
UNIX-Type APIs (V5R2)

XA APIs

Table of Contents

XA APIs

XA APIs for Transaction Scoped Locks

xa_close() (Close an XA Resource Manager (Transaction Scoped Locks))❍

xa_commit() (Commit an XA Transaction Branch (Transaction Scoped Locks))❍

xa_complete() (Test Completion of Asynchronous XA Request)❍

xa_end() (End Work on an XA Transaction Branch (Transaction Scoped Locks))❍

xa_forget() (Forget an XA Transaction Branch (Transaction Scoped Locks))❍

xa_open() (Open an XA Resource Manager (Transaction Scoped Locks))❍

xa_prepare() (Prepare to Commit an XA Transaction Branch (Transaction Scoped
Locks))

❍

xa_recover() (Recover XA Transaction Branches (Transaction Scoped Locks))❍

xa_rollback() (Roll Back an XA Transaction Branch (Transaction Scoped Locks))❍

xa_start() (Start an XA Transaction Branch (Transaction Scoped Locks))❍

xa_start_2() (Start an XA Transaction Branch, Extended Version (Transaction Scoped
Locks))

❍

●

XA APIs for Job Scoped Locks

APIs

db2xa_close() (Close an XA resource manager (Job Scoped Locks))■

db2xa_commit() (Commit an XA transaction branch (Job Scoped Locks))■

db2xa_complete() (Test completion of an asynchronous XA request (Job Scoped
Locks))

■

db2xa_end() (End work on an XA transaction branch (Job Scoped Locks))■

db2xa_forget() (Forget an XA transaction branch (Job Scoped Locks))■

db2xa_open() (Open an XA resource manager (Job Scoped Locks))■

db2xa_prepare() (Prepare to commit an XA transaction branch (Job Scoped
Locks))

■

db2xa_recover() (Recover XA transaction branches (Job Scoped Locks))■

db2xa_rollback() (Roll back an XA transaction branch (Job Scoped Locks))■

db2xa_start() (Start an XA transaction branch (Job Scoped Locks))■

❍

Exit Programs❍

●

ax_reg() (Exit program to dynamically register an XA resource manager)■

ax_unreg() (Exit program to dynamically unregister an XA resource manager)■

Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

XA APIs
DB2 UDB for iSeries provides two sets of XA APIs:

XA APIs for Transaction Scoped Locks●

XA APIs for Job Scoped Locks●

Before you use the XA APIs, you should read the following publications, which describe the X/Open
Distributed Transaction Processing model in detail.

X/Open Guide, February 1996, Distributed Transaction Processing: Reference Model, Version 3
(ISBN:1-85912-170-5, G504), The Open Group.

●

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

The model consists of five basic components:

An application program, which defines transaction boundaries and specifies actions that constitute
a transaction.

●

Resource managers, such as databases or file access systems, which provide access to resources.●

A transaction manager, which assigns identifiers to transactions, monitors their progress, and takes
responsibility for transaction completion and for coordinating failure recovery.

●

Communications resource managers, which control communications between distributed
applications within or across transaction manager domains.

●

A communications protocol, which provides the underlying communications between distributed
applications. The protocol is supported by protected resource managers.

●

This section explains the use of DB2 UDB for iSeries as an X/Open-compliant resource manager, and
therefore is concerned only with the first three components of this model. More specifically, it documents
the XA interface, which is the portion of the XA Distributed Transaction Processing model that transaction
managers and resource managers use to communicate. The XA interface is a bidirectional interface, which
consists of a set of UNIX-type APIs.

The XA specification requires the resource manager to provide a switch that gives the transaction manager
access to these APIs. The switch allows an administrator to change the set of resource managers that are
linked with a program without having to recompile the application. This switch is a data structure that
contains the resource manager's name, non-null pointers to the resource manager's APIs, a flag, and a
version word.

DB2 UDB for iSeries provides a switch for each set of XA APIs. Each switch is exported by the
QTNXADTP service program. The switch for the XA APIs for Transaction Scoped Locks is called
xa_switch. The switch for the XA APIs for Job Scoped Locks is called db2xa_switch. The flags in each
switch provide information about the resource manager including the facts that migration of associations is
not supported and asynchronous requests are not allowed. They also contain an array of procedure pointers
that give addressability to the XA APIs. The XA APIs are typically called by a transaction manager using
these pointers rather than by name. This precludes the transaction manager from having to know the actual
function names and from having to link to the service program that actually contains the functions.

The XA specification requires each resource manager to provide a header file that defines data structures
and constants common to the operation of transaction managers and resource managers. The DB2 UDB for
iSeries XA resource manager ships two header files in file H, library QSYSINC. Member XA contains a
header file that is compatible with the XA architecture. Member QTNXADTP contains a header file that is

not compatible with the XA architecture. Some of the structure and variable names in header file
QTNXADTP have the prefix "db2." Either file can be used, but it is recommended that the XA header file
be used rather than the QTNXADTP header file. The examples at the end of the XA APIs assume you use
the XA header file.

If you are running XA transactions against a database that resides on the local system, you should use the
XA APIs for Transaction Scoped Locks. These APIs have fewer restrictions than the XA APIs for Job
Scoped Locks, and provide better performance in the following situations:

If multiple SQL connections are ever used to work on a single XA transaction branch.●

If a single SQL connection is used to work on multiple, concurrent XA transaction branches.●

In these situations, a separate job must be started to run XA transaction branches when the XA APIs for Job
Scoped Locks are used.

If you are running against a database that resides on a remote system, the XA APIs for Job Scoped Locks
must be used.

See Commitment Control for additional information on commitment control and XA transactions.

Restrictions

Transactions that require the use of an XA resource manager must be performed in SQL server jobs. An
SQL server job is a job whose server mode for Structured Query Language attribute has been set to *YES.
Use the Change Job (QWTCHGJOB) API to control the setting of this attribute. The xa_open() and
db2xa_open() APIs will set the server mode attribute to *YES if the attribute has not already been set.

For additional information about SQL server job, see DB2 UDB for iSeries SQL Programming Concepts
in the Information Center and the question on What is CLI Server Mode? in the DB2 Universal Database

for iSeries SQL CLI Frequently Asked Questions.

X/Open applications are only allowed to use SQL interfaces to access resources managed by DB2 UDB for
iSeries. Both the embedded and call level interface (CLI) SQL interfaces are supported. Local relational
databases may be used by the application when running with the XA APIs for Transaction Scoped Locks or
the XA APIs for Job Scoped Locks. Local databases include those defined for an Indpendent ASP. Remote
relational databases may be used by the application only when running with the XA APIs for Job Scoped
Locks. When using a remote relational database, the RDB connection method must be Distributed Unit of
Work (*DUW), and the remote location may be defined for either TCP/IP or SNA LU6.2 connections.

The following interfaces are not supported for use by an X/Open application:

Control language (CL) or high-level language (HLL) interfaces for local files or distributed data
management (DDM) files.

●

The Process Extended Dynamic SQL (QSQPRCED) API.●

The Query (QQQQRY) API.●

The commitment control API interfaces documented in the Journal and Commit APIs part.●

It is expected that most transaction managers will use the same user profile for all SQL connections. If
the xa_open or db2xa_open APIs are used before the connections are started, this can be accomplished by
specifying the same user profile for the *xainfo parameter of each xa_open() or db2xa_open() API call.
XA applications generally do not use the resource manager's native security mechanisms to limit access to
data. Rather, this is done at the application or transaction manager level.

