more powerful than constraints because
they can also be used to cause updates to other tables, automatically generate or
transform values for inserted or updated rows, or invoke functions that perform
operations both inside and outside of DB2. For example, instead of preventing an
update to a column if the new value exceeds a certain amount, a trigger can
substitute a valid value and send a notice to an administrator about the invalid
update.

Triggers are a useful mechanism to define and enforce transitional business rules
that involve different states of the data (for example, salary cannot be increased by
more than 10 percent). Such a limit requires comparing the value of a salary before

2. The ADDPFTRG CL command also defines a trigger that is activated on any read operation.

Chapter 1. Concepts 9

../dbp/rbafomst02.htm

and after an increase. For rules that do not involve more than one state of the data,
consider using referential and check constraints.

Triggers also move the application logic that is required to enforce business rules
into the database, which can result in faster application development and easier
maintenance. With the logic in the database, for example, the previously mentioned
limit on increases to the salary column of a table, DB2 checks the validity of the
changes that any application makes to the salary column. In addition, the
application programs do not need to be changed when the logic changes.

Triggers are optional and are defined using the CREATE TRIGGER statement or
the ADDPFTRG (Add Physical File Trigger) CL command. Triggers are dropped
using the DROP TRIGGER statement or the RMVPFIRG (Remove Physical File
Trigger) CL command. For more information about creating triggers, see the
CREATE TRIGGER statement. For more information about triggers in general, see
the ["CREATE TRIGGER” on page 538 statement or the ISQL Programming|

|£ ‘oncepts|and the [Database Programming| books.

There are a number of criteria that are defined when creating a trigger which are
used to determine when a trigger should be activated.

* The subject table defines the table for which the trigger is defined.

* The trigger event defines a specific SQL operation that modifies the subject table.
The operation could be delete, insert, or update.

* The trigger activation time defines whether the trigger should be activated before
or after the trigger event is performed on the subject table.

The statement that causes a trigger to be activated will include a set of affected rows.
These are the rows of the subject table that are being deleted, inserted or updated.
The trigger granularity defines whether the actions of the trigger will be performed
once for the statement or once for each of the rows in the set of affected rows.

The trigger action consists of an optional search condition and a set of SQL
statements that are executed whenever the trigger is activated. The SQL statements
are only executed if the search condition evaluates to true.

The triggered action may refer to the values in the set of affected rows. This is
supported through the use of transition variables. Transition variables use the names
of the columns in the subject table qualified by a specified name that identifies
whether the reference is to the old value (prior to the update) or the new value
(after the update). The new value can also be changed using the SET
transition-variable statement in before update or insert triggers. Another means of
referring to the values in the set of affected rows is using transition tables.
Transition tables also use the names of the columns of the subject table but have a
name specified that allows the complete set of affected rows to be treated as a
table. Transition tables can only be used in after triggers. Separate transition tables
can be defined for old and new values.

Multiple triggers can be specified for a combination of table, event, or activation
time. The order in which the triggers are activated is the same as the order in
which they were created. Thus, the most recently created trigger will be the last
trigger activated.

The activation of a trigger may cause trigger cascading. This is the result of the

activation of one trigger that executes SQL statements that cause the activation of
other triggers or even the same trigger again. The triggered actions may also cause

10 DB2 UDB for iSeries SQL Reference V5R2

../dbp/rbafomst02.htm
../dbp/rbafomst02.htm
../dbp/rbafomst02.htm

updates as a result of the original modification, which may result in the activation
of additional triggers. With trigger cascading, a significant chain of triggers may be
activated causing significant change to the database as a result of a single delete,
insert or update statement.

The actions performed in the trigger are considered to be part of the operation that
caused the trigger to be executed. Thus, when the isolation level is anything other
than NC (No Commit) and the trigger actions are performed using the same
commitment definition as the trigger event:

* The database manager ensures that the operation and the triggers executed as a
result of that operation either all complete or are backed out. Operations that
occurred prior to the triggering operation are not affected.

* The database manager effectively checks all constraints (except for a constraint
with a RESTRICT delete rule) after the operation and the associated triggers
have been executed.

A trigger has an attribute that specifies whether it is allowed to delete or update a
row that has already been inserted or updated within the SQL statement that
caused the trigger to be executed.

 If ALWREPCHG(*YES) is specified when the trigger is defined, then within an
SQL statement:

— The trigger is allowed to update or delete any row that was inserted or
already updated by that same SQL statement. This also includes any rows
inserted or updated by a trigger or referential constraint caused by the same
SQL statement.

* If ALWREPCHG(*NO) is specified when the trigger is defined, then within an
SQL statement:

— A row can be deleted by a trigger only if that row has not been inserted or
updated by that same SQL statement. If the isolation level is anything other
than NC (No Commit) and the trigger actions are performed using the same
commitment definition as the trigger event, this also includes any inserts or
updates by a trigger or referential constraint caused by the same SQL
statement.

— A row can be updated by a trigger only if that row has not already been
inserted or updated by that same SQL statement. If the isolation level is
anything other than NC (No Commit) and the trigger actions are performed
using the same commitment definition as the trigger event, this also includes
any inserts or updates by a trigger or referential constraint caused by the
same SQL statement.

All triggers created by using the CREATE TRIGGER statement implicitly have the
ALWREPCHG(*YES) attribute.

Indexes

An index is a set of pointers to rows of a base table. Each index is based on the
values of data in one or more table columns. An index is an object that is separate
from the data in the table. When you request an index, the database manager
builds this structure and maintains it automatically.

An index has a name and may have a different system name. The system name is
the name used by OS/400. Either name is acceptable wherever an index-name is
si ecified in SQL statements. For more information see ["CREATE INDEX” on|

Pag

Chapter 1. Concepts 11

The database manager uses two types of indexes:
* Binary radix tree index

Binary radix tree indexes provide a specific order to the rows of a table. The
database manager uses them to:

— Improve performance. In most cases, access to data is faster than without an
index.

— Ensure uniqueness. A table with a unique index cannot have rows with
identical keys.

¢ Encoded vector index

Encoded vector indexes do not provide a specific order to the rows of a table.
The database manager only uses these indexes to improve performance.

An encoded vector access path works with the help of encoded vector indexes and
provides access to a database file by assigning codes to distinct key values and
then representing these values in an array. The elements of the array can be 1, 2, or
4 bytes in length, depending on the number of distinct values that must be
represented. Because of their compact size and relative simplicity, encoded vector
access paths provide for faster scans that can be more easily processed in parallel.

You create encoded vector access paths by using the SQL CREATE INDEX
statement. For more information about [accelerating your queries with encoded|

, go to the DB2 UDB for iSeries webpages.

Views

A view provides an alternative way of looking at the data in one or more tables.

A view is a named specification of a result table. The specification is a SELECT
statement that is effectively executed whenever the view is referenced in an SQL
statement. Thus, a view can be thought of as having columns and rows just like a
base table. For retrieval, all views can be used just like base tables. Whether a view
can be used in an insert, update, or delete operation depends on its definition as
explained in the description of CREATE VIEW. (See [“CREATE VIEW” on page 551|
for more information.)

An index cannot be created for a view. However, an index created for a table on
which a view is based may improve the performance of operations on the view.

When the column of a view is directly derived from a column of a base table, that
column inherits any constraints that apply to the column of the base table. For
example, if a view includes a foreign key of its base table, INSERT and UPDATE
operations using that view are subject to the same referential constraints as the
base table. Likewise, if the base table of a view is a parent table, DELETE
operations using that view are subject to the same rules as DELETE operations on
the base table. A view also inherits any triggers that apply to its base table. For
example, if the base table of a view has an update trigger, the trigger is fired when
an update is performed on the view.

A view has a name and may have a different system name. The system name is
the name used by OS/400. Either name is acceptable wherever a view-name is
specified in SQL statements. For more information see [*CREATE VIEW” on|
page 55

12 DB2 UDB for iSeries SQL Reference V5R2

http://www.as400.ibm.com/developer/bi/evi.html
http://www.as400.ibm.com/developer/bi/evi.html

A column of a view has a name and may have a different system column name.
The system column name is the name used by OS/400. Either name is acceptable
wherever column-name is specified in SQL statements. For more information, see
[“CREATE VIEW” on page 551|

Aliases

An alias is an alternate name for a table or view. You can use an alias to reference a
table or view in those cases where an existing table or view can be referenced.’
Like tables and views, an alias may be created, dropped, and have a comment or
label associated with it. No authority is necessary to use an alias. Access to the
tables and views that are referred to by the alias, however, still require the
appropriate authorization for the current statement.

An alias has a name and may have a different system name. The system name is
the name used by OS/400. Either name is acceptable wherever an alias-name is
specified in SQL statements. For more information see [“CREATE ALIAS” onl

Packages and Access Plans

For distributed SQL programs, a package is an object that contains control structures
used to execute SQL statements. Packages are produced during program
preparation. The control structures can be thought of as the bound or operational
form of SQL statements. All control structures in a package are derived from the
SQL statements embedded in a single source program.

A package can also be created by the QSQPRCED API. Packages created by the
QSQPRCED API can only be used by the QSQPRCED API. They cannot be used at
a server through DRDA protocols. For more information, see the [OS/400 APIs

information in the Programming category of the iSeries Information Center.

The QSQPRCED API is used by iSeries Access for Windows to create packages for
caching SQL statements executed via ODBC, JDBC and SQL]J interfaces.

For non-distributed SQL programs, the control structures used to execute SQL
statements are stored in the associated space of the non-distributed SQL program.

The term access plan is used in general to describe the control structures in the
associated space of an SQL program or SQL package used to execute SQL
statements.

Procedures

A procedure (often called a stored procedure) is a programming construct that can
be called to perform a set of operations. The operations can contain host language
statements and SQL statements.

Procedures are typically classified as either SQL procedures or external procedures.
SQL procedures contain only SQL statements. External procedures reference a host

3. You cannot use an alias in all contexts. For example, an alias that refers to an individual member of a database file cannot be used
in data definition language (DDL) statements.

Chapter 1. Concepts 13

../apis/api.htm

language program (or in the case of REXX, a source file member) which may or
may not contain SQL statements. Both external procedures and SQL procedures are
supported in DB2 UDB for iSeries.

Procedures in SQL provide the same benefits as procedures in a host language.
That is, a common piece of code need only be written and maintained once and
can be called from several programs. Both host languages and SQL can call
procedures that exist on the local system. However, SQL can also call a procedure
that exists on a remote system. In fact, the major benefit of procedures in SQL is
that they can be used to enhance the performance characteristics of distributed
applications.

Assume several SQL statements must be executed at a remote system. When the
first SQL statement is executed, the application requester will send a request to a
server to perform the operation. It will then wait for a reply that indicates whether
the statement executed successfully or not and optionally returns results. When the
second and each subsequent SQL statement is executed, the application requester
will send another request and wait for another reply. If the same SQL statements
are stored in a procedure at a server, a CALL statement can be executed that
references the remote procedure. When the CALL statement is executed, the
application requester will send a single request to the current server to call the
procedure. It will then wait for a single reply that indicates whether the procedure
executed successfully or not and optionally returns results.

The following two figures illustrate the way stored procedures can be used in a
distributed application to eliminate some of the remote requests.

Frogram Fackage
H tto execute LIPDATE
UPDATE .| | TETHESHD BRECHIE s | UPDATE ..
Fesults from LUFDATE
Feguestto execute INSEHT
INSERT - s | INSERT .
Hesultsfrom INSERET
SELECT Feguestto execute EELECTF SELECT
-
| Resultsfrom SELECT |
Application Application
Fequester Server

Figure 1. Application Without Remote Procedure

14 DB2 UDB for iSeries SQL Reference V5R2

Frogram

CALL x

Fequest to execute CALL
e e p CALL x iLIF'DATE...

Application
Fequester

Fackage Frogram x

Fesults from CALL
INSERT ...

SELECT ..

Applic ation
Senver

Figure 2. Application With Remote Procedure

Catalog

The database manager maintains a set of tables containing information about the
data in the database. These tables are collectively known as the catalog. The catalog
tables contain information about tables, parameters, procedures, packages, views,
indexes, and constraints on the system.

The database manager provides views over the catalog tables. The views provide
more consistency with the catalog views of other IBM SQL products and with the
catalog views of the ANSI and ISO standard (called Information Schema in the
standard). The catalog views in QSYS2 contain information about all tables,
packages, views, indexes, and constraints on the system. Additionally, an SQL
schema will contain a set of these views that only contains information about
tables, packages, views, indexes, and constraints in the schema.

Tables and views in the catalog are like any other database tables and views. If you
have authorization, you can use SQL statements to look at data in the catalog
views in the same way that you retrieve data from any other table in the system.
The database manager ensures that the catalog contains accurate descriptions of
the objects in the database at all times.

For more information about catalog tables and views, see[Appendix G, “DB2 UDB|
lfor iSeries Catalog Views” on page 859

Application Processes, Concurrency, and Recovery

All SQL programs execute as part of an application process. In OS/400, an
application process is called a job. In the case of ODBC and JDBC and DRDA, the
application process ends when the connection ends even though the job they are
using does not end and may be reused. An application process is made up of one
or more activation groups. Each activation group involves the execution of one or

Chapter 1. Concepts 15

more programs. Programs run under a non-default activation group or the default
activation group. All programs except those created by ILE compilers run under
the default activation group.

A
For more information about activation groups, see the book [[LE Concepts A

An application process that uses commitment control can run with one or more
commitment definitions. A commitment definition provides a means to scope
commitment control at an activation group level or at a job level. At any given
time, an activation group that uses commitment control is associated with only one
of the commitment definitions.

A commitment definition can be explicitly started through the Start Commitment
Control (STRCMTCTL) command. If not already started, a commitment definition
is implicitly started when the first SQL statement is executed under an isolation
level different than COMMIT(*NONE). More than one activation group can share a
job commitment definition.

shows the relationship of an application process, the activation groups in
that application process, and the commitment definitions. Activation groups A and
B run with commitment control scoped to the activation group. These activation
groups have their own commitment definitions. Activation group C does not run
with any commitment control and does not have a commitment definition.

Application Process
Without Job-Level Commitment Definition

Activation Activation Activation
Group A Group B Group C
Cormmitment Commitment
Definition Definition

Figure 3. Activation Groups without Job Commitment Definition

[Figure 4 on page 17|shows an application process, the activation groups in that
application process, and the commitment definitions. Some of the activation groups
are running with the job commitment definition. Activation groups A and B are
running under the job commitment definition. Any commit or rollback operation in

16 DB2 UDB for iSeries SQL Reference V5R2

../../books/c4156066.pdf

activation group A or B affects both because the commitment control is scoped to
the same commitment definition. Activation group C in this example has a
separate commitment definition. Commit and rollback operations performed in this
activation group only affect operations within C.

Application Process
Without Joh-Level Commitment Control

Activation Activation Activation
Group A Group B Group ©
Jal .
Commitment CI:IIHHI'II.tIﬂE-'I'It
" Definition
Definition

Figure 4. Activation Groups with Job Commitment Definition

For more information about commitment definitions, see the [Commitment control|
topic.

Locking, Commit, and Rollback

Application processes and activation groups that use different commitment
definitions can request access to the same data at the same time. Locking is used to
maintain data integrity under such conditions. Locking prevents such things as
two application processes updating the same row of data simultaneously.

The database manager acquires locks to keep the uncommitted changes of one
activation group undetected by activation groups that use a different commitment
definition. Object locks and other resources are allocated to an activation group.
Row locks are allocated to a commitment definition.

When an activation group other than the default activation group ends normally,
the database manager releases all locks obtained by the activation group. A user
can also explicitly request that most locks be released sooner. This operation is
called commit. Object locks associated with cursors that remain open after commit
are not released.

The recovery functions of the database manager provide a means of backing out of

uncommitted changes made in a commitment definition. The database manager
may implicitly back out uncommitted changes under the following situations:

Chapter 1. Concepts 17

../rzakj/rzakjcommitkickoff.htm

* When the application process ends, all changes performed under the
commitment definition associated with the default activation group are backed
out. When an activation group other than the default activation group ends
abnormally, all changes performed under the commitment definition associated
with that activation group are backed out.

* When using Distributed Unit of Work and a failure occurs while attempting to
commit changes on a remote system, all changes performed under the
commitment definition associated with remote connection are backed out.

* When using Distributed Unit of Work and a request to back out is received from
a remote system because of a failure at that site, all changes performed under
the commitment definition associated with remote connection are backed out.

A user can also explicitly request that their database changes be backed out. This
operation is called rollback.

Locks acquired by the database manager on behalf of an activation group are held
until the unit of work is ended. A lock explicitly acquired by a LOCK TABLE
statement can be held past the end of a unit of work if COMMIT HOLD or
ROLLBACK HOLD is used to end the unit of work.

A cursor can implicitly lock the row at which the cursor is positioned. This lock
prevents:

* Other cursors associated with a different commitment definition from locking
the same row.

A DELETE or UPDATE statement associated with a different commitment
definition from locking the same row.

Unit of Work

A unit of work (also known as a logical unit of work or unit of recovery) is a
recoverable sequence of operations. Each commitment definition involves the
execution of one of more units of work. At any given time, a commitment
definition has a single unit of work.

A unit of work is started either when the commitment definition is started, or
when the previous unit of work is ended by a commit or rollback operation. A unit
of work is ended by a commit operation, a rollback operation, or the ending of the
activation group. A commit or rollback operation affects only the database changes
made within the unit of work that the commit or rollback ends. While changes
remain uncommitted, other activation groups using different commitment
definitions running under isolation levels COMMIT(*CS), COMMIT(*RS), and
COMMIT(*RR) cannot perceive the changes. The changes can be backed out until
they are committed. Once changes are committed, other activation groups running
in different commitment definitions can access them, and the changes can no
longer be backed out.

The start and end of a unit of work defines points of consistency within an
activation group. For example, a banking transaction might involve the transfer of
funds from one account to another. Such a transaction would require that these
funds be subtracted from the first account, and added to the second. Following the
subtraction step, the data is inconsistent. Only after the funds are added to the
second account is consistency established again. When both steps are complete, the
commit operation can be used to end the unit of work. After the commit operation,

18 DB2 UDB for iSeries SQL Reference V5R2

the changes are available to activation groups that use different commitment

definitions.
Paoint of Mew P oirt of
Conziztency Conzigtency
l-ﬂ— Cne Unit ofWork ——————— l
TIME LINE database updates

| |

Beqgin LUnit Zom mit
of Wiork Enc Unit of Work

Figure 5. Unit of Work with a Commit Statement

Rolling Back Work

The database manager can back out all changes made in a unit of work or only
selected changes. Only backing out all changes results in a point of consistency.

Rolling back all changes

The SQL ROLLBACK statement without the TO SAVEPOINT clause causes a full
rollback operation. If such a rollback operation is successfully executed, the
database manager backs out uncommitted changes to restore the data consistency
that it assumes existed when the unit of work was initiated. That is, the database
manager undoes the work, as shown in the diagram below:

Faint of Mew Foint of
Consistency Consistency

database

ld— Cne Lnit of Wark, ——= l
TIME LINE updates

hack out
updates

Begin Unit Failure: Data is Heturned to
af Woark Begin Rollback its Initial State;
End LInit of Wark

Figure 6. Unit of Work with a Rollback Statement

Chapter 1. Concepts 19

Rolling back selected changes using savepoints

A savepoint represents the state of data at some particular time during a unit of
work. An application process can set savepoints within a unit of work, and then as
logic dictates, roll back only the changes that were made after a savepoint was set.
For example, part of a reservation transaction might involve booking an airline
flight and then a hotel room. If a flight gets reserved but a hotel room cannot be
reserved, the application process might want to undo the flight reservation without
undoing any database changes made in the transaction prior to making the flight
reservation. SQL programs can use the SQL SAVEPOINT statement to set
savepoints, the SQL ROLLBACK statement with the TO SAVEPOINT clause to
undo changes to a specific savepoint or the last savepoint that was set, and the
RELEASE SAVEPOINT statement to delete a savepoint.

-—
Iy

Unit of Work =l

TIME LINE
Begin Unit Savepoint A Rollback to A; COMMIT
of Work database updates End Unit of Work

made between
times T1 and T2
are rolled back

Figure 7. Unit of Work with a Rollback Statement and a Savepoint Statement

Threads

In OS/400, an application process can also consist of one or more threads. By
default, a thread shares the same commitment definitions and locks as the other
threads in the job. Thus, each thread can operate on the same unit of work so that
when one thread commits or rolls back, it can commit or rollback all changes
performed by all threads. This type of processing is useful if multiple threads are
cooperating to perform a single task in parallel.

In other cases, it is useful for a thread to perform changes independent from other

threads in the job. In this case, the thread would not want to share commitment

definitions or lock with the other threads. Furthermore, a job can use SQL server

mode in order to take more fine grain control of multiple database connections and

transaction information. A typical multi-threaded job may require this control.

There are several ways to accomplish this type of processing:

* Make sure the programs running in the thread use a separate activation group
(be careful not to use ACTGRP(*NEW)).

* Make sure that the job is running in SQL server mode before issuing the first
SQL statement. SQL server mode can be activated for a job by using one of the
following mechanisms before data access occurs in the application:

— Use the ODBC API, SQLSetEnvAttr() and set the SQL._ATTR_SERVER_MODE
attribute to SQL_TRUE before doing any data access.

20 DB2 UDB for iSeries SQL Reference V5R2

— Use the Change Job API, QWTCHG]JB(), and set the ‘Server mode for
Structured Query Language’ key before doing any data access.

— Use JAVA to access the database via JDBC. JDBC automatically uses server
mode to preserve required semantics of JDBC.

When SQL server mode is established, all SQL statements are passed to an
independent server job that will handle the requests. Server mode behavior for
SQL behavior includes:

* For embedded SQL, each thread in a job implicitly gets one and only one
connection to the database (and thus its own commitable transaction).

* For ODBC/CLI and JDBC, each connection represents a stand-alone connection

to the database and can be committed and used as a separate entity.

For more information, see the [SQL Call Level Interface (ODBC)| book.

The following SQL support is not threadsafe:
¢ Remote access through DRDA

* ALTER TABLE

+ COMMENT

* CREATE ALIAS

» CREATE DISTINCT TYPE

* CREATE FUNCTION

* CREATE INDEX

* CREATE PROCEDURE

+ CREATE SCHEMA

* CREATE TABLE

* CREATE TRIGGER

¢ CREATE VIEW

* DECLARE GLOBAL TEMPORARY TABLE
* DROP

* GRANT

* LABEL

* RENAME

* REVOKE

For more information, see Multithreaded applications|in the Programming topic of

the iSeries Information Center.

Isolation Level

The isolation level used during the execution of SQL statements determines the
degree to which the activation group is isolated from concurrently executing

activation groups. Thus, when activation group P executes an SQL statement, the

isolation level determines:

¢ The degree to which rows retrieved by P and database changes made by P are
available to other concurrently executing activation groups.

* The degree to which database changes made by concurrently executing
activation groups can affect P.

Isolation level is specified as an attribute of an SQL program or SQL package and

applies to the activation groups that use the SQL package or SQL program. DB2
UDB for iSeries provides several ways to specify the isolation level:

Chapter 1. Concepts

21

../cli/rzadpmst02.htm
../rzahw/rzahwovepo.htm

* Use the COMMIT parameter on the CRTSQLxxx, STRSQL, and RUNSQLSTM
commands to specify the default isolation level.

* Use the SET OPTION statement to specify the default isolation level within the
source of a module or program that contains embedded SQL.

e Use the SET TRANSACTION statement to override the default isolation level
within a unit of work. When the unit of work ends, the isolation level returns to
the value it had at the beginning of the unit of work.

e Use the isolation-clause on the SELECT, SELECT INTO, INSERT, UPDATE,
DELETE, and DECLARE CURSOR statements to override the default isolation
level for a specific statement or cursor. The isolation level is in effect only for the
execution of the statement containing the isolation-clause and has no effect on
any pending changes in the current unit of work.

These isolation levels are supported by automatically locking the appropriate data.
Depending on the type of lock, this limits or prevents access to the data by
concurrent activation groups that use different commitment definitions. Each
database manager supports at least two types of locks:

Share Limits concurrent activation groups that use different commitment
definitions to read-only operations on the data.

Exclusive
Prevents concurrent activation groups using different commitment
definitions from updating or deleting the data. Prevents concurrent
activation groups using different commitment definitions that are running
COMMIT(*RS), COMMIT(*CS), or COMMIT(*RR) from reading the data.
Concurrent activation groups using different commitment definitions that
are running COMMIT(*UR) or COMMIT(*NC) are allowed to read the
data.

The following descriptions of isolation levels refer to locking data in row units.
Individual implementations can lock data in larger physical units than base table
rows. However, logically, locking occurs at the base-table row level across all
products. Similarly, a database manager can escalate a lock to a higher level. An
activation group is guaranteed at least the minimum requested lock level.

DB2 UDB for iSeries supports five isolation levels. For all isolation levels except
No Commit, the database manager places exclusive locks on every row that is
inserted, updated, or deleted. This ensures that any row changed during a unit of
work is not changed by any other activation group that uses a different
commitment definition until the unit of work is complete. The isolation levels are:

* Repeatable Read (RR)
Level RR ensures:
— Any row read during a unit of work is not changed by other activation

groups that use different commitment definitions until the unit of work is
complete.*

— Any row changed (or a row that is currently locked with an UPDATE row
lock) by another activation group using a different commitment definition
cannot be read until it is committed.

In addition to any exclusive locks, an activation group running at level RR
acquires at least share locks on all the rows it reads. Furthermore, the locking is

4. For WITH HOLD cursors, these rules apply to when the rows were actually read. For read-only WITH HOLD cursors, the rows
may have actually been read in a prior unit of work.

22 DB2 UDB for iSeries SQL Reference V5R2

performed so that the activation group is completely isolated from the effects of
concurrent activation groups that use different commitment definitions.

DB2 UDB for iSeries supports repeatable-read through COMMIT(*RR).
Repeatable-read isolation level is supported by locking the tables containing any
rows that are read or updated. In the ANS and ISO standards, Repeatable Read
is called Serializable.

Read Stability (RS)
Like level RR, level RS ensures that:

— Any row read during a unit of work is not changed by other activation
groups that use different commitment definitions until the unit of work is
complete. *

— Any row changed (or a row that is currently locked with an UPDATE row
lock) by another activation group using a different commitment definition
cannot be read until it is committed.

Unlike RR, RS does not completely isolate the activation group from the effects
of concurrent activation groups that use a different commitment definition. At
level RS, activation groups that issue the same query more than once might see
additional rows. These additional rows are called phantom rows.

For example, a phantom row can occur in the following situation:

1. Activation group P1 reads the set of rows n that satisfy some search
condition.

2. Activation group P2 then INSERTs one or more rows that satisfy the search
condition and COMMITs those INSERTSs.

3. P1 reads the set of rows again with the same search condition and obtains
both the original rows and the rows inserted by P2.

In addition to any exclusive locks, an activation group running at level RS
acquires at least share locks on all the rows it reads.

DB2 UDB for iSeries supports read stability through COMMIT(*ALL) or
COMMIT(*RS). In the ANS and ISO standards, Read Stability is called
Repeatable Read.

Cursor Stability (CS)

Like levels RR and RS, level CS ensures that any row that was changed (or a
row that is currently locked with an UPDATE row lock) by another activation
group using a different commitment definition cannot be read until it is
committed. Unlike RR and RS, level CS only ensures that the current row of
every updateable cursor is not changed by other activation groups using
different commitment definitions. Thus, the rows that were read during a unit of
work can be changed by other activation groups that use a different
commitment definition. In addition to any exclusive locks, an activation group
running at level CS may acquire a share lock for the current row of every cursor.

DB2 UDB for iSeries supports cursor stability through COMMIT(*CS). In the
ANS and ISO standards, Cursor Stability is called Read Committed.

Uncommitted Read (UR)

For a SELECT INTO, a FETCH with a read-only cursor, subquery, or subselect
used in an INSERT statement, level UR allows:

— Any row read during the unit of work to be changed by other activation
groups that run under a different commitment definition.

Chapter 1. Concepts 23

— Any row changed (or a row that is currently locked with an UPDATE row
lock) by another activation group running under a different commitment
definition to be read even if the change has not been committed.

For other operations, the rules of level CS apply.

DB2 UDB for iSeries supports uncommitted read through COMMIT(*CHG) or
COMMIT(*UR). In the ANS and ISO standards, Uncommitted Read is called
Read Uncommitted.

* No Commit (NC)

For all operations, the rules of level UR apply except:

— Commit and rollback operations have no effect on SQL statements. Cursors
are not closed, and LOCK TABLE locks are not released. However,
connections in the release-pending state are ended.

— Any changes are effectively committed at the end of each successful change
operation and can be immediately accessed or changed by other application
groups using different commitment definitions.

DB2 UDB for iSeries supports No Commit through COMMIT(*NONE) or
COMMIT(*NC).

For a detailed description of record lock durations, see the discussion and table
in the commitment control| topic of the [SQL Programming Concepts| book.

Note: (For distributed applications.) When a requested isolation level is not
supported by a server, the isolation level is escalated to the next highest
supported isolation level. For example, if RS is not supported by a server,
the RR isolation level is used.

Distributed Relational Database

A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer
system has a relational database manager that manages the tables in its
environment. The database managers communicate and cooperate with each other
in a way that allows a database manager to execute SQL statements on another
computer system.

Distributed relational databases are built on formal requester-server protocols and
functions. An application requester supports the application end of a connection. It
transforms a database request from the application into communication protocols
suitable for use in the distributed database network. These requests are received
and processed by a server at the other end of the connection.” Working together, the
application requester and server handle the communication and location
considerations so that the application is isolated from these considerations and can
operate as if it were accessing a local database. A simple distributed relational
database environment is illustrated in [Figure 8 on page 25|

5. This is also known as a an application server.

24 DB2 UDB for iSeries SQL Reference V5R2

../sqlp/rbafymstdicomm.htm
../sqlp/rbafymst02.htm

Los Angeles Dallas

SQOL Program| [Z=—— [SQL Package

Application Requester Application Server

Figure 8. A Distributed Relational Database Environment

For more information about Distributed Relational Database Architecture (DRDA)
communication protocols, see [Distributed Relational Database Architecture]

>
Database Servers

An activation group must be connected to the server of a database manager before
SQL statements that reference tables or views can be executed.

A connection is an association between an activation group and a local or remote
server. Connections are managed by the application. The CONNECT statement can
be used to establish a connection to a server and make that server the current
server of the activation group.

A server can be local to, or remote from, the environment where the activation
group is started. (A server is present, even when distributed relational databases
are not used.) This environment includes a local directory that describes the
servers that can be identified in a CONNECT statement. For more information
about the directory, see the directory commands (ADDRDBDIRE, CHGRDBDIRE,
DSPRDBDIRE, RMVRDBDIRE, and WRKRDBDIRE) in the following iSeries
Information Center topics:

* |SQL Programming Concepts|

« |Distributed Database Programming]

.

To execute a static SQL statement that references tables or views, a server uses the
bound form of the statement. This bound statement is taken from a package that
the database manager previously created through a bind operation. The
appropriate package is determined by the combination of:

* The name of the package specified by the SQLPKG parameter on the
CRTSQLxxx commands. See the SQL Programming with Host Languages| book
for a description of the CRTSQLxxx commands.

* The internal consistency token that makes certain the package and program were
created from the same source at the same time.

Chapter 1. Concepts 25

http://www.opengroup.org/dbiop/index.htm
http://www.opengroup.org/dbiop/index.htm
../sqlp/rbafymst02.htm
../ddp/rbal1mst02.htm
../rbam6/rbam6clmain.htm
../rzajp/rzajpmst02.htm

All IBM relational database products support extensions to IBM SQL. Some of
these extensions are product-specific, and some are shared by more than one
product.

For the most part, an application can use the statements and clauses that are
supported by the database manager of the server to which it is currently
connected, even though that application is running via the application requester of
a database manager that does not support some of those statements and clauses.
Restrictions are listed in |[Appendix F, “Characteristics of SQL Statements” on page

CONNECT (Type 1) and CONNECT (Type 2)

There are two types of CONNECT statements with the same syntax but different

semantics:

+ CONNECT (Type 1) is used for remote unit of work. See ["CONNECT (Type 1)”]

+ CONNECT (Type 2) is used for distributed unit of work. See |“CONNECT (Type]|
[2)” on page 407

See [“CONNECT (Type 1) and CONNECT (Type 2) Differences” on page 857 for a
summary of the differences.

Remote Unit of Work

The remote unit of work facility provides for the remote preparation and execution
of SQL statements. An activation group at computer system A can connect to a
server at computer system B. Then, within one or more units of work, that
activation group can execute any number of static or dynamic SQL statements that
reference objects at B. After ending a unit of work at B, the activation group can
connect to a server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed with the following

restrictions:

* All objects referenced in a single SQL statement must be managed by the same
server.

* All of the SQL statements in a unit of work must be executed by the same
server.

Remote Unit of Work Connection Management
An activation group is in one of three states at any time:
Connectable and connected
Unconnectable and connected
Connectable and unconnected

The following diagram shows the state transitions:

26 DB2 UDB for iSeries SQL Reference V5R2

Begin process

Successful CORNMECT

Connectable Connectable
CDNNECTE and and
Connected & Lnconnected
F

COMMECT with system failure or

COMMIT with the connection in
the release-pending state.

ROLLB ACK Systern
O successful SQL statement other than CONNECT, | FILTE with
COMMIT COMMIT, or ROLLBAGK fallbac

L Lncannectable
and

Connected

Figure 9. Remote Unit of Work Activation Group Connection State Transition

The initial state of an activation group is connectable and connected. The server to
which the activation group is connected is determined by the RDB parameter on
the CRTSQLxxx and STRSQL commands and may involve an implicit CONNECT
operation. An implicit CONNECT operation cannot occur if an implicit or explicit
CONNECT operation has already successfully or unsuccessfully occurred. Thus, an
activation group cannot be implicitly connected to a server more than once.

The connectable and connected state: An activation group is connected to a
server and CONNECT statements can be executed. The activation group enters this
state when it completes a rollback or successful commit from the unconnectable
and connected state, or a CONNECT statement is successfully executed from the
connectable and unconnected state.

The unconnectable and connected state: An activation group is connected to a
server, but a CONNECT statement cannot be successfully executed to change
servers. The activation group enters this state from the connectable and connected
state when it executes any SQL statement other than CONNECT, COMMIT, or
ROLLBACK.

The connectable and unconnected state: An activation group is not connected to
a server. The only SQL statement that can be executed is CONNECT.

The activation group enters this state when:
* The connection was previously released and a successful COMMIT is executed.
* The connection is disconnected using the SQL DISCONNECT statement.

e The connection was in a connectable state, but the CONNECT statement was
unsuccessful.

Consecutive CONNECT statements can be executed successfully because
CONNECT does not remove the activation group from the connectable state. A
CONNECT to the server to which the activation group is currently connected is
executed like any other CONNECT statement. CONNECT cannot execute
successfully when it is preceded by any SQL statement other than CONNECT,

Chapter 1. Concepts 27

COMMIT, DISCONNECT, SET CONNECTION, RELEASE, or ROLLBACK (unless
running with COMMIT(*NC)). To avoid an error, execute a commit or rollback
operation before a CONNECT statement is executed.

Application-Directed Distributed Unit of Work

The application-directed distributed unit of work facility also provides for the remote
preparation and execution of SQL statements in the same fashion as remote unit of
work. Like remote unit of work, an activation group at computer system A can
connect to a server at computer system B and execute any number of static or
dynamic SQL statements that reference objects at B before ending the unit of work.
All objects referenced in a single SQL statement must be managed by the same
server. However, unlike remote unit of work, any number of servers can
participate in the same unit of work. A commit or rollback operation ends the unit
of work.

Distributed unit of work is fully supported for APPC and TCP/IP connections.

Application-Directed Distributed Unit of Work Connection
Management
At any time:

* An activation group is always in the connected or unconnected state and has a set
of zero or more connections. Each connection of an activation group is uniquely
identified by the name of the server of the connection.

* An SQL connection is always in one of the following states:
— Current and held

Current and release-pending

Dormant and held

Dormant and release-pending

Initial state of an activation group: An activation group is initially in the
connected state and has exactly one connection. The initial state of a connection is
current and held.

The following diagram shows the state transitions:

28 DB2 UDB for iSeries SQL Reference V5R2

Begin process

=L Connection States

successful COMNMECT
ar sl COMMECTION specifying
anather 3CL connection

P{ current < » Carmant

successiul COMNMECT
arsel COMMECTION specifying
an existing dormant connection

p‘ Held

FELEASE FHelease
pending

Activation Group Connection States

The current connection
15 intentionally ended, or
a fallure occurs causing the

loss ofthe connection

Connected ¥ Lnconnected

h

Successful COMNMECT
ar SET CONMECTION

Figure 10. Application-Directed Distributed Unit of Work Connection and Activation Group Connection State Transitions

Connection States
If an application process successfully executes a CONNECT statement:

* The current connection is placed in the dormant state and held state.

e The server name is added to the set of connections and the new connection is
placed in the current and held state.

If the server name is already in the set of existing connections of the activation
group, an error Occurs.

A connection in the dormant state is placed in the current state using the SET
CONNECTION statement. When a connection is placed in the current state, the
previous current connection, if any, is placed in the dormant state. No more than
one connection in the set of existing connections of an activation group can be
current at any time. Changing the state of a connection from current to dormant or
from dormant to current has no effect on its held or release-pending state.

A connection is placed in the release-pending state by the RELEASE statement.
When an activation group executes a commit operation, every release-pending

Chapter 1. Concepts 29

connection of the activation group is ended. Changing the state of a connection
from held to release-pending has no effect on its current or dormant state. Thus, a
connection in the release-pending state can still be used until the next commit
operation. There is no way to change the state of a connection from
release-pending to held.

Activation Group Connection States
A different server can be established by the explicit or implicit execution of a

CONNECT statement. The following rules apply:

* An activation group cannot have more than one connection to the same server at
the same time.

* When an activation group executes a SET CONNECTION statement, the
specified location name must be an existing connection in the set of connections
of the activation group.

* When an activation group executes a CONNECT statement, the specified server
name must not be an existing connection in the set of connections of the
activation group.

If an activation group has a current connection, the activation group is in the
connected state. The CURRENT SERVER special register contains the name of the
server of the current connection. The activation group can execute SQL statements
that refer to objects managed by that server.

An activation group in the unconnected state enters the connected state when it
successfully executes a CONNECT or SET CONNECTION statement.

If an activation group does not have a current connection, the activation group is
in the unconnected state. The CURRENT SERVER special register contents are equal
to blanks. The only SQL statements that can be executed are CONNECT,
DISCONNECT, SET CONNECTION, RELEASE, COMMIT, and ROLLBACK.

An activation group in the connected state enters the unconnected state when its
current connection is intentionally ended or the execution of an SQL statement is
unsuccessful because of a failure that causes a rollback operation at the current
server and loss of the connection. Connections are intentionally ended when an
activation group successfully executes a commit operation and the connection is in
the release-pending state, or when an application process successfully executes the
DISCONNECT statement.

When a Connection is Ended

When a connection is ended, all resources that were acquired by the activation
group through the connection and all resources that were used to create and
maintain the connection are deallocated. For example, if application process P has
placed the connection to server X in the release-pending state, all cursors of P at X
will be closed and deallocated when the connection is ended during the next
commit operation.

A connection can also be ended as a result of a communications failure in which

case the activation group is placed in the unconnected state. All connections of an
activation group are ended when the activation group ends.

30 DB2 UDB for iSeries SQL Reference V5R2

Data Representation Considerations

Different systems represent data in different ways. When data is moved from one
system to another, data conversion must sometimes be performed. Products
supporting DRDA will automatically perform any necessary conversions at the
receiving system.

With numeric data, the information needed to perform the conversion is the data
type and the sending system’s environment type. For example, when a
floating-point variable from a DB2 UDB for iSeries application requester is
assigned to a column of a table at an OS/390 server, the number is converted from
IEEE format to System/370* format.

With character and graphic data, the data type and the environment type of the
sending system are not sufficient. Additional information is needed to convert
character and graphic strings. String conversion depends on both the coded
character set of the data and the operation to be done with that data. String
conversions are done in accordance with the IBM Character Data Representation
Architecture (CDRA). For more information about character conversion, refer to the
book Character Data Representation Architecture Level 1 Reference, SC09-1390.

Character Conversion

A string is a sequence of bytes that may represent characters. Within a string, all
the characters are represented by a common coding representation. In some cases,
it might be necessary to convert these characters to a different coding
representation. The process of conversion is known as character conversion.®

Character conversion can occur when an SQL statement is executed remotely.
Consider, for example, these two cases:

* The values of host variables sent from the application requester to the current
server.

* The values of result columns sent from the current server to the application
requester.

In either case, the string could have a different representation at the sending and
receiving systems. Conversion can also occur during string operations on the same
system.

The following list defines some of the terms used when discussing character
conversion.

character set A defined set of characters. For example, the
following character set appears in several code
pages:
* 26 non-accented letters A through Z
* 26 non-accented letters a through z
* digits 0 through 9
e .,:;?2()" "/ -_(underscore) & + % * = <>
code page A set of assignments of characters to code points.
In EBCDIC, for example, "A" is assigned code point

6. Character conversion, when required, is automatic and is transparent to the application when it is successful. A knowledge of
conversion is, therefore, unnecessary when all the strings involved in a statement’s execution are represented in the same way.
Thus, for many readers, character conversion may be irrelevant.

Chapter 1. Concepts 31

code point

coded character set

encoding scheme

substitution character

X'C1' and "B" is assigned code point X'C2'. Within a
code page, each code point has only one specific
meaning.

A unique bit pattern that represents a character.

A set of unambiguous rules that establish a
character set and the one-to-one relationships
between the characters of the set and their coded
representations.

A set of rules used to represent character data. For
example:

* Single-byte EBCDIC

* Single-byte ASCII”

¢ Mixed single- and double-byte EBCDIC

* Mixed single- and double-byte ASCII

* UCS-2 (universal coded character set).

A unique character that is substituted during
character conversion for any characters in the

source coding representation that do not have a
match in the target coding representation.

Character Sets and Code Pages

The following example shows how a typical character set might map to different
code points in two different code pages.

7. The term ASCII is used throughout this book to refer to IBM-PC data or ISO 8 data.

32 DB2 UDB for iSeries SQL Reference V5R2

Code-Page: ppl (A5CI)

Code-Page: pp2 (EBCDIC)

ol 4la]lalg|= E| F o1 slB|lc|l o |E]|F
o I & o ¥ o
i 1la o Al o i ®@ A 4 i
o - @ e | & Al & a o |% | B| K & o
2 N alr 3 t|—m || L | T|=
4 4|lo |1 A4 4 ul| o w4
5 |5 |E | w Al E 5 vl i JE| M | ¥ | =
[. | 1 1 X 1 ¥ 1 1 1 [] 1] 1 1]] 1 I 1 I]
T on 1 1 X 1 ¥ 1 1 1] 1] 1 1]] 1 I 1 1]
1 L} 1 1 [1 [1 1 [} [1 [1 1 L 1 1 I 1 1 L]
[. 1 1] 1] 1 1 1 [] 1 [] 1 1 L] L] 1 1 1 1]
18 1 1 1 1 1 1 1 I 1 ' 1 1 i 1 1 I 1 1]
E R Wl E NEREEE
F r LS 0 [F_l- F E| @ ; A |
i e 1 1
Code Point EFJ E_ I_:ha'a:tcr—Sﬂ 551 Chara:tarlSBt s51
{in code-page pp1) [in code-page pp2)

Even with the same encoding scheme there are many different coded character
sets, and the same code point can represent a different character in different coded
character sets. Furthermore, a byte in a character string does not necessarily
represent a character from a single-byte character set (SBCS). Character strings are
also used for mixed data (a mixture of single-byte characters and double-byte
characters) and for data that is not associated with any character set (called bit
data). This is not the case with graphic strings; the database manager assumes that
every pair of bytes in every graphic string represents a character from a
double-byte character set (DBCS) or universal coded character set (UCS-2).

A CCSID in a native encoding scheme is one of the coded character sets in which
data may be stored at that site. A CCSID in a foreign encoding scheme is one of
the coded character sets in which data cannot be stored at that site. For example,
DB2 UDB for iSeries can store data in a CCSID with an EBCDIC encoding scheme,
but not in an ASCII encoding scheme.

A host variable containing data in a foreign encoding scheme is always converted
to a CCSID in the native encoding scheme when the host variable is used in a
function or in the select-list. A host variable containing data in a foreign encoding
scheme is also effectively converted to a CCSID in the native encoding scheme
when used in comparison or in an operation that combines strings. Which CCSID
in the native encoding scheme the data is converted to is based on the foreign
CCSID and the default CCSID.

Coded Character Sets and CCSIDs

IBM’s Character Data Representation Architecture (CDRA) deals with the
differences in string representation and encoding. The Coded Character Set

Chapter 1. Concepts 33

Identifier (CCSID) is a key element of this architecture. A CCSID is a 2-byte
(unsigned) binary number that uniquely identifies an encoding scheme and one or
more pairs of character sets and code pages.

A CCSID is an attribute of strings, just as length is an attribute of strings. All
values of the same string column have the same CCSID.

In each database manager, character conversion involves the use of a CCSID
Conversion Selection Table. The Conversion Selection Table contains a list of valid
source and target combinations. For each pair of CCSIDs, the Conversion Selection
Table contains information used to perform the conversion from one coded
character set to the other. This information includes an indication of whether
conversion is required. (In some cases, no conversion is necessary even though the
strings involved have different CCSIDs.)

Default CCSID

Every server and application requester has a default CCSID (or default CCSIDs in

installations that support DBCS data). The CCSID of the following types of strings

is determined at the current server:

* String constants (including string constants that represent datetime values) when
the CCSID of the source is in a foreign encoding scheme

* Special registers with string values (such as USER and CURRENT SERVER)
+ Results of CAST, CHAR, DIGITS, and HEX scalar functions®

* Results of VARCHAR, GRAPHIC, and VARGRAPHIC scalar functions when a
CCSID is not specified as an argument

* Results of the CLOB and DBCLOB scalar functions when a CCSID is not
specified as an argument

¢ String columns defined by the CREATE TABLE or ALTER TABLE statements
when an explicit CCSID is not specified for the column’

In a distributed SQL program, the default CCSID of host variables is determined
by the application requester. In a non-distributed SQL program, the default CCSID
of host variables is determined by the server. On OS/400, the default CCSID is
determined by the CCSID job attribute. For more information about CCSIDs, see
the Work with CCSID4 topic in the Globalization section of the iSeries Information
Center.

Sort Sequence

A sort sequence defines how characters in a character set relate to each other when
they are compared and ordered. Different sort sequences are useful for those who
want their data ordered for a specific language. For example, lists can be ordered
as they are normally seen for a specific language. A sort sequence can also be used
to treat certain characters as equivalent, for instance, a and A. A sort sequence
works on all comparisons that involve:

* SBCS character data (including bit data)
* the SBCS portion of mixed data
¢ UCS-2 graphic data.

8. If the default CCSID is 65535, and the function is a CAST to a CLOB or DBCLOB, the CCSID used will be the value of the
DFTCCSID job attribute.

9.1f the default CCSID is 65535, the character string columns will not use 65535. Instead, the CCSID used will be the value of the
DFTCCSID job attribute.

34 DB2 UDB for iSeries SQL Reference V5R2

../nls/rbagscdra.htm

SBCS sort sequence support is implemented using a 256-byte table. Each byte in
the table corresponds to a code point or character in a SBCS code page. Because
the sort sequence is applicable to character data, a CCSID must be associated with
the table. The bytes in the sort sequence table are set based on how each code
point is to compare to other code points in that code page. For example, if the
characters a and A are to be treated as equivalents for comparisons, the bytes in
the sort sequence table for their code points contain the same value, or weight.

UCS-2 sort sequence support is implemented using a multi-byte table. A pair of
bytes within the table corresponds to a character in the UCS-2 code page. Only a
subset of the thousands of characters in UCS-2 are typically represented in the
table. Only those characters that are to compare differently (and possibly other
characters in the same ward) will be represented in the table. The bytes in the sort
sequence table are set based on how each character is to compare with other
characters in UCS-2.

When two or more bytes (or pair of bytes for UCS-2) in a sort sequence table have
the same value, the sort sequence is a shared-weight sort sequence. If every byte
(or pair of bytes for UCS-2) in a sort sequence table has a unique value, the sort
sequence is a unique-weight sort sequence. For many languages, unique- and
shared-weight sort sequences are shipped on the system as part of the operating
system. If you need sort sequences for other languages or needs, you define them
using the Create Table (CRTTBL) command.

It is important to remember that the data itself is not altered by the sort sequence.
A weighted representation of the data is used for the comparison. In SQL, a sort
sequence is specified on the CRTSQLxxx, STRSQL, and RUNSQLSTM commands.
The SET OPTION statement can be used to specify the sort sequence within the
source of a program containing embedded SQL. The sort sequence applies to all
character comparisons performed in the SQL statements. The default sort sequence
on the system is the internal sequence that occurs when the hexadecimal
representation of characters are used. This is the sequence you get when the
SRTSEQ(*HEX) is specified. For programs precompiled with a release of the
product that is earlier than Version 2 Release 3, the sort sequence is *HEX.

Sort sequences do not apply to FOR BIT DATA or BLOB columns.

For more information about CCSIDs, see the|[Work with CCSIDs| topic in the
Globalization section of the iSeries Information Center. For more information about

sort sequences and the sequences shipped with the system, see the
topic in the iSeries Information Center.

Authorization and Privileges

Users can successfully execute SQL statements only if they have the authority to
do the specified function. To create a table, a user must be authorized to create
tables; to drop a table, a user must be authorized to drop the table, and so on.

