
iSeries

DB2 Universal Database for iSeries Database
Programming
Version 5

ERserver
���

iSeries

DB2 Universal Database for iSeries Database
Programming
Version 5

ERserver
���

© Copyright International Business Machines Corporation 1998, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About DB2 Universal Database for iSeries Database Programming xiii
Who should read DB2 Universal Database for iSeries Database Programming xiii
What’s new for V5R2 in DB2 Universal Database for iSeries Database Programming xiii
Code disclaimer information . xiv

Part 1. Database Programming Overview . 1

Chapter 1. Database file concepts . 3
DB2 Universal Database for iSeries . 3
Interfaces to DB2 UDB for iSeries . 3

Traditional system interface . 3
SQL . 3
iSeries Navigator . 4
Query for iSeries . 4

Database files . 4
Source file . 4
Physical file . 4
Logical file . 4
Member . 5
Record . 5

How database files are described . 5
Externally and program-described data . 5
Dictionary-described data . 6
Record format description . 6
Access path description . 7
Naming conventions used in a database file . 7

Database data protection and monitoring . 8

Part 2. Setting Up Database Files . 9

Chapter 2. Creating and describing database files 11
Creating a library. 11

Creating a library using iSeries Navigator. 11

Chapter 3. Setting up source files . 13
Why source files are used . 13
Creating a source file . 13

Creating a source file using CRTSRCPF . 14
IBM-supplied source files . 14
Source file attributes . 15
Creating source files without DDS . 15
Creating source files with DDS . 16

Chapter 4. Describing database files . 17
Describing database files using DDS . 18

Example: Describing a physical file using DDS. 19
Example: Describing a logical file using DDS . 21
Additional field definition functions you can describe with DDS 21
Using existing field descriptions and field reference files to describe a database file 22
Using a data dictionary for field reference in a database file 24
Sharing existing record format descriptions in a database file 25

Record format relationships between physical and logical database files 26

© Copyright IBM Corp. 1998, 2002 iii

||

Record format sharing limitation with physical and logical database files 26
Specifying database file and member attributes . 26

Specifying file name and member name (FILE and MBR) parameters when creating database files 27
Specifying the physical file member control (DTAMBRS) parameter when creating database logical

files. 27
Specifying the source file and source member (SRCFILE and SRCMBR) parameters when creating

database files . 28
Specifying the database file type (FILETYPE) parameter when creating database files 28
Specifying the maximum number of members allowed (MAXMBRS) parameter when creating

database files . 28
Specifying where to store the data (UNIT) parameter when creating or changing database files. . . 28

Tips for using the UNIT parameter when creating database files 28
Specifying the frequency of writing data to auxiliary storage (FRCRATIO) parameter when creating,

changing, or overriding database files . 29
FRCRATIO parameter tip . 29

Specifying the frequency of writing the access path (FRCACCPTH) parameter when creating
database files . 29
FRCACCPTH parameter tips . 29

Specifying the check for record format description changes (LVLCHK) parameter when creating or
changing a database file . 29
Level check example . 29

Specifying the current access path maintenance (MAINT) parameter when creating database files 29
MAINT parameter comparison . 30
MAINT parameter tips . 30

Specifying the recover (RECOVER) parameter when creating database files. 31
RECOVER parameter tip. 31

Specifying the file sharing (SHARE) parameter when creating a database file 31
Specifying the locked file or record wait time (WAITFILE and WAITRCD) parameters when creating

a database file. 32
Specifying the public authority (AUT) parameter when creating a database file 32
Specifying the system on which the file Is created (SYSTEM) parameter when creating a database

file . 32
Specifying the file and member text (TEXT) parameter when creating a database file 32
Specifying the coded character set identifier (CCSID) parameter when creating database files . . . 32
Specifying the sort sequence (SRTSEQ) parameter when creating a database file 32
Specifying the language identifier (LANGID) parameter when creating database files 33

Chapter 5. Setting up physical files . 35
Creating a physical file . 35
Specifying physical file and member attributes when creating a physical file 35

Physical file and member attributes: Expiration date 36
Physical file and member attributes: Size of the physical file member 36
Physical file and member attributes: Storage allocation. 36
Physical file and member attributes: Method of allocating storage 36
Physical file and member attributes: Record length 37
Physical file and member attributes: Deleted records 37
Physical file and member attributes: Physical file capabilities 38
Physical file and member attributes: Source type . 38

Chapter 6. Setting up logical files. 39
Creating a logical file . 39

Creating a logical file with more than one record format 40
Controlling how records are retrieved in a file with multiple formats 43
Controlling how records are added to a file with multiple formats 43

Defining logical file members . 43
Describing logical file record formats . 47

iv DB2 UDB for iSeries Database Programming V5R2

Describing field use for logical files . 47
Describing field use for logical files: Both . 48
Describing field use for logical files: Input only . 48
Describing field use for logical files: Neither . 48

Deriving new fields from existing fields. 48
Concatenated fields . 49
Substring fields . 50
Renamed fields . 50
Translated fields . 50

Describing floating-point fields in logical files . 50
Describing access paths for logical files . 51

Selecting and omitting records using logical files . 52
Access path select/omit . 55
Dynamic select/omit . 55
Using the Open Query File command to select/omit records 55

Using existing access paths . 56
Example of implicitly shared access paths . 56

Setting up a join logical file . 58
Basic concepts of joining two physical files (Example 1) 58

Reading a join logical file . 61
Matching records in primary and secondary files (Case 1) 62
Record missing in secondary file; JDFTVAL keyword not specified (Case 2A) 62
Record missing in secondary file; JDFTVAL keyword specified (Case 2B) 63
Secondary file has more than one match for a record in the primary file (Case 3) 64
Extra record in secondary file (Case 4) . 64
Random access (Case 5) . 65

Setting up a join logical file . 66
Using more than one field to join files (Example 2) 68
Reading duplicate records in secondary files (Example 3) 69
Using join fields whose attributes are different (Example 4) 69
Describing fields that never appear in the record format (Example 5) 70
Specifying key fields in join logical files (Example 6). 72
Specifying select/omit statements in join logical files. 72
Joining three or more physical files (Example 7) . 74
Joining a physical file to itself (Example 8) . 76
Using default data for missing records from secondary files (Example 9) 77
A complex join logical file (Example 10) . 77
Join logical file considerations . 79

Joining database files: Performance considerations 79
Joining database files: Data integrity considerations 79
Joining database files: Summary of rules . 80

Chapter 7. Describing access paths for database files 83
Using arrival sequence access path for database files 83
Using a keyed sequence access path for database files 84

Arranging key fields using an alternative collating sequence 85
Arranging key fields using the SRTSEQ parameter 86
Arranging key fields in ascending or descending sequence 86
Using more than one key field . 87
Preventing duplicate key values . 88
Arranging duplicate keys . 90

Using existing access path specifications . 91
Using floating point fields in database file access paths 91

Chapter 8. Securing a database . 93
Granting file and data authority . 93

Contents v

Authorizing a user or group using iSeries Navigator 93
Types of object authority for database files . 93
Types of data authorities for database files . 94

Specifying public authority . 95
Defining public authority for a file using iSeries Navigator 96
Setting a default public authority for new files using iSeries Navigator 96

Using database file capabilities to control I/O operations 97
Limiting access to specific fields of a database file . 97
Using logical files to secure data . 97

Part 3. Processing Database Files in Programs 99

Chapter 9. Database file processing: Run time considerations 101
Database file processing: File and member name . 102
Database file processing: File processing options . 102

Database file processing: Specifying the type of processing 102
Database file processing: Specifying the initial file position 103
Database file processing: Reusing deleted records. 103
Database file processing: Ignoring the keyed sequence access path 103
Database file processing: Delaying end of file processing 104
Database file processing: Specifying the record length 104
Database file processing: Ignoring record formats 104
Database file processing: Determining if duplicate keys exist 104

Database file processing: Data recovery and integrity 105
Protecting your file with journaling and commitment control. 105
Writing data and access paths to auxiliary storage 105
Checking changes to the record format description. 105
Checking for the expiration date of the file . 106
Preventing the job from changing data in the file 106

Locking shared data . 106
Locking records . 106
Displaying locked rows using iSeries Navigator . 107
Displaying locked records using DSPRCDLCK . 107
Locking files . 107
Locking members . 107
Locking record format data . 107

Sharing database files in the same job or activation group 108
Open considerations for files shared in a job or activation group 108
Input/output considerations for files shared in a job or activation group 109
Close considerations for files shared in a job or activation group. 110

Example 1: Using a single set of files with similar processing options 110
Example 2: Using multiple sets of files with similar processing options 112
Example 3: Using a single set of files with different processing requirements 113

Sequential-only processing of database files . 113
Open considerations for sequential-only processing 114
Input/output considerations for sequential-only processing 115
Close considerations for sequential-only processing 116

Summary of run time considerations for processing database files 116
Storage pool paging option effect on database performance 119

Chapter 10. Opening a database file . 121
Opening a database file member . 121
Using the Open Database File (OPNDBF) command 121
Using the Open Query File (OPNQRYF) command 122

Creating a query with the OPNQRYF command . 124
Using an existing record format in the file . 124

vi DB2 UDB for iSeries Database Programming V5R2

Using a file with a different record format . 126
OPNQRYF examples . 127
CL program coding with the OPNQRYF command 128
The zero length literal and the contains (*CT) function 128
Selecting records without using DDS . 128

Selecting records using the Open Query File (OPNQRYF) command 129
Specifying a keyed sequence access path without using DDS 139
Specifying key fields from different files . 140
Dynamically joining database files without DDS 141
Handling missing records in secondary join files 144
Unique-key processing . 145
Defining fields derived from existing field definitions 146
Handling divide by zero . 148
Summarizing data from database file records (Grouping) 149
Final total-only processing . 151
Controlling how the system runs the open query file command 152

Considerations for creating a file and using the FORMAT parameter 153
Considerations for arranging records . 154
Considerations for DDM files . 154
Considerations for writing a high-level language program 154
Messages sent when the Open Query File (OPNQRYF) command is run 155
Using the Open Query File (OPNQRYF) command for more than just input. 156
Comparing date, time, and timestamp using the OPNQRYF command 157
Performing date, time, and timestamp arithmetic using the OPNQRYF command 157

Durations . 158
Rules for date, time, and timestamp arithmetic 158
Subtracting dates . 159
Incrementing and decrementing dates . 159
Subtracting times . 160
Incrementing and decrementing times . 161
Subtracting timestamps . 161
Incrementing and decrementing timestamps . 161

Using the Open Query File (OPNQRYF) command for random processing 162
Open Query File command: Performance considerations 162
Open Query File command: Performance considerations for sort sequence tables 164

Grouping, joining, and selection: OPNQRYF performance considerations 164
Ordering: OPNQRYF performance considerations 164

Performance comparisons with other database functions 164
Considerations for field use . 164
Considerations for files shared in a job . 165
Considerations for checking if the record format description changed 166
Other run time considerations for the OPNQRYF command 166

Overrides and the OPNQRYF command . 166
Copying from an open query file . 167

Typical errors when using the Open Query File (OPNQRYF) command 168

Chapter 11. Basic database file operations in programs 171
Setting a position in the file . 171
Reading database records. 172

Reading database records using an arrival sequence access path 172
Read next operation using an arrival sequence access path 173
Read previous operation using an arrival sequence access path. 173
Read first operation using an arrival sequence access path 173
Read last operation using an arrival sequence access path 173
Read same operation using an arrival sequence access path 173
Read by relative record number operation using an arrival sequence access path 173

Contents vii

Reading database records using a keyed sequence access path 173
Read next operation using a keyed sequence access path 174
Read previous operation using a keyed sequence access path 174
Read first operation using a keyed sequence access path 174
Read last operation using a keyed sequence access path 174
Read same operation using a keyed sequence access path 174
Read by key operation using a keyed sequence access path 174
Read by relative record number operation using a keyed sequence access path 174
Read when logical file shares an access path with more keys operation using a keyed sequence

access path . 174
Waiting for more records when end of file is reached 175
Releasing locked records . 178

Updating database records . 178
Adding database records . 178

Identifying which record format to add in a file with multiple formats 179
Using the force-end-of-data operation . 181

Deleting database records . 181

Chapter 12. Closing a database file . 183

Chapter 13. Monitoring database file errors in a program 185
System handling of error messages . 185
Effect of error messages on file positioning . 185
Determining which messages you want to monitor . 185

Part 4. Managing Database Files. 187

Chapter 14. Basic operations for managing database files 189
Copying a file . 189

Copying a file using iSeries Navigator . 189
Copying a file using CPYF. 189

Moving a file . 189
Moving a file using iSeries Navigator . 189
Moving a file using the MOVOBJ command . 190

Chapter 15. Managing database members . 191
Member operations common to all database files . 191

Adding members to files . 191
Changing member attributes . 191
Renaming members . 192
Removing members from files . 192

Physical file member operations . 192
Initializing data in a physical file member . 192
Clearing data from physical file members . 193
Reorganizing a physical file . 193

Reorganizing a table using iSeries Navigator . 193
Reorganizing a physical file using RGZPFM . 193

Displaying records in a physical file member . 195

Chapter 16. Using database attribute and cross-reference information 197
Displaying information about database files . 197

Displaying attributes for a file using display table description in iSeries Navigator 197
Displaying attributes for a file using DSPFD . 198
Displaying the descriptions of the fields in a file . 198
Displaying the relationships between files on the system 199
Displaying the files used by programs . 199

viii DB2 UDB for iSeries Database Programming V5R2

Displaying the system cross-reference files . 200
Writing the output from a command directly to a database file. 201

Example: Using a command output file . 201
Output file for the Display File Description command 202
Output files for the Display Journal command. 202
Output files for the Display Problem command . 202

Chapter 17. Changing database file descriptions and attributes 203
Effect of changing fields in a file description . 203
Changing a physical file description and attributes . 205

Example 1: Changing a physical file description and attributes 205
Example 2: Changing a physical file description and attributes 206

Changing a logical file description and attributes . 206

Chapter 18. Recovering and restoring your database 207
Recovering data in a database file . 207

Managing journals. 207
Journals . 207
Working with journals . 208

Ensuring data integrity with commitment control . 213
Transactions . 213
Benefits of using commitment control. 214
Usage notes: commitment control . 214

Reducing time in access path recovery . 214
Saving access paths . 215
Restoring access paths . 215
Journaling access paths . 216
System-managed access-path protection (SMAPP) 216
Rebuilding access paths . 217

Controlling when access paths are rebuilt . 217
Designing files to reduce access path rebuilding time 218
Other methods to avoid rebuilding access paths. 218

The database recovery process after an abnormal system end 219
Database file recovery during the IPL . 219
Database file recovery after the IPL . 220
Effects of the storage pool paging option on database recovery 220
Database file recovery options table . 221

Database save and restore . 221
Database considerations for save and restore . 221

Force-writing data to auxiliary storage . 222

Chapter 19. Using source files . 223
Working with source files . 223

Using the Source Entry Utility (SEU) . 223
Using device source files . 223
Copying source file data . 224

Using the Copy Source File (CPYSRCF) command for copying to and from source files 224
Using the Copy File (CPYF) command for copying to and from files 224
Source sequence numbers used in copies . 224

Loading and unloading data from non-iSeries systems 225
Using source files in a program . 225

Creating an object using a source file . 226
Creating an object from source statements in a batch job 226
Determining which source file member was used to create an object 227

Managing a source file . 227
Changing source file attributes . 228

Contents ix

Reorganizing source file member data . 228
Determining when a source statement was changed 228
Using source files for documentation . 229

Chapter 20. Controlling the integrity of your database with constraints 231
Setting up constraints for your database . 231

Details: Setting up constraints . 231
Removing unique, primary key, or check constraints 232

Details: Removing constraints . 232
Working with a group of constraints . 233

Details: Working with a group of constraints . 233
Working with constraints that are in check pending status 234

Displaying records that put a constraint in check pending status 234
Processing constraints that are in check pending status 234

Unique constraints . 235
Primary key constraints . 236
Check constraints . 236

Chapter 21. Ensuring data integrity with referential constraints 237
Adding a referential constraint . 237

Before you add a referential constraint . 237
Defining the parent file in a referential constraint 238

What to do when you cannot define a parent key 238
Defining the dependent file in a referential constraint 239
Specifying referential constraint rules . 239
Details: Specifying referential constraint delete rules 239
Details: Specifying referential constraint update rules 240
Details: Specifying referential constraint rules—journaling requirements 240
Details: Adding a referential constraint . 240
Details: Avoiding constraint cycles . 241

Verifying a referential constraint . 241
Enabling and disabling referential constraints . 241

Details: Enabling or disabling a referential constraint 241
Removing referential constraints . 242

Details: Removing a constraint with the CST parameter 242
Details: Removing a constraint with the TYPE parameter 243

Details: Ensuring data integrity with referential constraints 243
Example: Ensuring data integrity with referential constraints 243
Referential integrity terms . 244
Referential integrity enforcement . 244

Foreign key enforcement . 245
Parent key enforcement . 245

Enforcement of delete rules . 245
Enforcement of update rules . 245

Constraint states . 245
Check pending status in referential constraints . 246

Dependent file restrictions in check pending . 246
Parent file restrictions in check pending . 247

Referential integrity and iSeries functions . 247

Chapter 22. Triggering automatic events in your database 249
Uses for triggers . 249
Benefits of using triggers in your business . 249
Creating trigger programs . 250

Adding triggers using iSeries Navigator . 250
How trigger programs work . 250

x DB2 UDB for iSeries Database Programming V5R2

Other important information about working with triggers 251
Examples of trigger programs . 251

Example: Insert trigger written in RPG . 254
Example: Update trigger written in ILE COBOL 259
Example: Delete trigger written in ILE C. 261
Trigger programs: Data structures of database used in the examples 264

Trigger buffer sections . 264
Trigger buffer field descriptions . 265

Recommendations for trigger programs . 266
Precautions to take when coding trigger programs 267

Functions to use with care in trigger programs 267
Commands, statements, and operations that you cannot use in trigger programs 267

Trigger and application programs that are under commitment control 268
Trigger and application programs that are not under commitment control. 269
Trigger program error messages . 269
Monitoring the use of trigger programs . 269

Adding a trigger to a file . 270
Required authorities and data capabilities for triggers 271

Displaying triggers. 271
Removing a trigger . 271
Enabling and disabling a trigger. 272
Triggers and their relationship to other iSeries functions 272
Triggers and their relationship to referential integrity 273

Chapter 23. Database distribution . 275

Part 5. Appendixes . 277

Appendix A. Database file sizes . 281
Examples: Database file sizes . 283

Appendix B. Double-Byte Character Set (DBCS) considerations 285
DBCS field data types . 285

DBCS constants . 285
DBCS field mapping considerations . 286
DBCS field concatenation . 286
DBCS field substring operations . 287
Comparing DBCS fields in a logical file . 287
Using DBCS fields in the Open Query File (OPNQRYF) command 288

Using the wildcard function with DBCS fields . 288
Comparing DBCS fields through OPNQRYF . 288
Using concatenation with DBCS fields through OPNQRYF 289
Using sort sequence with DBCS . 289

Appendix C. Database lock considerations . 291

Bibliography . 293

Index . 295

Contents xi

||

xii DB2 UDB for iSeries Database Programming V5R2

About DB2 Universal Database for iSeries Database
Programming

DB2 Universal Database for iSeries Database Programming contains information about the DB2 Universal
Database for iSeries (DB2 UDB for iSeries) database management system, and describes how to set up
and use a database on IBM ERserver iSeries 400 using traditional system interfaces.

This information does not cover in detail all of the capabilities on iSeries 400 that are related to database.
Among the topics not fully described are the following:

v Structured Query Language (SQL)

v iSeries Navigator

v Data description specifications (DDS)

v Control language (CL)

v Interactive data definition utility (IDDU)

v Backup and recovery guidelines and utilities

For more information about this guide, see the following topics:

v “Who should read DB2 Universal Database for iSeries Database Programming”

v “What’s new for V5R2 in DB2 Universal Database for iSeries Database Programming”

v “Code disclaimer information” on page xiv

Then, to get started, see Part 1, “Database Programming Overview” on page 1.

Who should read DB2 Universal Database for iSeries Database
Programming
This information is intended for the system administrator or programmer who creates and manages files
and databases on IBM ERserver iSeries 400 using traditional, non-SQL system interfaces. In addition, this
information is intended for programmers who use the database in their programs.

Before using this information, you should be familiar with the introductory material for using the system.
You should also understand how to write a high-level language program for iSeries. Use this information
with the high-level language books to get additional database information, tips, and techniques.

What’s new for V5R2 in DB2 Universal Database for iSeries Database
Programming
The following information was added or updated in this release of the information:

v Information about independent auxiliary storage pools, in “DB2 Universal Database for iSeries” on
page 3 and “Creating a library” on page 11.

v Information about separating records of different formats in access paths, in “Controlling how records
are retrieved in a file with multiple formats” on page 41

v Information about join logical files, in “Using the Open Query File (OPNQRYF) command for more than
just input” on page 156

v Information about using the RGZPFM command twice in a row, in “Usage notes: Reorganizing a file” on
page 194

v Revised SMAPP support value in “System-managed access-path protection (SMAPP)” on page 216

v New update trigger example written in ILE COBOL in “Example: Update trigger written in ILE COBOL”
on page 254

© Copyright IBM Corp. 1998, 2002 xiii

v Information about trigger programs stored in QTEMP library, in “Adding a trigger to a file” on page 270

v Information about trigger programs stored in QTEMP library and the CRTDUPOBJ command, in
“Triggers and their relationship to other iSeries functions” on page 272

Code disclaimer information
This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The implied
warranties of non-infringement, merchantability and fitness for a particular purpose are expressly
disclaimed.

xiv DB2 UDB for iSeries Database Programming V5R2

Part 1. Database Programming Overview

The topic of database programming encompasses creating and managing database files using traditional
system interfaces. It also includes processing database files in programs.

Before getting started, review Chapter 1, “Database file concepts” on page 3.

Then, use the following:

v Part 2, “Setting Up Database Files” on page 9

v Part 3, “Processing Database Files in Programs” on page 99

v Part 4, “Managing Database Files” on page 187

© Copyright IBM Corp. 1998, 2002 1

2 DB2 UDB for iSeries Database Programming V5R2

Chapter 1. Database file concepts

This section discusses database concepts and things to consider when you set up or work with IBM®

Eserver iSeries 400 database files.

v “DB2 Universal Database for iSeries”

v “Interfaces to DB2 UDB for iSeries”

v “Database files” on page 4

v “How database files are described” on page 5

v “Database data protection and monitoring” on page 8

DB2 Universal Database for iSeries
DB2 Universal Database for iSeries (DB2 UDB for iSeries) is the integrated relational database manager
on iSeries 400. It is part of the base operating system, and provides access to and protection for data. It
also provides advanced functions such as referential integrity and parallel database processing.

With DB2 UDB for iSeries, independent auxiliary storage pools (ASPs), or independent disk pools, allow
you to have one or more separate databases associated with each ASP group. Databases are set up
using primary independent disk pools. For more information, see the Independent disk pools topic, in the
Systems management, Storage solutions topic.

Interfaces to DB2 UDB for iSeries
DB2 UDB for iSeries provides several independent interfaces to the database.

v “Traditional system interface”

v “SQL”

v “iSeries Navigator” on page 4

v “Query for iSeries” on page 4

Traditional system interface
The iSeries traditional system interface is the full set of system commands and other non-SQL facilities
that let users access and modify DB2 UDB for iSeries data. The traditional system interface provides a
control language (CL) that can be used to create database objects. The system interface also has an
integrated facility for describing data called Data Description Specifications (DDS).

Websphere Development Studio for iSeries, an IBM licensed program, provides several utilities to describe
and process data. The data file utility (DFU) can add, change, and delete data in a database file described
by RPG/400®, DDS, and Interactive Data Description Utility (IDDU). The source entry utility (SEU) can be
used to specify and change data in files.

SQL
Structured Query Language (SQL) is a language that can be used within host programming languages or
interactively to access information from a database. SQL is the industry standard database interface used
for accessing and modifying relational database products. SQL uses a relational model of data; that is, it
perceives all data as existing in tables. The DB2 UDB for iSeries database has SQL processing capability
integrated into the system. It processes compiled programs that contain SQL statements. To develop SQL
applications, you need DB2 UDB Query Manager and SQL Development Kit, an IBM licensed program, for
the system on which you develop your applications.

© Copyright IBM Corp. 1998, 2002 3

|
|
|
|

../rzalb/rzalbtoc.htm

Interactive SQL is a function of the DB2 UDB Query Manager and SQL Development Kit licensed program
that allows SQL statements to run dynamically instead of in batch mode. Every interactive SQL statement
is read from the work station, prepared, and run dynamically.

For more information about SQL, see DB2 UDB for iSeries SQL Programming Concepts and Introduction
to DB2 UDB for iSeries Structured Query Language.

iSeries Navigator
iSeries Navigator is a no-charge feature of iSeries Access for Windows® that is bundled with OS/400®.
iSeries Navigator provides a graphical, Microsoft® Windows interface to common iSeries management
functions, including database. Most database operations that you can access using iSeries Navigator are
based on Structured Query Language (SQL) functions. However, some operations are based on traditional
system interfaces, such as Control Language (CL) commands.

For more information about iSeries Navigator, see the iSeries Navigator topic in the Information Center.

Query for iSeries
Query for iSeries is an IBM licensed program used to select, format, and analyze information from
database files to produce reports and other files.

Database files
A database file is one of several types of the system object type *FILE kept in the system that contains
descriptions of how input data is to be presented to a program from internal storage and how output data
is to be presented to internal storage from a program. There are several types of database files:

v “Source file”

v “Physical file”

v “Logical file”

Database files contain members (see “Member” on page 5) and records (see “Record” on page 5) .

Source file
A source file contains uncompiled programming code and input data needed to create some types of
objects. A source file can contain source statements for such items as high-level language programs and
data description specifications. A source file can be a source physical file, diskette file, tape file, or inline
data file.

Physical file
A physical file is a database file that stores application data. It contains a description of how data is to be
presented to or received from a program and how data is actually stored in the database. A physical file
consists of fixed-length records that can have variable-length fields. Physical files contain one record
format and one or more members. From the perspective of the SQL interface, physical files are identical to
tables.

Logical file
A logical file is a database file that logically represents one or more physical files. It contains a description
of how data is to be presented to or received from a program. This type of database file contains no data,
but it defines record formats for one or more physical files. Logical files let users access data in a
sequence and format that is different from the physical files they represent. From the perspective of the
SQL interface, logical files are identical to views and indexes.

4 DB2 UDB for iSeries Database Programming V5R2

../sqlp/rbafymst02.htm
../sqlp/rbafymstintro.htm
../sqlp/rbafymstintro.htm
../rzahgicopnav.htm

Member
Members are different sets of data, each with the same format, within one database file. Before you
perform any input or output operations on a file, the file must have at least one member. As a general rule,
database files have only one member, the one created when the file is created. If a file contains more than
one member, each member serves as a subset of the data in the file.

Record
A record is a group of related data within a file. From the perspective of the SQL interface, records are
identical to rows.

How database files are described
Records in database files can be described in two ways:

v Field level description. The fields in the record are described to the system. Some of the things you can
describe for each field include: name, length, data type, validity checks, and text description. Database
files that are created with field level descriptions are referred to as externally described files.

v Record level description. Only the length of the record in the file is described to the system. The system
does not know about fields in the file. These database files are referred to as program-described files.

Regardless of whether a file is described to the field or record level, you must describe and create the file
before you can compile a program that uses that file. That is, the file must exist on the system before you
use it.

See the following topics for more information about specific ways that data is described:

v “Externally and program-described data”

v “Dictionary-described data” on page 6

v “Record format description” on page 6

v “Access path description” on page 7

v “Naming conventions used in a database file” on page 7

Externally and program-described data
Programs can use file descriptions in two ways:

v The program uses the field-level descriptions that are part of the file. Because the field descriptions are
external to the program itself, the data is called externally described data.

v The program uses fields that are described in the program itself; therefore, the data is called
program-described data. Fields in files that are only described to the record level must be described in
the program using the file.

Programs can use either externally described or program-described files. However, if you choose to
describe a file to the field level, the system can do more for you. For example, when you compile your
programs, the system can extract information from an externally described file and automatically include
field information in your programs. Therefore, you do not have to code the field information in each
program that uses the file.

Chapter 1. Database file concepts 5

The following figure shows the typical relationships between files and programs on the iSeries system:

�1� Externally Described Data
The program uses the field level description of a file that is defined to the system. At compilation
time, the language compiler copies the external description of the file into the program.

�2� Program-Described Data
The program uses a file that is described to the field level to the system, but it does not use the
actual field descriptions. At compilation time, the language compiler does not copy the external
description of the file into the program. The fields in the file are described in the program. In this
case, the field attributes (for example, field length) used in the program must be the same as the
field attributes in the external description.

�3� Program-Described Data
The program uses a file that is described only to the record level to the system. The fields in the
file must be described in the program.

Externally described files can also be described in a program. You might want to use this method for
compatibility with previous systems. For example, you want to run programs on the iSeries system that
originally came from a traditional file system. Those programs use program-described data, and the file
itself is only described to the record level. At a later time, you describe the file to the field level (externally
described file) to use more of the database functions available on the system. Your old programs,
containing program-described data, can continue to use the externally described file while new programs
use the field-level descriptions that are part of the file. Over time, you can change one or more of your old
programs to use the field level descriptions.

Dictionary-described data
A program-described file can be dictionary-described. You can describe the record format information using
interactive data definition utility (IDDU). Even though the file is program-described, Query for iSeries,
iSeries Access, and data file utility (DFU) will use the record format description stored in the data
dictionary.

An externally described file can also be dictionary-described. You can use IDDU to describe a file, then
create the file using IDDU. The file created is an externally described file. You can also move into the data
dictionary the file description stored in an externally described file. The system always ensures that the
definitions in the data dictionary and the description stored in the externally described file are identical.

Record format description
When you describe a database file to the system, you describe the two major parts of that file: the record
format and the access path.The record format describes the order of the fields in each record. The record

6 DB2 UDB for iSeries Database Programming V5R2

format also describes each field in detail including: length, data type (for example, packed decimal or
character), validity checks, text description, and other information.

The following example shows the relationship between the record format and the records in a physical file:

In this example of specifications for record format ITMMST, there are three fields. Field ITEM is zoned
decimal, five digits, with no decimal position. Field DESCRP is character, with 18 positions. FieldPRICE is
zoned decimal, five digits, with two decimal positions.

A physical file can have only one record format. The record format in a physical file describes the way the
data is actually stored.

A logical file contains no data. Logical files are used to arrange data from one or more physical files into
different formats and sequences. For example, a logical file could change the order of the fields in the
physical file, or present to the program only some of the fields stored in the physical file.

A logical file record format can change the length and data type of fields stored in physical files. The
system does the necessary conversion between the physical file field description and the logical file field
description. For example, a physical file could describe FLDA as a packed decimal field of 5 digits and a
logical file using FLDA might redefine it as a zoned decimal field of 7 digits. In this case, when your
program used the logical file to read a record, the system would automatically convert (unpack) FLDA to
zoned decimal format.

Access path description
When you describe a database file to the system, you describe the two major parts of that file: the record
format and the access path. An access path describes the order in which records are to be retrieved.
When you describe an access path, you describe whether it will be a keyed sequence or arrival sequence
access path. Access paths are discussed in more detail in Chapter 7, “Describing access paths for
database files” on page 83.

Naming conventions used in a database file
The file name, record format name, and field name can be as long as 10 characters and must follow all
system naming conventions, but you should keep in mind that some high-level languages have more
restrictive naming conventions than the system does. For example, the RPG/400* language allows only
6-character names, while the system allows 10-character names. In some cases, you can temporarily
change (rename) the system name to one that meets the high-level language restrictions. For more
information about renaming database fields in programs, see your high-level language guide.

In addition, names must be unique as follows:

v Field names must be unique in a record format.

Chapter 1. Database file concepts 7

v Record format names and member names must be unique in a file.

v File names must be unique in a library.

Database data protection and monitoring
The system provides features to improve the integrity and consistency of your data. Enforcing business
rules is one way of protecting data. You can enforce business rules using the following:

v Referential constraints let you put controls (constraints) on data in files you define as having a mutual
dependency. A referential constraint lets you specify rules to be followed when changes are made to
files with constraints. Constraints are described in detail in Chapter 21, “Ensuring data integrity with
referential constraints” on page 237.

v Triggers let you run your own program to take any action or evaluate changes when files are changed.
When predefined changes are made or attempted, a trigger program is run. Triggers are described in
detail in Chapter 22, “Triggering automatic events in your database” on page 249.

Enforcing data type rules is another way of protecting data. The system performs data type checking in
certain instances to ensure, for example, that data in a numeric field is really numeric.

In addition, the system protects data from loss using the following:

v Journaling and commitment control functions

v System-managed access path protection (SMAPP) support

For more information about these types of data protection, see Chapter 18, “Recovering and restoring your
database” on page 207.

8 DB2 UDB for iSeries Database Programming V5R2

Part 2. Setting Up Database Files

The information in this part describes in detail how to set up any iSeries database file.

v Chapter 2, “Creating and describing database files” on page 11

These topics provide an overview of the process of creating database files, libraries, source files, and
physical files.

– Chapter 4, “Describing database files” on page 17

– Chapter 3, “Setting up source files” on page 13

– Chapter 5, “Setting up physical files” on page 35

v Chapter 6, “Setting up logical files” on page 39

This topic includes guidelines for describing and creating logical files. This includes information on
describing logical file record formats and different types of field use using data description specifications
(DDS). Information on defining logical file members to separate the data into logical groups is also
included in this chapter. A section on join logical files includes considerations for using join logical files,
including examples on how to join physical files and the different ways physical files can be joined.
Information on performance, integrity, and a summary of rules for join logical files is also included.

v Chapter 7, “Describing access paths for database files” on page 83

This topic includes describing database files and access paths to the system and the different methods
that can be used. The ways that your programs use these file descriptions and the differences between
using data that is described in a separate file or in the program itself is discussed. Information is
included about describing access paths using DDS as well as using access paths that already exist in
the system.

v Chapter 8, “Securing a database” on page 93

This topic includes information on security functions such as file security, public authority, restricting the
ability to change or delete any data in a file, and using logical files to secure data. The different types of
authority that can be granted to a user for a database file and the types of authorities you can grant to
physical files are also included.

© Copyright IBM Corp. 1998, 2002 9

10 DB2 UDB for iSeries Database Programming V5R2

Chapter 2. Creating and describing database files

This chapter provides an overview of the process of creating database files, libraries, source files, and
physical files.

The system supports several methods for describing and creating a database file:

v IDDU

You can create a database file by using Interactive Data Definition Utility (IDDU), part of theWebSphere
Development Studio for iSeries licensed program. If you are using IDDU to describe your database files,
you might also consider using it to create your files.

v OS/400 control language (CL), using source entry utility (SEU) or data file utility (DFU) to specify data
description specifications (DDS).

You can create a database file by using CL. The CL database file create commands are: Create
Physical File (CRTPF), Create Logical File (CRTLF), and Create Source Physical File (CRTSRCPF).
Once a database file is created, you can use SEU or DFU to describe data in the file. SEU and DFU
are part of IBM WebSphere Development Studio for iSeries licensed program. This guide focuses on
creating files using these methods.

v Structured Query Language

You can create and describe a database file (table) by using Structured Query Language (SQL)
statements. SQL is the IBM relational database language, and can be used on iSeries to interactively
describe and create database files. See DB2 UDB for iSeries SQL Programming Concepts and
specifically Creating and using a table for more information.

v iSeries Navigator

You can also create a database file (table) using iSeries Navigator. See Creating and using a table
using iSeries Navigator for more information.

To create and describe a database file using CL and DDS, use the following:

v “Creating a library”

v Chapter 3, “Setting up source files” on page 13

v Chapter 4, “Describing database files” on page 17

v Chapter 5, “Setting up physical files” on page 35

v Chapter 6, “Setting up logical files” on page 39

Creating a library
A library is a system object that serves as a directory to other objects. A library groups related objects, and
allows the user to find objects by name. The system-recognized identifier for the object type is *LIB.
Before you can create a database file, you must create a library to store it. You can create a library in the
following ways:

v You can use iSeries Navigator to create a library. See “Creating a library using iSeries Navigator”.

v You can use the Create Library (CRTLIB) command to create the library.

When creating a library, you can specify the auxiliary storage pool (ASP) in which the library is to be
stored. This allows you to create multiple, separate databases.

Creating a library using iSeries Navigator
You can also create a library using iSeries Navigator.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases and the database that you want to work with.

3. Right-click Libraries and select New Library.

© Copyright IBM Corp. 1998, 2002 11

|
|
|
|

|

|

|
|

|

|

|

|

|

../sqlp/rbafymst02.htm
../sqlp/rbafymstcrttbl.htm
../sqlp/rbafymstopntable.htm
../sqlp/rbafymstopntable.htm
../cl/crtlib.htm

4. On the New Library dialog, specify a library name

5. Specify a description (optional)..

6. To add to the list of libraries to be displayed, select Add to list of libraries displayed.

7. To create as an SQL collection, select Create as an SQL collection (optional). Additionally, select
Create a data dictionary (optional).

8. Specify a disk pool, or auxiliary storage pool (ASP), to contain the library.

9. Click OK.

12 DB2 UDB for iSeries Database Programming V5R2

|

|

|

|
|

|

|

Chapter 3. Setting up source files

This chapter describes how to set up source files, and why you would use a source file.

To set up source files, use the following:

v “Why source files are used”

v “Creating a source file”

For more information about using source files, see Chapter 19, “Using source files” on page 223.

Why source files are used
A source file (see “Source file” on page 4) is used when a command alone cannot supply sufficient
information for creating an object. It contains input (source) data needed to create some types of objects.
For example, to create a control language (CL) program, you must use a source file containing source
statements, which are in the form of commands. To create a logical file, you must use a source file
containing DDS.

To create the following objects, source files are required:

v High-level language programs

v Control language programs

v Logical files

v Intersystem communications function (ICF) files

v Commands

To create the following objects, source files can be used, but are not required:

v Physical files

v Display files

v Printer files

v Translate tables

A source file can be a database file, diskette file, tape file, or inline data file. (An inline data file is included
as part of a job.) A source database file is simply another type of database file. You can use a source
database file as you would any other database file on the system.

Creating a source file
Before creating a source file, you should first have created a library (see “Creating a library” on page 11).
Then, to create a source file, you can use:

v Create Source Physical File (CRTSRCPF) command

Normally, you will use the CRTSRCPF command to create a source file, because many of the
parameters default to values that you usually want for a source file. To create a source file using
CRTSRCPF, see “Creating a source file using CRTSRCPF” on page 14

v Create Physical File (CRTPF), or Create Logical File (CRTLF) command

If you want to create a source file and define the record format and fields using DDS, use the Create
Physical File (CRTPF) or Create Logical File (CRTLF) command.

As an alternative to creating a source file, you can use source files supplied with OS/400 and other
licensed programs. See “IBM-supplied source files” on page 14.

For information about the attributes common to most source files, see “Source file attributes” on page 15.

© Copyright IBM Corp. 1998, 2002 13

../cl/crtpf.htm
../cl/crtlf.htm

Creating a source file using CRTSRCPF
The following example shows how to create a source file using the CRTSRCPF command and using the
command defaults:
CRTSRCPF FILE(QGPL/FRSOURCE) TEXT(’Source file’)

The Create Source Physical File (CRTSRCPF) command creates a physical file, but with attributes
appropriate for source physical files. For example, the default record length for a source file is 92 (80 for
the source data field, 6 for the source sequence number field, and 6 for the source date field).

You can create source files with or without DDS. See the following topics:

v “Creating source files without DDS” on page 15

v “Creating source files with DDS” on page 16

IBM-supplied source files
For your convenience, the OS/400 program and other licensed programs provide a database source file
for each type of source. These source files are:

File Name Library Name Used to Create

QCBLSRC QGPL System/38™ compatible COBOL
QCSRC QGPL C programs
QCLSRC QGPL CL programs
QCMDSRC QGPL Command definition statements
QDDSSRC QGPL Files
QFMTSRC QGPL Sort source
QLBLSRC QGPL COBOL/400® programs
QS36SRC #LIBRARY System/36™ compatible COBOL

programs
QREXSRC QGPL Procedures Language 400/REXX

programs
QRPGSRC QRPG RPG/400 programs
QAPLISRC QPLI PL/I programs
QPLISRC QGPL PL/I programs
QARPGSRC QRPG38 System/38 environment RPG
QRPG3SRC QRPG38 System/38 environment RPG
QRPG2SRC #RPGLIB System/36 compatible RPG II
QS36PRC #RPGLIB System/36 compatible RPG II
QS36SRC #LIBRARY System/36 compatible RPG II (after

install)
QPASSRC QPAS Pascal programs
QTBLSRC QGPL Translation tables
QTXTSRC QPDA Text

You can either add your source members to these files or create your own source files. Normally, you will
want to create your own source files using the same names as the IBM-supplied files, but in different
libraries (IBM-supplied files may get overlaid when a new release of the system is installed). The
IBM-supplied source files are created with the file names used for the corresponding create command (for
example, the CRTCLPGM command uses the QCLSRC file name as the default). Additionally, the
IBM-supplied programmer menu uses the same default names. If you create your own source files, do not
place them in the same library as the IBM-supplied source files. (If you use the same file names as the
IBM-supplied names, you should ensure that the library containing your source files precedes the library
containing the IBM-supplied source files in the library list.)

14 DB2 UDB for iSeries Database Programming V5R2

../cl/crtsrcpf.htm

Source file attributes
Source files usually have the following attributes:

v A record length of 92 characters (this includes a 6-byte sequence number, a 6-byte date, and 80 bytes
of source).

v Keys (sequence numbers) that are unique even though the access path does not specify unique keys.
You are not required to specify a key for a source file. Default source files are created without keys
(arrival sequence access path). A source file created with an arrival sequence access path requires less
storage space and reduces save/restore time in comparison to a source file for which a keyed sequence
access path is specified.

v More than one member.

v Member names that are the same as the names of the objects that are created using them.

v The same record format for all records.

v Relatively few records in each member compared to most data files.

Some restrictions are:

v The source sequence number must be used as a key, if a key is specified.

v The key, if one is specified, must be in ascending sequence.

v The access path cannot specify unique keys.

v The ALTSEQ keyword is not allowed in DDS for source files.

v The first field must be a 6-digit sequence number field containing zoned decimal data and two decimal
digits.

v The second field must be a 6-digit date field containing zoned decimal data and zero decimal digits.

v All fields following the second field must be zoned decimal or character.

Creating source files without DDS
When you create a source physical file without using DDS, but by specifying the record length (RCDLEN
parameter), the source created contains three fields: SRCSEQ, SRCDAT, and SRCDTA. (The record
length must include 12 characters for sequence number and date-of-last-change fields so that the length of
the data portion of the record equals the record length minus 12.) The data portion of the record can be
defined to contain more than one field (each of which must be character or zoned decimal). If you want to
define the data portion of the record as containing more than one field, you must define the fields using
DDS.

A record format consisting of the following three fields is automatically used for a source physical file
created using the Create Source Physical File (CRTSRCPF) command:

Field Name Data Type and Length Description

1 SRCSEQ Zoned decimal, 6 digits, 2
decimal positions

Sequence number for record

2 SRCDAT Zoned decimal, 6 digits, no
decimal positions

Date of last update of record

3 SRCDTA Character, any length Data portion of the record (text)

Note: For all IBM-supplied database source files, the length of the data portion is 80 bytes. For
IBM-supplied device source files, the length of the data portion is the maximum record length for
the associated device.

Chapter 3. Setting up source files 15

Creating source files with DDS
If you want to create a source file for which you need to define the record format, use the Create Physical
File (CRTPF) or Create Logical File (CRTLF) command. If you create a source logical file, the logical file
member should only refer to one physical file member to avoid duplicate keys.

The following example shows the DDS needed to define the record format for a source file using CRTPF.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* R RECORD1
A F1 6S 2
A F2 6S
A F3 92A

16 DB2 UDB for iSeries Database Programming V5R2

../cl/crtpf.htm
../cl/crtpf.htm
../cl/crtlf.htm

Chapter 4. Describing database files

This chapter tells how to describe iSeries database files.

If you want to describe a file just to the record level, you can use the record length (RCDLEN) parameter
on the Create Physical File (CRTPF) and Create Source Physical File (CRTSRCPF) commands.

If you want to describe your file to the field level, several methods can be used to describe data to the
database system: IDDU, SQL commands, or data description specifications (DDS).

Interactive Data Definition Utility (IDDU)

Physical files can be described using IDDU. You might use IDDU because it is a menu-driven,
interactive method of describing data. You also might be familiar with describing data using IDDU
on a System/36. In addition, IDDU allows you to describe multiple-format physical files for use with
Query, iSeries Access, and DFU.

When you use IDDU to describe your files, the file definition becomes part of the OS/400 data
dictionary.

For more information about IDDU, see the IDDU Use book.

DB2 UDB for iSeries Structured Query Language (SQL)

The Structured Query Language can be used to describe an iSeries database file. The SQL
language supports statements to describe the fields in the database file, and to create the file.

SQL was created by IBM to meet the need for a standard and common database language. It is
currently used on all IBM DB2® platforms and on many other database implementations from
many different manufacturers.

When database files are created using the DB2 UDB for iSeries SQL language, the description of
the file is automatically added to a data dictionary in the SQL collection. The data dictionary (or
catalog) is then automatically maintained by the system.

The SQL language is the language of choice for accessing databases on many other platforms. It
is the only language for distributed database and heterogeneous systems.

For more information about SQL, see DB2 UDB for iSeries SQL Programming Concepts and DB2
UDB for iSeries SQL Reference.

Data Description Specifications (DDS)

Externally described data files can be described using DDS. Using DDS, you provide descriptions
of the field, record, and file level information.

You might use DDS because it provides the most options for the programmer to describe data in
the database. For example, only with DDS can you describe key fields in logical files.

The DDS Form provides a common format for describing data externally. DDS data is column
sensitive. The examples in this manual have numbered columns and show the data in the correct
columns.

Because DDS has the most options for defining data for the programmer, this guide focuses on describing
database files using DDS. To describe a database file using DDS, use the following:

v “Describing database files using DDS” on page 18

v “Specifying database file and member attributes” on page 26

Once a database file is described, you can view the description. See “Displaying information about
database files” on page 197.

© Copyright IBM Corp. 1998, 2002 17

../../books/c4157040.pdf
../sqlp/rbafymst02.htm
../db2/rbafzmst02.htm
../db2/rbafzmst02.htm

Describing database files using DDS
When you describe a database file using DDS, you can describe information at the file, record format, join,
field, key, and select/omit levels:

v File level DDS give the system information about the entire file. For example, you can specify whether
all the key field values in the file must be unique.

v Record format level DDS give the system information about a specific record format in the file. For
example, when you describe a logical file record format, you can specify the physical file that it is based
on.

v Join level DDS give the system information about physical files used in a join logical file. For example,
you can specify how to join two physical files.

v Field level DDS give the system information about individual fields in the record format. For example,
you can specify the name and attributes of each field.

v Key field level DDS give the system information about the key fields for the file. For example, you can
specify which fields in the record format are to be used as key fields.

v Select/omit field level DDS give the system information about which records are to be returned to the
program when processing the file. Select/omit specifications apply to logical files only.

The following topics show examples of describing database files using DDS:

v “Example: Describing a physical file using DDS”

v “Example: Describing a logical file using DDS” on page 21

In addition, see the following topics for ways to use DDS with database files:

v “Additional field definition functions you can describe with DDS” on page 21

v “Using existing field descriptions and field reference files to describe a database file” on page 22

v “Using a data dictionary for field reference in a database file” on page 24

v “Sharing existing record format descriptions in a database file” on page 25

For more information about describing database files using DDS, see DDS Reference: Physical and
Logical Files.

Example: Describing a physical file using DDS
The DDS for a physical file, as shown in the next example, must be in the following order:

�1� File level entries (optional). The UNIQUE keyword is used to indicate that the value of the key field
in each record in the file must be unique. Duplicate key values are not allowed in this file.

�2� Record format level entries. The record format name is specified, along with an optional text
description.

�3� Field level entries. The field names and field lengths are specified, along with an optional text
description for each field.

�4� Key field level entries (optional). The field names used as key fields are specified.

�5� Comment (optional).
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* ORDER HEADER FILE (ORDHDRP)
A �5�
A �1� UNIQUE
A �2� R ORDHDR TEXT(’Order header record’)
A �3� CUST 5 0 TEXT(’Customer number’)
A ORDER 5 0 TEXT(’Order number’)
A .

18 DB2 UDB for iSeries Database Programming V5R2

../rzakb/rzakbmst02.htm
../rzakb/rzakbmst02.htm

A .
A .
A K CUST
A �4� K ORDER

The following example shows a physical file ORDHDRP (an order header file), with an arrival sequence
access path without key fields specified, and the DDS necessary to describe that file.

Record Format of physical file ORDHDR

Customer Number (CUST) — Packed Decimal Length 5, No Decimals

Order Number (ORDER) — Packed Decimal Length 5, No Decimals

Order Date (ORDATE) — Packed Decimal Length 6, No Decimals

Purchase Order Number (CUSORD) — Packed Decimal Length 15, No Decimals

Shipping Instructions (SHPVIA) — Character Length 15

Order Status (ORDSTS) — Character Length 1

...

State (STATE) — Character Length 2

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A* ORDER HEADER FILE (ORDHDRP)
A R ORDHDR TEXT(’Order header record’)
A CUST 5 0 TEXT(’Customer Number’)
A ORDER 5 0 TEXT(’Order Number’)
A ORDATE 6 0 TEXT(’Order Date’)
A CUSORD 15 0 TEXT(’Customer Order No.’)
A SHPVIA 15 TEXT(’Shipping Instr’)
A ORDSTS 1 TEXT(’Order Status’)
A OPRNME 10 TEXT(’Operator Name’)
A ORDAMT 9 2 TEXT(’Order Amount’)
A CUTYPE 1 TEXT(’Customer Type’)
A INVNBR 5 0 TEXT(’Invoice Number’)
A PRTDAT 6 0 TEXT(’Printed Date’)
A SEQNBR 5 0 TEXT(’Sequence Number’)
A OPNSTS 1 TEXT(’Open Status’)
A LINES 3 0 TEXT(’Order Lines’)
A ACTMTH 2 0 TEXT(’Accounting Month’)
A ACTYR 2 0 TEXT(’Accounting Year’)
A STATE 2 TEXT(’State’)
A

The R in position 17 indicates that a record format is being defined. The record format name ORDHDR is
specified in positions 19 through 28.

You make no entry in position 17 when you are describing a field; a blank in position 17 along with a
name in positions 19 through 28 indicates a field name.

The data type is specified in position 35. The valid data types are:

Entry Meaning

A Character

P Packed decimal

S Zoned decimal

B Binary

F Floating point

Chapter 4. Describing database files 19

H Hexadecimal

L Date

T Time

Z Timestamp

Notes:

1. For double-byte character set (DBCS) data types, see Appendix B, “Double-Byte Character Set
(DBCS) considerations”.

2. The iSeries system performs arithmetic operations more efficiently for packed decimal than for zoned
decimal.

3. Some high-level languages do not support floating-point data.

4. Some special considerations that apply when you are using floating-point fields are:

v The precision associated with a floating-point field is a function of the number of bits (single or
double precision) and the internal representation of the floating-point value. This translates into the
number of decimal digits supported in the significant and the maximum values that can be
represented in the floating-point field.

v When a floating-point field is defined with fewer digits than supported by the precision specified, that
length is only a presentation length and has no effect on the precision used for internal calculations.

v Although floating-point numbers are accurate to 7 (single) or 15 (double) decimal digits of precision,
you can specify up to 9 or 17 digits. You can use the extra digits to uniquely establish the internal bit
pattern in the internal floating-point format so identical results are obtained when a floating-point
number in internal format is converted to decimal and back again to internal format.

If the data type (position 35) is not specified, the decimal positions entry is used to determine the data
type. If the decimal positions (positions 36 through 37) are blank, the data type is assumed to be character
(A); if these positions contain a number 0 through 31, the data type is assumed to be packed decimal (P).

The length of the field is specified in positions 30 through 34, and the number of decimal positions (for
numeric fields) is specified in positions 36 and 37. If a packed or zoned decimal field is to be used in a
high-level language program, the field length must be limited to the length allowed by the high-level
language you are using. The length is not the length of the field in storage but the number of digits or
characters specified externally from storage. For example, a 5-digit packed decimal field has a length of 5
specified in DDS, but it uses only 3 bytes of storage.

Character or hexadecimal data can be defined as variable length by specifying the VARLEN field level
keyword. Generally you would use variable length fields, for example, as an employee name within a
database. Names usually can be stored in a 30-byte field; however, there are times when you need 100
bytes to store a very long name. If you always define the field as 100 bytes, you waste storage. If you
always define the field as 30 bytes, some names are truncated.

You can use the DDS VARLEN keyword to define a character field as variable length. You can define this
field as:

v Variable-length with no allocated length. This allows the field to be stored using only the number of
bytes equal to the data (plus two bytes per field for the length value and a few overhead bytes per
record). However, performance might be affected because all data is stored in the variable portion of the
file, which requires two disk read operations to retrieve.

v Variable-length with an allocated length equal to the most likely size of the data. This allows most field
data to be stored in the fixed portion of the file and minimizes unused storage allocations common with
fixed-length field definitions. Only one read operation is required to retrieve field data with a length less
than the allocated field length. Field data with a length greater than the allocated length is stored in the
variable portion of the file and requires two read operations to retrieve the data.

20 DB2 UDB for iSeries Database Programming V5R2

Example: Describing a logical file using DDS
The DDS for a logical file, shown in the next example, must be in the following order:

�1� File level entries (optional). In this example, the UNIQUE keyword indicates that for this file the
key value for each record must be unique; no duplicate key values are allowed.

For each record format:

�2� Record format level entries. In this example, the record format name, the associated physical file,
and an optional text description are specified.

�3� Field level entries (optional). In this example, each field name used in the record format is
specified.

�4� Key field level entries (optional). In this example, the Order field is used as a key field.

�5� Select/omit field level entries (optional). In this example, all records whose Opnsts field contains a
value of N are omitted from the file’s access path. That is, programs reading records from this file
will never see a record whose OPNSTS field contains an N value.

�6� Comment.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* ORDER HEADER FILE (ORDHDRP)
A �6�
A �1� UNIQUE
A �2� R ORDHDR PFILE(ORDHDRP)
A �3� ORDER TEXT(’Order number’)
A CUST TEXT(’Customer number’)
A .
A .
A .
A �4� K ORDER
A O OPNSTS �5� CMP(EQ ’N’)
A S ALL

A logical file must be created after all physical files on which it is based are created. The PFILE keyword
in the previous example is used to specify the physical file or files on which the logical file is based.

Record formats in a logical file can be:

v A new record format based on fields from a physical file

v The same record format as in a previously described physical or logical file (see “Sharing existing
record format descriptions in a database file” on page 25)

Fields in the logical file record format must either appear in the record format of at least one of the
physical files or be derived from the fields of the physical files on which the logical file is based.

For more information about describing logical files, see Chapter 6, “Setting up logical files”.

Additional field definition functions you can describe with DDS
You can describe additional information about the fields in the physical and logical file record formats with
function keywords (positions 45 through 80 on the DDS Form). Some of the things you can specify
include:

v Validity checking keywords to verify that the field data meets your standards. For example, you can
describe a field to have a valid range of 500 to 900. (This checking is done only when data is typed on
a keyboard to the display.)

v Editing keywords to control how a field should be displayed or printed. For example, you can use the
EDTCDE(Y) keyword to specify that a date field is to appear as MM/DD/YY. The EDTCDE and
EDTWRD keywords can be used to control editing. (This editing is done only when used in a display or
printer file.)

Chapter 4. Describing database files 21

v Documentation, heading, and name control keywords to control the description and name of a field. For
example, you can use the TEXT keyword to document a description of each field. This text description
is included in your compiler list to better document the files used in your program. The TEXT and
COLHDG keywords control text and column-heading definitions. The ALIAS keyword can be used to
provide a more descriptive name for a field. The alias, or alternative name, is used in a program (if the
high-level language supports alias names).

v Content and default value keywords to control the null content and default data for a field. The
ALWNULL keyword specifies whether a null value is allowed in the field. If ALWNULL is used, the
default value of the field is null. If ALWNULL is not present at the field level, the null value is not
allowed, character and hexadecimal fields default to blanks, and numeric fields default to zeros, unless
the DFT (default) keyword is used to specify a different value.

Using existing field descriptions and field reference files to describe a
database file
If a field was already described in an existing file, and you want to use that field description in a new file
you are setting up, you can request the system to copy that description into your new file description. The
DDS keywords REF and REFFLD allow you to refer to a field description in an existing file. This helps
reduce the effort of coding DDS statements. It also helps ensure that the field attributes are used
consistently in all files that use the field.

In addition, you can create a physical file for the sole purpose of using its field descriptions. That is, the
file does not contain data; it is used only as a reference for the field descriptions for other files. This type
of file is known as a field reference file. A field reference file is a physical file containing no data, just field
descriptions.

You can use a field reference file to simplify record format descriptions and to ensure field descriptions are
used consistently. You can define all the fields you need for an application or any group of files in a field
reference file. You can create a field reference file using DDS and the Create Physical File (CRTPF)
command.

After the field reference file is created, you can build physical file record formats from this file without
describing the characteristics of each field in each file. When you build physical files, all you need to do is
refer to the field reference file (using the REF and REFFLD keywords) and specify any changes. Any
changes to the field descriptions and keywords specified in your new file override the descriptions in the
field reference file.

In the following example, a field reference file named DSTREFP is created for distribution applications.
The following example shows the DDS needed to describe DSTREFP.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* FIELD REFERENCE FILE (DSTREFP)
A R DSTREF TEXT(’Field reference file’)
A
A* FIELDS DEFINED BY CUSTOMER MASTER RECORD (CUSMST)
A CUST 5 0 TEXT(’Customer numbers’)
A COLHDG(’CUSTOMER’ ’NUMBER’)
A NAME 20 TEXT(’Customer name’)
A ADDR 20 TEXT(’Customer address’)
A
A CITY 20 TEXT(’Customer city’)
A
A STATE 2 TEXT(’State abbreviation’)
A CHECK(MF)
A CRECHK 1 TEXT(’Credit check’)
A VALUES(’Y’ ’N’)
A SEARCH 6 0 TEXT(’Customer name search’)
A COLHDG(’SEARCH CODE’)
A ZIP 5 0 TEXT(’Zip code’)
A CHECK(MF)

22 DB2 UDB for iSeries Database Programming V5R2

A CUTYPE 15 COLHDG(’CUSTOMER’ ’TYPE’)
A RANGE(1 5)
A
A* FIELDS DEFINED BY ITEM MASTER RECORD (ITMAST)
A ITEM 5 TEXT(’Item number’)
A COLHDG(’ITEM’ ’NUMBER’)
A CHECK(M10)
A DESCRP 18 TEXT(’Item description’)
A PRICE 5 2 TEXT(’Price per unit’)
A EDTCDE(J)
A CMP(GT 0)
A COLHDG(’PRICE’)
A ONHAND 5 0 TEXT(’On hand quantity’)
A EDTCDE(Z)
A CMP(GE 0)
A COLHDG(’ON HAND’)
A WHSLOC 3 TEXT(’Warehouse location’)
A CHECK(MF)
A COLHDG(’BIN NO’)
A ALLOC R REFFLD(ONHAND *SRC)
A TEXT(’Allocated quantity’)
A CMP(GE 0)
A COLHDG(’ALLOCATED’)
A
A* FIELDS DEFINED BY ORDER HEADER RECORD (ORDHDR)
A ORDER 5 0 TEXT(’Order number’)
A COLHDG(’ORDER’ ’NUMBER’)
A ORDATE 6 0 TEXT(’Order date’)
A EDTCDE(Y)
A COLHDG(’DATE’ ’ORDERED’)
A CUSORD 15 TEXT(’Cust purchase ord no.’)
A COLHDG(’P.O.’ ’NUMBER’)
A SHPVIA 15 TEXT(’Shipping instructions’)
A ORDSTS 1 TEXT(’Order status code’)
A COLHDG(’ORDER’ ’STATUS’)
A OPRNME R REFFLD(NAME *SRC)
A TEXT(’Operator name’)
A COLHDG(’OPERATOR NAME’)
A ORDAMT 9 2 TEXT(’Total order value’)
A COLHDG(’ORDER’ ’AMOUNT’)

A INVNBR 5 0 TEXT(’Invoice number’)
A COLHDG(’INVOICE’ ’NUMBER’)
A PRTDAT 6 0 EDTCDE(Y)
A COLHDG(’PRINTED’ ’DATE’)
A SEQNBR 5 0 TEXT(’Sequence number’)
A COLHDG(’SEQ’ ’NUMBER’)
A OPNSTS 1 TEXT(’Open status’)
A COLHDG(’OPEN’ ’STATUS’)
A LINES 3 0 TEXT(’Lines on invoice’)
A COLHDG(’TOTAL’ ’LINES’)
A ACTMTH 2 0 TEXT(’Accounting month’)
A COLHDG(’ACCT’ ’MONTH’)
A ACTYR 2 0 TEXT(’Accounting year’)
A COLHDG(’ACCT’ ’YEAR’)
A
A* FIELDS DEFINED BY ORDER DETAIL/LINE ITEM RECORD (ORDDTL)
A LINE 3 0 TEXT(’Line no. this item’)
A COLHDG(’LINE’ ’NO’)
A QTYORD 3 0 TEXT(’Quantity ordered’)
A COLHDG(’QTY’ ’ORDERED’
A CMP(GE 0)
A EXTENS 6 2 TEXT(’Ext of QTYORD x PRICE’)
A EDTCDE(J)
A COLHDG(’EXTENSION’)
A
A* FIELDS DEFINED BY ACCOUNTS RECEIVABLE
A ARBAL 8 2 TEXT(’A/R balance due’)

Chapter 4. Describing database files 23

A EDTCDE(J)
A
A* WORK AREAS AND OTHER FIELDS THAT OCCUR IN MULTIPLE PROGRAMS
A STATUS 12 TEXT(’status description’)
A A

Assume that the DDS in the previous example is entered into a source file FRSOURCE; the member
name is DSTREFP. To then create a field reference file, use the Create Physical File (CRTPF) command
as follows:
CRTPF FILE(DSTPRODLB/DSTREFP)

SRCFILE(QGPL/FRSOURCE) MBR(*NONE)
TEXT(’Distribution field reference file’)

The parameter MBR(*NONE) tells the system not to add a member to the file (because the field reference
file never contains data and therefore does not need a member).

To describe the physical file ORDHDRP by referring to DSTREFP, use the following DDS example:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* ORDER HEADER FILE (ORDHDRP) - PHYSICAL FILE RECORD DEFINITION
A REF(DSTREFP)
A R ORDHDR TEXT(’Order header record’)
A CUST R
A ORDER R
A ORDATE R
A CUSORD R
A SHPVIA R
A ORDSTS R
A OPRNME R
A ORDAMT R
A CUTYPE R
A INVNBR R
A PRTDAT R
A SEQNBR R
A OPNSTS R
A LINES R
A ACTMTH R
A ACTYR R
A STATE R
A

The REF keyword (positions 45 through 80) with DSTREFP (the field reference file name) specified
indicates the file from which field descriptions are to be used. The R in position 29 of each field indicates
that the field description is to be taken from the reference file.

When you create the ORDHDRP file, the system uses the DSTREFP file to determine the attributes of the
fields included in the ORDHDR record format. To create the ORDHDRP file, use the Create Physical File
(CRTPF) command. Assume that the DDS in the previous example was entered into a source file
QDDSSRC; the member name is ORDHDRP.

CRTPF FILE(DSTPRODLB/ORDHDRP)
TEXT(’Order Header physical file’)

Note: The files used in some of the examples in this guide refer to this field reference file.

Using a data dictionary for field reference in a database file
You can use a data dictionary and IDDU as an alternative to using a DDS field reference file. IDDU allows

you to define fields in a data dictionary. For more information, see the IDDU Use book.

24 DB2 UDB for iSeries Database Programming V5R2

../../books/c4157040.pdf

Sharing existing record format descriptions in a database file
A record format can be described once in either a physical or a logical file (except a join logical file) and
can be used by many files. When you describe a new file, you can specify that the record format of an
existing file is to be used by the new file. This can help reduce the number of DDS statements that you
would normally code to describe a record format in a new file and can save auxiliary storage space.

The file originally describing the record format can be deleted without affecting the files sharing the record
format. After the last file using the record format is deleted, the system automatically deletes the record
format description.

The following shows the DDS for two files. The first file describes a record format, and the second shares
the record format of the first:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RECORD1 PFILE(CUSMSTP)
A CUST
A NAME
A ADDR
A SEARCH
A K CUST
A

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A R RECORD1 PFILE(CUSMSTP)
A FORMAT(CUSMSTL)
A K NAME
A

The first example shows file CUSMSTL, in which the fields Cust, Name, Addr, and Search make up the
record format. The Cust field is specified as a key field.

The DDS in the second example shows file CUSTMSTL1, in which the FORMAT keyword names
CUSMSTL to supply the record format. The record format name must be RECORD1, the same as the
record format name shown in the first example. Because the files are sharing the same format, both files
have fields Cust, Name, Addr, and Search in the record format. In file CUSMSTL1, a different key field,
Name is specified.

The following restrictions apply to shared record formats:

v A physical file cannot share the format of a logical file.

v A join logical file cannot share the format of another file, and another file cannot share the format of a
join logical file.

v A view cannot share the format of another file, and another file cannot share the format of a view. (In
SQL, a view is an alternative representation of data from one or more tables. A view can include all or
some of the columns contained in the table or tables on which it is defined.)

If the original record format is changed by deleting all related files and creating the original file and all the
related files again, it is changed for all files that share it. If only the file with the original format is deleted
and re-created with a new record format, all files previously sharing that file’s format continue to use the
original format.

If a logical file is defined but no field descriptions are specified and the FORMAT keyword is not specified,
the record format of the first physical file (specified first on the PFILE keyword for the logical file) is
automatically shared. The record format name specified in the logical file must be the same as the record
format name specified in the physical file.

To find out if a file shares a format with another file, use the RCDFMT parameter on the Display Database
Relations (DSPDBR) command.

Chapter 4. Describing database files 25

For more information about record formats and physical and logical files, see the following topics:

v “Record format relationships between physical and logical database files”

v “Record format sharing limitation with physical and logical database files”

Record format relationships between physical and logical database files
When you change, add, and delete fields with the Change Physical File (CHGPF) command, the following
relationships exist between the physical and logical files that share the same record format:

v When you change the length of a field in a physical file, you will also change the length of the logical
file’s field.

v When you add a field to the physical file, the field is also added to the logical file.

v When you delete a field in the physical file, the field will be deleted from the logical file unless there is
another dependency in the DDS, such as a keyed field or a select or omit statement.

Record format sharing limitation with physical and logical database files
A record format can only be shared by 32K objects. Error messages are issued when you reach the
limitation. You may encounter this limitation in a circumstance where you are duplicating the same
database object multiple times.

Note: Format sharing is performed for files that are duplicated. The format is shared up to 32,767 times.
Beyond that, if a file that shares the format is duplicated, a new format will be created for the
duplicated file.

Specifying database file and member attributes
When you create a database file, database attributes are stored with the file and members. You specify
attributes with database command parameters. See the following topics:

v “Specifying file name and member name (FILE and MBR) parameters when creating database files” on
page 27

v “Specifying the physical file member control (DTAMBRS) parameter when creating database logical
files” on page 27

v “Specifying the source file and source member (SRCFILE and SRCMBR) parameters when creating
database files” on page 28

v “Specifying the database file type (FILETYPE) parameter when creating database files” on page 28

v “Specifying the maximum number of members allowed (MAXMBRS) parameter when creating database
files” on page 28

v “Specifying where to store the data (UNIT) parameter when creating or changing database files” on
page 28

– “Tips for using the UNIT parameter when creating database files” on page 28

v “Specifying the frequency of writing data to auxiliary storage (FRCRATIO) parameter when creating,
changing, or overriding database files” on page 29

– “FRCRATIO parameter tip” on page 29

v “Specifying the frequency of writing the access path (FRCACCPTH) parameter when creating database
files” on page 29

– “FRCACCPTH parameter tips” on page 29

v “Specifying the check for record format description changes (LVLCHK) parameter when creating or
changing a database file” on page 29

– “Level check example” on page 29

v “Specifying the current access path maintenance (MAINT) parameter when creating database files” on
page 29

– “MAINT parameter comparison” on page 30

– “MAINT parameter tips” on page 30

26 DB2 UDB for iSeries Database Programming V5R2

v “Specifying the recover (RECOVER) parameter when creating database files” on page 31

– “RECOVER parameter tip” on page 31

v “Specifying the file sharing (SHARE) parameter when creating a database file” on page 31

v “Specifying the locked file or record wait time (WAITFILE and WAITRCD) parameters when creating a
database file” on page 32

v “Specifying the public authority (AUT) parameter when creating a database file” on page 32

v “Specifying the system on which the file Is created (SYSTEM) parameter when creating a database file”
on page 32

v “Specifying the file and member text (TEXT) parameter when creating a database file” on page 32

v “Specifying the coded character set identifier (CCSID) parameter when creating database files” on
page 32

v “Specifying the sort sequence (SRTSEQ) parameter when creating a database file” on page 32

v “Specifying the language identifier (LANGID) parameter when creating database files” on page 33

For further discussions on specifying attributes and their possible values, see the following commands in
the Control Language (CL) topic:

v Create Physical File (CRTPF)

v Create Logical File (CRTLF)

v Create Source Physical File (CRTSRCPF)

v Add Physical File Member (ADDPFM)

v Add Logical File Member (ADDLFM)

v Change Physical File (CHGPF)

v Change Logical File (CHGLF)

v Change Physical File Member (CHGPFM)

v Change Source Physical File (CHGSRCPF)

v Change Logical File Member (CHGLFM)

Specifying file name and member name (FILE and MBR) parameters
when creating database files
You name a file with the FILE parameter in the create command. You also name the library in which the
file will reside. When you create a physical or logical file, the system normally creates a member with the
same name as the file. You can, however, specify a member name with the MBR parameter in the create
commands. You can also choose not to create any members by specifying MBR(*NONE) in the create
command.

Note: The system does not automatically create a member for a source physical file.

Specifying the physical file member control (DTAMBRS) parameter
when creating database logical files
You can control the reading of the physical file members with the DTAMBRS parameter of the Create
Logical File (CRTLF) command. You can specify:

v The order in which the physical file members are to be read.

v The number of physical file members to be used.

For more information about using logical files in this way, see “Defining logical file members” on page 43.

Chapter 4. Describing database files 27

../rbam6/rbam6clmain.htm
../cl/crtpf.htm
../cl/crtlf.htm
../cl/crtsrcpf.htm
../cl/addpfm.htm
../cl/addlfm.htm
../cl/chgpf.htm
../cl/chglf.htm
../cl/chgpfm.htm
../cl/chgsrcpf.htm
../cl/chglfm.htm

Specifying the source file and source member (SRCFILE and
SRCMBR) parameters when creating database files
The SRCFILE and SRCMBR parameters specify the names of the source file and members containing the
DDS statements that describe the file being created. If you do not specify a name:

v The default source file name is QDDSSRC.

v The default member name is the name specified on the FILE parameter.

Specifying the database file type (FILETYPE) parameter when creating
database files
A database file type is either data (*DATA) or source (*SRC). The Create Physical File (CRTPF) and
Create Logical File (CRTLF) commands use the default data file type (*DATA).

Specifying the maximum number of members allowed (MAXMBRS)
parameter when creating database files
The MAXMBRS parameter specifies the maximum number of members the file can hold. The default
maximum number of members for physical and logical files is one, and the default for source physical files
is *NOMAX.

Specifying where to store the data (UNIT) parameter when creating or
changing database files

Note: Effective for Version 3 Release 6 the UNIT parameter is a no-operation (NOP) function for the
following commands:

v CRTPF

v CRTLF

v CRTSRCPF

v CHGPF

v CHGLF

v CHGSRCPF

The parameter can still be coded; its presence will not cause an error. It will be ignored.
The system finds a place for the file on auxiliary storage. To specify where to store the file, use the UNIT
parameter. The UNIT parameter specifies:

v The location of data records in physical files.

v The access path for both physical files and logical files.

The data is placed on different units if:

v There is not enough space on the unit.

v The unit is not valid for your system.

An informational message indicating that the file was not placed on the requested unit is sent when file
members are added. (A message is not sent when the file member is extended.)

Tips for using the UNIT parameter when creating database files
In general, you should not specify the UNIT parameter. Let the system place the file on the disk unit of its
choosing. This is usually better for performance, and relieves you of the task of managing auxiliary
storage.

If you specify a unit number and also an auxiliary storage pool, the unit number is ignored. For more
information about auxiliary storage pools, see the Independent disk pools topic, in the Systems
management, Storage solutions topic.

28 DB2 UDB for iSeries Database Programming V5R2

../rzalb/rzalbtoc.htm

Specifying the frequency of writing data to auxiliary storage
(FRCRATIO) parameter when creating, changing, or overriding
database files
You can control when database changes are written to auxiliary storage using the force write ratio
(FRCRATIO) parameter on either the create, change, or override database file commands. Normally, the
system determines when to write changed data from main storage to auxiliary storage. Closing the file
(except for a shared close) and the force-end-of-data operation forces remaining updates, deletions, and
additions to auxiliary storage. If you are journaling the file, the FRCRATIO parameter should normally be
*NONE.

FRCRATIO parameter tip
Using the FRCRATIO parameter has performance and recovery considerations for your system. To
understand these considerations, see Chapter 18, “Recovering and restoring your database” on page 207.

Specifying the frequency of writing the access path (FRCACCPTH)
parameter when creating database files
The force access path (FRCACCPTH) parameter controls when an access path is written to auxiliary
storage. FRCACCPTH(*YES) forces the access path to auxiliary storage whenever the access path is
changed. This reduces the chance that the access path will need to be rebuilt should the system fail.

FRCACCPTH parameter tips
Specifying FRCACCPTH(*YES) can degrade performance when changes occur to the access path. An
alternative to forcing the access path is journaling the access path. For more information about forcing
access paths and journaling access paths, see Chapter 18, “Recovering and restoring your database” on
page 207.

Specifying the check for record format description changes (LVLCHK)
parameter when creating or changing a database file
When the file is opened, the system checks for changes to the database file definition. When the file
changes to an extent that your program may not be able to process the file, the system notifies your
program. The default is to do level checking. You can specify if you want level checking when you:

v Create a file.

v Use a change database file command.

You can override the system and ignore the level check using the Override with Database File (OVRDBF)
command.

Level check example
For example, assume you compiled your program two months ago and, at that time, the file the program
was defined as having three fields in each record. Last week another programmer decided to add a new
field to the record format, so that now each record would have four fields. The system notifies your
program, when it tries to open the file, that a significant change occurred to the definition of the file since
the last time the program was compiled. This notification is known as a record format level check.

Specifying the current access path maintenance (MAINT) parameter
when creating database files
The MAINT parameter specifies how access paths are maintained for closed files. While a file is open, the
system maintains the access paths as changes are made to the data in the file. However, because more
than one access path can exist for the same data, changing data in one file might cause changes to be
made in access paths for other files that are not currently open (in use). The three ways of maintaining
access paths of closed files are:

Chapter 4. Describing database files 29

v Immediate maintenance of an access path means that the access path is maintained as changes are
made to its associated data, regardless if the file is open. Access paths used by referential constraints
will always be in immediate maintenance.

v Rebuild maintenance of an access path means that the access path is only maintained while the file is
open, not when the file is closed; the access path is rebuilt when the file is opened the next time. When
a file with rebuild maintenance is closed, the system stops maintaining the access path. When the file is
opened again, the access path is totally rebuilt. If one or more programs has opened a specific file
member with rebuild maintenance specified, the system maintains the access path for that member until
the last user closes the file member.

v Delayed maintenance of an access path means that any maintenance for the access path is done after
the file member is opened the next time and while it remains open. However, the access path is not
rebuilt as it is with rebuild maintenance. Updates to the access path are collected from the time the
member is closed until it is opened again. When it is opened, only the collected changes are merged
into the access path.

If you do not specify the type of maintenance for a file, the default is immediate maintenance.

MAINT parameter comparison
Table 1 compares immediate, rebuild, and delayed maintenance as they affect opening and processing
files.

Table 1. MAINT Values

Function Immediate Maintenance Rebuild Maintenance Delayed Maintenance

Open Fast open because the
access path is current.

Slow open because access
path must be rebuilt.

Moderately fast open
because the access path
does not have to be rebuilt,
but it must still be changed.
Slow open if extensive
changes are needed.

Process Slower update/output
operations when many
access paths with
immediate maintenance are
built over changing data
(the system must maintain
the access paths).

Faster update/output
operations when many
access paths with rebuild
maintenance are built over
changing data and are not
open (the system does not
have to maintain the access
paths).

Moderately fast
update/output operations
when many access paths
with delayed maintenance
are built over changing data
and are not open, (the
system records the
changes, but the access
path itself is not
maintained).

Note:

1. Delayed or rebuild maintenance cannot be specified for a file that has unique keys.

2. Rebuild maintenance cannot be specified for a file if its access path is being journaled.

MAINT parameter tips
The type of access path maintenance to specify depends on the number of records and the frequency of
additions, deletions, and updates to a file while the file is closed.

You should use delayed maintenance for files that have relatively few changes to the access path while
the file members are closed. Delayed maintenance reduces system overhead by reducing the number of
access paths that are maintained immediately. It may also result in faster open processing, because the
access paths do not have to be rebuilt.

30 DB2 UDB for iSeries Database Programming V5R2

You may want to specify immediate maintenance for access paths that are used frequently, or when you
cannot wait for an access path to be rebuilt when the file is opened. You may want to specify delayed
maintenance for access paths that are not used frequently, if infrequent changes are made to the record
keys that make up the access path.

In general, for files used interactively, immediate maintenance results in good response time. For files
used in batch jobs, either immediate, delayed, or rebuild maintenance is adequate, depending on the size
of the members and the frequency of changes.

Specifying the recover (RECOVER) parameter when creating database
files
After a failure, you must rebuild changed access paths that were not forced to auxillary storage or
journaled. To rebuild access paths and to recover data, you can use the RECOVER parameter on the
following commands. These commands specify when the access path is to be rebuilt:

v Create Physical File (CRTPF)

v Create Logical File (CRTLF)

v Create Source Physical File (CRTSRCPF)

For more information about recovering your data, see Chapter 18, “Recovering and restoring your
database” on page 207.

Table 2 shows your choices for possible combinations of duplicate key and maintenance options.

Table 2. Recovery Options

With This Duplicate Key
Option

And This Maintenance
Option Your Recovery Options Are

Unique Immediate Rebuild during the IPL (*IPL) Rebuild after the IPL
(*AFTIPL, default) Do not rebuild at IPL, wait for first
open (*NO)

Not unique Immediate or delayed Rebuild during the IPL (*IPL) Rebuild after the IPL
(*AFTIPL) Do not rebuild at IPL, wait for first open (*NO,
default)

Not unique Rebuild Do not rebuild at IPL, wait for first open (*NO, default)

RECOVER parameter tip
A list of files that have access paths that need to be recovered is shown on the Edit Rebuild of Access
Paths display during the next initial program load (IPL) if the IPL is in manual mode. You can edit the
original recovery option for the file by selecting the desired option on the display. After the IPL is complete,
you can use the Edit Rebuild of Access Paths (EDTRBDAP) command to set the sequence in which
access paths are rebuilt. If the IPL is unattended, the Edit Rebuild of Access Paths display is not shown
and the access paths are rebuilt in the order determined by the RECOVER parameter. You only see the
*AFTIPL and *NO (open) access paths.

For more information about recovering data, see Backup and Recovery

Specifying the file sharing (SHARE) parameter when creating a
database file
The database system lets multiple users access and change a file at the same time. The SHARE
parameter allows sharing of opened files in the same job. For example, sharing a file in a job allows
programs in the job to share a file’s status, record position, and buffer. Sharing files in a job can improve
performance by reducing:

Chapter 4. Describing database files 31

../../books/c4153045.pdf

v The amount of storage the job needs.

v The time required to open and close the file.

For more information about sharing files in the same job, see “Sharing database files in the same job or
activation group” on page 108.

Specifying the locked file or record wait time (WAITFILE and
WAITRCD) parameters when creating a database file
When you create a file, you can specify how long a program should wait for either the file or a record in
the file if another job has the file or record locked. If the wait time ends before the file or record is
released, a message is sent to the program indicating that the job was not able to use the file or read the
record. For more information about record and file locks and wait times, see “Locking records” on
page 106 and “Locking files” on page 107.

Specifying the public authority (AUT) parameter when creating a
database file
When you create a file, you can specify public authority. Public authority is the authority a user has to a
file (or other object on the system) if that user does not have specific authority for the file or does not
belong to a group with specific authority for the file. For more information about public authority, see
“Specifying public authority” on page 95.

Specifying the system on which the file Is created (SYSTEM)
parameter when creating a database file
You can specify if the file is to be created on the local system or a remote system that supports distributed
data management (DDM). For more information about DDM, see Distributed Data Management.

Specifying the file and member text (TEXT) parameter when creating a
database file
You can specify a text description for each file and member you create. The text data is useful in
describing information about your file and members.

Specifying the coded character set identifier (CCSID) parameter when
creating database files
You can specify a coded character set identifier (CCSID) for physical files. The CCSID describes the
encoding scheme and the character set for character type fields contained in this file. For more information
about CCSIDs, see iSeries Globalization.

Specifying the sort sequence (SRTSEQ) parameter when creating a
database file
You can specify the sort sequence for a file. The values of the SRTSEQ parameter along with the CCSID
and LANGID parameters determine which sort sequence table the file uses. You can set the SETSEQ
parameter for both the physical and the logical files.

You can specify:

v System supplied sort sequence tables with unique or shared collating weights. There are sort sequence
tables for each supported language.

v Any user-created sort sequence table.

v The hexadecimal value of the characters in the character set.

v The sort sequence of the current job or the one specified in the ALTSEQ parameter.

32 DB2 UDB for iSeries Database Programming V5R2

../ddm/rbae5mst02.htm
../nls/rbagsglobalmain.htm

The sort sequence table is stored with the file, except when the sort sequence is *HEX.

Specifying the language identifier (LANGID) parameter when creating
database files
You can specify the language identifier that the system should use when the SRTSEQ parameter value is
*LANGIDSHR or *LANGIDUNQ. The values of the LANGID, CCSID, and SRTSEQ parameters determine
which sort sequence table the file uses. You can set the LANGID parameter for physical and logical files.

You can specify any language identifier supported on your system, or you can specify that the language
identifier for the current job be used.

Chapter 4. Describing database files 33

34 DB2 UDB for iSeries Database Programming V5R2

Chapter 5. Setting up physical files

This chapter discusses some of the unique considerations for creating a physical file.

v “Creating a physical file”

v “Specifying physical file and member attributes when creating a physical file”

For information about describing a physical file record format, see “Example: Describing a physical file
using DDS” on page 18.

For information about describing a physical file access path, refer to Chapter 7, “Describing access paths
for database files” on page 83.

Creating a physical file
To create a physical file, you should first have created a library (see “Creating a library” on page 11) and
created a source file (see “Creating a source file” on page 13) . Then, take the following steps:

1. If you are using DDS, enter DDS for the physical file into a source file. This can be done using the
source entry utility (SEU). SEU is part of IBM WebSphere Development Studio for iSeries. See
“Working with source files” on page 223 for more information about how source statements are entered
in source files. See Chapter 4, “Describing database files” on page 17 for information about describing
database files.

2. Create the physical file. You can use the CRTPF (Create Physical File) command, or the CRTSRCPF
(Create Source Physical File) command.

The following command creates a one-member file using DDS and places it in a library called
DSTPRODLB.
CRTPF FILE(DSTPRODLB/ORDHDRP)

TEXT(’Order header physical file’)

As shown, this command uses defaults. For the SRCFILE and SRCMBR parameters, the system uses
DDS in the source file called QDDSSRC and the member named ORDHDRP (the same as the file name).
The file ORDHDRP with one member of the same name is placed in the library DSTPRODLB.

Similar to physical files are tables. Tables can be created using iSeries Navigator or using the CREATE
TABLE SQL statement. For information, see the following:

v Creating and using a table using iSeries Navigator

v CREATE TABLE

Specifying physical file and member attributes when creating a
physical file
Some of the attributes you can specify for physical files and members on the Create Physical File
(CRTPF), Create Source Physical File (CRTSRCPF), Change Physical File (CHGPF), Change Source
Physical File (CHGSRCPF), Add Physical File Member (ADDPFM), and Change Physical File Member
(CHGPFM) commands include the following:

v “Physical file and member attributes: Expiration date” on page 36

v “Physical file and member attributes: Size of the physical file member” on page 36

v “Physical file and member attributes: Storage allocation” on page 36

v “Physical file and member attributes: Method of allocating storage” on page 36

v “Physical file and member attributes: Record length” on page 37

v “Physical file and member attributes: Deleted records” on page 37

© Copyright IBM Corp. 1998, 2002 35

../cl/crtpf.htm
../cl/crtsrcpf.htm
../cl/crtsrcpf.htm
../sqlp/rbafymstopntable.htm
../db2/rbafzmsthctabl.htm

v “Physical file and member attributes: Physical file capabilities” on page 38

v “Physical file and member attributes: Source type” on page 38

Physical file and member attributes: Expiration date
EXPDATE Parameter. This parameter specifies an expiration date for each member in the file (ADDPFM,
CHGPFM, CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands). If the expiration date is past, the
system operator is notified when the file is opened. The system operator can then override the expiration
date and continue, or stop the job. Each member can have a different expiration date, which is specified
when the member is added to the file. (The expiration date check can be overridden; see “Checking for
the expiration date of the file” on page 106.)