Top | UNIX-Type APIs | APIs by category

XA APIs for Transaction Scoped Locks
The following XA APIs for Transaction Scoped Locks are provided by the DB2 UDB for iSeries XA
resource manager for use by a transaction manager:

xa_close() (Close an XA Resource Manager (Transaction Scoped Locks)) closes a currently open
resource manager in the thread of control.

●

xa_commit() (Commit an XA Transaction Branch (Transaction Scoped Locks)) commits the
work associated with *xid.

●

xa_complete() (Test Completion of Asynchronous XA Request) waits for the completion of an
asynchronous operation.

●

xa_end() (End Work on an XA Transaction Branch (Transaction Scoped Locks)) is called when
when an application thread of control finishes or needs to suspend work on a transaction branch.

●

xa_forget() (Forget an XA Transaction Branch (Transaction Scoped Locks)) is called to forget
about a heuristically completed transaction branch.

●

xa_open() (Open an XA Resource Manager (Transaction Scoped Locks)) is called to open the
XA resource manager and to prepare it for use in the XA distributed transaction environment.

●

xa_prepare() (Prepare to Commit an XA Transaction Branch (Transaction Scoped Locks)) is
called to request that a resource manager prepare for commitment any work performed on behalf of
*xid.

●

xa_recover() (Recover XA Transaction Branches (Transaction Scoped Locks)) is called during
recovery to obtain a list of transaction branches that are currently in a prepared or heuristically
completed state.

●

xa_rollback() (Roll Back an XA Transaction Branch (Transaction Scoped Locks)) is called to roll
back work performed on behalf of the transaction branch.

●

xa_start() (Start an XA Transaction Branch (Transaction Scoped Locks)) informs a resource
manager that an application may do work on behalf of a transaction branch.

●

xa_start_2() (Start an XA Transaction Branch, Extended Version (Transaction Scoped Locks))
informs a resource manager that an application may do work on behalf of a transaction branch.

●

The following example shows the interactions between the application program, transaction manager, and
the XA resource manager during a typical transaction branch when the XA APIs for Transaction Scoped
Locks are used. The actual interactions that occur during a transaction will vary depending on factors such
as the following:

Whether the transaction is committed or rolled back●

Whether the one- or two-phase commit protocol is used with the XA resource manager●

Whether multiple threads are used to perform the work of a transaction branch●

Refer to the X/Open XA Specification for details.

Example Using XA APIs for Transaction Scoped Locks

 HLL XA XA
 Application Transaction Resource
 Program Manager Manager

1. tx_open ----------> xa_open ------------->
 <---------- <-----------

 XID xxx
2. tx_begin ---------> xa_start ------------>
 <---------- <-----------

3. <SQL work> ------------------------------>
 <---------------------------------

4. .
 .
 .

5. tx_commit --------> xa_end -------------->
 <-----------

6. xa_prepare ---------->
 <-----------

7. xa_commit ----------->
 <---------- <-----------

Notes

The application uses the X/Open Transaction Demarcation (TX) tx_open() interface to open all the
resource managers that are linked with the transaction manager. The transaction manager uses the
xa_open() interface to open an instance of the XA resource manager. The transaction manager may
open multiple XA resource managers that will participate in XA transactions. The transaction
manager assigns a resource manager identifier (ID) to each resource manager instance. The
resource manager ID uniquely identifies the instance within the thread of control in which the
application is running.

1.

The application uses the TX tx_begin() interface to begin a transaction. For each resource manager
that will participate in XA transactions, the transaction manager generates a transaction branch
identifier (XID) and uses the XA xa_start() interface to start a transaction branch.

2.

The application uses SQL interfaces to access resources managed by DB2 UDB for iSeries.3.

The application continues its transaction. It may access other resource managers as appropriate.4.

When the transaction has been completed, the application uses the TX tx_commit() interface to
commit the work. The transaction manager uses the XA xa_end() interface to end the transaction
branch.

5.

The transaction manager uses the XA xa_prepare() interface to prepare the resources for
commitment.

6.

The transaction manager uses the XA xa_commit() interface to commit the resources after all the
resource managers involved in the transaction have successfully prepared their resources for
commitment. When the commit operation is complete, the application can begin another transaction

7.

using the TX tx_begin() interface.

Top | UNIX-Type APIs | APIs by category

xa_close()-- Close an XA Resource Manager
(Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_close_entry(char *xa_info,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_close() to close a currently open resource manager in the thread of control.
After this call, the resource manager cannot participate in global transactions on behalf of the calling thread
until it is reopened.

Parameters

xa_info

(Input) A pointer to a 256-byte, null-terminated character string that contains information used to
close the resource manager. No information is currently allowed in this string. It must be a null
string or contain only blanks with a null terminator.

rmid

(Input) An integer value that the transaction manager generated when calling xa_open(). The rmid
identifies the resource manager.

flags

(Input) The following are valid settings of flags.

TMNOFLAGS: 0x00000000L Perform the close operation normally.

Authorities

None

Return Value

-6 [XAER_PROTO]

xa_close() was not successful. The function was called in an improper context.

-5 [XAER_INVAL]

xa_close() was not successful. Incorrect arguments were specified.

-3 [XAER_RMERR]

xa_close() was not successful. The resource manager detected an error when it closed the resource.

-2 [XAER_ASYNC]

xa_close() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_close() was successful.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Example

#include <xa.h>

main() {
 char *xa_info;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_close_entry(xa_info, rmid, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_commit()-- Commit an XA Transaction
Branch (Transaction Scoped Locks

 Syntax

 #include <xa.h>

 int xa_switch.xa_commit_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_commit() to commit the work associated with *xid. All changes that were
made to resources managed by DB2 UDB for iSeries during the transaction branch are made permanent.

Parameters

xid

(Input) A pointer to the transaction branch identifier. This identifier was generated by the
transaction manager when the transaction branch was started.

rmid

(Input) An integer value that the transaction manager generated when calling xa_open(). The rmid
identifies the resource manager.

flags

(Input) Following are the valid settings of flags.

TMNOWAIT: 0x10000000L Do not commit the transaction if a blocking condition exists.

TMONEPHASE: 0x40000000L Use the one-phase commit optimization for the specified
transaction branch.

TMNOFLAGS: 0x00000000L Use if no other flags are set.

Authorities

None

Return Value

The following values may be returned only if TMONEPHASE(0x40000000L) was set in the flags
parameter.

100 [XA_RBROLLBACK]

The transaction branch was rolled back for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

104 [XA_RBOTHER]

The resource manager rolled back the transaction branch for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

106 [XA_RBTIMEOUT]

A timeout occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected in the resource manager.

The following values may be returned for all flags settings.

-7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_commit() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_commit() was not successful. Incorrect arguments were specified.

-4 [XAER_NOTA]

The specified xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_commit() was not successful. The resource manager detected an error when committing the
transaction branch.

-2 [XAER_ASYNC]

xa_commit() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_commit() was successful.

4 [XA_RETRY]

The resource manager is unable to commit the transaction branch at this time.
TMNOWAIT(0x10000000L) was set and a blocking condition exists. All resources held on behalf of
*xid remain in a prepared state. The transaction manager should issue xa_commit() again at a later
time.

5 [XA_HEURMIX]

Work on the transaction branch was partially committed and partially rolled back.

6 [XA_HEURRB]

Work on the transaction branch was heuristically rolled back.

7 [XA_HEURCOM]

Work on the transaction branch was heuristically committed.

