
UNIX-Type APIs (V5R2)

Generic Terminal APIs

Table of Contents

Generic Terminal APIs

Qp0zControlTerminal() (Control a Generic Terminal)●

Qp0zEndTerminal() (End a Generic Terminal)●

Qp0zGetTerminalPid() (Get Process ID for a Generic Terminal)●

Qp0zIsATerminal() (Determine Whether Descriptor Is Connected to a Generic Terminal)●

Qp0zRunTerminal() (Run a Generic Terminal)●

Qp0zSetTerminalMode() (Set Modes for a Generic Terminal)●

Qp0zStartTerminal() (Start a Generic Terminal)●

Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

Generic Terminal APIs
The Generic Terminal APIs are:

Qp0zControlTerminal() (Control a Generic Terminal) allows a program to control the terminal
window to which it is connected.

●

Qp0zEndTerminal() (End a Generic Terminal) ends the terminal session specified by handle.●

Qp0zGetTerminalPid() (Get Process ID for a Generic Terminal) returns the process ID of the
interpreter process for the terminal specified by handle.

●

Qp0zIsATerminal() (Determine Whether Descriptor Is Connected to a Generic Terminal)
determines if the specified descriptor is connected to a terminal.

●

Qp0zRunTerminal() (Run a Generic Terminal) runs the terminal specified by handle.●

Qp0zSetTerminalMode() (Set Modes for a Generic Terminal) allows a program to control the input
mode and wrap mode of the terminal window to which it is connected.

●

Qp0zStartTerminal() (Start a Generic Terminal) starts a new terminal.●

Generic Terminal Concepts

The Generic Terminal provides an environment for running programs that use descriptors for reading input
and writing output. Typically the programs are C, C++, or Java programs that read input from standard
input, write regular output to standard output, and write error output to standard error.

A terminal is started, run, and ended from an interactive job. When a terminal is started by
Qp0zStartTerminal(), an interpreter process is started in batch with descriptors 0, 1, and 2 connected to
pipes in the interactive job. A user specified program runs in the interpreter process. After calling
Qp0zRunTerminal(), an interactive user can send input to the program and see the output written by the
program. The resources used by the terminal are cleaned up by calling Qp0zEndTerminal(). It closes the
pipes and ends the interpreter process.

Terminal Window

After calling Qp0zRunTerminal(), the terminal window is displayed. The interactive user enters input that
is sent to the interpreter process and sees output that comes from the interpreter process. The terminal
window has these parts:

A title line identifies the terminal window. The title is set in the Qp0z_Terminal_Attr_T parameter
of Qp0zStartTerminal().

●

An output area that contains an echo of the commands that were entered and any output from the
interpreter process. When a program in the interpreter process writes to descriptors 1 or 2, the
output is displayed in the output area.

●

An input line for entering commands. The input is written to descriptor 0 in the interpreter process.●

A command key description. There are two lines of command key descriptions that are set in the
Qp0z_Terminal_Attr_T parameter of Qp0zStartTerminal().

●

A message line where messages to the user are displayed.●

The terminal window supports these command keys:

Command Key Description

F3 (Exit)
Returns to the caller of Qp0zRunTerminal() with a return
value of 1 (or QP0Z_TERMINAL_F3).

F5 (Refresh) Refreshes the output area.

F6 (Print) Prints the output area to a QPRINT spool file.

F7 (Page up) Page up output area. If a number is on the command line,
the output area is rolled up by that number of lines.

F8 (Page down)
Page down output area. If a number is on the command
line, the output area is rolled down by that number of
lines.

F9 (Retrieve)

Retrieve a previous command. If the key is pressed
multiple times, it retrieves previous commands from a
buffer. For example, to retrieve the second to last
command, press the key two times. A specific command
can be selected by placing the cursor on that command
and pressing the key. When the interactive job is running
in a double-byte CCSID, this key is not available.

F11 (Toggle line wrap)

Toggles the line wrap/truncate mode in the output area. In
line wrap mode, lines longer than the width of the
terminal window are wrapped to the next line. In truncate
mode, the portion of a line beyond the width of the
terminal window is not shown.