Physical file and member attributes: Size of the physical file member
SIZE Parameter. This parameter specifies the maximum number of records that can be placed in each
member (CRTPF, CHGPF, CRTSRCPF, AND CHGSRCPF commands). The following formula can be used
to determine the maximum:

R + (I * N)

where:

R is the starting record count

I is the number of records (increment) to add each time

N is the number of times to add the increment

The defaults for the SIZE parameter are:

R 10,000

I 1,000

N 3 (CRTPF command)

499 (CRTSRCPF command)

For example, assume that R is a file created for 5000 records plus 3 increments of 1000 records each.
The system can add 1000 to the initial record count of 5000 three times to make the total maximum 8000.
When the total maximum is reached, the system operator either stops the job or tells the system to add
another increment of records and continue. When increments are added, a message is sent to the system
history log. When the file is extended beyond its maximum size, the minimum extension is 10% of the
current size, even if this is larger than the specified increment.

Instead of taking the default size or specifying a size, you can specify *NOMAX. For information about the
maximum number of records allowed in a file, see Appendix A, “Database file sizes”.

Physical file and member attributes: Storage allocation
ALLOCATE Parameter. This parameter controls the storage allocated for members when they are added
to the file (CRTPF, CHGPF, CRTSRCPF, and CHGSRCPF commands). The storage allocated would be
large enough to contain the initial record count for a member. If you do not allocate storage when the
members are added, the system will automatically extend the storage allocation as needed. You can use
the ALLOCATE parameter only if you specified a maximum size on the SIZE parameter. If SIZE(*NOMAX)
is specified, then ALLOCATE(*YES) cannot be specified.

Physical file and member attributes: Method of allocating storage
CONTIG Parameter. This parameter controls the method of allocating physical storage for a member
(CRTPF and CRTSRCPF commands). If you allocate storage, you can request that the storage for the

36 DB2 UDB for iSeries Database Programming V5R2

starting record count for a member be contiguous. That is, all the records in a member are to physically
reside together. If there is not enough contiguous storage, contiguous storage allocation is not used and
an informational message is sent to the job that requests the allocation, at the time the member is added.

Note: When a physical file is first created, the system always tries to allocate its initial storage
contiguously. The only difference between using CONTIG(*NO) and CONTIG(*YES) is that with
CONTIG(*YES) the system sends a message to the job log if it is unable to allocate contiguous
storage when the file is created. No message is sent when a file is extended after creation,
regardless of what you specified on the CONTIG parameter.

Physical file and member attributes: Record length
RCDLEN Parameter. This parameter specifies the length of records in the file (CRTPF and CRTSRCPF
commands). If the file is described to the record level only, then you specify the RCDLEN parameter when
the file is created. This parameter cannot be specified if the file is described using DDS, IDDU, or SQL
(the system automatically determines the length of records in the file from the field level descriptions).

Physical file and member attributes: Deleted records
DLTPCT Parameter. This parameter specifies the percentage of deleted records a file can contain before
you want the system to send a message to the system history log (CRTPF, CHGPF, CRTSRCPF, and
CHGSRCPF commands). When a file is closed, the system checks the member to determine the
percentage of deleted records. If the percentage exceeds that value specified in the DLTPCT parameter, a
message is sent to the history log. (For information about processing the history log, see the chapter on

message handling in the CL Programming book.) One reason you might want to know when a file
reaches a certain percentage of deleted records is to reclaim the space used by the deleted records. After
you receive the message about deleted records, you could run the Reorganize Physical File Member
(RGZPFM) command to reclaim the space. (For more information about RGZPFM, see “Reorganizing a
physical file” on page 193.) You can also specify to bypass the deleted records check by using the *NONE
value for the DLTPCT parameter. *NONE is the default for the DLTPCT parameter.

REUSEDLT Parameter. This parameter specifies whether deleted record space should be reused on
subsequent write operations (CRTPF and CHGPF commands). When you specify *YES for the
REUSEDLT parameter, all insert requests on that file try to reuse deleted record space. Reusing deleted
record space allows you to reclaim space used by deleted records without having to issue a RGZPFM
command. When the CHGPF command is used to change a file to reuse deleted records, the command
could take a long time to run, especially if the file is large and there are already a lot of deleted records in
it. It is important to note the following:

v The term arrival order loses its meaning for a file that reuses deleted record space. Records are no
longer always inserted at the end of the file when deleted record space is reused.

v If a new physical file is created with the reuse deleted record space attribute and the file is keyed, the
FIFO or LIFO access path attribute cannot be specified for the physical file, nor can any keyed logical
file with the FIFO or LIFO access path attribute be built over the physical file.

v You cannot change an existing physical file to reuse deleted record space if there are any logical files
over the physical file that specify FIFO or LIFO ordering for duplicate keys, or if the physical file has a
FIFO or LIFO duplicate key ordering.

v Reusing deleted record space should not be specified for a file that is processed as a direct file or if the
file is processed using relative record numbers.

Note: See “Database file processing: Reusing deleted records” on page 103 for more information on
reusing deleted records.

*NO is the default for the REUSEDLT parameter.

Chapter 5. Setting up physical files 37

../../books/c4157215.pdf

Physical file and member attributes: Physical file capabilities
ALWUPD and ALWDLT Parameters. File capabilities are used to control which input/output operations
are allowed for a database file independent of database file authority. For more information about
database file capabilities and authority, see Chapter 8, “Securing a database”.

Physical file and member attributes: Source type
SRCTYPE Parameter. This parameter specifies the source type for a member in a source file (ADDPFM
and CHGPFM commands). The source type determines the syntax checker, prompting, and formatting that
are used for the member. If the user specifies a unique source type (other than iSeries supported types
like COBOL and RPG), the user must provide the programming to handle the unique type.

If the source type is changed, it is only reflected when the member is subsequently opened; members
currently open are not affected.

38 DB2 UDB for iSeries Database Programming V5R2

Chapter 6. Setting up logical files

This chapter discusses some of the unique considerations for creating a logical file. Many of the rules for
setting up logical files apply to all categories of logical files. In this guide, rules that apply only to one
category of logical file identify which category they refer to. Rules that apply to all categories of logical files
do not identify the specific categories they apply to.

To create logical file, use the following:

v “Creating a logical file”

v “Describing logical file record formats” on page 45

v “Describing access paths for logical files” on page 51

v “Setting up a join logical file” on page 58

Creating a logical file
Before creating a logical file, the physical file or files on which the logical file is based must already exist.

To create a logical file, take the following steps:

1. Type the DDS for the logical file into a source file. This can be done using SEU or another method.
See “Working with source files” on page 223 for how source is placed in source files. The following
shows the DDS for logical file ORDHDRL (an order header file):
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* ORDER HEADER LOGICAL FILE (ORDHDRL)
A R ORDHDR PFILE(ORDHDRP)
A K ORDER

This file uses the key field Order (order number) to define the access path. The record format is the
same as the associated physical file ORDHDRP. The record format name for the logical file must be
the same as the record format name in the physical file because no field descriptions are given.

2. Create the logical file. You can use the CRTLF (Create Logical File) command.

The following shows how the CRTLF command could be typed:
CRTLF FILE(DSTPRODLB/ORDHDRL)

TEXT(’Order header logical file’)

As shown, this command uses some defaults. For example, because the SRCFILE and SRCMBR
parameters are not specified, the system used DDS from the IBM-supplied source file QDDSSRC, and the
source file member name is ORDHDRL (the same as the file name specified on the CRTLF command).
The file ORDHDRL with one member of the same name is placed in the library DSTPRODLB.

You can create multiple logical files over a single physical file. The maximum number of logical files that
can be created over a single physical file is 32K.

See the following topics for information about other things you can do with logical files:

v “Creating a logical file with more than one record format” on page 40

v “Identifying which record format to add in a file with multiple formats” on page 179

Similar to logical files are views. Views can be created using iSeries Navigator or using the CREATE
VIEW SQL statement. For information, see the following:

v Creating and using a view with iSeries Navigator

v CREATE VIEW

© Copyright IBM Corp. 1998, 2002 39

../cl/crtlf.htm
../sqlp/rbafymstopncrtview.htm
../db2/rbafzmsthcview.htm

Creating a logical file with more than one record format
A multiple format logical file lets you use related records from two or more physical files by referring to
only one logical file. Each record format is always associated with one or more physical files. You can use
the same physical file in more than one record format.

The following shows the DDS for a physical file, ORDDTLP, built from a field reference file:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* ORDER DETAIL FILE (ORDDTLP) - PHYSICAL FILE RECORD DEFINITION
A REF(DSTREF)
A R ORDDTL TEXT(’Order detail record’)
A CUST R
A ORDER R
A LINE R
A ITEM R
A QTYORD R
A DESCRP R
A PRICE R
A EXTENS R
A WHSLOC R
A ORDATE R
A CUTYPE R
A STATE R
A ACTMTH R
A ACTYR R
A

The following example shows the DDS for the physical file ORDHDRP:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* ORDER HEADER FILE (ORDHDRP) - PHYSICAL FILE RECORD DEFINITION
A REF(DSTREFP)
A R ORDHDR TEXT(’Order header record’)
A CUST R
A ORDER R
A ORDATE R
A CUSORD R
A SHPVIA R
A ORDSTS R
A OPRNME R
A ORDMNT R
A CUTYPE R
A INVNBR R
A PRTDAT R
A SEQNBR R
A OPNSTS R
A LINES R
A ACTMTH R
A ACTYR R
A STATE R
A

The following example shows how to create a logical file ORDFILL with two record formats. One record
format is defined for order header records from the physical file ORDHDRP; the other is defined for order
detail records from the physical file ORDDTLP.

The logical file record format ORDHDR uses one key field, Order, for sequencing; the logical file record
format ORDDTL uses two keys fields, Order and Line, for sequencing.

The following example shows the DDS for the logical file ORDFILL.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* ORDER TRANSACTION LOGICAL FILE (ORDFILL)
A R ORDHDR PFILE(ORDHDRP)
A K ORDER

40 DB2 UDB for iSeries Database Programming V5R2

A
A R ORDDTL PFILE(ORDDTLP)
A K ORDER
A K LINE
A

To create the logical file ORDFILL with two associated physical files, use a Create Logical File (CRTLF)
command like the following:
CRTLF FILE(DSTPRODLB/ORDFILL)

TEXT(’Order transaction logical file’)

The DDS source is in the member ORDFILL in the file QDDSSRC. The file ORDFILL with a member of
the same name is placed in the DSTPRODLB library. The access path for the logical file member
ORDFILL arranges records from both the ORDHDRP and ORDDTLP files. Record formats for both
physical files are keyed on Order as the common field. Because of the order in which they were specified
in the logical file description, they are merged in Order sequence with duplicates between files retrieved
first from the header file ORDHDRP and second from the detail file ORDDTLP. Because FIFO, LIFO, or
FCFO are not specified, the order of retrieval of duplicate keys in the same file is not guaranteed.

Note: In certain circumstances, it is better to use multiple logical files, rather than to use a multiple-format
logical file. For example, when keyed access is used with a multiple-format logical file, it is possible
to experience poor performance if one of the files has very few records. Even though there are
multiple formats, the logical file has only one index, with entries from each physical file. Depending
on the kind of processing being done by the application program (for example, using RPG SETLL
and READE with a key to process the small file), the system might have to search all index entries
in order to find an entry from the small file. If the index has many entries, searching the index might
take a long time, depending on the number of keys from each file and the sequence of keys in the
index. (If the small file has no records, performance is not affected, because the system can take a
fast path and avoid searching the index.)

See the following topics for more information about files with multiple formats:

v “Controlling how records are retrieved in a file with multiple formats”

v “Controlling how records are added to a file with multiple formats” on page 43

Controlling how records are retrieved in a file with multiple formats
In a logical file with more than one record format, key field definitions are required. Each record format has
its own key definition, and the record format key fields can be defined to merge the records of the different
formats. Each record format does not have to contain every key field in the key. Consider the following
records:

Header Record Format:

Record Order Cust Ordate

1 41882 41394 050688
2 32133 28674 060288

Detail Record Format:

Record Order Line Item Qtyord Extens

A 32133 01 46412 25 125000
B 32133 03 12481 4 001000
C 41882 02 46412 10 050000
D 32133 02 14201 110 454500
E 41882 01 08265 40 008000

Chapter 6. Setting up logical files 41

In DDS, the header record format is defined before the detail record format. If the access path uses the
Order field as the first key field for both record formats and the Line field as the second key field for only
the second record format, both in ascending sequence, the order of the records in the access path is:

Record 2
Record A
Record D
Record B
Record 1
Record E
Record C

Note: Records with duplicate key values are arranged first in the sequence in which the physical files are
specified. Then, if duplicates still exist within a record format, the duplicate records are arranged in
the order specified by the FIFO, LIFO, or FCFO keyword. For example, if the logical file specified
the DDS keyword FIFO, then duplicate records within the format would be presented in
first-in-first-out sequence.

For logical files with more than one record format, you can use the *NONE DDS function for key fields to
separate records of one record format from records of other record formats in the same access path.
Generally, records from all record formats are merged based on key values. However, if *NONE is
specified in DDS for a key field, only the records with key fields that appear in all record formats before
the *NONE are merged. When such records are retrieved by key from more than one record format, only
key fields that appear in all record formats before the *NONE are used. To increase the number of key
fields that are used, limit the number of record formats considered.

The logical file in the following example contains three record formats, each associated with a different
physical file:

Record
Format

Physical File Key Fields

EMPMSTR EMPMSTR Empnbr (employee number) �1�
EMPHIST EMPHIST Empnbr, Empdat (employed date) �2�
EMPEDUC EMPEDUC Empnbr, Clsnbr (class number) �3�

Note: All record formats have one key field in common, the Empnbr field.

The DDS for this example is:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A
A K EMPNBR �1�
A
A K EMPNBR �2�
A K EMPDAT
A
A K EMPNBR �3�
A K *NONE
A K CLSNBR
A

*NONE is assumed for the second and third key fields for EMPMSTR and the third key field for EMPHIST
because no key fields follow these key field positions.

42 DB2 UDB for iSeries Database Programming V5R2

|
|
|
|
|
|
|

The following shows the arrangement of the records:

Empnbr Empdat Clsnbr Record
Format Name

426 EMPMSTR
426 6/15/74 EMPHIST
426 412 EMPEDUC
426 520 EMPEDUC
427 EMPMSTR
427 9/30/75 EMPHIST
427 412 EMPEDUC

*NONE serves as a separator for the record formats EMPHIST and EMPEDUC. All the records for
EMPHIST with the same Empnbr field are grouped together and sorted by the Empdat field. All the
records for EMPEDUC with the same Empnbr field are grouped together and sorted by the Clsnbr field.

Note: Because additional key field values are placed in the key sequence access path to guarantee the
above sequencing, duplicate key values are not predictable.

See the DDS Reference for additional examples of the *NONE DDS function.

Controlling how records are added to a file with multiple formats
To add a record to a multiple format logical file, identify the member of the based-on physical file to which
you want the record written. If the application you are using does not allow you to specify a particular
member within a format, each of the formats in the logical file needs to be associated with a single
physical file member. If one or more of the based-on physical files contains more than one member, you
need to use the DTAMBRS parameter, described in “Defining logical file members”, to associate a single
member with each format. Finally, give each format in the multiple format logical file a unique name. If the
multiple format logical file is defined in this way, then when you specify a format name on the add
operation, you target a particular physical file member into which the record is added.

When you add records to a multiple-format logical file and your application program uses a file name
instead of a record format name, you need to write a format selector program. For more information about
format selector programs, see “Identifying which record format to add in a file with multiple formats” on
page 179.

Defining logical file members
You can define members in logical files to separate the data into logical groups. The logical file member
can be associated with one physical file member or with several physical file members.

Chapter 6. Setting up logical files 43

../dds/rbafpmst02.htm

The following illustrates this concept:

The record formats used with all logical members in a logical file must be defined in DDS when the file is
created. If new record formats are needed, another logical file or record format must be created.

The attributes of an access path are determined by information specified in DDS and on commands when
the logical file is created. The selection of data members is specified in the DTAMBRS parameter on the
Create Logical File (CRTLF) and Add Logical File Member (ADDLFM) commands.

When a logical file is defined, the physical files used by the logical file are specified in DDS by the record
level PFILE or JFILE keyword. If multiple record formats are defined in DDS, a PFILE keyword must be
specified for each record format. You can specify one or more physical files for each PFILE keyword.

When a logical file is created or a member is added to the file, you can use the DTAMBRS parameter on
the Create Logical File (CRTLF) or the Add Logical File Member (ADDLFM) command to specify which
members of the physical files used by the logical file are to be used for data. *NONE can be specified as
the physical file member name if no members from a physical file are to be used for data.

In the following example, the logical file has two record formats defined:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A
00010A R LOGRCD2 PFILE(PF1 PF2)

A .
A .
A .

00020A R LOGRCD3 PFILE(PF1 PF2 PF3)
A .
A .
A .
A

If the DTAMBRS parameter is specified on the CRTLF or ADDLFM command as in the following example:
DTAMBRS((PF1 M1) (PF2 (M1 M2)) (PF1 M1) (PF2 (*NONE)) (PF3 M3))

Record format LOGRCD2 is associated with physical file member M1 in PF1 and M1 and M2 in file PF2.
Record format LOGRCD3 is associated with M1 in PF1 and M3 in PF3. No members in PF2 are
associated with LOGRCD3. If the same physical file name is specified on more than one PFILE keyword,
each occurrence of the physical file name is handled as a different physical file.

If a library name is not specified for the file on the PFILE keyword, the library list is used to find the
physical file when the logical file is created. The physical file name and the library name then become part
of the logical file description. The physical file names and the library names specified on the DTAMBRS
parameter must be the same as those stored in the logical file description.

44 DB2 UDB for iSeries Database Programming V5R2

If a file name is not qualified by a library name on the DTAMBRS parameter, the library name defaults to
*CURRENT, and the system uses the library name that is stored in the logical file description for the
respective physical file name. This library name is either the library name that was specified for the file on
the PFILE DDS keyword or the name of the library in which the file was found using the library list when
the logical file was created.

When you add a member to a logical file, you can specify data members as follows:

v Specify no associated physical file members (DTAMBRS (*ALL) default). The logical file member is
associated with all the physical file members of all physical files in all the PFILE keywords specified in
the logical file DDS.

v Specify the associated physical file members (DTAMBRS parameter). If you do not specify library
names, the logical file determines the libraries used. When more than one physical file member is
specified for a physical file, the member names should be specified in the order in which records are to
be retrieved when duplicate key values occur across those members. If you do not want to include any
members from a particular physical file, either do not specify the physical file name or specify the
physical file name and *NONE for the member name. This method can be used to define a logical file
member that contains a subset of the record formats defined for the logical file.

You can use the Create Logical File (CRTLF) command to create the first member when you create the
logical file. Subsequent members must be added using the Add Logical File Member (ADDLFM) command.
However, if you are going to add more members, you must specify more than 1 for the MAXMBRS
parameter on the CRTLF command. The following example of adding a member to a logical file uses the
CRTLF command used earlier in “Creating a logical file” on page 39.
CRTLF FILE(DSTPRODLB/ORDHDRL)

MBR(*FILE) DTAMBRS(*ALL)
TEXT(’Order header logical file’)

*FILE is the default for the MBR parameter and means the name of the member is the same as the name
of the file. All the members of the associated physical file (ORDHDRP) are used in the logical file
(ORDHDRL) member. The text description is the text description of the member.

Describing logical file record formats
For every logical file record format described with DDS, you must specify a record format name and either
the PFILE keyword (for simple and multiple format logical files), or the JFILE keyword (for join logical files).
The file names specified on the PFILE or JFILE keyword are the physical files that the logical file is based
on. A simple or multiple-format logical file record format can be specified with DDS in any one of the
following ways:

v In the simple logical file record format, specify only the record format name and the PFILE keyword.
The record format for the only (or first) physical file specified on the PFILE keyword is the record format
for the logical file. The record format name specified in the logical file must be the same as the record
format name in the only (or first) physical file. Consider this example of a simple logical file:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A
A R ORDDTL PFILE(ORDDTLP)
A

v Describe your own record format by listing the field names you want to include. You can specify the field
names in a different order, rename fields using the RENAME keyword, combine fields using the
CONCAT keyword, and use specific positions of a field using the SST keyword. You can also override
attributes of the fields by specifying different attributes in the logical file. Consider this example of a
simple logical file with fields specified::
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A
A R ORDHDR PFILE(ORDHDRP)

Chapter 6. Setting up logical files 45

A ORDER
A CUST
A SHPVIA
A

v Specify the name of a database file for the file name on the FORMAT keyword. The record format is
shared from this database file by the logical file being described. The file name can be qualified by a
library name. If a library name is not specified, the library list is used to find the file. The file must exist
when the file you are describing is created. In addition, the record format name you specify in the
logical file must be the same as one of the record format names in the file you specify on the FORMAT
keyword. Consider this example:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A
A R CUSRCD PFILE(CUSMSTP)
A FORMAT(CUSMSTL)
A

In the following example, a program needs:

v The fields placed in a different order

v A subset of the fields from the physical file

v The data types changed for some fields

v The field lengths changed for some fields

You can use a logical file to make these changes.

For the logical file, the DDS would be as follows:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A
A R LOGREC PFILE(PF1)
A D 10S 0
A A
A C 5S 0
A

For the physical file, the DDS would be as follows:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A
A R PHYREC
A A 8S 2
A B 32
A C 2B 0
A D 10
A

46 DB2 UDB for iSeries Database Programming V5R2

When a record is read from the logical file, the fields from the physical file are changed to match the
logical file description. If the program updates or adds a record, the fields are changed back. For an add
or update operation using a logical file, the program must supply data that conforms with the format used
by the logical file.

The following chart shows what types of data mapping are valid between physical and logical files.

Physical File
Data Type

Logical File Data Type

Character or
Hexadecimal Zoned Packed Binary

Floating
Point Date Time Timestamp

Character or
Hexadecimal

Valid See Note 1 Not valid Not valid Not valid Not
valid

Not
valid

Not valid

Zoned See Note 1 Valid Valid See Note 2 Valid Not
valid

Not
valid

Not Valid

Packed Not valid Valid Valid See Note 2 Valid Not
valid

Not
valid

Not valid

Binary Not valid See Note 2 See Note 2 See Note 3 See Note 2 Not
valid

Not
valid

Not valid

Floating Point Not valid Valid Valid See Note 2 Valid Not
valid

Not
valid

Not valid

Date Not valid Valid Not valid Not valid Not valid Valid Not
valid

Not valid

Time Not valid Valid Not valid Not valid Not valid Not
valid

Valid Not valid

Time Stamp Not valid Not valid Not valid Not valid Not valid Valid Valid Valid

Notes:

1. Valid only if the number of characters or bytes equals the number of digits.

2. Valid only if the binary field has zero decimal positions.

3. Valid only if both binary fields have the same number of decimal positions.

Note: For information about mapping DBCS fields, see Appendix B, “Double-Byte Character Set (DBCS)
considerations”.

For more topics related to describing logical file record formats, see the following:

v “Describing field use for logical files”

v “Deriving new fields from existing fields” on page 48

v “Describing floating-point fields in logical files” on page 50

Describing field use for logical files
You can specify that fields in database files are to be input-only, both (input/output), or neither fields. Do
this by specifying one of the following in position 38:

Entry Meaning

Blank For simple or multiple format logical files, defaults to B (both) For join logical files, defaults to I
(input only).

B Both input and output allowed; not valid for join logical files. See “Describing field use for logical
files: Both” on page 48.

I Input only (read only). See “Describing field use for logical files: Input only” on page 48.

Chapter 6. Setting up logical files 47

N Neither input nor output; valid only for join logical files. See “Describing field use for logical files:
Neither”.

Note: The usage value (in position 38) is not used on a reference function. When another file refers to a
field (using a REF or REFFLD keyword) in a logical file, the usage value is not copied into that file.

Describing field use for logical files: Both
A both field can be used for both input and output operations. Your program can read data from the field
and write data to the field. Both fields are not valid for join logical files, because join logical files are
read-only files.

Describing field use for logical files: Input only
An input only field can be used for read operations only. Your program can read data from the field, but
cannot update the field in the file. Typical cases of input-only fields are key fields (to reduce maintenance
of access paths by preventing changes to key field values), sensitive fields that a user can see but not
update (for example, salary), and fields for which either the translation table (TRNTBL) keyword or the
substring (SST) keyword is specified.

If your program updates a record in which you have specified input-only fields, the input-only fields are not
changed in the file. If your program adds a record that has input-only fields, the input-only fields take
default values (DFT keyword).

Describing field use for logical files: Neither
A neither field is used neither for input nor for output. It is valid only for join logical files. A neither field can
be used as a join field in a join logical file, but your program cannot read or update a neither field.

Use neither fields when the attributes of join fields in the physical files do not match. In this case, one or
both join fields must be defined again. However, you cannot include these redefined fields in the record
format (the application program does not see the redefined fields.) Therefore, redefined join fields can be
coded N so that they do not appear in the record format.

A field with N in position 38 does not appear in the buffer used by your program. However, the field
description is displayed with the Display File Field Description (DSPFFD) command.

Neither fields cannot be used as select/omit or key fields.

For an example of a neither field, see “Describing fields that never appear in the record format (Example
5)” on page 70.

Deriving new fields from existing fields
Fields in a logical file can be derived from fields in the physical file the logical file is based on or from
fields in the same logical file. For example, you can concatenate, using the CONCAT keyword, two or
more fields from a physical file to make them appear as one field in the logical file. Likewise, you can
divide one field in the physical file to make it appear as multiple fields in the logical file with the SST
keyword.

See the following topics for information about how to derive fields using keywords.

v “Concatenated fields” on page 49

v “Substring fields” on page 50

v “Renamed fields” on page 50

v “Translated fields” on page 50

48 DB2 UDB for iSeries Database Programming V5R2

Concatenated fields
Using the CONCAT keyword, you can combine two or more fields from a physical file record format to
make one field in a logical file record format. For example, a physical file record format contains the fields
Month, Day, and Year. For a logical file, you concatenate these fields into one field, Date.

The field length for the resulting concatenated field is the sum of the lengths of the included fields (unless
the fields in the physical file are binary or packed decimal, in which case they are changed to zoned
decimal). The field length of the resulting field is automatically calculated by the system. A concatenated
field can have:

v Column headings

v Validity checking

v Text description

v Edit code or edit word (numeric concatenated fields only)

Note: This editing and validity checking information is not used by the database management system but
is retrieved when field descriptions from the database file are referred to in a display or printer file.

When fields are concatenated, the data types can change (the resulting data type is automatically
determined by the system). The following rules and restrictions apply:

v The OS/400 program assigns the data type based on the data types of the fields that are being
concatenated.

v The maximum length of a concatenated field varies depending on the data type of the concatenated
field and the length of the fields being concatenated. If the concatenated field is zoned decimal (S), its
total length cannot exceed 31 bytes; if it is character (A), its total length cannot exceed 32 766 bytes.

v In join logical files, the fields to be concatenated must be from the same physical file. The first field
specified on the CONCAT keyword identifies which physical file is to be used. The first field must,
therefore, be unique among the physical files on which the logical file is based, or you must also specify
the JREF keyword to specify which physical file to use.

v The use of a concatenated field must be I (input only) if the concatenated field is variable length.
Otherwise, the use may be B (both input and output).

v REFSHIFT cannot be specified on a concatenated field that has been assigned a data type of O or J.

v If any of the fields contain the null value, the result of concatenation is the null value.

Note: For information about concatenating DBCS fields, see Appendix B, “Double-Byte Character Set
(DBCS) considerations”.

When only numeric fields are concatenated, the sign of the last field in the group is used as the sign of the
concatenated field.

Notes:

1. Numeric fields with decimal precision other than zero cannot be included in a concatenated field.

2. Date, time, timestamp, and floating-point fields cannot be included in a concatenated field.

The following shows the field description in DDS for concatenation. (The CONCAT keyword is used to
specify the fields to concatenate.)
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A
00101A MONTH
00102A DAY
00103A YEAR
00104A DATE CONCAT(MONTH DAY YEAR)

A

In this example, the logical file record format includes the separate fields of Month, Day, and Year, as well
as the concatenated Date field. Any of the following can be used:

Chapter 6. Setting up logical files 49

v A format with the separate fields of Month, Day, and Year

v A format with only the concatenated Date field

v A format with the separate fields Month, Day, Year and the concatenated Date field

When both separate and concatenated fields exist in the format, any updates to the fields are processed in
the sequence in which the DDS is specified. In the previous example, if the Date field contained 103188
and the Month field is changed to 12, when the record is updated, the month in the Date field would be
used. The updated record would contain 103188. If the Date field were specified first, the updated record
would contain 123188.

Concatenated fields can also be used as key fields and select/omit fields.

Substring fields
You can use the SST keyword to specify which fields (character, hexadecimal, or zoned decimal) are in a
substring. (You can also use substring with a packed field in a physical file by specifying S (zoned
decimal) as the data type in the logical file.) For example, assume you defined the Date field in physical
file PF1 as 6 characters in length. You can describe the logical file with three fields, each 2 characters in
length. You can use the SST keyword to define MM as 2 characters starting in position 1 of the Date field,
DD as 2 characters starting in position 3 of the Date field, and YY as 2 characters starting in position 5 of
the Date field.

The following shows the field descriptions in DDS for these substring fields. The SST keyword is used to
specify the field to substring.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC1 PFILE(PF1)
A
A MM I SST(DATE 1 2)
A DD I SST(DATE 3 2)
A YY I SST(DATE 5 2)
A

Note that the starting position of the substring is specified according to its position in the field being
operated on (Date), not according to its position in the file. The I in the Usage column indicates input-only.

Substring fields can also be used as key fields and select/omit fields.

Renamed fields
You can name a field in a logical file differently than in a physical file using the RENAME keyword. You
might want to rename a field in a logical file because the program was written using a different field name
or because the original field name does not conform to the naming restrictions of the high-level language
you are using.

Translated fields
You can specify a translation table for a field using the TRNTBL keyword. When you read a logical file
record and a translation table was specified for one or more fields in the logical file, the system translates
the data from the field value in the physical file to the value determined by the translation table.

Describing floating-point fields in logical files
You can use floating-point fields as mapped fields in logical files. A single- or double-precision
floating-point field can be mapped to or from a zoned, packed, zero-precision binary, or another
floating-point field. You cannot map between a floating-point field and a nonzero-precision binary field, a
character field, a hexadecimal field, or a DBCS field.

Mapping between floating-point fields of different precision, single or double, or between floating-point
fields and other numeric fields, can result in rounding or a loss of precision. Mapping a double-precision
floating-point number to a single-precision floating-point number can result in rounding, depending on the
particular number involved and its internal representation. Rounding is to the nearest (even) bit. The result

50 DB2 UDB for iSeries Database Programming V5R2

always contains as much precision as possible. A loss of precision can also occur between two decimal
numbers if the number of digits of precision is decreased.

You can inadvertently change the value of a field which your program did not explicitly change. For
floating-point fields, this can occur if a physical file has a double-precision field that is mapped to a
single-precision field in a logical file, and you issue an update for the record through the logical file. If the
internal representation of the floating-point number causes it to be rounded when it is mapped to the
logical file, then the update of the logical record causes a permanent loss of precision in the physical file. If
the rounded number is the key of the physical record, then the sequence of records in the physical file can
also change.

A fixed-point numeric field can also be updated inadvertently if the precision is decreased in the logical file.

Describing access paths for logical files
The access path for a logical file record format can be specified in one of the following ways:

v Keyed sequence access path specification. Specify key fields after the last record or field level
specification. The key field names must be in the record format. For join logical files, the key fields must
come from the first, or primary, physical file.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R CUSRCD PFILE(CUSMSTP)
A K ARBAL
A K CRDLMT
A

v Encoded vector access path specification. You define the encoded vector access path with the SQL
CREATE INDEX statement.

v Arrival sequence access path specification. Specify no key fields. You can specify only one physical file
on the PFILE keyword (and only one of the physical file’s members when you add the logical file
member).
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R CUSRCD PFILE(CUSMSTP)

v Previously defined keyed-sequence access path specification (for simple and multiple format logical files
only). Specify the REFACCPTH keyword at the file level to identify a previously created database file
whose access path and select/omit specifications are to be copied to this logical file. You cannot specify
individual key or select/omit fields with the REFACCPTH keyword.

Note: Even though the specified file’s access path specifications are used, the system determines
which file’s access path, if any, will actually be shared. The system always tries to share access
paths, regardless of whether the REFACCPTH keyword is used.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
REFACCPTH(DSTPRODLIB/ORDHDRL)

A R CUSRCD PFILE(CUSMSTP)

When you define a record format for a logical file that shares key field specifications of another file’s
access path (using the DDS keyword, REFACCPTH), you can use any fields from the associated physical
file record format. These fields do not have to be used in the file that describes the access path. However,
all key and select/omit fields used in the file that describes the access path must be used in the new
record format.

See the following topics for more information about describing access paths for logical files:

v “Selecting and omitting records using logical files” on page 52

v “Using existing access paths” on page 55

Chapter 6. Setting up logical files 51

../db2/rbafzmstxcindx.htm

Selecting and omitting records using logical files
The system can select and omit records when using a logical file. This can help you to exclude records in
a file for processing convenience or for security.

The process of selecting and omitting records is based on comparisons identified in position 17 of the
DDS Form for the logical file, and is similar to a series of comparisons coded in a high-level language
program. For example, in a logical file that contains order detail records, you can specify that the only
records you want to use are those in which the quantity ordered is greater than the quantity shipped. All
other records are omitted from the access path. The omitted records remain in the physical file but are not
retrieved for the logical file. If you are adding records to the physical file, all records are added, but only
selected records that match the select/omit criteria can be retrieved using the select/omit access path.

In DDS, to specify select or omit, you specify an S (select) or O (omit) in position 17 of the DDS Form.
You then name the field (in positions 19 through 28) that will be used in the selection or omission process.
In positions 45 through 80 you specify the comparison.

Note: Select/omit specifications appear after key specifications (if keys are specified).

Records can be selected and omitted by several types of comparisons:

v VALUES. The contents of the field are compared to a list of not more than 100 values. If a match is
found, the record is selected or omitted. In the following example, a record is selected if one of the
values specified in the VALUES keyword is found in the Itmnbr field.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A S ITMNBR VALUES(301542 306902 382101 422109 +
A 431652 486592 502356 556608 590307)
A

v RANGE. The contents of the field are compared to lower and upper limits. If the contents are greater
than or equal to the lower limit and less than or equal to the upper limit, the record is selected or
omitted. In the following example, all records with a range 301000 through 599999 in the Itmnbr field
are selected.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A S ITMNBR RANGE(301000 599999)
A

v CMP. The contents of a field are compared to a value or the contents of another field. Valid comparison
codes are EQ, NE, LT, NL, GT, NG, LE, and GE. If the comparison is met, the record is selected or
omitted. In the following example, a record is selected if its Itmnbr field is less than or equal to 599999:

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A S ITMNBR CMP(LE 599999)
A

The value for a numeric field for which the CMP, VALUES, or RANGE keyword is specified is aligned
based on the decimal positions specified for the field and filled with zeros where necessary. If decimal
positions were not specified for the field, the decimal point is placed to the right of the farthest right digit in
the value. For example, for a numeric field with length 5 and decimal position 2, the value 1.2 is
interpreted as 001.20 and the value 100 is interpreted as 100.00.

The status of a record is determined by evaluating select/omit statements in the sequence you specify
them. If a record qualifies for selection or omission, subsequent statements are ignored.

Normally the select and omit comparisons are treated independently from one another; the comparisons
are ORed together. That is, if the select or omit comparison is met, the record is either selected or omitted.
If the condition is not met, the system proceeds to the next comparison. To connect comparisons together,
you simply leave a space in position 17 of the DDS Form. Then, all the comparisons that were connected
in this fashion must be met before the record is selected or omitted. That is, the comparisons are ANDed
together.

52 DB2 UDB for iSeries Database Programming V5R2

The fewer comparisons, the more efficient the task is. So, when you have several select/omit
comparisons, try to specify the one that selects or omits the most records first.

The following examples show ways to code select/omit functions. In these examples, few records exist for
which the Rep field is JSMITH. The examples show how to use DDS to select all the records before 1988
for a sales representative named JSMITH in the state of New York. All give the same results with different
efficiency. �3� shows the most efficient way.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A S ST CMP(EQ ’NY’) �1�
A REP CMP(EQ ’JSMITH’)
A YEAR CMP(LT 88)
A

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A O YEAR CMP(GE 88) �2�
A S ST CMP(EQ ’NY’)
A REP CMP(EQ ’JSMITH’)
A

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
A O REP CMP(NE ’JSMITH’) �3�
A O ST CMP(NE ’NY’)
A S YEAR CMP(LT 88)
A

�1� All records must be compared with all of the select fields St, Rep, and Year before they can be
selected or omitted.

�2� All records are compared with the Year field. Then, the records before 1988 have to be compared
with the St and Rep fields.

�3� All records are compared with the Rep field. Then, only the few for JSMITH are compared with the
St field. Then, the few records that are left are compared to the Year field.

As another example, assume that you want to select the following:

v All records for departments other than Department 12.

v Only those records for Department 12 that contain an item number 112505, 428707, or 480100. No
other records for Department 12 are to be selected.

If you create the preceding example with a sort sequence table, the select/omit fields are translated
according to the sort table before the comparison. For example, with a sort sequence table using shared
weightings for uppercase and lowercase, NY and ny are equal. For details, see DDS Reference.

Chapter 6. Setting up logical files 53

../dds/rbafpmst02.htm

The following diagram shows the logic included in this example:

The following shows how to code this example using the DDS select and omit functions:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A S DPTNBR CMP(NE 12)
A S ITMNBR VALUES(112505 428707 480100)
A

It is possible to have an access path with select/omit values and process the file in arrival sequence. For
example, a high-level language program can specify that the keyed access path is to be ignored. In this
case, every record is read from the file in arrival sequence, but only those records meeting the select/omit
values specified in the file are returned to the high-level language program.

A logical file with key fields and select/omit values specified can be processed in arrival sequence or using
relative record numbers randomly. Records omitted by the select/omit values are not processed. That is, if
an omitted record is requested by relative record number, the record is not returned to the high-level
language program.

The system does not ensure that any additions or changes through a logical file will allow the record to be
accessed again in the same logical file. For example, if the selection values of the logical file specifies only
records with an A in Fld1 and the program updates the record with a B in Fld1, the program cannot
retrieve the record again using this logical file.

Note: You cannot select or omit based on the values of a floating-point field.

The two kinds of select/omit operations are: access path select/omit and dynamic select/omit. The default
is access path select/omit. The select/omit specifications themselves are the same in each kind, but the
system actually does the work of selecting and omitting records at different times. See the following topics:

v “Access path select/omit” on page 55

v “Dynamic select/omit” on page 55

You can also use the Open Query File (OPNQRYF) command to select or omit records. See “Using the
Open Query File command to select/omit records” on page 55.

54 DB2 UDB for iSeries Database Programming V5R2

Access path select/omit
With access path select/omit, the access path only contains keys that meet the select/omit values
specified for the logical file. When you specify key fields for a file, an access path is kept for the file and
maintained by the system when you add or update records in the physical file(s) used by the logical file.
The only index entries in the access path are those that meet the select/omit values.

Dynamic select/omit
With dynamic select/omit, when a program reads records from the file, the system only returns those
records that meet the select/omit values. That is, the actual select/omit processing is done when records
are read by a program, rather than when the records are added or changed. However, the keyed
sequence access path contains all the keys, not just keys from selected records. Access paths using
dynamic select/omit allow more access path sharing, which can improve performance. For more
information about access path sharing, see “Using existing access paths”.

To specify dynamic select/omit, use the dynamic selection (DYNSLT) keyword. With dynamic select/omit,
key fields are not required.

If you have a file that is updated frequently and read infrequently, you may not need to update the access
path for select/omit purposes until your program reads the file. In this case, dynamic select/omit might be
the correct choice. The following example helps describe this.

You use a code field (A=active, I=inactive), which is changed infrequently, to select/omit records. Your
program processes the active records and the majority (over 80%) of the records are active. It can be
more efficient to use DYNSLT to dynamically select records at processing time rather than perform access
path maintenance when the code field is changed.

Using the Open Query File command to select/omit records
Another method of selecting records is using the QRYSLT parameter on the Open Query File (OPNQRYF)
command. The open data path created by the OPNQRYF command is like a temporary logical file; that is,
it is automatically deleted when it is closed. A logical file, on the other hand, remains in existence until you
specifically delete it. For more details about the OPNQRYF command, see “Using the Open Query File
(OPNQRYF) command” on page 122.

Using existing access paths
When two or more files are based on the same physical files and the same key fields in the same order,
they automatically share the same keyed sequence access path. When access paths are shared, the
amount of system activity required to maintain access paths and the amount of auxiliary storage used by
the files is reduced.

When a logical file with a keyed sequence access path is created, the system always tries to share an
existing access path. For access path sharing to occur, an access path must exist on the system that
satisfies the following conditions:

v The logical file member to be added must be based on the same physical file members that the existing
access path is based on.

v The length, data type, and number of decimal positions specified for each key field must be identical in
both the new file and the existing file.

v If the FIFO, LIFO, or FCFO keyword is not specified, the new file can have fewer key fields than the
existing access paths. That is, a new logical file can share an existing access path if the beginning part
of the key is identical. However, when a file shares a partial set of keys from an existing access path,
any record updates made to fields that are part of the set of keys for the shared access path may
change the record position in that access path. See “Example of implicitly shared access paths” on
page 56 for a description of such a circumstance.

v The attributes of the access path (such as UNIQUE, LIFO, FIFO, or FCFO) and the attributes of the key
fields (such as DESCEND, ABSVAL, UNSIGNED, and SIGNED) must be identical.

Exceptions:

Chapter 6. Setting up logical files 55

1. A FIFO access path can share an access path in which the UNIQUE keyword is specified if all the
other requirements for access path sharing are met.

2. A UNIQUE access path can share a FIFO access path that needs to be rebuilt (for example, has
*REBLD maintenance specified), if all the other requirements for access path sharing are met.

v If the new logical file has select/omit specifications, they must be identical to the select/omit
specifications of the existing access path. However, if the new logical file specifies DYNSLT, it can share
an existing access path if the existing access path has either:

– The dynamic select (DYNSLT) keyword specified

– No select/omit keywords specified

v The alternative collating sequence (ALTSEQ keyword) and the translation table (TRNTBL keyword) of
the new logical file member, if any, must be identical to the alternative collating sequence and
translation table of the existing access path.

Note: Logical files that contain concatenated or substring fields cannot share access paths with physical
files.

The owner of any access path is the logical file member that originally created the access path. For a
shared access path, if the logical member owning the access path is deleted, the first member to share
the access path becomes the new owner. The FRCACCPTH, MAINT, and RECOVER parameters on the
Create Logical File (CRTLF) command need not match the same parameters on an existing access path
for that access path to be shared. When an access path is shared by several logical file members, and the
FRCACCPTH, MAINT, and RECOVER parameters are not identical, the system maintains the access path
by the most restrictive value for each of the parameters specified by the sharing members. The following
illustrates how this occurs:

MBRA specifies the following: FRCACCPTH (*NO)
MAINT (*IMMED)
RECOVER (*AFTIPL)

MBRB specifies the following: FRCACCPTH (*YES)
MAINT (*DLY)
RECOVER (*NO)

System does the following: FRCACCPTH (*YES)
MAINT (*IMMED)
RECOVER (*AFTIPL)

Access path sharing does not depend on sharing between members; therefore, it does not restrict the
order in which members can be deleted.

The Display File Description (DSPFD) and Display Database Relations (DSPDBR) commands show
access path sharing relationships.

Example of implicitly shared access paths
The purpose of this example is help you fully understand implicit access path sharing.

Two logical files, LFILE1 and LFILE2, are built over the physical file PFILE. LFILE1, which was created
first, has two key fields, KFD1 and KFD2. LFILE2 has three key fields, KFD1, KFD2, and KFD3. The two
logical files use two of the same key fields, but no access path is shared because the logical file with three
key fields was created after the file with two key fields.

Table 3. Physical and Logical Files Before Save and Restore

Physical File (PFILE) Logical File 1 (LFILE1) Logical File 2 (LFILE2)

Access Path KFD1, KFD2 KFD1, KFD2, KFD3

56 DB2 UDB for iSeries Database Programming V5R2

Table 3. Physical and Logical Files Before Save and Restore (continued)

Physical File (PFILE) Logical File 1 (LFILE1) Logical File 2 (LFILE2)

Fields KFD1, KFD2, KFD3, A, B, C, D,
E, F, G

KFD1, KFD2, KFD3, F, C, A KFD1, KFD2, KFD3, D, G, F, E

An application uses LFILE1 to access the records and to change the KFD3 field to blank if it contains a C,
and to a C if it is blank. This application causes the user no unexpected results because the access paths
are not shared. However, after a save and restore of the physical file and both logical files, the program
appears to do nothing and takes longer to process.

Unless you do something to change the restoration, the iSeries system:

v Restores the logical file with the largest number of keys first

v Does not build unnecessary access paths

Because it has three key fields, LFILE2 is restored first. After recovery, LFILE1 implicitly shares the access
path for LFILE2. Users who do not understand implicitly shared access paths do not realize that when they
use LFILE1 after a recovery, they are really using the key for LFILE2.

Table 4. Physical and Logical Files After Save and Restore. Note that the only difference from before the save and
restore is that the logical files now share the same access path.

Physical File (PFILE) Logical File 1 (LFILE1) Logical File 2 (LFILE2)

Access Path KFD1, KFD2, KFD3 KFD1, KFD2, KFD3

Fields KFD1, KFD2, KFD3, A, B, C, D,
E, F, G

KFD1, KFD2, KFD3, F, C, A KFD1, KFD2, KFD3, D, G, F, E

The records to be tested and changed contain:

Relative Record KFD1 KFD2 KFD3

001 01 01 <blank>
002 01 01 <blank>
003 01 01 <blank>
004 01 01 <blank>

The first record is read via the first key of 0101<blank> and changed to 0101C. The records now look like:

Relative Record KFD1 KFD2 KFD3

001 01 01 C
002 01 01 <blank>
003 01 01 <blank>
004 01 01 <blank>

When the application issues a get next key, the next higher key above 0101<blank> is 0101C. This is the
record that was just changed. However, this time the application changes the KFD3 field from C to blank.

Because the user does not understand implicit access path sharing, the application accesses and changes
every record twice. The end result is that the application takes longer to run, and the records look like they
have not changed.

Chapter 6. Setting up logical files 57

Setting up a join logical file
This section covers the following topics:

v “Basic concepts of joining two physical files (Example 1)”

v “Setting up a join logical file” on page 66

v “Using more than one field to join files (Example 2)” on page 66

v “Reading duplicate records in secondary files (Example 3)” on page 68

v “Using join fields whose attributes are different (Example 4)” on page 69

v “Describing fields that never appear in the record format (Example 5)” on page 70

v “Specifying key fields in join logical files (Example 6)” on page 72

v “Specifying select/omit statements in join logical files” on page 72

v “Joining three or more physical files (Example 7)” on page 73

v “Joining a physical file to itself (Example 8)” on page 75

v “Using default data for missing records from secondary files (Example 9)” on page 76

v “A complex join logical file (Example 10)” on page 77

v “Join logical file considerations” on page 79

In general, the examples in this section include a picture of the files, DDS for the files, and sample data.
For Example 1, several cases are given that show how to join files in different situations (when data in the
physical files varies).

In the examples, for convenience and ease of recognition, join logical files are shown with the label JLF,
and physical files are illustrated with the labels PF1, PF2, PF3, and so forth.

For more information about joins, see Joining data from more than one table in SQL Programming
Concepts.

Basic concepts of joining two physical files (Example 1)
A join logical file is a logical file that combines (in one record format) fields from two or more physical
files. In the record format, not all the fields need to exist in all the physical files.

The following example illustrates a join logical file that joins two physical files. This example is used for the
five cases discussed in Example 1.

In this example, the join logical file (JLF) has field Employee Number, Name, and Salary. Physical file 1
(PF1) has Employee Number and Name, while physical file 2 (PF2) has Employee Number and Salary.
Employee Number is common to both physical files (PF1 and PF2), but Name is found only in PF1, and
Salary is found only in PF2.

With a join logical file, the application program does one read operation (to the record format in the join
logical file) and gets all the data needed from both physical files. Without the join specification, the logical
file would contain two record formats, one based on PF1 and the other based on PF2, and the application

58 DB2 UDB for iSeries Database Programming V5R2

../sqlp/rbafymstjoin.htm

program would have to do two read operations to get all the needed data from the two physical files. Thus,
join provides more flexibility in designing your database.

However, a few restrictions are placed on join logical files:

v You cannot change a physical file through a join logical file. To do update, delete, or write (add)
operations, you must create a second multiple format logical file and use it to change the physical files.
You can also use the physical files, directly, to do the change operations.

v You cannot use DFU to display a join logical file.

v You can specify only one record format in a join logical file.

v The record format in a join logical file cannot be shared.

v A join logical file cannot share the record format of another file.

v Key fields must be fields defined in the join record format and must be fields from the first file specified
on the JFILE keyword (which is called the primary file).

v Select/omit fields must be fields defined in the join record format, but can come from any of the physical
files.

v Commitment control cannot be used with join logical files.

The following shows the DDS for Example 1:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NBR NBR)
A NBR JREF(PF1)
A NAME
A SALARY
A K NBR
A

PF1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC1
A NBR 10
A NAME 20
A K NBR
A

PF2
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC2
A NBR 10
A SALARY 7 2
A K NBR
A

The following describes the DDS for the join logical file in Example 1 (see the DDS Reference for more
information on the specific keywords):

The record level specification identifies the record format name used in the join logical file.

R Identifies the record format. Only one record format can be placed in a join logical file.

JFILE Replaces the PFILE keyword used in simple and multiple-format logical files. You must specify at
least two physical files. The first file specified on the JFILE keyword is the primary file. The other
files specified on the JFILE keyword are secondary files.

The join specification describes the way a pair of physical files is joined. The second file of the pair is
always a secondary file, and there must be one join specification for each secondary file.

Chapter 6. Setting up logical files 59

../dds/rbafpmst02.htm

J Identifies the start of a join specification. You must specify at least one join specification in a join
logical file. A join specification ends at the first field name specified in positions 19 through 28 or at
the next J specified in position 17.

JOIN Identifies which two files are joined by the join specification. If only two physical files are joined by
the join logical file, the JOIN keyword is optional. See “Joining three or more physical files
(Example 7)” on page 73 later in this section for an example of how to use this keyword.

JFLD Identifies the join fields that join records from the physical files specified on the JOIN. JFLD must
be specified at least once for each join specification. The join fields are fields common to the
physical files. The first join field is a field from the first file specified on the JOIN keyword, and the
second join field is a field from the second file specified on the JOIN keyword.

Join fields, except character type fields, must have the same attributes (data type, length, and
decimal positions). If the fields are character type fields, they do not need to have the same
length. If you are joining physical file fields that do not have the same attributes, you can redefine
them for use in a join logical file. See “Using join fields whose attributes are different (Example 4)”
on page 69 for a description and example.

The field level specification identifies the fields included in the join logical file.

Field names Specifies which fields (in this example, Nbr, Name, and Salary) are used by the
application program. At least one field name is required. You can specify any field names
from the physical files used by the logical file. You can also use keywords like RENAME,
CONCAT, or SST as you would in simple and multiple format logical files.

JREF In the record format (which follows the join specification level and precedes the key field
level, if any), the field names must uniquely identify which physical file the field comes
from. In this example, the Nbr field occurs in both PF1 and PF2. Therefore, the JREF
keyword is required to identify the file from which the Nbr field description will be used.

The key field level specification is optional, and includes the key field names for the join logical file.

K Identifies a key field specification. The K appears in position 17. Key field specifications
are optional.

Key field names
Key field names (in this example, Nbr is the only key field) are optional and make the join
logical file an indexed (keyed sequence) file. Without key fields, the join logical file is an
arrival sequence file. In join logical files, key fields must be fields from the primary file, and
the key field name must be specified in positions 19 through 28 in the logical file record
format.

The select/omit field level specification is optional, and includes select/omit field names for the join logical
file.

S or O Identifies a select or omit specification. The S or O appears in position 17. Select/omit
specifications are optional.

Select/omit field names
Only those records meeting the select/omit values will be returned to the program using
the logical file. Select/omit fields must be specified in positions 19 through 28 in the logical
file record format.

The following topics describe specific cases of joining physical files:

v “Reading a join logical file” on page 61

v “Matching records in primary and secondary files (Case 1)” on page 61

v “Record missing in secondary file; JDFTVAL keyword not specified (Case 2A)” on page 62

v “Secondary file has more than one match for a record in the primary file (Case 3)” on page 63

60 DB2 UDB for iSeries Database Programming V5R2

v “Extra record in secondary file (Case 4)” on page 64

v “Random access (Case 5)” on page 64

Reading a join logical file
The following cases describe how the join logical file in “Basic concepts of joining two physical files
(Example 1)” on page 58 presents records to an application program.

The PF1 file is specified first on the JFILE keyword, and is therefore the primary file. When the application
program requests a record, the system does the following:

1. Uses the value of the first join field in the primary file (the Nbr field in PF1).

2. Finds the first record in the secondary file with a matching join field (the Nbr field in PF2 matches the
Nbr field in PF1).

3. For each match, joins the fields from the physical files into one record and provides this record to your
program. Depending on how many records are in the physical files, one of the following conditions
could occur:

a. For all records in the primary file, only one matching record is found in the secondary file. The
resulting join logical file contains a single record for each record in the primary file. See “Matching
records in primary and secondary files (Case 1)”.

b. For some records in the primary file, no matching record is found in the secondary file.

If you specify the JDFTVAL keyword:

v For those records in the primary file that have a matching record in the secondary file, the system joins
to the secondary, or multiple secondaries. The result is one or more records for each record in the
primary file.

v For those records in the primary file that do not have a matching record in the secondary file, the
system adds the default value fields for the secondary file and continues the join operation. You can use
the DFT keyword in the physical file to define which defaults are used. See “Record missing in
secondary file; JDFTVAL keyword not specified (Case 2A)” on page 62 and “Record missing in
secondary file; JDFTVAL keyword specified (Case 2B)” on page 63.

Note: If the DFT keyword is specified in the secondary file, the value specified for the DFT keyword is
used in the join. The result would be at least one join record for each primary record.

v If a record exists in the secondary file, but the primary file has no matching value, no record is returned
to your program. A second join logical file can be used that reverses the order of primary and secondary
files to determine if secondary file records exist with no matching primary file records.

If you do not specify the JDFTVAL keyword:

v If a matching record in a secondary file exists, the system joins to the secondary, or multiple
secondaries. The result is one or more records for each record in the primary file.

v If a matching record in a secondary file does not exist, the system does not return a record.

Note: When the JDFTVAL is not specified, the system returns a record only if a match is found in every
secondary file for a record in the primary file.

In the following examples, cases 1 through 4 describe sequential read operations, and case 5 describes
reading by key.

Matching records in primary and secondary files (Case 1)
Assume that a join logical file is specified as in “Basic concepts of joining two physical files (Example 1)”
on page 58, and that four records are contained in both PF1 and PF2, as follows:

Physical file 1 (PF1)

235 Anne

Chapter 6. Setting up logical files 61

440 Doug

500 Mark

729 Sue

Physical file 2 (PF2)

235 1700.00

440 950.50

500 2100.00

729 1400.90

The program does four read operations and gets the following records:

Join logical file (JLF)

235 Anne 1700.00

440 Doug 950.50

500 Mark 2100.00

729 Sue 1400.90

Record missing in secondary file; JDFTVAL keyword not specified (Case 2A)
Assume that a join logical file is specified as in “Basic concepts of joining two physical files (Example 1)”
on page 58, and that there are four records in PF1 and three records in PF2, as follows:

Physical file 1 (PF1)

235 Anne

440 Doug

500 Mark

729 Sue

Physical file 2 (PF2)

235 1700.00

440 950.50

729 1400.90

In PF2, no record is found for number 500.

The program reads the join logical file and gets the following records:

Join logical file (JLF)

235 Anne 1700.00

440 Doug 950.50

729 Sue 1400.90

62 DB2 UDB for iSeries Database Programming V5R2

If you do not specify the JDFTVAL keyword and no match is found for the join field in the secondary file,
the record is not included in the join logical file.

Record missing in secondary file; JDFTVAL keyword specified (Case 2B)
Assume that a join logical file is specified as in “Basic concepts of joining two physical files (Example 1)”
on page 58, except that the JDFTVAL keyword is specified, as shown in the following DDS:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A JDFTVAL
A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NBR NBR)
A NBR JREF(PF1)
A NAME
A SALARY
A K NBR
A

The program reads the join logical file and gets the following records:

Join logical file (JLF)

235 Anne 1700.00

440 Doug 950.50

500 Mark 0000.00

729 Sue 1400.90

With JDFTVAL specified, the system returns a record for 500, even though the record is missing in PF2.
Without that record, some field values can be missing in the join record. In this case, the Salary field is
missing. With JDFTVAL specified, missing character fields normally use blanks; missing numeric fields use
zeros. Therefore, in this case, the value for the missing record in the join record is 0. However, if the DFT
keyword is specified for the field in the physical file, the default value specified on the DFT keyword is
used.

Secondary file has more than one match for a record in the primary file (Case 3)
Assume that a join logical file is specified as in “Basic concepts of joining two physical files (Example 1)”
on page 58, and that four records in PF1 and five records in PF2, as follows:

Physical file 1 (PF1)

235 Anne

440 Doug

500 Mark

729 Sue

Physical file 2 (PF2)

235 1700.00

235 1500.00

440 950.50

500 2100.00

729 1400.90

Chapter 6. Setting up logical files 63

In PF2, the record for 235 is duplicated.

The program gets five records:

Join logical file (JLF)

235 Anne 1700.00

235 Anne 1500.00

440 Doug 950.50

500 Mark 0000.00

729 Sue 1400.90

In the join records, the record for 235 is duplicated. The order of the records received for the duplicated
record is unpredictable unless the JDUPSEQ keyword is used. For more information, see “Reading
duplicate records in secondary files (Example 3)” on page 68.

Extra record in secondary file (Case 4)
Assume that a join logical file is specified as in “Basic concepts of joining two physical files (Example 1)”
on page 58, and that four records are contained in PF1 and five records in PF2, as follows:

The record for 301 exists only in PF2.

The program reads the join logical file and gets only four records. The record for 301 does not appear.

Join logical file (JLF)

235 Anne 1700.00

440 Doug 950.50

500 Mark 2100.00

729 Sue 1400.90

These results would be the same even if the JDFTVAL keyword were specified, because a record must
always be contained in the primary file to receive a join record.

Random access (Case 5)
Assume that a join logical file is specified as in “Basic concepts of joining two physical files (Example 1)”
on page 58. Note that the join logical file has key fields defined. This case shows which records would be
returned for a random access read operation using the join logical file.

Assume that PF1 and PF2 have the following records:

Physical file 1 (PF1)

235 Anne

440 Doug

500 Mark

729 Sue

997 Tim

64 DB2 UDB for iSeries Database Programming V5R2

Physical file 2 (PF2)

235 1700.00

440 950.50

729 1400.90

984 878.25

997 331.00

997 555.00

In PF2, no record is found for record 500, record 984 exists only in PF2, and duplicate records are found
for 997.

The program can get the following records:

Given a value of 235 from the program for the Nbr field in the logical file, the system supplies the following
record:

235 Anne 1700.00

Given a value of 500 from the program for the Nbr field in the logical file and with the JDFTVAL keyword
specified, the system supplies the following record:

500 Mark 0000.00

Note: If the JDFTVAL keyword was not specified in the join logical file, no record would be found for a
value of 500 because no matching record is contained in the secondary file.

Given a value of 984 from the program for the Nbr field in the logical file, the system supplies no record
and a no record found exception occurs because record 984 is not in the primary file.

Given a value of 997 from the program for the Nbr field in the logical file, the system returns one of the
following records:

997 Tim 331.00

or

997 Tim 555.00

Which record is returned to the program cannot be predicted. To specify which record is returned, specify
the JDUPSEQ keyword in the join logical file. See “Reading duplicate records in secondary files (Example
3)” on page 68.

Notes:

1. With random access, the application programmer must be aware that duplicate records could be
contained in PF2, and ensure that the program does more than one read operation for records with
duplicate keys. If the program were using sequential access, a second read operation would get the
second record.

2. If you specify the JDUPSEQ keyword, the system can create a separate access path for the join
logical file (because there is less of a chance the system will find an existing access path that it can

Chapter 6. Setting up logical files 65

share). If you omit the JDUPSEQ keyword, the system can share the access path of another file. (In
this case, the system would share the access path of PF2.)

Setting up a join logical file
To set up a join logical file, do the following:

1. Find the field names of all the physical file fields you want in the logical file record format. (You can
display the fields contained in files using the Display File Field Description [DSPFFD] command.)

2. Describe the fields in the record format. Write the field names in a vertical list. This is the start of the
record format for the join logical file.

Note: You can specify the field names in any order. If the same field names appear in different
physical files, specify the name of the physical file on the JREF keyword for those fields. You
can rename fields using the RENAME keyword, and concatenate fields from the same physical
file using the CONCAT keyword. A subset of an existing character, hexadecimal, or zoned
decimal field can be defined using the SST keyword. The substring of a character or zoned
decimal field is a character field, and the substring of a hexadecimal field is also a hexadecimal
field. You can redefine fields: changing their data type, length, or decimal positions.

3. Specify the names of the physical files as parameter values on the JFILE keyword. The first name you
specify is the primary file. The others are all secondary files. For best performance, specify the
secondary files with the least records first after the primary file.

4. For each secondary file, code a join specification. On each join specification, identify which pair of files
are joined (using the JOIN keyword; optional if only one secondary file), and identify which fields are
used to join the pair (using the JFLD keyword; at least one required in each join specification).

5. Optionally, specify the following:

a. The JDFTVAL keyword. Do this if you want to return a record for each record in the primary file
even if no matching record exists in a secondary file.

b. The JDUPSEQ keyword. Do this for fields that might have duplicate values in the secondary files.
JDUPSEQ specifies on which field (other than one of the join fields) to sort these duplicates, and
the sequence that should be used.

c. Key fields. Key fields cannot come from a secondary file. If you omit key fields, records are
returned in arrival sequence as they appear in the primary file.

d. Select/omit fields. In some situations, you must also specify the dynamic selection (DYNSLT)
keyword at the file level.

e. Neither fields. For a description, see “Describing fields that never appear in the record format
(Example 5)” on page 70.

Using more than one field to join files (Example 2)
You can specify more than one join field to join a pair of files. The following shows the fields in the logical
file and the two physical files.

66 DB2 UDB for iSeries Database Programming V5R2

The join logical file (JLF) has fields Part Number, Color, Price, and Quantity on Hand. Physical file 1 (PF1)
has Part Number, Color, Price, and Vendor, while physical file 2 (PF2) has Part Number, Color, Quantity
on Hand, and Warehouse. The DDS for these files is as follows:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(PTNBR PTNBR)
A JFLD(COLOR COLOR)
A PTNBR JREF(PF1)
A COLOR JREF(PF1)
A PRICE
A QUANTOH
A

PF1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC1
A PTNBR 4
A COLOR 20
A PRICE 7 2
A VENDOR 40
A

PF2
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC2
A PTNBR 4
A COLOR 20
A QUANTOH 5 0
A WAREHSE 30
A

Assume that the physical files have the following records:

Physical file 1 (PF1)

100 Black 22.50 ABC Corp.

100 White 20.00 Ajax Inc.

120 Yellow 3.75 ABC Corp.

187 Green 110.95 ABC Corp.

187 Red 110.50 ABC Corp.

190 Blue 40.00 Ajax Inc.

Physical file 2 (PF2)

100 Black 23 ABC Corp.

100 White 15 Ajax Inc.

120 Yellow 102 ABC Corp.

187 Green 0 ABC Corp.

187 Red 2 ABC Corp.

190 Blue 2 Ajax Inc.

If the file is processed sequentially, the program receives the following records:

Chapter 6. Setting up logical files 67

Join logical file (JLF)

100 Black 22.50 23

100 White 20.00 15

120 Yellow 3.75 102

187 Green 110.95 0

187 Red 110.50 2

Note that no record for part number 190, color blue, is available to the program, because a match was not
found on both fields in the secondary file. Because JDFTVAL was not specified, no record is returned.

Reading duplicate records in secondary files (Example 3)
Sometimes a join to a secondary file produces more than one record from the secondary file. When this
occurs, specifying the JDUPSEQ keyword in the join specification for that secondary file tells the system to
base the order of the duplicate records on the specified field in the secondary file.

The DDS for the physical files and for the join logical file are as follows:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R JREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NAME1 NAME2)
A JDUPSEQ(TELEPHONE)
A NAME1
A ADDR
A TELEPHONE
A

PF1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC1
A NAME1 10
A ADDR 20
A

PF2
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC2
A NAME2 10
A TELEPHONE 8
A

The physical files have the following records:

Physical file 1 (PF1)

Anne 120 1st St.

Doug 40 Pillsbury

Mark 2 Lakeside Dr.

Physical file 2 (PF2)

Anne 555–1111

Anne 555–6666

Anne 555–2222

68 DB2 UDB for iSeries Database Programming V5R2

Doug 555–5555

The join logical file returns the following records:

Join logical file (JLF)

Anne 120 1st St. 555–1111

Anne 120 1st St. 555–2222

Anne 120 1st St. 555–6666

Doug 40 Pillsbury 555–5555

The program reads all the records available for Anne, then Doug, then Mark. Anne has one address, but
three telephone numbers. Therefore, there are three records returned for Anne.

The records for Anne sort in ascending sequence by telephone number because the JDUPSEQ keyword
sorts in ascending sequence unless you specify *DESCEND as the keyword parameter. The following
example shows the use of *DESCEND in DDS:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R JREC JFILE(PF1 PF2) A J JOIN(PF1 PF2)
A JFLD(NAME1 NAME2)
A JDUPSEQ(TELEPHONE *DESCEND)
A NAME1
A ADDR
A TELEPHONE
A

When you specify JDUPSEQ with *DESCEND, the records are returned as follows:

Join logical file (JLF)

Anne 120 1st St. 555–6666

Anne 120 1st St. 555–2222

Anne 120 1st St. 555–1111

Doug 40 Pillsbury 555–5555

Note: The JDUPSEQ keyword applies only to the join specification in which it is specified. For an
example showing the JDUPSEQ keyword in a join logical file with more than one join specification,
see “A complex join logical file (Example 10)” on page 77.

Using join fields whose attributes are different (Example 4)
Fields from physical files that you are using as join fields generally have the same attributes (length, data
type, and decimal positions). For example, as in the example in “Reading duplicate records in secondary
files (Example 3)” on page 68, the Name1 field is a character field 10 characters long in physical file PF1,
and can be joined to the Name2 field, a character field 10 characters long in physical file PF2. The Name1
and Name2 fields have the same characteristics and, therefore, can easily be used as join fields.

You can also use character type fields that have different lengths as join fields without requiring any
redefinition of the fields. For example, if the NAME1 Field of PF1 was 10 characters long and the NAME2
field of PF2 was 15 characters long, those fields could be used as join fields without redefining one of the
fields.

Chapter 6. Setting up logical files 69

The following is an example in which the join fields do not have the same attributes. Both physical files
have fields for employee number. The Nbr field in physical file PF1 and the Nbr field in physical file PF2
both have a length of 3 specified in position 34, but in the PF1 file the field is zoned (S in position 35), and
in the PF2 file the field is packed (P in position 35). To join the two files using these fields as join fields,
you must redefine one or both fields to have the same attributes.

The following illustrates the fields in the logical and physical files:

The join logical file (JLF) contains Employee Number, Name, and Salary fields. Physical file 1 (PF1)
contains Employee Number (zoned) and Name. Physical file 2 (PF2) contains Employee Number (packed)
and Salary. The DDS for these files is as follows:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NBR NBR)
A NBR S JREF(2)
A NAME
A SALARY
A

PF1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC1
A NBR 3S 0 <-Zoned
A NAME 20
A K NBR
A

PF2
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC2
A NBR 3P 0 <-Packed
A SALARY 7 2
A K NBR
A

Note: In this example, the Nbr field in the logical file comes from PF2, because JREF(2) is specified.
Instead of specifying the physical file name, you can specify a relative file number on the JREF
keyword; in this example, the 2 indicates PF2.

Because the Nbr fields in the PF1 and PF2 files are used as the join fields, they must have the same
attributes. In this example, they do not. Therefore, you must redefine one or both of them to have the
same attributes. In this example, to resolve the difference in the attributes of the two employee number
fields, the Nbr field in JLF (which is coming from the PF2 file) is redefined as zoned (S in position 35 of
JLF).

Describing fields that never appear in the record format (Example 5)
A neither field (N specified in position 38) can be used in join logical files for neither input nor output.
Programs using the join logical file cannot see or read neither fields. Neither fields are not included in the

70 DB2 UDB for iSeries Database Programming V5R2

record format. Neither fields cannot be key fields or used in select/omit statements in the joined file. You
can use a neither field for a join field (specified at the join specification level on the JFLD keyword) that is
redefined at the record level only to allow the join, but is not needed or wanted in the program.

In the following example, the program reads the descriptions, prices, and quantity on hand of parts in
stock. The part numbers themselves are not wanted except to bring together the records of the parts.
However, because the part numbers have different attributes, at least one must be redefined.

The join logical file (JLF) has fields Description, Price, and Quantity on Hand. Physical file 1 (PF1) has
Description and Part Number, while physical file 2 (PF2) has Part number, Price, and Quantity on Hand.
The DDS for these files is as follows:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(PRTNBR PRTNBR)
A PRTNBR S N JREF(1)
A DESC
A PRICE
A QUANT
A K DESC
A

PF1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC1
A DESC 30
A PRTNBR 6P 0
A

PF2
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC2
A PRTNBR 6S 0
A PRICE 7 2
A QUANT 8 0
A

In PF1, the Prtnbr field is a packed decimal field; in PF2, the Prtnbr field is a zoned decimal field. In the
join logical file, they are used as join fields, and the Prtnbr field from PF1 is redefined to be a zoned
decimal field by specifying an S in position 35 at the field level. The JREF keyword identifies which
physical file the field comes from. However, the field is not included in the record format; therefore, N is
specified in position 38 to make it a neither field. A program using this file would not see the field.

In this example, a sales clerk can type a description of a part. The program can read the join logical file for
a match or a close match, and display one or more parts for the user to examine, including the
description, price, and quantity. This application assumes that part numbers are not necessary to complete
a customer order or to order more parts for the warehouse.

Chapter 6. Setting up logical files 71

Specifying key fields in join logical files (Example 6)
If you specify key fields in a join logical file, the following rules apply:

v The key fields must exist in the primary physical file.

v The key fields must be named in the join record format in the logical file in positions 19 through 28.

v The key fields cannot be fields defined as neither fields (N specified in position 38 for the field) in the
logical file.

The following illustrates the rules for key fields:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R JOINREC JFILE(PF1 PF2)
A J JOIN(PF1 PF2)
A JFLD(NBR NUMBER)
A JFLD(FLD3 FLD31)
A FLD1 RENAME(F1)
A FLD2 JREF(2)
A FLD3 35 N
A NAME
A TELEPHONE CONCAT(AREA LOCAL)
A K FLD1
A K NAME
A

PF1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC1
A NBR 4
A F1 20
A FLD2 7 2
A FLD3 40
A NAME 20
A

PF2
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC2
A NUMBER 4
A FLD2 7 2
A FLD31 35
A AREA 3
A LOCAL 7
A

The following fields cannot be key fields:
Nbr (not named in positions 19 through 28)
Number (not named in positions 19 through 28)
F1 (not named in positions 19 through 28)
Fld31 (comes from a secondary file)
Fld2 (comes from a secondary file)
Fld3 (is a neither field)
Area and Local (not named in positions 19 through 28)
Telephone (is based on fields from a secondary file)

Specifying select/omit statements in join logical files
If you specify select/omit statements in a join logical file, the following rules apply:

v The fields can come from any physical file the logical file uses (specified on the JFILE keyword).

v The fields you specify on the select/omit statements cannot be fields defined as neither fields (N
specified in position 38 for the field).

72 DB2 UDB for iSeries Database Programming V5R2

v In some circumstances, you must specify the DYNSLT keyword when you specify select/omit
statements in join logical files. For more information and examples, see the DYNSLT keyword in the
DDS Reference.

For an example showing select/omit statements in a join logical file, see “A complex join logical file
(Example 10)” on page 77.

Joining three or more physical files (Example 7)
You can use a join logical file to join as many as 32 physical files. These files must be specified on the
JFILE keyword. The first file specified on the JFILE keyword is the primary file; the other files are all
secondary files.

The physical files must be joined in pairs, with each pair described by a join specification. Each join
specification must have one or more join fields identified.

The following shows the fields in the files and one field common to all the physical files in the logical file:

The join logical file (JLF2) contains Name, Address, Telephone, and Salary. Physical file 1 (PF1) has
Name and Address, physical file 2 (PF2) has Name and Telephone, and physical file 3 (PF3) has Name
and Salary. In this example, the Name field is common to all the physical files (PF1, PF2, and PF3), and
serves as the join field.

The following shows the DDS for the physical and logical files:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R JOINREC JFILE(PF1 PF2 P3)
A J JOIN(PF1 PF2)
A JFLD(NAME NAME)
A J JOIN(PF2 PF3)
A JFLD(NAME NAME)
A NAME JREF(PF1)
A ADDR
A TELEPHONE
A SALARY
A K NAME
A

PF1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC1
A NAME 10
A ADDR 20
A K NAME
A

PF2
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC2
A NAME 10

Chapter 6. Setting up logical files 73

../dds/rbafpmst02.htm

A TELEPHONE 7
A K NAME
A

PF3
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R REC3
A NAME 10
A SALARY 9 2
A K NAME
A

Assume the physical files have the following records:

Physical file 1 (PF1)

Anne 120 1st St.

Doug 40 Pillsbury

Mark 2 Lakeside Dr.

Tom 335 Elm St.

Physical file 2 (PF2)

Anne 555–1111

Doug 555–5555

Mark 555–0000

Sue 555–3210

Physical file 3 (PF3)

Anne 1700.00

Doug 950.00

Mark 2100.00

The program reads the following logical file records:

Join logical file (JLF)

Anne 120 1st St. 555–1111 1700.00

Doug 40 Pillsbury 555–5555 950.00

Mark 2 Lakeside Dr·. 555–0000 2100.00

Doug 40 Pillsbury 555–5555

No record is returned for Tom because a record is not found for him in PF2 and PF3 and the JDFTVAL
keyword is not specified. No record is returned for Sue because the primary file has no record for Sue.

74 DB2 UDB for iSeries Database Programming V5R2

Joining a physical file to itself (Example 8)
You can join a physical file to itself to read records that are formed by combining two or more records from
the physical file itself. The following example shows how:

The join logical file (JLF) contains Employee Number, Name, and Manager’s Name. The physical file
(PF1) contains Employee Number, Name, and Manager’s Employee Number. The following shows the
DDS for these files:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A JDFTVAL
A R JOINREC JFILE(PF1 PF1)
A J JOIN(1 2)
A JFLD(MGRNBR NBR)
A NBR JREF(1)
A NAME JREF(1)
A MGRNAME RENAME(NAME)
A JREF(2)
A

PF1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RCD1
A NBR 3
A NAME 10 DFT(’none’)
A MGRNBR 3
A

Notes:

1. Relative file numbers must be specified on the JOIN keyword because the same file name is specified
twice on the JFILE keyword. Relative file number 1 refers to the first physical file specified on the
JFILE keyword, 2 refers to the second, and so forth.

2. With the same physical files specified on the JFILE keyword, the JREF keyword is required for each
field specified at the field level.

Assume the following records are contained in PF1:

Physical file 1 (PF1)

235 Anne 440

440 Doug 729

500 Mark 440

729 Sue 888

The program reads the following logical file records:

Chapter 6. Setting up logical files 75

Join logical file(JLF)

235 Anne Doug

440 Doug Sue

500 Mark Doug

729 Sue none

Note that a record is returned for the manager name of Sue because the JDFTVAL keyword was specified.
Also note that the value none is returned because the DFT keyword was used on the Name field in the
PF1 physical file.

Using default data for missing records from secondary files (Example
9)
If you are joining more than two files, and you specify the JDFTVAL keyword, the default value supplied by
the system for a join field missing from a secondary file is used to join to other secondary files. If the DFT
keyword is specified in the secondary file, the value specified for the DFT keyword is used in the logical
file.

The DDS for the files is as follows:
JLF
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A JDFTVAL
A R JRCD JFILE(PF1 PF2 PF3)
A J JOIN(PF1 PF2)
A JFLD(NAME NAME)
A J JOIN(PF2 PF3)
A JFLD(TELEPHONE TELEPHONE)
A NAME JREF(PF1)
A ADDR
A TELEPHONE JREF(PF2)
A LOC
A

PF1
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RCD1
A NAME 20
A ADDR 40
A COUNTRY 40
A

PF2
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RCD2
A NAME 20
A TELEPHONE 8 DFT(’999-9999’)
A

PF3
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RCD3
A TELEPHONE 8
A LOC 30 DFT(’No location assigned’)
A

Assume that PF1, PF2, and PF3 have the following records:

76 DB2 UDB for iSeries Database Programming V5R2

Physical file 1 (PF1)

Anne 120 1st St. USA

Doug 40 Pillsbury Canada

Mark 2 Lakeside Dr. Canada

Sue 120 Broadway USA

Physical file 2 (PF2)

Anne 555–1234

Doug 555–2222

Sue 555–1144

Physical file 3 (PF3)

555–1234 Room 312

555–2222 Main lobby

999–9999 No telephone number

With JDFTVAL specified in the join logical file, the program reads the following logical file records:

Join logical file (JLF)

Anne 120 1st St. 555–1234 Room 312

Doug 40 Pillsbury 555–2222 Main lobby

Mark 2 Lakeside Dr. 999–9999 No telephone number

Sue 120 Broadway 555–1144 No location assigned

In this example, complete data is found for Anne and Doug. However, part of the data is missing for Mark
and Sue.

v PF2 is missing a record for Mark because he has no telephone number. The default value for the
Telephone field in PF2 is defined as 999-9999 using the DFT keyword. In this example, therefore,
999-9999 is the telephone number returned when no telephone number is assigned. The JDFTVAL
keyword specified in the join logical file causes the default value for the Telephone field (which is
999-9999) in PF2 to be used to match with a record in PF3. (In PF3, a record is included to show a
description for telephone number 999-9999.) Without the JDFTVAL keyword, no record would be
returned for Mark.

v Sue’s telephone number is not yet assigned a location; therefore, a record for 555-1144 is missing in
PF3. Without JDFTVAL specified, no record would be returned for Sue. With JDFTVAL specified, the
system supplies the default value specified on the DFT keyword in PF3 the Loc field (which is No
location assigned).

A complex join logical file (Example 10)
The following example shows a more complex join logical file. Assume the data is in the following three
physical files:
Vendor Master File (PF1)
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RCD1 TEXT(’VENDOR INFORMATION’)
A VDRNBR 5 TEXT(’VENDOR NUMBER’)

Chapter 6. Setting up logical files 77

A VDRNAM 25 TEXT(’VENDOR NAME’)
A STREET 15 TEXT(’STREET ADDRESS’)
A CITY 15 TEXT(’CITY’)
A STATE 2 TEXT(’STATE’)
A ZIPCODE 5 TEXT(’ZIP CODE’)
A DFT(’00000’)
A PAY 1 TEXT(’PAY TERMS’)
A

Order File (PF2)
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RCD2 TEXT(’VENDORS ORDER’)
A VDRNUM 5S 0 TEXT(’VENDOR NUMBER’)
A JOBNBR 6 TEXT(’JOB NUMBER’)
A PRTNBR 5S 0 TEXT(’PART NUMBER’)
A DFT(99999)
A QORDER 3S 0 TEXT(’QUANTITY ORDERED’)
A UNTPRC 6S 2 TEXT(’PRICE’)
A

Part File (PF3)
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A R RCD3 TEXT(’DESCRIPTION OF PARTS’)
A PRTNBR 5S 0 TEXT(’PART NUMBER’)
A DFT(99999)
A DESCR 25 TEXT(’DESCRIPTION’)
A UNITPRICE 6S 2 TEXT(’UNIT PRICE’)
A WHSNBR 3 TEXT(’WAREHOUSE NUMBER’)
A PRTLOC 4 TEXT(’LOCATION OF PART’)
A QOHAND 5 TEXT(’QUANTITY ON HAND’)
A

The join logical file record format should contain the following fields:
Vdrnam (vendor name)
Street, City, State, and Zipcode (vendor address)
Jobnbr (job number)
Prtnbr (part number)
Descr (description of part)
Qorder (quantity ordered)
Untprc (unit price)
Whsnbr (warehouse number)
Prtloc (location of part)

The DDS for this join logical file is as follows:
Join Logical File (JLF)
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A �1� DYNSLT
A �2� JDFTVAL
A R RECORD1 JFILE(PF1 PF2 PF3)
A �3� J JOIN(1 2)
A JFLD(VDRNBR VDRNUM)
A �4� JDUPSEQ(JOBNBR)
A �5� J JOIN(2 3)
A �6� JFLD(PRTNBR PRTNBR)
A JFLD(UNTPRC UNITPRICE)
A �7� VDRNUM 5A N TEXT(’CHANGED ZONED TO CHAR’)
A VDRNAM
A ADDRESS �8� CONCAT(STREET CITY STATE +
A ZIPCODE)
A JOBNBR
A PRTNBR �9� JREF(2)
A DESCR
A QORDER
A UNTPRC

78 DB2 UDB for iSeries Database Programming V5R2

A WHSNBR
A PRTLOC
A �10� S VDRNAM COMP(EQ ’SEWING COMPANY’)
A S QORDER COMP(GT 5)
A

�1� The DYNSLT keyword is required because the JDFTVAL keyword and select fields are specified.

�2� The JDFTVAL keyword is specified to pick up default values in physical files.

�3� First join specification.

�4� The JDUPSEQ keyword is specified because duplicate vendor numbers occur in PF2.

�5� Second join specification.

�6� Two JFLD keywords are specified to ensure the correct records are joined from the PF2 and PF3
files.

�7� The Vdrnum field is redefined from zoned decimal to character (because it is used as a join field
and it does not have the same attributes in PF1 and PF2).

�8� The CONCAT keyword concatenates four fields from the same physical file into one field.

�9� The JREF keyword must be specified because the Prtnbr field exists in two physical files and you
want to use the one in PF2.

�10� The select/omit fields are Vdrnam and Qorder. (Note that they come from two different physical
files.)

Join logical file considerations
See the following topics for join logical file considerations.

v “Joining database files: Performance considerations”

v “Joining database files: Data integrity considerations”

v “Joining database files: Summary of rules” on page 80

Joining database files: Performance considerations
You can do the following to improve the performance of join logical files:

v If the physical files you are joining have a different number of records, specify the physical file with
fewest records first (first parameter following the JOIN keyword).

v Consider using the DYNSLT keyword. See “Dynamic select/omit” on page 55 for more details.

v Consider describing your join logical file so it can automatically share an existing access path. See
“Using existing access paths” on page 55 for more details.

Note: Join logical files always have access paths using the second field of the pair of fields specified in
the JFLD keyword. This field acts like a key field in simple logical files. If an access path does
not already exist, the access path is implicitly created with immediate maintenance.

Joining database files: Data integrity considerations
Unless you have a lock on the physical files used by the join logical file, the following can occur:

v Your program reads a record for which there are two or more records in a secondary file. The system
supplies one record to your program.

v Another program updates the record in the primary file that your program has just read, changing the
join field.

v Your program issues another read request. The system supplies the next record based on the current
(new) value of the join field in the primary file.

These same considerations apply to secondary files as well.

Chapter 6. Setting up logical files 79

Joining database files: Summary of rules
The following topics summarize the rules that you must follow when you join database files.

v “Rules for joining database files: Requirements”

v “Rules for joining database files: Join fields”

v “Rules for joining database files: Fields in join logical files”

v “Rules for joining database files: Miscellaneous” on page 81

Rules for joining database files: Requirements: The principal requirements for join logical files are:

v Each join logical file must have:

– Only one record format, with the JFILE keyword specified for it.

– At least two physical file names specified on the JFILE keyword. (The physical file names on the
JFILE keyword do not have to be different files.)

– At least one join specification (J in position 17 with the JFLD keyword specified).

– A maximum of 31 secondary files.

– At least one field name with field use other than N (neither) at the field level.

v If only two physical files are specified for the JFILE keyword, the JOIN keyword is not required. Only
one join specification can be included, and it joins the two physical files.

v If more than two physical files are specified for the JFILE keyword, the following rules apply:

– The primary file must be the first file of the pair of files specified on the first JOIN keyword (the
primary file can also be the first of the pair of files specified on other JOIN keywords).

Note: Relative file numbers must be specified on the JOIN keyword and any JREF keyword when
the same file name is specified twice on the JFILE keyword.

– Every secondary file must be specified only once as the second file of the pair of files on the JOIN
keyword. This means that for every secondary file on the JFILE keyword, one join specification must
be included (two secondary files would mean two join specifications, three secondary files would
mean three join specifications).

– The order in which secondary files appear in join specifications must match the order in which they
are specified on the JFILE keyword.

Rules for joining database files: Join fields: The rules to remember about join fields are:

v Every physical file you are joining must be joined to another physical file by at least one join field. A join
field is a field specified as a parameter value on the JFLD keyword in a join specification.

v Join fields (specified on the JFLD keyword) must have identical attributes (length, data type, and
decimal positions) or be redefined in the record format of the join logical file to have the same attributes.
If the join fields are of character type, the field lengths may be different.

v Join fields need not be specified in the record format of the join logical file (unless you must redefine
one or both so that their attributes are identical).

v If you redefine a join field, you can specify N in position 38 (making it a neither field) to prevent a
program using the join logical file from using the redefined field.

v The maximum length of fields used in joining physical files is equal to the maximum size of keys for
physical and logical files (see Appendix A, “Database file sizes”).