The people holding administrative authority are charged with the task of
controlling the database manager and are responsible for the safety and integrity of
the data. Those with administrative authority control both who has access to the
database manager and the extent of that access. Those with administrative
authority have the authority to perform all operations on all objects regardless of
whether they have been granted specific privileges or not. The security officer and
all users with *ALLOBJ authority have administrative authority.

Chapter 1. Concepts 35

../nls/rbagscdra.htm
../nls/rbagssrtseq.htm
../nls/rbagssrtseq.htm

Privileges are those activities that the administrative authority has allowed a user to
perform. Authorized users can create any object, have access to objects they own,
and can pass on privileges on their own objects to other users by using the
GRANT statement. The REVOKE statement can be used to revoke previously
granted privileges.

When an object is created, one authorization ID is assigned ownership of the object.
Ownership gives the user complete control over the object, including the privilege
to drop the object. The owner may revoke a privilege to an object that he owns
from himself. In this case, the owner may temporarily be unable to perform an
operation that requires that privilege. Because he is the owner, however, he is
always allowed to grant the privilege back to himself.

Authority granted to *PUBLIC on SQL objects depends on the naming convention
that is used at the time of object creation. If *SYS naming convention is used,
*PUBLIC acquires the create authority (CRTAUT) of the library into which the
object was created. If *SQL naming convention is used, *PUBLIC acquires
*EXCLUDE authority.

In the Authorization sections of this book, it is assumed that the owner of an object
has not had any privileges revoked from that object since it was initially created. If
the object is a view, it is also assumed that the owner of the view has not had the
system authority *READ revoked from any of the tables or views that this view is
directly or indirectly dependent on. The owner has system authority *READ for all
tables and views referenced in the view definition, and if a view is referenced, all
tables and views referenced in its definition, and so forth. For more information

about authority and privileges, see the book [iSeries Security Referencd@‘ .

Storage Structures

The iSeries system is an object-based system. All database objects in DB2 UDB for
iSeries (tables and indexes for example) are objects in OS/400. The single-level
storage manager manages all storage of objects of the database, so database
specific storage structures (for example, table spaces) are unnecessary.

A partitioned or distributed table allows data to be spread across different database
partitions. The partitions included are determined by the nodegroup specified
when the table is created or altered. A nodegroup is a group of one or more iSeries
systems. A partitioning map is associated with each nodegroup. The partitioning
map is used by the database manager to determine which system from the
nodegroup will store a given row of data. For more information about nodegroups
and data partitioning see the [DB2 Multisystem| book.

A table can also include columns that register links to data that are stored in
external files. The mechanism for this is the DataLink data type. A DataLink value
which is recorded in a regular table points to a file that is stored in an external file
server.

The DB2 File Manager on a file server works in conjunction with DB2 to provide
the following optional functionality:

* Referential integrity to ensure that files currently linked to DB2 are not deleted
or renamed.

* Security to ensure that only those with suitable SQL privileges on the DataLink
column can read the files linked to that column.

36 DB2 UDB for iSeries SQL Reference V5R2

../../books/c4153026.pdf
../dbmult/rzaf3mst02.htm

The DataLinker comprises the following facilities:

DataLinks File Manager
Registers all the files in a particular file server that are linked to DB2.

DataLinks Filter
Filters file system commands to ensure that registered files are not deleted
or renamed. Optionally, filters commands to ensure that proper access
authority exists.

Chapter 1. Concepts 37

38 DB2 UDB for iSeries SQL Reference V5R2

Chapter 2. Language Elements

This chapter defines the basic syntax of SQL and language elements that are
common to many SQL statements.

For detalils, see the following sections:

. ”Characters”l

+ [“Tokens” on page 41|

» [“Identifiers” on page 43|

* |“Naming Conventions” on page 4§|
* ["Schemas and the SQL Path” on page 55

* [“Aliases” on page 56

+ |“Authorization IDs and Authorization-Names” on page 57]

+ [“Data Types” on page 59

+ |[“Promotion of Data Types” on page 74|

+ |“Casting Between Data Types” on page 75|

+ [“Assignments and Comparisons” on page 78|

+ |[“Rules for Result Data Types” on page 91|

* [“Conversion Rules for Operations That Combine Strings” on page 95|

+ |[“Constants” on page 97

[“Special Registers” on page 102|

* |“References to Variables” on page 111|

|”Host Structures in C, C++, COBOL, PL/I, and RPG” on page 116|
[“Host Structure Arrays in C, C++, COBOL, PL/I, and RPG” on page 11|
* |“Functions” on page 119

+ |“Expressions” on page 125|

[“Predicates” on page 141|

Characters

The basic symbols of keywords and operators in the SQL language are single-byte
characters' that are part of all character sets supported by the IBM relational
database products. Characters of the language are classified as letters, digits, or
special characters.

A letter is any of the 26 uppercase (A through Z) and 26 lowercase (a through z)
letters of the English alphabet. '

A digit is any of the characters 0 through 9.

A special character is any of the characters listed below:

10. Note that if the SQL statement is encoded as UCS-2 data, all characters of the statement except for string constants will be
converted to single-byte characters prior to processing. Tokens representing string constants may be processed as UCS-2 graphic
strings without conversion to single-byte.

11. Letters also include three code points reserved as alphabetic extenders for national languages (#, @, and $ in the United States).
These three code points should be avoided because they represent different characters depending on the CCSID.

© Copyright IBM Corp. 1998, 2002 39

Characters

space - minus sign
! quotation mark or double-quote . period
% percent / slash
& ampersand : colon
’ apostrophe or single quote ; semicolon
(left parenthesis < less than
) right parenthesis = equals
* asterisk > greater than
+ plus sign ? question mark
p comma _ underline or underscore

vertical bar

12. The not symbol (=) and the exclamation point symbol (!) are also special characters used by DB2 UDB for iSeries. You should
avoid using them because they are variant characters.

13. Using the vertical bar (1) character might inhibit code portability between IBM relational database products. It is preferable to
use the CONCAT operator instead of the concatenation operator (| I). Use of the vertical bar should be avoided because it is a
variant character.

40 DB2 UDB for iSeries SQL Reference V5R2

Tokens

Tokens

The basic syntactical units of the language are called tokens. A token consists of one
or more characters, excluding blanks, control characters, and characters within a
string constant or delimited identifier. (These terms are defined later.)

Tokens are classified as ordinary or delimiter tokens:

* An ordinary token is a numeric constant, an ordinary identifier, a host identifier,
or a keyword.

A delimiter token is a string constant, a delimited identifier, an operator symbol,
or any of the special characters shown in the syntax diagrams. A question mark

(?) is also a delimiter token when it serves as a parameter marker, as explained
under [“PREPARE” on page 674}

Spaces: A space is a sequence of one or more blank characters.

Control Characters: A control character is a special character that is used for string
alignment. The following table contains the control characters that are handled by
the database manager:

Table 1. Control Characters

Control Character EBCDIC Hex Value UCS-2 Hex Value
Tab 05 0009
Form Feed 0C 000C
Carriage Return 0D 000D
New Line 15 0085
Line Feed (New line) 25 000A

Tokens, other than string constants and certain delimited identifiers, must not
include a control character or space. A control character or space can follow a
token. A delimiter token, a control character, or a space must follow every ordinary
token. If the syntax does not allow a delimiter token to follow an ordinary token,
then a control character or a space must follow that ordinary token. The following
examples illustrate the rule that is stated in this paragraph.

Here are some examples of ordinary tokens:
1 .1 +2 SELECT E 3

Here are some examples of combinations of the above ordinary tokens that, in
effect, change the tokens:

1.1 142 SELECTE .1E E3 SELECT1

This demonstrates why ordinary tokens must be followed by a delimiter token or a
space.

Here are some examples of delimiter tokens:
s ‘string’ “f1d1" =

Here are some examples of combinations of the above ordinary tokens and the
above delimiter tokens that, in effect, change the tokens:

1. .3

Chapter 2. Language Elements 41

Tokens

The period (.) is a delimiter token when it is used as a separator in the
qualification of names. Here the dot is used in combination with an ordinary token
of a numeric constant. Thus, the syntax does not allow an ordinary token to be
followed by a delimiter token. Instead, the ordinary token must be followed by a
space.

If the decimal point has been defined to be the comma, as described in
IPoint” on page 100|, the comma is interpreted as a decimal point in numeric
constants. Here are some examples of these numeric constants:

132 s]- 1, l,el

If '1,2" and '1,el" are meant to be two items, both the ordinary token (1) and the
delimiter token (,) must be followed by a space, to prevent the comma from being
interpreted as a decimal point. Although the comma is usually a delimiter token,
the comma is part of the number when it is interpreted as a decimal point.
Therefore, the syntax does not allow an ordinary token (1) to be followed by a
delimiter token (,). Instead, an ordinary token must be followed by a space.

Comments: Static SQL statements can include host language comments or SQL
comments. Dynamic SQL statements can include SQL comments. Either type of
comment can be specified wherever a space may be specified, except within a
delimiter token or between the keywords EXEC and SQL. There are two types of
SQL comments:

simple comments
Simple comments are introduced by two consecutive hyphens (--). Simple
comments cannot continue past the end of the line. For more information,
see [‘SQL Comments” on page 355

bracketed comments
Bracketed comments are introduced by /* and end with */. A bracketed
comment can continue past the end of the line. For more information, see
[‘SQL Comments” on page 355}

Uppercase and Lowercase: Lowercase letters used in an ordinary token other than
a C host variable will be folded to uppercase. Delimiter tokens are never folded to
uppercase. Thus, the statement:

select * from EMP where lastname = 'Smith';

is equivalent, after folding, to:
SELECT * FROM EMP WHERE LASTNAME

'Smith';

42 DB2 UDB for iSeries SQL Reference V5R2

Identifiers

Identifiers

An identifier is a token used to form a name. An identifier in an SQL statement is
one of the following types:

“SQL Identifiers”|

“System identifiers’]

“Host Identifiers” on page 44|

Note: $, @, #, and all other variant characters should not be used in identifiers

because the code points used to represent them vary depending on the
CCSID of the string in which they are contained. If they are used,
unpredictable results may occur. For more information about variant
characters, see the [Variant characterg topic in the iSeries Information Center.

SQL Identifiers

There are two types of SQL identifiers: ordinary identifiers and delimited identifiers.

An ordinary identifier is an uppercase letter followed by zero or more characters,
each of which is an uppercase letter, a digit, or the underscore character. Note
that ordinary identifiers are converted to uppercase. An ordinary identifier
should not be a reserved word. See|Appendix D, “Reserved Words” on page 829|
for a list of reserved words. If a reserved word is used as an identifier in SQL, it
should be specified in uppercase and enclosed within the SQL escape characters.

A delimited identifier is a sequence of one or more characters enclosed within SQL
escape characters. The sequence must consist of one or more characters. Leading
blanks in the sequence are significant. Trailing blanks in the sequence are not
significant. The length of a delimited identifier does not include the two SQL
escape characters. Note that delimited identifiers are not converted to uppercase.
The escape character is the quotation mark (") except in the following cases
where the escape character is the apostrophe ():

— Interactive SQL when the SQL string delimiter is set to the quotation mark in
COBOL syntax checking statement mode

— Dynamic SQL in a COBOL program when the CRTSQLCBL or CRTSQLCBLI
parameter OPTION(*QUOTESQL) specifies that the string delimiter is the
quotation mark (")

— COBOL application program when the CRTSQLCBL or CRTSQLCBLI
parameter OPTION(*QUOTESQL) specifies that the string delimiter is the
quotation mark (")

The following characters are not allowed within delimited identifiers:
— X'00' through X'3F' and X'FF'

System identifiers

A system identifier is used to form the name of system objects in OS/400. There
are two types of system identifiers: ordinary identifiers and delimited identifiers.

The rules for forming a system ordinary identifier are identical to the rules for
forming an SQL ordinary identifier.

The rules for forming a system delimited identifier are identical to those for
forming SQL delimited identifiers, except:

— The following special characters are not allowed in a delimited system
identifier:

- A blank (X'40")

Chapter 2. Language Elements 43

../nls/rbagsdb2qrysqldevkitgde.htm

Identifiers

An asterisk (X'5C")

- An apostrophe (X'7D")
A question mark (X'6F')
A quotation mark (X'7F')

— The bytes required for the escape characters are included in the length of the
identifier unless the characters within the delimiters would form an ordinary
identifier.

For example, “PRIVILEGES” is in uppercase and the characters within the
delimiters form an ordinary identifier; therefore, it has a length of 10 bytes
and is a valid system name for a column. On the other hand, “privileges” is
in lowercase, has a length of 12 bytes, and is not a valid system name for a
column because the bytes required for the delimiters must be included in the
length of the identifier.

Examples
WKLYSAL WKLY_SAL "WKLY_SAL" "UNION" "wkly sal"

Host Identifiers

A host-identifier is a name declared in the host program. The rules for forming a
host-identifier are the rules of the host language; except that DBCS characters
cannot be used. For example, the rules for forming a host-identifier in a COBOL
program are the same as the rules for forming a user-defined word in COBOL.
Names beginning with the characters 'SQ* 'sQL, 'sql’, 'RDI', or 'DSN' should not
be used because precompilers generate host variables that begin with these
characters.

14.'SQ' is allowed in C, COBOL, and PL/I; it should not be used in RPG.

44 DB2 UDB for iSeries SQL Reference V5R2

Naming Conventions

Naming Conventions

The rules for forming a name depend on the type of the object designated by the
name and the naming option (*SQL or *SYS). The naming option is specified on
the CRTSQLxxx, RUNSQLSTM, and STRSQL commands. The SET OPTION
statement can be used to specify the naming option within the source of a program
containing embedded SQL. The syntax diagrams use different terms for different
types of names. The following list defines these terms.

alias-name

authorization-name

column-name

constraint-name

A qualified or unqualified name that designates an
alias. The qualified form of an alias-name depends
on the naming option. For SQL naming, the
qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in[“Qualification of Unqualified|
[Object Names” on page 52|

An alias-name can specify either the name of the
alias or the system object name of the alias.

A system identifier that designates a user or group
of users. An authorization name is a user profile
name on the server. It must not be a delimited
identifier that includes lowercase letters or special
characters. See [“Authorization IDs and|
[Authorization-Names” on page 57| for the
distinction between an authorization name and an
authorization ID.

A qualified or unqualified name that designates a
column of a table or a view. The unqualified form
of a column name is an SQL identifier. The
qualified form is a qualifier followed by a period
and an SQL identifier. The qualifier is a table name,
a view name, or a correlation name.

Column names cannot be qualified with system
names in the form schema-name /table-name.column-
name, except in the COMMENT and LABEL
statements. If column names need to be qualified,
and correlation names are allowed in the
statement, a correlation name must be used to
qualify the column.

A column-name can specify either the column
name or the system column name of a column of a
table or view. If a column name is delimited, the
delimiters are considered to be part of the name
when determining the length of the name.

A qualified or unqualified name that designates a
constraint on a table. The qualified form of a
constraint name depends on the naming option.
For SQL naming, the qualified form is a

Chapter 2. Language Elements 45

Naming Conventions

correlation-name

cursor-name

descriptor-name

distinct-type-name

external-program-name

46 DB2 UDB for iSeries SQL Reference V5R2

schema-name followed by a period (.) and a
system identifier. For system naming, the qualified
form is a schema-name followed by a slash (/)
followed by an SQL identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in [“Qualification of Unqualified|
[Object Names” on page 52|

An SQL identifier that designates a table, a view, or
individual rows of a table or view.

An SQL identifier that designates an SQL cursor.

A colon followed by a host-identifier that
designates an SQL descriptor area (SQLDA). See
[“References to Host Variables” on page 111 for a
description of a host identifier. A host variable that
designates an SQL descriptor area must not have
an indicator variable. The form
:host-variable:indicator-variable is not allowed.

A qualified or unqualified name that designates a
distinct type. The qualified form of a
distinct-type-name depends upon the naming
option. For SQL naming, the qualified form is a
schema-name followed by a period (.) and an SQL
identifier. For system naming, the qualified form is
a schema-name followed by a slash (/) followed by
an SQL identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in|’Qualification of Unqualified|
[Object Names” on page 52]

For system naming, distinct type names cannot be
qualified when used in a parameter data type of an
SQL routine or in an SQL variable declaration in an
SQL function, SQL procedure, or trigger.

A qualified name, unqualified name, or a character
string that designates an external program. The
qualified form of an external-program-name
depends on the naming option. For SQL naming,
the qualified form is a schema-name followed by a
period (.) and a system identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by a system
identifier.

The unqualified form is a system identifier. The
unqualified form is implicitly qualified based on
the rules specified in|“Qualification of Unqualified|
[Object Names” on page 52]

The format of the character string form is either:

¢ An OS/400 qualified program name
('library-name/program-name”).

function-name

Naming Conventions

* An OS/400 qualified source file name, followed
by a left parenthesis, followed by an OS/400
member name, and a right parenthesis
('library-name/source-file-name(member-name)’).
This form is only valid when calling a REXX
procedure.

* An OS/400 qualified service program name,
followed by a left parenthesis, followed by an
0S/400 entry-point-name, followed by a right
parenthesis (‘library-name/service-program-
name(entry-point-name)’). This form is only
valid for functions.

* An optional jar-id, followed by a class identifier,
followed by an exclamation point or period,
followed by a method identifier
(‘class-id!method-id” or ’class-id.method-id”).

l—jar-id—:—|
»—class—id—[!]—method-id > <

The jar-id identifies the jar schema when it was
installed in the database. It can be either a
simple identifier, or a schema qualified identifier.
Examples are ‘'my]Jar” and ‘myCollection.myJar’.
The class-id identifies the class identifier of the
Java object. If the class is part of a package, the
class identifier must include the complete
package prefix. For example, if the class
identifier is ‘'myPackage.StoredProcs’, the Java
Virtual machine will look in the following
directory for the StoredProcs class:

'/QIBM/UserData/0S400/SQLLib/
Function/myPackage/StoredProcs/"

The method-id identifies the method name of the
Java object to be invoked.

This form is only valid for Java procedures and
Java functions.

A qualified or unqualified name that designates a
user-defined function, a cast function that was
generated when a distinct type was created, or a
built-in function. The qualified form of a
function-name depends upon the naming option.
For SQL naming, the qualified form is a
schema-name followed by a period (.) and an SQL
identifier. For system naming, the qualified form is
a schema-name followed by a slash (/) followed by
an SQL identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on

Chapter 2. Language Elements 47

Naming Conventions

host-label

host-variable

index-name

nodegroup-name

package-name

48 DB2 UDB for iSeries SQL Reference V5R2

the rules specified in[“Qualification of Unqualified|
[Object Names” on page 52]

For system naming, functions names can only be
qualified in the form schema-name/function-name
when the name is used in a CREATE, COMMENT,
DROP, GRANT, or REVOKE statement.

A token that designates a label in a host program.

A sequence of tokens that designates a host
variable. A host-variable includes at least one
host-identifier, as explained in|“References to Host
[Variables” on page 111}

A qualified or unqualified name that designates an
index. The qualified form of an index-name
depends upon the naming option. For SQL naming,
the qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in|“Qualification of Unqualified|
[Object Names” on page 52|

A qualified or unqualified name that designates a
nodegroup. A nodegroup is a group of iSeries
servers across which a table will be distributed. For
more information about distributed tables and
nodegroups, see the [DB2 Multisystem| book.

The qualified form of a nodegroup-name depends
on the naming option. For SQL naming, the
qualified form is a schema-name followed by a
period (.) and a system identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by a system
identifier.

The unqualified form is a system identifier. The
unqualified form is implicitly qualified based on
the rules specified in|’Qualification of Unqualified|
[Object Names” on page 52]

A qualified or unqualified name that designates a
package. The qualified form of a package-name
depends upon the naming option. For SQL naming,
the qualified form is a schema-name followed by a
period (.) and a system identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by a system
identifier.

The unqualified form is a system identifier. The
unqualified form is implicitly qualified based on
the rules specified in[“Qualification of Unqualified|
[Object Names” on page 52|

../dbmult/rzaf3mst02.htm

parameter-name

procedure-name

savepoint-name

schema-name

server-name

specific-name

Naming Conventions

An ordinary identifier that designates a parameter
for a function or procedure. If the parameter is for
a procedure, the identifier may be preceded by a
colon.

A qualified or unqualified name that designates a
procedure. The qualified form of a procedure-name
depends upon the naming option. For SQL naming,
the qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in [“Qualification of Unqualified|
[Object Names” on page 52|

An unqualified identifier that designates a
savepoint.

A qualified or unqualified name that provides a
logical grouping for SQL objects. A schema name is
used as a qualifier of the name of a table, view,
index, procedure, function, trigger, constraint, alias,
type, or package. The unqualified form of a
schema-name is a system identifier. The qualified
form of a schema-name depends on the naming
option.

For SQL names, the unqualified schema name in
an SQL statement is implicitly qualified by the
server-name. The qualified form is a server-name
followed by a (.) and a system identifier. The
server-name must identify the current server.

For system names, the unqualified schema name in
an SQL statement is implicitly qualified by the
server-name. The qualified form is a server-name
followed by a slash (/) and a system identifier. The
server-name must identify the current server.

Note: Schema-name refers to either a schema
created by the CREATE SCHEMA statement
or to an OS/400 library.

An SQL identifier that designates a server. The
identifier must not include lowercase letters or
special characters.

A qualified or unqualified name that uniquely
identifies a procedure or function. The qualified
form of a specificcname depends upon the naming
option. For SQL naming, the qualified form is a
schema-name followed by a period (.) and an SQL
identifier. For system naming, the qualified form is
a schema-name followed by a slash (/) followed by
an SQL identifier.

Chapter 2. Language Elements 49

Naming Conventions

SQL-label

SQL-parameter-name

SQL-variable-name

statement-name

system-column-name

system-object-name

table-name

trigger-name

50 DB2 UDB for iSeries SQL Reference V5R2

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in|’Qualification of Unqualified|
[Object Names” on page 52]

An unqualified name that designates a label in an
SQL procedure, SQL function, or trigger body. An
SQL label name is an SQL identifier.

A qualified or unqualified name that designates a
parameter in an SQL routine body. The unqualified
form of an SQL parameter name is an SQL
identifier. The qualified form is a procedure-name
followed by a period (.) and an SQL identifier.

A qualified or unqualified name that designates a
variable in an SQL routine body. The unqualified
form of an SQL variable name is an SQL identifier.
The qualified form is an SQL label followed by a
period (.) and an SQL identifier.

An SQL identifier that designates a prepared SQL
statement.

An unqualified name that designates the OS/400
column name of a table or a view. A
system-column-name is a system identifier.
System-column-names can be delimited identifiers,
but the characters within the delimiters must not
include lowercase letters or special characters.

An unqualified name that designates the OS/400
name of a table, view, index, or alias. A
system-object-name is a system identifier.

If the unqualified name of the table, view, index, or
alias is a valid system identifier, the
system-object-name of the table, view, index, or
alias is the unqualified name of the table, view,
index, or alias.

A qualified or unqualified name that designates a
table. The qualified form of a table-name depends
upon the naming option. For SQL naming, the
qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in|“Qualification of Unqualified|
[Object Names” on page 52]

A table-name can specify either the name of the
table or the system object name of the table.

A qualified or unqualified name that designates a
trigger on a table. The qualified form of a trigger
name depends on the naming option. For SQL

view-name

Naming Conventions

naming, the qualified form is a schema-name
followed by a period (.) and a system identifier.
For system naming, the qualified form is a
schema-name followed by a slash (/) followed by
an SQL identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in [“Qualification of Unqualified|
[Object Names” on page 52|

A qualified or unqualified name that designates a
view. The qualified form of a view-name depends
upon the naming option. For SQL naming, the
qualified form is a schema-name followed by a
period (.) and an SQL identifier. For system
naming, the qualified form is a schema-name
followed by a slash (/) followed by an SQL
identifier.

The unqualified form is an SQL identifier. The
unqualified form is implicitly qualified based on
the rules specified in|“Qualification of Unqualified|
[Object Names” on page 52|

A view-name can specify either the name of the
view or the system object name of the view.

Table 2. Identifier Length Limits (in bytes)

Identifier Type Maximum Length
Alias name 128
Authorization name 10
Correlation name 128
Cursor name 18
Host identifier 64
Savepoint name 128
Server name 18
SQL label 128
Statement name 18
Unqualified schema name 10
Unqualified column name 30
Unqualified constraint name 128
Unqualified distinct type name 128
Unqualified external program name '° 10
Unqualified function name 128
Unqualified nodegroup name 10
Unqualified package name 10
Unqualified parameter name 128
Unqualified procedure name 128
Unqualified specific name 128
Unqualified SQL parameter name 128

Chapter 2. Language Elements 51

Naming Conventions

Table 2. Identifier Length Limits (in bytes) (continued)

Identifier Type Maximum Length
Unqualified SQL variable name 128

Unqualified system column name 10

Unqualified system object name 10

Unqualified table, view, and index name 128

Unqualified trigger name 128

Qualification of Unqualified Object Names

Unqualified object names are implicitly qualified. The rules for qualifying a name
differ depending on the type of object that the name identifies.

Unqualified Alias, Constraint, External Program, Index,
Nodegroup, Package, Table, Trigger, and View Names

Unqualified alias, constraint, external program, index, nodegroup, package, table,
trigger, and view names are implicitly qualified as follows:

* For static SQL statements:

— If the DFTRDBCOL parameter is specified on the CRTSQLxxx command (or
with the SET OPTION statement), the implicit qualifier is the schema-name
that is specified for that parameter.

— In all other cases, the implicit qualifier is based on the naming convention.

- For SQL naming, the implicit qualifier is the authorization identifier of the
statement.

- For system naming, the implicit qualifier is the job library list (*LIBL).

* For dynamic SQL statements the implicit qualifier depends on whether or not a
default schema name has been explicitly specified. The mechanism for explicitly
specifying this depends on the interface used to dynamically prepare and
execute SQL statements.

— If a default schema name is not explicitly specified:
- For SQL naming, the implicit qualifier is the run-time authorization
identifier.
- For system naming, the implicit qualifier is the job library list (*LIBL).
— If a default schema name is explicitly specified, the implicit qualifier is that
default schema. The default schema name can be specified through the
following interfaces:

Table 3. Default Schema Interfaces

SQL Interface Specification

Embedded SQL DFTRDBCOL parameter and DYNDFTCOL(*YES) on
the Create SQL Program (CRTSQLxxx) and Create
SQL Package (CRTSQLPKG) commands. The SET
OPTION statement can also be used to set the
DFTRDBCOL and DYNDFTCOL values.
(For more information about CRTSQLxxx commands,
see the|SQL Programming with Host Languages|
book.)

15. For REXX procedures, the limit is 33.

52 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm

Naming Conventions

Table 3. Default Schema Interfaces (continued)

SQL Interface

Specification

Run SQL Statements

DFTRDBCOL parameter on the Run SQL Statements
(RUNSQLSTM) command.

(For more information about the RUNSQLSTM
command, see the|SQL Programming Concepts|book.)

Call Level Interface (CLI) on the
server

SQL_ATTR_DEFAULT_LIB or
SQL_ATTR_DBC_DEFAULT_LIB environment or
connection variables

(For more information about CLI, see the|SQL Cal
|[Level Interfaces (ODBC)|book.)

JDBC or SQLJ on the server using
Developer Kit for Java

libraries property object

(For more information about JDBC and SQL], see the
[IBM Developer Kit for Javal topic in the iSeries
Information Center.)

ODBC on a client using the iSeries
Access ODBC Driver

SQL Default Library in ODBC Setup

For more information about ODBC, see the

ccess| category in the iSeries Information Center.)

JDBC on a client using the IBM
Toolbox for Java

SQL Default Library in JDBC Setup

For more information about JDBC, see the
category in the iSeries Information Center.)
(For more information about the IBM Toolbox for
Java, see|IBM Toolbox for Java topic in the iSeries
Information Center .)

All interfaces

SET SCHEMA or QSQCHGDC (Change Dynamic
Default Collection) API

(For more information about QSQCHGDC, see the
|File APIs category|in the iSeries Information Center.)

Unqualified Function, Procedure, Specific, and Distinct Type

Names

The qualification of data type (both built-in types and distinct types), function,
procedure, and specific names depends on the SQL statement in which the

unqualified name appears:

 If an unqualified name is the main object of a CREATE, COMMENT, DROP,
GRANT, or REVOKE statement, the name is implicitly qualified using the same
rules as for qualifying unqualified table names (See [“Unqualified Alias)

Constraint, External Program, Index, Nodegroup, Package, Table, Trigger, and|

View Names” on page 52)).

¢ Otherwise, the implicit schema name is determined as follows:

— For distinct type names, the database manager searches the SQL path and
selects the first schema in the path such that the data type exists in the

schema.

— For procedure names, the database manager searches the SQL path and
selects the first schema in the path such that the schema contains a procedure
with the same name and number of parameters.

— For function names and for specific names specified for sourced functions, the
database manager uses the SQL path in conjunction with function resolution,

as described under|“Function resolution” on page 120|

SQL Names and System Names: Special Considerations

The CL command Override Database File (OVRDBF) can be specified to override
an SQL or system name with another object name for local data manipulation SQL

Chapter 2. Language Elements 53

../sqlp/rbafymst02.htm
../cli/rzadpmst02.htm
../cli/rzadpmst02.htm
../rzaha/whatitis.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahh/page1.htm
../apis/file1.htm

Naming Conventions

statements. Overrides are ignored for data definition SQL statements and data

manipulation SQL statements executing at a remote relational database. See the
Managemen

nagement| book for more information about the override function.

54 DB2 UDB for iSeries SQL Reference V5R2

../dm/rbal3mst02.htm
../dm/rbal3mst02.htm

Schemas and the SQL Path

Schemas and the SQL Path

The SQL path is an ordered list of schema names. The database manager uses the
path to resolve the schema name for unqualified distinct type names (both built-in
types and distinct types), function names, and procedure names that appear in any
context other than as the main object of a CREATE, DROP, COMMENT, GRANT or
REVOKE statement. Searching through the path from left to right, the database
manager implicitly qualifies the object name with the first schema name in the
path that contains the same object with the same unqualified name. For
procedures, the database manager selects a matching procedure name only if the
number of parameters is also the same. For functions, the database manager uses a
process called function resolution in conjunction with the SQL path to determine
which function to choose because several functions with the same name can reside
in a schema. (For details, see |[“Function resolution” on page 120})

For example, if the SQL path is SMITH, XGRAPHIC, QSYS, QSYS2 and an
unqualified distinct type name MYTYPE was specified, the database manager looks
for MYTYPE first in schema SMITH, then XGRAPHIC, and then QSYS and QSYS2.

The path used is determined as follows:

* For all static SQL statements (except for a CALL :host-variable statement), the
path used is the path specified in the SQLPATH parameter on the CRTSQLxxx
command. The SQLPATH can also be set using the SET OPTION statement.

* For dynamic SQL statements (and for a CALL :host-variable statement), the path
used is the path specified in the CURRENT PATH special register. For more
information about the CURRENT PATH special register, see ["CURRENT PATH)|
[CURRENT PATH, or CURRENT FUNCTION PATH” on page 102}

Chapter 2. Language Elements 55

Aliases

Aliases

Think of an alias as an alternative name for a table, view, or member of a database
file. Aliases help you avoid using file overrides. Not only does an alias perform
better than an override, but an alias is also a permanent object that you only need
to create once.

You can refer to a table or view in an SQL statement by its name or by a table
alias. You can only refer to a database file member in an SQL statement through
using an alias. An alias can only refer to a table, view, or database file member
within the same relational database.

You can use an alias wherever you would use a table or view name, except:

* Do not use an alias name where a new table or view name is expected, such as
in the CREATE TABLE or CREATE VIEW statements. For example, if an alias
name of PERSONNEL is created, then a subsequent statement such as CREATE
TABLE PERSONNEL will cause an error.

* An alias that refers to an individual member of a database file member can only
be used in a select statement, DELETE, INSERT, SELECT INTO, SET variable,
UPDATE, or VALUES INTO statement.

You can create an alias even though the object the alias refers to does not exist.
However, the object must exist when a statement that references the alias is
executed. A warning is returned if the object does not exist when you create the
alias. An alias cannot refer to another alias. An alias can only refer to a table, view,
or database file member within the same relational database.

The option of referring to a table, view, or database file member by an alias name
is not explicitly shown in the syntax diagrams or mentioned in the description of
the SQL statements.

A new alias cannot have the same fully-qualified name as an existing table, view,
index, file, or alias.

The effect of using an alias in an SQL statement is similar to that of text
substitution. The alias, which you must define when you execute the SQL
statement, is replaced by the qualified base table, view, or database file member
name. For example, if PBIRD.SALES is an alias for DSPN014.DIST4_SALES_148,
then at statement run time:

SELECT * FROM PBIRD.SALES

effectively becomes
SELECT » FROM DSPNO14.DIST4 SALES_148

If an alias is dropped and recreated to refer to another table, any SQL statements
that refer to that alias will be implicitly rebound when they are next run. If a
CREATE VIEW or CREATE INDEX statement refers to an alias, dropping and
re-creating the alias has no effect on the view or index.

For syntax toleration of existing DB2 UDB for OS/390 and z/OS applications, you

can use SYNONYM in place of ALIAS in the CREATE ALIAS and DROP ALIAS
statements.

56 DB2 UDB for iSeries SQL Reference V5R2

Authorization IDs and Names

Authorization IDs and Authorization-Names

An authorization ID is a character string that is obtained by the database manager
when a connection is established between the database manager and either an
application process or a program preparation process. It designates a set of
privileges. It may also designate a user or a group of users, but this property is not
controlled by the database manager.

Authorization ID’s apply to every statement and are used by the database manager
to provide:

* Implicit qualifiers for the names of tables, views, constraints, packages, and
indexes.

* Authorization checking of SQL statements

An authorization ID applies to every SQL statement. The implicit qualification
depends on whether you use static or dynamic SQL:

* For static SQL, the implicit qualifier is the owner of the program.

¢ For dynamic SQL, the implicit qualifier is the user running the program.

The authorization ID that is used for authorization checking for a static SQL

statement depends on the USRPRF value specified on the precompiler command:

» If USRPRF(*OWNER) is specified, or if USRPRF(*NAMING) is specified and
SQL naming mode is used, the authorization ID of the statement is the owner of
the non-distributed SQL program. For distributed SQL programes, it is the owner
of the SQL package.

 If USRPRF(*USER) is specified, or if USRPRF(*NAMING) is specified and system
naming mode is used, the authorization ID of the statement is the authorization
ID of the user running the non-distributed SQL program. For distributed SQL
programes, it is the authorization ID of the user at the current server.

The authorization ID that is used for authorization checking for a dynamic SQL
statement also depends on where and how the statement is executed:
e If the statement is prepared and executed from a non-distributed program:

— If the USRPREF value is *USER and the DYNUSRPRF value is *USER for the
program, the authorization ID that applies is the ID of the user running the
non-distributed program. This is called the run-time authorization ID.

— If the USRPREF value is *OWNER and the DYNUSRPRF value is *USER for
the program, the authorization ID that applies is the ID of the user running
the non-distributed program.

— If the USRPREF value is *OWNER and the DYNUSRPREF value is *OWNER for
the program, the authorization ID that applies is the ID of the owner of the
non-distributed program.

e If the statement is prepared and executed from a distributed program:

— If the USRPRF value is *USER and the DYNUSRPRF value is *USER for the
SQL package, the authorization ID that applies is the ID of the user running
the SQL package at the current server. This is also called the run-time
authorization ID.

— If the USRPRF value is *OWNER and the DYNUSRPRF value is *USER for
the SQL package, the authorization ID that applies is the ID of the user
running the SQL package at the current server.

— If the USRPRF value is *OWNER and the DYNUSRPRF value is *OWNER for
the SQL package, the authorization ID that applies is the ID of the owner of
the SQL package at the current server.

Chapter 2. Language Elements 57

Authorization IDs and Names

* If the statement is issued interactively, the authorization ID that applies is the ID
of the user that issued the Start SQL (STRSQL) command.

o If the statement is executed from the RUNSQLSTM command, the authorization
ID that applies is the ID of the user that issued the RUNSQLSTM command.

* If the statement is executed from REXX, the authorization ID that applies is the
ID of the user that issued the STRREXPRC command.

On OS/400, the run-time authorization ID is the user profile of the job.

An authorization-name specified in an SQL statement should not be confused with
the authorization ID of the statement. An authorization-name is an identifier that is
used in GRANT and REVOKE statements to designate a target of the grant or
revoke. The premise of a grant of privileges X is that X will subsequently be the
authorization ID of statements which require those privileges. A group user profile
can also be used when checking authority for an SQL statement. For information

on group user profiles, see the book [iSeries Security Referencelﬁ .

Examples

* Assume SMITH is your user ID; then SMITH is the authorization ID when you
execute the following statement interactively:

GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Thus, the authority to execute
the statement is checked against SMITH and SMITH is the implicit qualifier of
TDEPT.

KEENE is an authorization-name specified in the statement. KEENE is given the
SELECT privilege on SMITH.TDEPT.

* Assume SMITH has administrative authority and is the authorization ID of the
following statements:
DROP TABLE TDEPT

Removes the SMITH.TDEPT table.
DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.
DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table.

58 DB2 UDB for iSeries SQL Reference V5R2

../../books/c4153026.pdf

Data Types

Data Types

The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the data type of their source. The sources of
values are:

Columns
Constants
Expressions
Functions

Host variables
Special registers

DB2 supports both IBM-supplied data types (built-in data types) and user-defined
data types (distinct types). This section describes the built-in data types. For a
description of distinct types, see [“User-Defined Types” on page 73|

The following figure illustrates the various built-in data types supported by the
DB2 UDB for iSeries program.

Chapter 2. Language Elements 59

Data Types

built

-in
data
types
external . ; signed row
data datetime string ‘ numeric identifier
DATALINK ROWID
time Stti;nr:p date exact approximate
TIME TIMESTAMP DATE
‘ : floating
varying point
character graphic ‘ length
binary
BLOB
single double
: isi recision
fixed varying fixed varying precision P
length length length length REAL DOUBLE
CHAR | | GRAPHIC |
VARCHAR CLOEB VARGRAPHIC DBCLOB
Ibinary decimal
integer
| | |
16 bit ‘ 32 bit ‘ 64 bit ‘ packed zoned

SMALLINT INTEGER BIGINT

DECIMAL NUMERIC

RRAFZA1A

Nulls: All data types include the null value. The null value is a special value that
is distinct from all nonnull values and thereby denotes the absence of a (nonnull)
value. Although all data types include the null value, some sources of values
cannot provide the null value. For example, constants, columns that are defined as
NOT NULL, and special registers cannot contain null values; the COUNT and
COUNT_BIG functions cannot return a null value; and ROWID columns cannot
store a null value although a null value can be returned for a ROWID column as
the result of a query.

For more details on data types, see the following topics:

+ |“Binary Strings” on page 61|

60 DB2 UDB for iSeries SQL Reference V5R2

Data Types

* |“Character Strings”|

* |“Character Subtypes” on page 62|

« |"Graphic Strings” on page 63|

¢ |“Graphic Subtypes” on page 64
+ |“Large Objects (LOBs)” on page 64
+ [“Numbers” on page 65|

+ [“Datetime Values” on page 66|

» |[“DataLink Values” on page 71|

* [“Row ID Values” on page 72|

[“User-Defined Types” on page 73|

For information about specifying the data types of columns, see ["CREATE TABLE”|

fonpage 507

Binary Strings
A binary string is a sequence of bytes. The length of a binary string (BLOB string) is
the number of bytes in the sequence. A binary string has a CCSID of 65535.

For a BLOB column, the length attribute must be between 1 and 2 147 483 647
bites inclusive. For more information about BLOBs, see [“Large Objects (LOBs)” on|

page 64

A host variable with a BLOB string type can be defined in all host languages
except REXX, RPG/400, and COBOL/400.

Character Strings

A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string. The
empty string should not be confused with the null value.

Fixed-Length Character Strings

All values of a fixed-length character-string column have the same length. This is
determined by the length attribute of the column. The length attribute must be
between 1 through 32766 inclusive.

Varying-Length Character Strings

The types of varying-length character strings are:
* VARCHAR (or synonyms CHAR VARYING and CHARACTER VARYING)

¢ CLOB (or synonyms CHAR LARGE OBJECT and CHARACTER LARGE
OBJECT)

The values of a column with any one of these string types can have different
lengths. The length attribute of the column determines the maximum length a
value can have.

For a VARCHAR column, the length attribute must be between 1 through 32740
inclusive. For a CLOB column, the length attribute must be between 1 through
2 147 483 647 inclusive. For more information about CLOBs, see
[(LOBs)” on page 64

Character-String Host Variables

* Fixed-length character-string variables can be used in all host languages except
REXX. (In C, fixed-length character-string variables are limited to a length of 1.)

Chapter 2. Language Elements 61

Data Types

* VARCHAR varying-length character-string variables can be used in C, COBOL,
PL/I, REXX, and RPG:

— In PL/I, REXX, and ILE RPG, there is a varying-length character-string data

type.
- In COBOL
structures.

and C, varying-length character strings are represented as

- In C, varying-length character-string variables can also be represented by
NUL-terminated strings.

— In RPG/400, varying-length character-string variables can only be represented
by VARCHAR columns included as a result of an externally described data

structure.

* CLOB varying-length character-string variables can be defined in all host
languages except REXX, RPG/400, and COBOL /400.

— InILE RPG, a CLOB varying-length character string is declared using the
SQLTYPE keyword.

— In all other languages, an SQL TYPE IS CLOB clause is used.

Character Subtypes

Each character string is further defined as one of:

bit data

SBCS data

mixed data

Data that is not associated with a coded character set and is never
converted. The CCSID for bit data is 65535.

Data in which every character is represented by a single byte. Each
SBCS data character string has an associated CCSID. If necessary,
an SBCS data character string is converted before it is used in an
operation with a character string that has a different CCSID.

Data that may contain a mixture of characters from a single-byte
character set (SBCS) and a double-byte character set (DBCS). Each
mixed data character string has an associated CCSID. If necessary,
a mixed data character string is converted before an operation with
a character string that has a different CCSID. If mixed data
contains a DBCS character, it cannot be converted to SBCS data.

The database manager does not recognize subclasses of double-byte characters, and
it does not assign any specific meaning to particular double-byte codes. However,
if you choose to use mixed data, then two single-byte EBCDIC codes are given
special meanings:

e X'0E, the “shift-out” character, is used to mark the beginning of a sequence of
double-byte codes.

e X'OF, the “shift-in” character, is used to mark the end of a sequence of
double-byte codes.

In order for the

database manager to recognize double-byte characters in a mixed

data character string, the following condition must be met:
Within the string, the double-byte characters must be enclosed between paired
shift-out and shift-in characters.

The pairing is detected as the string is read from left to right. The code X'0E' is
recognized as a shift out character if X'OF' occurs later; otherwise, it is invalid.
The first X'OF' following the X'OE' that is on a double-byte boundary is the
paired shift-in character. Any X'OF' that is not on a double-byte boundary is not

recognized.

62 DB2 UDB for iSeries SQL Reference V5R2

Data Types

There must be an even number of bytes between the paired characters, and
each pair of bytes is considered to be a double-byte character. There can be
more than one set of paired shift-out and shift-in characters in the string.

The length of a mixed data character string is its total number of bytes, counting
two bytes for each double-byte character and one byte for each shift-out or shift-in
character.

When the job CCSID indicates that DBCS is allowed, CREATE TABLE will create
character columns as DBCS-Open fields, unless FOR BIT DATA, FOR SBCS DATA,
or an SBCS CCSID is specified. The SQL user will see these as character fields, but
the system database support will see them as DBCS-Open fields. For a definition of
a DBCS-Open field, see the [Database Programming|book.

Graphic Strings
A graphic string is a sequence of two-byte characters. The length of the string is
the number of its characters. Like character strings, graphic strings can be empty.

Fixed-Length Graphic Strings

All values of a fixed-length graphic-string column have the same length, which is
determined by the length attribute of the column. The length attribute must be
between 1 through 16383 inclusive.

Varying-Length Graphic Strings
The types of varying-length graphic strings are:

* VARGRAPHIC (or synonym GRAPHIC VARYING)
 DBCLOB

The values of a column with any one of these string types can have different
lengths. The length attribute of the column determines the maximum length a
value can have.

For a VARGRAPHIC column, the length attribute must be between 1 through
16370 inclusive. For a DBCLOB column, the length attribute must be between 1
through 1 073 741 823 inclusive. For more information about DBCLOBs, see
Objects (LOBs)” on page 64

Graphic-String Host Variables

* Fixed-length graphic-string host variables can be defined in C, ILE COBOL, and
ILE RPG/400. (In C, fixed-length graphic-string host variables are limited to a
length of 1.)
Although fixed-length graphic-string host variables cannot be defined in PL/I,
COBOL/400, and RPG/400, a character-string host variable will be treated like a
fixed-length graphic-string host variable if it was generated in the source from a
GRAPHIC column in the external definition of a file.

¢ Varying-length graphic-string host variables can be defined in C, ILE COBOL,
REXX, and ILE RPG.

- In REXX and ILE RPG, there is a varying-length graphic-string data type.

— In C and ILE COBOL, varying-length graphic strings are represented as
structures.

- In C, varying-length graphic-string variables can also be represented by
NUL-terminated graphic strings.

— Although varying-length graphic-string host variables cannot be defined in
PL/1, COBOL/400, and RPG/400, a character-string host variable will be

Chapter 2. Language Elements 63

../dbp/rbafomst02.htm

Data Types

treated like a varying-length graphic-string host variable if it was generated
in the source from a VARGRAPHIC column in the external definition of a file.

* DBCLOB varying-length character-string variables can be defined in all host
languages except REXX, RPG/400, and COBOL /400.
— InILE RPG, a DBCLOB varying-length character string is declared using the
SQLTYPE keyword.

— In all other languages, an SQL TYPE IS DBCLOB clause is used.

Graphic Subtypes
Each graphic string is further defined as DBCS data or UCS-2 data.

DBCS data Data in which every character is represented by a character from
the double-byte character set (DBCS) that does not include the
shift-out or shift-in characters.

Every DBCS graphic string has a CCSID that identifies a
double-byte coded character set. If necessary, a DBCS graphic
string is converted before it is used in an operation with a DBCS
graphic string that has a different DBCS CCSID.

UCS-2 data Data in which every character is represented by a character from
the Universal Coded Character Set (UCS-2).

When graphic-string host variables are not explicitly tagged with a CCSID, the
associated DBCS CCSID for the job CCSID is used. If no associated DBCS CCSID
exists, the host variable is tagged with 65535. A graphic-string host variable is
never implicitly tagged with a UCS-2 CCSID. See the DECLARE VARIABLE
statement for information on how to tag a graphic host variable with a CCSID.

Large Objects (LOBSs)

The term large object (LOB) refers to any of the following data types:

Binary Large Object (BLOB) Strings

A Binary Large OBject (BLOB) is a varying-length string with a maximum length of
2 147 483 647. A BLOB is designed to store non-traditional data such as pictures,
voice, and mixed media. BLOBs can also store structured data for use by distinct
types and user-defined functions. A BLOB is considered to be a binary string.

Although BLOB strings and FOR BIT DATA character strings might be used for
similar purposes, the two data types are not compatible. The BLOB function can be
used to change a FOR BIT DATA character string into a binary string.

The CCSID of a BLOB is 65535.

Character Large Object (CLOB) Strings

A Character Large OBject (CLOB) is a varying-length character string with a
maximum length of 2 147 483 647. A CLOB is designed to store large SBCS data or
mixed data, such as lengthy documents. For example, you can store information
such as an employee resume, the script of a play, or the text of novel in a CLOB.

The CCSID of a CLOB cannot be 65535.

Double-byte Character Large Object (DBCLOB) Strings
A Double-Byte Character Large OBject (DBCLOB) is a varying-length graphic string

with a maximum length of 1 073 741 823 double-byte characters. A DBCLOB is
designed to store large DBCS data, such as lengthy documents in UCS-2.

64 DB2 UDB for iSeries SQL Reference V5R2

Data Types
The CCSID of a DBCLOB cannot be 65535.

Manipulating Large Objects (LOBs) With Locators

When an application does not want an entire LOB value to be moved into a host
variable, the application can use a large object locator (LOB locator) to reference
the LOB value.

A LOB locator is a host variable with a value that represents a single LOB value in
the database server. LOB locators provide users with a mechanism by which very
large objects can be manipulated in application programs without requiring the
entire LOB value to be stored in a host variable or transferred to the application
requester (client) where the application program may be running.

For example, when selecting a LOB value, an application program could select the
entire LOB value and place it into an equally large host variable (which is
acceptable if the application program is going to process the entire LOB value at
once), or it could instead select the LOB value into a LOB locator. Then, using the
LOB locator, the application program can issue subsequent database operations on
the LOB value (such as applying the scalar functions SUBSTR, CONCAT, VALUE,
LENGTH, doing an assignment, searching the LOB with LIKE or POSSTR, or
applying UDFs against the LOB) by supplying the locator value as input. The
resulting output of the locator operation, for example the amount of data assigned
to a client host variable, would then typically be a small subset of the input LOB
value.

A LOB locator can also represent a LOB expression, such as:
SUBSTR((Tob1l) CONCAT (1ob2) CONCAT (lob3), start, Tength)

For normal host variables in an application program, when a null value is selected
into that host variable, the indicator variable is set to -1, signifying that the value is
null. In the case of LOB locators, however, the meaning of indicator variables is
slightly different. Since a locator host variable itself can never be null, a negative
indicator variable value indicates that the LOB value represented by the LOB
locator is null. The null information is kept local to the client by virtue of the
indicator variable value -- the server does not track null values with valid locators.

It is important to understand that a LOB locator represents a value, not a row or
location in the database. Once a value is selected into a locator, there is no
operation that one can perform on the original row or table that will affect the
value which is referenced by the locator. The value associated with a locator is
valid until the transaction ends, or until the locator is explicitly freed, whichever
comes first.