F12 (Return)
Returns to the caller of Qp0zRunTerminal() with a return
value of 0 (or QP0Z_TERMINAL_F12).

F13 (Clear) Clears the output area.

F14 (Adjust command
line length)

Adjust the command line length to four lines. If a number
is on the command line, the command line length is
adjusted to that number of lines.

F17 (Top) Displays top of output area.

F18 (Bottom) Displays bottom of output area.

F19 (Left)
Shifts the output area to the left. If a number is on the
command line, the output area is shifted by that number
of columns.

F20 (Right)
Shifts the output area to the right. If a number is on the
command line, the output area is shifted by that number
of columns.

F21 (CL command line) Displays a command entry window where the user can
enter CL commands.

Programs running in the interpreter process

The program can use descriptor 0 (or standard input) to read input, descriptor 1 (or standard output) to write
regular output, and descriptor 2 (or standard error) to write error output. The program can use the following
functions to work with the terminal to which it is connected.

Use Qp0zIsATerminal() to see if a descriptor is connected to a terminal.●

Use Qp0zControlTerminal() to control the terminal window. For example, page up or page down in
the terminal window.

●

Use Qp0zSetTerminalMode() to set terminal modes. For example, switch to hidden input mode to
read a password.>

●

The program also needs to decide how to handle the following signals:

The terminal sends signal SIGINT when the interactive user enters SysReq 2 to interrupt the
current request.

●

The terminal sends signal SIGHUP when the terminal is ended.●

Top | UNIX-Type APIs | APIs by category

Qp0zControlTerminal()--Control a Generic
Terminal

 Syntax

 #include <qp0ztrml.h>

 int Qp0zControlTerminal(unsigned char action, int value);

 Service Program Name: QP0ZTRMLC Default Public Authority: *USE Threadsafe: Yes

The Qp0zControlTerminal() function allows a program to control the terminal window to which it is
connected. A program can perform the same actions on the terminal window as an interactive user of the
terminal window. See Generic Terminal Concepts for details about using a terminal.

Qp0zControlTerminal() supports the following actions:

QP0Z_TERMINAL_BOTTOM (0xB6)

Display bottom of output area. The bottom of the output area is displayed.

QP0Z_TERMINAL_CLCMDLINE (0xB9)

Display CL command line. A pop-up window with a CL command line is displayed. The user can
run a CL command without exiting the terminal window.

QP0Z_TERMINAL_CLEAR (0xB1)

Clear output area. The contents of the output area and the command retrieval buffer are cleared.

QP0Z_TERMINAL_EXIT (0x33)

Exit terminal window. The terminal window is ended and Qp0zRunTerminal() returns 1 (or
QP0Z_TERMINAL_F3).

QP0Z_TERMINAL_LEFT (0xB7)

Shift output area left. The output area is shifted to the left by the number of columns specified by
value. If value is zero, the output area is shifted left by the number columns currently in the output
area.

QP0Z_TERMINAL_PAGEDOWN (0x38)

Page down output area. The output area is moved down by the number of rows specified by value.
If value is zero, the output area is moved down by the number rows currently in the output area
(one page).

QP0Z_TERMINAL_PAGEUP (0x37)

Page up output area. The output area is moved up by the number of rows specified by value. If
value is zero, the output area is moved up by the number rows currently in the output area (one
page).

QP0Z_TERMINAL_PRINT (0x36)

Print output area. The contents of the output area are printed to a QPRINT spool file.

QP0Z_TERMINAL_REFRESH (0x35)

Refresh output area. The contents of the output area are refreshed with any output that is available.

QP0Z_TERMINAL_RETRIEVE (0x39)

Retrieve previous command. The last command entered by the user is retrieved and displayed on
the input line.

QP0Z_TERMINAL_RETURN (0x3C)

Return from terminal window. The terminal window is ended and Qp0zRunTerminal() returns 0 (or
QP0Z_TERMINAL_F12).