Rules for joining database files: Fields in join logical files: The rules to remember about fields in join
logical files are:

v Fields in a record format for a join logical file must exist in one of the physical files used by the logical
file or, if CONCAT, RENAME, TRNTBL, or SST is specified for the field, be a result of fields in one of
the physical files.

80 DB2 UDB for iSeries Database Programming V5R2

v Fields specified as parameter values on the CONCAT keyword must be from the same physical file. If
the first field name specified on the CONCAT keyword is not unique among the physical files, you must
specify the JREF keyword for that field to identify which file contains the field descriptions you want to
use.

v If a field name in the record format for a join logical file is specified in more than one of the physical
files, you must uniquely specify on the JREF keyword which file the field comes from.

v Key fields, if specified, must come from the primary file. Key fields in the join logical file need not be key
fields in the primary file.

v Select/omit fields can come from any physical file used by the join logical file, but in some
circumstances the DYNSLT keyword is required.

v If specified, key fields and select/omit fields must be defined in the record format.

v Relative file numbers must be used for the JOIN and JREF keywords if the name of the physical file is
specified more than once on the JFILE keyword.

Rules for joining database files: Miscellaneous: Other rules to keep in mind when using join logical
files are:

v Join logical files are read-only files.

v Join record formats cannot be shared, and cannot share other record formats.

v The following are not allowed in a join logical file:

– The REFACCPTH and FORMAT keywords

– Both fields (B specified in position 38)

Chapter 6. Setting up logical files 81

82 DB2 UDB for iSeries Database Programming V5R2

Chapter 7. Describing access paths for database files

This chapter tells how to describe access paths for database files.

An access path describes the order in which records are to be retrieved. Records in a physical or logical
file can be retrieved using an arrival sequence access path or a keyed sequence access path. For logical
files, you can also select and omit records based on the value of one or more fields in each record. A key
field is a field used to arrange the records of a particular type within a file member.

You can describe access paths in the following ways:

v “Using arrival sequence access path for database files”

v “Using a keyed sequence access path for database files” on page 84

v “Using existing access path specifications” on page 91

v “Using floating point fields in database file access paths” on page 91

Using arrival sequence access path for database files
The arrival sequence access path is based on the order in which the records arrive and are stored in the
file. For reading or updating, records can be accessed:

v Sequentially, where each record is taken from the next sequential physical position in the file.

v Directly by relative record number, where the record is identified by its position from the start of the file.

An externally described file has an arrival sequence access path when no key fields are specified for the
file.

An arrival sequence access path is valid only for the following:

v Physical files

v Logical files in which each member of the logical file is based on only one physical file member

v Join logical files

v Views

Following are some different ways that you can use arrival sequence access paths:

v Arrival sequence is the only processing method that allows a program to use the storage space
previously occupied by a deleted record by placing another record in that storage space. This method
requires explicit insertion of a record given a relative record number that you provide. Another method,
in which the system manages the space created by deleting records, is the reuse deleted records
attribute that can be specified for physical files. For more information and tips on using the reuse
deleted records attribute, see “Database file processing: Reusing deleted records” on page 103. For
more information about processing deleted records, see “Deleting database records” on page 181.

v Through your high-level language, the Display Physical File Member (DSPPFM) command, and the
Copy File (CPYF) command, you can process a keyed sequence file in arrival sequence. You can use
this function for a physical file, a simple logical file based on one physical file member, or a join logical
file.

v Through your high-level language, you can process a keyed sequence file directly by relative record
number. You can use this function for a physical file, a simple logical file based on one physical file
member, or a join logical file.

v An arrival sequence access path does not take up any additional storage and is always saved or
restored with the file. (Because the arrival sequence access path is nothing more than the physical
order of the data as it was stored, when you save the data you save the arrival sequence access path.)

© Copyright IBM Corp. 1998, 2002 83

Using a keyed sequence access path for database files
A keyed sequence access path is based on the contents of the key fields as defined in DDS. This type of
access path is updated whenever records are added or deleted, or when records are updated and the
contents of a key field is changed. The keyed sequence access path is valid for both physical and logical
files. The sequence of the records in the file is defined in DDS when the file is created and is maintained
automatically by the system.

Key fields defined as character fields are arranged based on the sequence defined for EBCDIC
characters. Key fields defined as numeric fields are arranged based on their algebraic values, unless the
UNSIGNED (unsigned value) or ABSVAL (absolute value) DDS keywords are specified for the field. Key
fields defined as DBCS are allowed, but are arranged only as single bytes based on their bit
representation.

See the following topics for information about arranging key fields:

v “Arranging key fields using an alternative collating sequence”

v “Arranging key fields using the SRTSEQ parameter” on page 85

v “Arranging key fields in ascending or descending sequence” on page 86

v “Using more than one key field” on page 87

v “Preventing duplicate key values” on page 88

v “Arranging duplicate keys” on page 89

Arranging key fields using an alternative collating sequence
Keyed fields that are defined as character fields can be arranged based either on the sequence for
EBCDIC characters or on an alternative collating sequence. Consider the following records:

Record Empname Deptnbr Empnbr

1 Jones, Mary 45 23318
2 Smith, Ron 45 41321
3 JOHNSON, JOHN 53 41322
4 Smith, ROBERT 27 56218
5 JONES, MARTIN 53 62213

If the Empname is the key field and is a character field, using the sequence for EBCDIC characters, the
records would be arranged as follows:

Record Empname Deptnbr Empnbr

1 Jones, Mary 45 23318
3 JOHNSON, JOHN 53 41322
5 JONES, MARTIN 53 62213
2 Smith, Ron 45 41321
4 Smith, ROBERT 27 56218

Notice that the EBCDIC sequence causes an unexpected sort order because the lowercase characters are
sorted before uppercase characters. Thus, Smith, Ron sorts before Smith, ROBERT. An alternative collating
sequence could be used to sort the records when the records were entered using uppercase and
lowercase as shown in the following example:

84 DB2 UDB for iSeries Database Programming V5R2

Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322
5 JONES, MARTIN 53 62213
1 Jones, Mary 45 23318
4 Smith, ROBERT 27 56218
2 Smith, Ron 45 41321

To use an alternative collating sequence for a character key field, specify the ALTSEQ DDS keyword, and
specify the name of the table containing the alternative collating sequence. When setting up a table, each
2-byte position in the table corresponds to a character. To change the order in which a character is sorted,
change its 2-digit value to the same value as the character it should be sorted equal to. For more
information about the ALTSEQ keyword, see DDS Reference. For information about sorting uppercase and
lowercase characters regardless of their case, the QCASE256 table in library QUSRSYS is provided for
you.

Arranging key fields using the SRTSEQ parameter
You can arrange key fields containing character data according to several sorting sequences available with
the SRTSEQ parameter. Consider the following records:

Record Empname Deptnbr Empnbr

1 Jones, Marilyn 45 23318
2 Smith, Ron 45 41321
3 JOHNSON, JOHN 53 41322
4 Smith, ROBERT 27 56218
5 JONES, MARTIN 53 62213
6 Jones, Martin 08 29231

If the Empname field is the key field and is a character field, the *HEX sequence (the EBCDIC sequence)
arranges the records as follows:

Record Empname Deptnbr Empnbr

1 Jones, Marilyn 45 23318
6 Jones, Martin 08 29231
3 JOHNSON, JOHN 53 41322
5 JONES, MARTIN 53 62213
2 Smith, Ron 45 41321
4 Smith, ROBERT 27 56218

Notice that with the *HEX sequence, all lowercase characters are sorted before the uppercase characters.
Thus, Smith, Ron sorts before Smith, ROBERT, and JOHNSON, JOHN sorts between the lowercase and
uppercase Jones. You can use the *LANGIDSHR sort sequence to sort records when the records were
entered using a mixture of uppercase and lowercase. The *LANGIDSHR sequence, which uses the same
collating weight for lowercase and uppercase characters, results in the following:

Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322
1 Jones, Marilyn 45 23318
5 JONES, MARTIN 53 62213
6 Jones, Martin 08 29231
4 Smith, ROBERT 27 56218
2 Smith, Ron 45 41321

Chapter 7. Describing access paths for database files 85

../dds/rbafpmst02.htm

Notice that with the *LANGIDSHR sequence, the lowercase and uppercase characters are treated as
equal. Thus, JONES, MARTIN and Jones, Martin are equal and sort in the same sequence they have in the
base file. While this is not incorrect, it would look better in a report if all the lowercase Jones preceded the
uppercase JONES. You can use the *LANGIDUNQ sort sequence to sort the records when the records
were entered using an inconsistent uppercase and lowercase. The *LANGIDUNQ sequence, which uses
different but sequential collating weights for lowercase and uppercase characters, results in the following:

Record Empname Deptnbr Empnbr

3 JOHNSON, JOHN 53 41322
1 Jones, Marilyn 45 23318
6 Jones, Martin 08 29231
5 JONES, MARTIN 53 62213
4 Smith, ROBERT 27 56218
2 Smith, Ron 45 41321

The *LANGIDSHR and *LANGIDUNQ sort sequences exist for every language supported in your system.
The LANGID parameter determines which *LANGIDSHR or *LANGIDUNQ sort sequence to use. Use the
SRTSEQ parameter to specify the sort sequence and the LANGID parameter to specify the language.

Arranging key fields in ascending or descending sequence
Key fields can be arranged in either ascending or descending sequence. Consider the following records:

Record Empnbr Clsnbr Clsnam Cpdate

1 56218 412 Welding I 032188
2 41322 412 Welding I 011388
3 64002 412 Welding I 011388
4 23318 412 Welding I 032188
5 41321 412 Welding I 051888
6 62213 412 Welding I 032188

If the Empnbr field is the key field, the two possibilities for organizing these records are:

v In ascending sequence, where the order of the records in the access path is:

Record Empnbr Clsnbr Clsnam Cpdate

4 23318 412 Welding I 032188
5 41321 412 Welding I 051888
2 41322 412 Welding I 011388
1 56218 412 Welding I 032188
6 62213 412 Welding I 032188
3 64002 412 Welding I 011388

v In descending sequence, where the order of the records in the access path is:

Record Empnbr Clsnbr Clsnam Cpdate

3 64002 412 Welding I 011388
6 62213 412 Welding I 032188
1 56218 412 Welding I 032188
2 41322 412 Welding I 011388
5 41321 412 Welding I 051888
4 23318 412 Welding I 032188

86 DB2 UDB for iSeries Database Programming V5R2

When you describe a key field, the default is ascending sequence. However, you can use the DESCEND
DDS keyword to specify that you want to arrange a key field in descending sequence.

Using more than one key field
You can use more than one key field to arrange the records in a file. The key fields do not have to use the
same sequence. For example, when you use two key fields, one field can use ascending sequence while
the other can use descending sequence. Consider the following records:

Record Order Ordate Line Item Qtyord Extens

1 52218 063088 01 88682 425 031875
2 41834 062888 03 42111 30 020550
3 41834 062888 02 61132 4 021700
4 52218 063088 02 40001 62 021700
5 41834 062888 01 00623 50 025000

If the access path uses the Order field, then the Line field as the key fields, both in ascending sequence,
the order of the records in the access path is:

Record Order Ordate Line Item Qtyord Extens

5 41834 062888 01 00623 50 025000
3 41834 062888 02 61132 4 021700
2 41834 062888 03 42111 30 020550
1 52218 063088 01 88682 425 031875
4 52218 063088 02 40001 62 021700

If the access path uses the key field Order in ascending sequence, then the Line field in descending
sequence, the order of the records in the access path is:

Record Order Ordate Line Item Qtyord Extens

2 41834 062888 03 42111 30 020550
3 41834 062888 02 61132 4 021700
5 41834 062888 01 00623 50 025000
4 52218 063088 02 40001 62 021700
1 52218 063088 01 88682 425 031875

When a record has key fields whose contents are the same as the key field in another record in the same
file, then the file is said to have records with duplicate key values. However, the duplication must occur for
all key fields for a record if they are to be called duplicate key values. For example, if a record format has
two key fields Order and Ordate, duplicate key values occur when the contents of both the Order and
Ordate fields are the same in two or more records. These records have duplicate key values:

Order Ordate Line Item Qtyord Extens

41834 062888 03 42111 30 020550
41834 062888 02 61132 04 021700
41834 062888 01 00623 50 025000

Using the Line field as a third key field defines the file so that there are no duplicate keys:

(First Key Field)
Order

(Second Key Field)
Ordate

(Third Key Field)
Line Item Qtyord Extens

41834 062888 03 42111 30 020550

Chapter 7. Describing access paths for database files 87

(First Key Field)
Order

(Second Key Field)
Ordate

(Third Key Field)
Line Item Qtyord Extens

41834 062888 02 61132 04 021700
41834 062888 01 00623 50 025000

A logical file that has more than one record format can have records with duplicate key values, even
though the record formats are based on different physical files. That is, even though the key values come
from different record formats, they are considered duplicate key values.

Preventing duplicate key values
DB2 UDB for iSeries allows records with duplicate key values in your files. However, you may want to
prevent duplicate key values in some of your files. For example, you can create a file where the key field
is defined as the customer number field. In this case, you want the system to ensure that each record in
the file has a unique customer number.

You can prevent duplicate key values in your files by specifying the UNIQUE keyword in DDS. With the
UNIQUE keyword specified, a record cannot be entered or copied into a file if its key value is the same as
the key value of a record already existing in the file. You can also use unique constraints to enforce the
integrity of unique keys. For details on the supported constraints, see Chapter 20, “Controlling the integrity
of your database with constraints” on page 231.

If records with duplicate key values already exist in a physical file, the associated logical file cannot have
the UNIQUE keyword specified. If you try to create a logical file with the UNIQUE keyword specified, and
the associated physical file contains duplicate key values, the logical file is not created. The system sends
you a message stating this and sends you messages (as many as 20) indicating which records contain
duplicate key values.

When the UNIQUE keyword is specified for a file, any record added to the file cannot have a key value
that duplicates the key value of an existing record in the file, regardless of the file used to add the new
record. For example, two logical files LF1 and LF2 are based on the physical file PF1. The UNIQUE
keyword is specified for LF1. If you use LF2 to add a record to PF1, you cannot add the record if it causes
a duplicate key value in LF1.

If any of the key fields allow null values, null values that are inserted into those fields may or may not
cause duplicates depending on how the access path was defined at the time the file was created. The
*INCNULL parameter of the UNIQUE keyword indicates that null values are included when determining
whether duplicates exist in the unique access path. The *EXCNULL parameter indicates that null values
are not included when determining whether duplicate values exist. For more information, see DDS
Reference.

The following shows the DDS for a logical file that requires unique key values:
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* ORDER TRANSACTION LOGICAL FILE (ORDFILL)
A UNIQUE
A R ORDHDR PFILE(ORDHDRP)
A K ORDER
A
A R ORDDTL PFILE(ORDDTLP)
A K ORDER
A K LINE
A

In this example, the contents of the key fields (the Order field for the ORDHDR record format, and the
Order and Line fields for the ORDDTL record format) must be unique whether the record is added through
the ORDHDRP file, the ORDDTLP file, or the logical file defined here. With the Line field specified as a

88 DB2 UDB for iSeries Database Programming V5R2

../dds/rbafpmst02.htm
../dds/rbafpmst02.htm

second key field in the ORDDTL record format, the same value can exist in the Order key field in both
physical files. Because the physical file ORDDTLP has two key fields and the physical file ORDHDRP has
only one, the key values in the two files do not conflict.

Arranging duplicate keys
If you do not specify the UNIQUE keyword in DDS, you can specify how the system is to store records
with duplicate key values, should they occur. You specify that records with duplicate key values are stored
in the access path in one of the following ways:

v Last-in-first-out (LIFO). When the LIFO keyword is specified (�1�), records with duplicate key values are
retrieved in last-in-first-out order by the physical sequence of the records. Following is an example of
DDS using the LIFO keyword.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* ORDERP2
A �1� LIFO
A R ORDER2
A .
A .
A .
A K ORDER
A

v First-in-first-out (FIFO). If the FIFO keyword is specified, records with duplicate key values are retrieved
in first-in-first-out order by the physical sequence of the records.

v First-changed-first-out (FCFO). If the FCFO keyword is specified, records with duplicate key values are
retrieved in first-changed-first-out order by the physical sequence of the keys.

v No specific order for duplicate key fields (the default). When the FIFO, FCFO, or LIFO keywords are not
specified, no guaranteed order is specified for retrieving records with duplicate keys. No specific order
for duplicate key fields allows more access path sharing, which can improve performance. For more
information about access path sharing, see “Using existing access paths” on page 55.

When a simple- or multiple-format logical file is based on more than one physical file member, records with
duplicate key values are read in the order in which the files and members are specified on the DTAMBRS
parameter on the Create Logical File (CRTLF) or Add Logical File Member (ADDLFM) command.
Examples of logical files with more than one record format can be found in the DDS Reference.

The LIFO or FIFO order of records with duplicate key values is not determined by the sequence of
updates made to the contents of the key fields, but solely by the physical sequence of the records in the
file member. Assume that a physical file has the FIFO keyword specified (records with duplicate keys are
in first-in-first-out order), and that the following shows the order in which records were added to the file:

Order Records
Were Added to File

Key Value

1 A
2 B
3 C
4 C
5 D

The sequence of the access path is (FIFO, ascending key):

Record Number Key Value

1 A
2 B
3 C
4 C

Chapter 7. Describing access paths for database files 89

../dds/rbafpmst02.htm

Record Number Key Value

5 D

Records 3 and 4, which have duplicate key values, are in FIFO order. That is, because record 3 was
added to the file before record 4, it is read before record 4. This would become apparent if the records
were read in descending order. This could be done by creating a logical file based on this physical file,
with the DESCEND keyword specified in the logical file.

The sequence of the access path is (FIFO, descending key):

Record Number Key Value

5 D
3 C
4 C
2 B
1 A

If physical record 1 is changed such that the key value is C, the sequence of the access path for the
physical file is (FIFO, ascending key):

Record Number Key Value

2 B
1 C
3 C
4 C
5 D

Finally, changing to descending order, the new sequence of the access path for the logical file is (FIFO,
descending key):

Record Number Key Value

5 D
1 C
3 C
4 C
2 B

After the change, record 1 does not appear after record 4, even though the contents of the key field were
updated after record 4 was added.

The FCFO order of records with duplicate key values is determined by the sequence of updates made to
the contents of the key fields. In the example above, after record 1 is changed such that the key value is
C, the sequence of the access path (FCFO, ascending key only) is:

Record Number Key Value

2 B
3 C
4 C
1 C
5 D

90 DB2 UDB for iSeries Database Programming V5R2

For FCFO, the duplicate key ordering can change when the FCFO access path is rebuilt or when a
rollback operation is performed. In some cases, your key field can change but the physical key does not
change. In these cases, the FCFO ordering does not change, even though the key field has changed. For
example, when the index ordering is changed to be based on the absolute value of the key, the FCFO
ordering does not change. The physical value of the key does not change even though your key changes
from negative to positive. Because the physical key does not change, FCFO ordering does not change.

If the reuse deleted records attribute is specified for a physical file, the duplicate key ordering must be
allowed to default or must be FCFO. The reuse deleted records attribute is not allowed for the physical file
if either the key ordering for the file is FIFO or LIFO, or if any of the logical files defined over the physical
file have duplicate key ordering of FIFO or LIFO.

Using existing access path specifications
You can use the DDS keyword REFACCPTH to use another file’s access path specifications. When the file
is created, the system determines which access path to share. The file using the REFACCPTH keyword
does not necessarily share the access path of the file specified in the REFACCPTH keyword. The
REFACCPTH keyword is used to simply reduce the number of DDS statements that must be specified.
That is, rather than code the key field specifications for the file, you can specify the REFACCPTH
keyword. When the file is created, the system copies the key field and select/omit specifications from the
file specified on the REFACCPTH keyword to the file being created.

Using floating point fields in database file access paths
The collating sequence for records in a keyed database file depends on the presence of the SIGNED,
UNSIGNED, and ABSVAL DDS keywords. For floating-point fields, the sign is the farthest left bit, the
exponent is next, and the significant is last. The collating sequence with UNSIGNED specified is:

v Positive real numbers—positive infinity

v Negative real numbers—negative infinity

A floating-point key field with the SIGNED keyword specified, or defaulted to, on the DDS has an algebraic
numeric sequence. The collating sequence is negative infinity—real numbers—positive infinity.

A floating-point key field with the ABSVAL keyword specified on the DDS has an absolute value numeric
sequence.

The following floating-point collating sequences are observed:

v Zero (positive or negative) collates in the same manner as any other positive/negative real number.

v Negative zero collates before positive zero for SIGNED sequences.

v Negative and positive zero collate the same for ABSVAL sequences.

You cannot use not-a-number (*NAN) values in key fields. If you attempt this, and a *NAN value is
detected in a key field during file creation, the file is not created.

Chapter 7. Describing access paths for database files 91

92 DB2 UDB for iSeries Database Programming V5R2

Chapter 8. Securing a database

The following topics describe actions that you can take to secure your database.

v “Granting file and data authority”

v “Specifying public authority” on page 95

v “Using database file capabilities to control I/O operations” on page 97

v “Limiting access to specific fields of a database file” on page 97

v “Using logical files to secure data” on page 97

For more information about implementing security on the iSeries system, see the Security Reference .

Granting file and data authority
There are several ways that you can grant file and data authority.

v You can use iSeries Navigator to authorize a user or group. See “Authorizing a user or group using
iSeries Navigator”.

v You can use the Grant Object Authority (GRTOBJAUT) command to specify the authority you want
users to have to access data in your database files.

v You can use the SQL GRANT statement.

See “Types of object authority for database files” and “Types of data authorities for database files” on
page 94 for the types of authority you can grant.

Authorizing a user or group using iSeries Navigator
Some users may require different authority to an object than the permissions allowed by Public authority.
To authorize a user or group to an object:

1. In the iSeries Navigator window, expand the system you want to use.

2. Navigate until the object for which you want to edit permissions is visible.

3. Right-click the object for which you want to add permissions and select Permissions.

4. On the Permissions dialog, click Add.

5. On the Add dialog, select one or more users and groups or enter the name of a user or group in the
user or group name field.

6. Click OK. This will add the users or groups to the top of the list.

Note: The user or group is given the default authority to the object. You can change a user’s authority to
one of the types defined by the system or you can customize the authority.

You can also remove and customize authority using iSeries Navigator.

Types of object authority for database files
The following are the types of authority you can grant to a user for a database file:

Object Operational Authority

Users need object operational authority to:

v Open the file for processing. (You must also have at least one data authority.)

v Compile a program which uses the file description.

v Display descriptive information about active members of a file.

v Open the file for query processing. For example, the Open Query File (OPNQRYF) command
opens a file for query processing.

© Copyright IBM Corp. 1998, 2002 93

../../books/c4153026.pdf
../cl/grtobjau.htm
../db2/rbafzmstgnt.htm

Note: You must also have the appropriate data authorities required by the options specified on
the open operation.

Object Existence Authority

Users need object existence authority to:

v Delete the file.

v Save, restore, and free the storage of the file. If the object existence authority has not been
explicitly granted to the user, the *SAVSYS special user authority allows the user to save,
restore, and free the storage of a file. *SAVSYS is not the same as object existence authority.

v Remove members from the file.

v Transfer ownership of the file.

Note: All these functions except save/restore also require object operational authority to the file.

Object Management Authority

Users need object management authority to:

v Create a logical file with a keyed sequence access path (object management authority is
required for the physical file referred to by the logical file).

v Grant and revoke authority. You can grant and revoke only the authority that you already have.
(You must also have object operational authority to the file.)

v Change the file.

v Add members to the file. (The owner of the file becomes the owner of the new member.)

v Change the member in the file.

v Move the file.

v Rename the file.

v Rename a member of the file.

v Clear a member of the file. (Delete data authority is also required.)

v Initialize a member of the file. (Add data authority is also required to initialize with default
records; delete data authority is required to initialize with deleted records.)

v Reorganize a member of the file. (All data authorities are also required.)

Object Alter Authority

Users need object alter authority for many of the same operations as object management authority
(see preceding section). Object alter authority is a replacement authority for object management
authority.

Object Reference Authority

Users need object reference authority when the authority needed to reference an object from
another object such that operations on that object may be restricted by the referencing object.

Adding a physical file referential constraint checks for either object management authority or object
reference authority to the parent file. Physical file constraints are described in Chapter 20,
“Controlling the integrity of your database with constraints” on page 231 and Chapter 21, “Ensuring
data integrity with referential constraints” on page 237.

Types of data authorities for database files
You can use the following data authorities, or permissions, to grant users access to physical and logical
files.

Read Authority
Users can read the records in the file.

94 DB2 UDB for iSeries Database Programming V5R2

Add Authority
Users can add new records to the file.

Update Authority
Users can update existing records. (To read a record for update, you must also have read
authority.)

Delete Authority
Users can delete existing records. (To read a record for deletion, you must also have read
authority.)

Execute Authority

You can use execute authority to work with libraries and to invoke programs. For example, if you
are changing a file associated with a trigger, you must have execute authority to the trigger
program. If you do not have execute authority, the system will not invoke the trigger program. For
detailed information on triggers, see Chapter 22, “Triggering automatic events in your database” on
page 249.

Normally, the authority you have to the data in the file is not verified until you actually perform the
input/output operation. However, the Open Query File (OPNQRYF) and Open Database File
(OPNDBF) commands also verify data authority when the file is opened.

If object operational authority is not granted to a user for a file, that user cannot open the file.

The following example shows the relationship between authority granted for logical files and the
physical files used by the logical file. The logical files LF1, LF2, and LF3 are based on the physical
file PF1. USERA has read (*READ) and add (*ADD) authority to the data in PF1 and object
operational (*OBJOPR), read (*READ), and add (*ADD) authority for LF1 and LF2. This means
that USERA cannot open PF1 or use its data directly in any way because the user does not have
object operational authority (*OBJOPR) to PF1; USERA can open LF1 and LF2 and read records
from and add records to PF1 through LF1 and LF2. Note that the user was not given authority for
LF3 and, therefore, cannot use it.

Specifying public authority
When you create a file, you can specify public authority through the AUT parameter on the Create
Physical File or Create Source Physical File command. Public authority is authority available to any user
who does not have specific authority to the file or who is not a member of a group that has specific
authority to the file. Public authority is the last authority check made. That is, if the user has specific
authority to a file or the user is a member of a group with specific authority, then the public authority is not
checked. Public authority can be specified as:

v *LIBCRTAUT. The library in which the file is created is checked to determine the public authority of the
file when the file is created. An authority is associated with each library. This authority is specified when
the library is created, and all files created into the library are given this public authority if the
*LIBCRTAUT value is specified for the AUT parameter of the Create File (CRTLF, CRTPF, and
CRTSRCPF) commands. The *LIBCRTAUT value is the default public authority.

Chapter 8. Securing a database 95

../cl/crtpf.htm
../cl/crtpf.htm
../cl/crtsrcpf.htm

v *CHANGE. All users that do not have specific user or group authority to the file have authority to
change data in the file.

v *USE. All users that do not have specific user or group authority to the file have authority to read data in
the file.

v *EXCLUDE. Only the owner, security officer, users with specific authority, or users who are members of
a group with specific authority can use the file.

v *ALL. All users that do not have specific user or group authority to the file have all data authorities along
with object operational, object management, and object existence authorities.

v Authorization list name. An authorization list is a list of users and their authorities. The list allows users
and their different authorities to be grouped together.

Note: When creating a logical file, no data authorities are granted. Consequently, *CHANGE is the same
as *USE, and *ALL does not grant any data authority.

You can grant public authority in the following ways:

v Define public authority using iSeries Navigator. See “Defining public authority for a file using iSeries
Navigator”.

v Use the Edit Object Authority (EDTOBJAUT), Grant Object Authority (GRTOBJAUT), or Revoke Object
Authority (RVKOBJAUT) commands to grant or revoke the public authority of a file.

You can also use iSeries Navigator to set default public authority for a new file. See “Setting a default
public authority for new files using iSeries Navigator”.

Defining public authority for a file using iSeries Navigator
Public authority is defined for every object on the system to describe what type of access a user who does
not have specific access to an object. To define public authority:

1. In the iSeries Navigator window, expand the system you want to use.

2. Navigate until the object for which you want to edit permissions is visible.

3. Right-click the object for which you want to add permissions and select Permissions.

4. On the Permissions dialog, select Public from the group list.

5. Click the Details button to implement detailed permissions. Apply the desired permissions for the
public by checking the box by the appropriate check box.

6. Click OK.

Setting a default public authority for new files using iSeries Navigator
Setting a default public authority allows you to have a common authority that is assigned to all new objects
when they are created in library. You can edit the permissions for individual objects that require a different
level of security. To set a default public authority:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to work with.

4. Right-click on the library for which you want to set a public authority and select Permissions.

5. On the Permissions dialog, click New Object.

6. On the New Object dialog, select a default public authority.

7. To assign an Authorization List, you can enter or Browse for the name of the authorization list. To view
Authorization list properties, select Open.

8. Click OK.

From system value
Specifies to use the system value for the default public authority for a new object.

96 DB2 UDB for iSeries Database Programming V5R2

../cl/edtobjau.htm
../cl/grtobjau.htm
../cl/rvkobjau.htm
../cl/rvkobjau.htm

Use
Allows access to the object attributes and use of the object. The public may view, but not change, the
objects.

Change
Allows the contents of the object (with some exceptions) to be changed.

All
Allows all operations on the object, except those that are limited to the owner. The user or group can
control the object.s existence, specify the security for the object, change the object, and perform basic
functions on the object. The user or group can also change ownership of the object.

Exclude
All operations on the object are prohibited. No access nor operations are allowed to the object for the
users and groups having this permission. Specifies the public is not allowed to use the objects.

Use authorization list
Allows you specify an authorization list to use to secure the object.

Using database file capabilities to control I/O operations
File capabilities are used to control which input/output operations are allowed for a database file
independent of database file authority.

When you create a physical file, you can specify if the file is update-capable and delete-capable by using
the ALWUPD and ALWDLT parameters on the Create Physical File (CRTPF) and Create Source Physical
File (CRTSRCPF) commands. By creating a file that is not update-capable and not delete-capable, you
can effectively enforce an environment where data cannot be changed or deleted from a file once the data
is written.

File capabilities cannot be explicitly set for logical files. The file capabilities of a logical file are determined
by the file capabilities of the physical files it is based on.

You cannot change file capabilities after the file is created. You must delete the file then recreate it with
the desired capability. The Display File Description (DSPFD) command can be used to determine the
capabilities of a file.

Limiting access to specific fields of a database file
You can restrict user update and read requests to specific fields of a physical database file. There are two
ways to do this:

v Create a logical view of the physical file that includes only those fields to which you want your users to
have access. See “Using logical files to secure data” for more information.

v Use the SQL GRANT statement to grant update authority to specific columns of an SQL table. See DB2
UDB for iSeries SQL Programming Concepts for more information.

Using logical files to secure data
You can use a logical file to prevent a field in a physical file from being viewed. This is accomplished by
describing a logical file record format that does not include fields you do not want the user to see. For
more information about this subject, see “Describing logical file record formats” on page 45.

You can also use a logical file to prevent one or more fields from being changed in a physical file by
specifying, for those fields you want to protect, an I (input only) in position 38 of the DDS form. For more
information about this subject, see “Describing field use for logical files” on page 47.

Chapter 8. Securing a database 97

../cl/crtpf.htm
../cl/crtsrcpf.htm
../cl/crtsrcpf.htm
../cl/dspfd.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

You can use a logical file to secure records in a physical file based on the contents of one or more fields
in that record. To secure records based on the contents of a field, use the select and omit keywords when
describing the logical file. For more information about this subject, see “Selecting and omitting records
using logical files” on page 52.

98 DB2 UDB for iSeries Database Programming V5R2

Part 3. Processing Database Files in Programs

The chapters in this part include information about processing database files in your programs.

v Chapter 9, “Database file processing: Run time considerations” on page 101

This topic includes information about planning how the file will be used in the program or job and
improving the performance of your program. Descriptions of the file processing parameters and run-time
options that you can specify for more efficient file processing are included in this section. This topic also
discusses sharing database files across jobs so that they can be accessed by many users at the same
time. Locks on files, records, or members that can prevent them from being shared across jobs are also
discussed.

v Chapter 10, “Opening a database file” on page 121

This topic discusses Using the Open Query File (OPNQRYF) command and the Open Database File
(OPNDBF) command to open database file members in a program. Examples, performance
considerations, and guidelines to follow when writing a high-level language program are also included.
Also, typical errors that can occur are discussed.

v Chapter 11, “Basic database file operations in programs” on page 171

This topic discusses basic database operations. This discussion includes setting a position in the
database file, and reading, updating, adding, and deleting records in a database file. A description of
several ways to read database records is also included. Information about updating discusses how to
change an existing database record in a logical or physical file. Information about adding a new record
to a physical database member using the write operation is included.

v Chapter 12, “Closing a database file” on page 183

This topic includes ways you can close a database file when your program completes processing a
database file member, disconnecting your program from the file.

v Chapter 13, “Monitoring database file errors in a program” on page 185

This topic includes messages to monitor when handling database file errors in a program.

© Copyright IBM Corp. 1998, 2002 99

100 DB2 UDB for iSeries Database Programming V5R2

Chapter 9. Database file processing: Run time considerations

Before a file is opened for processing, you should consider how you will use the file in the program and
job. A better understanding of the run-time file processing parameters can help you avoid unexpected
results. In addition, you might improve the performance of your program.

When a file is opened, the attributes in the database file description are merged with the parameters in the
program. Normally, most of the information the system needs for your program to open and process the
file is found in the file attributes and in the application program itself.

Sometimes, however, it is necessary to override the processing parameters found in the file and in the
program. For example, if you want to process a member of the file other than the first member, you need a
way to tell the system to use the member you want to process. The Override with Database File
(OVRDBF) command allows you to do this. The OVRDBF command also allows you to specify processing
parameters that can improve the performance of your job, but that cannot be specified in the file attributes
or in the program. The OVRDBF command parameters take precedence over the file and program
attributes. For more information about how overrides behave in the Integrated Language Environment®,

see the ILE Concepts book.

This chapter describes the file processing parameters and other methods or considerations that can be
used to affect database file processing. The parameter values are determined by the high-level language
program, the file attributes, and any open or override commands processed before the high-level language
program is called.

See the following topics describing these parameters or methods:

v “Database file processing: File and member name” on page 102

v “Database file processing: File processing options” on page 102

v “Database file processing: Data recovery and integrity” on page 105

v “Locking shared data” on page 106

v “Sharing database files in the same job or activation group” on page 108

v “Sequential-only processing of database files” on page 113

A summary of these parameters and where you specify them can be found in “Summary of run time
considerations for processing database files” on page 116. See “Storage pool paging option effect on
database performance” on page 119 for information about the storage pool paging option and its effect on
database file processing.

For more information about processing parameters from commands, see the Control Language (CL) topic
for the following commands:

v Create Physical File (CRTPF)

v Create Logical File (CRTLF)

v Create Source Physical File (CRTSRCPF)

v Add Physical File Member (ADDPFM)

v Add Logical File Member (ADDLFM)

v Change Physical File (CHGPF)

v Change Physical File Member (CHGPFM)

v Change Logical File (CHGLF)

v Change Logical File Member (CHGLFM)

v Change Source Physical File (CHGSRCPF)

© Copyright IBM Corp. 1998, 2002 101

../../books/c4156066.pdf
../rbam6/rbam6clmain.htm
../cl/crtpf.htm
../cl/crtlf.htm
../cl/crtsrcpf.htm
../cl/addpfm.htm
../cl/addlfm.htm
../cl/chgpf.htm
../cl/chgpfm.htm
../cl/chglf.htm
../cl/chglfm.htm
../cl/chgsrcpf.htm

v Override with Database File (OVRDBF)

v Open Database File (OPNDBF)

v Open Query File (OPNQRYF)

v Close File (CLOF)

Database file processing: File and member name
FILE and MBR Parameter. Before you can process data in a database file, you must identify which file
and member you want to use. Normally, you specify the file name and, optionally, the member name in
your high-level language program. The system then uses this name when your program requests the file
to be opened. To override the file name specified in your program and open a different file, you can use
the TOFILE parameter on the Override with Database File (OVRDBF) command. If no member name is
specified in your program, the first member of the file (as defined by the creation date and time) is
processed.

If the member name cannot be specified in the high-level language program (some high-level languages
do not allow a member name), or you want a member other than the first member, you can use an
Override with Database File (OVRDBF) command or an open command (OPNDBF or OPNQRYF) to
specify the file and member you want to process (using the FILE and MBR parameters).

To process all the members of a file, use the OVRDBF command with the MBR(*ALL) parameter specified.
For example, if FILEX has three members and you want to process all the members, you can specify:
OVRDBF FILE(FILEX) MBR(*ALL)

If you specify MBR(*ALL) on the OVRDBF command, your program reads the members in the order they
were created. For each member, your program reads the records in keyed or arrival sequence, depending
on whether the file is an arrival sequence or keyed sequence file.

Database file processing: File processing options
The following section describes several run-time processing options, including identifying the file
operations used by the program, specifying the starting file position, reusing deleted records, ignoring the
keyed sequence access path, specifying how to handle end-of-file processing, and identifying the length of
the record in the file.

See these topics:

v “Database file processing: Specifying the type of processing”

v “Database file processing: Specifying the initial file position” on page 103

v “Database file processing: Reusing deleted records” on page 103

v “Database file processing: Ignoring the keyed sequence access path” on page 103

v “Database file processing: Delaying end of file processing” on page 104

v “Database file processing: Specifying the record length” on page 104

v “Database file processing: Ignoring record formats” on page 104

v “Database file processing: Determining if duplicate keys exist” on page 104

Database file processing: Specifying the type of processing
OPTION Parameter. When you use a file in a program, the system needs to know what types of
operations you plan to use for that file. For example, the system needs to know if you plan to just read
data in the file or if you plan to read and update the data. The valid operation options are: input, output,
update, and delete. The system determines the options you are using from information you specify in your
high-level language program or from the OPTION parameter on the Open Database File (OPNDBF) and
Open Query File (OPNQRYF) commands.

102 DB2 UDB for iSeries Database Programming V5R2

../cl/ovrdbf.htm
../cl/opndbf.htm
../cl/opnqryf.htm
../cl/clof.htm

The system uses the options to determine which operations are allowed in your program. For example, if
you open a file for input only and your program tries an output operation, your program receives an error.

Normally, the system verifies that you have the required data authority when you do an input/output
operation in your program. However, when you use the Open Query File (OPNQRYF) or Open Database
File (OPNDBF) commands, the system verifies at the time the file is opened that you have the required
data authority to perform the operations specified on the OPTION parameter. For more information about
data authority, see “Types of data authorities for database files” on page 94.

The system also uses these options to determine the locks to use to protect the data integrity of the files
and records being processed by your program. For more information on locks, see “Locking shared data”
on page 106.

Database file processing: Specifying the initial file position
POSITION Parameter. The system needs to know where it should start processing the file after it is
opened. The default is to start just before the first record in the file (the first sequential read operation will
read the first record). But, you can tell the system to start at the end of the file, or at a certain record in the
middle of the file using the Override with Database File (OVRDBF) command. You can also dynamically
set a position for the file in your program. For more information on setting position for a file in a program,
see “Setting a position in the file” on page 171.

Database file processing: Reusing deleted records
REUSEDLT Parameter. When you specify REUSEDLT(*YES) on the Create Physical File (CRTPF) or
Change Physical File (CHGPF) command, the following operations may work differently:

v Arrival order becomes meaningless for a file that reuses deleted record space. Records might not be
added at the end of the file.

v End-of-file delay does not work for files that reuse deleted record space.

v One hundred percent reuse of deleted record space is not guaranteed. A file full condition may be
reached or the file may be extended even though deleted record space still exists in the file.

Because of the way the system reuses deleted record space, consider the following points before creating
or changing a file to reuse deleted record space:

v Files processed using relative record numbers and files used by an application to determine a relative
record number that is used as a key into another file should not reuse deleted record space.

v Files used as queues should not reuse deleted record space.

v Any files used by applications that assume new record inserts are at the end of the file should not reuse
deleted record space.

If you decide to change an existing physical file to reuse deleted record space, and there are logical files
with access paths with LIFO or FIFO duplicate key ordering over the physical file, you can re-create the
logical files without the FIFO or LIFO attribute and avoid rebuilding the existing access path by doing the
following:

1. Rename the existing logical file that has the FIFO or LIFO attribute.

2. Create a second logical file identical to the renamed file except that duplicate key ordering should not
be specified for the file. Give the new file the original file name. The new file shares the access path of
the renamed file.

3. Delete the renamed file.

Database file processing: Ignoring the keyed sequence access path
ACCPTH Parameter. When you process a file with a keyed sequence access path, you normally want to
use that access path to retrieve the data. The system automatically uses the keyed sequence access path

Chapter 9. Database file processing: Run time considerations 103

if a key field is defined for the file. However, sometimes you can achieve better performance by ignoring
the keyed sequence access path and processing the file in arrival sequence.

You can tell the system to ignore the keyed sequence access path in some high-level languages, or on the
Open Database File (OPNDBF) command. When you ignore the keyed sequence access path, operations
that read data by key are not allowed. Operations are done sequentially along the arrival sequence access
path. (If this option is specified for a logical file with select/omit values defined, the arrival sequence
access path is used and only those records meeting the select/omit values are returned to the program.
The processing is done as if the DYNSLT keyword was specified for the file.)

Note: You cannot ignore the keyed sequence access path for logical file members that are based on
more than one physical file member.

Database file processing: Delaying end of file processing
EOFDLY Parameter. When you are reading a database file and your program reaches the end of the
data, the system normally signals your program that there is no more data to read. Occasionally, instead
of telling the program there is no more data, you might want the system to hold your program until more
data arrives in the file. When more data arrives in the file, the program can read the newly arrived records.
If you need that type of processing, you can use the EOFDLY parameter on the Override with Database
File (OVRDBF) command. For more information on this parameter, see “Waiting for more records when
end of file is reached” on page 175.

Note: End of file delay should not be used for files that reuse deleted records.

Database file processing: Specifying the record length
The system needs to know the length of the record your program will be processing, but you do not have
to specify record length in your program. The system automatically determines this information from the
attributes and description of the file named in your program. However, as an option, you can specify the
length of the record in your high-level language program.

If the file that is opened contains records that are longer than the length specified in the program, the
system allocates a storage area to match the file member’s record length and this option is ignored. In this
case, the entire record is passed to the program. (However, some high-level languages allow you to
access only that portion of the record defined by the record length specified in the program.) If the file that
is opened contains records that are less than the length specified in the program, the system allocates a
storage area for the program-specified record length. The program can use the extra storage space, but
only the record lengths defined for the file member are used for input/output operations.

Database file processing: Ignoring record formats
When you use a multiple format logical file, the system assumes you want to use all formats defined for
that file. However, if you do not want to use all of the formats, you can specify which formats you want to
use and which ones you want to ignore. If you do not use this option to ignore formats, your program can
process all formats defined in the file. For more information about this processing option, see your
high-level language guide.

Database file processing: Determining if duplicate keys exist
DUPKEYCHK Parameter. The set of keyed sequence access paths used to determine if the key is a
duplicate key differs depending on the I/O operation that is performed.

For input operations (reads), the keyed sequence access path used is the one that the file is opened with.
Any other keyed sequence access paths that can exist over the physical file are not considered. Also, any
records in the keyed sequence access path omitted because of select/omit specifications are not
considered when deciding if the key operation is a duplicate.

104 DB2 UDB for iSeries Database Programming V5R2

For output (write) and update operations, all nonunique keyed sequence access paths of *IMMED
maintenance that exist over the physical file are searched to determine if the key for this output or update
operation is a duplicate. Only keyed sequence access paths that have *RBLD and *DLY maintenance are
considered if the access paths are actively open over the file at feedback time.

When you process a keyed file with a COBOL program, you can specify duplicate key feedback to be
returned to your program through the COBOL language, or on the Open Database File (OPNDBF) or
Open Query File (OPNQRYF) commands. However, in COBOL having duplicate key feedback returned
can cause a decline in performance.

Database file processing: Data recovery and integrity
The following section describes data integrity run-time considerations. See these topics:

v “Protecting your file with journaling and commitment control”

v “Writing data and access paths to auxiliary storage”

v “Checking changes to the record format description”

v “Checking for the expiration date of the file” on page 106

v “Preventing the job from changing data in the file” on page 106

Protecting your file with journaling and commitment control
COMMIT Parameter. Journaling and commitment control are the preferred methods for data and
transaction recovery on the iSeries system. Database file journaling is started by running the Start Journal
Physical File (STRJRNPF) command for the file. Access path journaling is started by running the Start
Journal Access Path (STRJRNAP) command for the file or by using System-Managed Access-Path
Protection (SMAPP). You tell the system that you want your files to run under commitment control through
the Start Commitment Control (STRCMTCTL) command and through high-level language specifications.
You can also specify the commitment control (COMMIT) parameter on the Open Database File (OPNDBF)
and Open Query File (OPNQRYF) commands. For more information about journaling and commitment
control, see “Managing journals” on page 207 and “Ensuring data integrity with commitment control” on
page 213.

If you are performing inserts, updates, or deletes on a file that is associated with a referential constraint
and the delete rule, update rule, or both is other than RESTRICT, you must use journaling. For more
information about referential constraints, see Chapter 21, “Ensuring data integrity with referential
constraints” on page 237.

Writing data and access paths to auxiliary storage
FRCRATIO and FRCACCPTH Parameters. Normally, DB2 UDB for iSeries determines when to write
changed data from main storage to auxiliary storage. If you want to control when database changes are
written to auxiliary storage, you can use the force write ratio (FRCRATIO) parameter on either the create,
change, or override database file commands, and the force access path (FRCACCPTH) parameter on the
create and change database file commands. Using the FRCRATIO and FRCACCPTH parameters have
performance and recovery considerations for your system. To understand these considerations, see
Chapter 18, “Recovering and restoring your database” on page 207.

Checking changes to the record format description
LVLCHK Parameter. The system checks, when you open the file, if the description of the record format
you are using was changed since the program was compiled to an extent that your program cannot
process the file. The system normally notifies your program of this condition. This condition is known as a
level check. When you use the create or change file commands, you can specify that you want level
checking. You can also override the level check attribute defined for the file using the LVLCHK parameter
on the Override with Database File (OVRDBF) command. For more information about this parameter, see
“Effect of changing fields in a file description” on page 203.

Chapter 9. Database file processing: Run time considerations 105

Checking for the expiration date of the file
EXPDATE and EXPCHK Parameters. The system can verify that the data in the file you specify is still
current. You can specify the expiration date for a file or member using the EXPDATE parameter on the
create and change file commands, and you can specify whether or not the system is to check that date
using the EXPCHK parameter on the Override with Database File (OVRDBF) command. If you do check
the expiration date and the current date is greater than the expiration date, a message is sent to the
system operator when the file is opened.

Preventing the job from changing data in the file
INHWRT Parameter. If you want to test your program, but do not want to actually change data in files
used for the test, you can tell the system to not write (inhibit) any changes to the file that the program
attempts to make. To inhibit any changes to the file, specify INHWRT(*YES) on the Override with
Database File (OVRDBF) command.

Locking shared data
By definition, all database files can be used by many users at the same time. However, some operations
can lock the file, member, or data records in a member to prevent them from being shared across jobs.
While the file, member, or record is locked, no other job can read the same data for update, which keeps
another job from unintentionally deleting the first job’s update.

You can lock a row in iSeries Navigator by opening a table and editing the row you want to lock. You can
also use the SQL LOCK TABLE statement. Or, you can use the following operations to lock files,
members, or data records:

v “Locking records”

v “Locking files” on page 107

v “Locking members” on page 107

v “Locking record format data” on page 107

You can display locked records using either of the following methods:

v “Displaying locked records using DSPRCDLCK” on page 107

v “Displaying locked rows using iSeries Navigator” on page 107

For a list of commonly used database functions and the types of locks they place on database files, see
Appendix C, “Database lock considerations”.

Locking records
WAITRCD Parameter. DB2 UDB for iSeries has built-in integrity for records. For example, if PGMA reads
a record for update, it locks that record. Another program may not read the same record for update until
PGMA releases the record, but another program could read the record just for inquiry. In this way, the
system ensures the integrity of the database.

The system determines the lock condition based on the type of file processing specified in your program
and the operation requested. For example, if your open options include update or delete, each record read
is locked so that any number of users can read the record at the same time, but only one user can update
the record.

The system normally waits a specific number of seconds for a locked record to be released before it sends
your program a message that it cannot get the record you are requesting. The default record wait time is
60 seconds; however, you can set your own wait time through the WAITRCD parameter on the create and
change file commands and the override database file command. If your program is notified that the record
it wants is locked by another operation, you can have your program take the appropriate action (for
example, you could send a message to the operator that the requested record is currently unavailable).

106 DB2 UDB for iSeries Database Programming V5R2

../db2/rbafzmsth2lockt.htm

The system automatically releases a lock when the locked record is updated or deleted. However, you can
release record locks without updating the record. For information on how to release a record lock, see
your high-level language guide.

Note: Using commitment control changes the record locking rules. See the Commitment Control topic for
more information about commitment control and its effect on the record locking rules.

You can display locked records using either of the following methods:

v “Displaying locked records using DSPRCDLCK”

v “Displaying locked rows using iSeries Navigator”

Displaying locked rows using iSeries Navigator
You can use iSeries Navigator to display locked rows.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Database.

3. Expand Libraries.

4. Click on the library that contains the table for which you want to display locked row information.

5. Right-click on the table and select Locked Rows.

6. The Locked Rows dialog displays the rows that are locked.

Displaying locked records using DSPRCDLCK
You can use the Display Record Locks (DSPRCDLCK) command to display the current lock status (wait or
held) of records for a physical file member. See DSPRCDLCK (Display Record Locks) Command in the
Control Language (CL) topic. The command will also indicate what type of lock is currently held. (For more

information about lock types, see the Backup and Recovery book.) Depending on the parameters you
specify, this command displays the lock status for a specific record or displays the lock status of all
records in the member. You can also display record locks from the Work with Job (WRKJOB) display.

Locking files
WAITFILE Parameter. Some file operations exclusively allocate the file for the length of the operation.
During the time the file is allocated exclusively, any program trying to open that file has to wait until the file
is released. You can control the amount of time a program waits for the file to become available by
specifying a wait time on the WAITFILE parameter of the create and change file commands and the
override database file command. If you do not specifically request a wait time, the system defaults the file
wait time to zero seconds.

A file is exclusively allocated when an operation that changes its attributes is run. These operations (such
as move, rename, grant or revoke authority, change owner, or delete) cannot be run at the same time with
any other operation on the same file or on members of that file. Other file operations (such as display,
open, dump, or check object) only use the file definition, and thus lock the file less exclusively. They can
run at the same time with each other and with input/output operations on a member.

Locking members
Member operations (such as add and remove) automatically allocate the file exclusively enough to prevent
other file operations from occurring at the same time. Input/output operations on the same member cannot
be run, but input/output operations on other members of the same file can run at the same time.

Locking record format data
RCDFMTLCK Parameter. If you want to lock the entire set of records associated with a record format (for
example, all the records in a physical file), you can use the RCDFMTLCK parameter on the OVRDBF
command.

Chapter 9. Database file processing: Run time considerations 107

../rzakj/rzakjcommitkickoff.htm
../cl/dsprcdlc.htm
../rbam6/rbam6clmain.htm
../../books/c4153045.pdf

Sharing database files in the same job or activation group
SHARE Parameter. By default, the database management system lets one file be read and changed by
many users at the same time. You can also share a file in the same job or activation group by opening the
database file:

v More than once in the same program.

v In different programs in the same job or activation group.

Note: For more information on open sharing in the Integrated Language Environment see the ILE

Concepts book.

The SHARE parameter on the create file, change file, and override database file commands allow sharing
in a job or activation group, including sharing the file, its status, its positions, and its storage area. Sharing
files in the job or activation group can improve performance by reducing the amount of main storage
needed and by reducing the time needed to open and close the file.

Using the SHARE(*YES) parameter lets two or more programs running in the same job or activation group
share an open data path (ODP). An open data path is the path through which all input/output operations
for the file are performed. In a sense, it connects the program to a file. If you do not specify the
SHARE(*YES) parameter, a new open data path is created every time a file is opened. If an active file is
opened more than once in the same job or activation group, you can use the active ODP for the file with
the current open of the file. You do not have to create a new open data path.

This reduces the amount of time required to open the file after the first open, and the amount of main
storage required by the job or activation group. SHARE(*YES) must be specified for the first open and
other opens of the same file for the open data path to be shared. A well-designed (for performance)
application normally shares an open data path with files that are opened in multiple programs in the same
job or activation group.

Specifying SHARE(*NO) tells the system not to share the open data path for a file. Normally, this is
specified only for those files that are seldom used or require unique processing in specific programs.

Note: A high-level language program processes an open or a close operation as though the file were not
being shared. You do not specify that the file is being shared in the high-level language program.
You indicate that the file is being shared in the same job or activation group through the SHARE
parameter. The SHARE parameter is specified only on the create, change, and override database
file commands.

See the following topics for other considerations when sharing database files:

v “Open considerations for files shared in a job or activation group”

v “Input/output considerations for files shared in a job or activation group” on page 109

v “Close considerations for files shared in a job or activation group” on page 110

Open considerations for files shared in a job or activation group
Consider the following items when you open a database file that is shared in the same job or activation
group.

v Make sure that when the shared file is opened for the first time in a job or activation group, all the open
options needed for subsequent opens of the file are specified. If the open options specified for
subsequent opens of a shared file do not match those specified for the first open of a shared file, an
error message is sent to the program. (You can correct this by making changes to your program or to
the OPNDBF or OPNQRYF command parameters, to remove any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job or activation group and PGMA only
needs to read the file. However, PGMA calls PGMB, which will delete records from the same shared

108 DB2 UDB for iSeries Database Programming V5R2

../../books/c4156066.pdf
../../books/c4156066.pdf

file. Because PGMB will delete records from the shared file, PGMA will have to open the file as if it,
PGMA, is also going to delete records. You can accomplish this by using the correct specifications in
the high-level language. (To accomplish this in some high-level languages, you may have to use file
operation statements that are never run. See your high-level language guide for more details.) You can
also specify the file processing option on the OPTION parameter on the Open Database File (OPNDBF)
and Open Query File (OPNQRYF) commands.

v Sometimes sharing a file within a job or activation group is not desirable. For example, one program
can need records from a file in arrival sequence and another program needs the records in keyed
sequence. In this situation, you should not share the open data path. You would specify SHARE(*NO)
on the Override with Database File (OVRDBF) command to ensure the file was not shared within the
job or activation group.

v If debug mode is entered with UPDPROD(*NO) after the first open of a shared file in a production
library, subsequent shared opens of the file share the original open data path and allow the file to be
changed. To prevent this, specify SHARE(*NO) on the OVRDBF command before opening files being
debugged.

v The use of commitment control for the first open of a shared file requires that all subsequent shared
opens also use commitment control.

v Key feedback, insert key feedback, or duplicate key feedback must be specified on the full open if any
of these feedback types are desired on the subsequent shared opens of the file.

v If you did not specify a library name in the program or on the Override with Database File (OVRDBF)
command (*LIBL is used), the system assumes the library list has not changed since the last open of
the same shared file with *LIBL specified. If the library list has changed, you should specify the library
name on the OVRDBF command to ensure the correct file is opened.

v The record length that is specified on the full open is the record length that is used on subsequent
shared opens even if a larger record length value is specified on the shared opens of the file.

v Overrides and program specifications specified on the first open of the shared file are processed.
Overrides and program specifications specified on subsequent opens, other than those that change the
file name or the value specified on the SHARE or LVLCHK parameters on the OVRDBF command, are
ignored.

v Overrides specified for a first open using the OPNQRYF command can be used to change the names of
the files, libraries, and members that should be processed by the Open Query File command. Any
parameter values specified on the Override with Database File (OVRDBF) command other than
TOFILE, MBR, LVLCHK, and SEQONLY are ignored by the OPNQRYF command.

v The Open Database File (OPNDBF) and Open Query File (OPNQRYF) commands scope the ODP to
the level specified on the Open Scope (OPNSCOPE) parameter according to the following:

– The system searches for shared opens in the activation group first, and then in the job.

– Shared opens that are scoped to an activation group may not be shared between activation groups.

– Shared opens that are scoped to the job can be shared throughout the job, by any number of
activation groups at a time.

The CPF4123 diagnostic message lists the mismatches that can be encountered between the full open
and the subsequent shared opens. These mismatches do not cause the shared open to fail.

Note: The Open Query File (OPNQRYF) command never shares an existing shared open data path in the
job or activation group. If a shared ODP already exists in the job or activation group with the same
file, library, and member name as the one specified on the Open Query File command, the system
sends an error message and the query file is not opened.

Input/output considerations for files shared in a job or activation
group
Consider the following items when processing a database file that is shared in the same job or activation
group.

Chapter 9. Database file processing: Run time considerations 109

v Because only one open data path is allowed for a shared file, only one record position is maintained for
all programs in the job or activation group that is sharing the file. If a program establishes a position for
a record using a read or a read-for-update operation, then calls another program that also uses the
shared file, the record position may have moved or a record lock been released when the called
program returns to the calling program. This can cause errors in the calling program because of an
unexpected record position or lock condition. When sharing files, it is your responsibility to manage the
record position and record locking considerations by re-establishing position and locks.

v If a shared file is first opened for update, this does not necessarily cause every subsequent program
that shares the file to request a record lock. The system determines the type of record lock needed for
each program using the file. The system tries to keep lock contention to a minimum, while still ensuring
data integrity.

For example, PGMA is the first program in the job or activation group to open a shared file. PGMA
intends to update records in the file; therefore, when the program reads a record for update, it will lock
the record. PGMA then calls PGMB. PGMB also uses the shared file, but it does not update any
records in the file; PGMB just reads records. Even though PGMA originally opened the shared file as
update-capable, PGMB will not lock the records it reads, because of the processing specifications in
PGMB. Thus, the system ensures data integrity, while minimizing record lock contention.

Close considerations for files shared in a job or activation group
Consider the following items when closing a database file that is shared in the same job or activation
group.

v The complete processing of a close operation (including releasing file, member, and record locks;
forcing changes to auxiliary storage; and destroying the open data path) is done only when the last
program to open the shared open data path closes it.

v If the file was opened with the Open Database File (OPNDBF) or the Open Query File (OPNQRYF)
command, use the Close File (CLOF) command to close the file. The Reclaim Resources (RCLRSC)
command can be used to close a file opened by the Open Query File (OPNQRYF) command when one
of the following is specified:

– OPNSCOPE(*ACTGRPDFN), and the open is requested from the default activation group.

– TYPE(*NORMAL) is specified.

If one of the following is specified, the file remains open even if the Reclaim Resources (RCLRSC)
command is run:

– OPNSCOPE(*ACTGRPDFN), and the open is requested from some activation group other than the
default

– OPNSCOPE(*ACTGRP)

– OPNSCOPE(*JOB)

– TYPE(*PERM)

See the following examples for things to consider when closing a file that is shared in the same job:

v “Example 1: Using a single set of files with similar processing options”

v “Example 2: Using multiple sets of files with similar processing options” on page 112

v “Example 3: Using a single set of files with different processing requirements” on page 113

Example 1: Using a single set of files with similar processing options
In this example, the user signs on and most of the programs used process the same set of files.

A CL program (PGMA) is used as the first program (to set up the application, including overrides and
opening the shared files). PGMA then transfers control to PGMB, which displays the application menu.
Assume, in this example, that files A, B, and C are used, and files A and B are to be shared. Files A and B
were created with SHARE(*NO); therefore an OVRDBF command should precede each of the OPNDBF
commands to specify the SHARE(*YES) option. File C was created with SHARE(*NO) and File C is not to
be shared in this example.

110 DB2 UDB for iSeries Database Programming V5R2

PGMA: PGM /* PGMA - Initial program */
OVRDBF FILE(A) SHARE(*YES)
OVRDBF FILE(B) SHARE(*YES)
OPNDBF FILE(A) OPTION(*ALL)
OPNDBF FILE(B) OPTION(*INP) ...
TFRCTL PGMB
ENDPGM

PGMB: PGM /* PGMB - Menu program */
DCLF FILE(DISPLAY)

BEGIN: SNDRCVF RCDFMT(MENU)
IF (&RESPONSE *EQ ’1’) CALL PGM11
IF (&RESPONSE *EQ ’2’) CALL PGM12
.
.
IF (&RESPONSE *EQ ’90’) SIGNOFF
GOTO BEGIN
ENDPGM

The files opened in PGMA are either scoped to the job, or PGMA, PGM11, and PGM12 run in the same
activation group and the file opens are scoped to that activation group.

In this example, assume that:

v PGM11 opens files A and B. Because these files were opened as shared by the OPNDBF commands in
PGMA, the open time is reduced. The close time is also reduced when the shared open data path is
closed. The Override with Database File (OVRDBF) commands remain in effect even though control is
transferred (with the Transfer Control [TFRCTL] command in PGMA) to PGMB.

v PGM12 opens files A, B, and C. File A and B are already opened as shared and the open time is
reduced. Because file C is used only in this program, the file is not opened as shared.

In this example, the Close File (CLOF) was not used because only one set of files is required. When the
operator signs off, the files are automatically closed. It is assumed that PGMA (the initial program) is called
only at the start of the job. For information on how to reclaim resources in the Integrated Language

Environment, see the ILE Concepts book.

Note: The display file (DISPLAY) in PGMB can also be specified as a shared file, which would improve
the performance for opening the display file in any programs that use it later.

In Example 1, the OPNDBF commands are placed in a separate program (PGMA) so the other processing
programs in the job run as efficiently as possible. That is, the important files used by the other programs in
the job are opened in PGMA. After the files are opened by PGMA, the main processing programs (PGMB,
PGM11, and PGM12) can share the files; therefore, their open and close requests will process faster. In
addition, by placing the open commands (OPNDBF) in PGMA rather than in PGMB, the amount of main
storage used for PGMB is reduced.

Any overrides and opens can be specified in the initial program (PGMA); then, that program can be
removed from the job (for example, by transferring out of it). However, the open data paths that the
program created when it opened the files remain in existence and can be used by other programs in the
job.

Note the handling of the OVRDBF commands in relation to the OPNDBF commands. Overrides must be
specified before the file is opened. Some of the parameters on the OVRDBF command also exist on the
OPNDBF command. If conflicts arise, the OVRDBF value is used. For more information on when overrides

take effect in the Integrated Language Environment, see the ILE Concepts book.

Chapter 9. Database file processing: Run time considerations 111

../../books/c4156066.pdf
../../books/c4156066.pdf

Example 2: Using multiple sets of files with similar processing options
Assume that a menu requests the operator to specify the application program (for example, accounts
receivable or accounts payable) that uses the Open Database File (OPNDBF) command to open the
required files. When the application is ended, the Close File (CLOF) command closes the files. The CLOF
command is used to help reduce the amount of main storage needed by the job. In this example, different
files are used for each application. The user normally works with one application for a considerable length
of time before selecting a new application.

An example of the accounts receivable programs follows:
PGMC: PGM /* PGMC PROGRAM */

DCLF FILE(DISPLAY)
BEGIN: SNDRCVF RCDFMT(TOPMENU)

IF (&RESPONSE *EQ ’1’) CALL ACCRECV
IF (&RESPONSE *EQ ’2’) CALL ACCPAY
.
.
IF (&RESPONSE *EQ ’90’) SIGNOFF
GOTO BEGIN
ENDPGM

ACCREC: PGM /* ACCREC PROGRAM */
DCLF FILE(DISPLAY)
OVRDBF FILE(A) SHARE(*YES)
OVRDBF FILE(B) SHARE(*YES)
OPNDBF FILE(A) OPTION(*ALL)
OPNDBF FILE(B) OPTIONS(*INP) ...

BEGIN: SNDRCVF RCDFMT(ACCRMENU)
IF (&RESPONSE *EQ ’1’) CALL PGM21
IF (&RESPONSE *EQ ’2’) CALL PGM22
.
.
IF (&RESPONSE *EQ ’88’) DO /* Return */

CLOF FILE(A)
CLOF FILE(B)
RETURN
ENDDO

GOTO BEGIN
ENDPGM

The program for the accounts payable menu would be similar, but with a different set of OPNDBF and
CLOF commands.

For this example, files A and B were created with SHARE(*NO). Therefore, an OVRDBF command must
precede the OPNDBF command. As in Example 1, the amount of main storage used by each job could be
reduced by placing the OPNDBF commands in a separate program and calling it. A separate program
could also be created for the CLOF commands. The OPNDBF commands could be placed in an
application setup program that is called from the menu, which transfers control to the specific application
program menu (any overrides specified in this setup program are kept). However, calling separate
programs for these functions also uses system resources and, depending on the frequency with which the
different menus are used, it can be better to include the OPNDBF and CLOF commands in each
application program menu as shown in this example.

Another choice is to use the Reclaim Resources (RCLRSC) command in PGMC (the setup program)
instead of using the Close File (CLOF) commands. The RCLRSC command closes any files and frees any
leftover storage associated with any files and programs that were called and have since returned to the
calling program. However, RCLRSC does not close files that are opened with the following specified on
the Open Database File (OPNDBF) or Open Query File (OPNQRYF) commands:

v OPNSCOPE(*ACTGRPDFN), and the open is requested from some activation group other than the
default.

112 DB2 UDB for iSeries Database Programming V5R2

v OPNSCOPE(*ACTGRP) reclaims if the RCLRSC command is from an activation group with an
activation group number that is lower than the activation group number of the open.

v OPNSCOPE(*JOB).

v TYPE(*PERM).

The following example shows the RCLRSC command used to close files:
.
.
IF (&RESPONSE *EQ ’1’) DO

CALL ACCRECV
RCLRSC
ENDDO

IF (&RESPONSE *EQ ’2’) DO
CALL ACCPAY
RCLRSC
ENDDO

.

.

Example 3: Using a single set of files with different processing requirements
If some programs need read-only file processing and others need some or all of the options
(input/update/add/delete), one of the following methods can be used. The same methods apply if a file is
to be processed with certain command parameters in some programs and not in others (for example,
sometimes the commit option should be used).

A single Open Database File (OPNDBF) command could be used to specify OPTION(*ALL) and the open
data path would be opened shared (if, for example, a previous OVRDBF command was used to specify
SHARE(*YES)). Each program could then open a subset of the options. The program requests the type of
open depending on the specifications in the program. In some cases this does not require any more
considerations because a program specifying an open for input only would operate similarly as if it had not
done a shared open (for example, no additional record locking occurs when a record is read).

However, some options specified on the OPNDBF command can affect how the program operates. For
example, SEQONLY(*NO) is specified on the open command for a file in the program. An error would
occur if the OPNDBF command used SEQONLY(*YES) and a program attempted an operation that was
not valid with sequential-only processing.

The ACCPTH parameter must also be consistent with the way programs will use the access path (arrival
or keyed).

If COMMIT(*YES) is specified on the Open Database File (OPNDBF) command and the Start Commitment
Control (STRCMTCTL) command specifies LCKLVL(*ALL) or LCKLVL(*CS), any read operation of a record
locks that record (per commitment control record locking rules). This can cause records to be locked
unexpectedly and cause errors in the program.

Two OPNDBF commands could be used for the same data (for example, one with OPTION(*ALL) and the
other specifying OPTION(*INP)). The second use must be a logical file pointing to the same physical
file(s). This logical file can then be opened as SHARE(*YES) and multiple uses made of it during the same
job.

Sequential-only processing of database files
SEQONLY and NBRRCDS Parameters. If your program processes a database file sequentially for input
only or output only, you might be able to improve performance using the sequential-only processing
(SEQONLY) parameter on the Override with Database File (OVRDBF) or the Open Database File
(OPNDBF) commands. To use SEQONLY processing, the file must be opened for input-only or output-only.
The NBRRCDS parameter can be used with any combination of open options. (The Open Query File

Chapter 9. Database file processing: Run time considerations 113

[OPNQRYF] command uses sequential-only processing whenever possible.) Depending on your high-level
language specifications, the high-level language can also use sequential-only processing as the default.
For example, if you open a file for input only and the only file operations specified in the high-level
language program are sequential read operations, then the high-level language automatically requests
sequential-only processing.

Note: File positioning operations are not considered sequential read operations; therefore, a high-level
language program containing positioning operations will not automatically request sequential-only
processing. (The SETLL operation in the RPG/400 language and the START operation in the
COBOL/400* language are examples of file positioning operations.) Even though the high-level
language program can not automatically request sequential-only processing, you can request it
using the SEQONLY parameter on the OVRDBF command.

If you specify sequential-only processing, you can also specify the number of records to be moved as one
unit between the system database main storage area and the job’s internal data main storage area. If you
do not specify the sequential-only number of records to be moved, the system calculates a number based
on the number of records that fit into a 4096-byte buffer.

The system also provides you a way to control the number of records that are moved as a unit between
auxiliary storage and main storage. If you are reading the data in the file in the same order as the data is
physically stored, you can improve the performance of your job using the NBRRCDS parameter on the
OVRDBF command.

Note: Sequential-only processing should not be used with a keyed sequence access path file unless the
physical data is in the same order as the access path. SEQONLY(*YES) processing may cause
poor application performance until the physical data is reorganized into the access path’s order.

See the following topics for considerations when doing sequential-only processing:

v “Open considerations for sequential-only processing”

v “Input/output considerations for sequential-only processing” on page 115

v “Close considerations for sequential-only processing” on page 116

Open considerations for sequential-only processing
The following considerations apply for opening files when sequential-only processing is specified. If the
system determines that sequential-only processing is not allowed, a message is sent to the program to
indicate that the request for sequential-only processing is not being accepted; however, the file is still
opened for processing.

v If the program opened the member for output only, and if SEQONLY(*YES) was specified (number of
records was not specified) and either the opened member is a logical member, a uniquely keyed
physical member, or there are other access paths to the physical member, SEQONLY(*YES) is changed
to SEQONLY(*NO) so the program can handle possible errors (for example, duplicate keys, conversion
mapping, and select/omit errors) at the time of the output operation. If you want the system to run
sequential-only processing, change the SEQONLY parameter to include both the *YES value and
number of records specification.

v Sequential-only processing can be specified only for input-only (read) or output-only (add) operations. If
the program specifies update or delete operations, sequential-only processing is not allowed by the
system.

v If a file is being opened for output, it must be a physical file or a logical file based on one physical file
member.

v Sequential-only processing can be specified with commitment control only if the member is opened for
output-only.

v If sequential-only processing is being used for files opened with commitment control and a rollback
operation is performed for the job, the records that reside in the job’s storage area at the time of the

114 DB2 UDB for iSeries Database Programming V5R2

rollback operation are not written to the system storage area and never appear in the journal for the
commitment control transaction. If no records were ever written to the system storage area prior to a
rollback operation being performed for a particular commitment control transaction, the entire
commitment control transaction is not reflected in the journal.

v For output-only, the number of records specified to be moved as a unit and the force ratio are compared
and automatically adjusted as necessary. If the number of records is larger than the force ratio, the
number of records is reduced to equal the force ratio. If the opposite is true, the force ratio is reduced to
equal the number of records.

v If the program opened the member for output only, and if SEQONLY(*YES) was specified (number of
records was not specified), and duplicate or insert key feedback has been requested, SEQONLY(*YES)
will be changed to SEQONLY(*NO) to provide the feedback on a record-by-record basis when the
records are inserted into the file.

v The number of records in a block will be changed to one if all of the following are true:

– The member was opened for output-only processing.

– No override operations are in effect that have specified sequential-only processing.

– The file being opened is a file that cannot be extended because its increment number of records was
set to zero.

– The number of bytes available in the file is less than the number of bytes that fit into a block of
records.

The following considerations apply when sequential-only processing is not specified and the file is opened
using the Open Query File (OPNQRYF) command. If these conditions are satisfied, a message is sent to
indicate that sequential-only processing will be performed and the query file is opened.

v If the OPNQRYF command specifies the name of one or more fields on the group field (GRPFLD)
parameter, or OPNQRYF requires group processing.

v If the OPNQRYF command specifies one or more fields, or *ALL on the UNIQUEKEY parameter.

v If a view is used with the DISTINCT option on the SQL SELECT statement, then SEQONLY(*YES)
processing is automatically performed.

For more details about the OPNQRYF command, see “Using the Open Query File (OPNQRYF) command”
on page 122.

Input/output considerations for sequential-only processing
The following considerations apply for input/output operations on files when sequential-only processing is
specified.

v For input, your program receives one record at a time from the input buffer. When all records in the
input buffer are processed, the system automatically reads the next set of records.

Note: Changes made after records are read into the input buffer are not reflected in the input buffer.

v For output, your program must move one record at a time to the output buffer. When the output buffer is
full, the system automatically adds the records to the database.

Note: If you are using a journal, the entire buffer is written to the journal at one time as if the entries
had logically occurred together. This journal processing occurs before the records are added to
the database.

If you use sequential-only processing for output, you might not see all the changes made to the file as
they occur. For example, if sequential-only is specified for a file being used by PGMA, and PGMA is
adding new records to the file and the SEQONLY parameter was specified with 5 as the number of
records in the buffer, then only when the buffer is filled will the newly added records be transferred to
the database. In this example, only when the fifth record was added, would the first five records be
transferred to the database, and be available for processing by other jobs in the system.

Chapter 9. Database file processing: Run time considerations 115

In addition, if you use sequential-only processing for output, some additions might not be made to the
database if you do not handle the errors that could occur when records are moved from the buffer to
the database. For example, assume the buffer holds five records, and the third record in the buffer had
a key that was a duplicate of another record in the file and the file was defined as a unique-key file. In
this case, when the system transfers the buffer to the database it would add the first two records and
then get a duplicate key error for the third. Because of this error, the third, fourth, and fifth records in the
buffer would not be added to the database.

v The force-end-of-data function can be used for output operations to force all records in the buffer to the
database (except those records that would cause a duplicate key in a file defined as having unique
keys, as described previously). The force-end-of-data function is only available in certain high-level
languages.

v The number of records in a block will be changed to one if all of the following are true:

– The member was opened for output-only processing or sequential-only processing.

– No override operations are in effect that have specified sequential-only processing.

– The file being opened is being extended because the increment number of records was set to zero.

– The number of bytes available in the file is less than the number of bytes that fit into a block of
records.

Close considerations for sequential-only processing
When a file for which sequential-only processing is specified is closed, all records still in the output buffer
are added to the database. However, if an error occurs for a record, any records following that record are
not added to the database.

If multiple programs in the same job are sharing a sequential-only output file, the output buffer is not
emptied until the final close occurs. Consequently, a close (other than the last close in the job) does not
cause the records still in the buffer to appear in the database for this or any other job.

Summary of run time considerations for processing database files
The following tables list parameters that control your program’s use of the database file member, and
indicates where these parameters can be specified. For parameters that can be specified in more than one
place, the system merges the values. The Override with Database File (OVRDBF) command parameters
take precedence over program parameters, and Open Database File (OPNDBF) or Open Query File
(OPNQRYF) command parameters take precedence over create or change file parameters.

Note: Any override parameters other than TOFILE, MBR, LVLCHK, SEQONLY, SHARE, WAITRCD, and
INHWRT are ignored by the OPNQRYF command.

A table of database processing options specified on control language (CL) commands is shown below:

Table 5. Database Processing Options Specified on CL Commands

Description Parameter

Command

CRTPF, CRTLF
CHGPF,
CHGLF OPNDBF OPNQRYF OVRDBF

File name FILE X X1 X X X

Library name X X2 X X X

Member name MBR X X X X

Member
processing
options

OPTION X X

Record format
lock state

RCDFMTLCK X

116 DB2 UDB for iSeries Database Programming V5R2

Table 5. Database Processing Options Specified on CL Commands (continued)

Description Parameter

Command

CRTPF, CRTLF
CHGPF,
CHGLF OPNDBF OPNQRYF OVRDBF

Starting file
position after
open

POSITION X

Program
performs only
sequential
processing

SEQONLY X X X

Ignore keyed
sequence
access path

ACCPTH X

Time to wait
for file locks

WAITFILE X X X

Time to wait
for record
locks

WAITRCD X X X

Prevent
overrides

SECURE X

Number of
records to be
transferred
from auxiliary
to main
storage

NBRRCDS X

Share open
data path with
other
programs

SHARE X X X

Format
selector

FMTSLR X3 X3 X

Force ratio FRCRATIO X X X

Inhibit write INHWRT X

Level check
record formats

LVLCHK X X X

Expiration date
checking

EXPCHK X

Expiration date EXPDATE X4 X4 X

Force access
path

FRCACCPTH X X

Commitment
control

COMMIT X X

End-of-file
delay

EOFDLY X

Duplicate key
check

DUPKEYCHK X X

Reuse deleted
record space

REUSEDLT X4 X4

Chapter 9. Database file processing: Run time considerations 117

Table 5. Database Processing Options Specified on CL Commands (continued)

Description Parameter

Command

CRTPF, CRTLF
CHGPF,
CHGLF OPNDBF OPNQRYF OVRDBF

Coded
character set
identifier

CCSID X4 X4

Sort Sequence SRTSEQ X X X

Language
identifier

LANGID X X X

Notes:
1 File name: The CHGPF and CHGLF commands use the file name for identification only. You cannot change

the file name.

2 Library name: The CHGPF and CHGLF commands use the library name for identification only. You cannot
change the library name.

3 Format selector: Used on the CRTLF and CHGLF commands only.

4 Expiration date, reuse deleted records, and coded character set identifier: Used on the CRTPF and CHGPF
commands only.

A table of database processing options specified in programs is shown below:

Table 6. Database Processing Options Specified in Programs

Description
RPG/400
Language

COBOL/400
Language iSeries BASIC iSeries PL/I iSeries Pascal

File name X X X X X

Library name X X X

Member name X X X

Program record
length

X X X X X

Member
processing
options

X X X X X

Record format
lock state

X X

Record formats
the program will
use

X X

Clear physical file
member of
records

X X X

Program performs
only sequential
processing

X X X X

Ignore keyed
sequence access
path

X X X X X

Share open data
path with other
programs

X X

118 DB2 UDB for iSeries Database Programming V5R2

Table 6. Database Processing Options Specified in Programs (continued)

Description
RPG/400
Language

COBOL/400
Language iSeries BASIC iSeries PL/I iSeries Pascal

Level check
record formats

X X X X

Commitment
control

X X X

Duplicate key
check

X

: Control language (CL) programs can also specify many of these parameters. See Table 5 on page 116 for more
information about the database processing options that can be specified on CL commands.

Storage pool paging option effect on database performance
The Paging option of shared pools can have a significant impact on the performance of reading and
changing database files.

v A paging option of *FIXED causes the program to minimize the amount of memory it uses by:

– Transferring data from auxiliary storage to main memory in smaller blocks

– Writing file changes (updates to existing records or newly added records) to auxiliary storage
frequently

This option allows the system to perform much like it did before the paging option was added.

v A paging option of *CALC may improve how the program performs when it reads and updates database
files. In cases where there is sufficient memory available within a shared pool, the program may:

– Transfer larger blocks of data to memory from auxiliary storage.

– Write changed data to auxiliary storage less frequently.

The paging operations done on database files vary dynamically based on file use and memory
availability. Frequently referenced files are more likely to remain resident than those less often
accessed. The memory is used somewhat like a cache for popular data. The overall number of I/O
operations may be reduced using the *CALC paging option.

For more information on the paging option, see the Performance topic in the Information Center.

Chapter 9. Database file processing: Run time considerations 119

../rzahx/rzahx1.htm

120 DB2 UDB for iSeries Database Programming V5R2

Chapter 10. Opening a database file

This chapter discusses opening a database file. In addition, the CL commands Open Database File
(OPNDBF) and Open Query File (OPNQRYF) are discussed. See the following topics:

v “Opening a database file member”

v “Using the Open Database File (OPNDBF) command”

v “Using the Open Query File (OPNQRYF) command” on page 122

Opening a database file member
To use a database file in a program, your program must issue an open operation to the database file. If
you do not specify an open operation in some programming languages, they automatically open the file for
you. If you did not specify a member name in your program or on an Override with Database File
(OVRDBF) command, the first member (as defined by creation date and time) in the file is used.

If you specify a member name, files that have the correct file name but do not contain the member name
are ignored. If you have multiple database files named FILEA in different libraries, the member that is
opened is the first one in the library list that matches the request. For example, LIB1, LIB2, and LIB3 are
in your library list and all three contain a file named FILEA. Only FILEA in LIB3 has a member named
MBRA that is to be opened. Member MRBA in FILEA in LIB3 is opened; the other FILEAs are ignored.

After finding the member, the system connects your program to the database file. This allows your
program to perform input/output operations to the file. For more information about opening files in your
high-level language program, see the appropriate high-level language guide.

You can open a database file with statements in your high-level language program. You can also use the
CL open commands: Open Database File (OPNDBF) and Open Query File (OPNQRYF). The OPNDBF
command is useful in an initial program in a job for opening shared files. The OPNQRYF command is very
effective in selecting and arranging records outside of your program. Then, your program can use the
information supplied by the OPNQRYF command to process only the data it needs. See OPNDF (Open
Database File) Command and OPNQRYF (Open Query File) Command in the Control Language (CL)
topic.

Using the Open Database File (OPNDBF) command
Usually, when you use the OPNDBF command, you can use the defaults for the command parameter
values. In some instances you may want to specify particular values, instead of using the default values,
for the following parameters:

OPTION Parameter. Specify the *INP option if your application programs uses input-only processing
(reading records without updating records). This allows the system to read records without trying to lock
each one for possible update. Specify the *OUT option if your application programs uses output-only
processing (writing records into a file but not reading or updating existing records).

Note: If your program does direct output operations to active records (updating by relative record
number), *ALL must be specified instead of *OUT. If your program does direct output operations to
deleted records only, *OUT must be specified.

MBR Parameter. If a member, other than the first member in the file, is to be opened, you must specify
the name of the member to be opened or issue an Override with Database File (OVRDBF) command
before the Open Database File (OPNDBF) command.

Note: You must specify a member name on the OVRDBF command to use a member (other than the first
member) to open in subsequent programs.

© Copyright IBM Corp. 1998, 2002 121

../cl/opndbf.htm
../cl/opndbf.htm
../cl/opnqryf.htm
../rbam6/rbam6clmain.htm
../rbam6/rbam6clmain.htm

OPNID Parameter. If an identifier other than the file name is to be used, you must specify it. The open
identifier can be used in other CL commands to process the file. For example, the Close File (CLOF)
command uses the identifier to specify which file is to be closed.

ACCPTH Parameter. If the file has a keyed sequence access path and either (1) the open option is *OUT,
or (2) the open option is *INP or *ALL, but your program does not use the keyed sequence access path,
then you can specify ACCPTH(*ARRIVAL) on the OPNDBF parameter. Ignoring the keyed sequence
access path can improve your job’s performance.

SEQONLY Parameter. Specify *YES if subsequent application programs process the file sequentially. This
parameter can also be used to specify the number of records that should be transferred between the
system data buffers and the program data buffers. SEQONLY(*YES) is not allowed unless OPTION(*INP)
or OPTION(*OUT) is also specified on the Open Database File (OPNDBF) command. Sequential-only
processing should not be used with a keyed sequence access path file unless the physical data is in
access path order.

COMMIT Parameter. Specify *YES if the application programs use commitment control. If you specify
*YES you must be running in a commitment control environment (the Start Commitment Control
[STRCMTCTL] command was processed) or the OPNDBF command will fail. Use the default of *NO if the
application programs do not use commitment control.

OPNSCOPE Parameter. Specifies the scoping of the open data path (ODP). Specify *ACTGRPDFN if the
request is from the default activation group, and the ODP is to be scoped to the call level of the program
issuing the command. If the request is from any other activation group, the ODP is scoped to that
activation group. Specify *ACTGRP if the ODP is to be scoped to the activation group of the program
issuing the command. Specify *JOB if the ODP is to be scoped to the job. If you specify this parameter
and the TYPE parameter you get an error message.

DUPKEYCHK Parameter. Specify whether or not you want duplicate key feedback. If you specify *YES,
duplicate key feedback is returned on I/O operations. If you specify *NO, duplicate key feedback is not
returned on I/O operations. Use the default (*NO) if the application programs are not written in the
COBOL/400 language or C/400* language, or if your COBOL or C programs do not use the duplicate-key
feedback information that is returned.

TYPE Parameter. Specify what you wish to happen when exceptions that are not monitored occur in your
application program. If you specify *NORMAL one of the following can happen:

v Your program can issue a Reclaim Resources (RCLRSC) command to close the files opened at a
higher level in the call stack than the program issuing the RCLRSC command.

v The high-level language you are using can perform a close operation.

Specify *PERM if you want to continue the application without opening the files again. TYPE(*NORMAL)
causes files to be closed if both of the following occur:

v Your program receives an error message

v The files are opened at a higher level in the call stack.

TYPE(*PERM) allows the files to remain open even if an error message is received. Do not specify this
parameter if you specified the OPNSCOPE parameter.

Using the Open Query File (OPNQRYF) command
The Open Query File (OPNQRYF) command is a CL command that allows you to perform many data
processing functions on database files. Essentially, the OPNQRYF command acts as a filter between the
processing program and the database records. The database file can be a physical or logical file. Unlike
the Create Physical File (CRTPF) or Create Logical File (CRTLF) commands, the OPNQRYF command
creates only a temporary file for processing the data; it does not create a permanent file.

122 DB2 UDB for iSeries Database Programming V5R2

The OPNQRYF command has functions similar to those in DDS, and the CRTPF and CRTLF commands.
DDS requires source statements and a separate step to create the file. OPNQRYF allows a dynamic
definition without using DDS. The OPNQRYF command does not support all of the DDS functions, but it
supports significant functions that go beyond the capabilities of DDS. In addition, Query for iSeries can be
used to perform some of the function the OPNQRYF command performs. However, the OPNQRYF
command is more useful as a programmer’s tool.