A LOB locator is only a mechanism used to refer to a LOB value during a
transaction; it does not persist beyond the transaction in which it was created.
Also, it is not a database type; it is never stored in the database and, as a result,
cannot participate in views or check constraints. However, since a locator is a
representation of a LOB type, there are SQLTYPEs for LOB locators so that they
can be described within an SQLDA structure that is used by FETCH, OPEN,
CALL, and EXECUTE statements.

Numbers

All numbers have a sign and a precision. The precision is the total number of binary
or decimal digits excluding the sign. The sign is positive if the value is zero.

Chapter 2. Language Elements 65

Data Types

Small Integer
A small integer is a binary number composed of 2 bytes (16 bits) with a precision of
5 digits. The range of small integers is —32768 to +32767.

For small integers, decimal precision and scale are supported by COBOL, RPG,
and iSeries system files. For information concerning the precision and scale of
binary integers, see the [DDS Reference| book.

Large Integer
A large integer is a binary number composed of 4 bytes (32 bits) with a precision of
10 digits. The range of large integers is —2147483648 to +2147483647.

For large integers, decimal precision and scale are supported by COBOL, RPG, and
iSeries system files. For information concerning the precision and scale of binary

integers, see the book.
Big Integer (BIGINT)

A big integer is a binary number composed of 8 bytes (64 bits) with a precision of
19 digits. The range of big integers is —9223372036854775808 to
+9223372036854775807.

Floating-Point

A single-precision floating-point number is a 32-bit approximate representation of a
real number. The range of magnitude is approximately 1.17549436 x 107® to
3.40282356 x 10°°.

A double-precision floating-point number is a IEEE 64-bit approximate representation
of a real number. The range of magnitude is approximately 2.2250738585072014 x
107°% to 1.7976931348623158 x 10°%.

Decimal

A decimal value is a packed-decimal or zoned-decimal number with an implicit
decimal point. The position of the decimal point is determined by the precision
and the scale of the number. The scale, which is the number of digits in the
fractional part of the number, cannot be negative or greater than the precision. The
maximum precision is 31 digits.

All values of a decimal column have the same precision and scale. The range of a
decimal variable or the numbers in a decimal column is -n to +n, where the
absolute value of 7 is the largest number that can be represented with the
applicable precision and scale. The maximum range is negative 10*'+1 to 10°!
minus 1.

Numeric Host Variables

Small and large binary integer variables can be used in all host languages. Big
integer variables can only be used in C, C++, ILE COBOL, and ILE RPG.
Floating-point variables can be used in all host languages except RPG/400 and
COBOL/400. Decimal variables can be used in all supported host languages.

Datetime Values

Although datetime values can be used in certain arithmetic and string operations
and are compatible with certain strings, they are neither strings nor numbers.
However, strings can represent datetime values; see |”String Representations of|
[Datetime Values” on page 67}

66 DB2 UDB for iSeries SQL Reference V5R2

../dds/rbafpmst02.htm
../dds/rbafpmst02.htm

Data Types
Date

A date is a three-part value (year, month, and day) designating a point in time
under the Gregorian calendar'®, which is assumed to have been in effect from the
year 1 A.D. The range of the year part is 0001 to 9999. The date formats *JUL,
*MDY, *DMY, and *YMD can only represent dates in the range 1940 through 2039.
The range of the month part is 1 to 12. The range of the day part is 1 to x, where x
is 28, 29, 30, or 31, depending on the month and year.

The internal representation of a date is a string of 4 bytes that contains an integer.
The integer (called the Scaliger number) represents the date.

The length of a DATE column as described in the SQLDA is 6, 8, or 10 bytes,
depending on which format is used. These are the appropriate lengths for
character-string representations for the value.

Time

A time is a three-part value (hour, minute, and second) designating a time of day
using a 24-hour clock. The range of the hour part is 0 to 24, while the range of the
minute and second parts is 0 to 59. If the hour is 24, the minute and second
specifications are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of
two packed decimal digits. The first byte represents the hour, the second byte the
minute, and the last byte the second.

The length of a TIME column as described in the SQLDA is 8 bytes, which is the
appropriate length for a character-string representation of the value.

Timestamp

A timestamp is a seven-part value (year, month, day, hour, minute, second, and
microsecond) that designates a date and time as defined previously, except that the
time includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes. The first 4 bytes
represent the date, the next 3 bytes the time, and the last 3 bytes the microseconds
(the last 3 bytes contain 6 packed digits).

The length of a TIMESTAMP column as described in the SQLDA is 26 bytes, which
is the appropriate length for the character-string representation of the value.

Datetime Host Variables

Character string host variables are normally used to contain date, time, and
timestamp values. However, date, time, and timestamp host variables can also be
specified in ILE COBOL and ILE RPG.

String Representations of Datetime Values

Values whose data types are DATE, TIME, or TIMESTAMP are represented in an
internal form that is transparent to the user of SQL. Dates, times, and timestamps,
however, can also be represented by character or UCS-2 graphic strings. These
representations directly concern the user of SQL since there are no constants whose
data types are DATE, TIME, or TIMESTAMP. Only ILE RPG and ILE COBOL
support datetime variables. To be retrieved, a datetime value can be assigned to a
character-string variable. The format of the resulting string will depend on the
default date format and the default time format in effect when the statement was

16. Note that historical dates do not always follow the Gregorian calendar. Dates between 1582-10-04 and 1582-10-15 are accepted as
valid dates although they never existed in the Gregorian calendar.

Chapter 2. Language Elements 67

Data Types

prepared. The default date and time formats is set based on the date format
(DATEMT), the date separator (DATSEP), the time format (TIMFMT), and the time
separator (TIMSEP) parameters.

When a valid string representation of a datetime value is used in an operation with
an internal datetime value, the string representation is converted to the internal
form of the date, time, or timestamp before the operation is performed. If the
CCSID of the string represents a foreign encoding scheme (for example, ASCII), it
is first converted to the coded character set identified by the default CCSID before
the string is converted to the internal form of the datetime value.

The following sections define the valid string representations of datetime values.

Date Strings: A string representation of a date is a character string that starts
with a digit and has a length of at least 6 characters. Trailing blanks can be
included. Leading zeros can be omitted from the month and day portions when
using the IBM SQL standard formats. Each IBM SQL standard format is identified
by name and includes an associated abbreviation (for use by the CHAR function).
Other formats do not have an abbreviation to be used by the CHAR function. The

separators for two-digit year formats are controlled by the date separator
(DATSEP) parameter. Valid string formats for dates are listed in

The database manager recognizes the string as a date when it is either:
¢ In the format specified by the default date format, or

* In one of the IBM SQL standard date formats, or

* In the unformatted Julian format

Table 4. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example
International 1SO yyyy-mm-dd 1987-10-12
Standards

Organization (*ISO)

IBM USA standard =~ USA mm/dd/yyyy 10/12/1987
(*USA)

IBM European EUR dd.mm.yyyy 12.10.1987
standard (*EUR)

Japanese industrial JIS yyyy-mm-dd 1987-10-12
standard Christian

era (*JIS)

Unformatted Julian - yyyyddd 1987285
Julian (*JUL) - yy/ddd 87/285
Month, day, year - mm/dd/yy 10/12/87
(*MDY)

Day, month, year - dd/mm/yy 12/10/87
(*DMY)

Year, month, day - yy/mm/dd 87/12/10
(*YMD)

68 DB2 UDB for iSeries SQL Reference V5R2

Data Types

The default date format can be specified through the following interfaces:

Table 5. Default Date Format Interfaces

SQL Interface

Specification

Embedded SQL

The DATFMT and DATSEP parameters are specified
on the Create SQL Program (CRTSQLxxx) commands.
The SET OPTION statement can also be used to
specify the DATFMT and DATSEP parameters within
the source of a program containing embedded SQL.
(For more information about CRTSQLxxx commands,
see the[SQL Programming with Host Languages|
book.)

Interactive SQL and Run SQL
Statements

The DATFMT and DATSEP parameters on the Start
SQL (STRSQL) command or by changing the session
attributes. The DATFMT and DATSEP parameters on
the Run SQL Statements (RUNSQLSTM) command.
(For more information about STRSQL and

RUNSQLSTM commands, see the [SQL Programming]
book.)

Call Level Interface (CLI) on the
server

SQL_ATTR_DATE_FMT and SQL_ATTR_DATE_SEP
environment or connection variables

(For more information about CLI, see the|SQL Cal

[Level Interfaces (ODBC)|book.)

JDBC or SQLJ on the server using
Developer Kit for Java

Date Format and Date Separator connection property
(For more information about JDBC and SQL], see the
[IBM Developer Kit for Java topic in the iSeries
Information Center.)

ODBC on a client using the iSeries
Access ODBC Driver

Date Format and Date Separator in the Advanced
Server Options in ODBC Setup

(For more information about ODBC, see the
category in the iSeries Information Center.)

JDBC on a client using the IBM
Toolbox for Java

Format in JDBC Setup

(For more information about ODBC, see the
category in the iSeries Information Center.)
(For more information about the IBM Toolbox for
Java, see [[BM Toolbox for Java| topic in the iSeries
Information Center .)

Time Strings: A string representation of a time is a character string that starts
with a digit and has a length of at least 4 characters. Trailing blanks can be
included; a leading zero can be omitted from the hour part of the time and
seconds can be omitted entirely. If you choose to omit seconds, an implicit
specification of 0 seconds is assumed. Thus, 13.30 is equivalent to 13.30.00.

Valid string formats for times are listed inTable 6 on page 70} Each IBM SQL
standard format is identified by name and includes an associated abbreviation (for
use by the CHAR function). The other format (*HMS) does not have an
abbreviation to be used by the CHAR function. The separator for the *HMS format
is controlled by the time separator (TIMSEP) parameter.

The database manager recognizes the string as a time when it is either:

* In the format specified by the default time format, or
* In one of the IBM SQL standard time formats

Chapter 2. Language Elements 69

../rzajp/rzajpmst02.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../cli/rzadpmst02.htm
../cli/rzadpmst02.htm
../rzaha/whatitis.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahh/page1.htm

Data Types

The TIMFMT and TIMSEP parameters are specified on the CRTSQLxxx,
RUNSQLSTM, and STRSQL commands. The SET OPTION statement can be used
to specify TIMFMT and TIMSEP within the source of a program containing

embedded SQL.

Table 6. Formats for String Representations of Times

seconds (*HMS)

Format Name Abbreviation Time Format Example
International ISO hh.mm.ss '” 13.30.05

Standards

Organization (*ISO)

IBM USA standard USA hh:mm AM or PM 1:30 PM
(*USA)

IBM European EUR hh.mm.ss 13.30.05

standard (*EUR)

Japanese industrial JIS hh:mm:ss 13:30:05

standard Christian

era (*JIS)

Hours, minutes, - hh:mm:ss 13:30:05

In the USA time format, the hour must not be greater than 12 and cannot be 0
except for the special case of 00:00 AM. Using the 24-hour clock, the
correspondence between the USA format and the 24-hour clock is as follows:

Table 7. USA Time Format

USA Format

12:01 AM through 11:59 AM
01:00 AM through 11:59 AM
12:00 PM (noon) through 11:59 PM

12:00 AM (midnight)
00:00 AM (midnight)

24-Hour Clock

00.01.00 through 00.59.00
01:00.00 through 11:59.00
12:00.00 through 23.59.00
24.00.00

00.00.00

In the USA format, a single space character exists between the minutes portion of
the time of day and the AM or PM.

The default time format can be specified through the following interfaces:

Table 8. Default Time Format Interfaces

SQL Interface

Specification

Embedded SQL

The TIMFMT and TIMSEP parameters are specified
on the Create SQL Program (CRTSQLxxx) commands.
The SET OPTION statement can also be used to
specify the TIMFMT and TIMSEP parameters within
the source of a program containing embedded SQL.
(For more information about CRTSQLxxx commands,
see the[SQL Programming with Host Languages|
book.)

17. This is an earlier version of the ISO format. JIS can be used to get the current ISO format.

70 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm

Data Types

Table 8. Default Time Format Interfaces (continued)

SQL Interface

Specification

Interactive SQL and Run SQL
Statements

The TIMFMT and TIMSEP parameters on the Start
SQL (STRSQL) command or by changing the session
attributes. The TIMFMT and TIMSEP parameters on
the Run SQL Statements (RUNSQLSTM) command.
(For more information about STRSQL and
RUNSQLSTM commands, see the [SQL Programming]

Concept] book,)

Call Level Interface (CLI) on the
server

SQL_ATTR_TIME_FMT and SQL_ATTR_TIME_SEP
environment or connection variables

(For more information about CLI, see the|SQL Cal
|[Level Interfaces (ODBC)[book.)

JDBC or SQLJ on the server using
Developer Kit for Java

Time Format and Time Separator connection property
object

(For more information about JDBC and SQL], see the
[IBM Developer Kit for Java topic in the iSeries
Information Center.)

ODBC on a client using the iSeries
Access ODBC Driver

Time Format and Time Separator in the Advanced
Server Options in ODBC Setup

For more information about ODBC, see the

ccess| category in the iSeries Information Center.)

JDBC on a client using the IBM
Toolbox for Java

Format in JDBC Setup

For more information about ODBC, see the
category in the iSeries Information Center.)
(For more information about the IBM Toolbox for
Java, see IBM Toolbox for Javal topic in the iSeries
Information Center .)

Timestamp Strings: A string representation of a timestamp is a character string
that starts with a digit and has a length of at least 16 characters. The complete
string representation of a timestamp has the form yyyy-mm-dd-hh.mm.ss.nnnnnn or
yyyymmddhhmmss. Trailing blanks can be included. Leading zeros can be omitted
from the month, day, and hour part of the timestamp when using the timestamp
form with separators. Trailing zeros can be truncated or omitted entirely from
microseconds. If you choose to omit any digit of the microseconds portion, an
implicit specification of 0 is assumed. Thus, 1990-3-2-8.30.00.10 is equivalent to
1990-03-02-08.30.00.100000.

A timestamp whose time part is 24.00.00.000000 is also accepted.

DataLink Values

A DataLink value is an encapsulated value that contains a logical reference from
the database to a file stored outside the database. The attributes of this
encapsulated value are as follows:

link type
The currently supported type of link is a URL (Uniform Resource Locator).

scheme
For URLs, this is a value such as HTTP or FILE. The value, no matter what
case it is entered in, is stored in the database in upper case.

Chapter 2. Language Elements 71

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../cli/rzadpmst02.htm
../cli/rzadpmst02.htm
../rzaha/whatitis.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahh/page1.htm

Data Types

file server name
The complete address of the file server. The value, no matter what case it is
entered in, is stored in the database in upper case.

file path
The identity of the file within the server. The value is case sensitive and
therefore it is not converted to upper case when stored in the database.

access control token
When appropriate, the access token is embedded within the file path. It is
generated dynamically and is not a permanent part of the DataLink value
that is stored in the database.

comment
Up to 254 bytes of descriptive information. This is intended for application
specific uses such as further or alternative identification of the location of
the data.

The characters used in a DataLink value are limited to the set defined for a URL.
These characters include the uppercase (A through Z) and lower case (a through z)
letters, the digits (0 through 9) and a subset of special characters ($, -, _, @, ., &, +,
LA, 0), =/, # 2, space, and comma).

The first four attributes are collectively known as the linkage attributes. It is
possible for a DataLink value to have only a comment attribute and no linkage
attributes. Such a value may even be stored in a column but, of course, no file will
be linked to such a column.

It is important to distinguish between these DataLink references to files and the
LOB file reference variables described in [“References to LOB File Reference]
[Variables” on page 115 The similarity is that they both contain a representation of
a file. However:

¢ DataLinks are retained in the database and both the links and the data in the
linked files can be considered as a natural extension of data in the database.

* File reference variables exist temporarily and they can be considered as an
alternative to a host program buffer.

Built-in scalar functions are provided to build a DataLink value (DLVALUE) and to
extract the encapsulated values from a DataLink value (DLCOMMENT,
DLLINKTYPE, DLURLCOMPLETE, DLURLPATH, DLURLPATHONLY,
DLURLSCHEME, DLURLSERVER).

Row ID Values

A row ID is a value that uniquely identifies a row in a table. A column or a host
variable can have a row ID data type. A ROWID column enables queries to be
written that navigate directly to a row in the table. Each value in a ROWID column
must be unique. The database manager maintains the values permanently, even
across table reorganizations. When a row is inserted into the table, the database
manager generates a value for the ROWID column unless one is supplied. If a
value is supplied, it must be a valid row ID value that was previously generated
by either DB2 UDB for OS/390 and z/OS or DB2 UDB for iSeries.

The internal representation of a row ID value is transparent to the user. The value
is never subject to CCSID conversion because it is considered to contain BIT data.
The length attribute of a ROWID column is 40.

72 DB2 UDB for iSeries SQL Reference V5R2

Data Types
User-Defined Types

Distinct Types

A distinct type is a user-defined data type that shares its internal representation
with a built-in data type (its "source type”), but is considered to be a separate and
incompatible type for most operations. For example, the semantics for a picture
type, a text type, and an audio type that all use the built-in data type BLOB for
their internal representation are quite different. A distinct type is created with the
SQL statement CREATE DISTINCT TYPE.

For example, the following statement creates a distinct type named AUDIO:
CREATE DISTINCT TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB, it is
considered to be a separate type that is not comparable to a BLOB or to any other
type. This inability to compare AUDIO to other data types allows functions to be
created specifically for AUDIO and assures that these functions cannot be applied
to other data types.

The name of a distinct type is qualified with a schema name. The implicit schema
name for an unqualified name depends upon the context in which the distinct type
appears. If an unqualified distinct type name is used:

* In a CREATE DISTINCT TYPE or the object of DROP, COMMENT, GRANT, or
REVOKE statement, the database manager uses the normal process of
qualification by authorization ID to determine the schema name. For more
information about qualification rules, see|“Unqualified Function, Procedure)
[Specific, and Distinct Type Names” on page 53

* In any other context, the database manager uses the SQL path to determine the
schema name. The database manager searches the schemas in the path, in
sequence, and selects the first schema that has a distinct type that matches. For a
description of the SQL path, see ["CURRENT PATH, CURRENT_PATH, or]
[CURRENT FUNCTION PATH” on page 102|

A distinct type does not automatically acquire the functions and operators of its
source type, since these may not be meaningful. (For example, the LENGTH
function of the AUDIO type might return the length of its object in seconds rather
than in bytes.) Instead, distinct types support strong typing. Strong typing ensures
that only the functions and operators that are explicitly defined for a distinct type
can be applied to that distinct type. However, a function or operator of the source
type can be applied to the distinct type by creating an appropriate user-defined
function. The user-defined function must be sourced on the existing function that
has the source type as a parameter.

A distinct type is subject to the same restrictions as its source type. For example, a
table can only have one ROWID column. Therefore, a table with a ROWID column
cannot also have a column with distinct type that is sourced on a row ID.

The comparison operators are automatically generated for distinct types, except for
distinct types that are sourced on a DataLink. In addition, the database manager
automatically generates functions for a distinct type that support casting from the
source type to the distinct type and from the distinct type to the source type. For
example, for the AUDIO type created above, these cast functions are generated:

FUNCTION schema-name.BLOB (schema-name.AUDIO) RETURNS BLOB (1M)

FUNCTION schema-name.AUDIO (BLOB (1M)) RETURNS AUDIO

Chapter 2. Language Elements 73

Promotion of Data Types

Promotion of Data Types

Data types can be classified into groups of related data types. Within such groups,
an order of precedence exists in which one data type is considered to precede
another data type. This precedence enables the database manager to support the
promotion of one data type to another data type that appears later in the
precedence order. For example, the database manager can promote the data type
CHAR to VARCHAR and the data type INTEGER to DOUBLE PRECISION;
however, the database manager cannot promote a CLOB to a VARCHAR.

The database manager considers the promotion of data types when:

* Performing function resolution (see ["Function resolution” on page 120)

« Casting distinct types (see[’Casting Between Data Types” on page 75
. Assiinini distinct types to built-in data types (see [“Distinct Type Assignments”]|

on page 86))

For each data type, shows the precedence list (in order) that the database
manager uses to determine the data types to which each data type can be
promoted. The table indicates that the best choice is the same data type and not
promotion to another data type. Note that the table also shows data types that are
considered equivalent during the promotion process. For example, CHARACTER
and GRAPHIC are considered to be equivalent data types.

Table 9. Precedence of Data Types

Data Type * Data Type Precedence List (in best-to-worst order)

CHAR or GRAPHIC CHAR or GRAPHIC, VARCHAR or VARGRAPHIC, CLOB or DBCLOB
VARCHAR or VARGRAPHIC VARCHAR or VARGRAPHIC, CLOB or DBCLOB

CLOB or DBCLOB CLOB or DBCLOB

BLOB BLOB

SMALLINT SMALLINT, INTEGER, BIGINT, DECIMAL or NUMERIC, REAL, DOUBLE
INTEGER INTEGER, BIGINT, DECIMAL or NUMERIC, REAL, DOUBLE

BIGINT BIGINT, DECIMAL or NUMERIC, REAL, DOUBLE

DECIMAL or NUMERIC DECIMAL or NUMERIC, REAL, DOUBLE

REAL REAL, DOUBLE

DOUBLE DOUBLE

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

DATALINK DATALINK

ROWID ROWID

A distinct type The same distinct type

Notes:

* Other synonyms for the listed data types are considered to be the same as the synonym listed.

74 DB2 UDB for iSeries SQL Reference V5R2

Casting Between Data Types

Casting Between Data Types

There are many occasions when a value with a given data type needs to be cast
(changed) to a different data type or to the same data type with a different length,
precision, or scale. Data type promotion, as described in [‘Promotion of Data]
Types” on page 74} is one example of when a value with one data type needs to be
cast to a new data type. A data type that can be changed to another data type is
castable from the source data type to the target data type.

The casting of one data type to another can occur implicitly or explicitly. You can
use cast functions or CAST specifications to explicitly cast a data type. The
database manager might implicitly cast data types during assignments that involve
a distinct type (see [“Distinct Type Assignments” on page 86). In addition, when
you create a sourced user-defined function, the data types of the parameters of the
source function must be castable to the data types of the function that you are
creating (see ["CREATE FUNCTION” on page 421)).

If truncation occurs when a character or graphic string is cast to another data type,
a warning occurs if any non-blank characters are truncated. This truncation
behavior is unlike the assignment of character or graphic strings to a target when
an error occurs if any non-blank characters are truncated.

For casts that involve a distinct type as either the data type to be cast to or from,
able 10 shows the supported casts. For casts between built-in data types, [Table 11
shows the supported casts.

Table 10. Supported Casts When a Distinct Type is Involved

Data Type ...

Is Castable to Data Type ...

Distinct type DT

Source data type of distinct type DT

Source data type of distinct type DT | Distinct type DT

Distinct type DT

Distinct type DT

Distinct type DT where A is promotable to the source data type of distinct

Data type A type DT (see [“Promotion of Data Types” on page 74)

INTEGER Distinct type DT if DT’s source type is SMALLINT

DOUBLE Distinct type DT if DT’s source data type is REAL

VARCHAR or VARGRAPHIC Distinct type DT if DT’s source data type is CHAR or GRAPHIC

When a distinct type that is not explicitly qualified with a schema name is
involved in a cast, the database manager uses the SQL path to determine a schema
name. The database manager chooses the name of the first schema in the SQL path
that contains a distinct type by that name. For more information about the SQL
path, see [‘Schemas and the SQL Path” on page 55|

The following table describes the supported casts between data types:

Chapter 2. Language Elements 75

Casting Between Data Types

Table 11. Supported Casts Between Built-In Data Types

SMALLINT CHAR GRAPHIC

Source Data INTEGER DECIMAL REAL VARCHARVARGRAPHIC TIME ROW
Type BIGINT NUMERIC DOUBLECLOB DBCLOB DATE TIME STAMP BLOB ID
SMALLINT Y Y Y Y — — — — — _
INTEGER Y Y Y Y — e — _
BIGINT Y Y Y Y — — — — — _
DECIMAL Y Y Y Y — e — _
NUMERIC Y Y Y Y — - - = — _
REAL Y Y Y Y — e — _
DOUBLE Y Y Y Y — — — — — _
CHAR Y Y Y Y * Y Y Y Y Y
VARCHAR Y Y Y Y * Y Y Y Y Y
CLOB Y Y Y Y * - - = Y _
GRAPHIC — — — Y* Y - - Y _
VARGRAPHIC— — — Y* Y — — — Y —
DBCLOB — — — Y* Y — — — Y _
DATE — — — Y+ — Y — Y _ _
TIME — — — Yr* — — Y Y — _
TIMESTAMP — — — Y#** — Y Y Y — —
BLOB — — — — — - - = Y _
ROWID — — — Y — - - = Y Y

Notes: * Conversion is only supported for UCS-2 graphic.

Only a DATALINK can be cast to a DATALINK type.

** Casting from DATE, TIME, TIMESTAMP, or ROWID to CLOB is not supported.

The following table describes the rules for casting to a data type:

76 DB2 UDB for iSeries SQL Reference V5R2

Table 12. Rules for Casting to a Data Type

Casting Between Data Types

Target Data Type

Source Data Type

Rules

SMALLINT Any See the SMALLINT scalar function.
INTEGER Any See the INTEGER scalar function.
BIGINT Any See the BIGINT scalar function.
DECIMAL Any See the DECIMAL scalar function.
NUMERIC Any See the ZONED scalar function.
REAL Any See the REAL scalar function.
DOUBLE Any See the DOUBLE scalar function.
CHAR Any See the CHAR scalar function.
VARCHAR Any See the VARCHAR scalar function.
CLOB Any See the CLOB scalar function.
GRAPHIC Any See the rules for string assignment to a host variable.
VARGRAPHIC Any See the rules for string assignment to a host variable.
DBCLOB Any See the DBCLOB scalar function.
DATE Any See the DATE scalar function.
TIME Any See the TIME scalar function.
See the TIMESTAMP scalar function, where one operand is
TIMESTAMP CHAR specified.
The timestamp is composed of the specified date and a time of
TIMESTAMP DATE 00:00:00.
The timestamp is composed of the CURRENT_DATE and the
TIMESTAMP TIME specified time.
BLOB Any See the BLOB scalar function.
DATALINK DATALINK See the rules for DataLink assignments.
ROWID Any See the ROWID scalar function.

Chapter 2. Language Elements 77

Assighments and Comparisons

Assignments and Comparisons

The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of CALL, INSERT, UPDATE,
FETCH, SELECT, SET variable, and VALUES INTO statements. Comparison
operations are performed during the execution of statements that include
predicates and other language elements such as MAX, MIN, DISTINCT, GROUP
BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands involved
must be compatible. The compatibility rule also applies to UNION, concatenation,
CASE expressions, and the CONCAT, VALUE, COALESCE, IFNULL, MIN, and
MAX scalar functions. The compatibility matrix is as follows:

78 DB2 UDB for iSeries SQL Reference V5R2

Assignments and Comparisons

Table 13. Data Type Compatibility

Binary Decimal Floating Character Graphic Binary Distinct
Operands| Integer Number* Point String String String Date Time Timestamp Type
Binary Yes Yes Yes No No No No No No 2
Integer
Decimal Yes Yes Yes No No No No No No 2
Number
Floating Yes Yes Yes No No No No No No 2
Point
Character No No No Yes Yes 5 No 3 1 1 1 2
String
Graphic No No No Yes 5 Yes No No No No 2
String
Binary No No No No 3 No Yes No No No 2
String
Date No No No 1 No No Yes No No 2
Time No No No 1 No No No Yes No 2
Timestamp No No No 1 No No No No Yes 2
Distinct 2 2 2 2 2 2 2 2 2 2
Type
Notes:
1. The compatibility of datetime values and character strings is limited to assignment, comparison, and the VALUE,

oo~ W

COALESCE, IFNULL, MIN, and MAX scalar functions.

* Datetime values can be assigned to character-string columns and to character-string variables as explained in
[“Datetime Assignments” on page 83

* A valid string representation of a date can be assigned to a date column, compared with a date, or used in a
VALUE, COALESCE, IFNULL, MIN, or MAX scalar function with a date.

* A valid string representation of a time can be assigned to a time column, compared with a time, or used in a
VALUE, COALESCE, IFNULL, MIN, or MAX scalar function with a time.

* A valid string representation of a timestamp can be assigned to a timestamp column, compared with a
timestamp, or used in a VALUE, COALESCE, IFNULL, MIN, or MAX scalar function with a timestamp.

A value with a distinct type is comparable only to a value that is defined with the same distinct type. In general,
the database manager supports assignments between a distinct type value and its source data type. For
additional information, see[“Distinct Type Assignments” on page 86}

All character strings, even those with subtype FOR BIT DATA, are not compatible with binary strings.
Decimal refers to both packed and zoned decimal.
Bit data and graphic strings are not compatible.

A DATALINK operand can only be assigned to another DATALINK operand. The DATALINK value can only be
assigned to a column if the column is defined with NO LINK CONTROL or the file exists and is not already
under file link control. A DATALINK operand can not be directly compared to any data type. The
DLCOMMENT, DLLINKTYPE, DLURLCOMPLETE, DLURLPATH, DLURLPATHONLY, DLURLSCHEME, and
DLURLSERVER scalar functions can be used to extract character string values from a datalink which can then be
compared to other strings.

A ROWID operand can only be assigned to another ROWID operand.

A basic rule for assignment operations is that a null value cannot be assigned to a
column that cannot contain null values, nor to a host variable that does not have
an associated indicator variable. See ["References to Host Variables” on page 111|for
a discussion of indicator variables.

Chapter 2. Language Elements 79

Assighments and Comparisons

Numeric Assighments

The basic rule for numeric assignments is that the whole part of a decimal or
integer number cannot be truncated. If necessary, the fractional part of a decimal
number is truncated. In the case of the assignment to a host variable, a positive
value may be returned in the SQLCODE.

An error occurs if:
* Truncation of the whole part of the number occurs on assignment to a column

* Truncation of the whole part of the number occurs on assignment to a host
variable that does not have an indicator variable

A warning occurs if:
Truncation of the whole part of the number occurs on assignment to a host
variable with an indicator variable. In this case, the number is not assigned to
the host variable and the indicator variable is set to negative 2.

Note: Decimal refers to both packed and zoned decimal.

Note: When fetching decimal data from a file that was not created by an SQL
CREATE TABLE statement, a decimal field may contain data that is not
valid. In this case, the data will be returned as stored, without any warning
or error message being issued. A table that is created by the SQL CREATE
TABLE statement does not allow decimal data that is not valid.

Decimal or Integer to Floating-Point

Floating-point numbers are approximations of real numbers. Hence, when a
decimal or integer number is assigned to a floating-point column or variable, the
result may not be identical to the original number.

The approximation is more accurate if the receiving column or variable is defined
as double precision (64 bits) rather than single precision (32 bits).

Floating-Point or Decimal to Integer

When a decimal or floating-point number is assigned to a binary integer column or
variable, the number is converted, if necessary, to the precision and the scale of the
target. If the scale of the target is zero, the fractional part of the number is lost. The
necessary number of leading zeros is added or eliminated, and, in the fractional
part of the number, the necessary number of trailing zeros is added, or the
necessary number of trailing digits is eliminated.

Decimal to Decimal

When a decimal number is assigned to a decimal column or variable, the number
is converted, if necessary, to the precision and the scale of the target. The necessary
number of leading zeros is added or eliminated, and, in the fractional part of the
number, the necessary number of trailing zeros is added, or the necessary number
of trailing digits is eliminated.

Integer to Decimal
When an integer is assigned to a decimal column or variable, the number is

converted first to a temporary decimal number and then, if necessary, to the
precision and scale of the target. If the scale of the integer is zero, the precision of
the temporary decimal number is 5,0 for a small integer, 11,0 for a large integer, or
19,0 for a big integer.

80 DB2 UDB for iSeries SQL Reference V5R2

Assignments and Comparisons

Floating-Point to Decimal

When a floating-point number is assigned to a decimal column or variable, the
number is first converted to a temporary decimal number of precision 31 and then,
if necessary, truncated to the precision and scale of the target. In this conversion,
the number is rounded (using floating-point arithmetic) to a precision of 31
decimal digits. As a result, a number less than 0.51073! is reduced to 0. The scale
is given the largest possible value that allows the whole part of the number to be
represented without loss of significance.

To COBOL and RPG Integers

Assignment to COBOL and RPG small or large integer host variables takes into
account any scale specified for the host variable. However, assignment to integer
host variables uses the full size of the integer. Thus, the value placed in the
COBOL data item or RPG field may be larger than the maximum precision
specified for the host variable.

In COBOL, for example, if COL1 contains a value of 12345, the statements:

01 A PIC S9999 BINARY.
EXEC SQL SELECT COL1

INTO :A

FROM TABLEX
END-EXEC.

result in the value 12345 being placed in A, even though A has been defined with
only 4 digits.

Notice that the following COBOL statement:
MOVE 12345 TO A.

results in 2345 being placed in A.

String Assignments

Binary String Assignments

There are two types of binary string assignments:

* Storage assignment is when a value is assigned to a column or a parameter of a
function or stored procedure.

* Retrieval assignment is when a value is assigned to a host variable.

Storage Assignment: The basic rule is that the length of a string assigned to a
column or parameter of a function or procedure must not be greater than the
length attribute of the column or parameter. If the string is longer than the length
attribute of that column, a negative SQLCODE is returned. For a description of the
SQLCA, see|Appendix B, “SQL Communication Area” on page 803}

Retrieval Assignment: The length of a string assigned to a host variable can be
greater than the length attribute of the host variable. When a string is assigned to a
variable and the string is longer than the length attribute of the variable, the string
is truncated on the right by the necessary number of characters. When this occurs,
the value 'W' is assigned to the SQOLWARN!T1 field of the SQLCA.

When a string of length # is assigned to a varying-length string variable with a

maximum length greater than 7, the bytes after the nth byte of the variable are
undefined.

Chapter 2. Language Elements 81

Assighments and Comparisons

Character and Graphic String Assignments
The following rules apply when both the source and the target are strings. When a
datetime data type is involved, see ["Datetime Assignments” on page 83|

There are two types of character and graphic string assignments:

* Storage assignment is when a value is assigned to a column or a parameter of a
function or stored procedure.

* Retrieval assignment is when a value is assigned to a host variable.

Storage Assignment: The basic rule is that the length of a string assigned to a
column or parameter of a function or procedure must not be greater than the
length attribute of the column or parameter. If the string is longer than the length
attribute of that column, a negative SQLCODE is returned. (Trailing blanks are
normally included in the length of the string. For storage assignments, however,
trailing blanks are not included in the length of the string.)

For a description of the SQLCA, see [Appendix B, “SQL Communication Area” onl|

lpage 503

When a string is assigned to a fixed-length string column or parameter and the
length of the string is less than the length attribute of the target, the string is
padded on the right with the necessary number of single-byte, double-byte, or
UCS-2 blanks.'® The pad character is always a blank, even for bit data.

Retrieval Assignment: The length of a string assigned to a host variable can be
greater than the length attribute of the host variable. When a string is assigned to a
variable and the string is longer than the length attribute of the variable, the string
is truncated on the right by the necessary number of characters. When this occurs,
the value 'W' is assigned to the SQLWARNI1 field of the SQLCA. Furthermore, if an
indicator variable is provided, it is set to the original length of the string. If only
the NUL-terminator is truncated for a C NUL-terminated host variable and the
*NOCNULRQD option was specified on the CRTSQLCI or CRTSQLCPPI command
(or CNULRQD(*NO) on the SET OPTION statement), the value of 'N' is assigned
to the SQLWARNTI field of the SQLCA and a NUL is not placed in the variable.

When a string is assigned to a fixed-length variable and the length of the string is
less than the length attribute of the target, the string is padded on the right with
the necessary number of single-byte, double-byte, or UCS-2 blanks.'® The pad
character is always a blank, even for bit data.

When a string of length # is assigned to a varying-length string variable with a
maximum length greater than n, the characters after the nth character of the
variable are undefined.

Assignments Involving Mixed Strings: If a string contains mixed data, the
assignment rules may require truncation within a sequence of double-byte codes.
To prevent the loss of the shift-in character that ends the double-byte sequence,
additional characters may be truncated from the end of the string, and a shift-in
character added. In the truncated result, there is always an even number of bytes
between each shift-out character and its matching shift-in character.

18. UCS-2 defines a blank character at code point X’0020” and X’3000". The database manager pads with the blank at code point
X"0020".

82 DB2 UDB for iSeries SQL Reference V5R2

Assignments and Comparisons

Assignments Involving C NUL-terminated Strings: When a string of length n is
assigned to a C NUL-terminated string variable with a length greater than n+1:

 If the *CNULRQD option was specified on the CRTSQLCI or CRTSQLCPPI
command (or CNULRQD(*YES) on the SET OPTION statement), the string is
padded on the right with x-n-1 blanks where x is the length of the variable. The
padded string is then assigned to the variable and the NUL-terminator is placed
in the next character position.

¢ If the *NOCNULRQD precompiler option was specified on the CRTSQLCI or
CRTSQLCPPI command (or CNULRQD(*NO) on the SET OPTION statement),
the string is not padded on the right. The string is assigned to the variable and
the NUL-terminator is placed in the next character position.

Conversion Rules for Assignments: A string assigned to a column or host
variable is first converted, if necessary, to the coded character set of the target.
Character conversion is necessary only if all of the following are true:

* The CCSIDs are different.

* Neither CCSID is 65535.

* The string is neither null nor empty.

¢ The CCSID Conversion Selection Table indicates that conversion is necessary.

An error occurs if:

¢ The CCSID Conversion Selection Table is used but does not contain any
information about the pair of CCSIDs.

* A character of the string cannot be converted, and the operation is assignment to
a column or assignment to a host variable without an indicator variable. For
example, a double-byte character (DBCS) cannot be converted to a column or
host variable with a single-byte character (SBCS) CCSID.

A warning occurs if:
* A character of the string is converted to the substitution character.

* A character of the string cannot be converted, and the operation is assignment to
a host variable with an indicator variable. For example, a DBCS character cannot
be converted to a host variable with an SBCS CCSID. In this case, the string is
not assigned to the host variable and the indicator variable is set to —2.

Datetime Assignments

A value assigned to a DATE column must be a date or a valid string representation
of a date. A date can only be assigned to a DATE column, a character-string
column, a character-string variable or an ILE RPG/400 timestamp variable. A value
assigned to a TIME column must be a time or a valid string representation of a
time. A time can only be assigned to a TIME column, a character-string column, a
character-string variable or an ILE RPG/400 timestamp variable. A value assigned
to a TIMESTAMP column must be a timestamp or a valid string representation of a
timestamp. A timestamp can only be assigned to a TIMESTAMP column, a
character-string column, a character-string variable or an ILE RPG/400 timestamp
variable.

When a datetime value is assigned to a character-string variable or column, it is

converted to its string representation. Leading zeros are not omitted from any part
of the date, time, or timestamp. The required length of the target varies depending
on the format of the string representation. If the length of the target is greater than

Chapter 2. Language Elements 83

Assighments and Comparisons

required, it is padded on the right with blanks. If the length of the target is less
than required, the result depends on the type of datetime value involved and on
the type of target.
* If the target is a character-string column, truncation is not allowed. The
following rules apply:
DATE
The length attribute of the column must be at least 10 if the date format is
*ISO, USA, *EUR, or *JIS. If the date format is *YMD, *MDY, or *DMY, the
length attribute of the column must be at least 8. If the date format is *JUL,
the length of the host variable must be at least 6.

TIME
The length attribute of the column must be at least 8.

TIMESTAMP

The length attribute of the column must be at least 26.
* When the target is a host variable, the following rules apply:

DATE
The length of the host variable must be at least 10 if the date format is *ISO,
*USA, *EUR, or *JIS. If the date format is *YMD, *MDY, or *DMY, the length
of the host variable must be at least 8. If the date format is *JUL, the length
of the host variable must be at least 6.

TIME

— If the *USA format is used, the length of the host variable must not be less
than 8. This format does not include seconds.

— If the *ISO, *EUR, *JIS, or *HMS time format is used, the length of the host
variable must not be less than 5. If the length is 5, 6, or 7, the seconds part of
the time is omitted from the result, and SQLWARNT1 is set to 'W'. In this case,
the seconds part of the time is assigned to the indicator variable if one is
provided, and, if the length is 6 or 7, blank padding occurs so that the value
is a valid string representation of a time.

TIMESTAMP
The length of the host variable must not be less than 19. If the length is
between 19 and 25, the timestamp is truncated like a string, causing the
omission of one or more digits of the microsecond part. If the length is 20,
the trailing decimal point is replaced by a blank so that the value is a valid
string representation of a timestamp.

DataLink Assignments

The assignment of a value to a DataLink column results in the establishment of a
link to a file unless the linkage attributes of the value are empty or the column is
defined with NO LINK CONTROL. In cases where a linked value already exists in
the column, that file is unlinked. Assigning a null value where a linked value
already exists also unlinks the file associated with the old value.

If the application provides the same data location as already exists in the column,
the link is retained. There are two reasons that this might be done:

* the comment is being changed

* if the table is placed in link pending state, the links in the table can be reinstated
by providing linkage attributes identical to the ones in the column.

84 DB2 UDB for iSeries SQL Reference V5R2

Assignments and Comparisons

A DataLink value may be assigned to a column by using the DLVALUE scalar
function. The DLVALUE scalar function creates a new DataLink value which can
then be assigned a column. Unless the value contains only a comment or the URL
is exactly the same, the act of assignment will link the file.

When assigning a value to a DataLink column, the following error conditions can
occur:

* Data Location (URL) format is invalid

* File server is not registered with this database
* Invalid link type specified

¢ Invalid length of comment or URL

Note that the size of a URL parameter or function result is the same on both
input or output and is bound by the length of the DataLink column. However,
in some cases the URL value returned has an access token attached. In situations
where this is possible, the output location must have sufficient storage space for
the access token and the length of the DataLink column. Hence, the actual
length of the comment and URL in its fully expanded form provided on input
should be restricted to accommodate the output storage space. If the restricted
length is exceeded, this error is raised.

When the assignment is also creating a link, the following errors can occur:
* File server not currently available.

* File does not exist.

* Referenced file cannot be accessed for linking.

* File already linked to another column.

Note that this error will be raised even if the link is to a different relational
database.

In addition, when the assignment removes an existing link, the following errors
can occur:

* File server not currently available.

* File with referential integrity control is not in a correct state according to the
DB2 DataLinks File Manager.

A DataLink value may be retrieved from the database through the use of scalar
functions (such as DLLINKTYPE and DLURLPATH). The results of these scalar
functions can then be assigned to host variables.

Note that usually no attempt is made to access the file server at retrieval time. "It
is therefore possible that subsequent attempts to access the file server through file
system commands might fail.

A warning may be returned when retrieving a DataLink value because the table is
in link pending state.

19. It may be necessary to access the file server to determine the prefix name associated with a path. This can be changed at the file
server when the mount point of a file system is moved. First access of a file on a server will cause the required values to be
retrieved from the file server and cached at the database server for the subsequent retrieval of DataLink values for that file
server. An error is returned if the file server cannot be accessed.

Chapter 2. Language Elements 85

Assighments and Comparisons

Row ID Assignments

A row ID value can only be assigned to a column, parameter, or host variable with
a row ID data type. For the value of the ROWID column, the column must be
defined as GENERATED BY DEFAULT or OVERRIDING SYSTEM VALUE must be
specified. A unique constraint is implicitly added to every table that has a ROWID
column that guarantees that every ROWID value is unique. The value that is
specified for the column must be a valid row ID value that was previously
generated by DB2 UDB for OS/390 and z/OS or DB2 UDB for iSeries.

Distinct Type Assighments

The rules that apply to the assignments of distinct types to host variables are
different than the rules for all other assignments that involve distinct types.

Assignments to Host Variables

The assignment of a distinct type to a host variable is based on the source data
type of the distinct type. Therefore, the value of a distinct type is assignable to a
host variable only if the source data type of the distinct type is assignable to the
host variable.

Example: Assume that distinct type AGE was created with the following SQL
statement and column STU_AGE in table STUDENTS was defined with that
distinct type. Using the CL_SCHED table, select all the classes (CLASS_CODE) that
start (STARTING) later today. Today’s classes have a value of 3 in the DAY column.

CREATE DISTINCT TYPE AGE AS SMALLINT WITH COMPARISONS

Next, consider this valid assignment of a student’s age to host variable HV_AGE,
which has an INTEGER data type.

SELECT STU_AGE INTO :HV_AGE FROM STUDENTS WHERE STU_NUMBER = 200

The distinct type value is assignable to the host variable HV_AGE because the
source data type of the distinct type (SMALLINT) is assignable to the host variable
(INTEGER). If distinct type AGE had been sourced on a character data type such
as CHAR(5), the above assignment would be invalid because a character type
cannot be assigned to an integer type.

Assignments Other Than to Host Variables

A distinct type can be either the source or target of an assignment. Assignment is
based on whether the data type of the value to be assigned is castable to the data
type of the target. [“Casting Between Data Types” on page 75 shows which casts are
supported when a distinct type is involved. Therefore, a distinct type value can be
assigned to any target other than a host variable when:

* The target of the assignment has the same distinct type, or
 The distinct type is castable to the data type of the target

Any value can be assigned to a distinct type when:
¢ The value to be assigned has the same distinct type as the target, or
* The data type of the assigned value is castable to the target distinct type

Example: Assume that the source data type for distinct type AGE is SMALLINT:
CREATE DISTINCT TYPE AGE AS SMALLINT WITH COMPARISONS

Next, assume that two tables TABLE1 and TABLE2 were created with four
identical column descriptions:

86 DB2 UDB for iSeries SQL Reference V5R2

Assignments and Comparisons

AGECOL AGE
SMINTCOL SMALLINT
INTCOL INTEGER
DECCOL DEC(6,2)

Using the following SQL statement and substituting various values for X and Y to
insert values into various columns of TABLE1 from TABLE2, shows
whether the assignments are valid.

INSERT INTO TABLEL (Y) SELECT X FROM TABLE2

Table 14. Assessment of various assignments (for example on INSERT)

TABLE2.X TABLE1.Y Valid Reason

AGECOL AGECOL Yes Source and target are same distinct
type

SMINTCOL AGECOL Yes SMALLINT can be cast to AGE
(because AGE’s source type is
SMALLINT)

INTCOL AGECOL Yes INTEGER can be cast to AGE
(because AGE’s source type is
SMALLINT)

DECCOL AGECOL No DECIMAL cannot be cast to AGE

AGECOL SMINTCOL Yes AGE can be cast to its source type
SMALLINT

AGECOL INTCOL No AGE cannot be cast to INTEGER

AGECOL DECCOL No AGE cannot be cast to DECIMAL

Numeric Comparisons

Numbers are compared algebraically; that is, with regard to sign. For example,
negative 2 is less than +1.

If one number is an integer and the other number is decimal, the comparison is
made with a temporary copy of the integer, which has been converted to decimal.

When decimal or nonzero scale binary numbers with different scales are compared,
the comparison is made with a temporary copy of one of the numbers that has
been extended with trailing zeros so that its fractional part has the same number of
digits as the other number.

If one number is floating point and the other number is integer, decimal, or
single-precision floating point, the comparison is made with a temporary copy of
the second number converted to a double-precision floating-point number.
However, if a single-precision floating-point column is compared to a constant and
the constant can be represented by a single-precision floating-point number, the
comparison is made with a single-precision form of the constant.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

Chapter 2. Language Elements 87

Assighments and Comparisons

String Comparisons

Binary String Comparisons

Binary string comparisons always use a sort sequence of *HEX and the
corresponding bytes of each string are compared. Additionally, two binary strings
are equal only if the length of the two strings is identical.

Character and Graphic String Comparisons
Character and UCS-2 graphic string comparisons use the sort sequence in effect

when the statement is executed for all SBCS data and the single-byte portion of
mixed data. If the sort sequence is *HEX, the corresponding bytes of each string
are compared. For all other sort sequences, the corresponding bytes of the
weighted value of each string are compared. If the strings have different lengths, a
temporary copy of the shorter string is padded on the right with blanks before
comparison. The padding makes each string the same length. The pad character is
always a blank, regardless of the sort sequence. For bit data, the pad character is
also a blank. For DBCS graphic data, the pad character is a DBCS blank (x'4040").
For UCS-2 graphic data, the pad character is a UCS-2 blank. *

Two strings are equal if any of the following are true:
* Both strings are empty.
* A *HEX sort sequence is used and all corresponding bytes are equal.

* A sort sequence other than *HEX is used and all corresponding bytes of the
weighted value are equal.

An empty string is equal to a blank string. The relationship between two unequal
strings is determined by a comparison of the first pair of unequal bytes (or bytes
of the weighted value) from the left end of the string. This comparison is made
according to the sort sequence in effect when the statement is executed.

Two varying-length strings with different lengths are equal if they differ only in
the number of trailing blanks. In operations that select one value from a set of such
values, the value selected is arbitrary. The operations that can involve such an
arbitrary selection are DISTINCT, MAX, MIN, UNION and references to a
grouping column. See the description of GROUP BY for further information about
the arbitrary selection involved in references to a grouping column.

Conversion Rules for Comparison: When two strings are compared, one of the
strings is first converted, if necessary, to the coded character set of the other string.
Character conversion is necessary only if all of the following are true:

* The CCSIDs of the two strings are different.

* Neither CCSID is 65535.

* The string selected for conversion is neither null nor empty.

* The CCSID Conversion Selection Table indicates that conversion is necessary.

If two strings with different encoding schemes are compared and the operands are
the same type, any necessary conversion applies to the string as follows:

20. UCS-2 defines a blank character at code point X’0020” and X’3000". The database manager pads with the blank at code point
X"0020".