QP0Z_TERMINAL_RIGHT (0xB8)

Shift output area right. The output area is shifted to the right by the number of columns specified by
value. If value is zero, the output area is shifted right by the number columns currently in the output
area.

QP0Z_TERMINAL_TOP (0xB5)

Display top of output area. The top of the output area is displayed.

Parameters

action

(Input)

Action to perform on the terminal window. The valid values are listed above.

value

(Input)

Value associated with action. For the QP0Z_TERMINAL_LEFT and QP0Z_TERMINAL_RIGHT
actions, the value is the number of columns to shift or zero for the default number of columns. For
the QP0Z_TERMINAL_PAGEDOWN and QP0Z_TERMINAL_PAGEUP actions, the value is the
number of rows to page up or down or zero for the default number of rows. For all other actions,
this parameter must be zero.

Authorities and Locks

None.

Return Value

0 Qp0zControlTerminal() was successful.

value Qp0zControlTerminal() was not successful. The value returned is an errno indicating the
failure.

Error Conditions

If Qp0zControlTerminal() is not successful, the return value usually indicates one of the following errors.
Under some conditions, the return value could indicate an error other than those listed here.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values or an operation was attempted on an object and
the operation specified is not supported for that type of object.

Correct the argument in error and try your request again.

[EIO]

Input/output error.

A physical I/O error occurred.

See the previous message in the job log. Correct any errors indicated there and try your operation
again.

[ENOTTY]

Inappropriate I/O control operation.

[EUNKNOWN]

Unknown system state.

The operation failed due to an unknown system state. See any messages in the job log and correct
any errors that may be indicated and then retry the operation.

Usage Notes

Before calling Qp0zControlTerminal(), a program should check to see if descriptor 0 is connected
to a terminal by calling Qp0zIsATerminal().

1.

There is no way for the Generic Terminal to prevent multiple programs calling
Qp0zControlTerminal() to control the terminal window. A program must provide appropriate
synchronization between calls to Qp0zControlTerminal() to avoid confusing the user of the
terminal.

2.

Related Information

The <qp0ztrml.h> file (see Header Files for UNIX-Type Functions)●

Qp0zEndTerminal()--End a Generic Terminal●

Qp0zGetTerminalPid()--Get Process ID for a Generic Terminal●

Qp0zIsATerminal()--Determine Whether Descriptor Is Connected to a Generic Terminal●

Qp0zRunTerminal()--Run a Generic Terminal●

Qp0zSetTerminalMode()--Set Modes for a Generic Terminal●

Qp0zStartTerminal()--Start a Generic Terminal●

API Introduced: V5R1

Top | Generic Terminal APIs
UNIX-Type APIs | APIs by category

Qp0zEndTerminal()--End a Generic Terminal

 Syntax

 #include <qp0ztrml.h>

 int Qp0zEndTerminal(Qp0z_Terminal_T handle, ...);

 Service Program Name: QP0ZTRML
 Default Public Authority: *USE
 Threadsafe: Yes

The Qp0zEndTerminal() function ends the terminal session specified by handle.

The terminal session is ended by:

Ending the terminal window.1.

Sending the SIGHUP signal to the process group of the interpreter process.2.

Closing the pipes connected to the interpreter process.3.

Qp0zEndTerminal() waits for the interpreter process to end before returning to the caller. The status
information about how the interpreter process ended is returned in the optional second parameter.

Parameters

handle

(Input) Handle for terminal.

...

(Output) An optional pointer to an integer to store the status information about how the interpreter
process ended. See the wait() API for information on interpreting the status information. The status
information is only returned when the Return_Exit_Status field is set in the Qp0z_Terminal_Attr_T
parameter when the terminal is started by Qp0zStartTerminal().

Authorities

None.

Return Value

0

Qp0zEndTerminal() was successful.

value

Qp0zEndTerminal() was not successful. The value returned is an errno indicating the failure.

