Program and CL Command APIs (V5R2)

Table of Contents

Program and CL Command APIs

APls
« Activate Bound Program (QleActBndPgm)

» Add Associated Space Entry (QbnAddA ssociatedSpaceEntry)

« Add Bindtime Exit (QbnAddBindtimeExit)

« Add Extended Attribute Data (QbnAddExtendedAttributeData)
« Add Preprocessor Level Data (QbnAddPreProcessorL evel Data)
« Call Service Program Procedure (QZRUCL SP)

o Check Command Syntax (QCMDCHK)

« Create Program (QPRCRTPG)

» End Preprocessor (QbnEndPreProcessor)

« Execute Command (QCMDEXC)

o Get Export (QleGetExp)

o ListILE Program Information (QBNLPGMI)

o List Module Information (QBNLMODI)

o List Service Program Information (QBNL SPGM)

« Process Commands (QCAPCMD)

« Replace Command Exit Program (QCARPLCM)

« Retrieve Associated Space (QbnRetrieveAssociatedSpace)
« Retrieve Command Definition (QCDRCMDD)

» Retrieve Command Information (QCDRCMDI)

» Retrieve Module Information (QBNRMODI)

« Retrieve Program Associated Space (QCLRPGAYS)

« Retrieve Program Information (QCLRPGMI)

« Retrieve Prompt Override (QPTRTVPO)

« Retrieve Service Program Information (QBNRSPGM)
» Scan for String Pattern (QCLSCAN)

« Start Preprocessor (QbnStartPreProcessor)

« Store Program Associated Space (QCLSPGAYS)

Exit Programs

o« Command Analyzer Change

« Command Analyzer Retrieve

Program and CL Command APIs

The Program and CL Command APIs create programs, retrieve program information, list and retrieve
module information, activate bound programs, resolve pointers to exports, and retrieve command
information.

Before using the Create Program AP, you should have some M1 programming experience and understand
the concepts in the 1 Series Machine Interface I nstructions, which provides detailed descriptions of the

i Series machine interface instruction fields and the formats of those fields.

The Program and CL Command APIs are:

Activate Bound Program (QleActBndPgm) activates the specified bound program or service

program and all dependent service programs, and then initalizes the newly activated service
programs.

Add Associated Space Entry (QbnAddA ssociatedSpaceEntry) is used by a compiler preprocessor to
put datainto the associated space of the created module.

Add Bindtime Exit (QbnAddBindtimeExit) is used by a compiler preprocessor to define an exit
program that can be called when a created module is bound into an ILE program.

Add Extended Attribute Data (QbnAddExtendedAttributeData) is used by a preprocessor to set the
extended attribute field of a created module.

Add Preprocessor Level Data (QbnAddPreProcessorLevel Data) is used to set the level of the
preprocessor used to create amodule.

Call Service Program Procedure (QZRUCL SP) allows an unbound call to an ILE procedure
exported by a service program.

Check Command Syntax (QCMDCHK) performs syntax checking for a single command, and
optionally prompts for the command.

Create Program (QPRCRTPG) converts the symbolic representation of a machine interface (MI)
program into a program object.

End Preprocessor (QbnEndPreProcessor) must be called by every preprocessor after the output
source file and preprocessor information is created. It records that a preprocessor was called.
Execute Command (QCMDEXC) runs asingle CL command or can be used to run a command
from within a high-level language or CL program.

Get Export (QleGetExp) alows the caller to resolve a pointer to an export (either data or

procedure) either by name or export number. The pointer is materialized for the specified
activation.

Java(TM) Virtual Machine Debug Interface (JVMDI) is a programming interface used by debuggers
and other programming tools. It provides away both to inspect the state and to control the

execution of applications running in the Java(TM) Virtual Machi ne.'@
% Java(™) Virtual Machine Profiler Interface (JVMPI) isintended for tools vendors to develop

profilers that work in conjunction with Sun's Java virtual machine impl ementation.‘ﬁ'({
#JavalT™M) Debug Wire Protocol (JDWP) is the protocol used for communication between a

debugger and the Java virtual machine (VM) that it debugs.‘@({

List ILE Program Information (QBNLPGMI) gives information about Integrated Language
Environment * (ILE *) programs, similar to the Display Program (DSPPGM) command.

o List Module Information (QBNLMODI) API listsinformation about modules similar to the Display
Module (DSPMOD) command. The information is placed in a user space specified by you.

o List Service Program Information (QBNLSPGM) gives information about service programs,
similar to the Display Service Program (DSPSRVPGM) command.

o Process Commands (QCAPCMD) performs command analyzer processing on command strings.

» Replace Command Exit Program (QCARPLCM) may be used as the exit program for the
QIBM_QCA_CHG_COMMAND for any command.

« Retrieve Associated Space (QbnRetrieveA ssociatedSpace) retrieves data stored with the
QbnAddA ssociatedSpaceEntry API.

» Retrieve Command Definition (QCDRCMDD) API retrieves the command definition source for a
given command in XML tag language format.

« Retrieve Command Information (QCDRCMDI) retrieves information from a command definition
object.

« Retrieve Module Information (QBNRMODI) API lets you retrieve module information and place it
into asingle variable in the calling program similar to the information returned using the Display
Module (DSPMOD) command. The amount of information returned is limited to the size of the
variable.

« Retrieve Program Associated Space (QCLRPGAYS) retrieves information from the associated space
of auser-state, user-domain program.

« Retrieve Program Information (QCLRPGMI) retrieves program information similar to the Display
Program (DSPPGM) command.

« Retrieve Prompt Override (QPTRTV PO) calls the prompt override program for a specified
command and returns the prompt override command string from the prompt override program.

» Retrieve Service Program Information (QBNRSPGM) retrieves service program information
similar to the information returned using the Display Service Program (DSPSRVPGM) command.

« Scan for String Pattern (QCLSCAN) is used to scan a string of charactersto seeif the string
contains a pattern.

« Start Preprocessor (QbnStartPreProcessor) must be called first by every compiler preprocessor that
has data to be processed during module creation.

« Store Program Associated Space (QCLSPGAYS) stores information in the associated space of a
user-state, user-domain program.

The Program and CL Command exit programs are:
« Command Analyzer Change is called when the command for which it is registered is processed.

o Command Analyzer Retrieve is called when the command for which it is registered is processed.

Top | APIs by category

Activate Bound Program (QleActBndPgm) API

Required Parameter:

1 Pointer to bound program Input PTR(SYP)
Omissible Parameter Group:

2 Activation mark Output Binary(4)

3 Activation information Output Char(*)

4 Length of activation information Input Binary(4)

5 Error code /10 Char(*)
Returned Vaue:

Activation mark Output Binary(4)

Default Public Authority: *USE
Service Program: QLEAWI

Threadsafe; Yes

The Activate Bound Program (QleActBndPgm) API activates the bound program or service program
specified by the pointer to bound program parameter if it is not already active. All dependent service
programs are activated, and all initialization of the newly activated service programsis done.

Initialization may consist of calling user procedures. All unhandled exceptions that occur during
initialization will be percolated to the caller of QleActBndPgm; they will never be returned in the error
code parameter. QleActBndPgm will never move the resume cursor for the exception. Therefore, it is
possible for the caller of QleActBndPgm to handle an exception and resume initialization.

This API isnormally used in conjunction with the Get Export (QleGetExp) API. First, you activate a
service program using QleActBndPgm, and then later you use QleGetExp to retrieve pointers to procedures
and data from that activation.

The QleActBndPgm API may not be called in a secondary thread of a Common Platform Architecture
(CPA) application.

Required Parameter

Pointer to bound program
INPUT; PTR(SYP)

A system pointer to the program or service program to be activated.

Omissible Parameter Group

Activation mark
OUTPUT; BINARY (4)

The entity uniquely identifying the activation within the current job.
Activation information
OUTPUT; CHAR(*)

The structure that contains additional activation information. The format of this structure is shown
in Format of Activation Information. If activation information is specified, the length of activation

information parameter must also be specified. The storage for activation information must be on a
16-byte boundary.

Length of activation information
INPUT; BINARY (4)

The length of the activation information. If the length islarger than the size of the storage for
activation information, the results may not be predictable. The minimum length is 8 bytes.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value

Activation mark
OUTPUT; BINARY (4)

This API returns the value for the activation mark parameter.

Format of Activation Information

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | O |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |CHAR(®) |Reserved

| 16 | 10 |BINARY(4) |Activation group mark
| 20 | 14 |BINARY(4) |Activation mark

| 24 | 18 |CHAR(7) |Reserved

| 31 | 1IF |CHAR(1) |Flags

| 32 | 20 |CHAR(16) |Reserved

Field Descriptions

Activation group mark. An entity uniquely identifying the activation group within the current job.
Activation mark. An entity uniquely identifying the activation within the current job.
Flags Bit values

Bit0 0 The program or service program was not already activated.

1 Theprogram or service program was already activated.

Bit 1-7 Reserved

Bytes available. The length of all available information that could be returned. Bytes available can be
greater than the length of activation information parameter. If it is greater, the information returned is
truncated to the length specified.

Bytesreturned. The length of al information returned. The value of the bytes returned field is always less
than or equal to the length returned in the bytes avail able fiel d.

Reserved. An area of reserved storage.

Error Messages

Message I D Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3CI1EE Required parameter & 1 omitted.

CPF3C24 E Length of the receiver variableis not valid.
CPF3C3A E Vaue for parameter &2 for API &1 not valid.
CPF3C90 E Literal value cannot be changed.

CPF3CF1lE Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
MCH3402 E The argument being tested is not an address.
MCH4421 E At least onefield in the allocation strategy is not valid.
MCH4430 E The exit priority value provided for &1 is not valid.

API Introduced: V3R6

Top | Program and CL. Command APIs | APIs by category

Add Associated Space Entry
(QbnAddAssociatedSpaceEntry) API

Required Parameter Group:

1 Associated spaceidentifier Input Char(10)
2 Associated space entry data Input Char(*)
3 Length of associated space entry data Input Binary(4)
4 Options Input Char(2)
5 Error code /0 Char(*)

Default Public Authority: * USE
Service Program: QBNPREPR

Threadsafe: No

The Add Associated Space Entry (QbnAddA ssociatedSpaceEntry) APl may be used by a compiler
preprocessor to put data in the associated space of the created module.

Authorities and Locks

None

Required Parameter Group

Associated space identifier
INPUT; CHAR(10)

The associated space identifier has the following specia value:

*PREPROC Identifies the type of data being stored in the created module. The special value
must be left-justified and padded with blanks.

Associated space entry data
INPUT; CHAR(*)

The data to be placed into the associated space of the created module. The format of this datais
specified by the user. This datawill be copied into an ILE bound program or ILE service program
and is available for use when the program is running. The QbnRetrieveAssociatedSpace APl is
used to retrieve this data from an ILE program or service program.

Length of associated space entry data
INPUT; BINARY (4)

The length of the data contained in the associated space entry data parameter.
Options
INPUT; CHAR(1)

Y ou must specify one of the following specia values. If more than one associated space entry is
defined as extendable during preprocessing, the module will not be created. If DB2 UDB for
iSeries SQL statements are contained in the input source file, option 2 cannot be specified.

1 The associated space entry will not be extendable.

2 Theassociated space entry can be extended. The associated space expands as data is stored
in the associated space using QbnAddA ssociatedSpaceEntry API.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1lE Error code parameter not valid.

CPF5CA2E &1isnot avalid associated space identifier parameter.
CPF5CA3E Option &1 isnot valid.

CPF5CA4 E Error occurred while addressing APl Parameter.

CPF5D22 E Not able to locate internal data.

CPF5D24 E Unexpected error occurred during preprocessor processing.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V3R1

Top | Program and CL Command APIs | APIs by category

Add Bindtime Exit (QbnAddBindtimeExit) API

A WDN P

Required Parameter Group:

Default Public Authority: * USE
Service Program: QBNPREPR

Threadsafe: No

Qualified exit program name Input Char(20)
Exit program data Input Char(*)
Length of exit program data Input Binary(4)
Error code /0 Char(*)

The Add Bindtime Exit (QbnAddBindtimeExit) APl may be used by a compiler preprocessor to define an
exit program that is called when the created module is bound into a ILE program.

Authorities and Locks

None

Required Parameter Group

Qualified exit program name

INPUT; CHAR(20)

The qualified name of the exit program to be called when the created module is bound into an ILE
program. The first 10 characters contain the program name, which is left-justified and padded with
blanks. The second 10 characters contain the name of the library where the exit program is located
and is left-justified and padded with blanks.

The library name can be specified with the following special value:

*LIBL Thelibrary list.

The exit program is passed five parameters when called. The first two parameters are the exit
program data and the exit program data length. The third parameter is areserved CHAR(10). The
fourth and fifth parameters are both reserved BINARY (4).

The exit program data being used in this API is defined by the user.

Exit program data

INPUT; CHAR(*)

This datais copied into the output source file member by the QbnEndPreProcessor API. When the

exit program is called at ILE program creation time, a copy of the datais passed. The format of this
datais specified by the supplier of the exit program. This dataisignored if the length of datato be
passed to the length of exit program data parameter value is 0.

Length of exit program data
INPUT; BINARY (4)

The length of the data contained in the exit program data parameter.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1lE Error code parameter not valid.

CPF5CA4 E Error occurred while addressing APl Parameter.
CPF5CEA E Library value &1 isnot valid.

CPF5D22 E Not able to locate internal data.

CPF5D24 E Unexpected error occurred during preprocessor processing.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

API Introduced: V3R1

Top | Program and CL Command APIs | APIs by category

Add Extended Attribute Data
(QbnAddExtendedAttributeData) API

Required Parameter Group:

1 Extended attribute data Input Char(20)
2 Error code /1O Char(*)

Default Public Authority: * USE
Service Program: QBNPREPR

Threadsafe: No

The Add Extended Attribute Data (QbnAddExtendedAttributeData) APl may be used by a preprocessor to
set the extended attribute field of the created module. The attribute field is part of the service related
attributes of a module object. Because multiple preprocessors may be called in the path of module creation,
and because each module only has a single attribute, only the initial preprocessor is allowed to set the
extended attribute.

Authorities and Locks

None

Required Parameter Group
Extended attribute data
INPUT; CHAR(20)

The extended attribute datato be set in the created module. This data further describes the object,
such as CLP for aCL program or PF for afile.

Error code
1/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF5CA4 E Error occurred while addressing APl Parameter.

CPF5D22 E Not able to locate internal data.

CPF5D24 E Unexpected error occurred during preprocessor processing.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

API Introduced: V3R1

Top | Program and CL. Command APIs | APIs by category

Add Preprocessor Level Data
(QbnAddPreProcessorLevelData) API

Required Parameter Group:

1 Preprocessor level data Input Char(6)
2 Error code /1O Char(*)

Service Program: QBNPREPR

Threadsafe: No

The Add Preprocessor Level Data (QbnAddPreProcessorLevelData) APl may be used to set the level of the
preprocessor used to create the module.

Authorities and Locks

None

Required Parameter Group

Preprocessor level data
INPUT; CHAR(6)

A description of the current preprocessor environment. The preprocessor-level datais specified
with version, release, and modification information. This string must contain 6 characters of the
form VXRyMz where x, y, and z are single digits. The valid values are between 0 and 9. The
preprocessor-level datais an extension of the product number. This preprocessor-level datacan
then be used to show a different environment from that of the compiler. The preprocessor-level data
must be less than or equal to the VxRyMz string of characters specified by the compiler, or module
creation will fail.

Error code
1/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E
CPF3CF1 E
CPF5CA4 E
CPF5D22 E
CPF5D24 E
CPF5D29 E
CPF9872 E

Literal value cannot be changed.

Error code parameter not valid.

Error occurred while addressing APl Parameter.

Not able to locate internal data.

Unexpected error occurred during preprocessor processing.
Level data specified is not valid.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V3R1

Top | Program and CL. Command APIs | APIs by category

Call Service Program Procedure (QZRUCLSP)
API

Required Parameter Group:

1 Quadified service program name Input Char(20)

2 Export Name Input Char(*)

3 Return Vaue Format Input Binary(4)

4 Parameter Formats Input Array(*) of
Binary(4)

5 Number of Parameters Input Binary(4)

6 Error code /0 CHAR(*)

Optional Parameters:

7 ReturnVaue Output Char(*)
8 Parameterl /0 Char(*)
9 Parameter 2 /10 Char(*)
10 Parameter 3 /0 Char(*)
11 Parameter 4 /0 Char(*)
12 Parameter 5 /10 Char(*)
13 Parameter 6 /0 Char(*)
14 Parameter 7 /0 Char(*)

Default Public Authority: * USE

Threadsafe: No

The Call Service Program Procedure (QZRUCL SP) API allows an unbound call to an ILE procedure
exported by a service program.

The name of the service program, and the name of the exported procedure are passed in as parameters. This
API runsin the callers activation group and if the specified service program also specifiesthat it run in the
caller's activation group, it too will run in the same group. All dependent service programs are activated,
and al initialization of the newly activated service programsis done.

Since the QZRUCL SP API has no way of determining the parameters that the called procedure expects, the
layout of those parameters must be described by the caller in a"Parameter Format" array.

All of the parameter values given to this APl to be subsequently passed to the procedure are passed by
reference.

This API does not support calling procedures that have been defined using "#pragma argopt".

Authorities and Locks

Service Program Authority
*EXECUTE

Service Program Library Authority
*EXECUTE

Service Program Lock
*SHRRD

Required Parameter Group
Qualified service program name
INPUT; CHAR(20)

The name of the service program for which the information isto be listed. The first 10 characters
contain the service program name. The second 10 characters contain the name of the library where
the service program is located.

The library name can be these special values.
*CURLIB Thejab's current library
*LIBL Thelibrary list

Export name
INPUT; CHAR(*)

A null terminated string containing the name of the exported identifier. The name is matched
exactly, without CCSID conversion or folding to uppercase.

Return Value Format
INPUT; BINARY (4)

The format of the returned data.
This value must be one of the following:
0 The procedure does not return avalue. The "Return Value' parameter isignored.

1 The procedure returns an integer. The "Return Value" parameter should address a location to
receive aBINARY (4) value.

2 The procedure returns apointer. The "Return Vaue" parameter should address a location to
receive a 16 byte pointer.

3 Theprocedure returns an integer and the "errno” return value set by many program calls. The
"Return Vaue" parameter should address alocation to receive two BINARY (4) values. The
first isthe four byte return value, and the second is the four byte errno value.

Parameter Formats

INPUT; ARRAY (*) of BINARY (4)

The format of the parameters. This length of this array is specified in the "Number of parameters"
value.

Each array entry should be one of the following:
1 The parameter isaBINARY (4) argument to be passed to the procedure by value.

2 The parameter is a pointer value.

Number of parameters
INPUT; BINARY (4)
The number of parameters that will be passed to the procedure. Up to seven parameters are
supported.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameters

Return value
OUTPUT; CHAR(*)
For procedures that return avalue, this parameter points to the space to receive the data.
If this parameter is not passed, or is passed using a null pointer, no value is returned regardless of
the value of the "Return value format" parameter.
Parameter 1
1/0; CHAR(*)
The first parameter passed to the procedure. If the corresponding entry in the parameter format

array isal, this parameter should address a BINARY (4) value. If the corresponding entry in the
parameter format array is a 2, this parameter should address the storage being referenced.

If the parameter format array indicates that a parameter should be passed to the exported procedure
in this position, but Parameter 1 is not passed to the QZRUCL SP API, then zero or anull pointer,
depending on the parameter format array entry, is passed to the procedure.

Parameter 2
I/0; CHAR(*)
The second parameter passed to the procedure. If the corresponding entry in the parameter format

array isal, this parameter should address a BINARY (4) value. If the corresponding entry in the
parameter format array isa 2, this parameter should address the storage being referenced.

If the parameter format array indicates that a parameter should be passed to the exported procedure
in this position, but Parameter 2 is not passed to the QZRUCL SP API, then zero or anull pointer,

depending on the parameter format array entry, is passed to the procedure.
Parameter 3
1/0; CHAR(*)

The third parameter passed to the procedure. If the corresponding entry in the parameter format
array isal, this parameter should address a BINARY (4) value. If the corresponding entry in the
parameter format array isa 2, this parameter should address the storage being referenced.

If the parameter format array indicates that a parameter should be passed to the exported procedure
in this position, but Parameter 3 is not passed to the QZRUCL SP API, then zero or anull pointer,
depending on the parameter format array entry, is passed to the procedure.

Parameter 4
1/0; CHAR(*)

The fourth parameter passed to the procedure. If the corresponding entry in the parameter format
array isal, this parameter should address a BINARY (4) vaue. If the corresponding entry in the
parameter format array isa 2, this parameter should address the storage being referenced.

If the parameter format array indicates that a parameter should be passed to the exported procedure
in this position, but Parameter 4 is not passed to the QZRUCL SP API, then zero or anull pointer,
depending on the parameter format array entry, is passed to the procedure.

Parameter 5
1/0; CHAR(*)

The fifth parameter passed to the procedure. If the corresponding entry in the parameter format
array isal, this parameter should address a BINARY (4) vaue. If the corresponding entry in the
parameter format array is a 2, this parameter should address the storage being referenced.

If the parameter format array indicates that a parameter should be passed to the exported procedure
in this position, but Parameter 5 is not passed to the QZRUCL SP API, then zero or anull pointer,
depending on the parameter format array entry, is passed to the procedure.

Parameter 6
1/0; CHAR(*)

The sixth parameter passed to the procedure. If the corresponding entry in the parameter format
array isal, this parameter should address a BINARY (4) value. If the corresponding entry in the
parameter format array isa 2, this parameter should address the storage being referenced.

If the parameter format array indicates that a parameter should be passed to the exported procedure
in this position, but Parameter 6 is not passed to the QZRUCL SP API, then zero or anull pointer,
depending on the parameter format array entry, is passed to the procedure.

Parameter 7
1/0; CHAR(*)
The seventh parameter passed to the procedure. If the corresponding entry in the parameter format

array isal, this parameter should address a BINARY (4) value. If the corresponding entry in the
parameter format array isa 2, this parameter should address the storage being referenced.

If the parameter format array indicates that a parameter should be passed to the exported procedure
in this position, but Parameter 7 is not passed to the QZRUCL SP API, then zero or anull pointer,
depending on the parameter format array entry, is passed to the procedure.

Usage Notes

Since this API isimplemented as a program, it adds an additional control boundary between the caller and
the service program procedure.

Any exceptions generated by the service program procedure are either returned in the error code structure,

if provided, or resignalled to the caller.

Error Messages

Message I D Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C1D E Length specified in parameter & 1 not valid.

CPF3CLEE Required parameter & 1 omitted.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3A E Vaue for parameter &2 for API &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1lE Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

MCH3402 E The argument being tested is not an address.

MCH4421 E At least onefield in the allocation strategy is not valid.

MCH4422 E &1 cannot be called in the default activation group.

MCH4430 E The exit priority value provided for &1 is not valid.
Example

The following is an example of a program calling the QpOlGetAttr() API. That API takes the following

parameters:

int QO GetAttr

(Qg_Path_Name_ T
Ol _AttrTypes_List _t

*Pat h_Nane,
*Attr_Array_ptr,

char *Buf fer_ptr,

ui nt Buf fer _Si ze Provi ded,

ui nt *Buf fer _Si ze Needed ptr,
ui nt *Num Byt es_Returned ptr,

ui nt Fol I ow_Sym nk, ...);

The procedure returns an integer, and its parameters are pointer, pointer, pointer, integer, pointer, pointer,
integer. The parameter format array for calling this procedureis 2,2, 2,1, 2, 2, 1.

#i ncl ude <QZRUCLSP. H>

int main(int argc, char **argv)

{

int rc; /[* return code */

struct {
Qg_Path_Narme_T | g;
char *pat h;

} Inane; /* the path nane paraneter */

int attrreq[2]; [/* the attributes requested */

char buffer[32]; /* returned information */

i nt needed; / * bytes needed */

i nt returned; /* bytes returned */

int parmformat[7] = {2, 2, 2, 1, 2, 2, 1};

QZRUCLSP(" QPOLLI B2 @SYS ", |* SRVPGM * [
"QOl Get Attr", /* Procedure */
1, /* Return integer */
par m f or mat, /* parmformats */
7, /* Seven parns */
NULL, /* error code */
&rc, /* return val ue */
&l pat h, / * pointer */
attrreq, / * pointer */
buf f er, / * pointer */
si zeof (buffer), /* integer */
&needed, / * pointer */
&r et ur ned, / * pointer */
0); /* integer */

}

API Introduced: V4R4

Top | Program and CL. Command APIs | APIs by category

Check Command Syntax (QCMDCHK) API

Required Parameter Group:

1 Command string 1/0 Char(*)
2 Length of command string Input Packed(15,5)

Optional Parameter:
3 IGC process control Input Char(3)

Default Public Authority: *USE

Threadsafe: Yes.
See Usage Notes for command considerations.

The Check Command Syntax (QCMDCHK) API performs syntax checking for a single command, and
optionally prompts for the command. The command is not run. If prompting is requested, the command
string is returned to the calling program with the updated val ues as entered through prompting. The
QCMDCHK API can be called from an HLL program.
Typical uses of QCMDCHK are:

» Prompt the user for acommand and then store the command for later processing.

« Determine the parameter values specified by the user.

« Log the processed command. First, prompt with the QCMDCHK API, run with the Execute
Command (QCMDEXC) API, and then log the processed command.

1. Command stringsin System/38 syntax can use the QCACHECK API. The QCACHECK API
accepts the same parameters as QCMDEXC and QCMDCHK.

2. The Process Commands (QCAPCMD) API aso provides similar functions.

Authorities and Locks

Any Command
*USE

Required Parameter Group

Command string
I/O;CHAR(*)

The command you want to check is entered as a character string. If the command contains blanks, it
must be enclosed in apostrophes. The maximum length of the character string is 32,702 characters;
delimiters (the apostrophes enclosing the string) are not counted as part of the string.

L ength of command string
INPUT;PACKED(15,5)

The length of the command string being passed. If the command string is passed as a quoted string,
the command length is exactly the length of the quoted string. If the command string is passed in a
variable, the command length is the length of the variable.

Optional Parameter Group
| GC process control
INPUT;CHAR(*)

The IGC process control instructs the system to accept double-byte data. The only val ue supported
isIGC. IGC must be entered using all uppercase letters.

Usage Notes

While this API isthreadsafe, it should not be used to run acommand that is not threadsafe in ajob that has
multiple threads. Use the Display Command (DSPCMD) command to determine whether acommand is
threadsafe.

Error Messages

Message | D Error Message Text

CPF0005 E Returned command string exceeds variable provided length.

CPF0006 E Errors occurred in command.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

xxxnnnn E Any escape message issued by any command may be returned. The messages listed
previously are those issued by this API. Once the API has called the command
analyzer, any message issued as an escape message may appear.

APl in existance prior to V1IR3

Top | Program and CL Command APIs | APIs by category

Create Program (QPRCRTPG) API

Required Parameter Group:

1 Intermediate representation of the program Input Char(*)

2 Length of intermediate representation of Input Binary(4)
program

3 Qualified program name Input Char(20)

4 Program text Input Char(50)

5 Qualified source file name Input Char(20)

6 Source file member information Input Char(10)

7 Source file last changed date and time Input Char(13)
information

8 Qualified printer file name Input Char(20)

9 Starting page number Input Binary(4)

10 Public authority Input Char(10)

11 Option template Input Char(*)

12 Number of option template entries Input Binary(4)

Optional Parameter:
13 Error code /0 Char(*)

Default Public Authority: * USE

Threadsafe: No

The Create Program (QPRCRTPG) API converts the symbolic representation of a machine interface (M)
program into an OPM program object. This symbolic representation is known as the intermediate
representation of a program.

The QPRCRTPG API creates a program object that resides in the * USER domain and runsin the * USER
state. If you want the program object to be temporary, you must do one of the following:
« Delete the object when you no longer need it.
« Create the object in the QTEMP library, and let the system del ete the object automatically when the
job ends.
Y ou can specify program objects created with the QPRCRTPG API in CL commands that process objects
of type * PGM. For example, you can:

» Save and restore program objects using the Save Object (SAVOBJ) and Restore Object (RSTOBJ)
commands.

« Delete program objects using the Delete Program (DLTPGM) command.

» Run program objects using the Call (CALL) command.

« Rename program objects using the Rename Object (RNMOBJ) command.

« Move program objects to a different library using the Move Object (MOV OBJ) command.

Note: MI instructions that reference system-domain or write-protected objects fail at security levels 40 and
50. At those levels, you must use APIs to work with the objects.

Authorities and Locks

Program Authority
*ALL. Required only if the program already exists and the option value * REPLACE is specified.

Program Library Authority
*CHANGE

Printer File Authority
*USE

Printer File Library Authority
*USE

Source File Authority
*USE

Source File Library Authority
*USE

Required Parameter Group

I ntermediate representation of the program
INPUT; CHAR(*)

A string containing the intermediate representation of the program to be processed by the
QPRCRTPG API. See Program Syntax.

Length of intermediate representation of program
INPUT; BINARY (4)

The size, in bytes, of the intermediate representation of the program.
Qualified program name
INPUT; CHAR(20)
The name and library of the program to be created or replaced. The first 10 characters contain the

program name, and the second 10 characters contain the name of the library where the program is
located. The special value * CURLIB may be used for the library name.

Program text
INPUT; CHAR(50)

Text that briefly describes the program.
Qualified sourcefile name
INPUT; CHAR(20)

The name and library containing the source program. The first 10 characters contain the source file
name, and the second 10 characters contain the name of the library where the fileislocated. This

places the value in the program object's service description. The special value * NONE may be used
for the source file name. If you specify * NONE, no source file information is placed in the program
object's service description. A special value, such as*LIBL, isnot valid for the sourcefile library.

Sour ce file member infor mation
INPUT; CHAR(10)

The file member containing the source program. This places the value in the program object's
service description.

This value must be blanks if you specify * NONE as the sour ce file name.
Sour cefile last changed date and time infor mation
INPUT; CHAR(13)

The date and time the member of the source file was last updated. The format of thisfield isin the
CYYMMDDHHMMSS format, where:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year
MM Month
DD Day
HH Hour
MM Minute
SS Second

This places the value in the program object's service description.

This value must be blank if you specify *NONE for the source file name parameter.
Qualified printer file name
INPUT; CHAR(20)
The name and library containing the printer file used to generate listings. Thefirst 10 characters

contain the printer file name, and the second 10 characters contain the name of the library where
thefileislocated. The only special values supported for the library name are *LIBL and * CURLIB.

Thisvalueisignored if you specify *NOLIST for the generate listing option (see Values for the
Option Template Parameter).

Starting page number
INPUT; BINARY (4)

Thefirst page number to be used on listings. This value should be between 1 and 9999; otherwise,
the APl uses 1.

Thisvalueisignored if you specify *NOLIST for the generate listing option (see Values for the
Option Template Parameter).

Public authority
INPUT; CHAR(10)

The authority you give the users who do not have specific private authorities to the object, and
where the user's group has no specific authority to the object.

The values allowed are:
*CHANGE
*ALL
*USE
*EXCLUDE

The name of an authorization list

Option template
INPUT; CHAR(*)

Thisisan array of options. Y ou can specify between 0 and 16 values. Each entry contains a
CHAR(11) value as described in Values for the Option Template Parameter.

Number of option template entries
INPUT; BINARY (4)

The number of option template entries.

The value must be between 0 and 16.

Optional Parameter

Error code
1/0; CHAR(*)
The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Values for the Option Template Parameter

When you are using the QPRCRTPG API, you can specify avaluein the option template. Only one value
per option should be specified. If you specify more than one, the system only usesthe first one. If you
specify no value for a given option, the system uses the default value (underlined).

Create program object
Creates a program object.

The values dlowed are;

*GEN Generates a program and places the program in the appropriate library.

*NOGEN No program is generated. The syntax of the intermediate representation of the
program is checked, and if the generate listing option is*LIST, alisting is produced.

Replace program

Replaces the existing program if a program by the same name already exists in the specified
library.

The values allowed are:

*NOREPLACE Does not replace an existing program by the same name in the specified
library.

*REPLACE Replaces the existing program by moving it to the QRPLOBJ library.

Generatelisting
Generates an output listing.

Thevaues alowed are:
*NOLIST Does not generate alisting.
*LIST Generates alisting.

Y ou must specify the following parameters:
o Printer file name and library
o Starting page number

Createcross-referencelisting
Whether thelisting isto contain a cross-reference list of variable and data item references.

The values allowed are:
*NOXREF Does not create cross-reference listing.

* XREF Creates a cross-reference listing of references to variables, labels, or both.

Create summary listing
Whether the listing isto contain alist of program attributes.

The values allowed are:
*NOATR Does not create a summary listing section.

*ATR Creates a summary listing section.

User profile

The values alowed are:

*USER The user profile of the user running the program is used as a source of authority
when this program runs.

*ADOPT When the program runs, the object authority of both the program's owner and user
are used.

*OWNER The system uses the user profile of the owner of the program as a source of authority
when this program runs. Programs called by this program adopt this authority.

Use adopted authority

Whether the system uses the program-adopted authority from the calling programs as a source of
authority when this program is running. The user must be authorized to create programs with
adopted authority for the* ADPAUT option to take effect.

The values dlowed are;

*ADPAUT

The system uses program-adopted authority from the calling program.

*NOADPAUT The system does not use program-adopted authority from the calling program.

Note: Authorization to create programs which can adopt authority is controlled by the
QUSEADPAUT system value. For more information, refer to the description of this system value

in the Work M anaqement@ book on the V5R1 Supplemental Manuals Web site.

Constrain arrays

The values dlowed are;

*SUBCR

*NOSUBSCR

*UNCON

Constrains arrays. This requests additional run-time checks to ensure that
referencesto array elements are not outside the bounds of the declare statement.
This option causes the resulting program to run slower.

Does not constrain arrays. The results of references to array elements outside the
bounds of the declare statement are not defined.

Allows fully unconstrained arrays. This ensures that references to array elements
outside the bounds of the declare statement act asif the array element actually
exists.

Note: This program attribute may be changed at run-time using the Override Program Attributes
(OVRPGATR) Ml instruction.

Constrain strings

The values dllowed are:

*SUBSTR

*NOSUBSTR

Constrains strings. This requests additional run-time checksto ensure that
references to character strings are not outside the bounds of the declare
statement. This option causes the resulting program to run slower.

Does not constrain strings. The results of substring references outside the bounds
of the declare statement are not defined.

Note: Y ou can change this program attribute at run-time using the Override Program Attributes
(OVRPGATR) Ml instruction.

Initialize static storage

Static storage is allocated the first time a program is called. It remains allocated until explicitly
deallocated.

The values dlowed are:

*CLRPSSA Initializes static storage. This code clears the program static storage area
(PSSA) on entry using the Call External (CALLX) MI instruction.

*NOCLRPSSA Does not initidize the PSSA.

Initialize automatic storage

Automatic storage is allocated each time a program runs and automatically deallocated when no
longer needed.

The values allowed are:

*CLRPASA Initializes automatic storage. This code clears the program automatic storage
area (PASA) on entry using the Call External (CALLX) MI instruction.

*NOCLRPASA Does not initialize the PASA.

Ignoredecimal dataerrors
Whether errors found in decimal data result in exceptions.

The values allowed are:
*NOIGNDEC Does hot ignore decimal data errors.

When you specify * NOIGNDEC, decimal values used in numeric operations are
checked for valid decimal digits and sign codes. If the system finds an error, it
signals an exception.

*|GNDEC Ignores data decimal errors.

When you specify *IGNDEC, decimal values used in numeric operations ensure
they contain valid decimal digit and sign codes. However, the system treats
digitsthat are not valid as zeros and signs that are not valid as positive signs.
There is no exception signaled.

This option appliesto only a subset of the numeric operations you specify.

Note: In all cases, the system signals decimal data errorsif you use data pointers to address any of
the instruction's operands.

The following list contains the M| instructions this option affects:

Packed Source |Zoned Source
Operands Operands
M1 Instruction |Supported Supported Notes
|ADDN | | X |
|ICMPNV | | X |
CVTCN X X Y ou must specify operand 3
(the numeric view to be used
for operand 2) as a constant
and no data-pointer-defined
operands.
CVTDFFP X |
CVTNC X X Y ou must specify operand 3
(the numeric view to be used
for operand 1) as a constant
and no data-pointer-defined
operands.
CPYNV X X Y ou must specify no
data-pointer-defined operands.
bV | x|
IDIVREM | | X |
EDIT X Y ou must specify no
data-pointer-defined operands.
|EXTRM AG | | X |
IMULT | | X |
INEG | X
[REM | x|
|SCALE | | X |
SUBN | X
When you specify *IGNDEC, the system may still signal the decimal data exception. That is, other

MI instructions and instruction combinations not listed above may signal the decimal data
exception when the system finds decimal data that is bad.

Ignorebinary data size

errors

The values alowed are:

*NOIGNBIN

*IGNBIN

The system handles binary data size errors normally. When a binary size error
occurs, an exception is signaled and the receiver contains the | eft-truncated
result.

The system ignores binary data size errors. Thisis used when an overflow or
underflow occurs on a computation and when a control M1 instruction has a
receiver that isabinary field. The receiver contains the left-truncated result.

Support coincident operands

The system overlaps coincident operands between the source and receiver operandsin one or more
program instructions. Coincident operands are operands that overlap physicaly, in storage.

The values allowed are:

*NOOVERLAP Does not support coincident operands. If you specify *NOOVERLAP, you

guarantee that coincident operand overlap will not occur while running the
instruction. Therefore, the system can use the receiver on an instruction as a
work area during operations performed to produce the final result. Using the
receiver as awork area does not use as much processor resource as would be
required to move the final result from an internal work areato the receiver.

*OVERLAP Supports coincident operands. If you specify * OVERLAP, the operands on an

Thefoll
[}
0

O

MI instruction may overlap. Therefore, the system cannot use the receiver on
an ingtruction as awork area during operations that produce the final resuilt.
This can require more processor resource for running the instruction but it
ensures valid results if an overlap occurs.

owing isalist of instructions this option affects:
Add logical character (ADDLC)

Add numeric (ADDN)

And (AND)

Compute math function using one input value (CMF1)
Concatenate (CAT)

Convert character to numeric (CVTCN)

Convert decimal form to floating-point (CVTDFFP)
Convert external form to numeric value (CVTEFN)
Convert floating-point to decimal form (CVTFPDF)
Convert numeric to character (CVTNC)

Copy bytesleft adjusted with pad (CPYBLAP)
Copy bytesright adjusted with pad (CPY BRAP)
Divide (DIV)

Divide with remainder (DIVREM)

Exclusive or (XOR)

Multiply (MULT)

Or (OR)

Remainder (REM)

Scale (SCALE)

Subtract logical character (SUBLC)

Subtract numeric (SUBN)

Trim length (TRIML)

Allow duplicate declares
The values allowed are:

*NODUP Thisdoes not allow a program object to be declared more than once. This requests

*DUP

that duplicate declare (DCL) statements be diagnosed as errors.

This allows a program abject to be declared more than once. This requests that
program objects declared more than once be pooled and not be diagnosed as errors.

Optimize

The values dlowed are:

*OPT

*NOOPT

BTarget release

This optimizes the program. In most instances, this produces the smallest and best
running program. Occasionally, the source program may signal a MCH2802 escape
message during processing. If this occurs, you should not optimize the program.

This does not optimize the program. This requests the normal level code
optimization when you create the program.

The release of the operating system on which you intend to use the object being created. Y ou can
use the object on a system with the specified release or with any subsequent release of the operating
system installed.

The values dlowed are;

*CURRENT Theobject isto be used on the release of the operating system currently running

*PRV

on your system.

The abject isto be used on the previous release with modification level 0 of the
operating system.

target-release Specify therelease in the format VXRXMX.

&

Error Messages

Message I D
CPD0078 D
CPF2143 E
CPF2144 E
CPF2146 E
CPF2283 E
CPF223B D
CPF223E E
CPF3CF1 E
CPF3C35E

Error Message Text

Vaue &3 for parameter not avalid name.

Cannot allocate object &1 in &2 type * & 3.

Not authorized to &1 in &2 type *& 3.

Owner of object &1 and object being replaced not the same.

Authorization list & 1 does not exist.

&1in &2 type*& 3 adopted authority from previous call levels was set to *NO.
Authority check for use adopted authority attribute failed.

Error code parameter not valid.

Value & 3 for parameter &2 not avalid name.

CPF3C5A E
CPF3CSB E
CPF3C5C E
CPF3C5D E
CPF3C5F E
CPF3C50 E

CPF3C56 E
CPF3C60 E
CPF3C61 E
CPF3C62 E
CPF3C63 E
CPF3C64 E
CPF3C90 E
CPF6301 E

CPF6303 E
CPF6304 E
CPF6306 E
CPF6307 E
CPF6308 E
CPF6309 E
CPF6455 E
CPF6457 E
CPF6551 E

Number of option template entriesis not valid.
Option template entry is not valid.

Source file name and library is not valid.
Source file member is not valid.

Internal Representation of Program (IRP) string length parameter is not valid.

Program & 1 not created.
CPD0078 D Vaue &3 for parameter not avalid name.
CPD3C50D Vaue &1 for the IRG string length parameter was not valid.
CPD3C52D Number of option template entriesis not valid.
CPD3C53D Option template entry is not valid.
CPD3C54 D Sourcefile name and library isnot valid.
CPD3C55D Source file member isnot valid.
CPD3C56 D Sourcefilelast changed date and timeis not valid.

Source file last changed date and timeis not valid.
Program name and library is not valid.

Authority isnot valid.

Source file library specified.

Source file member specified.

Source file last changed date and time specified.

Literal value cannot be changed.

Intermediate representation of program (IRP) contains & 1 errors. Probable compiler

error.

Message & 1, & 2 received while running create program command.
Library &1 not found.

Program &1 inlibrary & 2 already exists.

