0S/400 PASE APIs (V5R2)

Table of Contents

» 0S/400 PASE APIs

« APIs

o Calable Program APls

Run an OS/400 PASE Shell Program (QP2SHELL and QP2SHEL L 2)
Run an OS/400 PASE Termina Session (QP2TERM)

o ILE Procedure APIs

#Allocate 05400 PASE Heap Memory (Qp2malloc)#

Call an 0OS/400 PASE Procedure (Qp2CallPase and Qp2CallPase2)
#»Close aDynamically Loaded OS/400 PASE Module (Op2diclose)4
#Dynamically Load an OS/400 PASE Module (Qp2diopen)#

#End an OS/400 PASE Program (Qp2EndPase)*&

#*Find an Exported OS/400 PASE Symbol (Qp2disym)<X

“rFree 0S/400 PASE Heap Memory (Qp2free)<

Post an OS/400 PASE Signal (Qp2Signal Pase)

#Retrieve Job CCSID for 0S/400 PASE (Qp2jobCCSID)&
$rRetrieve 0S/400 PASE CCSID (Qp2paseCCSID())&

#Retrieve 05400 PASE Dynamic Load Error Information (Qp2dlerror)<4
#Retrieve 05/400 PASE errno Pointer (Qp2errnop)#

#Retrieve 05400 PASE Pointer Size (Qp2ptrsize)

Run an OS/400 PASE Program (Qp2RunPase)

o Runtime Functions for Use by OS/400 PASE Programs

Build an ILE Argument List for OS/400 PASE (build_ILEarglist)

Call an ILE Procedure for 0S/400 PASE (_ILECALL and _ILECALLX)
#»Call an 0S/400 Program for OS/400 PASE (PGMCALL)%

Compute ILE Argument List Size for OS/400 PASE (size ILEarglist)
Convert ILE errno to OS/400 PASE errno (CVTERRNO)

Convert Space Pointer for 0S/400 PASE (CVTSPP)

Copy Character String for 0S/400 PASE (STRNCPY _SPP)

Copy Memory With Tags for 0S/400 PASE (MEMCPY_WT and
_MEMCPY_WT2)

Determine Character String L ength for OS/400 PASE (_STRLEN_SPP)

= Find Exported ILE Symbol for OS/400 PASE (_ILESYM)

» Load an ILE Bound Program for OS/400 PASE (_ILELOAD)

= Override SQL CLI CCSID for OS/400 PASE (SQL OverrideCCSID400)

= Receive Nonprogram Message for 0S/400 PASE (QMHRCVM and QMHRCVM1)

= Receive Program Message for 0S/400 PASE (QMHRCVPM, QMHRCVPM1, and
QMHRCVPM2)

= #Resolve to an 05400 Object for 0S/400 PASE (_RSLOBJ)%

= #Retrieve Job CCSID for 0S/400 PASE (Qp2jobCCSID)

= Retrieve 0S/400 PASE CCSID (Qp2paseCCSID())<

= #*Return without Exiting OS/400 PASE (RETURN)%

= RunaCL Command for OS/400 PASE (systemCL)

= Send Nonprogram Message for 0S/400 PASE (QMHSNDM and QMHSNDM1)

= Send Program Message for 0S/400 PASE (QMHSNDPM, QMHSNDPM1, and
QMHSNDPM?2)

= Set 0S/400 PASE CCSID (_SETCCSID)
= Set Space Pointer for OS/400 PASE (_SETSPP)

« Related topics
o 0OS/400 PASE Runtime Libraries

o 0OS/400 PASE Locales
o 0OS/400 PASE Environment Variables
o 0S/400 PASE Signal Handling

0OS/400 PASE APIs

Portable Application Solutions Environment (OS/400 PASE) is an integrated runtime environment for AIX(R)
applications. 0S/400 PA SE supports the same binary executable format as AIX for PowerPC(R) and alarge
subset of AlIX runtime that allows many AlX applicationsto run with little or no change.