Error Conditions

If Qp0zEndTerminal() is not successful, the return value usually indicates one of the following errors.
Under some conditions, the return value could indicate an error other than those listed here.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Usage Notes

The default action for the SIGHUP signal is to end the request. The program running in the
interpreter process can use a signal handler to catch the signal and perform any necessary cleanup.
See Signals APIs for more information about signals.

1.

Related Information

The <qp0ztrml.h> file (see Header Files for UNIX-Type Functions)●

Qp0zControlTerminal()--Control a Generic Terminal●

Qp0zGetTerminalPid()--Get Process ID for a Generic Terminal●

Qp0zIsATerminal()--Determine Whether Descriptor Is Connected to a Generic Terminal●

Qp0zRunTerminal()--Run a Generic Terminal●

Qp0zSetTerminalMode()--Set Modes for a Generic Terminal●

Qp0zStartTerminal()--Start a Generic Terminal●

wait()--Wait for Child Process to End●

Top | Generic Terminal APIs | APIs by category

Qp0zGetTerminalPid()--Get Process ID for a
Generic Terminal

 Syntax

 #include <qp0ztrml.h>

 int Qp0zGetTerminalPid(Qp0z_Terminal_T handle,
 pid_t *pid);

 Service Program Name: QP0ZTRML
 Default Public Authority: *USE
 Threadsafe: No

The Qp0zGetTerminalPid() function returns the process ID of the interpreter process for the terminal
specified by handle.

Parameters

handle

(Input) Handle for terminal.

*pid

(Output) Pointer to area to store process ID of interpreter process.

Authorities

None.

Return Value

0

Qp0zGetTerminalPid() was successful.

value

Qp0zGetTerminalPid() was not successful. The value returned is an errno indicating the failure.

Error Conditions

If Qp0zGetTerminalPid() is not successful, the return value usually indicates one of the following errors.
Under some conditions, the return value could indicate an error other than those listed here.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Related Information

The <qp0ztrml.h> file (see Header Files for UNIX-Type Functions)●

Qp0zControlTerminal()--Control a Generic Terminal●

Qp0zEndTerminal()--End a Generic Terminal●

Qp0zIsATerminal()--Determine Whether Descriptor Is Connected to a Generic Terminal●

Qp0zRunTerminal()--Run a Generic Terminal●

Qp0zSetTerminalMode()--Set Modes for a Generic Terminal●

Qp0zStartTerminal()--Start a Generic Terminal●

Top | Generic Terminal APIs | APIs by category

Qp0zIsATerminal()--Determine Whether
Descriptor Is Connected to a Generic Terminal

 Syntax

 #include <qp0ztrml.h>

 int Qp0zIsATerminal(int descriptor);

 Service Program Name: QP0ZTRMLC
 Default Public Authority: *USE
 Threadsafe: Yes

The Qp0zIsATerminal() function determines if the specified descriptor is connected to a terminal. See
Generic Terminal Concepts for details about using a terminal.

Parameters

descriptor

(Input) The descriptor to check.

Authorities

None.

Return Value

0

The descriptor is not connected to a terminal.

1

The descriptor is connected to a terminal.

Error Conditions

None.

Related Information

The <qp0ztrml.h> file (see Header Files for UNIX-Type Functions)●

Qp0zControlTerminal()--Control a Generic Terminal●

Qp0zEndTerminal()--End a Generic Terminal●

Qp0zGetTerminalPid()--Get Process ID for a Generic Terminal●

Qp0zRunTerminal()--Run a Generic Terminal●

Qp0zSetTerminalMode()--Set Modes for a Generic Terminal●

Qp0zStartTerminal()--Start a Generic Terminal●

Top | Generic Terminal APIs | APIs by category

Qp0zRunTerminal()--Run a Generic Terminal

 Syntax

 #include <qp0ztrml.h>

 int Qp0zRunTerminal(Qp0z_Terminal_T handle);

 Service Program Name: QP0ZTRML

 Default Public Authority: *USE

 Threadsafe: No

The Qp0zRunTerminal() function runs the terminal specified by handle. First, Qp0zRunTerminal()
makes the terminal window the active window on the display. Then, Qp0zRunTerminal() waits for the
user to enter input at the command line, press a command key, or for output to become available from the
interpreter process. Qp0zRunTerminal() returns when either the user presses F3, the user presses F12, or
the interpreter process ends.