Program template value at offset & 1, bit &2, length & 3 not valid.
Not authorized to create program.

Not authorized to library & 1.

Member &2 file &1 in library &3 not found.

Cannot allocate library & 1 for program insertion.

Work space & 2 cannot be extended. Probable compiler error.

CPF6552 E
CPF6553 E
CPF6554 E
CPF6555 E

CPF6557 E
CPF6560 E
CPF6561 E
CPF6563 E
CPF6564 E
CPF6565 E
CPF9872 E

Space & 2 type & 3 subtype &4 not PRM workspace.
PRM permanent table resolution failed. Probable compiler error.
Type of IST object &4 at offset & 3 not valid. Probable PRM error.

Addressability field type not valid for IST number &4 at offset & 3. Probable PRM
error.

Error condition for IST &4 at &3 of IST space not valid. Probable PRM error.
Operation code &5 in Ml instruction &3 at offset &6 not found in QPRODT.
Operand &4 in &3 at offset &5 in program template not valid.

Program was too large to be created.

Machine storage limit violation.

User profile storage limit exceeded.

Program or service program &1 in library &2 ended. Reason code & 3.

Program Attributes

The QPRCRTPG API creates programs that have the following attributes:

« An associated space of 480 bytesinitialized to hexadecimal 00. Y ou can use the QCLSPGAS API
to store information in the program'’s associated space.

o Observability.
« A blank extended attribute.

Program Syntax

A program object consists of an instruction stream and an object definition table (ODT). The
intermediate representation of a program defines both of these components. It consists of one or more

statements:

Label —|£ Declare Statement

PEND ; —Jm

Instruction Statement —
Lrirective Statement ——

Instruction statements define M1 instructions placed in the instruction stream. Declare statements define
program objects placed in the ODT. Directive statements:

« Control the formatting of the output listing.
« Define entry-point program objects.

» Define symbolic breakpoints.

« Specify the end of the program.

The following sections explain how to define these statements.

Note: In the diagrams below, names that begin with an uppercase letter identify values specified in another
diagram. Names that begin with alowercase letter identify values defined in the table below the diagram.

Label

The following diagram and table show the possible |abels:

> -

|— namel
4]

Each name specified in the label generates a branch-point program object corresponding to the next M
instruction.

|Constant |Range |Description
Inamel |Any |Label name for next instruction

Declare Statement

Declare statements define program data objects. All the declare statements in a program build the object
definition table (ODT).

Y ou cannot specifically declare branch and entry-point program objects. However, you can declare
branch-point program objects using labels. Y ou can also declare entry-point program objects using the
entry directive statement.
The types of declare statements follow:

o Scalar Data Object Declare Statement

« Pointer Data Object Declare Statement

« Space Pointer Machine Object Declare Statement

« Operand List Declare Statement

« Instruction Definition List Declare Statement

« Exception Description Declare Statement

« Space Object Declare Statement

« Constant Object Declare Statement

Scalar-Data-Object Declare Statement

The following diagram and table show the scalar-data-object declare statement:

P—DCL DD Ohject Mame
J L Array Attribute- L Scalar Type- >

> >

L Addressability- L Scope! LBoundary L P osition-

L Array Element Offsetd L Optimization L initial walue!

Only certain combinations of attributes are allowed based on the data object's addressability. The table
below shows these combinations.

Array

Array Element Initial
Address-ability |Attribute Offset Position |Boundary |Value
STAT | X | | X | | X

| X | | o x | X
AUTO | X | | X | X

| X | | | X | X
DEF | X | | X | X | X

X | ox x| X |
DIR | X | | X | X | X

| X | ox x| X |
[BAS X | | X [X |
|BASPCO | X | | X | X |
|PARM | X | | X

Object Name

The following diagram and table show the possible object names:

p— namsl ——-

|Constant |Range |Description
Inamel |Any |Program object name to be declared

Array Attribute

The following diagram and table show the possible array attributes:

.._l:[integer!) -
[integer? © integerd —

|Constant |Range |Description
integerl |1to 16 776191 Dimension of the data object with an
implied lower bound of 1.
integer2 |-2 147 483 648 to Lower bound of the array.
2 147 483 647

integer3 |integer2 to 2 147 483 647 Upper bound of the array. The
dimension (integer3 - integer2) cannot
exceed 16 776 191.

Example

The following declare statements each define an array of 50 elements. The elements of ARRAY 1 are
numbered 1 to 50. The elements of ARRAY 2 are numbered 0 to 49. Each element of the array isaBIN(2)
field. The addressability of the arraysis static.

DCL DD ARRAY1(50) BIN(2);
DCL DD ARRAY2(0:49) BIN(2);

Scalar Type

The following diagram and tables show the possible data types of scalar items:

b——CHAR [integer!) -
— BIMN [integer?)
e T yseND
— irt 3
| g;}g]—[l ORI ,iﬂtegem—l

— FLT {integera)

If you specify no value, the system uses BIN(2).

|Keyword |Description

ICHAR [Scalar typeisa character string.

IBIN |Scalar typeis binary.

UNSGND |Scalar typeis unsigned binary. If you do not specify this value, the
scalar typeis signed binary.

|PKD |Scalar type is packed decimal.

|ZND |Scalar type is zoned decimal.

IFLT |Scalar type s floating-point.

|Constant |Range |Description

integerl |Seedescription. [Length in bytes of the character data object. If the data
object isan array, the rangeis 1to 32 767. Otherwise,
therangeis1to 16 776 191.

linteger2 |2 or 4 |Length in bytes of the binary data object.

linteger3 |1to31 |Total digitsin the data object.

integer4 [Otointeger3 [Number of digitsto the right of the assumed decimal
point in the data object.

linteger5 |4 or 8 |Precision in bytes of the data object.

Addressability

The following diagram and tables show the possible addressabilities:

—— STAT >
— ALITO
— DIE
L [narme1 :IJ
— DEF [name)
— BAS names3
(T : !

— BASFCO
— PARM

|Keyword |Description

ISTAT |Addressability typeis direct static.

JAUTO |Addressability type s direct automatic.

’DI R Addressability typeis defined. See Using Space Objects for more

information.
|DEF |Addressability type is direct on the previous space.
IBAS |Addressability type is based.

* |Object does not have explicit basing object.
’BASPCO Addressability type is based on process communication object space
pointer.

IPARM |Addressability typeis a parameter.

|Constant [Range |Description

Inamel |Any |Space object name

Iname2 |Any |Scalar dataobject name or pointer data object name
Iname3 |Any |Pointer data object name or space pointer object name

If you specify no value, the system uses STAT.

Scope

Scope refersto the ability to export avariable so that other programs can accessit. The following diagram
and table show the possible scopes:

’_E :EN}{TT

|Keyword |Description
INT |Data object is not externally accessible

|EXT |Data object is externally accessible

If you specify no value, the system uses INT.

Boundary

The following diagram and table show the possible boundaries:

r—— BLCRY { integer]) ——™

|Constant |Range |Description
lintegerl 11,2,4,8,16 |Data object boundary
Position

The following diagram and table show the possible positions:

b— FOS [integer!) ——»

|Constant |Range |Description
lintegerl |1t0 16 776 191 |Data object position
Example

The following declare statements show how POS can be used along with DEF to access the same storage
spacein different ways:

DCL DD DATETI ME CHAR(12);
DCL DD DATE CHAR(6) DEF(DATETI ME);
DCL DD TI ME CHAR(6) DEF(DATETI ME) POS(7);

DATETIME represents a 12 character time and date stamp. The first 6 characters contain the date and the
second 6 characters contain the time.

Array Element Offset

The following diagram and table show the possible array element offsets:

— AFEC [integer]) —»

|Constant |Range |Description
lintegerl |1to 32767 |Array element offset
Example

The following example shows AEO used in conjunction with DEF and POS;

DCL DD X CHAR(16);
DCL DD LFT(4) BIN(2) DEF(X) AEQ(4) POS(1);
DCL DD RGT(4) BIN(2) DEF(X) AEQ(4) POS(3);

Both LFT and RGT redefine the storage declared by X. Because the size of each array element is smaller
than the array element offset, there are 2-byte gaps between each array element:

LFT {1} LFT i) LFT {3} LFT {4}

RGT (1) RGT (2] RGT (3) RGT (4)

Optimization

Optimization determines whether or not an item can be moved to aregister and stored there over time. The
following diagram shows the possible optimization:

— AEN —

This value indicates that the data object contains an abnormal value. Y ou cannot optimize the value for
more than a single reference because the value may be changed in a manner that the QPRCRTPG API
cannot detect.

Initial Value

The following diagram and table show each possibleinitial value:

g

INIT -

o fintegert) L {integerz j -

string

packed

20ned
float

intecars

|Constant |Range |Description
integerl (1to16 776 191 Position of elementsin a character
string
lintegerl |-2 147 483 648 to 2 147 483 647 |Position of elementsin an array
integer2 |1to 16 776 191 Replication factor in a character string
or array
integer3 |Any Initial value for signed and unsigned
binary data objects
stringl |Any Initial value for character string data
objects
packedl |Any Initial value for packed decimal data
objects
zonedl |Any Initial value for zoned decimal data
objects
floatl Any Initial value for floating-point data
objects
Example

The following declare statement declares and initializes a 10-element array:

DCL DD IV(10) BIN(2) STAT INIT((1)10,*(2)(2)11,*(4)(3)12,*(7)(4)13);

There are four initial value elements. The following table describes this function:

Initial Value Replication
Element Result Position Factor Initial value
|(1)1O |IV(1)=1O |1 (default) |1 |1O
*(2)(2)11 2 2 11
IV(2)=11
IV(3)=11
*(A(3)12 4 3 12
I'V(4)=12
I V(5) =12
I V(6)=12

*(7)(4)13 7 4 13
V(7) =13
V(8) =13
V(9) =13

|
|
|
| V(10) =13

Pointer-Data-Object Declare Statement

The following diagram and table show the pointer-data-object declare statement:

B— DCL Pointer Type Object Narme
vpe 0 Chrray Ainbde T ™

-

L sddressability— & Position = & Aray Element Offset - o

> TC T ;— ™

- QpEtimization Initial Value

The system only allows certain combinations of attributes based on the data object's addressability. These
combinations are listed as follows:

Array
Element
Array Offset Position Initial Value
Address-ability |Attribute Attribute Attribute Attribute
ISTAT | X | | X | X
|AUTO | X | | X | X
DEF | X | X | X |
| | X] X
DIR | X | X | X |
| | X] X
[BAS X | X |
|BASPCO | X | | X |
|PARM | X | | |

Pointer Type

The following diagram and table show the possible pointer types:

FTR

INSFTH

SPCFTH

OTAFTE

=SPTR
|Keyword |Description
IPTR |Pointer type is not specified.
INSPTR |Pointer type is the instruction pointer.
|SPCPTR |Pointer type is the space pointer.
IDTAPTR |Pointer type is the data pointer.
ISYSPTR |Pointer type is the system pointer.

If you specify an initial value, you must specify INSPTR, SPCPTR, DTAPTR or SY SPTR.

Array Attribute

The following diagram and table show the possible array attributes:

)—I: { integer!) -
{ Integers ; Integerd) J

|Constant |Range |Description
integerl |1to 1000 000 Dimension of the data object with an
implied lower bound of 1.
integer2 |-2 147 483 648 to Lower bound of the array.
2 147 483 647

integer3 |integer2 to 2 147 483 647 Upper bound of the array. The
dimension (integer3 - integer2) should
not exceed 1 000 000.

Addressability

The following diagram and tables show the possible addressabilities:

e STAT -
- AT

— LR

L { named)

— DEF { nameZ)
— BAS (—[named |)

— BASPCO
— FARN

|Keyword |Description

ISTAT |Addressability type s direct static.

JAUTO |Addressability typeis direct automatic.

DIR Addressability typeis defined. See Using Space Objects for more
information.

|DEF |Addressability type is defined.

IBAS |Addressability type is based.

* |Object does not have explicit basing object.
’BASPCO Addressability type is based on the process communication object space
pointer.

IPARM |Addressability type is parameter.

|Constant |Range |Description

Inamel |Any |Space object name

Iname2 |Any |Scalar dataobject name or the pointer data object name

name3 |Any |Pointer data object name or the space pointer machine object
name

Position

The following diagram and table show the possible positions:

b FOS{ integer!) ——m

|Constant |Range |Description
lintegerl |1t0 16 776 191 |Data object position

Array Element Offset Value

The following diagram and table show the possible array element offset values:

p— AEQ {integer!) ——m=

|Constant |Range |Description
lintegerl |1to 32 767 |Array element offset
Optimization

The following diagram shows the possible optimizations:

b AEN —

Thisvalue indicates that the data object contains an abnormal value. The system cannot optimize avalue
for more than a single reference because the value may be changed in a manner the QPRCRTPG API

cannot find.

Initial Value

The following diagram shows each possibleinitial value:

—NT] Instruction Pointer Inttial Value ——) —m
Space Fointer Initial Value

Cata Fointer Intial Value
Systerm Fointer Initial Value

Aninitia value can only be specified if a pointer-type value other than PTR is specified. The syntax of the
initial value is based on the pointer-type value that was used.

Instruction Pointer Initial Value

The following diagram and table show the possible initial value for the instruction pointer:

p— namsl ——p

|Constant |Range |Description
Inamel |Any |Label name
Example

The following statement declares and initializes an instruction pointer:

LABELI :

DCL | NSPTR | NSTRUCTI ON_PTR | NI T(LABELI) ;

Space Pointer Initial Value

The following diagram and table show theinitial value for the space pointer:

p— namsl ——-

|Constant |Range |Description
Inamel |Any |Scalar data object name or pointer data object name

Example

The following statement declares and initializes a space pointer:

DCL PTR ANY_PO NTER;
DCL SPCPTR SPACE_PTR | NI T(ANY_PO NTER) ;

The pointer SPACE_PTR isinitialized to point to the space location containing ANY_POINTER. It does
not contain the value of ANY_POINTER.

Data Pointer Initial Value

The following diagram and table show the initial value for the data pointer:

— string >
L, PG string? —)
, Integer 1 _
|Constant |Range |Description
|stringl |32 bytes |External data object name
|string2 |30 bytes |Program containing external data object

integerl Oto 255 Subtype of program
| | |

Example
The following statement declares and initializes a data pointer:

DCL DTAPTR DVALUE | NI T(" DBI NARY", PGM " DPGV')) ;

The pointer DTAPTR refers to the externally defined program object DBINARY contained in program
DPGM.

System Pointer Initial Value

The following diagram and tables show the initial value for the system pointer:

— ctring
T o (sting2 — ! d
, Integer 1 _
g L, TYPE (name- — —)— >
, Integer 2

|Constant |Range |Description
|stringl |1 to 30 bytes |System object
string2 |1 to 30 bytes |Context where the system object is located
lintegerl |0to 255 |Subtype of the context
Inamel |Seetablebelow. [Symbolic type of the system object
linteger2 |0to 255 |Subtype of the system object

The following system object types are supported:

IType |Description

|PGM |Program

ICTX |Context

IQ |Queue

|SPC |Space

|PCS |Process control space
Example

The following statement declares and initializes a system pointer:

DCL SYSPTR SYSTEM PTR I NI T(" MYPGM', CTX(" PGW.I B"), TYPE(PGV)) ;

The pointer SYSTEM_PTR refersto the *PGM object MYPGM in the PGMLIB library.

Space-Pointer-Machine-Object Declare Statement

The following diagram and table show the space-pointer-machine-object declare statement:

p—— DCL MSPPTR Chiect Name —

L INIT { Space Pointer Initial Value) —

> . — ™
L OPT { irtegert)—

|Constant [Range |Description
lintegerl |0 to 255 |Optimization priority value, where 255 is the highest priority

The iSeries system provides two types of pointers that can access data:
« Space Pointers (SPCPTR)
« Machine Space Pointers (MSPPTR)

The MSPPTR has the following restrictions:
o It cannot be passed as a parameter
o It cannot be part of a structure (SPC)
o It cannot be based (BAS(on_some_pointer)) pointer
o Itislogically only automatic (AUTO) in storage scope

Because the MSPPTR has the above restrictions, the translator often assigns the MSPPTR to a hardware
register for the life of the entire program unit. What this meansis that loads may be eliminated from the
generated code.

Operand-List Declare Statement

The following diagram and tables show the operand-list declare statement:

p— DCL OL Object Mame - (-named) —m

t
P—I: ARG ;.
[T :‘ |—['-.-'1IN [Integer jJ

FAFR
—[EXT
|Keyword |Description
IARG | Defines the argument list
|PARM | Defines the parameter list

INT |Aninternal parameter list

|EXT |An external parameter list

|Constant |Range |Description

namel |Any Scalar data object or a pointer data object name. Up to 255
names can be specified.

integerl |0 to 255 [Minimum number of elements that the list can contain. This
implicitly defines a variable-length operand list. If you do not
specify the operand list, the system defines a fixed-length
operand list. Up to 255 names can be specified.

Example

The following statements declare both argument and parameter operand lists along with the associated
argument and parameter data objects:

DD ARGL BI N(2);

DD ARG2 CHAR(3);

OL ARGUMENT LI ST (ARGL, AR®) ARG
DD PARML Bl N(2) PARM

DD PARM2 CHAR(3) PARM

DCL
DCL
DCL
DCL
DCL
DCL OL PARAMETER LI ST (PARML, PARM2) PARM EXT;

A parameter operand list that refers to the data objects has parameter (PARM) addressability.

Instruction-Definition-List Declare Statement

The following diagram and table show the instruction-definition-list declare statement:

p——DCLIDL Object Mame - (- named -)—m

t

|Constant [Range |Description
Inamel |Any |Label name. Up to 255 names can be specified.

Example
The following statements declare and use an instruction definition list:

LABEL1:

DCL I DL | NSTRUCTI ON_LI ST (LABEL1, LABEL2, LABEL3);

LABELZ2:
B I NSTRUCTI ON_LI ST(3); /* Branch to LABEL3 */

LABEL3:

Exception-Description Declare Statement

The following diagram and tables show the exception-description declare statement:

P——DCL EXCR Obhject Mams —

p— EXCID |[— |m@Qer1 ii IHTi‘

EXT
- -
L { namead Jbien o Loy { string }J
— MDD
— SKP —
— RSG —
— DFR —
|Keyword |Description
INT |Exception handler typeistheinternal entry point.
|BP |Exception handler typeistheinternal branch point.

|EXT |Exception handler type is the external entry point.

IGN Exception handling action ignores any exceptions and continues
processing.

IMD Exception handling action passes control to the specified exception
handler. Thisisthe default.

SKP Exception handling action is to continue to search for another exception
description to handle the exception.
RSG Exception handling action continues to search for an exception

description by signaling the exception again to the previous call.

DFR Exception handling action postpones handling and saves exception data
for later exception handling.

|Constant |Range |Description
lintegerl |0to 65535 |Exception identifier
namel |Any Name of the label for branch point exception handlers,

name of the entry point for the internal exception handlers,
and the name of the system pointer for the external
exception handlers

stringl |1 to 32 bytes|Compare value

Space-Object Declare Statement

The following diagram and tables show the space-object declare statement:

p—DCL SPC Object Hame—EBﬂaS I:—l__ﬂari-l—l_jT -

BASPCO

|Keyword |Description

IBAS |Addressability type is based.

* |Object does not have explicit basing object.

’BASPCO Addressability type is based on process communication object space
pointer.

|Constant |Range |Description

Inamel |Any |Basing pointer name for the space

For information on using space objects, refer to Using Space Objects.

Constant-Object Declare Statement

The following diagram and tables show the constant-object declare statement:

p—DCL COMN Object MName —

- -
— CHAR(Integer)
— BIN { infeger2)

|— l_JI“~~JSfi3I*~~JI]'J

— PO (integerd | —
— EHD]_ |— integerﬂlJ
— FLT { integer>)

P——INIT (Data Object Initial Yalue }— ; ——

|Keyword |Description

ICHAR |Scalar type s character string.

IBIN |Scalar type s binary.

|UNSGND |Scalar type is unsigned binary.

|PKD |Scalar type is packed decimal.

|ZND |Scalar type is zoned decimal.

IFLT |Scalar type is floating-point.

|Constant |Range |Description

lintegerl [1t032767 |Lengthin bytesof the character data object
linteger2 [20r4 |Length in bytes of the binary data object
linteger3 |1to31 INumber of decimal digits

linteger4 [Otointeger3 |Number of fractional digits

linteger5 |4 0r8 INumber of bytesin floating-point constant

If you do not specify ascalar type, the system uses BIN(2).

Instruction Statement

An ingtruction statement defines an M| instruction. The instruction stream used to create the program is
made up of all theinstruction statementsin the intermediate representation of the program.

-— 1
e L(—namei]}J g

[
L 'Dperand L {— Targe :|J

|Constant |Range |Description
namel |[See description. |Opcode for thisinstruction, as defined in the iSeries
Machine Interface Instructions.

name2 S R,B,I Thisisthe form of the instruction.

Short
Round

W o O

Branch

Indicator

For the semantic meanings and the syntax restrictions (number and types of operands, optional forms, and
so on) for individual M1 instructions, see the i Series Machine Interface Instructions.

Following the abbreviated instruction name, you can specify the optional forms of certain M| instructions
using a string of characters enclosed in parentheses. The following is an example of some of the various
combinations possible for asingle M1 instruction, ADD NUMERIC:

ADDN A B, C Add nuneric (A=B+C

ADDN(S) A B; Add nurneric short (A=A+B)

ADDN(SR) A, B; Add nureric short and round (A=A+B)

ADDN(SB) A, B/ POS(X), NEX Y) ; Add nurneric short and branch (A=A+B,
branch to X if A>0, branch to Y if A<Q)

ADDN(RI') A B, C/POS(1),NEEJ); Add nuneric round and indicator (A=B+C,

I="on" if AS0; j="on'" if A<O)

Also note that the order of charactersin the optional form string is not significant. Thus, al of the following
instructions are both valid and equivalent:

ADDN(SRB) A, B/ POS(X) ; Add nuneric short, round and branch
ADDN(SBR) A, B/ POS(X) ; Add nuneric short, round and branch
ADDN(RSB) A, B/ POS(X) ; Add nuneric short, round and branch

Operand

The following diagram and table show the possible operands:

Pb— Variakle —Operand -
— integer
— string
— packedi
— zoned]
— floatd

— Relative Branch Target
— &

|Constant [Range |Description

lintegerl |Any [Numeric binary scalar operand

stringl ~ |Any |Character scalar operand

lpackedl [Any |Numeric packed decimal scalar operand

|zonedl |Any |Numeric zoned decimal scalar operand

|floatl |Any |Numeric floating-point scalar operand (4 or 8 bytes)
* | INull operand

Variable Operand

The following diagram and table show the possible variable operands:

| name
L Harmes —rJ L [Inclex

-
u

L.
—l: | e

L, Indexd -
|Constant |Range |Description
Inamel |Any |Data object name to be used as a primary operand.
Iname2 |Any |Pointer data object to be used as the basing pointer.

Indexl [Seedescription. |Subscript or substring start position. The range for array
subscripts is between the lower bound of the array and
the upper bound of the array. The range for substringsis
between 1 and 16 776 191.

lIndex2 |1t032767 |Length of the substring.
Index3 |0to 32767 |Length of the substring (zero allowed).

Relative Branch Target

The following diagram and table show the possible relative branch targets:

- =+ intecier] —m
I B

|Constant [Range |[Description

instruction. Y ou must label the target (named or null 1abel).

integerl ’1 to 4095 |Branch target instruction number relative to the current

Note: Y ou cannot use blanks between either the'

=+

" symbol set and integerl or the'

" symbol set and integerl. However, a blank must precede the symbol sets.

Example

The following instructions illustrate the use of relative branch targets:

CPYNV X, 0;

CVMPBLA(B) A '1'/EQ =+2);

CPYNV X, 1;

CPYNV Y, X; /* Destination of relative branch */

Note: A null label is placed in the destination instruction of the relative branch.

Target

The following diagram and table show the possible targets:

p— named {—[namez i e
[Index] j—

Felative Branch Tamet —

Constant [Range |Description

namel |Seekeyword table. |Keyword for branch or indicator forms. Y ou can use
an N before keywords to negate the condition except
for IGN and DFR. See "Resultant Conditions', under
each M| instruction for the valid values.

name2 |Any Label name, instruction pointer name, or instruction
definition list name for the branch form. The name of
character variable isfor the indicator form.

Indexl [1to255 Instruction definition list index. Y ou can only specify
this value when name2 is the name of an instruction
definition list.

The following table shows the branch and indicator keywords:

|Keyword |Description

|Group 1

HI MXD NOR POSTR ZC High Mixed Normalized Positive Truncated
record Zero and carry

|Group 2

CRDEN IGN LO NEG Complete record Denormalized Exception

NTZNTC RO ignored Low Negative Not-zero and no carry
Receiver overrun

|Group 3

AUTH DFR DQ EQ INF SE Authorized Exception postponed Dequeued

SGN ZER ZNTC Equal Infinity Source all used Signaled Zero
Zero and no carry

|Group 4

EC NAN NTZC UNEQ UNOR |Escape code encountered Not a number (NaN)
Not-zero and carry Unequal Unordered

By adding N to the beginning of the appropriate keyword you can form a not condition. For example, the
code for "not equal" isNEQ.

All conditions coded on a particular instruction must be mutually exclusive. All conditions within a group
are equivalent, and therefore, only one may be specified. For example, POS (positive) and HI (high) cannot
be coded on the same instruction.

The not form of a condition is satisfied by any condition from another group. For example, NEQ (not equal)
is satisfied by HI (high), LO (low), or UNOR (unordered). Therefore, you cannot specify NEQ with any of
the other three. However, you can use NEQ and EQ (or any other keyword in group 3) together because
they are mutually exclusive.

Index

The following diagram and table show the possible indexes:

] -
|: iTﬁEtl;n geer‘l

|Constant [Range |Description
Inamel |See description below. |Binary variable to use as the index
lintegerl | See description below. |Integer value to use as the index

Anindex isanumeric value that qualifies an array or substring reference. The context in which theindex is
used determines the range. For more information, refer to the preceding tables.

Directive Statements

The directive statements are as follows:

« Title Directive Statement

« Space Directive Statement

« Eject Directive Statement

« Break Directive Statement

« Entry Directive Statement

o Reset Directive Statement

« Program End Directive Statement

Title Directive Statement

Thetitle directive statement causes a heading to appear on the listings. Only onetitle directive statement
may be specified in a program. The following diagram and table show the title directive statement:

p—— TITLE stringl— ; —m

|Constant |Range |Description
|stringl |Any | Text of thetitle

Space Directive Statement

The space directive statement causes a blank line to appear in the listing. The following diagram and table
show the space directive statement:

— SFACE |_ ; -

intedger J

|Constant |Range |Description

|i ntegerl |Any |Number of linesto skip

Eject Directive Statement

The gject directive statement causes the next line to appear on a new page. The following diagram shows
the gect directive statement:

b EIECT— ,—

Break Directive Statement

The break directive statement allows symbolic breakpoints to be defined. The following diagram and table
show the break directive statement:

p—— EBRK stringl — ;—m

|Constant |Range |Description
|stringl |Any |Breakpoint name

Entry Directive Statement

The following diagram and tables show the entry directive statement:

— EMNTEY— = —-
—[ﬂammJ |—|[nane2 }Ji:INT

EXT
L ERE. stringd—

|Keyword [Description

INT |Internal entry point.

|EXT |External entry point.

IBRK |Symbolic breakpoint is associated with the entry point.

* Entry point defined has no name or is associated with the next Ml
instruction.

|Constant |Range |Description

Inamel |Any |Entry point name being defined
Iname2 |Any |Parameter list name for this entry point
|string1 |1-10bytes [Breakpoint name

The default scopeisinternal (INT).

The entry statement defines entry point program objects. The next instruction number is associated with this
entry point. The entry statement isto be the definition point for this object, so the ODT number assigned to
this object isthe next available ODT number.

Reset Directive Statement

The following diagram shows the reset directive statement:

p—— RESET name; ———»

The specified nameis a previously declared space object. The reset statement causes subsequent data object
declarations containing the DIR attribute to use the specified space object. The system maintains next byte
counts for each space object; these counts are not affected by the reset statement. For more information, see
Using Space Objects.

Program End Directive Statement

The following diagram shows the program end directive statement:

b FEND— —

This must be the last statement in the program. To ensure comments and strings end before processing the
PEND statement, use the following statement:

[*V [V *"x) PEND; ;

Coding Techniques

This section contains additional information for coding the intermediate representation of a program.

Using Declare Statements

Use the following guidelines when using declare statements:

« A declare statement for data objects defined on another data object must occur after the declare
statement for the data object on which it is defined.

Example: The following sets of declare statements are valid:

DD A CHAR(5);
DD B CHAR(1) DEF(A);

DD A CHAR(5);
DD X BIN(2);
PTR P1 AUTO
DD B CHAR(1) DEF(A);

3papg d8p

Example: The following declare statements are not valid because B is defined on A but is declared
before A:

DCL DD B CHAR(1) DEF(A);
DCL DD A CHAR(5);

Thisrestriction also applies when there is a chain of dependencies.

Example: In the figure below, B is defined on A and C is defined on B:

DCL DD A CHAR(5);
DCL DD B CHAR(3) DEF(A);
DCL DD C CHAR(1) DEF(B);

If any object in achain of definitions, as shown in the previous examples, has an initial value
specified, then the following restrictions apply:

o No object in that chain can have the BAS (based) addressability attribute.

o Thehighest level data object in the chain must be either static or automatic.

o When you initialize the same area twice, the system uses the last value.

Example: The following declare statements are valid because:
o The BAS addressability attribute is not used.
o Dataobject A (implicitly) has the static addressability attribute.

DCL DD A CHAR(5);
DCL DD B CHAR(3) DEF(A) IN T(C YES);
DCL DD C CHAR(1) DEF(B);

« All declare statements for the objects that make up the elements of an operand list must precede the
declare statement for the operand list.

« When adeclare statement for an exception description refers to a system pointer, the declare
statement for the system pointer must precede the DCL for the exception description.

Using Space Objects

Space objects, when used in conjunction with program objects declared with the DIR attribute, provide a
convenient way of declaring structures.

Note: Space objects, as used here, do not refer to OS/400 space objects.

When you declare a space object, a scalar data object with a scalar type of CHAR(32767) is created. This
object contains the structure to be defined. Associated with this object isa"next byte" count. Thisvaueis
initially 1 and represents the position where the next structure element will be placed.

Example: Simple Space Objects

After you declare a space object, you can declare one or more scalar or pointer data objects with an
addressahility attribute of DIR. As aresult, the system automatically declares each object with the DEF and
POS attributes. The name associated with the DEF attribute is the most recently declared space object. The
value associated with the POS attribute is the space object's next byte count. After you declare the object,
the system sets the next byte count associated with the space object to the next available position within the
structure.

The group of declare statements on the left is equivalent to the group on the right:

DCL SPC X BAS(PTR); DCL DD X CHAR(32767) BAS(PTR);
DCL DD A CHAR(2) DIR; DCL DD A CHAR(2) DEF(X) POS(1);
DCL DD B ZNX(5,2) DR DCL DD B ZND(5, 2) DEF(X) POS(3);
DCL DD C FLT(4) DR DCL DD C FLT(4) DEF(X) POS(8);

Example: Explicit Position Values

Data objects declared with DIR may aso have an explicit POS value. The object is defined on the
appropriate space object and uses the specified POS value. However, the next byte count is changed only if
the POS val ue causes the count to increase.

The group of declare statements on the left is equivalent to the group on the right:

SPC X BAS(PTR);

DD A CHAR(4) DR

DD B CHAR(4) POS(20) DIR;
DD C CHAR(4) DI R,
DD D
DD E

DD X CHAR(32767) BAS(PTR);

DD A CHAR(4) DEF(X) POS(1);
DD B CHAR(4) DEF(X) PQOS(20);
DD C CHAR(4) DEF(X) POS(24);
DD D CHAR(4) DEF(X) PQOS(10);
DD E CHAR(4) DEF(X) POS(28);

CHAR(4) POS(10) DIR
CHAR(4) DIR

3papape
3papape

Example: Explicit Boundary Alignment

When you declare objects with an explicit boundary other than 1, the object is positioned on the next
available byte with that boundary. The position of any data object with the direct attribute is the next
available byte in the space if no boundary or position is specified. The position of any pointer object with
the direct attribute is the next available byte in the space if no position is specified. Space objects are
assumed to begin on a 16-byte boundary. Y ou must ensure this condition exists at run-time.

The group of declare statements on the left is equivalent to the group on the right:

DCL SPC X BAS(PTR); DCL DD X CHAR(32767) BAS(PTR);
DCL DD A CHAR(1) DI R DCL DD A CHAR(1) DEF(X) POS(1);
DCL DD B FLT(4) DIR BDRY(4); DCL DD B FLT(4) DEF(X) POS(5);
DCL PTR C DIR, POS(17); DCL PTR C DEF(X) POS(17);

Example: Reset Directive Statement

Y ou can use the reset directive statement to change the name of the space object to be used by subsequent
declare statements.

The group of declare statements on the left is equivalent to the group on the right:

DCL SPCPTR PTR1; DCL SPCPTR PTR1;

DCL SPCPTR PTR2; DCL SPCPTR PTR2;

DCL SPC X BAS(PTR1); DCL DD X CHAR(32767) BAS(PTR1);
DCL DD A CHAR(2) DR DCL DD A CHAR(2) DEF(X) POS(1);
DCL DD B ZNX(5,2) DR, DCL DD B ZND(5, 2) DEF(X) POS(3);
DCL SPC Y BAS(PTR2); DCL DD Y CHAR(32767) BAS(PTR2);
DCL DD C CHAR(5) DR DCL DD C CHAR(5) DEF(Y) POS(1);
DCL DD D CHAR(7) DR DCL DD D CHAR(7) DEF(Y) POS(6);
RESET X;

DCL E CHAR(3) DR DCL DD E CHAR(3) DEF(X) POS(8);
Constants

This section describes the syntax of constant values.

Integer

Integers define signed and unsigned binary scalar data values. The two forms of integers are decimal and
hexadecimal. The decimal form is a sequence of digits optionally preceded by a sign. The hexadecimal
form isastring of hexadecimal digits delimited with apostrophes and preceded by an H. Neither form may
exceed the 4-byte limit on binary numbers. When the value of the integer is between -4095 and +8191, the
QPRCRTPG API converts the integer to an immediate operand where it can.

Example

+123
-1
54788

H OFOD
H 0123
H 5E2D1AB4'

String

Strings define scalar character string data values. The three types of string constants are character form,
hexadecimal form, and Hollerith form.

The character form is adelimited string optionally preceded by a C. Apostrophes or double quotation marks
may be used for this form. The hexadecimal form is a delimited string of hexadecimal digits preceded by an

X. The Hollerith form is a string of bytes preceded by the count of the number of bytesin the string. The
syntax is.

< count | string >

The count in the preceding syntax is the number of charactersin the string. The QPRCRTPG API ensures
that the string contains the right number of characters by checking for the

>

character. No blanks are alowed between

<

and

>

unless they are part of the string. The QPRCRTPG API simply flags the constant asin error if the right
corner bracket does not appear in the correct position.

Example

The following groups of strings are equivalent:

" ABCDE'

C ABCDE'

X CLC2C3CACS
<5| ABCDE>

'TE' ' ST'
"TE' ST"

X' E3C57DE2E3'
<5| TE' ST>

l/*l
X 615C
<2|/*>

Packed

Packed constants define packed decimal scalar data values. Packed constants are a string of decimal digits
delimited with apostrophes. They can have an embedded decimal point and can be preceded by asign. P
must precede the delimited string. Packed constants have a maximum of 31 significant digits.

Note: Y ou must specify at least one numeric digit.

Example

P +123. 456'

P 1

P -1

P' - 123. 345345345345’
P' +. 00000000000001"

Zoned

Zoned constants define zoned decimal scalar data values. The external representation of zoned constantsis
the same as that for packed constants except that the preceding character isa Z.

Note: Y ou must specify at least one numeric digit.

Example

Z' +123. 456"

z'1

zZ -1

Z' -123. 345345345345'
Z' +.00000000000001"

Floating-Point Constants

Floating-point constants define floating-point scalar data values. Y ou must specify whether the constant isa
4-byte (short floating-point) or an 8-byte (long floating-point) value.

There are two ways to represent floating-point values. First, you can specify floating-point constants as a
delimited string of decimal digits possibly with an embedded decimal point and optionally preceded by a
sign. An F for short floating-point values or an E for long floating-point values must precede the delimited
string. An E in the string determines the start of the base 10 exponent. Y ou specify the exponent as signed.

Second, you can specify floating-point constants as a string of hexadecimal digits. The delimited string
must be preceded by an XF for short floating-point values or an XE for long floating-point values.

Note: Y ou must specify at least one numeric digit.

Example

Short FIl oati ng- Poi nt Long Fl oati ng- Poi nt
Val ues Val ues

F 0 E 0

F +12' E +12'

F-12. 21 E -12. 21

F'12. 34E2 E' 12. 34E2

F' +3. 2345678E- 02' E' +3. 2345678E- 02

XF' 449A4000' XE' 46CE6F37FFBE8722'
XF' 40490FDO' XE' 400921F9F01B866E'

Several specia values are allowed:

Short Fl oati ng- Poi nt Long Fl oati ng- Poi nt

Val ues Val ues

F' MNAN E' IMNAN Masked Not A Nunber
F' UNAN E' UNAN Unmasked Not A Nunber
F' +I NF' E' +| NF Plus Infinity

F' -1 NF E -1 NF Mnus Infinity

Note: Y ou must use floating-point constants to initialize floating-point data objects.

Name

Names specified in the intermediate representation of a program are a sequence of characters of up to 48
charactersin length. Y ou cannot use the following characters as the first character of the name;

bl ank /,:(): <+ % 0123456789

Y ou cannot use the following characters in subsequent characters of the name:

blank /,;(): <+ %

Example

Note: Symbols that begin with aperiod (.) are not inserted into the program's symbol table and may not be
referred to by the OS/400 debug function.

Comments

Comments, in the intermediate representation of a program, may appear anywhere in the text. Comments
are treated as blanks so they are significant in finding tokens. Comments are a string of characters starting
with

/ *
and ending with
*/

. If acomment occurs immediately following a semicolon, it prints as a separate line (or amultiple line as
required) on the listing. If acomment is embedded in a statement, then it appears as a part of that statement,
such as aremark.

Example

The following statements are equivalent:

CPYBLA A B;
CPYBLA A, /* CG> *] B ;
CPYBLA A,B; /* Bis based on C */

Blanks

Y ou can use strings of blanks of any length in the intermediate representation of a program. Blanks act as
delimitersin finding tokens and in some places are necessary as in separating the opcode and operand in an
instruction statement.

Example

The following statements are equivalent:

ADDN A, B, G
ADDN A , B , C ;

API Introduced: V1R3

Top | Program and CL Command APIs | APIs by category

End Preprocessor (QbnEndPreProcessor) API

Required Parameter Group:

1 Qudifiedinput sourcefilename Input Char(20)
2 Input source member name Input Char(10)
3 Quadlified output source file name Input Char(20)
4 Qutput source member name Input Char(10)
5 Qualified exit program name Input Char(20)
6 Exit program data Input Char(*)

7 Length of exit program data Input Binary(4)
8 Error code /10 Char(*)

Service Program: QBNPREPR
Default Public Authority: * USE

Threadsafe: No

The End Preprocessor (QbnEndPreProcessor) APl must be called by every preprocessor after the output
source file and preprocessor information is created. It records the fact that a preprocessor was called and
may be used to pass information used during module creation. Thisinformation can be classified as
follows:

« Associated space data
» Extended attribute data
 Preprocessor level data
» Name of an exit program to call at ILE program creation time
The End Preprocessor API then moves the above information in the output source file member whereit is

used at module creation time. Theinitial preprocessor may get input from inline data, but all subsequent
preprocessors must get their input from the output file member of the previous preprocessor.

The output source file created by a previous preprocessor must not be changed. If the output file has been
changed, module creation fails.

Authorizations and Locks

Input Source File Authority
*READ and *OBJOPR

Input Source Library Authority
*EXECUTE

Output Source File Authority
*CHANGE and *OBJOPR

Output Source File Member Lock
*EXCL

Output Source Library Authority
*EXECUTE

Required Parameter Group

Qualified input sour ce file name
INPUT; CHAR(20)
The qualified name of the input source file to the preprocessor. The first 10 characters contain the
input source file name, which isleft-justified and padded with blanks. The second 10 characters

contain the input source file library, which is left-justified and padded with blanks. The input
source file name can be specified with the following special value:

*INLINE Theinput source datais specified as an inline datafile.

I nput source member name
INPUT; CHAR(10)
The name of the member within the input source file, which isleft-justified and padded with
blanks. This parameter isignored if the qualified input source file name parameter is*INLINE.
Qualified output source file name
INPUT; CHAR(20)
The qualified name of the output source file to the preprocessor. The first 10 characters contain the

output source file name. Thefileis left-justified and padded with blanks. The second 10 characters
contain the output source file library name. Thefile isleft-justified and padded with blanks.

Output source member name
INPUT; CHAR(10)
The name of the member within the output source file. The file isleft-justified and padded with
blanks.

Qualified exit program name
INPUT; CHAR(20)
The qualified name of the exit program to be called during module creation. The first 10 characters
contain the exit program name, which is left-justified and padded with blanks. The second 10

characters contain the exit program library where the exit program is located, which is left-justified
and padded with blanks. Y ou can use this special value for the exit program name:

*NONE Thisindicates that there is no exit program.

Y ou can use this specia value for the exit program library:

*LIBL Thelibrary list.

The exit program is passed five parameters when called. The first two parameters are the exit
program data and the exit program data length. The third parameter is reserved CHAR(10). The
fourth and fifth parameters are both reserved BINARY (4).