88 DB2 UDB for iSeries SQL Reference V5R2

Assignments and Comparisons

Table 15. Selecting the Encoding Scheme for Character Conversion

Second Operand
First Operand SBCS Data DBCS Data Mixed Data UCS-2 Data
SBCS Data See below Second Second Second
DBCS Data First See below Second Second
Mixed Data First First See below Second
UCS-2 Data First First First See below

Otherwise, the string selected for conversion depends on the type of each operand.
The following table shows which operand is selected for conversion, given the
operand types:

Table 16. Selecting the Operand for Character Conversion

Second Operand
First Column Derived Special
Operand Value Value Register Constant Host Variable
Column Second Second Second Second Second
Value
Derived First Second Second Second Second
Value
Special First First Second Second Second
Register
Constant First First First Second Second
Host Variable First First First First Second

A host variable containing data in a foreign encoding scheme is always effectively
converted to the native encoding scheme before it is used in any operation. The
above rules are based on the assumption that this conversion has already occurred.

An error occurs if a character of the string cannot be converted or the CCSID
Conversion Selection Table is used but does not contain any information about the
pair of CCSIDs. A warning occurs if a character of the string is converted to the
substitution character.

Datetime Comparisons

A DATE, TIME, or TIMESTAMP value can be compared either with another value
of the same data type or with a string representation of that data type. All
comparisons are chronological, which means the farther a point in time is from
January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values
always include seconds. If the string representation omits seconds, zero seconds
are implied. The time 24:00:00 compares greater than the time 00:00:00.

Comparisons involving TIMESTAMP values are chronological without regard to
representations that might be considered equivalent. Thus, the following predicate
is true:

TIMESTAMP ('1990-02-23-00.00.00"') > '1990-02-22-24.00.00"

Chapter 2. Language Elements 89

Assighments and Comparisons

Distinct Type Comparisons

A value with a distinct type can be compared only to another value with exactly
the same distinct type.

For example, assume that distinct type YOUTH and table CAMP_DB2_ROSTER
table were created with the following SQL statements:

CREATE DISTINCT TYPE YOUTH AS INTEGER WITH COMPARISONS

CREATE TABLE CAMP_DB2_ROSTER

(NAME VARCHAR(20) ,
ATTENDEE_NUMBER INTEGER NOT NULL,
AGE YOUTH,

HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid because AGE and HIGH_SCHOOL_LEVEL have
the same distinct type:

SELECT » FROM CAMP_DB2_ROSTER
WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a cast function
or CAST specification to cast between the distinct type and the source type. All of
the following comparisons are valid:

SELECT » FROM CAMP_DB2_ROSTER
WHERE AGE > YOUTH(ATTENDEE_NUMBER)

SELECT * FROM CAMP_DB2_ROSTER
WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

SELECT * FROM CAMP_DB2_ROSTER
WHERE INTEGER(AGE) > ATTENDEE_NUMBER

SELECT * FROM CAMP_DB2_ROSTER
WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

90 DB2 UDB for iSeries SQL Reference V5R2

Rules for Result Data Types

Rules for Result Data Types

The data types of a result are determined by rules which are applied to the
operands in an operation. This section explains those rules.

These rules apply to:
¢ Corresponding columns in UNION or UNION ALL operations
* Result expressions of a CASE expression

* Arguments of the scalar functions COALESCE, IFNULL, MAX, MIN, and
VALUE

* Expression values of the IN list of an IN predicate

The data type of the result is determined by the data type of the operands. The
data types of the first two operands determine an intermediate result data type,
this data type and the data type of the next operand determine a new intermediate
result data type, and so on. The last intermediate result data type and the data
type of the last operand determine the data type of the result. For each pair of data
types, the result data type is determined by the sequential application of the rules
summarized in the following table:

If neither operand column allows nulls, the result does not allow nulls. Otherwise,
the result allows nulls. If the description of any operand column is not the same as
the description of the result, its values are converted to conform to the description
of the result.

The conversion operation is exactly the same as if the values were assigned to the

result. For example,

* If one operand column is CHAR(10), and the other operand column is CHAR(5),
the result is CHAR(10), and the values derived from the CHAR(5) column are
padded on the right with five blanks.

* An error occurs if the whole part of a number cannot be preserved.

Binary String Operands

Binary strings (BLOBs) are compatible only with other binary strings (BLOBs). The
data type of the result is a BLOB. Other data types can be treated as a BLOB data
type by using the BLOB scalar function to cast the data type to a BLOB. The length
of the result BLOB is the largest length of all the data types.

If one operand And the other
column is... operand is... The data type of the result column is...
BLOB(x) BLOB(y) BLOB(z) where z = max(x,y)

Character and Graphic String Operands

Character and graphic strings are compatible with other character and graphic
strings when there is a defined conversion between their corresponding CCSIDs.

Chapter 2. Language Elements 91

Rules for Result Data Types

If one operand
column is...

And the other
operand is...

The data type of the result column is...

DBCLOB(x)

CHAR(y) or
VARCHAR(y) or
CLOB(y) or
GRAPHIC(y) or
VARGRAPHIC(y) or
DBCLOB(y)

DBCLOB(z) where z = max(x,y)

CLOB(x)

GRAPHIC(y) or
VARGRAPHIC(y)

DBCLOB(z) where z = max(x,y)

VARGRAPHIC(x)

VARGRAPHIC(y) or
GRAPHIC(y) or
VARCHAR(y) or
CHAR(y)

VARGRAPHIC(z) where z = max(x,y)

VARCHAR(x)

GRAPHIC(y)

VARGRAPHIC(z) where z = max(x,y)

GRAPHIC(x)

GRAPHIC(y) or
CHAR(y)

GRAPHIC(z) where z = max(x,y)

CLOB(x)

CLOB(y) or
VARCHAR(y) or
CHAR(y)

CLOB(z) where z = max(x,y)

VARCHAR(x)

VARCHAR(y) or
CHAR(y)

VARCHAR(z) where z = max(x,y)

CHAR(x)

CHAR(y)

CHAR(z) where z = max(x,y)

The CCSID of the result also determines the resulting subtypes based on the

following table:

If one operand And the other
column is... operand is... The subtype of the result column is...
UCS-2 data DBCS or mixed or UCS-2 data
SBCS data
DBCS data DBCS or mixed or DBCS data
SBCS data
bit data mixed, SBCS, or bit bit data
data
mixed data mixed or SBCS data mixed data
SBCS data SBCS data SBCS data

Numeric Operands

Numeric types are compatible only with other numeric types.

If one operand
column is...

And the other
operand is...

The data type of the result column is...

FLOAT (double)

any numeric type

FLOAT (double)

FLOAT (single)

FLOAT (single)

FLOAT (single)

FLOAT (single)

DECIMAL,
NUMERIC, BIGINT,
INTEGER, or
SMALLINT

FLOAT (double)

92 DB2 UDB for iSeries SQL Reference V5R2

Rules for Result Data Types

If one operand And the other

column is... operand is... The data type of the result column is...

DECIMAL(w,x) DECIMAL(y,z) or DECIMAL(p,s) where p = min(31,

NUMERIC(y,z,) max(x,z)+max(w-X,y-z)) s = max(x,z)

DECIMAL(w,x) BIGINT DECIMAL(p,x) where p = min(31,
x+max(w-x,19))

DECIMAL(w,x) INTEGER DECIMAL(p,x) where p = min(31,
x+max(w-x,11))

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where p = min(31,
x+max(w-x,5))

NUMERIC(w,x) NUMERIC(y,z) NUMERIC(p,s) where p = min(31, max(x,z)
+ max(w-X, y-z)) s = max(x,z)

NUMERIC(w,x) BIGINT NUMERIC(p,x) where p = min(31, x +
max(w-x,19))

NUMERIC(w,x) INTEGER NUMERIC(p,x) where p = min(31, x +
max(w-x,11))

NUMERIC(w,x) SMALLINT NUMERIC(p,x) where p = min(31, x +
max(w-x,5))

BIGINT BIGINT BIGINT

BIGINT INTEGER BIGINT

BIGINT SMALLINT BIGINT

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

SMALLINT SMALLINT SMALLINT

NONZERO SCALE NONZERO SCALE NONZERO SCALE BINARY (If either

BINARY BINARY operand is nonzero scale binary, both
operands must be binary with the same
scale.)

Datetime Operands

A DATE type is compatible with another DATE type, or any CHAR or VARCHAR
expression that contains a valid string representation of a date. The data type of

the result is DATE.

A TIME type is compatible with another TIME type, or any CHAR or VARCHAR
expression that contains a valid string representation of a time. The data type of

the result is TIME.

A TIMESTAMP type is compatible with another TIMESTAMP type, or any CHAR
or VARCHAR expression that contains a valid string representation of a
timestamp. The data type of the result is TIMESTAMP.

If one operand

And the other

column is... operand is... The data type of the result column is...
DATE DATE DATE

TIME TIME TIME

TIMESTAMP TIMESTAMP TIMESTAMP

Chapter 2. Language Elements 93

Rules for Result Data Types
DATALINK Operands

A DataLink is compatible with another DataLink. However, DataLinks with NO
LINK CONTROL are only compatible with other DataLinks with NO LINK
CONTROL; DataLinks with FILE LINK CONTROL READ PERMISSION FS are
only compatible with other DataLinks with FILE LINK CONTROL READ

PERMISSION FS; and DataLinks with FILE LINK CONTROL READ PERMISSION

DB are only compatible with other DataLinks with FILE LINK CONTROL READ
PERMISSION DB. The data type of the result is DATALINK. The length of the
result DATALINK is the largest length of all the data types.

If one operand And the other
column is... operand is... The data type of the result column is...
DATALINK(x) DATALINK(y) DATALINK(z) where z = max(x,y)

DISTINCT Type Operands

A distinct type is compatible only with itself. The data type of the result is the
distinct type.

If one operand And the other
column is... operand is... The data type of the result column is...
Distinct Type Distinct Type Distinct Type

94 DB2 UDB for iSeries SQL Reference V5R2

Conversion Rules for Operations That Combine Strings

Conversion Rules for Operations That Combine Strings

The operations that combine strings are concatenation, UNION, and UNION ALL.
(These rules also apply to the MAX, MIN, VALUE, COALESCE, IFNULL, and
CONCAT scalar functions and CASE expressions.) In each case, the CCSID of the
result is determined at bind time, and the execution of the operation may involve
conversion of strings to the coded character set identified by that CCSID.

The CCSID of the result is determined by the CCSIDs of the operands. The CCSIDs
of the first two operands determine an intermediate result CCSID, this CCSID and
the CCSID of the next operand determine a new intermediate result CCSID, and so
on. The last intermediate result CCSID and the CCSID of the last operand
determine the CCSID of the result string or column. For each pair of CCSIDs, the
result CCSID is determined by the sequential application of the following rules:

* If the CCSIDs are equal, the result is that CCSID.

o If either CCSID is 65535, the result is 65535.2

¢ If one CCSID denotes data in an encoding scheme different from the other
CCSID, the result is determined by the following table:

Table 17. Selecting the Encoding Scheme of the Intermediate Result

Second Operand
First Operand SBCS Data DBCS Data Mixed Data UCS-2 Data
SBCS Data See below Second Second Second
DBCS Data First See below Second Second
Mixed Data First First See below Second
UCS-2 Data First First First See below

* Otherwise, the resulting CCSID is determined by the following table:
Table 18. Selecting the CCSID of the Intermediate Result

Second Operand
Column Derived Special Host
First Operand Value Value Constant Register Variable

Column Value First First First First First
Derived Value Second First First First First
Constant Second Second First First First
Special Register Second Second First First First
Host Variable Second Second Second Second First

However, a host variable containing data in a foreign encoding scheme is
effectively converted to the native encoding scheme before it is used in any
operation. The above rules are based on the assumption that this conversion has
already occurred.

Note that an intermediate result is considered to be a derived value operand. For
example, assume COLA, COLB, and COLC are columns with CCSIDs 37, 278, and
500, respectively. The result CCSID of COLA CONCAT COLB CONCAT COLC is
determined as follows:

21. If either operand is a CLOB or DBCLOB, the resulting CCSID is the job default CCSID.

Chapter 2. Language Elements 95

Conversion Rules for Operations That Combine Strings

1. The result CCSID of COLA CONCAT COLB is first determined to be 37
because both operands are columns, so the CCSID of the first operand is
chosen.

2. The result CCSID of the concatenation of the result from step [l and COLC is
determined to be 500. The result CCSID of 500 is determined because the first
operand is a derived value and the second operand is a column, so the CCSID
of the second operand is chosen.

An operand of concatenation or the selected argument of the MAX, MIN, VALUE,
COALESCE, IENULL, and CONCAT scalar function is converted, if necessary, to
the coded character set of the result string. Each string of an operand of UNION or
UNION ALL is converted, if necessary, to the coded character set of the result
column. Character conversion is necessary only if all of the following are true:

* The CCSIDs are different.

* Neither CCSID is 65535.

¢ The string is neither null nor empty.

e The CCSID Conversion Selection Table indicates that conversion is necessary.

An error occurs if a character of a string cannot be converted or if the CCSID
Conversion Selection Table is used but does not contain any information about the
CCSID pair. A warning occurs if a character of a string is converted to the
substitution character.

96 DB2 UDB for iSeries SQL Reference V5R2

Constants

Constants

A constant (sometimes called a literal) specifies a value. Constants are classified as
string constants or numeric constants. String constants are further classified as
character or graphic. Numeric constants are further classified as integer, floating
point, or decimal.

All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored.

Integer Constants

An integer constant specifies an integer as a signed or unsigned number with a
maximum of 19 digits that does not include a decimal point. The data type of an
integer constant is large integer if its value is within the range of a large integer.
The data type of an integer constant is big integer if its value is outside the range
of a large integer, but within the range of a big integer. A constant that is defined
outside the range of big integer values is considered a decimal constant.

In syntax diagrams, the term infeger is used for a large integer constant that must
not include a sign.

Examples
64 -15 +100 32767 720176 12345678901

Floating-Point Constants

A floating-point constant specifies a double-precision floating-point number as two
numbers separated by an E. The first number can include a sign and a decimal
point; the second number can include a sign but not a decimal point. The value of
the constant is the product of the first number and the power of 10 specified by
the second number; it must be within the range of floating-point numbers. The
number of characters in the constant must not exceed 24. Excluding leading zeros,
the number of digits in the first number must not exceed 17 and the number of
digits in the second must not exceed 3.

Examples
15E1 2.E5 2.2E-1 +5.E+2

Decimal Constants

A decimal constant specifies a decimal number as a signed or unsigned number that
includes at most 31 digits. The constant must either:

* Include a decimal point, or
* Be larger than 2147483647 or smaller than -2147483647
The precision is the total number of digits (including leading and trailing zeros);

the scale is the number of digits to the right of the decimal point (including
trailing zeros).

Examples
25.5 1000. -15. +37589.3333333333 12345678901

Binary-String Constants

A binary-string constant specifies a varying-length binary string. The form of a
binary-string constant follows:

Chapter 2. Language Elements 97

Constants

* An X followed by a sequence of characters that starts and ends with a string
delimiter. The characters between the string delimiters must be an even number
of hexadecimal digits. The number of hexadecimal digits must not exceed 32740.
A hexadecimal digit is a digit or any of the letters A through F (uppercase or
lowercase).

The CCSID assigned to the constant is 65535.

Note that the syntax of a binary string constant is identical to the second form of a
character constant. A constant of this form is only treated as a binary string
constant if the SET OPTION statement was specified with the binary string option
(SQLCURRULE = *STD) or the SQLCURRULE(*STD) parameter on the CRTSQLxxx
command.

Example
X'FFFF!

Character-String Constants

A character-string constant specifies a varying-length character string. The two forms
of character-string constant follow:

* A sequence of characters that starts and ends with a string delimiter. The
number of bytes between the string delimiters cannot be greater than 32740. Two
consecutive string delimiters are used to represent one string delimiter within
the character string. Two consecutive string delimiters that are not contained
within a string represent the empty string.

* An X followed by a sequence of characters that starts and ends with a string
delimiter. The characters between the string delimiters must be an even number
of hexadecimal digits. The number of hexadecimal digits must not exceed 32740.
A hexadecimal digit is a digit or any of the letters A through F (uppercase or
lowercase). Under the conventions of hexadecimal notation, each pair of
hexadecimal digits represents a character. This form of string constant allows
you to specify characters that do not have a keyboard representation.

Character-string constants can contain mixed data. If the job CCSID supports
mixed data, a character-string constant is classified as mixed data if it includes a
DBCS substring. In all other cases, a character-string constant is classified as SBCS
data.

The CCSID assigned to the constant is the CCSID of the source containing the
constant unless the source is encoded in a foreign encoding scheme (such as
ASCII). The data in the host variable is converted from the foreign encoding
scheme to the default CCSID of the current server. In this case, the CCSID assigned
to the constant is the default CCSID of the current server.

The CCSID of the source is determined by the application requester. The CCSID of
the source is:

* For STRSQL, the default CCSID of the application requester

* For the RUNSQLSTM or STRREXPRC commands, the CCSID of the specified
source file

e For CRTSQLxxx:

— For static SQL, the CCSID of the source is the CCSID of the source file used
on the CRTSQLxxx command.

98 DB2 UDB for iSeries SQL Reference V5R2

Constants

— For dynamic SQL, the CCSID of the source is the CCSID of the host variable
specified on the PREPARE statement, or if a string constant is specified on the
PREPARE statement, the default CCSID of the current server.

Examples
'Peggy’ '14.12.1990" 132 'DON''T CHANGE' o X'FFFF'

Graphic-String Constants

DBCS Graphic-String Constants

A graphic-string constant is a varying-length graphic string. The length of the
specified string cannot be greater than 16370. The three forms of DBCS
graphic-string constants are:

C ontext Graphic String Constant Enmpity String Example

Al G ' sydbcsstring %' G '85! G T L
contexds

G i

' %%

gll

M Spdbes-atring %' M 'S
h i
n' &%

r'llll

PLA 5 Pbes-string NS W G5] = MG

In the normal form, the SQL delimiters and the G or the N are SBCS characters.
The SBCS ’ is the EBCDIC apostrophe, X'7D’.

In the PL/I form, the apostrophes and the G are DBCS characters. Two consecutive
DBCS string delimiters are used to represent one string delimiter within the string.
Note that this PL/I form is only valid for static statements embedded in PL/I
programs.

A hexadecimal DBCS graphic constant is also supported. The form of the
hexadecimal DBCS graphic constant is:

GX’ssss’

In the constant, ssss represents a string from 0 to 32766 hexadecimal digits. The
number of characters between the string delimiters must be an even multiple of 4.
Each group of 4 digits represents a single DBCS graphic character. The
hexadecimal for shift-in and shift-out ('OE’X and ‘0F’X) are not included in the
string.

Chapter 2. Language Elements 99

Constants

The CCSID assigned to constants is the DBCS CCSID associated with the CCSID of
the source unless the source is encoded in a foreign encoding scheme (such as
ASCII). In this case, the CCSID assigned to the constant is the DBCS CCSID
associated with the default CCSID of the current server when the SQL statement
containing the constant is prepared. If there is no DBCS CCSID associated with the
CCSID of the source, the CCSID is 65535.

For information on associated DBCS CCSIDs, see the [Globalization DBCS CCSIDs
topic in the iSeries Information Center. For information on the CCSID of the
source, see Character String Constants.

UCS-2 Graphic-String Constants
A hexadecimal UCS-2 graphic constant is supported. The form of the hexadecimal

UCS-2 graphic constant is:

UX’ssss’
In the constant, ssss represents a string from 0 to 32766 hexadecimal digits. The
number of characters between the string delimiters must be an even multiple of 4.

Each group of 4 digits represents a single UCS-2 graphic character.

The CCSID of a UCS-2 constant is 13488.

Decimal Point

The default decimal point can be specified:
* To interpret numeric constants

* To determine the decimal point character to use when casting a character string
to a number (for example, in the DECIMAL, DOUBLE_PRECISION, FLOAT, and
REAL scalar functions and the CAST expression)

* to determine the decimal point character to use in the result when casting a
number to a string (for example, in the CHAR, CLOB, and VARGRAPHIC scalar
functions and the CAST expression)

The default decimal point can be specified through the following interfaces:

Table 19. Default Date Format Interfaces

SQL Interface Specification

Embedded SQL The *JOB, *PERIOD, *COMMA, or *SYSVAL value in
the OPTION parameter is specified on the Create
SQL Program (CRTSQLxxx) commands. The SET
OPTION statement can also be used to specify the
DECMPT parameter within the source of a program
containing embedded SQL.
(For more information about CRTSQLxxx commands,
see the[SQL Programming with Host Languages|

book.)
Interactive SQL and Run SQL The DECPNT parameter on the Start SQL (STRSQL)
Statements command or by changing the session attributes. The

DECMPT parameter on the Run SQL Statements
(RUNSQLSTM) command.
(For more information about STRSQL and

RUNSQLSTM commands, see the [SQL Programming]
book.)

100 DB2 UDB for iSeries SQL Reference V5R2

 ../nls/rbagsuseccsiddesign.htm
../rzajp/rzajpmst02.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Constants

Table 19. Default Date Format Interfaces (continued)

SQL Interface Specification
Call Level Interface (CLI) on the SQL_ATTR_DATE_FMT and SQL_ATTR_DATE_SEP
server environment or connection variables

(For more information about CLI, see the|SQL Cal
[Level Interfaces (ODBC)|book.)

JDBC or SQL]J on the server using Decimal Separator conneciton property

Developer Kit for Java (For more information about JDBC and SQL], see the
[IBM Developer Kit for Java| topic in the iSeries
Information Center.)

ODBC on a client using the iSeries Decimal Separator in the Advanced Server Options in
Access ODBC Driver ODBC Setup

For more information about ODBC, see the [iSeries]

ccesd| category in the iSeries Information Center.)

JDBC on a client using the IBM Format in JDBC Setup
Toolbox for Java For more information about ODBC, see the
category in the iSeries Information Center.)

(For more information about the IBM Toolbox for
Java, see|IBM Toolbox for Java topic in the iSeries
Information Center .)

If the comma is the decimal point, the following rules apply:
* A period will also be allowed as a decimal point.

* A comma intended as a separator of numeric constants in a list must be
followed by a space.

* A comma intended as a decimal point must not be followed by a space.

Thus, to specify a decimal constant without a fractional part, the trailing comma
must be followed by a non-blank character. The non-blank character can be a
separator comma, as in:

VALUES (9999999999, , 111)

Delimiters

*APOST and *QUOTE are mutually exclusive COBOL precompiler options that
name the string delimiter within COBOL statements. *APOST names the
apostrophe (') as the string delimiter; *QUOTE names the quotation mark (").
*APOSTSQL and *QUOTESQL are mutually exclusive COBOL precompiler options
that play a similar role for SQL statements embedded in COBOL programs.
*APOSTSQL names the apostrophe (') as the SQL string delimiter; with this option,
the quotation mark (") is the SQL escape character. *QUOTESQL names the
quotation mark as the SQL string delimiter; with this option, the apostrophe is the
SQL escape character. The values of *APOSTSQL and *QUOTESQL are respectively
the same as the values of *APOST and *QUOTE.

In host languages other than COBOL, the usages are fixed. The string delimiter for

the host language and for static SQL statements is the apostrophe ('); the SQL
escape character is the quotation mark (").

Chapter 2. Language Elements 101

../cli/rzadpmst02.htm
../cli/rzadpmst02.htm
../rzaha/whatitis.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahgicia.htm
../rzahh/page1.htm

Special Registers

Special Registers

A special register is a storage area that is defined for an application process by the
database manager and is used to store information that can be referenced in SQL
statements. A reference to a special register is a reference to a value provided by
the current server. If the value is a string, its CCSID is a default CCSID of the
current server. DB2 UDB for iSeries includes the following special registers.

CURRENT DATE or CURRENT_DATE

The CURRENT DATE special register specifies a date that is based on a reading of

the time-of-day clock when the SQL statement is executed at the current server. All

values are based on a single clock reading in the following situations:

* This special register is used more than once within a single SQL statement.

* This special register is used with the CURRENT TIME or CURRENT
TIMESTAMP special registers or the CURDATE, CURTIME, or NOW scalar
functions within a single statement.

Example
Using the PROJECT table, set the project end date (PRENDATE) of the MA2111
project (PROJNO) to the current date.

UPDATE PROJECT
SET PRENDATE
WHERE PROJNO

CURRENT PATH, CURRENT_PATH, or CURRENT FUNCTION
PATH

CURRENT DATE
'MA2111"

The CURRENT PATH special register specifies the SQL path used to resolve
unqualified distinct type names (both built-in types and distinct types), procedure
names, and function names in dynamically prepared SQL statements. It is also
used to resolve unqualified procedure names that are specified as host variables in
SQL CALL statements (CALL host-variable). The data type is VARCHAR(3483).

The CURRENT PATH special register contains a list of one or more schema names,
where each schema name is enclosed in delimiters and separated from the
following schema by a comma. The delimiters and commas are included in the
3483 character length. The maximum number of schema names in the path is 268.

For information on when the SQL path is used to resolve unqualified names in
both dynamic and static SQL statements and the effect of its value, see
fand the SQL Path” on page 55

The initial value of the CURRENT PATH special register in an activation group is
established by the first SQL statement that is executed.

e If the first SQL statement in an activation group is executed from an SQL
program or SQL package and the SQLPATH parameter was specified on the
CRTSQLxxx command, the path is the value specified in the SQLPATH
parameter. The SQLPATH value can also be specified using the SET OPTION
statement.

¢ Otherwise,

— For SQL naming, "QSYS”, "QSYS2", "the value of the authorization ID of the
statement” .

— For system naming, "*LIBL".

102 DB2 UDB for iSeries SQL Reference V5R2

Special Registers

You can change the value of the register by executing the statement SET PATH. For
details about this statement, see [“SET PATH” on page 729,

Example
Set the special register so that schema SMITH is searched before schemas QSYS
and QSYS2 (SYSTEM PATH).

SET CURRENT PATH SMITH, SYSTEM PATH

CURRENT SCHEMA

The CURRENT SCHEMA special register specifies a VARCHAR(128) value that
identifies the schema name used to qualify unqualified database object references
where applicable in dynamically prepared SQL statements.”> CURRENT SCHEMA
is not used to qualify names in programs where the DYNDFTCOL has been
specified. If DYNDFTCOL is specified in a program, its schema name is used
instead of the CURRENT SCHEMA schema name.

The initial value of CURRENT SCHEMA is the authorization ID of the current
session user.

The DFTRDBCOL keyword controls the schema name used to qualify unqualified
database object references where applicable for static SQL statements.

Example
Set the schema for object qualification to 'D123’.

SET CURRENT SCHEMA = 'D123'

CURRENT SERVER or CURRENT_SERVER

The CURRENT SERVER special register specifies a VARCHAR(18) value that
identifies the current server.

CURRENT SERVER can be changed by the CONNECT (Type 1), CONNECT (Type
2), or SET CONNECTION statements, but only under certain conditions. See the
description in ["CONNECT (Type 1)” on page 402} ['CONNECT (Type 2)” on page
and ["SET CONNECTION” on page 712|

CURRENT SERVER cannot be specified unless the local relational database is
named by adding the entry to the relational database directory using the
ADDRDBDIRE or WRKRDBDIRE command.

Example
Set the host variable APPL_SERVE (VARCHAR(18)) to the name of the current

server.

SELECT CURRENT SERVER
INTO :APPL_SERVE
FROM ROW1_TABLE

CURRENT TIME or CURRENT_TIME

The CURRENT TIME special register specifies a time that is based on a reading of
the time-of-day clock when the SQL statement is executed at the current server. All
values are based on a single clock reading in the following situations:

* This special register is used more than once within a single SQL statement

22. For compatibility with DB2 UDB for OS/390 and z/0OS, the special register CURRENT SQLID is treated as a synonym for
CURRENT SCHEMA.

Chapter 2. Language Elements 103

Special Registers

* This special register is used with the CURRENT DATE or CURRENT
TIMESTAMP special registers or the CURDATE, CURTIME, or NOW scalar
functions within a single statement

Example
Using the CL_SCHED table, select all the classes (CLASS_CODE) that start
(STARTING) later today. Today’s classes have a value of 3 in the DAY column.

SELECT CLASS_CODE FROM CL_SCHED
WHERE STARTING > CURRENT TIME AND DAY = 3

CURRENT TIMESTAMP or CURRENT_TIMESTAMP

The CURRENT TIMESTAMP special register specifies a timestamp that is based on
a reading of the time-of-day clock when the SQL statement is executed at the
current server. All values are based on a single clock reading in the following
situations:

* This special register is used more than once within a single SQL statement

* This special register is used with the CURRENT DATE or CURRENT TIME
special registers or the CURDATE, CURTIME, or NOW scalar functions within a
single statement

Example

Insert a row into the IN_TRAY table. The value of the RECEIVED column should
be a timestamp that indicates when the row was inserted. The values for the other
three columns come from the host variables SRC (CHAR(8)), SUB (CHAR(64)), and
TXT (VARCHAR(200)).

INSERT INTO IN_TRAY
VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

CURRENT TIMEZONE or CURRENT_TIMEZONE

The CURRENT TIMEZONE special register specifies the difference between
Universal Time Coordinated (UTC)* and local time at the current server. The
difference is represented by a time duration (a decimal number in which the first
two digits are the number of hours, the next two digits are the number of minutes,
and the last two digits are the number of seconds). The number of hours is
between -24 and 24 exclusive. Subtracting CURRENT TIMEZONE from a local
time converts that local time to UTC.

Example
Using the IN_TRAY table, select all the rows from the table and adjust the value to
UTC.

SELECT RECEIVED - CURRENT TIMEZONE, SOURCE,
SUBJECT, NOTE_TEXT FROM IN_TRAY

USER

The USER special register specifies the run-time authorization ID at the current
server. The data type of the special register is VARCHAR(18).

Example
Select all notes from the IN_TRAY table that the user placed there himself.

SELECT * FROM IN_TRAY
WHERE SOURCE = USER

23. Formerly known as Greenwich Mean Time (GMT).

104 DB2 UDB for iSeries SQL Reference V5R2

Column Names

Column Names

The meaning of a column name depends on its context. A column name can be
used to:

* Declare the name of a column, as in a CREATE TABLE statement.
* Identify a column, as in a CREATE INDEX statement.
* Specify values of the column, as in the following contexts:

— In a column function a column name specifies all values of the column in the
group or intermediate result table to which the function is applied. Groups
and intermediate result tables are explained under [“SELECT INTO” on
For example, MAX(SALARY) applies the function MAX to al
values of the column SALARY in a group.

— In a GROUP BY or ORDER BY clause, a column name specifies all values in
the intermediate result table to which the clause is applied. For example,
ORDER BY DEPT orders an intermediate result table by the values of the
column DEPT.

— In an expression, a search condition, or a scalar function, a column name specifies
a value for each row or group to which the construct is applied. For example,
when the search condition CODE = 20 is applied to some row, the value
specified by the column name CODE is the value of the column CODE in that
TOW.

Qualified Column Names

A qualifier for a column name can be a table name, a view name, an alias name, or
a correlation name.

Whether a column name can be qualified depends on its context:
* In the COMMENT and LABEL statements, the column name must be qualified.

* Where the column name specifies values of the column, a column name can be
qualified at the user’s option.

* In all other contexts, a column name must not be qualified.

Where a qualifier is optional it can serve two purposes. See|“Column Name|
Qualifiers to Avoid Ambiguity” on page 107 and [“Column Name Qualifiers in|
Correlated References” on page 108[for details.

Correlation Names

A correlation name can be defined in the FROM clause of a query and in the first
clause of an UPDATE or DELETE statement. For example, the clause shown below
establishes Z as a correlation name for X.MYTABLE:

FROM X.MYTABLE Z

A correlation name is associated with a table, view, or alias only within the context
in which it is defined. Hence, you can define the same correlation name for
different purposes in different statements, or in different clauses of the same
statement.

As a qualifier, you can use a correlation name to avoid ambiguity or to establish a
correlated reference. You can also use a correlation name as a shorter name for a
table, view, or alias. In the example that is shown above, Z might have been used
merely to avoid having to enter XX MYTABLE more than once.

Chapter 2. Language Elements 105

Column Names

If a correlation name is specified for a table name, view name or alias name, any
qualified reference to a column of that instance of the table, view or alias must use
the correlation name, rather than the table name, view name, or alias name. For
example, the reference to EMPLOYEE.PROJECT in the following example is
incorrect, because a correlation name has been specified for EMPLOYEE:

FROM EMPLOYEE E #%* [INCORRECT #**
WHERE EMPLOYEE.PROJECT='ABC'

The qualified reference to PROJECT should instead use the correlation name, “E”,
as shown below:

FROM EMPLOYEE E
WHERE E.PROJECT="ABC'

Names specified in a FROM clause are either exposed or non-exposed. A correlation
name is always an exposed name. A table name, view name, or alias name is said
to be exposed in that FROM clause if a correlation name is not specified. For
example, in the following FROM clause, a correlation name is specified for
EMPLOYEE but not for DEPARTMENT, so DEPARTMENT is an exposed name,
and EMPLOYEE is not:

FROM EMPLOYEE E, DEPARTMENT

A table name, view name, or alias name that is exposed in a FROM clause must
not be the same as any other table name or view name exposed in that FROM
clause or any correlation name in the FROM clause. The names are compared after
qualifying any unqualified table or view names.

The first two FROM clauses shown below are correct, because each one contains no
more than one reference to EMPLOYEE that is exposed:
1. Given the FROM clause:

FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the
second instance of EMPLOYEE in the FROM clause. A qualified reference to the
first instance of EMPLOYEE must use the correlation name “E1” (E1.PROJECT).
2. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the
first instance of EMPLOYEE in the FROM clause. A qualified reference to the
second instance of EMPLOYEE must use the correlation name “E2”
(E2.PROJECT).
3. Given the FROM clause:
FROM EMPLOYEE, EMPLOYEE *%%INCORRECT

the two exposed table names included in this clause (EMPLOYEE and
EMPLOYEE) are the same, and this is not allowed.

4. Given the following statement:

SELECT *
FROM EMPLOYEE E1, EMPLOYEE E2 *%%INCORRECT **
WHERE EMPLOYEE.PROJECT="'ABC'

the qualified reference EMPLOYEE.PROJECT is incorrect, because both
instances of EMPLOYEE in the FROM clause have correlation names. Instead,
references to PROJECT must be qualified with either correlation name
(E1.PROJECT or E2.PROJECT).

106 DB2 UDB for iSeries SQL Reference V5R2

Column Names

5. Given the FROM clause:
FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use
X.EMPLOYEE (X.EMPLOYEE.PROJECT). This FROM clause is only valid if the
authorization ID of the statement is not X.

A correlation name specified in a FROM clause must not be the same as:
* Any other correlation name in that FROM clause
¢ Any unqualified table name or view name exposed in the FROM clause

* The second SQL identifier of any qualified table name or view name in the
FROM clause.

For example, the following FROM clauses are incorrect:

FROM EMPLOYEE E, EMPLOYEE E
FROM EMPLOYEE DEPARTMENT, DEPARTMENT * %% INCORRECT **
FROM X.T1, EMPLOYEE T1

The following FROM clause is technically correct, though potentially confusing:
FROM EMPLOYEE DEPARTMENT, DEPARTMENT EMPLOYEE

The use of a correlation name in the FROM clause also allows the option of
specifying a list of column names to be associated with the columns of the result
table. As with a correlation name, these listed column names become the exposed
names of the columns that must be used for references to the columns throughout
the query. If a column name list is specified, then the column names of the
underlying table become non-exposed.

Given the FROM clause:
FROM DEPARTMENT D (NUM,NAME,MGR,ANUM, LOC)

a qualified reference such as D.NUM denotes the first column of the
DEPARTMENT table that is defined in the table as DEPTNO. A reference to
D.DEPTNO using this FROM clause is incorrect since the column name DEPTNO
is a non-exposed column name.

If a list of columns is specified, it must consist of as many names as there are
columns in the table-reference. Each column name must be unique and
unqualified.

Column Name Qualifiers to Avoid Ambiguity

In the context of a function, a GROUP BY clause, ORDER BY clause, an expression,
or a search condition, a column name refers to values of a column in some table or
view. The tables and views that might contain the column are called the object
tables of the context. Two or more object tables might contain columns with the
same name. One reason for qualifying a column name is to designate the object
from which the column comes.

Table Designators

A qualifier that designates a specific object table is called a table designator. The
clause that identifies the object tables also establishes the table designators for
them. For example, the object tables of an expression in a SELECT clause are
named in the FROM clause that follows it:

SELECT CORZ.COLA, OWNY.MYTABLE.COLA
FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Chapter 2. Language Elements 107

Column Names

This is how you establish table designators in the FROM clause:

¢ A name that follows a table or view name is both a correlation name and a table
designator. Thus, CORZ is a table designator. CORZ is used to qualify the first
column name in the select list.

* In SQL naming, an exposed table or view name is a table designator. Thus,
OWNYMYTABLE is a table designator. OWNY.MYTABLE is used to qualify the
second column name in the select list.

* In system naming, the table designator for an exposed table or view name is the
unqualified table or view name. In the following example MYTABLE is the table
designator for OWNY/MYTABLE.

SELECT CORZ.COLA, MYTABLE.COLA
FROM OWNX/MYTABLE CORZ, OWNY/MYTABLE

Avoiding undefined or ambiguous references
When a column name refers to values of a column, exactly one object table must
include a column with that name. The following situations are considered errors:

* No object table contains a column with the specified name. The reference is
undefined.

¢ The column name is qualified by a table designator, but the table designated
does not include a column with the specified name. Again the reference is
undefined.

¢ The name is unqualified and more than one object table includes a column with
that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely defined
table designator. If the column is contained in several object tables with different
names, the object table names can be used as designators.

Two or more object tables can be instances of the same table. In this case, distinct
correlation names must be used to unambiguously designate the particular
instances of the table. In the following FROM clause, X and Y are defined to refer,
respectively, to the first and second instances of the table CORPDATA.EMPLOYEE:

FROM CORPDATA.EMPLOYEE X, CORPDATA.EMPLOYEE Y

When qualifying a column with the exposed table name form of a table designator,
either the qualified or unqualified form of the exposed table name may be used.
However, the qualifier used and the table used must be the same after fully
qualifying the table name or view name and the table designator.

1. If the authorization ID of the statement is CORPDATA, then:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE

is a valid statement.
2. If the authorization ID of the statement is REGION, then:

SELECT CORPDATA.EMPLOYEE.WORKDEPT
FROM EMPLOYEE * %% INCORRECT *#=

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE, but
the qualifier for WORKDEPT represents a different table,
CORPDATA.EMPLOYEE.

Column Name Qualifiers in Correlated References

A subselect is a form of a query that can be used as a component of various SQL
statements. Refer to [Chapter 4, “Queries” on page 323| for more information about

108 DB2 UDB for iSeries SQL Reference V5R2

Column Names

subselects. A subquery is a form of a fullselect that is enclosed within parenthesis.
For example, a subgquery can be used in a search condition.

A subquery can include search conditions of its own, and these search conditions
can, in turn, include subqueries. Therefore, an SQL statement can contain a
hierarchy of subqueries. Those elements of the hierarchy that contain subqueries
are said to be at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table
designators. This is the FROM clause, except in the highest level of an UPDATE or
DELETE statement. A search condition, the select list, the join clause, or an
argument of a table function in a subquery can reference not only columns of the
tables identified by the FROM clause of its own element of the hierarchy, but also
columns of tables identified at any level along the path from its own element to
the highest level of the hierarchy. A reference to a column of a table identified at a
higher level is called a correlated reference.

A correlated reference to column C of table T can be of the form C, T.C, or Q.C, if
Q is a correlation name defined for T. However, a correlated reference in the form
of an unqualified column name is not good practice. The following explanation is
based on the assumption that a correlated reference is always in the form of a
qualified column name and that the qualifier is a correlation name.

Q.C is a correlated reference only if these three conditions are met:

* Q.Cis used in a search condition, select list, join clause, or an argument of a
table function in a subquery.

* Q does not designate a table used in the FROM clause of that subquery, selection
list, join clause, or an argument of a table function in a subquery.

* Q does designate a table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the
table designator of that table or view. Because the same table or view can be
identified at many levels, unique correlation names are recommended as table
designators. If Q is used to designate a table at more than one level, Q.C refers to
the lowest level that contains the subquery that includes Q.C.

In the following statement, Q is used as a correlation name for T1 and T2, but Q.C
refers to the correlation name associated with T2, because it is the lowest level that
contains the subquery that includes Q.C.

SELECT *
FROM T1 Q
WHERE A < ALL (SELECT B
FROM T2 Q
WHERE B < ANY (SELECT D

FROM T3
WHERE D = Q.C))

Unqualified Column Names

An unqualified column name can also be a correlated reference if the column:

* Is used in a search condition of a subquery

* Is not contained in a table used in the FROM clause of that subquery

* Is contained in a table used at some higher level

Unqualified correlated references are not recommended because it makes the SQL

statement difficult to understand. The column will be implicitly qualified when the
statement is prepared depending on which table the column was found in. Once

Chapter 2. Language Elements 109

Column Names

this implicit qualification is determined it will not change until the statement is
re-prepared. An SQL precompiler issues a warning message in the precompile
listing and the database manager issues a positive SQLCODE (+12) and SQLSTATE
(01545) when an SQL statement that has an unqualified correlated reference is
prepared or executed.

110 DB2 UDB for iSeries SQL Reference V5R2

References to Variables

References to Variables

A variable in an SQL statement specifies a value that can be changed when the SQL
statement is executed. There are several types of variables used in SQL statements:

host variable
Host variables are defined by statements of a host language. For more
information about how to refer to host variables see |”References to Hosﬂ
[Variables” on page 111}

transition variable
Transition variables are defined in a trigger and refer to either the old or
new values of columns. For more information about how to refer to
transition variables see ["CREATE TRIGGER” on page 538}

SQL variable
SQL variables are defined by an SQL compound statement in an SQL
function, SQL procedure, or trigger. For more information about SQL
variables, see [“References to SQL Parameters and Variables” on page 761|

SQL parameter
SQL parameters are defined in an CREATE FUNCTION (SQL Scalar),

CREATE FUNCTION (SQL Table), or CREATE PROCEDURE (SQL
statement. For more information about SQL variables, see

[SQL Parameters and Variables” on page 761|

parameter marker
Variables cannot be referenced in dynamic SQL statements. Parameter
markers are defined in an SQLDA and used instead. For more information
about parameter markers, see [“Parameter markers” on page 677]

In this book, unless otherwise noted, the term host variable in syntax diagrams is
used to describe where a host variable, transition variable, SQL variable, SQL
parameter, or parameter marker can be used.

References to Host Variables

A host variable is a COBOL data item, an RPG field, or a PLI, REXX, C++, or C
variable that is referenced in an SQL statement. Host variables are defined by
statements of the host language. For more information about how to refer to host
structures in C, C++, COBOL, PL/I, and RPG, see [“Host Structures in C, C++)
[COBOL, PL/I, and RPG” on page 116/ For more information about host variables
in REXX, see the [SQL Programming with Host Languages| book.

A host-variable in an SQL statement must identify a host variable described in the
program according to the rules for declaring host variables. All host variables used
in an SQL statement should be declared in an SQL declare section in all host
languages other than REXX and RPG. (Variables do not have to be declared in
REXX. In RPG, there is no declare section, and host variables may be declared
throughout the program.) No variables may be declared outside an SQL declare
section with names identical to variables declared inside an SQL declare section.
An SQL declare section begins with BEGIN DECLARE SECTION and ends with
END DECLARE SECTION.

For further information about using host variables, see the SQL Programming|

[Concepts]book.

The term host-variable, as used in the syntax diagrams, shows a reference to a host
variable. A host-variable in the INTO clause of a FETCH, SELECT INTO, SET

Chapter 2. Language Elements 111

../rzajp/rzajpmst02.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

References to Host Variables

variable, or VALUES INTO statement identifies a host variable to which a value
from a column of a row is assigned. A host variable in a CALL statement or in an
EXECUTE statement identifies either or both a host variable to which an output
parameter value is assigned, and a host variable that specifies an input argument
value to be passed to the database manager from the application program. In all
other contexts a host-variable specifies a value to be passed to DB2 UDB for iSeries
from the application program.

The general form of a host-variable reference is:

v
A

»»>—:host-identifier

INDICATOR
[1

:host—identz’fierJ

Each host-identifier must be declared in the source program. The variable
designated by the second host-identifier must have a data type of small integer with
zero scale.

The first host-identifier designates the main variable; the second host-identifier
designates its indicator variable. The purposes of the indicator variable are to:

* Specify the null value. A negative value of the indicator variable specifies the
null value.

¢ Indicate one of the following data mapping errors:
— Characters could not be converted
— Numeric conversion error (underflow or overflow)
— Arithmetic expression error (division by 0)

— Date or timestamp conversion error (a date or timestamp that is not within
the valid range of the dates for the specified format)

— String representation of the datetime value is not valid
— Mixed data not properly formed
— A numeric value that is not valid
— Argument of SUBSTR scalar function is out of range
* Record the original length of a truncated string.

* Record the seconds portion of a time if the time is truncated on assignment to a
host variable.

For example, if :V1:V2 is used to specify an insert or update value, and if V2 is
negative, the value specified is the null value. If V2 is not negative the value
specified is the value of V1.

Similarly, if :V1:V2 is specified in a CALL, FETCH, or SELECT INTO statement
and the value returned is null, V1 is undefined, and V2 is set to a negative value.
The negative value is:

e -1 if the value selected was the null value, or

-2 if the null value was returned due to data mapping errors in the select list of
an outer subselect. **

24. It should be noted that although the null value returned for data mapping errors can be returned on certain scalar functions and
for arithmetic expressions, the result column is not considered null capable unless an argument of the arithmetic expression or
scalar function is null capable.

112 DB2 UDB for iSeries SQL Reference V5R2

References to Host Variables

If the value returned is not null, that value is assigned to V1 and V2 is set to zero
(unless the assignment to V1 requires string truncation, in which case, V2 is set to
the original length of the string). If an assignment requires truncation of the
seconds part of time, V2 is set to the number of seconds.

If the second host-identifier is omitted, the host variable does not have an indicator
variable. The value specified by the host-variable :-V1 is always the value of V1, and
null values cannot be assigned to the variable. Thus, this form should not be used
in an INTO clause unless the corresponding result column cannot contain null
values. If this form is used and the column contains nulls, the database manager
returns a negative value (-407) in the SQLCODE field of the SQLCA. If your data
is truncated and there is no indicator variable, no error condition results.

A host variable must always be preceded by a colon when it is used in an SQL
statement.

In C, C++, ILE RPG, and PL/I, an SQL statement that references host variables
must be within the scope of the declaration of those host variables. For host
variables referenced in the SELECT statement of a cursor, that rule applies to the
OPEN statement rather than to the DECLARE CURSOR statement.

The CCSID of a string host variable is either:
¢ The CCSID specified in the DECLARE VARIABLE statement, or

* If a DECLARE VARIABLE with a CCSID clause is not specified for the host
variable, the default CCSID of the application requester at the time the SQL
statement that contains the host variable is executed unless the CCSID is for a
foreign encoding scheme (such as ASCII). In this case, the host variable is
converted to the default CCSID of the current server.

Example
Using the PROJECT table, set the host variable PNAME (VARCHAR(26)) to the
project name (PROJNAME), the host variable STAFF (DECIMAL(5,2)) to the mean
staffing level (PRSTAFF), and the host variable MAJPROJ (CHAR(6)) to the major
project (MAJPROJ) for project (PROJNO) ‘IF1000’. Columns PRSTAFF and
MAJPROJ may contain null values, so provide indicator variables STAFF_IND
(SMALLINT) and MAJPROJ_IND (SMALLINT).

SELECT PROJNAME, PRSTAFF, MAJPROJ

INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND

FROM PROJECT
WHERE PROJNO = 'IF1000'

Host Variables in Dynamic SQL

In dynamic SQL statements, parameter markers are used instead of host variables.
A parameter marker is a question mark (?) that represents a position in a dynamic
SQL statement where the application will provide a value; that is, where a host
variable would be found if the statement string were a static SQL statement. The
following examples shows a static SQL that uses host variables and a dynamic
statement that uses parameter markers:

INSERT INTO DEPT VALUES(:HV_DEPTNO, :HV_DEPTNAME, :HV_MGRNO, :HV_ADMRDEPT)

INSERT INTO DEPT VALUES(?, ?, ?, ?)

For more information about parameter markers, see|’Parameter markers” on|

Chapter 2. Language Elements 113

References to Host Variables

References to LOB Host Variables

Regular LOB variables, LOB locator variables (see ['References to LOB Locator
Variables”) and LOB file reference variables (see ['References to LOB File Referencd
Variables” on page 119)), can be defined in the following host languages:

« C

o C++

* ILE RPG

« ILE COBOL
* PL/I

Where LOBs are allowed, the term host-variable in a syntax diagram can refer to a
regular host variable, a locator variable, or a file reference variable. Since these
variables are not native data types in host programming languages, SQL extensions
are used and the precompilers generate the host language constructs necessary to
represent each variable.

When it is possible to define a host variable that is large enough to hold an entire
LOB value and the performance benefit of delaying the transfer of data from the
server is not required, a LOB locator is not needed. However, it is often not
acceptable to store an entire LOB value in temporary storage due to host language
restrictions, storage restrictions, or performance requirements. When storing a
entire LOB value at one time is not acceptable, a LOB value can be referred to by a
LOB locator and portions of the LOB value can be selected into or updated from
host variables that contain only a portion of the LOB value.

Like all other host variables, a LOB locator variable or LOB file reference variable
can have an associated indicator variable. Indicator variables for LOB locator
variables and LOB file reference variables behave in the same way as indicator
variables for other data types. When a null value is returned from the database, the
indicator variable is set and the host variable is unchanged. This means that a
locator can never point to a null value.