When the user enters input at the terminal command line, Qp0zRunTerminal() writes the data to
descriptor 0 in the interpreter process. The data is terminated with a new line (0x25) character.

When a program in the interpreter process writes to descriptor 1 or 2, Qp0zRunTerminal() displays the
data in the output area of the terminal window.

When the user presses one of the following command keys, Qp0zRunTerminal() takes these actions:

F3 (Exit)

Returns to the caller with a return value of 1 (or QP0Z_TERMINAL_F3).

F5 (Refresh)

Refreshes the output area.

F6 (Print)

Prints the output area to a QPRINT spool file.

F7 (Page up)

Page up output area. If a number is on the command line, the output area is rolled up by that
number of lines.

F8 (Page down)

Page down output area. If a number is on the command line, the output area is rolled down by that
number of lines.

F9 (Retrieve)

Retrieve a previous command. If the key is pressed multiple times, it retrieves previous commands
from a buffer. For example, to retrieve the second to last command, press the key two times. A
specific command can be selected by placing the cursor on that command and pressing the key.
When the interactive job is running in a double-byte CCSID, this key is not available.

F11 (Toggle line wrap)

Toggles the line wrap/truncate mode in the output area. In line wrap mode, lines longer than the
width of the terminal window are wrapped to the next line. In truncate mode, the portion of a line

beyond the width of the terminal window is not shown.

F12 (Return)

Returns to the caller with a return value of 0 (or QP0Z_TERMINAL_F12).

F13 (Clear)

Clears the output area.

F14 (Adjust command line length)

Adjust the command line length to four lines. If a number is on the command line, the command
line length is adjusted to that number of lines.

F17 (Top)

Displays top of output area.

F18 (Bottom)

Displays bottom of output area.

F19 (Left)

Shifts the output area to the left. If a number is on the command line, the output area is shifted by
that number of columns.

F20 (Right)

Shifts the output area to the right. If a number is on the command line, the output area is shifted by
that number of columns.

F21 (CL command line)

Displays a command entry window where the user can enter CL commands.

When the user enters System Request 2, Qp0zRunTerminal() sends a SIGINT signal to the process group
of the interpreter process.

Parameters

handle

(Input) Handle for terminal.

Authorities

None.

Return Value

0 (or QP0Z_TERMINAL_F12)

Qp0zRunTerminal() was successful and the user pressed F12 to return.

1 (or QP0Z_TERMINAL_F3)

Qp0zRunTerminal() was successful and the user pressed F3 to exit.

2 (or QP0Z_TERMINAL_ENDED)

Qp0zRunTerminal() was successful and the interpreter process ended.

value

Qp0zRunTerminal() was not successful. The value returned is an errno indicating the failure.

Error Conditions

If Qp0zRunTerminal() is not successful, the return value usually indicates one of the following errors.
Under some conditions, the return value could indicate an error other than those listed here.

[EDESTROYED]

The mutex was destroyed.

A required object was destroyed.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Usage Notes

The default action for the SIGINT signal is to end the request. The program running in the
interpreter process can use a signal handler to catch the signal and perform any necessary cleanup.
See Signals APIs for more information about signals.

1.