0S/400 PASE supports direct hardware execution of PowerPC instructions (not an emulator), while providing
access to the same OS/400 support used by ILE applications for file systems, sockets, security, and many other
system services.

An OS/400 PASE program can be stored in any bytestream file in the OS/400 Integrated File System because
itissmply abinary file. 0OS/400 PASE programs can be created by any compiler and linker that produce
executables compatible with AlX for PowerPC.

You must call asystem API to run an OS/400 PASE program. The system provides both callable program
APlIsand ILE procedure APIsto run OS/400 PASE programs. The callable program APIs can be easier to use,
but do not offer all the controls available with the ILE procedure APIs.

The functions available to you through OS/400 PASE are:
« Cdlable Program APIs

o |ILE Procedure APIs
« Runtime Functions for Use by OS/400 PASE Programs

See also:
» OS/400 PASE for information about creating OS/400 PASE programs.

o 0S/400 PASE Runtime Libraries for information about OS/400 PASE interfaces that are also
supported on Al X.

« 0OS/400 PASE Locales for information about OS/400 PASE locales.
« 0OS/400 PASE Environment Variables for information about OS/400 PA SE environment variables.

« 0OS/400 PASE Signal Handling for information about OS/400 PASE signals and how they relateto
0S/400 exception messages.

Top | APIs by category

0OS/400 PASE Callable Program APIs

The callable program APIsrun an OS/400 PASE program. They are:
o Run an OS/400 PASE Shell Program (QP2SHELL and QP2SHEL L 2) runs an OS/400 PA SE program
in the job that callsthe API.

« Runan OS/400 PASE Termina Session (QP2TERM) runs an interactive terminal session that
communicates with an OS/400 PA SE program (defaulting to the Korn shell) running in a batch job.

Top | OS/400 PASE APIs| APIs by category

QP2SHELL() and QP2SHELL2()--Run an OS/400 PASE
Shell Program

Syntax

#i ncl ude <gp2shell. h>

voi d QP2SHELL(const char *pat hNane,

voi d QP2SHELL2(const char *pat hNane,

Default Public Authority: *USE

Threadsafe: No

Programs QP2SHEL L and QP2SHEL L 2 run an OS/400 Portable Application Solutions Environment (OS/400 PASE)
program in the job where the API is called. They load the OS/400 PA SE program and any necessary shared libraries and
then transfer control to the program. QP2SHELL runsin anew ILE activation group, while QP2SHELL 2 runsin the
caller's activation group. Control returns to the caller when the OS/400 PASE program either exits, terminates dueto a
signal, or returns without exiting.

Parameters

pathName

(Input) Pointer to a null-terminated character string that identifies the stream file in the Integrated File System that
contains the OS/400 PA SE program to run. The pathName string may include an absolute or relative path qualifier
in addition to the stream file name. Relative path names are resolved using the current working directory.

If the base name part of the pathName value (excluding any prefix path qualifier) begins with a hyphen (-),
QP2SHELL and QP2SHEL L 2 strip the hyphen when locating the bytestream file, but pass the full string (with the
hyphen) to the OS/400 PASE program as the program name. Standard OS/400 PA SE shell programs (including sh
and ksh) run as login shells when called with a hyphen as the first character of the program name. Login shellslook
for aprofilefile and run it automatically when the shell starts.

argument strings

(Input) Optional pointers to null-terminated character strings that are passed to the OS/400 PASE program as
arguments. The system copies argument strings into OS/400 PASE memory and converts them from the job default
CCSID to the CCSID specified by ILE environment variable QIBM_PASE_CCSID.

Note: When calling QP2SHELL or QP2SHELL 2 from CL, be sure to quote any argument string that could be
interpreted as a numeric value. CL converts unquoted numeric arguments to decimal or floating-point format,

which does not match the assumption made by these APIs and OS/400 PASE programs that all arguments are
null-terminated character strings.

Authorities

Authority
Object Referred to Required

Each directory in the path to the OS/400 PA SE program and shared libraries *X
0S/400 PA SE program (not a shell script) in aloca file system *X
0S/400 PASE program in aremote file system or shell script *RX
0S/400 PASE shared library *R

Return Value

QP2SHEL L and QP2SHELL 2 return no function result. Escape messages are sent to report errors.