The OPNQRYF command parameters also have many functions similar to the SQL SELECT statements.
For example, the FILE parameter is similar to the SQL FROM statement, the QRYSLT parameter is similar
to the SQL WHERE statement, the GRPFLD parameter is similar to the SQL GROUP BY statement, and
the GRPSLT parameter is similar to the SQL HAVING statement. For more information about SQL, see
DB2 UDB for iSeries SQL Programming Concepts.

The following is a list of the major functions supplied by OPNQRYF.

v Dynamic record selection

v Dynamic keyed sequence access path

v Dynamic keyed sequence access path over a join

v Dynamic join

v Handling missing records in secondary join files

v Unique-key processing

v Mapped field definitions

v Group processing

v Final total-only processing

v Improving performance

v Open Query Identifier (ID)

v Sort sequence processing

See the Control Language (CL) topic for OPNQRYF command syntax and parameter descriptions.

For information about creating a query using the OPNQRYF command, see “Creating a query with the
OPNQRYF command” on page 124.

To understand the OPNQRYF command, you must be familiar with its two processing approaches: using a
format in the file, and using a file with a different format. The typical use of the OPNQRYF command is to
select, arrange, and format the data so it can be read sequentially by your high-level language program.
See the following topics for information about these processing approaches:

v “Using an existing record format in the file” on page 124

v “Using a file with a different record format” on page 126

For more detailed information about how to specify parameters for the major functions of OPNQRYF and
how to use the Open Query File command with your high-level language program, see the following
topics:

v “CL program coding with the OPNQRYF command” on page 128

v “The zero length literal and the contains (*CT) function” on page 128

v “Selecting records without using DDS” on page 128

Examples are included in these topics. For notes about the examples, see “OPNQRYF examples” on
page 127.

For considerations when using OPNQRYF for these major functions, see the following topics:

v “Considerations for creating a file and using the FORMAT parameter” on page 153

v “Considerations for arranging records” on page 154

Chapter 10. Opening a database file 123

../sqlp/rbafymst02.htm
../rbam6/rbam6clmain.htm
../cl/opnqryf.htm

v “Considerations for DDM files” on page 154

v “Considerations for writing a high-level language program” on page 154

For information about messages issued when using OPNQRYF, see “Messages sent when the Open
Query File (OPNQRYF) command is run” on page 155.

For information about other ways to use OPNQRYF, see the following topics:

v “Using the Open Query File (OPNQRYF) command for more than just input” on page 156

v “Comparing date, time, and timestamp using the OPNQRYF command” on page 157

v “Performing date, time, and timestamp arithmetic using the OPNQRYF command” on page 157

v “Using the Open Query File (OPNQRYF) command for random processing” on page 162

For information about OPNQRYF performance and other considerations, see the following topics:

v “Open Query File command: Performance considerations” on page 162

v “Open Query File command: Performance considerations for sort sequence tables” on page 164

v “Performance comparisons with other database functions” on page 164

v “Considerations for field use” on page 164

v “Considerations for files shared in a job” on page 165

v “Considerations for checking if the record format description changed” on page 166

v “Other run time considerations for the OPNQRYF command” on page 166

For information about errors when using OPNQRYF, see “Typical errors when using the Open Query File
(OPNQRYF) command” on page 168.

Creating a query with the OPNQRYF command
To create a query, you can use the OPNQRYF command. Alternatively, you can create a query using the
Run SQL Scripts window in iSeries Navigator. See Creating a script (query) using Run SQL Scripts.

Using an existing record format in the file
Assume you only want your program to process the records in which the Code field is equal to D. You
create the program as if there were only records with a D in the Code field. That is, you do not code any
selection operations in the program. You then run the OPNQRYF command, and specify that only the
records with a D in the Code field are to be returned to the program. The OPNQRYF command does the
record selection and your program processes only the records that meet the selection values. You can use
this approach to select a set of records, return records in a different sequence than they are stored, or

124 DB2 UDB for iSeries Database Programming V5R2

../cl/opnqryf.htm
../sqlp/rbafymstdbscreate.htm

both. The following is an example of using the OPNQRYF command to select and sequence records:

�1� Create the high-level language program to process the database file as you would any normal
program using externally described data. Only one format can be used, and it must exist in the
file.

�2� Run the OVRDBF command specifying the file and member to be processed and SHARE(*YES).
(If the member is permanently changed to SHARE(*YES) and the first or only member is the one
you want to use, this step is not necessary.)

The OVRDBF command can be run after the OPNQRYF command, unless you want to override
the file name specified in the OPNQRYF command. In this discussion and in the examples, the
OVRDBF command is shown first.

Some restrictions are placed on using the OVRDBF command with the OPNQRYF command. For
example, MBR(*ALL) causes an error message and the file is not opened. Refer to
“Considerations for files shared in a job” on page 165 for more information.

�3� Run the OPNQRYF command, specifying the database file, member, format names, any selection
options, any sequencing options, and the scope of influence for the opened file.

�4� Call the high-level language program you created in step 1. Besides using a high-level language,
the Copy from Query File (CPYFRMQRYF) command can also be used to process the file created
by the OPNQRYF command. Other CL commands (for example, the Copy File [CPYF] and the
Display Physical File Member [DSPPFM] commands) and utilities (for example, Query) do not
work on files created with the OPNQRYF command.

�5� Close the file that you opened in step 3, unless you want the file to remain open. The Close File
(CLOF) command can be used to close the file.

�6� Delete the override specified in step 2 with the Delete Override (DLTOVR) command. It may not
always be necessary to delete the override, but the command is shown in all the examples for
consistency.

Chapter 10. Opening a database file 125

Using a file with a different record format
For more advanced functions of the Open Query File (OPNQRYF) command (such as dynamically joining
records from different files), you must define a new file that contains a different record format. This new file
is a separate file from the one you are going to process. This new file contains the fields that you want to
create with the OPNQRYF command. This powerful capability also lets you define fields that do not
currently exist in your database records, but can be derived from them.

When you code your high-level language program, specify the name of the file with the different format so
the externally described field definitions of both existing and derived fields can be processed by the
program.

Before calling your high-level language program, you must specify an Override with Database File
(OVRDBF) command to direct your program file name to the open query file. On the OPNQRYF
command, specify both the database file and the new file with the special format to be used by your
high-level language program. If the file you are querying does not have SHARE(*YES) specified, you must
specify SHARE(*YES) on the OVRDBF command.

The following shows the process flow:

�1� Specify the DDS for the file with the different record format, and create the file. This file contains
the fields that you want to process with your high-level language program. Normally, data is not
contained in this file, and it does not require a member. You normally create this file as a physical
file without keys. A field reference file can be used to describe the fields. The record format name
can be different from the record format name in the database file that is specified. You can use
any database or DDM file for this function. The file could be a logical file and it could be indexed.
It could have one or more members, with or without data.

126 DB2 UDB for iSeries Database Programming V5R2

�2� Create the high-level language program to process the file with the record format that you created
in step 1. In this program, do not name the database file that contains the data.

�3� Run the Override with Database File (OVRDBF) command. Specify the name of the file with the
different (new) record format on the FILE parameter. Specify the name of the database file that
you want to query on the TOFILE parameter. You can also specify a member name on the MBR
parameter. If the database member you are querying does not have SHARE(*YES) specified, you
must also specify SHARE(*YES) on the OVRDBF command.

�4� Run the Open Query File (OPNQRYF) command. Specify the database file to be queried on the
FILE parameter, and specify the name of the file with the different (new) format that was created in
step 1 on the FORMAT parameter. Mapped field definitions can be required on the OPNQRYF
command to describe how to map the data from the database file into the format that was created
in step 1. You can also specify selection options, sequencing options, and the scope of influence
for the opened file.

�5� Call the high-level language program you created in step 2.

�6� The first file named in step 4 for the FILE parameter was opened with OPNQRYF as
SHARE(*YES) and is still open. The file must be closed. The Close File (CLOF) command can be
used.

�7� Delete the override that was specified in step 3.

The previous steps show the normal flow using externally described data. It is not necessary to create
unique DDS and record formats for each OPNQRYF command. You can reuse an existing record format.
However, all fields in the record format must be actual fields in the real database file or defined by mapped
field definitions. If you use program-described data, you can create the program at any time.

You can use the file created in step 1 to hold the data created by the Open Query File (OPNQRYF)
command. For example, you can replace step 5 with a high-level language processing program that copies
data to the file with the different format, or you may use the Copy from Query File (CPYFRMQRYF)
command. The Copy File (CPYF) command cannot be used. You can then follow step 5 with the CPYF
command or Query.

OPNQRYF examples
The following sections describe how to specify both the OPNQRYF parameters for each of the major
functions discussed earlier and how to use the Open Query File command with your high-level language
program.

Notes:

1. If you run the OPNQRYF command from a command entry line with the OPNSCOPE(*ACTGRPDFN)
or TYPE(*NORMAL) parameter option, error messages that occur after the OPNQRYF command
successfully runs will not close the file. Such messages would have closed the file prior to Version 2
Release 3 when TYPE(*NORMAL) was used. The system automatically runs the Reclaim Resources
(RCLRSC) command if an error message occurs, except for message CPF0001, which is sent when
the system detects an error in the command. However, the RCLRSC command only closes files
opened from the default activation group at a higher level in the call stack than the level at which the
RCLRSC command was run.

2. After running a program that uses the Open Query File command for sequential processing, the file
position is normally at the end of the file. If you want to run the same program or a different program
with the same files, you must position the file or close the file and open it with the same OPNQRYF
command. You can position the file with the Position Database File (POSDBF) command. In some
cases, a high-level language program statement can be used.

See the following sections for OPNQRYF examples:

v “CL program coding with the OPNQRYF command” on page 128

Chapter 10. Opening a database file 127

v “The zero length literal and the contains (*CT) function”

v “Selecting records without using DDS”

CL program coding with the OPNQRYF command
The Open Query File (OPNQRYF) command has three basic rules that can prevent coding errors.

1. Specify selection fields from a database file without an ampersand (&). Fields declared in the CL
program with DCL or DCLF require the ampersand.

2. Enclose fields defined in the CL program with DCL or DCLF within single quotes (’&testfld’, for
example).

3. Enclose all parameter comparisons within double quotes when compared to character fields, single
quotes when compared to numeric fields.

In the following example, the fields INVCUS and INVPRD are defined as character data:
QRYSLT(’INVCUS *EQ "’ *CAT &K1CUST *CAT ’" *AND +

INVPRD *GE "’ *CAT &LPRD *CAT ’" *AND +
INVPRD *LE "’ *CAT &HPRD *CAT ’"’)

If the fields were defined numeric data, the QRYSLT parameter could look like the following:
QRYSLT(’INVCUS *EQ ’ *CAT &K1CUST *CAT ’ *AND +

INVPRD *GE ’ *CAT &LPRD *CAT ’ *AND +
INVPRD *LE ’ *CAT &HPRD *CAT ’ ’)

The zero length literal and the contains (*CT) function
The concept of a zero length literal was introduced in Version 2, Release 1, Modification 1. In the
OPNQRYF command, a zero length literal is denoted as a quoted string with nothing, not even a blank,
between the quotes (″″).

Zero length literal support changes the results of a comparison when used as the compare argument of
the contains (*CT) function. Consider the statement:
QRYSLT(’field *CT ""’)

With zero length literal support, the statement returns records that contain anything. It is, in essence, a
wildcard comparison for any number of characters followed by any number of characters. It is equivalent
to:
’field = %WLDCRD("**")’

Before zero length literal support, (before Version 2, Release 1, Modification 1), the argument (″″) was
interpreted as a single-byte blank. The statement returned records that contained a single blank
somewhere in the field. It was, in essence, a wildcard comparison for any number of characters, followed
by a blank, followed by any number of characters. It was equivalent to:
’field = %WLDCRD("* *")’

To get pre-Version 2, Release 1, Modification 1 results with the contains function, you must code the
QRYSLT to explicitly look for the blank:
QRYSLT(’field *CT " "’)

Selecting records without using DDS
Dynamic record selection allows you to request a subset of the records in a file without using DDS. For
example, you can select records that have a specific value or range of values (for example, all customer
numbers between 1000 and 1050). The Open Query File (OPNQRYF) command allows you to combine
these and other selection functions to produce powerful record selection capabilities.

See the following topics for examples:

128 DB2 UDB for iSeries Database Programming V5R2

v “Selecting records using the Open Query File (OPNQRYF) command”

v “Specifying a keyed sequence access path without using DDS” on page 139

v “Specifying key fields from different files” on page 140

v “Dynamically joining database files without DDS” on page 141

v “Handling missing records in secondary join files” on page 144

v “Unique-key processing” on page 145

v “Defining fields derived from existing field definitions” on page 146

v “Handling divide by zero” on page 148

v “Summarizing data from database file records (Grouping)” on page 149

v “Final total-only processing” on page 151

v “Controlling how the system runs the open query file command” on page 152

Selecting records using the Open Query File (OPNQRYF) command
In all of the following examples, it is assumed that a single-format database file (physical or logical) is
being processed. (The FILE parameter on the OPNQRYF command allows you to specify a record format
name if the file is a multiple format logical file.)

v “Example 1: Selecting records using the OPNQRYF command”

v “Example 2: Selecting records using the OPNQRYF command” on page 131

v “Example 3: Selecting records using the OPNQRYF command” on page 132

v “Example 4: Selecting records using the OPNQRYF command” on page 132

v “Example 5: Selecting records using the OPNQRYF command” on page 133

v “Example 6: Selecting records using the OPNQRYF command” on page 133

v “Example 7: Selecting records using the OPNQRYF command” on page 134

v “Example 8: Selecting records using the OPNQRYF command” on page 135

v “Example 9: Selecting records using the OPNQRYF command” on page 136

v “Example 10: Selecting records using the OPNQRYF command” on page 137

v “Example 11: Selecting records using the OPNQRYF command” on page 138

See the OPNQRYF command in the Control Language (CL) topic for a complete description of the format
of expressions used with the QRYSLT parameter.

Example 1: Selecting records using the OPNQRYF command: Selecting records with a specific value

Assume you want to select all the records from FILEA where the value of the Code field is D. Your
processing program is PGMB. PGMB only sees the records that meet the selection value (you do not have
to test in your program).

Note: You can specify parameters easier by using the prompt function for the OPNQRYF command. For
example, you can specify an expression for the QRYSLT parameter without the surrounding
delimiters because the system will add the apostrophes.

Specify the following:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’CODE *EQ "D" ’)
CALL PGM(PGMB)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Notes:

1. The entire expression in the QRYSLT parameter must be enclosed in apostrophes.

2. When specifying field names in the OPNQRYF command, the names in the record are not enclosed in
apostrophes.

Chapter 10. Opening a database file 129

../rbam6/rbam6clmain.htm

3. Character literals must be enclosed by quotation marks or two apostrophes. (The quotation mark
character is used in the examples.) It is important to place the character(s) between the quotation
marks in either uppercase or lowercase to match the value you want to find in the database. (The
examples are all shown in uppercase.)

4. To request a selection against a numeric constant, specify:
OPNQRYF FILE(FILEA) QRYSLT(’AMT *GT 1000.00’)

Notice that numeric constants are not enclosed by two apostrophes (quotation marks).

5. When comparing a field value to a CL variable, use apostrophes as follows (only character CL
variables can be used):

v If doing selection against a character, date, time, or timestamp field, specify:
OPNQRYF FILE(FILEA) QRYSLT(’"’ *CAT &CHAR *CAT ’" *EQ FIELDA’)

or, in reverse order:
OPNQRYF FILE(FILEA) QRYSLT(’FIELDA *EQ "’ *CAT &CHAR *CAT ’"’)

Notice that apostrophes and quotation marks enclose the CL variables and *CAT operators.

v If doing selection against a numeric field, specify:
OPNQRYF FILE(FILEA) QRYSLT(&CHARNUM *CAT ’ *EQ NUM’)

or, in reverse order:
OPNQRYF FILE(FILEA) QRYSLT(’NUM *EQ ’ *CAT &CHARNUM);

Notice that apostrophes enclose the field and operator only.

When comparing two fields or constants, the data types must be compatible. The following table describes
the valid comparisons.

Table 7. Valid Data Type Comparisons for the OPNQRYF Command

Any Numeric Character Date1 Time1 Timestamp1

Any Numeric Valid Not Valid Not Valid Not Valid Not Valid
Character Not Valid Valid Valid2 Valid2 Valid2

Date1 Not Valid Valid2 Valid Not Valid Not Valid
Time1 Not Valid Valid2 Not Valid Valid Not Valid
Timestamp1 Not Valid Valid2 Not Valid Not Valid Valid
:
1 Date, time, and timestamp data types can be represented by fields and expressions, but not constants;

however, character constants can represent date, time, or timestamp values.

2 The character field or constant must represent a valid date value if compared to a date data type, a valid time
value if compared to a time data type, or a valid timestamp value if compared to a timestamp data type.

Note: For DBCS information, see Appendix B, “Double-Byte Character Set (DBCS) considerations”.

The performance of record selection can be greatly enhanced if some file on the system uses the field
being selected in a keyed sequence access path. This allows the system to quickly access only the
records that meet the selection values. If no such access path exists, the system must read every record
to determine if it meets the selection values.

Even if an access path exists on the field you want to select from, the system may not use the access
path. For example, if it is faster for the system to process the data in arrival sequence, it will do so. See
the discussion in “Open Query File command: Performance considerations” on page 162 for more details.

130 DB2 UDB for iSeries Database Programming V5R2

Example 2: Selecting records using the OPNQRYF command: Selecting records with a specific date
value

Assume you want to process all records in which the Date field in the record is the same as the current
date. Also assume the Date field is in the same format as the system date. In a CL program, you can
specify:
DCL VAR(&CURDAT); TYPE(*CHAR) LEN(6)
RTVSYSVAL SYSVAL(QDATE) RTNVAR(&CURDAT);
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’"’ *CAT &CURDAT *CAT ’" *EQ DATE’)
CALL PGM(PGMB)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

A CL variable is assigned with a leading ampersand (&); and is not enclosed in apostrophes. The whole
expression is enclosed in apostrophes. The CAT operators and CL variable are enclosed in both
apostrophes and quotes.

It is important to know whether the data in the database is defined as character, date, time, timestamp, or
numeric. In the preceding example, the Date field is assumed to be character.

If the DATE field is defined as date data type, the preceding example could be specified as:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’%CURDATE *EQ DATE’)
CALL PGM(PGMB)
CLOF OPENID(FILEA)
DLTOVR FILE(FILEA)

Note: The date field does not have to have the same format as the system date.
You could also specify the example as:
DCL VAR(&CVTDAT); TYPE(*CHAR) LEN(6)
DCL VAR(&CURDAT); TYPE(*CHAR) LEN(8)
RTVSYSVAL SYSVAL(QDATE) RTNVAR(&CVTDAT);
CVTDAT DATE(&CVTDAT); TOVAR(&CURDAT); TOSEP(/)
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA)

QRYSLT(’"’ *CAT &CURDAT *CAT ’" *EQ DATE’)
CALL PGM(PGMB)
CLOF OPNID (FILEA)
DLTOVR FILE(FILEA)

This is where DATE has a date data type in FILEA, the job default date format is MMDDYY, and the job
default date separator is the slash (/).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,
YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If, instead, you were using a constant, the QRYSLT would be specified as follows:
QRYSLT(’"12/31/87" *EQ DATE’)

The job default date format must be MMDDYY and the job default separator must be the slash (/).

If a numeric field exists in the database and you want to compare it to a variable, only a character variable
can be used. For example, to select all records where a packed Date field is greater than a variable, you
must ensure the variable is in character form. Normally, this will mean that before the Open Query File
(OPNQRYF) command, you use the Change Variable (CHGVAR) command to change the variable from a
decimal field to a character field. The CHGVAR command would be specified as follows:
CHGVAR VAR(&CHARVAR); VALUE(’123188’)

Chapter 10. Opening a database file 131

The QRYSLT parameter would be specified as follows (see the difference from the preceding examples):
QRYSLT(&CHARVAR *CAT ’ *GT DATE’)

If, instead, you were using a constant, the QRYSLT statement would be specified as follows:
QRYSLT(’123187 *GT DATE’)

Example 3: Selecting records using the OPNQRYF command: Selecting records in a range of values

Assume you have a Date field specified in the character format YYMMDD and with the “.” separator, and
you want to process all records for 1988. You can specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’DATE *EQ %RANGE("88.01.01" +

"88.12.31") ’)
CALL PGM(PGMC)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

This example would also work if the DATE field has a date data type, the job default date format is
YYMMDD, and the job default date separator is the period (.).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,
YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If the ranges are variables defined as character data types, and the DATE field is defined as a character
data type, specify the QRYSLT parameter as follows:
QRYSLT(’DATE *EQ %RANGE("’ *CAT &LORNG *CAT ’"’ *BCAT ’"’ +

*CAT &HIRNG *CAT ’")’)

However, if the DATE field is defined as a numeric data type, specify the QRYSLT parameter as follows:
QRYSLT(’DATE *EQ %RANGE(’ *CAT &LORNG *BCAT &HIRNG *CAT ’)’)

Note: *BCAT can be used if the QRYSLT parameter is in a CL program, but it is not allowed in an
interactive command.

Example 4: Selecting records using the OPNQRYF command: Selecting records using the contains
function

Assume you want to process all records in which the Addr field contains the street named BROADWAY.
The contains (*CT) function determines if the characters appear anywhere in the named field. You can
specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’ADDR *CT "BROADWAY" ’)
CALL PGM(PGMC)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

In this example, assume that the data is in uppercase in the database record. If the data was in lowercase
or mixed case, you could specify a translation function to translate the lowercase or mixed case data to
uppercase before the comparison is made. The system-provided table QSYSTRNTBL translates the letters
a through z to uppercase. (You could use any translation table to perform the translation.) Therefore, you
can specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’%XLATE(ADDR QSYSTRNTBL) *CT +

"BROADWAY" ’)
CALL PGM(PGMC)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

132 DB2 UDB for iSeries Database Programming V5R2

When the %XLATE function is used on the QRYSLT statement, the value of the field passed to the
high-level language program appears as it is in the database. You can force the field to appear in
uppercase using the %XLATE function on the MAPFLD parameter.

Example 5: Selecting records using the OPNQRYF command: Selecting records using multiple fields

Assume you want to process all records in which either the Amt field is equal to zero, or the Lstdat field
(YYMMDD order in character format) is equal to or less than 88-12-31. You can specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’AMT *EQ 0 *OR LSTDAT +

*LE "88-12-31" ’)
CALL PGM(PGMC)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

This example would also work if the LSTDAT field has a date data type. The LSTDAT field may be in any
valid date format; however, the job default date format must be YYMMDD and the job default date
separator must be the dash (–).

Note: For any character representation of a date in one of the following formats, MMDDYY, DDMMYY,
YYMMDD, or Julian, the job default date format and separator must be the same to be recognized.

If variables are used, the QRYSLT parameter is typed as follows:
QRYSLT(’AMT *EQ ’ *CAT &VARAMT *CAT ’ *OR +

LSTDAT *LE "’ *CAT &VARDAT *CAT ’"’)

or, typed in reverse order:
QRYSLT(’"’ *CAT &VARDAT *CAT ’" *GT LSTDAT *OR ’ +

*CAT &VARAMT *CAT ’ *EQ AMT’)

Note that the &VARAMT variable must be defined as a character type. If the variable is passed to your CL
program as a numeric type, you must convert it to a character type to allow concatenation. You can use
the Change Variable (CHGVAR) command to do this conversion.

Example 6: Selecting records using the OPNQRYF command: Using the Open Query File
(OPNQRYF) command many times in a program

You can use the OPNQRYF command more than once in a high-level language program. For example,
assume you want to prompt the user for some selection values, then display one or more pages of
records. At the end of the first request for records, the user may want to specify other selection values and
display those records. This can be done by doing the following:

1. Before calling the high-level language program, use an Override with Database File (OVRDBF)
command to specify SHARE(*YES).

2. In the high-level language program, prompt the user for the selection values.

3. Pass the selection values to a CL program that issues the OPNQRYF command (or run the command
with a call to program QCMDEXC). The file must be closed before your program processes the
OPNQRYF command. You normally use the Close File (CLOF) command and monitor for the file not
being open.

4. Return to the high-level language program.

5. Open the file in the high-level language program.

6. Process the records.

7. Close the file in the program.

8. Return to step 2.

Chapter 10. Opening a database file 133

When the program completes, run the Close File (CLOF) command or the Reclaim Resources (RCLRSC)
command to close the file, then delete the Override with Database File command specified in step 1.

Note: An override command in a called CL program does not affect the open in the main program. All
overrides are implicitly deleted when the program is ended. (However, you can use a call to
program QCMDEXC from your high-level language program to specify an override, if needed.)

Example 7: Selecting records using the OPNQRYF command: Mapping fields for packed numeric
data fields

Assume you have a packed decimal Date field in the format MMDDYY and you want to select all the
records for the year 1988. You cannot select records directly from a portion of a packed decimal field, but
you can use the MAPFLD parameter on the OPNQRYF command to create a new field that you can then
use for selecting part of the field.

The format of each mapped field definition is:

(result field ’expression’ attributes)

where:

result field = The name of the result field.
expression = How the result field should be derived.

The expression can include substring,
other built-in functions, or
mathematical statements.

attributes = The optional attributes of the result
field. If no attributes are given (or the
field is not defined in a file), the
OPNQRYF command calculates a
field attribute determined by the fields
in the expression.

OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’YEAR *EQ "88" ’) +

MAPFLD((CHAR6 ’%DIGITS(DATE)’) +
(YEAR ’%SST(CHAR6 5 2)’ *CHAR 2))

CALL PGM(PGMC)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

In this example, if DATE was a date data type, it could be specified as follows:
OPNQRYF FILE(FILEA) +
QRYSLT (’YEAR *EQ 88’) +
MAPFLD((YEAR ’%YEAR(DATE)’))

The first mapped field definition specifies that the Char6 field be created from the packed decimal Date
field. The %DIGITS function converts from packed decimal to character and ignores any decimal
definitions (that is, 1234.56 is converted to ’123456’). Because no definition of the Char6 field is specified,
the system assigns a length of 6. The second mapped field defines the Year field as type *CHAR
(character) and length 2. The expression uses the substring function to map the last 2 characters of the
Char6 field into the Year field.

Note that the mapped field definitions are processed in the order in which they are specified. In this
example, the Date field was converted to character and assigned to the Char6 field. Then, the last two
digits of the Char6 field (the year) were assigned to the Year field. Any changes to this order would have
produced an incorrect result.

134 DB2 UDB for iSeries Database Programming V5R2

Note: Mapped field definitions are always processed before the QRYSLT parameter is evaluated.

You could accomplish the same result by specifying the substring on the QRYSLT parameter and dropping
one of the mapped field definitions as follows:
OPNQRYF FILE(FILEA) +

QRYSLT(’%SST(CHAR6 5 2) *EQ "88" ’) +
MAPFLD((CHAR6 ’%DIGITS(DATE)’))

Example 8: Selecting records using the OPNQRYF command: Using the “wildcard” function

Assume you have a packed decimal Date field in the format MMDDYY and you want to select the records
for March 1988. To do this, you can specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) +

QRYSLT(’%DIGITS(DATE) *EQ %WLDCRD("03__88")’)
CALL PGM(PGMC)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Note that the only time the MAPFLD parameter is needed to define a database field for the result of the
%DIGITS function is when the result needs to be used with a function that only supports a simple field
name (not a function or expression) as an argument. The %WLDCRD operation has no such restriction on
the operand that appears before the *EQ operator.

Note that although the field in the database is in numeric form, double apostrophes surround the literal to
make its definition the same as the Char6 field. The wildcard function is not supported for DATE, TIME, or
TIMESTAMP data types.

The %WLDCRD function lets you select any records that match your selection values, in which the
underline (_) will match any single character value. The two underline characters in Example 8 allow any
day in the month of March to be selected. The %WLDCRD function also allows you to name the wild card
character (underline is the default).

The wild card function supports two different forms:

v A fixed-position wild card as shown in the previous example in which the underline (or your designated
character) matches any single character as in the following example:
QRYSLT(’FLDA *EQ %WLDCRD("A_C")’)

This compares successfully to ABC, ACC, ADC, AxC, and so on. In this example, the field being
analyzed only compares correctly if it is exactly 3 characters in length. If the field is longer than 3
characters, you also need the second form of wild card support.

v A variable-position wild card will match any zero or more characters. The Open Query File (OPNQRYF)
command uses an asterisk (*) for this type of wild card variable character or you can specify your own
character. An asterisk is used in the following example:
QRYSLT(’FLDB *EQ %WLDCRD("A*C*") ’)

This compares successfully to AC, ABC, AxC, ABCD, AxxxxxxxC, and so on. The asterisk causes the
command to ignore any intervening characters if they exist. Notice that in this example the asterisk is
specified both before and after the character or characters that can appear later in the field. If the
asterisk were omitted from the end of the search argument, it causes a selection only if the field ends
with the character C.

You must specify an asterisk at the start of the wild card string if you want to select records where the
remainder of the pattern starts anywhere in the field. Similarly, the pattern string must end with an
asterisk if you want to select records where the remainder of the pattern ends anywhere in the field.

Chapter 10. Opening a database file 135

For example, you can specify:
QRYSLT(’FLDB *EQ %WLDCRD("*ABC*DEF*") ’)

You get a match on ABCDEF, ABCxDEF, ABCxDEFx, ABCxxxxxxDEF, ABCxxxDEFxxx, xABCDEF,
xABCxDEFx, and so on.

You can combine the two wildcard functions as in the following example:
QRYSLT(’FLDB *EQ %WLDCRD("ABC_*DEF*") ’)

You get a match on ABCxDEF, ABCxxxxxxDEF, ABCxxxDEFxxx, and so on. The underline forces at least
one character to appear between the ABC and DEF (for example, ABCDEF would not match).

Assume you have a Name field that contains:
JOHNS
JOHNS SMITH
JOHNSON
JOHNSTON

If you specify the following you will only get the first record:
QRYSLT(’NAME *EQ "JOHNS"’)

You would not select the other records because a comparison is made with blanks added to the value you
specified. The way to select all four names is to specify:
QRYSLT(’NAME *EQ %WLDCRD("JOHNS*")’)

Note: For information about using the %WLDCRD function for DBCS, see Appendix B, “Double-Byte
Character Set (DBCS) considerations”.

Example 9: Selecting records using the OPNQRYF command: Using complex selection statements

Complex selection statements can also be specified. For example, you can specify:
QRYSLT(’DATE *EQ "880101" *AND AMT *GT 5000.00’)

QRYSLT(’DATE *EQ "880101" *OR AMT *GT 5000.00’)

You can also specify:
QRYSLT(’CODE *EQ "A" *AND TYPE *EQ "X" *OR CODE *EQ "B")

The rules governing the priority of processing the operators are described in the Control Language (CL)
topic. Some of the rules are:

v The *AND operations are processed first; therefore, the record would be selected if:

The Code field = "A" and The Type field = "X"
or

The Code field = "B"

v Parentheses can be used to control how the expression is handled, as in the following example:
QRYSLT(’(CODE *EQ "A" *OR CODE *EQ "B") *AND TYPE *EQ "X" +

*OR CODE *EQ "C"’)

The Code field = "A" and The Type field= "X"
or

The Code field = "B" and The Type field = "X"
or

The Code field = "C"

136 DB2 UDB for iSeries Database Programming V5R2

../rbam6/rbam6clmain.htm
../rbam6/rbam6clmain.htm

You can also use the symbols described in the Control Language (CL) topic instead of the abbreviated
form (for example, you can use = instead of *EQ) as in the following example:
QRYSLT(’CODE = "A" & TYPE = "X" | AMT > 5000.00’)

This command selects all records in which:

The Code field = "A" and The Type field = "X"
or

The Amt field > 5000.00

A complex selection statement can also be written, as in the following example:
QRYSLT(’CUSNBR = %RANGE("60000" "69999") & TYPE = "B" +

& SALES>0 & ACCRCV / SALES>.3’)

This command selects all records in which:

The Cusnbr field is in the range 60000-69999 and
The Type field = "B" and
The Sales fields are greater than 0 and
Accrcv divided by Sales is greater than 30 percent

Example 10: Selecting records using the OPNQRYF command: Using coded character set identifiers
(CCSIDs)

For general information about CCSIDs, see iSeries Globalization.

Each character and DBCS field in all database files is tagged with a CCSID. This CCSID allows you to
further define the data stored in the file so that any comparison, join, or display of the fields is performed
in a meaningful way. For example, if you compared FIELD1 in FILE1 where FIELD1 has a CCSID of 37
(USA) to FIELD2 in FILE2 where FILED2 has a CCSID of 273 (Austria, Germany) appropriate mapping
would occur to make the comparison meaningful.
OPNQRYF FILE(FILEA FILEB) FORMAT(RESULTF) +

JFLD((FILEA/NAME FILEB/CUSTOMER))

If field NAME has a CCSID of 37 and field CUSTOMER has a CCSID of 273, the mapping of either NAME
or CUSTOMER is performed during processing of the OPNQRYF command so that the join of the two
fields provides a meaningful result.

Normally, constants defined in the MAPFLD, QRYSLT, and GRPSLT parameters are tagged with the
CCSID defined to the current job. This suggests that when two users with different job CCSIDs run the
same OPNQRYF command (or a program containing an OPNQRYF command) and the OPNQRYF has
constants defined in it, the users can get different results because the CCSID tagged to the constants may
cause the constants to be treated differently.

You can tag a constant with a specific CCSID by using the MAPFLD parameter. By specifying a MAPFLD
whose definition consists solely of a constant and then specifying a CCSID for the MAPFLD the constant
becomes tagged with the CCSID specified in the MAPFLD parameter. For example:
OPNQRYF FILE(FILEA) FORMAT(RESULTF) QRYSLT(’NAME *EQ MAP1’) +

MAPFLD((MAP1 ’"Smith"’ *CHAR 5 *N 37))

The constant “Smith” is tagged with the CCSID 37 regardless of the job CCSID of the user issuing the
OPNQRYF command. In this example, all users would get the same result records (although the result
records would be mapped to the user’s job CCSID). Conversely, if the query is specified as:
OPNQRYF FILE(FILEA) FORMAT(RESULTF) QRYSLT(’NAME *EQ "Smith"’)

Chapter 10. Opening a database file 137

../rbam6/rbam6clmain.htm
../nls/rbagsglobalmain.htm

the results of the query may differ, depending on the job CCSID of the user issuing the OPNQRYF
command.

Example 11: Selecting records using the OPNQRYF command: Using Sort Sequence and Language
Identifier

To see how to use a sort sequence, run the examples in this section against the STAFF file shown in
Table 8.

Table 8. The STAFF File

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

20 Pernal 20 Sales 8 18171.25 612.45

30 Merenghi 38 MGR 5 17506.75 0

40 OBrien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 0

60 Quigley 38 SALES 00 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk 0 13504.60 128.20

90 Koonitz 42 sales 6 18001.75 1386.70

100 Plotz 42 mgr 6 18352.80 0

In the examples, the results are shown for a particular statement using each of the following:

v *HEX sort sequence.

v Shared-weight sort sequence for language identifier ENU.

v Unique-weight sort sequence for language identifier ENU.

Note: ENU is chosen as a language identifier by specifying either SRTSEQ(*LANGIDUNQ) or
SRTSEQ(*LANGIDSHR), and LANGID(ENU) in the OPNQRYF command.

The following command selects records with the value MGR in the JOB field:
OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ "MGR"’)

Table 9 shows the record selection with the *HEX sort sequence. The records that match the record
selection criteria for the JOB field are selected exactly as specified in the QRYSLT statement; only the
uppercase MGR is selected.

Table 9. Using the *HEX Sort Sequence. OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’) SRTSEQ(*HEX)

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

Table 10 shows the record selection with the shared-weight sort sequence. The records that match the
record selection criteria for the JOB field are selected by treating uppercase and lowercase letters the
same. With this sort sequence, mgr, Mgr, and MGR values are selected.

Table 10. Using the Shared-Weight Sort Sequence. OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’)
SRTSEQ(LANGIDSHR) LANGID(ENU)

ID NAME DEPT JOB YEARS SALARY COMM

10 Sanders 20 Mgr 7 18357.50 0

138 DB2 UDB for iSeries Database Programming V5R2

Table 10. Using the Shared-Weight Sort Sequence (continued). OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’)
SRTSEQ(LANGIDSHR) LANGID(ENU)

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

50 Hanes 15 Mgr 10 20659.80 0

100 Plotz 42 mgr 6 18352.80 0

Table 11 shows the record selection with the unique-weight sort sequence. The records that match the
record selection criteria for the JOB field are selected by treating uppercase and lowercase letters as
unique. With this sort sequence, the mgr, Mgr, and MGR values are all different. The MGR value is selected.

Table 11. Using the Unique-Weight Sort Sequence. OPNQRYF FILE(STAFF) QRYSLT(’JOB *EQ ″MGR″’)
SRTSEQ(LANGIDUNQ) LANGID(ENU)

ID NAME DEPT JOB YEARS SALARY COMM

30 Merenghi 38 MGR 5 17506.75 0

Specifying a keyed sequence access path without using DDS
The dynamic access path function allows you to specify a keyed access path for the data to be processed.
If an access path already exists that can be shared, the system can share it. If a new access path is
required, it is built before any records are passed to the program. See the following topics for examples:

v “Example 1: Specifying a keyed sequence access path without using DDS”

v “Example 2: Specifying a keyed sequence access path without using DDS”

v “Example 3: Specifying a keyed sequence access path without using DDS” on page 140

v “Example 4: Specifying a keyed sequence access path without using DDS” on page 140

Example 1: Specifying a keyed sequence access path without using DDS: Arranging records using
one key field

Assume you want to process the records in FILEA arranged by the value in the Cust field with program
PGMD. You can specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) KEYFLD(CUST)
CALL PGM(PGMD)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Note: The FORMAT parameter on the Open Query File (OPNQRYF) command is not needed because
PGMD is created by specifying FILEA as the processed file. FILEA can be an arrival sequence or a
keyed sequence file. If FILEA is keyed, its key field can be the Cust field or a totally different field.

Example 2: Specifying a keyed sequence access path without using DDS: Arranging records using
multiple key fields

If you want the records to be processed by Cust sequence and then by Date in Cust, specify:
OPNQRYF FILE(FILEA) KEYFLD(CUST DATE)

If you want the Date to appear in descending sequence, specify:
OPNQRYF FILE(FILEA) KEYFLD((CUST) (DATE *DESCEND))

In these two examples, the FORMAT parameter is not used. (If a different format is defined, all key fields
must exist in the format.)

Chapter 10. Opening a database file 139

Example 3: Specifying a keyed sequence access path without using DDS: Arranging records using a
unique-weight sort sequence.

To process the records by the JOB field values with a unique-weight sort sequence using the STAFF file in
Table 8 on page 138, specify:
OPNQRYF FILE(STAFF) KEYFLD(JOB) SRTSEQ(*LANGIDUNQ) LANGID(ENU)

This query results in a JOB field in the following sequence:
Clerk
mgr
Mgr
Mgr
MGR
sales
Sales
Sales
Sales
SALES

Example 4: Specifying a keyed sequence access path without using DDS: Arranging records using a
shared-weight sort sequence.

To process the records by the JOB field values with a unique-weight sort sequence using the STAFF file in
Table 8 on page 138, specify:
OPNQRYF FILE(STAFF) KEYFLD(JOB) SRTSEQ(*LANGIDSHR) LANGID(ENU)

The results from this query will be similar to the results in Example 3. The mgr and sales entries could be
in any sequence because the uppercase and lowercase letters are treated as equals. That is, the
shared-weight sort sequence treats mgr, Mgr, and MGR as equal values. Likewise, sales, Sales, and
SALES are treated as equal values.

Specifying key fields from different files
A dynamic keyed sequence access path over a join logical file allows you to specify a processing
sequence in which the keys can be in different physical files (DDS restricts the keys to the primary file).

The specification is identical to the previous method. The access path is specified using whatever key
fields are required. There is no restriction on which physical file the key fields are in. However, if a key
field exists in other than the primary file of a join specification, the system must make a temporary copy of
the joined records. The system must also build a keyed sequence access path over the copied records
before the query file is opened. The key fields must exist in the format identified on the FORMAT
parameter.

See “Example: Specifying key fields from different files” for an example.

Example: Specifying key fields from different files: Using a field in a secondary file as a key field

Assume you already have a join logical file named JOINLF. FILEX is specified as the primary file and is
joined to FILEY. You want to process the records in JOINLF by the Descrp field which is in FILEY.

Assume the file record formats contain the following fields:

FILEX FILEY JOINLF

Item Item Item
Qty Descrp Qty

Descrp

140 DB2 UDB for iSeries Database Programming V5R2

You can specify:
OVRDBF FILE(JOINLF) SHARE(*YES)
OPNQRYF FILE(JOINLF) KEYFLD(DESCRP)
CALL PGM(PGMC)
CLOF OPNID(JOINLF)
DLTOVR FILE(JOINLF)

If you want to arrange the records by Qty in Descrp (Descrp is the primary key field and Qty is a
secondary key field) you can specify:
OPNQRYF FILE(JOINLF) KEYFLD(DESCRP QTY)

Dynamically joining database files without DDS
The dynamic join function allows you to join files without having to first specify DDS and create a join
logical file. You must use the FORMAT parameter on the Open Query File (OPNQRYF) command to
specify the record format for the join. You can join any physical or logical file including a join logical file
and a view (DDS does not allow you to join logical files). You can specify either a keyed or arrival
sequence access path. If keys are specified, they can be from any of the files included in the join (DDS
restricts keys to just the primary file).

In the following examples, it is assumed that the file specified on the FORMAT parameter was created.
You will normally want to create the file before you create the processing program so you can use the
externally described data definitions.

The default for the join order (JORDER) parameter is used in all of the following examples. The default for
the JORDER parameter is *ANY, which tells the system that it can determine the order in which to join the
files. That is, the system determines which file to use as the primary file and which as the secondary files.
This allows the system to try to improve the performance of the join function.

The join criterion, like the record selection criterion, is affected by the sort sequence (SRTSEQ) and the
language identifier (LANGID) specified, as shown in “Example 11: Selecting records using the OPNQRYF
command” on page 138.

See the following topics for examples:

v “Example 1: Dynamically joining database files without DDS”

v “Example 2: Dynamically joining database files without DDS” on page 143

v “Example 3: Dynamically joining database files without DDS” on page 143

Example 1: Dynamically joining database files without DDS: Dynamically joining files

Assume you want to join FILEA and FILEB. Assume the files contain the following fields:

FILEA FILEB JOINAB

Cust Cust Cust
Name Amt Name
Addr Amt

The join field is Cust which exists in both files. Any record format name can be specified in the Open
Query File (OPNQRYF) command for the join file. The file does not need a member. The records are not
required to be in keyed sequence.

You can specify:
OVRDBF FILE(JOINAB) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

JFLD((FILEA/CUST FILEB/CUST)) +

Chapter 10. Opening a database file 141

MAPFLD((CUST ’FILEA/CUST’))
CALL PGM(PGME) /* Created using file JOINAB as input */
CLOF OPNID(FILEA)
DLTOVR FILE(JOINAB)

File JOINAB is a physical file with no data. This is the file that contains the record format to be specified
on the FORMAT parameter in the Open Query File (OPNQRYF) command.

Notice that the TOFILE parameter on the Override with Database File (OVRDBF) command specifies the
name of the primary file for the join operation (the first file specified for the FILE parameter on the
OPNQRYF command). In this example, the FILE parameter on the Open Query File (OPNQRYF)
command identifies the files in the sequence they are to be joined (A to B). The format for the file is in the
file JOINAB.

The JFLD parameter identifies the Cust field in FILEA to join to the Cust field in FILEB. Because the Cust
field is not unique across all of the joined record formats, it must be qualified on the JFLD parameter. The
system attempts to determine, in some cases, the most efficient values even if you do not specify the
JFLD parameter on the Open Query File (OPNQRYF) command. For example, using the previous
example, if you specified:
OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

QRYSLT(’FILEA/CUST *EQ FILEB/CUST’) +
MAPFLD((CUST ’FILEA/CUST’))

The system joins FILEA and FILEB using the Cust field because of the values specified for the QRYSLT
parameter. Notice that in this example the JFLD parameter is not specified on the command. However, if
either JDFTVAL(*ONLYDFT) or JDFTVAL(*YES) is specified on the OPNQRYF command, the JFLD
parameter must be specified.

The MAPFLD parameter is needed on the Open Query File (OPNQRYF) command to describe which file
should be used for the data for the Cust field in the record format for file JOINAB. If a field is defined on
the MAPFLD parameter, its unqualified name (the Cust field in this case without the file name
identification) can be used anywhere else in the OPNQRYF command. Because the Cust field is defined
on the MAPFLD parameter, the first value of the JFLD parameter need not be qualified. For example, the
same result could be achieved by specifying:
JFLD((CUST FILEB/CUST)) +
MAPFLD((CUST ’FILEA/CUST’))

Any other uses of the same field name in the Open Query File (OPNQRYF) command to indicate a field
from a file other than the file defined by the MAPFLD parameter must be qualified with a file name.

Because no KEYFLD parameter is specified, the records appear in any sequence depending on how the
Open Query File (OPNQRYF) command selects the records. You can force the system to arrange the
records the same as the primary file. To do this, specify *FILE on the KEYFLD parameter. You can specify
this even if the primary file is in arrival sequence.

The JDFTVAL parameter (similar to the JDFTVAL keyword in DDS) can also be specified on the Open
Query File (OPNQRYF) command to describe what the system should do if one of the records is missing
from the secondary file. In this example, the JDFTVAL parameter was not specified, so only the records
that exist in both files are selected.

If you tell the system to improve the results of the query (through parameters on the OPNQRYF
command), it will generally try to use the file with the smallest number of records selected as the primary
file. However, the system will also try to avoid building a temporary file.

You can force the system to follow the file sequence of the join as you have specified it in the FILE
parameter on the Open Query File (OPNQRYF) command by specifying JORDER(*FILE). If

142 DB2 UDB for iSeries Database Programming V5R2

JDFTVAL(*YES) or JDFTVAL(*ONLYDFT) is specified, the system will never change the join file sequence
because a different sequence could cause different results.

Example 2: Dynamically joining database files without DDS: Reading only those records with
secondary file records

Assume you want to join files FILEAB, FILECD, and FILEEF to select only those records with matching
records in secondary files. Define a file JOINF and describe the format that should be used. Assume the
record formats for the files contain the following fields:

FILEAB FILECD FILEEF JOINF

Abitm Cditm Efitm Abitm
Abord Cddscp Efcolr Abord
Abdat Cdcolr Efqty Cddscp

Cdcolr
Efqty

In this case, all field names in the files that make up the join file begin with a 2-character prefix (identical
for all fields in the file) and end with a suffix that is identical across all the files (for example, xxitm). This
makes all field names unique and avoids having to qualify them.

The xxitm field allows the join from FILEAB to FILECD. The two fields xxitm and xxcolr allow the join from
FILECD to FILEEF. A keyed sequence access path does not have to exist for these files. However, if a
keyed sequence access path does exist, performance may improve significantly because the system will
attempt to use the existing access path to arrange and select records, where it can. If access paths do not
exist, the system automatically creates and maintains them as long as the file is open.
OVRDBF FILE(JOINF) TOFILE(FILEAB) SHARE(*YES)
OPNQRYF FILE(FILEAB FILECD FILEEF) +

FORMAT(JOINF) +
JFLD((ABITM CDITM)(CDITM EFITM) +
(CDCOLR EFCOLR))

CALL PGM(PGME) /* Created using file JOINF as input */
CLOF OPNID(FILEAB)
DLTOVR FILE(JOINF)

The join field pairs do not have to be specified in the order shown above. For example, the same result is
achieved with a JFLD parameter value of:
JFLD((CDCOLR EFCOLR)(ABITM CDITM) (CDITM EFITM))

The attributes of each pair of join fields do not have to be identical. Normal padding of character fields and
decimal alignment for numeric fields occurs automatically.

The JDFTVAL parameter is not specified so *NO is assumed and no default values are used to construct
join records. If you specified JDFTVAL(*YES) and there is no record in file FILECD that has the same join
field value as a record in file FILEAB, defaults are used for the Cddscp and Cdcolr fields to join to file
FILEEF. Using these defaults, a matching record can be found in file FILEEF (depending on if the default
value matches a record in the secondary file). If not, a default value appears for these files and for the
Efqty field.

Example 3: Dynamically joining database files without DDS: Using mapped fields as join fields

You can use fields defined on the MAPFLD parameter for either one of the join field pairs. This is useful
when the key in the secondary file is defined as a single field (for example, a 6-character date field) and
there are separate fields for the same information (for example, month, day, and year) in the primary file.

Chapter 10. Opening a database file 143

Assume FILEA has character fields Year, Month, and Day and needs to be joined to FILEB which has the
Date field in YYMMDD format. Assume you have defined file JOINAB with the desired format. You can
specify:
OVRDBF FILE(JOINAB) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

JFLD((YYMMDD FILEB/DATE)) +
MAPFLD((YYMMDD ’YEAR *CAT MONTH *CAT DAY’))

CALL PGM(PGME) /* Created using file JOINAB as input */
CLOF OPNID(FILEA)
DLTOVR FILE(JOINAB)

The MAPFLD parameter defines the YYMMDD field as the concatenation of several fields from FILEA. You
do not need to specify field attributes (for example, length or type) for the YYMMDD field on the MAPFLD
parameter because the system calculates the attributes from the expression.

Handling missing records in secondary join files
The system allows you to control whether to allow defaults for missing records in secondary files (similar
to the JDFTVAL DDS keyword for a join logical file). You can also specify that only records with defaults
be processed. This allows you to select only those records in which there is a missing record in the
secondary file.

See “Example: Handling missing records in secondary join files” for an example.

Example: Handling missing records in secondary join files: Reading records from the primary file
that do not have a record in the secondary file

In “Example 1: Dynamically joining database files without DDS” on page 141, the JDFTVAL parameter is
not specified, so the only records read are the result of a successful join from FILEA to FILEB. If you want
a list of the records in FILEA that do not have a match in FILEB, you can specify *ONLYDFT on the
JDFTVAL parameter as shown in the following example:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA FILEB) FORMAT(FILEA) +

JFLD((CUST FILEB/CUST)) +
MAPFLD((CUST ’FILEA/CUST’)) +
JDFTVAL(*ONLYDFT)

CALL PGM(PGME) /* Created using file FILEA as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

JDFTVAL(*ONLYDFT) causes a record to be returned to the program only when there is no equivalent
record in the secondary file (FILEB).

Because any values returned by the join operation for the fields in FILEB are defaults, it is normal to use
only the format for FILEA. The records that appear are those that do not have a match in FILEB. The
FORMAT parameter is required whenever the FILE parameter describes more than a single file, but the
file name specified can be one of the files specified on the FILE parameter. The program is created using
FILEA.

Conversely, you can also get a list of all the records where there is a record in FILEB that does not have a
match in FILEA. You can do this by making the secondary file the primary file in all the specifications. You
would specify:
OVRDBF FILE(FILEB) SHARE(*YES)
OPNQRYF FILE(FILEB FILEA) FORMAT(FILEB) JFLD((CUST FILEA/CUST)) +

MAPFLD((CUST ’FILEB/CUST’)) JDFTVAL(*ONLYDFT)
CALL PGM(PGMF) /* Created using file FILEB as input */
CLOF OPNID(FILEB)
DLTOVR FILE(FILEB)

144 DB2 UDB for iSeries Database Programming V5R2

Note: The Override with Database File (OVRDBF) command in this example uses FILE(FILEB) because it
must specify the first file on the OPNQRYF FILE parameter. The Close File (CLOF) command also
names FILEB. The JFLD and MAPFLD parameters also changed. The program is created using
FILEB.

Unique-key processing
Unique-key processing allows you to process only the first record of a group. The group is defined by one
or more records with the same set of key values. Processing the first record implies that the records you
receive will have unique keys.

When you use Unique-key processing, you can only read the file sequentially. The key fields are sorted
according to the specified sort sequence (SRTSEQ) and language identifier (LANGID), as shown in
“Example 3: Specifying a keyed sequence access path without using DDS” on page 140 and “Example 4:
Specifying a keyed sequence access path without using DDS” on page 140.

If you specify Unique-key processing, and the file actually has duplicate keys, you will receive only a single
record for each group of records with the same key value.

See the following topics for examples:

v “Example 1: Unique-key processing”

v “Example 2: Unique-key processing”

Example 1: Unique-key processing: Reading only unique-key records

Assume you want to process FILEA, which has records with duplicate keys for the Cust field. You want
only the first record for each unique value of the Cust field to be processed by program PGMF. You can
specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) KEYFLD(CUST) UNIQUEKEY(*ALL)
CALL PGM(PGMF)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Example 2: Unique-key processing: Reading records using only some of the key fields

Assume you want to process the same file with the sequence: Slsman, Cust, Date, but you want only one
record per Slsman and Cust. Assume the records in the file are:

Slsman Cust Date Record #

01 5000 880109 1
01 5000 880115 2
01 4025 880103 3
01 4025 880101 4
02 3000 880101 5

You specify the number of key fields that are unique, starting with the first key field.
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) KEYFLD(SLSMAN CUST DATE) UNIQUEKEY(2)
CALL PGM(PGMD)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Chapter 10. Opening a database file 145

The following records are retrieved by the program:

Slsman Cust Date Record #

01 4025 880101 4
01 5000 880109 1
02 3000 880101 5

Note: Null values are treated as equal, so only the first null value would be returned.

Defining fields derived from existing field definitions
Mapped field definitions:

v Allow you to create internal fields that specify selection values, as shown in “Example 7: Selecting
records using the OPNQRYF command” on page 134.

v Allow you to avoid confusion when the same field name occurs in multiple files, as shown in “Example
1: Dynamically joining database files without DDS” on page 141.

v Allow you to create fields that exist only in the format to be processed, but not in the database itself.
This allows you to perform translate, substring, concatenation, and complex mathematical operations.
The following examples describe this function.

For examples of creating fields that exist only in the format to be processed, see the following topics:

v “Example 1: Defining fields derived from existing field definitions”

v “Example 2: Defining fields derived from existing field definitions” on page 147

v “Example 3: Defining fields derived from existing field definitions” on page 147

Example 1: Defining fields derived from existing field definitions: Using derived fields

Assume you have the Price and Qty fields in the record format. You can multiply one field by the other by
using the Open Query File (OPNQRYF) command to create the derived Exten field. You want FILEA to be
processed, and you have already created FILEAA. Assume the record formats for the files contain the
following fields:

FILEA FILEAA

Order Order
Item Item
Qty Exten
Price Brfdsc
Descrp

The Exten field is a mapped field. Its value is determined by multiplying Qty times Price. It is not
necessary to have either the Qty or Price field in the new format, but they can exist in that format, too if
you wish. The Brfdsc field is a brief description of the Descrp field (it uses the first 10 characters).

Assume you have specified PGMF to process the new format. To create this program, use FILEAA as the
file to read. You can specify:
OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FILEAA) +

MAPFLD((EXTEN ’PRICE * QTY’) +
(BRFDSC ’DESCRP’))

CALL PGM(PGMF) /* Created using file FILEAA as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FILEAA)

146 DB2 UDB for iSeries Database Programming V5R2

Notice that the attributes of the Exten field are those defined in the record format for FILEAA. If the value
calculated for the field is too large, an exception is sent to the program.

It is not necessary to use the substring function to map to the Brfdsc field if you only want the characters
from the beginning of the field. The length of the Brfdsc field is defined in the FILEAA record format.

All fields in the format specified on the FORMAT parameter must be described on the OPNQRYF
command. That is, all fields in the output format must either exist in one of the record formats for the files
specified on the FILE parameter or be defined on the MAPFLD parameter. If you have fields in the format
on the FORMAT parameter that your program does not use, you can use the MAPFLD parameter to place
zeros or blanks in the fields. Assume the Fldc field is a character field and the Fldn field is a numeric field
in the output format, and you are using neither value in your program. You can avoid an error on the
OPNQRYF command by specifying:
MAPFLD((FLDC ’ " " ’)(FLDN 0))

Notice quotation marks enclose a blank value. By using a constant for the definition of an unused field,
you avoid having to create a unique format for each use of the OPNQRYF command.

Example 2: Defining fields derived from existing field definitions: Using built-in functions

Assume you want to calculate a mathematical function that is the sine of the Fldm field in FILEA. First
create a file (assume it is called FILEAA) with a record format containing the following fields:

FILEA FILEAA

Code Code
Fldm Fldm

Sinm

You can then create a program (assume PGMF) using FILEAA as input and specify:
OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FILEAA) +

MAPFLD((SINM ’%SIN(FLDM)’))
CALL PGM(PGMF) /* Created using file FILEAA as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FILEAA)

The built-in function %SIN calculates the sine of the field specified as its argument. Because the Sinm field
is defined in the format specified on the FORMAT parameter, the OPNQRYF command converts its
internal definition of the sine value (in floating point) to the definition of the Sinm field. This technique can
be used to avoid certain high-level language restrictions regarding the use of floating-point fields. For
example, if you defined the Sinm field as a packed decimal field, PGMF could be written using any
high-level language, even though the value was built using a floating-point field.

There are many other functions besides sine that can be used. Refer to the OPNQRYF command in the
Control Language (CL) topic for a complete list of built-in functions.

Example 3: Defining fields derived from existing field definitions: Using derived fields and built-in
functions

Assume, in the previous example, that a field called Fldx also exists in FILEA, and the Fldx field has
appropriate attributes used to hold the sine of the Fldm field. Also assume that you are not using the
contents of the Fldx field. You can use the MAPFLD parameter to change the contents of a field before
passing it to your high-level language program. For example, you can specify:

Chapter 10. Opening a database file 147

../rbam6/rbam6clmain.htm

OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) MAPFLD((FLDX ’%SIN(FLDM)’))
CALL PGM(PGMF) /* Created using file FILEA as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

In this case, you do not need to specify a different record format on the FORMAT parameter. (The default
uses the format of the first file on the FILE parameter.) Therefore, the program is created by using FILEA.
When using this technique, you must ensure that the field you redefine has attributes that allow the
calculated value to process correctly. The least complicated approach is to create a separate file with the
specific fields you want to process for each query.

You can also use this technique with a mapped field definition and the %XLATE function to translate a field
so that it appears to the program in a different manner than what exists in the database. For example, you
can translate a lowercase field so the program only sees uppercase.

The sort sequence and language identifier can affect the results of the %MIN and %MAX built-in functions.
For example, the uppercase and lowercase versions of letters can be equal or unequal depending on the
selected sort sequence and language identifier. Note that the translated field value is used to determine
the minimum and maximum, but the untranslated value is returned in the result record.

The example described uses FILEA as an input file. You can also update data using the OPNQRYF
command. However, if you use a mapped field definition to change a field, updates to the field are ignored.

Handling divide by zero
Dividing by zero is considered an error by the Open Query File (OPNQRYF) command.

Record selection is normally done before field mapping errors occur (for example, where field mapping
would cause a division error). Therefore, a record can be omitted (based on the QRYSLT parameter
values and valid data in the record) that would have caused a divide-by-zero error. In such an instance,
the record would be omitted and processing by the OPNQRYF command would continue.

If you want a zero answer, the following describes a solution that is practical for typical commercial data.

Assume you want to divide A by B giving C (stated as A / B = C). Assume the following definitions where B
can be zero.

Field Digits Dec

A 6 2
B 3 0
C 6 2

The following algorithm can be used:
(A * B) / %MAX((B * B) .nnnn1)

The %MAX function returns the maximum value of either B * B or a small value. The small value must
have enough leading zeros so that it is less than any value calculated by B * B unless B is zero. In this
example, B has zero decimal positions so .1 could be used. The number of leading zeros should be 2
times the number of decimals in B. For example, if B had 2 decimal positions, then .00001 should be
used.

Specify the following MAPFLD definition:
MAPFLD((C ’(A * B) / %MAX((B * B) .1)’))

148 DB2 UDB for iSeries Database Programming V5R2

The intent of the first multiplication is to produce a zero dividend if B is zero. This will ensure a zero result
when the division occurs. Dividing by zero does not occur if B is zero because the .1 value will be the
value used as the divisor.

Summarizing data from database file records (Grouping)
The group processing function allows you to summarize data from existing database records. You can
specify:

v The grouping fields

v Selection values both before and after grouping

v A keyed sequence access path over the new records

v Mapped field definitions that allow you to do such functions as sum, average, standard deviation, and
variance, as well as counting the records in each group

v The sort sequence and language identifier that supply the weights by which the field values are grouped

You normally start by creating a file with a record format containing only the following types of fields:

v Grouping fields. Specified on the GRPFLD parameter that define groups. Each group contains a
constant set of values for all grouping fields. The grouping fields do not need to appear in the record
format identified on the FORMAT parameter.

v Aggregate fields. Defined by using the MAPFLD parameter with one or more of the following built-in
functions:

%COUNT
Counts the records in a group

%SUM
A sum of the values of a field over the group

%AVG Arithmetic average (mean) of a field, over the group

%MAX
Maximum value in the group for the field

%MIN Minimum value in the group for the field

%STDDEV
Standard deviation of a field, over the group

%VAR Variance of a field, over the group

v Constant fields. Allow constants to be placed in field values. The restriction that the Open Query File
(OPNQRYF) command must know all fields in the output format is also true for the grouping function.

When you use group processing, you can only read the file sequentially.

For an example of group processing, see “Example: Summarizing data from database file records
(Grouping)”.

Example: Summarizing data from database file records (Grouping): Using group processing

Assume you want to group the data by customer number and analyze the amount field. Your database file
is FILEA and you create a file named FILEAA containing a record format with the following fields:

FILEA FILEAA

Cust Cust
Type Count (count of records per customer)
Amt Amtsum (summation of the amount field)

Amtavg (average of the amount field)
Amtmax (maximum value of the amount field)

Chapter 10. Opening a database file 149

When you define the fields in the new file, you must ensure that they are large enough to hold the results.
For example, if the Amt field is defined as 5 digits, you may want to define the Amtsum field as 7 digits.
Any arithmetic overflow causes your program to end abnormally.

Assume the records in FILEA have the following values:

Cust Type Amt

001 A 500.00
001 B 700.00
004 A 100.00
002 A 1200.00
003 B 900.00
001 A 300.00
004 A 300.00
003 B 600.00

You then create a program (PGMG) using FILEAA as input to print the records.
OVRDBF FILE(FILEAA) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FILEAA) KEYFLD(CUST) +

GRPFLD(CUST) MAPFLD((COUNT ’%COUNT’) +
(AMTSUM ’%SUM(AMT)’) +
(AMTAVG ’%AVG(AMT)’) +
(AMTMAX ’%MAX(AMT)’))

CALL PGM(PGMG) /* Created using file FILEAA as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FILEAA)

The records retrieved by the program appear as:

Cust Count Amtsum Amtavg Amtmax

001 3 1500.00 500.00 700.00
002 1 1200.00 1200.00 1200.00
003 2 1500.00 750.00 900.00
004 2 400.00 200.00 300.00

Note: If you specify the GRPFLD parameter, the groups may not appear in ascending sequence. To
ensure a specific sequence, you should specify the KEYFLD parameter.

Assume you want to print only the summary records in this example in which the Amtsum value is greater
than 700.00. Because the Amtsum field is an aggregate field for a given customer, use the GRPSLT
parameter to specify selection after grouping. Add the GRPSLT parameter:
GRPSLT(’AMTSUM *GT 700.00’)

The records retrieved by your program are:

Cust Count Amtsum Amtavg Amtmax

001 3 1500.00 500.00 700.00
002 1 1200.00 1200.00 1200.00
003 2 1500.00 750.00 900.00

The Open Query File (OPNQRYF) command supports selection both before grouping (QRYSLT
parameter) and after grouping (GRPSLT parameter).

150 DB2 UDB for iSeries Database Programming V5R2

Assume you want to select additional customer records in which the Type field is equal to A. Because
Type is a field in the record format for file FILEA and not an aggregate field, you add the QRYSLT
statement to select before grouping as follows:
QRYSLT(’TYPE *EQ "A" ’)

Note that fields used for selection do not have to appear in the format processed by the program.

The records retrieved by your program are:

Cust Count Amtsum Amtavg Amtmax

001 2 800.00 400.00 500.00
002 1 1200.00 1200.00 1200.00

Notice the values for CUST 001 changed because the selection took place before the grouping took place.

Assume you want to arrange the output by the Amtavg field in descending sequence, in addition to the
previous QRYSLT parameter value. You can do this by changing the KEYFLD parameter on the
OPNQRYF command as:
KEYFLD((AMTAVG *DESCEND))

The records retrieved by your program are:

Cust Count Amtsum Amtavg Amtmax

002 1 1200.00 1200.00 1200.00
001 2 800.00 400.00 500.00

Final total-only processing
Final-total-only processing is a special form of grouping in which you do not specify grouping fields. Only
one record is output. All of the special built-in functions for grouping can be specified. You can also specify
the selection of records that make up the final total.

For examples of final total-only processing, see the following topics:

v “Example 1: Final total-only processing”

v “Example 2: Final total-only processing” on page 152

v “Example 3: Final total-only processing” on page 152

Example 1: Final total-only processing: Simple total processing

Assume you have a database file FILEA and decide to create file FINTOT for your final total record as
follows:

FILEA FINTOT

Code Count (count of all the selected records)
Amt Totamt (total of the amount field)

Maxamt (maximum value in the amount field)

The FINTOT file is created specifically to hold the single record which is created with the final totals. You
would specify:
OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FINTOT) +

MAPFLD((COUNT ’%COUNT’) +

Chapter 10. Opening a database file 151

(TOTAMT ’%SUM(AMT)’) (MAXAMT ’%MAX(AMT)’))
CALL PGM(PGMG) /* Created using file FINTOT as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FINTOT)

Example 2: Final total-only processing: Total-only processing with record selection

Assume you want to change the previous example so that only the records where the Code field is equal
to B are in the final total. You can add the QRYSLT parameter as follows:
OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FINTOT) +

QRYSLT(’CODE *EQ "B" ’) MAPFLD((COUNT ’%COUNT’) +
(TOTAMT ’%SUM(AMT)’) (MAXAMT ’%MAX(AMT)’))

CALL PGM(PGMG) /* Created using file FINTOT as input */
CLOF OPNID(FILEA)
DLTOVR FILE(FINTOT)

You can use the GRPSLT keyword with the final total function. The GRPSLT selection values you specify
determines if you receive the final total record.

Example 3: Final total-only processing: Total-only processing using a new record format

Assume you want to process the new file/format with a CL program. You want to read the file and send a
message with the final totals. You can specify:
DCLF FILE(FINTOT)
DCL &COUNTA *CHAR LEN(7)
DCL &TOTAMTA *CHAR LEN(9)
OVRDBF FILE(FINTOT) TOFILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) FORMAT(FINTOT) MAPFLD((COUNT ’%COUNT’) +

(TOTAMT ’%SUM(AMT)’))
RCVF
CLOF OPNID(FILEA)
CHGVAR &COUNTA &COUNT
CHGVAR &TOTAMTA &TOTAMT
SNDPGMMSG MSG(’COUNT=’ *CAT &COUNTA *CAT +

’ Total amount=’ *CAT &TOTAMTA);
DLTOVR FILE(FINTOT)

You must convert the numeric fields to character fields to include them in an immediate message.

Controlling how the system runs the open query file command
The optimization function allows you to specify how you are going to use the results of the query.

When you use the Open Query File (OPNQRYF) command there are two steps where performance
considerations exist. The first step is during the actual processing of the OPNQRYF command itself. This
step decides if OPNQRYF is going to use an existing access path or build a new one for this query
request. The second step when performance considerations play a role is when the application program is
using the results of the OPNQRYF to process the data. See Database Performance and Query
Optimization for more information.

For most batch type functions, you are usually only interested in the total time of both steps mentioned
above. Therefore, the default for OPNQRYF is OPTIMIZE(*ALLIO). This means that OPNQRYF will
consider the total time it takes for both steps.

If you use OPNQRYF in an interactive environment, you may not be interested in processing the entire
file. You may want the first screen full of records to be displayed as quickly as possible. For this reason,
you would want the first step to avoid building an access path, if possible. You might specify
OPTIMIZE(*FIRSTIO) in such a situation.

152 DB2 UDB for iSeries Database Programming V5R2

../rzajq/rzajqmst02.htm
../rzajq/rzajqmst02.htm

If you want to process the same results of OPNQRYF with multiple programs, you would want the first
step to make an efficient open data path (ODP). That is, you would try to minimize the number of records
that must be read by the processing program in the second step by specifying OPTIMIZE(*MINWAIT) on
the OPNQRYF command.

If the KEYFLD or GRPFLD parameters on the OPNQRYF command require that an access path be built
when there is no access path to share, the access path is built entirely regardless of the OPTIMIZE entry.
Optimization mainly affects selection processing.

For examples, see the following topics:

v “Example 1: Controlling how the system runs the open query file command”

v “Example 2: Controlling how the system runs the open query file command”

Example 1: Controlling how the system runs the open query file command: Optimizing for the first
set of records

Assume that you have an interactive job in which the operator requests all records where the Code field is
equal to B. Your program’s subfile contains 15 records per screen. You want to get the first screen of
results to the operator as quickly as possible. You can specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’CODE = "B" ’) +

SEQONLY(*YES 15) OPTIMIZE(*FIRSTIO)
CALL PGM(PGMA)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

The system optimizes handling the query and fills the first buffer with records before completing the entire
query regardless of whether an access path already exists over the Code field.

Example 2: Controlling how the system runs the open query file command: Optimizing to minimize
the number of records read

Assume that you have multiple programs that will access the same file which is built by the Open Query
File (OPNQRYF) command. In this case, you will want to optimize the performance so that the application
programs read only the data they are interested in. This means that you want OPNQRYF to perform the
selection as efficiently as possible. You could specify:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) QRYSLT(’CODE *EQ "B"’) +

KEYFLD(CUST) OPTIMIZE(*MINWAIT)
CALL PGM(PGMA)
POSDBF OPNID(FILEA) POSITION(*START)
CALL PGM(PGMB)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Considerations for creating a file and using the FORMAT parameter
You must specify a record format name on the FORMAT parameter when you request join processing by
specifying multiple entries on the FILE parameter (that is, you cannot specify FORMAT(*FILE)). Also, a
record format name is normally specified with the grouping function or when you specify a complex
expression on the MAPFLD parameter to define a derived field. Consider the following:

v The record format name is any name you select. It can differ from the format name in the database file
you want to query.

v The field names are any names you select. If the field names are unique in the database files you are
querying, the system implicitly maps the values for any fields with the same name in a queried file
record format (FILE parameter) and in the query result format (FORMAT parameter). See “Example 1:
Dynamically joining database files without DDS” on page 141 for more information.

Chapter 10. Opening a database file 153

v If the field names are unique, but the attributes differ between the file specified on the FILE parameter
and the file specified on the FORMAT parameter, the data is implicitly mapped.

v The correct field attributes must be used when using the MAPFLD parameter to define derived fields.
For example, if you are using the grouping %SUM function, you must define a field that is large enough
to contain the total. If not, an arithmetic overflow occurs and an exception is sent to the program.

v Decimal alignment occurs for all field values mapped to the record format identified on the FORMAT
parameter. Assume you have a field in the query result record format with 5 digits with 0 decimals, and
the value that was calculated or must be mapped to that field is 0.12345. You will receive a result of 0
in your field because digits to the right of the decimal point are truncated.

Considerations for arranging records
The default processing for the Open Query File (OPNQRYF) command provides records in any order that
improves performance and does not conflict with the order specified on the KEYFLD parameter. Therefore,
unless you specify the KEYFLD parameter to either name specific key fields or specify KEYFLD(*FILE),
the sequence of the records returned to your program can vary each time you run the same Open Query
File (OPNQRYF) command.

When you specify the KEYFLD(*FILE) parameter option for the Open Query File (OPNQRYF) command,
and a sort sequence other than *HEX has been specified for the query with the job default or the
OPNQRYF SRTSEQ parameter, you can receive your records in an order that does not reflect the true file
order. If the file is keyed, the query’s sort sequence is applied to the key fields of the file and informational
message CPI431F is sent. The file’s sort sequence and alternative collating sequence table are ignored for
the ordering, if they exist. This allows users to indicate which fields to apply a sort sequence to without
having to list all the field names. If a sort sequence is not specified for the query (for example, *HEX),
ordering is done as it was prior to Version 2 Release 3.

Considerations for DDM files
The Open Query File (OPNQRYF) command can process DDM files. All files identified on the FILE
parameter must exist on the same IBM iSeries system or System/38 target system. An OPNQRYF which
specifies group processing and uses a DDM file requires that both the source and target system be the
same type (either both System/38 or both iSeries systems).

Considerations for writing a high-level language program
For the method described under “Using an existing record format in the file” on page 124 (where the
FORMAT parameter is omitted), your high-level language program is coded as if you are directly
accessing the database file. Selection or sequencing occurs external to your program, and the program
receives the selected records in the order you specified. The program does not receive records that are
omitted by your selection values. This same function occurs if you process through a logical file with
select/omit values.

If you use the FORMAT parameter, your program specifies the same file name used on the FORMAT
parameter. The program is written as if this file contains actual data.

If you read the file sequentially, your high-level language can automatically specify that the key fields are
ignored. Normally you write the program as if it is reading records in arrival sequence. If the KEYFLD
parameter is used on the Open Query File (OPNQRYF) command, you receive a diagnostic message,
which can be ignored.

If you process the file randomly by keys, your high-level language probably requires a key specification. If
you have selection values, it can prevent your program from accessing a record that exists in the
database. A Record not found condition can occur on a random read whether the OPNQRYF command
was used or whether a logical file created using DDS select/omit logic was used.

154 DB2 UDB for iSeries Database Programming V5R2

In some cases, you can monitor exceptions caused by mapping errors such as arithmetic overflow, but it is
better to define the attributes of all fields to correctly handle the results.

Messages sent when the Open Query File (OPNQRYF) command is run
When the OPNQRYF command is run, messages are sent informing the interactive user of the status of
the OPNQRYF request. For example, a message would be sent to the user if a keyed access path was
built by the OPNQRYF to satisfy the request. The following messages might be sent during a run of the
OPNQRYF command:

Message Identifier Description

CPI4301 Query running.
CPI4302 Query running. Building access path...
CPI4303 Query running. Creating copy of file...
CPI4304 Query running. Selection complete...
CPI4305 Query running. Sorting copy of file...
CPI4306 Query running. Building access path from file...
CPI4307 Query running. Building hash table from file &1 in

&2.
CPI4011 Query running. Number of records processed...

To stop these status messages from appearing, see the discussion about message handling in the CL

Programming book.

When your job is running under debug (by using the STRDBG command), or requested with query options
file option of DEBUG_MESSAGES *YES, messages are sent to your job log. These messages describe
the implementation method that is used to process the OPNQRYF request. These messages provide
information about the optimization processing that occurred. You can use these messages as a tool for
tuning the OPNQRYF request to achieve the best performance. The messages are as follows:

CPI4321
Access path built for file...

CPI4322
Access path built from keyed file...

CPI4324
Temporary file built from file...

CPI4325
Temporary file built for query

CPI4326
File processed in join position...

CPI4327
File processed in join position 1.

CPI4328
Access path of file that is used...

CPI4329
Arrival sequence that is used for file...

CPI432A
Query optimizer timed out...

CPI432C
All access paths considered for file...

Chapter 10. Opening a database file 155

../../books/c4157215.pdf
../../books/c4157215.pdf

CPI432E
Selection fields mapped to different attributes...

CPI432F
Access path suggestion for file...

CPI433B
Unable to update query options file.

CPI4330
&6 tasks used for parallel &10 scan of file &1.

CPI4332
&6 tasks used for parallel index that is created over file...

CPI4333
Hashing algorithm used to process join.

CPI4338
&1 access paths used for bitmap processing of file...

CPI4339
Query options retrieved file &2 in library &1.

CPI4341
Performing distributed query.

CPI4342
Performing distributed join for query.

CPI4345
Temporary distributed result file &4 built...

CPI4346
Optimizer debug messages for query join step &1 of &2 follow:

CPI4347
Query is processing in multiple steps.

Most of the messages provide a reason why the particular option was performed. The second level text on
each message gives an extended description of why the option was chosen. Some messages provide
suggestions to help improve the performance of the OPNQRYF request.

Using the Open Query File (OPNQRYF) command for more than just
input
The OPNQRYF command supports the OPTION parameter to determine the type of processing. The
default is OPTION(*INP), so the file is opened for input only. You can also use other OPTION values on
the OPNQRYF command and a high-level language program to add, update, or delete records through the
open query file. However, if you specify the UNIQUEKEY, GRPFLD, or GRPSLT parameters, use one of
the aggregate functions, or specify multiple files on the FILE parameter, your use of the file is restricted to
input only.

A join logical file is limited to input-only processing. A view is limited to input-only processing, if group, join,
union, distinct processing, or a user-defined table function is specified in the definition of the view. If the
query optimizer needs to create a temporary file to implement the query, then the use of the file is
restricted to input only.

If you want to change a field value from the current value to a different value in some of the records in a
file, you can use a combination of the OPNQRYF command and a specific high-level language program.
For example, assume you want to change all the records where the Flda field is equal to ABC so that the
Flda field is equal to XYZ. You can specify:

156 DB2 UDB for iSeries Database Programming V5R2

|
|
|
|

OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) OPTION(*ALL) QRYSLT(’FLDA *EQ "ABC" ’)
CALL PGM(PGMA)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

Program PGMA processes all records it can read, but the query selection restricts these to records where
the Flda field is equal to ABC. The program changes the field value in each record to XYZ and updates
the record.

You can also delete records in a database file using the OPNQRYF command. For example, assume you
have a field in your record that, if equal to X, means the record should be deleted. Your program can be
written to delete any records it reads and use the OPNQRYF command to select those to be deleted such
as:
OVRDBF FILE(FILEA) SHARE(*YES)
OPNQRYF FILE(FILEA) OPTION(*ALL) QRYSLT(’DLTCOD *EQ "X" ’)
CALL PGM(PGMB)
CLOF OPNID(FILEA)
DLTOVR FILE(FILEA)

You can also add records by using the OPNQRYF command. However, if the query specifications include
selection values, your program can be prevented from reading the added records because of the selection
values.

Comparing date, time, and timestamp using the OPNQRYF command
A date, time, or timestamp value can be compared either with another value of the same data type or with
a string representation of that data type. All comparisons are chronological, which means the farther a time
is from January 1, 0001, the greater the value of that time.

Comparisons involving time values and string representations of time values always include seconds. If the
string representation omits seconds, zero seconds are implied.

Comparisons involving timestamp values are chronological without regard to representations that might be
considered equivalent. Thus, the following predicate is true:

TIMESTAMP(’1990-02-23-00.00.00’) > ’1990-02-22-24.00.00’

When a character, DBCS-open, or DBCS-either field or constant is represented as a date, time, or
timestamp, the following rules apply:

Date: The length of the field or literal must be at least 8 if the date format is *ISO, *USA, *EUR, *JIS,
*YMD, *MDY, or *DMY. If the date format is *JUL (yyddd), the length of the variable must be at least 6
(includes the separator between yy and ddd). The field or literal may be padded with blanks.

Time: For all of the time formats (*USA, *ISO, *EUR, *JIS, *HMS), the length of the field or literal must be
at least 4. The field or literal may be padded with blanks.

Timestamp: For the timestamp format (yyyy-mm-dd-hh.mm.ss.uuuuuu), the length of the field or literal
must be at least 16. The field or literal may be padded with blanks.

Performing date, time, and timestamp arithmetic using the OPNQRYF
command
Date, time, and timestamp values can be incremented, decremented, and subtracted. These operations
may involve decimal numbers called durations. See “Durations” on page 158 for a definition of durations
and “Rules for date, time, and timestamp arithmetic” on page 158 for a specification of the rules for
performing arithmetic operations on date, time, and timestamp values.

Chapter 10. Opening a database file 157

In addition, see the following topics for specifics about these operations:

v Date arithmetic:

– “Subtracting dates” on page 159

– “Incrementing and decrementing dates” on page 159

v Time arithmetic:

– “Subtracting times” on page 160

– “Incrementing and decrementing times” on page 161

v Timestamp arithmetic:

– “Subtracting timestamps” on page 161

– “Incrementing and decrementing timestamps” on page 161

Durations
A duration is a number representing an interval of time. The four types of durations are:

Labeled duration

A labeled duration represents a specific unit of time as expressed by a number (which can be the result
of an expression) used as an operand for one of the seven duration built-in functions: %DURYEAR,
%DURMONTH, %DURDAY, %DURHOUR, %DURMINUTE, %DURSEC, or %DURMICSEC. The functions
are for the duration of year, month, day, hour, minute, second, and microsecond, respectively. The number
specified is converted as if it was assigned to a DECIMAL(15,0) number. A labeled duration can only be
used as an operand of an arithmetic operator when the other operand is a value of data type *DATE,
*TIME, or *TIMESTP. Thus, the expression HIREDATE + %DURMONTH(2) + %DURDAY(14) is valid,
whereas the expression HIREDATE + (%DURMONTH(2) + %DURDAY(14)) is not. In both of these
expressions, the labeled durations are %DURMONTH(2) and %DURDAY(14).

Date duration

A date duration represents a number of years, months, and days, expressed as a DECIMAL(8,0) number.
To be properly interpreted, the number must have the format yyyymmdd, where yyyy represents the
number of years, mm the number of months, and dd the number of days. The result of subtracting one
date value from another, as in the expression HIREDATE - BRTHDATE, is a date duration.

Time duration

A time duration represents a number of hours, minutes, and seconds, expressed as a DECIMAL(6,0)
number. To be properly interpreted, the number must have the format hhmmss, where hh represents the
number of hours, mm the number of minutes, and ss the number of seconds. The result of subtracting one
time value from another is a time duration.

Timestamp duration

A timestamp duration represents a number of years, months, days, hours, minutes, seconds, and
microseconds, expressed as a DECIMAL(20,6) number. To be properly interpreted, the number must have
the format yyyymmddhhmmsszzzzzz, where yyyy, mm, dd, hh, mm, ss, and zzzzzz represent, respectively,
the number of years, months, days, hours, minutes, seconds, and microseconds. The result of subtracting
one timestamp value from another is a timestamp duration.

Rules for date, time, and timestamp arithmetic
The only arithmetic operations that can be performed on date and time values are addition and
subtraction. If a date or time value is the operand of addition, the other operand must be a duration. The
specific rules governing the use of the addition operator with date and time values follow:

v If one operand is a date, the other operand must be a date duration or a labeled duration of years,
months, or days.

158 DB2 UDB for iSeries Database Programming V5R2

v If one operand is a time, the other operand must be a time duration or a labeled duration of hours,
minutes, or seconds.

v If one operand is a timestamp, the other operand must be a duration. Any type of duration is valid.

The rules for the use of the subtraction operator on date and time values are not the same as those for
addition because a date or time value cannot be subtracted from a duration, and because the operation of
subtracting two date and time values is not the same as the operation of subtracting a duration from a
date or time value. The specific rules governing the use of the subtraction operator with date and time
values follow:

v If the first operand is a date, the second operand must be a date, a date duration, a string
representation of a date, or a labeled duration of years, months, or days.

v If the second operand is a date, the first operand must be a date or a string representation of a date.

v If the first operand is a time, the second operand must be a time, a time duration, a string
representation of a time, or a labeled duration of hours, minutes, or seconds.

v If the second operand is a time, the first operand must be a time or string representation of a time.

v If the first operand is a timestamp, the second operand must be a timestamp, a string representation of
a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a timestamp or a string representation
of a timestamp.

Subtracting dates
The result of subtracting one date (DATE2) from another (DATE1) is a date duration that specifies the
number of years, months, and days between the two dates. The data type of the result is DECIMAL(8,0). If
DATE1 is greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is less than
DATE2, however, DATE1 is subtracted from DATE2, and the sign of the result is made negative. The
following procedural description clarifies the steps involved in the operation RESULT = DATE1 - DATE2.

If %DAY(DATE2) <= %DAY(DATE1) ;
then %DAY(RESULT) = %DAY(DATE1) - %DAY(DATE2).

If %DAY(DATE2) > %DAY(DATE1) ;
then %DAY(RESULT) = N + %DAY(DATE1) - %DAY(DATE2) ;
where N = the last day of %MONTH(DATE2). ;
%MONTH(DATE2) is then incremented by 1.

If %MONTH(DATE2) <= %MONTH(DATE1) ;
then %MONTH(RESULT) = %MONTH(DATE1) - %MONTH(DATE2).

If %MONTH(DATE2) > %MONTH(DATE1) ;
then %MONTH(RESULT) = 12 + %MONTH(DATE1) - %MONTH(DATE2). ;
%YEAR(DATE2) is then incremented by 1.

%YEAR(RESULT) = %YEAR(DATE1) - %YEAR(DATE2).

For example, the result of %DATE('3/15/2000') - '12/31/1999' is 215 (or, a duration of 0 years, 2 months,
and 15 days).

Incrementing and decrementing dates
The result of adding a duration to a date, or of subtracting a duration from a date, is itself a date. (For the
purposes of this operation, a month denotes the equivalent of a calendar page. Adding months to a date,
then, is like turning the pages of a calendar, starting with the page on which the date appears.) The result
must fall between the dates January 1, 0001, and December 31, 9999, inclusive. If a duration of years is
added or subtracted, only the year portion of the date is affected. The month is unchanged, as is the day
unless the result would be February 29 of a year that is not a leap year. In this case, the day is changed
to 28.

Chapter 10. Opening a database file 159

Similarly, if a duration of months is added or subtracted, only months and, if necessary, years are affected.
The day portion of the date is unchanged unless the result would not be valid (September 31, for
example). In this case, the day is set to the last day of the month.

Adding or subtracting a duration of days will, of course, affect the day portion of the date, and potentially
the month and year.

Date durations, whether positive or negative, may also be added to and subtracted from dates. As with
labeled durations, the result is a valid date.