8 [XA_HEURHAZ]

Work on the transaction branch may have been heuristically completed.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_commit_entry(xid, rmid, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_complete()--Test Completion of
Asynchronous XA Request (Transaction
Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_complete_entry(int *handle,
 int *retval, int rmid, long flags)

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_complete() to wait for the completion of an asynchronous operation.
Asynchronous operations are not supported by the DB2 UDB for iSeries resource manager. This function is
provided only for compliance with the X/Open XA Specification.

Parameters

handle

(Input) A pointer to an integer value returned by an XA function that had TMASYNC specified.

retval

(Output) A pointer to the integer return value of the asynchronous function.

rmid

(Input) An integer value that the transaction manager generated when calling xa_open(). The rmid
identifies the resource manager.

flags

(Input) The follow are valid settings of flags.

TMMULTIPLE: 0x00400000L Test completion of any outstanding asynchronous operation.

TMNOWAIT: 0x10000000L Test for completion without blocking.

TMNOFLAGS: 0x00000000L Use if no other flags are set.

Authorities

None

Return Value

-6 [XAER_PROTO]

xa_complete() was not successful. TMUSEASYNC 0x00000004L was not set in the flags element of
the XA resource manager's xa_switch_t structure. Asynchronous operations are not supported.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_end()--End Work on an XA Transaction
Branch (Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_end_entry(XID *xid, int rmid,
 long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_end() when an application thread of control finishes or needs to suspend
work on a transaction branch. When xa_end() successfully returns, the calling thread of control is no longer
associated with the transaction branch, but the branch still exists.

If the TMSUSPEND flag is not specified, all SQL cursors used while the thread was associated with this
transaction branch are closed. Files left open by a procedure, trigger or function that used legacy file access
methods are closed regardless of flag settings.

Parameters

*xid

(Input) A pointer to the transaction branch identifier. This identifier was generated by the
transaction manager when the transaction branch was started.

rmid

(Input) An integer value that the transaction manager generated when calling xa_open(). The rmid
identifies the resource manager.

flags

(Input) The following are valid settings of flags. One, and only one, of TMSUSPEND,
TMSUCCESS, or TMFAIL must be set.

TMSUSPEND: 0x02000000L Suspend a transaction branch on behalf of the calling thread. The
transaction manager must resume or end the suspended association in the current thread.

TMSUCCESS: 0x04000000L The portion of work has succeeded.

TMFAIL: 0x20000000L The portion of work has failed.

Authorities

None

Return Value

The following return codes indicate that the resource manager has marked the work performed on this
transaction branch as rollback-only.

100 [XA_RBROLLBACK]

The transaction branch was marked rollback-only for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

104 [XA_RBOTHER]

The resource manager marked the transaction branch rollback-only for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

106 [XA_RBTIMEOUT]

A timeout occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected by the resource manager.

Other return codes:

-7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

Function was called in an improper context.

-5 [XAER_INVAL]

Incorrect arguments were specified.

-4 [XAER_NOTA]

The specified *xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_end() was not successful. The resource manager detected an error when ending the transaction
branch.

-2 [XAER_ASYNC]

xa_end() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_end() was successful.

9 [XA_NOMIGRATE]

The resource manager was unable to prepare the transaction context for migration. The resource
manager has suspended the association. The transaction manager can resume the association in the
current thread only.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_end_entry(xid, rmid, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_forget()-- Forget an XA Transaction Branch
(Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_forget_entry(XID *xid,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_forget() to forget about a heuristically completed transaction branch. After
this call, the *xid is no longer valid.

Parameters

*xid

(Input) A pointer to the transaction branch identifier. This identifier was generated by the
transaction manager when the transaction branch was started.

rmid

(Input) An integer value that the transaction manager generated when calling xa_open(). The rmid
identifies the resource manager.

flags

(Input) The following are valid settings of flags.

TMNOFLAGS: 0x00000000L Perform the forget operation normally.

Authorities

None

Return Value

-7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_forget() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_forget() was not successful. Incorrect arguments were specified.

-4 [XAER_NOTA]

The specified xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_forget() was not successful. The resource manager detected an error when forgetting the
transaction branch.

-2 [XAER_ASYNC]

xa_forget() was not successful. The resource manager does not support asynchronous operations.

0 [TM_OK]

xa_forget() was successful.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_forget_entry(xid, rmid, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_open()--Open an XA Resource Manager
(Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_open_entry(char *xa_info,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_open() to open the XA resource manager and to prepare it for use in the
XA distributed transaction environment. This function must be called before any other resource manager
(xa_) calls are made.

Parameters

*xa_info

(Input) A pointer to a null-terminated string that contains information used to initialize the resource
manager. See the Usage Notes for details on what this string should contain.

rmid

(Input) A number generated by the transaction manager to identify this instance of the XA resource
manager. This resource manager identifier is passed to the other XA functions to identify which
instance of the resource manager for which the function is called.

flags

(Input) The following are valid settings of flags.

TMNOFLAGS: 0x00000000L Perform the open operation normally.

Authorities

None

Return Value

-6 [XAER_PROTO]

xa_open() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_open() was not successful. Incorrect arguments were specified.

-3 [XAER_RMERR]

xa_open() was not successful. The resource manager detected an error when opening the resource
manager.

-2 [XAER_ASYNC]

xa_open() was not successful. The resource manager does not support asynchronous operations.

0 [TM_OK]

xa_open() was successful.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

A pointer to the xa_info character string is passed on the xa_open() function. The character string
contains information required by the XA resource manager. This information affects the behavior
of DB2 UDB for iSeries when running as an XA resource manager. The xa_info string is a series of
keyword specifications, each of which consists of:

A keyword.❍

The '=' character.❍

A keyword value.❍

For example:

TMNAME=YourTM RDBNAME=SYSABC lockwait=300

●

The restrictions on the data in the xa_info character string are:

There must be no blanks between the keyword and the '=' or between the '=' and the
keyword value.

❍

The xa_info string must neither begin nor end with the '=' character.❍

There must be at least one blank between each keyword specification.❍

Keywords and keyword values, except the PASSWORD keyword value, are not
case-sensitive; keyword values on system displays or messages are shown in uppercase.
The PASSWORD keyword value is case-sensitive.

❍

If the PASSWORD keyword is specified, its value is assumed to be represented in the job
default CCSID of the job that calls the xa_open() function.

❍

The xa_info string is limited to 1024 bytes and must be null-terminated. Note that this is
longer than the 256 byte maximum architected in the XA Specification, however the longer
length is required for iSeries long password support. If a null byte ('00'x) is not found in the
first 1024 bytes, [XAER_INVAL] is returned.

❍

The xa_info string value is treated as character data and is not converted.❍

The return value [XAER_INVAL] will be returned if a keyword is specified that is not
documented in Figure 1.

❍

●

Figure 1. xainfo String Keywords and Values

Keyword Name Keyword Value

LOCKWAIT The maximum number of seconds that the system will wait on any lock request
during transaction branches started by this thread. Lock wait time values that are
specified by other system interfaces will be used only if they are smaller than this
value.

If not specified, lock wait time values specified by other system interfaces are used.
The maximum value that may be specified is 999999999.

PASSWORD The password to be used in conjunction with the user when accessing the relational
database. This value is used only if the USER keyword is also specified. If
specified, the password value is assumed to be represented in the job default CCSID
of the job that calls the db2_xaopen() API. If the specified password value contains
any null bytes ('00'x) or blanks ('40'x), the PWDLEN keyword must also be
specified. The length of the password value must not exceed 512 bytes.