Related Information

The <qp0ztrml.h> file (see Header Files for UNIX-Type Functions)●

Qp0zControlTerminal()--Control a Generic Terminal●

Qp0zEndTerminal()--End a Generic Terminal●

Qp0zGetTerminalPid()--Get Process ID for a Generic Terminal●

Qp0zIsATerminal()--Determine Whether Descriptor Is Connected to a Generic Terminal●

Qp0zSetTerminalMode()--Set Modes for a Generic Terminal●

Qp0zStartTerminal()--Start a Generic Terminal●

Using the Generic Terminal APIs (see Examples)●

Top | UNIX-Type APIs | APIs by category

Qp0zSetTerminalMode()--Set Modes for a
Generic Terminal

 Syntax

 #include <qp0ztrml.h>
 int Qp0zSetTerminalMode(unsigned char mode, unsigned char type,
 unsigned char *reserved);;

 Service Program Name: QP0ZTRMLC

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zSetTerminalMode() function allows a program to control the input mode and wrap mode of the
terminal window to which it is connected. See Generic Terminal Concepts for details about using a
terminal.

Qp0zSetTerminalMode() supports setting the following modes:

QP0Z_TERMINAL_INPUT_MODE (0x01)

Set the input mode for the terminal window. When type is QP0Z_TERMINAL_HIDDEN (0xBD),
any input entered by the user is not visible on the terminal window and is not echoed to the output
area. When type is QP0Z_TERMINAL_NORMAL (0xBE), any input entered by the user is visible
on the terminal window and is echoed to the output area. When type is
QP0Z_TERMINAL_PREVIOUS (0x49), the input mode is set to its previous value.

QP0Z_TERMINAL_WRAP_MODE (0x02)

Set the wrap mode for the terminal window. When type is QP0Z_TERMINAL_TRUNCATE
(0x3E), for lines longer than the width of the terminal window, only the data that fits in the output
area is displayed. When type is QP0Z_TERMINAL_WRAP (0x3D), for lines longer than the width
of the terminal window, the data is wrapped to the next line in the output area. When type is
QP0Z_TERMINAL_PREVIOUS (0x49), the wrap mode is set to its previous value.

Parameters

mode

(Input)

Mode to set for the terminal window. The valid values are QP0Z_TERMINAL_INPUT_MODE
and QP0Z_TERMINAL_WRAP_MODE.

type

(Input)

Type associated with the mode. The valid values for QP0Z_TERMINAL_INPUT_MODE are
QP0Z_TERMINAL_HIDDEN, QP0Z_TERMINAL_NORMAL, and
QP0Z_TERMINAL_PREVIOUS. The valid values for QP0Z_TERMINAL_WRAP_MODE are

QP0Z_TERMINAL_TRUNCATE, QP0Z_TERMINAL_WRAP, and
QP0Z_TERMINAL_PREVIOUS.

reserved

(Output)

Reserved parameter that must be set to NULL.

Authorities and Locks

None.

Return Value

0 Qp0zSetTerminalMode() was successful.

value Qp0zSetTerminalMode() was not successful. The value returned is an errno indicating the
failure.

Error Conditions

If Qp0zSetTerminalMode() is not successful, the return value usually indicates one of the following
errors. Under some conditions, the return value could indicate an error other than those listed here.

[EBADF]

Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or write
request was made to a file that is not open for that operation.

[EFAULT]

The address used for an argument was not correct.

In attempting to use an argument in a call, the system detected an address that was not valid.

Correct the argument in error.

[EINVAL]

The value specified for the argument is not correct.

A function was passed incorrect argument values or an operation was attempted on an object and
the operation specified is not supported for that type of object.

Correct the argument in error and try your request again.

[EIO]

Input/output error.

A physical I/O error occurred.

See the previous message in the job log. Correct any errors indicated there and try your operation
again.

[ENOTTY]

Inappropriate I/O control operation.

[EUNKNOWN]

Unknown system state.

The operation failed due to an unknown system state. See any messages in the job log and correct
any errors that may be indicated and then retry the operation.

Usage Notes

Before calling Qp0zSetTerminalMode(), a program should check to see if descriptor 0 is
connected to a terminal by calling Qp0zIsATerminal().

1.

There is no way for the Generic Terminal to prevent multiple programs calling
Qp0zSetTerminalMode() to control the terminal. A program must provide appropriate
synchronization between calls to Qp0zSetTerminalMode() to avoid confusing the user of the
terminal.

2.