When a positive date duration is added to a date, or a negative date duration is subtracted from a date,
the date is incremented by the specified number of years, months, and days, in that order. Thus, DATE1 +
X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression: DATE1 +
%DURYEAR(%YEAR(X)) + %DURMONTH(%MONTH(X)) + %DURDAY(%DAY(X))

When a positive date duration is subtracted from a date, or a negative date duration is added to a date,
the date is decremented by the specified number of days, months, and years, in that order. Thus, DATE1 -
X, where X is a positive DECIMAL(8,0) number, is equivalent to the expression: DATE1 -
%DURDAY(%DAY(X)) - %DURMONTH(%MONTH(X)) - %DURYEAR(%YEAR(X))

When adding durations to dates, adding one month to a given date gives the same date one month later
unless that date does not exist in the later month. In that case, the date is set to that of the last day of the
later month. For example, January 28 plus one month gives February 28; and one month added to
January 29, 30, or 31 results in either February 28 or, for a leap year, February 29.

Note: If one or more months are added to a given date and then the same number of months is
subtracted from the result, the final date is not necessarily the same as the original date.

Subtracting times
The result of subtracting one time (TIME2) from another (TIME1) is a time duration that specifies the
number of hours, minutes, and seconds between the two times. The data type of the result is
DECIMAL(6,0). If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If TIME1 is
less than TIME2, however, TIME1 is subtracted from TIME2, and the sign of the result is made negative.
The following procedural description clarifies the steps involved in the operation RESULT = TIME1 -
TIME2.

If %SECOND(TIME2) <= %SECOND(TIME1) ;
then %SECOND(RESULT) = %SECOND(TIME1) - %SECOND(TIME2).

If %SECOND(TIME2) > %SECOND(TIME1) ;
then %SECOND(RESULT) = 60 + %SECOND(TIME1) - %SECOND(TIME2). ;
%MINUTE(TIME2) is then incremented by 1.

If %MINUTE(TIME2) <= %MINUTE(TIME1) ;
then %MINUTE(RESULT) = %MINUTE(TIME1) - %MINUTE(TIME2).

If %MINUTE(TIME2) > %MINUTE(TIME1) ;
then %MINUTE(RESULT) = 60 + %MINUTE(TIME1) - %MINUTE(TIME2). ;
%HOUR(TIME2) is then incremented by 1.

%HOUR(RESULT) = %HOUR(TIME1) - %HOUR(TIME2).

For example, the result of %TIME('11:02:26') - '00:32:56' is 102930 (a duration of 10 hours, 29 minutes,
and 30 seconds).

160 DB2 UDB for iSeries Database Programming V5R2

Incrementing and decrementing times
The result of adding a duration to a time, or of subtracting a duration from a time, is itself a time. Any
overflow or underflow of hours is discarded, thereby ensuring that the result is always a time. If a duration
of hours is added or subtracted, only the hours portion of the time is affected. The minutes and seconds
are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if necessary, hours are
affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds portion of the time, and
potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted from times. The result
is a time that has been incremented or decremented by the specified number of hours, minutes, and
seconds, in that order. TIME1 + X, where X is a DECIMAL(6,0) number, is equivalent to the expression:
TIME1 + %DURHOUR(%HOUR(X)) + %DURMINUTE(%MINUTE(X)) + %DURSEC(%SECOND(X))

Subtracting timestamps
The result of subtracting one timestamp (TS2) from another (TS1) is a timestamp duration that specifies
the number of years, months, days, hours, minutes, seconds, and microseconds between the two
timestamps. The data type of the result is DECIMAL(20,6). If TS1 is greater than or equal to TS2, TS2 is
subtracted from TS1. If TS1 is less than TS2, however, TS1 is subtracted from TS2 and the sign of the
result is made negative. The following procedural description clarifies the steps involved in the operation
RESULT = TS1 - TS2:

If %MICSEC(TS2) <= %MICSEC(TS1) ;
then %MICSEC(RESULT) = %MICSEC(TS1) - ;
%MICSEC(TS2).

If %MICSEC(TS2) > %MICSEC(TS1) ;
then %MICSEC(RESULT) = 1000000 + ;
%MICSEC(TS1) - %MICSEC(TS2) ;
and %SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in the rules for subtracting
times:

If %HOUR(TS2) <= %HOUR(TS1) ;
then %HOUR(RESULT) = %HOUR(TS1) - %HOUR(TS2).

If %HOUR(TS2) > %HOUR(TS1) ;
then %HOUR(RESULT) = 24 + %HOUR(TS1) - %HOUR(TS2) ;
and %DAY(TS2) is incremented by 1.

The date part of the timestamp is subtracted as specified in the rules for subtracting dates.

Incrementing and decrementing timestamps
The result of adding a duration to a timestamp, or of subtracting a duration from a timestamp, is itself a
timestamp. Date and time arithmetic is performed as previously defined, except that an overflow or
underflow of hours is carried into the date part of the result, which must be within the range of valid dates.
Microseconds overflow into seconds.

Chapter 10. Opening a database file 161

Using the Open Query File (OPNQRYF) command for random
processing
Most of the previous examples show the OPNQRYF command using sequential processing. Random
processing operations (for example, the RPG/400 language operation CHAIN or the COBOL/400 language
operation READ) can be used in most cases. However, if you are using the group or unique-key functions,
you cannot process the file randomly.

Open Query File command: Performance considerations
See Database Performance and Query Optimization for tips and techniques for optimizing the performance
of a query application.

The best performance can occur when the Open Query File (OPNQRYF) command uses an existing
keyed sequence access path. For example, if you want to select all the records where the Code field is
equal to B and an access path exists over the Code field, the system can use the access path to perform
the selection (key positioning selection) rather than read the records and select at run time (dynamic
selection).

The Open Query File (OPNQRYF) command cannot use an existing index when any of the following are
true:

v The key field in the access path is derived from a substring function.

v The key field in the access path is derived from a concatenation function.

v Both of the following are true of the sort sequence table associated with the query (specified on the
SRTSEQ parameter):

– It is a shared-weight sequence table.

– It does not match the sequence table associated with the access path (a sort sequence table or an
alternate collating sequence table).

v Both of the following are true of the sort sequence table associated with the query (specified on the
SRTSEQ parameter):

– It is a unique-weight sequence table.

– It does not match the sequence table associated with the access path (a sort sequence table or an
alternate collating sequence table) when either:

- Ordering is specified (KEYFLD parameter).

- Record selection exists (QRYSLT parameter) that does not use *EQ, *NE, *CT, %WLDCRD, or
%VALUES.

- Join selection exists (JFLD parameter) that does not use *EQ or *NE operators.

Part of the OPNQRYF processing is to determine what is the fastest approach to satisfying your request. If
the file you are using is large and most of the records have the Code field equal to B, it is faster to use
arrival sequence processing than to use an existing keyed sequence access path. Your program will still
see the same records. OPNQRYF can only make this type of decision if an access path exists on the
Code field. In general, if your request will include approximately 20% or more of the number of records in
the file, OPNQRYF will tend to ignore the existing access paths and read the file in arrival sequence.

If no access path exists over the Code field, the program reads all of the records in the file and passes
only the selected records to your program. That is, the file is processed in arrival sequence.

The system can perform selection faster than your application program. If no appropriate keyed sequence
access path exists, either your program or the system makes the selection of the records you want to
process. Allowing the system to perform the selection process is considerably faster than passing all the
records to your application program.

162 DB2 UDB for iSeries Database Programming V5R2

../rzajq/rzajqmst02.htm

This is especially true if you are opening a file for update operations because individual records must be
passed to your program, and locks are placed on every record read (in case your program needs to
update the record). By letting the system perform the record selection, the only records passed to your
program and locked are those that meet your selection values.

If you use the KEYFLD parameter to request a specific sequence for reading records, the fastest
performance results if an access path already exists that uses the same key specification or if a keyed
sequence access path exists that is similar to your specifications (such as a key that contains all the fields
you specified plus some additional fields on the end of the key). This is also true for the GRPFLD
parameter and on the to-fields of the JFLD parameter. If no such access path exists, the system builds an
access path and maintains it as long as the file is open in your job.

Processing all of the records in a file by an access path that does not already exist is generally not as
efficient as using a full record sort, if the number of records to be arranged (not necessarily the total
number of records in the file) exceeds 1000 and is greater than 20% of the records in the file. While it is
generally faster to build the keyed sequence access path than to do the sort, faster processing allowed by
the use of arrival sequence processing normally favors sorting the data when looking at the total job time.
If a usable access path already exists, using the access path can be faster than sorting the data. You can
use the ALWCPYDTA(*OPTIMIZE) parameter of the Open Query File (OPNQRYF) command to allow the
system to use a full record sort if that is the fastest method of processing records.

If you do not intend to read all of the query records and if the OPTIMIZE parameter is *FIRSTIO or
*MINWAIT, you can specify a number to indicate how many records you intend to retrieve. If the number of
records is considerably less than the total number the query is expected to return, the system may select
a faster access method.

If you use the grouping function, faster performance is achieved if you specify selection before grouping
(QRYSLT parameter) instead of selection after grouping (GRPSLT parameter). Only use the GRPSLT
parameter for comparisons involving aggregate functions.

For most uses of the OPNQRYF command, new or existing access paths are used to access the data and
present it to your program. In some cases of the OPNQRYF command, the system must create a
temporary file. The rules for when a temporary file is created are complex, but the following are typical
cases in which this occurs:

v When you specify a dynamic join, and the KEYFLD parameter describes key fields from different
physical files.

v When you specify a dynamic join and the GRPFLD parameter describes fields from different physical
files.

v When you specify both the GRPFLD and KEYFLD parameters but they are not the same.

v When the fields specified on the KEYFLD parameter total more than 2000 bytes in length.

v When you specify a dynamic join and *MINWAIT for the OPTIMIZE parameter.

v When you specify a dynamic join using a join logical file and the join type (JDFTVAL) of the join logical
file does not match the join type of the dynamic join.

v When you specify a logical file and the format for the logical file refers to more than one physical file.

v When you specify an SQL view, the system may require a temporary file to contain the results of the
view.

v When the ALWCPYDTA(*OPTIMIZE) parameter is specified and using a temporary result would improve
the performance of the query.

When a dynamic join occurs (JDFTVAL(*NO)), OPNQRYF attempts to improve performance by reordering
the files and joining the file with the smallest number of selected records to the file with the largest number
of selected records. To prevent OPNQRYF from reordering the files, specify JORDER(*FILE). This forces
OPNQRYF to join the files in the sequence specify in the OPNQRYF command.

Chapter 10. Opening a database file 163

Open Query File command: Performance considerations for sort
sequence tables
See the following topics for performance considerations for sort sequence tables.

v “Grouping, joining, and selection: OPNQRYF performance considerations”

v “Ordering: OPNQRYF performance considerations”

Grouping, joining, and selection: OPNQRYF performance considerations
When using an existing index, the optimizer ensures that the attributes of the selection, join, and grouping
fields match the attributes of the keys in the existing index. Also, the sort sequence table associated with
the query must match the sequence table (a sort sequence table or an alternate collating sequence table)
associated with the key field of the existing index. If the sequence tables do not match, the existing index
cannot be used.

However, if the sort sequence table associated with the query is a unique-weight sequence table (including
*HEX), some additional optimization is possible. The optimizer acts as though no sort sequence table is
specified for any grouping fields or any selection or join predicates that use the following operators or
functions:

v *EQ

v *NE

v *CT

v %WLDCRD

v %VALUES

The advantage is that the optimizer is free to use any existing access path where the keys match the field
and the access path either:

v Does not contain a sequence table.

v Contains a unique-weight sequence table (the table does not have to match the unique-weight sort
sequence table associated with the query).

Ordering: OPNQRYF performance considerations
For ordering fields, the optimizer is not free to use any existing access path. The sort sequence tables
associated with the index and the query must match unless the optimizer chooses to do a sort to satisfy
the ordering request. When a sort is used, the translation is performed during the sort, leaving the
optimizer free to use any existing access path that meets the selection criteria.

Performance comparisons with other database functions
The Open Query File (OPNQRYF) command uses the same database support as logical files and join
logical files. Therefore, the performance of functions like building a keyed access path or doing a join
operation will be the same.

The selection functions done by the OPNQRYF command (for the QRYSLT and GRPSLT parameters) are
similar to logical file select/omit. The main difference is that for the OPNQRYF command, the system
decides whether to use access path selection or dynamic selection (similar to omitting or specifying the
DYNSLT keyword in the DDS for a logical file), as a result of the access paths available on the system
and what value was specified on the OPTIMIZE parameter.

Considerations for field use
When the grouping function is used, all fields in the record format for the open query file (FORMAT
parameter) and all key fields (KEYFLD parameter) must either be grouping fields (specified on the
GRPFLD parameter) or mapped fields (specified on the MAPFLD parameter) that are defined using only

164 DB2 UDB for iSeries Database Programming V5R2

grouping fields, constants, and aggregate functions. The aggregate functions are: %AVG, %COUNT,
%MAX (using only one operand), %MIN (using only one operand), %STDDEV, %SUM, and %VAR. Group
processing is required in the following cases:

v When you specify grouping field names on the GRPFLD parameter

v When you specify group selection values on the GRPSLT parameter

v When a mapped field that you specified on the MAPFLD parameter uses an aggregate function in its
definition

Fields that have any of the large object data types: BLOB, CLOB, or DBCLOB, can only be read using the
Copy From Query File (CPYFRMQRYF) command or Structured Query Language (SQL). Large object
field data cannot be directly accessed from an open query file. TheCPYFRMQRYF command must be
used to access large object fields from an open query file. A field with a large object data type (BLOB,
CLOB or DBCLOB) cannot be specified on the following OPNQRYF parameters: KEYFLD, UNIQUEKEY,
JFLD, and GRPFLD.

Fields of type DATALINK may not appear in selection, grouping, ordering, or joins. If a DATALINK field
appears in that format, it will be returned in its unprocessed form, as it exists in the data space.

Fields contained in a record format, identified on the FILE parameter, and defined (in the DDS used to
create the file) with a usage value of N (neither input nor output) cannot be specified on any parameter of
the OPNQRYF command. Only fields defined as either I (input-only) or B (both input and output) usage
can be specified. Any fields with usage defined as N in the record format identified on the FORMAT
parameter are ignored by the OPNQRYF command.

Fields in the open query file records normally have the same usage attribute (input-only or both input and
output) as the fields in the record format identified on the FORMAT parameter, with the exceptions noted
below. If the file is opened for any option (OPTION parameter) that includes output or update and any
usage, and if any B (both input and output) field in the record format identified on the FORMAT parameter
is changed to I (input only) in the open query file record format, then an information message is sent by
the OPNQRYF command.

If you request join processing or group processing, or if you specify UNIQUEKEY processing, all fields in
the query records are given input-only use. Any mapping from an input-only field from the file being
processed (identified on the FILE parameter) is given input-only use in the open query file record format.
Fields defined using the MAPFLD parameter are normally given input-only use in the open query file. A
field defined on the MAPFLD parameter is given a value that matches the use of its constituent field if all
of the following are true:

v Input-only is not required because of any of the conditions previously described in this section.

v The field-definition expression specified on the MAPFLD parameter is a field name (no operators or
built-in functions).

v The field used in the field-definition expression exists in one of the file, member, or record formats
specified on the FILE parameter (not in another field defined using the MAPFLD parameter).

v The base field and the mapped field are compatible field types (the mapping does not mix numeric and
character field types, unless the mapping is between zoned and character fields of the same length).

v If the base field is binary with nonzero decimal precision, the mapped field must also be binary and
have the same precision.

Considerations for files shared in a job
In order for your application program to use the open data path built by the Open Query File (OPNQRYF)
command, your program must share the query file. If your program does not open the query file as shared,
then it actually does a full open of the file it was originally compiled to use (not the query open data path
built by the OPNQRYF command). Your program will share the query open data path, depending on the
following conditions:

Chapter 10. Opening a database file 165

v Your application program must open the file as shared. Your program meets this condition when the first
or only member queried (as specified on the FILE parameter) has an attribute of SHARE(*YES). If the
first or only member has an attribute of SHARE(*NO), then you must specify SHARE(*YES) in an
Override with Database File (OVRDBF) command before calling your program.

v The file opened by your application program must have the same name as the file opened by the
OPNQRYF command. Your program meets this condition when the file specified in your program has
the same file and member name as the first or only member queried (as specified on the FILE
parameter). If the first or only member has a different name, then you must specify an Override with
Database File (OVRDBF) command of the name of the file your program was compiled against to the
name of the first or only member queried.

v Your program must be running in the same activation group to which the query open data path (ODP) is
scoped. If the query ODP is scoped to the job, your program may run in any activation group within the
job.

The OPNQRYF command never shares an existing open data path in the job or activation group. A
request to open a query file fails with an error message if the open data path has the same library, file,
and member name that is in the open request, and if either of the following is true:

v OPNSCOPE(*ACTGRPDFN) or OPNSCOPE(*ACTGRP) is specified for the OPNQRYF command, and
the open data path is scoped to the same activation group or job from which the OPNQRYF command
is run.

v OPNSCOPE(*JOB) is specified for the OPNQRYF command, and the open data path is scoped to the
same job from which the OPNQRYF command is run.

Subsequent shared opens adhere to the same open options (such as SEQONLY) that were in effect when
the OPNQRYF command was run.

See “Sharing database files in the same job or activation group” on page 108 for more information about
sharing files in a job or activation group.

Considerations for checking if the record format description changed
If record format level checking is indicated, the format level number of the open query file record format
(identified on the FORMAT parameter) is checked against the record format your program was compiled
against. This occurs when your program shares the previously opened query file. Your program’s shared
open is checked for record format level if the following conditions are met:

v The first or only file queried (as specified on the FILE parameter) must have the LVLCHK(*YES)
attribute.

v There must not be an override of the first or only file queried to LVLCHK(*NO).

Other run time considerations for the OPNQRYF command
The following are other run time considerations for OPNQRYF:

v “Overrides and the OPNQRYF command”

v “Copying from an open query file” on page 167

Overrides and the OPNQRYF command
Overrides can change the name of the file, library, and member that should be processed by the open
query file. (However, any parameter values other than TOFILE, MBR, LVLCHK, INHWRT, or SEQONLY
specified on an Override with Database File (OVRDBF) command are ignored by the OPNQRYF
command.) If a name change override applies to the first or only member queried, any additional overrides
must be against the new name, not the name specified for the FILE parameter on the OPNQRYF
command.

166 DB2 UDB for iSeries Database Programming V5R2

Copying from an open query file
The Copy from Query File (CPYFRMQRYF) command can be used to copy from an open query file to
another file or to print a formatted listing of the records. Any open query file, except those using distributed
data management (DDM) files, specified with the input, update, or all operation value on the FILE
parameter of the Open Query File (OPNQRYF) command can be copied using the CPYFRMQRYF
command. The CPYFRMQRYF command cannot be used to copy to logical files. For more information,
see File Management.

Although the CPYFRMQRYF command uses the open data path of the open query file, it does not open
the file. Consequently, you do not have to specify SHARE(*YES) for the database file you are copying.

The following are examples of how the OPNQRYF and CPYFRMQRYF commands can be used:

v “Example 1: Copying from an open query file”

v “Example 2: Copying from an open query file”

v “Example 3: Copying from an open query file”

v “Example 4: Copying from an open query file”

Example 1: Copying from an open query file: Building a file with a subset of records

Assume you want to create a file from the CUSTOMER/ADDRESS file containing only records where the
value of the STATE field is Texas. You can specify the following:
OPNQRYF FILE(CUSTOMER/ADDRESS) QRYSLT(’STATE *EQ "TEXAS"’)
CPYFRMQRYF FROMOPNID(ADDRESS) TOFILE(TEXAS/ADDRESS) CRTFILE(*YES)

Example 2: Copying from an open query file: Printing records based on selection

Assume you want to print all records from FILEA where the value of the CITY field is Chicago. You can
specify the following:
OPNQRYF FILE(FILEA) QRYSLT(’CITY *EQ "CHICAGO"’)
CPYFRMQRYF FROMOPNID(FILEA) TOFILE(*PRINT)

Example 3: Copying from an open query file: Copying a subset of records to a diskette

Assume you want to copy all records from FILEB where the value of FIELDB is 10 to a diskette. You can
specify the following:
OPNQRYF FILE(FILEB) QRYSLT(’FIELDB *EQ "10"’) OPNID(MYID)
CPYFRMQRYF FROMOPNID(MYID) TOFILE(DISK1)

Example 4: Copying from an open query file: Creating a copy of the output of a dynamic join

Assume you want to create a physical file that has the format and data of the join of FILEA and FILEB.
Assume the files contain the following fields:
FILEA FILEB JOINAB
Cust Cust Cust
Name Amt Name
Addr Amt

The join field is Cust, which exists in both files. To join the files and save a copy of the results in a new
physical file MYLIB/FILEC, you can specify:
OPNQRYF FILE(FILEA FILEB) FORMAT(JOINAB) +

JFLD((FILEA/CUST FILEB/CUST)) +
MAPFLD((CUST ’FILEA/CUST’)) OPNID(QRYFILE)

CPYFRMQRYF FROMOPNID(QRYFILE) TOFILE(MYLIB/FILEC) CRTFILE(*YES)

The file MYLIB/FILEC will be created by the CPYFRMQRYF command. The file will have file attributes like
those of FILEA although some file attributes may be changed. The format of the file will be like JOINAB.

Chapter 10. Opening a database file 167

../dm/rbal3mst02.htm

The file will contain the data from the join of FILEA and FILEB using the Cust field. File FILEC in library
MYLIB can be processed like any other physical file with CL commands, such as the Display Physical File
Member (DSPPFM) command and utilities, such as Query. For more information about the CPYFRMQRYF
command and other copy commands, see File Management.

Typical errors when using the Open Query File (OPNQRYF) command
Several functions must be correctly specified for the OPNQRYF command and your program to get the
correct results. The Display Job (DSPJOB) command is your most useful tool if problems occur. This
command supports both the open files option and the file overrides option. You should look at both of
these if you are having problems.

These are the most common problems and how to correct them:

v Shared open data path (ODP). The OPNQRYF command operates through a shared ODP. In order for
the file to process correctly, the member must be opened for a shared ODP. If you are having problems,
use the open files option on the DSPJOB command to determine if the member is opened and has a
shared ODP.

There are normally two reasons that the file is not open:

– The member to be processed must be SHARE(*YES). Either use an Override with Database File
(OVRDBF) command or permanently change the member.

– The file is closed. You have run the OPNQRYF command with the OPNSCOPE(*ACTGRPDFN) or
TYPE(*NORMAL) parameter option from a program that was running in the default activation group
at a higher level in the call stack than the program that is getting an error message or that is simply
running the Reclaim Resources (RCLRSC) command. This closes the open query file because it was
opened from a program at a higher level in the call stack than the program that ran the RCLRSC
command. If the open query file was closed, you must run the OPNQRYF command again. Note that
when using the OPNQRYF command with the TYPE(*NORMAL) parameter option on releases prior
to Version 2 Release 3, the open query file is closed even if it was opened from the same program
that reclaims the resources.

v Level check. Level checking is normally used because it ensures that your program is running against
the same record format that the program was compiled with. If you are experiencing level check
problems, it is normally because of one of the following:

– The record format was changed since the program was created. Creating the program again should
correct the problem.

– An override is directing the program to an incorrect file. Use the file overrides option on the DSPJOB
command to ensure that the overrides are correctly specified.

– The FORMAT parameter is needed but is either not specified or incorrectly specified. When a file is
processed with the FORMAT parameter, you must ensure:

- The Override with Database File (OVRDBF) command, used with the TOFILE parameter,
describes the first file on the FILE parameter of the Open Query File (OPNQRYF) command.

- The FORMAT parameter identifies the file that contains the format used to create the program.

– The FORMAT parameter is used to process a format from a different file (for example, for group
processing), but SHARE(*YES) was not requested on the OVRDBF command.

v The file to be processed is at end of file. The normal use of the OPNQRYF command is to process a
file sequentially where you can only process the file once. At that point, the position of the file is at the
end of the file and you will not receive any records if you attempt to process it again. To process the file
again from the start, you must either run the OPNQRYF command again or reposition the file before
processing. You can reposition the file by using the Position Database File (POSDBF) command, or
through a high-level language program statement.

v No records exist. This can be caused when you use the FORMAT keyword, but do not specify the
OVRDBF command.

v Syntax errors. The system found an error in the specification of the OPNQRYF command.

168 DB2 UDB for iSeries Database Programming V5R2

../dm/rbal3mst02.htm

v Operation not valid. The definition of the query does not include the KEYFLD parameter, but the
high-level language program attempts to read the query file using a key field.

v Get option not valid. The high-level language program attempted to read a record or set a record
position before the current record position, and the query file used either the group by option, the
unique key option, or the distinct option on the SQL statement.

Chapter 10. Opening a database file 169

170 DB2 UDB for iSeries Database Programming V5R2

Chapter 11. Basic database file operations in programs

The basic database file operations that can be performed in a program are discussed in this chapter. See
the following topics:

v “Setting a position in the file”

v “Reading database records” on page 172

v “Updating database records” on page 178

v “Adding database records” on page 178

v “Deleting database records” on page 181

Setting a position in the file
After a file is opened by a job, the system maintains a position in the file for that job. The file position is
used in processing the file. For example, if a program does a read operation requesting the next
sequential record, the system uses the file position to determine which record to return to the program.
The system will then set the file position to the record just read, so that another read operation requesting
the next sequential record will return the correct record. The system keeps track of all file positions for
each job. In addition, each job can have multiple positions in the same file.

The file position is first set to the position specified in the POSITION parameter on the Override with
Database File (OVRDBF) command. See OVRDBF (Override with Database File) Command in the Control
Language (CL) topic. If you do not use an OVRDBF command, or if you take the default for the POSITION
parameter, the file position is set just before the first record in the member’s access path.

A program can change the current file position by using the appropriate high-level language program file
positioning operation (for example, SETLL in the RPG/400 language or START in the COBOL/400
language). A program can also change the file position by using the CL Position Database File (POSDBF)
command.

Note: File positioning by means of the Override with Database File (OVRDBF) command does not occur
until the next time the file is opened. Because a file can be opened only once within a CL program,
this command cannot be used within a single CL program to affect what will be read through the
RCVF command.

At end of file, after the last read, the file member is positioned to *START or *END file position, depending
on whether the program was reading forward or backward through the file. The following diagram shows
*START and *END file positions. *START is at the top, with three records following, and *END at the
bottom.

Only a read operation, force-end-of-data operation, high-level language positioning operation, or specific
CL command to change the file position can change the file position. Add, update, and delete operations
do not change the file position. After a read operation, the file is positioned to the new record. This record
is then returned to your program. After the read operation is completed, the file is positioned at the record

© Copyright IBM Corp. 1998, 2002 171

../cl/ovrdbf.htm
../rbam6/rbam6clmain.htm
../rbam6/rbam6clmain.htm

just returned to your program. If the member is open for input, a force-end-of-data operation positions the
file after the last record in the file (*END) and sends the end-of-file message to your program.

For sequential read operations, the current file position is used to locate the next or previous record on the
access path. For read-by-key or read-by-relative-record-number operations, the file position is not used. If
POSITION(*NONE) is specified at open time, no starting file position is set. In this case, you must
establish a file position in your program, if you are going to read sequentially.

If end-of-file delay was specified for the file on an Override With Database File (OVRDBF) command, the
file is not positioned to *START or *END when the program reads the last record. The file remains
positioned at the last record read. A file with end-of-file delay processing specified is positioned to *START
or *END only when a force-end-of-data (FEOD) occurs or a controlled job end occurs. For more
information about end-of-file delay, see “Waiting for more records when end of file is reached” on
page 175.

You can also use the Position Database File (POSDBF) command to set or change the current position in
your file for files opened using either the Open Database File (OPNDBF) command or the Open Query
File (OPNQRYF) command.

Reading database records
The iSeries system provides a number of ways to read database records. The next sections describe
those ways in detail. (Some high-level languages do not support all of the read operations available on the
system. See your high-level language guide for more information about reading database records.)

See the following topics:

v “Reading database records using an arrival sequence access path”

v “Reading database records using a keyed sequence access path” on page 173

v “Waiting for more records when end of file is reached” on page 175

v “Releasing locked records” on page 178

Reading database records using an arrival sequence access path
The system performs the following read operations based on the operations you specify using your
high-level language. These operations are allowed if the file was defined with an arrival sequence access
path; or if the file was defined with a keyed sequence access path with the ignore-keyed-sequence-
access-path option specified in the program, on the Open Database File (OPNDBF) command, or on the
Open Query File (OPNQRYF) command. See “Database file processing: Ignoring the keyed sequence
access path” on page 103 for more details about the option to ignore a keyed sequence access path.

Note: Your high-level language may not allow all of the following read operations. Refer to your high-level
language guide to determine which operations are allowed by the language.

See the following read operation topics:

v “Read next operation using an arrival sequence access path” on page 173

v “Read previous operation using an arrival sequence access path” on page 173

v “Read first operation using an arrival sequence access path” on page 173

v “Read last operation using an arrival sequence access path” on page 173

v “Read same operation using an arrival sequence access path” on page 173

v “Read by relative record number operation using an arrival sequence access path” on page 173

172 DB2 UDB for iSeries Database Programming V5R2

Read next operation using an arrival sequence access path
Positions the file to and gets the next record that is not deleted in the arrival sequence access path.
Deleted records between the current position in the file and the next active record are skipped. (The READ
statement in the RPG/400 language and the READ NEXT statement in the COBOL/400 language are
examples of this operation.)

Read previous operation using an arrival sequence access path
Positions the file to and gets the previous active record in the arrival sequence access path. Deleted
records between the current file position and the previous active record are skipped. (The READP
statement in the RPG/400 language and the READ PRIOR statement in the COBOL/400 language are
examples of this operation.)

Read first operation using an arrival sequence access path
Positions the file to and gets the first active record in the arrival sequence access path.

Read last operation using an arrival sequence access path
Positions the file to and gets the last active record in the arrival sequence access path.

Read same operation using an arrival sequence access path
Gets the record that is identified by the current position in the file. The file position is not changed.

Read by relative record number operation using an arrival sequence access path
Positions the file to and gets the record in the arrival sequence access path that is identified by the relative
record number. The relative record number must identify an active record and must be less than or equal
to the largest active relative record number in the member. This operation also reads the record in the
arrival sequence access path identified by the current file position plus or minus a specified number of
records. (The CHAIN statement in the RPG/400 language and the READ statement in the COBOL/400
language are examples of this operation.) Special consideration should be given to creating or changing a
file to reuse deleted records if the file is processed by relative record processing. For more information,
see “Database file processing: Reusing deleted records” on page 103.

Reading database records using a keyed sequence access path
The system performs the following read operations based on the statements you specify using your
high-level language. These operations can be used with a keyed sequence access path to get database
records.

When a keyed sequence access path is used, a read operation cannot position to the storage occupied by
a deleted record.

Note: Your high-level language may not allow all of the following operations. Refer to your high-level
language guide to determine which operations are allowed by the language.

See the following read operation topics:

v “Read next operation using a keyed sequence access path” on page 174

v “Read previous operation using a keyed sequence access path” on page 174

v “Read first operation using a keyed sequence access path” on page 174

v “Read last operation using a keyed sequence access path” on page 174

v “Read same operation using a keyed sequence access path” on page 174

v “Read by key operation using a keyed sequence access path” on page 174

v “Read by relative record number operation using a keyed sequence access path” on page 174

v “Read when logical file shares an access path with more keys operation using a keyed sequence
access path” on page 174

Chapter 11. Basic database file operations in programs 173

Read next operation using a keyed sequence access path
Gets the next record on the keyed sequence access path. If a record format name is specified, this
operation gets the next record in the keyed sequence access path that matches the record format. The
current position in the file is used to locate the next record. (The READ statement in the RPG/400
language and the READ NEXT statement in the COBOL/400 language are examples of this operation.)

Read previous operation using a keyed sequence access path
Gets the previous record on the keyed sequence access path. If a record format name is specified, this
operation gets the previous record on the keyed sequence access path that matches the record format.
The current position in the file is used to locate the previous record. (The READP statement in the
RPG/400 language and the READ PRIOR statement in the COBOL/400 language are examples of this
operation.)

Read first operation using a keyed sequence access path
Gets the first record on the keyed sequence access path. If a record format name is specified, this
operation gets the first record on the access path with the specified format name.

Read last operation using a keyed sequence access path
Gets the last record on the keyed sequence access path. If a record format name is specified, this
operation gets the last record on the access path with the specified format name.

Read same operation using a keyed sequence access path
Gets the record that is identified by the current file position. The position in the file is not changed.

Read by key operation using a keyed sequence access path
Gets the record identified by the key value. Key operations of equal, equal or after, equal or before, read
previous key equal, read next key equal, after, or before can be specified. If a format name is specified,
the system searches for a record of the specified key value and record format name. If a format name is
not specified, the entire keyed sequence access path is searched for the specified key value. If the key
definition for the file includes multiple key fields, a partial key can be specified (you can specify either the
number of key fields or the key length to be used). This allows you to do generic key searches. If the
program does not specify a number of key fields, the system assumes a default number of key fields. This
default varies depending on if a record format name is passed by the program. If a record format name is
passed, the default number of key fields is the total number of key fields defined for that format. If a record
format name is not passed, the default number of key fields is the maximum number of key fields that are
common across all record formats in the access path. The program must supply enough key data to match
the number of key fields assumed by the system. (The CHAIN statement in the RPG/400 language and
the READ statement in the COBOL/400 language are examples of this operation.)

Read by relative record number operation using a keyed sequence access path
For a keyed sequence access path, the relative record number can be used. This is the relative record
number in the arrival sequence, even though the member opened has a keyed sequence access path. If
the member contains multiple record formats, a record format name must be specified. In this case, you
are requesting a record in the associated physical file member that matches the record format specified. If
the member opened contains select/omit statements and the record identified by the relative record
number is omitted from the keyed sequence access path, an error message is sent to your program and
the operation is not allowed. After the operation is completed, the file is positioned to the key value in the
keyed sequence access path that is contained in the physical record, which was identified by the relative
record number. This operation also gets the record in the keyed sequence access path identified by the
current file position plus or minus some number of records. (The CHAIN statement in the RPG/400
language and the READ statement in the COBOL/400 language are examples of this operation.)

Read when logical file shares an access path with more keys operation using a
keyed sequence access path
When the FIFO, LIFO, or FCFO keyword is not specified in the data description specifications (DDS) for a
logical file, the logical file can implicitly share an access path that has more keys than the logical file being

174 DB2 UDB for iSeries Database Programming V5R2

created. This sharing of a partial set of keys from an existing access path can lead to perceived problems
for database read operations that use these partially shared keyed sequence access paths. The problems
will appear to be:

v Records that should be read, are never returned to your program

v Records are returned to your program multiple times

What is actually happening is that your program or another currently active program is updating the
physical file fields that are keys within the partially shared keyed sequence access path, but that are not
actual keys for the logical file that is being used by your program (the fields being updated are beyond the
number of keys known to the logical file being used by your program). The updating of the actual key
fields for a logical file by your program or another program has always yielded the above results. The
difference with partially shared keyed sequence access paths is that the updating of the physical file fields
that are keys beyond the number of keys known to the logical file can cause the same consequences.

If these consequences caused by partially shared keyed sequence access paths are not acceptable, the
FIFO, LIFO, or FCFO keyword can be added to the DDS for the logical file, and the logical file created
again.

Waiting for more records when end of file is reached
End-of-file delay is a method of continuing to read sequentially from a database file (logical or physical)
after an end-of-file condition occurs. When an end-of-file condition occurs on a file being read sequentially
(for example, next/previous record) and you have specified an end-of-file delay time (EOFDLY parameter
on the Override with Database File [OVRDBF] command), the system waits for the time you specified. At
the end of the delay time, another read is done to determine if any new records were added to the file. If
records were added, normal record processing is done until an end-of-file condition occurs again. If
records were not added to the file, the system waits again for the time specified. Special consideration
should be taken when using end-of-file delay on a logical file with select/omit specifications, opened so
that the keyed sequence access path is not used. In this case, once end-of-file is reached, the system
retrieves only those records added to a based-on physical file that meet the select/omit specifications of
the logical file.

Also, special consideration should be taken when using end-of-file delay on a file with a keyed sequence
access path, opened so that the keyed sequence access path is used. In this case, once end-of-file is
reached, the system retrieves only those records added to the file or those records updated in the file that
meet the specification of the read operation using the keyed sequence access path.

For example, end-of-file delay is used on a keyed file that has a numeric key field in ascending order. An
application program reads the records in the file using the keyed sequence access path. The application
program performs a read next operation and gets a record that has a key value of 99. The application
program performs another read next and no more records are found in the file, so the system attempts to
read the file again after the specified end-of-file delay time. If a record is added to the file or a record is
updated, and the record has a key value less than 99, the system does not retrieve the record. If a record
is added to the file or a record is updated and the record has a key value greater than or equal to 99, the
system retrieves the record.

For end-of-file delay times equal to or greater than 10 seconds, the job is eligible to be removed from main
storage during the wait time. If you do not want the job eligible to be moved from main storage, specify
PURGE(*NO) on the Create Class (CRTCLS) command for the CLASS the job is using.

To indicate which jobs have an end-of-file delay in progress, the status field of the Work with Active Jobs
(WRKACTJOB) display shows an end-of-file wait or end-of-file activity level for jobs that are waiting for a
record.

Chapter 11. Basic database file operations in programs 175

If a job uses end-of-file-delay and commitment control, it can hold its record locks for a longer period of
time. This increases the chances that some other job can try to access those same records and be locked
out. For that reason, be careful when using end-of-file-delay and commitment control in the same job.

If a file is shared, the Override with Database File (OVRDBF) command specifying an end-of-file delay
must be requested before the first open of the file because overrides are ignored that are specified after
the shared file is opened.

There are several ways to end a job that is waiting for more records because of an end-of-file-delay
specified on the Override with Database File (OVRDBF) command:

v Write a record to the file with the end-of-file-delay that will be recognized by the application program as
a last record. The application program can then specify a force-end-of-data (FEOD) operation. An FEOD
operation allows the program to complete normal end-of-file processing.

v Do a controlled end of a job by specifying OPTION(*CNTRLD) on the End Job (ENDJOB) command,
with a DELAY parameter value time greater than the EOFDLY time. The DELAY parameter time
specified must allow time for the EOFDLY time to run out, time to process any new records that have
been put in the file, and any end-of-file processing required in your application. After new records are
processed, the system signals end of file, and a normal end-of-file condition occurs.

v Specify OPTION(*IMMED) on the End Job (ENDJOB) command. No end-of-file processing is done.

v If the job is interactive, press the System Request key to end the last request.

176 DB2 UDB for iSeries Database Programming V5R2

The following is an example of end-of-file delay operation:

The actual processing of the EOFDLY parameter is more complex than shown because it is possible to
force a true end-of-file if OPTION(*CNTRLD) on the End Job (ENDJOB) command is used with a long
delay time.

The job does not become active whenever a new record is added to the file. The job becomes active after
the specified end-of-file delay time ends. When the job becomes active, the system checks for any new
records. If new records were added, the application program gets control and processes all new records,
then waits again. Because of this, the job takes on the characteristic of a batch job when it is processing.
For example, it normally processes a batch of requests. When the batch is completed, the job becomes
inactive. If the delay is small, you can cause excessive system overhead because of the internal
processing required to start the job and check for new records. Normally, only a small amount of overhead
is used for a job waiting during end-of-file delay.

Note: When the job is inactive (waiting) it is in a long-wait status, which means it was released from an
activity level. After the long-wait status is satisfied, the system reschedules the job in an activity
level. (See the Work Management topic for more information about activity levels.)

Chapter 11. Basic database file operations in programs 177

../rzaks/rzaks1.htm

Releasing locked records
The system automatically releases a locked record when the record is updated, deleted, or when you read
another record in the file. However, you may want to release a locked record without performing these
operations. Some high-level languages support an operation to release a locked record. See your
high-level language guide for more information about releasing record locks.

Note: The rules for locking are different if your job is running under commitment control. See the
Commitment Control topic for more details.

Updating database records
The update operation allows you to change an existing database record in a logical or physical file. (The
UPDAT statement in the RPG/400 language and the REWRITE statement in the COBOL/400 language are
examples of this type operation.) Before you update a database record, the record must first be read and
locked. The lock is obtained by specifying the update option on any of the read operations listed under the
“Reading database records using an arrival sequence access path” on page 172 or “Reading database
records using a keyed sequence access path” on page 173.

If you issue several read operations with the update option specified, each read operation releases the
lock on the previous record before attempting to locate and lock the new record. When you do the update
operation, the system assumes that you are updating the currently locked record. Therefore, you do not
have to identify the record to be updated on the update operation. After the update operation is done, the
system releases the lock.

Note: The rules for locking are different if your job is running under commitment control. See the
Commitment Control topic for more details.

If the update operation changes a key field in an access path for which immediate maintenance is
specified, the access path is updated if the high-level language allows it. (Some high-level languages do
not allow changes to the key field in an update operation.)

If you request a read operation on a record that is already locked for update and if your job is running
under a commitment control level of *ALL or *CS (cursor stability), then you must wait until the record is
released or the time specified by the WAITRCD parameter on the create file or override commands has
been exceeded. If the WAITRCD time is exceeded without the lock being released, an exception is
returned to your program and a message is sent to your job stating the file, member, relative record
number, and the job which has the lock. If the job that is reading records is not running under a
commitment control level of *ALL or *CS, the job is able to read a record that is locked for update.

If the file you are updating has an update trigger associated with it, the trigger program is called before or
after updating the record. See Chapter 22, “Triggering automatic events in your database” on page 249 for
detailed information on trigger programs.

If the files being updated are associated with referential constraints, the update operation can be affected.
See Chapter 21, “Ensuring data integrity with referential constraints” on page 237 for detailed information
on referential constraints.

Adding database records
The write operation is used to add a new record to a physical database file member. (The WRITE
statement in the RPG/400 language and the WRITE statement in the COBOL/400 language are examples
of this operation.) New records can be added to a physical file member or to a logical file member that is
based on the physical file member. When using a multiple format logical file, a record format name must
be supplied to tell the system which physical file member to add the record to.

178 DB2 UDB for iSeries Database Programming V5R2

../rzakj/rzakjcommitkickoff.htm
../rzakj/rzakjcommitkickoff.htm

The new record is normally added at the end of the physical file member. The next available relative
record number (including deleted records) is assigned to the new record. Some high-level languages allow
you to write a new record over a deleted record position (for example, the WRITE statement in
COBOL/400 when the file organization is defined as RELATIVE). For more information about writing
records over deleted record positions, see your high-level language guide.

If the physical file to which records are added reuses deleted records, the system tries to insert the
records into slots that held deleted records. Before you create or change a file to reuse deleted records,
you should review the restrictions and tips for use to determine whether the file is a candidate for reuse of
deleted record space. For more information on reusing deleted record space, see “Database file
processing: Reusing deleted records” on page 103.

If you are adding new records to a file member that has a keyed access path, the new record appears in
the keyed sequence access path immediately at the location defined by the record key. If you are adding
records to a logical member that contains select/omit values, the omit values can prevent the new record
from appearing in the member’s access path.

If the file to which you are adding a record has an insert trigger associated with it, the trigger program is
called before or after inserting the record. See Chapter 22, “Triggering automatic events in your database”
on page 249 for detailed information on trigger programs.

If the files you are adding to are associated with referential constraints, record insertion can be affected.
See Chapter 21, “Ensuring data integrity with referential constraints” on page 237 for detailed information
on referential constraints.

The SIZE parameter on the Create Physical File (CRTPF) and Create Source Physical File (CRTSRCPF)
commands determines how many records can be added to a physical file member.

For more information about adding records, see the following topics:

v “Identifying which record format to add in a file with multiple formats”

v “Using the force-end-of-data operation” on page 181

Identifying which record format to add in a file with multiple formats
If your application uses a file name instead of a record format name for records to be added to the
database, and if the file used is a logical file with more than one record format, you need to write a format
selector program to determine where a record should be placed in the database. A format selector can be
a CL program or a high-level language program.

A format selector program must be used if all of the following are true:

v The logical file is not a join and not a view logical file.

v The logical file is based on multiple physical files.

v The program uses a file name instead of a record format name on the add operation.

If you do not write a format selector program for this situation, your program ends with an error when it
tries to add a record to the database.

Note: A format selector program cannot be used to select a member if a file has multiple members; it can
only select a record format.

When an application program wants to add a record to the database file, the system calls the format
selector program. The format selector program examines the record and specifies the record format to be

Chapter 11. Basic database file operations in programs 179

used. The system then adds the record to the database file using the specified record format name.

The following example shows the programming statements for a format selector program written in the
RPG/400 language:
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments+++...
+++*
C *ENTRY PLIST
C PARM RECORD 80
C* The length of field RECORD must equal the length of
C* the longest record expected.
C PARM FORMAT 10
C MOVELRECORD BYTE 1
C BYTE IFEQ ’A’
C MOVEL’HDR’ FORMAT
C ELSE
C MOVEL’DTL’ FORMAT
C END

The format selector receives the record in the first parameter; therefore, this field must be declared to be
the length of the longest record expected by the format selector. The format selector can access any
portion of the record to determine the record format name. In this example, the format selector checks the
first character in the record for the character A. If the first character is A, the format selector moves the
record format name HDR into the second parameter (FORMAT). If the character is not A, the format
selector moves the record format name DTL into the second parameter.

The format selector uses the second parameter, which is a 10-character field, to pass the record format
name to the system. When the system knows the name of the record format, it adds the record to the
database.

You do not need a format selector if:

v You are doing updates only. For updates, your program already retrieved the record, and the system
knows which physical file the record came from.

v Your application program specifies the record format name instead of a file name for an add or delete
operation.

v All the records used by your application program are contained in one physical file.

To create the format selector, you use the create program command for the language in which you wrote
the program. You cannot specify USRPRF(*OWNER) on the create command. The format selector must
run under the user’s user profile not the owner’s user profile.

In addition, for security and integrity and because performance would be severely affected, you must not
have any calls or input/output operations within the format selector.

180 DB2 UDB for iSeries Database Programming V5R2

The name of the format selector is specified on the FMTSLR parameter of the Create Logical File
(CRTLF), Change Logical File (CHGLF), or Override with Database File (OVRDBF) command. The format
selector program does not have to exist when the file is created, but it must exist when the application
program is run.

Using the force-end-of-data operation
The force-end-of-data (FEOD) operation allows you to force all changes to a file made by your program to
auxiliary storage. Normally, the system determines when to force changes to auxiliary storage. However,
you can use the FEOD operation to ensure that all changes are forced to auxiliary storage.

The force-end-of-data (FEOD) operation also allows you to position to either the beginning or the end of a
file if the file is open for input operations. *START sets the beginning or starting position in the database
file member currently open to just before the first record in the member (the first sequential read operation
reads the first record in the current member). If MBR(*ALL) processing is in effect for the override with
Database File (OVRDBF) command, a read previous operation gets the last record in the previous
member. If a read previous operation is done and the previous member does not exist, the end of file
message (CPF5001) is sent. *END sets the position in the database file member currently open to just
after the last record in the member (a read previous operation reads the last record in the current
member). If MBR(*ALL) processing is in effect for the Override with Database File (OVRDBF) command, a
read next operation gets the first record in the next member. If a read next operation is done and the next
member does not exist, the end of file message (CPF5001) occurs.

If the file has a delete trigger, the force-end-of-data operation is not allowed. See Chapter 22, “Triggering
automatic events in your database” on page 249 for detailed information on triggers. If the file is part of a
referential parent relationship, the FEOD operation will not be allowed. See Chapter 21, “Ensuring data
integrity with referential constraints” on page 237 for detailed information on referential constraints.

See your high-level language guide for more information about the FEOD operation (some high-level
languages do not support the FEOD operation).

Deleting database records
The delete operation allows you to delete an existing database record. (The DELET statement in the
RPG/400 language and the DELETE statement in the COBOL/400 language are examples of this
operation.) To delete a database record, the record must first be read and locked. The record is locked by
specifying the update option on any of the read operations listed under “Reading database records using
an arrival sequence access path” on page 172 or “Reading database records using a keyed sequence
access path” on page 173. The rules for locking records for deletion and identifying which record to delete
are the same as for update operations.

Note: Some high-level languages do not require that you read the record first. These languages allow you
to simply specify which record you want deleted on the delete statement. For example, the
RPG/400 language allows you to delete a record without first reading it.

When a database record is deleted, the physical record is marked as deleted. This is true even if the
delete operation is done through a logical file. A deleted record cannot be read. The record is removed
from all keyed sequence access paths that contain the record. The relative record number of the deleted
record remains the same. All other relative record numbers within the physical file member do not change.

The space used by the deleted record remains in the file, but it is not reused until:

v The Reorganize Physical File Member (RGZPFM) command is run to compress and free these spaces
in the file member. See “Reorganizing a physical file” on page 193 for more information about this
command.

v Your program writes a record to the file by relative record number and the relative record number used
is the same as that of the deleted record.

Chapter 11. Basic database file operations in programs 181

Note: The system tries to reuse deleted record space automatically if the file has the reuse deleted record
space attribute specified. For more information, see “Database file processing: Reusing deleted
records” on page 103.

The system does not allow you to retrieve the data for a deleted record. You can, however, write a new
record to the position (relative record number) associated with a deleted record. The write operation
replaces the deleted record with a new record. See your high-level language guide for more details about
how to write a record to a specific position (relative record number) in the file.

To write a record to the relative record number of a deleted record, that relative record number must exist
in the physical file member. You can delete a record in the file using the delete operation in your high-level
language. You can also delete records in your file using the Initialize Physical File Member (INZPFM)
command. The INZPFM command can initialize the entire physical file member to deleted records. For
more information about the INZPFM command, see “Initializing data in a physical file member” on
page 192.

If the file from which you are deleting has a delete trigger associated with it, the trigger program is called
before or after deleting the record. See Chapter 22, “Triggering automatic events in your database” on
page 249 for detailed information on triggers.

If the file is part of a referential constraint relationship, record deletion may be affected. See Chapter 21,
“Ensuring data integrity with referential constraints” on page 237 for detailed information on referential
constraints.

182 DB2 UDB for iSeries Database Programming V5R2

Chapter 12. Closing a database file

When your program completes processing a database file member, it should close the file. Closing a
database file disconnects your program from the file. The close operation releases all record locks and
releases all file member locks, forces all changes made through the open data path (ODP) to auxiliary
storage, then destroys the ODP. (When a shared file is closed but the ODP remains open, the functions
differ. For more information about shared files, see “Sharing database files in the same job or activation
group” on page 108.)

To close a database file in a program, use one of the following methods:

v High-level language close statements

Most high-level languages allow you to specify that you want to close your database files. For more
information about how to close a database file in a high-level language program, see your high-level
language guide.

v Close File (CLOF) command

You can use the Close File (CLOF) command to close database files that were opened using either the
Open Database File (OPNDBF) or Open Query File (OPNQRYF) commands. See CLOF (Close File)
Command in the Control Language (CL) topic.

v Reclaim Resources (RCLRSC) command

The RCLRSC command releases all locks (except, under commitment control, locks on records that
were changed but not yet committed), forces all changes to auxiliary storage, then destroys the open
data path for that file. See RCLRSC (Reclaim Resources) Command in the Control Language (CL)
topic.You can use the RCLRSC command to allow a calling program to close a called program’s files.
(For example, if the called program returns to the calling program without closing its files, the calling
program can then close the called program’s files.) However, the normal way of closing files in a
program is with the high-level language close operation or through the Close File (CLOF) command. For
more information on resource reclamation in the integrated language environment, see the ILE

Concepts book.

If a job ends normally (for example, a user signs off) and all the files associated with that job were not
closed, the system automatically closes all the remaining open files associated with that job, forces all
changes to auxiliary storage, and releases all record locks for those files. If a job ends abnormally, the
system also closes all files associated with that job, releases all record locks for those files, and forces all
changes to auxiliary storage.

When a process is trying to lock a file that is held by another process, the Close database file exit
program is called. This exit is called in the process that is holding the lock. For more information, refer to
(need to add link to particular information in API reference).

© Copyright IBM Corp. 1998, 2002 183

../cl/clof.htm
../cl/clof.htm
../rbam6/rbam6clmain.htm
../cl/rclrsc.htm
../rbam6/rbam6clmain.htm
../rbam6/rbam6clmain.htm
../../books/c4156066.pdf
../../books/c4156066.pdf

184 DB2 UDB for iSeries Database Programming V5R2

Chapter 13. Monitoring database file errors in a program

As your database applications perform actions on your database files, you should monitor messages about
file errors that the program detected so that you can take the proper actions to prevent the errors. Each
high-level language provides its own procedure for monitoring these messages, and you should see the
documentation for the language you are using to implement error message monitoring.

One or more of the following events occurs when error conditions are detected during processing of a
database file:

v Messages can be sent to the program message queue for the program processing the file.

v An inquiry message can be sent to the system operator message queue.

v File errors and diagnostic information can appear to your program as return codes and status
information in the file feedback area.

For example, the COBOL language sets a return code in the file status field, if it is defined in the program.

See these topics for additional information:

v “System handling of error messages”

v “Effect of error messages on file positioning”

v “Determining which messages you want to monitor”

System handling of error messages
If you do not monitor for messages, the system handles the error. The system also sets the appropriate
error return code in the program. Depending on the error, the system can end the job or send a message
to the operator requesting further action.

Effect of error messages on file positioning
If a message is sent to your program while processing a database file member, the position in the file is
not lost. It remains at the record it was positioned to before the message was sent, except:

v After an end-of-file condition is reached and a message is sent to the program, the file is positioned at
*START or *END.

v After a conversion mapping message on a read operation, the file is positioned to the record containing
the data that caused the message.

Determining which messages you want to monitor
If your programming language allows you to monitor for error messages, you can choose which ones you
wish to monitor for. The following messages are a small sample of the error messages you can monitor.
See your high-level language guide, or see Monitorable Messages in the Control Language (CL) topic for
information about which messages you can monitor. To display the full description of these messages, use
the Display Message Description (DSPMSGD) command. See DSPMSGD (Display Message Description)
Command in the Control Language (CL) topic.

Message Identifier Description

CPF5001 End of file reached
CPF5006 Record not found
CPF5007 Record deleted
CPF5018 Maximum file size reached
CPF5025 Read attempted past *START or *END
CPF5026 Duplicate key

© Copyright IBM Corp. 1998, 2002 185

../rbam6/rbam6monitorablemessages.htm
../cl/dspmsgd.htm
../cl/dspmsgd.htm
../rbam6/rbam6clmain.htm

Message Identifier Description

CPF5027 Record in use by another job
CPF5028 Record key changed
CPF5029 Data mapping error
CPF502B Error in trigger program
CPF502D Referential constraint violation
CPF5030 Partial damage on member
CPF5031 Maximum number of record locks exceeded
CPF5032 Record already allocated to job
CPF5033 Select/omit error
CPF5034 Duplicate key in another member’s access path
CPF503A Referential constraint violation
CPF5040 Omitted record not retrieved
CPF5072 Join value in member changed
CPF5079 Commitment control resource limit exceeded
CPF5084 Duplicate key for uncommitted key
CPF5085 Duplicate key for uncommitted key in another access path
CPF5090 Unique access path problem prevents access to member
CPF5097 Key mapping error

186 DB2 UDB for iSeries Database Programming V5R2

Part 4. Managing Database Files

The chapters in this part contain information on managing database files.

v Chapter 14, “Basic operations for managing database files” on page 189

This section discusses some of the ways to manage database files with basic file operations.

v Chapter 15, “Managing database members” on page 191

This section discusses some of the ways to manage database file members, including adding members,
changing member attributes, renaming members, and removing members. It also discusses member
operations unique to physical files.

v Chapter 16, “Using database attribute and cross-reference information” on page 197

This section discusses how to change database file, physical file, and logical file descriptions and
attributes.

v Chapter 17, “Changing database file descriptions and attributes” on page 203

This section contains information about how to change how to display and use database file attributes,
field relationships, and cross reference information. In addition, it discusses how to write command
output directly to a database file.

v Chapter 18, “Recovering and restoring your database” on page 207

This section contains information about planning for recovery of your database files in the event of a
system failure:

– Saving and restoring

– Journaling

– Using auxiliary storage

– Using commitment control

v Chapter 19, “Using source files” on page 223

This section describes how to enter and maintain data in a source file, and how to use that source file
to create another object on the system.

v Chapter 20, “Controlling the integrity of your database with constraints” on page 231

This section describes how to use constraints to ensure that data in your database remains consistent
as you add, change, and remove records.

v Chapter 21, “Ensuring data integrity with referential constraints” on page 237

This section contains information about using referential constraints in your database to ensure that
your database contains only valid data.

v Chapter 22, “Triggering automatic events in your database” on page 249

This section discusses the use of triggers to initiate a set of actions to be run automatically when a
specified change or read operation is performed on a specified physical database file.

v Chapter 23, “Database distribution” on page 275

This section introduces DB2 Multisystem, a separately priced feature, which provides a simple and
direct method of distributing a database file over multiple systems in a loosely-coupled environment.

© Copyright IBM Corp. 1998, 2002 187

188 DB2 UDB for iSeries Database Programming V5R2

Chapter 14. Basic operations for managing database files

This chapter tells about some of the more basic database file operations. See the following topics:

v “Copying a file”

v “Moving a file”

Copying a file
You can copy a file using the Copy a Table operation in iSeries Navigator. See “Copying a file using
iSeries Navigator”. Or, you can use the Copy File (CPYF) command. See “Copying a file using CPYF”.

Copying a file using iSeries Navigator
Copying a table to different library creates two instances of the same table. To copy a table to a different
library:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to work with.

4. Click the Library that contains the table that you want to move.

5. Click on the Library that contains the table that you want to copy.

6. Right-click the table you want to copy and click Copy.

7. Right-click the library you want to copy the table to and click Paste.

Distributed data management (DDM) is used by iSeries Navigator to actually move or copy the table. If the
source system is Version 4 Release 4 or later and if the target system is Version 4 Release 2 or later, the
operation will be performed using DDM over TCP/IP. Otherwise the operation will be performed using DDM
over SNA. For a move or copy using DDM over SNA, the names by which iSeries Access knows the
systems must be the same as the remote location names specified in the APPC or APPN® device
descriptions used by DDM. For a move or copy using DDM over TCP/IP, TCP communications must be
enabled between the systems. For TCP/IP, it is important to note that TCP/IP must be enabled between
the systems as they are known to iSeries Access. For more information, see Distributed Database
Management

Copying a file using CPYF
The Copy File (CPYF) command copies all or part of a database or external device file to a database or
external device file. See CPYF (Copy File) Command in the Control Language (CL) topic for more
information.

Moving a file
You can move a file from one library to another using the Move a Table operation in iSeries Navigator. See
“Moving a file using iSeries Navigator”. Or, you can use the Move Object (MOVOBJ) command. See
“Moving a file using the MOVOBJ command” on page 190.

Moving a file using iSeries Navigator
To move a file (table) to a different library:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to work with.

4. Click the Library that contains the table that you want to move.

5. Right-click the table you want to move and click Cut.

© Copyright IBM Corp. 1998, 2002 189

../cl/cpyf.htm
../rbam6/rbam6clmain.htm

6. Right-click the library you want to move the table to and click Paste.

7. OR You can drag the table and drop it on anther library on the same system or a different system.

Note: Moving a table to a new location does not always remove it from the source system. For example,
if you have read authority but not delete authority to the source table, the table will be moved to the
target system. However, it will not be deleted from the source system, causing two instances of the
table to exist.

Moving a file using the MOVOBJ command
The Move Object (MOVOBJ) command removes an object from its currently assigned library and places it
in a different library. The type of the object moved is specified in the OBJTYPE parameter. See MOVOBJ
(Move Object) Command in the Control Language (CL) topic for more information.

190 DB2 UDB for iSeries Database Programming V5R2

../cl/movobj.htm
../cl/movobj.htm
../rbam6/rbam6clmain.htm

Chapter 15. Managing database members

Before you perform any input or output operations on a file, the file must have at least one member. As a
general rule, database files have only one member, the one created when the file is created. The name of
this member is the same as the file name, unless you give it a different name. Because most operations
on database files assume that the member being used is the first member in the file, and because most
files only have one member, you do not normally have to be concerned with, or specify, member names.

If a file contains more than one member, each member serves as a subset of the data in the file. This
allows you to classify data easier. For example, you define an accounts receivable file. You decide that
you want to keep data for a year in that file, but you frequently want to process data just one month at a
time. For example, you create a physical file with 12 members, one named for each month. Then, you
process each month’s data separately (by individual member). You can also process several or all
members together.

See the following topics for managing members:

v “Member operations common to all database files”

v “Physical file member operations” on page 192

Member operations common to all database files
The system supplies a way for you to make changes to file definitions. You can use CL commands to
perform most of these operations. See the Control Language (CL) topic for more information about these
commands.

See the following topics:

v “Adding members to files”

v “Changing member attributes”

v “Renaming members” on page 192

v “Removing members from files” on page 192

Adding members to files
You can add members to files in any of these ways:

v Automatically. When a file is created using the Create Physical File (CRTPF) or Create Logical File
(CRTLF) commands, the default is to automatically add a member (with the same name as the file) to
the newly created file. (The default for the Create Source Physical File (CRTSRCPF) command is not to
add a member to the newly created file.) You can specify a different member name using the MBR
parameter on the create database file commands. If you do not want a member added when the file is
created, specify *NONE on the MBR parameter.

v Specifically. After the file is created, you can add a member using the Add Physical File Member
(ADDPFM) or Add Logical File Member (ADDLFM) commands.

v Copy File (CPYF) command. If the member you are copying does not exist in the file being copied to,
the member is added to the file by the CPYF command.

Changing member attributes
You can use the Change Physical File Member (CHGPFM) or Change Logical File Member (CHGLFM)
command to change certain attributes of a physical or a logical file member. For a physical file member,
you can change the following parameters: SRCTYPE (the member’s source type), EXPDATE (the
member’s expiration date), SHARE (whether the member can be shared within a job), and TEXT (the text
description of the member). For a logical file member you can change the SHARE and TEXT parameters.

© Copyright IBM Corp. 1998, 2002 191

../rbam6/rbam6clmain.htm
../cl/crtpf.htm
../cl/crtlf.htm
../cl/crtlf.htm
../cl/addpfm.htm
../cl/addpfm.htm
../cl/addlfm.htm
../cl/cpyf.htm
../cl/chgpfm.htm
../cl/chglfm.htm

Note: You can use the Change Physical File (CHGPF) and Change Logical File (CHGLF) commands to
change many other file attributes. For example, to change the maximum size allowed for each
member in the file, you would use the SIZE parameter on the CHGPF command.

Renaming members
The Rename Member (RNMM) command changes the name of an existing member in a physical or logical
file. The file name is not changed.

Removing members from files
The Remove Member (RMVM) command is used to remove the member and its contents. Both the
member data and the member itself are removed. After the member is removed, it can no longer be used
by the system. This is different from just clearing or deleting the data from the member. If the member still
exists, programs can continue to use (for example, add data to) the member.

Physical file member operations
The following section describes member operations that are unique to physical file members. Those
operations include initializing data, clearing data, reorganizing data, and displaying data in a physical file
member. See the following topics:

v “Initializing data in a physical file member”

v “Clearing data from physical file members” on page 193

v “Reorganizing a physical file” on page 193

v “Displaying records in a physical file member” on page 195

If the file member being operated on is associated with referential constraints, the operation can be
affected. See Chapter 21, “Ensuring data integrity with referential constraints” on page 237 for detailed
information on referential constraints.

Initializing data in a physical file member
To use relative record processing in a program, the database file must contain a number of record
positions equal to the highest relative record number used in the program. Programs using
relative-record-number processing sometimes require that these records be initialized.

You can use the Initialize Physical File Member (INZPFM) command to initialize members with one of two
types of records:

v Default records

v Deleted records

You specify which type of record you want using the RECORDS parameter on the Initialize Physical File
Member (INZPFM) command.

If you initialize records using default records, the fields in each new record are initialized to the default field
values defined when the file was created. If no default field value was defined, then numeric fields are
filled with zeros and character fields are filled with blanks.

Variable-length character fields have a zero-length default value. The default value for null-capable fields is
the null value. The default value for dates, times, and timestamps is the current date, time, or timestamp if
no default value is defined. Program-described files have a default value of all blanks.

Note: You can initialize one default record if the UNIQUE keyword is specified in DDS for the physical file
member or any associated logical file members. Otherwise, you would create a series of duplicate
key records.

192 DB2 UDB for iSeries Database Programming V5R2

../cl/chgpf.htm
../cl/chglf.htm
../cl/rnmm.htm
../cl/rmvm.htm
../cl/inzpfm.htm

If the records are initialized to the default records, you can read a record by relative record number and
change the data.

If the records were initialized to deleted records, you can change the data by adding a record using a
relative record number of one of the deleted records. (You cannot add a record using a relative record
number that was not deleted.)

Deleted records cannot be read; they only hold a place in the member. A deleted record can be changed
by writing a new record over the deleted record. Refer to “Deleting database records” on page 181 for
more information about processing deleted records.

Clearing data from physical file members
The Clear Physical File Member (CLRPFM) command is used to remove the data from a physical file
member. After the clear operation is complete, the member description remains, but the data is gone.

Reorganizing a physical file
You can reorganize a physical file using the Reorganize Table operation in iSeries Navigator. See
“Reorganizing a table using iSeries Navigator”. Or, you can use the Reorganize Physical File Member
(RGZPFM) command. See “Reorganizing a physical file using RGZPFM”.

See General Query Optimization Tips in Database Performance and Query Optimization for information
about optimizing queries by reorganizing tables.

Reorganizing a table using iSeries Navigator
Reorganizing a table restores it to its ideal physical organization. The ideal organization for a database
table is for its rows to be laid out on pages, ordered by their key values in some frequently used index.
You can reorganize a table by compressing out deleted records, by table key, or by a selected index. To
reorganize a table:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to work with.

4. Click the library that contains the table you want to reorganize.

5. In the detail pane, right-click the table you want to reorganize and select Reorganize.

On the Reorganize dialog, select one of the options below to reorganize the table:

v By compressing out deleted rows: specifies that the ″arrival order equals physical order″ relationship in
the table is maintained.

v By table key: specifies that the rows of the table are rearranged by the key values of the table’s access
path. The table must have a primary key or must be a keyed physical file.

v By a selected index from library: specifies that the rows of the table are rearranged by the key values of
an index or keyed logical file that is built over the specified table. You can select only an existing index.
Your list of indexes is determined by the library you select.

Reorganizing a physical file using RGZPFM
You can use the Reorganize Physical File Member (RGZPFM) command to:

v Remove deleted records to make the space occupied by them available for more records.

v Reorganize the records of a file in the order in which you normally access them sequentially, thereby
minimizing the time required to retrieve records. This is done using the KEYFILE parameter. This may
be advantageous for files that are primarily accessed in an order other than arrival sequence. A member
can be reorganized using either of the following:

– Key fields of the physical file

– Key fields of a logical file based on the physical file

Chapter 15. Managing database members 193

../cl/clrpfm.htm
../rzajq/rzajqmstgotips.htm
../cl/rgzpfm.htm

v Reorganize a source file member, insert new source sequence numbers, and reset the source date
fields (using the SRCOPT and SRCSEQ parameters on the Reorganize Physical File Member
command).

v Reclaim space in the variable portion of the file that was previously used by variable-length fields in the
physical file format and that has now become fragmented.

See “Example: Reorganizing a physical file” for an example of reorganizing a physical file using the
Reorganize Physical File Member command. Also, see “Usage notes: Reorganizing a file” for notes about
using the command.

Example: Reorganizing a physical file: For example, the following Reorganize Physical File Member
(RGZPFM) command reorganizes the first member of a physical file using an access path from a logical
file:
RGZPFM FILE(DSTPRODLB/ORDHDRP)

KEYFILE(DSTPRODLB/ORDFILL ORDFILL)

The physical file ORDHDRP has an arrival sequence access path. It was reorganized using the access
path in the logical file ORDFILL. Assume the key field is the Order field. The following illustrates how the
records were arranged.

The following is an example of the original ORDHDRP file. Note that record 3 was deleted before the
RGZPFM command was run:

Relative Record Number Cust Order Ordate. . .

1 41394 41882 072480. . .
2 28674 32133 060280. . .
3 deleted record
4 56325 38694 062780. . .

The following example shows the ORDHDRP file reorganized using the Order field as the key field in
ascending sequence:

Relative Record Number Cust Order Ordate. . .

1 28674 32133 060280. . .
2 56325 38694 062780. . .
3 41394 41882 072480. . .

Usage notes: Reorganizing a file:

1. If a file with an arrival sequence access path is reorganized using a keyed sequence access path, the
arrival sequence access path is changed. That is, the records in the file are physically placed in the
order of the keyed sequence access path used. By reorganizing the data into a physical sequence that
closely matches the keyed access path you are using, you can improve the performance of processing
the data sequentially.

2. Reorganizing a file compresses deleted records, which changes subsequent relative record numbers.

3. Because access paths with either the FIFO or LIFO DDS keyword specified depend on the physical
sequence of records in the physical file, the sequence of the records with duplicate key fields may
change after reorganizing a physical file using a keyed sequence access path.

Also, because access paths with the FCFO DDS keyword specified are ordered as FIFO, when a
reorganization is done, the sequence of the records with duplicate key fields may also change.

4. If you cancel the RGZPFM command, all the access paths over the physical file member may have to
be rebuilt.

194 DB2 UDB for iSeries Database Programming V5R2

5. If you use the RGZPFM command twice in a row, you may notice that the total records in the file after
the first time differ from the total records after the second. This is because the amount of space
allocated for the reorganized file is only an estimate that allows extra space for future inserts. After
records are deleted the first time the file is reorganized, the space allocated is calculated exactly.

If one of the following conditions occur and the Reorganize Physical File Member (RGZPFM) command is
running, the records may not be reorganized:

v The system ends abnormally.

v The job containing the RGZPFM command is ended with an *IMMED option.

v The subsystem in which the RGZPFM command is running ends with an *IMMED option.

v The system stops with an *IMMED option.

In addition, when the Reorganize Physical File Member (RGZPFM) command is running, records
associated with large objects (LOBs) may not be reorganized and a deleted record may remain in the file.

The status of the member being reorganized depends on how much the system was able to do before the
reorganization was ended and what you specified in the SRCOPT parameter. If the SRCOPT parameter
was not specified, the member is either completely reorganized or not reorganized at all. You should
display the contents of the file, using the Display Physical File Member (DSPPFM) command, to determine
if it was reorganized. If the member was not reorganized, issue the Reorganize Physical File Member
(RGZPFM) command again.

If the SRCOPT parameter was specified, any of the following could have happened to the member:

v It was completely reorganized. A completion message is sent to your job log indicating the reorganize
operation was completely successful.

v It was not reorganized at all. A message is sent to your job log indicating that the reorganize operation
was not successful. If this occurs, issue the Reorganize Physical File Member (RGZPFM) command
again.

v It was reorganized, but only some of the sequence numbers were changed. A completion message is
sent to your job log indicating that the member was reorganized, but all the sequence numbers were not
changed. If this occurs, issue the RGZPFM command again with KEYFILE(*NONE) specified.

To reduce the number of deleted records that exist in a physical file member, the file can be created or
changed to reuse deleted record space. For more information, see “Database file processing: Reusing
deleted records” on page 103.

Displaying records in a physical file member
The Display Physical File Member (DSPPFM) command can be used to display the data in the physical
database file members by arrival sequence. The command can be used for:

v Problem analysis

v Debugging

v Record inquiry

You can display source files or data files, regardless if they are keyed or arrival sequence. Records are
displayed in arrival sequence, even if the file is a keyed file. You can page through the file, locate a
particular record by record number, or shift the display to the right or left to see other parts of the records.
You can also press a function key to show either character data or hexadecimal data on the display.

If you have Query installed, you can use the Start Query (STRQRY) command to select and display
records, too.

If you have the SQL language installed, you can use the Start SQL (STRSQL) command to interactively
select and display records.

Chapter 15. Managing database members 195

|
|
|
|

../cl/dsppfm.htm

196 DB2 UDB for iSeries Database Programming V5R2

Chapter 16. Using database attribute and cross-reference
information

The iSeries integrated database provides file attribute and cross-reference information. Some of the
cross-reference information includes:

v The files used in a program

v The files that depend on other files for data or access paths

v File attributes

v The fields defined for a file

v Constraints associated with a file

v Key fields for a file

Each of the commands described in the following sections can present information on a display, a printout,
or write the cross-reference information to a database file that, in turn, can be used by a program or utility
(for example, Query) for analysis.

For information about displaying attribute information, see “Displaying information about database files”.
For information about writing the output to a database file, see “Writing the output from a command
directly to a database file” on page 201.

You can retrieve information about a member of a database file for use in your applications with the
Retrieve Member Description (RTVMBRD) command. See the Control Language (CL) topic and the

section on “Retrieving Member Description Information” in CL Programming for an example of how
the RTVMBRD command is used in a CL program to retrieve the description of a specific member.

Displaying information about database files
You can display the file attributes for database files and device files using the Display Table Description
operation in iSeries Navigator. See “Displaying attributes for a file using display table description in iSeries
Navigator”. Or, you can use the Display File Description (DSPFD) command. See “Displaying attributes for
a file using DSPFD” on page 198.

In addition, see the following topics about displaying information about database files:

v “Displaying attributes for a file using DSPFD” on page 198

v “Displaying the descriptions of the fields in a file” on page 198

v “Displaying the relationships between files on the system” on page 198

v “Displaying the files used by programs” on page 199

v “Displaying the system cross-reference files” on page 200

Displaying attributes for a file using display table description in iSeries
Navigator
In iSeries Navigator, the Description of dialog allows you to display table (database file) attribute
information.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to work with.

4. Click on the library that contains the table or view for which you want to display information.

5. Right-click on the table, view, or index and select Description.

© Copyright IBM Corp. 1998, 2002 197

../cl/rtvmbrd.htm
../rbam6/rbam6clmain.htm
../../books/c4157215.pdf

On the description dialog, you can select general, allocation, usage, activity, and detailed.

Displaying attributes for a file using DSPFD
Use the Display File Description (DSPFD) command to display attributes for a database file. The
information can be displayed, printed, or written to a database output file (OUTFILE). The information
supplied by this command includes (parameter values given in parentheses):

v Basic attributes (*BASATR)

v File attributes (*ATR)

v Access path specifications (*ACCPTH, logical and physical files only)

v Select/omit specifications (*SELECT, logical files only)

v Join logical file specifications (*JOIN, join logical files only)

v Alternative collating sequence specifications (*SEQ, physical and logical files only)

v Record format specifications (*RCDFMT)

v Member attributes (*MBR, physical and logical files only)

v Spooling attributes (*SPOOL, printer and diskette files only)

v Member lists (*MBRLIST, physical and logical files only)

v File constraints (*CST)

v Triggers (*TRG)

Displaying the descriptions of the fields in a file
You can use the Display File Field Description (DSPFFD) command to display field information for both
database and device files. The information can be displayed, printed, or written to a database output file
(OUTFILE).

Displaying the relationships between files on the system
You can use the Display Database Relations (DSPDBR) command to display the following information
about the organization of your database:

v A list of database files (physical and logical) that use a specific record format.

v A list of database files (physical and logical) that depend on the specified file for data sharing.

v A list of members (physical and logical) that depend on the specified member for sharing data or
sharing an access path.

v A list of physical files that are dependent files in a referential constraint relationship with this file.

This information can be displayed, printed, or written to a database output file (OUTFILE).

For example, to display a list of all database files associated with physical file ORDHDRP, with the record
format ORDHDR, type the following DSPDBR command:
DSPDBR FILE(DSTPRODLB/ORDHDRP) RCDFMT(ORDHDR)

Note: See the DSPDBR command description in the Control Language (CL) topic for details of this
display.

This display presents header information when a record format name is specified on the RCDFMT
parameter, and presents information about which files are using the specified record format.

If a member name is specified on the MBR parameter of the DSPDBR command, the dependent members
are shown.

198 DB2 UDB for iSeries Database Programming V5R2

../cl/dspfd.htm
../cl/dspffd.htm
../cl/dspdbr.htm
../rbam6/rbam6clmain.htm

If the Display Database Relations (DSPDBR) command is specified with the default MBR(*NONE)
parameter value, the dependent data files are shown. To display the shared access paths, you must
specify a member name.

The Display Database Relations (DSPDBR) command output identifies the type of sharing involved. If the
results of the command are displayed, the name of the type of sharing is displayed. If the results of the
command are written to a database file, the code for the type of sharing (shown below) is placed in the
WHTYPE field in the records of the output file.

Type Code Description

Constraint C The physical file is dependent on the
data in another physical file to which it
is associated via a constraint.

Data D The file or member is dependent on
the data in a member of another file.

Access path sharing I The file member is sharing an access
path.

Access path owner O If an access path is shared, one of the
file members is considered the owner.
The owner of the access path is
charged with the storage used for the
access path. If the member displayed
is designated the owner, one or more
file members are designated with an I
for access path sharing.

SQL View V The SQL view or member is
dependent upon another SQL view.

Displaying the files used by programs
You can use the Display Program Reference (DSPPGMREF) command to determine which files, data
areas, and other programs are used by a program. This information is available for compiled programs
only.

The information can be displayed, printed, or written to a database output file (OUTFILE).

When a program is created, the information about certain objects used in the program is stored. This
information is then available for use with the Display Program References (DSPPGMREF) command.

The following chart shows the objects for which the high-level languages and utilities save information:

Language or Utility Files Programs Data Areas See Notes

BASIC Yes Yes No 1
C/400® Language No No N/A
CL Yes Yes Yes 2
COBOL/400 Language Yes Yes No 3
CSP Yes Yes No 4
DFU Yes N/A N/A
FORTRAN/400* Language No No N/A
Pascal No No N/A
PL/I Yes Yes N/A 3
RPG/400 Language Yes Yes Yes 5
SQL Language Yes N/A N/A

Chapter 16. Using database attribute and cross-reference information 199

../cl/dsppgmre.htm

Language or Utility Files Programs Data Areas See Notes

:

Notes:

1. Externally described file references, programs, and data areas are stored.

2. All system commands that refer to files, programs, or data areas specify in the command definition that the
information should be stored when the command is compiled in a CL program. If a variable is used, the name of
the variable is used as the object name (for example, &FILE); If an expression is used, the name of the object is
stored as *EXPR. User-defined commands can also store the information for files, programs, or data areas
specified on the command. See the description of the FILE, PGM, and DTAARA parameters on the PARM or

ELEM command statements in the CL Programming book.

3. The program name is stored only when a literal is used for the program name (this is a static call, for example,
CALL ’PGM1’), not when a COBOL/400 identifier is used for the program name (this is a dynamic call, for
example, CALL PGM1).

4. CSP programs also save information for an object of type *MSGF, *CSPMAP, and *CSPTBL.

5. The use of the local data area is not stored.

The stored file information contains an entry (a number) for the type of use. In the database file output of
the Display Program References (DSPPGMREF) command (built when using the OUTFILE parameter),
this is specified as:

Code Meaning

1 Input

2 Output

3 Input and Output

4 Update

8 Unspecified

Combinations of codes are also used. For example, a file coded as a 7 would be used for input, output,
and update.

Displaying the system cross-reference files
The system manages eight database files that contain:

v Basic database file attribute information (QSYS/QADBXREF)

v Cross-reference information (QSYS/QADBFDEP) about all the database files on the system (except
those database files that are in the QTEMP library)

v Database file field information (QSYS/QADBIFLD)

v Database file key field information (QSYS/QADBKFLD)

v Referential constraint file information (QSYS/QADBFCST)

v Referential constraint field information (QSYS/QADBCCST)

v SQL package information (QSYS/QADBPKG)

v Remote database directory information (QSYS/QADBXRDBD)

You can use these files to determine basic attribute and database file requirements. To display the fields
contained in these files, use the Display File Field Description (DSPFFD) command.

Note: The authority to use these files is restricted to the security officer. However, all users have authority
to view the data by using one of (or the only) logical file built over each file. The authorities for
these files cannot be changed because they are always open.

200 DB2 UDB for iSeries Database Programming V5R2

../../books/c4157215.pdf
../cl/dspffd.htm

Writing the output from a command directly to a database file
You can store the output from many CL commands in an output physical file by specifying the OUTFILE
parameter on the command. You can then use the output files in programs or utilities (for example, Query)
for data analysis. For example, you can send the output of the Display Program References
(DSPPGMREF) command to a physical file, then query that file to determine which programs use a
specific file.

The physical files are created for you when you specify the OUTFILE parameter on the commands.
Initially, the files are created with private authority; only the owner (the person who ran the command) can
use it. However, the owner can authorize other users to these files as you would for any other database
file.

The system supplies model files that identify the record format for each command that can specify the
OUTFILE parameter. If you specify a file name on the OUTFILE parameter for a file that does not already
exist, the system creates the file using the same record format as the model files. If you specify a file
name for an existing output file, the system checks to see if the record format is the same record format
as the model file. If the record formats do not match, the system sends a message to the job and the
command does not complete.

Note: You must use your own files for output files, rather than specifying the system-supplied model files
on the OUTFILE parameter.

See the Control Language (CL) topic for a list of commands that allow output files and the names of the
model files supplied for those commands.

Note: All system-supplied model files are located in the QSYS library.

You can display the fields contained in the record formats of the system-supplied model files using the
Display File Field Descriptions (DSPFFD) command.

See the following topics for more information about writing command output to a file:

v “Example: Using a command output file”

v “Output file for the Display File Description command” on page 202

v “Output files for the Display Journal command” on page 202

v “Output files for the Display Problem command” on page 202

Example: Using a command output file
The following example uses the Display Program References (DSPPGMREF) command to collect
information for all compiled programs in all libraries, and place the output in a database file named
DBROUT:
DSPPGMREF PGM(*ALL/*ALL) OUTPUT(*OUTFILE) OUTFILE(DSTPRODLB/DBROUT)

You can use Query to process the output file. Another way to process the output file is to create a logical
file to select information from the file. The following is the DDS for such a logical file. Records are selected
based on the file name.
|...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

A* Logical file DBROUTL for query
A
A R DBROUTL PFILE(DBROUT)
A S WHFNAM VALUES(’ORDHDRL’ ’ORDFILL’)
A

Chapter 16. Using database attribute and cross-reference information 201

../rbam6/rbam6clmain.htm
../cl/dspffd.htm

Output file for the Display File Description command
The Display File Description (DSPFD) command provides unique output files, depending on the
parameters specified. See the Control Language (CL) topic for a list of the model files for the DSPFD
command.

Note: All system-supplied model files are in the QSYS library.

To collect access path information about all files in the LIBA library, you could specify:
DSPFD FILE(LIBA/*ALL) TYPE(*ACCPTH) OUTPUT(*OUTFILE) +

OUTFILE(LIBB/ABC)

The file ABC is created in library LIBB and is externally described with the same field descriptions as in
the system-supplied file QSYS/QAFDACCP. The ABC file then contains a record for each key field in each
file found in library LIBA that has an access path.

If the Display File Description (DSPFD) command is coded as:
DSPFD FILE(LIBX/*ALL) TYPE(*ATR) OUTPUT(*OUTFILE) +

FILEATR(*PF) OUTFILE(LIBB/DEF)

the file DEF is created in library LIBB and is externally described with the same field descriptions as exist
in QSYS/QAFDPHY. The DEF file then contains a record for each physical file found in library LIBX.

You can display the field names of each model file supplied by IBM using the DSPFFD command. For
example, to display the field description for the access path model file (*ACCPTH specified on the TYPE
parameter), specify the following:
DSPFFD QSYS/QAFDACCP

Output files for the Display Journal command
See the Control Language (CL) topic for a list of model output files supplied on the system that can be
shown with the Display Journal (DSPJRN) command.

Output files for the Display Problem command
See the Control Language (CL) topic for a list of model output files supplied on the system for the Display
Problem (DSPPRB) command. The command provides unique output files depending on the type of
record:

v Basic problem data record (*BASIC). This includes problem type, status, machine type/model/serial
number, product ID, contact information, and tracking data.

v Point of failure, isolation, or answer FRU records (*CAUSE). Answer FRUs are used if they are
available. If answer FRUs are not available, isolation FRUs are used if they are available. If answer
FRUs and isolation FRUs are not available, then point of failure FRUs are used.

v PTF fix records (*FIX).

v User-entered text (note records) (*USRTXT).

v Supporting data identifier records (*SPTDTA).

The records in all five output files have a problem identifier so that the cause, fix, user text information,
and supporting data can be correlated with the basic problem data. Only one type of data can be written to
a particular output file. The cause, fix, user text, and supporting data output files can have multiple records
for a particular problem.

202 DB2 UDB for iSeries Database Programming V5R2

../cl/dspfd.htm
../rbam6/rbam6clmain.htm
../rbam6/rbam6clmain.htm
../rbam6/rbam6clmain.htm
../cl/dspprb.htm
../cl/dspprb.htm

Chapter 17. Changing database file descriptions and
attributes

This chapter describes the things to consider when planning to change the description or attributes of a
database file. See the following topics:

v “Effect of changing fields in a file description”

v “Changing a physical file description and attributes” on page 204

v “Changing a logical file description and attributes” on page 206

Effect of changing fields in a file description
When a program that uses externally described data is compiled, the compiler copies the file descriptions
of the files into the compiled program. When you run the program, the system can verify that the record
formats the program was compiled with are the same as the record formats currently defined for the file.
The default is to do level checking.

The system assigns a unique level identifier for each record format when the file it is associated with is
created. The system uses the information in the record format description to determine the level identifier.
This information includes the total length of the record format, the record format name, the number and
order of fields defined, the data type, the size of the fields, the field names, the number of decimal
positions in the field, and whether the field allows the null value. Changes to this information in a record
format cause the level identifier to change.