If this keyword is not specified, PASSWORD defaults to 10 blanks.

PWDLEN The length, in bytes, of the password. This value must not exceed 512. This
keyword must be specified if the value specified for the PASSWORD keyword
contains any null bytes ('00'x) or blanks ('40'x). If specified, the keyword must
appear before the PASSWORD keyword.

If this keyword is not specified, the length of the specified PASSWORD value is
determined by the location of the first null byte ('00'x) or blank ('40'x) following the
PASSWORD keyword. If the PASSWORD keyword is not specified, the value
specified for this keyword is ignored.

RDBNAME A 1- to 18-character name identifying the relational database that the transaction
manager will use for XA transaction branches in this thread. If there is an entry in
the relational database directory with Remote Location value *LOCAL, then special
value *LOCAL may be used to identify that database.

This is a required keyword. If this keyword is not specified, [XAER_INVAL] is
returned.

Once a thread calls xa_open() with a particular rmid and RDBNAME combination,
the rmid may not be used on subsequent xa_open() calls unless the same
RDBNAME value is used. Likewise, the RDBNAME value may not be used on
subsequent xa_open() calls unless the same rmid is used. If a subsequent call is
made with the same rmid and RDBNAME combination, but other values in the
xa_info string are different, the values on the first call remain in effect and a
CPI836A informational message is sent to the joblog.

TMNAME A 1- to 10-character name identifying the XA transaction manager. Information is
only significant for transaction managers that might require special processing and
have worked with the XA resource manager to implement support. This value is
displayed on the Display Commitment Definition Status panel when the
commitment definition has been opened to act as an XA resource manager.
Non-IBM applications must not use a name that starts with the letter Q. The name
must adhere to iSeries naming conventions.

If this keyword is not specified, TMNAME defaults to blanks.

USER A 1- to 10-character user profile to be used when accessing the relational database.

This value will only be used if a user identifier and password is not specified on the
Structured Query Language connection operation that follows the xa_open() request.
If USER is not specified and no user profile is specified on the connection
operation, the user profile for the connection defaults to the current user profile for
the job that makes the connection.

If this keyword is not specified, USER defaults to blanks.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction●

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Example

#include <xa.h>

main() {

 char xa_info[1024]=
 "tmname=mytranmgr rdbname=myrdb";

 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_open_entry(xa_info, rmid, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_prepare()-- Prepare to Commit an XA
Transaction Branch (Transaction Scoped
Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_prepare_entry(XID *xid,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_prepare() to request that a resource manager prepare for commitment any
work performed on behalf of *xid. The resource manager places all resources used in the transaction branch
in a state that the changes can be made permanently when it later receives the xa_commit() request. All
associations for *xid must have been ended by calling xa_end() prior to the prepare request.

Parameters

*xid

(Input) A pointer to transaction branch identifier. This identifier was generated by the transaction
manager when the transaction branch was started.

rmid

(Input) An integer value that the transaction manager generated when calling xa_open(). The rmid
identifies the resource manager.

flags

(Input) The following are valid settings of flags.

TMNOFLAGS: 0x00000000L Perform the prepare operation normally.

Authorities

None

Return Value

The following return codes indicate that the resource manager has rolled back the work done on this
transaction branch.

100 [XA_RBROLLBACK]

The transaction branch was rolled back for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

104 [XA_RBOTHER]

The resource manager rolled back the transaction branch for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

106 [XA_RBTIMEOUT]

A time-out occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected in the resource manager.

All other return codes:

-7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_prepare() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_prepare() was not successful. Incorrect arguments were specified.

-4 [XAER_NOTA]

The specified xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_prepare() was not successful. The resource manager detected an error when preparing the
transaction branch.

-2 [XAER_ASYNC]

xa_prepare() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_prepare() was successful.

3 [XA_RDONLY]

The transaction branch was read-only and has been committed.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_prepare_entry(xid, rmid, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_recover()-- Recover XA Transaction
Branches (Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_recover_entry(XID *xids,
 long count, int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_recover() during recovery to obtain a list of transaction branches that are
currently in a prepared or heuristically completed state. Multiple calls to this function can be made in a
single recovery scan. The flags parameter defines when a recovery scan should start or end.

Parameters

*xids

(Input) A pointer to an array into which the resource manager places XIDs for transaction branches
in prepared or heuristically completed states.

count

(Input) The number of xids that fit into the xids array.

rmid

(Input) An integer value that the transaction manager generated when calling xa_open(). The rmid
identifies the resource manager.

flags

(Input) The following are valid settings of flags. TMSTARTRSCAN: 0x01000000L Start a recovery
scan and position the cursor to the start of the list. XIDs are returned from that point.

TMENDRSCAN: 0x00800000L End a recovery scan after returning the XIDs. If this flag is used
with the TMSTARTRSCAN flag, then a single xa_recover() call starts and ends the recovery scan.

TMNOFLAGS: 0x00000000L Continue a recovery scan. XIDs are returned starting at the current
cursor position.

Authorities

None

Return Value

-6 [XAER_PROTO]

xa_recover() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_recover() was not successful. Incorrect arguments were specified.

-3 [XAER_RMERR]

xa_recover() was not successful. The resource manager detected an error determining the XIDs
to return.

>= 0 The total number of XIDs returned in the xids array.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Example

#include <xa.h>

main() {
 XID xids[10];
 int rmid;
 long count=10;
 long flags=TMSTARTRSCAN+TMENDRSCAN;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_recover_entry(xids, count,
 rmid, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_rollback()-- Roll Back an XA Transaction
Branch (Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_rollback_entry(XID *xid,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_rollback() to roll back work performed on behalf of the transaction branch.
A transaction branch is capable of being rolled back until is has been successfully committed.

Parameters

*xid

(Input) A pointer to the transaction branch identifier. This identifier was generated by the
transaction manager when the transaction branch was started.

rmid

(Input) An integer value that the transaction manager generated when calling xa_open(). The rmid
identifies the resource manager.

flags

(Input) The following are valid settings of flags.

TMNOFLAGS: 0x00000000L Perform the rollback operation normally.

Authorities

None

Return Value

The following return codes indicate that the resource manager rolled back the work done on this transaction
branch. These values are typically returned when the transaction branch was previously marked
rollback-only.

100 [XA_RBROLLBACK]

The transaction branch was rolled back for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

104 [XA_RBOTHER]

The resource manager rolled back the transaction branch for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

106 [XA_RBTIMEOUT]

A timeout occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected in the resource manager.

The following return codes may be returned for any flags setting.

-7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_rollback() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_rollback() was not successful. Incorrect arguments were specified.

-4 [XAER_NOTA]

The specified xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_rollback() was not successful. The resource manager detected an error when rolling back the
transaction.

-2 [XAER_ASYNC]

xa_rollback() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_rollback() was successful.

5 [XA_HEURMIX]

Work on the transaction branch was partially committed and partially rolled back.

6 [XA_HEURRB]

Work on the transaction branch was heuristically rolled back.

7 [XA_HEURCOM]

Work on the transaction branch was heuristically committed.

8 [XA_HEURHAZ]

Work on the transaction branch may have been heuristically completed.

Error Messages

The following messages may be sent from this function.

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_rollback_entry(xid, rmid, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_start()-- Start an XA Transaction Branch
(Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_start_entry(XID *xid,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_start() to inform a resource manager that an application may do work on
behalf of a transaction branch. The calling thread becomes associated with the transaction branch.