Related Information

The <qp0ztrml.h> file (see Header Files for UNIX-Type Functions)●

Qp0zControlTerminal()--Control a Generic Terminal●

Qp0zEndTerminal()--End a Generic Terminal●

Qp0zGetTerminalPid()--Get Process ID for a Generic Terminal●

Qp0zIsATerminal()--Determine Whether Descriptor Is Connected to a Generic Terminal●

Qp0zRunTerminal()--Run a Generic Terminal●

Qp0zStartTerminal()--Start a Generic Terminal●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

Qp0zStartTerminal()--Start a Generic Terminal

 Syntax

 #include <qp0ztrml.h>

 int Qp0zStartTerminal(Qp0z_Terminal_T *handle,
 char *args[],
 char *envs[],
 Qp0z_Terminal_Attr_T attr);

 Service Program Name: QP0ZTRML

 Default Public Authority: *USE

 Threadsafe: No

The Qp0zStartTerminal() function starts a new terminal by:

starting a new interpreter process running the program specified in args[0],●

creating pipes connected to descriptors 0, 1, and 2 in the interpreter process, and●

starting a terminal window.●

The interpreter process is started with the environment variables specified in envs. Using attr, you can set
attributes for the terminal, including the inheritance structure used by spawn() to start the interpreter
process and the title line and command key descriptions in the terminal window. The program running in
the interpreter process receives the arguments specified in args.

In the interpreter process, descriptors 0, 1, and 2 are connected to pipes in the process that started the
terminal. When a command is entered in the terminal window, it is written to descriptor 0 in the interpreter
process. When a program in the interpreter process writes to descriptors 1 or 2, the data is displayed in the
terminal window.

After a new terminal is started, you must call Qp0zRunTerminal() to wait for the user to enter input at the
command line, press a command key, or for output from the interpreter process to be displayed.

Parameters

*handle

(Output) A pointer to the area to store the terminal handle. When successful, Qp0zStartTerminal()
returns a handle to the started terminal.

*args

(Input) A null-terminated array of pointers to the arguments passed to the interpreter program. The
first element in the array is a pointer to the path name of the program to start in the interpreter
process.

*envs

(Input) A null-terminated array of pointers to the environment variables inherited by the interpreter
process. If this parameter is NULL, the environment variables currently defined when

Qp0zStartTerminal() is called are inherited by the interpreter process.

attr

(Input) Attributes for the terminal session.

The members of the Qp0z_Terminal_Attr_T structure are as follows:

struct inherit Inherit

The inheritance structure used when calling spawn() to start the interpreter process. Using
the inheritance structure you can control the attributes of the interpreter process.

int Buffer_Size

Size of buffer for reading data from interpreter process. If zero is specified,
Qp0zStartTerminal() uses a default buffer size of 4096 bytes.

char DBCS_Capable

This field is no longer used.

char Return_Exit_Status

Return the exit status of the interpreter process from Qp0zEndTerminal(). You must
specify an optional parameter when calling Qp0zEndTerminal() to receive the exit status.

char Send_End_Msg

Send message CPCA989 when the interpreter process ends during Qp0zRunTerminal().
The message is displayed on the message line of the terminal window to alert the user that
the interpreter process has ended.

char Return_On_End

Return immediately from Qp0zRunTerminal() when the interpreter process ends. By
default, Qp0zRunTerminal() waits for the user to press either the F3 or F12 command key
before returning when the interpreter process ends.

char *Title

Pointer to null-terminated string with the title for the terminal window. If the string is too
long to fit in the terminal window, it is truncated to the width of the window.

char *Cmd_Key_Line1

Pointer to null-terminated string with the first line of command key descriptions for the
terminal window. If the string is too long to fit in the terminal window, it is truncated to the
width of the window.

char *Cmd_Key_Line2

Pointer to null-terminated string with the second line of command key descriptions for the
terminal window. If the string is too long to fit in the terminal window, it is truncated to the
width of the window.

char reserved2[32]

Reserved field that must be set to zero.