References to LOB Locator Variables
A LOB locator variable is a host variable that contains the locator representing a
LOB value on the server, which can be defined in the following host languages:

- C

o C++

* ILE RPG

* ILE COBOL
 PL/I

See [“Manipulating Large Objects (LOBs) With Locators” on page 63 for information
on how locators can be used to manipulate LOB values.

A locator variable in an SQL statement must identify a LOB locator variable
described in the program according to the rules for declaring locator variables.
This is always indirectly through an SQL statement. For example, in C:

static volatile SQL TYPE IS CLOB_LOCATOR =locl;

The term locator-variable, as used in the syntax diagrams, shows a reference to a
LOB locator variable. The meta-variable locator-variable can be expanded to include
a host-identifier the same as that for host-variable.

When the indicator variable associated with a LOB locator is null, the value of the
referenced LOB is null.

114 DB2 UDB for iSeries SQL Reference V5R2

References to Host Variables

If a locator variable does not currently represent any value, an error occurs when
the locator variable is referenced.

At transaction commit or any transaction termination, all LOB locators that were
acquired by the transaction are released.

It is the application programmer’s responsibility to guarantee that any LOB locator
is only used in SQL statements that are executed at the same server that originally
generated the LOB locator. For example, assume that a LOB locator is returned
from one server and assigned to a LOB locator variable. If that LOB locator
variable is subsequently used in an SQL statement that is executed at a different
server, unpredictable results will occur.

References to LOB File Reference Variables
A LOB file reference variable is used for direct file input and output for a LOB,
which can be defined in the following host languages:

« C

e C++

* ILE RPG
ILE COBOL
 PL/I

Since these are not native data types, SQL extensions are used and the
precompilers generate the host language constructs necessary to represent each
variable.

A file reference variable represents (rather than contains) the file, just as a LOB
locator represents, rather than contains, the LOB data. Database queries, updates,
and inserts may use file reference variables to store or to retrieve single column
values. The file referenced must exist at the application requester.

As with all other host variables, a file reference variable may have an associated
indicator variable.

The length attribute of a file reference variable is assumed to be the maximum
length of a LOB.

File reference variables are currently supported in the root (/), QOpenSys, and
UDFS file systems. When a file is created, it is given the CCSID of the data that is
being written to the file. Currently, mixed CCSIDs are not supported. To use a file
created with a file reference variable, the file should be opened in binary mode.

For more information about file reference variables, see the [SQL Programming]

[Concepts]book.

Chapter 2. Language Elements 115

../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Host Structures in C, C++, COBOL, PL/l, and RPG

Host Structures in C, C++, COBOL, PL/l, and RPG

A host structure is a COBOL group, PL/I, C, or C++ structure, or RPG data
structure that is referenced in an SQL statement. Host structures are defined by
statements of the host language, as explained in the|SQL Programming with Host
book. As used here, the term host structure does not include an SQLCA
or SQLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :51:52 is a host structure reference if S1 names a host
structure. If S1 designates a host structure, S2 must be either a small integer
variable, or an array of small integer variables. S1 is the host structure and S2 is its
indicator array.

A host structure can be referenced in any context where a list of host variables can
be referenced. A host structure reference is equivalent to a reference to each of the
host variables contained within the structure in the order which they are defined in
the host language structure declaration. The nth variable of the indicator array is
the indicator variable for the nth variable of the host structure.

In PL/I, for example, if V1, V2, and V3 are declared as variables within the
structure S1, the statement:

EXEC SQL FETCH CURSOR1 INTO :S1;

is equivalent to:
EXEC SQL FETCH CURSORI INTO :VI1, :V2, :V3;

If the host structure has m more variables than the indicator array, the last m
variables of the host structure do not have indicator variables. If the host structure
has m fewer variables than the indicator array, the last m variables of the indicator
array are ignored. These rules also apply if a reference to a host structure includes
an indicator variable or if a reference to a host variable includes an indicator array.
If an indicator array or indicator variable is not specified, no variable of the host
structure has an indicator variable.

In addition to structure references, individual host variables in the host structure or
indicator variables in the indicator array can be referenced by qualified names. The
qualified form is a host identifier followed by a period and another host identifier.
The first host identifier must name a host structure, and the second host identifier
must name a host variable within that host structure.

The following diagram specifies the syntax of references to host variables and host
structures:

>>— host-identifier >

l—host-identifier.—l

\4
\4
A

INDICATOR
[il

|_ _| host—ident‘z’fier‘J
host-identifier.

A host-variable in an expression must identify a host variable (not a structure)
described in the program according to the rules for declaring host variables.

116 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm
../rzajp/rzajpmst02.htm

Host Structures in C, C++, COBOL, PL/l, and RPG

Host structures are not supported in REXX.

The following examples show references to host variables and host structures:
V1 :S1.v1 :S1.V1:Vv2 :51.V2:52.v4

Chapter 2. Language Elements 117

Host Structure Arrays in C, C++, COBOL, PL/l, and RPG
Host Structure Arrays in C, C++, COBOL, PL/l, and RPG

In PL/I, C++, and C, a host structure array is a structure name having a dimension
attribute. In COBOL, it is a one-dimensional table. In RPG, it is an occurrence data
structure. A host structure array can only be referenced in the FETCH statement
when using a multiple-row fetch, or in an INSERT statement when using a blocked
insert. Host structure arrays are defined by statements of the host language, as
explained in the BOL Programming with Host Languages| book.

The form of a host structure array is identical to the form of a host variable
reference. The reference :51:52 is a reference to host structure array if S1 names a
host structure array. If S1 designates a host structure, S2 must be either a small
integer host variable, an array of small integer host variables, or a two dimensional
array of small integer host variables. In the following example, S1 is the host
structure array and S2 is its indicator array.

EXEC SQL FETCH CURSOR1 FOR 5 ROWS
INTO :S1:S2;

The dimension of the host structure and the indicator array must be equal.

If the host structure has m more variables than the indicator array, the last m
variables of the host structure do not have indicator variables. If the host structure
has m fewer variables than the indicator array, the last m variables of the indicator
array are ignored. If an indicator array or variable is not specified, no variable of
the host structure array has an indicator variable.

The following diagram specifies the syntax of references to an array of host
structures:

»»—:—host-identifier

v
A

INDICATOR
[1

:—host—identz’fier‘J

Arrays of host structures are not supported in REXX.

118 DB2 UDB for iSeries SQL Reference V5R2

../rzajp/rzajpmst02.htm

Functions

Functions

A function is an operation denoted by a function name followed by one or more
operands that are enclosed in parentheses. It represents a relationship between a
set of input values and a set of result values. The input values to a function are
called arguments. For example, a function can be passed two input arguments that
have date and time data types and return a value with a timestamp data type as
the result.

Types of Functions

There are several ways to classify functions. One way to classify functions is as
built-in, user-defined, or user-defined functions that are generated for distinct

types.

* Built-in functions are IBM-supplied functions that come with DB2 UDB for
iSeries. These functions provide a single-value result. Built-in functions include
operator functions such as "+", column functions such as AVG, and scalar
functions such as SUBSTR. For a list of the built-in column and scalar functions
and information on these functions, see|Chapter 3, “Built-In Functions” on|

[page 157

* User-defined functions are functions that are created using the CREATE
FUNCTION statement and registered to the database manager in catalog table
QSYS2.SYSROUTINES and catalog view QSYS2.SYSFUNCS. These functions
allow users to extend the function of the database manager by adding their own
or third party vendor function definitions.

A user-defined function is either SQL, external, or sourced. An SQL function is
defined to the database using only SQL statements. An external function is
defined to the database with a reference to an external program or service
program that is executed when the function is invoked. A sourced function is
defined to the database with a reference to a built-in function or another
user-defined function. Sourced functions can be used to extend built-in column
and scalar functions for use on distinct types.

A user-defined function resides in the schema in which it was created. The
schema cannot be QSYS, QSYS2, or QTEMP.

¢ The database manager automatically generates some user-defined functions
when a distinct type is created using the CREATE DISTINCT TYPE statement.
These functions support casting from the distinct type to the source type and
from the source type to the distinct type. The ability to cast between the data
types is important because a distinct type is compatible only with itself.
The generated cast functions reside in the same schema as the distinct type for
which they were created. The schema cannot be QSYS, QSYS2, or QTEMP. For
more information about the functions that are generated for a distinct type, see
[“CREATE DISTINCT TYPE” on page 414}

Another way to classify functions is as column, scalar, or table functions,
depending on the input data values and result values.

A column function receives a set of values for each argument (such as the values of
a column) and returns a single-value result for the set of input values. Column
functions are sometimes called aggregating functions. Built-in functions and
user-defined sourced functions can be column functions.

25. Built-in functions are implemented internally by the database manager, so an associated program or service program object does
not exist for a built-in function. Furthermore, the catalog does not contain information about built-in functions. However, built-in
functions can be treated as if they exist in QSYS2 and a built-in function name can be qualified with QSYS2.

Chapter 2. Language Elements 119

Functions

A scalar function receives a single value for each argument and returns a
single-value result. Built-in functions and user-defined functions can be scalar
functions. The functions that are created for distinct types are also scalar functions.

A table function returns a table for the set of arguments it receives. Each argument
is a single value. A table function can only be referenced in the FROM clause of a
subselect. A table function can be defined as an external function or as an SQL
function (a table function cannot be a sourced function.).

Table functions can be used to apply SQL language processing power to data that
is not DB2 data or to convert such data into a DB2 table. For example, a table
function can take a file and convert it to a table, get data from the World Wide
Web and tabularize it, or access a Lotus Notes database and return information
about mail messages.

Each reference to a scalar or column function (either built-in or user-defined)
conforms to the following syntax:

A

ALL .
DISTINCT— F
LY expression

»>—function-name—(ii) >

The ALL or DISTINCT keyword can only be specified for a column function or a
user-defined function that is sourced on a column function.

Each reference to a table function conforms to the following syntax:

»»—TABLE—(—function-name—)—)—correlation-clause——»=

=

LY expression

In the above syntax, expression is the same as it is for a scalar or column function.
For more details on referencing a table function, see the description of the FROM
clause on [“from-clause” on page 328|

Function resolution

A function is invoked by its function name, which is implicitly or explicitly
qualified with a schema name, followed by parentheses that enclose the arguments
to the function. Within the database, each function is uniquely identified by its
function signature, which is its schema name, function name, the number of
parameters, and the data types of the parameters. Thus, a schema can contain
several functions that have the same name but each of which have a different
number of parameters, or parameters with different data types. Or, a function with
the same name, number of parameters, and types of parameters can exist in
multiple schemas. When you invoke any function, the database manager must
determine which function to execute. This process is called function resolution.

Function resolution is similar for functions that are invoked with a qualified or
unqualified function name with the exception that for an unqualified name, the
database manager needs to search more than one schema.

Qualified function resolution: When a function is invoked with a function name and
a schema name, the database manager only searches the specified schema to

120 DB2 UDB for iSeries SQL Reference V5R2

Functions

resolve which function to execute. The database manager finds the appropriate
function instance when all of the following conditions are true:

e The name of the function instance matches the name in the function invocation.

* The number of input parameters in the function instance matches the number of
arguments in the function invocation.

* The data type of each input argument of the function invocation matches or is
promotable to the data type of the corresponding parameter of the function
instance.

This comparison of data types results in one best fit, which is the choice for

execution (see |”Method of finding the best fit”). For information on the
promotion of data types, see [“Promotion of Data Types” on page 74

If no function in the schema meets these criteria, an error occurs.

Unqualified function resolution: When a function is invoked with only a function
name, the database manager needs to search more than one schema to resolve the
function instance to execute. The SQL path contains the list of schemas to search.
For each schema in the path (for information on paths see [‘Schemas and the SQLJ
[Path” on page 55), the database manager selects a candidate function based on the
following criteria:

¢ The name of the function instance matches the name in the function invocation.

¢ The number of input parameters in the function instance matches the number of
function arguments in the function invocation.

* The data type of each input argument of the function invocation matches or is
promotable to the data type of the corresponding parameter of the function
instance.

This comparison of data types results in one best fit, which is the choice for
execution (see [“Method of finding the best fit”). For information on the
promotion of data types, see [“Promotion of Data Types” on page 74

If no function in the schema meets these criteria, an error occurs.

A candidate function is not selected for a schema if one or more of the criteria is
not met.

After the database manager identifies the candidate functions, it selects the
candidate with the best fit as the function instance to execute (see
ffinding the best fit”). If more than one schema contains the function instance with
the best fit (the function signatures are identical except for the schema name), the
database manager selects the function whose schema is earliest in the SQL path.

Function resolution applies to all functions, including built-in functions. Built-in
functions logically exist in schema QSYS2. If schema QSYS2 is not explicitly
specified in the SQL path, the schema is implicitly assumed at the front of the
path. Therefore, when an unqualified function name is specified, ensure that the
path is specified so that the intended function is selected.

Method of finding the best fit

There might be more than one function with the same name that is a candidate for
execution. In that case, the database manager determines which function is the best
fit for the invocation by comparing the argument and parameter data types. Note
that neither the data type of the result of the function nor the type of function
(column or scalar) under consideration enters into this determination.

Chapter 2. Language Elements 121

Functions

If the data types of all the parameters for a given function are the same as those of
the arguments in the function invocation, that function is the best fit. If there is no
exact match, the database manager compares the data types in the parameter lists
from left to right, using the following method:

1. Compare the data type of the first argument in the function invocation to the
data type of the first parameter in each function. (Any length, precision, scale,
and CCSID attributes of the data types are not considered in the comparison.)

2. For this argument, if one function has a data type that fits the function
invocation better than the data types in the other functions, that function is the
best fit. The precedence list for the promotion of data types in
[Data Types” on page 74 shows the data types that fit each data type in
best-to-worst order.

3. If the data type of the first parameter for more than one candidate function fits
the function invocation equally well, repeat this process for the next argument
of the function invocation. Continue for each argument until a best fit is found.

The following examples illustrate function resolution.

Example 1: Assume that MYSCHEMA contains two functions, both named FUNA,
that were created with these partial CREATE FUNCTION statements.

CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), INT, DOUBLE) ...
CREATE FUNCTION MYSCHEMA.FUNA (VARCHAR(10), REAL, DOUBLE) ...

Also assume that a function with three arguments of data types VARCHAR(10),
SMALLINT, and DECIMAL is invoked with a qualified name:

MYSCHEMA.FUNA(VARCHARCOL, SMALLINTCOL, DECIMALCOL) ...

Both MYSCHEMA .FUNA functions are candidates for this function invocation
because they meet the criteria specified in [“Function resolution” on page 120} The
data types of the first parameter for the two function instances in the schema,
which are both VARCHAR, fit the data type of the first argument of the function
invocation, which is VARCHAR, equally well. However, for the second parameter,
the data type of the first function (INT) fits the data type of the second argument
(SMALLINT) better than the data type of second function (REAL). Therefore, the
database manager selects the first MYSCHEMA FUNA function as the function
instance to execute.

Example 2: Assume that functions were created with these partial CREATE
FUNCTION statements:

CREATE FUNCTION SMITH.ADDIT (CHAR(5), INT, DOUBLE) ...
CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE) ...
CREATE FUNCTION SMITH.ADDIT (INT, INT, DOUBLE, INT) ...
CREATE FUNCTION JOHNSON.ADDIT (INT, DOUBLE, DOUBLE) ...
CREATE FUNCTION JOHNSON.ADDIT (INT, INT, DOUBLE) ...
CREATE FUNCTION TODD.ADDIT (REAL) ...

CREATE FUNCTION TAYLOR.SUBIT (INT, INT, DECIMAL) ...

NOoO OB wWwN

Also assume that the SQL path at the time an application invokes a function is
"TAYLOR”, "JOHNSON", "SMITH". The function is invoked with three data types
(INT, INT, DECIMAL) as follows:

SELECT ... ADDIT(INTCOL1, INTCOL2, DECIMALCOL) ...

Function 5 is chosen as the function instance to execute based on the following
evaluation:

e Function 6 is eliminated as a candidate because schema TODD is not in the SQL
path.

122 DB2 UDB for iSeries SQL Reference V5R2

Functions

e Function 7 in schema TAYLOR is eliminated as a candidate because it does not
have the correct function name.

* Function 1 in schema SMITH is eliminated as a candidate because the INT data
type is not promotable to the CHAR data type of the first parameter of Function
1.

¢ Function 3 in schema SMITH is eliminated as a candidate because it has the
wrong number of parameters.

* Function 2 is a candidate because the data types of its parameters match or are
promotable to the data types of the arguments.

* Both Function 4 and 5 in schema JOHNSON are candidates because the data
types of their parameters match or are promotable to the data types of the
arguments. However, Function 5 is chosen as the better candidate because
although the data types of the first parameter of both functions (INT) match the
first argument (INT), the data type of the second parameter of Function 5 (INT)
is a better match of the second argument (INT) than the data type of Function 4
(DOUBLE).

* Of the remaining candidates, Function 2 and 5, the database manager selects

Function 5 because schema JOHNSON comes before schema SMITH in the SQL
path.

Example 3: Assume that functions were created with these partial CREATE
FUNCTION statements:
1. CREATE FUNCTION BESTGEN.MYFUNC (INT, DECIMAL(9,0)) ...

2. CREATE FUNCTION KNAPP.MYFUNC (INT, NUMERIC(8,0))...
3. CREATE FUNCTION ROMANO.MYFUNC (INT, FLOAT) ...

Also assume that the SQL path at the time an application invokes a function is
"ROMANOQ", "KNAPP”, "BESTGEN". The function is invoked with two data types
(SMALLINT, DECIMAL) as follows:

SELECT ... MYFUNC(SINTCOL1, DECIMALCOL) ...

Function 2 is chosen as the function instance to execute based on the following
evaluation:

 All three functions are candidates for this function invocation because they meet
the criteria specified in [“Function resolution” on page 120}

* Function 3 in schema ROMANO is eliminated because the second parameter
(FLOAT) is not as good a fit for the second argument (DECIMAL) as the second
parameter of either Function 1 (DECIMAL) or Function 2 (NUMERIC).

* The second parameters of Function 1 (DECIMAL) and Function 2 (NUMERIC)
are equally good fits for the second argument (DECIMAL).

* Function 2 is finally chosen because "KNAPP" precedes "BESTGEN" in the SQL
path.

Function Invocation

Once the function is selected, there are still possible reasons why the use of the
function may not be permitted. Each function is defined to return a result with a
specific data type. If this result data type is not compatible within the context in
which the function is invoked, an error will occur. For example, given functions
named STEP defined with different data types as the result:

STEP(SMALLINT) RETURNS CHAR(5)
STEP(DOUBLE) RETURNS INTEGER

and the following function reference (where S is a SMALLINT column):

Chapter 2. Language Elements 123

Functions
SELECT ... 3 +STEP(S)

then, because there is an exact match on argument type, the first STEP is chosen.
An error occurs on the statement because the result type is CHAR(5) instead of a
numeric type as required for an argument of the addition operator.

In cases where the arguments of the function invocation were not an exact match
to the data types of the parameters of the selected function, the arguments are
converted to the data type of the parameter at execution using the same rules as
assignment to columns (see [Assignments and Comparisons” on page 78). This
includes the case where precision, scale, length, or CCSID differs between the
argument and the parameter.

124 DB2 UDB for iSeries SQL Reference V5R2

Expressions

Expressions

An expression specifies a value.

Foperator

> —function <
E + } —(expression)
- —constant
—column-name

—host-variable
—special-register

(1)
—(scalar-subselect)
(2)
—Llabeled-duration
(3)
—cast-specification
(4)
—case-expression
Notes:
1 See [“Scalar Subselect” on page 130| for more information.
2 See|’Datetime Operands and Durations” on page 130| for more information.
3 See [“CAST Specification” on page 137 for more information.
4 See [“CASE Expressions” on page 135| for more information.
operator:
> CONCAT e
[—
] —
*
**
+

labeled-duration:

> function YEAR »<
(expression)— —YEARS
constant —MONTH
column-name——{ —MONTHS——
host-variable— DAY

—DAYS

—HOUR

—HOURS

FMINUTE———

—MINUTES

—SECOND———

—SECONDS

—MICROSECOND—

MICROSECONDS—

Chapter 2. Language Elements 125

Expressions

Without Operators

If no operators are used, the result of the expression is the specified value.

Example
SALARY : SALARY 'SALARY' ~ MAX(SALARY)

With the Concatenation Operator

The concatenation operator (CONCAT or | |') combines two strings. The result of
the expression is a string.

The operands of concatenation must be compatible strings. Binary strings are only
compatible with other binary strings.

The data type of the result is determined by the data types of the operands. The
data type of the result is summarized in the following table:

Table 20. Result Data Types With Concatenation

If one operand And the other
column is ... operand is ... The data type of the result column is ...
DBCLOB(x) CHAR(y) or DBCLOB(z) where z = MIN(x + ,
VARCHAR(y) or maximum length of a DBCLOB)
CLOB(y) or
GRAPHIC(y) or
VARGRAPHIC(y) or
DBCLOB(y)
CLOB(x) GRAPHIC(y) or DBCLOB(z) where z = MIN(x + ,
VARGRAPHIC(y) maximum length of a DBCLOB)
VARGRAPHIC(x) CHAR(y) or VARGRAPHIC(z) where z = MIN(x +
VARCHAR(y) or maximum length of a VARGRAPHIC)
GRAPHIC(y) or
VARGRAPHIC(y)
VARCHAR(x) GRAPHIC(y) VARGRAPHIC(z) where z = MIN(x +y,
maximum length of a VARGRAPHIC)
GRAPHIC(x) CHAR(y) mixed data VARGRAPHIC(z) where z = MIN(x + y,
maximum length of a VARGRAPHIC)
GRAPHIC(x) CHAR(y) SBCS data ~ GRAPHIC(z) where z = MIN(x +
or GRAPHIC(y) maximum length of a GRAPHIC)
UCS-2 data UCS-2 or DBCS or UCS-2 data
mixed or SBCS data
DBCS data DBCS or mixed or DBCS data
SBCS data
CLOB(x) CHAR(y) or CLOB(z) where z = MIN(x + y, maximum
VARCHAR(y) or length of a CLOB)
CLOB(y)
VARCHAR(x) CHAR(y) or VARCHAR(z) where z = MIN(x + y,
VARCHAR(y) maximum length of a VARCHAR)
CHAR(x) mixed data CHAR(y) VARCHAR(z) where z = MIN(x +y,
maximum length of a VARCHAR)
CHAR(x) SBCS data CHAR(y) CHAR(z) where z = MIN(x + y, maximum
length of a CHAR)

126 DB2 UDB for iSeries SQL Reference V5R2

Expressions

Table 20. Result Data Types With Concatenation (continued)

If one operand And the other
column is ... operand is ... The data type of the result column is ...
bit data mixed or SBCS or bit bit data
data
mixed data mixed or SBCS data mixed data
SBCS data SBCS data SBCS data
BLOB(x) BLOB(y) BLOB(z) where z = MIN(x + y, maximum
length of a BLOB)

If the sum of the lengths of the operands exceeds the maximum length attribute of
the resulting data type:

* The length atttribute of the result is the maximum length of the resulting data
type.*®

* If only blanks are truncated no warning or error occurs.

e If non-blanks are truncated, an error occurs.

If either operand can be null, the result can be null, and if either is null, the result
is the null value. Otherwise, the result consists of the first operand string followed
by the second.

With mixed data this result will not have redundant shift codes “at the seam”.
Thus, if the first operand is a string ending with a “shift-in” character (X'0F),
while the second operand is a character string beginning with a “shift-out”
character (X'OE'), these two bytes are eliminated from the result.

The actual length of the result is the sum of the lengths of the operands unless
redundant shifts are eliminated; in which case, the actual length is two less than
the sum of the lengths of the operands.

The CONCAT operator should be used instead of the | | operator. The code point
for the | character varies, depending on the CCSID.

The CCSID of the result is determined by the CCSID of the operands as explained
under [“Conversion Rules for Operations That Combine Strings” on page 95 Note
that as a result of these rules:

* If any operand is bit data, the result is bit data.

* If one operand is mixed data and the other is SBCS data, the result is mixed
data. However, this does not necessarily mean that the result is well-formed
mixed data.

Example
Concatenate the column FIRSTNME with a blank and the column LASTNAME.

FIRSTNME CONCAT ' ' CONCAT LASTNAME

With Arithmetic Operators

If arithmetic operators are used, the result of the expression is a number derived
from the application of the operators to the values of the operands.

26. If the expression is in the select-list, the length attribute may be further reduced in order to fit within the maximum record size.
For more information, see [‘Maximum row sizes” on page 532|

Chapter 2. Language Elements 127

Expressions

If any operand can be null, the result can be null. If any operand has the null
value, the result of the expression is the null value. Arithmetic operators must not
be applied to character strings. For example, USER+2 is invalid.

The prefix operator + (unary plus) does not change its operand. The prefix operator
- (unary minus) reverses the sign of a nonzero operand. If the data type of A is
small integer, the data type of - A is large integer. The first character of the token
following a prefix operator must not be a plus or minus sign.

The infix operators, +, -, *, /, and **, specify addition, subtraction, multiplication,
division, and exponentiation, respectively. The value of the second operand of
division must not be zero.

The result of an exponentiation (**) operator is a double-precision floating-point
number. The result of the other operators depends on the type of the operand.

Two Integer Operands

If both operands of an arithmetic operator are integers with zero scale, the
operation is performed in binary, and the result is a large integer unless either (or
both) operand is a big integer, in which case the result is a big integer. Any
remainder of division is lost. The result of an integer arithmetic operation
(including unary minus) must be within the range of large integers. If either
integer operand has nonzero scale, it is converted to a decimal operand with the
same precision and scale.

Integer and Decimal Operands

If one operand is an integer with zero scale and the other is decimal, the operation
is performed in decimal using a temporary copy of the integer that has been
converted to a decimal number with precision and scale 0 as defined in the
following table:

Operand Precision of Decimal Copy

Column or variable: big integer 19

Column or variable: large integer 11

Column or variable: small integer 5

Constant (including leading zeros) Same as the number of digits in the constant

If one operand is an integer with nonzero scale, it is first converted to a decimal
operand with the same precision and scale.

Two Decimal Operands

If both operands are decimal, the operation is performed in decimal. The result of
any decimal arithmetic operation is a decimal number with a precision and scale
that are dependent on the operation and the precision and scale of the operands. If
the operation is addition or subtraction and the operands do not have the same
scale, the operation is performed with a temporary copy of one of the operands.
The copy of the shorter operand is extended with trailing zeros so that its
fractional part has the same number of digits as the longer operand.

Unless specified otherwise, all functions and operations that accept decimal
numbers allow a precision of up to 31 digits. The result of a decimal operation
must not have a precision greater than 31.

128 DB2 UDB for iSeries SQL Reference V5R2

Expressions

Decimal Arithmetic in SQL

The following formulas define the precision and scale of the result of decimal
operations in SQL. The symbols p and s denote the precision and scale of the first
operand and the symbols p' and s' denote the precision and scale of the second
operand.

Addition and Subtraction
The scale of the result of addition and subtraction is max (s,s"). The precision is
min(31,max(p-s,p’-s’) +max(s,s’)+1).

Multiplication
The precision of the result of multiplication is min (31,p+p’) and the scale is
min(31,5+s").

Division
The precision of the result of division is 31. The scale is 31-p+s-s'. The scale must
not be negative.

Floating-Point Operands

If either operand of an arithmetic operator is floating point, the operation is
performed in floating point. The operands are first converted to double-precision
floating-point numbers, if necessary. Thus, if any element of an expression is a
floating-point number, the result of the expression is a double-precision
floating-point number.

An operation involving a floating-point number and an integer is performed with
a temporary copy of the integer converted to double-precision floating point. An
operation involving a floating-point number and a decimal number is performed
with a temporary copy of the decimal number converted to double-precision
floating point. The result of a floating-point operation must be within the range of
floating-point numbers.

The order in which floating-point operands (or arguments to functions) are
processed can slightly affect results because floating-point operands are
approximate representations of real numbers. Since the order in which operands
are processed may be implicitly modified by the optimizer (for example, the
optimizer may decide what degree of parallelism to use and what access plan to
use), an application should not depend on the results being precisely the same
each time an SQL statement is executed that uses floating-point operands.

Distinct Types as Operands

A distinct type cannot be used with arithmetic operators even if its source data
type is numeric. To perform an arithmetic operation, create a function with the
arithmetic operator as its source. For example, if there were distinct types
INCOME and EXPENSES, both of which had DECIMAL(8,2) data types, then the
following user-defined function, REVENUE, could be used to subtract one from the
other.

CREATE FUNCTION REVENUE (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Alternately, the - (minus) operator could be overloaded using a user-defined
function to subtract the new data types.

CREATE FUNCTION "-" (INCOME, EXPENSES)
RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Chapter 2. Language Elements 129

Expressions

Scalar Subselect

A scalar subselect as supported in an expression is a subselect, enclosed in
parentheses, that returns a single row consisting of a single column value. If the
subselect does not return a row, the result of the expression is the null value. If the
select list element is an expression that is simply a column name, the result column
name is based on the name of the column. See |”subselect” on page 324| for more
information.

Datetime Operands and Durations

Datetime values can be incremented, decremented, and subtracted. These
operations may involve decimal numbers called durations. A duration is a positive
or negative number representing an interval of time. There are four types of
durations:

Labeled Durations (see on page 125)

A labeled duration represents a specific unit of time
as expressed by a number (which can be the result
of an expression) followed by one of the seven
duration keywords: YEARS, MONTHS, DAYS,
HOURS, MINUTES, SECONDS, or
MICROSECONDS?. The number specified is
converted as if it were assigned to a
DECIMAL(15,0) number. A labeled duration can
only be used as an operand of an arithmetic
operator in which the other operand is a value of
data type DATE, TIME, or TIMESTAMP. Thus, the
expression HIREDATE + 2 MONTHS + 14 DAYS is
valid whereas the expression HIREDATE + (2
MONTHS + 14 DAYS) is not. In both of these
expressions, the labeled durations are 2 MONTHS
and 14 DAYS.

Date Duration A date duration represents a number of years,
months, and days, expressed as a DECIMAL(8,0)
number. To be properly interpreted, the number
must have the format yyyymmdd, where yyyy
represents the number of years, mm the number of
months, and dd the number of days. The result of
subtracting one date value from another, as in the
expression HIREDATE - BRTHDATE, is a date
duration.

Time Duration A time duration represents a number of hours,
minutes, and seconds, expressed as a
DECIMAL(6,0) number. To be properly interpreted,
the number must have the format hhmmss where hh
represents the number of hours, mm the number of
minutes, and ss the number of seconds. The result
of subtracting one time value from another is a
time duration.

Timestamp duration A timestamp duration represents a number of years,
months, days, hours, minutes, seconds, and
microseconds, expressed as a DECIMAL(20,6)

27. Note that the singular form of these keywords is also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and
MICROSECOND.

130 DB2 UDB for iSeries SQL Reference V5R2

Expressions

number. To be properly interpreted, the number
must have the format yyyymmddhhmmsszzzzzz,
where yyyy, mm, dd, hh, mm, ss, and zzzzzz
represent, respectively, the number of years,
months, days, hours, minutes, seconds, and
microseconds. The result of subtracting one
timestamp value from another is a timestamp
duration.

Datetime Arithmetic in SQL

The only arithmetic operations that can be performed on datetime values are
addition and subtraction. If a datetime value is the operand of addition, the other
operand must be a duration. The specific rules governing the use of the addition
operator with datetime values follow:

* If one operand is a date, the other operand must be a date duration or labeled
duration of years, months, or days.

* If one operand is a time, the other operand must be a time duration or a labeled
duration of hours, minutes, or seconds.

* If one operand is a timestamp, the other operand must be a duration. Any type
of duration is valid.

* Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not the
same as those for addition because a datetime value cannot be subtracted from a
duration, and because the operation of subtracting two datetime values is not the
same as the operation of subtracting a duration from a datetime value. The specific
rules governing the use of the subtraction operator with datetime values follow:

* If the first operand is a date, the second operand must be a date, a date
duration, a string representation of a date, or a labeled duration of years,
months, or days.

* If the second operand is a date, the first operand must be a date, or a string
representation of a date.

e If the first operand is a time, the second operand must be a time, a time
duration, a string representation of a time, or a labeled duration of hours,
minutes, or seconds.

* If the second operand is a time, the first operand must be a time, or string
representation of a time.

* If the first operand is a timestamp, the second operand must be a timestamp, a
string representation of a timestamp, or a duration.

* If the second operand is a timestamp, the first operand must be a timestamp or
a string representation of a timestamp.

* Neither operand of the subtraction operator can be a parameter marker.

Date Arithmetic
Dates can be subtracted, incremented, or decremented.

Subtracting Dates: The result of subtracting one date (DATE2) from another
(DATE1) is a date duration that specifies the number of years, months, and days
between the two dates. The data type of the result is DECIMAL(8,0). If DATE1 is
greater than or equal to DATE2, DATE2 is subtracted from DATEL. If DATE1 is
less than DATE2, however, DATEI] is subtracted from DATE2, and the sign of the
result is made negative. The following procedural description clarifies the steps
involved in the operation RESULT = DATE1 - DATE2.

Chapter 2. Language Elements 131

Expressions

If DAY(DATE2) <= DAY(DATE1)
then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

If DAY(DATE2) > DAY(DATE1)
then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)
where N = the last day of MONTH(DATE2).
MONTH(DATE2) is then incremented by 1.

If MONTH(DATE2) <= MONTH(DATE1)
then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE).

If MONTH(DATE2) > MONTH(DATEL1)
then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE?2).
YEAR(DATE2) is then incremented by 1.

YEAR(RESULT) = YEAR(DATE1L) - YEAR(DATE2).

For example, the result of DATE('3/15/2000") - '12/31/1999" is 215 (or, a duration
of 0 years, 2 months, and 15 days).

Incrementing and Decrementing Dates: The result of adding a duration to a
date, or of subtracting a duration from a date, is itself a date. (For the purposes of
this operation, a month denotes the equivalent of a calendar page. Adding months
to a date, then, is like turning the pages of a calendar, starting with the page on
which the date appears.) The result must fall between the dates January 1, 0001
and December 31, 9999 inclusive. If a duration of years is added or subtracted,
only the year portion of the date is affected. The month is unchanged, as is the day
unless the result would be February 29 of a non-leap-year. In this case, the day is
changed to 28, and SQLWARNG in the SQLCA is set to "W’ to indicate the
end-of-month adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if
necessary, years are affected. The day portion of the date is unchanged unless the
result would be invalid (September 31, for example). In this case, the day is set to
the last day of the month, and SQLWARNG® in the SQLCA is set to "W’ to indicate
the end-of-month adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of
the date, and potentially the month and year. Adding a labeled duration of DAYS
will not cause an end-of-month adjustment.

Date durations, whether positive or negative, may also be added to and subtracted
from dates. As with labeled durations, the result is a valid date, and a warning
indicator is set in the SQLCA whenever an end-of-month adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration is
subtracted from a date, the date is incremented by the specified number of years,
months, and days, in that order. Thus DATE1 + X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATEL + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS

When a positive date duration is subtracted from a date, or a negative date
duration is added to a date, the date is decremented by the specified number of
days, months, and years, in that order. Thus, DATEL1 - X, where X is a positive
DECIMAL(8,0) number, is equivalent to the expression:

DATEL - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS

132 DB2 UDB for iSeries SQL Reference V5R2

Expressions

When adding durations to dates, adding one month to a given date gives the same
date one month later unless that date does not exist in the later month. In that case,
the date is set to that of the last day of the later month. For example, January 28
plus one month gives February 28; and one month added to January 29, 30, or 31
results in either February 28 or, for a leap year, February 29.

Note: If one or more months is added to a given date and then the same number
of months is subtracted from the result, the final date is not necessarily the
same as the original date.

Time Arithmetic
Times can be subtracted, incremented, or decremented.

Subtracting Times: The result of subtracting one time (TIME2) from another
(TIMEL1) is a time duration that specifies the number of hours, minutes, and
seconds between the two times. The data type of the result is DECIMAL(6,0). If
TIMEL is greater than or equal to TIME2, TIME2 is subtracted from TIMEL1. If
TIMEL is less than TIME2, however, TIMEL1 is subtracted from TIME2, and the sign
of the result is made negative. The following procedural description clarifies the
steps involved in the operation RESULT = TIME1 - TIME2.

If SECOND(TIME2) <= SECOND(TIME1)
then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

If SECOND(TIME2) > SECOND(TIMEL1)
then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).
MINUTE(TIME2) is then incremented by 1.

If MINUTE(TIME2) <= MINUTE(TIME1)
then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

If MINUTE(TIME2) > MINUTE(TIME1)
then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).
HOUR(TIME2) is then incremented by 1.

HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26') - '00:32:56' is 102930 (a duration of 10
hours, 29 minutes, and 30 seconds).

Incrementing and Decrementing Times: The result of adding a duration to a
time, or of subtracting a duration from a time, is itself a time. Any overflow or
underflow of hours is discarded, thereby ensuring that the result is always a time.
If a duration of hours is added or subtracted, only the hours portion of the time is
affected. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if
necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds
portion of the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted
from times. The result is a time that has been incremented or decremented by the

specified number of hours, minutes, and seconds, in that order. TIMEL + X, where

“X” is a DECIMAL(6,0) number, is equivalent to the expression:

Chapter 2. Language Elements 133

Expressions
TIMEL + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Timestamp Arithmetic
Timestamps can be subtracted, incremented, or decremented.

Subtracting Timestamps: The result of subtracting one timestamp (TS2) from
another (TS1) is a timestamp duration that specifies the number of years, months,
days, hours, minutes, seconds, and microseconds between the two timestamps. The
data type of the result is DECIMAL(20,6). If TS1 is greater than or equal to TS2,
TS2 is subtracted from TS1. If TS1 is less than TS2, however, TS1 is subtracted from
TS2 and the sign of the result is made negative. The following procedural
description clarifies the steps involved in the operation RESULT = TS1 - TS2.

If MICROSECOND(TS2) <= MICROSECOND(TS1)
then MICROSECOND(RESULT) = MICROSECOND(TS1) -
MICROSECOND(TS2).

If MICROSECOND(TS2) >MICROSECOND(TS1)
then MICROSECOND(RESULT) = 1000000 +
MICROSECOND(TS1) - MICROSECOND(TS2)
and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified
in the rules for subtracting times.

If HOUR(TS2) <= HOUR(TS1)
then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)
then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)
and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified
in the rules for subtracting dates.

Incrementing and Decrementing Timestamps: The result of adding a duration to
a timestamp, or of subtracting a duration from a timestamp, is itself a timestamp.
Date and time arithmetic is performed as previously defined, except that an
overflow or underflow of hours is carried into the date part of the result, which
must be within the range of valid dates. Microseconds overflow into seconds.

Precedence of Operations

Expressions within parentheses are evaluated first. When the order of evaluation is
not specified by parentheses, exponentiation is applied after prefix operators (such
as -, unary minus) and before multiplication and division. Multiplication and
division are applied before addition and subtraction. Operators at the same
precedence level are applied from left to right. The following table shows the
priority of all operators.

Priority Operators
1 +, - (when used for signed numeric values)
2 3%
3 *, /, CONCAT, | |
4 +, - (when used between two operands)

134 DB2 UDB for iSeries SQL Reference V5R2

CASE

»—CASE—Esearched-when-cZause |_
simple—when—clauseJ ELSE—result-expression—

Expressions

Example
In the following example, operators are applied in the order shown by the
numbers in the second row.

1.10 * (SALARY + BONUS) + SALARY / :VAR3
2 1 4 3

Expressions

ELSE NULL
END ><

searched-when-clause:

simple-when-clause:

—"-WHEN—search-condit ion—THEN—[resu lt-expression }

NULL

|—expr‘ess ion—Y-WHEN—express ion—THEN—Eresu lt-expression I

NULL

CASE expressions allow an expression to be selected based on the evaluation of
one or more conditions. In general, the value of the case-expression is the value of
the result-expression following the first (leftmost) when-clause that evaluates to true.
If no when-clause evaluates to true and the ELSE keyword is present then the
result is the value of the ELSE result-expression or NULL. If no when-clause
evaluates to true and the ELSE keyword is not present then the result is NULL.
Note that when a when-clause evaluates to unknown (because of nulls), the
when-clause is not true and hence is treated the same way as a when-clause that
evaluates to false.

When using the simple-when-clause, the value of the expression prior to the first
WHEN keyword is tested for equality with the value of the expression following the
WHEN keyword(s). The data type of the expression prior to the first WHEN
keyword must therefore be compatible with the data types of each expression
following the WHEN keyword(s).

A result-expression is an expression following the THEN or ELSE keywords. There
must be at least one result-expression in the CASE expression (NULL cannot be

specified for every case). All result-expressions must have compatible data types,
where the attributes of the result are determined based on the [‘Rules for Resuli
[Data Types” on page 91}

There are two scalar functions, NULLIF and COALESCE, that are specialized to
handle a subset of the functionality provided by CASE. The following table shows
the equivalent expressions using CASE or these functions.

Chapter 2. Language Elements 135

Expressions

Table 21. Equivalent CASE Expressions

CASE Expression Equivalent Expression

CASE WHEN el=e2 THEN NULL ELSE el END NULLIF(el,e2)

CASE WHEN el IS NOT NULL THEN el ELSE e2 END COALESCE(el,e2)

CASE WHEN el IS NOT NULL THEN el ELSE
COALESCE(e2,....eN) END COALESCE(el,€2,....eN)

Examples

* If the first character of a department number is a division in the organization,
then a CASE expression can be used to list the full name of the division to
which each employee belongs:

SELECT EMPNO, LASTNAME,
CASE SUBSTR(WORKDEPT,1,1)
WHEN 'A' THEN 'Administration’
WHEN 'B' THEN 'Human Resources'
WHEN 'C' THEN 'Accounting'
WHEN 'D' THEN 'Design'
WHEN 'E' THEN 'Operations'
END
FROM EMPLOYEE

¢ The number of years of education are used in the EMPLOYEE table to give the
education level. A CASE expression can be used to group these and to show the
level of education.

SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
CASE
WHEN EDLEVEL < 15 THEN 'SECONDARY'
WHEN EDLEVEL < 19 THEN 'COLLEGE'
ELSE 'POST GRADUATE'
END
FROM EMPLOYEE

* Another interesting example of CASE statement usage is in protecting from
division by 0 errors. For example, the following code finds the employees who
earn more than 25% of their income from commission, but who are not fully
paid on commission:

SELECT EMPNO, WORKDEPT, SALARY+COMM
FROM EMPLOYEE
WHERE (CASE WHEN SALARY=0 THEN NULL

ELSE COMM/SALARY
END) > 0.25

* The following CASE expressions are equivalent:

SELECT LASTNAME,
CASE
WHEN LASTNAME = 'Haas' THEN 'President'

SELECT LASTNAME,
CASE LASTNAME
WHEN 'Haas' THEN 'President'’

136 DB2 UDB for iSeries SQL Reference V5R2

Expressions

CAST Specification

(1)
>>—CAST—(~Eexpress ion————AS—data-type) ><
N

ULL
parameter-marker—

Notes:

1 The data type names may be qualified. For more information see
IConventions” on page 45|

Chapter 2. Language Elements 137

Expressions

data-type:

built-in-typeJ

distinct-type

built-in-type:

} SMALLINT

[INTEGER
INT

- BIGINT——

DEC

——FLOAT

DECIMAL
L

—NUMERIC———
(—83)——

|—(—5,0—)

|—(—integer |_

, integerJ

)

|—(—integer—)—

—REAL

—DOUBLE

PRECISION
[1

CHAR

CLOB

CHARACTER |_
L char—— |—(—integer—)— J
LCHARACTER VARYING——(—integer—)
CHAR
—VARCHAR

(—1—)———

|—(—1M—)

FOR BIT DATA—
FOR SBCS DATA—
FOR MIXED DATA—
CCSID—integer—

—CHAR

—CHARACTER LARGE OBJECT—

(1)
GRAPHIC

LARGE OBJECT

|—(—z'nteger

)— FOR SBCS DATA

—K— FOR MIXED DATA

<

CCSID—integer:

[«p]

I—(—integer—)—

|—CCSID—integerJ

—[GRAPHIC VARYING (—integer—)—
VARGRAPHIC
(—1M—)
—DBCLOB [
(—integer)—
L K—|
6
(—1M—)
LBLOB J |_
BINARY LARGE OBJECT (—integer)—

<

[p]

DATE
(—0—)
TIME |_ —l
(—6—)

TIMESTAMP.

|—(—200—)—

——DATALINK:

|—(—imteger'—)— |—CCS I D—integerJ

ROWID

138 DB2 UDB for iSeries SQL Reference V5R2

Expressions

The CAST specification returns the cast operand (the first operand) cast to the type
specified by the data type. If the data type of either operand is a distinct type, the
privileges held by the authorization ID of the statement must include USAGE
authority on the distinct type.

expression
If the cast operand is an expression (other than parameter marker or NULL),
the result is the argument value converted to the specified target data type.

The supported casts are shown in [Table 11 on page 76| where the first column
represents the data type of the cast operand (source data type) and the data
types across the top represent the target data type of the CAST specification. If
the cast is not supported, an error will occur.

When casting character or graphic strings to a character or graphic string with
a different length, a warning is returned if truncation of other than trailing
blanks occurs.

NULL
If the cast operand is the keyword NULL, the result is a null value that has the
specified data type.

parameter-marker
A parameter marker (specified as a question mark character) is normally
considered an expression, but is documented separately in this case because it
has a special meaning. If the cast operand is a parameter-marker, the specified
data type is considered a promise that the replacement will be assignable to the
specified data type (using the same rules as assignment to a column). Such a
parameter marker is considered a typed parameter marker. Typed parameter
markers will be treated like any other typed value for the purpose of
DESCRIBE of a select list or for column assignment.

data-type
Specifies the data type of the result. If the data type is not qualified, the SQL

path is used to find the appropriate data type. See ["CREATE TABLE” on|
for a description of data-type.

If length, precision, scale, or CCSID attributes are specified, the specified
attributes are used. If the length, precision, or scale attributes are not specified,
the default values are used. For example, the default for CHAR is a length of
1, and the default for DECIMAL is a precision of 5 and a scale of 0. For the
default attribute values of the other data types, see ["CREATE TABLE” on|
. (For portability across operating systems, when specifying a
floating-point data type, use REAL or DOUBLE instead of FLOAT.)

If the CCSID attribute is not specified, then:

* If the data-type is BLOB, a CCSID of 65535 is used.

e If the expression is a character string, and the data-type is CHAR, VARCHAR,
or CLOB; the CCSID of the expression is used.

* If the expression is a graphic string, and the data-type is GRAPHIC,
VARGRAPHIC, or DBCLOB; the CCSID of the expression is used.

* Otherwise, the default CCSID for the data-type is used.

Restrictions on the supported data types are based on the specified cast
operand.

» For a cast operand that is an expression, see [Table 11 on page 76 for the target
data types that are supported based on the data type of the cast operand.

Chapter 2. Language Elements 139

Expressions

* For a cast operand that is the keyword NULL, the target data type can be
any data type.

* For a cast operand that is a parameter marker, the target data type can be
any data type. If the data type is a distinct type, the application that uses the
parameter marker will use the source data type of the distinct type.

For information on which casts between data types are supported and the rules for
casting to a data type see [“Casting Between Data Types” on page 75}

Examples

* An application is only interested in the integer portion of the SALARY column
(defined as DECIMAL(9,2)) from the EMPLOYEE table. The following CAST
specification will convert the SALARY column to INTEGER.

SELECT EMPNO, CAST(SALARY AS INTEGER)
FROM EMPLOYEE
* Assume that two distinct types exist. T_AGE was sourced on SMALLINT and is
the data type for the AGE column in the PERSONNEL table. R_YEAR was
sourced on INTEGER and is the data type for the RETIRE_YEAR column in the
same table. The following UPDATE statement could be prepared.

UPDATE PERSONNEL SET RETIRE_YEAR = ?
WHERE AGE = CAST(? AS T_AGE)

140 DB2 UDB for iSeries SQL Reference V5R2

Predicates

Predicates

A predicate specifies a condition that is true, false, or unknown about a given row
or group. The following rules apply to all types of predicates:

 All values specified in a predicate must be compatible.

* The CCSID conversion of operands of predicates involving two or more
operands are done according to [“Conversion Rules for Comparison” on page 88|

* Use of a DataLink value is limited to the NULL predicate.

Chapter 2. Language Elements 141

Basic Predicate

Basic Predicate

(1)
»>—expression = expression
<>
<
>
<=
>=
Notes:
1 Other comparison operators are also supported. >*

A basic predicate compares two values. If the operands of the predicate contain
SBCS data or mixed data, and if the sort sequence in effect at the time the
statement is executed is not *HEX, then the comparison of the operands is

performed using weighted values for the operands. The weighted values are based
on the sort sequence.

If the value of either operand is null, the result of the predicate is unknown.

Otherwise the result is either true or false.

For values x and y:

Predicate

Is True If and Only If...

x =y xisequaltoy

Xx<> y xis notequal to y

X <y «xisless than y

X >y «xis greater than y

x>= y «xis greater than or equal to y
x<= y xis less than or equal to y
Examples

EMPNO = '528671"

PRTSTAFF <> :VARL

SALARY + BONUS + COMM < 20000

SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)

28. The following forms of the comparison operators are also supported in basic and quantified predicates: !=, !<, !>, ==,<, and—~>

are supported. All these product-specific forms of the comparison operators are intended only to support existing SQL

statements that use these operators and are not recommended for use when writing new SQL statements. Some keyboards must
use the hex values for the not (=) symbol. The hex value varies and is dependent on the keyboard that is used. A not sign (=) or
the character that must be used in its place in certain countries, can cause parsing errors in statements passed from one database
server to another. The problem occurs if the statement undergoes character conversion with certain combinations of source and
target CCSIDs. To avoid this problem, substitute an equivalent operator for any operator that includes a not sign. For example,
substitute ‘<> for '~=’, '<=" for '=>’, and ">=’" for '~<’.