The exit program data being used in this API is defined by the user.
Exit program data
INPUT; CHAR(*)
Datathat is stored with the output source file member. When modul e creation calls the exit

program, a copy of the datais passed. The format of this datais specified by the preprocessor. This
valueisignored if *NONE is specified for the qualified exit program name parameter.

Length of exit program data
INPUT; BINARY (4)
The length of the data contained in the exit program data parameter. Thisvalueisignored if
*NONE is specified for the qualified exit program name parameter.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF2207 E Not authorized to use object &1 in library & 3 type *& 2.
CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF5CAQE Input source file name & 1 is not valid.

CPF5CALE Exit program name & 1 isnot valid.

CPF5CEA E Library value &1 isnot valid.

CPF5CA4 E Error occurred while addressing APl Parameter.

CPF5D20 E Not able to open source file member & 3.

CPF5D21 E Not able to open source file member & 3.

CPF5D22 E Not able to locate internal data.

CPF5D23 E Source file member has been changed.

CPF5D24 E Unexpected error occurred during preprocessor processing.
CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

API Introduced: V3R1

Top | Program and CL. Command APIs | APIs by category

Execute Command (QCMDEXC) API

Required Parameter Group:

1 Command string Input Char(*)
2 Length of command string Input Packed (15,5)

Optional Parameter:

3 IGC process control INPUT Char(3)

Default Public Authority: *USE

Threadsafe: Y es. See Usage Notes for command considerations.

The Execute Command (QCMDEXC) API runs asingle command. It is used to run acommand from
within a high-level language (HLL) program or from within a CL program where it is not known at compile
time what command is to be run or what parameters are to be used.

QCMDEXC is called from within your HLL program and the command it runsis passed to it asa
parameter on the CALL command.

After the command runs, control returnsto your HLL program.

Notes:

1. Command strings in System/38 syntax can use the QCACHECK API. The QCACHECK API
accepts the same parameters as QCMDEXC.

2. The Process Commands (QCAPCMD) API aso provides similar functions.

Authorities and Locks

Any Command
*USE

Required Parameter Group

Command string
INPUT;CHAR(*)
The command you want to run entered as a character string. If the command contains blanks, it

must be enclosed in apostrophes. The maximum length of the character string is 32,702 characters,
delimiters (the apostrophes enclosing the string) are not counted as part of the string.

Length of command string

INPUT;PACKED(15,5)

The maximum length being passed. If the command string is passed as a quoted string, the
command length is exactly the length of the quoted string. If the command string is passed in a
variable, the command length is the length of the variable. It is not necessary to reduce the
command length to the actual length of the command string in the variable, althoughiit is
permissible to do so.

Optional Parameter Group
IGC process control
INPUT;CHAR(3)

The IGC process control instructs the system to accept double-byte data. The only value supported
isIGC. ICG must be entered using all uppercase letters.

Usage Notes

While this API isthreadsafe, it should not be used to run acommand that is not threadsafe in ajob that has
multiple threads. Use the Display Command (DSPCMD) command to determine whether acommand is
threadsafe.

Error Messages

Message|D Error Message Text

CPFOO05 E Returned command string exceeds variable provided length

CPFO006 E Errors occurred in command.

CPF3C90E Litera value cannot be changed.

CPF9872E Program or service program & 1 in library & 2 ended. Reason code & 3.

xxxnnnn E - Any escape message issued by any command may be returned. The messages listed
previoudy are those issued by this API. Once the API has called the command analyzer,

any message issued as an escape message may appear.

API in existance prior to V1R3

Top | Program and CL. Command APIs | APIs by category

Get Export (QleGetExp) API

Omissible Parameter Group:

1 Activation mark Input Binary(4)
2 Export number Input Binary(4)
3 Export name length Input Binary(4)
4 Export name Input Char(*)
5 Exported item Output PTR(OPN)
6 Typeof export item Output Binary(4)
7 Error code /0 Char(*)
Returned Vaue:
Exported item Output PTR(OPN)

Service Program: QLEAWI
Default Public Authority: * USE

Threadsafe: Yes

The Get Export (QleGetExp) API alows the caller to resolve a pointer to an export (either data or
procedure) either by name or export number. The pointer is materialized for the specified activation. If the
activation mark given is zero, then all activations in the activation group are searched (no guaranteed search
order).

Omissible Parameter Group

Activation mark
INPUT; BINARY (4)

The activation containing the export. If this parameter is omitted, then it istreated asif a0 was
specified. This parameter may not be omitted if the search is done by export number.

The following specia value is supported for this parameter:

0 All of the activations in the caller's activation group are searched. If more than one activation
contains the specified export, it is undefined as to which of those activations the export is
taken from.

Export number
INPUT; BINARY (4)
Materialize the nth exported identifier in the service program. The order is defined by the binding

service language with the first exported identifier being 1. If this parameter is omitted, thenitis
treated as if a 0 was specified.

The following specia value is supported for this parameter:

0 Materiaize the item named in the export name parameter.

Export name length
INPUT; BINARY (4)

The length of the export name. If this parameter is omitted, then it is treated as if a 0 was specified.
This parameter isignored if the export number parameter is not zero.

The following specia value is supported for this parameter:

0 Theexport nameis a null-terminated string.

Export name
INPUT; CHAR(*)

A string containing the name of the exported identifier. The name is matched exactly, without
CCSID conversion or folding to uppercase. This parameter isignored if the export number
parameter is ot zero. The export name cannot be omitted if the export number is omitted.

Exported item
OUTPUT; PTR(OPN)

The procedure pointer or space pointer to the exported item. If the identifier could not be exported,
thisvalueisnull.

Type of export item
OUTPUT; BINARY (4)

The type of the exported item. The possible types follow:
0 Export was not found
1 Exportisaprocedure
2 Exportisdata
3

Export not accessible

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Returned Value
Pointer to exported item
OUTPUT; PTR(OPN)

This API returns the value for the pointer to the exported item parameter.

Error Messages

Message I D Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3C1D E Length specified in parameter & 1 not valid.
CPF3CI1EE Required parameter & 1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of &1 API.
MCH4421 E At least onefield in the allocation strategy is not valid.
MCH4422 E &1 cannot be called in the default activation group.

API Introduced: V3R6

Top | Program and CL. Command APIs | APIs by category

List ILE Program Information (QBNLPGMI) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Quadlified ILE program name Input Char(20)
4 Error Code /0 Char(*)

Default Public Authority: * USE

Threadsafe: No

The List ILE Program Information (QBNLPGMI) API givesinformation about ILE programs, similar to
the Display Program (DSPPGM) command. The information is placed in a user space specified by you.

If an original program model (OPM) program is specified for the qualified ILE program name, an error is
returned and the user space is not changed.
Y ou can use the QBNLPGMI API to:
o List modules bound into an ILE program
o List service programs bound to an ILE program
« List dataitems exported to the activation group
« List dataitem importsthat are resolved by weak exports that were exported to the activation group
o List copyrights of an ILE program

Authorities and Locks

User Space Authority
*CHANGE

User Space Library Authority
*EXECUTE

User Space Lock
*EXCLRD

Program Authority for PGML0100 and PGML0110 Formats
*USE

Program Authority for other Formats
*READ

Program Library Authority
*EXECUTE

Program Lock
*SHRRD

Required Parameter Group
Qualified user space name
INPUT; CHAR(20)

The user space that is to receive the ILE program information. The first 10 characters contain the
user space name, and the second 10 characters contain the name of the library where the user space
islocated. The library name can be a specific library name or one of these special values:

*CURLIB Thejob's current library
*LIBL Thelibrary list

Format name
INPUT; CHAR(8)

The content and format of the information to be returned about the specified programs. One of the
following format names may be used:

PGML0100 ILE program module (* MODULE) information.
PGML0110 Variablelength ILE program module (*MODULE) information.

Note: Do not use the generic header entry size for format PGML0110. Use the
Size of thisentry field returned in this format for the size of each entry.

PGML0200 ILE service program (* SRVPGM) information.
PGML0300 Dataitems exported to the activation group (* ACTGRPEXP).

PGML0400 Dataitem imports resolved by weak exports that were exported to the activation
group (*ACTGRPIMP).

PGMLO500 ILE program copyright (* COPY RIGHT) information.

Qualified ILE program name
INPUT; CHAR(20)

The name of the ILE program for which the information isto be listed. The first 10 characters
contain the ILE program name, and the second 10 characters contain the name of the library where
the ILE program is located.

The ILE program name can be a specific ILE program name or one of the following special values:

*ALL All ILE programs

generic* All ILE programs that begin with this generic prefix. For example, WRK* would
include al ILE programs that begin with WRK.

The library name can be a specific library name or one of these specia values:

*ALL All libraries in the system

*ALLUSR All non-system libraries

*CURLIB Thejob'scurrent library

*LIBL Thelibrary list

*USRLIBL Librarieslisted in the user portion of the library list

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the Generated List

The user space contains:
o A user area
A generic header
« Aninput parameter section
» A header section
A list data section

For details about the user area and generic header, see User Space Format for List APIs. For descriptions of
each field in the list returned, see Field Descriptions.

Input Parameter Section

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name specified

| 10 | A |CHAR(10) |User space library name specified
| 20 | 14 |CHAR(9 |Format name specified

| 28 | 1C |CHAR(10) |Program name specified

| 38 | 26 |CHAR(10) |Program library name specified

Header Section

| Offset
| Dec | Hex |Type Field
| 0 | 0 |CHAR(10) |User space name used

| 10 | A |CHAR(10) |User space library name used

PGMLO0100 Format

The PGML0100 format includes information on al the modules that are bound into the programs specified.
The modules will belisted in the user space in the order the modules are bound into the program. Y ou must
have a program authority of *USE to use this format. The following table shows how this information for
each module is organized. For detailed descriptions of the fieldsin the list, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |CHAR(10) |Program name

| 10 | A |CHAR(10) |Program library name

| 20 | 14 |CHAR(10) |Bound module name

| 30 | 1E |CHAR(10) |Bound module library name

| 40 | 28 |CHAR(10) |Source file name

| 50 | 32 |CHAR(10) |Source file library name

| 60 | 3C |CHAR(10) |Source file member name

[70 [46 [CHAR(10) |[Moduleattribute

| 80 | 50 |CHAR(13) IModule creation date and time
| 93 | 5D |CHAR(13) |Source file updated date and time
| 106 | 6A |CHAR(10) |Sort sequence table name

| 116 | 74 |CHAR(10) |Sort sequence table library name
| 126 | 7E |CHAR(10) |Languageidentifier

[136 [88 |[BINARY(4) |Optimization level

| 140 | 8C |BINARY(4) |Maximum optimization level

| 144 | 90 |CHAR(10) |Debug data

| 154 | 9A |CHAR(6) |Release module created on

| 160 | AO |CHAR(6) |Release module created for

| 166 | A6 |CHAR(20) |Reserved

[186 | BA [CHAR®) |User-modified

| 187 | BB |CHAR(13) |Licensed program

| 200 | C8 |CHAR(5) |PTF number

[205 [CD [CHAR(E) |APARID

[211 [D3 [CHAR()) |Cretiondaa

| 212 | D4 |BINARY(4) |Module CCSID

| 216 | D8 |CHAR(8) |Object control level

| 224 | EO |CHAR(1) |Enable performance collection
| 225 | E1 |CHAR(10) |Profiling data

[235 [EB [CHAR®) |Reserved

| 236 | EC |BINARY(4) |Number of procedures

| 240 | FO |BINARY(4) |Number of procedures block reordered

| 244 | F4 |BINARY(4) |Number of procedures block-order measured
| 248 | F8 |CHAR(1) | Teraspace storage enabled

| 249 | F9 |CHAR(1) | Storage mode!

[250 [FA [CHAR(74) |Reserved

| 324 | 144 |BINARY(4) |Number of SQL statements
[328 | 148 |[CHAR(18) |Relational database

| 346 | 15A |CHAR(10) |Commitment control

| 356 | 164 |CHAR(10) |Allow copy of data

| 366 | 16E |CHAR(10) |Close SQL cursors

| 376 | 178 |CHAR(10) INaming convention

[386 | 182 [CHAR(10) |Dateformat

| 3% | 18C |CHAR(1) |Date separator

[397 [18D [CHAR(0) [Timeformat

| 407 | 197 |CHAR(1) | Time separator

| 408 | 198 |CHAR(10) \Delay PREPARE

| 418 | 1A2 |CHAR(10) |Allow blocking

| 428 | 1AC |CHAR(10) | Default collection name

| 438 | 1B6 |CHAR(10) |SQL package name

| 448 | 1CO0 |CHAR(10) |SQL package library name

| 458 | 1CA |CHAR(10) |Dynamic user profile

| 468 | 1D4 |CHAR(10) |SQL sort sequence table name
| 478 | 1DE |CHAR(10) |SQL sort sequence table library name
| 488 | 1E8 |CHAR(10) |SQL language identifier

| 498 | 1F2 |CHAR(10) |Connection method

[808 [IFC [BINARY(4) |SQL pathlength

[512 [200 [CHAR(3483) |SQL path

PGMLO0110 Format

The PGML0110 format includes information on all the modules that are bound into the programs specified.
The modules will be listed in the user space in the order the modules are bound into the program. Y ou must
have a program authority of * USE to use this format. The following table shows how this information for
each module is organized. For detailed descriptions of the fieldsin the list, see Field Descriptions.

Note: Do not use the generic header entry size for this format. Use the Size of this entry field returned in

this format for the size of each entry.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Sizeof thisentry

| 4 | 4 |CHAR(10) |Program name

| 14 | E |CHAR(10) |Program library name
| 24 | 18 |CHAR(10) |Bound module name

| 34 | 22 |CHAR(10) |Bound module library name

| 44 | 2C |CHAR(10) |Source file name

| 54 | 36 |CHAR(10) |Source filelibrary name

| 64 | 40 |CHAR(10) |Source file member name

| 74 | 4A |CHAR(10) IModule attribute

| 84 | 54 |CHAR(13) IModule creation date and time

| 97 | 61 |CHAR(13) |Source file updated date and time
| 110 | 6E |CHAR(10) |Sort sequence table name

| 120 | 78 |CHAR(10) |Sort sequence table library name
| 130 | 82 |CHAR(10) |Language identifier

| 140 | 8C |BINARY(4) |Optimization level

| 144 | 90 |BINARY(4) |Maximum optimization level
[148 [94 |[CHAR(10) |Debugdata

| 158 | 9E |CHAR(®) |Release module created on

| 164 | A4 |CHAR(6) |Release module created for
[170 [AA [CHAR(0) |Reserved

[100 [BE [CHAR@) |User-modified

| 191 | BF |CHAR(13) |Licensed program

[204 [CC [CHAR() |PTF number

[200 [DI [CHAR®E) |APARID

| 215 | D7 |CHAR(1) |Creation data

[216 [D8 [BINARY(4) |Module CCSID

| 220 | DC |CHAR(8) |Object control level

| 228 | E4 |CHAR(1) |Enable performance collection
[229 [E5 [CHAR@0) |Profiling data

[239 [EF [CHAR®) |Reserved

| 240 | FO |BINARY(4) |Number of procedures

| 244 | F4 |BINARY(4) |Number of procedures block reordered
| 248 | F8 |BINARY(4) |Number of procedures block-order measured
| 252 | FC |CHAR(1) | Teraspace storage enabled

| 253 | FD |CHAR(1) | Storage model

[254 [FE [CHAR®) |Reserved

| 256 | 100 |BINARY(4) |Offsetto Licensed Internal Code options
| 260 | 104 |BINARY(4) |Length of Licensed Internal Code options
[264 [108 [CHAR(4) |Reserved

| 328 | 148 |BINARY(4) |Number of SQL statements
332 [14C [CHAR(18) |Relational database

| 350 | 15E |CHAR(10) |Commitment control

| 360 | 168 |CHAR(10) |Allow copy of data

| 370 | 172 |CHAR(10) |Close SQL cursors

| 380 | 17C |CHAR(10) INaming convention

| 390 | 186 |CHAR(10) |Date format

Bound module information through offsets

| 400 | 190 |CHAR(1) |Date separator

[401 [191 [CHAR(0) [Timeformat

| 411 | 19B |CHAR(1) | Time separator

[412 [19C [CHAR(10) |Delay PREPARE

| 422 | 1A6 |CHAR(10) |Allow blocking

| 432 | 1BO |CHAR(10) |Default collection name

| 442 | 1BA |CHAR(10) |SQL package name

| 452 | 1C4 |CHAR(10) |SQL package library name

| 462 | 1CE |CHAR(10) |Dynamic user profile

| 472 | 1D8 |CHAR(10) |SQL sort sequence table name
| 482 | 1E2 |CHAR(10) |SQL sort sequence table library name
| 492 | 1EC |CHAR(10) |SQL language identifier

| 502 | 1F6 |CHAR(10) |Connection method

[B12 [200 [BINARY(4) |SQL pathlength

| 516 | 204 |CHAR(3483) |SQL path

[[1074 [432 [CHAR() |Reserved

|

|

|ICHAR(*)

|Licensed Internal Code options

PGMLO0200 Format

The PGML0200 format includes information on all the service programs that are bound to the programs
specified. The following table shows how thisinformation is organized. For detailed descriptions of the

fieldsin thelist, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |Program name

| 10 | A |CHAR(10) |Program library name

| 20 | 14 |CHAR(10) |Bound service program name

| 30 | 1E |CHAR(10) |Bound service program library name
| 40 | 28 |CHAR(16) |Bound service program signature

PGMLO0O300 Format

The PGML0300 format lists data items exported to the activation group. The list dataitems are specified in
the data export entry in the binding specifications component when the module was created. The following
table shows how this information is organized. For detailed descriptions of the fields in the list, see Field

Descriptions.

| Offset

| Dec | Hex |Type |Fi eld

| 0 | 0 |CHAR(10) |Program name

| 10 | A |CHAR(10) |Program library name

| 20 | 14 |BINARY(4) |Sizeof dataitem export

| 24 | 18 |BINARY(4) |Dataitem export name CCSID
| 28 | 1C |BINARY(4) |Dataitem export name length
| 32 | 20 |CHAR(256) |Dataitem export name

PGML0400 Format

The PGML0400 format lists data item imports that were resolved by weak exports that had been exported
to an activation group. The following table shows how this information is organized. For detailed
descriptions of the fields in the list, see Field Descriptions.

Offset
Dec | Hex ’Type ’Field
0 0 |CHAR(10) |Program name
A |CHAR(10) |Program library name

24 18 |BINARY(4) |Dataitemimport name length
28 1C |CHAR(256) |Dataitem import name

|
|
|
10
|
|
|

|
|
20 | 14 |[BINARY(4) |Dataitemimport name CCSID
|
|

PGMLO500 Format

The PGML0500 format includes copyright information for the ILE programs specified. The following table
shows how thisinformation is organized. For detailed descriptions of thefieldsin thelist, see Field

Descriptions.

| Hex ’Type ’Field
| 0 |CHAR(10) |Program name
| A |CHAR(10) |Program library name
20 [14 |[CHAR®@) |Reserved
|
|

18 [BINARY(4) |Copyright length
1C |CHAR(256) [Copyright

Field Descriptions

Allow blocking. Whether blocking will be used to improve the performance of certain SQL statements.
The possible values are:

*NONE Blocking is not used.

READ Blocking is used for read-only cursors when running COMMIT(NONE) and there are no
EXECUTE or EXECUTE IMMEDIATE statements.

ALLREAD Blocking isused for al read-only cursors when running COMMIT(NONE) or
COMMIT(*CHG).

Blank The module does not contain SQL statements.

Allow copy of data. Whether a copy of the data can be used in the implementation of an SQL query. The
possible values are:

*NO A copy of the data cannot be used.
*YES A copy of the data can be used when needed.
*OPTIMIZE The system determines whether a copy of the dataiis used for optimal performance.

Blank The module does not contain SQL statements.

APAR ID. The module was changed as the result of the authorized program analysis report (APAR) with
thisidentification number. Thisis blank if the module was not changed at bind time.

Bound module library name. The name of the library containing the module bound into this program at
bind time.

Bound module name. The name of the module bound into this program. Thisis a copy of the module that
was bound into this program. It is not the * MODULE object on the system.

Bound service program library name. The name of the library containing the service program bound to
the program at bind time. Thisisthe library name in which the activation expectsto find the service
program at run time. Hexadecimal zeros indicate the library list is used at the time the service programis
needed.

Bound service program name. The name of the service program bound to the program.

Bound service program signature. The current signature of the service program at the time it was bound
to the program.

Close SQL cursors. Specifieswhen SQL cursors are implicitly closed and SQL-prepared statements are
implicitly discarded. The possible values are:

*ENDMOD When the module ends.
*ENDACTGRP When the activation group is deleted.

Blank The module does not contain SQL statements.

Commitment control. The level of commitment control that was specified on the SQL precompile. The
possible values are:

*NONE No commitment control was specified on the SQL precompile. Uncommitted changesin other
jobs can be seen.

*CHG Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements, and updated, deleted, or inserted rows (records) are locked until the end
of the unit of work (transaction). Uncommitted changes in other jobs can be seen.

*CS Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements, and updated, deleted, and inserted rows (records) are locked until the
end of the unit of work (transaction). A row (record) that is selected but not updated is locked
until the next row (record) is selected. Uncommitted changes in other jobs cannot be seen.

*ALL Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements, and all rows selected, updated, deleted, and inserted are locked until the
end of the unit of work (transaction). Uncommitted changes in other jobs cannot be seen.

Blank The module does not contain SQL statements.

Connection method. The method used for establishing remote connections when running distributed
programs.

Special values that can be returned are:

*RUW Only one connection to arelational databaseis allowed. Consecutive CONNECT statements
result in the previous connection being disconnected before a new connection is established.

*DUW Connectionsto several relational databases are allowed. Consecutive CONNECT statementsto
additional relational databases does not result in disconnection of previous connects. SET
CONNECTION can be used to switch between connections. Read-only connections may resullt.

Blank The module does not contain SQL statements.

Copyright. The copyright string included in this program.
Copyright length. The length of the copyright string.

Creation data. Whether the bound module has all creation data #*and if that datais observable or
unobservable.

0 *NO. Not al the creation datais present in the bound module.
1 *YES. The creation datais present in the bound module and all of that datais observable.

#2 *UNOBS. The creation datais present in the bound module but not al of that datais observable. €

Dataitem export name. Data items that are exported to an activation group. These data items can be used
outside of the module or program that they are defined in.

Dataitem export name CCSID. The coded character set identifier (CCSID) for the name of this dataitem
export.

Data item export name length. The length of the name of the data export item.

Data item import name. The name of the dataitem imports that were resolved by weak exports that had
been exported to the activation group.

Dataitem import name CCSID. The coded character set identifier (CCSID) for the name of this dataitem

import.
Dataitem import name length. The length of the name of the dataimport item.

Date format. The format used when accessing date-result columns through SQL. All output date fields are
returned in this format. For input date strings, the value you specify is used to determine whether the date is
avalid format. The values returned are:

*USA USA format (mm/dd/yyyy).

*ISO Internationa Standards Organization format (yyyy-mm-dd).
*EUR European format (dd.mm.yyyy).

*JIS Japanese Industrial Standard Christian Era (yyyy-mm-dd).
*MDY Month/day/year format (mm/dd/yy).

*DMY Day/month/year format (dd/mm/yy).

*YMD Y ear/month/day format (yy/mm/dd).

*JUL Julian format (a numeric value from 1 to 365).

Blank The module does not contain SQL statements.

Date separator. The separator used when accessing date-result columns. Thisinformation is blank if the
module does not contain SQL statements; however, the number of SQL statements field should be checked
to determine if the module contains SQL statements. This is because a blank may be specified asa
separator value.

Debug data. Whether debug data was generated when this module was created. If debug data exists, the
module may be debugged using the source debugger. The possible values are:

*YES Debug datawas generated.
*NO Debug data was not generated.

Default collection name. The collection name used for the unqualified names of tables, views, indexes,
and SQL packages. The possible values are:

*NONE Thereis no default collection name.

Blank The module does not contain SQL statements.

Delay PREPARE. Whether SQL prepare processing can be delayed until the statement is actually used.
The possible values are:

*YES Prepare processing can be delayed.
*NO Prepare processing cannot be delayed.

Blank The module does not contain SQL statements.

Dynamic user profile. The user profile used for dynamic SQL statements. The following special values
can be returned:

*USER Local dynamic SQL statements are run under the profile of the module's user. Distributed
dynamic SQL statements are run under the profile of the SQL package's user.

*OWNER Local dynamic SQL statements are run under the profile of the module's owner. Distributed
dynamic SQL statements are run under the profile of the SQL package's owner.

Blank The module does not contain SQL statements.

Enable performance collection. The level of performance collection enabled for this module. The
following values can be returned:

'00'X *NONE or '10'X *PEP This gives the entry/exit information for the PEP only. No entry/exit
hooks in the modul€e's internal procedures and no precall or postcall
hooks around calls to other procedures are included.

Note: If *NONE is shown and the module was created or re-created
on an i Series server running Version 3 Release 6 Modification O prior
to the installation of PTF MF11968, the module will not have any
performance collection enabled. To enable performance collection,
use one of the following commands and specify

ENBFPRCOL (* PEP):

« Change Module (CHGMOD)
« Change Program (CHGPGM)
« Change Service Program (CHGSRVPGM)

'50'X *ENTRYEXIT *NONLEAF This gives the entry/exit information on all of the non-leaf procedures
in the module. Thisincludes the PEP routine. Thisis useful to capture
information on most routines but not at the expense of destroying the
'leaf-ness of the leaf procedures.

"7TO0X*ENTRYEXIT *ALLPRC Thisgivesthe entry/exit information on all the procedures of the
module (including those that were leaf procedures). Thisincludes the
PEP routine. Thisis useful to capture information on all procedures.

'DO'X *FULL *NONLEAF This gives the entry/exit information on all the procedures of the
module that are not leaf procedures. Thisincludes the PEP routine.
Precall and postcall hooks around calls to external procedures are also
included.

'FOX*FULL *ALLPRC This gives the entry/exit information on all procedures of the module
(including those that were leaf procedures). This includes the PEP
routine. Precall and postcall hooks around calls to external procedures
are also included. Thisis useful to capture information on all
procedures.

Format name specified. The format used to return the ILE program information to the user space.

L anguage identifier. Returns the 3-character language identifier used when the module was compiled. The
following special values can aso be returned:

*JOBRUN The language identifier associated with the job at the time the program that the moduleis
bound into runs.

Blank The module does not contain any language identification information.

Length of Licensed Internal Code options. The size, in two-byte characters, of the Licensed Internal
Code options string. Thiswill be 0 if no Licensed Internal Code options were used for this module.

Licensed Internal Code options. The Licensed Internal Code options that are in use by the module. This
field is specified in UCS-2 (CCSID 13488).

Licensed program. If the module was part of alicensed program at bind time, this field shows the product
number and the level of the licensed program. Thisis blank if the moduleis not part of alicensed program
at bind time.

Maximum optimization level. The highest level of optimization this module could have at bind time. If
observability has been removed from the module, this maximum optimization level value might not be the
same as the one specified when the module was created. Possible values are:

65535 The moduleis not restricted to a maximum optimization level. It can be retrandated to any of
the supported optimization levels. 65535 is a'so known as* NOMAX.

40 Maximum level of optimization. Thislevel includes all the optimizations performed at
optimization level 30. In addition, it includes optimization that disables call and instruction
tracing. Thus, tracing of modules created at this optimization level cannot be done.

30 More optimization is performed in addition to those performed at optimization level 20.
Variables cannot be changed but can be displayed while the program is being debugged.
However, the displayed value of the variable during debugging may not be its actual value. 30 is
also known as*FULL.

20 Some optimization is performed on the generated code. When the module optimized at this level
is being debugged, the variables can be displayed but not changed. This level improves the
performance of the module slightly over level 10. 20 is aso known as *BASIC.

10 No additional optimization is performed on the generated code. Variables can be displayed and
changed when the program is being debugged. With no optimization of the code, this value
provides the lowest level of module performance. 10 is also known as* NONE.

M odule attribute. The language used in the module. Thisfield can be blank (for example, when a module
is created by a compilation process internal to IBM).

Module CCSID. The coded character set identifier (CCSID) for this module.

Module creation date and time. The date and time the module was created. The creation date and time
fildisinthe CYYMMDDHHMMSS format as follows;

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year
MM Month
DD Day
HH Hour
MM Minute
SS Second

Naming convention. The convention used for naming objectsin SQL statements. The possible values are:

*QL The SQL naming convention is used.
*SYS The system naming convention is used.

Blank The module does not contain SQL statements.

Number of procedures. The number of procedures defined in the module. This number includes the
program entry procedure (PEP), if one was generated by the compiler for this module.

Number of procedures block-order measured. The number of procedures defined in the module that had
block-order profiling data collected at the time block-order profiling data was applied. If the module does
not have block-order profiling data applied, this value will be zero.

Number of procedures block reordered. The number of procedures defined in the module that are block
reordered. If the module does not have block-order profiling data applied, this value will be zero. Thisvalue
can decrease if the program that this bound module is contained in is retranslated.

Number of SQL statements. The number of SQL statements contained in the module. Thisvalueis zero if
the module does not contain SQL statements.

Object control level. The object control level for the module at the time it was bound into this program.
Y ou can compare the object control level of amodule to the object control level of alisting to make sure
the listing matches the module.

Offset to Licensed I nternal Code options. The offset from the beginning of the user space where the
Licensed Internal Code options begin for this bound module. Thiswill be 0 if no Licensed Internal Code
options were used for this module.

Optimization level. Optimization levels cause the tranglator to produce machine code that reduces the
amount of system resources necessary to run the program. The more optimization, the more efficiently the
module runs on the system. Also, with more optimization you may not be able to change or view variables
that have been optimized. The possible values are:

65535 The moduleis not restricted to a maximum optimization level. It can be retranslated to any of
the supported optimization levels. 65535 is aso known as* NOMAX.

40 Maximum level of optimization. Thislevel includes all the optimizations performed at
optimization level 30. In addition, it includes optimization that disables call and instruction
tracing. Thus, tracing of modules created at this optimization level cannot be done.

30 More optimization is performed in addition to those performed at optimization level 20.
Variables cannot be changed but can be displayed while the program is being debugged.
However, the displayed value of the variable during debugging may not be its actual value. 30 is
also known as*FULL.

20 Some optimization is performed on the generated code. When the module optimized at this level
is being debugged, the variables can be displayed but not changed. Thislevel improvesthe
performance of the module slightly over level 10. 20 is aso known as*BASIC.

10 No additional optimization is performed on the generated code. Variables can be displayed and
changed when the program is being debugged. With no optimization of the code, this value
provides the lowest level of module performance. 10 is also known as * NONE.

Profiling data. The profiling data attribute for the module bound into this program. Possible values are:

*NOCOL The collection of profiling datais not enabled and block-order profiling datais not
applied to the module bound into this program.

*COL The collection of profiling datais enabled. Any applied block-order profiling data has
been removed for the module bound into this program.

*APYBLKORD Block-order profiling data is applied to the module bound into this program. See the
number of procedures block reordered field for the current number of proceduresin
this module that are block reordered.

Program library name. The name of the library containing the program.

Program library name specified. The program library name that was passed to this API on the call in the
qualified ILE program name and library parameter.

Program name. The name of the program.

Program name specified. The program name that was passed to this API on the call in the qualified ILE
program name and library parameter.

PTF number. The program temporary fix (PTF) that resulted in the creation of the module. Thisfield is
blank for user-created modules.

Relational database. The default relational database that was specified on the SQL precompile. A
nonblank value other than * LOCAL specifies the name of the relational database to be resolved through the
relational database directory. The following special values can be returned:

*LOCAL The module can only access data on the local system.

Blank The module does not contain SQL statements.

Release module created for. The version, release, and modification level of the operating system for
which the module was created. The field has aVvRrMm format, where:

W The character V isfollowed by a 1-character version number.
Rr Thecharacter R isfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Release module created on. The version, release, and modification level of the operating system on which
the module was created. The field has aVvRrMm format, where:

W The character V isfollowed by a 1-character version number.
Rr Thecharacter R isfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Reserved. Anignored field.

Size of data item export. The size, in bytes, of the dataitem export.

Size of thisentry. The size, in bytes, of this entry.

Sort sequence tablelibrary name. The name of the library that is used to locate the sort sequence table.

Thisinformation is blank if the module does not contain any sort sequence information or a special value
was returned for the sort sequence table name. The following special values can be returned:

*LIBL The sort sequence tableisfound in the library list when the ILE program runs this module.

*CURLIB The sort sequence tableisfound in the current library when the ILE program runs this
module.

Sort sequence table name. The name of the sort sequence table and the library used when the module was
compiled. This does not apply to SQL statements in the module. The following special values can be
returned:

*HEX No sort sequence is used.

*JOBRUN The sort sequence is the sort sequence value associated with the job at thetime the ILE
program runs this module.

*LANGIDSHR The shared sort sequence for the language identifier is used.
*LANGIDUNQ The unique sort sequence for the language identifier is used.
Note: This sort sequence table does not apply to SQL statements.

Sour cefilelibrary name. The name of the library that contains the source file used to create the module.
Thefield is blank if no source file was used to create the module.

Sour ce file member name. The name of the member in the source file. The field is blank if no sourcefile
was used to create the module.

Sour ce file name. The name of the source file used to create the module. The field is blank if no source file
was used to create the module.

Sour cefile updated date and time. The date and time the member in the source file was last updated. The
field isin the same format as the module creation date and time field. The field is blank if no sourcefile
was used to create the module.

SQL language identifier. Returns the 3-character language identifier used when the module was compiled.
Thisinformation is blank if the module does not contain any language identification information. The
following possible specia value can also be returned:

*JOBRUN The language identifier isthe LANGID associated with the job at the time the moduleis
run.

SQL package library name. The name of the library the SQL packageisin.

SQL package name. The name of the SQL package created on the relational database specified on the
RDB parameter of the command that created this module. The possible values are:

*NONE Thereis no default collection name.

Blank The module does not contain SQL statements.

SQL path. Thelist of libraries used during resolution of functions and data types within SQL statements.
Thelist isin the form of repeating library names, each surrounded by double quotes and separated by
commas. Even though 3843 bytes are reserved, the path's length is determined by the SQL path length
entry.

SQL path length. The length, in bytes, of the SQL path.

SQL sort sequencetable library name. The name of the library that is used to locate the SQL sort

sequence table. Thisinformation is blank if the module does not contain any SQL sort sequence
information or a special value was returned for the SQL sort sequence table name. The following special
values can be returned:

*LIBL The SQL sort sequence tableis found by looking in the library list.
*CURLIB The SQL sort sequence tableisfound by looking in the current library.

SQL sort sequence table name. The name of the table name used when the module was compiled. This
information is blank if the module does not contain any SQL sort sequence information. The following
special values can be returned:

*HEX No SQL sort sequenceis used for the SQL statements.

*JOBRUN The SQL sort sequence isthe SRTSEQ value associated with the job at the time the
SQL statements within the module are run.

*LANGIDSHR The shared SQL sort sequence for the language identifier (LANGID) is used for the
SQL statements.

*LANGIDUNQ The unique SQL sort sequence for the language identifier (LANGID) is used for the
SQL statements.

Storage model. Where the automatic and static storage for this bound module is allocated at run time. The
following values can be returned:

0*SNGLVL Automatic and static storage are allocated from single-level storage.
1*TERASPACE Automatic and static storage are allocated from teraspace.

2*INHERIT Automatic and static storage are allocated from either single-level storage or
teraspace, depending on the activation.

Teraspace stor age enabled. The teraspace storage capability for this bound module. Possible values are:
'00'X*NO The module bound to this program is not teraspace storage enabled.
'80'X*YES The module bound to this program is teraspace storage enabled.

Time format. The format used when accessing time-result columns through SQL. All output timefields are
returned in this format. The values returned are:

*USA USA format (hh:mm am. or p.m.).

*ISO International Standards Organization format (hh.mm.ss).
*EUR European format (hh.mm.ss).

*JIS Japanese Industrial Standard Christian Era (hh.mm.ss).
*HMS Hourg/minutes/seconds format (hh:mm:ss).

Blank The module does not contain SQL statements.

Time separator. The separator used when accessing time-result columns. This information is blank if the
module does not contain SQL statements; however, the number of SQL statements field should be checked
to determine if the module contains SQL statements. This is because a blank may be specified asa

separator value.
User-modified. Whether the module was changed by the user at bind time. The possible values are:
0 The user did not change the module.

1 The user changed the module.

User space library name specified. The user space library name that was passed to this APl on the call in
the qualified user space name parameter.

User space library name used. The name of the library that contains the user space that receivesthe ILE
program information requested.

User space name specified. The user space name that was passed to this APl on the call in the qualified
user space name parameter.

User space name used. The name of the user space that receives the ILE program information requested.

Error Messages

Message I D Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3C20 E Error found by program & 1.

CPF3C21E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CAA E List istoo large for user space & 1.

CPF3CF1lE Error code parameter not valid.

CPF5CF5 E &1inlibrary &2 not bound program.

CPF5CF6 E Program name & 1 not valid special value.
CPF811A E User space &4 in &9 damaged.

CPF9570 E Error occurred creating or accessing debug data.
CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in & 3.

CPF9803 E Cannot allocate object &2 in library & 3.

CPF9804 E Object &2 in library & 3 damaged.

CPF9806 E Cannot perform function for object &2 in library & 3.
CPF9807 E One or more librariesin library list deleted.
CPF9808 E Cannot allocate one or more librarieson library list.

CPF9810 E
CPF9811 E
CPF9820 E
CPF9821 E
CPF9830 E
CPF9838 E
CPF9872 E

Library &1 not found.

Program &1 in library &2 not found.

Not authorized to use library & 1.

Not authorized to program & 1 in library & 2.
Cannot assign library &1.

User profile storage limit exceeded.

Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V2R3

Top | Program and CL. Command APIs | APIs by category

List Module Information (QBNLMODI) API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Quadified module name Input Char(20)
4 Error code /0 Char(*)

Default Public Authority: * USE

Threadsafe: No

The List Module Information (QBNLMODI) API lists information about modules. The information is
placed in a user space specified by you. This API is similar to the Display Module (DSPMOD) command.
Y ou can use the QBNLMODI API to:

o List the symbols defined that can be exported to other modules

« Listthe symbolsthat are defined external to the module

o List procedure names and their type

« List objectsthat are referenced when the module is bound into an ILE program or service program

« List copyright information

Authorities and Locks

User Space Authority
*CHANGE

User Space Library Authority
*EXECUTE

User Space Lock
*EXCLRD

Module Authority
*USE

Module Library Authority
*EXECUTE

Module Lock
*SHRRD

Required Parameter Group
Qualified user space name
INPUT; CHAR(20)

The user space that is to receive the module information. The first 10 characters contain the user
space name. The second 10 characters contain the name of the library where the user spaceis
located. The library name can be a specific library name or one of these special values:

*CURLIB Thejob's current library
*LIBL Thelibrary list

Format name
INPUT; CHAR(8)

The content and format of the information to be returned about the specified modules. One of the
following format names may be used:

MODLO0100 Format Module export (*EXPORT) information.

MODL0200 Format Module import (*IMPORT) information.

MODLO0300 Format Module procedures (* PROCLIST) information.

MODL0400 Format Referenced system objects (*REFSY SOBJ) information.

MODLO500 Format Module copyright (* COPY RIGHT) information.

Note: Do not use the generic header entry size for formats returned by this API. Use the Size of this
entry field returned in each format for the size of each entry.

Qualified module name
INPUT; CHAR(20)

The name of the module for which the information isto be listed. The first 10 characters contain
the module name. The second 10 characters contain the name of the library where the moduleis
located.

The module name can be a specific module name or one of the following special values:

*ALL All modules

generic* All modules that begin with this generic prefix. For example, WRK* listsinformation
for al modules that begin with WRK to which you are authorized.

The library name can be a specific library name or one of these specia values:
*ALL All libraries in the system
*ALLUSR All non-system libraries
*CURLIB Thejob'scurrent library
*LIBL Thelibrary list

*USRLIBL Librarieslisted in the user portion of the library list

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the Generated List

The user space contains:
o A user area
« A generic header
« Aninput parameter section
« A header section
o A list data section

For details about the user area and generic header, see User Space Format for List APIs. For descriptions of
each field in the list returned, see Field Descriptions.

Note: Do not use the generic header entry size for formats returned by this API. Use the Size of thisentry
field returned in each format for the size of each entry.

Input Parameter Section

| Hex ’Type ’Field
| 0 [CHAR(10) |User space name specified
| A |CHAR(10) |User space library name specified
20 | 14 |CHAR(@) |Format name specified
|
|

1C |CHAR(10) |Module name specified
26 |CHAR(10) IModule library name specified

Header Section

| Offset

| Dec | Hex |Type Fied
|

|

0 | 0 |[CHAR(10) |User space name used
10 | A |CHAR(10) |User space library name used

MODLO0100 Format

The MODL0100 format lists the symbols defined in the module and that are exported to other modules. The
following table shows how this information for each module is organized. For detailed descriptions of the
fieldsin thelist, see Field Descriptions.

Note: Do not use the generic header entry size for this format. Use the Size of this entry field returned in
this format for the size of each entry.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Sizeof thisentry

| 4 | 4 |CHAR(10) IModule name

| 14 | E |CHAR(10) IModule library name

| 24 | 18 |CHAR(1) |Exported defined symbol type

| 25 | 19 |CHAR(3) |Reserved

| 28 | 1C |BINARY(4) |Offset to exported defined symbol name
| 32 | 20 |BINARY(4) |Length of exported defined symbol name
| 36 | 24 |CHAR(10) |Uses argument optimization (ARGOPT)
[46 [2E [CHAR() |Reserved

|Modu|e information through offsets

| | ICHAR(*) |Exported defined symbol name

MODLO0200 Format

The MODL 0200 format lists symbols defined external to the module. The following table shows how this
information for each module is organized. For detailed descriptions of the fieldsin the list, see Field

Descriptions.