Parameters

*xid

(Input) A pointer to the transaction branch identifier for the transaction branch that is to be
associated with this thread.

rmid

(Input) An integer value that the transaction manager generated when calling xa_open(). The rmid
identifies the resource manager.

flags

(Input) Following are the valid settings of flags.

TMJOIN: 0x00200000L Caller is joining an existing transaction branch.

TMRESUME: 0x08000000L Caller is resuming association with a suspended transaction branch.

TMNOWAIT: 0x10000000L Do not associate the transaction branch with the thread if a blocking
condition exists.

TMNOFLAGS: 0x00000000L To be used when no other flags are set.

Authorities

None

Return Value

The following return codes may be returned for any flags setting.

-8 [XAER_DUPID]

Neither TMRESUME nor TMJOIN were specified, and the xid already exists within the resource
manager.

-7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_start() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_start() was not successful. Incorrect arguments were specified.

-4 [XAER_NOTA]

TMRESUME or TMJOIN was specified, and the xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_start() was not successful. The resource manager detected an error when associating the
transaction branch with the thread.

-2 [XAER_ASYNC]

xa_start() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_start() was successful.

4 [XA_RETRY]

TMNOWAIT was set in flags and a blocking condition exists. The thread was not associated with
the transaction branch.

The following return codes indicate that TMJOIN or TMRESUME was specified, and the specified
transaction branch was not associated with the thread and is marked rollback-only.

100 [XA_RBROLLBACK]

The transaction branch was marked rollback-only for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

104 [XA_RBOTHER]

The transaction branch was marked rollback-only for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

106 [XA_RBTIMEOUT]

A timeout occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected in the resource manager.

Error Messages

The following messages may be sent from this function.

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_start_entry(xid, rmid, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

xa_start_2()--Start an XA Transaction Branch,
Extended Version (Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_start_2_entry(XID *xid,
 int rmid, XACTL *ctl, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_start_2() to inform a resource manager that an application may do work on
behalf of a transaction branch. The calling thread becomes associated with the transaction branch.

For additional information about parameters, authorities required, return values, and error conditions, see
the xa_start() API.

The xa_start_2() function is the same as the xa_start() function, with one additional parameter, ctl.

*ctl

(Input) A pointer to the following structure.

struct xactl_t {
 long flags; /* valid element flags */
 TRANSACTION_TIMEOUT timeout; /* timeout value */
};

Following are the valid settings of ctl->flags.

XAOPTS_TIMEOUT: 0x00000001L Timeout value is present.

XAOPTS_NOFLAGS: 0x00000000L To be used when no optional values are set.

ctl->timeout is the number of seconds before which the resource manager can timeout and rollback
the transaction. Type TRANSACTION_TIMEOUT is declared in header file xa.h.

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;

 XACTL ctl;
 long flags;
 int retcode;
 extern struct xa_switch_t xa_switch;

 retcode =
 xa_switch.xa_start_2_entry(xid, rmid, &ctl, flags);
}

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

XA APIs for Job Scoped Locks
The XA APIs for Job Scoped Locks are:

db2xa_close() (Close an XA resource manager (Job Scoped Locks)) is called to close a currently
open resource manager in the thread of control.

●

db2xa_commit() (Commit an XA transaction branch (Job Scoped Locks)) is called to commit the
work associated with *xid.

●

db2xa_complete() (Test completion of an asynchronous XA request (Job Scoped Locks)) is called
to wait for the completion of an asynchronous operation.

●

db2xa_end() (End work on an XA transaction branch (Job Scoped Locks)) is called when an
application thread of control finishes or needs to suspend work on a transaction branch.

●

db2xa_forget() (Forget an XA transaction branch (Job Scoped Locks)) is called to forget about a
heuristically completed transaction branch.

●

db2xa_open() (Open an XA resource manager (Job Scoped Locks)) is called to open the XA
resource manager and to prepare it for use in the XA distributed transaction environment.

●

db2xa_prepare() (Prepare to commit an XA transaction branch (Job Scoped Locks)) is called to
request that a resource manager prepare for commitment any work performed on behalf of *xid.

●

db2xa_recover() (Recover XA transaction branches (Job Scoped Locks)) is called during recovery
to obtain a list of transaction branches that are currently in a prepared or heuristically completed
state.

●

db2xa_rollback() (Roll back an XA transaction branch (Job Scoped Locks)) is called to roll back
work performed on behalf of the transaction branch.

●

db2xa_start() (Start an XA transaction branch (Job Scoped Locks)) is called to inform a resource
manager that an application may do work on behalf of a transaction branch.

●

The following exit functions must be provided by a transaction manager for use by the XA resource
manager when the XA APIs for Job Scoped Locks are used:

ax_reg() (Exit program to dynamically register an XA resource manager)●

ax_unreg() (Exit program to dynamically unregister an XA resource manager)●

The following example shows the interactions between the application program, transaction manager, and
the XA resource manager during a typical transaction when the XA APIs for Job Scoped Locks are used.

The actual interactions that occur during a transaction will vary depending on factors such as the
following:

Whether the transaction is committed or rolled back●

Whether the one- or two-phase commit protocol is used with the XA resource manager●

Whether multiple threads are used to perform the work of a transaction branch●

Refer to the X/Open XA Specification for details.

Example Using XA APIs for Job Scoped Locks

 HLL XA XA
 Application Transaction Resource
 Program Manager Manager

1. tx_open ----------> db2xa_open ---------->
 <---------- <-----------

2. tx_begin --------->
 <----------

3. <SQL work> ------------------------------>

4. <----------- Call ax_reg
 XID xxx
 ----------->
 <---------------------------------

 .
5. .
 .

6. tx_commit --------> db2xa_end ----------->
 <-----------

7. db2xa_prepare ------->
 <-----------

8. db2xa_commit -------->
 <---------- <-----------

Notes

The application uses the X/Open Transaction Demarcation (TX) tx_open() interface to open all the
resource managers that are linked with the transaction manager. The transaction manager uses the
db2xa_open() interface to open an instance of the XA resource manager. The transaction manager
may open multiple XA resource managers that will participate in XA transactions. The transaction
manager assigns a resource manager identifier (ID) to each resource manager instance. The
resource manager ID uniquely identifies the instance within the thread of control in which the
application is running. An instance of the XA resource manager can be thought of as an SQL
connection to the relational database specified on the *xainfo parameter of the db2xa_open() API.

1.

The application uses the TX tx_begin() interface to begin a transaction.2.

The application uses SQL interfaces to access resources managed by DB2 UDB for iSeries.3.

The XA resource manager uses the XA ax_reg() interface to dynamically register itself with the
transaction manager. The transaction manager returns a transaction branch identifier (XID) that
uniquely identifies the transaction branch.

4.

The application continues its transaction. It may access other resource managers as appropriate.5.

When the transaction has been completed, the application uses the TX tx_commit() interface to
commit the work. The transaction manager uses the XA db2xa_end() interface to end the
transaction branch.

6.

The transaction manager uses the XA db2xa_prepare() interface to prepare the resources for
commitment.

7.

The transaction manager uses the XA db2xa_commit() interface to commit the resources after all
the resource managers involved in the transaction have successfully prepared their resources for
commitment. When the commit operation is complete, the application can begin another transaction
using the TX tx_begin() interface.

8.