142 DB2 UDB for iSeries SQL Reference V5R2

Quantified Predicate

Quantified Predicate

(1)

»>—expression = SOME—— (subselect) ><
=R
< ALL
>
<=
>=
Notes:
1 Other comparison operators are also supported. >

A quantified predicate compares a value with a set of values.

The subselect must specify a single result column and can return any number of
values, whether null or not null. If the operands of the predicate contain SBCS data
or mixed data, and if the sort sequence in effect at the time the statement is
executed is not *HEX, then the comparison is performed using weighted values for
the operands. The weighted values are based on the sort sequence.

When ALL is specified, the result of the predicate is:

* True if the result of the subselect is empty, or if the specified relationship is true
for every value returned by the subselect.

* False if the specified relationship is false for at least one value returned by the
subselect.

* Unknown if the specified relationship is not false for any values returned by the
subselect and at least one comparison is unknown because of a null value.

When SOME or ANY is specified, the result of the predicate is:

* True if the specified relationship is true for at least one value returned by the
subselect.

* False if the result of the subselect is empty, or if the specified relationship is false
for every value returned by the subselect.

* Unknown if the specified relationship is not true for any of the values returned
by the subselect and at least one comparison is unknown because of a null
value.

Examples
Use the tables below when referring to the following examples.

Table 22. Description of tables.

COLA COLB

1 2

2 3
TBLA TBLB

3

4

null

* The following select statement results in 2,3. The subselect returns (2,3). COLA
in rows 2 and 3 equals at least one of these values.

Chapter 2. Language Elements 143

Quantified Predicate

SELECT * FROM TBLA WHERE COLA = ANY(SELECT COLB FROM TBLB)
The following select statement results in 3,4. The subselect returns (2,3). COLA
in rows 3 and 4 is greater than at least one of these values.

SELECT * FROM TBLA WHERE COLA > ANY(SELECT COLB FROM TBLB)
The following select statement results in 4. The subselect returns (2,3). COLA in
row 4 is the only one that is greater than both these values.

SELECT * FROM TBLA WHERE COLA > ALL(SELECT COLB FROM TBLB)
The following select statement results in 1,2,3,4, and null. The result of the
subselect is empty. Thus, the predicate is true for all rows in TBLA.

SELECT * FROM TBLA WHERE COLA > ALL(SELECT COLB FROM TBLB WHERE COLB<0)
The following select statement results in the empty set. The result of the
subselect is empty. Thus, the predicate is false for all rows in TBLA.

SELECT * FROM TBLA WHERE COLA > ANY(SELECT COLB FROM TBLB WHERE COLB<0)

144 DB2 UDB for iSeries SQL Reference V5R2

BETWEEN Predicate
BETWEEN Predicate

»>—express ion—L—_l—B ETWEEN—expression—AND—expression >«
NOT

The BETWEEN predicate compares a value with a range of values. If a sort
sequence other than *HEX is in effect when the statement is executed and the
BETWEEN predicate involves SBCS data or mixed data, the weighted values of the
strings are compared instead of the values. The weighted value is based on the sort
sequence.

The BETWEEN predicate:
valuel BETWEEN value2 AND value3

is logically equivalent to the search condition:
valuel >= value2 AND valuel <= value3

The BETWEEN predicate:
valuel NOT BETWEEN value2 AND value3

is equivalent to the search condition:

NOT(valuel BETWEEN value2 AND value3);that is,
valuel < value2 OR valuel > value3.

If the operands of the BETWEEN predicate are strings with different CCSIDs,
operands are converted as if the above logically-equivalent search conditions were
specified.

Given a mixture of datetime values and string representations of datetime values,
all values are converted to the data type of the datetime operand.

Examples
EMPLOYEE.SALARY BETWEEN 20000 AND 40000

SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Chapter 2. Language Elements 145

EXISTS Predicate
EXISTS Predicate

»»—EXISTS—(subselect) >

The EXISTS predicate tests for the existence of certain rows. The subselect may
specify any number of columns, and

* The result is true only if the number of rows specified by the subselect is not
Zero.

* The result is false only if the number of rows specified by the subselect is zero.
* The result cannot be unknown.

The values returned by the subselect are ignored.

Example
EXISTS (SELECT * FROM EMPLOYEE WHERE SALARY > 60000)

146 DB2 UDB for iSeries SQL Reference V5R2

IN Predicate
IN Predicate

»—expr'ession—L—_I—IN——(subselect) <
NOT _—

—(——expression—=—)—
——expression

The IN predicate compares a value with a set of values. If a sort sequence other
than *HEX is in effect when the statement is executed and the IN predicate
involves SBCS data or mixed data, the weighted values of the strings are compared
instead of the actual values. The weighted values are based on the sort sequence.

In the subselect form, the subselect must identify a single result column and may
return any number of values, whether null or not null.

An IN predicate of the form:

expression IN (subselect)

is equivalent to a quantified predicate of the form:
expression = ANY (subselect)

An IN predicate of the form:

expression NOT IN (subselect)

is equivalent to a quantified predicate of the form:
expression <> ALL (subselect)

An IN predicate of the form:

expression IN expression

is equivalent to a basic predicate of the form:
expression = expression

An IN predicate of the form:

expression IN (valuel, value2, ..., valueN)

is logically equivalent to:

expression IN (SELECT * FROM R)

Assume T is a table with a single row. R is a temporary table formed by the
following fullselect:
SELECT valuel FROM T
UNION

SELECT value2 FROM T
UNION

Chapter 2. Language Elements 147

IN Predicate

UNION
SELECT valueN FROM T

Each host variable must identify a structure or variable that is described in
accordance with the rule for declaring host structures or variables.

If the operands of the IN predicate have different data types or attributes, the rules
used to determine the data type for evaluation of the IN predicate are those for

UNION and UNION ALL. For a description, see [“Rules for Result Data Types” on|
-a 2e 91

If the operands of the IN predicate are strings with different CCSIDs, the rules
used to determine which operands are converted are those for operations that
combine strings. For a description, see [‘Conversion Rules for Operations That]
[Combine Strings” on page 95|

Examples
DEPTNO IN ('DOl', 'BO1', 'CO1')

EMPNO IN(SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = 'E11')

148 DB2 UDB for iSeries SQL Reference V5R2

LIKE Predicate
LIKE Predicate

»>—match-express ion—L—_I—LI KE—pattern-expression ><
NOT l—ESCAPE—escape—expressz'on—I

The LIKE predicate searches for strings that have a certain pattern. The pattern is
specified by a string in which the underscore and percent sign have special
meanings. Trailing blanks in a pattern are a part of the pattern.

If the value of any of the arguments is null, the result of the LIKE predicate is
unknown.

The match-expression, pattern-expression, and escape-expression must identify strings.
The values for match-expression, pattern-expression, and escape-expression must either
all be binary strings or none can be binary strings. The three arguments can
include a mixture of character strings and graphic strings.

None of the expressions can yield a distinct type. However, it can be a function
that casts a distinct type to its source type.

If a sort sequence other than *HEX is in effect when the statement is executed and
the LIKE predicate involves SBCS data or mixed data, the weighted values of the
strings are compared instead of the actual values. The weighted values are based
on the sort sequence.

With character strings, the terms character, percent sign, and underscore in the
following discussion refer to single-byte characters. With graphic strings, the terms
refer to double-byte or UCS-2 characters. With binary strings, the terms refer to the
code points of those single-byte characters.

match-expression
An expression that specifies the string that is to be examined to see if it
conforms to a certain pattern of characters.

LIKE pattern-expression
An expression that specifies the string that is to be matched.

A simple description of the pattern

The pattern is used to specify the conformance criteria for values in the
match-expression where:

* The underscore sign (_) represents any single character.

¢ The percent sign (%) represents a string of zero or more characters.

* Any other character represents itself.

If the pattern-expression needs to include either the underscore or the percent
character, the escape-expression is used to specify a character to precede either
the underscore or percent character in the pattern.

A rigorous description of the pattern

This more rigorous description of the pattern ignores the use of the
escape-expression, which is covered the later.

Chapter 2. Language Elements 149

LIKE Predicate

Let m denote a value of match-expression and p denote the value of
pattern-expression. The string p is interpreted as a sequence of the minimum
number of substring specifiers, so each character of p is part of exactly one
substring specifier. A substring specifier is an underscore, a percent sign, or
any nonempty sequence of characters other than an underscore or a percent

sign.

The result of the predicate is unknown if m or p is the null value; otherwise,

the result of the predicate is either true or false. The result is true either if both

m and p are empty strings, or there exists a partitioning of m into substrings

such that:

* A substring of m is a sequence of zero or more contiguous characters and
each character of m is part of exactly one substring.

* If the nth substring specifier is an underscore, the nth substring of m is any
single character.

e If the nth substring specifier is a percent sign, the nth substring of m is any
sequence of zero or more characters.

¢ If the nth substring specifier is neither an underscore nor a percent sign, the
nth substring of m is equal to that substring specifier and has the same
length as that substring specifier.

* The number of substrings of m is the same as the number of substring
specifiers.

It follows that if y is an empty string and m is not an empty string; the result is
false. Similarly, it follows that if m is an empty string and p is not an empty
string consisting of other than percent signs, the result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT(m
LIKE p).

If necessary, the CCSID of the match-expression, pattern-expression, and
escape-expression are converted to the compatible CCSID between the
match-expression and pattern-expression.

Mixed data

If the expression is mixed data, the expression might contain double-byte
characters, and the pattern can include both SBCS and DBCS characters. In that
case the special characters in p are interpreted as follows:

e An SBCS underscore refers to one SBCS character.
e A DBCS underscore refers to one DBCS character.

¢ A percent sign (either SBCS or DBCS) refers to any number of characters of
any type, either SBCS or DBCS.

* Redundant shifts in match-expression and pattern-expression are ignored.
UCS-2 data

If the expression is UCS-2 graphic data, the pattern can include either or both
of the supported code points for the UCS-2 underscore and percent sign. The
supported code points for the UCS-2 underscore are X’005F" and X'FE3F’. The
supported code points for the UCS-2 percent sign are X’0025 and X'FF05’.

Parameter Marker

150 DB2 UDB for iSeries SQL Reference V5R2

LIKE Predicate

When the pattern specified in a LIKE predicate is a parameter marker, and a
fixed-length character host variable is used to replace the parameter marker;
specify a value for the host variable that is the correct length. If you do not
specify the correct length, the select will not return the intended results.

For example, if the host variable is defined as CHAR(10), and the value
WYSE% is assigned to that host variable, the host variable is padded with
blanks on assignment. The pattern used is

"WYSE% '

This pattern requests the database manager to search for all values that start
with WYSE and end with five blank spaces. If you intended to search for only
the values that start with "WYSE’ you should assign the value
"WSYE%%%%%%’ to the host variable.

ESCAPE escape-expression
An expression that specifies a character to be used to modify the special
meaning of the underscore (_) and percent (%) characters in the
pattern-expression. This allows the LIKE predicate to be used to match values
that contain the actual percent and underscore characters. The following rules
apply the use of the ESCAPE clause and the escape-expression:

* The escape-expression must be a string of length 1.*

* The pattern-expression must not contain the escape character except when
followed by the escape character, percent, or underscore. For example, if '+'
is the escape character, any occurrences of '+' other than '++', '+_', or '+%' in
the pattern-expression is an error.

* The escape-expression can be a parameter marker.

The following example shows the effect of successive occurrences of the escape
character, which in this case is the plus sign (+).

When the pattern string is... The actual pattern is...

+% A percent sign

++% A plus sign followed by zero or more arbitrary
characters

+++% A plus sign followed by a percent sign

Examples

Example 1: Search for the string ‘SYSTEMS’ appearing anywhere within the
PROJNAME column in the PROJECT table.

SELECT PROJNAME
FROM PROJECT
WHERE PROJECT.PROJNAME LIKE '%SYSTEMS%'

Example 2: Search for a string with a first character of ‘J” that is exactly two
characters long in the FIRSTNME column of the EMPLOYEE table.
SELECT FIRSTNME

FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE 'J_'

29. If it is NUL-terminated, a C character string variable of length 2 can be specified.

Chapter 2. Language Elements 151

LIKE Predicate

Example 3: Search for a string of any length, with a first character of ‘J” in the
FIRSTNME column of the EMPLOYEE table.
SELECT FIRSTNME

FROM EMPLOYEE
WHERE EMPLOYEE.FIRSTNME LIKE 'J%'

Example 4: In this example:

SELECT *
FROM TABLEY
WHERE C1 LIKE 'AAAA+%BBB%' ESCAPE '+'

'+' is the escape character and indicates that the search is for a string that starts
with '"AAAA%BBB'. The '+%' is interpreted as a single occurrence of '%" in the
pattern.

Example 5: Assume that a distinct type named ZIP_TYPE with a source data type
of CHAR(5) exists and an ADDRZIP column with data type ZIP_TYPE exists in
some table TABLEY. The following statement selects the row if the zip code
(ADDRZIP) begins with "9555'".

SELECT *

FROM TABLEY
WHERE CHAR(ADDRZIP) LIKE '9555%'

Example 6: The RESUME column in sample table EMP_RESUME is defined as a
CLOB. If the host variable LASTNAME has a value of 'JONES’, the following
statement selects the RESUME column when the string JONES appears anywhere
in the column.

SELECT RESUME

FROM EMP_RESUME
WHERE RESUME LIKE '%'||LASTNAME||'%!

Example 7: In the following table of EBCDIC examples, assume COL1 is mixed

data. The table shows the results when the predicates in the first column are
evaluated using the COL1 values from the second column:

152 DB2 UDB for iSeries SQL Reference V5R2

LIKE Predicate

Predicates COL1 Values Result

WHERE COL1 LIKE 'aaa $ ABZZC S

'aaa SABDZC s True
il S S, S St
aaa ABS dzx S C True
WHERE COL1 LIKE 'aaa $AB % %C S’ ! !
WHERE COL1 LIKE 'a% $CSr' 'a%CSy! True
ax 9C St True
'ab SDES g $CS;! True
WHERE COL1 LIKE 'a_%CSy 'a% HCSr! True
'a% X Cs False
WHERE COL1 LIKE 'a%__CS;' aSXCS! True
ax S CSy False
WHERE COL1 LIKE '%%;' Empty string True
WHERE COL1 LIKE 'ab%CS; ' 'ab % C®rd’ True
'ab %S5 CSid’ True
RV3F001-0

Chapter 2. Language Elements 153

NULL Predicate
NULL Predicate

»»—expression—IS |_ _| NULL ><
NOT

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the expression
is null, the result is true. If the value is not null, the result is false. If NOT is
specified, the result is reversed.

Examples
EMPLOYEE.PHONE IS NULL

SALARY IS NOT NULL

154 DB2 UDB for iSeries SQL Reference V5R2

Search Conditions

Search Conditions

A search condition specifies a condition that is true, false, or unknown about a given

»—L—_I—[predicate
NOT

(search-condition)

»

L[AND_‘I_I_—_I_[
OR: NOT

row or group.

The result of a search condition is derived by application of the specified logical

predicate
(search-c

ondition):|

operators (AND, OR, NOT) to the result of each specified predicate. If logical

operators are not specified, the result of the search condition is the result of the

specified predicate.

AND and OR are defined in the following table in which P and Q are any

predicates:

Table 23. Truth Tables for AND and OR

P Q P AND Q PORQ
True True True True

True False False True

True Unknown Unknown True
False True False True
False False False False
False Unknown False Unknown
Unknown True Unknown True
Unknown False False Unknown
Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation
is not specified by parentheses, NOT is applied before AND, and AND is applied
before OR. The order in which operators at the same precedence level are
evaluated is undefined to allow for optimization of search conditions.

Chapter 2. Language Elements

155

Search Conditions

Examples

In the examples, the numbers on the second line indicate the order in which the
operators are evaluated.

Example 1
MAJPROJ = 'MA2100' AND DEPTNO = 'D11' OR DEPTNO = 'BO3' OR DEPTNO = 'E11'
1 2 or 3 2 or 3
Example 2
MAJPROJ = 'MA2100' AND (DEPTNO = 'D11' OR DEPTNO = 'B03') OR DEPTNO = 'E11'
2 1 3

156 DB2 UDB for iSeries SQL Reference V5R2

Chapter 3. Built-In Functions

A built-in function is a function that is supplied with DB2 UDB for iSeries. A

built-in function is denoted by a function name followed by one or more operands
which are enclosed in parentheses. The operands of functions are called arguments,
and each argument is specified by an expression. The result of a function is a single

value derived by applying the operation of the function to the arguments.

The built-in functions are part of schema QSYS2. A built-in function can be invoked
with or without its schema name. Regardless of whether a schema name qualifies
the function name, the database manager uses function resolution to determine
which function to use. For more information on functions and the process of
function resolution, see|“Function resolution” on page 120}

Built-in functions are classified as column functions or scalar functions. The argument
of a column function is a set of values. An argument of a scalar function is a single

value.

In the syntax of SQL, the term function is used only in the definition of an
expression. Thus, a function can be used only where an expression can be used.
Additional restrictions apply to the use of column functions as specified in the
following section and in [Chapter 4, “Queries” on page 323

The following tables list the different types of built-in functions:

Table 24. Column Functions

|“AVG” on page 163

Returns the average of a set of numbers

[“COUNT” on page 164]

Returns the number of rows or values in a set of rows or
values

[“COUNT_BIG” on page 165

Returns the number of rows or values in a set of rows or
values. It is similar to COUNT except that the result can
be greater than the maximum value of integer.

|“MAX” on page 167

Returns the maximum value in a set of values in a group

[“MIN” on page 168|

Returns the minimum value in a set of values in a group

[“STDDEV or STDDEV_POP” on page 169

Returns the biased standard deviation (/n) of a set of
numbers.

[“SUM” on page 170

Returns the sum of a set of numbers

[“VAR_POP or VARIANCE or VAR” on page 171]

Returns the biased variance (/n) of a set of numbers.

Table 25. Cast Scalar Functions

|“BIGINT” on page 180|

Returns a big integer representation of a number

|“BLOB” on page 181

Returns a BLOB representation of a string of any type

[“CHAR” on page 183

Returns a CHARACTER representation of a value

|“CLOB” on page 189

Returns a CLOB representation of a value

[“DATE” on page 200

Returns a DATE from a value

[“DBCLOB” on page 20§

Returns a DBCLOB representation of a string expression

[FDECIMAL or DEC” on page 210

Returns a DECIMAL representation of a number

© Copyright IBM Corp. 1998, 2002

157

Built-In Functions

Table 25. Cast Scalar Functions (continued)

[“DOUBLE_PRECISION or DOUBLE” on page 224

Return a DOUBLE_PRECISION representation of a
number

[“FLOAT” on page 226|

Return a FLOAT representation of a number

[“GRAPHIC” on page 228]

Returns a GRAPHIC representation of a string expression

[“INTEGER or INT” on page 239

Returns an INTEGER representation of a number

[“REAL” on page 277|

Returns a REAL representation of a number

|"ROWID” on page 280|

Returns a Row ID from a value.

[“SMALLINT” on page 287|

Returns a SMALLINT representation of a number

“TIME” on page 29
pag

Returns a TIME from a value

[“TIMESTAMP” on page 298|

Returns a TIMESTAMP from a value or a pair of values

[“VARCHAR” on page 310|

Returns a VARCHAR representative of a value

|“VARGRAPHIC” on page 314|

Returns a VARGRAPHIC representation of a string
expression

|“ZONED” on page 321|

Returns a zoned decimal representation of a number

Table 26. Datalink Scalar Functions

['DLCOMMENT” on page 215]

Returns the comment value from a DataLink value

[“DLLINKTYPE” on page 216

Returns the link type value from a DataLink value

["DLURLCOMPLETE” on page 217

Returns the complete URL value from a DataLink value
with a link type of URL

|“DLURLPATH” on page 218

Returns the path and file name necessary to access a file
within a given server from a DataLink value with a
linktype of URL. When appropriate, the value returned
includes a file access token.

["DLURLPATHONLY” on page 219]

Returns the path and file name necessary to access a file
within a given server from a DataLink value with a
linktype of URL. The value returned NEVER includes a
file access token.

|“DLURLSCHEME” on page 220|

Returns the scheme from a DataLink value with a
linktype of URL

[“DLURLSERVER” on page 221]

Returns the file server from a DatalLink value with a
linktype of URL

|[“DLVALUE” on page 222|

Returns a DataLink value

Table 27. Datetime Scalar Functions

|“CURDATE” on page 19§

Returns a date based on a reading of the time-of-day
clock

|“CURTIME” on page 199

Returns a time based on a reading of the time-of-day
clock

["DAYS” on page 207

Returns the day part of a value

I"DAYOFMONTH” on page 203]

Returns the day part of a value

[“DAYOFWEEK” on page 204

Returns an integer that represents the day of the week,
where 1 is Sunday and 7 is Saturday

[“DAYOFWEEK_ISO” on page 205|

Returns an integer that represents the day of the week,
where 1 is Monday and 7 is Sunday

[“DAYOFYEAR” on page 206|

Returns an integer that represents the day of the year

158 DB2 UDB for iSeries SQL Reference V5R2

Table 27. Datetime Scalar Functions (continued)

Built-In Functions

[“DAYS” on page 207

Returns an integer representation of a date

|“HOUR” on page 233

Returns the hour part of a value

[“JULIAN_DAY” on page 241|

Returns an integer value representing a number of days
from January 1, 4712 B.C. to the date specified in the
argument

|“MICROSECOND” on page 257

Returns the microsecond part of a value

[“MIDNIGHT_SECONDS” on page 258|

Returns an integer value representing the number of
seconds between midnight and a specified time value

[“MINUTE” on page 261

Returns the minute part of a value

“MONTH” on page 264
pag

Returns the month part of a value

|“NOW” on page 267|

Returns a timestamp based on a reading of the
time-of-day clock

[“QUARTER” on page 274

Returns an integer that represents the quarter of the year
in which the date resides

|“SECOND” on page 283|

Returns the seconds part of a value

[“TIMESTAMPDIFE” on page 30(

Returns an estimated number of intervals based on the
difference between two timestamps

|“WEEK” on page 317]

Returns an integer that represents the week of the year.
The week starts with Sunday.

[“WEEK_ISO” on page 318

Returns an integer that represents the week of the year.
The week starts with Monday.

[“YEAR” on page 320|

Returns the year part of a value

Table 28. Partitioning Scalar Functions

|"HASH” on page 231|

Returns the partition number of a set of values

|"NODENAME” on page 265|

Returns the relational database name of where a row is
located

|“NODENUMBER” on page 266

Returns the node number of a row

|“PARTITION” on page 269

Returns the partition number of a row

Table 29. Miscellaneous Scalar Functions

["COALESCE” on page 193]

Returns the first argument that is not null

“HEX"” on page 232
pag

Returns a hexadecimal representation of a value

["TDENTITY_VAL_LOCAL” on page 234]

Returns the most recently assigned value for an identity
column

[“IFNULL” on page 238 Returns the first argument that is not null
[“LENGTH” on page 246| Returns the length of a value

[“MAX” on page 255| Returns the maximum value in a set of values
|“MIN” on page 259) Returns the minimum value in a set of values
[“'NULLIF” on page 268] Returns a null value if the arguments are equal,

otherwise it returns the value of the first argument

[“RRN” on page 281

Returns the relative record number of a row

|“VALUE” on page 309)|

Returns the first argument that is not null

Chapter 3. Built-In Functions 159

Built-In Functions

Table 30. Numeric Scalar Functions

[“ABS” on page 173] Return the absolute value of a number

|“ACOS” on page 174| Returns the arc cosine of a number, in radians
[“ANTILOG” on page 175| Returns the anti-logarithm (base 10) of a number
|“ASIN” on page 176| Returns the arc sine of a number, in radians
|“ATAN" on page 177] Returns the arc tangent of a number, in radians

|“ATANH” on page 178|

Returns the hyperbolic arc tangent of a number, in
radians

[“ATAN2” on page 179)

Returns the arc tangent of x and y coordinates as an
angle expressed in radians

[“CEILING” on page 182

Returns the smallest integer value that is greater than or
equal to a numeric-expression

[“COS” on page 195)|

Returns the cosine of a number

|“COSH” on page 196

Returns the hyperbolic cosine of a number

|“COT” on page 197]

Returns the cotangent of a number

|[“DEGREES” on page 212|

Returns the number of degrees of an angle

|“DIGITS” on page 214|

Returns a character-string representation of the absolute
value of a number

[“EXP” on page 225

Returns a value that is the base of the natural logarithm
(e) raised to a power specified by the argument

[“FLOOR” on page 227

Returns the largest integer value less than or equal to a
numeric-expression

|“LN” on page 248|

Returns the natural logarithm of a number

[“LOG10” on page 251|

Return the common logarithm (base 10) of a number

[“MOD” on page 262|

Divides the first argument by the second argument and
returns the remainder

“PI” on page 270

Returns the value of PI

[“POWER” on page 273|

Returns the result of raising the first argument to the
power of the second argument

[“RADIANS” on page 275| Returns the number of radians for an argument that is
expressed in degrees

[“RAND” on page 276| Returns a random number

|"ROUND” on page 278 Returns a numeric value that has been rounded to the

specified number of decimal places

[“SIGN” on page 284]

Returns an indicator of the sign of an expression

|“SIN” on page 285 Returns the sine of a number

|“SINH” on page 286| Returns the hyperbolic sine of a number
|“SQRT” on page 290| Returns the square root of a number
|“TAN” on page 295)| Returns the tangent of a number

|“TANH” on page 29¢| Returns the hyperbolic tangent of a number

|“TRUNCATE or TRUNC” on page 305

Returns a number value that as been truncated at a
specified number of decimal places

Table 31. String Scalar Functions

["CHARACTER_LENGTH” on page 18§

Returns the length of a string expression.

160 DB2 UDB for iSeries SQL Reference V5R2

Table 31. String Scalar Functions (continued)

Built-In Functions

[“CONCAT” on page 194]

Concatenates two strings.

|“LCASE” on page 243

Returns a string in which all the characters have been
converted to lowercase characters

[“DIFFERENCE” on page 213|

Returns a value representing the difference between the
sounds of two strings

[“LAND” on page 242

Returns a string that is the logical "AND’ of the
argument strings

[“LCASE” on page 243|

Returns a string in which all the characters have been
converted to lowercase characters

|“LEFT” on page 244|

Returns the leftmost characters from the string

I"LNOT” on page 249|

Returns a string that is the logical NOT of the argument
string

[“LOCATE” on page 250|

Returns the starting position of one string within another
string

|“LOR” on page 252|

Returns a string that is the logical OR of the argument
strings

[“LOWER” on page 253|

Returns a string in which all the characters have been
converted to lowercase characters

[“LTRIM” on page 254

Removes blanks or hexadecimal zeros from the
beginning of a string expression

|“POSITION or POSSTR” on page 271|

Return the starting position of one string within another
string

[“STRIP” on page 291|

Removes blanks or another specified character from the
end or beginning of a string expression

[“RTRIM” on page 282|

Removes blanks or hexadecimal zeroes from the end of a
string expression

[“SOUNDEX” on page 28§

Returns a character code representing the sound of the
words in the argument

|“SPACE” on page 289

Returns a character string that consists of the number of
blanks that the argument specifies

|“SUBSTRING or SUBSTR” on page 292|

Returns a substring of a string

[“TRANSLATE” on page 301]

Translates one or more characters in a string

|“TRIM” on page 303

Removes blanks or another specified character from the
end or beginning of a string expression

|[“UCASE” on page 307

Returns a string in which all the characters have been
converted to uppercase characters

|“UCASE” on page 307

Returns a string in which all the characters have been
converted to uppercase characters

|“UPPER” on page 308|

Returns a string in which all the characters have been
converted to uppercase characters

“XOR” on page 319
pag

Returns a string that is the logical XOR of the argument
strings

Chapter 3. Built-In Functions 161

Built-In Functions

Column Functions

The following information applies to all column functions other than COUNT(*)
and COUNT_BIG(*).

The argument of a column function is a set of values derived from an expression.
The expression may include columns but cannot include another column function.
The scope of the set is a group or an intermediate result table as explained in
Chapter 4, "Queries”.

If a GROUP BY clause is specified in a query and the intermediate result of the
FROM, WHERE, GROUP BY, and HAVING clauses is the empty set, then the
column functions are not applied, the result of the query is the empty set, the
SQLCODE is set to +100, and the SQLSTATE is set to "02000’.

If a GROUP BY clause is not specified in a query and the intermediate result of
the FROM, WHERE, and HAVING clauses is the empty set, then the column
functions are applied to the empty set.

For example, the result of the following SELECT statement is the number of
distinct values of JOB for employees in department DO1:
SELECT COUNT(DISTINCT JOB)

FROM EMPLOYEE

WHERE WORKDEPT = 'DO1'
The keyword DISTINCT is not considered an argument of the function, but
rather a specification of an operation that is performed before the function is
applied. If DISTINCT is specified, duplicate values are eliminated. If ALL is
implicitly or explicitly specified, duplicate values are not eliminated.

A column function can be used in a WHERE clause only if that clause is part of
a subquery of a HAVING clause and the column name specified in the
expression is a correlated reference to a group. If the expression includes more
than one column name, each column name must be a correlated reference to the
same group.

162 DB2 UDB for iSeries SQL Reference V5R2

AVG

AVG

ALL
»>—AVG—([
Lorstiner—

numeric-expression—) »><

The AVG function returns the average of a set of numbers.

The argument values must be any built-in numeric data type and their sum must
be within the range of the data type of the result.

The data type of the result is the same as the data type of the argument values,

except that:

* The result is double-precision floating point if the argument values are
single-precision floating point.

* The result is large integer if the argument values are small integers.

e The result is decimal with precision 31 and scale 31-p+s if the argument values
are decimal or nonzero scale binary with precision p and scale s.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is used, duplicate values are
eliminated.

The result can be null. If set of values is empty, the result is the null value.
Otherwise, the result is the average value of the set.

The order in which the values are aggregated is undefined, but every intermediate
result must be within the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Examples
* Using the PROJECT table, set the host variable AVERAGE (DECIMAL(5,2)) to
the average staffing level (PRSTAFF) of projects in department (DEPTNO) ‘D11".
SELECT AVG(PRSTAFF)
INTO :AVERAGE

FROM PROJECT
WHERE DEPTNO = 'D11'

Results in AVERAGE being set to 4.25 (that is, 17/4).

* Using the PROJECT table, set the host variable ANY_CALC to the average of
each unique staffing value (PRSTAFF) of projects in department (DEPTNO)
'D11".

SELECT AVG(DISTINCT PRSTAFF)
INTO :ANY_CALC
FROM PROJECT
WHERE DEPTNO = 'DI11'

Results in ANY_CALC being set to 4.66 (that is, 14/3).

Chapter 3. Built-In Functions 163

COUNT
COUNT

|—-ALL
»»—COUNT—(
Lorstiner—

*.

expression) ><

The COUNT function returns the number of rows or values in a set of rows or
values.

The result of the function is a large integer and it must be within the range of large
integers. The result cannot be null. If the table is a distributed table, then the result
is DECIMAL(15,0). For more information about distributed tables, see the

Multisystem| book.

The argument of COUNT(*) is a set of rows. The result is the number of rows in
the set. A row that includes only null values is included in the count.

The argument of COUNT (expression) is a set of values. The function is applied to
the set derived from the argument values by the elimination of null values. The
result is the number of values in the set.

The argument of COUNT(DISTINCT expression) is a set of values. The argument
values can be any values except character strings with a length attribute greater
than 2000, graphic strings with a length attribute greater than 1000 DBCS or UCS-2
characters, LOBs, or DataLinks. The function is applied to the set of values derived
from the argument values by the elimination of null values and duplicate values.
The result is the number of values in the set.

If a sort sequence other than *HEX is in effect when the statement that contains the
COUNT(DISTINCT expression) is executed and the arguments contain SBCS, UCS-2,
or mixed data, then the result is obtained by comparing weighted values for each
value in the set. The weighted values are based on the sort sequence.

Examples
» Using the EMPLOYEE table, set the host variable FEMALE (INTEGER) to the
number of rows where the value of the SEX column is ‘F’.

SELECT COUNT (%)
INTO :FEMALE
FROM EMPLOYEE
WHERE SEX = 'F'

Results in FEMALE being set to 13.

* Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT
(INTEGER) to the number of departments (WORKDEPT) that have at least one
female as a member.

SELECT COUNT(DISTINCT WORKDEPT)
INTO :FEMALE_IN_DEPT

FROM EMPLOYEE
WHERE SEX='F'

Results in FEMALE_IN_DEPT being set to 5. (There is at least one female in
departments A00, C01, D11, D21, and E11.)

164 DB2 UDB for iSeries SQL Reference V5R2

../dbmult/rzaf3mst02.htm
../dbmult/rzaf3mst02.htm

COUNT_BIG

COUNT_BIG

|—ALL
»»>—COUNT_BIG—(|_
DISTINCT—

*.

expression) ><

The COUNT_BIG function returns the number of rows or values in a set of rows
or values. It is similar to COUNT except that the result can be greater than the
maximum value of integer.

The result of the function is a decimal with precision 31 and scale 0. The result
cannot be null.

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows
in the set. A row that includes only null values is included in the count.

The argument of COUNT_BIG(expression) is a set of values. The function is applied
to the set derived from the argument values by the elimination of null values. The
result is the number of values in the set.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The
argument values can be any values except character strings with a length attribute
greater than 2000, graphic strings with a length attribute greater than 1000 DBCS
or UCS-2 characters, LOBs, or DataLinks. The function is applied to the set of
values derived from the argument values by the elimination of null values and
duplicate values. The result is the number of values in the set.

If a sort sequence other than *HEX is in effect when the statement that contains the
COUNT_BIG(DISTINCT expression) is executed and the arguments contain SBCS,
UCS-2, or mixed data, then the result is obtained by comparing weighted values
for each value in the set. The weighted values are based on the sort sequence.

Examples

* Refer to COUNT examples and substitute COUNT_BIG for occurrences of
COUNT. The results are the same except for the data type of the result.

* To count on a specific column, a sourced function must specify the type of the
column. In this example, the CREATE FUNCTION statement creates a sourced
function that takes any column defined as CHAR, uses COUNT_BIG to perform
the counting, and returns the result as a double precision floating-point number.
The query shown counts the number of unique departments in the sample
employee table.

CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE
SOURCE QSYS2.COUNT_BIG(CHAR());

SET CURRENT PATH RICK, SYSTEM PATH

SELECT COUNT(DISTINCT WORKDEPT FROM EMPLOYEE;

The empty parenthesis in the parameter list for the new function
(RICK.COUNT) means that the input parameter for the new function is the same
type as the input parameter for the function named in the SOURCE clause. The
empty parenthesis in the parameter list in the SOURCE clause (COUNT_BIG)

Chapter 3. Built-In Functions 165

COUNT_BIG

means that the length attribute of the CHAR parameter of the COUNT_BIG
function is ignored when DB2 locates the COUNT_BIG function.

166 DB2 UDB for iSeries SQL Reference V5R2

MAX

MAX

|—A LL
»>—MAX— (

|_ expression—) ><
DISTINCT-

The MAX column function returns the maximum value in a set of values in a
group.

The argument values can be any built-in data types except LOB and DataLink
values.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument values. When the argument is a string, the result
has the same CCSID as the argument. The result can be null.

If a sort sequence other than *HEX is in effect when the statement that contains the
MAX function is executed and the arguments contain SBCS, UCS-2, or mixed data,
then the result is obtained by comparing weighted values for each value in the set.
The weighted values are based on the sort sequence.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Examples

¢ Using the EMPLOYEE table, set the host variable MAX_SALARY
(DECIMAL(7,2)) to the maximum monthly salary (SALARY / 12) value.

SELECT MAX(SALARY) /12
INTO :MAX_SALARY
FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83.

* Using the PROJECT table, set the host variable LAST_PROJ (CHAR(24)) to the
project name (PROJNAME) that comes last in the sort sequence.

SELECT MAX(PROJNAME)
INTO :LAST_PROJ
FROM PROJECT

Results in LAST_PRO] being set to 'WELD LINE PLANNING "

Chapter 3. Built-In Functions 167

MIN
MIN

ALL
»>—MIN—(r_

|_ expression—) ><
DISTINCT-

The MIN column function returns the minimum value in a set of values in a

group.

The argument values can be any built-in data types except LOB and DataLink
values.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument values. When the argument is a string, the result
has the same CCSID as the argument. The result can be null.

If a sort sequence other than *HEX is in effect when the statement that contains the
MIN function is executed and the arguments contain SBCS, UCS-2, or mixed data,
then the result is obtained by comparing weighted values for each value in the set.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and is not advised.

Examples

* Using the EMPLOYEE table, set the host variable COMM_SPREAD
(DECIMAL(7,2)) to the difference between the maximum and minimum
commission (COMM) for the members of department (WORKDEPT) ‘D11".

SELECT MAX(COMM) - MIN(COMM)
INTO :COMM_SPREAD
FROM EMPLOYEE
WHERE WORKDEPT = 'D11'

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462).

* Using the PROJECT table, set the host variable FIRST_FINISHED (CHAR(10)) to
the estimated ending date (PRENDATE) of the first project scheduled to be
completed.

SELECT MIN(PRENDATE)
INTO :FIRST_FINISHED
FROM PROJECT

Results in FIRST_FINISHED being set to “1982-09-15".

168 DB2 UDB for iSeries SQL Reference V5R2

STDDEV or STDDEV_POP

STDDEV or STDDEV_POP

ALL
> STDDEV_POP (|_ numeric-expression—) <
STDDEV——I— |—DISTINCT—

The STDDEV_POP function returns the biased standard deviation (/n) of a set of
numbers. The formula used to calculate the biased standard deviation is:

STDDEV_POP = SQRT(VAR_POP)
where SQRT(VAR_POP) is the square root of the variance.

The argument values must be any built-in numeric data type and the sum must be
within the range of the data type of the result.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, duplicate values are
eliminated.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the standard deviation of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

STDDEYV can be specified as a synonym for STDEV_POP.

Example

* Using the EMPLOYEE table, set the host variable DEV (double-precision floating
point) to the standard deviation of the salaries for those employees in
department A0O.

SELECT STDDEV_POP (SALARY)
INTO :DEV
FROM EMPLOYEE
WHERE WORKDEPT = 'A0GO';

Results in DEV being set to approximately 9938.00.

Chapter 3. Built-In Functions 169

SUM
SUM

ALL
»>—SUM—(|_

|_ numeric-expression—) ><
DISTINCT-

The SUM function returns the sum of a set of numbers.

The argument values must be any built-in numeric data type and their sum must
be within the range of the data type of the result.

The data type of the result is the same as the data type of the argument values
except that the result is:

* Double-precision floating point if the argument values are single-precision
floating point

* Large integer if the argument values are small integers

* Decimal if the argument values are nonzero scale binary

The result can be null.

If the data type of the argument values is decimal or nonzero scale binary, the
precision of the result is 31 and the scale is the same as the scale of the argument
values.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, duplicate values are
eliminated.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the sum of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

Example

* Using the EMPLOYEE table, set the host variable JOB_BONUS (DECIMAL(9,2))
to the total bonus (BONUS) paid to clerks (JOB='CLERK).

SELECT SUM(BONUS)
INTO :JOB_BONUS
FROM EMPLOYEE
WHERE JOB = 'CLERK'

Results in JOB_BONUS being set to 2800.

170 DB2 UDB for iSeries SQL Reference V5R2

VAR_POP or VARIANCE or VAR

VAR_POP or VARIANCE or VAR

|—ALL
> VAR _POP (|_ numeric-expression—) ><
EVARIANCE— DISTINCT—

VAR

The VAR_POP function returns the biased variance (/n) of a set of numbers. The
formula used to calculate the biased variance is:

VAR_POP = SUM(X**2)/COUNT(X) - (SUM(X)/COUNT(X))**2

The argument values must be any built-in numeric data type and the sum must be
within the range of the data type of the result.

The data type of the result is double-precision floating point. The result can be
null.

The function is applied to the set of values derived from the argument values by
the elimination of null values. If DISTINCT is specified, duplicate values are
eliminated.

If the function is applied to the empty set, the result is a null value. Otherwise, the
result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate
result must be within the range of the result data type.

VARIANCE and VAR can be specified as synonyms for VAR_POP.

Example

* Using the EMPLOYEE table, set the host variable VARNCE (double-precision
floating point) to the variance of the salaries for those employees in department
A00.

SELECT VAR_POP (SALARY)
INTO :VARNCE
FROM EMPLOYEE
WHERE WORKDEPT = 'A0O"';

Results in VARNCE being set to approximately 98763888.88.

Chapter 3. Built-In Functions 171

Scalar Functions

Scalar Functions

A scalar function can be used wherever an expression can be used. The restrictions
on the use of column functions do not apply to scalar functions, because a scalar
function is applied to single parameter values rather than to sets of values. The
argument of a scalar function can be a function. However, the restrictions that
apply to the use of expressions and column functions also apply when an
expression or column function is used within a scalar function. For example, the
argument of a scalar function can be a column function only if a column function
is allowed in the context in which the scalar function is used.

Example
The result of the following SELECT statement has as many rows as there are
employees in department DO01:

SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BIRTHDATE)
FROM EMPLOYEE
WHERE WORKDEPT = 'DO1'

172 DB2 UDB for iSeries SQL Reference V5R2

ABS

ABS

»>—ABS— (—numeric-expression—) ><

The ABS function returns the absolute value of a number.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument value, except that the result is a large integer if
the argument value is a small integer, and the result is double-precision floating
point if the argument value is single-precision floating point.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Note
ABSVAL is a synonym for ABS. It is supported only for compatibility with
previous DB2 releases.

Example
* Assume the host variable PROFIT is a large integer with a value of -50000.

SELECT ABS(:PROFIT)
FROM SYSIBM.SYSDUMMY1

Returns the value 50000.

Chapter 3. Built-In Functions 173

ACOS

ACOS

»»—ACOS— (—numeric-expression—) ><

The ACOS function returns the arc cosine of the argument as an angle expressed in
radians. The ACOS and COS functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type. The value must be greater than or equal to -1 and less than or equal to
1.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to 0 and less than or equal to PI.

Example

* Assume the host variable ACOSINE is a DECIMAL(10,9) host variable with a
value of 0.070737202.

SELECT ACOS (:ACOSINE)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.49.

174 DB2 UDB for iSeries SQL Reference V5R2

ANTILOG
ANTILOG

»»—ANTILOG— (—numeric-expression—) ><

The ANTILOG function returns the anti-logarithm (base 10) of a number. The
ANTILOG and LOG functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric

data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example

* Assume the host variable ALOG is a DECIMAL(10,9) host variable with a value
of 1.499961866.
SELECT ANTILOG(:ALOG)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 31.62.

Chapter 3. Built-In Functions 175

ASIN

ASIN

»»—ASIN—(—numeric-expression—) >

The ASIN function returns the arc sine of the argument as an angle expressed in
radians. The ASIN and SIN functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type. The value must be greater than or equal to -1 and less than or equal to
1.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -PI /2 and less than or equal to PI /2.

Example

* Assume the host variable ASINE is a DECIMAL(10,9) host variable with a value
of 0.997494987.

SELECT ASIN(:ASINE)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

176 DB2 UDB for iSeries SQL Reference V5R2

ATAN

ATAN

»»—ATAN— (—numeric-expression—) ><

The ATAN function returns the arc tangent of the argument as an angle expressed
in radians. The ATAN and TAN functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

The result is greater than or equal to -PI/2 and less than or equal to PI/2.

Example

* Assume the host variable ATANGENT is a DECIMAL(10,8) host variable with a
value of 14.10141995.
SELECT ATAN(:ATANGENT)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

Chapter 3. Built-In Functions 177

ATANH
ATANH

»»—ATANH— (—numeric-expression—) >

The ATANH function returns the hyperbolic arc tangent of a number, in radians.
The ATANH and TANH functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric
data type. The value must be greater than -1 and less than 1.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example

* Assume the host variable HATAN is a DECIMAL(10,9) host variable with a
value of 0.905148254.
SELECT ATANH(:HATAN)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.50.

178 DB2 UDB for iSeries SQL Reference V5R2

ATAN2
ATAN2

»»—ATAN2— (—numeric-expressionl—,—numeric-expression2—) >«

The ATAN?2 function returns the arc tangent of x and y coordinates as an angle
expressed in radians. The first and second arguments specify the x and y
coordinates, respectively.

Each argument is an expression that returns the value of any built-in numeric data
type. Both arguments must not be 0.

The data type of the result is double-precision floating point. If any argument can
be null, the result can be null; if any argument is null, the result is the null value.

Example

* Assume that host variables HATAN2A and HATAN2B are DOUBLE host
variables with values of 1 and 2, respectively.

SELECT ATAN2(:HATAN2A, :HATAN2B)
FROM SYSIBM.SYSDUMMY1

Returns a double precision floating-point number with an approximate value of
1.1071487.

Chapter 3. Built-In Functions 179

BIGINT
BIGINT

Numeric to Big Integer

»»—BIGINT— (—numeric-expression—) ><

Character to Big Integer

»»—BIGINT—(—character-expression—)

A\
A

The BIGINT function returns a big integer representation of:
* A number

* A character string representation of a decimal number

* A character string representation of an integer

* A character string representation of a floating-point number

Note: The CAST expression can also be used to return a big integer value. For
more information, see ['CAST Specification” on page 137}

Numeric to Big Integer

numeric-expression
An expression that returns a numeric value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a big integer column or variable.
If the whole part of the argument is not within the range of big integers, an
error occurs. The fractional part of the argument is truncated.

Character to Big Integer

character-expression
An expression that returns a value that is a character-string representation of
an integer. The expression must not be a CLOB.

If the argument is a character-expression, the result is the same number that
would result from CAST(character-expression AS BIGINT). Leading and trailing
blanks are eliminated and the resulting string must conform to the rules for
forming a floating-point, integer, or decimal constant. If the whole part of the
argument is not within the range of integers, an error occurs. Any fractional
part of the argument is truncated.

The result of the function is a big integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example

* Using the EMPLOYEE table, select the EMPNO column in big integer form for
further processing in the application.

SELECT BIGINT(SALARY)
FROM EMPLOYEE

180 DB2 UDB for iSeries SQL Reference V5R2

BLOB
BLOB

»»—BLOB—(—string-expression B a) >
,—integer

The BLOB function returns a BLOB representation of a string of any type.

Note: The CAST expression can also be used to return a binary-string value. For
more information, see [‘CAST Specification” on page 137}

The result of the function is a BLOB. If the first argument can be null, the result
can be null; if the first argument is null, the result is the null value.

string-expression
A string-expression whose value can be a character string, graphic string, binary
string, or row ID.

integer
Specifies the length attribute for the resulting binary string. The value must be
between 1 and 2 147 483 647.

If integer is not specified:

e If the string-expression is the empty string constant, the length attribute of the
result is 1.

* Otherwise, the length attribute of the result is the same as the length
attribute of the first argument, unless the argument is a graphic string. In
this case, the length attribute of the result is twice the length attribute of the
argument.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of the expression (or twice the length of the
expression when the input is graphic data). If the length of the string-expression
is greater than the length attribute of the result, truncation is performed. A
warning (SQLSTATE 01004) is returned unless the first input argument is a
character string and all the truncated characters are blanks, or the first input

argument is a graphic string and all the truncated characters are double-byte
blanks.

Example
* The following function returns a BLOB for the string "This is a BLOB'.
SELECT BLOB('This is a BLOB')
FROM SYSIBM.SYSDUMMY1
* The following function returns a BLOB for the large object that is identified by
locator myclob_locator.
SELECT BLOB(:myclob_locator)
FROM SYSIBM.SYSDUMMY1
¢ Assume that a table has a BLOB column named TOPOGRAPHIC_MAP and a
VARCHAR column named MAP_NAME. Locate any maps that contain the
string 'Pellow Island” and return a single binary string with the map name
concatenated in front of the actual map. The following function returns a BLOB
for the large object that is identified by locator myclob_locator.

SELECT BLOB(MAP_NAME CONCAT ': ' CONCAT TOPOGRAPHIC MAP)
FROM ONTARIO_SERIES 4
WHERE TOPOGRAPHIC_MAP LIKE '%Pellow Island%'

Chapter 3. Built-In Functions 181

CEILING
CEILING

CEILING (—numeric-expression—) ><
CEI L——I_

The CEIL or CEILING function returns the smallest integer value that is greater
than or equal to numeric-expression.

The argument is an expression that returns a value of any built-in numeric data
type.

The result of the function has the same data type and length attribute of the
argument except that the scale is 0 if the argument is DECIMAL or NUMERIC. For
example, an argument with a data type of DECIMAL(5,5) will result in
DECIMAL(5,0).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Examples
* Find the highest monthly salary for all the employees. Round the result up to
the next integer. The SALARY column has a decimal data type

SELECT CEIL(MAX(SALARY)/12
FROM EMPLOYEE

This example returns 4396.00 because the highest paid employee is Christine
Haas who earns $52750.00 per year. Her average monthly salary before applying
the CEIL function is 4395.83.

¢ Use CEILING on both positive and negative numbers.

SELECT CEILING(3.5),
CEILING(3.1),
CEILING(-3.1),
CEILING(-3.5),

FROM SYSIBM.SYSDUMMY1

This example returns:
04. 04. -03. -03.

respectively.

182 DB2 UDB for iSeries SQL Reference V5R2

CHAR

CHAR

Datetime to Character

»»—CHAR—(—datetime-expression |_) ><
, 1S0
USA
EUR:
JIS

Character to Character

»»—CHAR— (—character-expression B a) >
,—integer

Integer to Character

A\
A

»»—CHAR— (—integer-expression—)

Decimal to Character

) > <

»»—CHAR—(—decimal-expression

L,—dec imal -char‘acter'J

Floating-point to Character

) > <

»»—CHAR—(—floating-point-expression |_ _|
,—decimal-character

The CHAR function returns a fixed-length character-string representation of:
* An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT.
* A decimal number if the first argument is a decimal number.