Error Messages

Some of the more common error messages sent by QP2SHEL L and QP2SHEL L 2 are:

Message I D
CPFO9872 E
CPFBO9CO E
CPFBOC1 E
CPFBO9C2 E
CPFB9C3 E
CPFB9C5 E
CPFB9C6 E
CPFBOC7 E
CPFB9C8 E

Error Message Text

Program or service program & 1 in library & 2 ended. Reason code & 3.

Error loading program & 1. See previous messages.

System support for OS/400 Portable Application Solutions Environment not available.
Hardware support for OS/400 Portable Application Solutions Environment not available.
0OS/400 PASE CCSID and job default CCSID are not compatible.

0OS/400 PA SE program name required by QP2SHELL .

0OS/400 PASE ended for signal &1, error code & 2.

0S/400 PASE already running in this job.

File descriptors 0, 1, and 2 must be open to run the OS/400 PASE program.

Usage Notes

1. QP2SHELL and QP2SHEL L 2 provide callable program interfaces to ILE procedure Qp2RunPase. See
Qp2RunPase()--Run an OS/400 PASE Program for details about running an OS/400 PASE program.

2. QP2SHELL and QP2SHELL 2 set the ILE pthread cancel state and cancel type to default values
(PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED) before running the OS/400 PASE
program. Thisis done to avoid unexpected behavior for the OS/400 PASE program if the job changed ILE pthread
attributes before calling the API.

3. QP2SHELL and QP2SHELL 2 set up handlersfor al ILE signals (that call Qp2SignalPase to post an equivalent
0S/400 PA SE signal) while the OS/400 PASE program runs. QP2SHEL L always restores original ILE signal
handlers before returning to the caller. QP2SHELL 2 restores original ILE signal handlers before returning if the
0S/400 PASE program exits, but if the OS/400 PASE program returns without exiting, original ILE signal handlers
are not restored until the system destroys the activation group that called QP2SHEL L 2.

4. To avoid unpredictable results, do not not change ILE environment variables QIBM_USE_DESCRIPTOR_STDIO
or QIBM_PASE DESCRIPTOR_STDIO in ajob in which an OS/400 PASE program is running.

5. QP2SHELL and QP2SHELL 2 initialize OS/400 PASE environment variables with a modified copy of the entire
ILE environment. An OS/400 PASE environment variable isinitialized for every ILE environment variable, but the
initial value of any OS/400 PASE variable (except those whose name begins with "PASE_") can be overridden by
the value of an ILE environment variable with a name that concatenates the prefix PASE_ with the original variable
name. This processing avoids some interference between OS/400 PA SE runtime and ILE runtime when they
require different values for the same environment variable (for example, LANG).

6. For alogin shell (only), QP2SHELL and QP2SHEL L2 set ILE environment variable PASE _SHELL to the path
name of the OS/400 PASE shell program.

7. QP2SHELL and QP2SHELL 2 initialize any of the following ILE environment variables that are not already set,
with default values as shown:

HOME If HOME is not already set, QP2SHELL and QP2SHELL 2 set it to the home
directory path specified in the user profile identified by the LOGIN variable. If the
jobisnot currently authorized to the LOGIN user profile, the HOME environment
variableis set to anull string.

LOGIN If LOGIN is not aready set, QP2SHELL and QP2SHELL set it to the middle
qualifier of the job name. For an interactive job, this is the name of the user who did
asignon to start the job.

PASE_PATH (Default:
2" 1QOpenSys/usr/bin:/usr/ccs/bin:/QOpenSys/usr/bin/X 11:/usr/sbin:.:/usr/bin"<)
Initial value for the OS/400 PASE PATH environment variable.