Restrictions for XA APIs for Job Scoped Locks

When using the XA APIs for Job Scoped Locks, an application that uses the CLI SQL interfaces must use
a single connection to perform all work for a transaction branch. This means that if the XA join function is
used so that multiple threads work on a single transaction branch, all the joining threads must use the same
CLI connection for that work. Since CLI connection handles cannot be shared across jobs, this means that
the XA join function can be used only by threads within a single job when using the CLI. This restriction
does not apply when the application uses embedded SQL, or when the XA APIs for Transaction Scoped
Locks are used.

When used with the XA APIs for Job Scoped Locks, some aspects of SQL Server Mode behavior are
affected. Traditional SQL Server Mode usage within an application makes a one to one correlation between
a connection to the database in the application and to a QSQSRVR prestart job in the QSYSWRK
subsystem. All SQL requests made in the application using that connection are executed in the correlated
QSQSRVR job. When the connection is closed, the job is recycled and returned to the prestart job pool.

With XA, an application has the ability to start and use separate transaction branches over a single database
connection. When the XA APIs for Job Scoped Locks are used to start a new transaction branch using a
connection that was earlier used for a different transaction branch that has not yet been completed
(committed or rolled back), the new transaction branch is assigned its own QSQSRVR job. This means a
single connection can be related to multiple QSQSRVR jobs. When a transaction branch that requires a new
QSQSRVR job completes, that QSQSRVR job is dissociated from the connection, recycled and returned to
the prestart job pool.

If embedded SQL is used and the native DB2 UDB for iSeries security mechanisms are used, the
transaction manager must ensure that all work on a transaction branch is performed by jobs or threads using
the same user profile. In other words, if the XA join function is used, every joining thread or job must use
the same user profile as the thread or job that started the transaction branch; otherwise, a security exposure
will exist. This security consideration does not exist when using the XA APIs for Transaction Scoped
Locks because the one to one correlation between the connection and the QSQSRVR job is always
maintained, regardless of what transaction branch is being worked on.

While this model works well for isolating transactions, the environment may provide some extra work on
behalf of the application. Since separate and distinct jobs are in use for each transaction branch, any
job/process-scoped resources setup while under one transaction branch will be unavailable once the
application has switched to a different transaction branch. A list of the known limitations and restrictions
when using this support is included below. This list is not guaranteed to be comprehensive.

The following example demonstrates a scenario where these restrictions may be encountered.

db2xa_open()1.

SQL Connect. This may be skipped if connection is to start implicitly when the first embedded
SQL request is made.

2.

Set up to have ax_reg() return TM_OK for XID1 when SQL work is requested.3.

SQL statements to perform work. The first statement causes transaction branch XID1 to be created.
The work for XID1 is done within SQL Server Mode Job: xxxxxx/QUSER/QSQSRVR).

4.

db2xa_end() with flag TMSUSPEND for XID1.5.

Set up to have ax_reg() return TM_OK for XID2 when SQL work is requested.6.

SQL statements to perform work. The first statement causes transaction branch XID2 to be created.
The work for XID2 is done within SQL Server Mode Job: yyyyyy/QUSER/QSQSRVR).

7.

db2xa_end() with flag TMSUCCESS for XID2.8.

Set up to have ax_reg() return TM_RESUME for XID1 when SQL work is requested.9.

SQL statements to perform work . The first statement causes transaction branch XID1 to be
resumed. The work for XID1 is done within SQL Server Mode Job: xxxxxx/QUSER/QSQSRVR).

10.

db2xa_end() with flag TMSUCCESS for XID1.11.

db2xa_prepare() XID1. This may be requested from any thread.12.

db2xa_commit() XID1. This may be requested from any thread.13.

db2xa_prepare() XID2. This may be requested from any thread.14.

db2xa_commit() XID2. This may be requested from any thread.15.

SQL prepared statements

When an application prepares an SQL statement, the resulting statement is stored in a job-scoped system
space. This means that, for the example above, statements prepared while working on transaction branch
XID1 are not available while working on transaction branch XID2, because the SQL work for the two
transaction branches is done in separate QSQSRVR jobs. If the application attempts to use a prepared
statement that is not available, the failure symptom would be SQLCODE = -518. (SQL0518 - Prepared
statement &1 not found.)

SQL Cursors

SQL cursors are also job-scoped resources, so they are not available to the application after switching to a
new transaction branch. If an application opens an SQL cursor and changes transaction branches, the cursor
may remain open in the QSQSRVR job related to the previous transaction branch depending on how that
branch was ended (see SQLHOLD Values). However, the cursor will not be available while working on the
new transaction branch. If and when the original transaction branch is resumed, open cursors related to that
transaction branch would again become available. Attempting to reference a cursor while executing under a
transaction branch other than the one under which the cursor was opened, will result in a failure of
SQLCODE = -501. (SQL0501 - Cursor &1 not open.)

Result Sets

When calling a stored procedure that returns result set(s), the application needs to take care to fully process
the result sets before changing to a different transaction branch. SQL CLI services that return information
about the status of a result set, could return incorrect information if not used in this manner. Examples of

SQL CLI APIs that return information based on interim results are SQLNumResultCols(),
SQLDescribeCol(), SQLColAttributes() and SQLDescribeParam().

SQL CLI APIs like SQLFetch() and SQLFetchScroll(), which deal directly with the SQL result set cursor,
would fail with SQLCODE = -502. (SQL0502 - Cursor &1 already open.)

SET PATH statement

The SET PATH SQL statement allows the application to designate a path to use for unqualified library
access to SQL stored procedures, SQL triggers and SQL UDFs within a dynamic statement. The path is a
job-scoped resource, and therefore not available after changing transaction branches. The application
should repeat any SET PATH statements after a transaction branch change, if the path will still be needed.

Other SQL considerations

Applications should not change transaction branches while running within an SQL Stored Procedure, an
SQL User Defined Function (UDF) or an SQL Trigger program. Results would be unpredictable and no
anticipated failure information is available.

Embedded SQL applications that use the QSQCHGDC() system API to set up the Dynamic Default
Connection will not function correctly because the QSQCHGDC() will not affect the SQL Server Mode
job. This has always been a restriction of the SQL Server Mode environment. If encountered, the failure
symptom seen by the application would be SQLCODE = -204. (&1 in &2 type *&3 not found.)

Note that SQL CLI users that set the default library using the SQLSetConnectAttr() API with the
SQL_ATTR_DBC_DEFAULT_LIB connection attribute will continue to work. SQL CLI connection
attributes are still in place after moving to a different transacation branch.

Top | UNIX-Type APIs | APIs by category

db2xa_close()--Close an XA Resource Manager
(Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_close_entry(char *xa_info,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_close() to close a currently open resource manager in the thread of
control. After this call, the resource manager cannot participate in global transactions on behalf of the
calling thread until it is reopened.

 For additional information about parameters, authorities required, return values, and error conditions, see
the xa_close() API.

Example

#include <xa.h>

main() {
 char *xa_info;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t db2xa_switch;

 retcode =
 db2xa_switch.xa_close_entry(xa_info, rmid, flags);
}

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

db2xa_commit()--Commit an XA Transaction
Branch (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_commit_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_commit() to commit the work associated with *xid. All changes that
were made to resources managed by DB2 UDB for iSeries during the transaction branch are made
permanent.

 For additional information about parameters, authorities required, return values, and error conditions, see
the xa_commit() API.