Note: Do not use the generic header entry size for this format. Use the Size of this entry field returned in
this format for the size of each entry.

Module information through offsets
| |ICHAR(*) |Imported (unresolved) symbol name

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Sizeof thisentry

| 4 | 4 |CHAR(10) |Module name

| 14 | E |CHAR(10) |Modulelibrary name

| 24 | 18 |CHAR() |Imported (unresolved) symbol type

[25 | 19 [CHAR®) |Reserved

| 28 | 1C |BINARY(4) |Offset toimported (unresolved) symbol name
| 32 | 20 |BINARY(4) |Length of imported (unresolved) symbol name
| 36 | 24 |CHAR(10) |Uses argument optimization (ARGOPT)

| 46 | 2E |CHAR(*) |Reserved

|

|

MODLO0300 Format

The MODL0300 format lists procedure names and their types. The following table shows how this
information for each module is organized. For detailed descriptions of the fieldsin the list, see Field

Descriptions.

Note: Do not use the generic header entry size for this format. Use the Size of this entry field returned in
this format for the size of each entry.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Sizeof thisentry

| 4 | 4 |CHAR(10) IModule name

| 14 | E |CHAR(10) IModule library name

| 24 | 18 |CHAR() |Procedure type

[25 [19 [CHAR®) |Reserved

| 28 | 1C |BINARY(4) |Offset to procedure name

| 32 | 20 |BINARY(4) |Length of procedure name
| 36 | 24 |CHAR(10) |Uses argument optimization (ARGOPT)
| 46 | 2E |CHAR(*) |Reserved

|Modu|e information through offsets

| | |ICHAR(*) |Procedure name

MODLO0400 Format

The MODL0400 format lists the objects that are referenced by the module when the module is bound to an
ILE program or service program. The following table shows how this information for each module is
organized. For detailed descriptions of the fieldsin the list, see Field Descriptions.

Note: Do not use the generic header entry size for this format. Use the Size of this entry field returned in
this format for the size of each entry.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Sizeof thisentry

| 4 | 4 |CHAR(10) IModule name

| 14 | E |CHAR(10) |Modulelibrary name

[24 | 18 |[CHAR(10) |Objecttype

| 34 | 22 |CHAR(10) |Object library name

| 44 | 2C |BINARY(4) |Offset to object name

| 48 | 30 |BINARY(4) |Length of object name
[52 [34 [CHAR() [Reserved

lM odule information through offsets
| | |ICHAR(*) |Object name

MODLO500 Format

The MODL 0500 format lists the copyrights contained in the module. The following table shows how this
information for each module is organized. For detailed descriptions of the fieldsin the list, see Field

Descriptions.

Note: Do not use the generic header entry size for this format. Use the Size of this entry field returned in
this format for the size of each entry.

| Offset

| Dec | Hex |Type ’Field

| 0 | 0 |BINARY(4) |Sizeof thisentry

| 4 | 4 |CHAR(10) IModule name

| 14 | E |CHAR(10) IModule library name
| 24 | 18 |BINARY(4) |Offset to copyright

| 28 | 1C |BINARY(4) |Lengthof copyright
[32 [20 [CHAR() |Reserved

|Module information through offsets

| | |ICHAR(*) |Copyright

Field Descriptions

Copyright. Copyright information for the module.

Exported defined symbol name. An exported procedure or variable in this module. Other modules may
use these symbols.

Exported defined symbol type. Indicates whether the exported symbol is a procedure or adata symbol.
The possible values are;

'00'X The exported symbol is a procedure.
'01'X The exported symbol is a dataitem.

Format name specified. The format name that was passed to this API on the call in the format parameter.

Imported (unresolved) symbol name. An imported procedure or variable in this module. Thisistypically
areference to a procedure exported from another module.

Imported (unresolved) symbol type. Indicates whether the imported symbol is a procedure or adata
symbol. The possible values are:

'00'X Theimported symbol is a procedure.

'01'X Theimported symbol is adataitem.

Length of copyright. The length of the copyright.

L ength of exported defined symbol name. The length of the exported defined symbol name.

Length of imported (unresolved) symbol name. The length of the imported (unresolved) symbol name.
L ength of object name. The length of the object name.

Length of procedure name. The length of the procedure name.

Module library name. The name of the library containing the module.

Module library name specified. The module library name that was passed to this APl in the qualified
module name parameter.

M odule name. The name of the module.

M odule name specified. The module name that was passed to this API in the qualified module name
parameter.

Object library name. The name of the library where the object exists. If the object library nameis blank,
the object isin the integrated file system.

Object name. A system object that is referenced at bind time. This object (modules and/or service
programs and/or binding directories) is used by CRTPGM or CRTSRVPGM when this module islisted on
the MODULE parameter on CRTPGM or CRTSRV PGM.

Object type. The object type of the system object that is referenced at bind time. The possible special
values are:

*MODULE The object isamodule.
*SRVPGM The object is a service program.
*BNDDIR Theobject isabinding directory.

Offset to copyright. Offset from the beginning of the user space to the copyright for this entry.

Offset to exported defined symbol name. Offset from the beginning of the user space to the exported
defined symbol name for thisentry.

Offset to imported (unresolved) symbol name. Offset from the beginning of the user space to the
imported (unresolved) symbol name for this entry.

Offset to object name. Offset from the beginning of the user space to the object name for this entry.

Offset to procedur e name. Offset from the beginning of the user space to the procedure name for this
entry.

Procedure name. A procedure defined in this module.
Procedure type. Thetype of procedure. The possible values are:

'00'X Regular procedure. If the typeisregular, this procedure cannot serve as a program entry
procedure.

'01'X Entry point procedure. If the typeis entry point, this procedure can serve as a program entry
procedure when this module is bound to a program.

Reserved. Anignored field.

Size of thisentry. The size, in bytes, of this entry. Do not use the generic header entry size for formats with
thisfield. Use thisfield for the size of each entry.

User space library name specified. The user space library name that was passed to this APl on the call in
the qualified user space name parameter.

User space library name used. The name of the library that contains the user space that receives the
module information requested.

User space name specified. The user space name that was passed to this API on the call in the qualified
user space name parameter.

User space name used. The name of the user space that receives the module information requested.

Uses argument optimization (ARGOPT). Whether or not the procedure import or export uses argument
optimization. For dataimports and exports, this value has no meaning and is aways given as a blank. For
some procedure imports, this value cannot be determined and is given as * UNKNOWN. Possible values
follow:

*YES The procedure import or export uses argument optimization (ARGOPT)

*NO The procedure import or export does not use argument optimization (ARGOPT)

*UNKNOWN The procedure import is used only to construct procedure pointers and is never called
directly.

Blank The symbol is not a procedure import or export.

Error Messages

Message | D Error Message Text

CPD5CFE E Module &1 inlibrary &2 isin error.
CPF24B4 E Severe error while addressing parameter list.
CPF3C20 E Error found by program & 1.

CPF3C21 E Format name & 1 is not valid.

CPF3C90 E Literal value cannot be changed.
CPF3CAAE Lististoo large for user space & 1.
CPF3CF1E Error code parameter not valid.

CPF5CFD E Module name &1 not avalid special value.
CPF5CFE E Module &1 in file &2 not changed.

CPF811A E
CPF8122 E
CPF8123 E
CPF8130 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9804 E
CPF9806 E
CPF9807 E
CPF9808 E
CPFO810 E
CPF9811 E
CPF9820 E
CPF9821 E
CPF9830 E
CPF9838 E

User space &4 in &9 damaged.

&8 damage on library &4.

Damage on object information for library &4.
Character in quoted name not valid.

Object &2 inlibrary &3 not found.

Not authorized to object &2 in & 3.

Cannot alocate object &2 in library & 3.

Object &2 in library & 3 damaged.

Cannot perform function for object &2 in library & 3.
Oneor more librariesin library list deleted.

Cannot allocate one or more libraries on library list.
Library &1 not found.

Program &1 in library &2 not found.

Not authorized to use library & 1.

Not authorized to program &1 in library & 2.
Cannot assign library &1.

User profile storage limit exceeded.

API Introduced: V3R7

Top | Program and CL. Command APIs | APIs by category

List Service Program Information (QBNLSPGM)
API

Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Qualified service program name Input Char(20)
4 Error Code 1/0 Char(*)

Default Public Authority: *USE

Threadsafe: No

The List Service Program Information (QBNLSPGM) API gives information about service programs,
similar to the Display Service Program (DSPSRVPGM) command. The information is placed in a user
space specified by you.
Y ou can use the QBNLSPGM API to:

« List modules bound into a service program

o List service programs bound to a service program

« List dataitems exported to the activation group

« List dataitem importsthat are resolved by weak exports that were exported to the activation group

« List copyrights of a service program

o List procedure export information of a service program

« List dataexport information of a service program

o List signatures of a service program

Authorities and Locks

User Space Authority
*CHANGE

User Space Library Authority
*EXECUTE

User Space Lock
*EXCLRD

Service Program Authority for SPGL0100 and SPGL0110 Formats
*USE

Service Program Authority for other Formats
*READ

Service Program Library Authority

*EXECUTE
Service Program Lock
*SHRRD

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)
The user space that isto receive the service program information. The first 10 characters contain
the user space hame. The second 10 characters contain the name of the library where the user space
islocated. The library name can be a specific library name or one of these special values:

*CURLIB Thejob's current library
*LIBL Thelibrary list

Format name
INPUT; CHAR(8)

The content and format of the information to be returned about the specified service program(s).
One of the following format names may be used:

SPGLO100 Service program module (*MODULE) information.
SPGLO110 Service program module (*MODULE) information.

Note: Do not use the generic header entry size for format SPGL0110. Use the Size
of thisentry field returned in this format for the size of each entry.

SPGL0O200 Service program (* SRVPGM) information.
SPGLO300 Dataitems exported to the activation group (* ACTGRPEXP).

SPGL0O400 Dataitem imports resolved by weak exports that were exported to the activation
group (*ACTGRPIMP).

SPGLO500 Service program copyright (* COPY RIGHT) information.
SPGLO600 Service program procedure export (* PROCEXP) information.
SPGLO610 Service program long procedure export name (* PROCEXP) information.

Note: Do not use the generic header entry size for format SPGL0610. Use the Size
of thisentry field returned in this format for the size of each entry.

SPGLO700 Service program data export (*DTAEXP) information.

SPGL0O80O0 Service program signature (* SIGNATURE) information.

Quialified service program name

INPUT; CHAR(20)

The name of the service program for which the information isto be listed. The first 10 characters
contain the service program name. The second 10 characters contain the name of the library where
the service program is located.

The service program name can be a specific service program name or one of the following special
values:

*ALL All service programs

generic* All service programsthat begin with this generic prefix. For example, WRK* lists
information for all service programsthat begin with WRK to which you are
authorized.

The library name can be a specific library name or one of these special values:
*ALL All librariesin the system
*ALLUSR All non-system libraries
*CURLIB Thejob's current library
*LIBL Thelibrary list
*USRLIBL Librarieslisted in the user portion of the library list

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the Generated List

The user space contains:
o A user area
» A generic header
« Aninput parameter section
« A header section
« A list data section

For details about the user area and generic header, see User Space Format for List APIs. For descriptions of
each field in the list returned, see Field Descriptions.

Input Parameter Section

| Offset
| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |User space name specified

| 10 | A |CHAR(10) |User space library name specified

| 20 | 14 |CHAR() |Format name specified

| 28 | 1C |CHAR(10) | Service program name specified

38 |26 |CHAR(10) |Service program library name specified

Header Section

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |CHAR(10) |User space name used

| 10 | A |CHAR(10) |User space library name used
| 20 | 14 |BINARY(4) |Reasoncode

SPGL0100 Format

The SPGL 0100 format includes information on all the modules that are bound into the programs specified.
The modules are listed in the user space in the order the modules are bound into the program. Y ou must
have a service program authority of * USE to use this format. The following table shows how this
information for each module is organized. For detailed descriptions of the fieldsin the list, see Field

Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |CHAR(10) |Service program name

| 10 | A |CHAR(10) |Service program library name

| 20 | 14 |CHAR(10) |Bound module name

| 30 | 1E |CHAR(10) |Bound module library name

| 40 | 28 |CHAR(10) |Source file name

| 50 | 32 |CHAR(10) |Source file library name

| 60 | 3C |CHAR(10) |Source file member name

[770 [46 |[CHAR@0) |Moduleatribute

| 80 | 50 |CHAR(13) IModule creation date and time

| 93 | 5D |CHAR(13) |Source file updated date and time
| 106 | 6A |CHAR(10) |Sort sequence table name

| 116 | 74 |CHAR(10) |Sort sequence table library name
| 126 | 7E |CHAR(10) |Language identifier

[136 | 88 |[BINARY(4) |Optimization level

| 140 | 8C |BINARY(4) |Maximum optimization level

| 144 | 90 |CHAR(10) |Debug data

| 154 | 9A |CHAR(6) |Release module created on

| 160 | AO |CHAR(®) |Release module created for

| 166 | A6 |CHAR(20) |Reserved

[186 [BA [CHAR®) |User-modified

| 187 | BB |CHAR(13) |Licensed program

| 200 | C8 |CHAR(5) |PTF number

[205 [CD [CHAR(€) |APARID

[211 [D3 [CHAR() |Cretiondaa

| 212 | D4 |BINARY(4) |Module CCSID

| 216 | D8 |CHAR(9) |Object control level

| 224 | EO |CHAR(1) |Enable performance collection
| 225 | E1 |CHAR(10) |Profiling data

[235 [EB [CHAR®) |Reserved

| 236 | EC |BINARY(4) |Number of procedures

| 240 | FO |BINARY(4) |Number of procedures block reordered
| 244 | F4 |BINARY(4) |Number of procedures block-order measured
| 248 | F8 |CHAR(1) | Teraspace storage enabled

| 249 | F9 |CHAR(1) | Storage mode!

[250 [FA [CHAR(74) |Reserved

| 324 | 144 |BINARY(4) |Number of SQL statements
[328 [148 [CHAR(18) |Relationdl database

| 346 | 15A |CHAR(10) |Commitment control

| 356 | 164 |CHAR(10) |Allow copy of data

| 366 | 16E |CHAR(10) |Close SQL cursor

| 376 | 178 |CHAR(10) INaming convention

[386 | 182 [CHAR(10) |Dateformat

| 3% | 18C |CHAR(1) |Date separator

[397 [18D [CHAR(0) [Timeformat

| 407 | 197 |CHAR(1) | Time separator

| 408 | 198 |CHAR(10) \Delay PREPARE

| 418 | 1A2 |CHAR(10) |Allow blocking

| 428 | 1AC |CHAR(10) |Default collection name

| 438 | 1B6 |CHAR(10) |SQL package name

| 448 | 1CO0 |CHAR(10) |SQL package library name

| 458 | 1CA |CHAR(10) |Dynamic user profile

| 468 | 1D4 |CHAR(10) |SQL sort sequence table name
| 478 | 1DE |CHAR(10) |SQL sort sequence table library name
| 488 | 1E8 |CHAR(10) |SQL language identifier

| 498 | 1F2 |CHAR(10) |Connection method

[B08 [IFC [BINARY(4) |SQL pathlength

[512 [200 [CHAR(3483) |SQL path

SPGLO0110 Format

The SPGL 0110 format includes information on al the modules that are bound into the programs specified.
The modules are listed in the user space in the order the modules are bound into the program. Y ou must
have a service program authority of * USE to use this format. The following table shows how this
information for each module is organized. For detailed descriptions of the fieldsin the list, see Field

Descriptions.

Note: Do not use the generic header entry size for this format. Use the Size of this entry field returned in
this format for the size of each entry.

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Sizeof thisentry

| 4 | 4 |CHAR(10) |Service program name

| 14 | E |CHAR(10) |Service program library name
| 24 | 18 |CHAR(10) |Bound module name

| 34 | 22 |CHAR(10) |Bound module library name

| 44 | 2C |CHAR(10) |Source file name

| 54 | 36 |CHAR(10) |Source file library name

| 64 | 40 |CHAR(10) |Source file member name

[74 [4A [CHAR(10) [Moduleattribute

| 84 | 54 |CHAR(13) IModule creation date and time
| 97 | 61 |CHAR(13) |Source file updated date and time
| 110 | 6E |CHAR(10) |Sort sequence table name

| 120 | 78 |CHAR(10) |Sort sequence table library name
| 130 | 82 |CHAR(10) |Language identifier

[140 [8C |[BINARY(4) |Optimization level

| 144 | 90 |BINARY(4) |Maximum optimization level

| 148 | 94 |CHAR(10) |Debug data

| 158 | 9E |CHAR(6) |Release module created on

| 164 | A4 |CHAR(6) |Release module created for

| 170 | AA |CHAR(20) |Reserved

[100 [BE [CHAR®) |User-modified

| 191 | BF |CHAR(13) |Licensed program

| 204 | CC |CHAR(5 |PTF number

[200 [DI [CHAR®E) |APARID

| 215 | D7 |CHAR(1) |Creation data

| 216 | D8 |BINARY(4) |Module CCSID

| 220 | DC |CHAR(9) |Object control level

| 228 | E4 |CHAR(1) |Enable performance collection
| 229 | E5 |CHAR(10) |Profiling data

[239 [EF [CHAR®) |Reserved

240 FO |BINARY(4) |Number of procedures

244 F4 |BINARY(4) |Number of procedures block reordered
248 F8 |BINARY(4) |Number of procedures block-order measured
252 FC |CHAR(1) | Teraspace storage enabled

253 FD |CHAR(1) | Storage model

254 FE |CHAR(2) |Reserved

256 100 |BINARY(4) |Offset to Licensed Internal Code options
260 104 |BINARY(4) |Lengthof Licensed Internal Code options
264 | 108 |CHAR(64) |Reserved

328 148 |B|NARY(4) |Number of SQL statements

332 | 14C [CHAR(18) |Relational database

350 15E |[CHAR(10) |Commitment control

360 168 |CHAR(10) |Allow copy of data

370 172 |CHAR(10) |Close SQL cursor

|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 | 17C |CHAR(10) INaming convention
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

390 186 | CHAR(10) | Date format
190 |CHAR(1) |Date separator
401 | 191 |CHAR(10) |Timeformat
411 19B [CHAR(1) | Time separator
412 | 19C [CHAR(10) |Delay PREPARE
422 1A6 |CHAR(10) |Allow blocking
432 1B0 |CHAR(10) |Default collection name
442 | 1BA |CHAR(10) |SQL package name
452 1C4 |CHAR(10) |SQL package library name
462 | 1CE |CHAR(10) |Dynamic user profile
472 1D8 |CHAR(10) |SQL sort sequence table name
482 1E2 |CHAR(10) |SQL sort sequence table library name
492 | 1EC |CHAR(10) |SQL language identifier
502 1F6 |CHAR(10) |Connection method
512 200 |BINARY(4) |SQL pathlength
516 | 204 |[CHAR(3483) |SQL path
1074 | 432 [CHAR() |Reserved
Bound module information through offsets
| |ICHAR(*) |Licensed Internal Code options

SPGL0200 Format

The SPGL 0200 format includes information on al the service programs that are bound to the programs
specified. The following table shows how thisinformation is organized. For detailed descriptions of the
fieldsin thelist, see Field Descriptions.

| Offset

[Dec [Hex |Type |Fi eld

| 0 | 0 |CHAR(10) |Service program name

| 10 | A |CHAR(10) |Service program library name

| 20 | 14 |CHAR(10) |Bound service program name

| 30 | 1E |CHAR(10) |Bound service program library name
| 40 | 28 |CHAR(16) |Bound service program signature

SPGL0300 Format

The SPGL 0300 format lists data items exported to the activation group. The list dataitems are specified in
the data export entry in the binding specifications component when the module was created. The following
table shows how thisinformation is organized. For detailed descriptions of the fields in the list, see Field

Descriptions.

Offset
Dec | Hex ’Type ’Field
0 0 |CHAR(10) |Service program name
A |CHAR(10) |Service program library name
20 14 |BINARY(4) |Sizeof dataitem export

28 1C |BINARY(4) |Dataitem export name length
32 20 |CHAR(256) |Dataitem export name

|
|
|
10
|
|
|
|

|
|
|
24 | 18 |[BINARY(4) |Dataitem export name CCSID
|
|

SPGL0400 Format

The SPGL 0400 format lists data item imports that were resolved by weak exports that had been exported to
an activation group. The following table shows how this information is organized. For detailed descriptions
of thefieldsin thelist, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |Service program name

| 10 | A |CHAR(10) |Service program library name
| 20 | 14 |BINARY(4) |Dataitemimport name CCSID
| 24 | 18 |BINARY(4) |Dataitemimport name length
| 28 | 1C |CHAR(256) |Dataitemimport name

SPGL0500 Format

The SPGL 0500 format includes copyright information for the service programs specified. The following
table shows how this information is organized. For detailed descriptions of the fields in the list, see Field

Descriptions.

Offset
Dec | Hex ’Type ’Field
0 0 |CHAR(10) |Service program name
A |CHAR(10) |Service program library name

24 18 |BINARY(4) |Copyright length
28 1C |CHAR(256) |Copyright

|
|
|
10
|
|
|

|
|
20 [14 [CHAR@®) [Reserved
|
|

SPGLO0600 Format

The SPGL 0600 format includes procedure export information for the service programs specified. The
following table shows how thisinformation is organized.

Note: Check the subsetted list indicator in the generic header to determine if all the information that was
available was returned. If the subsetted list indicator indicated there was data available that could not be
returned, check the reason code in the header section for further details. For detailed descriptions of the
fieldsin thelist, see Field Descriptions.

| Hex ’Type ’Fi eld
| 0 |CHAR(10) |Service program name
| A |CHAR(10) |Service program library name
20 | 14 |[BINARY(4) |Procedureexport CCSID
|
|
|

24 18 |BINARY(4) |Procedure export name length
28 1C |CHAR(256) |Procedure export name
284 11C |CHAR(10) |Uses argument optimization (ARGOPT)

SPGL0610 Format

The following information is returned for the SPGL0610 format. All procedure export names available are
returned in the SPGL 0610 format, regardless of the size of the name. For detailed descriptions of the fields
inthetable, see.

Note: Do not use the generic header entry size for this format. Use the Size of this entry field returned in
this format for the size of each entry.

| Offset
| Dec | Hex

Type ’Field

| 0 | 0 |BINARY(4) |Sizeof thisentry

| 4 | 4 |CHAR(10) |Service program name

| 14 | E |CHAR(10) |Service program library name

| 24 | 18 |BINARY(4) |Long procedure export CCSID

| 28 | 1C |BINARY(4) |Offsettolong procedure export name

| 32 | 20 |BINARY(4) |Length of long procedure export name

| 36 | 24 |CHAR(10) |Uses argument optimization (ARGOPT)
[46 [2E [CHAR() |Reserved

|Servi ce program information through offsets

| | ICHAR(*) |Long procedure export name

SPGLO0O700 Format

The SPGL 0700 format includes data export information for the service programs specified. The following
table shows how thisinformation is organized. For detailed descriptions of the fields in the list, see Field

Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |Service program name

| 10 | A |CHAR(10) |Service program library name
[20 [14 |[BINARY(4) |Dataitem CCSID

| 24 | 18 |BINARY(4) |Dataitem namelength

| 28 | 1C |CHAR(256) |Dataitem name

SPGL0800 Format

The SPGL 0800 format includes signature information for the service programs specified. The following
table shows how this information is organized. For detailed descriptions of the fieldsin the list, see Field

Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(10) |Service program name

| 10 | A |CHAR(10) |Service program library name
| 20 | 14 |CHAR(16) |Signature

Field Descriptions

Allow blocking. Whether blocking is used to improve the performance of certain SQL statements. The
possible values are:

*NONE Blocking is not used.

*READ Blocking is used for read-only data cursors when running COMMIT(*NONE) and there
are no EXECUTE or EXECUTE IMMEDIATE statements.

ALLREAD Blocking isused for al read-only cursors when running COMMIT(NONE) or
COMMIT(*CHG).

Blank The module does not contain SQL statements.

Allow copy of data. Whether a copy of the data can be used in the implementation of an SQL query. The
possible values are:

*NO A copy of the data cannot be used.
*YES A copy of the data can be used when needed.
*OPTIMIZE The system determines whether a copy of the dataiis used for optimal performance.

Blank The module does not contain SQL statements.

APAR ID. The module was changed as the result of the authorized program analysis report (APAR) with
thisidentification number. Thisis blank if the module was not changed at bind time.

Bound module library name. The name of the library containing the module bound into this service
program at bind time.

Bound module name. The name of the module bound into this service program. Thisis a copy of the
modul e that was bound into this service program. It is not the *MODULE object on the system.

Bound service program library name. The name of the library containing the service program bound to
this service program at bind time. Thisisthe library name in which the activation expects to find the service
program at run time. Hexadecimal zeros indicate the library list is used at the time the service programis
needed.

Bound service program name. The name of the service program bound to this service program.

Bound service program signature. The current signature of the service program at the time the service
program was bound to this service program.

Close SQL cursor. Specifieswhen SQL cursors are implicitly closed and SQL-prepared statements are
implicitly discarded. The possible values are:

*ENDMOD When the module ends.
*ENDACTGRP When the activation group is deleted.

Blank The module does not contain SQL statements.

Commitment control. The level of commitment control that was specified on the SQL precompile. The
possible values are:

*NONE No commitment control was specified on the SQL precompile. Uncommitted changesin other
jobs can be seen.

*CHG Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements are locked until the end of the unit of work (transaction). Updated,
deleted, and inserted rows (records) are locked until the end of the unit of work. Uncommitted
changesin other jobs can be seen.

*CS Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements are locked until the end of the unit of work (transaction). Updated,
deleted, and inserted rows (records) are locked until the end of the unit of work. A row
(record) that is selected but not updated is locked until the next row (record) is selected.
Uncommitted changes in other jobs cannot be seen.

*ALL Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REVOKE statements are locked until the end of the unit of work (transaction). All rows
selected, updated, deleted, and inserted are locked until the end of the unit of work.
Uncommitted changes in other jobs cannot be seen.

Blank The module does not contain SQL statements.

Connection method. The method used for establishing remote connections when running distributed
service programs.

Special values that can be returned are:

*RUW Only one connection to arelational databaseis allowed. Consecutive CONNECT statements
result in the previous connection being disconnected before a new connection is established.

*DUW Connectionsto several relational databases are allowed. Consecutive CONNECT statements to
additional relational databases do not result in disconnection of previous connects. SET
CONNECTION can be used to switch between connections. Read-only connections may resullt.

Blank The module does not contain SQL statements.

Copyright. The copyright string included in this service program.

Creation data. Whether the bound module has all the creation data#*and if that data is observable or
unobservable. % The possible values are:

0 *NO. Not al the creation datais present in the bound module.
1 *YES. The creation datais present in the bound module and all of that datais observable.

#2 *UNOBS. The creation datais present in the bound module but not all of that datais observable. 4

Copyright length. The length of the copyright string.
Dataitem CCSID. The coded character set identifier (CCSID) of this dataitem.

Data item export name. Data items that are exported to an activation group. These data items can be used
outside of the module or service program that they are defined in.

Dataitem export name CCSID. The coded character set identifier (CCSID) for the name of this dataitem
export.

Data item export name length. The length of the name of the data export item.

Dataitem import name. The name of the data item imports that were resolved by weak exports that had
been exported to the activation group.

Dataitem import name CCSID. The coded character set identifier (CCSID) for the name of this dataitem
import.

Data item import name length. The length of the name of the data import item.
Data item name. Service program dataitems that are allowed to be exported.
Data item name length. The length of the data item name.

Date format. The format used when accessing date-result columns through SQL. All output date fields are
returned in this format. For input date strings, the value you specify is used to determine whether the dateis
avalid format. The values returned are:

*USA USA format (mm/ddlyyyy).

*ISO Internationa Standards Organization format (yyyy-mm-dd).
*EUR European format (dd.mm.yyyy).

*JIS Japanese Industrial Standard Christian Era (yyyy-mm-dd).
*MDY Month/day/year format (mm/dd/yy).

*DMY Day/month/year format (dd/mm/yy).

*YMD Y ear/month/day format (yy/mm/dd).

*JUL Julian format (a numeric value from 1 to 365).

Blank The module does not contain SQL statements.

Date separator. The separator used when accessing date-result columns. Thisinformation is blank if the
module does not contain SQL statements. However, the number of SQL statements field should be checked
to determine if the module contains SQL statements. This is because a blank may be specified asa
separator value.

Debug data. Whether debug data was generated when this module was created. If debug data exists, the
module may be debugged using the source debugger. The possible values are:

*YES Debug data was generated.
*NO Debug data was not generated.

Default collection name. The collection name used for the unqualified names of tables, views, indexes,
and SQL packages. Possible values are:

*NONE Thereis no default collection name.

Blank The module does not contain SQL statements.

Delay PREPARE. Whether SQL prepare processing can be delayed until the statement is actually used.
The possible values are:

*YES Prepare processing can be delayed.

*NO Prepare processing cannot be delayed.

Blank The module does not contain SQL statements.

Dynamic user profile. The user profile used for dynamic SQL statements. The following special values

can be returned:

*USER Local dynamic SQL statements are run under the profile of the module's user. Distributed
dynamic SQL statements are run under the profile of the SQL package's user.

*OWNER Local dynamic SQL statements are run under the profile of the module's owner. Distributed
dynamic SQL statements are run under the profile of the SQL package's owner.

Blank The module does not contain SQL statements.

Enable perfor mance collection. The level of performance collection enabled for this module. The

following values can be returned:

'00'X *NONE or '10'X *PEP

'50'X *ENTRYEXIT * NONLEAF

70X *ENTRYEXIT *ALLPRC

'DO'X*FULL *NONLEAF

'FOX*FULL *ALLPRC

This gives the entry/exit information for the PEP only. No entry/exit
hooks in the modul€e's internal procedures and no precall or postcall
hooks around callsto other procedures are included.

Note: If *NONE is shown and the module was created or re-created
on an iSeries server running Version 3 Release 6 Modification O prior
to the installation of PTF MF11968, the module will not have any
performance collection enabled. To enable performance collection,
use one of the following commands and specify

ENBFPRCOL (* PEP):

« Change Module (CHGMOD)
« Change Program (CHGPGM)
« Change Service Program (CHGSRVPGM)

This gives the entry/exit information on all of the non-leaf procedures
in the module. This includes the PEP routine. Thisis useful to capture
information on most routines but not at the expense of destroying the
'leaf-ness’ of the leaf procedures.

This gives the entry/exit information on all the procedures of the
module (including those that were leaf procedures). Thisincludes the
PEP routine. Thisis useful to capture information on all procedures.

This givesthe entry/exit information on all the procedures of the
module that are not leaf procedures. Thisincludes the PEP routine.
Precall and postcall hooks around calls to external procedures are also
included.

This gives the entry/exit information on all procedures of the module
(including those that were leaf procedures). This includes the PEP
routine. Precall and postcall hooks around callsto external procedures
are also included. Thisis useful to capture information on all
procedures.

Format name specified. The format name that was passed to this API on the call in the format parameter.

L anguage identifier. Returns the 3-character language identifier used when the module was compiled. The

following specia values can aso be returned:

*JOBRUN The language identifier associated with the job at the time the service program into which
the module is bound runs.

Blank The module does not contain any language identification information.

Length of Licensed Internal Code options. The size, in two-byte characters, of the Licensed Internal
Code options string. Thiswill be 0 if no Licensed Internal Code options were used for this module.

Length of long procedure export name. The actual size, in bytes, of the long procedure export name for
thisentry.

Licensed Internal Code options. The Licensed Internal Code options that are in use by the module. This
field is specified in UCS-2 (CCSID 13488).

Licensed program. If the module was part of alicensed program at bind time, this field shows the product
number and the level of the licensed program. Thisis blank if the module is not part of alicensed program
at bind time.

L ong procedure export CCSID. The coded character set identifier (CCSID) of this procedure export
name.

L ong procedure export name. Service program procedures that are allowed to be exported.

Maximum optimization level. The highest level of optimization this module could have at bind time. If
observahility has been removed from the module, this maximum optimization level value might not be the
same as the one specified at module creation. The possible values are:

65535 The moduleis not restricted to a maximum optimization level. It can be retranglated to any of
the supported optimization levels. 65535 is also known as* NOMAX.

40 Maximum level of optimization. Thislevel includes all the optimizations performed at
optimization level 30. In addition, it includes optimization that disables call and instruction
tracing. Thus, tracing of modules created at this optimization level cannot be done.

30 More optimization is performed in addition to those performed at optimization level 20.
Variables cannot be changed but can be displayed while the program is being debugged.
However, the displayed value of the variable during debugging may not be its actual value. 30 is
also known as*FULL.

20 Some optimization is performed on the generated code. When the module optimized at this level
is being debugged, the variables can be displayed but not changed. This level improvesthe
performance of the module slightly over level 10. 20 is aso known as*BASIC.

10 No additional optimization is performed on the generated code. Variables can be displayed and

changed when the program is being debugged. With no optimization of the code, this value
provides the lowest level of module performance. 10 is also known as* NONE.

M odule attribute. The language in which the module is written. This field can be blank (for example, a
module created by a compilation processinternal to IBM).

Module CCSID. The coded character set identifier (CCSID) for this module.

Module creation date and time. The date and time the module was created. The creation date and time
fieldisinthe CYYMMDDHHMMSS format as follows:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month
DD Day
HH Hour
MM Minute
SS Second

Naming convention. The convention used for naming objectsin SQL statements. The possible values are:
*3QL The SQL naming convention is used.
*SYS The system naming convention is used.

Blank The module does not contain SQL statements.

Number of procedures. The number of procedures defined in the module. This number includes the
program entry procedure (PEP), if one was generated by the compiler for this module.

Number of procedures block-order measured. The number of procedures defined in the module that had
block-order profiling data collected at the time block-order profiling data was applied. If the module does
not have block-order profiling data applied, this value will be zero.

Number of procedures block reordered. The number of procedures defined in the module that are block
reordered. If the module does not have block-order profiling data applied, this value will be zero. Thisvalue
can decrease if the service program in which this bound module is contained is retrand ated.

Number of SQL statements. The number of SQL statements contained in the module. Thisvalueis zero if
the module does not contain SQL statements.

Object control level. The object control level for the module at the time it was bound into this service
program. Y ou can compare the object control level of amodule to the object control level of alisting to
make sure they match.

Offset to Licensed I nternal Code options. The offset from the beginning of the user space where the
Licensed Internal Code options begin. Thiswill be 0 if no Licensed Internal Code options were used for
this module.

Offset to long procedur e export name. The offset from the beginning of the user space where this
procedure export name is stored.

Optimization level. Optimization levels cause the trandator to produce machine code that reduces the
amount of system resources necessary to run the program. The more optimization, the more efficiently the
module runs on the system. Also, with more optimization you may not be able to change or view variables
that have been optimized. The possible values are:

65535 Themodule is not restricted to a maximum optimization level. It can be retranslated to any of
the supported optimization levels. 65535 is aso known as* NOMAX.

40 Maximum level of optimization. Thislevel includes al the optimizations performed at
optimization level 30. In addition, it includes optimization that disables call and instruction
tracing. Thus, tracing of modules created at this optimization level cannot be done.

30 More optimization is performed in addition to those performed at optimization level 20.
Variables cannot be changed but can be displayed while the program is being debugged.
However, the displayed value of the variable during debugging may not be its actual value. 30 is
also known as*FULL.

20 Some optimization is performed on the generated code. When the module optimized at this level
is being debugged, the variables can be displayed but not changed. Thislevel improvesthe
performance of the module slightly over level 10. 20 isaso known as*BASIC.

10 No additional optimization is performed on the generated code. Variables can be displayed and
changed when the program is being debugged. With no optimization of the code, this value
provides the lowest level of module performance. 10 is aso known as * NONE.

Procedure export name. Service program procedures that are allowed to be exported.
Procedure export CCSID. The coded character set identifier (CCSID) of this procedure name export.
Procedure export name length. The length of the procedure export name.

Profiling data. The profiling data attribute for the module that is bound into this service program. Possible
valuesfollow:

*NOCOL The collection of profiling data is not enabled and block-order profiling data is not
applied to the modul e bound into this service program.

*COL The collection of profiling datais enabled. Any block-order profiling data that was
applied has been removed for the module bound into this service program.

*APYBLKORD Block-order profiling datais applied to the module that is bound into this service
program. See the number of procedures block reordered field for the current number of
procedures in this module that are block reordered.

PTF number. The program temporary fix (PTF) that resulted in the creation of the module. Thisfield is
blank for user-created modules.

Reason code. The reason code describing why the returned list is only a subset. The following values can
be returned:

0000 Thelist returned in the user space contains all information meeting the search criteria.

0001 Additional procedure exports were found that meet the search criteria but could not be included
in the returned list. The requested format could not handle procedure names greater than 256
characters. Call the API again specifying the SPGL0610 format to get al the available
information.

Relational database. The default relational database that was specified on the SQL precompile. A
nonblank value other than * LOCAL specifies the name of the relational database to be resolved through the
relational database directory. The following special values can be returned:

*LOCAL The module can only access data on the local system.

Blank The module does not contain SQL statements.

Release module created for. The version, release, and modification level of the operating system for
which the module was created. The field has a VvRrMm format, where:

W Thecharacter V isfollowed by a 1-character version number.
Rr Thecharacter R isfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Release module created on. The version, release, and modification level of the operating system on which
the module was created. The field has aVvRrMm format, where:

W Thecharacter V isfollowed by a 1-character version number.
Rr Thecharacter R isfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Reserved. Anignored field.
Service program library name. The name of the library containing the service program.

Service program library name specified. The service program library name that was passed to this API
on the call in the qualified service program name parameter.

Service program name. The name of the service program.

Service program name specified. The service program name that was passed to this API on the call in the
qualified service program name parameter.

Signature. A valid signature of this service program.
Size of data item export. The size, in bytes, of the dataitem export.
Size of thisentry. The size, in bytes, of this entry.

Sort sequence table library name. The name of the library that contained the sort sequence table used
when the module was compiled. This does not apply to SQL statementsin the module. Thisinformation is
blank if the module does not contain any sort sequence information or a special value was returned for the
sort sequence table name. The following special values can be returned:

*LIBL The sort sequence tableisfound in the library list when the service program runs this
module.

*CURLIB The sort sequencetableisfound in the current library when the service program runsthis
module.

Sort sequence table name. The name of the sort sequence table used when the module was compiled. This
does not apply to SQL statements in the module. The following special values can be returned:

*HEX No sort sequenceis used.

*JOBRUN The sort sequence value associated with the job at the time the service program runs
this moduleis used.

*LANGIDSHR The shared sort sequence for the language identifier is used.

*LANGIDUNQ The unique sort sequence for the language identifier is used.
Note: This sort sequence table does not apply to SQL statements.

Sourcefilelibrary name. The name of the library that contains the source file used to create the module.
Thefield is blank if no source file was used to create the module.

Sour ce file member name. The name of the member in the sourcefile. Thefield is blank if no sourcefile
was used to create the module.

Sour ce file name. The name of the source file used to create the module. The field isblank if no sourcefile
was used to create the module.

Sour cefile updated date and time. The date and time the member in the source file was last updated. The
field isin the same format as the module creation date and time field. The field is blank if no sourcefile
was used to create the module.

SQL language identifier. The 3-character language identifier used when the module was compiled. This
information is blank if the module does not contain any language identification information. The following
possible special value can be returned:

*JOBRUN The language identifier isthe LANGID associated with the job at the time the module is
run.

SQL package library name. The name of the library the SQL packageisin.

SQL package name. The hame of the SQL package created on the relational database specified on the
RDB parameter of the command that created this module. Possible values are:

*NONE Thisis not adistributed module.

Blank The module does not contain SQL statements.

SQL path. Thelist of libraries used during resolution of functions and data types within SQL statements.
Thelist isin the form of repeating library names, each surrounded by double quotes and separated by
commas. Even though 3483 bytes are reserved, the path's length is determined by the SQL path length
entry.

SQL path length. The length, in bytes, of the SQL path.

SQL sort sequencetablelibrary name. The name of the library that is used to locate the SQL sort
sequence table. Thisinformation is blank if the module does not contain any SQL sort sequence
information or a special value was returned for the SQL sort sequence table name. The following special
values can be returned:

*LIBL The SQL sort sequence tableis found by looking in the library list.
*CURLIB The SQL sort sequence tableisfound by looking in the current library.
SQL sort sequence table name. The sort sequence table name used when the module was compiled. This

information is blank if the module does not contain any SQL sort sequence information. The following
special values can be returned:

*HEX No SQL sort sequenceis used for the SQL statements.

*JOBRUN The SQL sort sequence is the SRTSEQ value associated with the job at the time the
SQL statements within the module are run.

*LANGIDSHR The shared SQL sort sequence for the language identifier (LANGID) is used for the
SQL statements.

*LANGIDUNQ The unique SQL sort sequence for the language identifier (LANGID) is used for the
SQL statements.

Storage model. Where the automatic and static storage for this bound module is alocated at run time. The
following values can be returned:

0*SNGLVL Automatic and static storage are allocated from single-level storage.
1*TERASPACE Automatic and static storage are allocated from teraspace.

2*INHERIT Automatic and static storage are allocated from either single-level storage or
teraspace, depending on the activation.

Teraspace stor age enabled. The teraspace storage capability for this bound module. Possible values are:
'00'X*NO The module bound to this service program is not teraspace storage enabled.
'80'X*YES The module bound to this service program is teraspace storage enabled.

Timeformat. The format used when accessing time-result columns through SQL. All output time fields are
returned in this format. The values returned are:

*USA USA format (hh:mm am. or p.m.).

*ISO International Standards Organization format (hh.mm.ss).
*EUR European format (hh.mm.ss).

*JIS Japanese Industrial Standard Christian Era (hh.mm.ss).
*HMS Hourg/minutes/seconds format (hh:mm:ss).