PASE_LANG and Initial value for the OS/400 PASE LANG environment variable and what coded

QIBM_PASE CCSD character set identifier (CCSID) the OS/400 PA SE program will use. QP2SHEL L
and QP2SHEL L 2 set both these ILE environment variables if either or bothis
absent. The default values are function of the current LANGID and CNTRYID
attributes of the job, but the system will use PASE_LANG=POSIX and
QIBM_PASE_CCSID=819if it does not recognize the LANGID and CNTRYID
pair. The OS/400 PASE LANG environment variable controls the default locale for
an 0S/400 PA SE program. See OS/400 PASE L ocalesto determine what locales are

supported by OS/400 PASE.

PASE | OCPATH (Default: "/usr/lib/nls/msg/%L /%N:/usr/lib/nls/msg/%L /%N.cat") Initial value for
the OS/400 PASE LOCPATH environment variable.

PASE LC_FASTMSG (Default: "true") Initial value for the OS/400 PASE LC__ FASTMSG environment
variable.

PASE TZ (Default: ") Initial value for the 0S/400 PASE TZ environment variable. If no
timezone information is provided in environment variable TZ, the 0S/400 PASE
program sees UTC (Universal Standard Time) aslocal time. Y ou may want to set
ILE environment variable PASE _TZ at the system level to provide a default
timezone other than UTC for OS/400 PASE programs. For example, this CL
command sets the default timezone to US Centra time:

ADDENWAR ENVVAR(PASE_TZ) VALUE(' CST6CDT') LEVEL(*SYS)

QIBM_IFS OPEN_MAX (Default: "33000") Maximum number of Integrated File System open file descriptors
desired in the job. QP2SHELL and QP2SHELL call the DosSetRelMaxFH API to set
the maximum number of file descriptors to the value in this ILE environment
variable, and updates the environment variable to reflect the actual limit (in case the
requested limit is not currently allowed). Any change to the maximum number of file
descriptors persists after the API returns.

0S/400 PA SE programs assume the ability to open 32 767 files and the system
requires an open file for each OS/400 PASE executable it loads, so the default of
33 000 files accomodates a maximally large OS/400 PA SE program with afairly
large number of loaded executables.

Related Information

o OQp2RunPase()--Run an OS/400 PASE Program

o Op2SignalPase()--Post an 0S/400 PASE Signal

o QP2TERM()--Run an OS/400 PASE Terminal Session

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

QP2TERM()--Run an OS/400 PASE Terminal
Session

Syntax
#i ncl ude <qgp2term h>

void QP2TERM .. .);

Default Public Authority: * USE

Threadsafe: No

The QP2TERM () program runs an interactive terminal session that starts a batch job to run an OS/400 Portable
Application Solutions Environment (OS/400 PASE) program. This program uses the workstation display in the
interactive to present output and accept input for files stdin, stdout, and stderr in the batch job.

Parameters

argument strings

(Input) Optional pointers to null-terminated character strings that specify the path name of the OS/400
PASE program to run and any argument strings to pass to the program. If no parameters are specified,
QP2TERM runs the default OS/400 PA SE shell as an interactive login shell. The default OS/400
PASE shell is an implementation of the Korn shell, with path name /QOpenSys/ust/bin/sh.

Note: When calling QP2TERM from CL, be sure to quote any argument string that could be
interpreted as anumeric value. CL converts unquoted numeric arguments to decimal or floating-point
format, which does not match the assumption made by QP2TERM and OS/400 PA SE programs that
all arguments are null-terminated character strings.

Authorities

Authority
Object Referred to Required

Each directory in the path to the OS/400 PA SE program and shared libraries *X

0S/400 PASE program (not a shell script) in alocal file system *X

0S/400 PASE program in aremote file system or shell script *RX

0S/400 PASE shared library *R

Return Value

QP2TERM returns no function result. Escape messages are sent to report errors.

Error Messages

Message I D Error Message Text

CPFB9C4 E Error running OS/400 PASE terminal session, reason code & 1, errno & 2.
CPFB9C9 E Terminal session aready in use.

CPFB9CA E Batch job ended in error.