The following DDS information has no effect on the level identifier and, therefore, can be changed without
recompiling the program that uses the file:

v TEXT keyword

v COLHDG keyword

v CHECK keyword

v EDTCDE keyword

v EDTWRD keyword

v REF keyword

v REFFLD keyword

v CMP, RANGE, and VALUES keywords

v TRNTBL keyword

v REFSHIFT keyword

v DFT keyword

v CCSID keyword

v Join specifications and join keywords

v Key fields

v Access path keywords

v Select/omit fields

Keep in mind that even though changing key fields or select/omit fields will not cause a level check, the
change may cause unexpected results in programs using the new access path. For example, changing the
key field from the customer number to the customer name changes the order in which the records are
retrieved, and may cause unexpected problems in the programs processing the file.

If level checking is specified (or defaulted to), the level identifier of the file to be used is compared to the
level identifier of the file in your program when the file is opened. If the identifiers differ, a message is sent

© Copyright IBM Corp. 1998, 2002 203

to the program to identify the changed condition and the changes may affect your program. You can
simply compile your program again so that the changes are included.

An alternative is to display the file description to determine if the changes affect your program. You can
use the Display File Field Description (DSPFFD) command to display the description or, if you have SEU,
you can display the source file containing the DDS for the file.

The format level identifier defined in the file can be displayed by the Display File Description (DSPFD)
command. When you are displaying the level identifier, remember that the record format identifier is
compared, rather than the file identifier.

Not every change in a file necessarily affects your program. For example, if you add a field to the end of a
file and your program does not use the new field, you do not have to recompile your program. If the
changes do not affect your program, you can use the Change Physical File (CHGPF) or the Change
Logical File (CHGLF) commands with LVLCHK(*NO) specified to turn off level checking for the file, or you
can enter an Override with Database File (OVRDBF) command with LVLCHK(*NO) specified so that you
can run your program without level checking.

Keep in mind that level checking is the preferred method of operating. The use of LVLCHK(*YES) is a
good database integrity practice. The results produced by LVLCHK(*NO) cannot always be predicted.

Changing a physical file description and attributes
Sometimes, when you make a change to a physical file description and then re-create the file, the level
identifier can change. For example, the level identifier will change if you add a field to the file description,
or change the length of an existing field. If the level identifier changes, you can compile the programs
again that use the physical file. After the programs are recompiled, they will use the new level check
identifier.

You can avoid compiling again by creating a logical file that presents data to your programs in the original
record format of the physical file. Using this approach, the logical file has the same level check identifier
as the physical file before the change.

For example, you decide to add a field to a physical file record format. You can avoid compiling your
program again by doing the following:

1. Change the DDS and create a new physical file (FILEB in LIBA) to include the new field:
CRTPF FILE(LIBA/FILEB) MBR(*NONE)...

FILEB does not have a member. (The old file FILEA is in library LIBA and has one member MBRA.)

2. Copy the member of the old physical file to the new physical file:
CPYF FROMFILE(LIBA/FILEA) TOFILE(LIBA/FILEB)

FROMMBR(*ALL) TOMBR(*FROMMBR)
MBROPT(*ADD) FMTOPT(*MAP)

The member in the new physical file is automatically named the same as the member in the old
physical file because FROMMBR(*ALL) and TOMBR(*FROMMBR) are specified. The FMTOPT
parameter specifies to copy (*MAP) the data in the fields by field name.

3. Describe a new logical file (FILEC) that looks like the original physical file (the logical file record format
does not include the new physical file field). Specify FILEB for the PFILE keyword. (When a level
check is done, the level identifier in the logical file and the level identifier in the program match
because FILEA and FILEC have the same format.)

4. Create the new logical file:
CRTLF FILE(LIBA/FILEC)...

5. You can now do one of the following:

204 DB2 UDB for iSeries Database Programming V5R2

../cl/dspffd.htm
../cl/dspfd.htm
../cl/chgpf.htm
../cl/chglf.htm
../cl/chglf.htm
../cl/ovrdbf.htm

a. Use an Override with Database File (OVRDBF) command in the appropriate jobs to override the
old physical file referred to in the program with the logical file (the OVRDBF command parameters
are described in more detail in Chapter 9, “Database file processing: Run time considerations”).
OVRDBF FILE(FILEA) TOFILE(LIBA/FILEC)

b. Delete the old physical file and rename the logical file to the name of the old physical file so the file
name in the program does not have to be overridden.
DLTF FILE(LIBA/FILEA)
RNMOBJ OBJ(LIBA/FILEC) OBJTYPE(*FILE)

NEWOBJ(FILEA)

The following illustrates the relationship of the record formats used in the three files:

FILEA (old physical file)

FLDA FLDB FLDC FLDD

In FILEB, FLDB1 was added to the record format:

FILEB (new physical file)

FLDB1

FILEC shares the record format of FILEA. FLDB1 is not used in the record format for the logical file.

FILEC (logical file)

FLDA FLDB FLDC FLDD

When you make changes to a physical file that cause you to create the file again, all logical files referring
to it must first be deleted before you can delete and create the new physical file. After the physical file is
re-created, you can re-create or restore the logical files referring to it. The following examples show two
ways to do this:

v “Example 1: Changing a physical file description and attributes”

v “Example 2: Changing a physical file description and attributes” on page 206

Example 1: Changing a physical file description and attributes
Create a new physical file with the same name in a different library

1. Create a new physical file with a different record format in a library different from the library the old
physical file is in. The name of new file should be the same as the name of the old file. (The old
physical file FILEPFC is in library LIBB and has two members, MBRC1 and MBRC2.)
CRTPF FILE(NEWLIB/FILEPFC) MAXMBRS(2)...

2. Copy the members of the old physical file to the new physical file. The members in the new physical
file are automatically named the same as the members in the old physical file because
TOMBR(*FROMMBR) and FROMMBR(*ALL) are specified.
CPYF FROMFILE(LIBB/FILEPFC) TOFILE(NEWLIB/FILEPFC)

FROMMBR(*ALL) TOMBR(*FROMMBR)
FMTOPT(*MAP *DROP) MBROPT(*ADD)

3. Describe and create a new logical file in a library different from the library the old logical file is in. The
name of the new logical file should be the same as the old logical file name. You can use the FORMAT
keyword to use the same record formats as in the current logical file if no changes need to be made to
the record formats. You can also use the Create Duplicate Object (CRTDUPOBJ) command to create
another logical file from the old logical file FILELFC in library LIBB.

Chapter 17. Changing database file descriptions and attributes 205

CRTLF FILE(NEWLIB/FILELFC)

4. Delete the old logical and physical files.
DLTF FILE(LIBB/FILELFC)
DLTF FILE(LIBB/FILEPFC)

5. Move the newly created files to the original library by using the following commands:
MOVOBJ OBJ(NEWLIB/FILELFC) OBJTYPE(*FILE) TOLIB(LIBB)
MOVOBJ OBJ(NEWLIB/FILEPFC) OBJTYPE(*FILE) TOLIB(LIBB)

Example 2: Changing a physical file description and attributes
Creating new versions of files in the same libraries

1. Create a new physical file with a different record format in the same library the old physical file is in.
The names of the files should be different. (The old physical file FILEPFA is in library LIBA and has
two members MBRA1 and MBRA2.)
CRTPF FILE(LIBA/FILEPFB) MAXMBRS(2)...

2. Copy the members of the old physical file to the new physical file.
CPYF FROMFILE(LIBA/FILEPFA) TOFILE(LIBA/FILEPFB)

FROMMBR(*ALL) TOMBR(*FROMMBR)
FMTOPT(*MAP *DROP) MBROPT(*REPLACE)

3. Create a new logical file in the same library as the old logical file is in. The names of the old and new
files should be different. (You can use the FORMAT keyword to use the same record formats as are in
the current logical file if no changes need be made to the record formats.) The PFILE keyword must
refer to the new physical file created in step 1. The old logical file FILELFA is in library LIBA.
CRTLF FILE(LIBA/FILELFB)

4. Delete the old logical and physical files.
DLTF FILE(LIBA/FILELFA)
DLTF FILE(LIBA/FILEPFA)

5. Rename the new logical file to the name of the old logical file. (If you also decide to rename the
physical file, be sure to change the DDS for logical file so that the PFILE keyword refers to the new
physical file name.)
RNMOBJ(LIBA/FILELFB) OBJTYPE(*FILE) NEWOBJ(FILELFA)

6. If the logical file member should be renamed, and assuming the default was used on the Create
Logical File (CRTLF) command, issue the following command:
RNMM FILE(LIBA/FILELFA) MBR(FILELFB) NEWMBR(FILELFA)

You can use the Change Physical File (CHGPF) command to change some of the attributes of a physical
file and its members. For information on these parameters, see the Change Physical File (CHGPF)
command in the Control Language (CL) topic.

Changing a logical file description and attributes
As a general rule, when you make changes to a logical file that will cause a change to the level identifier
(for example, adding a new field, deleting a field, or changing the length of a field), it is strongly
recommended that you recompile the programs that use the logical file. Sometimes you can make
changes to a file that change the level identifier and which do not require you to recompile your program
(for example, adding a field that will not be used by your program to the end of the file). However, in those
situations you will be forced to turn off level checking to run your program using the changed file. That is
not the preferred method of operating. It increases the chances of incorrect data in the future.

To avoid recompiling, you can keep the current logical file (unchanged) and create a new logical file with
the added field. Your program refers to the old file, which still exists.

You can use the Change Logical File (CHGLF) command to change most of the attributes of a logical file
and its members that were specified on the Create Logical File (CRTLF) command.

206 DB2 UDB for iSeries Database Programming V5R2

../rbam6/rbam6clmain.htm
../cl/chglf.htm
../cl/crtlf.htm

Chapter 18. Recovering and restoring your database

The following topics describe the iSeries functions that let you recover or restore your database after your
system has lost data. The following topics will guide you on how to guard and recover your data:

v “Recovering data in a database file” describes the iSeries journaling and commitment control functions,
which assist you in recovering data from your database files.

v “Reducing time in access path recovery” on page 214 discusses iSeries access paths, and how you can
use them effectively for database recovery.

v “The database recovery process after an abnormal system end” on page 219 provides an overview of
the processes that the iSeries system completes in the event of an abnormal system end.

For more information about saving and restoring information, see the Backup and Recovery book, the
Backup and Recovery topic, and the following:

v “Database save and restore” on page 221

v “Database considerations for save and restore” on page 221

Recovering data in a database file
The iSeries system uses journaling and commitment control to help you recover data in a database file.

v “Managing journals” allows you to record all the data changes occurring to one or more database files.
You can then use the journal for recovery.

v “Ensuring data integrity with commitment control” on page 213, an extension of the journal management
function, ensures that complex application transactions are logically synchronized even if the job or
system ends.

Managing journals
Journal management allows you to record all the data changes occurring to one or more database files.
You can then use the journal for recovery. If a database file is destroyed or becomes unusable and you
are using journals, you can reconstruct most of the activity for the file. The journal also allows you to
remove revisions made to the file.

See the following topics for information about managing journals:

v “Journals”

v “Working with journals” on page 208

In addition, see the Journal Management topic.

Journals
When a change is made to a file and you are using journals, the system records the change in a journal
receiver and writes the receiver to auxiliary storage before it is recorded in the file. Therefore, the journal
receiver always has the latest database information.

Journal entries record activity for a specific record or for the file as a whole. Each entry includes bytes of
control information that identify the source of the activity (such as user, job, program, time, and date). For
changes that affect a single record, record images are included after the control information. The record
image before the change can also be included. You can control whether to create a journal both before
and after record images or just after record images by specifying the IMAGES parameter on the Start
Journal Physical File (STRJRNPF) command.

© Copyright IBM Corp. 1998, 2002 207

../../books/c4153045.pdf
../rzahgicbackup.htm
../rzaki/rzakikickoff.htm

All journaled database files are automatically synchronized with the journal when the system is started (IPL
time). If the system session ended abnormally, some database changes may be in the journal, but some of
these changes may not be reflected in the database files. If that is the case, the system automatically
updates the database files from the journal.

Journals make saving database files an easier and faster task. For example, instead of saving an entire
file every day, simply save the journal receiver that contains the changes to that file. You might still save
the entire file on a weekly basis. This method can reduce the amount of time it takes to perform your daily
save operations.

For more information about journals, refer to the the Journal Management topic.

Working with journals
You can use the following CL commands to work with journals:

v To recover a damaged or unusable database file member that contains journaled changes, use the
Apply Journaled Changes (APYJRNCHG) and Remove Journaled Changes (RMVJRNCHG) commands.

v To apply the changes that were recorded in a journal receiver to the designated physical file member,
use the APYJRNCHG command. However, depending on the type of damage to the physical file and
the amount of activity since the file was last saved, removing changes from the file using the
RMVJRNCHG command can be easier.

v To convert journal entries to a database file, use the Display Journal (DSPJRN) command. Use this file
for activity reports, audit trails, security, and program debugging.

For more information about using CL commands to work with journals, refer to the the Journal
Management topic and to the Control Language (CL) topic information in the Information Center.

In addition, the following iSeries Navigator functions can be used to work with journals.

v “Creating a journal using iSeries Navigator”

v “Creating a journal receiver using iSeries Navigator” on page 209

v “Adding a remote journal using iSeries Navigator” on page 210

v “Removing a remote journal using iSeries Navigator” on page 210

v “Activating a remote journal using iSeries Navigator” on page 211

v “Deactivating a remote journal using iSeries Navigator” on page 211

v “Display journal information for a table using iSeries Navigator” on page 211

v “Swapping receivers using iSeries Navigator” on page 212

v “Starting/stopping a journal for a table (file) using iSeries Navigator” on page 213

Creating a journal using iSeries Navigator: Creating a journal causes a new instance of a journal on
your system. You must start journaling the table to a journal before it will begin journaling information.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that you want to create the new journal in.

4. Right-click on a library object and select New Journal.

5. On the New Journal dialog, specify a name in the Name field.

6. Specify a description in the Description field (optional).

7. Select a library in which to store the journal receivers.

You can now create the journal using the default values . You can edit the journal default values by
clicking Advanced. To create the journal using the default values, click OK.

To edit the journal default values, you must first create the journal.

1. Click Advanced on the New Journal in dialog.

208 DB2 UDB for iSeries Database Programming V5R2

../rzaki/rzakikickoff.htm
../cl/apyjrnch.htm
../cl/rmvjrnch.htm
../cl/dspjrn.htm
../rzaki/rzakikickoff.htm
../rzaki/rzakikickoff.htm
../rbam6/rbam6clmain.htm

2. Select the journal message queue in the Journal message queue field. The default is the System
Operator message queue. You can specify another message queue. However, if the message queue
that you specify is not available when the message is sent, the message is sent to the System
Operator message queue.

3. Specify the library where the journal message queue will reside.

4. Edit or specify a description in the Description field (optional).

5. Select a Receivers managed by option. Your choices are System or User.

6. Select Minimize fixed portion of entries if you do not want to record the job, program and user
profile information. This will minimize the size of each journal entry but limits the selection criteria that
can be used on other journal commands.

7. Select Remove internal entries if you want to automatically remove only the internal journal entries
required for system restart recovery. Removing these entries reduces the size of the journal receiver.

8. A new journal receiver is created at the same time as the journal. You can edit the default values of
the receiver by click New Receiver.

9. Once you have completed the Advanced options, click OK to return to the New Journal dialog.

10. Click OK to create the journal.

Creating a journal receiver using iSeries Navigator: A journal receiver is the file that contains the
information that the journal is recording. A journal receiver is automatically created when you create a
journal. However, if you want to manually swap receivers, you must first create a new journal receiver.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that contains the journal for which you want to add a receiver.

4. Right-click on the journal for which you want to add a receiver and select Properties.

5. Click Receivers.

6. On the Receivers for Journal... dialog, click New.

7. Specify a name (limited to 10 characters), a library to contain the receiver, a description and a
storage space threshold.

8. Click OK to close the New Journal Receiver dialog.

9. Click OK to close the Receivers for Journal... dialog.

10. Click OK to close the Journal Properties dialog.

Note: You can also create a new receiver when you create a new journal.

1. On the Advanced Journal Attributes dialog, click New Receiver.

2. On the New Journal Receiver dialog, specify a name (limited to 10 characters), a library to contain
the receiver, a description and a storage space threshold.

3. Click OK to close the New Journal Receiver dialog.

4. Click OK to close the Advanced Journal Attributes dialog. If you do not specify values for the journal
receiver, it will be created with the default values.

Values used when creating new journals and new journal receivers: The journal and the journal
receiver are created or changed using the values you specified on the Advanced Journal Attributes or the
Journal Properties dialog. If you do not specify any values, the journal and journal receiver are created
using default values. For journals:

v The journal is created in the library in focus.

v The storage space for the journal is allocated from the same auxiliary storage pool (ASP) as the storage
space of the journal’s library’s ASP. This value cannot be changed.

v The message queue associated with the journal is the System Operator message queue.

v The swapping of journal receivers is set so that the system automatically does the swapping.

v The journal receivers are not automatically deleted by the system during swap processing.

Chapter 18. Recovering and restoring your database 209

v The fixed portion of journal entries are not minimized, but the internal journal entries are removed.

v The public authority for the journal is taken from the default public authority for the library.

v No default text description is created for the journal.

For journal receivers:

v The storage space for the journal receiver is allocated from the same auxiliary storage pool (ASP) as
the storage space of the journal receiver’s library’s ASP. This value cannot be changed.

v The storage space threshold for the journal receiver is set at 500 megabyte (MB).

v The public authority for the journal receiver is taken from the default public authority for the library.

v A default text description is created for the journal receiver.

Adding a remote journal using iSeries Navigator: Remote journals allow you to replicate journal
information to a separate system. A remote journal is associated with an existing journal. The journal on
the source system may be either a local journal or another remote journal.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Click on the library that contains the journal that you want to add a remote journal to.

5. Right-click the journal you want to add a remote journal to and select Properties.

6. On the Journal Properties dialog, click Remote Journals.

7. To add (associate) a remote journal to this journal, click Add.

8. To display a list of relational database (RDB) directory entries, click the down arrow in the Relational
database name box on the Add a Remote Journal dialog.

9. Select the journal type (Type 1 or Type 2).

10. To associate the remote journal receivers on the target system with a different library from that used
on the source system, select Redirect receiver.

11. In the Target receiver library field, specify the library on the target system where the remote journal
receivers are to be located

12. Click OK.

The remote journal type influences the redirection capabilities, journal receiver restore operations, and
remote journal association characteristics.

Limited redirection (Type 1) If the remote journal being added is Type 1, the journal library name may be
redirected to a single different library from that of the local journal. All Type 1 remote journals associated
with a given local journal must reside in the same library A Type 1 remote journal cannot be added to a
Type 2 remote journal.

Flexible redirection (Type 2) If the remote journal being added is Type 2, you may specify a redirected
library that is the same as or different from the redirected library specified on previous additions of Type 2
remote journals. Subsequent additions of Type 2 remote journals may specify a different library redirection
from what was specified on any previously added remote journal.

Once you have added a remote journal, you must activate it.

Note: This task assumes that you have an RDB directory entry and that you have a user profile on the
target system.

Removing a remote journal using iSeries Navigator: Removing a remote journal disassociates it from
the journal on the source system. It will not delete the journal or the journal receivers. You must deactivate
a remote journal before you can remove it.

210 DB2 UDB for iSeries Database Programming V5R2

Activating a remote journal using iSeries Navigator: Once you have added a remote journal , you
must activate it.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database you want to work with and Libraries.

4. Click on the library that contains the journal that has the associated remote journal that you want to
activate.

5. Right-click the journal, and select Properties.

6. On the Journal Properties dialog, click Remote Journals.

7. On the Remote Journals for dialog, select the remote journal in the list of remote journals, then click
Activate to activate the selected remote journal.

8. On the Activate dialog, select the delivery mode, the starting receiver, and the processing mode for
the activate request.

9. Click OK.

Note:

1. Activating a remote journal for the first time creates one or more journal receivers on the target
system.

2. Activating the remote journal establishes the connection between the source and remote journal
so that journal entry replication can begin.

3. The remote journal must be inactive before you can activate it. Also, the remote journal that you
are activating must not itself already be replicating journal entries to other remote journals.

Deactivating a remote journal using iSeries Navigator: Deactivating a remote journal causes it to stop
collecting data.

If you are deactivating a synchronously maintained journal, the remote journal function is ended
immediately, regardless of whether an immediate or controlled end is requested. If the remote journal is in
the catch-up phase of processing, the remote journal function is ended immediately, regardless of whether
an immediate or controlled end is requested. (Catch-up processing refers to the process of replicating
journal entries that existed in the journal receivers of the source journal before the remote journal was
activated.) Remote journals are in catch-up if they have a delivery mode of asynchronous pending or
synchronous pending.

Controlled
Deactivates the remote journal function in a controlled manner. This means that the system should
replicate all journals entries already queued to be sent from the source system to the target system
before deactivating the remote journal. Until all queued entries have been replicated, the remote
journal will be in a state of inactive pending. While in a state of inactive pending, the Remote Journals
for dialog provides inactive pending information. When all queued entries have been sent to the target
system, the system sends a message to the journal message queue, indicating that the remote journal
function has been ended.

Immediately
Deactivates the remote journal function immediately. This means that the system should not continue
to replicate any journal entries that are already queued before deactivating the remote journal.

Display journal information for a table using iSeries Navigator:

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Click on the library that contains the table for which you want to display journal information.

5. Right-click on the table and select Journaling.

Chapter 18. Recovering and restoring your database 211

6. If the table has never been journaled, you can choose the journal you want to use by typing the journal
and library names in the appropriate boxes, or by clicking on the Browse button and navigating to the
location of the journal that you want to use for the table.

7. To journal before images, select the Journal image before change option.

8. To omit open and close entries from being journaled, select the Exclude open and close entries
option.

Swapping receivers using iSeries Navigator: Swapping journal receivers replaces the current journal
receiver with a new journal receiver that is automatically created and attached to the journal by the
system. There are two methods that you can use to swap receivers for journaling. The first does not allow
you to change the attributes of the new receiver; the second does.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Right-click the journal you want to use and select Swap Receivers. The system generates a new
name when it creates the receiver.

OR

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database that you want to work with and Libraries.

4. Double-click the journal you want to use.

5. Click Receivers This window displays all of the receivers that are associated with the journal.

6. To add a new receiver, click New.

7. Click OK.

8. Click OK to close the Journal Receivers dialog. Click OK again, and the new journal receiver
changes its status to attached.

The status of the journal receiver can be one of the following:

Attached
Indicates that the journal receiver is currently attached to the journal. Empty Indicates that the receiver
has never been attached to a journal.

Freed
Indicates that the journal receiver was saved after is was detached. The receiver storage was freed
when the receiver was saved.

Online
Indicates that the journal receiver is online.

Partial
Indicates that the status is partial for one of the following reasons:

v The journal receiver was restored from a version that was saved while it was attached to the
journal. Additional journal entries may have been written that were not restored.

v The journal receiver was one of a pair of dual journal receivers, and it was found damaged while
attached to the journal. The journal receiver has since been detached. This journal receiver is
considered partial because additional journal entries may have been written to the dual journal
receiver.

v The journal receiver is associated with a remote journal and it does not contain all the journal
entries that are in the associated journal receiver attached to the source journal. Pending Indicates
that the journal receiver is not yet created. It will be created and attached after OK is selected on
the Journal Properties dialog. Saved Indicates that the journal receiver was saved after it was
detached. The journal receiver storage was not freed when the receiver was saved.

212 DB2 UDB for iSeries Database Programming V5R2

Starting/stopping a journal for a table (file) using iSeries Navigator: Once a journal is created, it
must be started for a table. If you want to delete a journal, it must be stopped.

1. In the iSeries Navigator window, expand the system you want to use.

2. Expand Databases.

3. Expand the database and library that contains the journal you want to edit.

4. Click the library that contains the journal you want to edit.

5. Right-click the journal and select Starts and ends table journaling.

6. To start journaling for a table (file), select the table that you want to journal from the Tables list and
then click Add. Or you can drag a table from the Tables list and drop it on the Tables to journal list.

7. To end journaling for a table, select the table that you no longer want to journal from the Tables
already being journaled list, and then click Remove.

8. To end journaling for all the tables at once, click Select all to select all the tables listed in the Tables
already being journaled list, and then click Remove.

9. Click OK to close the Start/End journaling dialog.

OR

1. From the library tree list, right-click the object for which you want to start or stop journaling and select
Journaling.

2. Click Stop to stop journaling for the selected object.

3. To start journaling from an object:

a. Select a journal to associate with the object. You may browse for the journal by selecting Browse.

b. Select a library that the journal is located in. This field is automatically filled in when you select a
journal from Browse.

c. To journal before images, select the Journal images before change option.

d. To omit open and close entries from being journaled, select the Exclude open and close entries
option.

e. Click Start to start journaling for the selected object.

Ensuring data integrity with commitment control
Commitment control lets you define and process a number of changes to database files in a single unit
(transaction). Commitment control can ensure that complex application transactions are logically
synchronized, even if the job or system ends. Two-phase commitment control ensures that committable
resources, such as database files on multiple systems, remain synchronized.

You implement commitment control in your database by executing commit and rollback operations. Using
SQL, you use the COMMIT and ROLLBACK statements.

See the following topics related to commitment control:

v “Transactions”

v “Benefits of using commitment control” on page 214

v “Usage notes: commitment control” on page 214

In addition, see the Commitment Control topic.

Transactions
A transaction is a group of changes that appear as a single change, such as the transfer of funds from a
savings account to a checking account. Transactions can be classified as follows:

v Inquiries in which no file changes occur.

v Simple transactions in which one file is changed each time you press the Enter key.

v Complex transactions in which two or more files are changed each time you press the Enter key.

Chapter 18. Recovering and restoring your database 213

../sqlp/rbafymstdicomm.htm
../db2/rbafzmstc4comit.htm
../db2/rbafzmstrollbac.htm
../rzakj/rzakjcommitkickoff.htm

v Complex transactions in which one or more files are changed each time you press the Enter key. These
changes represent only part of a logical group of transactions.

Revisions made to files during transaction processing are journaled when using commitment control.

If the system or job ends abnormally, journaling alone can ensure that, at most, only the very last record
change is lost. However, if the system or job ends abnormally during a complex transaction, the files
reflect an incomplete logical transaction. For example, the job may have updated a record in file A, but
before it updated a corresponding record in file B, the job ended abnormally. In this case, the logical
transaction consisted of two updates, but only one update completed before the job ended abnormally.

Benefits of using commitment control
Recovering a complex application requires detailed application knowledge. Programs cannot be restarted.
For example, record changes may have to be made with an application program or data file utility to
reverse the files to just before the last complex transaction began. This task becomes more complex if
multiple users were accessing the files at the same time.

Commitment control helps solve these problems. Commitment control locks records from other users
during a complex transaction. This ensures that other users do not use the records until the transaction is
complete. At the end of the transaction, the program issues the commit operation, freeing the records.
However, should the system end abnormally before performing the commit operation, all record changes
for that job since the last time a commit operation occurred are rolled back. Any affected records that are
still locked are then unlocked. In other words, database changes roll back to a clean transaction boundary.

Usage notes: commitment control
The commit and rollback operations are available in several iSeries programming languages including the
RPG/400, COBOL/400, PL/I, SQL, and the OS/400 control language (CL).

You can open logical files for output under commitment control when underlying physical files are
journaled to different journals. However, the checks for violations are deferred if a record change affects
underlying physical files that are journaled to the same journal. If the record change affects underlying
physical files that are not journaled to the same journal, and it causes a duplicate key or referential
constraint violation, an error will occur during the I/O operation. For example, assume physical file A with a
unique key is journaled to journal X, while physical file B with a unique key is journaled to journal Y.
Logical file C is created over physical files A and B and opened under commitment control. A delete
operation performed using logical file C removes a record from physical file A with key K. It would be
possible to add a record back to physical file A with key K before the transaction is committed. However,
an attempt to add a record to physical file B with key K, before the transaction is committed, would fail
since physical files A and B are journaled to different journals.

Commitment control can also be used in a batch environment. Just as it provides assistance in interactive
transaction recovery, commitment control can help in batch job recovery. See the Commitment Control
topic for more information about commitment control.

Reducing time in access path recovery
The system ensures the integrity of an access path before you can use it. If the system determines that
the access path is unusable, the system attempts to recover it. You can control when an access path will
be recovered.

Access path recovery can take a long time, especially if you have large access paths or many access
paths to be rebuilt. You can reduce this recovery time in several ways.

214 DB2 UDB for iSeries Database Programming V5R2

../rzakj/rzakjcommitkickoff.htm

Journaling access paths is often faster than rebuilding access paths. With the System-managed access
path protection (SMAPP) support, you do not have to use the journaling commands, such as STRJRNAP,
to get the benefits of access path journaling. SMAPP support recovers access paths after an abnormal
system end rather than rebuilding them during IPL.

The following topics describe in more detail how you can reduce access path recovery time:

v “Saving access paths”

v “Restoring access paths”

v “Journaling access paths” on page 216

v “System-managed access-path protection (SMAPP)” on page 216

v “Rebuilding access paths” on page 217

Saving access paths
You can reduce the recovery time of access paths by saving access paths. The access path (ACCPTH)
parameter on the SAVCHGOBJ, SAVLIB, and SAVOBJ commands allows you to save access paths.
Normally, the system saves only descriptions of logical files; however, the system saves access paths
under the following conditions:

v ACCPTH(*YES) is specified.

v All physical files under the logical file are being saved and are in the same library.

v The logical file is MAINT(*IMMED) or MAINT(*DLY).

Note that the logical file itself is not saved when you have specified the ACCPTH(*YES) parameter. You

have to save the logical file explicitly. For more information, see the Backup and Recovery book.

Restoring access paths
The system has the ability to restore access paths if:

v They were previously saved.

v All the physical files on which they depend are restored at the same time.

The system usually restores an access path faster than it rebuilds it.

For example, assume that a logical file is built over a physical file that contains 500,000 records. You have
determined through the Display Object Description (DSPOBJD) command that the size of the logical file is
about 15 megabytes.

In this example, it takes about 50 minutes to rebuild the access path for the logical file. It takes about 1
minute to restore the same access path from a tape. (This assumes that the system builds approximately
10,000 index entries per minute.)

After restoring the access path, you may need to update the file by applying the latest journal changes.
For example, the system applies approximately 80,000 to 100,000 journal entries to the file per hour. This
assumes that each of the physical files to which entries are being applied has only one access path built
over it. This rate will drop proportionally for each access path of *IMMED maintenance that is present over
the physical file. Even with this additional recovery time, you will usually find that it is faster to restore
access paths rather than to rebuild them.

See the Journal Management topic for additional information.

Chapter 18. Recovering and restoring your database 215

../../books/c4153045.pdf
../rzaki/rzakikickoff.htm

Journaling access paths
Journaling access paths can significantly reduce recovery time by reducing the number of access paths
that need to be rebuilt after an abnormal system end. It is recommended that you journal access paths for
iSeries Version 2 Release 2 and following releases because the larger access paths require more time to
rebuild.

When you journal database files, you record images of changes to the file in the journal. The system uses
these record images to recover the file after an abnormal system end.

After an abnormal end, the system may find that access paths are not synchronized with the data in the
file. If an access path does not synchronize with its data, the system rebuilds the access path to ensure
that the two are synchronized and usable.

When journaling access paths, the system records images of the access path in the journal to provide
known synchronization points between the access path and its data. By having that information in the
journal, the system recovers both the data files and the access paths. The system then synchronizes the
two. In such cases, you avoid the lengthy time to rebuild access paths.

In addition, other system recovery functions work with journaling access paths. For example, the system
has a number of options to reduce recovery time from the failure and replacement of a disk unit. These
options include user auxiliary storage pools and checksum protection. These options further reduce the
chances that the entire system must reload because of the disk failure. However, you may still need to
rebuild access paths when the system is started following replacement of the failed disk. By using access
path journaling and some of the recovery options, you reduce your chances of having to reload the entire
system and having to rebuild access paths.

Before journaling an access path, you must journal the physical files that are associated with the access
path. In addition, you must use the same journal for the access path and its associated physical files. It is
easy to start journaling access paths:

v You can use the system-managed access-path protection (SMAPP) facility.

v You can manage the journaling environment yourself with the Start Journal Access Path (STRJRNAP)
command.

– To start journaling the access path for the specified file, use the STRJRNAP command. You can
journal access paths that have a maintenance attribute of immediate (*IMMED) or delayed (*DLY).

– Once you start journaling, the system protects the access path until the access path is deleted or
until you run the End Journal Access Path (ENDJRNAP) command for that access path.

Access path journaling minimizes additional output operations. For example, the system will write the
journal data for the changed record and the changed access path in the same output operation. However,
you should seriously consider isolating your journal receivers in user auxiliary storage pools when you start
journaling your access paths. Placing journal receivers in their own user auxiliary storage pool provides the
best journaling performance, while helping to protect them from a disk failure. See the Journal
Management topic for more information about journaling access paths.

System-managed access-path protection (SMAPP)
System-managed access-path protection (SMAPP) provides automatic protection for access paths. WIth
SMAPP support, you do not have to use the journaling commands, such as STRJRNAP, to get the
benefits of access path journaling. SMAPP support recovers access paths after an abnormal system end
rather than rebuilding them during IPL. The shipped system automatically turns on SMAPP support. The
system sets SMAPP support to a value of 70 minutes.

The system determines which access paths to protect based on:

v Target access path recovery times provided by the user, or

216 DB2 UDB for iSeries Database Programming V5R2

|
|
|
|
|

../cl/strjrnap.htm
../rzaki/rzakikickoff.htm
../rzaki/rzakikickoff.htm

v A system-provided default time.

You specify target access path recovery times as a system-wide value or on an ASP basis. Access paths
already in a user-defined journal are ineligible for SMAPP protection because they are already protected.
See the Journal Management topic for more information about SMAPP.

Rebuilding access paths
Rebuilding a database access path may take as much as one minute for every 10,000 records.

The following factors affect the time estimate when rebuilding access paths:

v Storage pool size. You can improve the rebuild time by running the job in a larger storage pool.

v The system model. The speed of the processing unit is a key factor.

v Key length. A large key length will slow rebuilding the access path because the access path constructs
and stores more key information.

v Select/omit values. Select/omit processing slows the rebuilding of an access path because the system
compares each record to see if it meets the select/omit values.

v Record length. A large record length slows the rebuilding of an access path because the system looks
at more data.

v Storage device that contains the data. The relative speed of the storage device that contains the actual
data and the device that stores the access path affects the time needed to rebuild an access path.

v The order of the records in the file. The system tries to rebuild an access path so that it can find
information quickly when using that access path. The order of the records in a file has a small affect on
how fast the system builds the access path while trying to maintain an efficient access path.

The following topics describe in more detail the techniques involved with rebuilding access paths:

v “Controlling when access paths are rebuilt”

v “Designing files to reduce access path rebuilding time” on page 218

v “Other methods to avoid rebuilding access paths” on page 218

Controlling when access paths are rebuilt
If the system ends abnormally, during the next IPL, the system automatically lists those files that require
access path recovery. You can then decide whether to rebuild the access path:

v During the IPL

v After the IPL

v When you first use the file.

You can also:

v Change the scheduling order in which the access paths are rebuilt

v Hold rebuilding of an access path indefinitely

v Continue the IPL process while access paths with a sequence value that is less than or equal to the
*IPL threshold value are rebuilding.

v Control the rebuilding of access paths after the system has completed the IPL process by using the Edit
Rebuild of Access Paths (EDTRBDAP) command.

The IPL threshold value determines which access paths to rebuild during the IPL. All access paths with a
sequence value that is less than or equal to the IPL threshold value rebuild during the IPL. Changing the
IPL threshold value to 99 means that all access paths with a sequence value of 1 through 99 rebuild
during the IPL. Changing the IPL threshold value to 0 means that no access paths rebuild until after the
system completes its IPL, except those access paths that were being journaled and those access paths for
system files.

Chapter 18. Recovering and restoring your database 217

../rzaki/rzakikickoff.htm
../cl/edtrbdap.htm
../cl/edtrbdap.htm

The access path recovery value for a file is determined by the value you specified for the RECOVER
parameter on the create and change file commands. The default recovery value for *IPL (rebuild during
IPL) is 25 and the default value for AFTIPL (rebuild after IPL) is 75; therefore, RECOVER(*IPL) will show
as 25. The initial IPL threshold value is 50; this allows the parameters to affect when the access path is
rebuilt. You can override this value on the Edit Rebuild of Access Paths display.

If a file is not needed immediately after IPL time, specify that the file can be rebuilt at a later time. This
should reduce the number of access paths that need to be rebuilt at IPL, allowing the system to complete
its IPL much faster.

For example, you can specify that all files that must have their access paths rebuilt should rebuild the
access paths when the file is first used. In this case, no access paths are rebuilt at IPL. You can control
the order in which the access paths are rebuilt by running only those programs that use the files you want
to rebuild first. This method shortens the IPL time and could make the first of several applications available
faster. However, the overall time to rebuild access paths probably is longer. (Other work may be running
when the access paths are being rebuilt, and there may be less main storage available to rebuild the
access paths).

Designing files to reduce access path rebuilding time
File design can also help reduce access path recovery time. For example, you might divide a large master
file into a history file and a transaction file. The system uses the transaction file for adding new data. The
system uses the history file for inquiry only. On a daily basis, you might merge the transaction data into
the history file, then clear the transaction file for the next day’s data. With this design, you shorten the time
to rebuild access paths.

However, if the system abnormally ended during the day, the access path to the smaller transaction file
might need to be rebuilt. Still, the access path to the large history file, being read-only for most of the day,
would rarely be unsynchronized with its data. Therefore, you reduce the chance of rebuilding this access
path.

Consider the trade-off between using a file design to reduce access path rebuilding time and using
system-supplied functions like access path journaling. The above file design may require a more complex
application design. After evaluating your situation, you may decide to use system-supplied functions like
journaling your access paths rather than design applications that are more complex.

Other methods to avoid rebuilding access paths
If you do not journal your access paths or do not take advantage of SMAPP, then consider other system
functions that reduce the chances of rebuilding access paths.

The system uses a file synchronization indicator to determine if an access path needs to be rebuilt.
Normally, the synchronization indicator is on, indicating the synchronization of the access path and its
associated data. When a job changes a file that affects an access path, the system turns off the
synchronization indicator in the file. If the system ends abnormally, it must rebuild any access path whose
file has its synchronization indicator off.

You need to periodically synchronize the data with its access path to reduce the number of access paths
you must rebuild. There are several methods to synchronize a file with its access path:

v Full file close. The last full (that is, not shared) system-wide close performed against a file will
synchronize the access path and the data.

v Force access path. Specify the force-access-path (FRCACCPTH) parameter on the create, change, or
override database file commands.

v Force write ratio of 2 or greater. Specify the force-write-ratio (FRCRATIO) parameter on the create,
change, or override database file commands.

218 DB2 UDB for iSeries Database Programming V5R2

v Force end of data. Running the force-end-of-data operation in your program can synchronize the file’s
data and its access path. (Some high-level languages do not have a force-end-of-data operation. See
your high-level language guide for further details.)

Performing one of the methods mentioned previously synchronizes the access path and the data.
However, the next change to the data in the file can turn the synchronization indicator off again.

Note that each of the methods can be costly in terms of performance; therefore, use them with caution.
Consider journaling access paths along with saving access paths or using SMAPP as the primary means
of protecting access paths.

The database recovery process after an abnormal system end
After an abnormal system end, the system proceeds through several automatic recovery steps. The
system rebuilds the directory and synchronizes the journal to the files being journaled. The system
performs recovery operations during IPL and after IPL.

The following topics describe the specifics of database file recovery:

v “Database file recovery during the IPL”

v “Database file recovery after the IPL” on page 220

v “Effects of the storage pool paging option on database recovery” on page 220

v “Database file recovery options table” on page 221

Database file recovery during the IPL
During the IPL, nothing but the recovery function is active on the system. Database file recovery consists
of the following:

v The following functions that were in progress when the system ended are completed:
– Delete file
– Remove member
– Rename member
– Move object
– Rename object
– Change object owner
– Change member
– Grant authority
– Revoke authority
– Start journal physical file
– Start journal access path
– End journal physical file
– End journal access path
– Change journal
– Delete journal
– Recover SQL views
– Remove physical file constraint

v The following functions that were in progress when the system ended are backed out (and you must run
them again):
– Create file
– Add member
– Change file
– Create journal
– Restore journal
– Add physical file constraint

Chapter 18. Recovering and restoring your database 219

v If the operator is doing the IPL (attended IPL), the Edit Rebuild of Access paths display appears on the
operator’s display. The display allows the operator to edit the RECOVER option for the files that were in
use for which immediate or delayed maintenance was specified. If all access paths are valid, or the IPL
is unattended, no displays appear.

v Access paths that:

– have immediate or delayed maintenance

– are specified for recovery during IPL (from the RECOVER option or changed by the Edit Rebuild of
Access Paths display)

– are rebuilt and a message is sent when you start journaling your access paths. Placing journal
receivers in their own user auxiliary storage pool provides the best journaling performance, while
helping to protect them from a disk failure. See the the Journal Management topic for more
information about journaling access paths.

Database file recovery after the IPL
This recovery of database files runs after the IPL completes. Interactive and batch jobs may run with these
steps of database recovery.

Recovery after the IPL consists of the following:

v The access paths for immediate or delayed maintenance files which specify recovery after IPL are
rebuilt.

v The system history log receives messages that indicate the success or failure of the rebuild operations.

v After IPL completion, use the Edit Rebuilt of Access Paths (EDTRBDAP) command to order the
rebuilding of access paths.

v After IPL completion, the Edit Check Pending Constraints (EDTCPCST) command displays a list of the
physical file constraints in check pending. This command specifies the verification sequence of the
check pending constraints.

Note: If you are not using journaling for a file, records may or may not exist after IPL recovery, as follows:

v For added records, if after the IPL recovery the Nth record added exists, then all records added
preceding N also exist.

v For updated and deleted records, if the update or delete to the Nth record is present after the IPL
recovery, there is no guarantee that the records updated or deleted prior to the Nth record are also
present in the database.

v For REUSEFLT(*YES), records added are treated as updates, and these records may not exist after IPL
recovery.

Effects of the storage pool paging option on database recovery
The shared pool paging option controls whether the system dynamically adjusts the paging characteristics
of the storage pool for optimum performance.

v The system does not dynamically adjust paging characteristics for a paging option of *FIXED.

v The system dynamically adjusts paging characteristics for a paging option of *CALC.

v You can also control the paging characteristics through an application programming interface. For more
information, see Change Pool Tuning Information API (QWCCHGTN) in the Application programming
interfaces (APIs) topic.

A shared pool paging option other than *FIXED can have an impact on data loss for nonjournaled physical
files in a system failure. When you do not journal physical files, data loss from a system failure, where
memory is not saved, can increase for *CALC or USRDFN paging options. You may write file changes to
auxiliary storage less frequently for these options. There is a risk of data loss for nonjournaled files with
the *FIXED option, but the risk can be higher for *CALC or user defined (USRDFN) paging options.

220 DB2 UDB for iSeries Database Programming V5R2

../rzaki/rzakikickoff.htm
../cl/edtrbdap.htm
../cl/edtcpcst.htm
../apis/api.htm
../apis/api.htm

For more information on the paging option see the ″Automatic System Tuning″ section of the Performance
topic.

Database file recovery options table
The table below summarizes the file recovery options:

RECOVER Parameter Specified

Access Path/ Maintenance *NO *AFTIPL *IPL

Keyed sequence access
path/ immediate or delayed
maintenance

v No database recovery at
IPL

v File available
immediately

v Access path rebuilt first
time file opened

v Access path rebuilt after
IPL

v Access path rebuilt
during IPL

Keyed sequence access
path rebuild maintenance

v No database recovery at
IPL

v File available
immediately

v Access path rebuilt first
time file opened

v Not applicable; no
recovery is done for
rebuild maintenance

v Not applicable; no
recovery is done for
rebuild maintenance

Arrival sequence access
path

v No database recovery at
IPL

v File available
immediately

v Not applicable; no
recovery is done for an
arrival sequence access
path

v Not applicable; no
recovery is done for an
arrival sequence access
path

Database save and restore
You can save and restore database files and related objects with any supported device and media or a
save file. A save file (or the media) receives a copy written in special format of the saved information. You
can remove and store media for future use on your system or on another iSeries system. Restored
information is read from the media or a save file into storage, where system users access the information.

Save files are disk-resident files that can be the target of a save operation or the source of a restore
operation. Save files allow unattended save operations. An operator does not need to load tapes or
diskettes when saving to a save file. However, periodically use the Save Save File Data (SAVSAVFDTA)
command to save the save file data on tape or diskette. Periodically remove and store the tapes or
diskettes away from the site. These media are then available to help you recover in case of a site disaster.

For more information about saving and restoring information, see the Backup and Recovery book and
the Backup and Recovery topic.

Database considerations for save and restore
The following list gives tips for working with the save and restore functions.

v When you save an object to a save file, you can prevent the system from updating the date and time of
the save operation by specifying UPDHST(*NO) on the save command.

v When you restore an object, the system always updates the object description with the date and time of
the restore operation. Display the object description and other save/restore related information by using
the Display Object Description (DSPOBJD) command with DETAIL(*FULL).

v To display the objects in a save file, use the Display Save File (DSPSAVF) command.

Chapter 18. Recovering and restoring your database 221

../rzahx/rzahx1.htm
../cl/savsavfd.htm
../../books/c4153045.pdf
../rzahgicbackup.htm
../cl/dspobjd.htm
../cl/dspsavf.htm

v To display the objects on the media, specify DATA(SAVRST) on the Display Diskette (DSPDKT) or
Display Tape (DSPTAP) command.

v To display the last save/restore date for a database file, type: DSPFD FILE(file-name) TYPE(*MBR).

Also consider automatically writing records to auxiliary storage. See “Force-writing data to auxiliary
storage”.

For more information about saving and restoring information, see the Backup and Recovery book and
the Backup and Recovery topic.

Force-writing data to auxiliary storage
The force-write ratio (FRCRATIO) parameter on the Create File and Override Database File commands
indicates how often the records are to be written to auxiliary storage. A force-write ratio of one immediately
writes every add, update, and delete request to auxiliary storage for the file in question. However,
choosing this option can reduce system performance. Therefore, consider saving your files and journaling
your files as the primary methods for protecting database files.

222 DB2 UDB for iSeries Database Programming V5R2

../cl/dspdkt.htm
../cl/dsptap.htm
../../books/c4153045.pdf
../rzahgicbackup.htm

Chapter 19. Using source files

This chapter describes how to enter and maintain data in a source file, and how to use that source file to
create another object (for example, a file or program) on the system. See the following topics:

v “Working with source files”

v “Creating an object using a source file” on page 226

v “Managing a source file” on page 227

For information about how to set up a source file, see Chapter 3, “Setting up source files” on page 13.

Working with source files
The following sections describe how to enter and maintain data using various methods.

v “Using the Source Entry Utility (SEU)”

v “Using device source files”

v “Copying source file data” on page 224

v “Loading and unloading data from non-iSeries systems” on page 225

v “Using source files in a program” on page 225

Using the Source Entry Utility (SEU)
You can use the Source Entry Utility (SEU) to enter and change source in a source file. SEU is part of
IBM WebSphere Development Studio for iSeries. If you use SEU to enter source in a database file, SEU
adds the sequence number and date fields to each source record.

If you use SEU to update a source file, you can add records between existing records. For example, if you
add a record between records 0003.00 and 0004.00, the sequence number of the added record could be
0003.01. SEU will automatically arrange the newly added statements in this way.

When records are first placed in a source file, the date field is all zoned decimal zeros (unless DDS is
used with the DFT keyword specified). If you use SEU, the date field changes in a record when you
change the record.

See the ADTS for AS/400: Source Entry Utility book for information about how to update database
source files.

Using device source files
Tape and diskette unit files can be created as source files. When device files are used as source files, the
record length must include the sequence number and date fields. Any maximum record length restrictions
must consider these additional 12 characters. For example, the maximum record length for a tape record
is 32 766. If data is to be processed as source input, the actual tape data record has a maximum length of
32 754 (which is 32 766 minus 12).

If you open source device files for input, the system adds the sequence number and date fields, but there
are zeros in the date fields.

If you open a device file for output and the file is defined as a source file, the system deletes the
sequence number and date before writing the data to the device.

© Copyright IBM Corp. 1998, 2002 223

../../books/c0926050.pdf

Copying source file data
The Copy Source File (CPYSRCF) and Copy File (CPYF) commands can be used to write data to and
from source file members. See “Using the Copy Source File (CPYSRCF) command for copying to and
from source files” and “Using the Copy File (CPYF) command for copying to and from files”.

When you are copying from a database source file to another database source file that has an insert
trigger associated with it, the trigger program is called for each record copied.

See also “Source sequence numbers used in copies” for information about copying.

Using the Copy Source File (CPYSRCF) command for copying to and from source
files
The Copy Source File (CPYSRCF) command is designed to operate with database source files. Although it
is similar in function to the Copy File (CPYF) command, the CPYSRCF command provides defaults that
are normally used when copying a source file. For example, it has a default that assumes the TOMBR
parameter is the same as the FROMMBR parameter and that any TOMBR records will always be
replaced. The CPYSRCF command also supports a unique printing format when TOFILE(*PRINT) is
specified. Therefore, when you are copying database source files, you will probably want to use the
CPYSRCF command.

The CPYSRCF command automatically converts the data from the from-file CCSID to the to-file CCSID.

Using the Copy File (CPYF) command for copying to and from files
The Copy File (CPYF) command provides additional functions over the CPYSRCF command such as:

v Copying from database source files to device files

v Copying from device files to database source files

v Copying between database files that are not source files and source database files

v Printing a source member in hexadecimal format

v Copying source with selection values

Source sequence numbers used in copies
When you copy to a database source file, you can use the SRCOPT parameter to update sequence
numbers and initialize dates to zeros. By default, the system assigns a sequence number of 1.00 to the
first record and increases the sequence numbers by 1.00 for the remaining records. You can use the
SRCSEQ parameter to set a fractional increased value and to specify the sequence number at which the
renumbering is to start. For example, if you specify in the SRCSEQ parameter that the increased value is
.10 and is to start at sequence number 100.00, the copied records have the sequence numbers 100.00,
100.10, 100.20, and so on.

If a starting value of .01 and an increased value of .01 are specified, the maximum number of records that
can have unique sequence numbers is 999,999. When the maximum sequence number (9999.99) is
reached, any remaining records will have a sequence number of 9999.99.

The following is an example of copying source from one member to another in the same file. If MBRB
does not exist, it is added; if it does exist, all records are replaced.
CPYSRCF FROMFILE(QCLSRC) TOFILE(QCLSRC) FROMMBR(MBRA) +

TOMBR(MBRB)

The following is an example of copying a generic member name from one file to another. All members
starting with PAY are copied. If the corresponding members do not exist, they are added; if they do exist,
all records are replaced.
CPYSRCF FROMFILE(LIB1/QCLSRC) TOFILE(LIB2/QCLSRC) +

FROMMBR(PAY*)

224 DB2 UDB for iSeries Database Programming V5R2

../cl/cpysrcf.htm
../cl/cpyf.htm

The following is an example of copying the member PAY1 to the printer file QSYSPRT (the default for
*PRINT). A format similar to the one used by SEU is used to print the source statements.
CPYSRCF FROMFILE(QCLSRC) TOFILE(*PRINT) FROMMBR(PAY1)

When you copy from a device source file to a database source file, sequence numbers are added and
dates are initialized to zeros. Sequence numbers start at 1.00 and are increased by 1.00. If the file being
copied has more than 9999 records, then the sequence number is wrapped back to 1.00 and continues to
be increased unless the SRCOPT and SRCSEQ parameters are specified.

When you are copying from a database source file to a device source file, the date and sequence number
fields are removed.

Loading and unloading data from non-iSeries systems
You can use the Copy From Import File (CPYFRMIMPF) and Copy To Import File (CPYTOIMPF)
commands to import (load) or export (unload) data from and to the iSeries.

To import data from a non-iSeries database into an externally-described DB2 UDB for iSeries database
file, perform the following steps:

1. Create an import file for the data that you want to copy. The import file can be a database source file
or an externally-described database file that has 1 field. The field must have a data type of
CHARACTER, IGC OPEN, IGC EITHER, IGC ONLY, or UCS-2.

2. Send the data to the import file (or, the from file). The system performs any required ASCII to EBCDIC
conversion during this process. You can send the data in several ways:

v TCP/IP file transfer (file transfer)

v iSeries Access support (file transfer, ODBC)

v Copy From Tape File (CPYFRMTAP) command

3. Create an externally-described DB2 UDB for iSeries database file, or a DDM file, into which you want
to copy the data.

4. Use the Copy From Import File (CPYFRMIMPF) command to copy the data from the import file to your
iSeries database file. If you have the DB2 UDB Symmetric Multiprocessing product installed on your
system, the system will copy the file in parallel.

To export iSeries database data to another system, use the Copy To Import File (CPYTOIMPF) command
to copy the data from your database file to the import file. Then send the data to the system to which you
are exporting the data.

Using source files in a program
You can process a source file in your program. You can use the external definition of the source file and
do any input/output operations for that file, just as you would for any other database file.

Source files are externally described database files. As such, when you name a source file in your
program and compile it, the source file description is automatically included in your program printout. For
example, assume you wanted to read and update records for a member called FILEA in the source file
QDDSSRC. When you write the program to process this file, the system will include the SRCSEQ,
SRCDAT, and SRCDTA fields from the source file.

Note: You can display the fields defined in a file by using the Display File Field Description command
(DSPFFD). For more information about this command, see “Displaying the descriptions of the fields
in a file” on page 198.

The program processing the FILEA member of the QDDSSRC file could:

v Open the file member (just like any other database file member).

Chapter 19. Using source files 225

../cl/cpyfrmim.htm
../cl/cpytoimp.htm

v Read and update records from the source file (probably changing the SRCDTA field where the actual
source data is stored).

v Close the source file member (just like any other database file member).

Creating an object using a source file
You can use a create command to create an object using a source file. If you create an object using a
source file, you can specify the name of the source file on the create command.

For example, to create a CL program, you use the Create Control Language Program (CRTCLPGM)
command. A create command specifies through a SRCFILE parameter where the source is stored.

The create commands are designed so that you do not have to specify source file name and member
name if you do the following:

1. Use the default source file name for the type of object you are creating. (To find the default source file
name for the command you are using, see “IBM-supplied source files” on page 14.)

2. Give the source member the same name as the object to be created.

For example, to create the CL program PGMA using the command defaults, you would simply type:
CRTCLPGM PGM(PGMA)

The system would expect the source for PGMA to be in the PGMA member in the QCLSRC source file.
The library containing the QCLSRC file would be determined by the library list.

As another example, the following Create Physical File (CRTPF) command creates the file DSTREF using
the database source file FRSOURCE. The source member is named DSTREF. Because the SRCMBR
parameter is not specified, the system assumes that the member name, DSTREF, is the same as the
name of the object being created.
CRTPF FILE (QGPL/DSTREF) SRCFILE(QGPL/FRSOURCE)

See the following topics for related information:

v “Creating an object from source statements in a batch job”

v “Determining which source file member was used to create an object” on page 227

Creating an object from source statements in a batch job
If your create command is contained in a batch job, you can use an inline data file as the source file for
the command. However, inline data files used as a source file should not exceed 10,000 records. The
inline data file can be either named or unnamed. Named inline data files have a unique file name that is
specified on the //DATA command. For more information about inline data files, see File Management.

Unnamed inline data files are files without unique file names; they are all named QINLINE. The following is
an example of an inline data file used as a source file:
//BCHJOB
CRTPF FILE(DSTPRODLB/ORD199) SRCFILE(QINLINE)
//DATA FILETYPE(*SRC)

.

. (source statements)

.
//
//ENDBCHJOB

In this example, no file name was specified on the //DATA command. An unnamed spooled file was
created when the job was processed by the spooling reader. The CRTPF command must specify QINLINE
as the source file name to access the unnamed file. The //DATA command also specifies that the inline file
is a source file (*SRC specified for the FILETYPE parameter).

226 DB2 UDB for iSeries Database Programming V5R2

../dm/rbal3mst02.htm

If you specify a file name on the //DATA command, you must specify the same name on the SRCFILE
parameter on the CRTPF command. For example:
//BCHJOB
CRTPF FILE(DSTPRODLB/ORD199) SRCFILE(ORD199)
//DATA FILE(ORD199) FILETYPE(*SRC)

.

. (source statements)

.
//
//ENDBCHJOB

If a program uses an inline file, the system searches for the first inline file of the specified name. If that file
cannot be found, the program uses the first file that is unnamed (QINLINE).

If you do not specify a source file name on a create command, an IBM-supplied source file is assumed to
contain the needed source data. For example, if you are creating a CL program but you did not specify a
source file name, the IBM-supplied source file QCLSRC is used. You must have placed the source data in
QCLSRC.

If a source file is a database file, you can specify a source member that contains the needed source data.
If you do not specify a source member, the source data must be in a member that has the same name as
the object being created.

Determining which source file member was used to create an object
When an object is created from source, the information about the source file, library, and member is held
in the object. The date/time that the source member was last changed before object creation is also saved
in the object.

The information in the object can be displayed with the Display Object Description (DSPOBJD) command
and specifying DETAIL(*SERVICE).

This information can help you in determining which source member was used and if the existing source
member was changed since the object was created.

You can also ensure that the source used to create an object is the same as the source that is currently in
the source member using the following commands:

v The Display File Description (DSPFD) command using TYPE(*MBR). This display shows both
date/times for the source member. The Last source update date/time value should be used to
compare to the Source file date/time value displayed from the DSPOBJD command.

v The Display Object Description (DSPOBJD) command using DETAIL(*SERVICE). This display shows
the date/time of the source member used to create the object.

Note: If you are using the data written to output files to determine if the source and object dates are the
same, then you can compare the ODSRCD (source date) and ODSRCT (source time) fields from
the output file of the DSPOBJD DETAIL(*SERVICE) command to the MBUPDD (member update
date) and MBUPDT (member update time) fields from the output file of the DSPFD TYPE(*MBR)
command.

Managing a source file
This section describes several considerations for managing source files.

v “Changing source file attributes” on page 228

v “Reorganizing source file member data” on page 228

v “Determining when a source statement was changed” on page 228

v “Using source files for documentation” on page 229

Chapter 19. Using source files 227

../cl/dspobjd.htm
../cl/dspfd.htm

Changing source file attributes

If you are using SEU to maintain database source files, see the ADTS for AS/400: Source Entry Utility
book for information on how to change database source files. If you are not using SEU to maintain
database source files, you must totally replace the existing member.

If your source file is on a diskette, you can copy it to a database file, change it using SEU, and copy it
back to a diskette. If you do not use SEU, you have to delete the old source file and create a new source
file.

If you change a source file, the object previously created from the source file does not match the current
source. The old object must be deleted and then created again using the changed source file. For
example, if you change the source file FRSOURCE created in “Creating an object using a source file” on
page 226, you have to delete the file DSTREF that was created from the original source file, and create it
again using the new source file so that DSTREF matches the changed FRSOURCE source file.

Reorganizing source file member data
You usually do not need to reorganize a source file member if you use arrival sequence source files.

To assign unique sequence numbers to all the records, specify the following parameters on the
Reorganize Physical File Member (RGZPFM) command:

v KEYFILE(*NONE), so that the records are not reorganized

v SRCOPT(*SEQNBR), so that the sequence numbers are changed

v SRCSEQ with a fractional value such as .10 or .01, so that all the sequence numbers are unique

Note: Deleted records, if they exist, will be compressed out.

A source file with an arrival sequence access path can be reorganized by sequence number if a logical file
for which a keyed sequence access path is specified is created over the physical file.

Determining when a source statement was changed
Each source record contains a date field which is automatically updated by SEU if a change occurs to the
statement. This can be used to determine when a statement was last changed. Most high-level language
compilers print these dates on the compiler lists. The Copy File (CPYF) and Copy Source File (CPYSRCF)
commands also print these dates.

Each source member description contains two date and time fields. The first date/time field reflects
changes to the member any time it is closed after being updated.

The second date/time field reflects any changes to the member. This includes all changes caused by SEU,
commands (such as CRYF and CPYSRCF), authorization changes, and changes to the file status. For
example, the FRCRATIO parameter on the Change Physical File (CHGPF) command changes the
member status. This date/time field is used by the Save Changed Objects (SAVCHGOBJ) command to
determine if the member should be saved. Both date/time fields can be displayed with the Display File
Description (DSPFD) command specifying TYPE(*MBR). There are two changed date/times shown with
source members:

v Last source update date/time. This value reflects any change to the source data records in the
member. When a source update occurs, the Last change date/time value is also updated, although
there may be a 1- or 2-second difference in that date/time value.

v Last change date/time. This value reflects any changes to the member. This includes all changes
caused by SEU, commands (such as CPYF and CPYSRCF), authorization changes, or changes to file
status. For example, the FRCRATIO parameter on the CHGPF command changes the member status,
and therefore, is reflected in the Last change date/time value.

228 DB2 UDB for iSeries Database Programming V5R2

../../books/c0926050.pdf
../cl/rgzpfm.htm

Using source files for documentation
You can use the IBM-supplied source file QTXTSRC to help you create and update online documentation.

You can create and update QTXTSRC members just like any other application (such as QRPGSRC or
QCLSRC) available with SEU. The QTXTSRC file is most useful for narrative documentation, which can
be retrieved online or printed. The text that you put in a source member is easy to update by using the
SEU add, change, move, copy, and include operations. The entire member can be printed by specifying
Yes for the print current source file option on the exit prompt. You can also write a program to print all or
part of a source member.

Chapter 19. Using source files 229

230 DB2 UDB for iSeries Database Programming V5R2

Chapter 20. Controlling the integrity of your database with
constraints

A constraint is a restriction or limitation placed on a file to ensure that data in your database remains
consistent as you add, change, and remove records.

v Unique constraints and primary key constraints let you create enforced unique keys for a physical file
beyond the file access path. See “Unique constraints” on page 235 and “Primary key constraints” on
page 236.

v Check constraints provide another check for the validity of your data by testing the data in an
expression. See “Check constraints” on page 236.

Primary key and unique constraints can be used as the parent key when adding a referential constraint.

To use constraints, see the following topics:

v “Setting up constraints for your database”

v “Removing unique, primary key, or check constraints” on page 232

v “Working with a group of constraints” on page 233

v “Working with constraints that are in check pending status” on page 234

Setting up constraints for your database
You can use physical file constraints to control the integrity of data that is maintained in your database.

To add a physical file constraint, use the Add Physical File Constraint (ADDPFCST) command.

v To add a unique constraint, specify a value of *UNQCST on the Type parameter. You must also specify
one or more field names for the Key parameter.

v To add a primary key constraint, specify a value of *PRIKEY on the Type parameter. The key that you
specify on the command becomes the primary access path of the file. If the file does not have a keyed
access path that can be shared, the system creates one. You must also specify one or more field
names for the Key parameter.

v To add a check constraint, specify a value of *CHKCST on the Type parameter. You must also specify a
check constraint expression on the CHKCST parameter. The check constraint expression has the same
syntax as the expression used for check-conditions that are defined using Structured Query Language
(SQL). For information about using SQL to set up constraints, see DB2 UDB for iSeries SQL Reference
.

You can also add constraints using iSeries Navigator. See the following topics in DB2 UDB for iSeries SQL
Programming Concepts

v Adding key constraints using iSeries Navigator

v Adding check constraints using iSeries Navigator

You can also add constraints when using the SQL CREATE TABLE and ALTER TABLE statements.

For additional details on setting up constraints, see “Details: Setting up constraints”.

Details: Setting up constraints
The following rules apply to all physical file constraints:

v The file must be a physical file.

v A file can have a maximum of one member, MAXMBR(1).

© Copyright IBM Corp. 1998, 2002 231

../cl/addpfcst.htm
../db2/rbafzmst02.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymstopnaddkey.htm
../sqlp/rbafymstopnaddcheck.htm
../db2/rbafzmsthctabl.htm
../db2/rbafzmstatabl.htm

v A constraint can be defined when the file has zero members. A constraint cannot be established,
however, until the file has one, and only one, member.

v A file can have a maximum of one primary key constraint, but may have many unique constraints.

v There is a maximum of 300 constraint relations per file. This maximum value is the sum of the following:

– The unique constraints

– The primary key constraint

– The check constraints

– The referential constraints, whether they are participating as a parent or a dependent, and whether
the constraints are defined or established.

v Constraint names must be unique in a library.

v Constraints cannot be added to files in the QTEMP library.

v Referential constraints must have the parent and dependent file in the same auxiliary storage pool
(ASP).

Removing unique, primary key, or check constraints
To remove a physical file constraint, use the Remove Physical File Constraint (RMVPFCST) command.
The full effects of the command depend on the type of constraint you remove and how it is used.

v To remove a unique constraint, specify a value of *UNQCST on the Type parameter.

v To remove a primary key constraint, specify a value of *PRIKEY on the Type parameter.

v To remove a check constraint, specify a value of *CHKCST on the Type parameter.

You can specify any of the values below on the Constraint (CST) parameter for each of the constraint
types listed:

v CST(*ALL) to remove all of the constraints you specify on the Type parameter.

v CST(constraint-name) to remove a specific constraint.

v CST(*CHKPND) to remove only those constraints that are in check pending status.

v Use CST(*ALL) with TYPE(*ALL) to remove all constraints from the file.

You can also do the following to remove a constraint:

v Use Structured Query Language (SQL) to remove a constraint. See DB2 UDB for iSeries SQL
Reference

v Remove a constraint using iSeries Navigator. See Removing constraints using iSeries Navigator in DB2
UDB for iSeries SQL Programming Concepts for more information.

For additional details on removing constraints, see “Details: Removing constraints”.

Details: Removing constraints
If you remove a primary key or unique constraint and the associated access path is shared by a logical
file, ownership of the shared path transfers to the logical file. If the access path is not shared, it is
removed.

When you remove a primary key constraint with the RMVPFCST command, the system sends an inquiry
message to determine if the key specifications should be removed from the file. A reply of ’K’ maintains the
key specifications in the file. The file remains keyed. A reply of ’G’ indicates the file will have an arrival
sequence access path when the command completes.

Note: When you remove a primary key constraint with the Structured Query Language (SQL) ALTER
TABLE statement, the inquiry message is not sent. The key specifications are always removed and
the file will have an arrival sequence access path when the ALTER TABLE completes.

232 DB2 UDB for iSeries Database Programming V5R2

../cl/rmvpfcst.htm
../db2/rbafzmst02.htm
../db2/rbafzmst02.htm
../sqlp/rbafymstopnaddref.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Working with a group of constraints
To display a list of the constraints that exist for a particular file, use the Work with Physical File Constraints
(WRKPFCST) command. From this display, you can change or remove a constraint and display a list of
the records that placed a file constraint into check pending status.

For additional details about working with a group of constraints, see “Details: Working with a group of
constraints”.

Details: Working with a group of constraints
Work with Physical File Constraints

Type options, press Enter.
2=Change 4=Remove 6=Display records in check pending

Check
Opt Constraint File Library Type State Pending
_ DEPTCST EMPDIV7 EPPROD *REFCST EST/ENB No
_ ACCTCST EMPDIV7 EPPROD *REFCST EST/ENB Yes
_ STAT84 EMPDIV7 EPPROD *REFCST DEF/ENB No
_ FENSTER REVSCHED EPPROD *REFCST EST/DSB Yes
_ IRSSTAT3 REVSCHED EPPROD *UNQCST
_ IFRNUMBERO > REVSCHED EPPROD *UNQCST
_ EVALDATE QUOTOSCHEM EPPROD *REFCST EST/ENB No
_ STKOPT CANSCRONN9 EPPROD *PRIKEY
_ CHKDEPT EMPDIV2 EPPROD *CHKCST EST/ENB No

Parameters for options 2, 4, 6 or command
===>__
F3=Exit F4=Prompt F5=Refresh F12=Cancel F15=Sort by
F16=Repeat position to F17=Position to F22=Display constraint name

The Work with Physical File Constraints display shows all the constraints defined for the file specified on
the WRKPFCST command. The display lists the constraint names, the file name, and the library name. In
addition, the following information is displayed:

v The Type column identifies the constraint as referential, check, unique, or primary key.

v The State column indicates whether the constraint is defined or established and whether it is enabled or
disabled. The State column only applies to referential and check constraints.

v The Check Pending column contains the check pending status of the constraint. Unique and primary
key constraints do not have a state because they are always established and enabled.

For each of the listed constraints, you can perform the following actions:

v To change a referential or check constraint to any of its permissible states, select Change (option 2).
For example, you can enable a constraint that is currently disabled. This option performs the same
functions as the CHGPFCST command.

v To remove a constraint, select Remove (option 4). This option performs the same functions as the
RMVPFCST command.

v To display the records that are in check pending state, select Display (option 6). This option performs
the same functions as the DSPCPCST command. The DSPCPCST command applies only to referential
and check constraints.

Chapter 20. Controlling the integrity of your database with constraints 233

../cl/wrkpfcst.htm
../cl/wrkpfcst.htm

Working with constraints that are in check pending status
When you add a referential or check constraint, the system automatically checks all of the records in the
database file to ensure that they meet the constraint definition. This check is also performed when the
system is being restored.

If the constraint is not valid or if it cannot be verified, the system places it in check pending status.

To work with the constraints that are in check pending status, perform the following steps:

1. Make the constraint inactive. Run the Change Physical File Constraint (CHGPFCST) command and
specify *DISABLED on the Constraint state parameter.

2. Display the list of records that are causing the constraint to be marked as check pending. Run the
Display Check Pending Constraints (DSPCPCST) command. See “Displaying records that put a
constraint in check pending status” for additional information.

Note: The length of time that this command runs depends on the number of records the file contains.

3. Schedule the verification of the constraints that are in check pending status. Run the Edit Check
Pending Constraints (EDTCPCST) command. See “Processing constraints that are in check pending
status” for additional information.

4. Make the constraint active. Run the CHGPFCST command again and specify *ENABLED on the
Constraint state parameter.

Displaying records that put a constraint in check pending status
When a constraint is added, the system verifies that the records in the file conform to the rules for the
constraint. If the records are not valid, the system places the constraint in check pending status.

It is often useful to examine the records that do not conform to the rules of your constraint. You can then
change either the record or the constraint as necessary.

Note: Before you perform the following step, you should run the Change Physical File Constraint
(CHGPFCST) command to disable the constraint.

To display or print the list of records that have caused a constraint to be placed in check pending status,
run the Display Check Pending Constraints (DSPCPCST) command.

Processing constraints that are in check pending status
Constraints that are created for large database files can sometimes take a great deal of time to be
validated by the system. You can list the constraints that are in check pending and schedule them for
verification as required.

To display and edit the list of constraints that are in check pending status, perform the following steps:

1. Run the Edit Check Pending Constraints (EDTCPCST) command.

2. Check the status of the constraint you want to process.

3. If the constraint is in a status other than RUN or READY, change the *HLD value in the Seq field to a
value between 1 and 99.

4. Press Enter.

234 DB2 UDB for iSeries Database Programming V5R2

../cl/chgpfcst.htm
../cl/dspcpcst.htm
../cl/edtcpcst.htm
../cl/edtcpcst.htm
../cl/chgpfcst.htm
../cl/chgpfcst.htm
../cl/dspcpcst.htm
../cl/edtcpcst.htm

Edit Check Pending Constraints

Type sequence, press Enter.
Sequence: 1-99, *HLD

------------Constraints----------- Verify Elapsed
Seq Status Cst File Library Time Time
1 RUN EMP1 DEP EPPROD 00:01:00 00:00:50
1 READY CONST > DEP EPPROD 00:02:00 00:00:00
*HLD CHKPND FORTH > STYBAK EPPROD 00:03:00 00:00:00
*HLD CHKPND CST88 STYBAK EPPROD 00:10:00 00:00:00
*HLD CHKPND CS317 STYBAK EPPROD 00:20:00 00:00:00
*HLD CHKPND KSTAN STYBAK EPPROD 02:30:00 00:00:00

Bottom
F3=Exit F5=Refresh F12=Cancel F13=Repeat all F15=Sort by
F16=Repeat position to F17=Position to F22=Display constraint name

For additional information about processing constraints that are in check pending status, see “Details:
Processing constraints that are in check pending status”.

Details: Processing constraints that are in check pending status: The status field of the Edit Check
Pending Constraints display has one of the following values:

v RUN indicates that the constraint is being verified.

v READY indicates the constraint is ready to be verified.

v NOTVLD indicates that the access path that is associated with the constraint is not valid. Once the
access path has been rebuilt, the system automatically verifies the constraint. This value applies only to
a referential constraint.

v HELD indicates the constraint is not being verified. You must change the sequence to a value from 1 to
99 to change this state.

v CHKPND indicates that the system attempted to verify the constraint, but the constraint is still in check
pending. You must change the sequence to a value from 1 to 99 to change this state.

The Constraint column contains the first five characters of the constraint name. A > symbol follows the
name if it exceeds five characters. You can display the whole long name; put the cursor on that line and
press the F22 key.

The verify time column shows the time it would take to verify the constraint if there were no other jobs on
the system. The elapsed time column indicates the time already spent on verifying the constraint.

Unique constraints
Unique constraints act as controls in a database to ensure that rows are unique. For example, you can
specify a customer identification number as a unique constraint in your database. If anyone attempts to
create a new customer with the same customer number, an error message is sent to the database
administrator.

Unique constraints identify a field or set of fields in a database file whose values must be unique across
records in the file. The field must be in ascending order, and can be null-capable.

A file can have multiple unique constraints, but you cannot duplicate unique constraints. The same key
fields, regardless of order, constitute a duplicate constraint.

Chapter 20. Controlling the integrity of your database with constraints 235

Unique constraints can be used as the parent key when adding a referential constraint.

Primary key constraints
A primary key constraint is a unique key with special attributes that make the key the primary access path
for the file.

Primary key constraints identify a field or set of fields in a database file whose values must be unique
across records in the file. The field must be in ascending order, and can be null-capable. If it is
null-capable, a check constraint is implicitly added so that null values cannot be entered in the field. You
can define only one primary key constraint for a file.

A primary key constraint can be used as the parent key when adding a referential constraint.

Check constraints
You use check constraints to maintain limits on the values of fields so that they conform to your database
requirements.

Check constraints assure the validity of data during insertions and updates by checking the data against a
check constraint expression that you define.

For example, you can create a check constraint on a field such that values that are inserted into that field
must be between 1 and 100. If a value does not fall within that range, the insert or update operation
against your database is not processed.

Check constraints are much like referential constraints in terms of their states:

v Defined and enabled — the constraint definition has been added to the file, and the constraint will be
enforced after the constraint is established.

v Defined and disabled — the constraint definition has been added to the file, but the constraint will not
be enforced.

v Established and enabled — the constraint has been added to the file and all of the pieces of the file are
there for enforcement.

v Established and disabled — the constraint has been added to the file and all of the pieces of the file are
there for enforcement, but the constraint will not be enforced.

A check constraint, like a referential constraint, can have a check pending status. If the data in any field
violates the check constraint expression, then the constraint is in check pending. For the insertion or
update of a record, if the data violates the check constraint expression, then the insert or update will not
be allowed.

A check constraint that contains one or more Large Object (LOB) fields is restricted to a narrower range of
operations than a check constraint without LOB fields. When the check constraint includes one or more
LOB fields, the LOB fields can only be involved in direct comparisons to:

v Other LOB fields of the same type and same maximum length.

v Literal values.

v The null value.

Operations known as derived operations, such as the Substring or Concat operations, are not allowed
against LOB fields in a check constraint. The diagnostic message CPD32E6 will be sent when trying to
add a check constraint that attempts a derived operation against a LOB field.

236 DB2 UDB for iSeries Database Programming V5R2

Chapter 21. Ensuring data integrity with referential constraints

You can use referential constraints in iSeries databases to enforce the referential integrity of your system.
Referential integrity encompasses all of the mechanisms and techniques that you use to make sure that
your database contains only valid data.

To use referential constraints, see the following topics:
1. “Adding a referential constraint”
2. “Verifying a referential constraint” on page 241
3. “Enabling and disabling referential constraints” on page 241
4. “Removing referential constraints” on page 242

In addition, the following topics provide important information about referential integrity:
v “Details: Ensuring data integrity with referential constraints” on page 243
v “Example: Ensuring data integrity with referential constraints” on page 243
v “Referential integrity terms” on page 244
v “Referential integrity enforcement” on page 244
v “Constraint states” on page 245
v “Check pending status in referential constraints” on page 246
v “Referential integrity and iSeries functions” on page 247

Adding a referential constraint
You can add referential constraints on physical files with no more than one member. A referential
constraint is a file-level attribute; therefore, you can create the constraint before the member exists.

To add a referential constraint, see the following topics:
1. “Before you add a referential constraint”
2. “Defining the parent file in a referential constraint” on page 238
3. “Defining the dependent file in a referential constraint” on page 239
4. “Specifying referential constraint rules” on page 239

For additional information about adding referential constraints, see the following topics:
“Details: Adding a referential constraint” on page 240
“Details: Avoiding constraint cycles” on page 241

Before you add a referential constraint
Before you can add a referential constraint, you must make sure that you meet the following conditions:

v There must be a parent file with a key capable of being a parent key. If the parent file has no primary
key or unique constraint, the system tries to add a primary key constraint to the parent file if the field
attributes of the potential parent key match those of the foreign key field attributes of the dependent file.

v There must be a dependent file with certain attributes that match the attributes of the parent file:

– Sort sequence (SRTSEQ) must match for data types CHAR, OPEN, EITHER, and HEX.

– The coded character set identifier (CCSID) must match for each SRTSEQ table unless either (or
both) of the CCSIDs is 65535.

– Each sort sequence table must match exactly.

v The dependent file must contain a foreign key that matches the following attributes of the parent key:

– Data type

– Length

– Precision (packed, zoned, or binary)

– CCSID (unless either has a CCSID of 65535)

© Copyright IBM Corp. 1998, 2002 237

– REFSHIFT (if data type is OPEN, EITHER, or ONLY)

Defining the parent file in a referential constraint
A parent file must be a physical file with a maximum of one member. You can create a new file or use an
existing file when you define the parent file.

The concept of a parent key applies only in terms of a referential constraint. When a referential constraint
is added to the dependent file, a parent key is required for the parent file. To prepare for this, you must
first add either a primary key constraint or a unqiue constraint to the parent file with the appropriate set of
fields for the key. When the referential constraint is added, a search is conducted of unique constraints
(and primary key) for a match. If a match is found, then the access path of the constraint is used as the
parent key in the referential constraint relationship.

To create a new physical file as a parent file, perform the following steps:
1. Use the Create Physical File (CRTPF) command to create the file.
2. Use the Add Physical File Constraint (ADDPFCST) command to either add a primary key constraint or

a unique constraint. The primary key can be null-capable, but the system creates an implicit check
constraint to prevent the insertion of null values in the field.

Note: You can use the SQL CREATE TABLE statement to perform the above steps with one step.

To use an existing file as a parent file, choose from among the following options:

v You can add a primary key constraint to a file with the Add Physical File Constraint (ADDPFCST)
command. Specify *PRIKEY for the TYPE parameter. You must also specify the key field or fields with
the KEY parameter.

If a primary key constraint already exists for the file, the ADDPFCST command with TYPE(*PRIKEY)
will fail because a file can have only one primary key. If you want a different primary key constraint, you
must first remove the existing primary key constraint with the Remove Physical File Constraint
(RMVPFCST) command. Then you can add a new primary key constraint.

v You can add a unique constraint to a file with the Add Physical File Constraint (ADDPFCST) command.
Specify *UNQCST for the TYPE parameter. You must also specify the key field or fields with the KEY
parameter. You can also add a unique constraint with the Structured Query Language (SQL) ALTER
TABLE statement.

If the parent file does not have a primary key or unique constraint that can be used as the parent key,
the system will attempt to automatically add a primary key constraint when adding a referential
constraint.

If the parent file has a uniquely keyed access path, where the access path fields match the foreign
key’s fields (both for the number of fields and matching attributes), then a primary key constraint will be
implicitly added to the parent file. This will become the parent key for the referential constraint.

If the parent file is arrival sequence access path, then if the fields specified for the parent key match the
foreign key’s fields (matching attributes), then a primary key constraint will be implicitly added to the
parent file. This will become the parent key for the referential constraint.

If you cannot add a parent key, see “What to do when you cannot define a parent key” for information.

What to do when you cannot define a parent key
For an existing file with a primary key or unique constraint, if neither constraint will suffice as the parent
key, you have the following options:

v Delete the file and create it again with the appropriate keys.

v Add a unique or primary key constraint to the created file.

238 DB2 UDB for iSeries Database Programming V5R2

../cl/crtpf.htm
../cl/addpfcst.htm
../cl/rmvpfcst.htm
../cl/rmvpfcst.htm

Defining the dependent file in a referential constraint
A dependent file must be a physical file with a maximum of one member.

To create a dependent file, create the file as you would any physical file or use an existing file.

The dependent file does not require a keyed access path when you create the actual constraint. If no
existing access paths meet the foreign key criteria, the system adds an access path to the file.

Specifying referential constraint rules
Referential constraints allow you to specify rules that you want the system to enforce when you delete or
update records.

To specify the rules you want to enforce with your referential constraints, perform the following steps:
1. Run the Add Physical File Constraint (ADDPFCST) command.
2. Specify the rule that you want to enforce when you delete records (the delete rule) by choosing a

value for the DLTRULE parameter.
3. Specify the rule that you want to enforce when you update records (the update rule) by choosing a

value for the UPDRULE parameter.

You can also add a referential constraint using iSeries Navigator. See Adding referential constraints using
iSeries Navigator in DB2 UDB for iSeries SQL Programming Concepts.

For additional information about specifying constraint rules, see the following topics:
“Details: Specifying referential constraint delete rules”
“Details: Specifying referential constraint update rules” on page 240
“Details: Specifying referential constraint rules—journaling requirements” on page 240

Details: Specifying referential constraint delete rules
There are five possible values for the DLTRULE parameter. The delete rule specifies the action the system
takes when you delete a parent key value. The delete rule does not affect null parent key values.

v *NOACTION (the default value)

– Record deletion in a parent file will not occur if the parent key value has a matching foreign key
value.

v *CASCADE

– Record deletion in a parent file causes records in the dependent file to be deleted when the parent
key value matches the foreign key value.

v *SETNULL

– Record deletion in a parent file updates those records in the dependent file where the value of the
parent non-null key matches the foreign key value. For those dependent records that meet the
preceding criteria, all null capable fields in the foreign key are set to null. Foreign key fields with the
non-null attribute are not updated.

v *SETDFT

– Record deletion in a parent file updates those records in the dependent file where the value of the
parent non-null key matches the foreign key value. For those dependent records that meet the
preceding criteria, the foreign key field or fields are set to their corresponding default values.

v *RESTRICT

– Record deletion in a parent file will not occur if the parent key value has a matching foreign key
value.

Note: The system enforces a delete *RESTRICT rule immediately when the deletion is attempted. The
system enforces other constraints at the logical end of the operation. The operation, in the case
of other constraints, includes any trigger programs that are run before or after the delete. It is

Chapter 21. Ensuring data integrity with referential constraints 239

../cl/addpfcst.htm
../sqlp/rbafymstopnaddref.htm
../sqlp/rbafymstopnaddref.htm
../sqlp/rbafymst02.htm

possible for a trigger program to correct a potential referential integrity violation. For example, a
trigger program could add a parent record if one does not exist. The *RESTRICT rule does not
prevent the violation.

Details: Specifying referential constraint update rules
There are two possible values for the UPDRULE parameter. The UPDRULE parameter identifies the
update rule for the constraint relationship between the parent and dependent files. The update rule
specifies the action that the system takes when it attempts to update the parent file.

v *NOACTION (the default value)

– Record update in a parent file does not occur if there is a matching foreign key value in the
dependent file.

v *RESTRICT

– Record update in a parent file does not occur if a value of the non-null parent key matches a foreign
key value.

Note: The system enforces an update *RESTRICT rule immediately when you attempt the update. The
system enforces other constraints at the logical end of the operation. For example, a trigger
program could add a parent record if one does not exist. The *RESTRICT rule does not prevent
the violation.

Details: Specifying referential constraint rules—journaling
requirements
If you perform inserts, updates, or deletes on a file that is associated with a referential constraint and the
delete rule, update rule, or both is other than *RESTRICT, you must use journaling. You must journal both
the parent and dependent files to the same journal. In addition, you are responsible for starting the
journaling for the parent and dependent files with the Start Journal Physical File (STRJRNPF) command.

If you are inserting, updating, or deleting records to a file that is associated with a referential constraint
that has a delete rule, update rule, or both rules, other than *RESTRICT, commitment control is required. If
you have not started commitment control, the system will start and end the commit cycle automatically for
you.

Details: Adding a referential constraint
The following limitations apply to referential constraints:

v A parent file must be a physical file.

v A parent file can have a maximum of one member, MAXMBR(1).

v A dependent file must be a physical file.

v A dependent file can have a maximum of one member, MAXMBR(1).

v You can define a constraint when both or either of the dependent and parent files have zero members.
A constraint cannot be established unless both files have a member.

v A file can have a maximum of one primary key, but may have many unique constraints.

v There is a maximum of 300 constraint relations per file. This maximum value is the sum of:

– The referential constraints whether participating as a parent or a dependent, and whether the
constraints are defined or established.

– The unique constraints, which includes the primary key constraint.

– The check constraints.

v Only externally described files are allowed in referential constraints. Source files are not allowed.
Program described files are not allowed.

v Files with insert, update, or delete capabilities are not allowed in *RESTRICT relationships.

v Constraint names must be unique in a library.

240 DB2 UDB for iSeries Database Programming V5R2

../cl/strjrnpf.htm

v You cannot add constraints to files in the QTEMP library.

v You cannot add a referential constraint where the parent file is in one ASP and the dependent file is in a
different ASP.

Details: Avoiding constraint cycles
A constraint cycle is a sequence of constraint relationships in which a descendent of a parent file becomes
a parent to the original parent file.

You can use constraint cycles in a DB2 UDB for iSeries database; however, you should avoid using them.