Blank The module does not contain SQL statements.

Time separator. The separator used when accessing time-result columns. Thisinformation is blank if the
modul e does not contain SQL statements. However, the number of SQL statements field should be checked
to determine if the module contains SQL statements. Thisis because a blank may be specified asa
separator value.

User-modified. Whether the module was changed by the user. The possible values are:
0 The user did not change the module.

1 The user changed the module.

User space library name specified. The user space library name that was passed to this APl on thecall in
the qualified user space name parameter.

User space library name used. The name of the library that contains the user space that receives the
service program information requested.

User space name specified. The user space name that was passed to this API on the call in the qualified
user space name parameter.

User space name used. The name of the user space that receives the service program information
reguested.

Uses argument optimization (ARGOPT). Whether or not the service program export uses argument
optimization. The possible values are:

*YES The service program export uses argument optimization.

*NO The service program export does not use argument optimization.

Error Messages

Message | D Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3C20 E Error found by program & 1.

CPF3C21E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CAA E Lististoo large for user space & 1.

CPF3CF1 E Error code parameter not valid.

CPF5CF6 E Program name & 1 not valid special value.
CPF811A E User space &4 in &9 damaged.

CPFO570 E Error occurred creating or accessing debug data.
CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in & 3.

CPF9803 E Cannot allocate object &2 in library & 3.

CPF9804 E Object &2 in library &3 damaged.

CPF9806 E Cannot perform function for object &2 in library & 3.
CPF9807 E One or more librariesin library list deleted.
CPF9808 E Cannot allocate one or more libraries on library list.
CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library & 1.

CPF9830 E Cannot assign library & 1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

API introduced: V2R3

Top | Program and CL. Command APIs | APIs by category

Process Commands (QCAPCMD) API

Required Parameter Group:

1 Source command string Input Char(*)

2 Length of source command string Input Binary(4)

3 Options control block Input Char(*)

4 Options control block length Input Binary(4)

5 Options control block format Input Char(8)

6 Changed command string Output Char(*)

7 Lengthavailable for changed command Input Binary(4)
string

8 Length of changed command string Output Binary(4)
availableto return

9 Error Code /10 Char(*)

Default Public Authority: *EXCLUDE

Threadsafe: Y es. See Usage Notes for command considerations.

The Process Commands (QCAPCMD) AP is used to perform command analyzer processing on command
strings. Y ou can check or run CL commands from HLLs as well as check syntax for specific source
definition types.
Y ou can use the QCAPCMD API to:

» Check the syntax of a command string prior to running it

» Prompt the command and receive the changed command string

o Runacommand froman HLL

Authorities and Locks

Command
*USE
Command library
*EXCLUDE

Required Parameter Group

Sour ce command string
INPUT; CHAR(*)

The command string to be prompted for or run.

Length of source command string
INPUT; BINARY (4)
The length of the source command string. Valid values are between 1 and 32 702. Message
CPF3C1D will result for values outside this range. This length can include trailing blanks.
Options control block
INPUT; CHAR(*)

The options that control the handling of the command string. The layout of this parameter isthe
CPOPO0100 Format.

Options control block length
INPUT; BINARY (4)

The length of the options control block. A minimum length of 20 is required for the CPOP0100
format.

Options control block format
INPUT; CHAR(8)

The format of the options control block. CPOP0100 is the only valid value. For more information,
see CPOP0O100 Format.

Changed command string
OUTPUT; CHAR(*)

The rebuilt command string. Thisis the updated command string, which includes changes from
prompting, ordering of parameters, and the addition of keywords. This string may be substantially
longer than the source command string. If an error occurs that prevents the command string from
being rebuilt, thisfield is not changed. No padding is performed on the value returned. The length
of changed command string available to return parameter should be used to determine how much
dataisreturned.

Length available for changed command string
INPUT; BINARY (4)

The length available to return the updated command string. If an updated command string is not
desired, a specia value of 0 may be specified. This value must be a positive number or zero.

L ength of changed command string availableto return
OUTPUT; BINARY (4)

The length of the changed command string returned or available to return. If zero is specified for
the length available for changed command string parameter, this value is not set. If an error occurs
that prevents the command string from being rebuilt, thisfield is zero. If the changed command
string parameter is not large enough to hold the entire rebuilt command string, this valueis the total
length available. The changed command string is truncated.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

CPOP0100 Format

The CPOP0100 format includes information on the contents of the options control block parameter. The
following table shows how thisinformation is organized. For detailed descriptions of the fieldsin thelist,
see Field Descriptions.

| Offset ’ ’

IDec [Hex |Type Field

| 0 | 0 |BINARY(4) |Typeof command processing
| 4 | 4 |CHAR(1) IDBCS data handling

| 5 | 5 |CHARQ) |Prompter action

| 6 | 6 |CHAR() |Command string syntax

| 7 | 7 |CHAR(®4) |Message retrieve key

| 11 | B |CHAR(9) |Reserved

Field Descriptions

Command string syntax. Whether command processing should be done in OS/400 mode or System/38
mode. The possible values are;

0 Usesystem syntax. The specification of qualified objectsisin the format library/object.

1 Use System/38 syntax. The specification of qualified objectsisin the format object.library. The
system searches the QUSER38 library (if it exists) and the QSY S38 library for the command even
though these libraries are not in the library list.

DBCS data handling. Whether the command analyzer should handle the SO/SI characters as DBCS
delimiters. It isvalid with all classes of command processing. This option is the equivalent of specifying the
I|GC process control parameter on the Execute Command (QCMDEXC) and Check Command Syntax
(QCMDCHK) APIs. The possible values are:

0 Ignore DBCS data.
1 Handle DBCS data.

Message retrieve key. The message retrieve key identifies a request message. If prompting is requested,
the request message identified by the message retrieve key is replaced by the updated command string. The
updated command can then be logged in the job log. If the message key contains all hexadecimal zeros or
all blanks, no request message is updated. The message key isvalid for processing command types O, 1, 2,
and 3. The message key isignored for processing command types4, 5, 6, 7, 8, and 9. The message key is
valid only during the current job.

Prompter action. Indicates whether the prompter should be called on a command string.

0 Never prompt the command. Thiswill prevent acommand prompt even if selective prompting
characters are present in the command string.

Note: When the type of command processing field is 2 or 3 and there are missing required
parameters, the command will be prompted, even when the prompter action is set to O.

3

Always prompt the command. This forces a command prompt even if selective prompting characters
are not present in the command string.

Prompt the command if selective prompting characters are present in the command string. A
CPF0008 exception is sent if this value is specified with types of command processing values 4
through 8.

Show help. Provides help display for the command.

Reserved. This area must be set to hexadecimal zeros.

Type of command processing. The type of command processing to be performed by the system. The
following processes can occur:

0

Command running. The processing for thistype is the same as that performed by the QCMDEXC
API. Commands processed must have avalue of *EXEC on the ALLOW parameter of the Create
Command (CRTCMD) or the Change Command (CHGCMD) command.

Command syntax check. The processing for thistype is the same as that performed by the
QCMDCHK API.

Command line running. This processing is like that provided by the QCMDEXC API but with the
following additions:

o Limited user checking is performed.
« Prompting for missing required parametersis performed.

o |f the System/36 environment is active and the commands are System/36 commands, the
System/36 environment runs the commands.

This type processes commands with entry codes of Job: | (value of *INTERACT on the ALLOW
parameter of the CRTCMD or CHGCMD command). While this type is meant to implement an
interactive command line, it can be used in batch. When used in a batch job, the entry code for the
command must be Job: B. Limited user checking and System/36 environment processing is done
while prompting options are ignored.

Command line syntax check. This processing provides the check only complement of type 2
(command line running). The check option performs all checks against CL rules. The System/36
environment is not called.

CL program statement. The command string is checked according to the rules for CL programs
(source entry utility (SEU) member type of CLP). Commands may not be run with this type.
Command prompts include a prompt for acommand label and comment. Variable names are
allowed. Commands processed for this type must be defined with entry codes of Pgm: B, Pgm: |, or
Pgm: B,l. They have values of *BPGM or *IPGM on the ALLOW parameter of the CRTCMD or
CHGCMD command.

CL input stream. The command string is checked according to the rules for CL batch jobs (SEU
member type of CL). Commands may not be run. Command prompts include a prompt for
comment. Variable names are not allowed.

Command definition statements. The command string is checked according to the rules for
command definition (SEU member type of CMD). Commands may not be run. The commands are
restricted to CMD, PARM, ELEM, QUAL, DEP, and PMTCTL.

Binder definition statements. The command string is checked according to the rules for binder
definition (SEU member type of BND). Commands may not be run. The commands are restricted to
STRPGMEXP, ENDPGMEXP, and EXPORT.

8 User-defined option. This option allows a user to create user-defined option command strings
similar to those used by the programming development manager (PDM). It alows checking and
creating a command string for future use with types 0 through 3 except that variables are allowed.
The command string produced may not be directly operable. That is, if CL variables were specified
in the command string, the user must perform a substitution prior to using the API with types of O or
2.

9 ILE CL program source. The source is checked according to the rulesfor ILE CL programs (source
entry utility (SEU) member type of CLLE). Commands may not be run with this type. Command
prompts include a prompt for a command label and comment. Variable names are allowed.
Commands processed for this type must be defined with entry codes of CLLE: B, CLLE: I, or
CLLE: B,I. They have values of *IMOD or *BMOD on the ALLOW parameter of the CRTCMD or
CHGCMD command.

10 Command prompt string. The command analyzer prepares the source command for prompting and
returns the command string to use for the initial prompt display. If the command has an exit
program registered for the QIBM_QCA_CHG_COMMAND exit point, the exit programis called.
If the exit program replaces the original command, the changed command string returned by
QCAPCMD isthe replacement command from the exit program. The returned command string may
not be syntactically correct because no syntax checking is done on the replacement command. The
length of changed command string available to return is set to 0 and the changed command string
parameter is not changed if any of these conditions are true:

1. Theexit program is not called
2. Theexit program endsin error.
3. The exit program does not replace the command.

Usage Notes

1. Whilethis API isthreadsafe, it should not be used to run a command that is not threadsafe in ajob
that has multiple threads. Use the Display Command (DSPCMD) command to determine whether a
command is threadsafe.

2. The prompt actions controlled by the prompter option field in the option control block have the
following considerations.

o For commands with avalue of 0, 1, 2, or 3 for the type of command processing field, a
prompt occurs when 2 is specified for the prompter option field if:

= Selective prompting is specified in the source command string parameter.
= Thejobisrunning interactively.

o If thisAPI iscalled in abatch job with avalid prompt request, it isignored. A valid prompt
request isissued by specifying:

= 1 for the prompter option field

= 2 for the prompter option field with selective prompting characters in the command
string

= 3forhelp

3. Cadlsof the API in batch jobs with values of 4, 5, 6, or 7 for the type of command processing field
are processed. However, prompting requests are ignored.

4. The prompter option field in the options control block isignored if 10 is specified for the type of
command processing field.

Error Messages

Message I D Error Message Text

CPF0008 E Vauein option control block not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C1ID E Length specified in parameter & 1 not valid.

CPF3C20E Error found by program & 1.

CPF3C90 E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

xxxnnnn E Any escape message issued by any command may be returned. The messages listed
previously are those issued by this API. Once the API has called the command
analyzer, any message issued as an escape may appear.

API introduced: V2R3

Top | Program and CL Command APIs | APIs by category

Replace Command Exit Program (QCARPLCM)
API

Required Parameter Group:

1 Change command exit Input Char(*)
information

2 Replacement command Output Char(*)

3 Length of replacement Output Binary(4)

command string

Default Public Authority: *USE

Threadsafe: Yes

The Replace Command Exit Program (QCARPLCM) APl may be used as the exit program for the
QIBM_QCA_CHG_COMMAND for any command. If the original command was library-qualified with
*SYSTEM or *NLVLIBL, thelibrary qualifier will be replaced with *LIBL. None of the parameter values
specified on the original command will be changed. See the Command Analyzer Change exit program for a

description of the QIBM_QCA_CHG_COMMAND exit point.

Authorities and Locks

None

Required Parameter Group

Change command exit information
INPUT; CHAR(*)

Information about the command that the command analyzer was called to process. See Format
CHGCO0100 in the Command Analyzer Change exit program.

Replacement command
OUTPUT; CHAR(*)

A string containing the command string that is to be substituted for the one that the command
analyzer was called to process. If the original command was library-qualified with *SY STEM or
*NLVLIBL, the library qualifer will be replaced with *LIBL. None of the parameter values
specified on the original command will be changed. The maximum length of the changed command
string is 32000 bytes.

Length of replacement command string
OUTPUT; BINARY (4)

The length of the replacement command string (O - 32000) in bytes.

Usage Notes

Registration considerations

Use the Add Exit Program command (ADDEXITPGM) or APl (QUSADDEP, QusAddExitProgram) to
register this program as an exit program for a command. Y ou must specify 20 bytes of exit program data.
The first 10 characters specify the command name; the second 10 characters specify the library name. For
example, to register QCARPLCM asthe exit program to be called at the QIBM_QCA _CHG_COMMAND
exit point for the Display Job (DSPJOB) command in library QSY S, specify:

ADDEXI TPGM EXI TPNT(Q BM_QCA_CHG_COMVAND)
FORMAT(CHGC0100)
PGVNBR(* LOW
PGVDTA(*JOB 20 'DSPIJOB QSYS ")

If you register QCARPLCM as an exit program for acommand in library QSY'S, it also will be called for
commands in the secondary language libraries. For example, if the exit program is registered for the
DSPJOB command in library QSY'S, it also will be called for the DSPJOB command in library QSY S2962.

If you rename the command or the library or move the command to another library, you also must have the
exit program registered using the new command and library names.

If you register QCARPLCM asthe exit program for a command, you cannot register another exit program
for the command for the QIBM_QCA_CHG_COMMAND exit point.

Runtime considerations

If two applications on the same system need to replace the same command with one of the same name but
in different libraries, they can register QCARPLCM as the exit program for the
QIBM_QCA_CHG_COMMAND exit point for the command. The applications must ensure that the correct
application library is at the beginning of the system part of the library list.

If the original command was library-qualified with a specific library name, the exit program will not be
allowed to change the command string, so the command analyzer will search only the specified library for
the command.

Exit program introduced:

Top | Program and CL Command APIs | APIs by category

Retrieve Associated Space

(QbnRetrieveAssociatedSpace) API

Required Parameter Group:

Qualified user space name
Cal level

Associated space identifier
Error code

A OWDN P

Default Public Authority: *USE
Service Program: QBNPREPR

Threadsafe: No

I nput
Input
I nput
/0

Char(20)
Binary(4)
Char(10)
Char(*)

The Retrieve Associated Space (QbnRetrieveAssociatedSpace) API is used by arun-time routine to retrieve
data stored with the QbnAddA ssociatedSpaceEntry API. This data will be placed into the specified user
space. The format of the dataiis specified by the user when placed into the associated space of a module
using the QbnAddA ssociatedSpaceEntry API. This API should be called only by a preprocessor run-time

routine.

Authorities and Locks

User Space Authority
*CHANGE

User Space Library Authority
*USE

ILE Programor Service Program Authority
*EXECUTE

Required Parameter Group

Qualified user space name
INPUT; CHAR(20)

The qualified name of the user space that isto receive the associated space data. The first 10
characters contain the user space name. It isleft-justified and padded with blanks. The second 10
characters contain the name of the library where the user space islocated. It is left-justified and
padded with blanks. The library name can be specified with the following specia values:

*CURLIB Thejab's current library

*LIBL Thelibrary list

Call level
INPUT; BINARY (4)

The call level parameter identifies the location in the call stack of the ILE program or service
program, which contains the associated space data.

0 Thecurrent program in the call stack identifies the associated space of the ILE program or
service program.

n The nth caller up the stack identifies the associated space of the ILE program or service
program. Thisis apositive number.

Associated space identifier
INPUT; CHAR(10)

The associated space identifier has the following specia value:

*PREPROC Thetype of data from within the associated space to copy into the user space. The
specia value must be left-justified and padded with blanks.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF2207 E Not authorized to use object &1 in library & 3 type * & 2.
CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF5CA2E & 1lisnot avalid associated space identifier parameter.
CPF5CA4 E Error occurred while addressing APl Parameter.
CPF5D24 E Unexpected error occurred during preprocessor processing.
CPF811A E User space &4 in &9 damaged.

CPF9801 E Object &2 inlibrary &3 not found.

CPF9802 E Not authorized to object &2 in & 3.

CPF9803 E
CPF9807 E
CPF9808 E
CPF9810 E
CPF9820 E
CPF9830 E
CPF9838 E
CPF9872 E

Cannot allocate object &2 in library & 3.

Oneor more librariesin library list deleted.

Cannot allocate one or more libraries on library list.
Library &1 not found.

Not authorized to use library & 1.

Cannot assign library & 1.

User profile storage limit exceeded.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V3R1

Top | Program and CL. Command APIs | APIs by category

Retrieve Command Definition (QCDRCMDD)
API

Required Parameter Group:

1 Quadified user index name Input Char(20)
2 Destination Input Char(*)
3 Destination format name Input Char(8)
4 Receiver variable Output Char(*)
5 Receiver format name Input Char(8)
6 Error Code /10 Char(*)

Default Public Authority: *USE

Threadsafe: Yes

The Retrieve Command Definition (QCDRCMDD) API retrieves the command definition source for a
given command in XML tag language format. The source is returned in the destination provided in UTF-8
(CCSID 1208). Seethe Document Type Definition (DTD) in /QIBM/XML/DTD/QcdCLCmd.dtd for
details of the XML tag language returned by this API.

Authorities and Locks

API Public Authority
*USE
Command Library Authority
*EXECUTE
Command Authority
*USE
Command Lock
*SHRNUP
Output File Authority

Authority to the path and file are determined by the open() API. For details, see the Authorities
section of the open()--Open File API for files opened with an access mode of O_ WRONLY and

O_TRUNC.
Output File Lock
*SHRNUP

Required Parameter Group

Qualified command name
INPUT; CHAR(20)

The library-qualified command name for which to retrieve the command definition source. The first
10 characters contain the command name, while the second 10 characters identify the library name.

The following specia values are supported for the library name:
*CURLIB Thejob's current library
*LIBL Thelibrary list

Destination
INPUT; CHAR(*)

The destination for the XML source. This can be either the receiver variable or the output file path
name. This parameter must be coded to the specification of the destination format.

*CURLIB Thejab's current library
*LIBL Thelibrary list

Destination format name
INPUT; CHAR(8)

The destination format to determine where the XML source will be stored. Possible values are:

DEST0100 Returnthe XML sourcein the receiver variable.

DEST0200 Returnthe XML sourcein the output file path coded in the destination parameter.

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the XML source requested. The variable is used only when the
destination format is DESTO0100. If the receiver variable is not large enough to hold the entire

source, no partial sourceis returned.
Receiver format name
INPUT; CHAR(8)

The format of the command definition to be returned. Y ou must use the following format name:

CMDDO0100 XML sourceis returned.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

DESTO0100 Format

The following information needs to be supplied for the DEST0100 format.
| Offset

IDec |Hex |Type Fied

| 0 | 0 |BINARY(4) |Lengthof receiver variable

Field Descriptions

Length of receiver variable. The length of the receiver variable. If the length is larger than the size of the
receiver variable, the results may not be predictable. The minimum length is 8 bytes.

DEST0200 Format

The file path name where the XML source is returned. See Path name format for information on thefile
path name.

CMDDO0100 Format

The following information is returned for the CMDDO0100 format.

| Offset ’

IDec [Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |BINARY(4) |XML SourceData

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.
XML source data. The XML source for the command. If the receiver variable is not large enough to hold

the entire XML source or if an unexpected error occurs while writing to the receiver variable, no data will
be returned.

Usage Notes

The output file path name is represented by the 'Path name' field in the 'Path Name Format' structure when
using the DEST0200 destination format. The output file path name is used to store the XML source. The
target of the output file path name is referred to as the output file. The output file is opened for writing only,
in text only mode, in CCSID 1208, and allows sharing with readers only. If the output file exists, thefileis
truncated to zero length before writing any data. The existing output file should have been created with a
CCSID of 1208; otherwise, the resulting XML output may not be usable. If the output file does not exist, it
will be created with a CCSID of 1208 before attempting to write the XML sourceto it. The output fileis
created so that the file owner has read and write permission to it. The output file can be replaced if the user
has the authority to do so. For more information on authority requirements for files, see the open()--Open

File API in the Integrated File System section of the OS/400 APIsin the Information Center.

If the CCSID of the command is 65535, the API uses the job default CCSID as the CCSID for the
command.

Error Messages

Message | D Error Message Text

CPE3006 E Input/output error.

CPE3014 E The abject name is not correct.

CPE3021 E The value specified for the argument is not correct.
CPE3025 E No such path or directory.

CPE3027 E Operation not permitted.

CPE3029 E Resource busy.

CPE3401 E Permission denied.

CPE3403 E Not adirectory.

CPE3404 E No space available.

CPE3406 E Operation would have caused the process to be suspended.
CPE3407 E Interrupted function call.

CPE3408 E The address used for an argument was not correct.
CPE3436 E There is not enough buffer space for the requested operation.
CPE3440 E Operation not supported.

CPE3450 E Descriptor not valid.

CPE3452 E Too many open files for this process.

CPE3453 E Too many open files in the system.

CPE3460 E Storage allocation request failed.

CPE3470 E
CPE3471 E
CPE3474 E
CPE3484 E
CPE3485 E
CPE3486 E
CPE3489 E
CPE3490 E
CPE3499 E
CPE3500 E
CPE3507 E
CPE3511 E
CPE3512 E
CPE3513 E
CPE3524 E
CPF24B4 E
CPF3CI19E
CPF3C21 E
CPF3C24 E
CPF3C90 E
CPF3CF1 E
CPF3CF2 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9810 E
CPF9820 E
CPF9830 E
CPF9872 E

Function not implemented.
Specified target is adirectory.
Unknown system state.

A damaged object was encountered.
A loop existsin the symbolic links.
A path nameistoo long.

System resources not available to complete request.
Conversion error.

Object is suspended.

Object isaread only object.

Object too large.

File ID conversion of adirectory failed.

A File D could not be assigned when linking an object to directory.

File handle rejected by server.

Function not allowed.

Severe error while addressing parameter list.
Error occurred with receiver variable specified.
Format name & 1 is not valid.

Length of the receiver variableis not valid.
Literal value cannot be changed.

Error code parameter not valid.

Error(s) occurred during running of &1 API.
Object &2 inlibrary &3 not found.

Not authorized to object &2 in & 3.

Cannot allocate object &2 in library & 3.
Library &1 not found.

Not authorized to use library & 1.

Cannot assign library &1.

Program or service program &1 in library &2 ended. Reason code & 3.

API introduced: V5R1

Top | Program and CL. Command APIs | APIs by category

Retrieve Command Information (QCDRCMDI)
API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified command name Input Char(20)
5 Error code /0 Char(*)

Default Public Authority: *USE

Threadsafe: Yes

The Retrieve Command Information (QCDRCMDI) API retrieves information from a command definition
object and placesit into asingle variable in the calling program. The amount of information returned
depends on the size of the variable. The information returned is the same information returned by the
Display Command (DSPCMD) command.

Y ou can use the QCDRCMDI API to retrieve any operable command. This includes both interactive (such
as Display Program (DSPPGM) and Create Library (CRTLIB)) and non-interactive (such as DO, IF, and
EL SE) commands. It does not include command definition statements that appear in command source, such
as CMD, DEP, ELEM, PARM, PARMCTL, and QUAL.

Authorities and Locks

Command Definition Object Authority
*USE

Library Authority
*EXECUTE

Command Definition Object Lock
*SHRRD

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The variable that is to receive the information requested. The minimum size for thisareais 8 bytes.

Y ou can specify the size of this areato be smaller than the format requested as long as you specify
the length parameter correctly. As aresult, the API returns only the data that the area can hold.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. If thisvalueis larger than the actual size of the receiver
variable, the result may not be predictable. The minimum length is 8 bytes.

Format name
INPUT; CHAR(8)

The format of the command information to be returned. One of the following format names may be
used:

CMDI0100 Format Basic command information.

CMDI0200 Format Complete command information.

Qualified command name
INPUT; CHAR(20)

The name of the command whose values are to be retrieved. Thefirst 10 characters contain the
name of the command. The second 10 characters contain the name of the library where the
command is located.

Y ou can use these special values for the library name:
*CURLIB Thejob's current library
*LIBL Thelibrary list

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

CMDIO0100 Format

The following table describes the information that is returned in the receiver variable for the CMDI0100
format. For detailed descriptions of the fields, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 IBINARY (4) |Bytes returned

| 4 | 4 IBINARY (4) |Bytesavailable

| 8 | 8 ICHAR(10) |Command name

| 18 | 12 ICHAR(10) |Command library name

| 28 | 1C ICHAR(10) |Command processing program name

| 38 | 26 ICHAR(10) |Command processing program library name
| 48 | 30 ICHAR(10) |Source file name

| 58 | 3A |ICHAR(10) |Sourcefilelibrary name

| 68 | 44 ICHAR(10) |Source file member name

| 78 | 4E ICHAR(10) | Validity check program name

| 88 | 58 ICHAR(10) |Validity check program library name
| 98 | 62 ICHAR(10) |Mode information

| 108 | 6C ICHAR(15) |Whereallowed to run

| 123 | 7B |ICHAR(1) |Allow limited user

| 124 | 7C IBINARY (4) |Maximum positional parameters

| 128 | 80 ICHAR(10) |Prompt message file name

| 138 | 8A ICHAR(10) |Prompt message file library name

| 148 | 94 ICHAR(10) |Message file name

| 158 | 9E ICHAR(10) |Messagefilelibrary name

| 168 | A8 ICHAR(10) |Help panel group name

| 178 | B2 ICHAR(10) |Help panel group library name
[188 [BC |CHAR(0) |Helpidentifier

| 198 | C6 ICHAR(10) |Search index name

| 208 | DO ICHAR(10) |Search index library name

| 218 | DA ICHAR(10) |Current library

| 228 | E4 ICHAR(10) |Product library

| 238 | EE ICHAR(10) |Prompt override program name

| 248 | F8 |ICHAR(10) |Prompt override program library name
| 258 | 102 |CHAR(6) |Restricted to target release

| 264 | 108 ICHAR(50) |Text description

| 314 | 13A ICHAR(2) |Command processing program call state
| 316 | 13C ICHAR(2) |Validity check program call state

| 318 | 13E ICHAR(2) |Prompt override program call state

| 320 | 140 IBINARY (4) |Offset to help bookshelf information
| 324 | 144 IBINARY (4) |Length of help bookshelf information
[328 [148 [BINARY(4) |Coded character set ID (CCSID)

| 332 | 14C |ICHAR(1) |Enabled for GUI indicator

| 333 | 14D [CHAR(1) |Threadsafeindicator

| 334 | 14E ICHAR(1) IMultithreaded job action

[338 | 14F [CHAR(15) |Reserved

The offsets to these CHAR(*) Help bookshelf information

fields are specified in
previous offset
variables.

CMDIO200 Format

The following table describes the information that is returned in the receiver variable for the CMDI0200

format. For detailed descriptions of the fields, see Field Descriptions.

Offset
Dec | Hex |Type Fied

0 0 | |Returns everything from format CMDI0100
350 15E |[CHAR(10) |IREXX source file name
360 168 |CHAR(10) |REXX source filelibrary name
370 | 172 |CHAR(10) |REXX source file member name

|
|
|
|
380 | 17C |CHAR(10) |REXX command environment name
|
|
|
|

390 186 |CHAR(10) |REXX command environment library name
400 | 190 [CHAR(40) |Reserved

440 1B8 |[BINARY(4) [Number of REXX exit entries

444 | 1BC |BINARY(4) |Lengthof aREXX exit entry

Format of a REXX exit entry (repeated by the number of REXX exit entries)

See See |CHAR(10) REXX exit program name

note note

See See [CHAR(10) REXX exit program library name
note note

See See |[BINARY (4) REXX exit code

note note

Note: The decimal and hexadecimal offsets to the above 3 fields depend on the
number of REXX exit entries and the length of a REXX exit entry. The REXX exit
entry fields (currently REXX exit program name, REXX exit program library name,
and REXX exit code) repeat, in the order listed, by the number of REXX exit entries
defined for this command.

The offsetsto CHAR(*) Help bookshelf information
thesefields are

specified in

previous offset

variables.

Help Bookshelf Information

The following table describes the help bookshelf information that is returned for both the CMDI0100 and
CMDI0200 formats.

| Offset
| Dec | Hex |Type Field

See See [CHAR(71) Reserved

note note

See See |CHAR(8) Help bookshelf

note note
Note: The location and length of the help bookshelf information structure may be
determined by using the offset to help bookshelf information field and the length of
help bookshelf information field.

Field Descriptions

For more information on the following fields, refer to the documentation for the Create Command
(CRTCMD) command in the online help.

Allow limited user. Whether or not a user with limited authoritiesis alowed to run this command. The
possible valuesare 0 (*NO) or 1 (*YES).

Bytes available. The length of all data available for the requested format. All available dataiis returned if
enough spaceis provided.

Bytesreturned. The length of all data actually returned. If the datais truncated because the receiver
variable is not large enough to hold the data, this value is less than the bytes available.

Coded character set ID (CCSID). The value of the coded character set ID associated with this command.
It is the value of the job coded character set 1D when this command was created.

Command library name. The name of the library in which the command description resides.
Command name. The name of the command description about which information is being returned.

Command processing program call state. The state the command processing program is called from. The
possible values are:

*S The command processing program is called from system state.

*U The command processing program is called from user state.

Command processing program library name. The name of the library in which the process command
program resides. Thisfield is blank if the command processing program name contains the special value
*REXX.

Command processing program name. The name of the program that accepts parameters from the
command and processes the command. The possible values are:

*REXX The REXX fields returned in the CMDI0200 format contain valid information
about the command.

CPP-program-name The command processing program name.

Current library. The name of the library used as the current library during the processing of this
command. The possible values are:

*NOCHG The current library does not change for the processing of this command. If the current
library is changed during processing of the command, the change remainsin effect after
command processing is complete.

*CRTDFT No current library is active during processing of the command. The current library that
was active before command processing began is restored when processing is compl eted.

library-name The name of the library that is used as the current library. When command processing is
completed, the current library is restored to its previous value.

Enabled for GUI indicator. Whether the command prompt panels are enabled for conversionto a
graphical user interface. The possible values are:

0 The command prompt panels are not enabled for conversion to a graphical user interface.

1 The command prompt panels are enabled for conversion to a graphical user interface by including
information about the panel content in the 5250 data stream.

Help bookshelf. The name of the help bookshelf for this command. The possible values are:;
*NONE No help bookshelf is specified.
*LIST Thelist of bookshelvesin the user's book path.
book-shelf The help bookshelf name.

Help bookshelf infor mation. Information describing the help bookshelf.

See Help Bookshelf Information for more details about help bookshelf information.

Help identifier. The name of the general help module for the names of the help identifiers for this
command. The possible values are:

*NONE No help identifier is specified.
*CMD The name of the command is used.

help-ID-name A user-specified help module was used.

Help panel group library name. The name of the library in which the panel group resides.

Help panel group name. The name of the panel group in which the online help information exists for this
command. If *NONE isreturned, no help panel group is defined for this command.

Length of a REXX exit entry. The length of one REXX exit entry. Thisvalueis currently 24. There are 10
bytes for the REXX exit program name, 10 bytes for the REXX exit library name, and 4 bytes for the
REXX exit code.

L ength of help bookshelf information. The length of the help bookshelf.

Maximum positional parameters. The maximum number of parameters than can be coded in a positional
manner for this command. The possible values are:

-1 No maximum positional coding limit was specified for this command.

Othrough 75 The maximum number of parameters that can be coded in a positional manner for this
command.

Message file library name. The name of the library in which the message file resides.

M essage file name. The message file from which messages identified on the DEP statements used to define
the command are retrieved.

M ode information. The mode of operating environment to which the command applies. The characters of
thisfield are as follows, and they can have avalue of 0 (does not apply) or 1 (does apply):

1 Production mode

2 Debug mode

3 Service mode

4-10 Reserved

Multithreaded job action. The action to take when a command that is not threadsafeiscaled in a
multithreaded job. The possible values are:

0 Usetheaction specifiedin QMLTTHDACN system value.
1 Runthe command. Do not send a message.

2 Send an informational message and run the command.

3 Send an escape message, and do not run the command.

If the threadsafe indicator is either threadsafe or conditionally threadsafe, the multithreaded job action value
will be returned as 1.

Number of REXX exit entries. The number of timesthe REXX exit entries are repeated. These fields are
REXX exit program name, REXX exit program library name, and REXX exit code.

Offset to help bookshelf infor mation. The offset to the help bookshelf information.

Product library. The name of the product library that isin effect during the processing of the command.
The possible values are:

*NOCHG The product library does not change for the processing of this command.
*NONE Thereisno product library in thejob's library list.

library-name The name of the library that is used as the product library during the processing of the
command.

Prompt messagefile library name. The name of the library in which the prompt message file resides.

Prompt message file name. The name of the message file that contains the prompt text for this command.
If *NONE is returned, no message file was specified for prompt text.

Prompt override program call state. The state the prompt override program is called from. The possible
values are:

*S The prompt override programis called from the system state.

*U The prompt override programis called from the user state.

Prompt override program name. Thisisthe name of the prompt override program that replaces default
values (on the prompt display) with the current actual values for the parameter. If *NONE is returned, no
prompt override program was specified for this command.

Reserved. Anignored field.

Restricted to target release. The version, release, and modification level to which this command is
restricted. If thisfield is blank, the command can be used in the current release. This appliesonly to a
command used in aCL program. It must match the contents of the target release parameter on the Create
CL Program (CRTCLPGM) command. See the CRTCLPGM command for more information. Thisfield
has the format VVRrMm, where:

Vv Thecharacter V isfollowed by a 1-character version number.
Rr Thecharacter R isfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

REXX command environment library name. The name of the library in which the REXX command
environment program resides.

REXX command environment name. The command environment program that is active when the REXX
CPP starts to run. The REXX interpreter calls this program to process commands encountered in the REXX
procedure. The possible values are:

*COMMAND The OS/400 control language command environment is used.

*CPICOMM The Common Programming Interface (CPI) for Communications command
environment is used. CPICOMM is the command environment used for CL commands
that are embedded within aREXX procedure.

program-name The name of the program to process commands found in the REXX procedure.

REXX exit code. A value which controls the conditions in which the REXX exit programiscalled. The
possible values are:

2 Theexit program is called whenever an external function or subroutine has been called by the
REXX program. The exit program is responsible for locating and calling the requested routine.

3 Theexit program is called whenever the interpreter is going to call acommand. The exit program is
responsible for locating and calling the command.

4 Theexit programis called whenever a REXX instruction or function attempts an operation on the
REXX external data queue.

5 Theexit program is called when session input or output operations are attempted.

7 Theexit program is called after running each clause of the REXX procedure to determine whether it
must be stopped.

8 Theexit program is called after running each clause of the REXX program to check if tracing must
be turned on or off.

9 Theexit program is called before interpretation of the first instruction of aREXX procedure.

10 Theexit programiscalled after interpretation of the last instruction of a REXX procedure.

REXX exit program library name. The name of the library in which the REXX exit program resides.

REXX exit program name. The exit program used when the REXX interpreter is started under the
conditions specified by the REXX exit code for this program.

REXX sourcefilelibrary name. The name of the library in which the REXX sourcefile resides.

REXX sour ce file member name. The name of the source file member that contains the REXX procedure
that is the command processing program.

REXX sour ce file name. The name of the source file that contains the REXX procedure that isthe
command processing program. The possible values are:

QREXSRC The IBM-supplied source file, QREXSRC, contains the source member that is used.

source-file-name The name of the REX X source file that is used.

Sear ch index library name. The name of the library in which the help search index resides.
Sear ch index name. The name of the search index for this command. The possible values are:
*NONE No help search index is specified.

search index name The name of the help search index that is used.

Sour cefilelibrary name. The name of the library in which the source file resides.

Sour ce file member name. The name of the source file member that contains the command definition
statements used to create the command.

Sour ce file name. The name of the source file that contains the source file member used to create the
command.

Text description. The user text, if any, used to briefly describe the command and its function.
Threadsafe indicator. Whether the command can be used safely in

amultithreaded job.

The possible values are:

0 Thecommand is not threadsafe and should not be used

in amultithreaded job. The value for the multithreaded job action field defines the action to be taken

by the command analyzer when the command is used in a multithreaded job.
1 The command isthreadsafe and can be used safely in a
multithreaded job.

2 Thecommand is threadsafe under certain conditions. See the documentation for the command to
determine the conditions under which the command can be used safely ina

multithreaded job.

Validity check program call state. The state the validity check program is called from. The possible
values are:

*S Thevadidity check programis called from the system state.

*U Thevalidity check programis called from the user state.

Validity check program library name. The name of the library in which the validity check program
resides.

Validity check program name. The name of a program that performs additional user-defined validity
checking on the parameters in the command. If *NONE is returned, no separate user-defined validity
checking is done for this command. All validity checking is done by the command analyzer and the
command processing program.

Where allowed to run. The environments in which this command is allowed to run. The characters of this
field are as follows, and they can have avalue of 0 (does not apply) or 1 (does apply):

Batch program (* BPGM)

Interactive program (*IPGM)

Can be run using QCMDEXC, QCAEXEC, or QCAPCMD (*EXEC)

Batch job (*BATCH)

Batch REXX procedure (*BREXX)

1
2
3
4 Interactivejob (*INTERACT)
5
6
7

Interactive REXX procedure (*IREXX)

8-15 Reserved

Error Messages

Message I D
CPF2150 E
CPF2151 E
CPF24B4 E
CPF3CF1 E
CPF3C21 E
CPF3C24 E
CPF3C90 E
CPF6250 E
CPF8103 E
CPF8122 E
CPF8123 E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9807 E
CPF9808 E
CPF9810 E

Error Message Text

Object information function failed.

Operation failed for &2 in &1 type *& 3.

Severe error while addressing parameter list.

Error code parameter not valid.

Format name & 1 is not valid.

Length of the receiver variableis not valid.

Literal value cannot be changed.

Cannot display or retrieve command &1 in library & 2.
Command &4 in &9 damaged.

&8 damage on library &4.

Damage on object information for library &4.
Object &2 in library &3 not found.

Not authorized to object &2 in &3.

Cannot allocate object &2 in library & 3.

Oneor more librariesin library list deleted.

Cannot allocate one or more libraries on library list.

Library &1 not found.

CPF9820 E Not authorized to use library & 1.
CPF9830 E Cannot assign library &1.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

API Introduced: V2R2

Top | Program and CL. Command APIs | APIs by category

Retrieve Module Information (QBNRMODI) API

Required Parameter Group:

1 Recelver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified module name Input Char(20)
5 Error Code /10 Char(*)

Default Public Authority: * USE

Threadsafe: No

The Retrieve Module Information (QBNRMODI) API lets you retrieve module information and place it
into asingle variable in the calling program. The amount of information returned is limited to the size of the
variable. Thisinformation is similar to the information returned using the Display Module (DSPMOD)
command.
Y ou can use the QBNRMODI AP to retrieve the following:

« Module creation information

» Module compatibility information

« Module SQL attributes

« Module sizeinformation

Authorities and Locks

Library Authority
*EXECUTE

Module Authority
*USE

Module Lock
*SHRRD

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The variable that isto receive the information requested. The minimum size for this areais 8 bytes.

Y ou can specify the size of this areato be smaller than the format requested if you specify the
length of receiver variable parameter correctly. As aresult, the API returns only the data that the

area can hold.
Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. If thisvalueis larger than the actual size of the receiver
variable, the results may not be predictable. The minimum valueis 8.

Format name
INPUT; CHAR(8)

The content and format of the information returned for the module.
The possible format names are:
MODI0100 Basic module information.

MODI0200 Module size information.

Qualified module name
INPUT; CHAR(20)

Thefirst 10 characters contain the module name. The second 10 characters contain the name of the
library where the module is located.