Usage Notes

1. QP2TERM usesthe QpOzStartTerminal API to manage the interactive display and start a batch job.
The batch job copies most attributes of the interactive job and calls program QP2SHELL to run the
0S/400 PASE program. See QP2SHEL L ()--Run an OS/400 PASE Shell Program for details about

running an OS/400 PASE shell program.

2. QP2TERM copies al ILE environment variables from the interactive job to the batch job before
starting the batch job, except the following ILE environment variables, which are set or replaced in the
batch job. These changes affect the batch job only. They do not modify the environment in the job that

caled QP2TERM.

COLUMNS If COLUMNS isnot already set, QP2TERM setsit to the
number of columns available for program output on the
interactive display.

ROWS If ROWSis not already set, QP2TERM setsit to the
number of rows available for program output on the
interactive display.

QIBM_USE DESCRIPTOR _STDIO=I QP2TERM sets QIBM_USE _DESCRIPTOR_STDIO to
ensure that files stdin, stdout, and stderr use Integrated
File System descriptors 0, 1, and 2. The terminal session
manager attaches open pipes to these file descriptorsin
the batch job.

QIBM_PASE DESCRIPTOR _STDIO=T QP2TERM sets QIBM_PASE_DESCRIPTOR_STDIO
to ensure that OS/400 PA SE runtime does
ASCII/EBCDIC text conversion for data that the OS/400
PASE program reads or writes to files stdin, stdout, and
stderr.

Related Information

o OQpOzStartTerminal ()--Start a Termina Session

o OP2SHELL()--Run an OS/400 PASE Shell Program

API Introduced: V4R5

Top | OS/400 PASE APIs| APIs by category

0S/400 PASE ILE Procedure APIs

The ILE procedure APIs run an OS/400 PASE program and alow ILE programs to communicate with an
0OS/400 PASE program that is already running in the same job.

The OS/400 PASE ILE Procedure APIs are:

#Allocate 05400 PASE Heap Memory (Qp2malloc) allocates memory from the OS/400 PA SE heap
by calling the 0S/400 PASE malloc() function.<%

Call an OS/400 PASE Procedure (Qp2CallPase and Qp2CallPase?) calls a procedure in an OS/400
PASE program that is already running in the job that calls the API.

#»Close aDynamically L oaded OS/400 PASE Module (Op2diclose) closes and unloads an OS/400
PASE module previously opened by the Qp2diopen API (or the OS/400 PASE dlopen function).<%
#Dynamically Load an 0S/400 PASE Module (Qp2diopen) dynamically loads an OS/400 PASE
module by calling the OS/400 PA SE dlopen() function.<%

#End an 0S/400 PA SE Program (Qp2EndPase) ends any OS/400 PASE program currently running in
the job. <

#Find an Exported OS/400 PASE Symbol (Qp2disym) finds an exported OS/400 PASE symbol by
calling the 0S/400 PA SE disym() function.<%

#Free 0S/400 PASE Heap Memory (Qp2free) frees an OS/400 PA SE heap memory allocation by
calling the OS/400 PASE free() function. 4

Post an OS/400 PASE Signal (Qp2SignalPase) posts an OS/400 PASE signal to an OS/400 PASE
program that is already running in the job that callsthe API.

#Retrieve Job CCSID for OS/400 PASE (Qp2jobCCSID) returns the job default CCSID (coded
character set identifier) from the last time the OS/400 PASE CCSID was set. &

#Retrieve 05400 PASE CCSID (Qp2paseCCSID) returns the 0S/400 PASE CCSID from the last
time the OS/400 PASE CCSID was set. 4

“Retrieve 0S/400 PASE Dynamic Load Error Information (Qp2dierror) returns a pointer to a string

that provides error information for the most recent dynamic load function (Qp2dlopen, Qp2disym, or
Qp2diclose API).4

#Retrieve 05400 PASE errno Pointer (Qp2errnop) returns a pointer to the 0S/400 PASE errno
variable for the current thread.<%

#Retrieve 05400 PASE Pointer Size (Qp2ptrsize) returns the pointer size, in bytes, for the 0S/400
Portable Application Solutions Environment (OS/400 PASE) program currently running in the job.4%

Run an OS/400 PASE Program (Qp2RunPase) runs an OS/400 PASE program in the job that calls the
API.