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t db2xa_switch;

 retcode =
 db2xa_switch.xa_commit_entry(xid, rmid, flags);
}

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

db2xa_complete()--Test Completion of
Asynchronous XA Request (Job Scoped
Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_complete_entry(int *handle,
 int *retval, int rmid, long flags)

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_complete() to wait for the completion of an asynchronous operation.
Asynchronous operations are not supported by the DB2 UDB for iSeries resource manager. This function is
provided only for compliance with the X/Open XA Specification.

 For additional information about parameters, authorities required, return values, and error conditions, see
the xa_complete() API.

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

db2xa_end()--End Work on an XA Transaction
Branch (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_end_entry(XID *xid, int rmid,
 long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_end() when an application thread of control finishes or needs to
suspend work on a transaction branch. When db2xa_end() successfully returns, the calling thread of
control is no longer associated with the transaction branch, but the branch still exists.

SQL cursors used while the thread was associated with this transaction branch may be closed. Refer to the
SQLHOLD keyword description in the usage notes of the db2xa_open() API for details.

 For additional information about parameters, authorities required, return values, and error conditions, see
the xa_end() API.

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t db2xa_switch;

 retcode =
 db2xa_switch.xa_end_entry(xid, rmid, flags);
}

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

db2xa_forget()--Forget an XA Transaction
Branch (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_forget_entry(XID *xid,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_forget() to forget about a heuristically completed transaction branch.
After this call, the *xid is no longer valid.

 For additional information about parameters, authorities required, and error conditions, see the
xa_forget() API.

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t db2xa_switch;

 retcode =
 db2xa_switch.xa_forget_entry(xid, rmid, flags);
}

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

db2xa_open()--Open an XA Resource Manager
(Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_open_entry(char *xa_info,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_open() to open the XA resource manager and to prepare it for use in the
XA distributed transaction environment. This function must be called before any other resource manager
(db2xa_) calls are made.

 For additional information about parameters, authorities required, return values, and error conditions, see
the xa_open() API.

Usage Notes

 The usage notes for the xa_open() API apply to this API with the following differences.

Additional xa_info keywords shown in Figure 1-4 are allowed.●

 The LOCKWAIT xa_info keyword is not allowed. ●

Figure 1-4. xainfo String Keywords and Values

Keyword Name Keyword Value

DFTJRN Default Journal. See the online help for the DFTJRN keyword of the STRCMTCTL
CL command for a description of the effect of this keyword. The journal should be
specified as the journal's library, concatenated with a '/', concatenated with the
journal's name (for example, MYLIB/MYJRN). Both the library and journal name
must follow iSeries conventions for naming system objects.

The special value *NONE is supported for default journal.

The special value *LIBL is accepted for the library portion of the default journal and
is the default if the library portion is not specified.

If this keyword is not specified, no default journal is used.

If this keyword is specified but unresolvable, [XAER_INVAL] is returned.

OMTJRNE Omit Journal Entries. See the online help for the OMTJRNE keyword of the
STRCMTCTL CL command for a description of the effect of this keyword.

N Corresponds to the STRCMTCTL OMTJRNE value *NONE.

L Corresponds to the STRCMTCTL OMTJRNE value *LUWID.

If this keyword is not specified, OMTJRNE defaults to N.

SQLHOLD SQL HOLD value. Whether SQL cursors are closed during some XA operations.
Refer to SQLHOLD Values for detailed information about this keyword.

If this keyword is not specified, SQLHOLD defaults to A.

SRVPGM The name of a library qualified service program that contains functions ax_reg()
and ax_unreg() to be called by the resource manager to register and unregister itself
with the transaction manager. The service program should be specified as the
program's library, concatenated with a '/', concatenated with the program's name (for
example, TMLIB/TMPGM). Both the library and program name must follow iSeries
conventions for naming system objects.

The special value *LIBL is supported for the library portion of the service program
and is the default if the library portion is not specified.

This is a required keyword. If this keyword is not specified, or is unresolvable,
[XAER_INVAL] is returned.

See ax_reg()--Exit Program to Dynamically Register an XA Resource Manager and
ax_unreg()--Exit Program to Dynamically Unregister an XA Resource Manager for
details on these service functions.

SQLHOLD Values

This section documents how the SQLHOLD keyword value affects SQL cursors during the following XA
operations (other XA operations do not affect cursors):

db2xa_end() unless the TMSUSPEND flag is specified●

db2xa_commit()●

db2xa_rollback()●

This applies only to cursors associated with the connection that is used for the transaction branch affected
by the XA operation. As shown below, cursors declared WITH HOLD are treated differently in some cases
than those not declared WITH HOLD. Note that cursors can be declared WITH HOLD only when
embedded SQL is used. CLI cursors are not declared WITH HOLD.

A Cursors are affected by XA operations as follows:

db2xa_end() with the TMSUCCESS or TMFAIL flag:

All cursors are closed.❍

●

db2xa_commit():

Cursors are not affected since db2xa_end() already closed them.❍

●

db2xa_rollback():

Cursors are not affected since db2xa_end() already closed them.❍

●

E Cursors are affected by XA operations as follows:

db2xa_end() with the TMSUCCESS or TMFAIL flag:

Cursors declared WITH HOLD are held open.❍

Cursors not declared WITH HOLD are closed.❍

●

db2xa_commit():

Cursors declared WITH HOLD are held open.❍

Cursors not declared WITH HOLD are closed.❍

●

db2xa_rollback():

All cursors are closed.❍

●

L Cursors are affected by XA operations as follows:

db2xa_end() with the TMSUCCESS or TMFAIL flag:

All cursors are held open.❍

●

db2xa_commit():

If the relational database resides on an iSeries system:

All cursors are left open.■

❍

If the relational database does not reside on an iSeries system:

Cursors declared WITH HOLD are left open.■

Cursors not declared WITH HOLD are closed.■

❍

●

db2xa_rollback():

If the relational database resides on an iSeries system:

All cursors are left open.■

❍

If the relational database does not reside on an iSeries system:

All cursors are closed.■

❍

●

N Cursors are affected by XA operations as follows:

db2xa_end() with the TMSUCCESS or TMFAIL flag:

All cursors are held open.❍

●

db2xa_commit():

Cursors declared WITH HOLD are held open.❍

Cursors not declared WITH HOLD are closed.❍

●

db2xa_rollback():

All cursors are closed.❍

●

Y Cursors are affected by XA operations as follows:

db2xa_end() with the TMSUCCESS or TMFAIL flag:

All cursors are held open.❍

●

db2xa_commit():

If the relational database resides on an iSeries system:

All cursors are left open.■

❍

If the relational database does not reside on an iSeries system:

The db2xa_commit() operation will fail. This value should not be used with
relational databases that do not reside on an iSeries system.

■

❍

●

db2xa_rollback():

If the relational database resides on an iSeries system:

All cursors are left open.■

❍

If the relational database does not reside on an iSeries system:

The db2xa_rollback() operation will fail. This value should not be used with
relational databases that do not reside on an iSeries system.

■

❍

●

Example

#include <xa.h>

main() {

 char xa_info[1024]=
 "tmname=mytranmgr srvpgm=tmlib/tmserv rdbname=myrdb";

 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t db2xa_switch;

 retcode =
 db2xa_switch.xa_open_entry(xa_info, rmid, flags);
}

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

db2xa_prepare()--Prepare to Commit an XA
Transaction Branch (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_prepare_entry(XID *xid,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_prepare() to request that a resource manager prepare for commitment
any work performed on behalf of *xid. The resource manager places all resources used in the transaction
branch in a state that the changes can be made permanently when it later receives the db2xa_commit()
request. All associations for *xid must have been ended by calling db2xa_end() prior to the prepare
request.