* A double-precision floating-point number if the first argument is a DOUBLE or
REAL.

* A character string if the first argument is any type of character string.
* A date value if the first argument is a DATE.

* A time value if the first argument is a TIME.

¢ A timestamp value if the first argument is a TIMESTAMP.

* A row ID value if the first argument is a ROWID.

Note: The CAST expression can also be used to return a fixed-length
character-string value. For more information, see [“CAST Specification” onl

The first argument must be a built-in data type other than a BLOB, GRAPHIC,
VARGRAPHIC, or DBCLOB.

Chapter 3. Built-In Functions 183

CHAR

The result of the function is a fixed-length character string. If the first argument
can be null, the result can be null; if the first argument is null, the result is the null
value.

Datetime to Character

datetime-expression
An expression that is one of the following three built-in data types

date The result is the character-string representation of the date in the
format specified by the second argument. If the second argument is not
specified, the format used is the default date format. If the format is
ISO, USA, EUR, or JIS, the length of the result is 10. Otherwise the
length of the result is the length of the default date format. For more
information see [‘String Representations of Datetime Values” on|

time The result is the character-string representation of the time in the
format specified by the second argument. If the second argument is not
specified, the format used is the default time format. The length of the
result is 8.

timestamp
The second argument is not applicable and must not be specified.

The result is the character-string representation of the timestamp. The
length of the result is 26.
The CCSID of the string is the default SBCS CCSID at the current server.

ISO, EUR, USA, or JIS
Specifies the date or time format of the resulting character string. For more
information, see [“String Representations of Datetime Values” on page 67}

Character to Character

character-expression
An expression that returns a value that is a built-in character-string data type.

integer
Specifies the length attribute for the resulting fixed length character string. The

value must be between 1 and 32766 (32765 if nullable). If the first argument is
mixed data, the second argument cannot be less than 4.

If the second argument is not specified:

e If the character-expression is the empty string constant, the length attribute of
the result is 1.

¢ Otherwise, the length attribute of the result is the same as the length
attribute of the first argument.

The actual length is the same as the length attribute of the result. If the length
of the character-expression is less than the length of the result, the result is
padded with blanks up to the length of the result. If the length of the
character-expression is greater than the length attribute of the result, truncation
is performed. A warning (SQLSTATE 01004) is returned unless the truncated
characters were all blanks.

The CCSID of the string is the CCSID of the character-expression.

Integer to Character

184 DB2 UDB for iSeries SQL Reference V5R2

CHAR

integer-expression
An expression that returns a value that is an integer data type (either
SMALLINT, INTEGER, or BIGINT).

The result is the fixed-length character-string representation of the argument in the
form of an SQL integer constant. The result consists of n characters that are the
significant digits that represent the value of the argument with a preceding minus
sign if the argument is negative. The result is left justified.

* If the argument is a small integer:

The length of the result is 6. If the number of characters in the result is less than
6, then the result is padded on the right with blanks.

¢ If the argument is a large integer:

The length of the result is 11. If the number of characters in the result is less
than 11, then the result is padded on the right with blanks.

e If the argument is a big integer:

The length of the result is 20. If the number of characters in the result is less
than 20, then the result is padded on the right with blanks.

The CCSID of the string is the default SBCS CCSID at the current server.

Decimal to Character

decimal-expression
An expression that returns a value that is a built-in decimal data type (either
DECIMAL or NUMERIC). If a different precision and scale is desired, the
DECIMAL scalar function can be used to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see ['Decimal Point” on page 100}

The result is a fixed-length character string representation of the argument. The
result includes a decimal character and up to p digits, where p is the precision of
the decimal-expression with a preceding minus sign if the argument is negative.
Leading zeros are not returned. Trailing zeros are returned.

The length of the result is 2+p where p is the precision of the decimal-expression.
This means that a positive value will always include one trailing blank.

The CCSID of the string is the default SBCS CCSID at the current server.

Floating-point to Character

floating-point expression
An expression that returns a value that is a built-in floating-point data type.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see ["Decimal Point” on page 100}

The result is a fixed-length character-string representation of the argument in the
form of a floating-point constant. The length of the result is 24. If the argument is
negative, the first character of the result is a minus sign. Otherwise, the first

Chapter 3. Built-In Functions 185

CHAR

character is a digit. If the argument is zero, the result is 0E0. Otherwise, the result
includes the smallest number of characters that can be used to represent the value
of the argument such that the mantissa consists of a single digit other than zero
followed by a period and a sequence of digits.

If the number of characters in the result is less than 24, then the result is padded
on the right with blanks.

The CCSID of the string is the default SBCS CCSID at the current server.

Examples
* Assume the column PRSTDATE has an internal value equivalent to 1988-12-25.

The date format is *MDY and the date separator is a slash (/).

SELECT CHAR(PRSTDATE, USA)
FROM PROJECT

Results in the value “12/25/1988’.

SELECT CHAR(PRSTDATE)
FROM PROJECT

Results in the value ‘12/25/88'.

Assume the column STARTING has an internal value equivalent to 17.12.30, the
host variable HOUR_DUR (DECIMAL(6,0)) is a time duration with a value of
050000 (that is, 5 hours).

SELECT CHAR(STARTING, USA)
FROM CL_SCHED

Results in the value ‘5:12 PM'.

SELECT CHAR(STARTING + :HOUR_DUR, JIS)
FROM CL_SCHED

Results in the value “10:12:00’.
Assume the column RECEIVED (timestamp) has an internal value equivalent to
the combination of the PRSTDATE and STARTING columns.

SELECT CHAR(RECEIVED)
FROM IN_TRAY

Results in the value ‘1988-12-25-17.12.30.000000’.

Use the CHAR function to make the type fixed-length character and reduce the
length of the displayed results to 10 characters for the LASTNAME column
(defined as VARCHAR(15)) of the EMPLOYEE table.

SELECT CHAR(LASTNAME,10)
FROM EMPLOYEE

For rows having a LASTNAME with a length greater than 10 characters
(excluding trailing blanks), a warning (SQLSTATE 01004) that the value is
truncated is returned.

Use the CHAR function to return the values for EDLEVEL (defined as
SMALLINT) as a fixed length string.

SELECT CHAR(EDLEVEL)
FROM EMPLOYEE

An EDLEVEL of 18 would be returned as the CHAR(6) value "18bbbb” (18
followed by 4 blanks).

186 DB2 UDB for iSeries SQL Reference V5R2

CHAR

* Assume that the STAFF table has a SALARY column defined as decimal with
precision of 9 and scale of 2. The current value is 18357.50 and it is to be
returned with a comma as the decimal character (18357,50).

SELECT CHAR(SALARY, ',')
FROM EMPLOYEE

returns the value "18357,50bbb” (18357,50 followed by 3 blanks).

¢ Assume the same SALARY column subtracted from 20000.25 is to be returned
with the default decimal character, and the default is period.

SELECT CHAR(20000.25 - SALARY)
FROM EMPLOYEE

returns the value "-1642.75bbb” (-1642.75 followed by 3 blanks).

* Assume a host variable, DOUBLE_NUM, has a double precision floating-point
data type and a value of -987.654321E-35.
SELECT CHAR(:DOUBLE_NUM)
FROM SYSIBM.SYSDUMMY1

Results in the character value ’-9.8765432100000002E-33 ’.

Chapter 3. Built-In Functions 187

CHARACTER_LENGTH
CHARACTER_LENGTH

CHARACTER_LENGTH (—string-expression—) >
CHAR_LENGTH

The CHARACTER_LENGTH or CHAR_LENGTH function returns the length of a
string expression. See ["LENGTH” on page 246| for a similar function.

The argument is an expression that returns a value of any built-in string data type.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the number of characters in the argument (not the number of bytes).
A single character is either an SBCS or DBCS character. The length of strings
includes trailing blanks. The length of a varying-length string is the actual length,
not the maximum length.

Example

* Assume the host variable ADDRESS is a varying-length character string with a
value of ‘895 Don Mills Road’.
SELECT CHARACTER_LENGTH (: ADDRESS)
FROM SYSIBM.SYSDUMMY1

Returns the value 18.

188 DB2 UDB for iSeries SQL Reference V5R2

CLOB

Character to CLOB

CLOB

»»—CLOB (—character-expression |_) ><

Graphic to CLOB

,—[Zength
DEFAULT—| I—,—integer—l

»»—CLOB (—graphic-expression |_) >

Integer to CLOB

, length
_EDEFAULT—l l—,—integer—|

»»—CLOB—(—integer-expression—) ><

Decimal to CLOB

»»—CLOB—(—decimal-expression

Floating-point to CLOB

»»—CLOB—(—floating-point-expression

»<
<

l—,—decimul—charucter—l

)

A\
A

l—,—dec imal-character—l

The CLOB function returns a character-string representation of:

An integer number if the first argument is a SMALLINT, INTEGER, or BIGINT
A decimal number if the first argument is a packed or zoned decimal number

A double-precision floating-point number if the first argument is a DOUBLE or
REAL

A character string if the first argument is any type of character string
A graphic string if the first argument is an UCS-2 graphic string

Note: The CAST expression can also be used to return a character large object

value. For more information, see|“CAST Specification” on page 137

The result of the function is a CLOB string. If the first argument can be null, the
result can be null; if the first argument is null, the result is the null value.

Character to CLOB

character-expression

An expression that returns a value that is a built-in character-string data type.

length

Specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 2 147 483 647. If the first argument is mixed
data, the second argument cannot be less than 4.

Chapter 3. Built-In Functions 189

CLOB

If the second argument is not specified or DEFAULT is specified:

s If the character-expression is the empty string constant, the length attribute of
the result is 1.

* Otherwise, the length attribute of the result is the same as the length
attribute of the first argument.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of character-expression. If the length of the
character-expression is greater than the length attribute of the result, truncation
is performed. A warning (SQLSTATE 01004) is returned unless the truncated
characters were all blanks.

integer

Specifies the CCSID of the result. It must be a valid SBCS CCSID or mixed
data CCSID. If the third argument is an SBCS CCSID, then the result is SBCS
data. If the third argument is a mixed CCSID, then the result is mixed data. If
the third argument is a SBCS CCSID, then the first argument cannot be a
DBCS-either or DBCS-only string. The third argument cannot be 65535.

If the third argument is not specified, the first argument must not have a
CCSID of 65535:

e If the first argument is bit data, an error occurs.
e If the first argument is SBCS data, then the result is SBCS data. The CCSID
of the result is the same as the CCSID of the first argument.

e If the first argument is mixed data (DBCS-open, DBCS-only, or DBCS-either),
then the result is mixed data. The CCSID of the result is the same as the
CCSID of the first argument.

Graphic to CLOB

graphic-expression

An expression that returns a value that is a built-in graphic-string data type. It
must not be DBCS-graphic data.

length

Specifies the length attribute for the resulting varying length character string.
The value must be between 1 and 2 147 483 647. If the result is mixed data, the
second argument cannot be less than 4.

If the second argument is not specified or DEFAULT is specified, the length
attribute of the result is determined as follows (where 7 is the length attribute
of the first argument):

* If the graphic-expression is the empty graphic string constant, the length
attribute of the result is 1.

e If the result is SBCS data, the result length is n.
¢ If the result is mixed data, the result length is (2.5%(n-1)) + 4.

The actual length of the result is the minimum of the length attribute of the
result and the actual length of graphic-expression. If the length of the
graphic-expression is greater than the length attribute of the result, truncation is
performed. A warning (SQLSTATE 01004) is returned unless the truncated
characters were all blanks.

integer

Specifies the CCSID of the result. It must be a valid SBCS CCSID or mixed

190 DB2 UDB for iSeries SQL Reference V5R2

CLOB

data CCSID. If the third argument is an SBCS CCSID, then the result is SBCS
data. If the third argument is a mixed CCSID, then the result is mixed data.
The third argument cannot be 65535.

If the third argument is not specified, the CCSID of the result is the default
CCSID at the current server. If the default CCSID is mixed data, then the result
is mixed data. If the default CCSID is SBCS data, then the result is SBCS data.

Integer to CLOB

integer-expression
An expression that returns a value that is a built-in integer data type (either
SMALLINT, INTEGER, or BIGINT).

The result is a varying-length character string of the argument in the form of an
SQL integer constant. The result consists of n characters that are the significant
digits that represent the value of the argument with a preceding minus sign if the
argument is negative. The result is left justified.

e If the argument is a small integer, the length attribute of the result is 6.
* If the argument is a large integer, the length attribute of the result is 11.
* If the argument is a big integer, the length attribute of the result is 20.

The actual length of the result is the smallest number of characters that can be
used to represent the value of the argument. Leading zeroes are not included. If
the argument is negative, the first character of the result is a minus sign.
Otherwise, the first character is a digit.

The CCSID of the result is the default SBCS CCSID at the current server.

Decimal to CLOB

decimal-expression
An expression that returns a value that is a built-in decimal data type (either
DECIMAL or NUMERIC). If a different precision and scale is desired, the
DECIMAL scalar function can be used to make the change.

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see ["Decimal Point” on page 100}

The result is a varying-length character string representation of the argument. The
result includes a decimal character and up to p digits, where p is the precision of
the decimal-expression with a preceding minus sign if the argument is negative.
Leading zeros are not returned. Trailing zeros are returned.

The length attribute of the result is 2+p where p is the precision of the
decimal-expression. The actual length of the result is the smallest number of
characters that can be used to represent the result, except that trailing characters
are included. Leading zeros are not included. If the argument is negative, the result
begins with a minus sign. Otherwise, the result begins with a digit.

The CCSID of the result is the default SBCS CCSID at the current server.

Floating-point to CLOB

Chapter 3. Built-In Functions 191

CLOB

floating-point expression
An expression that returns a value that is a built-in floating-point data type
(DOUBLE or REAL).

decimal-character
Specifies the single-byte character constant that is used to delimit the decimal
digits in the result character string. The character must be a period or comma.
If the second argument is not specified, the decimal point is the default
decimal point. For more information, see [“Decimal Point” on page 100}

The result is a varying-length character string representation of the argument in
the form of a floating-point constant.

The length attribute of the result is 24. The actual length of the result is the
smallest number of characters that can represent the value of the argument such
that the mantissa consists of a single digit other than zero followed by the
decimal-character and a sequence of digits. If the argument is negative, the first
character of the result is a minus sign; otherwise, the first character is a digit. If the
argument is zero, the result is 0EO.

The CCSID of the result is the default SBCS CCSID at the current server.

Example
* The following function returns a CLOB for the string "This is a CLOB'.

SELECT CLOB('This is a CLOB')
FROM SYSIBM.SYSDUMMY1

192 DB2 UDB for iSeries SQL Reference V5R2

COALESCE
COALESCE

»»—COALESCE— (—expression——,—expression)

A\
A

The COALESCE function returns the value of the first non-null expression.

The arguments must be compatible. Character-string arguments are compatible
with datetime values. For more information about data type compatibility, see

[“Assienments and Comparisons” on page 78 The arguments can be of either a
built-in data type or a distinct type.>”

The arguments are evaluated in the order in which they are specified, and the
result of the function is the first argument that is not null. The result can be null
only if all arguments can be null, and the result is null only if all arguments are
null.

The selected argument is converted, if necessary, to the attributes of the result. The
attributes of the result are determined by all the operands as explained in
ffor Result Data Types” on page 91}

Examples

* When selecting all the values from all the rows in the DEPARTMENT table, if
the department manager (MGRNO) is missing (that is, null), then return a value
of '"ABSENT".

SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, 'ABSENT'), ADMRDEPT
FROM DEPARTMENT

* When selecting the employee number (EMPNO) and salary (SALARY) from all
the rows in the EMPLOYEE table, if the salary is missing (that is null), then
return a value of zero.

SELECT EMPNO, COALESCE(SALARY,0)
FROM EMPLOYEE

30. This function cannot be used as a source function when creating a user-defined function. Because it accepts any compatible data
types as arguments, it is not necessary to create additional signatures to support distinct types.

Chapter 3. Built-In Functions 193

CONCAT
CONCAT

»»—CONCAT— (—string-expression-1—,—string-expression-2—) >«

The CONCAT function combines two string arguments. The arguments must be
compatible strings. For more information about data type compatibility, see
[“Assienments and Comparisons” on page 78

The result of the function is a string that consists of the first argument string
followed by the second. If either argument can be null, the result can be null; if
either argument is null, the result is the null value.

The CONCAT function is identical to the CONCAT operator. For more information,
see [“With the Concatenation Operator” on page 126|

Example
e Concatenate the column FIRSTNME with the column LASTNAME.

SELECT CONCAT(FIRSTNME, LASTNAME)
FROM EMPLOYEE
WHERE EMPNO ='000010"

Returns the value 'CHRISTINEHAAS'.

194 DB2 UDB for iSeries SQL Reference V5R2

COS

CcOS

»»—C0S— (—numeric-expression—) >

The COS function returns the cosine of the argument, where the argument is an
angle expressed in radians. The COS and ACOS functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric

data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example

* Assume the host variable COSINE is a DECIMAL(2,1) host variable with a value
of 1.5.
SELECT COS(:COSINE)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.07.

Chapter 3. Built-In Functions 195

COSH
COSH

»»—COSH— (—numeric-expression—) ><

The COSH function returns the hyperbolic cosine of the argument, where the
argument is an angle expressed in radians.

The argument must be an expression that returns a value of any built-in numeric
data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example

* Assume the host variable HCOS is a DECIMAL(2,1) host variable with a value
of 1.5.
SELECT COSH(:HCOS)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 2.35.

196 DB2 UDB for iSeries SQL Reference V5R2

COoT

CcoT

»»—COT— (—numeric-expression—) ><

The COT function returns the cotangent of the argument, where the argument is an
angle expressed in radians.

The argument must be an expression that returns a value of any built-in numeric

data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example

* Assume the host variable COTAN is a DECIMAL(2,1) host variable with a value
of 1.5.
SELECT COT(:COTAN)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 0.07.

Chapter 3. Built-In Functions 197

CURDATE
CURDATE

»»—CURDATE—(—) >

The CURDATE function returns a date based on a reading of the time-of-day clock
when the SQL statement is executed at the current server. The value returned by
the CURDATE function is the same as the value returned by the CURRENT DATE
special register.

The data type of the result is a date. The result cannot be null.

If this function is used more than once within a single SQL statement, or used with
the CURTIME or NOW scalar functions or the CURRENT DATE, CURRENT TIME,
or CURRENT TIMESTAMP special registers within a single statement, all values
are based on a single clock reading.

Example
* Return the current date based on the time-of-day clock.

SELECT CURDATE ()
FROM SYSIBM.SYSDUMMY1

198 DB2 UDB for iSeries SQL Reference V5R2

CURTIME
CURTIME

»»>—CURTIME—(—) ><

The CURTIME function returns a time based on a reading of the time-of-day clock
when the SQL statement is executed at the current server. The value returned by
the CURTIME function is the same as the value returned by the CURRENT TIME
special register.

The data type of the result is a time. The result cannot be null.

If this function is used more than once within a single SQL statement, or used with
the CURDATE or NOW scalar functions or the CURRENT DATE, CURRENT
TIME, or CURRENT TIMESTAMP special registers within a single statement, all
values are based on a single clock reading.

Example
* Return the current time based on the time-of-day clock.

SELECT CURTIME()
FROM SYSIBM.SYSDUMMY1

Chapter 3. Built-In Functions 199

DATE
DATE

»»—DATE—(—expression—) >

The DATE function returns a date from a value.

The argument must be an expression that returns a value of one of the following

built-in data types: a date, a timestamp, a character string, or any numeric data

type.

* If expression is a character string, it must not be a CLOB and its value must be
one of the following;:

— A valid character-string representation of a date or timestamp. For the valid
formats of string representations of dates and timestamps, see
[Representations of Datetime Values” on page 67

— A character string with an actual length of 7 that represents a valid date in
the form yyyynnn, where yyyy are digits denoting a year, and nnn are digits
between 001 and 366 denoting a day of that year.

* If expression is a number, it must be a positive number less than or equal to
3652059.

Note: The CAST expression can also be used to return a date value. For more
information, see [“CAST Specification” on page 137]

The result of the function is a date. If the argument can be null, the result can be
null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
* If the argument is a timestamp:
The result is the date part of the timestamp.
* If the argument is a date:
The result is that date.
* If the argument is a number:

The result is the date that is n-1 days after January 1, 0001, where # is the
integral part of the number.

* If the argument is a character string:
The result is the date represented by the string or the date part of the timestamp
value represented by the string.

When a string representation of a date is SBCS data with a CCSID that is not the
same as the default CCSID for SBCS data, that value is converted to adhere to
the default CCSID for SBCS data before it is interpreted and converted to a date
value.

When a string representation of a date is mixed data with a CCSID that is not
the same as the default CCSID for mixed data, that value is converted to adhere
to the default CCSID for mixed data before it is interpreted and converted to a
date value.

Examples

* Assume that the column RECEIVED (TIMESTAMP) has an internal value
equivalent to “1988-12-25-17.12.30.000000’.

200 DB2 UDB for iSeries SQL Reference V5R2

DATE

SELECT DATE(RECEIVED)
FROM IN_TRAY

Results in an internal representation of “1988-12-25".

The following DATE scalar function applied to an ISO string representation of a
date:

SELECT DATE('1988-12-25')
FROM SYSIBM.SYSDUMMY1

Results in an internal representation of ‘1988-12-25".

The following DATE scalar function applied to an EUR string representation of a
date:

SELECT DATE('25.12.1988"')
FROM SYSIBM.SYSDUMMY1

Results in an internal representation of ‘1988-12-25".
The following DATE scalar function applied to a positive number:

SELECT DATE(35)
FROM SYSIBM.SYSDUMMY1

Results in an internal representation of ‘0001-02-04".

Chapter 3. Built-In Functions 201

DAY
DAY

»»—DAY—(—expression—) >

The DAY function returns the day part of a value.

The argument must be an expression that returns a value of one of the following

built-in data types: a date, a timestamp, a character string, or a numeric data type.

e If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid
formats of string representations of dates and timestamps, see
[Representations of Datetime Values” on page 67]

* If expression is a number, it must be a date duration or timestamp duration. For
the valid formats of datetime durations, see [“Datetime Operands and Durations”]

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

* If the argument is a date, timestamp, or valid character-string representation of a
date or timestamp:

The result is the day part of the value, which is an integer between 1 and 31.
* If the argument is a date duration or timestamp duration:

The result is the day part of the value, which is an integer between —99 and 99.
A nonzero result has the same sign as the argument.

Examples

* Using the PROJECT table, set the host variable END_DAY (SMALLINT) to the
day that the WELD LINE PLANNING project (PROJNAME) is scheduled to stop
(PRENDATE).

SELECT DAY (PRENDATE)
INTO :END_DAY
FROM PROJECT
WHERE PROJNAME = 'WELD LINE PLANNING'

Results in END_DAY being set to 15.
* Return the day part of the difference between two dates:

SELECT DAY(DATE('2000-03-15') - DATE('1999-12-31'))
FROM SYSIBM.SYSDUMMY1

Results in the value 15.

202 DB2 UDB for iSeries SQL Reference V5R2

DAYOFMONTH
DAYOFMONTH

»»>—DAYOFMONTH— (—expression—) ><

The DAYOFMONTH function returns an integer between 1 and 31 that represents
the day of the month.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see [‘String Representations of]
[Datetime Values” on page 67]

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples

* Using the PROJECT table, set the host variable END_DAY (SMALLINT) to the
day that the WELD LINE PLANNING project (PROJNAME) is scheduled to stop
(PRENDATE).

SELECT DAYOFMONTH (PRENDATE)
INTO :END_DAY
FROM PROJECT
WHERE PROJNAME = 'WELD LINE PLANNING'

Results in END_DAY being set to 15.

Chapter 3. Built-In Functions 203

DAYOFWEEK

DAYOFWEEK

»>—DAYOFWEEK—(—expression—) ><

The DAYOFWEEK function returns an integer between 1 and 7 that represents the
day of the week, where 1 is Sunday and 7 is Saturday. For another alternative, see
['DAYOFWEEK_ISO” on page 205|

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see|“String Representations of]
[Datetime Values” on page 67]

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example
* Using the EMPLOYEE table, set the host variable DAY_OF_WEEK (INTEGER) to
the day of the week that Christine Haas (EMPNO="000010") started
(HIREDATE).
SELECT DAYOFWEEK(HIREDATE)
INTO :DAY_OF WEEK

FROM EMPLOYEE
WHERE EMPNO = '000010'

Results in DAY_OF_WEEK being set to 6, which represents Friday.
* The following query returns four values: 1, 2, 1, and 2.

SELECT DAYOFWEEK(CAST('10/11/1998' AS DATE)),
DAYOFWEEK(TIMESTAMP('10/12/1998",'01.02')),
DAYOFWEEK(CAST (CAST('10/11/1998"' AS DATE)) AS CHAR(20))),
DAYOFWEEK(CAST (TIMESTAMP('10/12/1998",'01.02') AS CHAR(20))),
FROM SYSIBM.SYSDUMMY1

204 DB2 UDB for iSeries SQL Reference V5R2

DAYOFWEEK_ISO
DAYOFWEEK_ISO

»»>—DAYOFWEEK _ISO— (—expression—) ><

The DAYOFWEEK_ISO function returns an integer between 1 and 7 that represents
the day of the week, where 1 is Monday and 7 is Sunday. For another alternative,
see ['DAYOFWEEK” on page 204}

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see |“String Representations of]
[Datetime Values” on page 67]

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Examples

* Using the EMPLOYEE table, set the host variable DAY_OF_WEEK (INTEGER) to
the day of the week that Christine Haas (EMPNO="000010") started
(HIREDATE).

SELECT DAYOFWEEK_ISO(HIREDATE)
INTO :DAY_OF WEEK

FROM EMPLOYEE
WHERE EMPNO = '000010'

Results in DAY_OF_WEEK being set to 5, which represents Friday.
* The following query returns four values: 7, 1, 7, and 1.

SELECT DAYOFWEEK_ISO(CAST('10/11/1998' AS DATE)),
DAYOFWEEK_ISO(TIMESTAMP('10/12/1998",'01.02')),
DAYOFWEEK_ISO(CAST(CAST('10/11/1998"' AS DATE)) AS CHAR(20))),
DAYOFWEEK_ISO(CAST(TIMESTAMP('10/12/1998",'01.02') AS CHAR(20))),

FROM SYSIBM.SYSDUMMY1

Chapter 3. Built-In Functions 205

DAYOFYEAR
DAYOFYEAR

»>—DAYOFYEAR—(—expression—) ><

The DAYOFYEAR function returns an integer between 1 and 366 that represents
the day of the year where 1 is January 1.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see [“String Representations of]
[Datetime Values” on page 67

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example

* Using the EMPLOYEE table, set the host variable AVG_DAY_OF_YEAR
(INTEGER) to the average of the day of the year that employees started on
(HIREDATE).

SELECT AVG(DAYOFYEAR(HIREDATE))
INTO :AVG_DAY OF YEAR
FROM EMPLOYEE

Results in AVG_DAY_OF_YEAR being set to 202.

206 DB2 UDB for iSeries SQL Reference V5R2

DAYS
DAYS

»>—DAYS—(—expression—) ><

The DAYS function returns an integer representation of a date.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a character string.

If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid formats
of string representations of dates and timestamps, see [“String Representations of]
[Datetime Values” on page 67]

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D
is the date that would occur if the DATE function were applied to the argument.

Examples

* Using the PROJECT table, set the host variable EDUCATION_DAYS (INTEGER)
to the number of elapsed days (PRENDATE - PRSTDATE) estimated for the
project (PROJNO) ‘IF2000’.

SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)
INTO :EDUCATION_DAYS

FROM PROJECT
WHERE PROJNO = 'IF2000'

Results in EDUCATION_DAYS being set to 396.

* Using the PROJECT table, set the host variable TOTAL_DAYS (INTEGER) to the
sum of elapsed days (PRENDATE - PRSTDATE) estimated for all projects in
department (DEPTNO) ‘E21".

SELECT SUM(DAYS(PRENDATE) - DAYS(PRSTDATE))
INTO :TOTAL_DAYS

FROM PROJECT
WHERE DEPTNO = 'E21'

Results in TOTAL_DAYS being set to 1484.

Chapter 3. Built-In Functions 207

DBCLOB
DBCLOB

»»—DBCLOB— (—string-expression |_) >«

,—[Zength
DEFAULT—| l—,—integer—l

The DBCLOB function returns a DBCLOB representation of a string expression.

Note: The CAST expression can also be used to return a double-byte character
larie obI'ect value. For more information, see [“CAST Specification” on|

string-expression
An expression that returns a value that is a character-string or graphic-string. It
cannot be a BLOB. It cannot be CHAR or VARCHAR bit data. It cannot be
GRAPHIC or VARGRAPHIC with a CCSID of 65535 unless a third argument is
specified.

length
Specifies the length attribute for the resulting varying-length graphic string.
The value must be between 1 and 1 073 741 823.

If the second argument is not specified or DEFAULT is specified:

s If the expression is an empty string constant, the length attribute of the result
is 1.

* Otherwise, the length attribute of the result is the same as the length
attribute of the first argument.

integer
Specifies the CCSID for the resulting varying-length graphic string. It must be
a DBCS or UCS-2 CCSID. The CCSID cannot be 65535.

In the following rules, S denotes one of the following:

¢ If the string expression is a host variable containing data in a foreign
encoding scheme, S is the result of the expression after converting the data
to a CCSID in a native encoding scheme. (See [“Character Conversion” on|
for more information.)

* If the string expression is data in a native encoding scheme, S is that string
expression.

If the third argument is not specified and the first argument is character, then
the CCSID of the result is determined by a mixed CCSID. Let M denote that
mixed CCSID. M is determined as follows:

e If the CCSID of S is a mixed CCSID, M is that CCSID.

» If the CCSID of S is an SBCS CCSID:
— If the CCSID of S has an associated mixed CCSID, M is that CCSID.
— Otherwise the operation is not allowed.

The following table summarizes the result CCSID based on M.

M Result CCSID | Description DBCS Substitution Character
930 300 Japanese EBCDIC X'FEFE’
933 834 Korean EBCDIC X'FEFE’

208 DB2 UDB for iSeries SQL Reference V5R2

DBCLOB

M Result CCSID | Description DBCS Substitution Character
935 837 S-Chinese EBCDIC X'FEFE
937 835 T-Chinese EBCDIC X'FEFE’
939 300 Japanese EBCDIC X'’FEFE’
5026 4396 Japanese EBCDIC X'FEFE’
5035 4396 Japanese EBCDIC X'FEFE’

If the third argument is not specified and the first argument is not character,
then the CCSID of the result is the same as the CCSID of the first argument.

The actual length of the result is the minimum of the length attribute of the result
and the actual length of expression. If the length attribute of the resulting DBCLOB
is less than the actual length of the first argument, truncation is performed and no
warning is returned.

The result of the function is a DBCLOB string. If the expression can be null, the
result can be null. If the expression is null, the result is the null value. If the
expression is an empty string or the EBCDIC string X'0EOF', the result is an empty
string.

If the result is DBCS-graphic data, the equivalence of SBCS and DBCS characters
depends on M. Regardless of the CCSID, every double-byte code point in the
argument is considered a DBCS character, and every single-byte code point in the
argument is considered an SBCS character with the exception of the EBCDIC
mixed data shift codes X'OE' and X'OF"'.

e If the nth character of the argument is a DBCS character, the nth character of the
result is that DBCS character.

* If the nth character of the argument is an SBCS character that has an equivalent
DBCS character, the nth character of the result is that equivalent DBCS character.

* If the nth character of the argument is an SBCS character that does not have an
equivalent DBCS character, the nth character of the result is the DBCS
substitution character.

If the result is UCS-2 graphic data, each character of the argument determines a
character of the result. The nth character of the result is the UCS-2 equivalent of
the nth character of the argument.

Example
* Using the EMPLOYEE table, set the host variable VAR_DESC
(VARGRAPHIC(24)) to the DBCLOB equivalent of the first name (FIRSTNME)
for employee number (EMPNO) "000050".
SELECT DBCLOB(FIRSTNME)
INTO :VAR_DESC

FROM EMPLOYEE
WHERE EMPNO = '000050'

Chapter 3. Built-In Functions 209

DECIMAL

Numeric to Decimal

II‘M—L—I—(—numeric—expression |_) <
,—precisionﬁ
,—scale

Character to Decimal

> DEC
DEC

DEC
DEC

»—(—character-expression

DECIMAL or DEC

IMAL
il

>
| <

l—,—precision |_ |
,—scale

l—,—dec imal -character—l

The DECIMAL function returns a decimal representation of:
* A number

* A character string representation of a decimal number

* A character string representation of an integer

* A character string representation of a floating-point number

Note: The CAST expression can also be used to return a decimal value. For more
information, see [‘CAST Specification” on page 137]

The result of the function is a decimal number with precision of p and scale of s,
where p and s are the second and third arguments. If the first argument can be
null, the result can be null; if the first argument is null, the result is the null value.

Numeric to Decimal

numeric-expression
An expression that returns a value of any built-in numeric data type.

precision
An integer constant with a value greater than or equal to 1 and less than or
equal to 31.
The default for precision depends on the data type of the numeric-expression:
* 15 for floating point, decimal, numeric, or nonzero scale binary
* 19 for big integer
11 for large integer
¢ 5 for small integer
scale

An integer constant that is greater than or equal to 0 and less than or equal to
precision. If not specified, the default is 0.

The result is the same number that would occur if the first argument were
assigned to a decimal column or variable with a precision of p and a scale of s. An

210 DB2 UDB for iSeries SQL Reference V5R2

DECIMAL

error occurs if the number of significant decimal digits required to represent the
whole part of the number is greater than p-s.

Character to Decimal

character-expression
An expression that must contain a character-string representation of a number.
Leading and trailing blanks are eliminated and the resulting string must
conform to the rules for forming an integer or decimal constant. The
expression must not be a CLOB.

precision
An integer constant that is greater than or equal to 1 and less than or equal to
31. If not specified, the default is 15.

scale
An integer constant that is greater than or equal to 0 and less than or equal to
precision. If not specified, the default is 0.

decimal-character
Specifies the single-byte character constant that was used to delimit the
decimal digits in character-expression from the whole part of the number. The
character must be a period or comma. If the second argument is not specified,
the decimal point is the default decimal separator character. For more
information, see [“Decimal Point” on page 100|

The result is the same number that would result from CAST(character-expression AS
DECIMAL(p,s)). Digits are truncated from the end if the number of digits to the
right of the decimal separator character is greater than the scale s. An error occurs
if the number of significant digits to the left of the decimal separator character (the
whole part of the number) in character-expression is greater than p-s. The default
decimal separator character is not valid in the substring if the decimal-character
argument is specified.

Examples

* Use the DECIMAL function in order to force a DECIMAL data type (with a
precision of 5 and a scale of 2) to be returned in a select-list for the EDLEVEL
column (data type = SMALLINT) in the EMPLOYEE table. The EMPNO column
should also appear in the select list.

SELECT EMPNO, DECIMAL(EDLEVEL,5,2)
FROM EMPLOYEE

* Using the PROJECT table, select all of the starting dates (PRSTDATE) that have
been incremented by a duration that is specified in a host variable. Assume the
host variable PERIOD is of type INTEGER. Then, in order to use its value as a
date duration it must be “cast” as DECIMAL(8,0).

SELECT PRSTDATE + DECIMAL(:PERIOD,8)
FROM PROJECT

* Assume that updates to the SALARY column are input through a window as a
character string using comma as a decimal character (for example, the user
inputs 21400,50). Once validated by the application, it is assigned to the host
variable newsalary which is defined as CHAR(10).

UPDATE STAFF

SET SALARY = DECIMAL(:newsalary, 9, 2, ',")
WHERE ID = :empid

The value of SALARY becomes 21400.50.

Chapter 3. Built-In Functions 211

DEGREES
DEGREES

»>—DEGREES— (—numeric-expression—) ><

The DEGREES function returns the number of degrees of the argument which is an
angle expressed in radians.

The argument is an expression that returns the value of any built-in numeric data
type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example

* Assume the host variable RAD is a DECIMAL(4,3) host variable with a value of
3.142.
SELECT DEGREES (:RAD)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 180.0.

212 DB2 UDB for iSeries SQL Reference V5R2

DIFFERENCE
DIFFERENCE

»»—DIFFERENCE—(—string-expression-1—,—string-expression-2—) > <

The DIFFERENCE function returns a value from 0 to 4 representing the difference
between the sounds of two strings based on applying the SOUNDEX function to
the strings. A value of 4 is the best possible sound match.

The arguments must be a built-in string data types, but not BLOBs, CLOBs, and
DBCLOBs.

The data type of the result is INTEGER. If any argument can be null, the result can
be null; if any argument is null, the result is the null value.

Examples
¢ Assume the following statement:

SELECT DIFFERENCE('CONSTRAINT','CONSTANT'),
SOUNDEX (' CONSTRAINT'),
SOUNDEX (' CONSTANT")
FROM SYSIBM.SYSDUMMY1

Returns 4, C523, and C523. Since the two strings return the same SOUNDEX
value, the difference is 4 (the highest value possible).
* Assume the following statement:

SELECT DIFFERENCE('CONSTRAINT','CONTRITE'),
SOUNDEX (' CONSTRAINT'),
SOUNDEX (' CONTRITE")
FROM SYSIBM.SYSDUMMY1

Returns 2, C523, and C536. In this case, the two strings return different
SOUNDEX values, and hence, a lower difference value.

Chapter 3. Built-In Functions 213

DIGITS
DIGITS

»»—DIGITS— (—numeric-expression—) >

The DIGITS function returns a character-string representation of the absolute value
of a number.

The argument must be a built-in numeric data type of SMALLINT, INTEGER,
BIGINT, or DECIMAL.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a fixed-length character string representing the
absolute value of the argument without regard to its scale. The result does not
include a sign or a decimal point. Instead, it consists exclusively of digits,
including, if necessary, leading zeros to fill out the string. The length of the string
is:

* 5, if the argument is a small zero scale integer

* 10, if the argument is a large zero scale integer

e 19, if the argument is a big integer

* p, if the argument is a decimal or nonzero scale integer with a precision of p

The CCSID of the character string is the default SBCS CCSID at the current server.

Examples

e Assume that a table called TABLEX contains an INTEGER column called
INTCOL containing 10-digit numbers. List all combinations of the first four
digits contained in column INTCOL.

SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)
FROM TABLEX

* Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of its
values is -6.28.

SELECT DIGITS(COLUMNX)
FROM TABLEX
Returns the value '000628'.
The result is a string of length six (the precision of the column) with leading

zeros padding the string out to this length. Neither sign nor decimal point
appear in the result.

214 DB2 UDB for iSeries SQL Reference V5R2

DLCOMMENT
DLCOMMENT

»»—DLCOMMENT— (—Datalink-expression—) ><

The DLCOMMENT function returns the comment value, if it exists, from a
DataLink value.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is VARCHAR(254).

The CCSID of the character string is the same as that of DataLink-expression.

Examples

* Prepare a statement to select the date, the description and the comment from the
link to the ARTICLES column from the HOCKEY_GOALS table. The rows to be
selected are those for goals scored by either of the Richard brothers (Maurice or
Henri).

stmtvar = "SELECT DATE_OF_GOAL, DESCRIPTION, DLCOMMENT(ARTICLES)

FROM HOCKEY_GOALS

WHERE BY_PLAYER = 'Maurice Richard' OR BY_PLAYER = 'Henri Richard' ";
EXEC SQL PREPARE HOCKEY_STMT FROM :stmtvar;

* Given a DataLink value that was inserted into column COLA of a row in table
TBLA using the scalar function:

INSERT INTO TBLA
VALUES (DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b','URL"',"'A comment'))
then the following function operating on that value:
SELECT DLCOMMENT (COLA)
FROM TBLA

Returns the value ‘A comment’.

Chapter 3. Built-In Functions 215

DLLINKTYPE
DLLINKTYPE

»»—DLLINKTYPE—(—Datalink-expression—) >

The DLLINKTYPE function returns the link type value from a DataLink value.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is VARCHAR(4).

The CCSID of the character string is the same as that of DataLink-expression.

Examples

e Given a DataLink value that was inserted into column COLA of a row in table
TBLA using the scalar function:

INSERT INTO TABLA
VALUES (DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL','A comment'))
then the following function operating on that value:
SELECT DLLINKTYPE(COLA)
FROM TBLA

Returns the value "URL’.

216 DB2 UDB for iSeries SQL Reference V5R2

DLURLCOMPLETE
DLURLCOMPLETE

»»—DLURLCOMPLETE— (—Datalink-expression—) ><

The DLURLCOMPLETE function returns the complete URL value from a DataLink
value with a link type of URL. The value is the same as what would be returned
by the concatenation of DLURLSCHEME with "://’, then DLURLSERVER, and
then DLURLPATH. If the DataLink has an attribute of FILE LINK CONTROL and
READ PERMISSION DB, the value includes a file access token.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a varying-length string. The length attribute depends
on the attributes of the DataLink:

e If the DataLink has an attribute of FILE LINK CONTROL and READ
PERMISSION DB, the length attribute of the result is the length attribute of the
argument plus 19.

* Otherwise, the length attribute of the result is the length attribute of the
argument.

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

e Given a DataLink value that was inserted into column COLA of a row in table
TBLA using the scalar function:

INSERT INTO TABLA
VALUES(DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL','A comment'))

then the following function operating on that value:

SELECT DLURLCOMPLETE (COLA)
FROM TBLA

Returns the value

"HTTP:/ /DLFS.ALMADEN.IBM.COM/ x/y /******#xx32345% 3 b, where
RO represents the access token.

Chapter 3. Built-In Functions 217

DLURLPATH
DLURLPATH

»>—DIURLPATH—(—Datalink-expression—) ><

The DLURLPATH function returns the path and file name necessary to access a file
within a given server from a DataLink value with a linktype of URL. When
appropriate, the value includes a file access token.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a varying-length string. The length attribute depends
on the attributes of the DataLink:

¢ If the DataLink has an attribute of FILE LINK CONTROL and READ
PERMISSION DB, the length attribute of the result is the length attribute of the
argument plus 19.

* Otherwise, the length attribute of the result is the length attribute of the
argument.

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

¢ Given a DataLink value that was inserted into column COLA of a row in table
TBLA using the scalar function:

INSERT INTO TABLA
VALUES(DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"'URL','A comment'))

then the following function operating on that value:
SELECT DLURLPATH(COLA)
FROM TBLA

Returns the value '/x/y /*xxsssooeet g b’, where #oxsssreoeaet represents the
access token.

218 DB2 UDB for iSeries SQL Reference V5R2

DLURLPATHONLY
DLURLPATHONLY

»»—DLURLPATHONLY—(—Datalink-expression—) ><

The DLURLPATHONLY function returns the path and file name necessary to
access a file within a given server from a DataLink value with a linktype of URL.
The value returned NEVER includes a file access token.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a varying-length string with a length attribute of that
is equal to the length attribute of the argument.

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

e Given a DataLink value that was inserted into column COLA of a row in table
TBLA using the scalar function:

INSERT INTO TABLA
VALUES(DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL"','A comment'))
then the following function operating on that value:
SELECT DLURLPATHONLY (COLA)
FROM TBLA

Returns the value "/x/y/a.b’.

Chapter 3. Built-In Functions 219

DLURLSCHEME
DLURLSCHEME

»>—DLURLSCHEME— (—Datalink-expression—) ><

The DLURLSCHEME function returns the scheme from a DataLink value with a
linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is VARCHAR(20).

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

¢ Given a DataLink value that was inserted into column COLA of a row in table
TBLA using the scalar function:

INSERT INTO TABLA
VALUES(DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL','A comment'))
then the following function operating on that value:
SELECT DLURLSCHEME (COLA)
FROM TBLA

Returns the value "HTTP'.

220 DB2 UDB for iSeries SQL Reference V5R2

DLURLSERVER
DLURLSERVER

»»—DLURLSERVER— (—Datalink-expression—) ><

The DLURLSERVER function returns the file server from a DataLink value with a
linktype of URL. The value will always be in upper case.

The argument must be an expression that results in a value with a built-in
DataLink data type.

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

The result of the function is a varying-length string with a length attribute of that
is equal to the length attribute of the argument.

If the DataLink value only includes the comment, the result returned is a zero
length string.

The CCSID of the character string is the same as that of DataLink-expression.

Examples

e Given a DataLink value that was inserted into column COLA of a row in table
TBLA using the scalar function:

INSERT INTO TABLA
VALUES(DLVALUE('http://d1fs.almaden.ibm.com/x/y/a.b',"URL','A comment'))
then the following function operating on that value:
SELECT DLURLSERVER(COLA)
FROM TBLA

Returns the value 'DLFS.ALMADEN.IBM.COM’.

Chapter 3. Built-In Functions 221

DLVALUE

»»—DLVALUE—(—data-location |_

DLVALUE

>
| <4

,—linktype-string |_ _|
,—comment-string

The DLVALUE function returns a DataLink value. When the function is on the
right hand side of a SET clause in an UPDATE statement or is in a VALUES clause
in an INSERT statement, it usually also creates a link to a file. However, if only a
comment is specified (in which case the data-location is a zero-length string), the
DataLink value is created with empty linkage attributes so there is no file link.

data-location
If the link type is URL, then this is a character string expression that contains a
complete URL value. If the expression is not an empty string, it must include
the URL scheme and URL server. The actual length of the character string
expression must be less than or equal to 32718 characters.

linktype-string
An optional character string expression that specifies the link type of the
DataLink value. The only valid value is "URL".

comment-string
An optional character string expression that provides a comment or additional
location information. The actual length of the character string expression must
be less than or equal to 254 characters.

The comment-string cannot be the null value. If a comment-string is not specified,
the comment-string is the empty string.

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

The result of the function is a DataLink value.

The CCSID of the DataLink is the same as that of data-location except in the
following cases:

e If the comment string is mixed data and data-location is not mixed data, the
CCSID of the result will be the CCSID of the comment string.*'
e If the data-location has a CCSID of bit data (65535), UCS-2 graphic data (13488),

Turkish data (905 or 1026), or Japanese data (290, 930, or 5026); the CCSID of the
result is described in the following table:

CCSID of CCSID of

data-location comment-string Result CCSID

65535 65535 Job Default CCSID

65535 non-65535 comment-string CCSID (unless the CCSID is
290, 930, 5026, 905, 1026, or 13488 where the
CCSID will then be further modified as
described in the following rows.)

290 any 4396

930 or 5026 any 939

31. If the CCSID of comment string is 5026 or 930, the CCSID of the results will be 939.

222 DB2 UDB for iSeries SQL Reference V5R2

DLVALUE

CCSID of CCSID of

data-location comment-string Result CCSID
905 or 1026 any 500

13488 any 500

When defining a DataLink value using this function, consider the maximum length

of the target of the value. For example, if a column is defined as DataLink(200),

then the maximum length of the data-location plus the comment is 200 bytes.

Examples

e Insert a row into the table. The URL values for the first two links are contained
in the variables named url_article and url_snapshot. The variable named

url_snapshot_comment contains a comment to accompany the snapshot link.
There is, as yet, no link for the movie, only a comment in the variable named

url_movie_comment.

INSERT INTO HOCKEY_GOALS
VALUES ('Maurice Richard',

'Montreal canadian',

I?I ,
'Boston Bruins,
'1952-04-24",

'"Winning goal in game 7 of Stanley Cup final',

DLVALUE(:url_article),

DLVALUE(:url_snapshot, 'URL', :url_snapshot_comment),
DLVALUE('', 'URL', :url_movie_comment))

Chapter 3. Built-In Functions

223

DOUBLE_PRECISION or DOUBLE
DOUBLE_PRECISION or DOUBLE

Numeric to Double

> DOUBLE_PRECISION (—numeric-expression—) ><
DOUBLE

Character to Double

> DOUBLE_PRECISION:I—(—character—expression—)
DOUBLE

The DOUBLE_PRECISION and DOUBLE functions return a floating-point
representation of:

* A number
* A character string representation of a decimal number
* A character string representation of an integer

* A character string representation of a floating-point number

Note: The CAST expression can also be used to return a double-precision
floating-point value. For more information, see [‘CAST Specification” on|
Eage 137

numeric-expression
An expression that returns a value of any built-in numeric data type.

The result is the same number that would occur if the expression were
assigned to a double-precision floating-point column or variable.

character-expression
An expression that returns a character string value. The argument must not be
a CLOB.

The result is the same number that would result from CAST(
character-expression AS DOUBLE PRECISION). Leading and trailing blanks are
eliminated and the resulting string must conform to the rules for forming an
floating-point, integer, or decimal constant.

The result of the function is a double-precision floating-point number. If the
argument can be null, the result can be null; if the argument is null, the result is
the null value.

FLOAT is a synonym for DOUBLE_PRECISION and DOUBLE.

Example
* Using the EMPLOYEE table, find the ratio of salary to commission for
employees whose commission is not zero. The columns involved (SALARY and
COMM) have DECIMAL data types. To eliminate the possibility of out-of-range
results, DOUBLE_PRECISION is applied to SALARY so that the division is
carried out in floating point:
SELECT EMPNO, DOUBLE_PRECISION(SALARY)/COMM

FROM EMPLOYEE
WHERE COMM > 0

224 DB2 UDB for iSeries SQL Reference V5R2

EXP

EXP

»»—EXP— (—numeric-expression—) ><

The EXP function returns a value that is the base of the natural logarithm (e)
raised to a power specified by the argument. The EXP and LN functions are
inverse operations.

The argument is an expression that returns the value of any built-in numeric data

type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example

* Assume the host variable E is a DECIMAL(10,9) host variable with a value of
3.453789832.
SELECT EXP(:E)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 31.62.

Chapter 3. Built-In Functions 225

FLOAT
FLOAT

Numeric to Float

»»>—FLOAT— (—numeric-expression—)

Character to Float

A\
A

»»—FLOAT— (—character-expression—)

The FLOAT function returns a floating point representation of a number.