Verifying a referential constraint
The system automatically verifies the validity of a referential constraint when you add the constraint with
the ADDPFCST command. The system verifies that every non-null value in the foreign key matches a
corresponding value in the parent key.

If the verification is successful, the constraint rules are enforced on subsequent accesses by a user or
application program. An unsuccessful verification causes the constraint to be marked as check pending. If
the constraint is added with the ADDPFCST command, then the constraint will be in check pending but
disabled state.

Note: It is not uncommon to add a referential constraint to existing files that contain large amounts of
data. The ADDPFCST command can take several hours to complete when a very large number of
records is involved. The add process places an exclusive lock on the files. You should take this
time factor and file availability into account before you add a referential constraint.

Enabling and disabling referential constraints
To enable or disable a referential constraint relationship, use the Change Physical File Constraint
(CHGPFCST) command. You must specify the dependent file when changing a referential constraint; you
cannot disable or enable a constraint by specifying the parent file.

You can also enable and disable a referential constraint using iSeries Navigator. See Enabling and
disabling referential constraints using iSeries Navigator in DB2 UDB for iSeries SQL Programming
Concepts.

You must have a minimum of object management authority (or ALTER privilege) to the dependent file in
order to enable or disable a constraint.

For additional information on enabling and disabling referential constraints, see “Details: Enabling or
disabling a referential constraint”.

Details: Enabling or disabling a referential constraint
When the system enables or disables a constraint, it locks the parent and dependent files, both members,
and both access paths. It removes the locks when the enable or disable is complete.

Attempting to enable an enabled constraint or disable a disabled constraint does nothing but cause the
issuance of an informational message.

An established/disabled or check pending constraint relationship can be enabled. The enabling causes the
system to verify the constraint again. If verification finds mismatches between the parent and foreign keys,
the constraint is marked as check pending.

Disabling a constraint relationship allows all file I/O operations for both the parent and the dependent files,
if the user has the correct authority. The entire infrastructure of the constraint remains. The parent key and

Chapter 21. Ensuring data integrity with referential constraints 241

../cl/chgpfcst.htm
../cl/chgpfcst.htm
../sqlp/rbafymstopnenabletrig.htm
../sqlp/rbafymstopnenabletrig.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

foreign key access paths are still maintained. However, there is no referential enforcement that is
performed for the two files in the disabled relationship. All remaining enabled constraints are still enforced.

Disabling a constraint can allow file I/O operations in performance-critical situations to run faster. Always
consider the trade-off in this kind of a situation. The file data can become referentially not valid. When the
constraint is enabled, depending on the file size, the system will take time to re-verify the referential
constraint relationship.

Note: Users and applications must be cautious when modifying files with a constraint relationship in the
established and disabled state. Relationships can be violated and not detected until the constraint is
enabled again.

The Allocate Object (ALCOBJ) command can allocate (lock) files while a constraint relationship is disabled.
This allocation prevents others from changing the files while this referential constraint relationship is
disabled. A lock for exclusive use allow read should be requested so that other users can read the files.
Once the constraint is enabled again, the Deallocate Object (DLCOBJ) command unlocks the files.

When you enable or disable multiple constraints, they are processed sequentially. If a constraint cannot be
modified, you receive a diagnostic message, and the function proceeds to the next constraint in the list.
When all constraints have been processed, you receive a completion message listing the number of
constraints modified.

Removing referential constraints
You can remove referential constraints in a variety of ways. The full impact of the removal depends on the
constraint you are removing and certain conditions that surround the constraint.

To remove a referential constraint, perform the following steps:
1. Run the Remove Physical File Constraint (RMVPFCST) command.
2. Specify the constraint or constraints you want to remove using one of the following parameters:

v Use the CST parameter to specify all constraints or a specific constraint name.

v Use the TYPE parameter to specify a particular type of constraint.

You can also remove a referential constraint using iSeries Navigator. See Removing referential constraints
using iSeries Navigator in DB2 UDB for iSeries SQL Programming Concepts.

When you remove a referential constraint, the system removes the associated foreign keys and access
paths from the file. The system does not remove the foreign key access path if any logical file or other
constraint on the system uses it.

If you remove a referential, primary key, or unique constraint and the associated access path is shared by
a logical file, ownership of the shared path transfers to the logical file.

For additional information about removing referential constraints, see the following topics:
“Details: Removing a constraint with the CST parameter”
“Details: Removing a constraint with the TYPE parameter” on page 243

Details: Removing a constraint with the CST parameter
With the CST parameter, you can specify to remove:

v All constraints CST(*ALL) associated with a file where TYPE(*ALL) is specified

v A specific referential constraint CST(constraint-name)

v Referential or check constraints in check pending CST(*CHKPND)

v All constraints CST(*ALL) associated with a specific TYPE of constraint

242 DB2 UDB for iSeries Database Programming V5R2

../cl/alcobj.htm
../cl/dlcobj.htm
../cl/rmvpfcst.htm
../sqlp/rbafymstopnremove.htm
../sqlp/rbafymstopnremove.htm
../sqlp/rbafymst02.htm

Details: Removing a constraint with the TYPE parameter
With the TYPE parameter, you can specify the type of constraint that you want to remove.

v All types: TYPE(*ALL)

– All constraints for CST(*ALL)

– All constraints in check pending for CST(*CHKPND)

– The named constraint for CST(constraint-name)

v Referential constraints: TYPE(*REFCST)

– All referential constraints for CST(*ALL)

– All referential constraints in check pending for CST(*CHKPND)

– The named referential constraint for CST(constraint-name)

v Unique constraints: TYPE(*UNQCST)

– All unique constraints except the primary key constraint for CST(*ALL)

– Not applicable for CST(*CHKPND)—a unique constraint cannot be in check pending

– The named unique constraint for CST(constraint-name)

v Primary key constraints: TYPE(*PRIKEY)

– The primary constraint for CST(*ALL)

– Not applicable for CST(*CHKPND)—the primary constraint cannot be in check pending

– The named primary constraint for CST(constraint-name)

v Check constraints: TYPE(*CHKCST)

– All check constraints for CST(*ALL)

– All check constraints in check pending for CST(*CHKPND)

– The named check constraint for CST(constraint-name)

Details: Ensuring data integrity with referential constraints
You might want to use referential integrity in your database management system for several reasons:

v To make sure that data values between files meet the rules of your business. For example, consider a
business that maintains a list of customers in one file and a list of their accounts in another file. It does
not make sense to allow the addition of an account if an associated customer does not exist. Likewise,
it is not reasonable to delete a customer until you delete all of their accounts.

v To be able to define the relationships between data values.

v To have the system enforce the data relationships no matter what application makes changes.

v To improve the performance of integrity checks that are made at a high-level language (HLL) or SQL
level by moving the checking into the database.

Example: Ensuring data integrity with referential constraints
A database contains an employee file and a department file. Both files have a department number field
named DEPTNO. The related records of these database files are those for which employee.DEPTNO
equals department.DEPTNO.

The desired goal of this example is to ensure that every employee in the employee file has a
corresponding department that they belong to in the department file. You can accomplish this with a
referential constraint.

1. Using the ADDPFCST command, add a primary key constraint or a unique constraint to the
department file for the DEPTNO field. This will later become a parent key. It is not yet a parent key
because a referential constraint has not yet been added.

2. Add a referential constraint to the employee file using the ADDPFCST command. The employee file
will be the dependent file. The foreign key will be employee.DEPTNO. The department file will be the

Chapter 21. Ensuring data integrity with referential constraints 243

parent file with parent key department.DEPTNO. Because there is either a primary key constraint or a
unique constraint with the DEPTNO field as the key, the constraint will serve as the parent key
associated with the referential constraint.

The referential constraint has update and delete rules that must be followed for record inserts, updates,
and deletes on the parent or dependent file.

Referential integrity terms
A discussion of referential integrity requires an understanding of several terms. These terms are in an
order that may help you understand their relationship to each other.

Primary Key constraint. A field or set of fields in a database file that must be unique, ascending, and cannot
contain null values. The primary key is the primary file access path. The primary key constraint can be used as the
parent key when adding a referential constraint. A primary key constraint is really a unique constraint with some
special attributes.

Unique constraint. A field or set of fields in a database file that must be unique, ascending, and can contain null
values.

Parent Key. A field or set of fields in a database file that must be unique, ascending, and may or may not contain
null values. The parent key of the parent file is used to add a referential constraint to the dependent file. The parent
key must be either a primary key or a unique constraint.

Foreign Key. A field or set of fields in which each non-null value must match a value in the parent key of the related
parent file.

The attributes (data type, length, and so forth) must be the same as the parent key of the parent file.

Parent file. The file in a referential constraint relationship that contains the parent key.

Dependent file. The file in a referential constraint relationship that contains the foreign key. The dependent file is
dependent upon the parent file. That is, for every non-null value in the foreign key of the dependent file, there must be
a corresponding non-null value in the parent key of the parent file.

Check pending. The state that occurs when the database does not know with certainty whether the following is true
for a referential constraint: for every non-null value in the foreign key of the dependent file, there must be a
corresponding non-null value in the parent key of the parent file.

Delete rule. A definition of what action the database should take when there is an attempt to delete a parent record.

Update rule. A definition of what action the database should take when there is an attempt to update a parent
record.

Referential integrity enforcement
The I/O access for files that are associated with established and enabled constraints varies. It depends on
whether the file contains the parent key or foreign key in the constraint relationship. The system enforces
referential integrity enforcement on all parent and dependent file I/O requests.

The database enforces constraint rules for all I/O requests whether from application programs or system
commands (such as the INZPFM command) or SQL statements or file I/O utilities (such as STRSEU).

For more information about the enforcement of referential integrity on iSeries systems, see the following
topics:

v “Foreign key enforcement” on page 245

v “Parent key enforcement” on page 245

244 DB2 UDB for iSeries Database Programming V5R2

Foreign key enforcement
The delete and update rules that you specify when you create a constraint apply to parent key changes.
The database enforces a no-action rule for foreign key updates and inserts in order to maintain referential
integrity. The system enforces this rule on foreign key updates and inserts to ensure that the value of
every non-null foreign key matches the value of the parent key.

The system returns a referential constraint violation if a matching parent key does not exist for the new
foreign key value, and does not insert or update the dependent record.

Parent key enforcement
The rules that you specify for the referential constraint determine how the database processes deletions
and updates of the parent key. The system enforces the unique attribute of a parent key on all parent file
I/O.

For more information on the enforcement of delete and update rules, see the following topics:

v “Enforcement of delete rules”

v “Enforcement of update rules”

Enforcement of delete rules
When you delete a record from a parent file, the system checks the dependant file for any dependent
records (matching non-null foreign key values). If it finds any dependent records, the delete rule
determines the action that is taken:

v No Action—if the system finds any dependent records, it returns a constraint violation and does not
delete records.

v Cascade—the system deletes dependent records that its finds in the dependent file.

v Set Null—the system sets null capable fields in the foreign key to null in every dependent record that it
finds.

v Set Default—the system sets all fields of the foreign key to their default value when it deletes the
matching parent key.

v Restrict—same as no action except that enforcement is immediate.

If part of the delete rule enforcement fails, the entire delete operation fails and all associated changes are
rolled back. For example, a delete cascade rule causes the database to delete ten dependent records, but
a system failure occurs while deleting the last record. The database will not allow deletion of the parent
key record, and the deleted dependent records are re-inserted.

If a referential constraint enforcement causes a change to a record, the associated journal entry will have
an indicator value noting that a referential constraint caused the record change. For example, a dependent
record that is deleted by a delete cascade rule will have a journal entry indicator which indicates that the
record change was generated during referential constraint enforcement.

Enforcement of update rules
When the system updates a parent key in a parent file, it checks for any dependent records (matching
non-null foreign values) in the dependent file. If it finds any dependent records, the update rule for the
constraint relationship determines the action that it takes.

v No Action—if the system finds any dependent records, it returns a constraint violation, does not update
any records.

v Restrict—the system performs the same as above, but enforcement is immediate.

Constraint states
A file can be in one of three constraint states. In two of the states, the constraint can be enabled or
disabled.

Chapter 21. Ensuring data integrity with referential constraints 245

v Non-constraint relationship state. No referential constraint exists for a file in this state. If a constraint
relationship once existed for the file, all information about it has been removed.

v Defined state. A constraint relationship is defined between a dependent and a parent file. It is not
necessary to create the member in either file to define a constraint relationship. In the defined state, the
constraint can be:

– Defined and enabled. A defined and enabled constraint relationship is for definition purposes only.
The rules for the constraint are not enforced. A constraint in this state remains enabled when it goes
to the established state.

– Defined and disabled. A defined constraint relationship that is disabled is for definition purposes only.
The rules for the constraint are not enforced. A constraint in this state remains disabled when it goes
to the established state.

v Established state. The dependent file has a constraint relationship with the parent file. A constraint will
be established only if the attributes match between the foreign and parent key. Members must exist for
both files. In the established state, the constraint can be:

– Established and enabled. An established constraint relationship that is enabled causes the database
to enforce referential integrity.

– Established and disabled. An established constraint relationship that is disabled directs the database
to not enforce referential integrity.

Check pending status in referential constraints
Check pending is the condition of a constraint relationship when potential mismatches exist between
parent and foreign keys. When the system determines that referential integrity may have been violated, the
constraint relationship is marked as check pending. For example:

v A restore operation where only data in the dependent file is restored and this data is no longer
synchronized (a foreign key does not have a parent) with the parent file on the system.

v A system failure allowed a parent key value to be deleted when a matching foreign key exists. This can
only occur when the dependent and parent files are not journaled.

v A foreign key value does not have a corresponding parent key value. This can happen when you add a
referential constraint to existing files that have never before been part of a constraint relationship.

Check pending status is either *NO or *YES.

Check pending applies only to constraints in the established state. A referential constraint that is
established and enabled can have a check pending status of *YES or *NO.

To get a constraint relationship out of check pending, you must disable the relationship, correct the key
(foreign, parent, or both) data, and then enable the constraint again. The database will then verify the
constraint relationship again.

When a relationship is in check pending, the parent and dependent files are in a situation that restricts
their use. The parent file I/O restrictions are different than the dependent file restrictions. Check pending
restrictions do not apply to constraints that are in the established and disabled state (which are always in
check pending status).

For additional information about check pending status and referential constraints, see the following topics:
“Dependent file restrictions in check pending”
“Parent file restrictions in check pending” on page 247

Dependent file restrictions in check pending
The following applies to an established and enabled referential constraint in check pending.

246 DB2 UDB for iSeries Database Programming V5R2

A dependent file in a constraint relationship that is marked as check pending cannot have any file I/O
operations performed on it. You must correct the file mismatches between the dependent and parent files.
Also, you must take the relationship out of check pending before the system allows any I/O operations.
The system does not allow records to be read from such a file because the user or application may not be
aware of the check pending status and the constraint violation.

To perform I/O operations on a dependent file with an enabled referential constraint in check pending, you
can first disable the constraint and then perform the desired I/O operations.

Parent file restrictions in check pending
The following applies to an established and enabled referential constraint in check pending.

You can open the parent file of a constraint relationship that the system marks as check pending, but you
are limited in the types of I/O that you can do. You can read and insert records, but you cannot delete or
update records.

To perform updates and deletes on a parent file with an enabled referential constraint in check pending,
you can first disable the constraint and then perform the desired I/O operations.

Referential integrity and iSeries functions
Referential integrity affects the characteristics of the following iSeries system functions:

v Add Physical File Member (ADDPFM):

In the case where a constraint relationship is defined between a dependent file and a parent file each
having zero members:

– If a member is first added to the parent file, the constraint relationship remains in the defined state.

– If a member is then added to the dependent file, the foreign key access path is built, and a
constraint relationship is established with the parent.

v Change Physical File (CHGPF):

When a constraint relationship exists for a file, you cannot change certain parameters available in the
CHGPF command. The following parameters are restricted:

MAXMBRS
The maximum number of members for a file that has a constraint relationship is one: MAXMBRS(1).

CCSID
The CCSID of a file that is not associated with a constraint, can be changed. If the file is associated
with a constraint, the CCSID can only be changed to 65535.

v Clear Physical File Member (CLRPFM):

The CLRPFM command fails when issued for a parent file that contains records and is associated with
an enabled referential constraint.

v FORTRAN Force-End-Of-Data (FEOD):

The FEOD operation fails when issued for a parent file that is associated with an enabled referential
constraint relationship.

v Create Duplicate Object (CRTDUPOBJ):

When the CRTDUPOBJ command creates a file, any constraints that are associated with the from-file
are propagated to the to-file.

If the parent file is duplicated either to the same library or to a different library, the system cross
reference file is used to locate the dependent file of a defined referential constraint. Also, the system
attempts to establish the constraint relationship.

If the dependent file is duplicated, then the TOLIB is used to determine constraint relationships:

– If both the parent and dependent files are in the same library, the referential constraint relationship
will be established with the parent file in the TOLIB.

Chapter 21. Ensuring data integrity with referential constraints 247

– If the parent and dependent files are in different libraries, then the referential constraint relationship
of the duplicated dependent file will be established with the original parent file.

v Copy File (CPYF):

When the CPYF command creates a new file and the original file has constraints, the constraints are
not copied to the new file.

v Move Object (MOVOBJ):

The MOVOBJ command moves a file from one library to another. The system attempts to establish any
defined referential constraints that may exist for the file in the new library.

v Rename Object (RNMOBJ):

The RNMOBJ command renames a file within the same library or renames a library.

An attempt is made to establish any defined referential constraints that may exist for the renamed file or
library.

v Delete File (DLTF):

The DLTF command has an optional keyword that specifies how referential constraint relationships are
handled. The RMVCST keyword applies to the dependent file in a constraint relationship. The keyword
specifies how much of the constraint relationship of the dependent file is removed when the parent file
is deleted:

*RESTRICT
If a constraint relationship is defined or established between a parent file and dependent file, the
parent file is not deleted and the constraint relationship is not removed. This is the default value.

*REMOVE
The parent file is deleted, and the constraint relationship and definition are removed. The constraint
relationship between the parent file and the dependent file is removed. The dependent file’s
corresponding foreign key access path or paths, as well as the constraint definition, are removed.

*KEEP
The parent file is deleted, and the referential constraint relationship definition is left in the defined
state. The dependent file’s corresponding foreign key access path and constraint definition are not
removed.

v Remove Physical File Member (RMVM):

When the member of a parent file in a constraint relationship is removed, the constraint relationship is
put in the defined state. The foreign key access path and referential constraint definition are not
removed. The parent key access path is removed because the parent member was removed; the parent
constraint definition remains at the file level.

When the member of a dependent file in a constraint relationship is removed, the constraint relationship
is put in the defined state. The parent key access path and constraint definition are not removed. The
foreign key access path is removed because the dependent member was removed; the referential
constraint definition is not removed.

v Save/restore:

If the parent file is restored to a library, the system uses the system cross reference files to locate the
dependent file of a defined referential constraint. An attempt is made to establish the constraint
relationship.

If the dependent file is restored, the TOLIB is used to determine constraint relationships:

– If both the parent and dependent files are in the same library, the referential constraint relationship is
established with the parent file in the TOLIB.

– If the parent and dependent files are in different libraries, the referential constraint relationship of the
duplicated dependent file is established with the original parent file.

The order of the restore of dependent and parent files within a constraint relationship does not matter
(parent restored before dependent or dependent restored before parent). The constraint relationship will
eventually be established.

248 DB2 UDB for iSeries Database Programming V5R2

Chapter 22. Triggering automatic events in your database

A trigger is a set of actions that are run automatically when a specified change or read operation is
performed on a specified physical database file. The change operation can be an insert, update, or delete
high level language statement in an application program. The read operation can be a fetch, get, or read
high level language statement in an application program.

On iSeries, you define a set of trigger actions in any supported high level language. The following topics
help you work with triggers using the traditional system interface:

v “Uses for triggers”

v “Benefits of using triggers in your business”

v “Creating trigger programs” on page 250

v “Adding a trigger to a file” on page 270

v “Displaying triggers” on page 271

v “Removing a trigger” on page 271

v “Enabling and disabling a trigger” on page 272

v “Triggers and their relationship to other iSeries functions” on page 272

v “Triggers and their relationship to referential integrity” on page 273

Beginning in iSeriesVersion 5 Release 1, you can also use SQL triggers. See SQL triggers in DB2 UDB for
iSeries SQL Programming Concepts for more information.

Uses for triggers
Triggers in the database allow you to do the following:

v Enforce business rules

v Validate input data

v Generate a unique value for a newly inserted row on a different file (surrogate function)

v Write to other files for audit trail purposes

v Query from other files for cross-referencing purposes

v Access system functions (for example, print an exception message when a rule is violated)

v Replicate data to different files to achieve data consistency

Benefits of using triggers in your business
Triggers offer the following benefits to your business:

v Faster application development. Because the database stores triggers, you do not have to code the
trigger actions into each database application.

v Global enforcement of business rules. Define a trigger once and then reuse it for any application that
uses the database.

v Easier maintenance. If a business policy changes, you need to change only the corresponding trigger
program instead of each application program.

v Improve performance in client/server environment. All rules run in the server before the result returns.

© Copyright IBM Corp. 1998, 2002 249

../sqlp/rbafymstsqltrig.htm
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm

Creating trigger programs
A trigger is a set of actions that are run automatically when a specified change or read operation is
performed on a specified physical database file. You can use triggers to enforce business rules, such as
authority protection. Triggers are useful for keeping audit trails, for detecting exceptional conditions, and for
maintaining relationships in the database.

To add a trigger to a physical file, do the following:

1. You must first supply a trigger program. You can write a trigger program in a high level language,
Structured Query Language (SQL), or Control Language (CL). See “Examples of trigger programs” on
page 251 coded in C, COBOL, and RPG.

2. Use one of the following methods to add the trigger:

v The Add Physical File Trigger (ADDPFTRG) command.You must specify your trigger program in the
trigger program (PGM) parameter on the command.

v Add a trigger using iSeries Navigator. See “Adding triggers using iSeries Navigator”.

v The CREATE TRIGGER SQL statement.

See the following topics for information about triggers:

v “How trigger programs work”

v “Other important information about working with triggers” on page 251

Adding triggers using iSeries Navigator
A trigger is a set of actions that are run automatically when a specified change operation is performed on
a specified physical database file. In this discussion, a table is a physical file. The change operation can
be an insert, update, or delete high level language statement in an application program, or an SQL
INSERT, UPDATE, or DELETE statement. Triggers are useful for tasks such as enforcing business rules,
validating input data, and keeping an audit trail.

Using iSeries Navigator, you can define system triggers and SQL triggers. Additionally, you can enable or
disable a trigger.

To add a trigger, do the following:

1. In the iSeries Navigator window, expand your server → Database → Libraries.

2. Click the library that contains the table to which you want to add the trigger.

3. Right-click the table to which you want to add the trigger and select Properties. On the Table
Properties dialog, click the Triggers tab.

4. Select Add system trigger to add a system trigger.

5. Select Add SQL trigger to add an SQL trigger.

For more information about system triggers, see Chapter 22, “Triggering automatic events in your
database” on page 249.

For more information about SQL triggers, see SQL triggers in SQL Programming.

How trigger programs work
When a user or application issues a change or read operation on a physical file that has an associated
trigger, the operation calls the appropriate trigger program or programs.

The change or read operation passes two parameters to the trigger program:

v “Trigger buffer sections” on page 264. This parameter contains the information about the current
operation that is calling this trigger program.

250 DB2 UDB for iSeries Database Programming V5R2

../cl/addpftrg.htm
../db2/rbafzmsthctrigger.htm
../sqlp/rbafymstsqltrig.htm

v The length of the trigger buffer.

From these inputs, the trigger program can refer to a copy of the original or the new records. You must
code the trigger program so that it accepts these parameters.

Other important information about working with triggers
The following topics provide additional information about coding trigger programs:

v “Recommendations for trigger programs” on page 266

v “Precautions to take when coding trigger programs” on page 267

v “Monitoring the use of trigger programs” on page 269

v “Trigger and application programs that are under commitment control” on page 268

v “Trigger and application programs that are not under commitment control” on page 269

v “Trigger program error messages” on page 269

Examples of trigger programs
See “Code disclaimer information” on page xiv for information pertaining to code examples.

The following example trigger programs are triggered by write, update, and delete operations to the
ATMTRANS file. See “Trigger programs: Data structures of database used in the examples” on page 263
for a description of the database used in these examples.

These trigger programs are written in ILE C, ILE COBOL, and RPG/400. For an ILE RPG example, see

the DB2/400 Advanced Database Function redbook, GG24-4249.

The application contains four types of transactions.

1. The application inserts three records into the ATMTRANS file which runs an insert trigger. The insert
trigger (“Example: Insert trigger written in RPG”)adds the correct amount to the ATMS file and the
ACCTS file to reflect the changes.

2. Next, the application makes two withdrawals, which run an update trigger (“Example: Update trigger
written in ILE COBOL” on page 254):

a. The application withdraws $25.00 from account number 20001 and ATM number 10001 which runs
the update trigger. The update trigger subtracts $25.00 from the ACCTS and ATMS files.

b. The application withdraws $900.00 from account number 20002 and ATM number 10002 which
runs an update trigger. The update trigger signals an exception to the application indicating that the
transaction fails.

3. Finally, the application deletes the ATM number from the ATMTRANS file which runs a delete trigger.
The delete trigger (“Example: Delete trigger written in ILE C” on page 259) deletes the corresponding
ACCTID from the ACCTS file and ATMID from the ATMS file.

Example: Insert trigger written in RPG
See “Code disclaimer information” on page xiv for information pertaining to code examples.

The following RPG trigger program inserts records into the ATMTRANS file.
* Program Name : INSTRG

* This is an insert trigger for the application
* file. The application inserts the following three
* records into the ATMTRANS file.
*
* ATMID ACCTID TCODE AMOUNT
* --------------------------------
* 10001 20001 D 100.00
* 10002 20002 D 250.00
* 10003 20003 D 500.00

Chapter 22. Triggering automatic events in your database 251

|

|

|

|

http://www.redbooks.ibm.com/abstracts/sg244249.html

*
* When a record is inserted into ATMTRANS, the system calls
* this program, which updates the ATMS and
* ACCTS files with the correct deposit or withdrawal amount.
* The input parameters to this trigger program are:
* - TRGBUF : contains trigger information and newly inserted
* record image of ATMTRANS.
* - TRGBUF Length : length of TRGBUF.
*
H 1
*
* Open the ATMS file and the ACCTS file.
*
FATMS UF E DISK KCOMIT
FACCTS UF E DISK KCOMIT
*
* DECLARE THE STRUCTURES THAT ARE TO BE PASSED INTO THIS PROGRAM.
*
IPARM1 DS
* Physical file name
I 1 10 FNAME
* Physical file library
I 11 20 LNAME
* Member name
I 21 30 MNAME
* Trigger event
I 31 31 TEVEN
* Trigger time
I 32 32 TTIME
* Commit lock level
I 33 33 CMTLCK
* Reserved
I 34 36 FILL1
* CCSID
I B 37 400CCSID
* Reserved
I 41 48 FILL2
* Offset to the original record
I B 49 520OLDOFF
* length of the original record
I B 53 560OLDLEN
* Offset to the original record null byte map
I B 57 600ONOFF
* length of the null byte map
I B 61 640ONLEN
* Offset to the new record
I B 65 680NOFF
* length of the new record
I B 69 720NEWLEN
* Offset to the new record null byte map
I B 73 760NNOFF
* length of the null byte map
I B 77 800NNLEN
* Reserved
I 81 96 RESV3
* Old record ** not applicable
I 97 112 OREC
* Null byte map of old record
I 113 116 OOMAP
* Newly inserted record of ATMTRANS
I 117 132 RECORD
* Null byte map of new record
I 133 136 NNMAP
IPARM2 DS
I B 1 40LENG
**
* SET UP THE ENTRY PARAMETER LIST.

252 DB2 UDB for iSeries Database Programming V5R2

**
C *ENTRY PLIST
C PARM PARM1
C PARM PARM2
**
* Use NOFF, which is the offset to the new record, to
* get the location of the new record from the first
* parameter that was passed into this trigger program.
* - Add 1 to the offset NOFF since the offset that was
* passed to this program started from zero.
* - Substring out the fields to a CHARACTER field and
* then move the field to a NUMERIC field if it is
* necessary.
**
C Z-ADDNOFF O 50
C ADD 1 O
**
* - PULL OUT THE ATM NUMBER.
**
C 5 SUBSTPARM1:O CATM 5
**
* - INCREMENT "O", WHICH IS THE OFFSET IN THE PARAMETER
* STRING. PULL OUT THE ACCOUNT NUMBER.
**
C ADD 5 O
C 5 SUBSTPARM1:O CACC 5
**
* - INCREMENT "O", WHICH IS THE OFFSET IN THE PARAMETER
* STRING. PULL OUT THE TRANSACTION CODE.
**
C ADD 5 O
C 1 SUBSTPARM1:O TCODE 1
**
* - INCREMENT "O", WHICH IS THE OFFSET IN THE PARAMETER
* STRING. PULL OUT THE TRANSACTION AMOUNT.
**
C ADD 1 O
C 5 SUBSTPARM1:O CAMT 5
C MOVELCAMT TAMT 52

* PROCESS THE ATM FILE. ****************

* READ THE FILE TO FIND THE CORRECT RECORD.
C ATMN DOUEQCATM
C READ ATMS 61EOF
C END
C 61 GOTO EOF
* CHANGE THE VALUE OF THE ATM BALANCE APPROPRIATELY.
C TCODE IFEQ ’D’
C ADD TAMT ATMAMT
C ELSE
C TCODE IFEQ ’W’
C SUB TAMT ATMAMT
C ELSE
C ENDIF
C ENDIF
* UPDATE THE ATM FILE.
C EOF TAG
C UPDATATMFILE
C CLOSEATMS

* PROCESS THE ACCOUNT FILE. ****************

* READ THE FILE TO FIND THE CORRECT RECORD.
C ACCTN DOUEQCACC
C READ ACCTS 62 EOF2
C END

Chapter 22. Triggering automatic events in your database 253

C 62 GOTO EOF2
* CHANGE THE VALUE OF THE ACCOUNTS BALANCE APPROPRIATELY.
C TCODE IFEQ ’D’
C ADD TAMT BAL
C ELSE
C TCODE IFEQ ’W’
C SUB TAMT BAL
C ELSE
C ENDIF
C ENDIF
* UPDATE THE ACCT FILE.
C EOF2 TAG
C UPDATACCFILE
C CLOSEACCTS
*
C SETON LR

After the insertions by the application, the ATMTRANS file contains the following data:

ATMID ACCTID TCODE AMOUNT

10001 20001 D 100.00
10002 20002 D 250.00
10003 20003 D 500.00

After being updated from the ATMTRANS file by the insert trigger program, the ATMS file and the ACCTS
file contain the following data:

ATMN LOCAT ATMAMT

10001 MN 300.00
10002 MN 750.00
10003 CA 750.00

ACCTN BAL ACTACC

20001 200.00 A
20002 350.00 A
20003 500.00 C

Example: Update trigger written in ILE COBOL
See “Code disclaimer information” on page xiv for information pertaining to code examples.

The following ILE COBOL trigger program runs when a record is updated in the ATMTRANS file.
100 IDENTIFICATION DIVISION.
200 PROGRAM-ID. UPDTRG.
300 **
400 **** Program Name : UPDTRG *
500 ***** *
600 ***** This trigger program is called when a record is updated *
700 ***** in the ATMTRANS file. *
800 ***** This program will check the balance of ACCTS and *
900 ***** the total amount in ATMS.If either one of the amounts *
1000 ***** is not enough to meet the withdrawal, an exception *
1100 ***** message is signalled to the application. *
1200 ***** If both ACCTS and ATMS files have enough money, this *
1300 ***** program will update both files to reflect the changes. *
1400 ***** *
1500 ***** ATMIDs of 10001 and 10002 will be updated in the ATMTRANS *
1600 ***** file with the following data: *
1700 ***** *
1800 ***** ATMID ACCTID TCODE AMOUNT *

254 DB2 UDB for iSeries Database Programming V5R2

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1900 ***** -------------------------------- *
2000 ***** 10001 20001 W 25.00 *
2100 ***** 10002 20002 W 900.00 *
2200 ***** 10003 20003 D 500.00 *
2300 ***** *
2400 ***
2500 ***
2600 ENVIRONMENT DIVISION.
2700 CONFIGURATION SECTION.
2800 SOURCE-COMPUTER. IBM-AS400.
2900 OBJECT-COMPUTER. IBM-AS400.
3000 SPECIAL-NAMES. I-O-FEEDBACK IS FEEDBACK-JUNK.
3100 INPUT-OUTPUT SECTION.
3200 FILE-CONTROL.
3300 SELECT ACC-FILE ASSIGN TO DATABASE-ACCTS
3400 ORGANIZATION IS INDEXED
3500 ACCESS IS RANDOM
3600 RECORD KEY IS ACCTN
3700 FILE STATUS IS STATUS-ERR1.
3800
3900 SELECT ATM-FILE ASSIGN TO DATABASE-ATMS
4000 ORGANIZATION IS INDEXED
4100 ACCESS IS RANDOM
4200 RECORD KEY IS ATMN
4300 FILE STATUS IS STATUS-ERR2.
4400
4500 ***
4600 * COMMITMENT CONTROL AREA. *
4700 ***
4800 I-O-CONTROL.
4900 COMMITMENT CONTROL FOR ATM-FILE, ACC-FILE.
5000
5100 ***
5200 * DATA DIVISION *
5300 **
5400
5500 DATA DIVISION.
5600 FILE SECTION.
5700 FD ATM-FILE
5800 LABEL RECORDS ARE STANDARD.
5900 01 ATM-REC.
6000 COPY DDS-ATMFILE OF ATMS.
6100
6200 FD ACC-FILE
6300 LABEL RECORDS ARE STANDARD.
6400 01 ACC-REC.
6500 COPY DDS-ACCFILE OF ACCTS.
6600
7000
7100 ***
7200 * WORKING-STORAGE SECTION *
7300 ***
7400 WORKING-STORAGE SECTION.
7500 01 STATUS-ERR1 PIC XX.
7600 01 STATUS-ERR2 PIC XX.
7700 01 TEMP-PTR USAGE IS POINTER.
7800
7900 01 NUMBERS-1.
8000 03 NUM1 PIC 9(10).
8100 03 NUM2 PIC 9(10).
8200 03 NUM3 PIC 9(10).
8300
8400 01 FEEDBACK-STUFF PIC X(500) VALUE SPACES.
8500
8600 ***
8700 * MESSAGE FOR SIGNALLING ANY TRIGGER ERROR *
8800 * - Define any message ID and message file in the following*

Chapter 22. Triggering automatic events in your database 255

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

8900 * message data. *
9000 ***
9100 01 SNDPGMMSG-PARMS.
9200 03 SND-MSG-ID PIC X(7) VALUE "TRG9999".
9300 03 SND-MSG-FILE PIC X(20) VALUE "MSGF LIB1 ".
9400 03 SND-MSG-DATA PIC X(25) VALUE "Trigger Error".
9500 03 SND-MSG-LEN PIC 9(8) BINARY VALUE 25.
9600 03 SND-MSG-TYPE PIC X(10) VALUE "*ESCAPE ".
9700 03 SND-PGM-QUEUE PIC X(10) VALUE "* ".
9800 03 SND-PGM-STACK-CNT PIC 9(8) BINARY VALUE 1.
9900 03 SND-MSG-KEY PIC X(4) VALUE " ".

10000 03 SND-ERROR-CODE.
10100 05 PROVIDED PIC 9(8) BINARY VALUE 66.
10200 05 AVAILABLE PIC 9(8) BINARY VALUE 0.
10300 05 RTN-MSG-ID PIC X(7) VALUE " ".
10400 05 FILLER PIC X(1) VALUE " ".
10500 05 RTN-DATA PIC X(50) VALUE " ".
10600
10700 ***
10800 * LINKAGE SECTION *
10900 * PARM 1 is the trigger buffer *
11000 * PARM 2 is the length of the trigger buffer *
11100 ***
11200 LINKAGE SECTION.
11300 01 PARM-1-AREA.
11400 03 FILE-NAME PIC X(10).
11500 03 LIB-NAME PIC X(10).
11600 03 MEM-NAME PIC X(10).
11700 03 TRG-EVENT PIC X.
11800 03 TRG-TIME PIC X.
11900 03 CMT-LCK-LVL PIC X.
12000 03 FILLER PIC X(3).
12100 03 DATA-AREA-CCSID PIC 9(8) BINARY.
12200 03 FILLER PIC X(8).
12300 03 DATA-OFFSET.
12400 05 OLD-REC-OFF PIC 9(8) BINARY.
12500 05 OLD-REC-LEN PIC 9(8) BINARY.
12600 05 OLD-REC-NULL-MAP PIC 9(8) BINARY.
12700 05 OLD-REC-NULL-LEN PIC 9(8) BINARY.
12800 05 NEW-REC-OFF PIC 9(8) BINARY.
12900 05 NEW-REC-LEN PIC 9(8) BINARY.
13000 05 NEW-REC-NULL-MAP PIC 9(8) BINARY.
13100 05 NEW-REC-NULL-LEN PIC 9(8) BINARY.
13200 05 FILLER PIC X(16).
13300 03 RECORD-JUNK.
13400 05 OLD-RECORD PIC X(16).
13500 05 OLD-NULL-MAP PIC X(4).
13600 05 NEW-RECORD PIC X(16).
13700 05 NEW-NULL-MAP PIC X(4).
13800
13900 01 PARM-2-AREA.
14000 03 TRGBUFL PIC X(2).
14100
14200 01 INPUT-RECORD2.
14300 COPY DDS-TRANS OF ATMTRANS.
14400
14500 05 OFFSET-NEW-REC2 PIC 9(8) BINARY.
14600
14700 ***
14800 ****** PROCEDURE DIVISION *
14900 ***
15000 PROCEDURE DIVISION USING PARM-1-AREA, PARM-2-AREA.
15100 MAIN-PROGRAM SECTION.
15200 000-MAIN-PROGRAM.
15300 OPEN I-O ATM-FILE.
15400 OPEN I-O ACC-FILE.
15500

256 DB2 UDB for iSeries Database Programming V5R2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

15600 MOVE 0 TO BAL.
15700
15800 ***
15900 * SET UP THE OFFSET POINTER AND COPY THE NEW RECORD. *
16000 ***
16100 SET TEMP-PTR TO ADDRESS OF PARM-1-AREA.
16200 SET TEMP-PTR UP BY NEW-REC-OFFSET.
16300 SET ADDRESS OF INPUT-RECORD2 TO TEMP-PTR.
16400 MOVE INPUT-RECORD2 TO INPUT-RECORD.
16500
16600 **
16700 * READ THE RECORD FROM THE ACCTS FILE *
16800 **
16900 MOVE ACCTID TO ACCTN.
17000 READ ACC-FILE
17100 INVALID KEY PERFORM 900-OOPS
17200 NOT INVALID KEY PERFORM 500-ADJUST-ACCOUNT.
17300
17400 ***
17500 * READ THE RECORD FROM THE ATMS FILE. *
17600 ***
17700 MOVE ATMID TO ATMN.
17800 READ ATM-FILE
17900 INVALID KEY PERFORM 950-OOPS
18000 NOT INVALID KEY PERFORM 550-ADJUST-ATM-BAL.
18100 CLOSE ATM-FILE.
18200 CLOSE ACC-FILE.
18300 GOBACK.
18400
18500 ***
18600 ***
18700 ***
18800 ***
18900 ****** THIS PROCEDURE IS USED IF THERE IS NOT ENOUGH MONEY IN THE ****
19000 ****** ACCTS FOR THE WITHDRAWAL. ****
19100 ***
19200 200-NOT-ENOUGH-IN-ACC.
19300 DISPLAY "NOT ENOUGH MONEY IN ACCOUNT.".
19400 CLOSE ATM-FILE.
19500 CLOSE ACC-FILE.
19600 PERFORM 999-SIGNAL-ESCAPE.
19700 GOBACK.
19800
19900 ***
20000 ****** THIS PROCEDURE IS USED IF THERE IS NOT ENOUGH MONEY IN THE
20100 ****** ATMS FOR THE WITHDRAWAL.
20200 ***
20300 250-NOT-ENOUGH-IN-ATM.
20400 DISPLAY "NOT ENOUGH MONEY IN ATM.".
20500 CLOSE ATM-FILE.
20600 CLOSE ACC-FILE.
20700 PERFORM 999-SIGNAL-ESCAPE.
20800 GOBACK.
20900
21000 ***
21100 ****** THIS PROCEDURE IS USED TO ADJUST THE BALANCE FOR THE ACCOUNT OF
21200 ****** THE PERSON WHO PERFORMED THE TRANSACTION.
21300 ***
21400 500-ADJUST-ACCOUNT.
21500 IF TCODE = "W" THEN
21600 IF (BAL < AMOUNT) THEN
21700 PERFORM 200-NOT-ENOUGH-IN-ACC
21800 ELSE
21900 SUBTRACT AMOUNT FROM BAL
22000 REWRITE ACC-REC
22100 ELSE IF TCODE = "D" THEN
22200 ADD AMOUNT TO BAL

Chapter 22. Triggering automatic events in your database 257

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

22300 REWRITE ACC-REC
22400 ELSE DISPLAY "TRANSACTION CODE ERROR, CODE IS: ", TCODE.
22500
22600 ***
22700 ****** THIS PROCEDURE IS USED TO ADJUST THE BALANCE OF THE ATM FILE ***
22800 ****** FOR THE AMOUNT OF MONEY IN ATM AFTER A TRANSACTION. ***
22900 ***
23000 550-ADJUST-ATM-BAL.
23100 IF TCODE = "W" THEN
23200 IF (ATMAMT < AMOUNT) THEN
23300 PERFORM 250-NOT-ENOUGH-IN-ATM
23400 ELSE
23500 SUBTRACT AMOUNT FROM ATMAMT
23600 REWRITE ATM-REC
23700 ELSE IF TCODE = "D" THEN
23800 ADD AMOUNT TO ATMAMT
23900 REWRITE ATM-REC
24000 ELSE DISPLAY "TRANSACTION CODE ERROR, CODE IS: ", TCODE.
24100
24200 ** *******
24300 ****** THIS PROCEDURE IS USED IF THERE THE KEY VALUE THAT IS USED IS **
24400 ****** NOT FOUND IN THE ACCTS FILE. **
24500 ***
24600 900-OOPS.
24700 DISPLAY "INVALID KEY: ", ACCTN, " ACCOUNT FILE STATUS: ",
24800 STATUS-ERR1.
24900 CLOSE ATM-FILE.
25000 CLOSE ACC-FILE.
25100 PERFORM 999-SIGNAL-ESCAPE.
25200 GOBACK.
25300
25400 ***
25500 ****** THIS PROCEDURE IS USED IF THERE THE KEY VALUE THAT IS USED IS **
25600 ****** NOT FOUND IN THE ATM FILE. **
25700 ***
25800 950-OOPS.
25900 DISPLAY "INVALID KEY: ", ATMN, " ATM FILE STATUS: ",
26000 STATUS-ERR2.
26100 CLOSE ATM-FILE.
26200 CLOSE ACC-FILE.
26300 PERFORM 999-SIGNAL-ESCAPE.
26400 GOBACK.
26500
26600 ***
26700 ****** SIGNAL ESCAPE TO THE APPLICATION ********
26800 ***
26900 999-SIGNAL-ESCAPE.
27000
27100 CALL "QMHSNDPM" USING SND-MSG-ID,
27200 SND-MSG-FILE,
27300 SND-MSG-DATA,
27400 SND-MSG-LEN,
27500 SND-MSG-TYPE,
27600 SND-PGM-QUEUE,
27700 SND-PGM-STACK-CNT,
27800 SND-MSG-KEY,
27900 SND-ERROR-CODE.
28000 *DISPLAY RTN-MSG-ID.
28100 *DISPLAY RTN-DATA.
28200

After being updated from the ATMTRANS file by the update trigger programs, the ATMS and ACCTS files
contain the following data. The update to the ATMID 10002 fails because of insufficient amount in the
account.

258 DB2 UDB for iSeries Database Programming V5R2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

ATMN LOCAT ATMAMT

10001 MN 275.00
10002 MN 750.00
10003 CA 750.00

ACCTN BAL ACTACC

20001 175.00 A
20002 350.00 A
20003 500.00 C

Example: Delete trigger written in ILE C
See “Code disclaimer information” on page xiv for information pertaining to code examples.

The following ILE C trigger program runs when a record is deleted in the ATMTRANS file.
/**/
/* Program Name - DELTRG */
/* This program is called when a delete operation occurs in */
/* the ATMTRANS file. */
/* */
/* This program will delete the records from ATMS and ACCTS */
/* based on the ATM ID and ACCT ID that are passed in from */
/* the trigger buffer. */
/* */
/* The application will delete ATMID 10003 from the ATMTRANS */
/* file. */
/* */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <recio.h>
#include "applib/csrc/msghandler" /* message handler include */
#include "qsysinc/h/trgbuf" /* trigger buffer include without*/

/* old and new records */
Qdb_Trigger_Buffer_t *hstruct; /* pointer to the trigger buffer */
char *datapt;

#define KEYLEN 5

/**/
/* Need to define file structures here since there are non- */
/* character fields in each file. For each non-character */
/* field, C requires boundary alignment. Therefore, a _PACKED */
/* struct should be used in order to access the data that */
/* is passed to the trigger program. */
/* */
/**/

/** record area for ATMTRANS **/
_Packed struct rec {

char atmid[5];
char acctid[5];
char tcode[1];
char amount[5];

} oldbuf, newbuf;

/** record area for ATMS **/
_Packed struct rec1{

char atmn[5];
char locat[2];
char atmamt[9];

} atmfile;

Chapter 22. Triggering automatic events in your database 259

||||

||||

|

/** record area for ACCTS **/
_Packed struct rec2{

char acctn[5];
char bal[9];
char actacc[1];

} accfile;

/**/
/**/
/* Start of the Main Line Code. ************************************/
/**/
/**/
main(int argc, char **argv)
{
_RFILE *out1; /* file pointer for ATMS */
_RFILE *out2; /* file pointer for ACCTS */
_RIOFB_T *fb; /* file feedback pointer */
char record[16]; /* record buffer */
_FEEDBACK fc; /* feedback for message handler */
_HDLR_ENTRY hdlr = main_handler;

/********************************/
/* active exception handler */
/********************************/

CEEHDLR(&hdlr, NULL, &fc);;
/********************************/
/* ensure exception handler OK */
/********************************/

if (fc.MsgNo != CEE0000)
{

printf("Failed to register exception handler.\n");
exit(99);

}

/* set pointer to the input parameter */
hstruct = (Qdb_Trigger_Buffer_t *)argv[1];
datapt = (char *) hstruct;

/* Copy old and new record from the input parameter */

if ((strncmp(hstruct ->trigger_event,"2",1)== 0)|| /* delete event */
(strncmp(hstruct -> trigger_event,"3",1)== 0)) /* update event */

{ obufoff = hstruct ->old_record_offset;
memcpy(&oldbuf,datapt+obufoff,; hstruct->old_record_len);

}
if ((strncmp(hstruct -> trigger_event,"1",1)== 0) || /* insert event */

(strncmp(hstruct -> trigger_event,"3",1)== 0)) /* update event */
{ nbufoff = hstruct ->new_record_offset;

memcpy(&newbuf,datapt+nbufoff,; hstruct->new_record_len);
}

/***/
/* Open ATM and ACCTS files */
/* */
/* Check the application’s commit lock level. If it */
/* runs under commitment control, then open both */
/* files with commitment control. Otherwise, open */
/* both files without commitment control. */
/***/
if(strcmp(hstruct->commit_lock_level,"0") == 0) /* no commit */
{

if ((out1=_Ropen("APPLIB/ATMS","rr+")) == NULL)
{

printf("Error opening ATM file");
exit(1);

}

260 DB2 UDB for iSeries Database Programming V5R2

if ((out2=_Ropen("APPLIB/ACCTS","rr+")) == NULL)
{

printf("Error opening ACCTS file");
exit(1);

}
}
else /* with commitment control */
{

if ((out1=_Ropen("APPLIB/ATMS","rr+,commit=Y")) == NULL)
{

printf("Error opening ATMS file");
exit(1);

}
if ((out2=_Ropen("APPLIB/ACCTS","rr+,commit=Y")) == NULL)

{
printf("Error opening ACCTS file");
exit(1);

}
}

/* Delete the record based on the input parameter */
fb =_Rlocate(out1,&oldbuf.atmid,KEYLEN,__DFT);
if (fb->num_bytes != 1)
{

printf("record not found in ATMS\n");
_Rclose(out1);
exit(1);

}
_Rdelete(out1); /* delete record from ATMS */
_Rclose(out1);

fb =_Rlocate(out2,&oldbuf.acctid,KEYLEN,__DFT);
if (fb->num_bytes != 1)
{

printf("record not found in ACCOUNTS\n");
_Rclose(out2);
exit(1);

}
_Rdelete(out2); /* delete record from ACCOUNTS */
_Rclose(out2);

} /* end of main */

After the deletion by the application, the ATMTRANS file contains the following data:

ATMID ACCTID TCODE AMOUNT

10001 20001 W 25.00
10002 20002 W 900.00

After being deleted from the ATMTRANS file by the delete trigger program, the ATMS file and the ACCTS
file contain the following data:

ATMN LOCAT ATMAMT

10001 MN 275.00
10002 MN 750.00

ACCTN BAL ACTACC

20001 175.00 A
20002 350.00 A

Chapter 22. Triggering automatic events in your database 261

/**/
/* INCLUDE NAME : MSGHANDLER */
/* */
/* DESCRIPTION : Message handler to signal an exception message*/
/* to the caller of this trigger program. */
/* */
/* Note: This message handler is a user defined routine. */
/* */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <recio.h>
#include <leawi.h>

#pragma linkage (QMHSNDPM, OS)
void QMHSNDPM(char *, /* Message identifier */

void *, /* Qualified message file name */
void *, /* Message data or text */
int, /* Length of message data or text */
char *, /* Message type */
char *, /* Call message queue */
int, /* Call stack counter */
void *, /* Message key */
void *, /* Error code */
...); /* Optionals:

length of call message queue
name
Call stack entry qualification
display external messages
screen wait time */

/***/
/******** This is the start of the exception handler function. */
/***/

void main_handler(_FEEDBACK *cond, _POINTER *token, _INT4 *rc,
_FEEDBACK *new)

{
/**/
/* Initialize variables for call to */
/* QMHSNDPM. */
/* User defines any message ID and */
/* message file for the following data */
/**/

char message_id[7] = "TRG9999";
char message_file[20] = "MSGF LIB1 ";
char message_data[50] = "Trigger error ";
int message_len = 30;
char message_type[10] = "*ESCAPE ";
char message_q[10] = "_C_pep ";
int pgm_stack_cnt = 1;
char message_key[4];

/**/
/* Declare error code structure for */
/* QMHSNDPM. */
/**/

struct error_code {
int bytes_provided;
int bytes_available;
char message_id[7];

} error_code;

error_code.bytes_provided = 15;
/**/
/* Set the error handler to resume and */
/* mark the last escape message as */
/* handled. */
/**/

*rc = CEE_HDLR_RESUME;

262 DB2 UDB for iSeries Database Programming V5R2

/**/
/* Send my own *ESCAPE message. */
/**/

QMHSNDPM(message_id,
&message_file,
&message_data,
message_len,
message_type,
message_q,
pgm_stack_cnt,
&message_key,
&error_code);

/**/
/* Check that the call to QMHSNDPM */
/* finished correctly. */
/**/

if (error_code.bytes_available != 0)
{

printf("Error in QMHOVPM : %s\n", error_code.message_id);
}

}

/**/
/* INCLUDE NAME : TRGBUF */
/* */
/* DESCRIPTION : The input trigger buffer structure for the */
/* user’s trigger program. */
/* */
/* LANGUAGE : ILE C */
/* */
/**/
/**/
/* Note: The following type definition only defines the fixed */
/* portion of the format. The data area of the original */
/* record, null byte map of the original record, the */
/* new record, and the null byte map of the new record */
/* is varying length and immediately follows what is */
/* defined here. */
/**/
typedef _Packed struct Qdb_Trigger_Buffer {

char file_name[10];
char library_name[10];
char member_name[10];
char trigger_event[1];
char trigger_time[1];
char commit_lock_level[1];
char reserved_1[3];
int data_area_ccsid;
char reserved_2]8];
int old_record_offset;
int old_record_len;
int old_record_null_byte_map;
int old_record_null_byte_map_len;
int new_record_offset;
int new_record_len;
int new_record_null_byte_map;
int new_record_null_byte_map_len;

} Qdb_Trigger_Buffer_t;

Trigger programs: Data structures of database used in the examples
The data structures that are used in this application are illustrated as follows:

v ATMTRANS : /* Transaction record */
ATMID CHAR(5) (KEY) /* ATM** machine ID number */
ACCTID CHAR(5) /* Account number */
TCODE CHAR(1) /* Transaction code */
AMOUNT ZONED /* Amount to be deposited or */

/* withdrawn */

Chapter 22. Triggering automatic events in your database 263

v ATMS : /* ATM machine record */
ATMN CHAR(5) (KEY) /* ATM machine ID number */
LOCAT CHAR(2) /* Location of ATM */
ATMAMT ZONED /* Total amount in this ATM */

/* machine */

ATMN LOCAT ATMAMT

10001 MN 200.00
10002 MN 500.00
10003 CA 250.00

v ACCTS: /* Accounting record */
ACCTN CHAR(5) (KEY) /* Account number */
BAL ZONED /* Balance of account */
ACTACC CHAR(1) /* Status of Account */

ACCTN BAL ACTACC

20001 100.00 A
20002 100.00 A
20003 0.00 C

Trigger buffer sections
The trigger buffer has two logical sections: a static section and a variable section.

v The static section contains the following:

– A trigger template that contains the physical file name, member name, trigger event, trigger time,
commit lock level, and CCSID of the current record and relative record number.

– Offsets and lengths of the record areas and null byte maps.

This section occupies (in decimal) offset 0 through 95

The variable section contains the following:

v Areas for the old record, old null byte map, new record, and new null byte map.

The following table provides a summary of the fields in the trigger buffer. If you want to know more about
these fields, see “Trigger buffer field descriptions” on page 265.

Offset

Type FieldDec Hex

0 0 CHAR(10) Physical file name

10 A CHAR(10) Physical file library name

20 14 CHAR(10) Physical file member name

30 1E CHAR(1) Trigger event

31 1F CHAR(1) Trigger time

32 20 CHAR(1) Commit lock level

33 21 CHAR(3) Reserved

36 24 BINARY(4) CCSID of data

40 28 BIN(4) Relative Record Number

44 2C CHAR(4) Reserved

48 30 BINARY(4) Original record offset

52 34 BINARY(4) Original record length

264 DB2 UDB for iSeries Database Programming V5R2

Offset

Type FieldDec Hex

56 38 BINARY(4) Original record null byte map offset

60 3C BINARY(4) Original record null byte map length

64 40 BINARY(4) New record offset

68 44 BINARY(4) New record length

72 48 BINARY(4) New record null byte map offset

76 4C BINARY(4) New record null byte map length

80 50 CHAR(16) Reserved

* * CHAR(*) Original record

* * CHAR(*) Original record null byte map

* * CHAR(*) New record

* * CHAR(*) New record null byte map

Trigger buffer field descriptions
The following list contains the fields that are contained in the trigger buffer, in alphabetical order.

CCSID of data. The CCSID of the data in the new or the original records. The data is converted to the job CCSID by
the database. SBCS data is converted to the single byte associated CCSID. DBCS data is converted to the double
byte associated CCSID.

Commit lock level. The commit lock level of the current application program. The possible values are:

’0’ *NONE

’1’ *CHG

’2’ *CS

’3’ *ALL

New record. A copy of the record that is being inserted or updated in a physical file as a result of the change
operation. The new record only applies to the insert or update operations.

New record length. The maximum length is 32766 bytes.

New record null byte map. This structure contains the NULL value information for each field of the new record.
Each byte represents one field. The possible values for each byte are:

’0’ Not NULL

’1’ NULL

New record null byte map length. The length is equal to the number of fields in the physical file.

New record null byte map offset. The location of the null byte map of the new record. The offset value is from the
beginning of the trigger buffer. This field is not applicable if the new value of the record does not apply to the change
operation, for example, a delete operation.

New record offset. The location of the new record. The offset value is from the beginning of the trigger buffer. This
field is not applicable if the new value of the record does not apply to the change operation, for example, a delete
operation.

Original record. A copy of the original physical record before being updated, deleted, or read. The original record
applies only to update, delete, and read operations.

Original record length. The maximum length is 32766 bytes.

Chapter 22. Triggering automatic events in your database 265

Original record null byte map. This structure contains the NULL value information for each field of the original
record. Each byte represents one field. The possible values for each byte are:

’0’ Not NULL

’1’ NULL

Original record null byte map length. The length is equal to the number of fields in the physical file.

Original record null byte map offset. The location of the null byte map of the original record. The offset value is
from the beginning of the trigger buffer. This field is not applicable if the original value of the record does not apply to
the change operation, for example, an insert operation.

Original record offset. The location of the original record. The offset value is from the beginning of the trigger buffer.
This field is not applicable if the original value of the record does not apply to the operation; for example, an insert
operation.

Physical file library name. The name of the library in which the physical file resides.

Physical file member name. The name of the physical file member.

Physical file name. The name of the physical file being changed.

Relative Record Number. The relative record number of the record to be updated or deleted (*BEFORE triggers) or
the relative record number of the record which was inserted, updated, deleted, or read(*AFTER triggers).

Trigger event. The event that caused the trigger program to be called. The possible values are:

’1’ Insert operation

’2’ Delete operation

’3’ Update operation

’4’ Read operation

Trigger time. Specifies the time, relative to the operation on the physical file, when the trigger program is called. The
possible values are:

’1’ After the change or read operation

’2’ Before the change operation

Recommendations for trigger programs
The following are recommended for a trigger program:

v Create the trigger program so that it runs under the user profile of the user who created it. In this way,
users who do not have the same level of authority to the program will not encounter errors.

v Create the program with USRPRF(*OWNER) and *EXCLUDE public authority, and do not grant
authorities to the trigger program to USER(*PUBLIC). Avoid having the trigger program altered or
replaced by other users. The database invokes the trigger program whether or not the user causing the
trigger program to run has authority to the trigger program.

v Create the program as ACTGRP(*CALLER) if the program is running in an ILE environment. This allows
the trigger program to run under the same commitment definition as the application.

v Open the file with a commit lock level the same as the application’s commit lock level. This allows the
trigger program to run under the same commit lock level as the application.

v Create the program in the physical file’s library.

v Use commit or rollback in the trigger program if the trigger program runs under a different activation
group than the application.

v Signal an exception if an error occurs or is detected in the trigger program. If an error message is not
signalled from the trigger program, the database assumes that the trigger ran successfully. This may
cause the user data to end up in an inconsistent state.

266 DB2 UDB for iSeries Database Programming V5R2

Precautions to take when coding trigger programs
Trigger programs can be very powerful. Be careful when designing trigger programs that access a system
resource like a tape drive. For instance, a trigger program that copies record changes to tape media can
be useful, but the program itself cannot detect if the tape drive is ready or if it contains the correct tape.
You must take these kind of resource issues into account when designing trigger programs.

In addition, you should use extreme caution when using read triggers. Using a read trigger could cause a
trigger to be called for every record that is read. During a query, this means that triggers could be called
many times as records are processed multiple times by the query. This could impact system performance.

See the following topics related to trigger programs:

v “Functions to use with care in trigger programs”

v “Commands, statements, and operations that you cannot use in trigger programs”

Functions to use with care in trigger programs
The following CL commands and functions should be carefully considered. They are not recommended in
a trigger program:

v STRCMTCTL (Start Commitment Control)

v RCLSPLSTG (Reclaim Spool Storage)

v RCLRSC (Reclaim Resources)

v CHGSYSLIBL (Change System Library List)

v DLTLICPGM, RSTLICPGM, and SAVLICPGM (Delete, Restore, and Save Licensed Program)

v SAVLIB (Save Library) with SAVACT other than (*NO)

v Any commands with DKT or TAP

v Any migration commands

v The debug program (a security exposure)

v Any commands related to remote job entry (RJE)

v Invoking another CL or interactive entry—could reach lock resource limit.

Commands, statements, and operations that you cannot use in trigger programs
A trigger program cannot include the following commands, statements, and operations. The system returns
an exception if you use these:

v The commitment definition associated with the insert, update, delete, or read operation that called the
trigger does not allow the COMMIT operation. A COMMIT operation IS allowed for any other
commitment definition in the job.

v The commitment definition associated with the insert, update, delete, or read operation that called the
trigger does not allow the ROLLBACK operation.The ROLLBACK operation IS allowed for any other
commitment definition in the job.

v The SQL CONNECT, DISCONNECT, SET CONNECTION, and RELEASE statements ARE NOT
allowed.

v The commitment definition associated with the insert, update, delete, or read operation that called the
trigger does not allow the ENDCMTCTL CL command. An ENDCMTCTL CL command IS allowed for
any other commitment definition in the job.

v An attempt to add a local API commitment resource (QTNADDCR) to the same commitment definition
associated with the insert, update, delete, or read operation that called the trigger.

v An attempt to do any I/O to a file that a trigger program has opened with *SHARE and is the file that
caused the trigger program to be called.

v The invoked trigger program that uses the same commitment definition as the insert, update, delete, or
read operation that called the trigger and that already has an existing remote resource. However, the
system puts the entire transaction into a rollback-required state:

– If the trigger program fails and signals an escape message AND

Chapter 22. Triggering automatic events in your database 267

|
|
|

– Any remote resource was updated during the non-primary commit cycle for either a non-iSeries
location or for one that is at a pre-Version 3 Release 2 level.

v The trigger program can add a remote resource to the commitment definition that associates with the
insert, update, delete, or read operation that called the trigger. This allows for LU62 remote resources
(protected conversation) and DFM remote resources (DDM file open), but not DRDA® remote resources.

v If a failure occurs when changing a remote resource from a trigger program, the trigger program must
end by signalling an escape message. This allows the system to ensure that the entire transaction, for
all remote locations, properly rolls back. If the trigger program does not end with an escape message,
the databases on the various remote locations may become inconsistent.

v A commit lock level of the application program is passed to the trigger program. Run the trigger program
under the same lock level as the application program.

v The trigger program and application program may run in the same or different activation groups.
Compile the trigger program with ACTGRP(*CALLER) to achieve consistency between the trigger
program and the application program.

v A trigger program calls other programs or it can be nested (that is, a statement in a trigger program
causes the calling of another trigger program.) In addition, a trigger program itself may call a trigger
program. The maximum trigger nested level for insert, update, delete, or read is 200. When the trigger
program runs under commitment control, the following situations will result in an error:

– Any update of the same record that has already been changed by the change operation or by an
operation in the trigger program.

– Conflicting operations on the same record within one change operation. For example, the change
operation inserts a record, then the record is deleted by the trigger program.

Notes:

1. If the change operation is not running under commitment control, the system always protects the
change operation. However, the system does not monitor updating the same record within the
trigger program.

2. The ALWREPCHG(*NO|YES) parameter of the Add Physical File Trigger (ADDPFTRG) command
controls repeated changes under commitment control. Changing from the default value to
ALWREPCHG(*YES) allows the same record or updated record associated with the trigger program
to repeatedly change.

v The Allow Repeated Change ALWREPCHG(*YES) parameter on the Add Physical File Trigger
(ADDPFTRG) command also affects trigger programs defined to be called before insert and update
database operations. If the trigger program updates the new record in the trigger buffer and
ALWREPCHG(*YES) is specified, the actual insert or update operation on the associated physical file
uses the modified new record image. This option can be helpful in trigger programs that are designed
for data validation and data correction. Because the trigger program receives physical file record images
(even for logical files), the trigger program may change any field of that record image.

v The trigger program is called for each row that is changed in or read from the physical file.

v If the physical file or the dependent logical file is opened for insert SEQONLY(*YES) processing, and
the physical file has an insert trigger program associated with it, the system changes the open to
SEQONLY(*NO) so it can call the trigger program for each row that is inserted.

Trigger and application programs that are under commitment control
When the trigger program and the application program runs under the same commitment definition, a
failure of the trigger program causes the rollback of all statements that are associated with the trigger
program. This includes any statement in a nested trigger program. The originating change operation also
rolls back. This requires the trigger program to signal an exception when it encounters an error.

When the trigger program and the application program run under different commitment definitions, the
COMMIT statements in the application program only affect its own commitment definition. The programmer
must commit the changes in the trigger program by issuing the COMMIT statement.

268 DB2 UDB for iSeries Database Programming V5R2

When insert or update record operations are performed under commitment control, the detection of any
specific duplicate key errors is deferred until the logical end of the operation, to allow for the possibility that
such errors have been resolved by that time. In the case of a trigger program running in the same
commitment definition as its calling program, the logical end of the operation occurs after the single or
blocked insert, update, or delete record operation is performed by the calling program, and control returns
from any invoked before and/or after trigger programs. As a result, duplicate key errors are not detectable
in trigger programs that use the same commitment definition as the insert, update, or delete record
operation that called the trigger programs.

Trigger and application programs that are not under commitment
control
If both programs do not run under commitment control, any error in a trigger program leaves files in the
state that exists when the error occurs. No rollback occurs.

If the trigger program does not run under commitment control and the application program does run under
commitment control, all changes from the trigger program are committed when either:

v A commit operation is performed in the trigger program.

v The activation group ends. In the normal case, an implicit commit is performed when the activation
group ends. However, if an abnormal system failure occurs, a rollback is performed.

Trigger program error messages
If a failure occurs while the trigger program is running, it must signal an appropriate escape message
before exiting. Otherwise, the application assumes that the trigger program ran successfully. The message
can be the original message that is signalled from the system or a message that is created by the trigger
program creator.

Monitoring the use of trigger programs
DB2 UDB for iSeries provides the capability to associate trigger programs with database files.
Trigger-program capability is common across the industry for high-function database managers.

When you associate a trigger program with a database file, you specify when the trigger program runs. For
example, you can set up the customer order file to run a trigger program whenever a new record is added
to the file. When the customer’s outstanding balance exceeds the credit limit, the trigger program can print
a warning letter to the customer and send a message to the credit manager.

Trigger programs are a productive way both to provide application functions and to manage information.
Trigger programs also provide the ability for someone with devious intentions to create a “Trojan horse” on
your system. A destructive program may be sitting and waiting to run when a certain event occurs in a
database file on your system.

Note: In history, the Trojan horse was a large hollow wooden horse that was filled with Greek soldiers.
After the horse was introduced within the walls of Troy, the soldiers climbed out of the horse and
fought the Trojans. In the computer world, a program that hides destructive functions is often called
a Trojan horse.

When your system ships, the ability to add a trigger program to a database file is restricted. If you are
managing object authority carefully, the typical user will not have sufficient authority to add a trigger
program to a database file. (Appendix D in the iSeries Security Reference book tells the authority that is
required or all commands, including the Add Physical File Trigger (ADDPFTRG) command.

You can use the Print Trigger Programs (PRTTRGPGM) command to print a list of all the trigger programs
in a specific library or in all libraries. The following shows an example of the report:

Chapter 22. Triggering automatic events in your database 269

Trigger Programs (Full Report)

Specified library : CUSTLIB
Trigger Trigger Trigger Trigger Trigger

Library File Library Program Time Event Condition
CUSTLIB MB106 ARPGMLIB INITADDR Before Update Always
CUSTLIB MB107 ARPGMLIB INITNAME Before Update Always

You can use the initial report as a base to evaluate any trigger programs that already exist on your
system. Then, you can print the changed report regularly to see whether new trigger programs have been
added to your system.

When you evaluate trigger programs, consider the following:

v Who created the trigger program? You can use the Display Object Description (DSPOBJD) command to
determine this.

v What does the program do? You will have to look at the source program or talk to the program creator
to determine this. For example, does the trigger program check to see who the user is? Perhaps the
trigger program is waiting for a particular user (QSECOFR) in order to gain access to system resources.

After you have established a base of information, you can print the changed report regularly to monitor
new trigger programs that have been added to your system. The following shows an example of the
changed report:

Trigger Programs (Changed Report)
Specified library : LIBX
Last changed report : 96/01/21 14:33:37

Trigger Trigger Trigger Trigger Trigger
Library File Library Program Time Event Condition
INVLIB MB108 INVPGM NEWPRICE After Delete Always
INVLIB MB110 INVPGM NEWDSCNT After Delete Always

Adding a trigger to a file
To add a trigger, do the following:

1. Ensure that you have the proper authority and the file has the proper data capabilities. See “Required
authorities and data capabilities for triggers” on page 271 for information about these requirements.

2. Use one of the following methods to associate the trigger program to a specific physical file:

v Use iSeries Navigator to create a new table or edit the properties of an existing table.

v Use the Add Physical File Trigger (ADDPFTRG) command

v Use the CREATE TRIGGER SQL statement.

Note: If the trigger program resides in QTEMP library, the trigger program cannot be associated to a
physical file.

After you have created the association between the trigger program and the file, the system calls the
trigger program when a change operation is initiated against the physical file, a member of the physical
file, and any logical file created over the physical file.

You can associate a maximum of 300 triggers to one physical file. Each insert, delete, or update operation
can call multiple triggers before the operation occurs and after it occurs. Each read operation can call
multiple triggers after the operation occurs.

The number of triggers called after a read operation that is issued by a query may not be equal to the
number of records that are actually returned. This is because the query may have read a different number
of records, causing a trigger to be called for each read operation, before returning the correct number of
records.

270 DB2 UDB for iSeries Database Programming V5R2

|
|

|

|

|

|

|
|

../cl/addpftrg.htm

An SQL update operation involves a simultaneous read operation followed by a write operation. Read
triggers will not be run for SQL update operations. An update trigger should be specified to cover this read
followed by a write operation.

Required authorities and data capabilities for triggers
To add a trigger, you must have the following authorities:

v Object management or Alter authority to the file

v Object operational authority to the file

v Read data rights to the file

v Update data rights and Object operational authority to the file if CRTPFTRG ALWREPCHG(*YES) is
specified

v Execute authority to the file’s library

v Execute authority to the trigger program

v Execute authority to the trigger program’s library

The file must have appropriate data capabilities before you add a trigger:

v CRTPF ALWUPD(*NO) conflicts with *UPDATE Trigger

v CRTPF ALWDLT(*NO) conflicts with *DELETE Trigger

Displaying triggers
The Display File Description (DSPFD) command provides a list of the triggers that are associated with a
file. Specify TYPE(*TRG) or TYPE(*ALL) to get this list. The command provides the following information:

v The number of trigger programs

v The trigger name and library

v The trigger status

v The trigger program names and libraries

v The trigger events

v The trigger times

v The trigger update conditions

v The trigger type

v The trigger mode

v The trigger orientation

v The trigger creation date/time

v The number of trigger update columns

v List of trigger update columns

Removing a trigger
Use the Remove Physical File Trigger (RMVPFTRG) command to remove the association of a file and
trigger program. Once you remove the association, the system takes no action when a change or read
operation occurs to the physical file. The trigger program, however, remains on the system.

You can also remove a trigger using iSeries Navigator. See Removing triggers using iSeries Navigator in
DB2 UDB for iSeries SQL Programming Concepts.

Chapter 22. Triggering automatic events in your database 271

../cl/dspfd.htm
../cl/rmvpftrg.htm
../sqlp/rbafymstopnremove.htm
../sqlp/rbafymst02.htm

Enabling and disabling a trigger
Use the Change Physical File Trigger (CHGPFTRG) command to enable or disable a named trigger, or to
enable or disable all triggers for a file. Disabling the trigger causes the trigger program not to be called
when a change operation occurs to the physical file. Enabling the trigger causes the trigger program again
to be called when a change operation occurs to the physical file

You can also enable or disable a trigger using iSeries Navigator. See Enable or disable a trigger using
iSeries Navigator in DB2 UDB for iSeries SQL Programming Concepts.

Triggers and their relationship to other iSeries functions
Triggers interact with the system in the following ways:

Save/Restore Base File (SAVOBJ/RSTOBJ)

v The Save/Restore function will not search for the trigger program during save/restore time. It is the
user’s responsibility to manage the program. During run-time, if the system has not restored the trigger
program, the system returns a hard error with the trigger program name, physical file name, and trigger
event.

v If the entire library (*ALL) is saved and the physical file and all trigger programs are in the same library
and they are restored in a different library, then all the trigger program names are changed in the
physical file to reflect the new library.

Save/Restore Trigger Program (SAVOBJ/RSTOBJ)

v If you restore the trigger program in a different library, the change operation fails because the trigger
program is not in the original library. A hard error returns the trigger program name, physical file name,
and trigger event information.

There are two ways to recover in this situation:

– Restore the trigger program to the same library

– Create a new trigger program with the same name in the new library

Delete File (DLTF)

v The association between trigger programs and a deleted file are removed. The trigger programs remain
on the system.

Copy File

v If a to-file associates with an insert trigger, each inserted record calls the trigger program.

v If a to-file associates with a delete trigger program and the CPYF command specifies
MBROPT(*REPLACE), the copy operation fails.

v Copy with CREATE(*YES) does not propagate the trigger information

Create Duplicate Object (CRTDUPOBJ)

v When a physical file and its trigger program are originally in the same library, the trigger program library
will always be changed to the new library, even if the trigger program doesn’t exist in the new library. In
addition, the following holds true:

– If the CRTDUPOBJ command is duplicating both the physical file and its trigger program to a new
library, then the new trigger program will be associated with the new physical file.

– If the CRTDUPOBJ command is duplicating only the physical file, then the trigger program with the
same program name in the TO library will be associated with the new physical file. This is true even
if there is no trigger program by that name in the TO library. The library of the trigger program will be
changed.

272 DB2 UDB for iSeries Database Programming V5R2

../cl/chgpftrg.htm
../sqlp/rbafymstopnenabletrig.htm
../sqlp/rbafymstopnenabletrig.htm
../sqlp/rbafymst02.htm

– If the CRTDUPOBJ command is duplicating only the trigger program, then the new trigger program
will not be associated with any physical files.

v When a physical file and its trigger program are originally in different libraries:

– The old trigger program will be associated with the new physical file. Even though the new physical
file is duplicated to the same library as the trigger program, the old trigger program will still be
associated with the new physical file.

v A trigger program cannot be added if the program is in the QTEMP library. For database files, the
CRTDUPOBJ command attempts to locate the trigger program in the TO library. If the CRTDUPOBJ
command is used with QTEMP specified as the new library, CRTDUPOBJ attempts to create as much
of the object as possible. The file is created, but the trigger cannot be added, so the file remains in
QTEMP without a member.

Clear Physical File Member (CLRPFM)

v If the physical file associates with a delete trigger, the CLRPFM operation fails.

Initialize Physical File Member (INZPFM)

v If the physical file associates with an insert trigger, the INZPFM operation fails.

FORTRAN Force-End-Of-Data (FEOD)

v If the physical file associates with a delete trigger, the FEOD operation fails.

Apply Journaled Changes or Remove Journaled Changes (APYJRNCHG/RMVJRNCHG)

v If the physical file associates with any type of trigger, the APYJRNCHG and RMVJRNCHG operations
do not start the trigger program. Therefore, you should be sure to have all the files within the trigger
program journaled. Then, when using the APYJRNCHG or RMVJRNCHG commands, make sure to
specify all of these files. This insures that all the physical file changes for the application program and
the trigger programs are consistent.

Note: If any trigger program functions do not relate to database files and cannot be explicitly journaled,
send journal entries to record relevant information. Use the Send Journal Entry (SNDJRNE)
command or the Send Journal Entry (QJOSJRNE) API. Use this information during database file
recovery to ensure consistency.

Triggers and their relationship to referential integrity
A physical file can have both triggers and referential constraints associated with it. The running order
among trigger actions and referential constraints depends on the constraints and triggers that associate
with the file.

In some cases, the system evaluates referential constraints before the system calls an after trigger
program. This is the case with constraints that specify the RESTRICT rule.

In some cases, all statements in the trigger program — including nested trigger programs — run before
the constraint is applied. This is true for NO ACTION, CASCADE, SET NULL, and SET DEFAULT
referential constraint rules. When you specify these rules, the system evaluates the file’s constraints based
on the nested results of trigger programs. For example, an application inserts employee records into an
EMP file that has a constraint and trigger:

v The referential constraint specifies that the department number for an inserted employee record to the
EMP file must exist in the DEPT file.

v Whenever an insert to the EMP file occurs, the trigger program checks if the department number exists
in the DEPT file. The trigger program then adds the number if it does not exist.

When the insertion to the EMP file occurs, the system calls the trigger program first. If the department
number does not exist in the DEPT file, the trigger program inserts the new department number into the

Chapter 22. Triggering automatic events in your database 273

|
|
|
|
|

DEPT file. Then the system evaluates the referential constraint. In this case, the insertion is successful
because the department number exists in the DEPT file.

There are some restrictions when both a trigger and referential constraint are defined for the same
physical file:

v If a delete trigger associates with a physical file, that file must not be a dependent file in a referential
constraint with a delete rule of CASCADE.

v If an update trigger associates with a physical file, no field in this physical file can be a foreign key in a
referential constraint with a delete rule of SET NULL or SET DEFAULT.

If failure occurs during either a trigger program or referential constraint validation, all trigger programs
associated with the change operation roll back if all the files run under the same commitment definition.
The referential constraints are guaranteed when all files in the trigger program and the referential integrity
network run under the same commitment definition. If you open the files without commitment control or in
a mixed scenario, undesired results may occur.

You can use triggers to enforce referential constraints and business rules. For example, you could use
triggers to simulate the update cascade constraints on a physical file. However, you would not have the
same functional capabilities as provided by the constraints that the system referential integrity functions
define. You may lose the following referential integrity advantages if you define them with triggers:

v Dependent files may contain rows that violate one or more referential constraints that put the constraint
into check pending but still allow file operations.

v The ability to inform users when the system places a constraint in check pending.

v When an application runs under COMMIT(*NONE) and an error occurs during a cascaded delete, the
database rolls back all changes.

v While saving a file that is associated with a constraint, the database network saves all dependent files
in the same library.

274 DB2 UDB for iSeries Database Programming V5R2

Chapter 23. Database distribution

DB2 Multisystem, a separately priced feature, provides a simple and direct method of distributing a
database file over multiple systems in a loosely-coupled environment.

DB2 Multisystem allows users on distributed iSeries systems real-time query and update access to a
distributed database as if it existed totally on their particular system. DB2 Multisystem places new records
on the appropriate system based on a user-defined key field or fields. DB2 Multisystem chooses a system
on the basis of either a system-supplied or user-defined hashing algorithm.

Query performance is improved by a factor approaching the number of nodes in the environment. For
example, a query against a database distributed over four systems runs in approximately one quarter of
the time. However, performance can vary greatly when queries involve joins and grouping. Performance is
also influenced by the balance of the data across the multiple nodes. Multisystem runs the query on each
system concurrently. DB2 Multisystem can significantly reduce query time on very large databases. For
more information, see DB2 Multisystem.

© Copyright IBM Corp. 1998, 2002 275

../dbmult/rzaf3mst02.htm

276 DB2 UDB for iSeries Database Programming V5R2

Part 5. Appendixes

© Copyright IBM Corp. 1998, 2002 277

278 DB2 UDB for iSeries Database Programming V5R2

Appendix A. Database file sizes

The following database file maximums should be kept in mind when designing files on the iSeries system:

Description Maximum Value

Number of bytes in a record 32,766 bytes
Number of fields in a record format 8,000 fields
Number of key fields in a file 120 fields
Size of key for physical and logical files 2000 characters1

Size of key for ORDER BY (SQL) and KEYFLD
(OPNQRYF)

10,000 bytes

Number of records contained in a file member 4,294,967,294 records2

Number of bytes in a file member 266,757,734,400 bytes3

Number of bytes in an access path 1,099,511,627,776 bytes3 5

Number of keyed logical files built over a physical file
member

3,686 files

Number of physical file members in a logical file member 32 members
Number of members that can be joined 32 members
Size of a character or DBCS field 32,766 bytes4

Size of a zoned decimal or packed decimal field 31 digits
Maximum number of constraints per physical file 300 constraints
Maximum number of triggers per physical file 6 triggers
Maximum number of recursive insert and update trigger
calls

200

:
1 When a first-changed-first-out (FCFO) access path is specified for the file, the maximum value for the size

of the key for physical and logical files is 1995 characters.

2 For files with keyed sequence access paths, the maximum number of records in a member varies and can
be estimated using the following formula:

2,867,200,000
10 + (.8 x key length)

This is an estimated value, the actual maximum number of records can vary significantly from the number
determined by this formula.

3 Both the number of bytes in a file member and the number of bytes in an access path must be looked at
when message CPF5272 is sent indicating that the maximum system object size has been reached.

4 The maximum size of a variable-length character or DBCS field is 32,740 bytes. DBCS-graphic field lengths
are expressed in terms of characters; therefore, the maximums are 16,383 characters (fixed length) and
16,370 characters (variable length).

5 The maximum is 4,294,966,272 bytes if the access path is created with a maximum size of 4 gigabytes
(GB), ACCPTHSIZE(*MAX4GB).

These are maximum values. There are situations where the actual limit you experience will be less than
the stated maximum. For example, certain high-level languages can have more restrictive limits than those
described above.

Keep in mind that performance can suffer as you approach some of these maximums. For example, the
more logical files you have built over a physical file, the greater the chance that system performance can
suffer (if you are frequently changing data in the physical file that causes a change in many logical file
access paths).

© Copyright IBM Corp. 1998, 2002 279

Normally, an iSeries database file can grow until it reaches the maximum size allowed on the system. The
system normally will not allocate all the file space at once. Rather, the system will occasionally allocate
additional space as the file grows larger. This method of automatic storage allocation provides the best
combination of good performance and effective auxiliary storage space management.

If you want to control the size of the file, the storage allocation, and whether the file should be connected
to auxiliary storage, you can use the SIZE, ALLOCATE, and CONTIG parameters on the Create Physical
File (CRTPF) and the Create Source Physical File (CRTSRCPF) commands.

You can use the following formulas to estimate the disk size of your physical and logical files.

v For a physical file (excluding the access path) that does not contain null capable fields:

Disk size = (number of valid and deleted records + 1) x (record length + 1) +
12288 x (number of members) + 4096

The size of the physical file depends on the SIZE and ALLOCATE parameters on the CRTPF and
CRTSRCPF commands. If you specify ALLOCATE(*YES), the initial allocation and increment size on
the SIZE keyword must be used instead of the number of records.

v For a physical file (excluding the access path) that contains null capable fields:

Disk size = (number of valid and deleted records + 1) x (record length + 1) +
12288 x (number of members) + 4096

+ ((number of fields in format) ÷8) rounded up) x (number of valid and deleted records + 1)

The size of the physical file depends on the SIZE and ALLOCATE parameters on the CRTPF and
CRTSRCPF commands. If you specify ALLOCATE(*YES), the initial allocation and increment size on
the SIZE keyword must be used instead of the number of records.

v For a logical file (excluding the access path):

Disk size = (12288) x (number of members) + 4096

v For a keyed sequence access path the generalized equation for index size, per member, is:

let a = (LimbPageUtilization - LogicalPageHeaderSize) *
(LogicalPageHeaderSize - LeafPageUtilization - 2 * NodeSize)

let b = NumKeys * (TerminalTextPerKey + 2 * NodeSize) *
(LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)
+ CommonTextPerKey * [LimbPageUtilization + LeafPageUtilization
- 2 * (LogicalPageHeaderSize - NodeSize)]
- 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize
+ 2 * NodeSize)

let c = CommonTextPerKey * [2 * NodeSize - CommonTextPerKey
- NumKeys * (TerminalTextPerKey + 2 * NodeSize)]

then NumberLogicalPages = ceil([-b - sqrt(b ** 2 - 4 * a * c)]
/ (2 * a))

and TotalIndexSize = NumberLogicalPages * LogicalPageSize

This equation is used for both three and four byte indexes by changing the set of constants in the
equation as follows:

280 DB2 UDB for iSeries Database Programming V5R2

Constant Three-byte Index Four-byte Index

NodeSize 3 4
LogicalPageHeaderSize 16 64
LimbPageUtilization .75 * LogicalPageSize .75 * LogicalPageSize
LeafPageUtilization .75 * LogicalPageSize .80 * LogicalPageSize

The remaining constants, CommonTextPerKey and TerminalTextPerKey, are probably best estimated by
using the following formulas:

CommonTextPerKey = [min(max(NumKeys - 256,0),256)
+ min(max(NumKeys - 256 * 256,0),256 * 256)
+ min(max(NumKeys - 256 * 256 * 256,0),

256 * 256 * 256)
+ min(max(NumKeys - 256 * 256 * 256 * 256,0),

256 * 256 * 256 * 256)]
* (NodeSize + 1) / NumKeys

TerminalTextPerKey = KeySizeInBytes - CommonTextPerKey

This should reduce everything needed to calculate the index size to the type of index (i.e. 3 or 4 byte),
the total key size, and the number of keys. The estimate should be greater than the actual index size
because the common text estimate is minimal.

Given this generalized equation for index size, the LogicalPageSize is as follows:

Table 12. LogicalPageSize Values

Key Length *MAX4GB (3-byte) LogicalPageSize *MAX1TB (4-byte) LogicalPageSize

1 - 500 4096 bytes 8192 bytes
501 - 1000 8192 bytes 16384 bytes
1001 - 2000 16384 bytes 32768 bytes

The LogicalPageSizes in Table 12 generate the following LimbPageUtilizations:

Key Length
*MAX4GB (3-byte)
LimbPageUtilization

*MAX1TB (4-byte)
LimbPageUtilization

1 - 500 3072 bytes 6144 bytes
501 - 1000 6144 bytes 12288 bytes
1001 - 2000 12288 bytes 24576 bytes

The LogicalPageSizes in Table 12 generate the following LeafPageUtilizations:

Key Length
*MAX4GB (3-byte)
LeafPageUtilization

*MAX1TB (4-byte)
LeafPageUtilization

1 - 500 3072 bytes 6554 bytes
501 - 1000 6144 bytes 13107 bytes
1001 - 2000 12288 bytes 26214 bytes

Then to simplify the generalized equation for index size, let:

Appendix A. Database file sizes 281

CommonTextPerKey = 0

which would cause:

TerminalTextPerKey = KeySizeInBytes

b = NumKeys * (KeySizeInBytes + 2 * NodeSize) *
(LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)
- 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize
+ 2 * NodeSize)

c = 0

NumberLogicalPages = ceil([-b - sqrt(b ** 2)]
/ (2 * a))

= ceil[(-2 * b) / (2 * a)]
= ceil[-b/a]

See “Examples: Database file sizes” for an example.