 For additional information about parameters, authorities required, return values, and error conditions, see
the xa_prepare() API.

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t db2xa_switch;

 retcode =
 db2xa_switch.xa_prepare_entry(xid, rmid, flags);
}

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

db2xa_recover()--Recover XA Transaction
Branches (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_recover_entry(XID *xids,
 long count, int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_recover() during recovery to obtain a list of transaction branches that
are currently in a prepared or heuristically completed state. Multiple calls to this function can be made in a
single recovery scan. The flags parameter defines when a recovery scan should start or end.

 For additional information about parameters, authorities required, return values, and error conditions, see
the xa_recover() API.

Example

#include <xa.h>

main() {
 XID xids[10];
 int rmid;
 long count=10;
 long flags=TMSTARTRSCAN+TMENDRSCAN;
 int retcode;
 extern struct xa_switch_t db2xa_switch;

 retcode =
 db2xa_switch.xa_recover_entry(xids, count,
 rmid, flags);
}

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

db2xa_rollback()--Roll Back an XA Transaction
Branch (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_rollback_entry(XID *xid,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_rollback() to roll back work performed on behalf of the transaction
branch. A transaction branch is capable of being rolled back until is has been successfully committed.

 For additional information about parameters, authorities required, return values, and error conditions, see
the xa_rolback() API.

Example

#include <xa.h>

main() {
 XID *xid;
 int rmid;
 long flags;
 int retcode;
 extern struct xa_switch_t db2xa_switch;

 retcode =
 db2xa_switch.xa_rollback_entry(xid, rmid, flags);
}

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

db2xa_start()--Start an XA Transaction Branch
(Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_start_entry(XID *xid,
 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_start() to inform a resource manager that an application may do work
on behalf of a transaction branch. When using the XA APIs for Job Scoped Locks, the XA resource
manager does not use this function. It dynamically registers work done on behalf of a transaction by using
the ax_reg() function. This function is provided only for compliance with the X/Open XA Specification.

 For additional information about parameters, authorities required, return values, and error conditions, see
the xa_start() API.

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

ax_reg()--Exit Program to Dynamically Register
an XA Resource Manager (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int ax_reg(int rmid, XID *xid, long flags);

 Threadsafe: Conditional; see Usage Notes.

The XA resource manager calls ax_reg() to inform a transaction manager that it is about to do work on
behalf of an application in a thread of control. The transaction manager needs to tell the resource manager
whether or not that work should be performed on behalf of a transaction branch. If the work is part of a
transaction branch, the transaction manager will return the transaction branch identifier in *xid. If the work
is not part of a transaction branch, the transaction manager will return the NULLXID in *xid.

The XA resource manager indicates that it uses dynamic registration by setting the TMREGISTER value in
the flags element of its xa_switch_t structure.

The name of the service program that contains ax_reg() and ax_unreg() must be provided to the XA
resource manager in the *xa_info parameter of the db2xa_open() call.

Parameters

rmid

(Input) The resource manager identifier that was generated by a transaction manager when the
resource manager was opened.

*xid

(Input) A pointer to the buffer where the transaction manager will store the generated transaction
branch identifier. This identifier is associated with work done in the calling thread of control or
with a NULLXID, which indicates that work is being done outside a transaction branch.

flags

(Input) The flags argument must be set to this value. TMNOFLAGS: 0x00000000L No flags are
defined for this function.

Authorities

None

Return Value

-3 [TMER_PROTO]

ax_reg() was not successful. Function was called in an improper context.

-2 [TMER_INVAL]

ax_reg() was not successful. Incorrect arguments were specified.

-1 [TMER_TMERR]

ax_reg() was not successful. The transaction manager detected an error when registering the
resource.

0 [TM_OK]

ax_reg() was successful.

1 [TM_RESUME]

The resource manager should resume work on a previously suspended transaction branch. If the
resource manager does not recognize the *xid, it will return a failure indication to the application.

2 [TM_JOIN]

The resource manager is joining the work of an existing transaction branch. If the resource manager
does not recognize the *xid, it will return a failure indication to the application.

Usage Notes

This function must be threadsafe if the transaction manager calls the XA APIs in a multithreaded
job.

1.

Refer to Restrictions in the introduction to the XA APIs for restrictions when using the TM_JOIN
return value.

2.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Exit program introduced: V4R3

Top | UNIX-Type APIs | APIs by category

ax_unreg()--Exit Program to Dynamically
Unregister an XA Resource Manager (Job
Scoped Locks)

 Syntax

 #include <xa.h>

 int ax_unreg(int rmid, long flags);

 Threadsafe: Conditional; see Usage Notes.

The XA resource manager calls ax_unreg() to inform a transaction manager that it has completed work on
a local transaction. The local transaction was started after receiving a NULLXID from ax_reg().

The XA resource manager indicates that it uses the dynamic registration facility by setting the
TMREGISTER value in the flags element of its xa_switch_t structure.

The name of the service program that contains ax_reg() and ax_unreg() must be provided to the XA
resource manager in the *xa_info parameter of the db2xa_open() call.

Parameters

rmid

(Input) The resource manager identifier that was generated by a transaction manager when the
resource manager was opened.

flags

(Input) The flags argument must be set to this value. TMNOFLAGS: 0x00000000L No flags are
defined for this function.

Authorities

None

Return Value

-3 [TMER_PROTO]

ax_unreg() was not successful. Function was called in an improper context.

-2 [TMER_INVAL]

ax_unreg() was not successful. Incorrect arguments were specified.

-1 [TMER_TMERR]

ax_unreg() was not successful. The transaction manager detected an error when unregistering the
resource.

0 [TM_OK]

ax_unreg() was successful.

Usage Notes

This function must be threadsafe if the transaction manager calls the XA APIs in a multithreaded
job.

1.

Related Information

X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

●

X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

●

Exit program introduced: V4R3

Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	XA APIs (V5R2)
	Table of Contents
	XA APIs
	XA APIs for Transaction Scoped Locks
	xa_close()--Close an XA Resource Manager
	xa_commit()--Commit an XA Transaction Branch
	xa_complete()--Test Completion of Asynchronous XA Request
	xa_end()--End Work on an XA Transaction Branch
	xa_forget()--Forget an XA Transaction Branch
	xa_open()--Open an XA Resource Manager
	xa_prepare()--Prepare to Commit an XA Transaction Branch
	xa_recover()--Recover XA Transactions
	xa_rollback()--Roll Back an XA Transaction
	xa_start()--Start an XA Transaction
	xa_start_2()--Start an XA Transaction

	XA APIs for Job Scoped Locks
	APIs
	db2xa_close()--Close an XA Resource Manager
	db2xa_commit()--Commit an XA Transaction Branch
	db2xa_complete()--Test Completion of Asynchronous XA Request
	db2xa_end()--End Work on an XA Transaction Branch
	db2xa_forget()--Forget an XA Transaction Branch
	db2xa_open()--Open an XA Resource Manager
	db2xa_prepare()--Prepare to Commit an XA Transaction Branch
	db2xa_recover()--Recover XA Transactions
	db2xa_rollback()--Roll Back an XA Transaction
	db2xa_start()--Start an XA Transaction

	Exit programs
	ax_reg()--Exit Program to Dynamically Register an XA Resource Manager
	ax_unreg()--Exit Program to Dynamically Unregister an XA Resource Manager

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