FLOAT is a synonym for the DOUBLE_PRECISION and DOUBLE functions.
more information, see ["DOUBLE_PRECISION or DOUBLE” on page 224]

226 DB2 UDB for iSeries SQL Reference V5R2

For

FLOOR
FLOOR

»»—FLOOR— (—numeric-expression—) ><

The FLOOR function returns the largest integer value less than or equal to
numeric-expression.

The argument is an expression that returns a value of any built-in numeric data

type.

The result of the function has the same data type and length attribute of the
argument except that the scale is 0 if the argument is a decimal number. For
example, an argument with a data type of DECIMAL(5,5) will result in
DECIMAL(5,0).

If the argument can be null, the result can be null; if the argument is null, the
result is the null value.

Example
* Use the FLOOR function to truncate any digits to the right of the decimal point.

SELECT FLOOR(SALARY)
FROM EMPLOYEE

* Use FLOOR on both positive and negative numbers.

SELECT FLOOR(3.5),
FLOOR(3.1),
FLOOR(-3.1),
FLOOR(-3.5),

FROM SYSIBM.SYSDUMMY1

This example returns:
3. 3. -4. -4,

respectively.

Chapter 3. Built-In Functions 227

GRAPHIC
GRAPHIC

Character to Graphic

»»—GRAPHIC— (—character-expression |_)———>«

, length
_[DEFAU LT—| l—,—integer—|

Graphic to Graphic

»»—GRAPHIC— (—graphic-expression |_) ———><

, length
_EDEFAULT—l l—,—integer‘—|

The GRAPHIC function returns a fixed-length graphic-string representation of a
string expression.

Note: The CAST expression can also be used to return a fixed-length
egraphic-string value. For more information, see|’CAST Specification” on|

The result of the function is a fixed-length graphic string (GRAPHIC).

If the expression can be null, the result can be null. If the expression is null, the
result is the null value.

Character to Graphic

character-expression
Specifies a character string expression. It cannot be a CHAR or VARCHAR bit
data. If the expression is an empty string or the EBCDIC string X'OEOF', the
result is an empty string.

length
Specifies the length attribute of the result and must be an integer constant
between 1 and 16383 if the first argument is not nullable or between 1 and
16382 if the first argument is nullable. If the length of character-expression is less
than the length specified, the result is padded with double-byte blanks to the
length of the result.

If the second argument is not specified, or if DEFAULT is specified, the length
attribute of the result is the same as the length attribute of the first argument.

Each character of the argument determines a character of the result. If the
length attribute of the resulting fixed-length string is less than the actual length
of the first argument, truncation is performed and no warning is returned.

integer
Specifies the CCSID of the result. It must be a DBCS or UCS-2 CCSID. The
CCSID cannot be 65535. If the CCSID represents UCS-2 graphic data, each
character of the argument determines a character of the result. The nth
character of the result is the UCS-2 equivalent of the nth character of the
argument.

If integer is not specified then the CCSID of the result is determined by a
mixed CCSID. Let M denote that mixed CCSID.

228 DB2 UDB for iSeries SQL Reference V5R2

GRAPHIC

In the following rules, S denotes one of the following:

¢ If the string expression is a host variable containing data in a foreign
encoding scheme, S is the result of the expression after converting the data
to a CCSID in a native encoding scheme. (See ['Character Conversion” on|
for more information.)

* If the string expression is data in a native encoding scheme, S is that string
expression.

M is determined as follows:

e If the CCSID of S is a mixed CCSID, M is that CCSID.

 If the CCSID of S is an SBCS CCSID:
— If the CCSID of S has an associated mixed CCSID, M is that CCSID.
— Otherwise the operation is not allowed.

The following table summarizes the result CCSID based on M.

M Result CCSID | Description DBCS Substitution Character
930 300 Japanese EBCDIC X'FEFE’
933 834 Korean EBCDIC X’FEFE’
935 837 S-Chinese EBCDIC X'FEFE’
937 835 T-Chinese EBCDIC X'FEFE’
939 300 Japanese EBCDIC X'FEFE’
5026 4396 Japanese EBCDIC X'FEFE’
5035 4396 Japanese EBCDIC X'FEFE’

The equivalence of SBCS and DBCS characters depends on M. Regardless of
the CCSID, every double-byte code point in the argument is considered a
DBCS character, and every single-byte code point in the argument is
considered an SBCS character with the exception of the EBCDIC mixed data
shift codes X'0E' and X'OF'.

e If the nth character of the argument is a DBCS character, the nth character of
the result is that DBCS character.

¢ If the nth character of the argument is an SBCS character that has an
equivalent DBCS character, the nth character of the result is that equivalent
DBCS character.

¢ If the nth character of the argument is an SBCS character that does not have
an equivalent DBCS character, the nth character of the result is the DBCS
substitution character.

Graphic to Graphic

graphic-expression
Specifies a graphic string expression.

length
Specifies the length attribute of the result and must be an integer constant
between 1 and 16383 if the first argument is not nullable or between 1 and
16382 if the first argument is nullable. If the length of graphic-expression is less
than the length specified, the result is padded with double-byte blanks to the
length of the result.

Chapter 3. Built-In Functions 229

GRAPHIC

If the second argument is not specified, or if DEFAULT is specified, the length
attribute of the result is the same as the length attribute of the first argument.

If the length of the graphic-expression is greater than the length attribute of the
result, truncation is performed. A warning (SQLSTATE 01004) is returned
unless the truncated characters were all blanks.

integer
Specifies the CCSID of the result. It must be a DBCS or UCS-2 CCSID. The
CCSID cannot be 65535.

If integer is not specified then the CCSID of the result is the CCSID of the first
argument.

Example
* Using the EMPLOYEE table, set the host variable DESC (GRAPHIC(24)) to the
GRAPHIC equivalent of the first name (FIRSTNME) for employee number
(EMPNO) "000050".
SELECT GRAPHIC(VARGRAPHIC(FIRSTNME))
INTO :DESC

FROM EMPLOYEE
WHERE EMPNO = '000050'

230 DB2 UDB for iSeries SQL Reference V5R2

HASH
HASH

A\
A

»»—HASH— (——expression)

The HASH function returns the partition number of a set of values. Also see the
PARTITION function. For more information about partition numbers, see the

Multisystem| book.

The arguments can be any built-in data type except date, time, timestamp,
floating-point, or DataLink values.

The result of the function is a large integer with a value between 0 and 1023.

If any of the arguments are null, the result is zero. The result cannot be null.

Example

¢ Use the HASH function to determine what the partitions would be if the
partitioning key was composed of EMPNO and LASTNAME. This query returns
the partition number for every row in EMPLOYEE.

SELECT HASH(EMPNO, LASTNAME)
FROM EMPLOYEE

Chapter 3. Built-In Functions 231

../dbmult/rzaf3mst02.htm
../dbmult/rzaf3mst02.htm

HEX
HEX

»»—HEX—(—expression—) >

The HEX function returns a hexadecimal representation of a value.
The argument can be of any built-in data type.

The result of the function is a character string. If the argument can be null, the
result can be null; if the argument is null, the result is the null value.

The result is a string of hexadecimal digits, the first two digits represent the first
byte of the argument, the next two digits represent the second byte of the
argument, and so forth. If the argument is a datetime value, the result is the
hexadecimal representation of the internal form of the argument.*

If the argument is a varying-length string, the result is a varying-length string.
Otherwise, the result is a fixed-length string. The length attribute of the result is
twice the storage length attribute of the argument. For information on the storage
length attribute see|”CREATE TABLE” on page 507}

The length attribute of the result cannot be greater than 32766 for fixed-length
results or greater than 32740 for varying-length results.

The CCSID of the string is the default SBCS CCSID at the current server.

Example
* Use the HEX function to return a hexadecimal representation of the education
level for each employee.

SELECT FIRSTNME, MIDINIT, LASTNAME, HEX(EDLEVEL)
FROM EMPLOYEE

32. This hexadecimal representation for DATE, TIMESTAMP, and NUMERIC data types is different from other database products
because the internal form for these data types is different.

232 DB2 UDB for iSeries SQL Reference V5R2

HOUR
HOUR

»»—HOUR—(—expression—) ><

The HOUR function returns the hour part of a value.

The argument must be an expression that returns a value of one of the following

built-in data types: a time, a timestamp, a character string or a numeric data type.

e If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a time or timestamp. For the valid
formats of string representations of times and timestamps, see
[Representations of Datetime Values” on page 67]

* If expression is a number, it must be a time duration or timestamp duration. For
the valid formats of datetime durations, see [“Datetime Operands and Durations”’]

on page 130)

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

e If the argument is a time, timestamp, or valid character-string representation of a
time or timestamp:

The result is the hour part of the value, which is an integer between 0 and 24.
* If the argument is a time duration or timestamp duration:

The result is the hour part of the value, which is an integer between —99 and 99.
A nonzero result has the same sign as the argument.

Example

* Using the CL_SCHED sample table, select all the classes that start in the
afternoon.

SELECT =*
FROM CL_SCHED
WHERE HOUR(STARTING) BETWEEN 12 AND 17

Chapter 3. Built-In Functions 233

IDENTITY_VAL_LOCAL
IDENTITY_VAL_LOCAL

»»—IDENTITY_VAL_LOCAL—(—) >

IDENTITY_VAL_LOCAL is a non-deterministic function that returns the most
recently assigned value for an identity column.

The function has no input parameters. The result is a DECIMAL(31,0) regardless of
the actual data type of the identity column that the result value corresponds to.

The value returned is the value that was assigned to the identity column of the
table identified in the most recent INSERT statement for a table containing an
identity column. The INSERT statement has to be issued at the same level; that is,
the value has to be available locally within the level at which it was assigned until
replaced by the next assigned value. A new level is initiated when a trigger,
function, or stored procedure is invoked. A trigger condition is at the same level as
the associated triggered action.

The assigned value can be a value supplied by the user (if the identity column is
defined as GENERATED BY DEFAULT) or an identity value that was generated by
the database manager.

The result can be null. The result is null if an INSERT statement has not been
issued for a table containing an identity column at the current processing level.
This includes invoking the function in a before or after insert trigger.

The result of the IDENTITY_VAL_LOCAL function is not affected by the following
statements:

* An INSERT statement for a table which does not contain an identity column
* An UPDATE statement

* A COMMIT statement

* A ROLLBACK statement

Notes
The following notes explain the behavior of the function when it is invoked in
various situations:

Invoking the function within the VALUES clause of an INSERT statement
Expressions in an INSERT statement are evaluated before values are
assigned to the target columns of the INSERT statement. Thus, when you
invoke IDENTITY_VAL_LOCAL in an INSERT statement, the value that is
used is the most recently assigned value for an identity column from a
previous INSERT statement. The function returns the null value if no such
INSERT statement had been executed within the same level as the
invocation of the IDENTITY_VAL_LOCAL function.

Invoking the function following a failed INSERT statement
The function returns an unpredictable result when it is invoked after the
unsuccessful execution of an INSERT statement for a table with an identity
column. The value might be the value that would have been returned from
the function had it been invoked before the failed INSERT or the value that
would have been assigned had the INSERT succeeded. The actual value
returned depends on the point of failure and is therefore unpredictable.

234 DB2 UDB for iSeries SQL Reference V5R2

IDENTITY_VAL_LOCAL

Invoking the function within the SELECT statement of a cursor
Because the results of the IDENTITY_ VAL_LOCAL function are not
deterministic, the result of an invocation of the IDENTITY_VAL_LOCAL
function from within the SELECT statement of a cursor can vary for each
FETCH statement.

Invoking the function within the trigger condition of an insert trigger
The result of invoking the IDENTITY_VAL_LOCAL function from within
the condition of an insert trigger is the null value.

Invoking the function within a triggered action of an insert trigger
Multiple before or after insert triggers can exist for a table. In such cases,
each trigger is processed separately, and identity values generated by SQL
statements issued within a triggered action are not available to other
triggered actions using the IDENTITY_VAL_LOCAL function. This is the
case even though the multiple triggered actions are conceptually defined at
the same level.

Do not use the IDENTITY_VAL_LOCAL function in the triggered action of
a before insert trigger. The result of invoking the IDENTITY_VAL_LOCAL
function from within the triggered action of a before insert trigger is the
null value. The value for the identity column of the table for which the
trigger is defined cannot be obtained by invoking the
IDENTITY_VAL_LOCAL function within the triggered action of a before
insert trigger. However, the value for the identity column can be obtained
in the triggered action by referencing the trigger transition variable for the
identity column.

The result of invoking the IDENTITY_VAL_LOCAL function in the
triggered action of an after insert trigger is the value assigned to an
identity column of the table identified in the most recent INSERT statement
invoked in the same triggered action for a table containing an identity
column. If an INSERT statement for a table containing an identity column

was not executed within the same triggered action before invoking the
IDENTITY_VAL_LOCAL function, then the function returns a null value.

Invoking the function following an INSERT with triggered actions
The result of invoking the function after an INSERT that activates triggers
is the value actually assigned to the identity column (that is, the value that
would be returned on a subsequent SELECT statement). This value is not
necessarily the value provided in the INSERT statement or a value
generated by the database manager. The assigned value could be a value
that was specified in a SET transition variable statement within the
triggered action of a before insert trigger for a trigger transition variable
associated with the identity column.

Examples

 Set the variable IVAR to the value assigned to the identity column in the
EMPLOYEE table. The value returned from the function in the VALUES
statement should be 1.

CREATE TABLE EMPLOYEE
(EMPNO INTEGER GENERATED ALWAYS AS IDENTITY,
NAME CHAR(30),
SALARY DECIMAL(5,2),
DEPT SMALLINT)

INSERT INTO EMPLOYEE
(NAME, SALARY, DEPTNO)

Chapter 3. Built-In Functions 235

IDENTITY_VAL_LOCAL
VALUES('Rupert', 989.99, 50)

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

* Assume two tables, T1 and T2, have an identity column named C1. The database
manager generates values 1, 2, 3,...for the C1 column in table T1, and values 10,
11, 12,...for the C1 column in table T2.

CREATE TABLE T1

(C1 SMALLINT GENERATED ALWAYS AS IDENTITY,
C2 SMALLINT)

CREATE TABLE T2
(C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY (START WITH 10) ,
C2 SMALLINT)

INSERT INTO T1 (C2) VALUES(5)

INSERT INTO T1 (C2) VALUES(5)

SELECT = FROM T1
C1 C2
1 5
2 5

VALUES IDENTITY_VAL_LOCAL() INTO :IVAR

At this point, the IDENTITY_VAL_LOCAL function would return a value of 2 in
IVAR. The following INSERT statement inserts a single row into T2 where
column C2 gets a value of 2 from the IDENTITY_VAL_LOCAL function.

INSERT INTO T2 (C2) VALUES(IDENTITY_VAL_LOCAL())

SELECT FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(), 15, 0)
C1 C2
10 2

Invoking the IDENTITY_VAL_LOCAL function after this INSERT would result
in a value of 10, which is the value generated by the database manager for
column C1 of T2. Assume another single row is inserted into T2. For the
following INSERT statement, the database manager assigns a value of 13 to
identity column C1 and gives C2 a value of 10 from IDENTITY_VAL_LOCAL.
Thus, C2 is given the last identity value that was inserted into T2.

INSERT INTO T2 (C2, C1) VALUES(IDENTITY_VAL_LOCAL(), 13)

SELECT = FROM T2
WHERE C1 = DECIMAL(IDENTITY_VAL_LOCAL(), 15, 0)
C1 Cc2
13 10

e The IDENTITY_VAL_LOCAL function can also be invoked in an INSERT
statement that both invokes the IDENTITY_VAL_LOCAL function and causes a
new value for an identity column to be assigned. The next value to be returned
is thus established when the IDENTITY_VAL_LOCAL function is invoked after
the INSERT statement completes. For example, consider the following table
definition:

236 DB2 UDB for iSeries SQL Reference V5R2

IDENTITY_VAL_LOCAL

CREATE TABLE T3
(C1 SMALLINT GENERATED BY DEFAULT AS IDENTITY,
C2 SMALLINT)

For the following INSERT statement, specify a value of 25 for the C2 column,
and the database manager generates a value of 1 for C1, the identity column.
This establishes 1 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

INSERT INTO T3 (C2) VALUES(25)

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is

invoked to provide a value for the C2 column. A value of 1 (the identity value
assigned to the C1 column of the first row) is assigned to the C2 column, and
the database manager generates a value of 2 for C1, the identity column. This

establishes 2 as the value that will be returned on the next invocation of the
IDENTITY_VAL_LOCAL function.

INSERT INTO T3 (C2) VALUES(IDENTITY VAL _LOCAL())

In the following INSERT statement, the IDENTITY_VAL_LOCAL function is
again invoked to provide a value for the C2 column, and the user provides a
value of 11 for C1, the identity column. A value of 2 (the identity value assigned
to the C1 column of the second row) is assigned to the C2 column. The

assignment of 11 to C1 establishes 11 as the value that will be returned on the
next invocation of the IDENTITY_VAL_LOCAL function.

INSERT INTO T3 (C2, C1) VALUES(IDENTITY_VAL_LOCAL(), 11)

After the 3 INSERT statements have been processed, table T3 contains the
following:

C1 C2
1 25
2 1

11 2

The contents of T3 illustrate that the expressions in the VALUES clause are
evaluated before the assignments for the columns of the INSERT statement.
Thus, an invocation of an IDENTITY_VAL_LOCAL function invoked from a
VALUES clause of an INSERT statement uses the most recently assigned value
for an identity column in a previous INSERT statement.

Chapter 3. Built-In Functions 237

IFNULL
IFNULL

»>—IFNULL—(—expression—,—expression—) ><

The IFNULL function returns the value of the first non-null expression.

The IFNULL function is identical to the COALESCE scalar function with two
arguments. For more information, see [“COALESCE” on page 193

Example

* When selecting the employee number (EMPNO) and salary (SALARY) from all
the rows in the EMPLOYEE table, if the salary is missing (that is, null), then
return a value of zero.

SELECT EMPNO, IFNULL(SALARY,0)
FROM EMPLOYEE

238 DB2 UDB for iSeries SQL Reference V5R2

INTEGER
INTEGER or INT

Numeric to Integer

> INTEGER (—numeric-expression—) ><

Character to Integer

> INTEGER (—character-expression—) ><
INT

The INTEGER function returns an integer representation of:
* A number

* A character string representation of a decimal number

* A character string representation of an integer

* A character string representation of a floating-point number

Note: The CAST expression can also be used to return an integer value. For more
information, see [“CAST Specification” on page 137|

Numeric to Integer

numeric-expression
An expression that returns a numeric value of any built-in numeric data type.

If the argument is a numeric-expression, the result is the same number that
would occur if the argument were assigned to a large integer column or
variable. If the whole part of the argument is not within the range of integers,
an error occurs. The fractional part of the argument is truncated.

Character to Integer

character-expression
An expression that returns a character string value.

An expression that returns a value that is a character-string representation of
an integer. The expression must not be a CLOB.

The result is the same number that would result from CAST(
character-expression AS INTEGER). Leading and trailing blanks are eliminated
and the resulting string must conform to the rules for forming a floating-point,
integer, or decimal constant. If the whole part of the argument is not within
the range of integers, an error occurs. Any fractional part of the argument is
truncated.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

Example

¢ Using the EMPLOYEE table, select a list containing salary (SALARY) divided by
education level (EDLEVEL). Truncate any decimal in the calculation. The list

should also contain the values used in the calculation and the employee number
(EMPNO).

Chapter 3. Built-In Functions 239

INTEGER

SELECT INTEGER(SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO
FROM EMPLOYEE

240 DB2 UDB for iSeries SQL Reference V5R2

JULIAN_DAY
JULIAN_DAY

»»>—JULIAN_DAY—(—expression—) ><

The JULIAN_DAY function returns an integer value representing a number of days
from January 1, 4712 B.C. (the start of the Julian date calendar) to the date
specified in the argument.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, or a valid character-string representation
of a date or timestamp. An argument with a character string data type must not be
a CLOB. For the valid formats of string representations of dates and timestamps,
see [“String Representations of Datetime Values” on page 67

The result of the function is a large integer. The result can be null; if the argument
is null, the result is the null value.

Examples

* Using sample table EMPLOYEE, set the integer host variable JDAY to the Julian
day of the day that Christine Haas (EMPNO = "000010") was employed
(HIREDATE = "1965-01-01").

SELECT JULIAN_DAY (HIREDATE)
INTO :JDAY
FROM EMPLOYEE
WHERE EMPNO = '000010'

The result is that JDAY is set to 2438762.
* Set integer host variable JDAY to the Julian day for January 1, 1998.

SELECT JULIAN_DAY('1998-01-01")
INTO :JDAY
FROM SYSIBM.SYSDUMMY1

The result is that JDAY is set to 2450815.

Chapter 3. Built-In Functions 241

LAND
LAND

—
\4
A

»»—| AND— (—character-expression——,—character-expression

The LAND function returns a string that is the logical "AND’ of the argument
strings. This function takes the first argument string, does an AND comparison
with the next string, and then continues to do AND comparisons with each
successive argument using the previous result. If an argument is encountered that
is shorter than the previous result, it is padded with blanks.

The arguments must be character strings but cannot be LOBs. The arguments
cannot be mixed data character strings or graphic strings.

The arguments are converted, if necessary, to the attributes of the result. The
attributes of the result are determined as follows:

* If all the arguments are fixed-length strings, the result is a fixed-length string of
length 7, where n is the length of the longest argument.

* If any argument is a varying-length string, the result is a varying-length string
with length attribute 1, where n is the length attribute of the argument with
greatest length attribute. The actual length of the result is m, where m is the
actual length of the longest argument.

If an argument can be null, the result can be null; if an argument is null, the result
is the null value.

The CCSID of the result is 65535.

Example

* Assume the host variable L1 is a CHARACTER(2) host variable with a value of
X’A1B71’, host variable L2 is a CHARACTER(3) host variable with a value of
X’FOF040’, and host variable L3 is a CHARACTER(4) host variable with a value
of X’A1B10040".

SELECT LAND(:L1,:L2,:L3)
FROM SYSIBM.SYSDUMMY1

Returns the value X”A0B00000’.
¢ Likewise,

SELECT LAND(:L3,:L2,:L1)
FROM SYSIBM.SYSDUMMY1

Returns the value X’A0B00040’. In this case, the shorter arguments are padded
with blanks (X’40’), so the logical AND result differs from the first example.

242 DB2 UDB for iSeries SQL Reference V5R2

LCASE
LCASE

»»—| CASE—(—string-expression—) ><

The LCASE function returns a string in which all the characters have been
converted to lowercase characters, based on the CCSID of the argument.

The LCASE function is identical to the LOWER function. For more information, see
[“LOWER” on page 253}

Chapter 3. Built-In Functions 243

LEFT

LEFT

»»—| EFT—(—string-expression—,—integer—) >

The LEFT function returns the leftmost integer bytes of string-expression.

If string-expression is a character string, the result is a character string, and each
character is one byte. If string-expression is a graphic string, the result is a graphic
string, and each character is a DBCS or UCS-2 character. If string-expression is a
binary string, the result is a binary string, and each character is one byte.

string-expression
An expression that specifies the string from which the result is derived.
String-expression must be a character string, graphic string, or a binary string
with a built-in data type.

A substring of string-expression is zero or more contiguous characters of
string-expression. If string-expression is a graphic string, a character is a DBCS or
UCS-2 character. If string-expression is a character string or binary string, a
character is a byte.””

integer
An expression that specifies the length of the result. integer must be an integer

greater than or equal to 0 and less than or equal to 1, where # is the length
attribute of string-expression. It must not, however, be the integer constant 0.

The string-expression is effectively padded on the right with the necessary
number of blank characters (or hexadecimal zeroes for binary strings) so that
the specified substring of string-expression always exists.

The result of the function is a varying-length string with a length attribute that is
the same as the length attribute of string-expression and a data type that depends
on the data type of string-expression:

* VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC
* VARCHAR if string-expression is CHAR or VARCHAR

* DBCLOB if string-expression is DBCLOB

* CLOB if string-expression is CLOB

* BLOB if string-expression is BLOB

If integer is an integer constant and the argument is not a BLOB, CLOB, or
DBCLOB, the result of the function is a fixed-length string.

The actual length of the result is integer.

If any argument can be null, the result can be null; if any argument is null, the
result is the null value.

The CCSID of the result is the same as that of string-expression.

33. The LEFT function accepts mixed data strings. However, because LEFT operates on a strict byte-count basis, the result will not

necessarily be a properly formed mixed data string.

244 DB2 UDB for iSeries SQL Reference V5R2

LEFT

Example

* Assume the host variable NAME (VARCHAR(50)) has a value of 'KATIE
AUSTIN' and the host variable FIRSTNAME_LEN (int) has a value of 5.
SELECT LEFT(:NAME, :FIRSTNAME_LEN)
FROM SYSIBM.SYSDUMMY1

Returns the value 'KATIE'

Chapter 3. Built-In Functions 245

LENGTH
LENGTH

»>—| ENGTH—(—expression—) ><

The LENGTH function returns the length of a value. See
[“CHARACTER_LENGTH” on page 18§ for a similar function.

The argument is an expression that returns a value of any built-in data type.

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length of strings includes blanks. The
length of a varying-length string is the actual length, not the length attribute.

The length of a graphic string is the number of double-byte characters (the number
of bytes divided by 2). The length of all other values is the number of bytes used
to represent the value:

Numbers:

* 2 for small integer

* 4 for large integer

* 8 for big integer

* p for zoned decimal numbers with precision p

* The integral part of (p/2)+1 for packed decimal numbers with precision p
* 4 for single-precision float

* 8 for double-precision float

* 26 for row ID

Character strings:

* The length of the string

Graphic strings:

¢ The number of DBCS or UCS-2 characters in the string
Datetime values:

* 3 for time

* 4 for date

* 10 for timestamp

DataLink values:

e The actual number of bytes used to store the DataLink value (plus 19 if the
DataLink is FILE LINK CONTROL and READ PERMISSION DB).

Examples

* Assume the host variable ADDRESS is a varying-length character string with a
value of ‘895 Don Mills Road’.

SELECT LENGTH(:ADDRESS)
FROM SYSIBM.SYSDUMMY1

Returns the value 18.
¢ Assume that PRSTDATE is a column of type DATE.

246 DB2 UDB for iSeries SQL Reference V5R2

SELECT LENGTH(PRSTDATE)
FROM PROJECT

Returns the value 4.

* Assume that PRSTDATE is a column of type DATE.

SELECT LENGTH(CHAR(PRSTDATE, EUR))
FROM PROJECT

Returns the value 10.

LENGTH

Chapter 3. Built-In Functions

247

LN
LN

»»>—|N—(—numeric-expression—) >

The LN function returns the natural logarithm of a number. The LN and EXP
functions are inverse operations.

The argument is an expression that returns a value of any built-in numeric data
type. The value of the argument must be greater than zero.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

Example

* Assume the host variable NATLOG is a DECIMAL(4,2) host variable with a
value of 31.62.
SELECT LN(:NATLOG)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 3.45.

248 DB2 UDB for iSeries SQL Reference V5R2

LNOT

LNOT

»»—|NOT—(—character-expression—) ><

The LNOT function returns a string that is the logical NOT of the argument string.

The argument must be a character string but cannot be a LOB. The argument
cannot be a MIXED character string or a graphic string.

The data type and length attribute of the result is the same as the data type and
length attribute of the argument value. If the argument is a varying-length string,
the actual length of the result is the same as the actual length of the argument
value. If the argument can be null, the result can be null; if the argument is null,
the result is the null value.

The CCSID of the result is 65535.

Example
* Assume the host variable L1 is a CHARACTER(2) host variable with a value of
X"FOFQ’.
SELECT LNOT(:L1)
FROM SYSIBM.SYSDUMMY1

Returns the value X’0FOF’.

Chapter 3. Built-In Functions 249

LOCATE
LOCATE

) »<
<

»»—| OCATE—(—search-string—,—source-string |_ _|
,—Start

The LOCATE function returns the starting position of the first occurrence of one
string (called the search-string) within another string (called the source-string). If the
search-string is not found and neither argument is null, the result is zero. If the
search-string is found, the result is a number from 1 to the actual length of the
source-string. If the optional start is specified, it indicates the character position in
the source-string at which the search is to begin.

search-string
An expression that specifies the string that is to be searched for. Search-string
may be a character-string, a graphic-string, or a binary-string expression. It
must be compatible with the source-string.

source-string
An expression that specifies the source string in which the search is to take
place. Source-string may be a character-string, a graphic-string, or a
binary-string expression.

start
An expression that specifies the position within source-string at which the
search is to start. [t must be a positive integer.

The result of the function is a large integer. If any of the arguments can be null, the
result can be null; if any of the arguments is null, the result is the null value.

If start is specified, the function is similar to:
POSSTR(SUBSTR(source-string,start) , search-string)

If start is not specified, the function is equivalent to:
POSSTR(source-string , search-string)

For more information, see [“POSITION or POSSTR” on page 271}

If the CCSID of the search-string is different than the CCSID of the source-string, it is
converted to the CCSID of the source-string.

Example

* Select RECEIVED and SUBJECT columns as well as the starting position of the
words ‘GOOD’” within the NOTE_TEXT column for all entries in the IN_TRAY
table that contain these words.

SELECT RECEIVED, SUBJECT, LOCATE('GOOD', NOTE_TEXT)

FROM IN_TRAY
WHERE LOCATE('GOOD', NOTE_TEXT) <> 0

250 DB2 UDB for iSeries SQL Reference V5R2

LOG10

LOG10

»»—| 0G10— (—numeric-expression—) ><

The LOGI10 function returns the common logarithm (base 10) of a number. The
LOG10 and ANTILOG functions are inverse operations.

The argument value can be of any built-in numeric data type.

The data type of the result is double-precision floating point. If the argument can
be null, the result can be null; if the argument is null, the result is the null value.

LOG is a synonym for LOGI10. It is supported only for compatibility with previous
DB2 releases. LOG10 should be used instead of LOG because some database
managers and applications implement LOG as the natural logarithm of a number
instead of the common logarithm of a number.

Example

* Assume the host variable L is a DECIMAL(4,2) host variable with a value of
31.62.
SELECT L0G10(:L)
FROM SYSIBM.SYSDUMMY1

Returns the approximate value 1.49.

Chapter 3. Built-In Functions 251

LOR
LOR

—
\4
A

»»—| OR— (—character-expression——,—character-expression

The LOR function returns a string that is the logical OR of the argument strings.
This function takes the first argument string, does an OR comparison with the next
string, and then continues to do OR comparisons for each successive argument
using the previous result. If an argument is encountered that is shorter than the
previous result, it is padded with blanks.

The arguments must be character strings but cannot be LOBs. The arguments
cannot be mixed data character strings or graphic strings.

The arguments are converted, if necessary, to the attributes of the result. The
attributes of the result are determined as follows:

* If all the arguments are fixed-length strings, the result is a fixed-length string of
length 7, where n is the length of the longest argument.

* If any argument is a varying-length string, the result is a varying-length string
with length attribute 1, where n is the length attribute of the argument with
greatest length attribute. The actual length of the result is m, where m is the
actual length of the longest argument.

If an argument can be null, the result can be null; if an argument is null, the result
is the null value.

The CCSID of the result is 65535.

Example

* Assume the host variable L1 is a CHARACTER(2) host variable with a value of
X’0101’, host variable L2 is a CHARACTER(3) host variable with a value of
X’FOF000’, and host variable L3 is a CHARACTER(4) host variable with a value
of X’0000000F".

SELECT LOR(:L1,:L2,:L3)
FROM SYSIBM.SYSDUMMY1
Returns the value X’F1F1000F".
¢ Likewise,

SELECT LOR(:L3,:L2,:L1)
FROM SYSIBM.SYSDUMMY1

Returns the value X'F1F1404F’. In this case, the shorter arguments are padded
with blanks (X’40’), so the logical OR result differs from the first example.

252 DB2 UDB for iSeries SQL Reference V5R2

LOWER
LOWER

»»—| OWER—(—string-expression—) ><

The LOWER function returns a string in which all the characters have been
converted to lowercase characters, based on the CCSID of the argument. Only
SBCS and UCS-2 graphic characters are converted. The characters A-Z are
converted to a-z, and characters with diacritical marks are converted to their
lowercase equivalent, if any. Refer to the [UCS-2 level 1 mapping tables| section of
the topic in the iSeries Information Center for a description of the

monocasing tables that are used for this translation.

string-expression
An expression that specifies the string to be converted. String-expression must
be a character or UCS-2 graphic string.

The result of the function has the same data type, length attribute, actual length,
and CCSID as the argument. If the argument can be null, the result can be null. If
the argument is null, the result is the null value.

LCASE is a synonym for LOWER.

Examples

e Ensure that the characters in the value of host variable NAME are lowercase.
NAME has a data type of VARCHAR(30) and a value of 'Christine Smith’.
SELECT LOWER(:NAME)

FROM SYSIBM.SYSDUMMY1

The result is the value ’christine smith’.

Chapter 3. Built-In Functions 253

../nls/rbagsucslevel1maptble.htm
../nls/rbagsglobalmain.htm

LTRIM

LTRIM

»»—| TRIM—(—string-expression—) >

The LTRIM function removes blanks or hexadecimal zeros from the beginning of a
string expression. **

The argument must be a string expression.

* If the argument is a binary string, then the leading hexadecimal zeros (X’00") are
removed.

* If the argument is a DBCS graphic string, then the leading DBCS blanks are
removed.

* If the first argument is a UCS-2 graphic string, then the leading UCS-2 blanks
are removed

¢ Otherwise, leading SBCS blanks are removed.

The data type of the result depends on the data type of expression:

Data type of expression Data type of the Result
CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC VARGRAPHIC

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

The length attribute of the result is the same as the length attribute of
string-expression. The actual length of the result is the length of string-expression
minus the number of bytes removed. If all characters are removed, the result is an
empty string.

If the first argument can be null, the result can be null; if the first argument is null,
the result is the null value.

The CCSID of the result is the same as that of the string.

Example
* Assume the host variable HELLO of type CHAR(9) has a value of " Hello’.

SELECT LTRIM(:HELLO)
FROM SYSIBM.SYSDUMMY1

Results in: "Hello’.

34. The LTRIM function returns the same results as: STRIP(expression, LEADING)

254 DB2 UDB for iSeries SQL Reference V5R2

MAX

MAX

A\
A

»»—MAX— (—expression——,—expression)

The MAX scalar function returns the maximum value in a set of values.

The arguments must be compatible. Character-string arguments are compatible
with datetime values, but are not compatible with graphic strings. The arguments
cannot be DataLink values.

The result of the function is the largest argument value. The result can be null if at
least one argument can be null; the result is the null value if one of the arguments
is null. The selected arguments are converted, if necessary, to the attributes of the
result. The attributes of the result are determined as follows:

e If the arguments contain at least one date and the remaining arguments are
dates or valid string representations of dates, the result is a date. If the
arguments contain at least one time and the remaining arguments are times or
valid string representations of times, the result is a time. If the arguments
contain at least one timestamp and the remaining arguments are timestamps or
valid string representations of timestamps, the result is a timestamp.

* If the arguments are strings, the CCSID of the result is the CCSID that would
result if the arguments were concatenated. See [‘Conversion Rules for Operations|
[That Combine Strings” on page 95

If all the arguments are fixed-length strings, the result is a fixed-length string of

length n, where n is the length of the longest argument.

+ If any argument is a varying-length string, the result is a varying-length string
with length attribute 1, where # is the length attribute of the argument with
greatest length attribute. The actual length of the result is m, where m is the
actual length of the longest argument.

* If the arguments are numbers, the result data type is the same as if the

arguments were added. In the case of a decimal result:

— The scale is s, where s is the scale of the argument with the greatest scale.
— The precision is the minimum of 31 and s+n, where 7 is the number of digits
in the argument with the largest difference between its precision and scale.

— The number of digits required to represent the integral part of the largest
argument must not be greater than 31-s.

If a sort sequence other than *HEX is in effect when the statement is executed and
SBCS, UCS-2, or mixed data is involved, the weighted values of the strings are
compared instead of the actual values. The weighted values are based on the sort
sequence.

Examples

* Assume the host variable M1 is a DECIMAL(2,1) host variable with a value of
5.5, host variable M2 is a DECIMAL(3,1) host variable with a value of 4.5, and
host variable M3 is a DECIMAL(3,2) host variable with a value of 6.25.

SELECT MAX(:M1,:M2,:M3)
FROM SYSIBM.SYSDUMMY1

Returns the value 6.25.

Chapter 3. Built-In Functions 255

MAX

* Assume the host variable M1 is a CHARACTER(2) host variable with a value of
"AA’, host variable M2 is a CHARACTER(3) host variable with a value of "AA ”,
and host variable M3 is a CHARACTER(4) host variable with a value of "AA A’.

SELECT MAX(:M1,:M2,:M3)
FROM SYSIBM.SYSDUMMY1

Returns the value 'AA A’.

256 DB2 UDB for iSeries SQL Reference V5R2

MICROSECOND
MICROSECOND

»»—MICROSECOND— (—expression—) ><

The MICROSECOND function returns the microsecond part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a timestamp, a character string, or a numeric data type.

e If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a timestamp. For the valid formats of
string representations of timestamps, see [“String Representations of Datetime]
[Values” on page 67

* If expression is a number, it must be a timestamp duration. For the valid formats
of datetime durations, see[“Datetime Operands and Durations” on page 130

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

e If the argument is a timestamp or a valid character-string representation of a
timestamp:
The result is the microsecond part of the value, which is an integer between 0
and 999999.

* If the argument is a duration:

The result is the microsecond part of the value, which is an integer between
—-999999 and 999999. A nonzero result has the same sign as the argument.

Example

¢ Assume a table TABLEA contains two columns, TS1 and TS2, of type
TIMESTAMP. Select all rows in which the microseconds portion of TS1 is not
zero and the seconds portion of TS1 and TS2 are identical.

SELECT *
FROM TABLEA
WHERE MICROSECOND(TS1) <> O AND SECOND(TS1) = SECOND(TS2)

Chapter 3. Built-In Functions 257

MIDNIGHT_SECONDS
MIDNIGHT_SECONDS

»»>—MIDNIGHT SECONDS— (—expression—) >

The MIDNIGHT_SECONDS function returns an integer value that is greater than
or equal to 0 and less than or equal to 86 400 representing the number of seconds
between midnight and the time value specified in the argument.

The argument must be an expression that returns a value of one of the following
built-in data types: time, a timestamp, or a valid character-string representation of
a time or timestamp. An argument with a character-string data type must not be a
CLOB. For the valid formats of string representations of timestamps, see
[Representations of Datetime Values” on page 67}

The result of the function is large integer. The result can be null; if the argument is
null, the result is the null value.

Examples

* Find the number of seconds between midnight and 00:01:00, and midnight and
13:10:10. Assume that host variable XTIME1 has a value of '00:01:00’, and that
XTIME2 has a value of '13:10:10".

SELECT MIDNIGHT_SECONDS(:XTIME1), MIDNIGHT_SECONDS(:XTIME2)
FROM SYSIBM.SYSDUMMY1

This example returns 60 and 47410. Because there are 60 seconds in a minute
and 3600 seconds in an hour, 00:01:00 is 60 seconds after midnight ((60 * 1) + 0),
and 13:10:10 is 47410 seconds ((3600 * 13) + (60 * 10) + 10).

* Find the number of seconds between midnight and 24:00:00, and midnight and
00:00:00.

SELECT MIDNIGHT_SECONDS('24:00:00'), MIDNIGHT_SECONDS('00:00:00')
FROM SYSIBM.SYSDUMMY1

This example returns 86400 and 0. Although these two values represent the same
point in time, different values are returned.

258 DB2 UDB for iSeries SQL Reference V5R2

MIN

MIN

A\
A

»»—MIN—(—expression——,—expression)

The MIN scalar function returns the minimum value in a set of values.

The arguments must be compatible. Character-string arguments are compatible
with datetime values, but are not compatible with graphic strings. The arguments
cannot be DataLink values.

The result of the function is the smallest argument value. The result can be null if
at least one argument can be null; the result is the null value if one of the
arguments is null. The selected arguments are converted, if necessary, to the
attributes of the result. The attributes of the result are determined as follows:

e If the arguments contain at least one date and the remaining arguments are
dates or valid string representations of dates, the result is a date. If the
arguments contain at least one time and the remaining arguments are times or
valid string representations of times, the result is a time. If the arguments
contain at least one timestamp and the remaining arguments are timestamps or
valid string representations of timestamps, the result is a timestamp.

* If the arguments are strings, the CCSID of the result is the CCSID that would
result if the arguments were concatenated. See [‘Conversion Rules for Operations|
[That Combine Strings” on page 95

If all the arguments are fixed-length strings, the result is a fixed-length string of

length n, where n is the length of the longest argument.

+ If any argument is a varying-length string, the result is a varying-length string
with length attribute 1, where # is the length attribute of the argument with
greatest length attribute. The actual length of the result is m, where m is the
actual length of the smallest argument.

* If the arguments are numbers, the data type of the result is the data type that

would result if the arguments were added. In the case of a decimal result:

— The scale is s, where s is the scale of the argument with the greatest scale.
— The precision is the minimum of 31 and s+n, where 7 is the number of digits
in the argument with the largest difference between its precision and scale.

— The number of digits required to represent the integral part of the largest
argument must not be greater than 31-s.

If a sort sequence other than *HEX is in effect when the statement is executed and
SBCS, UCS-2, or mixed data is involved, the weighted values of the strings are
compared instead of the actual values. The weighted values are based on the sort
sequence.

Examples

* Assume the host variable M1 is a DECIMAL(2,1) host variable with a value of
5.5, host variable M2 is a DECIMAL(3,1) host variable with a value of 4.5, and
host variable M3 is a DECIMAL(3,2) host variable with a value of 6.25.

SELECT MIN(:M1,:M2,:M3)
FROM SYSIBM.SYSDUMMY1

Returns the value 4.50.

Chapter 3. Built-In Functions 259

MIN

* Assume the host variable M1 is a CHARACTER(2) host variable with a value of
"AA’, host variable M2 is a CHARACTER(3) host variable with a value of

"AAA’, and host variable M3 is a CHARACTER(4) host variable with a value of
"AAAA

SELECT MIN(:M1,:M2,:M3)
FROM SYSIBM.SYSDUMMY1

Returns the value "AA .

260 DB2 UDB for iSeries SQL Reference V5R2

MINUTE
MINUTE

»>—MINUTE—(—expression—) ><

The MINUTE function returns the minute part of a value.

The argument must be an expression that returns a value of one of the following

built-in data types: a time, a timestamp, a character string or a numeric data type.

e If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a time or timestamp. For the valid

formats of string representations of times and timestamps, see
[Representations of Datetime Values” on page 67]

* If expression is a number, it must be a time duration or timestamp duration. For
the valid formats of datetime durations, see [“Datetime Operands and Durations”’]

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:
e If the argument is a time, a timestamp, or a valid character-string representation
of a time or timestamp:
The result is the minute part of the value, which is an integer between 0 and 59.
* If the argument is a time duration or timestamp duration:

The result is the minute part of the value, which is an integer between -99 and
99. A nonzero result has the same sign as the argument.

Example
* Using the CL_SCHED sample table, select all classes with a duration less than 50
minutes.

SELECT *
FROM CL_SCHED
WHERE HOUR(ENDING - STARTING) = O AND
MINUTE(ENDING - STARTING) < 50

Chapter 3. Built-In Functions 261

MOD
MOD

»»>—MOD— (—numeric-expression-1—,—numeric-expression-2—) ><

The MOD function divides the first argument by the second argument and returns
the remainder.

The formula used to calculate the remainder is:
MOD(x,y) = x - (x/y) =y

where x/y is the truncated integer result of the division. The result is negative
only if first argument is negative.

The arguments must each be an expression that returns a built-in numeric data
type. numeric-expression-2 cannot be zero.

If an argument can be null, the result can be null; if an argument is null, the result
is the null value.

The attributes of the result are determined as follows:

* If both arguments are large or small integers with zero scale, the data type of the
result is large integer.

* If both arguments are integers with zero scale and at least one of the arguments
is a big integer, the data type of the result is big integer.

* If one argument is an integer with zero scale and the other is decimal, the result
is decimal with the same precision and scale as the decimal argument.

* If both arguments are decimal or integer with scale numbers, the result is
decimal. The precision of the result is min (p-s,p’-s’) + max (s,s’), and the scale
of the result is max (s,s’), where the symbols p and s denote the precision and
scale of the first operand, and the symbols p” and s” denote the precision and
scale of the second operand.

e If either argument is floating point, the data type of the result is
double-precision floating point.

The operation is performed in floating point; the operands having been first
converted to double-precision floating-point numbers, if necessary.

An operation involving a floating-point number and an integer is performed
with a temporary copy of the integer that has been converted to
double-precision floating point. An operation involving a floating-point number
and a decimal number is performed with a temporary copy of the decimal
number that has been converted to double-precision floating point. The result of
a floating-point operation must be within the range of floating-point numbers.

Examples

* Assume the host variable M1 is an integer host variable with a value of 5, and
host variable M2 is an integer host variable with a value of 2.

SELECT MOD(:M1,:M2)
FROM SYSIBM.SYSDUMMY1

Returns the value 1.

¢ Assume the host variable M1 is an integer host variable with a value of 5, and
host variable M2 is a DECIMAL(3,2) host variable with a value of 2.20.

262 DB2 UDB for iSeries SQL Reference V5R2

MOD

SELECT MOD(:M1,:M2)
FROM SYSIBM.SYSDUMMY1

Returns the value 0.60.

* Assume the host variable M1 is a DECIMAL(4,2) host variable with a value of
5.50, and host variable M2 is a DECIMAL(4,1) host variable with a value of 2.0.
SELECT MOD(:M1,:M2)
FROM SYSIBM.SYSDUMMY1

Returns the value 1.50.

Chapter 3. Built-In Functions 263

MONTH
MONTH

»»—MONTH— (—expression—) >

The MONTH function returns the month part of a value.

The argument must be an expression that returns a value of one of the following
built-in data types: a date, a timestamp, a character string, or a numeric data type.

e If expression is a character string, it must not be a CLOB and its value must be a
valid character-string representation of a date or timestamp. For the valid
formats of string representations of dates and timestamps, see
[Representations of Datetime Values” on page 67]

* If expression is a number, it must be a date duration or timestamp duration. For
the valid formats of datetime durations, see [“Datetime Operands and Durations”]

The result of the function is a large integer. If the argument can be null, the result
can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

e If the argument is a date, a timestamp, or a valid character-string representation
of a date or timestamp:

The result is the month part of the value, which is an integer between 1 and 12.
* If the argument is a date duration or timestamp duration:

The result is the month part of the value, which is an integer between —99 and
99. A nonzero result has the same sign as the argument.

Example

¢ Select all rows from the EMPLOYEE table for people who were born
(BIRTHDATE) in DECEMBER.

SELECT *
FROM EMPLOYEE
WHERE MONTH(BIRTHDATE) = 12

264 DB2 UDB for iSeries SQL Reference V5R2

NODENAME

NODENAME

»»—NODENAME— (—table-designator—) ><

The NODENAME function returns the relational database name of where a row is
located. If the argument identifies a non-distributed table, the value of the
CURRENT SERVER special register is returned. For more information about nodes,
see the [DB2 Multisystem| book.

The argument is a table designator of the subselect. For more information about
table designators, see [‘Table Designators” on page 107|

In SQL naming, the table name may be qualified. In system naming, the table
name cannot be qualified.

If the argument identifies a view, common table expression, or derived table, the
function returns the relational database name of its base table. If the argument
identifies a view, common table expression, or derived table derived from more
than one base table, the function returns the relational database name of the first
table in the outer subselect of the view, common table expression, or derived table.

The argument must not identify a view, common table expression, or derived table
whose outer subselect includes a column function, a GROUP BY clause, a HAVING
clause, a UNION clause, or DISTINCT clause. If the subselect contains a GROUP
BY or HAVING clause, the NODENAME function can only be specified in the
WHERE clause or as an operand of a column function. If the argument is a
correlation name, the correlation name must not identify a correlated reference.

The data type of the result is VARCHAR(18). The result can be null.

The CCSID of the result is the default CCSID of the current server.

Example

* Join the EMPLOYEE and DEPARTMENT tables, select the employee number
(EMPNO) and determine the node from which each row involved in the join
originated.

SELECT EMPNO, NODENAME(X), NODENAME(Y)
FROM EMPLOYEE X, DEPARTMENT Y
WHERE X.DEPTNO=Y.DEPTNO

Chapter 3. Built-In Functions 265

../dbmult/rzaf3mst02.htm

NODENUMBER

NODENUMBER

»»—NODENUMBER— (—table-designator—) >

The NODENUMBER function returns the node number of a row. If the argument
identifies a non-distributed table, the value 0 is returned.®® For more information
about nodes and node numbers, see the [DB2 Multisystem| book.

The argument is a table designator of the subselect. For more information about
table designators, see [‘Table Designators” on page 107}

In SQL naming, the table name may be qualified. In system naming, the table
name cannot be qualified.

If the argument identifies a view, common table expression, or derived table, the
function returns the node number of its base table. If the argument identifies a
view, common table expression, or derived table derived from more than one base
table, the function returns the node number of the first table in the outer subselect
of the view, common table expression, or derived table.

The argument must not identify a view, common table expression, or derived table
whose outer subselect includes a column function, a GROUP BY clause, a HAVING
clause, a UNION clause, or DISTINCT clause. If the subselect contains a GROUP
BY or HAVING clause, the NODENUMBER function can only be specified in the
WHERE clause or as an operand of a column function. If the argument is a
correlation name, the correlation name must not identify a correlated reference.

The data type of the result is a large integer. The result can be null.

Example

* Determine the node number and employee name for each row in the
EMPLOYEE table. If this is a dist