Examples: Database file sizes
A *MAX1TB (4-byte) access path with 120 byte keys and 500,000 records TotalIndexSize would have a
TotalIndexSize in bytes as follows:
a = (LimbPageUtilization - LogicalPageHeaderSize) *

(LogicalPageHeaderSize - LeafPageUtilization - 2 * NodeSize)
= (6144 - 64) *

(64 - 6554 - 2 * 4)
= 6080 * -6498
= -39,507,840

b = NumKeys * (KeySizeInBytes + 2 * NodeSize) *
(LimbPageUtilization - LogicalPageHeaderSize + 2 * NodeSize)
- 2 * NodeSize * (LeafPageUtilization - LogicalPageHeaderSize
+ 2 * NodeSize)

= 500,000 * (120 + 2 * 4) *
(6144 - 64 + 2 * 4)
- 2 * 4 * (6554 - 64 + 2 * 4)

= 500,000 * 128 *
6088
- 8 * 6498

= 3.896319e+11

NumberLogicalPages = ceil[-b/a]
= ceil[-3.896319e+11/-39507840]
= 9863

TotalIndexSize = NumberLogicalPages * LogicalPageSize
= 9863 * 8192
= 80,797,696 bytes

The equation for index size in previous versions of the operating system would produce the following
result:
TotalIndexSize = (number of keys) * (key length + 8) *

(0.8) * (1.85) + 4096
= (NumKeys) * (KeySizeInBytes + 8) *

(0.8) * (1.85) + 4096
= 500000 * 128 *

.8 * 1.85 + 4096
= 94,724,096

282 DB2 UDB for iSeries Database Programming V5R2

This estimate can differ significantly from your file. The keyed sequence access path depends heavily on
the data in your records. The only way to get an accurate size is to load your data and display the file
description.

The following is a list of minimum file sizes:

Description Minimum Size

Physical file without a member 8192 bytes
Physical file with a single member 20480 bytes
Keyed sequence access path 12288 bytes

Note: Additional space is not required for an arrival sequence access path.

In addition to the file sizes, the system maintains internal formats and directories for database files. (These
internal objects are owned by user profile QDBSHR.) The following are estimates of the sizes of those
objects:

v For any file not sharing another file’s format:

Format size = (96 x number of fields) + 4096

v For files sharing their format with any other file:

Format sharing directory size = (16 x number of files
sharing the format) + 3856

v For each physical file and each physical file member having a logical file or logical file member built
over it:

Data sharing directory size = (16 x number of files
or members sharing data) + 3856

v For each file member having a logical file member sharing its access path:

Access path sharing directory size = (16 x number of files
or members sharing access path) + 3856

Appendix A. Database file sizes 283

284 DB2 UDB for iSeries Database Programming V5R2

Appendix B. Double-Byte Character Set (DBCS)
considerations

A double-byte character set (DBCS) is a character set that represents each character with 2 bytes. The
DBCS supports national languages that contain a large number of unique characters or symbols (the
maximum number of characters that can be represented with 1 byte is 256 characters). Examples of such
languages include Japanese, Korean, and Chinese.

This appendix describes DBCS considerations as they apply to the database on the iSeries system. See
the following topics:

v “DBCS field data types”

v “DBCS field mapping considerations” on page 286

v “DBCS field concatenation” on page 286

v “DBCS field substring operations” on page 287

v “Comparing DBCS fields in a logical file” on page 287

v “Using DBCS fields in the Open Query File (OPNQRYF) command” on page 288

DBCS field data types
There are two general kinds of DBCS data: bracketed-DBCS data and graphic (nonbracketed) DBCS data.
Bracketed-DBCS data is preceded by a DBCS shift-out character and followed by a DBCS shift-in
character. Graphic-DBCS data is not surrounded by shift-out and shift-in characters. The application
program might require special processing to handle bracketed-DBCS data that would not be required for
graphic-DBCS data.

The specific DBCS data types (specified in position 35 on the DDS coding form.) are:

Entry Meaning

O DBCS-open: A character string that contains both single-byte and bracketed double-byte data.

E DBCS-either: A character string that contains either all single-byte data or all bracketed
double-byte data.

J DBCS-only: A character string that contains only bracketed double-byte data.

G DBCS-graphic: A character string that contains only nonbracketed double-byte data.

Note: Files containing DBCS data types can be created on a single-byte character set (SBCS) system.
Files containing DBCS data types can be opened and used on a SBCS system, however, coded
character set identifier (CCSID) conversion errors can occur when the system tries to convert from
a DBCS or mixed CCSID to a SBCS CCSID. These errors will not occur if the job CCSID is 65535.

In addition see “DBCS constants”.

DBCS constants
A constant identifies the actual character string to be used. The character string is enclosed in
apostrophes and a string of DBCS characters is surrounded by the DBCS shift-out and shift-in characters
(represented by the characters < and > in the following examples). A DBCS-graphic constant is preceded
by the character G. The types of DBCS constants are:

Type Example

DBCS-Only ’<A1A2A3>’

DBCS-Open ’<A1A2A3>BCD’

© Copyright IBM Corp. 1998, 2002 285

DBCS-Graphic
G’<A1A2A3>’

DBCS field mapping considerations
The following chart shows what types of data mapping are valid between physical and logical files for
DBCS fields:

Physical File
Data Type

Logical File Data Type

Character Hexadecimal DBCS- Open
DBCS-
Either DBCS- Only

DBCS-
Graphic

UCS2-
Graphic

Character Valid Valid Valid Valid Not valid Not valid Not valid
Hexadecimal Valid Valid Valid Valid Valid Not valid Not valid
DBCS-open Not valid Valid Valid Not valid Not valid Not valid Not valid
DBCS-either Not valid Valid Valid Valid Not valid Not valid Valid
DBCS-only Not valid Valid Valid Valid Valid Valid Valid
DBCS-graphic Not valid Not valid Valid Valid Valid Valid Not valid
UCS2-graphic Not valid Not valid Not valid Valid Valid Not valid Valid

DBCS field concatenation
When fields are concatenated, the data types can change (the resulting data type is automatically
determined by the system).

v OS/400 assigns the data type based on the data types of the fields that are being concatenated. When
DBCS fields are included in a concatenation, the general rules are:

– If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is
hexadecimal (H).

– If all fields in the concatenation are DBCS-only (J), the resulting data type is DBCS-only (J).

– If the concatenation contains one or more DBCS (O, E, J) fields, but no hexadecimal (H) fields, the
resulting data type is DBCS open (O).

– If the concatenation contains two or more DBCS open (O) fields, the resulting data type is a
variable-length DBCS open (O) field.

– If the concatenation contains one or more variable-length fields of any data type, the resulting data
type is variable length.

– A DBCS-graphic (G) field can be concatenated only to another DBCS-graphic field. The resulting
data type is DBCS-graphic (G).

– A UCS2-graphic (G) field can be concatenated only to another UCS2-graphic field. The resulting data
type is UCS2-graphic (G).

v The maximum length of a concatenated field varies depending on the data type of the concatenated
field and length of the fields being concatenated. If the concatenated field is zoned decimal (S), its total
length cannot exceed 31 bytes. If the concatenated field is character (A), DBCS-open (O), or
DBCS-only (J), its total length cannot exceed 32,766 bytes (32,740 bytes if the field is variable length).

The length of DBCS-graphic (G) fields is expressed as the number of double-byte characters (the actual
length is twice the number of characters); therefore, the total length of the concatenated field cannot
exceed 16,383 characters (16,370 characters if the field is variable length).

v In join logical files, the fields to be concatenated must be from the same physical file. The first field
specified on the CONCAT keyword identifies which physical file is used. The first field must, therefore,
be unique among the physical files on which the logical file is based, or you must also specify the JREF
keyword to specify which physical file to use.

v The use of a concatenated field must be I (input only).

v REFSHIFT cannot be specified on a concatenated field that has been assigned a data type of O or J.

286 DB2 UDB for iSeries Database Programming V5R2

Notes:

1. When bracketed-DBCS fields are concatenated, a shift-in at the end of one field and a shift-out at the
beginning of the next field are removed. If the concatenation contains one or more hexadecimal fields,
the shift-in and shift-out pairs are only eliminated for DBCS fields that precede the first hexadecimal
field.

2. A concatenated field that contains DBCS fields must be an input-only field.

3. Resulting data types for concatenated DBCS fields may differ when using The Open Query File
(OPNQRYF) command. See “Using concatenation with DBCS fields through OPNQRYF” on page 289
for general rules when DBCS fields are included in a concatenation.

DBCS field substring operations
A substring operation allows you to use part of a field or constant in a logical file. For bracketed-DBCS
data types, the starting position and the length of the substring refer to the number of bytes; therefore,
each double-byte character counts as two positions. For the DBCS-graphic (G) data type, the starting
position and the length of the substring refer to the number of characters; therefore, each double-byte
character counts as one position.

Comparing DBCS fields in a logical file
When comparing two fields or a field and constants, fixed-length fields can be compared to variable-length
fields as long as the types are compatible. Table 13 describes valid comparisons for DBCS fields in a
logical file.

Table 13. Valid Comparisons for DBCS Fields in a Logical File

Any
Numeric

Char-
acter

Hexa-
decimal

DBCS-
Open

DBCS-
Either

DBCS-
Only

DBCS-
Graphic

UCS2-
/UCS-2
Graphic Date Time

Time
Stamp

Any
Numeric

Valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not valid

Character Not valid Valid Valid Valid Valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not valid

Hexa-
decimal

Not valid Valid Valid Valid Valid Valid Not
valid

Not
valid

Not
valid

Not
valid

Not valid

DBCS-
Open

Not valid Valid Valid Valid Valid Valid Not
valid

Not
valid

Not
valid

Not
valid

Not valid

DBCS-
Either

Not valid Valid Valid Valid Valid Valid Not
valid

Not
valid

Not
valid

Not
valid

Not valid

DBCS-
Only

Not valid Not
valid

Valid Valid Valid Valid Not
valid

Not
valid

Not
valid

Not
valid

Not valid

DBCS-
Graphic

Not valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Valid Not
valid

Not
valid

Not
valid

Not valid

UCS2-
Graphic

Not valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Valid Not
valid

Not
valid

Not valid

Date Not valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Valid Not
valid

Not valid

Time Not valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Valid Not valid

Time
Stamp

Not valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Valid

Appendix B. Double-Byte Character Set (DBCS) considerations 287

Using DBCS fields in the Open Query File (OPNQRYF) command
This section describes considerations when using DBCS fields in the Open Query File (OPNQRYF)
command. See the following topics:

v “Using the wildcard function with DBCS fields”

v “Comparing DBCS fields through OPNQRYF”

v “Using concatenation with DBCS fields through OPNQRYF” on page 289

v “Using sort sequence with DBCS” on page 289

Using the wildcard function with DBCS fields
Use of the wildcard (%WLDCRD) function with a DBCS field differs depending on whether the function is
used with a bracketed-DBCS field or a DBCS-graphic field.

When using the wildcard function with a bracketed-DBCS field, both single-byte and double-byte wildcard
values (asterisk and underline) are allowed. The following special rules apply:

v A single-byte underline refers to one EBCDIC character; a double-byte underline refers to one
double-byte character.

v A single- or double-byte asterisk refers to any number of characters of any type.

When using the wildcard function with a DBCS-graphic field, only double-byte wildcard values (asterisk
and underline) are allowed. The following special rules apply:

v A double-byte underline refers to one double-byte character.

v A double-byte asterisk refers to any number of double-byte characters.

Comparing DBCS fields through OPNQRYF
When comparing two fields or constants, fixed length fields can be compared to variable length fields as
long as the types are compatible. Table 14 describes valid comparisons for DBCS fields through the
OPNQRYF command.

Table 14. Valid Comparisons for DBCS Fields through the OPNQRYF Command

Any
Numeric

Char-
acter

Hexa-
decimal

DBCS-
Open

DBCS-
Either

DBCS-
Only

DBCS-
Graphic

UCS2-
Graphic Date Time

Time
Stamp

Any
Numeric

Valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Character Not valid Valid Valid Valid Valid Not
valid

Not
valid

Valid Valid Valid Valid

Hexa-
decimal

Not valid Valid Valid Valid Valid Valid Not
valid

Not
valid

Valid Valid Valid

DBCS-
Open

Not valid Valid Valid Valid Valid Valid Not
valid

Valid Valid Valid Valid

DBCS-
Either

Not valid Valid Valid Valid Valid Valid Not
valid

Valid Valid Valid Valid

DBCS-
Only

Not valid Not
valid

Valid Valid Valid Valid Not
valid

Valid Not
valid

Not
valid

Not
valid

DBCS-
Graphic

Not valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Valid Valid Not
valid

Not
valid

Not
valid

UCS2-
Graphic

Not valid Valid Not
valid

Valid Valid Valid Valid Valid Not
valid

Not
valid

Not
valid

Date Not valid Valid Valid Valid Valid Not
valid

Not
valid

Not
valid

Valid Not
valid

Not
valid

Time Not valid Valid Valid Valid Valid Not
valid

Not
valid

Not
valid

Not
valid

Valid Not
valid

288 DB2 UDB for iSeries Database Programming V5R2

Table 14. Valid Comparisons for DBCS Fields through the OPNQRYF Command (continued)

Any
Numeric

Char-
acter

Hexa-
decimal

DBCS-
Open

DBCS-
Either

DBCS-
Only

DBCS-
Graphic

UCS2-
Graphic Date Time

Time
Stamp

Time
Stamp

Not valid Valid Valid Valid Valid Not
valid

Not
valid

Not
valid

Not
valid

Not
valid

Valid

Using concatenation with DBCS fields through OPNQRYF
When using the Open Query File (OPNQRYF) concatenation function, the OS/400 program assigns the
resulting data type based on the data types of the fields being concatenated. When DBCS fields are
included in a concatenation, the resulting data type is generally the same as concatenated fields in a
logical file, with some slight variations. The following rules apply:

v If the concatenation contains one or more hexadecimal (H) fields, the resulting data type is hexadecimal
(H).

v If the concatenation contains one or more UCS2-graphic fields, the resulting data type is UCS2-graphic.

v If all fields in the concatenation are DBCS-only (J), the resulting data type is variable length DBCS-only
(J).

v If the concatenation contains one or more DBCS (O, E, J) fields, but no hexadecimal (H) or
UCS2-graphic fields, the resulting data type is variable length DBCS open (O).

v If the concatenation contains one or more variable length fields of any data type, the resulting data type
is variable length.

v If a DBCS-graphic (G) field is concatenated to another DBCS-graphic (G) field, the resulting data type is
DBCS-graphic (G).

Using sort sequence with DBCS
When a sort sequence is specified, no translation of the DBCS data is done. Only SBCS data in
DBCS-either or DBCS-open fields is translated. UCS2 data is translated.

Appendix B. Double-Byte Character Set (DBCS) considerations 289

290 DB2 UDB for iSeries Database Programming V5R2

Appendix C. Database lock considerations

Table 15 summarizes some of the most commonly used database functions and the types of locks they
place on database files. The types of locks are explained on the next page.

Table 15. Database Functions and Locks

Function Command File Lock Member/Data Lock Access Path Lock

Add Member ADDPFM, ADDLFM *EXCLRD *EXCLRD
Change File Attributes CHGPF, CHGLF *EXCL *EXCLRD *EXCLRD
Change Member
Attributes

CHGPFM, CHGLFM *SHRRD *EXCLRD

Change Object Owner CHGOBJOWN *EXCL
Check Object CHKOBJ *SHRNUPD
Clear Physical File
Member

CLRPFM *SHRRD *EXCLRD3

Create Duplicate
Object

CRTDUPOBJ *EXCL (new object)
*SHRNUPD (object)

Create File CRTPF, CRTLF,
CRTSRCPF

*EXCL

Delete File DLTF *EXCL *EXCLRD
Grant/Revoke
Authority

GRTOBJAUT,
RVKOBJAUT

*EXCL

Initialize Physical File
Member

INZPFM *SHRRD *EXCLRD

Move Object MOVOBJ *EXCL
Open File OPNDBF, OPNQRYF *SHRRD *SHRRD *EXCLRD
Rebuild Access Path EDTRBDAP, OPNDBF *SHRRD *SHRRD *EXCLRD
Remove Member RMVM *EXCLRD *EXCL *EXCLRD
Rename File RNMOBJ *EXCL *EXCL *EXCL
Rename Member RNMM *EXCLRD *EXCL *EXCL
Reorganize Physical
File Member

RGZPFM *SHRRD *EXCL

Restore File RSTLIB, RSTOBJ *EXCL
Save File SAVLIB, SAVOBJ,

SAVCHGOBJ
*SHRNUPD1 *SHRNUPD2

:
1 For save-while-active, the file lock is *SHRUPD initially, and then the lock is reduced to *SHRRD. See the

Backup and Recovery for a description of save-while-active locks for the save commands.

2 For save-while-active, the member/data lock is *SHRRD.

3 The clear does not happen if the member is open in this process or any other process.

The following table shows the valid lock combinations:

Lock *EXCL *EXCLRD *SHRUPD *SHRNUPD *SHRRD

*EXCL1

*EXCLRD2 X
*SHRUPD3 X X
*SHRNUPD4 X X
*SHRRD5 X X X X

© Copyright IBM Corp. 1998, 2002 291

../../books/c4153045.pdf

Lock *EXCL *EXCLRD *SHRUPD *SHRNUPD *SHRRD

:
1 Exclusive lock (*EXCL). The object is allocated for the exclusive use of the requesting job; no other job can

use the object.

2 Exclusive lock, allow read (*EXCLRD). The object is allocated to the job that requested it, but other jobs can
read the object.

3 Shared lock, allow read and update (*SHRUPD). The object can be shared either for read or change with
other jobs.

4 Shared lock, read only (*SHRNUPD). The object can be shared for read with other jobs.

5 Shared lock (*SHRRD). The object can be shared with another job if the job does not request exclusive use
of the object.

Table 16 shows database locking for constraints of a database file, depending on whether the constraint is
associated with the parent file (PAR) or the dependent file (DEP).

Table 16. Database Constraint Locks. The numbers in parentheses refer to notes at the end of the table.

TYPE OF FUNCTION FILE TYPE FILE (5) MEMBER (5) OTHER FILE
OTHER
MEMBER

ADDPFM (1) DEP *EXCL *EXCL *EXCL *EXCL
ADDPFM (1) PAR *EXCL *EXCL *EXCL *EXCL
ADDPFCST (7) *REFCST *EXCL *EXCL *EXCL *EXCL
ADDPFCST (6) *UNQCST *PRIKEY *EXCL *EXCL *EXCL *EXCL
ADDPFCST *UNIQUE *PRIKEY *EXCL *EXCL
RMVM (2) DEP *EXCL *EXCL *EXCL *EXCL
RMVM (2) PAR *EXCL *EXCL *EXCL *EXCL
DLTF (3) DEP *EXCL *EXCL *EXCL *EXCL
DLTF (3) PAR *EXCL *EXCL *EXCL *EXCL
RMVPFCST (7) *REFCST *EXCL *EXCL *EXCL (4) *EXCL
RMVPFCST (6) *UNQCST *PRIKEY *EXCL *EXCL *EXCL *EXCL
RMVPFCST *UNIQUE *PRIKEY *EXCL *EXCL
CHGPFCST *EXCL *EXCL *SHRRD *EXCL
Note:

1. If the add of a physical file member will cause a referential constraint to be established.

2. If the remove of a physical file member will cause an established referential constraint to become defined.

3. When deleting a dependent or parent file that has constraints established or defined for the file.

4. When the remove physical file constraint command (RMVPFCST) is invoked for the parent file which has
constraints established or defined, the parent and any logical files over the parent file are all locked *EXCL.

5. For referential constraints, the column refers to the dependent file or the dependent member.

6. Unique constraint or primary key constraint is a parent key in a referential constraint where the other file is the
dependent file.

7. Other file is the parent file.

292 DB2 UDB for iSeries Database Programming V5R2

Bibliography

The following iSeries books and Information
Center topics contain information you may need.
Some books are listed with their full title and base
order number. When these books are referred to
in this guide, the short title listed is used.

v Application Programming Interfaces (APIs)
topic. This Information Center topic provides the
application programmer with information needed
to develop system-level and other OS/400
applications using the application programming
interfaces.

v Commitment Control topic. This Information
Center topic contains information about using
commitment control to ensure that database
changes are synchronized.

v Backup and Recovery topic. This Information
Center topic contains information about how to
plan a backup and recovery strategy, how to set
up disk protection for your data, how to back up
your system, and how to control your system
shutdown in the event of a failure.

v Backup and Recovery Guide . This guide
provides general information about recovery
and availability options for the iSeries server.

v Control Language (CL) topic. This Information
Center topic provides the application
programmer and system programmer with
detailed information about iSeries control
language (CL) and OS/400 and licensed
program commands.

v CL Programming . This guide provides the
application programmer and programmer with a
wide-ranging discussion of iSeries programming
topics, including a general discussion of objects
and libraries, CL programming, controlling flow
and communicating between programs, working
with objects in CL programs, and creating CL
programs.

v DDS Reference topic. The DDS Reference is a
five volume reference in the Information Center
that provides the application programmer with
detailed descriptions of the entries and
keywords needed to describe database files
(both logical and physical) and certain device
files (for displays, printers, and intersystem
communications function (ICF)) external to the
user’s programs.

v Distributed Data Management topic. This
Information Center book provides the

application programmer with information about
remote file processing. It describes how to
define a remote file to OS/400 distributed data
management (DDM), how to create a DDM file,
what file utilities are supported through DDM,
and the requirements of OS/400 DDM as
related to other systems.

v File Management topic. This Information Center
book provides the application programmer with
information about using files in application
programs. Included are topics on the Copy File
(CPYF) command and the override commands.

v iSeries Globalization topic. This Information
Center topic provides the data processing
manager, system operator and manager,
application programmer, end user, and system
engineer with information about understanding
and using the national language support
function on the iSeries system. It prepares the
user for planning, installing, configuring, and
using the iSeries globalization and multilingual
system. It also provides an explanation of
database management of multilingual data and
application considerations for a multilingual
system.

v IDDU Use . This guide provides the
administrative secretary, business professional,
or programmer with information about using
interactive data definition utility (IDDU) to
describe data dictionaries, files, and records to
the system.

v Managing Disk Units in Disk Pools topic. This
Information Center topic helps you manage and
protect disk units and disk pools for
continuously available information.

v Journal Management. This Information Center
topic provides information about how to set up,
manage, and troubleshoot system-managed
access-path protection (SMAPP), local journals,
and remote journals.

v Performance. This Information Center topic
includes a description of tuning the system,
collecting performance data including
information on record formats and contents of
the data being collected, working with system
values to control or change the overall
operation of the system, and a description of
how to gather data to determine who is using
the system and what resources are being used.

© Copyright IBM Corp. 1998, 2002 293

../apis/api.htm
../rzakj/rzakjcommitkickoff.htm
../rzahgicbackup.htm
../../books/c4153045.pdf
../rbam6/rbam6clmain.htm
../../books/c4157215.pdf
../dds/rbafpmstddsover.htm
../ddm/rbae5mst02.htm
../dm/rbal3mst02.htm
../nls/rbagsglobalmain.htm
../../books/c4157040.pdf
../rzalb/rzalbtoc.htm
../rzaki/rzakikickoff.htm
../rzahx/rzahx1.htm

v Query for iSeries Use. This Information Center
book provides the administrative secretary,
business professional, or programmer with
information about using Query for iSeries to get
data from any database file. It describes how to
sign on to Query, and how to define and run
queries to create reports containing the
selected data.

v Security. This Information Center topic explains
why security is necessary, defines major
concepts, and provides information on planning,
implementing, and monitoring basic security on
the iSeries system.

v Security Reference . This manual tells how
system security support can be used to protect
the system and the data from being used by
people who do not have the proper
authorization, protect the data from intentional
or unintentional damage or destruction, keep
security information up-to-date, and set up
security on the system.

v DB2 UDB for iSeries SQL Programming
Concepts. This Information Center book
provides the application programmer,
programmer, or database administrator with an
overview of how to design, write, run, and test
SQL statements. It also describes interactive
Structured Query Language (SQL).

v DB2 UDB for iSeries SQL Reference. This
Information Center book provides the
application programmer, programmer, or
database administrator with detailed information
about Structured Query Language statements
and their parameters.

v System Values. This Information Center topic
includes a list and descriptions of system
values.

v Work Management. This Information Center
topic provides the programmer with information
about how to create and change a work
management environment.

294 DB2 UDB for iSeries Database Programming V5R2

../q400/rbaf9mst02.htm
../rzahgicinet2.htm
../../books/c4153026.pdf
../sqlp/rbafymst02.htm
../sqlp/rbafymst02.htm
../db2/rbafzmst02.htm
../rzakz/rzakz1.htm
../rzaks/rzaks1.htm

Index

Special Characters
*CT (contains) function and zero length literal 128
*NONE DDS function 42, 44

A
Absolute Value (ABSVAL) keyword 84, 91
ABSVAL (Absolute Value) keyword 84, 91
access path

arrival sequence
describing 83
reading database records 172

attribute 37
creating 83
describing

overview 7
describing logical files 51, 83
describing physical files 83
implicit 56
keeping current 29
keyed sequence

definition 84
ignoring 103
reading database records 173

maximum size 279
recovering

if the system fails 31
select/omit 55
sharing 55, 56, 174
specifying

delayed maintenance 29
immediate maintenance 29
rebuild maintenance 29

using
existing specifications 91
floating point fields 91

writing to auxiliary storage 29
Access Path (ACCPTH) parameter 103, 122
ACCPTH (Access Path) parameter 103, 122
add authority 94
Add Logical File Member (ADDLFM) command

DTAMBRS parameter 44, 89
selecting data members 44
using 191

Add Physical File Member (ADDPFM) command 191
adding

logical file member 44, 89
physical file member 191

Adding
Trigger to a File 270

ADDLFM (Add Logical File Member) command
DTAMBRS parameter 44, 89
using 191

ADDPFM (Add Physical File Member) command 191
ALIAS (Alternative Name) keyword 21
ALLOCATE (Allocate) parameter 36

allocating
storage, method 36

Allow Delete (ALWDLT) parameter 38, 97
Allow Null (ALWNULL) keyword 22
Allow Update (ALWUPD) parameter 38, 97
alternative collating sequence

arranging key fields 84
arranging key fields with SRTSEQ 85

Alternative Name (ALIAS) keyword 21
ALWDLT (Allow Delete) parameter 38, 97
ALWNULL (Allow Null) keyword 22
ALWUPD (Allow Update) parameter 38, 97
arithmetic operations using OPNQRYF command

date 159
time 160
timestamp 161

arrival sequence access path
describing 83
reading database records 172

ascending sequence
arranging key fields 86

attribute
database file and member 26
source file 15
specifying

physical file and member 35
attributes

database file and member 26
AUT (Authority) parameter 32, 95
authority

add 94
data 94
deleting 94
executing 94
file and data 93
granting 94
object 93
public

definition 95
specifying 32

read 94
specifying 93
update 94

Authority (AUT) parameter 32, 95
auxiliary storage

writing access paths to
frequency 29
method 105

writing data to
frequency 29
method 105

B
bibliography 293
blocked input/output

improving performance with 113
both fields 48

© Copyright IBM Corp. 1998, 2002 295

bracketed-DBCS data 285

C
capability

database file 97
physical file 38

CCSID (Coded Character Set Identifier) parameter 32
Change Logical File Member (CHGLFM)

command 191
Change Physical File Member (CHGPFM)

command 191
changing

logical file member 191
physical file member 191
trigger 272

check constraint 236
Check Expiration Date (EXPCHK) parameter 106
Check Record Locks (CHKRCDLCK) command 106
CHGLFM (Change Logical File Member)

command 191
CHGPFM (Change Physical File Member)

command 191
CHKRCDLCK (Check Record Locks) command 106
Clear Physical File Member (CLRPFM) command 193
clearing

data from physical file members 193
CLOF (Close File) command 183
Close File (CLOF) command 183
closing

file 183
CLRPFM (Clear Physical File Member) command 193
CMP (Comparison) keyword 52, 56
coded character set identifier (CCSID) 32
COLHDG (Column Heading) keyword 21
collection

See database
Column Heading (COLHDG) keyword 21
command

database processing options on 116
using output files, example 201
writing output directly to a database file 201

command, CL
Add Logical File Member (ADDLFM)

DTAMBRS parameter 44, 89
using 191

Add Physical File Member (ADDPFM) 191
ADDLFM (Add Logical File Member)

DTAMBRS parameter 44, 89
using 191

ADDPFM (Add Physical File Member) 191
Change Logical File Member (CHGLFM) 191
Change Physical File Member (CHGPFM) 191
Check Record Locks (CHKRCDLCK) 106
CHGLFM (Change Logical File Member) 191
CHGPFM (Change Physical File Member) 191
CHKRCDLCK (Check Record Locks) 106
Clear Physical File Member (CLRPFM) 193
CLOF (Close File) 183
Close File (CLOF) 183
CLRPFM (Clear Physical File Member) 193

command, CL (continued)
Copy File (CPYF) 189

adding members 191
copying to and from files 224
processing keyed sequence files 83
writing data to and from source file

members 224
Copy From Import File (CPYFRMIMPF) 225
Copy from Query File (CPYFRMQRYF) 167
Copy Source File (CPYSRCF) 224
Copy To Import File (CPYTOIMPF) 225
CPYF (Copy File) 189

adding members 191
copying to and from files 224
processing keyed sequence files 83
writing data to and from source file

members 224
CPYFRMIMPF (Copy From Import File) 225
CPYFRMQRYF (Copy from Query File) 167
CPYSRCF (Copy Source File) 224
CPYTOIMPF (Copy To Import File) 225
Create Class (CRTCLS) 175
Create Logical File (CRTLF)

creating source files 13
DTAMBRS parameter 44, 89
example 39

Create Physical File (CRTPF)
creating source files 13
RCDLEN parameter 17
using, example 35

Create Source Physical File (CRTSRCPF)
creating physical files 35
creating source files 13
describing data to the system 17

CRTCLS (Create Class) 175
CRTLF (Create Logical File)

creating source files 13
DTAMBRS parameter 44, 89
example 39

CRTPF (Create Physical File)
creating source files 13
RCDLEN parameter 17
using, example 35

CRTSRCPF (Create Source Physical File)
creating physical files 35
creating source files 13
describing data to the system 17
RCDLEN parameter 17
using, example 35

Display Database Relations (DSPDBR) 25, 198
Display File Description (DSPFD) 202, 227
Display File Field Description (DSPFFD) 48, 198
Display Journal (DSPJRN) 202
Display Message Descriptions (DSPMSGD) 185
Display Object Description (DSPOBJD) 227
Display Physical File Member (DSPPFM) 83, 195
Display Problem (DSPPRB) 202
Display Program References (DSPPGMREF) 199
Display Record Locks (DSPRCDLCK) 106
DSPDBR (Display Database Relations) 25, 198
DSPFD (Display File Description) 202, 227

296 DB2 UDB for iSeries Database Programming V5R2

command, CL (continued)
DSPFFD (Display File Field Description) 48, 198
DSPJRN (Display Journal) 202
DSPMSGD (Display Message Descriptions) 185
DSPOBJD (Display Object Description) 227
DSPPFM (Display Physical File Member) 83, 195
DSPPGMREF (Display Program References) 199
DSPPRB (Display Problem) 202
DSPRCDLCK (Display Record Locks) 106
Edit Object Authority (EDTOBJAUT) 95
EDTOBJAUT (Edit Object Authority) 95
Grant Object Authority (GRTOBJAUT) 95
GRTOBJAUT (Grant Object Authority) 95
Initialize Physical File Member (INZPFM) 182, 192
INZPFM (Initialize Physical File Member) 182, 192
Move Object (MOVOBJ) 189
MOVOBJ (Move Object) 189
Open Database File (OPNDBF) 121
Open Query File (OPNQRYF) 124
OPNDBF (Open Database File) 121
OPNQRYF (Open Query File) 121, 122, 124
Override with Database File (OVRDBF) 29, 101
OVRDBF (Override with Database File) 29, 101
PRTTRGPGM (Print Trigger Programs)

suggested use 269
RCLRSC (Reclaim Resources) 183
Reclaim Resources (RCLRSC) 183
Remove Member (RMVM) 192
Rename Member (RNMM) 192
Reorganize Physical File Member (RGZPFM) 181,

193
Retrieve Member Description (RTVMBRD) 197
Revoke Object Authority (RVKOBJAUT) 95
RGZPFM (Reorganize Physical File Member) 181,

193
RMVM (Remove Member) 192
RNMM (Rename Member) 192
RTVMBRD (Retrieve Member Description) 197
RVKOBJAUT (Revoke Object Authority) 95
Start Journal Physical File (STRJRNPF) 105
Start Query (STRQRY) 195
Start SQL (STRSQL) 195
STRJRNPF (Start Journal Physical File) 105
STRQRY (Start Query) 195
STRSQL (Start SQL) 195

COMMIT parameter 105, 122
commitment control 105

journaling 213
referential constraints 213

comparing DBCS fields 287, 289
Comparison (CMP) keyword 52, 56
CONCAT (Concatenate) keyword 45, 48
concatenate (CONCAT) keyword 48
Concatenate (CONCAT) keyword 45
concatenated field 49
concatenating, DBCS 286
concatenation function with DBCS field 289
constant, DBCS 285
constraint

check 236
contains (*CT) function and zero length literal 128

CONTIG (Contiguous Storage) parameter 36
Contiguous Storage (CONTIG) parameter 36
conventions, naming 7
copy

file 189
table 189

Copy File (CPYF) command
adding members 191
copying to and from files 224
processing keyed sequence files 83
writing data to and from source file members 224

Copy From Import File (CPYFRMIMPF) command 225
Copy Source File (CPYSRCF) command 224
Copy To Import File (CPYTOIMPF) command 225
copying

file
adding members 191
copying to and from files 224
processing keyed sequence files 83
writing data to and from source file

members 224
query file 167
source file 224

correcting errors 185
CPYF (Copy File) command

adding members 191
copying to and from files 224
processing keyed sequence files 83
writing data to and from source file members 224

CPYFRMIMPF (Copy From Import File) command 225
CPYSRCF (Copy Source File) command 224
CPYTOIMPF (Copy To Import File) command 225
create

query 124
Create Class (CRTCLS) command 175
Create Logical File (CRTLF) command

creating source files 13
DTAMBRS parameter 39, 89
example 39

Create Physical File (CRTPF) command
creating source files 13
RCDLEN parameter 17
using, example 35

Create Source Physical File (CRTSRCPF) command
creating physical files 35
creating source files 13
describing data to the system 17
RCDLEN parameter 17
using, example 35

creating
class 175
database file

methods 11
library 11
logical file

creating source files 13
DTAMBRS parameter 44, 89
example 39

physical file
creating source files 13
DTAMBRS parameter 44, 89

Index 297

creating (continued)
physical file (continued)

example 39
source physical file

creating physical files 35
creating source files 13
describing data to the system 17

trigger programs 250
CRTCLS (Create Class) command 175
CRTLF (Create Logical File) command

creating source files 13
DTAMBRS parameter 44, 89
example 39

CRTPF (Create Physical File) command
creating source files 13
RCDLEN parameter 17
using, example 35

D
data

authority 93, 94
clearing from physical file members 193
copying source file 224
describing 17
dictionary-described 6
frequency of writing to auxiliary storage 29
importing from non-iSeries system 225
initializing in a physical file member 192
integrity considerations 79, 105
loading from non-iSeries source file 225
recovery considerations 105
reorganizing

physical file member 193
source file members 228

storing 28
using

default for missing records from secondary
files 76

dictionary for field reference 24
example 76
logical files to secure 97

data description specifications (DDS)
describing

database file 18
logical file, example 21
physical file, example 18

using, reasons 17
data dictionary 6
Data Members (DTAMBRS) parameter

reading order
logical file members 44
physical file members 27

database
file attributes 26
member attributes 26
processing options specified on CL commands 116
recovering and restoring 207
restoring 207
security 93
using attribute and cross-reference information 197

database data
protecting and monitoring 8

database distribution 275
database file

adding members 191
attributes 26
authority types 93
basic operations 171
capabilities 97
changing

attributes 203
descriptions 203

closing
methods 183
sequential-only processing 116

common member operations 191
creating

methods 11
using FORMAT parameter 153

describing 17
methods 5, 17
using DDS 18

displaying
attributes 198
descriptions of fields in 198
information 197
relationships between 198
those used by programs 199

estimating size 279
grouping data from records 149
handling errors in a program 185
joining without DDS 141
locking

considerations 291
wait time 107

minimum size 283
naming 102
opening

commands to use 121
members 121
sequential-only processing 114
shared in a job 108
shared in an activation group 108

override 29, 102
processing options 102
protecting

commitment control 105
journaling 105

recovering data 207
setting a position 171
sharing across jobs 106
sharing in a job

close 110
input/output considerations 109
open 108
open data path considerations 165
SHARE parameter 31, 108

sharing in an activation group
close 110
input/output considerations 109
open 108

298 DB2 UDB for iSeries Database Programming V5R2

database file (continued)
sharing in an activation group (continued)

SHARE parameter 108
sizes

maximum 279
minimum 283

specifying
system where created 32
wait time for locked 32

types 28
with different record formats 126
writing the output from a command to 201

database member
adding to files 191
attributes 26
managing 191
naming 102
number allowed 28
removing 192

database record
adding 178
deleting 181
file attributes 26
reading methods

arrival sequence access path 172
keyed sequence access path 173

updating 178
DataLinks

See DB2 UDB for iSeries SQL Programming 17
date

arithmetic using OPNQRYF command 159
comparison using OPNQRYF command 157
duration 158

DB2 Multisystem 275
DBCS (double-byte character set)

considerations 285
constant 285
field

comparing 287, 289
concatenating 286
concatenation function 289
data types 285
mapping 286
substring 287
using the concatenation function 289
wildcard function 288

DDM (distributed data management) 154
DDS (data description specifications)

describing
database file 18
logical file, example 21
physical file, example 18

using, reasons 17
Default (DFT) keyword 22, 48
defining

fields 146
delaying

end-of-file processing 104
Deleted Percentage (DLTPCT) parameter 37
deleted record

reusing 103

deleting
authority 94
database record 37, 181

deriving new fields from existing fields 48
DESCEND (Descend) keyword 87
descending sequence

arranging key fields 86
describing

access paths
for database files 83
for logical files 51
overview 7

data to the system 17
database file 17

with DDS 18
logical file

field use 47
floating-point fields in 50
record format 45
with DDS, example 21

physical files with DDS
example 18

record format 6
description

checking for changes to the record format 29
sharing existing record format 25
using existing field 22

designing
additional named fields 45

determining
data sharing requirements 106
duplicate key values 104
existing record formats 22
field-level security requirements 93
if multiple record types are needed in files 47
security requirements 93
when a source statement was changed 228
which source file member was used to create an

object 227
device source file

using 223
DFT (Default) keyword 22, 48
dictionary-described data

definition 6
disabling

trigger 272
Display Database Relations (DSPDBR) command 25,

198
Display File Description (DSPFD) command

output file 202
relating source and objects 227

Display File Field Description (DSPFFD) command 48,
198

Display Journal (DSPJRN) command
output files 202

Display Message Descriptions (DSPMSGD)
command 185

Display Object Description (DSPOBJD) command 227
Display Physical File Member (DSPPFM)

command 83, 195
Display Problem (DSPPRB) command 202

Index 299

Display Program References (DSPPGMREF)
command 199

Display Record Locks (DSPRCDLCK) command 106
displaying

attributes of files 198
database relations 25, 198
descriptions of fields in a file 198
errors 185
file description 202, 227
file field description 48, 198
files used by programs 199
information about database files 197
journal 202
message description 185
object description 227
physical file member 83, 195
physical file member records 195
problem 202
program reference 199
record lock 106
relationships between files on the system 198
system cross-reference files 200
triggers 271

distributed data management (DDM) 154
distribution, database 275
divide by zero

handling 148
DLTPCT (Deleted Percentage) parameter 37
documentation

using source files for 229
double-byte character set (DBCS)

considerations 285
constant 285
field

comparing 287, 289
concatenating 286
concatenation function 289
data types 285
mapping 286
substring 287
using the concatenation function 289
using the wildcard function 288

DSPDBR (Display Database Relations) command 25,
198

DSPFD (Display File Description) command
output file 202
relating source and objects 227

DSPFFD (Display File Field Description) command 48,
198

DSPJRN (Display Journal) command
output files 202

DSPMSGD (Display Message Descriptions)
command 185

DSPOBJD (Display Object Description) command 227
DSPPFM (Display Physical File Member)

command 83, 195
DSPPGMREF (Display Program References)

command 199
DSPPRB (Display Problem) command 202
DSPRCDLCK (Display Record Locks) command 106

DTAMBRS (Data Members) parameter
reading order

logical file members 44
physical file members 27

specifying order for files or members 89
DUPKEYCHK (Duplicate Key Check) parameter 104,

122
Duplicate Key Check (DUPKEYCHK) parameter 104,

122
duplicate key field

arranging 89
preventing 88

duplicate key value 104
duplicate records in a secondary file

reading 68
duration (Date, time, and timestamp) 158
dynamic access path function 139
Dynamic Select (DYNSLT) keyword 55
dynamic select/omit 55
DYNSLT (Dynamic Select) keyword 55

E
Edit Code (EDTCDE) keyword 21
Edit Object Authority (EDTOBJAUT) command 95
Edit Word (EDTWRD) keyword 21
EDTCDE (Edit Code) keyword 21
EDTOBJAUT (Edit Object Authority) command 95
EDTWRD (Edit Word) keyword 21
enabling

trigger 272
end-of-file

delaying processing 104
waiting for more records 175

ensuring data integrity 79
referential constraints 237

EOF Retry Delay (EOFDLY) parameter 104
EOFDLY (EOF Retry Delay) parameter 104
error

correcting 185
database file

handling in programs 185
displaying 185

estimating
file size 279

example
changing

attributes of physical files 205, 206
descriptions of physical files 205, 206

complex join logical file 77
defining

fields derived from existing field definitions 146
describing

fields that never appear in record format 70
logical files using DDS 21
physical files with DDS 18

extra record in secondary file 64
grouping data from database file records 149
Handling missing records in secondary join

files 144
implicit access path sharing 56

300 DB2 UDB for iSeries Database Programming V5R2

example (continued)
joining

database files without DDS 141
physical file to itself 75
three or more physical files 73
two physical files 58

matching records in primary and secondary files 61
processing

final-total only 151
unique-key 145

random access 64
reading duplicate records in secondary files 68
record missing in secondary file

JDFTVAL keyword not specified 62
JDFTVAL keyword specified 63

running the OPNQRYF command 152
secondary file has multiple matches for record in

primary file 63
selecting records

using OPNQRYF command 129
without using DDS 128

specifying
keyed sequence access path without using

DDS 139
specifying key fields

from different files 140
join logical file 72

summarizing data from database file records 149
trigger program 251
using

command output file 201
default data for missing records from secondary

files 76
join fields whose attributes are different 69
more than one field to join files 66

executing
authority 94

existing access path
using 55

EXPCHK (Check Expiration Date) parameter 106
EXPDATE (Expiration Date) parameter

changing logical file member 191
specifying 36, 106

expiration date
checking 106
specifying 36

Expiration Date (EXPDATE) parameter
changing logical file member 191
specifying 36, 106

F
FCFO (First-Changed First-Out) keyword 89
FEOD (Force-End-Of-Data) operation 181
field

arranging keys 84, 86
arranging keys with SRTSEQ 85
both 48
changing in a file description, effects of 203
comparing DBCS 287, 289
concatenating 49

field (continued)
considerations for field use 164
data types, DBCS 285
definition

See field definition
deriving new from existing fields 48
describing

fields that never appear in record format,
example 70

floating-point in logical files 50
using logical files 47

displaying descriptions in a file 198
input only 48
join 80
join logical file 80
mapping, DBCS 286
neither 48
preventing duplicate key 88
renaming 50
specifying

key, example 72
translation tables 50

substring 50
using

data dictionary for reference 24
existing descriptions and reference files 22
floating point in access paths 91
logical files to describe 47
multiple key 87

field definition
derived from existing field definitions 146
functions 21

field reference file
definition 22

FIFO (First-In First-Out) keyword 89
file

closing database
sequential-only processing 116
shared in a job 110
shared in an activation group 110

copy 189
copying

adding members 191
copying to and from files 224
processing keyed sequence files 83
writing data to and from source file

members 224
creating physical 35
creating source 13
database

attributes 26
closing 183
options for processing 102
processing options 102

describing database
with DDS 18

in a job 165
logical

creating 39
describing record format 45
setting up 66

Index 301

file (continued)
naming 27
opening

See opening database files
physical

creating 35
specifying attributes 35

sharing
database, across jobs 106
database, in the same activation group 108
database, in the same job 31, 108

source 28
specifying

member 32
text 32

FILE (File) parameter 102
FILE parameter 27
FILETYPE (File Type) parameter 28
Final total-only processing 151
First-Changed First-Out (FCFO) keyword 89
First-In First-Out (FIFO) keyword 89
floating point field

use in access paths 91
FMTSLR (Format Selector) parameter 180
Force Access Path (FRCACCPTH) parameter 29, 105
Force-End-Of-Data (FEOD) operation 181
Force-Write Ratio (FRCRATIO) parameter

data integrity considerations 105
specifying file and member attributes 29

FORMAT (Format) keyword 25
FORMAT (Format) parameter

OPNQRYF (Open Query File) command 139
FORMAT parameter

creating a file, considerations 153
Format Selector (FMTSLR) parameter 180
format, record

logical file, describing 45
FRCACCPTH (Force Access Path) parameter 29, 105
FRCRATIO (Force-Write Ratio) parameter 29, 105

G
Grant Object Authority (GRTOBJAUT) command 95
graphic-DBCS constant 285
graphic-DBCS data 285
Group Select (GRPSLT) keyword 152
grouping

data from database file records 149
performance 164

GRPSLT (Group Select) keyword 152
GRTOBJAUT (Grant Object Authority) command 95

H
high-level language (HLL) program

writing considerations 154
HLL (high-level language) program

writing considerations 154

I
IBM-supplied source file 14
IDDU (interactive data definition utility) 17
ignoring

keyed sequence access path 103
record format 104

implicit access path sharing 56
improving

performance
for sort sequence 164
suggestions 79
with OPNQRYF command and keyed sequence

access path 162
index 7
Inhibit Write (INHWRT) parameter 106
INHWRT (Inhibit Write) parameter 106
initial file position

specifying 103
Initialize Physical File Member (INZPFM)

command 182, 192
initializing

data in a physical file member 192
input-only field 48
input/output

blocked
See sequential-only processing

sequential-only processing 115
sharing files in a job 109
sharing files in an activation group 109

interactive data definition utility (IDDU) 17
INZPFM (Initialize Physical File Member)

command 182, 192
iSeries Navigator

adding
trigger 250

J
JDFTVAL (Join Default Values) keyword 62
JDUPSEQ (Join Duplicate Sequence) keyword 65
JFILE (Joined Files) keyword 45
Join Default Values (JDFTVAL) keyword 62
Join Duplicate Sequence (JDUPSEQ) keyword 65
join field

definition 60
rules to remember 80

join logical file
complex, example 77
considerations 58
definition 58
example 77
field 80
matching records, case 61
reading 61
requirements 80
setting up 66
specifying select/omit statements 72
summary of rules 80

Join Order (JORDER) parameter 141
Joined Files (JFILE) keyword 45

302 DB2 UDB for iSeries Database Programming V5R2

joining
database files without DDS 141
performance 164
physical file to itself, example 75
three or more physical files, example 73
two physical files 58
two physical files, example 58

JORDER (Join Order) parameter 141
journaling

commitment control 105, 213
physical file 105

K
keeping

access paths current 29
key field

arranging
ascending sequence 84, 86
changing order 84
changing order with SRTSEQ 85
descending sequence 84, 86

maximum number, length 279
preventing duplicate 88, 89
sharing 174
specifying from different files 140
subset 174
using multiple 87

Key Field (KEYFLD) parameter 151
keyed sequence access path

definition 84
reading database records 173

KEYFILE (Key File) parameter 193
KEYFLD (Key Field) parameter 151
keyword, DDS

ABSVAL (Absolute Value) 84, 91
ALIAS (Alternative Name) 21
ALWNULL (Allow Null) 22
CMP (Comparison) 52, 56
COLHDG (Column Heading) 21
CONCAT (Concatenate) 45, 48
DESCEND (Descend) 87
DFT (Default) 22, 48
DYNSLT (Dynamic Selection) 55
EDTCDE (Edit Code) 21
EDTWRD (Edit Word) 21
FCFO (First-Changed First-Out) 89
FIFO (First-In First-Out) 89
FORMAT (Format) 25
GRPSLT (Group Select) 152
JDFTVAL (Join Default Values) 62
JDUPSEQ (Join Duplicate Sequence) 65
JFILE (Joined Files) 45
LIFO (Last-In First-Out) 89
PFILE (Physical File) 21, 39, 45
RANGE (Range) 52
REF (Reference) 22
REFACCPTH (Reference Access Path definition) 91
REFACCPTH (Reference Access Path

Definition) 51, 52, 91
REFFLD (Referenced Field) 22

keyword, DDS (continued)
RENAME (Rename) 45, 50
SIGNED (Signed) 91
SST (Substring) 48
TEXT (Text) 21
TRNTBL (Translation Table) 48, 50
UNIQUE (Unique)

example 21
preventing duplicate key values 88
using 18, 21

UNSIGNED (Unsigned) 84, 91
VALUES (Values) 52

L
labeled duration 158
LANGID (Language Identifier) parameter 33
language identifier (LANGID)

specifying 33
large object (LOB)

See DB2 UDB for iSeries SQL Programming 17
Last-In First-Out (LIFO) keyword 89
length, record 37
Level Check (LVLCHK) parameter 29, 105
library

creating 11
LIFO (Last-In First-Out) keyword 89
limitation

record format sharing 26
lock

member 107
record

ensuring database integrity 106
releasing 178
specifying wait time 32

record format data 107
locking

data
shared 106

logical file
adding 44, 89
Change Logical File Member (CHGLFM)

command 192
changing

attributes 206
descriptions 206

creating
DTAMBRS parameter 39, 89
example 39
methods 39
source files 13
with DDS 39
with more than one record format 40

describing
access paths 83
field use 47
record format 45
with DDS, example 21

estimating size 280
field

describing use 47

Index 303

logical file (continued)
join

defined 58
setting up 66

omitting records 52
selecting records 52
setting up 39
sharing access path 174

logical file member 43
LVLCHK (Level Check) parameter 29, 105

M
MAINT (Maintenance) parameter 29
Maintenance (MAINT) parameter 29
managing

database member 191
source file 227

MAPFLD (Mapped Field) parameter 142
Mapped Field (MAPFLD) parameter 142
maximum database file sizes 279
Maximum Number of Members (MAXMBRS)

parameter 28
MAXMBRS (Maximum Number of Members)

parameter 28
MBR (Member) parameter

opening members 121
processing data 102
specifying member names 27

member
adding to files 191
attributes 26
changing attributes 191
lock 107
logical file 43
managing 191
naming 27
number allowed in a file 28
operations common to all database files 191
removing 192
renaming 192
retrieving 198
source 28
specifying

text 32
Member (MBR) parameter

opening members 121
processing data 102
specifying member names 27

member description
retrieving 198

message
sent when OPNQRYF is run 155

minimum database file size 283
monitoring and protecting database data 8
move

object 189
table 189

multiple format logical file
adding records 43, 179
creating 40

multiple format logical file (continued)
DTAMBRS parameter 43
retrieving records 41

Multisystem 275

N
naming

database file 102
database member 102

naming conventions 7
national language support 285
NBRRCDS (Number Of Records Retrieved At Once)

parameter 113
neither field 48
Number Of Records Retrieved At Once (NBRRCDS)

parameter 113

O
object

authority types
alter 94
existence 94
management 94
operational 93
reference 94

creating from source statement in a batch job 226
move 189

object authority
editing 97
granting 97
revoking 97

omitting records using logical files 52
Open Database File (OPNDBF) command 121
Open File Identifier (OPNID) parameter 122
Open Query File (OPNQRYF) command

running, messages sent 155
using

copying 167
Date, time, and timestamp arithmetic 157
Date, time, and timestamp comparison 157
DBCS fields 288
for more than just input 156
for random processing 162
results of a query 152
selecting records, examples 129
to select/omit records 55
typical errors 168

Open Scope (OPNSCOPE) parameter 122
opening

database file
commands to use 121
members 121
sequential-only processing 114
shared in a job 108
shared in an activation group 108

query file 121, 122
operation

basic database file 171
physical file member 192

304 DB2 UDB for iSeries Database Programming V5R2

OPNDBF (Open Database File) command 121
OPNID (Open File Identifier) parameter 122
OPNQRYF (Open Query File) command

running, messages sent 155
using

copying 167
Date, time, and timestamp arithmetic 157
Date, time, and timestamp comparison 157
DBCS fields 288
for more than just input 156
for random processing 162
results of a query 152
selecting records, examples 129
to select/omit records 55
typical errors 168

OPNSCOPE (Open Scope) parameter 122
option

database file processing 102
OPTION parameter 102, 121
OUTFILE parameter 201
output file

Display File Description (DSPFD) command 202
Display Journal (DSPJRN) command 202
Display Problem (DSPPRB) command 202
for CL commands 201

Override with Database File (OVRDBF) command 29,
101

OVRDBF (Override with Database File) command 29,
101

P
parameter

ACCPTH (Access Path) 103, 122
ALLOCATE (Allocate) 36
ALWDLT (Allow Delete) 38, 97
ALWUPD (Allow Update) 38, 97
AUT (Authority) 32, 95
CCSID (Coded Character Set Identifier) 32
COMMIT 105, 122
CONTIG (Contiguous Storage) 36
DLTPCT (Deleted Percentage) 37
DTAMBRS (Data Members)

selecting 44
specifying read order 27, 89

DUPKEYCHK (Duplicate Key Check) 104, 122
EOFDLY (EOF Retry Delay) 104
EXPCHK (Check Expiration Date) 106
EXPDATE (Expiration Date)

changing of physical file member 191
specifying expiration date 36, 106

FILE 27, 102
FILETYPE (File Type) 28
FMTSLR (Format Selector) 180
FORMAT 139, 154
FRCACCPTH (Force Access Path) 29, 105
FRCRATIO (Force-Write Ratio)

data integrity considerations 105
specifying file and member attributes 29

INHWRT (Inhibit Write) 106
JORDER (Join Order) 141

parameter (continued)
KEYFILE 193
KEYFLD (Key Field) 151
LANGID (Language Identifier) 33
LVLCHK (Level Check) 29, 105
MAINT (Maintenance) 29
MAPFLD (Mapped Field) 142
MAXMBRS (Maximum Number of Members) 28
MBR (Member)

opening members 121
processing data 102
specifying member names 27

NBRRCDS (Number Of Records Retrieved At
Once) 113

OPNID (Open File Identifier) 122
OPNSCOPE (Open Scope) 122
OPTION 102, 121
OUTFILE 201
POSITION 103, 171
QRYSLT (Query Select) 55
RCDFMT (Record Format) 25
RCDFMTLCK (Record Format Lock) 107
RCDLEN (Record Length) 17, 37
RECORDS 192
RECOVER 31
REUSEDLT (Reuse Deleted Records) 37
SEQONLY (Sequential-Only Processing) 113, 122
SHARE

changing for logical files 191
improving performance 31, 108

SIZE 36
SRCFILE (Source File) 28
SRCMBR (Source Member) 28
SRCOPT (Source Update Options) 195, 224
SRCSEQ (Source Sequence Numbering) 225
SRCTYPE (Source Type)

specifying source type of a member 38
SRTSEQ (Sort Sequence) 32
SYSTEM 32
TEXT 32, 191
TYPE 122
UNIT 28
WAITFILE 32, 107
WAITRCD (Wait Record) 32, 106

path, access
creating 83
recovering

if the system fails 31
performance

comparisons with other database functions 164
considerations

for sort sequence 164
general 162

grouping, joining, and selection 164
suggestions 79

PFILE (Physical File) keyword 21, 45
physical file 205

attributes 35
capabilities 38
changing

attributes 204

Index 305

physical file (continued)
changing (continued)

descriptions 204
creating 35
CRTPF (Create Physical File) command

creating source files 13
RCDLEN parameter 17
using, example 35

defined 35
describing

access paths 83
with DDS, example 18

estimating size 280
joining

three or more, example 73
to itself, example 75
two, example 58

journaling
starting 105

maximum size, members and key fields 279
member size 36
members 35
reorganizing data in members 193
setting up 35
start journaling 105
using

DDS to describe, example 18
existing field descriptions 22
field reference 22

physical file member
adding 191
changing 192
clearing data 193
displaying records 195
initializing data 182, 192
reorganizing data 180, 193
specifying attributes 35

POSITION parameter 103, 171
position, setting in a file 171
preventing

duplicate key value 88
jobs from changing data in the file 106

primary file
definition 59

Print Trigger Programs (PRTTRGPGM) command
suggested use 269

printing
list of trigger programs 269

processing
database file, options 102
DDM files 154
final total-only 151
options 102
options specified on CL commands 116
random (using OPNQRYF command) 162
sequential-only 113
type of, specifying 102
unique-key 145

program
displaying the files used by 199
handling database file errors 185

program (continued)
using source files in 225

protecting
file

commitment control 105
journaling 105

protecting and monitoring database data 8
PRTTRGPGM (Print Trigger Programs) command

suggested use 269
public authority

definition 95
specifying 32

Q
QRYSLT (Query Select) parameter 55
query

create 124
starting 195

query file
copying 166
opening 122

Query Select (QRYSLT) parameter 55

R
random access 64
random processing (using OPNQRYF) 162
RANGE (Range) keyword 52
RCDFMT (Record Format) parameter 25
RCDFMTLCK (Record Format Lock) parameter 107
RCDLEN (Record Length) parameter 17, 37
RCLRSC (Reclaim Resources) command 183
reading

authority 94
database record, methods

arrival sequence access path 173
keyed sequence access path 174

duplicate records in secondary files, example 68
join logical file 61

Reclaim Resources (RCLRSC) command 183
record

adding 178
arranging 154
deleting 37, 181
displaying in a physical file member 195
length 37
lock

integrity 106
releasing 178

reading
database 172
physical file 172

reusing deleted 103
specifying

length 104
wait time for locked 32

updating 178

306 DB2 UDB for iSeries Database Programming V5R2

record format
checking

changes to the description (LVLCHK
parameter) 29

if the description changed, considerations 166
creating a logical file with more than one 40
data locks 107
describing

example 6
logical file 45

description 25
ignoring 104
sharing existing 25
using

different 126
existing 124

Record Format (RCDFMT) parameter 25
Record Format Lock (RCDFMTLCK) parameter 107
record format relationships 26
record format sharing

limitation 26
Record Length (RCDLEN) parameter 17, 37
record lock

checking 106
displaying 106

RECORDS parameter 192
RECOVER parameter 31
recovering

database 207
recovering data

database file 207
recovery

access path
if the system fails 31

REF (Reference) keyword 22
REFACCPTH (Reference Access Path Definition)

keyword 51, 91
Reference (REF) keyword 22
Reference Access Path Definition (REFACCPTH)

keyword 51, 91
Referenced Field (REFFLD) keyword 22
referential constraints

commitment control 213
ensuring data integrity 237

REFFLD (Referenced Field) keyword 22
relationships

record format 26
releasing

locked records 178
Remove Member (RMVM) command 192
removing

members from files 192
trigger 271

RENAME (Rname) keyword 50
RENAME keyword 45
Rename Member (RNMM) command 192
renaming

field 50
member 192

Reorganize Physical File Member (RGZPFM)
command 181, 193

reorganizing
data in physical file members 181, 193
source file member data 228
table 193

restoring
database 207

Retrieve Member Description (RTVMBRD)
command 197

retrieving
member description 198
records in a multiple format file 41

Reuse Deleted Records (REUSEDLT) parameter 37
REUSEDLT (Reuse Deleted Records) parameter 37
Revoke Object Authority (RVKOBJAUT) command 95
RGZPFM (Reorganize Physical File Member)

command 181, 193
RMVM (Remove Member) command 192
RNMM (Rename Member) command 192
RTVMBRD (Retrieve Member Description)

command 197
run time

considerations 101, 166
summary 116

RVKOBJAUT (Revoke Object Authority) command 95

S
secondary file

definition 59
example 63
handling missing records in join 144
using default data for missing records 76

security
database 93
specifying authority 32, 93

select/omit
access path 55
dynamic 55

selecting
record

using logical files 52
using OPNQRYF command 129
without using DDS, example 128

selection
performance 164

SEQONLY (Sequential-Only Processing)
parameter 113, 122

sequence access path
arrival 83
keyed 84

sequential-only processing 113
close considerations 116
input/output considerations 115
open considerations 114
SEQONLY parameter 113, 122

Sequential-Only Processing (SEQONLY)
parameter 113, 122

setting position in file 171
setting up

join logical file 66
logical file 39

Index 307

setting up (continued)
physical file 35

SEU (source entry utility) 223
SHARE (Share) parameter

changing for logical files 191
improving performance 31, 108

sharing
access path 174
file

across jobs 106
in the same activation group 108
in the same job 31, 108
OPNQRYF command 165

implicit access path 56
record format descriptions that exist 25

sharing limitation
record format 26

SIGNED (Signed) keyword 91
SIZE parameter 36
sort sequence

performance considerations 164
specifying 32

Sort Sequence (SRTSEQ) parameter 32
source entry utility (SEU) 223
source file

attributes
changing 228
types 15

concepts 13
copying data 224
creating

commands 13
object 226
with DDS 16, 28
without DDS 15

entering data 223
importing from non-iSeries system 225
loading from non-iSeries system 225
maintaining data 223
managing 227
sequence numbers used in copies 224
statements, determining when changed 228
supplied by IBM 14
using

device 223
for documentation 229
in a program 225

Source File (SRCFILE) parameter 28
source file member

determining which used to create an object 227
reorganizing data 228

Source Member (SRCMBR) parameter 28
source physical file

creating
RCDLEN parameter 17
source files 13
using, example 35

Source Sequence Numbering (SRCSEQ)
parameter 225

source type
specifying 38

Source Type (SRCTYPE) parameter
specifying 38

Source Update Options (SRCOPT) parameter 195,
224

specifications
using existing access path 91

specifying
access path maintenance levels 29
attributes

physical file and member 35
authority 93
database

file text 32
member text 32

delayed maintenance, access path 29
expiration date of a file 36, 106
file text 32
how a file is shared 106
immediate maintenance, access path 29
initial file position 103
key field

from different files 140
in join logical files, example 72

keyed sequence access path without DDS 139
LANGID (Language Identifier) 33
language identifier 33
maximum number of members 28
maximum size of a file 279
member attributes 35
member text 32
members, physical files 35
physical file and member attributes 35
physical file attributes 35
public authority 32
rebuild maintenance, access path 29
record length 37, 104
select/omit statements in join logical files 72
sort sequence 32
source type of a member 38
SRTSEQ (Sort Sequence) parameter 32
system where the file is created 32
type of processing 102
wait time for a locked file or record 32

SQL (DB2 UDB for iSeries Structured Query
Language) 17

SQL (Structured Query Language) 195
SRCFILE (Source File) parameter 28
SRCMBR (Source Member) parameter 28
SRCOPT (Source Update Options) parameter 195,

224
SRCSEQ (Source Sequence Numbering)

parameter 225
SRCTYPE (Source Type) parameter

specifying 38
SRTSEQ (Sort Sequence) parameter 32
SST (Substring) keyword 48
Start Journal Physical File (STRJRNPF) command 105
Start Query (STRQRY) command 195
Start SQL (STRSQL) command 195
starting

journaling physical file 105

308 DB2 UDB for iSeries Database Programming V5R2

starting (continued)
query 195
SQL program 195

storage
allocating 36
specifying location 28
writing

access path to auxiliary 29
data to auxiliary 29

STRJRNPF (Start Journal Physical File) command 105
STRQRY (Start Query) command 195
STRSQL (Start SQL) command 195
Structured Query Language (DB2 UDB for iSeries

SQL) 17
Structured Query Language (SQL) 195
Substring (SST) keyword 48
substring field

SST (Substring) keyword 50
using 50

substring operation
DBCS 287
SST (Substring) keyword 50
using 50

summary
database

file maximums 279
locks 291

rules for join logical files 80
run time 116

SYSTEM parameter 32

T
table

copy 189
move 189
reorganizing 193

text
specifying

database file 32
database member 32
file 32
member 32

TEXT (Text) keyword 21
TEXT (Text) parameter 32, 191
time

arithmetic using OPNQRYF command 160
comparison using OPNQRYF command 157
duration 158

timestamp
arithmetic using OPNQRYF command 161
comparison using OPNQRYF command 157
duration 158

translated fields 50
Translation Table (TRNTBL) keyword 48, 50
trigger

adding
using iSeries Navigator 250

benefits 249
changing 272
data capabilities 271

trigger (continued)
defined 249
disabling 272
enabling 272
removing 271
required authorities 271
using 249

Trigger
Adding to a File 270

trigger program
evaluating use 270
example 251
monitoring use 269
printing list 269

trigger programs
creating 250

triggers
displaying 271

TRNTBL (Translation Table) keyword 48, 50
Trojan horse

description 269
TYPE (Type) parameter 122

U
UNIQUE (Unique) keyword

example 21
preventing duplicate key values 88
using 18, 21

Unique-key processing 145
UNIT parameter 28
Unsigned (UNSIGNED) keyword 84, 91
UNSIGNED (Unsigned) keyword 84, 91
updating

authority 94
database record 178

user-defined function (UDF)
See DB2 UDB for iSeries SQL Programming 17

user-defined type (UDT)
See DB2 UDB for iSeries SQL Programming 17

using
Open Query File (OPNQRYF) command

DBCS fields 288
wildcard function, DBCS 288

V
VALUES (Values) keyword 52

W
Wait Record (WAITRCD) parameter 32, 106
wait time 32
WAITFILE (Maximum File Wait Time) parameter 32,

107
WAITRCD (Wait Record) parameter 32, 106
wildcard function

definition 288
using with DBCS fields 288

writing
access paths to auxiliary storage 105

Index 309

writing (continued)
data to auxiliary storage 105
high-level language program 154
output from a command directly to a database

file 201

Z
zero length literal and contains (*CT) function 128

310 DB2 UDB for iSeries Database Programming V5R2

����

Printed in U.S.A.

	Contents
	About DB2 Universal Database for iSeries Database Programming
	Who should read DB2 Universal Database for iSeries Database Programming
	What's new for V5R2 in DB2 Universal Database for iSeries Database Programming
	Code disclaimer information

	Part 1. Database Programming Overview
	Chapter 1. Database file concepts
	DB2 Universal Database for iSeries
	Interfaces to DB2 UDB for iSeries
	Traditional system interface
	SQL
	iSeries Navigator
	Query for iSeries

	Database files
	Source file
	Physical file
	Logical file
	Member
	Record

	How database files are described
	Externally and program-described data
	Dictionary-described data
	Record format description
	Access path description
	Naming conventions used in a database file

	Database data protection and monitoring

	Part 2. Setting Up Database Files
	Chapter 2. Creating and describing database files
	Creating a library
	Creating a library using iSeries Navigator

	Chapter 3. Setting up source files
	Why source files are used
	Creating a source file
	Creating a source file using CRTSRCPF
	IBM-supplied source files
	Source file attributes
	Creating source files without DDS
	Creating source files with DDS

	Chapter 4. Describing database files
	Describing database files using DDS
	Example: Describing a physical file using DDS
	Example: Describing a logical file using DDS
	Additional field definition functions you can describe with DDS
	Using existing field descriptions and field reference files to describe a database file
	Using a data dictionary for field reference in a database file
	Sharing existing record format descriptions in a database file
	Record format relationships between physical and logical database files
	Record format sharing limitation with physical and logical database files

	Specifying database file and member attributes
	Specifying file name and member name (FILE and MBR) parameters when creating database files
	Specifying the physical file member control (DTAMBRS) parameter when creating database logical files
	Specifying the source file and source member (SRCFILE and SRCMBR) parameters when creating database files
	Specifying the database file type (FILETYPE) parameter when creating database files
	Specifying the maximum number of members allowed (MAXMBRS) parameter when creating database files
	Specifying where to store the data (UNIT) parameter when creating or changing database files
	Tips for using the UNIT parameter when creating database files

	Specifying the frequency of writing data to auxiliary storage (FRCRATIO) parameter when creating, changing, or overriding database files
	FRCRATIO parameter tip

	Specifying the frequency of writing the access path (FRCACCPTH) parameter when creating database files
	FRCACCPTH parameter tips

	Specifying the check for record format description changes (LVLCHK) parameter when creating or changing a database file
	Level check example

	Specifying the current access path maintenance (MAINT) parameter when creating database files
	MAINT parameter comparison
	MAINT parameter tips

	Specifying the recover (RECOVER) parameter when creating database files
	RECOVER parameter tip

	Specifying the file sharing (SHARE) parameter when creating a database file
	Specifying the locked file or record wait time (WAITFILE and WAITRCD) parameters when creating a database file
	Specifying the public authority (AUT) parameter when creating a database file
	Specifying the system on which the file Is created (SYSTEM) parameter when creating a database file
	Specifying the file and member text (TEXT) parameter when creating a database file
	Specifying the coded character set identifier (CCSID) parameter when creating database files
	Specifying the sort sequence (SRTSEQ) parameter when creating a database file
	Specifying the language identifier (LANGID) parameter when creating database files

	Chapter 5. Setting up physical files
	Creating a physical file
	Specifying physical file and member attributes when creating a physical file
	Physical file and member attributes: Expiration date
	Physical file and member attributes: Size of the physical file member
	Physical file and member attributes: Storage allocation
	Physical file and member attributes: Method of allocating storage
	Physical file and member attributes: Record length
	Physical file and member attributes: Deleted records
	Physical file and member attributes: Physical file capabilities
	Physical file and member attributes: Source type

	Chapter 6. Setting up logical files
	Creating a logical file
	Creating a logical file with more than one record format
	Controlling how records are retrieved in a file with multiple formats
	Controlling how records are added to a file with multiple formats

	Defining logical file members

	Describing logical file record formats
	Describing field use for logical files
	Describing field use for logical files: Both
	Describing field use for logical files: Input only
	Describing field use for logical files: Neither

	Deriving new fields from existing fields
	Concatenated fields
	Substring fields
	Renamed fields
	Translated fields

	Describing floating-point fields in logical files

	Describing access paths for logical files
	Selecting and omitting records using logical files
	Access path select/omit
	Dynamic select/omit
	Using the Open Query File command to select/omit records

	Using existing access paths
	Example of implicitly shared access paths

	Setting up a join logical file
	Basic concepts of joining two physical files (Example 1)
	Reading a join logical file
	Matching records in primary and secondary files (Case 1)
	Record missing in secondary file; JDFTVAL keyword not specified (Case 2A)
	Record missing in secondary file; JDFTVAL keyword specified (Case 2B)
	Secondary file has more than one match for a record in the primary file (Case 3)
	Extra record in secondary file (Case 4)
	Random access (Case 5)

	Setting up a join logical file
	Using more than one field to join files (Example 2)
	Reading duplicate records in secondary files (Example 3)
	Using join fields whose attributes are different (Example 4)
	Describing fields that never appear in the record format (Example 5)
	Specifying key fields in join logical files (Example 6)
	Specifying select/omit statements in join logical files
	Joining three or more physical files (Example 7)
	Joining a physical file to itself (Example 8)
	Using default data for missing records from secondary files (Example 9)
	A complex join logical file (Example 10)
	Join logical file considerations
	Joining database files: Performance considerations
	Joining database files: Data integrity considerations
	Joining database files: Summary of rules
	Rules for joining database files: Requirements
	Rules for joining database files: Join fields
	Rules for joining database files: Fields in join logical files
	Rules for joining database files: Miscellaneous

	Chapter 7. Describing access paths for database files
	Using arrival sequence access path for database files
	Using a keyed sequence access path for database files
	Arranging key fields using an alternative collating sequence
	Arranging key fields using the SRTSEQ parameter
	Arranging key fields in ascending or descending sequence
	Using more than one key field
	Preventing duplicate key values
	Arranging duplicate keys

	Using existing access path specifications
	Using floating point fields in database file access paths

	Chapter 8. Securing a database
	Granting file and data authority
	Authorizing a user or group using iSeries Navigator
	Types of object authority for database files
	Types of data authorities for database files

	Specifying public authority
	Defining public authority for a file using iSeries Navigator
	Setting a default public authority for new files using iSeries Navigator

	Using database file capabilities to control I/O operations
	Limiting access to specific fields of a database file
	Using logical files to secure data

	Part 3. Processing Database Files in Programs
	Chapter 9. Database file processing: Run time considerations
	Database file processing: File and member name
	Database file processing: File processing options
	Database file processing: Specifying the type of processing
	Database file processing: Specifying the initial file position
	Database file processing: Reusing deleted records
	Database file processing: Ignoring the keyed sequence access path
	Database file processing: Delaying end of file processing
	Database file processing: Specifying the record length
	Database file processing: Ignoring record formats
	Database file processing: Determining if duplicate keys exist

	Database file processing: Data recovery and integrity
	Protecting your file with journaling and commitment control
	Writing data and access paths to auxiliary storage
	Checking changes to the record format description
	Checking for the expiration date of the file
	Preventing the job from changing data in the file

	Locking shared data
	Locking records
	Displaying locked rows using iSeries Navigator
	Displaying locked records using DSPRCDLCK
	Locking files
	Locking members
	Locking record format data

	Sharing database files in the same job or activation group
	Open considerations for files shared in a job or activation group
	Input/output considerations for files shared in a job or activation group
	Close considerations for files shared in a job or activation group
	Example 1: Using a single set of files with similar processing options
	Example 2: Using multiple sets of files with similar processing options
	Example 3: Using a single set of files with different processing requirements

	Sequential-only processing of database files
	Open considerations for sequential-only processing
	Input/output considerations for sequential-only processing
	Close considerations for sequential-only processing

	Summary of run time considerations for processing database files
	Storage pool paging option effect on database performance

	Chapter 10. Opening a database file
	Opening a database file member
	Using the Open Database File (OPNDBF) command
	Using the Open Query File (OPNQRYF) command
	Creating a query with the OPNQRYF command
	Using an existing record format in the file
	Using a file with a different record format
	OPNQRYF examples
	CL program coding with the OPNQRYF command
	The zero length literal and the contains (*CT) function
	Selecting records without using DDS
	Selecting records using the Open Query File (OPNQRYF) command
	Example 1: Selecting records using the OPNQRYF command
	Example 2: Selecting records using the OPNQRYF command
	Example 3: Selecting records using the OPNQRYF command
	Example 4: Selecting records using the OPNQRYF command
	Example 5: Selecting records using the OPNQRYF command
	Example 6: Selecting records using the OPNQRYF command
	Example 7: Selecting records using the OPNQRYF command
	Example 8: Selecting records using the OPNQRYF command
	Example 9: Selecting records using the OPNQRYF command
	Example 10: Selecting records using the OPNQRYF command
	Example 11: Selecting records using the OPNQRYF command

	Specifying a keyed sequence access path without using DDS
	Example 1: Specifying a keyed sequence access path without using DDS
	Example 2: Specifying a keyed sequence access path without using DDS
	Example 3: Specifying a keyed sequence access path without using DDS
	Example 4: Specifying a keyed sequence access path without using DDS

	Specifying key fields from different files
	Example: Specifying key fields from different files

	Dynamically joining database files without DDS
	Example 1: Dynamically joining database files without DDS
	Example 2: Dynamically joining database files without DDS
	Example 3: Dynamically joining database files without DDS

	Handling missing records in secondary join files
	Example: Handling missing records in secondary join files

	Unique-key processing
	Example 1: Unique-key processing
	Example 2: Unique-key processing

	Defining fields derived from existing field definitions
	Example 1: Defining fields derived from existing field definitions
	Example 2: Defining fields derived from existing field definitions
	Example 3: Defining fields derived from existing field definitions

	Handling divide by zero
	Summarizing data from database file records (Grouping)
	Example: Summarizing data from database file records (Grouping)

	Final total-only processing
	Example 1: Final total-only processing
	Example 2: Final total-only processing
	Example 3: Final total-only processing

	Controlling how the system runs the open query file command
	Example 1: Controlling how the system runs the open query file command
	Example 2: Controlling how the system runs the open query file command

	Considerations for creating a file and using the FORMAT parameter
	Considerations for arranging records
	Considerations for DDM files
	Considerations for writing a high-level language program
	Messages sent when the Open Query File (OPNQRYF) command is run
	Using the Open Query File (OPNQRYF) command for more than just input
	Comparing date, time, and timestamp using the OPNQRYF command
	Performing date, time, and timestamp arithmetic using the OPNQRYF command
	Durations
	Rules for date, time, and timestamp arithmetic
	Subtracting dates
	Incrementing and decrementing dates
	Subtracting times
	Incrementing and decrementing times
	Subtracting timestamps
	Incrementing and decrementing timestamps

	Using the Open Query File (OPNQRYF) command for random processing
	Open Query File command: Performance considerations
	Open Query File command: Performance considerations for sort sequence tables
	Grouping, joining, and selection: OPNQRYF performance considerations
	Ordering: OPNQRYF performance considerations

	Performance comparisons with other database functions
	Considerations for field use
	Considerations for files shared in a job
	Considerations for checking if the record format description changed
	Other run time considerations for the OPNQRYF command
	Overrides and the OPNQRYF command
	Copying from an open query file
	Example 1: Copying from an open query file
	Example 2: Copying from an open query file
	Example 3: Copying from an open query file
	Example 4: Copying from an open query file

	Typical errors when using the Open Query File (OPNQRYF) command

	Chapter 11. Basic database file operations in programs
	Setting a position in the file
	Reading database records
	Reading database records using an arrival sequence access path
	Read next operation using an arrival sequence access path
	Read previous operation using an arrival sequence access path
	Read first operation using an arrival sequence access path
	Read last operation using an arrival sequence access path
	Read same operation using an arrival sequence access path
	Read by relative record number operation using an arrival sequence access path

	Reading database records using a keyed sequence access path
	Read next operation using a keyed sequence access path
	Read previous operation using a keyed sequence access path
	Read first operation using a keyed sequence access path
	Read last operation using a keyed sequence access path
	Read same operation using a keyed sequence access path
	Read by key operation using a keyed sequence access path
	Read by relative record number operation using a keyed sequence access path
	Read when logical file shares an access path with more keys operation using a keyed sequence access path

	Waiting for more records when end of file is reached
	Releasing locked records

	Updating database records
	Adding database records
	Identifying which record format to add in a file with multiple formats
	Using the force-end-of-data operation

	Deleting database records

	Chapter 12. Closing a database file
	Chapter 13. Monitoring database file errors in a program
	System handling of error messages
	Effect of error messages on file positioning
	Determining which messages you want to monitor

	Part 4. Managing Database Files
	Chapter 14. Basic operations for managing database files
	Copying a file
	Copying a file using iSeries Navigator
	Copying a file using CPYF

	Moving a file
	Moving a file using iSeries Navigator
	Moving a file using the MOVOBJ command

	Chapter 15. Managing database members
	Member operations common to all database files
	Adding members to files
	Changing member attributes
	Renaming members
	Removing members from files

	Physical file member operations
	Initializing data in a physical file member
	Clearing data from physical file members
	Reorganizing a physical file
	Reorganizing a table using iSeries Navigator
	Reorganizing a physical file using RGZPFM
	Example: Reorganizing a physical file
	Usage notes: Reorganizing a file

	Displaying records in a physical file member

	Chapter 16. Using database attribute and cross-reference information
	Displaying information about database files
	Displaying attributes for a file using display table description in iSeries Navigator
	Displaying attributes for a file using DSPFD
	Displaying the descriptions of the fields in a file
	Displaying the relationships between files on the system
	Displaying the files used by programs
	Displaying the system cross-reference files

	Writing the output from a command directly to a database file
	Example: Using a command output file
	Output file for the Display File Description command
	Output files for the Display Journal command
	Output files for the Display Problem command

	Chapter 17. Changing database file descriptions and attributes
	Effect of changing fields in a file description
	Changing a physical file description and attributes
	Example 1: Changing a physical file description and attributes
	Example 2: Changing a physical file description and attributes

	Changing a logical file description and attributes

	Chapter 18. Recovering and restoring your database
	Recovering data in a database file
	Managing journals
	Journals
	Working with journals
	Creating a journal using iSeries Navigator
	Creating a journal receiver using iSeries Navigator
	Values used when creating new journals and new journal receivers
	Adding a remote journal using iSeries Navigator
	Removing a remote journal using iSeries Navigator
	Activating a remote journal using iSeries Navigator
	Deactivating a remote journal using iSeries Navigator
	Display journal information for a table using iSeries Navigator
	Swapping receivers using iSeries Navigator
	Starting/stopping a journal for a table (file) using iSeries Navigator

	Ensuring data integrity with commitment control
	Transactions
	Benefits of using commitment control
	Usage notes: commitment control

	Reducing time in access path recovery
	Saving access paths
	Restoring access paths
	Journaling access paths
	System-managed access-path protection (SMAPP)
	Rebuilding access paths
	Controlling when access paths are rebuilt
	Designing files to reduce access path rebuilding time
	Other methods to avoid rebuilding access paths

	The database recovery process after an abnormal system end
	Database file recovery during the IPL
	Database file recovery after the IPL
	Effects of the storage pool paging option on database recovery
	Database file recovery options table

	Database save and restore
	Database considerations for save and restore
	Force-writing data to auxiliary storage

	Chapter 19. Using source files
	Working with source files
	Using the Source Entry Utility (SEU)
	Using device source files
	Copying source file data
	Using the Copy Source File (CPYSRCF) command for copying to and from source files
	Using the Copy File (CPYF) command for copying to and from files
	Source sequence numbers used in copies

	Loading and unloading data from non-iSeries systems
	Using source files in a program

	Creating an object using a source file
	Creating an object from source statements in a batch job
	Determining which source file member was used to create an object

	Managing a source file
	Changing source file attributes
	Reorganizing source file member data
	Determining when a source statement was changed
	Using source files for documentation

	Chapter 20. Controlling the integrity of your database with constraints
	Setting up constraints for your database
	Details: Setting up constraints

	Removing unique, primary key, or check constraints
	Details: Removing constraints

	Working with a group of constraints
	Details: Working with a group of constraints
	Working with constraints that are in check pending status
	Displaying records that put a constraint in check pending status
	Processing constraints that are in check pending status
	Details: Processing constraints that are in check pending status

	Unique constraints
	Primary key constraints
	Check constraints

	Chapter 21. Ensuring data integrity with referential constraints
	Adding a referential constraint
	Before you add a referential constraint
	Defining the parent file in a referential constraint
	What to do when you cannot define a parent key

	Defining the dependent file in a referential constraint
	Specifying referential constraint rules
	Details: Specifying referential constraint delete rules
	Details: Specifying referential constraint update rules
	Details: Specifying referential constraint rules—journaling requirements
	Details: Adding a referential constraint
	Details: Avoiding constraint cycles

	Verifying a referential constraint
	Enabling and disabling referential constraints
	Details: Enabling or disabling a referential constraint

	Removing referential constraints
	Details: Removing a constraint with the CST parameter
	Details: Removing a constraint with the TYPE parameter

	Details: Ensuring data integrity with referential constraints
	Example: Ensuring data integrity with referential constraints
	Referential integrity terms
	Referential integrity enforcement
	Foreign key enforcement
	Parent key enforcement
	Enforcement of delete rules
	Enforcement of update rules

	Constraint states
	Check pending status in referential constraints
	Dependent file restrictions in check pending
	Parent file restrictions in check pending

	Referential integrity and iSeries functions

	Chapter 22. Triggering automatic events in your database
	Uses for triggers
	Benefits of using triggers in your business
	Creating trigger programs
	Adding triggers using iSeries Navigator
	How trigger programs work
	Other important information about working with triggers
	Examples of trigger programs
	Example: Insert trigger written in RPG
	Example: Update trigger written in ILE COBOL
	Example: Delete trigger written in ILE C
	Trigger programs: Data structures of database used in the examples

	Trigger buffer sections
	Trigger buffer field descriptions

	Recommendations for trigger programs
	Precautions to take when coding trigger programs
	Functions to use with care in trigger programs
	Commands, statements, and operations that you cannot use in trigger programs

	Trigger and application programs that are under commitment control
	Trigger and application programs that are not under commitment control
	Trigger program error messages
	Monitoring the use of trigger programs

	Adding a trigger to a file
	Required authorities and data capabilities for triggers

	Displaying triggers
	Removing a trigger
	Enabling and disabling a trigger
	Triggers and their relationship to other iSeries functions
	Triggers and their relationship to referential integrity

	Chapter 23. Database distribution
	Part 5. Appendixes
	Appendix A. Database file sizes
	Examples: Database file sizes

	Appendix B. Double-Byte Character Set (DBCS) considerations
	DBCS field data types
	DBCS constants

	DBCS field mapping considerations
	DBCS field concatenation
	DBCS field substring operations
	Comparing DBCS fields in a logical file
	Using DBCS fields in the Open Query File (OPNQRYF) command
	Using the wildcard function with DBCS fields
	Comparing DBCS fields through OPNQRYF
	Using concatenation with DBCS fields through OPNQRYF
	Using sort sequence with DBCS

	Appendix C. Database lock considerations
	Bibliography
	Index