Top | OS/400 PASE APIs | APIs by category

» Qp2malloc()--Allocate OS/400 PASE Heap
Memory

Syntax

#i ncl ude <gp2user. h>

voi d* Q2nal | oc(QP2_dword t si ze,
QP2_ptr64_t *mem pase);

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: Yes

Qp2malloc() allocates memory from the OS/400 PASE heap by calling the 0S/400 PA SE malloc() function.

Parameters

Size
(Input) The size, in bytes, of the desired memory allocation.
mem_pase
(Input) A pointer to a buffer, used to return the OS/400 PASE address of the allocated memory. The

return value is always 64-bits, even for a 32-bit 0S/400 PASE program. mem_pase can be null if the
caller does not need the OS/400 PA SE address of the memory allocation.

Authorities

None.

Return Value

The function result is a pointer to the OS/400 PA SE heap memory allocation, or anull pointer if no memory
was allocated. A buffer addressed by the mem_pase argument is unchanged if no memory was allocated.

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

Related Information

« 0OS/400 PASE malloc()--See Al X documentation

o Op2errnop()--Retrieve 05400 PASE errno Pointer

o Op2RunPase()--Run an 0S/400 PASE Program

<

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

Qp2CallPase()--Call an OS/400 PASE Procedure

Syntax £

#i ncl ude <qgp2user. h>

int Qp2Cal | Pase(const void *target,
const void *arglist,
const QP2_arg_type_t *signature,
QP2_result_type_t result_type,
voi d *puf) ;
int Qp2Cal | Pase2(const void *target,
const void *arglist,
const QP2_arg_type_t *signature,
QP2_result _type_t result_type,
voi d *puf,
short buf Lenl n);

< Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: Yes

The Qp2CallPase() and Qp2CallPase2 functions call a procedure in an OS/400 Portable Application Solutions
Environment (OS/400 PASE) program in ajob that is already running the OS/400 PASE program.

Parameters

target
(Input) Pointer to afunction descriptor for the procedure (in the OS/400 PASE program) to call. The
format and contents of a function descriptor are specified by the PowerPC Application Binary
Interface (ABI) for AIX. A function descriptor contains three OS400 PA SE addresses (not Ml
pointers) that point to the executable instructions, table of contents (TOC), and environment for the
target procedure.

arglist

(Input) Pointer to the argument list for the OS/400 PASE procedure. The format and contents of a
PASE argument list generally are specified by the PowerPC ABI for AlX. The specific argument list
structure for the OS/400 PA SE procedure identified by the target parameter is determined by the list of
argument data types specified by the signature parameter.

signature
(Input) Pointer to an array of values that specify the sequence and type of arguments passed to the

0S/400 PASE procedure. Each element in the array is either a specia value defined in header file
gp2user.h or a positive number that is the length in bytes of a structure or union argument passed by
value. Thelast value in the array must be QP2_ARG_END. Header file gp2user.h defines the
following constants for the data types supported as arguments for an OS/400 PA SE procedure:

QP2_ARG_END (0) The end of thelist of argument type values.

QP2_ARG_WORD (-1) A 4-byte signed or unsigned integer, or a structure or union no longer
than four bytes. Thisvalueis alowed only when calling a procedure in
a 32-bit 0S/400 PASE program.

QP2_ARG DWORD (-2) An 8-byte signed or unsigned integer, or a structure or union no longer
than eight bytes. Thisvalueis allowed only when calling a procedure
in a 64-bit 0S/400 PASE program.

QP2_ARG_FLOAT32 (-3) A 4-bytefloating point number.

QP2_ARG_FLOAT64 (-4) An 8-byte floating point number.