Y ou can use these specia values for the library name:
*CURLIB Thejab's current library
*LIBL Thelibrary list

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

MODI0100 Format

The following information is returned for the MODI0100 format. For detailed descriptions of the fieldsin
the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

| 8 | 8 |CHAR(10) IModule name

| 18 | 12 |CHAR(10) IModule library name
| 28 | 1C |CHAR(10) IModule attribute

| 38 | 26 |CHAR(13) IModule creation date and time

| 51 | 33 |CHAR(10) |Source file name

| 61 | 3D |CHAR(10) |Source filelibrary name

| 71 | 47 |CHAR(10) |Source member name

| 81 | 51 |CHAR(13) |Source file change date and time

| 94 | BE |CHAR(10) |Reserved

| 104 | 68 |CHAR(10) |Module owner

[114 [72 [CHAR®) |Reserved

| 116 | 74 |BINARY(4) |Module CCSID

| 120 | 78 |CHAR(50) | Text description

[170 [AA [CHAR()) [Creationdaa

| 171 | AB |CHAR(10) |Sort sequence table name

| 181 | B5 |CHAR(10) |Sort sequence table library name

| 191 | BF |CHAR(10) |Language identifier

[201 [C9 [CHAR®) |Reserved

| 204 | CC |BINARY(4) |Optimization level

| 208 | DO |BINARY(4) |Maximum optimization level

| 212 | D4 |CHAR(1) |Debug data

| 213 | D5 |CHAR(1) IModule compressed status

[214 [D6 [CHAR®) |Reserved

| 216 | D8 |BINARY(4) |Minimum number of parameters

| 220 | DC |BINARY(4) |Maximum number of parameters

[224 [EO [CHAR®) |[Modulestate

| 225 | E1 |CHAR(1) IModule domain

[226 [E2 [CHARQ®) |Reserved

| 228 | E4 |BINARY(4) |Number of exported defined symbols

| 232 | E8 |BINARY(4) |Number of imported (unresolved) symbols
| 236 | EC |CHAR(®) |Release module created on

| 242 | F2 |CHAR(6) |Release module created for

| 248 | F8 |CHAR(6) |Earliest release module can be restored to
| 254 | FE |CHAR()) |Enable performance collection

| 255 | FF |CHAR(1) |Conversion required

| 256 | 100 |BINARY(4) |Offsetto program entry procedure name
| 260 | 104 |BINARY(4) |Length of program entry procedure name
| 264 | 108 |CHAR(1) |Program entry procedure name indicator
| 265 | 109 |CHAR(10) |Profile data

| 275 | 113 |CHAR(1) |Intermediate language (L) data

| 276 | 114 |CHAR(1) | Teraspace storage enabled

| 277 | 115 |CHAR(1) | Storage model

[278 [116 [CHAR(2) |Reserved

| 280 | 118 |BINARY(4) |Offsetto Licensed Internal Code options
| 284 | 11C |BINARY(4) |Length of Licensed Internal Code options

Module information through offsets

[288 [128 [CHAR(68) |Reserved

| 356 | 164 |BINARY(4) |Number of SQL statements
| 360 | 168 |CHAR(18) |Relational database

| 378 | 17A |CHAR(10) |Commitment control

| 388 | 184 |CHAR(10) |Allow copy of data

| 398 | 18E |CHAR(10) |Close SQL cursor

| 408 | 198 |CHAR(10) INaming convention

[418 [1A2 [CHAR(0) |Dateformat

| 428 | 1AC |CHAR(1) |Date separator

| 429 | 1AD |CHAR(10) | Time format

| 439 | 1B7 |CHAR(1) | Time separator

| 440 | 1B8 |CHAR(10) |Delay PREPARE

[450 [1C2 [CHAR(10) |Allow blocking

| 460 | 1CC |CHAR(10) |Default collection name

| 470 | 1D6 |CHAR(10) |SQL package name

| 480 | 1E0 |CHAR(10) |SQL package library name
| 490 | 1EA |CHAR(10) |Dynamic user profile

| 500 | 1F4 |CHAR(10) |SQL sort sequence table name
| 510 | 1IFE |CHAR(10) |SQL sort sequence table library name
| 520 | 208 |CHAR(10) |SQL language identifier

| 530 | 212 |CHAR(10) |Connection method

[540 [21C [BINARY(4) |SQL path offset

[544 [220 [BINARY(4) |SQL pathlength

| 548 | 224 |CHAR(*) |Reserved

|

|

|

|

| ICHAR(*) |Program entry procedure name
| |ICHAR(*) |SQL path
| |ICHAR(*) |Licensed Internal Code options

MODIO0200 Format

The following information is returned for the MODI0200 format. For detailed descriptions of the fieldsin
the table, see Field Descriptions.

Module size and limit information

28

1C

[BINARY (4)

| Offset ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

[4 [4 |[BINARY(4) |Bytesavalale

| 8 | 8 |CHAR(10) |Module name

| 18 | 12 |CHAR(10) IModule library name
|

|

|Current total module size

732 | 20 |BINARY(4) |Maximummoddesze

| 36 | 24 |BINARY(4) |Current proceduresand constantssize

| 40 | 28 |BINARY(4) |Maximum proceduresand constantssize

| 44 | 2C |BINARY(4) |Current debug spacesize

| 48 | 30 |BINARY(4) |Maximum debug spacesize

| 52 | 34 |BINARY(4) |Current associated space size

| 56 | 38 |BINARY(4) |Maximum associated space size

| 60 | 3C |BINARY(4) |Current module constantssize

| 64 | 40 |BINARY(4) |Maximum module constantssize

| 68 | 44 |BINARY(4) |Current static storage size

| 72 | 48 |BINARY(4) |Maximum static storage size

| 76 | 4C |BINARY(4) |Current dictionary mapping table size

| 80 | 50 |BINARY(4) |Maximum dictionary mapping tablesize

| 84 | 54 |BINARY(4) |Current exception mapping tablesize

| 88 | 58 |BINARY(4) |Maximum exception mapping table size

| 92 | 5C |BINARY(4) |Current exception mapping tablelist areasize
| 96 | 60 |BINARY(4) |Maximum exception mapping tablelist areasize
| 100 | 64 |BINARY(4) |Current binding specifications component size
’ 104 ’ 68 ’BI NARY (4) g_/l za(;(i mum binding specifications component

| 108 | 6C |BINARY(4) |Current string directory component size

| 112 | 70 |BINARY(4) |Maximum string directory component size

| 116 | 74 |BINARY(4) |Current dictionary component size

| 120 | 78 |BINARY(4) |[Maximum dictionary component size

| 124 | 7C |BINARY(4) |Current instructions component size

| 128 | 80 |BINARY(4) |Maximum instructions component size

| 132 | 84 |BINARY(4) |Current initialization component size

| 136 | 83 |BINARY(4) |Maximum initialization component size

| 140 | 8C |BINARY(4) |Current aliascomponent size

| 144 | 90 |BINARY(4) |Maximum alias component size

| 148 | 94 |BINARY(4) |Current typeinformation component size

| 152 | 98 |BINARY(4) |Maximum typeinformation component size

| 156 | 9C |BINARY(4) |Current literal pool component size

| 160 | AO |BINARY(4) |Maximum literal pool component size

| 164 | A4 |BINARY(4) |Current static storage work areasize

| 168 | A8 |BINARY(4) |Maximum static storage work areasize

| 172 | AC |BINARY(4) |Current binding work areasize

| 176 | BO |BINARY(4) |Maximum binding work areasize

| 180 | B4 |BINARY(4) |Current number of auxiliary storage segments
| 184 | B8 |BINARY(4) |Maximum number of auxiliary storage segments
| 188 | BC |BINARY(4) |Current number of static storage allocations

| 192 | CO |BINARY(4) |Maximum number of static storage allocations
| 196 | C4 [BINARY(4) [Current number of procedures

Procedure size and limit information

i 200 | C8 iBI NARY (4) iMaximum number of procedures

| 204 | CC |BINARY(4) |Current number of copyrights

| 208 | DO |BINARY(4) |Maximum number of copyrights
[%212 [D4 [CHAR(4) [Reserved

| 216 | D8 |BINARY(8) |Current static storagesize - long

| 224 | EO |BINARY(8) |Maximum static storage size - long
| 232 | E8 [CHAR(84) |Reserved &

|

|

|

316 | 13C |[BINARY(4) [Current automatic storage allocation size
320 | 140 |[BINARY(4) [Maximum automatic storage allocation size
324 144 |BINARY(4) Offset to largest automatic storage allocation
procedure
328 148 |[BINARY (4) Length of largest automatic storage allocation
procedure
332 14C |BINARY(4) Current Licensed Internal Code stack allocation
size
336 150 [BINARY (4) Maximum Licensed Internal Code stack
allocation size
340 154 |BINARY(4) Offset to largest Licensed Internal Code stack
alocation procedure
344 158 [BINARY (4) Length of largest Licensed Internal Code stack
allocation procedure
| 348 | 15C |BINARY(4) |Current debug statement mapping table size
| 352 | 160 |BINARY(4) |Maximum debug statement mapping table size
356 164 [BINARY (4) Offset to largest debug statement mapping table
procedure
360 168 |BINARY(4) Length of largest debug statement mapping
table procedure
| 364 | 16C |BINARY(4) |Current exception statement mapping table size
368 170 [BINARY (4) I_/Iaxi mum exception statement mapping table
size
372 174 |BINARY(4) Offset to largest exception statement mapping
table procedure
376 178 |BINARY(4) Length of largest exception statement mapping
table procedure
| 380 | 17C |BINARY(4) |Current machine instruction range mapping size
384 180 |BINARY(4) M aximum machine instruction range mapping
size
388 184 |BINARY(4) Offset to largest machine instruction range
mapping procedure
392 188 [BINARY (4) Length of largest machine instruction range
mapping procedure
| 3% | 18C |BINARY(4) |Current largest procedure size
| 400 | 190 |BINARY(4) |Maximum largest proceduresize
| 404 | 194 |BINARY(4) |Offset tolargest procedure name
| 408 | 198 |BINARY(4) |Length of largest procedure name

| 412 | 19C |CHAR(*) |R@erved
|Procedure information through offsets
CHAR(*) Largest automatic storage allocation procedure
name
CHAR(*) Largest Licensed Internal Code stack allocation
procedure name
CHAR(*) Largest debug statement mapping table
procedure name
CHAR(*) Largest exception statement mapping table
procedure name
CHAR(*) Largest machine instruction range mapping
procedure name
| | |ICHAR(*) |Largest procedure name

Field Descriptions

For more detailed information than that provided in the following field descriptions, refer to the Control
Language (CL) information in the iSeries Information Center for the Create XXX Module (CRTxxxMOD)
commands.

Allow blocking. Indicates whether blocking is used to improve the performance of certain SQL statements.
Possible values are:
*NONE Blocking is not used.

READ Blocking is used for read-only cursors when running COMMIT(NONE) and there are no
EXECUTE or EXECUTE IMMEDIATE statements.

*ALLREAD Blocking isused for al read-only cursors when running COMMIT(*NONE) or
COMMIT(*CHG).

Allow copy of data. Indicates whether a copy of the data can be used in the implementation of an SQL
query.
Possible values are:

*NO A copy of the data cannot be used.

*YES A copy of the data can be used when needed.

*OPTIMIZE The system determines whether a copy of the dataiis used for optimal performance.

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

Close SQL cursor. Specifieswhen SQL cursors are implicitly closed and SQL prepared statements are
implicitly discarded.

Possible values are;
*ENDMOD When the modul e ends.
*ENDACTGRP When the activation group is deleted.

Commitment control. Thelevel of commitment control that was specified on the SQL precompile.
Possible values are:

*NONE No commitment control was specified on the SQL precompile. Uncommitted changesin other
jobs can be seen.

*CHG Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements, and updated, deleted, or inserted rows (records) are locked until the end
of the unit of work (transaction). Uncommitted changes in other jobs can be seen.

*CS Objectsreferred to in SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements, and updated, deleted, or inserted rows (records) are locked until the end
of the unit of work (transaction). A row (record) that is selected but not updated is locked until
the next row (record) is selected. Uncommitted changes in other jobs cannot be seen.

*ALL Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements, and all rows selected, updated, deleted, or inserted are locked until the
end of the unit of work (transaction). Uncommitted changes in other jobs cannot be seen.

Connection method. Indicates whether connections are allowed to one or more relational databases.
The following special values can be returned:

*RUW Only one connection to arelational databaseis allowed. Consecutive CONNECT statements
result in the previous connection being disconnected before a new connection is established.

*DUW Connectionsto several relational databases are allowed. Consecutive CONNECT statements to
additional relational databases do not result in disconnection of previous connections. The SET
CONNECTION statement can be used to switch between connections. Read-only connections
may result.

Conversion required. Indicator as to whether the module has been converted to reduced instruction set
computer (RISC) format or if conversion is still required.

0 Conversionisnot required. It has already been converted.

1 Conversionisrequired.

Creation data. #*Whether the module has all creation data and if that datais observable or unobservable.
All observable creation data is needed to re-create the module using the Change Module (CHGMOD)
command. All creation data (either observable or unobservable) is needed to convert the module during
restore. %

0 *NO. Not al the creation data is present.
1 *YES. All the creation datais present and observable.

2 *UNOBS. All the creation datais present but not all of that datais observable. <X

Current alias component size. The size, in bytes, of the alias component. The size is the decompressed
size, even if the module is compressed. The current size increases as more data objects, particularly arrays
and structures, are added to the module.

Current associated space size. The size, in bytes, of the associated space. The number of SQL statements
in the module may affect the current size.

Current automatic storage allocation size. The size, in bytes, of the largest automatic storage allocation
associated with the procedure referenced by the offset to the largest automatic storage allocation procedure
name for this module. The current size increases as more automatic variables and bound procedure cals are
added.

Current binding specifications component size. The size, in bytes, of the binding specifications
component. The sizeis the decompressed size, even if the module is compressed. The current size increases
as imported and exported procedures and data items are added.

Current binding work area size. The size, in bytes, of the binding work area. The size isthe
decompressed size, even if the module is compressed. The current size increases as imports and exports are
added to the module.

Current debug space size. The size, in bytes, of the debug space. The size is the decompressed size, even
if the module is compressed. See the debug view (DBGVIEW) parameter of the Create xxx Module
(CRTxxxMOD) command for more information on the different debug view levels you can specify at
create time. Y ou can completely remove the debug view data from the module by using the remove
observability (RMVOBS) parameter of the Change Module (CHGMOD) command.

Current debug statement mapping table size. The size, in bytes, of the debug statement mapping table
associated with the procedure referenced by the offset to the largest debug statement mapping table
procedure name for this module. The current size increases as statements are added or increase in
complexity.

Current dictionary component size. The size, in bytes, of the dictionary component. The sizeisthe
decompressed size, even if the module is compressed. The current size increases as more data objects,
exception handlers, constants, and procedures are added.

Current dictionary mapping table size. The amount of space, in bytes, for the dictionary mapping table.
The size is the decompressed size, even if the module is compressed. The dictionary mapping table does not
exist if the DBGVIEW(* NONE) option is used when the moduleis created. If it does exist, its current size
depends on the number of different variables that are declared in the module.

Current exception mapping tablelist area size. The amount of space, in bytes, for the exception mapping
table list area. The size isthe decompressed size, even if the module is compressed. The current size
depends on the number of exception handlers that are enabled in the code. The handlers could be either
defined by the user or defined by the compiler to handle exceptions in the generated code.

Current exception mapping table size. The amount of space, in bytes, for the exception mapping table.
The size is the decompressed size, even if the module is compressed. The current size depends on the
number of exception handlers that are either declared by the user or defined by the compiler to handle
exceptions in the generated code.

Current exception statement mapping table size. The size, in bytes, of the exception statement mapping
table associated with the procedure referenced by the offset to the largest exception statement mapping
table procedure name for this module. Thistable is used to map high-level language statementsto Licensed
Internal Code instructions. The current size increases as statements are added or increase in complexity.

Current initialization component size. The size, in bytes, of the initialization component. The sizeisthe
decompressed size, even if the module is compressed. The current size increases as more statements to
statically initialize data objects are added.

Current instructions component size. The size, in bytes, of the instructions component. The size isthe
decompressed size, even if the module is compressed.

Current largest procedure size. The size, in bytes, of the largest procedure in the module.

Current Licensed Internal Code stack allocation size. The size, in bytes, of the Licensed Internal Code
stack allocation associated with the procedure referenced by the offset to the largest Licensed Internal Code
stack allocation procedure name for this module. The current size increases at higher levels of optimization.

Current literal pool component size. The size, in bytes, of the literal pool component. The sizeisthe
decompressed size, even if the module is compressed. The current size increases as more literals or
initializations are added to the module.

Current machineinstruction range mapping size. The size, in bytes, of the machine instruction range
mapping associated with the procedure referenced by the offset to the largest machine instruction range
mapping procedure name for this module. The number of times exception handlers are enabled and disabled
affects the current size. Also, some instructions, like packed decimal arithmetic, affect this size.

Current module constants size. The amount of space, in bytes, for module constants. The sizeisthe
decompressed size, even if the module is compressed. Changing the number of large aggregate constants or
the number of smaller constants may affect the current size.

Current number auxiliary storage segments. The number of auxiliary storage segments used by this
module.

Current number of copyrights. The number of copyrights defined in this module.
Current number of procedures. The number of procedures declared in this module.

Current number of static storage allocations. The number of static storage allocations used by this
module. The current number increases as static data items (particularly imported data items) are added to
the module.

Current procedures and constants size. The current amount of space, in kilobytes, for procedures and
constants. The size is the decompressed size, even if the module is compressed. The current size increases
as more instructions are added. The number of literals and the size of the literal values may have an effect
on the current size. This number could be zero in which case it means the sizeis less than 1 kilobyte.

Current static storage size. The amount of static storage, in bytes, required for the module. The sizeisthe
decompressed size, even if the module is compressed. As more and larger static and exported variables are

declared, the current size increases. #*A value of 4294967295 will be given if 4 gigabytes (4294967296) or
greater is needed. In this case, the current static storage size - long field should be used instead.

Current static storage size - long. The current amount of static storage, in bytes, required for the module.
L4

Current static storagework area size. The size, in bytes, of the static storage work area. The sizeisthe
decompressed size, even if the module is compressed. The current size increases as static data items or
initializations are added to the module.

Current string directory component size. The size, in bytes, of the string directory component. The size
isthe decompressed size, even if the module is compressed. The current size increases as imported and
exported procedures and data items are added.

Current total module size. The size of the module, in kilobytes. The size is the decompressed size, even if
the module is compressed.

Current typeinformation component size. The size, in bytes, of the type information component. The

sizeisthe decompressed size, even if the module is compressed. The current size increases as more
procedures are added to the module.

Date format. Specifies the format used when accessing date result columns through SQL. All output date
fields are returned in this format. For input date strings, the value you specify is used to determine whether
the dateisavalid format.

Possible values are:
*USA USA format
*1SO International Standards Organization format
*EUR European format
*JS Japanese Industrial Standard Christian Era
*MDY Month/day/year format
*DMY Day/month/year format
*YMD Year/month/day format

*JUL Julian format

Date separator. Specifies the separator used when accessing date result columns. A blank value indicates
either that there are no SQL statements or that the separator character is a blank. Assume the latter if the
number of SQL statements parameter is not zero.

Debug data. Indicates whether debug data exists for this module. If debug data exists, the module may be
debugged using the source debugger.

0 The module does not contain debug data.

1 The module does contain debug data.

Default collection name. Specifies the collection name used for the unqualified names of tables, views,
indexes, and SQL packages. * NONE indicates there is no default collection.

Delay PREPARE. Indicates whether SQL prepare processing can be delayed until the statement is actually
used.

Possible values are:
*YES Prepare processing can be delayed.
*NO Prepare processing cannot be delayed.

Dynamic user profile. Specifiesthe user profile used for dynamic SQL statements.
The following specia values can be returned:

*USER Local dynamic SQL statements are run under the profile of the module's user. Distributed
dynamic SQL statements are run under the profile of the SQL package's user.

*OWNER Local dynamic SQL statements are run under the profile of the module's owner. Distributed
dynamic SQL statements are run under the profile of the SQL package's owner.

Earliest release module can berestored to. The earliest version, release, and modification level of the
operating system to which the module may be restored.

Thefield has aVvRrMm format, where;
W The character V isfollowed by a 1-character version number.
Rr Thecharacter R isfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Enable performance collection. The level of performance collection enabled for this module.
The following values can be returned:

'00'X *NONE or '10'X *PEP This gives the entry/exit information for the PEP only. No entry/exit
hooks in the modul€e's internal procedures and no precall or postcall
hooks around calls to other procedures are included. Note: If *NONE
is shown and the module was created or re-created on an iSeries
server running Version 3 Release 6 Modification O prior to the
installation of PTF MF11968, the module will not have any
performance collection enabled. To enable performance collection,
use one of the following commands and specify
ENBFPRCOL (* PEP):

« Change Module (CHGMOD)
« Change Program (CHGPGM)
« Change Service Program (CHGSRVPGM)

'B50'X *ENTRYEXIT *NONLEAF This gives the entry/exit information on all of the non-leaf procedures
in the module. Thisincludes the PEP routine. Thisis useful to capture
information on most routines but not at the expense of destroying the
'leaf-ness of the leaf procedures.

"7T0X*ENTRYEXIT *ALLPRC Thisgivesthe entry/exit information on all the procedures of the
module (including those that were leaf procedures). This includes the
PEP routine. Thisis useful to capture information on all procedures.

'DOX *FULL *NONLEAF This gives the entry/exit information on all the procedures of the
module that are not leaf procedures. This includes the PEP routine.
Precall and postcall hooks around callsto external procedures are
included.

'"FOX*FULL *ALLPRC This givesthe entry/exit information on all procedures of the module
(including those that were leaf procedures). This includes the PEP
routine. Precall and postcall hooks around calls to external procedures
are also included. Thisis useful to capture information on all
procedures.

Intermediate language (IL) data. Whether the module has intermediate language (IL) data.
1 Themodule contains IL data.

0 The module does not contain IL data

L anguage identifier. The language identifier used when the module was compiled. A

possible specia valueis:

*JOBRUN The language identifier associated with the job at the time the program (in which the
module is bound) runs.

Note: Thislanguage identifier does not apply to DB2 for i Series statements that may be
contained in this module.

L argest automatic storage allocation procedur e name. The name of the largest automatic storage
allocation procedure in the module.

L argest debug statement mapping table procedure name. The name of the largest debug statement
mapping table procedure in the module.

L argest exception statement mapping table procedur e name. The name of the largest exception
statement mapping table procedure in the module.

Largest Licensed Internal Code stack allocation procedure name. The name of the largest Licensed
Internal Code stack allocation procedure in the module.

L argest machine instruction range mapping procedure name. The name of the largest machine
instruction range mapping procedure in the module.

Largest procedure name. The name of the largest procedure in the module.

Length of largest automatic storage allocation procedure name. The size, in bytes, of the name of the
largest automatic storage allocation procedure in this module.

Length of largest debug statement mapping table procedure name. The size, in bytes, of the name of
the largest debug statement mapping table procedure.

Length of largest exception statement mapping table procedur e name. The size, in bytes, of the name
of the largest exception statement mapping table procedure.

Length of largest Licensed I nternal Code stack allocation procedure name. The size, in bytes, of the
name of the largest Licensed Internal Code stack allocation procedure.

Length of largest machineinstruction range mapping procedure name. The size, in bytes, of the name
of the largest machine instruction range mapping procedure.

Length of largest procedure name. The size, in bytes, of the name of the largest procedure.

Length of Licensed Internal Code options. The size, in two-byte characters, of the Licensed Internal
Code options string. Thisis 0 if no Licensed Internal Code options were used for this module.

Length of program entry procedure name. The size, in bytes, of the program entry procedure name.

Licensed Internal Code options. The Licensed Internal Code options being used by the module. Thisfield
is specified in UCS-2 (CCSID 13488).

Maximum alias component size. The maximum possible size, in bytes, of the alias component.
Maximum associated space size. The maximum possible size, in bytes, of the associated space.

Maximum automatic stor age allocation size. The maximum possible size, in bytes, of the largest
automatic storage allocation associated with a procedure for amodule.

Maximum binding specifications component size. The maximum possible size, in bytes, of the binding

specifications component.
Maximum binding work area size. The maximum possible size, in bytes, of the binding work area.
Maximum debug space size. The maximum possible size, in bytes, of the debug space.

Maximum debug statement mapping table size. The maximum possible size, in bytes, of the debug
statement mapping table associated with a procedure for a module.

Maximum dictionary component size. The maximum possible size, in bytes, of the dictionary component.

Maximum dictionary mapping table size. The maximum possible amount of space, in bytes, for the
dictionary mapping table.

Maximum exception mapping tablelist ar ea size. The maximum possible amount of space, in bytes, for
the exception mapping table list area.

Maximum exception mapping table size. The maximum possible amount of space, in bytes, for the
exception mapping table.

Maximum exception statement mapping table size. The maximum possible size, in bytes, of the
exception statement mapping table associated with a procedure for amodule.

Maximum initialization component size. The maximum possible size, in bytes, of the initialization
component.

Maximum instructions component size. The maximum possible size, in bytes, of the instructions
component.

Maximum largest procedur e size. The maximum possible size, in bytes, of a procedure in a module.

Maximum Licensed Internal Code stack allocation size. The maximum possible size, in bytes, of the
Licensed Internal Code stack allocation associated with a procedure for amodule.

Maximum literal pool component size. The maximum possible size, in bytes, of the literal pool
component.

Maximum machine instruction range mapping size. The maximum possible size, in bytes, of the
machine instruction range mapping associated with a procedure for amodule.

Maximum module constants size. The maximum possible amount of space, in bytes, for module
constants.

Maximum module size. The largest size, in kilobytes, allowed for amodule.

Maximum number auxiliary storage segments. The maximum possible number of auxiliary storage
segments used by a module.

Maximum number of copyrights. The maximum possible number of copyrights defined in a module.

Maximum number of parameters. The maximum number of parameters that are to be received by the
program entry procedure if oneis present in the module.

Maximum number of procedures. The maximum possible number of procedures declared in a module.

Maximum number of static storage allocations. The maximum possible number of static storage
allocations used by amodule.

Maximum optimization level. The highest level of optimization you may request. If observability has been
removed from the module, this maximum optimization level value might not be the same as the one
specified when the modul e was created.

Maximum procedures and constants size. The maximum possible amount of space, in kilobytes, for
procedures and constants. This number could be zero, in which case it means the size isless than 1 kilobyte.

M aximum static stor age size. The maximum possible amount of static storage, in 2*kilobytes, <required
for amodule.

M aximum static storage size - long. The maximum possible amount of static storage, in bytes, required
for amodule. <X

Maximum static storage work area size. The maximum possible size, in bytes, of the static storage work
area.

Maximum string directory component size. The maximum possible size, in bytes, of the string directory
component.

Maximum type infor mation component size. The maximum possible size, in bytes, of the type
information component.

Minimum number of parameters. The minimum number of parameters that are to be received by the
program entry procedure if oneis present in the module.

Module attribute. The programming language in which the module is written or the product that produced
the module.

Module CCSID (Coded Character Set D). The coded character set identifier (CCSID) for this module.
M odule compressed status. Indicates whether the module isin compressed format.
The following values can be returned:

65535 The moduleis not restricted to a maximum optimization level. It can be retranglated to any of
the supported optimization levels. 65535 is also known as* NOMAX.

40 Maximum level of optimization. Thislevel includes all the optimizations performed at
optimization level 30. In addition, it includes optimization that disables call and instruction
tracing. Thus, tracing of modules created at this optimization level cannot be done.

30 More optimization is performed in addition to those performed at optimization level 20.
Variables cannot be changed but can be displayed while the program is being debugged.
However, the displayed value of the variable during debugging may not be its actual value. 30 is
also known as*FULL.

20 Some optimization is performed on the generated code. When the module optimized at this level
is being debugged, the variables can be displayed but not changed. Thislevel improves the
performance of the module slightly over level 10. 20 isaso known as*BASIC.

10 No additional optimization is performed on the generated code. Variables can be displayed and
changed when the program is being debugged. With no optimization of the code, this value
provides the lowest level of module performance. 10 is also known as * NONE.

0 The module is not in a compressed status.

1 The moduleisin acompressed status.

M odule creation date and time. The date and time when the module was created. The creation date and
timefieldisinthe CYYMMDDHHMMSS format as follows:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year
MM Month
DD Day
HH Hour
MM Minute
SS Second

Module domain. The domain of the module.
The possible valueis:

S Themoduleis system domain.

Modulelibrary name. Thelibrary that contains the module.

M odule name. The name of the module whose information is being given.
Module owner. The name of the user profile of the user who owns this module.
Module state. The state of the module.

The Possible values are:

| The moduleisinherit state and can be bound together with either system state modules or user state
modules.

S Themoduleis system state and must be bound with other system state modules or inherit state
modules.

U Themoduleisuser state and must be bound with other user state modules or inherit state modules.

Naming convention. The naming convention used for naming objectsin SQL statements.
Possible values are:
*3QL The SQL naming convention is used.

*SYS The system naming convention is used.

Number of exported defined symbols. The number of exported procedures and variables in this module.

Number of imported (unresolved) symbols. The number of imported procedures and variablesin this
module.

Number of SQL statements. The number of DB2 UDB for i Series statements contained in the module.

Offset to largest automatic stor age allocation procedur e name. The offset from the beginning of the

receiver variable where the largest automatic storage allocation procedure begins.

Offset to largest debug statement mapping table procedur e name. The offset from the beginning of the
receiver variable where the largest debug statement mapping table procedure name begins.

Offset to largest exception statement mapping table procedur e name. The offset from the beginning of
the receiver variable where the largest exception statement mapping table procedure name begins.

Offset to largest Licensed Internal Code stack allocation procedure name. The offset from the
beginning of the receiver variable where the largest Licensed Internal Code stack allocation procedure
name begins.

Offset to largest machineinstruction range mapping procedure name. The offset from the beginning of
the receiver variable where the largest machine instruction range mapping procedure name begins.

Offset to largest procedure name. The offset from the beginning of the receiver variable where the largest
procedure name begins.

Offset to Licensed Internal Code options. The offset from the beginning of the receiver variable where
the Licensed Internal Code options begin.

Offset to program entry procedure name. The offset from the beginning of the receiver variable where
the program entry procedure name begins.

Optimization level. Optimization levels cause the translator to produce machine code that reduces the
amount of system resources necessary to run the program. The more optimization, the more efficiently the
module runs on the system. Also, with more optimization you may not be able to change or view variables
that have been optimized.

The Possible values are:

65535 The moduleis not restricted to a maximum optimization level. It can be retrandated to any of
the supported optimization levels. 65535 is a'so known as* NOMAX.

40 Maximum level of optimization. Thislevel includes all the optimizations performed at
optimization level 30. In addition, it includes optimization that disables call and instruction
tracing. Thus, tracing of modules created at this optimization level cannot be done.

30 More optimization is performed in addition to those performed at optimization level 20.
Variables cannot be changed but can be displayed while the program is being debugged.
However, the displayed value of the variable during debugging may not be its actual value. 30 is
also known as*FULL.

20 Some optimization is performed on the generated code. When the module optimized at this level
is being debugged, the variables can be displayed but not changed. This level improves the
performance of the module slightly over level 10. 20 is aso known as *BASIC.

10 No additional optimization is performed on the generated code. Variables can be displayed and
changed when the program is being debugged. With no optimization of the code, this value
provides the lowest level of module performance. 10 is also known as* NONE.

Profile data. The profile data attribute for the module.

*NOCOL The collection of profile datais not enabled. The module will not collect profile data when it
isincluded in a program or service program object.

*COL The collection of profile datais enabled. The module will collect profile datawheniit is
included in a program or service program object.

Program entry procedur e name. The name of the program entry procedure if oneis present in the
module.

Program entry procedure nameindicator. Indicatesif a program entry procedureis present in the
module.

0 The module does not have a program entry procedure.

1 The module does have a program entry procedure.

Relational database. The default relational database that was specified on the SQL precompile.
Possible values are:
*LOCAL The module can access data only on the local system.

Non-blank value other than *LOCAL The name associated with this module in the relational database
index.

Release module created for. The version, release, and modification level of the operating system for
which the module was created.

Thefield has a VvRrMm format, where;
W The character V isfollowed by a 1-character version number.
Rr Thecharacter Risfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Release module created on. The version, release, and modification level of the operating system that was
running on the system when the module was created. The field has a VvRrMm format, where:

W The character V isfollowed by a 1-character version number.
Rr Thecharacter Risfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Reserved. Anignored field.
Sort sequence table library name. The name of the library that is used to locate the sort sequence table.
Possible special values are:

*LIBL Thelibrary list is searched when the program (in which the module is bound) runs.

*CURLIB The current library is searched when the program (in which the module is bound) runs.

Sort sequence table name. The name of the sort sequence table used when the module was compiled.
Possible special values are:

*HEX No sort sequenceis used.

*JOBRUN The SRTSEQ value associated with the job at the time the program (in which the
module is bound) runs,

*LANGIDSHR The shared sort sequence for the language identifier (LANGID).
*LANGIDUNQ The unique sort sequence for the language identifier.

Note: This sort sequence table does not apply to DB2 UDB for i Series statements that
may be contained in this module.

Sour ce file change date and time. The date and time when the source member that was used to create this
module was last changed. The source file change date and time field isin the CY YMMDDHHMMSS
format as follows:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year
MM Month
DD Day
HH Hour
MM Minute
SS Second

Sourcefilelibrary name. The library that contained the source file that was used to create this module.

Sour ce file name. The source file that contained the source member that was used to create this module. If
thisfield is blank, the module was created from an inline sourcefile

Sour ce member name. The source file member from which this modul e was created.

SQL language identifier. Returns the language identifier used when the module was compiled. This
information is blank if the module does not contain any language identification information.

The special value that can be returned is:

*JOBRUN The language identifier is the LANGID associated with the job at the time the program (in
which the module is bound) runs.

SQL package library name. Specifies the name of the library containing the SQL package. A blank
indicates the module is not to be distributed.

The following possible special values can be returned:

*LIBL The SQL package isfound by looking for it in the library list when the program (in which
the module is bound) runs.

*CURLIB The SQL package isfound in the current library when the program (in which the moduleis
bound) runs.

SQL package name. Specifies the name of the SQL package created on the relational database specified
on the RDB parameter of the command that created this module. * NONE indicates that thisis not a
distributed module.

SQL path. Thelist of libraries used during resolution of functions and data types within SQL statements.
Thelist isin the form of repeating library names, each surrounded by double quotes and separated by
commas.

SQL path length. The length, in bytes, of the SQL path.

SQL path offset. The offset, in bytes, from the beginning of this format definition to the beginning of the
SQL path.

SQL sort sequencetablelibrary name. Returns the name of the library that is used to locate the SQL sort
sequence table. Thisinformation is blank either if the module does not contain any SQL sort sequence
information, or if aspecial value was returned for the SQL sort sequence table name.

The following possible special values that can be returned for the library are:

*LIBL The SQL sort sequence table is found by looking for it in the library list when the program
(in which the module is bound) runs.

*CURLIB The SQL sort sequence table is found in the current library when the program (in which the
module is bound) runs.

SQL sort sequencetable name. Returns the SQL statement sort sequence table name used when the
module was created. Thisinformation is blank if the module does not contain any SQL sort sequence
information.

The following possible special values can also be returned:

*HEX No SQL sort sequenceis used for the SQL statements.

*JOBRUN The SQL sort sequence isthe SRTSEQ value associated with the job at the time the
SQL statements within the module are run.

*LANGIDSHR The shared SQL sort sequence for the language identifier (LANGID) is used for the
SQL statements.

*LANGIDUNQ The unique SQL sort sequence for the language identifier (LANGID) is used for the
SQL statements.

Note: This sort sequence table does not apply to DB2 UDB for iSeries statements that
may be contained in this module.

Storage model. Where the automatic and static storage for this bound module is allocated at run time.
The following values can be returned:
0*SNGLVL Automatic and static storage are allocated from single-level storage.
1*TERASPACE Automatic and static storage are allocated from teraspace.

2*INHERIT Automatic and static storage are allocated from either single-level storage or
teraspace, depending on the activation.

Teraspace stor age enabled. The teraspace storage capability for this module.
Possible values are:

'00X*NO The moduleis not teraspace storage enabled.

'80'X*YES The module is teraspace storage enabled.

Text description. The text description that was provided for this module.

Time format. Specifies the format used when accessing time -result columns through SQL. All output time
fields are returned in this format. For input time strings, the value you specify is used to determine whether

thetimeisavalid format.

Possible values are;

*USA USA format

*1SO International Standards Organization format

*EUR European format

*JS Japanese Industrial Standard Christian Era

*HMS Hours/minutes/seconds format

Time separ ator . Specifies the separator used when accessing time result columns. A blank value indicates
that there are no SQL statements or that the separator character is a blank. Assume the latter if the number

of SQL statements parameter is not zero.

Error Messages

Message | D
CPF24B4 E
CPF3CF1E
CPF3C19E
CPF3C21E
CPF3C24 E
CPF3C90 E
CPF5CE7 E
CPF8122 E
CPF8123 E
CPF813D E
CPF9801 E
CPF9802 E
CPF9803 E
CPF9804 E

Error Message Text

Severe error while addressing parameter list.
Error code parameter not valid.

Error occurred with receiver variable specified.
Format name & 1 is not valid.

Length of the receiver variableis not valid.
Literal value cannot be changed.

Error occurred while retrieving * MODULE data.
&8 damage on library &4.

Damage on abject information for library &4.
Service program &4 in & 9 damaged.

Object &2 inlibrary &3 not found.

Not authorized to object &2 in & 3.

Cannot allocate object &2 in library & 3.
Object &2 in library &3 damaged.

CPF9806 E Cannot perform function for object &2 in library & 3.
CPF9807 E One or more librariesin library list deleted.
CPF9808 E Cannot allocate one or more libraries on library list.
CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library & 1.

CPF9821 E Not authorized to program & 1 in library & 2.
CPF9830 E Cannot assign library &1.

API introduced: V3R6

Top | Program and CL. Command APIs | APIs by category

Retrieve Program Associated Space
(QCLRPGAS) API

Required Parameter Group:
1 Output data buffer Output Char(*)
2 Length of output data buffer Input Binary(4)
3 Qualified program name Input Char(20)
4 Call stack counter Input Binary(4)
5 Datahandle Input Char(16)
6 Length of dataavailable Output Binary(4)
7 Error code 1/10 Char(*)

Default Public Authority: *EXCLUDE

Threadsafe: No

The Retrieve Program Associated Space (QCLRPGAS) API allows you to retrieve information from the
associated space of an original program model (OPM), user-state program in the user domain. ThisAPI is
intended to be used only on programs created by the Create Program (QPRCRTPG) API.

This API is used to retrieve information that was previously stored in the associated space. For example, it
can be used by compilers at run time to retrieve information about the compilation process that was
previoudly stored. The associated space of a program object is not a replacement for data areas or user
spaces. It isrecommended for static data only.

Authorities and Locks

Program Library Authority
*USE

Program Authority
*ALL

Program Lock
*EXCLRD

Required Parameter Group

Output data buffer
OUTPUT; CHAR(*)

The information retrieved from the associated space. This information contains scalar dataonly. If
information that was previously stored contained pointer data, the pointer data was not preserved.

Length of output data buffer
INPUT; BINARY (4)
The length of the output data buffer, in bytes. If thisvalue islarger than the actual size of the output
data buffer, the results may not be predictable.

Qualified program name
INPUT; CHAR(20)
The program object for which you want to retrieve data from the associated space. This must be an
OPM, user-state program in the user domain. An error isreturned if the program is an Integrated

Language Environment (ILE) program, or if it is a system-state or system-domain program. The
first 10 characters contain the program name, and the second 10 characters contain the library

name.
Y ou can use the following special value for the program name:

* Useaprograminthe call stack. The call stack counter contains the number of programs up
the stack from the calling program to look for the program from which to retrieve data.

Y ou can use these special values for the library name:
*CURLIB Thejab's current library
*LIBL Thelibrary list

Call stack counter
INPUT; BINARY (4)
A number greater than zero identifying the location in the call stack for the program if * is specified

for the program name. This number isrelative to the program that called this API. This parameter is
ignored if the program name isnot *.

Data handle
INPUT; CHAR(16)

The identifier to retrieve the information from in the associated space. Specify the data handl e that
was previously used on the Store Program Associated Space (QCLSPGAS) API to store
information in the associated space. If no data was previously stored at this data handle, no error is
returned. The length of data available parameter will be set to 0 indicating no data was available.

Length of data available
OUTPUT; BINARY (4)

Either the length of the data actually returned or the length of data available.

The possible values follow:

0 No datawas previously stored at the data handle
specified.

From 1 to the value of the length of output The length of information available and
data buffer parameter successfully returned in the output data buffer.

Greater than the value of the length of
output data buffer parameter

Error code

Thetotal length of data available. If the output data
buffer istoo small to hold all of the information
available, the information is truncated to fit the
available space.

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

Message | D
CPF0301 E
CPF0302 E
CPF0O304 E
CPF24B4 E
CPF3C90 E
CPF3CF1E
CPF8100 E
CPF9803 E
CPF9807 E
CPF9808 E
CPF9810 E
CPFO811 E
CPF9820 E
CPF9821 E
CPF9830 E
CPFO872 E

Error Message Text

Length of data buffer is not valid.

Valuefor call stack counter not valid.

Operation not allowed for program &1 in library & 2.
Severe error while addressing parameter list.

Literal value cannot be changed.

Error code parameter not valid.

All CPF81xx messages could be returned. xx is from 01 to FF.
Cannot allocate object &2 in library & 3.

Oneor more librariesin library list deleted.

Cannot allocate one or more librarieson library list.
Library &1 not found.

Program &1 in library &2 not found.

Not authorized to use library & 1.

Not authorized to program & 1 in library & 2.

Cannot assign library & 1.

Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R3

Top | Program and CL Command APIs | APIs by category

Retrieve Program Information (QCLRPGMI) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Quadlified program name Input Char(20)
5 Error Code /10 Char(*)

Default Public Authority: * USE

Threadsafe: No

The Retrieve Program Information (QCLRPGMI) AP lets you retrieve program information and place it
into asingle variable in the calling program. The amount of information returned is limited to the size of the
variable. Thisinformation is the same as the information returned using the Display Program (DSPPGM)
command.
Y ou can use the QCLRPGMI AP to retrieve the following:

« Program creation information

o Program stetistics

« Program performance information

o SQL statement information

o |ILE program size information

Authorities and Locks

Library Authority
*EXECUTE

Program Authority
*READ

Program Lock
*SHRRD

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the information requested. The minimum size for this areais 8 bytes.
Y ou can specify the size of this areato be smaller than the format requested as long as you specify

the length parameter correctly. As aresult, the API returns only the data that the area can hold.
Length of receiver variable

INPUT; BINARY (4)

The length of the receiver variable. If thisvalueis larger than the actual size of the receiver
variable, the results may not be predictable. The minimum valueis 8.

Format name
INPUT; CHAR(8)

The content and format of the information returned for the program.
The possible format names are:
PGMI0100 Basic program information for OPM and ILE programs.

PGMI0200 Basic program information for OPM and ILE programs plus SQL statement
information for OPM programs.

PGMI0300 ILE program size information.

Qualified program name
INPUT; CHAR(20)

The first 10 characters contain the program name. The second 10 characters contain the name of the
library where the program is located.