Authorities

Figure 1-2. Authorization Required for Qp0zStartTerminal()

Object Referred to
Authority
Required errno

Each directory in the path name preceding the executable file that will run in the
interpreter process

*X EACCES

Executable file that will run in the interpreter process *X EACCES

If executable file that will run in the interpreter process is a shell script *RX EACCES

Return Value

0

Qp0zStartTerminal() was successful.

value

Qp0zStartTerminal() was not successful. The value returned is an errno indicating the failure.

Error Conditions

If Qp0zStartTerminal() is not successful, the return value usually indicates one of the following errors.
Under some conditions, the return value could indicate an error other than those listed here.

[E2BIG]

Argument list too long.

[EACCES]

Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file
permissions at the server are not reflected at the client until updates to data that is stored locally by
the Network File System take place. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.) Access to a remote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time. A terminal session
is already active in the job and another one cannot be started.

[ECONVERT]

Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EFAULT]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
is not valid.

[EINVAL]

An invalid parameter was found.

A parameter passed to this function is not valid.

[EIO]

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[ELOOP]

A loop exists in the symbolic links.

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP
(defined in the limits.h header file). Symbolic links are encountered during resolution of the
directory or path name.

[EMFILE]

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of
OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

A path name is too long.

A path name is longer than PATH_MAX characters or some component of the name is longer than
NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the length
of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX and
NAME_MAX values can be determined using the pathconf() function.

[ENFILE]

Too many open files in the system.

A system limit has been reached for the number of files that are allowed to be concurrently open in
the system.

The entire system has too many other file descriptors already open.

[ENOENT]

No such path or directory.

The directory or a component of the path name specified does not exist.

A named file or directory does not exist or is an empty string.

[ENOMEM]

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOTDIR]

Not a directory.

A component of the specified path name existed, but it was not a directory when a directory was
expected.

Some component of the path name is not a directory, or is an empty string.

[EUNKNOWN]

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and
correct any errors that are indicated, then retry the operation.

Usage Notes

Only one terminal at a time can be active in an interactive job. If a terminal is currently active,
Qp0zStartTerminal() returns EBUSY.

1.

If the interpreter program is a C or C++ program, it must be compiled for Integrated File System
I/O by specifying the SYSIFCOPT(*IFSIO) parameter on the command used to create the program.

2.

If the interpreter program is a C or C++ program, the environment variable
QIBM_USE_DESCRIPTOR_STDIO=Y must be set in the interpreter process to enable the
program to use descriptors 0, 1, and 2 for standard input, standard output, and standard error.

3.

The interpreter program can always read and write directly to descriptors 0, 1, and 2 regardless of
the language it is compiled with.

4.

It is the responsibility of the interpreter program to end and cleanup any open resources when the
descriptors are closed by the terminal, it receives the SIGHUP signal, or it receives the SIGINT
signal.

5.

Related Information

The <qp0ztrml.h> file (see Header Files for UNIX-Type Functions)●

Qp0zControlTerminal()--Control a Generic Terminal●

Qp0zEndTerminal()--End a Generic Terminal●

Qp0zGetTerminalPid()--Get Process ID for a Generic Terminal●

Qp0zIsATerminal()--Determine Whether Descriptor Is Connected to a Generic Terminal●

Qp0zRunTerminal()--Run a Generic Terminal●

Qp0zSetTerminalMode()--Set Modes for a Generic Terminal●

spawn()--Spawn Process●

Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	Generic Terminal APIs (V5R2)
	Table of Contents
	Generic Terminal APIs
	Qp0zControlTerminal()--Control a Generic Terminal
	Qp0zEndTerminal()--End a Generic Terminal
	Qp0zGetTerminalPid()--Get Process ID for a Generic Terminal
	Qp0zIsATerminal()--Determine Whether Descriptor Is Connected to a Generic Terminal
	Qp0zRunTerminal()--Run a Generic Terminal
	Qp0zSetTerminalMode()--Set Modes for a Generic Terminal
	Qp0zStartTerminal()--Start a Generic Terminal

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