Y ou can use these special valuesfor the library name:
*CURLIB Thejob's current library
*LIBL Thelibrary list

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

PGMIO100 Format

The following information is returned for the PGM10100 format. Some of the fields returned are blank or

zero if they do not apply to the type of program specified. For detailed descriptions of the fieldsin the table,
see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned
| 4 | 4 |BINARY(4) |Bytesavailable

| Program creation information

8 | 8 |CHAR(10) |Program name
18 | 12 |CHAR(10) [Program library name
28 | 1C |CHAR(10) |Program owner
38 | 26 |CHAR(10) |Program attribute
48 | 30 |CHAR(13) |Creation date and time
61 | 3D |CHAR(10) |Source file name
71 | 47 |CHAR(10) |Source filelibrary name
81 | 51 |CHAR(10) |Source file member name
91 | 5B |CHAR(13) |Source file updated date and time
104 | 68 |CHAR(1) |Observable information
105 | 69 |CHAR(1) |User profile option
106 | 6A |CHAR(1) |Use adopted authority
107 | 6B |CHAR(1) |Log commands
108 | 6C [CHAR(1) |Allow RTVCLSRC
109 [6D |[CHAR(L) |Fix decimal data
110 | 6E |CHAR(50) | Text description
160 | AO |CHAR(1) | Type of program
161 | Al |CHAR(1) | Teraspace storage-enabled program
162 | A2 [CHAR(S) |Reserved

Program statistics information

| DC |[BINARY(4) [Minimum number of parameters
224 | EO |[BINARY(4) [Maximum number of parameters
228 | E4 |[BINARY(4) [Programsize
232 | E8 |[BINARY(4) |Associated spacesize
236 | EC |[BINARY(4) |[Static storagesize
240 | FO |BINARY(4) |Automatic storagesize
244 | F4 [BINARY(4) [Number of Ml instructions
248 [F8 |[BINARY(4) |Number of MI ODT entries
252 | FC |CHAR(1) |Program state
253 | FD |CHAR(14) |Compiler identification
267 | 10B |CHAR(6) |Earliest release program can run
273 | 111 |CHAR(10) |Sort sequence table name
283 | 11B |CHAR(10) |Sort sequence table library name
293 | 125 |CHAR(10) |Language identifier
303 | 12F |CHAR(1) |Program domain
304 | 130 |CHAR(1) |Conversion required
305 | 131 |CHAR(20) |Reserved
Program performance information
325 [145 [CHAR()) [Optimization
326 | 146 |CHAR(1) |Paging pool

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

327 | 147 |CHAR(1)

|Update program automatic storage area (PASA)

328 | 148 |CHAR(1) |Clear program automatic storage area (PASA)
329 | 149 |CHAR(1) |Paging amount
330 | 14A |CHAR(18) |Reserved
ILE information
348 | 15C |CHAR(10) |Program entry procedure module

358 166 |CHAR(10) |Program entry procedure module library
368 170 |CHAR(30) |Activation group attribute
398 18E |CHAR(1) |Observable information compressed
399 18F |CHAR(1) |Run-time information compressed
400 190 |CHAR(®) |Release program created on
406 196 |CHAR(1) | Shared activation group
407 197 |CHAR(D) |Allow update
198 [BINARY(4) |Program CCSID
412 19C |BINARY(4) [Number of modules
416 | 1A0 |BINARY(4) |Number of service programs

|
|
|
|
|
|
|
|
|
|
|
|
| 408
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
420 | 1A4 |BINARY(4) |Number of copyrights
|
|
|
|
|
|
|
|
|

424 | 1A8 |BINARY(4) |Number of unresolved references

428 | 1AC |CHAR(6) |Release program created for

434 1B2 |CHAR(1) |Allow static storage reinitialization

435 1B3 |CHAR(1) |All creation data

436 1B4 [CHAR(1) |Allow bound *SRVPGM library name update
437 [1B5 |[CHAR(10) |Profiling data

447 1BF |CHAR(1) | Teraspace storage enabled modules

448 1CO0 [CHAR(1) | Storage mode!

449 [1ClL [CHAR(87) |Reserved

PGMIO200 Format

The following information is returned for the PGM 10200 format. Some of the fields returned are blank or
zero if they do not apply to the type of program specified. For detailed descriptions of the fieldsin the table,
see Field Descriptions.

Offset
Dec | Hex ’Type ’Field
0O | O |[BINARY(4) |Bytesreturned
4 | 4 |BINARY(4) |Bytesavailable

|
|
|
|
|Program creation information

| 8 8 |CHAR(10) |Program name
|

|

|

|

|
18 | 12 |CHAR(10) |Program library name
28 | 1C |CHAR(10) |Program owner
|
|

38 26 |CHAR(10) |Program attribute
48 30 |CHAR(13) |Creation date and time

61 | 3D |CHAR(10) |Source file name

71 | 47 |CHAR(10) |Sourcefile library name

81 | 51 |CHAR(10) |Source file member name

91 | 5B |CHAR(13) |Source file updated date and time
104 | 68 |CHAR(1) |Observable information

105 | 69 |CHAR(1) |User profile option

106 | 6A |CHAR(1) |Use adopted authority

107 | 6B |CHAR(1) |Log commands

108 | 6C [CHAR(1) |Allow RTVCLSRC

109 [6D |[CHAR(L) |Fix decimal data

110 | 6E |CHAR(50) | Text description

160 | AO |CHAR(1) | Type of program

161 | Al |CHAR(1) | Teraspace storage-enabled program
162 | A2 [CHAR(S) |Reserved

Program statistics information

220 | DC |[BINARY(4) [Minimum number of parameters
224 | EO |[BINARY(4) [Maximum number of parameters
228 | E4 |[BINARY(4) [Programsize
232 | E8 |[BINARY(4) |Associated spacesize
236 | EC |[BINARY(4) |[Static storagesize
240 | FO |BINARY(4) |Automatic storagesize
244 | F4 [BINARY(4) [Number of Ml instructions
248 [F8 |[BINARY(4) |Number of MI ODT entries
252 | FC |CHAR(1) |Program state
253 | FD |CHAR(14) |Compiler identification
267 | 10B |CHAR(6) |Earliest release program can run
273 | 111 |CHAR(10) |Sort sequence table name
283 | 11B |CHAR(10) |Sort sequence table library name
293 | 125 |CHAR(10) |Language identifier
303 | 12F |CHAR(1) |Program domain
304 | 130 |CHAR(1) |Conversion required
305 | 131 |CHAR(20) |Reserved
Program performance information
325 [145 [CHAR()) [Optimization
326 | 146 |CHAR(1) |Paging pool
327 | 147 |CHAR(1) |Update program automatic storage area (PASA)
328 | 148 |CHAR(1) |Clear program automatic storage area (PASA)
329 | 149 |CHAR(1) |Paging amount
330 | 14A [CHAR(18) |Reserved

Program SQL information

348 [15C [BINARY(4)

|Number of SQL statements

352 | 160 |CHAR(18)

|Re| ational database

| 370 | 172 |CHAR(10) |Commitment control

| 380 | 17C |CHAR(10) |Allow copy of data

| 390 | 186 |CHAR(10) |Close SQL cursor

| 400 | 190 |CHAR(10) INaming convention

[410 [19A [CHAR(0) |Dateformat

| 420 | 1A4 |CHAR(1) |Date separator

| 421 | 1A5 |CHAR(10) | Time format

| 431 | 1AF |CHAR(1) | Time separator

| 432 | 1BO |CHAR(10) |Delay PREPARE

| 442 | 1BA |CHAR(10) |Allow blocking

|ILE information

| 452 | 1C4 |CHAR(10) |Program entry procedure module
| 462 | 1CE |CHAR(10) |Program entry procedure module library
| 472 | 1D8 |CHAR(30) |Activation group attribute

| 502 | 1F6 |CHAR(1) |Observable information compressed
| 503 | 1F7 |CHAR(1) |Run-time information compressed
| 504 | 1F8 |CHAR(6) |Release program created on

| 510 | 1FE |CHAR(1) |Shared activation group

[B11 [1FF [CHAR() |Allow update

[512 [200 [BINARY(4) |Program CCSID

| 516 | 204 |BINARY(4) |Number of modules

| 520 | 208 |BINARY(4) |Number of service programs

| 524 | 20C |BINARY(4) |Number of copyrights

| 528 | 210 |BINARY(4) |Number of unresolved references
| 532 | 214 |CHAR(®) |Release program created for

| 538 | 21A |CHAR(1) |Allow static storage reinitialization
|C0nti nuation of program SQL information

| 539 | 21B |CHAR(10) |Default collection name

| 549 | 225 |CHAR(10) |SQL package name

| 559 | 22F |CHAR(10) |SQL package library name

| 569 | 239 |CHAR(10) |Dynamic user profile

| 579 | 243 |CHAR(10) |SQL sort sequence table name

| 589 | 24D |CHAR(10) |SQL sort sequence table library name
| 599 | 257 |CHAR(10) |SQL language identifier

| 609 | 261 |CHAR(10) |Connection method

| 619 | 26B |CHAR(1) |Reserved

[620 [26C [BINARY(4) |SQL path offset

[624 [270 [BINARY(4) |SQL pathlength

| 628 | 274 |CHAR(91) |Reserved

|Continuation of ILE information

| 719 | 2CF |CHAR(1) |All creation data

|

720 | 2D0 |CHAR(1)

|Allow bound *SRVPGM library name update

Program information through offsets
| |ICHAR(*) |SQL path

[721 [2D1 [CHAR(0) |Profiling data

| 731 | 2DB |CHAR(1) | Teraspace storage-enabled modules
| 732 | 2DC |CHAR(1) | Storage mode!

733 [2DD [CHAR(®7) |Reserved

|

|

PGMIO300 Format

The following information is returned for the PGM10300 format. Thisformat isvalid only for ILE
programs. If an OPM program is specified, no datais returned and an error is returned. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset
Dec | Hex ’Type ’Field
0O | O |[BINARY(4) |Bytesreturned
4 | 4 |BINARY(4) |Bytesavailable

ILE program size information

8 8 |CHAR(10) |Program name

18 12 |CHAR(10) [Program library name

28 1C [BINARY(4) [Current total program size

32 20 |BINARY(4) [Maximum program size

36 24 |BINARY(4) |Current number of modules

40 28 |BINARY(4) |Maximum number of modules

44 2C [BINARY(4) [Current number of service programs
48 30 |BINARY(4) |Maximum number of service programs
52 34 |BINARY(4) |Current string directory size

|
|
|
|
|
|
|
|
|
56 | 38 |[BINARY(4) |[Maximum string directory size
|
|
|
|
|
|
|
|
|

60 3C |BI NARY (4) |Current copyright string size
64 40 [BINARY(4) [Maximum copyright string size
68 44 |BINARY(4) |Current number of auxiliary storage segments
72 48 [BINARY(4) [Maximum number of auxiliary storage segments
76 4C |BINARY(4) |Minimum static storage size
80 50 |BINARY(4) |[Maximum static storage size
84 54 |CHAR(4) |Reserved
88 58 |BINARY(8) |Minimum static storage size - long
96 60 |BINARY(8) [Maximum static storage size- long &

Field Descriptions

For more detailed information than that provided in the following field descriptions, refer to documentation
for the command that was used to create the program. For information on non-SQL fields, this would
normally be one of the following:

« One of the create program (CRTxxxPGM) commands described in the programmer's guide for the
language, identified by the xxx in the command name.

« The Create Program (CRTPGM) command.

For information on SQL fields, (thiswould normally be a command of the form CRTSQLxxx) see DB2
Universal Database for iSeries SQL Programming Concepts. The xxx in the command name identifies the
base language (RPG, COBOL, and so on) of the program.

Activation group attribute. The activation group attribute of this ILE program.
Possible values are:

*NEW A new activation group with the same name as the program name is created
when this program is called. The program runs in this activation group.

*DFTACTGRP The program uses one of two existing activation groups created when the
processis started. One default activation group is reserved for system-state
programs. The other default activation group is reserved for user-state
programs.

*CALLER The program runs in the activation group of the program from which itis
called.

activation group name The name of the activation group in which this program runs. If the activation
group already exists when the program is called, the program runsin the
existing activation group. If the activation group does not exist when the
program is called, a new activation group is created and the program runsin it.

Blank This program is an OPM program.

Al creation data. Whether the ILE program has all creation data and if that datais observable or
unobservable. All observable creation datais heeded to re-create the program using the Change Program
(CHGPGM) command. All creation data (either observable or unobservable) is needed to convert the
program during restore. 4

Possible values are:

0 *NO. Not al of the creation datais present. The creation template of the ILE program object could
be missing or at least one of the modules in this program does not have creation data.

1 *YES. The ILE program has all creation data and al of that datais observable.

2 *UNOBS. The ILE program has all creation data but not all of that data is observable.

Allow blocking. Whether blocking is used to improve the performance of certain SQL statements.
Possible values are:

*NONE Blocking is not used.

*READ Blocking is used for read-only data cursors when running COMMIT(*NONE) and there
areno EXECUTE or EXECUTE IMMEDIATE statements.

ALLREAD Blocking isused for al read-only cursors when running COMMIT(NONE) or
COMMIT(*CHG).

Blank The program does not contain SQL statements or it is an ILE program.

Allow copy of data. Whether a copy of the data can be used in the implementation of an SQL query.
Possible values are:

*NO A copy of the data cannot be used.

*YES A copy of the data can be used when needed.

*OPTIMIZE The system determines whether a copy of the dataiis used for optimal performance.

Blank The program does not contain SQL statements or it is an ILE program.

Allow RTVCL SRC. The compiler allowed you to control this attribute through the ALWRTVSRC
parameter if this program was created using the Create CL Program (CRTCLPGM) command.

Possible values are:
N Source for the CL program is not saved with the program (*NO).
Y Sourceissaved (*YES).

Source that is saved can be retrieved by using the Retrieve CL Source (RTVCLSRC) command. This
information is blank if the program is not a CL program.

Allow static storagereinitialization. Whether program static storage can be reinitialized. The values are
valid for ILE programs only.

Possible values are:
Y Program static storage can be reinitialized.

N Program static storage cannot be reinitialized.

Allow bound *SRVPGM library name update. Whether the Update Program (UPDPGM) command is
allowed to change the bound * SRVPGM library names on this program. The values are valid for ILE
programs only.
Possible values are:

Y The UPDPGM command can specify alibrary name for the SRVPGMLIB parameter.

N The UPDPGM command cannot specify alibrary name for the SRVPGMLIB parameter.

Allow update. Whether the Update Program (UPDPGM) command is allowed on this program. The values
arevalid for ILE programs only.

Possible values are:

Y The UPDPGM command can be run on this program.

N The UPDPGM command cannot be run on this program.

Associated space size. The size (in bytes) of the associated space used by this program.

Automatic storage size. The size (in bytes) of the automatic storage used by this program. This
information is blank if the program is an ILE program.

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough space is provided.

Bytesreturned. The number of bytes of data returned.

Clear program automatic storage area (PASA). The compiler may have allowed you to control this
attribute through the GENOPT parameter of the command used to create the program.

Possible values are:
N Do not clear PASA storage (*NOCLRPASA).
C Clear PASA storage (*CLRPASA).

Blank Theprogramisan ILE program.

*NOCLRPASA reduces the time needed to call the program. However, if aprogram variableisreferred to
before it has been set, it may contain unpredictable data.

* CLRPASA increases the time needed to call the program. However, it ensures that if a program variableis
referred to before it has been set, it will contain binary zeros instead of unpredictable data.

Close SQL cursor. Specifieswhen SQL cursors are implicitly closed and SQL-prepared statements are
implicitly discarded.

Possible values are;

*ENDPGM When the program that contains the SQL statements ends. Thisvalueisvalid for OPM
programs only.

*ENDSQL When the last program containing SQL statements ends. Thisvaue isvalid for OPM
programs only.

*ENDJOB When the job ends. Thisvalueisvalid for OPM programs only.
*ENDMOD When the module ends. Thisvaueisvalid for ILE programs only.
*ENDACTGRP When the activation group is deleted.

Blank The program does not contain SQL statements or it isan ILE program.

Commitment control. Thelevel of commitment control that was specified on the SQL precompile.
Possible values are:

*NONE No commitment control was specified on the SQL precompile. Uncommitted changesin other
jobs can be seen.

*CHG

*CS

*ALL

Blank

Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements are locked until the end of the unit of work (transaction). Updated,
deleted, and inserted rows (records) are locked until the end of the unit of work. Uncommitted
changesin other jobs can be seen.

Objectsreferred toin SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements are locked until the end of the unit of work (transaction). Updated,
deleted, and inserted rows (records) are locked until the end of the unit of work. A row
(record) that is selected but not updated is locked until the next row (record) is selected.
Uncommitted changes in other jobs cannot be seen.

Objectsreferred to in SQL COMMENT ON, CREATE, DROP, GRANT, LABEL ON, and
REV OKE statements are locked until the end of the unit of work (transaction). All rows
selected, updated, deleted, and inserted are locked until the end of the unit of work.
Uncommitted changes in other jobs cannot be seen.

The program does not contain SQL statements or it isan ILE program.

Compiler identification. The licensed program identifier, version, release, and modification level of the
compiler. Thefield has a pppppppbVVvRrMm format, where:

ppeppppp Thelicensed program identifier.

b
Vv
Rr

Mm

A blank character.
The character V isfollowed by a 1-character version number.
The character R isfollowed by a 1-character release level.

The character M is followed by a 1-character modification level.

For programs created by the Create Program (QPRCRTPG) API, thisfield identifies the version of the
operating system that the program was created under.

The field may be blank if the program is created without going through a compilation process or if it isan
ILE program.

Connection method. The method used for establishing remote connections when running distributed

programs.

Special values that can be returned are:

*RUW

*DUW

Blank

Only one connection to arelational database is allowed. Consecutive CONNECT statements
result in the previous connection being disconnected before a new connection is established.

Connections to several relational databases are allowed. Consecutive CONNECT statements to
additional relational databases do not result in disconnection from previous connects. SET
CONNECTION can be used to switch between connections. Read-only connections may
result.

The program does not contain SQL statements or isan ILE program.

Conversion required. Indicates whether the program has been converted to reduced instruction-set
computer (RISC) format or if conversion isstill required.

Possible values are:

0 Conversionisnot required. The program has already been converted.

1 Conversionisrequired.

Creation date and time. The date and time the program was created. The creation date and timefield isin
the CYYMMDDHHMMSS format as follows:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year
MM Month
DD Day
HH Hour
MM Minute
SS Second

Current copyright string size. The ILE program's copyright string size.

Current number of auxiliary storage segments. The number of auxiliary storage segmentsin thisILE
program.

Current number of modules. The number of modules bound into this ILE program.

Current number of service programs. The number of service programs bound to this ILE program.
Current string directory size. The ILE program's string directory size.

Current total program size. The total size of the ILE program, in kilobytes.

Date format. The format used when accessing date-result columns through SQL. All output date fields are
returned in this format. For input date strings, the value you specify is used to determine whether the date is
avalid format. Thisinformation is blank if the program does not contain SQL statements or if itisan ILE
program.

Possible values are:
*USA USA format (mm/ddlyyyy).
*1SO International Standards Organization format (yyyy-mm-dd).
*EUR European format (dd.mm.yyyy).
*JS Japanese Industrial Standard Christian Era (yyyy-mm-dd).
*MDY Month/day/year format (mm/dd/yy).
*DMY Day/month/year format (dd/mm/yy).
*YMD Year/month/day format (yy/mm/dd).
*JUL Julian format (a numeric value from 1 to 365).

blank The program does not contain SQL statements, or it isan ILE program.

Date separator. The separator used when accessing date-result columns. Thisinformation is blank if the
program does not contain SQL statements or if it is an ILE program. However, the number of SQL
statements field should be checked to determine if the program contains SQL statements. Thisis because a
blank may be specified as a separator value.

Default collection name. The collection name used for the unqualified names of tables, views, indexes,
and SQL packages.

Possible values are:
*NONE Thereis no default collection name.

Blank The program does not contain SQL statements or it is an ILE program.

Delay PREPARE. Whether SQL prepare processing can be delayed until the statement is actually used.
Possible values are:

*YES Prepare processing can be delayed.

*NO Prepare processing cannot be delayed.

Blank The program does not contain SQL statements or it isan ILE program.

Dynamic user profile. The user profile used for dynamic SQL statements.
The following specia values can be returned:

*USER Local dynamic SQL statements are run under the profile of the programs user. Distributed
dynamic SQL statements are run under the profile of the SQL package's user.

*OWNER Local dynamic SQL statements are run under the profile of the programs owner. Distributed
dynamic SQL statements are run under the profile of the SQL package's owner.

Blank The program does not contain SQL statements or it is an ILE program.

Earliest release program can run. The version, release, and modification level of the earliest release the
program is allowed to run on. The compiler may have allowed you to control this through the TGTRLS
parameter of the command used to create the program. The field has a VvRrMm format, where:

W The character V isfollowed by a 1-character version number.
Rr Thecharacter Risfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Fix decimal data. Whether decimal data that isnot valid is corrected or an error is signaled. If the
System/36 environment is loaded on your system, you can control this attribute through the fix decimal data
(FIXDECDTA) parameter of the CRTS36CBL or CRTS36RPG command.

Possible values are:
N An error is signaled to the program without correcting the data that is not valid (* NO).
Y Decimal datathat is not valid is corrected (* YES).

Blank The program isan ILE program.

L anguage identifier. Returns the 3-character language identifier used when the program was compiled.
Thisinformation is blank if the module does not contain any language identification information.

The following special value can also be returned:

*JOBRUN The language identifier associated with the job at the time the program is run.

L og commands. The value specified for the LOG parameter of the CRTCLPGM command. Thisfieldis
meaningful only if the program isa CL program. The possible valuesare N (*NO), Y (*YES), and J
(*JOB). Thisinformation is blank if the program isnot a CL program.

Maximum copyright string size. The maximum size of the copyright string in an ILE program.

Maximum number of auxiliary storage segments. The maximum number of auxiliary storage segments
an ILE program can have.

Maximum number of modules. The maximum number of modules that can be bound into an ILE
program.

Maximum number of parameters. The maximum number of parameters that may be received by the
program when it iscalled. A value of -1 isreturned if the program is not observable.

Maximum number of service programs. The maximum number of service programs that can be bound to
an ILE program.

Maximum program size. The maximum size that an ILE program can be, in kilobytes.

Maximum static storage size. The maximum static storage size (in bytes) that this program may need in
order to run. A value of 4294967295 will be given if 4 gigabytes (4294967296) or greater is needed. In
this case, the maximum static storage size - long field should be used instead.

Maximum static storage size - long. The maximum static storage size in bytes that this program may need
in order to run. ¥

Maximum string directory size. The maximum size that the string directory can bein an ILE program.

Minimum number of parameters. The minimum number of parameters that isto be received by the
program when it is called. A value of -1 isreturned if the program is not observable.

Minimum static storage size. The minimum static storage size in bytes that this program needsin order to
run. A value of 4294967295 will be given if 4 gigabytes (4294967296) or greater is needed. In this case,
the minimum static storage size - long field should be used instead.

Minimum static storage size - long. The minimum static storage size in bytes that this program needs in
order to run. <X

Naming convention. The convention used for naming objects in SQL statements.
Possible values are:

*3QL The SQL naming convention is used.

*SYS The system naming convention is used.

Blank The module does not contain SQL statements or it isan ILE program.

Number of copyrights. The number of copyrightsin thisILE program. Thisfield is zero if the programis
an OPM program. Do not assume that avalue of zero indicates that the program is an OPM program. ILE
programs may not have any copyrights, so this value could be zero for an ILE program. Check the type of
program field to determine whether the program is an OPM program or an ILE program.

Number of MI instructions. The number of machine interface (MI) instructions used by this program. A
value of -1 isreturned if the program is not observable. Thisinformation is zero if the programisan ILE
program.

Number of MI ODT entries. The number of ODT (object definition table) entries for the program. Thisis
the number of program objects declared by the compiler. Program objects include variables, constants,
labels, operand lists, and exception descriptions. Typically, one or more ODT entries are used for each
variable, constant, and label in your program. Some are used by the compiler for internal purposes. The
number of internal ODT entries varies depending on the size and complexity of the program. Thereisa
limit of 32 767 ODT entriesin aprogram. A value of -1 isreturned if the program is not observable. This
information is zero if the program isan ILE program.

Number of modules. The number of modules bound into this program. Thisinformation is zero if the
program is an OPM program.

Number of service programs. The number of service programs bound to this program. Thisinformation is
zero if the program is an OPM program. Do not assume that avalue of zero indicates that the program isan
OPM program. ILE programs may not have any service programs bound to them, so this value could be
zero for an ILE program. Check the type of program field to determine whether the program is an OPM
program or an |LE program.

Number of SQL statements. The number of SQL statements contained in the program. This valueis zero
if the program does not contain SQL statements or if it isan ILE program.

Number of unresolved references. The number of symbolsthat could not be resolved at Create Program
(CRTPGM) command time. Thisinformation is always zero if the program isan OPM program. If thisis
an ILE program, and if all references were resolved at the time the program was created, this value for this
field could be zero.

Observable infor mation. #Whether the OPM program contains creation data and if that data is observable
or unobservable. All observable creation datais needed to re-create the program using CHGPGM. Al
creation data (either observable or unobservable) is needed to convert the program during restore. 4

Possible values are:
A *ALL. The program has all creation data and that datais observable.
N *NONE. The program does not have all creation data.
U *UNOBS. The program has all creation data but not all of that datais observable. 4

Blank The programisan ILE program.

The observable information for most programs may be removed by using the remove observability
(RMVOBS) parameter on the Change Program (CHGPGM) command.

Observableinformation compr essed. Whether the observabl e information associated with the program is
compressed.

Possible values are:

Y The observable information is compressed.

N The abservable information is not compressed.

Blank The program is an OPM program.

Optimization. Indicates what was specified on the OPTIMIZE parameter when the program was created or
changed.

Possible values are:
N *NOOPTIMIZE was specified.
@] *OPTIMIZE was specified.

Blank The program isan ILE program.

Paging amount. The compiler may have allowed you to control this attribute through the GENOPT
parameter of the command used to create the program.

Possible values are:
N Page the program one page at atime (*NOBL OCK).
B Pagethe program in eight-page blocks (* BLOCK).

*BLOCK gives better performance in most situations. It islikely that more than one page in the block is
referred to before being replaced by some other paging occurring in the storage pool.

*NOBLOCK can give better performance if the other pages that would have been brought in as ablock are
unlikely to be referred to before being replaced by some other paging.

Paging pool. The paging pool used for the program object. The compiler may have alowed you to control
this attribute through the GENOPT parameter of the command used to create the program.

The values returned are:
U Usetheuser pool (*USER).
B Usethe base pool (*BASE).
M Use the machine pool (*MACHINE).

*USER is used by most system programs and all user programs, unless GENOPT(*MACHINE) is
specified.

*BASE isused by certain system programs to avoid disturbing the user pool when they need to be paged in.
These programs are not used frequently enough to belong in the machine pool. This value will only appear
for OPM programs.

*MACHINE is used by asmall number of system programs that are so highly used that their pages should
remain almost constantly in main storage. The machine pool is intended to be a stable, low paging pool. If
user programs page in the machine pool, there may be contention for main storage between system and user
programs. This may adversely affect system performance and response times. To prevent paging
contention, increase the QM CHPOOL system value with the Change System Value (CHGSY SVAL)
command.

Profiling data. Specifies the profiling data attribute for this L E program.

Possible values are:

*NOCOL The collection of profiling datais not enabled and profiling datais not applied.

*COL The collection of profiling datais enabled for at least one module bound into thisILE
program. Any applied profiling data has been removed. The QBNLPGMI API, format
PGML0100, can be used to determine if a module bound into this ILE program is
enabled to collect profiling data.

*APYBLKORD Block order profiling data has been applied to at |east one module bound into thisILE
program. The QBNLPGMI API, format PGML0100, can be used to determineif a
module bound into this ILE program has block order profiling data applied.

*APYPRCORD Procedure order profiling data has been applied to this ILE program.

*APYALL Block order and procedure order profiling data has been applied to this ILE program.

Blank This program is an OPM program.

Program attribute. The language the program is written in. (For example, the value is CLP for a CL
program, and the value is RPG for an RPG program). Thisfield can be blank. (For example, the program
was created by the Create Program (QPRCRTPG) API or the program is created by a compilation process
internal to IBM).

Program CCSID. The coded character set identifier (CCSID) for this ILE program. Thisis 65535 for ILE
programs. Thisinformation is zero if the program is an OPM program.

Program domain. The domain of the program.
Possible values are:
S Theprogram can be called by system-state programs.

U The program can be caled by user- or system-state programs.

Program entry procedur e module. The module name that contains the program entry procedure for this
program. Thisinformation is blank if the program is an OPM program.

Program entry procedure modulelibrary. The library name that contained the module that contained the
program entry procedure for this program when the bind was done. Thisinformation is blank if the program
isan OPM program.
Program library name. The name of the library containing the program.
Program name. The name of the program.
Program owner. The name of the program owner's user profile.
Program size. The size (in bytes) of this program.
Program state. The state of the program.
Possible values are:
| The program runs under (inherits) the same state asits caler.

S Theprogram runs as a system-state program.

U The program runs as a user-state program.

Relational database. The default relational database that was specified on the SQL precompile. A
nonblank value other than * LOCAL specifies the name of the relational database to be resolved through the
relational database directory.

The following special values can be returned:
*LOCAL The program can only access data on the local system.

Blank The program does not contain SQL statements or it isan ILE program.

Release program created for. Thisisthe release specified on the target release (TGTRLS) parameter of
the Create Program (CRTPGM) command. The value specified for the TGTRLS parameter can affect the
earliest rel ease value on which the program can run.

Release program created on. The version, release, and modification level of the operating system on
which the program was created.

Reserved. Anignored field.

Run-time information compressed. Whether the run-time information associated with the programis
compressed.

Possible values are:
Y The run-time information is compressed.
N The run-time information is not compressed.

Blank The program isan OPM program.

Shared activation group. Whether the program runsin a shared activation group.

Y Theactivation group is shared.

N The activation group is not shared.

Sort sequence table library name. The name of the library the sort sequence tableisin.

Thisinformation is blank if the program does not contain any sort sequence information or a special value
was returned for the sort sequence table name.

The following special values can be returned:
*CURLIB Thejab's current library
*LIBL Thelibrary list

Sort sequence table name. The name of the sort sequence table used when the program was compiled.
This does not apply to SQL statements in the program.

The following specia values can be returned:

*HEX No sort sequence is used.

*JOBRUN The sort sequence value that is associated with the job at the time the program runs.
*LANGIDSHR The shared sort sequence for the language identifier is used.

*LANGIDUNQ The unique sort sequence for the language identifier is used.

Blank The program does not contain SQL statements or it isan ILE program.

Note: This sort sequence table does not apply to SQL statements.

Sourcefilelibrary name. The name of the library that contains the source file used to create the program.
Thefield isblank if a source file was not used to create the program or if it isan ILE program.

Sour ce file member name. The name of the member in the source file. The field is blank if a sourcefile
was hot used to create the program or if it isan ILE program.

Sour ce file name. The name of the source file used to create the program. The field is blank if asourcefile
was not used to create the program or if it isan ILE program.

Sour cefile updated date and time. The date and time the member in the source file was last updated. The
field isin the same format as the creation time and date. The field is blank if a source file was not used to
create the program or if it isan ILE program.

SQL package library name. The name of the library the SQL packageisin.

SQL package name. The name of the SQL package created on the relational database specified on the
RDB parameter of the command that created this program.

*NONE Thisis not adistributed program.

Blank The program does not contain SQL statements or it is an ILE program.

SQL path. Thelist of libraries used during resolution of functions, procedures, and data types within SQL
statements. Thelist isin the form of repeating library names, each surrounded by double quotes and
separated by commas.

SQL path length. The length, in bytes, of the SQL path.

SQL path offset. The offset, in bytes, from the beginning of this format definition to the beginning of the
SQL path.

SQL sort language identifier. The 3-character language identifier used when the program was compiled.
Thisinformation is blank if the program does not contain any language identification information.

The following possible special value can be returned:

*JOBRUN The language identifier isthe LANGID associated with the job at the time the program is
run.

SQL sort sequencetable name. The SQL sort sequence table returns the SQL sort sequence table name
used when the program was compiled. Thisinformation is blank if the program does not contain any SQL
sort sequence information or if thisis an ILE program.

The following specia values can be returned:

*HEX No SQL sort sequenceis used for the SQL statements.

*JOBRUN The SQL sort sequence isthe SRTSEQ value associated with the job at the time the
SQL statements within the program are run.

*LANGIDSHR The shared SQL sort sequence for the language identifier (LANGID) is used for the
SQL statements.

*LANGIDUNQ The unique SQL sort sequence for the language identifier (LANGID) is used for the
SQL statements.

SQL sort sequencetablelibrary name. The name of the library the SQL sort sequencetableisin. This
information is blank if the program does not contain any SQL sort sequence information or a special value
was returned for the SQL sort sequence table name.

The following specia values can be returned:
*CURLIB Thejab's current library
*LIBL Thelibrary list

Static storage size. For OPM programs thisisthe size (in bytes) of the static storage used by the program.
For ILE programs thisis the maximum amount of static storage (in bytes) that may be needed to run the
program. #*A value of 4294967295 will be given if 4 gigabytes (4294967296) or greater is needed. In this
case, the maximum static storage size - long field should be used instead. The maximum static storage size -
long field is available from the PGM 10300 format. OPM programs will always have less than 4 gigabytes of
static storage. <%

Storage model. Where the automatic and static storage for this program is allocated at run time.
The following values can be returned:
0*SNGLVL Automatic and static storage are allocated from single-level storage.
1*TERASPACE Automatic and static storage are allocated from teraspace.

2*INHERIT Automatic and static storage are allocated from either single-level storage or
teraspace, depending on the activation.

Teraspace storage enabled modules. The teraspace storage capability of the modules bound to this
program.

Possible values are:
'00'X No modules bound to this program are teraspace storage enabl ed.

‘80X One or more modules bound to this program are teraspace storage enabled. The * PEP module,
however, is not teraspace storage enabled.

'COX The*PEP moduleis teraspace storage enabled, and there may be more modules bound to this
program that are teraspace storage enabled.

'EO'X All modules bound to this program are teraspace storage enabled.

Teraspace storage enabled program. The teraspace storage capability of an OPM program. A program
must be teraspace storage enabled to access teraspace storage.

Possible values are:

0 Thisprogram is not teraspace storage enabled.
1 Thisprogram isteraspace storage enabled.

Text description. The user text, if any, used to briefly describe the program and its function.

Timeformat. The format used when accessing time-result columns through SQL. All output time fields are
returned in this format.

Possible values are:
*USA USA format (hh:mm am. or p.m.).
*ISO International Standards Organization format (hh.mm.ss).
*EUR European format (hh.mm.ss).
*JS Japanese Industrial Standard Christian Era (hh.mm.ss).
*HMS Hours/minutes/seconds format (hh:mm:ss).

Blank The program does not contain SQL statements or it isan ILE program.

Time separator. The separator used when accessing time-result columns. Thisinformation is blank if the
program does not contain SQL statements or if it is an ILE program. However, the number of SQL
statements is checked to determine if the program contains SQL statements. This is because a blank may be
specified as a separator value.
Type of program. Whether the program is an ILE program or an OPM program.
Possible values are:

Blank OPM program

B ILE program

Update program automatic storage area (PASA). The compiler may have allowed you to control this
attribute through the GENOPT parameter of the command used to create the program. Thisinformation is
blank if the program is an ILE program.
Possible values are:

N Do not update internal PASA stack information (*NOUPDPASA).

U Updateinternal PASA stack information (*UPDPASA).

*NOUPDPASA reduces the time needed to call the program.

*UPDPA SA increases the time needed to call the program but is used by some system programs that are
dependent on updates of internal PASA stack information.

Use adopted authority. The value specified for the USEADPAUT option on the command used to change
the program.

Possible values are:

Y Uses program adopted authority from previous call levels when this program isrunning (* Y ES).

N Does not use program adopted authority from previous call levels when this program is running
(*NO).

User profile option. The value specified for the USRPRF option on the command used to create the
program.

Possible values are:
U The program runs under the current user's user profile (*USER).

O The program runs under both the current user's and the owner's user profiles (* OWNER).

Error Messages

Message | D Error Message Text

CPF2150 E Object information function failed.

CPF2151 E Operation failed for &2 in &1 type*& 3.
CPF24B4 E Severe error while addressing parameter list.
CPF3CF1 E Error code parameter not valid.

CPF3C19E Error occurred with receiver variable specified.
CPF3C21 E Format name & 1 is not valid.

CPF3C24 E Length of the receiver variableis not valid.
CPF3C90 E Literal value cannot be changed.

CPF5CF5 E &1inlibrary &2 not bound program.

CPF8122 E &8 damage on library &4.

CPF8123 E Damage on object information for library & 4.
CPF8129 E Program &4 in & 9 damaged.

CPF9801 E Object &2 in library & 3 not found.

CPF9802 E Not authorized to object &2 in & 3.

CPF9803 E Cannot allocate object &2 in library & 3.
CPF9806 E Cannot perform function for object &2 in library & 3.
CPF9807 E One or more librariesin library list deleted.
CPF9808 E Cannot allocate one or more libraries on library list.
CPF9810 E Library &1 not found.

CPFO811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library & 1.
CPF9821 E Not authorized to program &1 in library & 2.
CPF9830 E Cannot assign library & 1.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V2R2

Top | Program and CL. Command APIs | APIs by category

Retrieve Prompt Override (QPTRTVPO) API

Required Parameter Group:

1 Recever Variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Receiver variable format name Input Char(8)
4 Command string Input Char(*)
5 Length of command string Input Binary(4)
6 Error code /10 Char(*)

Default Public Authority: *USE

Threadsafe: Y es. See Usage Notes for prompt override program considerations.

The Retrieve Prompt Override (QPTRTVPO) API calls the prompt override program for a specified
command and returns the prompt override command string from the prompt override program.

Authorities and Locks

Command
*USE
Prompt override program
*EXECUTE
Library
*EXECUTE

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the information requested. The minimum size of thisareais 8 bytes.
Y ou can specify the size of this areato be smaller than the format requested as long as you specify
the length parameter correctly. The API will not attempt to return more data than the receiver can
hold.

Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable. If thisvalueislarger than the actual size of the receiver
variable, the results may not be predictable. The minimum length is 8 bytes.

Receiver variable format name

INPUT; CHAR(S)

The format of the receiver variable. RTVP0100 is the only valid value. For more information, see
RTVP0100 Format.

Command string
INPUT; CHAR(*)

The command string containing the command name and the key parameter values. The command
name may be library-qualified. The command string should be in the format in which it would be
entered on acommand line. Values must be specified for all key parameters.

Length of command string
INPUT; BINARY (4)
The length of the command string. Valid valids are between 1 and 32 702. The length can include
trailing blanks but must not include trailing null characters.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RTVPO0100 Format

The RTVPO0100 format includes information on the contents of the receiver variable. The following table
shows how thisinformation is organized. For detailed descriptions of thefieldsin thelist, see Field

Descriptions.

Offset
Dec Hex ’Type ’Field
0 0 |BINARY(4) |Bytesreturned
4 4 |BINARY(4) |Bytesavailable

18 12 |CHAR(10) |Prompt override program library
28 1C [BINARY(4) [Offset to prompt override command string
32 20 |BINARY(4) |Length of prompt override command string

|

| |

| |

| |

| 8 | 8 |CHAR(10) |Prompt override program name
| |

| |

| |

| |

* |CHARC(*) |Prompt override command string

Field Descriptions

Bytes available. The length of all data available for the requested format. All available datais returned if
enough space is provided.

Bytesreturned. The length of all data actually returned. If the receiver variable is not large enough to hold
the data, no other datais returned and this value is | ess than the bytes available.

Length of prompt override command string. The length of the prompt override command string returned
by the API. If the prompt override program completed normally, but did not return acommand string, this

will be 0. If the prompt override program ended in error, thiswill be -1.

Offset to prompt override command string. Offset to the first byte of the prompt override command
string.

Prompt override command string. The command string returned by the prompt override program. The
command string will not include the command name, the key parameters, or any other parameters not
specified by the prompt override program. If the receiver is not large enough to hold the entire command
string, the command string will not be returned, and the Bytes available field will have the size of the
receiver value required for the command string.

Prompt override program library name. The name of the library in which the prompt override program
was found.

Prompt override program name. The name of the prompt override program that was called to supply the
prompt override command string.

Usage Notes

While this API isthreadsafe, it should not be used to call a prompt override program that is not threadsafe
in amultithreaded job.

Error Messages

CPF0O001 E Error found on &1 command.

CPF24B4E Severeerror while addressing parameter list.
CPF3C1D E Length specified in parameter &1 not valid.
CPF3C19E Error occurred with receiver variable specified.
CPF3C20E Error found by program & 1.

CPF3C21 E Format name & 1 isnot valid.

CPF3C24 E Length of the receiver variableis not valid.
CPF3CF1E Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of &1 API.
CPF6802 E Error calling prompt override program.
CPF6803 E Required key parameter not specified.
CPF6804 E No prompt override program for command.
CPF680A E Current values could not be retrieved.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V5R1

Top | Program and CL Command APIs | APIs by category

Retrieve Service Program Information
(QBNRSPGM) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified service program name Input Char(20)
5 Error Code /0 Char(*)

Default Public Authority: * USE

Threadsafe: No

The Retrieve Service Program Information (QBNRSPGM) API |ets you retrieve service program
information and place it into asingle variable in the calling program. The amount of information returned is
limited to the size of the variable. Thisinformation is similar to the information returned using the Display
Service Program (DSPSRVPGM) command.
Y ou can use the QBNRSPGM API to retrieve the following:

« Service program creation information

« Service program statistics

» Service program performance information

« Service program size information

Authorities and Locks

Library Authority
*EXECUTE
Service Program Authority (see note)
*READ
Service Program Lock
*SHRRD
Note: Y ou must have * USE service program authority to retrieve the following fields in the SPGI0100
format:
» Export source file name
« Export sourcefilelibrary name
« Export source file member name

If you attempt to retrieve these fields with *READ service program authority, they are set to blanks. All

other fieldsin the SPGI0100 format require * READ service program authority.

Required Parameter Group
Receiver variable
OUTPUT; CHAR(*)

The variable that is to receive the information requested. The minimum size for this areais 8 bytes.
Y ou can specify the size of this areato be smaller than the format requested if you specify the
length of receiver variable parameter correctly. As aresult, the API returns only the data that the
area can hold.

Length of receiver variable
INPUT; BINARY (4)

The length of the receiver variable. If thisvalueislarger than the actual size of the receiver
variable, the results may not be predictable. The minimum valueis 8.

Format name
INPUT; CHAR(8)

The content and format of the information returned for the service program.
The possible format names are:
SPGI0100 Basic service program information.

SPGI0200 Service program size information.

Qualified service program name
INPUT; CHAR(20)

The first 10 characters contain the service program name. The second 10 characters contain the
name of the library where the service program is located.

Y ou can use these special values for the library name:
*CURLIB Thejab's current library
*LIBL Thelibrary list

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

SPGIO0100 Format

The following information is returned for the SPGI0100 format. See Authorities and L ocks for the authority
needed regarding specific fields. For detailed descriptions of the fields in the table, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Fied

| 0 | 0 |BINARY(4) |Bytesreturned

[4 [4 [BINARY(4) |Bytesavalable

|Servi ce program creation information

| 8 | 8 |CHAR(10) |Service program name

| 18 | 12 |CHAR(10) |Service program library name

| 28 | 1C |CHAR(10) |Service program owner

| 38 | 26 |CHAR(10) |Service program attribute

| 48 | 30 |CHAR(13) |Creation date and time

| 61 | 3D |CHAR(10) |Export source file name

| 71 | 47 |CHAR(10) |Export sourcefilelibrary name

| 81 | 51 |CHAR(10) |Export source file member name

| 91 | 5B |CHAR(30) |Activation group attribute

| 121 | 79 |CHAR(16) |Current export signature

| 137 | 89 |CHAR()) |User profile

| 138 | 8A |CHAR(1) |Observable information compressed
| 139 | 8B |CHAR(D) |Run-time information compressed
| 140 | 8C |BINARY(4) |Serviceprogram CCSID

| 144 | 90 |BINARY(4) |Number of modules

| 148 | 94 |BINARY(4) |Number of service programs

| 152 | 98 |BINARY(4) |Number of copyrights

| 156 | 9C |CHAR(50) | Text description

| 206 | CE |CHAR(1) |Shared activation group

[207 [CF [CHAR() |Allow update

| 208 | DO |BINARY(4) |Number of unresolved references
| 212 | D4 |CHAR(1) |Use adopted authority

| 213 | D5 |CHAR(1) |Allow bound *SRVPGM library name update
| 214 | D6 |CHAR(10) |Profiling data

| 224 | EO |CHAR(D) | Teraspace storage enabled modules
| 225 | E1 |CHAR()) | Storage mode!

[226 | E2 [CHAR(®0) |Reserved'00X

|Service program statistics information

| 306 | 132 |CHAR(1) |Service program state

| 307 | 133 |CHAR(1) |Service program domain

| 308 | 134 |BINARY(4) |Associated spacesize

| 312 | 138 |BINARY(4) |Static storagesize

| 316 | 13C |BINARY(4) |Serviceprogramsize

| 320 | 140 |CHAR(®) |Release service program created on

| 326 | 146 |CHAR(6) | Earliest release service program can run
| 332 | 14C |CHAR(6) |Release service program created for

| 338 | 152 |CHAR(1) |Allow static storage reinitialization

| 339 | 153 |CHAR(1) |Conversion required

| 340 | 154 |CHAR(1) |All creation data

[341 [155 [CHAR() |Reserved

|Servi ce program performance information

| 432 | 1BO |CHAR(1) |Paging pool

| 433 | 1B1 |CHAR(1) |Paging amount

SPGI0200 Format

The following information is returned for the SPGI0200 format. For detailed descriptions of thefieldsin
the table, see Field Descriptions.

| Offset

| Dec | Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Bytesreturned

[4 [4 [BINARY(4) |Bytesavalable

|Servi ce program size information

| 8 | 8 |CHAR(10) |Service program name

| 18 | 12 |CHAR(10) |Service program library name

| 28 | 1C |BINARY(4) |Current total service program size

| 32 | 20 |BINARY(4) |Maximum service program size

| 36 | 24 |BINARY(4) |Current number of modules

| 40 | 28 |BINARY(4) |Maximum number of modules

| 44 | 2C |BINARY(4) |Current number of service programs

| 48 | 30 |BINARY(4) |Maximum number of service programs

| 52 | 34 |BINARY(4) |Current string directory size

| 56 | 38 |BINARY(4) |Maximum string directory size

| 60 | 3C |BINARY(4) |Current copyright string size

| 64 | 40 |BINARY(4) |Maximum copyright string size

| 68 | 44 |BINARY(4) |Current number of auxiliary storage segments

| 72 | 48 |BINARY(4) |Maximum number of auxiliary storage segments

| 76 | 4C |BINARY(4) |Current number of program procedure exports

’ 80 ’ 50 ’BI NARY(4) [Maximum number of program procedure
exports

| 84 | 54 |BINARY(4) |Current number of program data exports

| 88 | 58 |BINARY(4) |Maximum number of program data exports

| 92 | 5C |BINARY(4) |Current number of signatures

| 96 | 60 |BINARY(4) |Maximum number of signatures

| | 64 |[BINARY(4) |Minimum static storage size
| | 68 |BINARY(4) |Maximum static storage size
| %108 | 6C [CHAR(4) [Reserved
| |
| |

70 |BINARY(8) |Minimum static storage size - long
78 |BINARY(8) [Maximum static storage size - long &

Field Descriptions

For more detailed information than that provided in the following field descriptions, refer to the online help
for the Create Service Program (CRTSRVPGM) command.

Activation group attribute. The activation group attribute of this service program.
The possible values are;

*CALLER The service program runs in the activation group of the program from which it
iscaled.

activation group name The name of the activation group in which this service program runs. If the
activation group aready exists when the service program is called, the service
program runsin the existing activation group. If the activation group does not
exist when the service program is called, a new activation group is created in
which the service program runs.

#All creation data. Whether the ILE service program has all creation data and if that datais observable or
unobservable. All observable creation datais needed to re-create the service program using the Change
Service Program (CHGSRVPGM) command. All creation data (either observable or unobservable) is
needed to convert the service program during restore. <

Possible values are:
0 *NO. Not al of the creation datais present. The creation template of the service program object
could be missing or at least one of the modules in this service program does not have creation data.
The Display Service Program (DSPSRVPGM) command with * MODULE specified as the value
for the DETAIL parameter can be used to see whether a module has creation data.
1 *YES. ThelLE service program has all creation dataand al of that datais observable.

#2 *UNOBS. The ILE service program has all creation data but not all of that datais observable. 4

Allow static storagereinitialization. Whether service program static storage can be reinitialized.
The possible values are:
Y Program static storage can be reinitialized.

N Program static storage cannot be reinitialized.

Allow bound *SRVPGM library name update. Whether the Update Service Program (UPDSRVPGM)
command is allowed to change the bound * SRVPGM library names on this service program.

Possible values are:
Y The UPDSRVPGM command can specify alibrary name for the SRVPGMLIB parameter.

N VPGM command cannot specify alibrary name for the SRVPGMLIB parameter.

Allow update. Whether the Update Service Program (UPDSRVPGM) command is allowed on this service
program.

Possible values are:
Y The UPDSRVPGM command can be run on this service program.

N The UPDSRVPGM command cannot be run on this service program.

Associated space size. The size (in bytes) of the associated space used by this service program.

Bytes available. The number of bytes of data available to be returned. All available datais returned if
enough spaceis provided.

Bytesreturned. The number of bytes of data returned.

Conversion required. Indicates whether the service program has been converted to reduced instruction-set
computer (RISC) format or if conversion isstill required. The

Possible values are:
0 Conversionisnot required. The service program has been converted.

1 Conversionisreguired.

Creation date and time. The date and time the service program was created. The creation date and time
fieldisin the CYYMMDDHHMMSS format as follows:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year
MM Month
DD Day
HH Hour
MM Minute
SS Second

Current copyright string size. The size of the service program's copyright string.
Current export signature. The current export signature of this service program.

Current number of auxiliary storage segments. The number of auxiliary storage segmentsin this service
program.

Current number of modules. The number of modules bound into this service program.

Current number of program data exports. The number of data items exported from this service program.

Current number of program procedure exports. The number of procedures exported from this service
program.

Current number of service programs. The number of service programs bound to this service program.
Current number of signatures. The number of signatures for this service program.

Current string directory size. The service program's string directory size.

Current total service program size. The total size of the service program, in kilobytes.

Earliest release service program can run. The version, release, and modification level of the earliest
release on which the service program is allowed to run. The field has a VvRrMm format, where:

W The character V isfollowed by a 1-character version number.
Rr Thecharacter R isfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Export sourcefilelibrary name. The name of the library that contains the export source file. This may be
blank if:

« No export source file was specified on the CRTSRVPGM command.
» You attempt to retrieve this field with a service program authority of *READ. A service program
authority of *USE is required.
Export sour ce file member name. The name of the member in the export source file that was used to
create this service program. This may be blank if:
« No export source file was specified on the CRTSRVPGM command.
« You attempt to retrieve this field with a service program authority of *READ. A service program
authority of * USE isrequired.
Export source file name. The name of the export source file that contains the export source file member.
This may be blank if:
« No export source file was specified on the CRTSRVPGM command.
» You attempt to retrieve this field with a service program authority of *READ. A service program
authority of *USE is required.
Maximum copyright string size. The maximum size of the copyright string in a service program.

Maximum number of auxiliary stor age segments. The maximum number of auxiliary storage segments a
service program can have.

Maximum number of modules. The maximum number of modules that can be bound into a service
program.

Maximum number of program data exports. The maximum number of dataitems that can be exported
by a service program.

Maximum number of program procedur e exports. The maximum number of procedures that can be
exported by a service program.

Maximum number of service programs. The maximum number of service programs that can be bound to
a service program.

Maximum number of signatures. The maximum number of signatures that can be in a service program.
Maximum service program size. The maximum size of a service program, in kilobytes.

Maximum static storage size. The maximum amount of static storage in bytes that may be needed to run
the service program. #* A value of 4294967295 will be given if 4 gigabytes (4294967296) or greater is
needed. In this case, the maximum static storage size - long field should be used instead.

Maximum static storage size - long. The maximum amount of static storage in bytes that may be needed
to run the service program. €

Maximum string directory size. The maximum size of the string directory in a service program, in bytes.

Minimum static storage size. The minimum amount of static storage, in bytes, needed to run the service
program. # A value of 4294967295 will be given if 4 gigabytes (4294967296) or greater is needed. In this
case, the minimum static storage size - long field should be used instead.

Minimum static storage size - long. The minimum amount of static storage in bytes needed to run the
service program. <X

Number of copyrights. The number of copyrightsin this service program.

Number of modules. The number of modules bound into this service program.

Number of service programs. The number of service programs bound to this program.

Number of unresolved references. The number of symbolsthat could not be resolved at Create Service
Program (CRTSRVPGM) command time. This number could be zero if al references were resolved at the

time the service program was created.

Observableinformation compr essed. Whether the observabl e information associated with the service
program is compressed.

The possible values are:
Y The observable information is compressed.

N The observable information is not compressed.

Paging amount. The compiler may have allowed you to control this attribute through the GENOPT
parameter of the CRTSRVPGM command.

Possible values are:
N Page the program one page at atime (*NOBL OCK).
B Page the program in eight-page blocks (*BLOCK).

*BLOCK gives better performance in most situations. It is likely that more than one page in the block is
referred to before being replaced by other paging occurring in the storage pool.

*NOBLOCK can give better performance if the other pages that would have been brought in as ablock are
unlikely to be referred to before being replaced by other paging.

Paging pool. The paging pool used for the service program object. The compiler may have allowed you to
control this attribute through the GENOPT parameter of the CRTSRVPGM command.

The values returned are:
U Usetheuser pool (*USER).
M Use the machine pool (*MACHINE).

*USER is used by most system service programs and all user service programs unless
GENOPT(*MACHINE) is specified.

*MACHINE is used by afew system service programs that are so highly used that their pages should
remain amost constantly in main storage. The machine pool isintended to be a stable, low paging pool. If
user service programs page in the machine pool, there may be contention for main storage between system
and user service programs. This may adversely affect system performance and response times. To prevent
paging contention, increase the QM CHPOOL system value with the Change System Value

(CHGSY SVAL) command.

Profiling data. The profiling data attribute for this service program.
Possible values are:
*NOCOL The collection of profiling datais not enabled and profiling datais not applied.

*COL The collection of profiling datais enabled for at least one module bound into this
service program. Any applied profiling data has been removed. The QBNLSPGM AP,
format SPGL 0100, can be used to determine if a module bound into this service
program is enabled to collect profiling data.

* APYBLKORD Block-order profiling data has been applied to at least one module bound into this
service program. The QBNLSPGM API, format SPGL 0100, can be used to determine
if amodule bound into this service program has block-order profiling data applied.

* APYPRCORD Procedure-order profiling data has been applied to this service program.

* APYALL Block-order and procedure-order profiling data have been applied to this service
program.

Release service program created for. Thisisthe release specified on the target release (TGTRLS)
parameter of the Create Service Program (CRTSRVPGM) command. The value specified for the TGTRLS
parameter can affect the earliest release value on which the program can run.

Release service program created on. The version, release, and modification level of the operating system
on which the service program was created. The field has a VvRrMm format, where:

W Thecharacter V isfollowed by a 1-character version number.
Rr Thecharacter R isfollowed by a 1-character release level.

Mm The character M isfollowed by a 1-character modification level.

Reserved. Anignored field.

Run-time information compressed. Whether the run-time information associated with the service
program is compressed.

Possible values are:

Y Therun-timeinformation is compressed.

N Therun-timeinformation is not compressed.The run-time information is not compressed.

Service program attribute. The language the program is written in (for example, RPG.)

Service program CCSID. The coded character set identifier (CCSID) for this service program. Thisis
65535 for service programs.

Service program domain. The domain of the service program.
Possible values are:
S Theservice program can be called by system-state programs.

U The service program can be called by user- or system-state programs.

Service program library name. The name of the library containing the service program.
Service program name. The name of the service program.
Service program owner. The name of the service program owner's user profile.
Service program size. The size (in bytes) of this service program.
Service program state. The state of the service program.
Possible values are:
| The service program runs under (inherits) the same state asits caller.
S Theservice program can call user- or system-state programs.

U The service program can call user-state programs.

Shared activation group. Whether the service program runs in a shared activation group.
Y Theactivation group is shared.

N The activation group is not shared.

Static storage size. The maximum amount of static storage in bytes that may be needed to run the service
program. 2 A value of 4294967295 will be given if 4 gigabytes (4294967296) or greater is needed. In this
case, the maximum static storage size - long field should be used. The maximum static storage size - long
field is available from the SPGI0200 format. %

Storage model. Where the automatic and static storage for this service program is alocated at run time.
The following values can be returned:
0*SNGLVL Automatic and static storage are allocated from single-level storage.
1*TERASPACE Automatic and static storage are allocated from teraspace.

2*INHERIT Automatic and static storage are allocated from either single-level storage or
teraspace, depending on the activation.

Teraspace stor age enabled modules. The teraspace storage capability of the modules bound to this service

program.
Possible values are:
'00'X No modules bound to this service program are teraspace storage enabled.
'80'X One or more modules bound to this service program are teraspace storage enabled.

'A0'X All modules bound to this service program are teraspace storage enabled.

Text description. The user text, if any, used to briefly describe the service program and its function.

Use adopted authority. The value specified for the USEADPAUT option on the command used to change
the service program.

Possible values are:

Y Uses program adopted authority from previous call levels when this service program is running
(*YES).

N Does not use program adopted authority from previous call levels when this service program is
running (* NO).

User profile. The value specified for the USRPRF option on the CRTSRVPGM command.
Possible values are:
U The service program runs under the current user's user profile (*USER).

O Theservice program runs under both the current user's and the owner's user profiles (* OWNER).

Error Messages

Message | D Error Message Text

CPF2150 E Object information function failed.
CPF2151 E Operation failed for &2 in &1 type*& 3.
CPF24B4 E Severe error while addressing parameter list.
CPF3CF1E Error code parameter not valid.

CPF3C19E Error occurred with receiver variable specified.
CPF3C20 E Error found by program & 1.

CPF3C21 E Format name & 1 is not valid.

CPF3C24 E Length of the receiver variableis not valid.
CPF3C90 E Literal value cannot be changed.

CPF8122 E &8 damage on library &4.

CPF8123 E Damage on abject information for library &4.
CPF813D E Service program &4 in & 9 damaged.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in & 3.

CPF9803 E Cannot allocate object &2 in library & 3.

CPF9806 E Cannot perform function for object &2 in library & 3.
CPF9807 E Oneor more librariesin library list deleted.
CPF9808 E Cannot allocate one or more libraries on library list.
CPFO9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library & 1.

CPF9821 E Not authorized to program &1 in library & 2.
CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

API introduced: V2R3

Top | Program and CL. Command APIs | APIs by category

Scan for String Pattern (QCLSCAN) API

Required Parameter Group:

1 Character string Input Char(*)

2 Length of character string Input Packed(3,0)
3 Starting position Input Packed(3,0)
4 Character pattern Input Char(*)

5 Length of character pattern Input Packed(3,0)
6 Trandate characters Input Char((2)

7 Trimtrailing blanks Input Char((1)

8 Wildcard character Input Char(1)

9 Character string result Output Packed(3,0)

Default Public Authority: *USE

Threadsafe: No

The Scan for String Pattern (QCLSCAN) API is used to scan astring of charactersto seeif the string
contains a pattern. This function is similar to the scan function supported within source entry utility (SEU)
and on the display presented by the Display Spooled File (DSPSPLF) command. In addition, the
QCLSCAN API aso alows you to specify a 1-byte character in the pattern that matches with any character
in the string to be searched, and a start position, which alows you to search the same string more than once.

A typical use of the QCLSCAN AP isto alow the work station user to retrieve al records that contain a
specified pattern. For example, if the database has records with book titles, the work station user may want
to retrieve all those books with the pattern CHICAGO in thetitle. The work station user enters CHICAGO
on the device display. The application program reads the database, calling the QCLSCAN API at |least once
for each record to test for the pattern. The application program only processes the records that pass the test
for the pattern CHICAGO.

Another aternative for thistask is using the Open Query File (OPNQRY F) command. If you are searching
an entire database member, the OPNQRY F command normally produces faster results. If you are searching
asmall subset of amember or the fileis aready open, QCLSCAN normally produces faster results.

Scanning afield can require many lines of code in a high-level language and can cause a significant amount
of overhead. Calling the QCLSCAN API and passing it a parameter list may be asimpler and faster way to
do the scan.

Required Parameter Group

Character string
INPUT;CHAR(*)
A character field from 1 through 999 characters that contains the string to be scanned for the
pattern.

Length of character string

INPUT;PACKED(3,0)
The length of the string to be scanned. If thislength is greater than the actual length of the string,
unexpected results can occur.

Starting position
INPUT;PACKED(3,0)
The position in the string where the scan is to start. The position must be greater than zero and not
greater than the string length. Normally thisvalue is 1. If the same string has multiple sets of

patterns, this allows the string to remain the same while only the start position is varied to find the
additional patterns.

Character pattern
INPUT;CHAR(*)

The pattern being scanned for.
Length of character pattern
INPUT;PACKED(3,0)

The length of the pattern. If thislength is greater than the actual length of the pattern, unexpected
results can occur.

Trandlate characters
INPUT;CHAR(2)

A variable that indicates to translate |owercase characters in the specified character string to
uppercase characters. If thisfield contains a 1, the program translates lowercase characters of the
string to uppercase before the scan using the coded character set identifier (CCSID) for the current
job. If the trandlation cannot be done using the CCSID for the job, * CCSID37 is used. This does
not change the user's data. Note that if 1 is specified and the pattern contains lowercase characters,
amatch never occurs. If 1 is specified, and the data to be searched contains noncharacter data (for
example, packed or binary), unexpected results can occur.

Trim trailing blanks
INPUT;CHAR(2)
A fixed-length pattern field filled (left-justified) by a variable number of characters. If this variable
contains a1, trailing blanks are trimmed from the end of the pattern before the scan is started.
Wildcard character
INPUT;CHAR(2)
A variable that you can specify in the pattern, in positions that should not be tested when scanning
for amatch. When this character appears in the pattern, any character in the datais considered a

match. A value of blank indicates that all characters of the pattern take part in the scan. If the
wildcard character is the first character in the pattern, an error will occur.

Character string result
OUTPUT;PACKED(3,0)

The value is returned to the user program when the call completes.

If the value returned is positive, the result is the position of the first character of the pattern in the
string.

If the value returned is zero, the pattern was not found.

If the value returned is negative, one of the following errors occurred:
-1 The patternislonger than the string.
-2 Thepattern lengthislessthan 1.
-3 Thefirst character of the pattern isawildcard character.
-4 The patternis blank and the trim trailing blanks parameter valueis 1.

-5 The starting position within the string is not valid.

API existed prior to V3R1

Top | Program and CL. Command APIs | APIs by category

Start Preprocessor (QbnStartPreProcessor)
API

Required Parameter:
1 Error code 1/10 Char(*)

Default Public Authority: *USE
Service Program: QBNPREPR

Threadsafe: No

The Start Preprocessor (QbnStartPreProcessor) APl must be called first by every compiler preprocessor that
has data to be processed during module creation. This API must be called prior to calling the

QbnAddA ssociatedSpaceEntry, QbnAddExtendedAttributeData, QbnAddPreProcessorL evel Data, or
QbnAddBindtimeExit API. A call to the QonEndPreProcessor APl isthelast API to be called during a
single preprocessor call.

Authorities and Locks

None

Required Parameter
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF24B4 E Severe error while addressing parameter list.
CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF5D28 E Not able to start preprocessing.

API Introduced: V3R1

Top | Program and CL. Command APIs | APIs by category

Store Program Associated Space (QCLSPGAS)
API

Required Parameter Group:

1 Input databuffer Input Char(*)

2 Length of input data buffer Input Binary(4)
3 Qualified program name Input Char(20)
4 Call stack counter Input Binary(4)
5 Datahandle Input Char(16)
6 Error code /10 Char(*)

Default Public Authority: *EXCLUDE

Threadsafe: No

The Store Program Associated Space (QCLSPGAS) API alowsyou to store information in the associated
space of an original program model (OPM), user-state program in the user domain. This API isintended to
be used only on programs created by the Create Program (QPRCRTPG) API.

This API's primary useis to store information about a program object for later use. For example, it can be
used by acompiler to store information about the compilation process that is needed later at run time. The
space associated with a program object is not a replacement for data areas or user spaces. It is
recommended for static data only.

There is no capability to delete the information after it is stored. Multiple store requests using the same data
handle will write over any information previously stored.

Authorities and Locks

Program Library Authority
*USE

Program Authority
*ALL

Program Lock
*EXCL

Required Parameter Group

Input data buffer
INPUT; CHAR(*)

The information to store in the associated space. This information can contain scalar data only. If it

does contain pointer data, the pointer datais not kept.
Length of input data buffer
INPUT; BINARY (4)
The length of the data in the input data buffer, in bytes. The maximum size of an associated space

is16MB. An error isreturned if the length of the input data and the data already stored in the
associated space exceeds 16MB.

Qualified program name
INPUT; CHAR(20)
The program object for which you want to store data in the associated space. This must be an OPM,
user-state program in the user domain. An error isreturned if the program isan ILE program, or if

it isasystem-state or system-domain program. The first 10 characters contain the program name,
and the second 10 characters contain the library name.

Y ou can use the following special value for the program name:

* A program in the call stack. The call stack counter contains the number of programs up the
stack from the calling program to look for the program where the datais to be stored.

Y ou can use the following special valuesfor the library name:

*CURLIB Thejob's current library
*LIBL Thelibrary list

Call stack counter
INPUT; BINARY (4)
A number greater than zero identifying the location in the call stack for the program if * is specified

for the program name. This number is relative to the program that called this API. This parameter is
ignored if the program nameis not *.

Data handle
INPUT; CHAR(16)
The identifier to store the information under in the associated space. Thisidentifier can be any
unique value you choose to store your information under. Y ou must remember this value if you

want to later retrieve this information. Data may have been stored under adata handle. If thisAPI is
called to store data under it, the existing data is overwritten with the new data.

Error code
1/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text

CPFO301 E Length of data buffer is not valid.

CPF0302 E Valuefor call stack counter not valid.

CPFO303 E Limit of associated space size exceeded.

CPF0304 E Operation not allowed for program &1 in library & 2.
CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx isfrom 01 to FF.
CPF9803 E Cannot allocate object &2 in library & 3.

CPF9807 E One or more librariesin library list deleted.

CPF9808 E Cannot allocate one or more librarieson library list.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9820 E Not authorized to use library & 1.

CPF9821 E Not authorized to program &1 in library & 2.

CPF9830 E Cannot assign library & 1.

CPF9838 E User profile storage limit exceeded.

CPFO872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API Introduced: V2R3

Top | Program and CL Command APIs | APIs by category

Command Analyzer Change Exit Program

Required Parameter Group:

1 Change command exit information Input Char(*)
2 Replacement command Output Char(*)
3 Length of replacement command string Output Binary(4)

QSY SINC Member Name: ECACHCMD
Exit Point Name: QIBM_QCA_CHG_COMMAND

Exit Point Format Name: CHGC0100

The Command Analyzer Change exit program is called when the command for which itisregistered is
processed. The command anayzer calls the Change Command exit program for a command once through
the registration facility before performing any of the following steps:

« Prompting the command,

« Performing interparameter checks,

« Calling the validity checking program, and

« Transferring control to the command processing program.

The exit program is not called if the command analyzer was called to syntax check the command, but not
run it. The exit point supports one change command exit program for each command.

The exit program is called, but the command cannot be changed if any of the following occur:
« The command was qualified with a specific library name.

« The command has a parameter defined as RTNVAL (* YES), which allows the command processing
program (CPP) to return a value to the calling program.

o The user specified a parameter that shows no value in the job log. Those parameters are defined as
DSPINPUT(*NO) or DSPINPUT (* PROMPT).

« The command was used in a program running in system state.

If changing the command is allowed, the exit program can change the command string so that the command
analyzer processes acommand from a different library or a completely different command. It also can
change any or al of the parameters specified on the command. When a changed command string is returned
to the command analyzer, the command analyzer will not prompt the replaced command or call the validity
checking program, any exit programs registered for the QIBM_QCA_RTV_COMMAND exit point, or the
command processing program for the replaced command. The command anayzer will start over with the
changed command instead of the original one. It will do afull validation of the new command, including
prompting if prompting was requested for the replaced command. If the changed command string specifies
adifferent command in adifferent library and there is an exit program registered for the
QIBM_QCA_CHG_COMMAND exit point for the new command, it will be called, but it will not be
alowed to change the command. Exit programs registered for the QIBM_QCA_RTV_COMMAND exit
point for the new command will be called. If the command is not changed, the command analyzer will
continue with normal processing of the original command, including calling any exit programs registered
for the QIBM_CA_RTV_COMMAND exit point.

The replaced command string will be logged to the job log only when the original command was logged.
For commands entered on a command line, the origina command will be logged as a request message, and
the substitute will be logged as a command message. Thiswill allow usersto retrieve their original
command with the Retrieve function key.

If the exit program sends any escape messages to the command analyzer, the message will be left in the job
log and ignored by the command analyzer. The command analyzer will continue processing the original
command.
Exit programs may not be registered for the following system commands:

o CALLPRC

« CHGVAR

« CNLRCV

o COPYRIGHT

. DCL

« DCLDTAARA

« DCLF

« DO

« ENDDO

« ENDPGM

« ENDRCV

« GOTO

. IF

« MONMSG

« PGM

« RCVDTAARA

« RCVF

« RETURN

« SNDF

« SNDRCVF

« TFRCTL

« WAIT

In addition, exit programs may not be registered for these commands:
o CALL command.
« Commandsthat are restricted to use by the CL compiler when compiling for a previous release.
o Commandsin libraries QSY S38 and QUSERSS.
If the exit program uses the registered CL command, a recursive loop may occur. Recursive loops may also

occur if two or more exit programs use each other's CL commands. For example, if the exit program for
CMDA uses CMDB and the exit program for CMDB uses CMDA, arecursive loop will occur.

Authorities and Locks

You must have * ALLOBJ and * SECADM special authorities to register an exit program for the
QIBM_QCA_CHG_COMMAND exit point.

Required Parameter Group

Change command exit information
INPUT; CHAR(*)

Information about the command that the command analyzer was called to process.

Replacement command
OUTPUT; CHAR(*)
A string containing the command string that is to be substituted for the one the command analyzer
was called to process. Thiswill beignored if the command is not allowed to be changed. The
maximum length of the changed command string is 32000 bytes.
Commands that should not be specified as the replacement command by an exit program include:

o System commands that are used only in CL programs. See the list of system commands.

o Commands that have a parameter that is used as areturn value (RTNVAL(*YES)).

o Commands that are restricted to use by the CL compiler when compiling for a previous
release.

If any of these commands are used as replacement commands, the command analyzer will send a
diagnostic message, followed by escape message CPF0001, and processing of the command will
end.

Length of replacement command string
OUTPUT; BINARY (4)

The length of the replacement command string (O - 32000) in bytes. If the length is 0, the original
command string will be run, and the replacement command will be ignored.

CHGCO0100 Format

The following table shows the format of the information supplied to a change command exit program. For a
description of the fields in this format, see Field Descriptions.

Offset
Dec Hex ’Type ’Field
0 0 |CHAR(20) |Exit point name
20 14 |CHAR(9) |Exit point format name

|

| |

| |

| |

| 28 | 1C |CHAR(10) |Command name
| |

| |

| |

38 26 |CHAR(10) |Library name
48 30 |CHAR(1) |Change allowed indicator
49 31 |CHAR(1) |Prompt indicator

[50 [32 [CHAR®) |Reserved

| 52 | 34 |BINARY(4) |Offsettocommand string
| 56 | 38 |BINARY(4) |Lengthof command string
| |

ICHAR(*) |Command string

Field Descriptions

Change allowed indicator. Whether or not the exit program is allowed to change the command string that
will be run. See the conditions where change is not allowed. Possible values are:

1 The command may be changed.

0 The command may not be changed.

If areplacement command is returned to the command analyzer, it will be ignored.
Command name. The name of the command that is being processed.

Command string. The command string that the command analyzer is processing. The command name will
be library qualified, and the parameter values will be enclosed in parentheses and preceded by the keyword
names. Any parameter that was defined as DSPINPUT(*NO) or DSPINPUT (* PROMPT) when the
command was created will be formatted without the parameter value (for example, "PASSWORD()") to
prevent the exit programs from getting passwords and similar secure data. This command string may not be
correct syntactically because required parameters may be missing, interparameter checking has not been
done, and the validity checking program for the command has not been called.

Exit point name. The name of the exit point that calls the exit program.

Exit point format hame. The format name for the Change Command exit program. The possible format
nameis:

CHGCO0100 The format name that is used to supply the exit information.

Length of command string. The length of the command string being processed.

Library name. The name of the library for the command being processed.

Offset to command string. The offset to the beginning of the command string.

Prompt indicator. Whether prompting was requested on the original command string. Possible values are:
0 Prompting was not requested for the original command.

1 Prompting was requested for the original command.

Reserved. Reserved area.

Usage Notes

Registration considerations.

Use the Add Exit Program command (ADDEXITPGM) or API (QUSADDEP, QusAddExitProgram) to
register an exit program for acommand. Y ou must specify 20 bytes of exit program data. The first 10
characters specify the command name; the second 10 characters specify the library name.

Any exit programs registered for commandsin library QSY S also will be called for commands in the
secondary language libraries. For example, if an exit program is registered for the DSPJOB command in
library QSY'S, it will also be called for the DSPJOB command in library QSY S2962.

If you rename the command or the library or move the command to another library, you also must have an
exit program registered using the new command and library names.

Only one exit program can be registered for each command for the QIBM_QCA_CHG_COMMAND exit
point. If two applications on the same system, however, need to replace the same command, they can do it
by registering a single exit program, which replaces the command with one that is qualified with *LIBL
instead of replacing it with their own specific commands. The QCARPLCM program in library QSY S may
be used to do this. Applications using QCARPLCM must ensure that their application library is at the
beginning of the system part of the library list.

Any exit program registered for this exit point must be threadsafe if it will be called in ajob that has
multiple threads.

Runtime considerations.

This exit point isa command analyzer exit point that is called during the processing of individual
commands. This does not imply that command usage by the system or by individual applications will not
change or even be eliminated in the future. For example, if some system function, X, usesthe CRTLIB CL
command, you should not assume that X will always use the CRTLIB command. X's use of CL commands
may change without any warning to use an API or some other interface. Therefore, you should not create
any dependencies based on the assumption that a specific function isimplemented using a CL command.

If acommand is qualified with special value * SY STEM, only library QSY S will be searched for the
command. The change exit program will be allowed to change the command.

If acommand is qualified with special value *NLVLIBL, only the national language version (NLV)
librariesin thelibrary list and QSY S will be searched for the command. The change exit program will be
alowed to change the command.

Adopted authority from previous call levels will be used to determine authority to the exit program, but will
not be propagated to the exit program. The exit program will have al of the authorities available to the user
profile under which the job is currently running; this may be a profile which has been swapped to, rather
than the user profile under which ajob was started.

All userswith at least * USE authority to the command also should have *OBJOPR and *EXECUTE
authority to the exit program and * EXECUTE authority to the exit program'’s library. The command will
fail if the user does not have sufficient authority to the exit program.

Exit program introduced: V4R5

Top | Program and CL. Command APIs | APIs by category

Command Analyzer Retrieve Exit Program

1

Required Parameter Group:

Retrieve command exit information

QSY SINC Member Name: ECARTCMD
Exit Point Name: QIBM_QCA_RTV_COMMAND

Exit Point Format Name: RTV C0100

Input Char(*)

The Command Analyzer Retrieve exit program is called when the command for which it isregistered is
processed. This program is called by the command analyzer through the registration facility immediately
before transferring control to the command processing program. Exit programs will not be called if the
command analyzer was called to syntax-check the command without running it. The exit point supports a
maximum of ten retrieve rommand exit programs for each command.

If the exit program sends any escape messages to the command analyzer, the message will be |eft in the job

log and ignored by the command analyzer.

Exit programs may not be registered for the following system commands:

CALLPRC
CHGVAR
CNLRCV
COPYRIGHT
DCL
DCLDTAARA
DCLF

DO

ENDDO
ENDPGM
ENDRCV
GOTO

IF

MONMSG
PGM
RCVDTAARA
RCVF
RETURN
SNDF
SNDRCVF

o TFRCTL
« WAIT

In addition, exit programs may not be registered for these commands:
o CALL command
« Commandsthat are restricted to use by the CL compiler when compiling for a previous release.
o Commandsin libraries QSY S38 and QUSERSS.

If the exit program uses the registered CL command, arecursive loop may occur. Recursive loops also may
occur if two or more exit programs use each other's CL commands. For example, if the exit program for
CMDA uses CMDB and the exit program for CMDB uses CMDA, arecursive loop will occur.

Authorities and Locks

Y ou must have *ALLOBJ and * SECADM special authorities to register an exit program for the
QIBM_QCA_RTV_COMMAND exit point.

Required Parameter Group

Retrieve command exit infor mation
INPUT; CHAR(*)

Information about the command that the command analyzer was called to process.

RTVCO0100 Format

The following table shows the format of the information supplied to aretrieve command exit program. For
adescription of the fieldsin this format, see Field Descriptions.

| Offset ’ ’

| Dec | Hex |Type Field

| 0 | 0 |CHAR(20) |Exit point name

| 20 | 14 |CHAR() |Exit point format name

| 28 | 1C |CHAR(10) |Command name

| 38 | 26 |CHAR(10) |Library name

| 48 | 30 |CHAR(4) |Reserved

| 52 | 34 |BIN() |Offset to original command string

| 56 | 38 |BIN(4) |Length of original command string

| 60 | 3C |BIN(4) |Offset to replacement command string
| 64 | 40 |BIN(4) |Length of replacement command string
| | |ICHAR(*) |Original command string

| |

ICHAR(*) |Replacement command string

Field Descriptions

Command name. The name of the command that is being processed.

Exit point format name. The format name for the Retrieve Command exit program. The possible format
nameis:

RTVCO0100 Theformat name that is used to supply the exit information.

Exit point name. The name of the exit point that calls the exit program
(QIBM_QCA_RTV_COMMAND).

Length of original command string. The length of the original command string being processed.

L ength of replacement command string. The length of the replacement command string from the user
exit program that was called at exit point QIBM_QCA_CHG_COMMAND. Thiswill be 0 if thereisno
exit program for exit point QIBM_QCA_CHG_COMMAND or if the exit program did not change the
command.

Library name. The name of the library of the command being processed.
Offset to original command string. The offset to the beginning of the original command string.

Offset to replacement command string. The offset to the beginning of the replacement command string.
Thiswill beQif thereis no exit program for exit point QIBM_QCA_CHG_COMMAND or if the exit
program did not change the command.

Original command string. The command string that was originally submitted to the command analyzer for
processing. The command name will be library qualified and the parameter values will be enclosed in
parentheses and preceded by the keyword names. Any parameter that has DSPINPUT (* NO) or
DSPINPUT (* PROMPT) will be formatted without the parameter value (for example, "PASSWORD()") to
prevent exit programs from getting passwords and similar secure data. If the original command string was
replaced by an exit program called at the QIBM_QCA_CHG_COMMAND exit point, this may not be
syntactically correct because required parameters may be missing, interparameter checks have not been
done, and the validity checking program has not been called.

Replacement command string. The replacement command string from the user exit program that was
called at exit point QIBM_QCA_CHG_COMMAND. The command name will be library qualified and the
parameter values will be enclosed in parentheses and preceded by the keyword names.

Reserved. Reserved area

Usage Notes

Registration considerations.

Use the Add Exit Program command (ADDEXITPGM) or the Add Exit Program (OPM, QUSADDEP;
ILE, QusAddExitProgram) API to register an exit program for acommand. Y ou must specify 20 bytes of
exit program data. The first 10 characters specify the command name; the second 10 characters specify the
library name. Any exit programs registered for commandsin QSY S also will be called for commandsin the
secondary language libraries. For example, if an exit program is registered for the DSPJOB command in
library QSY'S, it will also be called for the DSPJOB command in library QSY S2962.

If you rename the command or the library or move the command to another library, you must have an exit
program registered for the new command and library names.

Any exit program registered for this exit point must be threadsafe if it will be called in ajob that has
multiple threads.

This exit point is acommand analyzer exit point that is called during the processing of individual
commands. This does not imply that command usage by the system or by individual applicationswill not
change or even be eliminated in the future. For example, if some system function, X, usesthe CRTLIB CL
command, you should not assume that X will always use the CRTLIB command. X's use of CL commands
may change without any warning to use an APl or some other interface. Therefore, you should not create
any dependencies based on the assumption that a specific function isimplemented using a CL command.

Runtime considerations.

If acommand is qualified with special value * SY STEM, only library QSY Swill be searched for the
command.

If acommand is qualified with special value *NLVLIBL, only the national language version (NLV)
librariesin the library list and QSY S will be searched for the command.

Adopted authority from previous call levels will be used to determine authority to the exit program, but will
not be propagated to the exit program. The exit program will have al of the authorities available to the user
profile under which the job is currently running; this may be a profile which has been swapped to, rather
than the user profile under which ajob was started.

All userswith at least * USE authority to the command should also have * OBJOPR and *EXECUTE
authority to the exit program and * EXECUTE authority to the exit program'’s library. The command will
fail if the user does not have sufficient authority to the exit program.

Exit program introduced: V4R5

Top | Program and CL Command APIs | APIs by category

	Program and CL Command APIs (V5R2)
	Table of Contents
	Program and CL Command APIs
	APIs
	Activate Bound Program (QleActBndPgm) API
	Add Associated Space Entry (QbnAddAssociatedSpaceEntry) API
	Add Bindtime Exit (QbnAddBindtimeExit) API
	Add Extended Attribute Data (QbnAddExtendedAttributeData) API
	Add Preprocessor Level Data (QbnAddPreProcessorLevelData) API
	Call Service Program Procedure (QZRUCLSP) API
	Check Command Syntax (QCMDCHK) API
	Create Program (QPRCRTPG) API
	End Preprocessor (QbnEndPreProcessor) API
	Execute Command (QCMDEXC) API
	Get Export (QleGetExp) API
	List ILE Program Information (QBNLPGMI) API
	List Module Information (QBNLMODI) API
	List Service Program Information (QBNLSPGM) API
	Process Commands (QCAPCMD) API
	Replace Command Exit Program (QCARPLCM) API
	Retrieve Associated Space (QbnRetrieveAssociatedSpace) API
	Retrieve Command Definition (QCDRCMDD) API
	Retrieve Command Information (QCDRCMDI) API
	Retrieve Module Information (QBNRMODI) API
	Retrieve Program Associated Space (QCLRPGAS) API
	Retrieve Program Information (QCLRPGMI) API
	Retrieve Prompt Override (QPTRTVPO) API
	Retrieve Service Program Information (QBNRSPGM) API
	Scan for String Pattern (QCLSCAN) API
	Start Preprocessor (QbnStartPreProcessor) API
	Store Program Associated Space (QCLSPGAS) API

	Exit programs
	Command Analyzer Change Exit Program
	Command Analyzer Retrieve Exit Program