#QP2_ARG PTR32(-5) A 4-byte pointer. The valuein the arglist buffer is passed unchanged
unlessits high-order bits (excluding the lower 16 bits) match the
corresponding part of constant QP2 ARG_PTR_TOSTACK
(OxOfff0000). In that case, the arglist value is changed to the memory
address used for a copy of the buf area plus an offset in the lower 16
bits of the arglist value, and the updated value is passed to the 0OS/400
PASE procedure. QP2 ARG_PTR32 is allowed only when calling a
procedure in a 32-bit 0S/400 PASE program. <&

QP2 _ARG_PTR64 (-6) An 8-byte pointer. The value in the arglist buffer is passed unchanged
unlessits high-order bits (excluding the lower 16 bits) match the
corresponding part of constant QP2_ARG_PTR_TOSTACK
(Ox000000000fff0000). In that case, the arglist value is changed to the
memory address used for a copy of the buf area plus an offset in the
lower 16 bits of the arglist value, and the updated value is passed to the
0OS/400 PASE procedure. QP2_ARG_PTR64 is allowed only when
calling a procedure in a 64-bit 0S/400 PASE program. <

result_type

(Input) The data type of the function result returned by the OS/400 PASE procedure. Erresult_typeis
either a specia value defined in header file gp2user.h or a positive number that is the length in bytes of
by-address result data copied from the OS/400 PA SE stack to the buf area after the OS/400 PASE
procedure returns.4% Header file gp2user.h defines the following constants for function result data

types:

QP2 RESULT VOID (0) No function result returned.

QP2_RESULT_WORD (-1) A 4-byte signed or unsigned integer, or a structure or union no longer
than four bytes. Thisvalueis allowed only when calling a procedure
in a 32-bit 0S/400 PA SE program.

QP2 RESULT DWORD (-2) An 8-byte signed or unsigned integer, or a structure or union no
longer than eight bytes returned by a procedure in a 64-bit 0S/400
PASE program.

QP2_RESULT_FLOAT64 (-4) An 8-byte floating point number.

#QP2 RESULT PTR32(-5) A 4-byte pointer. A pointer result from the OS/400 PASE procedure
is returned unchanged. Thisvalueis allowed only when calling a
procedure in a 32-bit 0S/400 PASE program.<¥,

£QP2_RESULT PTR64 (-6) An 8-byte pointer. A pointer result from the OS/400 PASE procedure
is returned unchanged. Thisvaueis allowed only when calling a
procedure in a 64-bit 0S/400 PASE program.<¥,

buf

(Input/Output) Pointer to a buffer that contains by-address argument data and the function result. buf is
ignored if result_typeis QP2_RESULT_VOID and bufLenln is either zero or omitted (for
Qp2CallPase).

ZbufLenln

(Input) Length of by-address argument input data. A positive number specifies the number of bytes
copied from the buf areato the 0S/400 PASE stack before the OS/400 PA SE procedure is called. <X

Authorities

None.

Return Value

The function result is an integer that indicates whether the OS/400 PA SE function was called successfully.
Header file gp2user.h defines the following constants for the return code from Qp2CallPase and Qp2CallPase2:

QP2CALLPASE _NORMAL (0) The OS/400 PASE procedure ran to completion and its
function result (if any) was stored in the location identified by
the buf parameter.

QP2CALLPASE RESULT _ERROR (1) The OS/400 PA SE procedure ran to completion, but its
function result could not be stored at the location identified by
the buf parameter. buf may be anull pointer value, or the space
addressed by buf may be damaged or destroyed.

QP2CALLPASE ENVIRON_ERROR (2) The operation is not allowed because no OS/400 PASE

program is running in the job, or the thread that called
Qp2CallPase or Qp2CallPase2 was neither the initial 0S/400
PASE thread nor athread created using OS/400 PASE pthread

interfaces.
QP2CALLPASE_ARG_ERROR (4) One or more valuesin the signature array are not valid.
QP2CALLPASE TERMINATING (6) The OS/400 PASE program is terminating. No function result

was returned. The OS/400 PASE program may have run the
exit function, or asignal might have caused the program to
terminate.

#QP2CALLPASE_RETURN_NOEXIT (7) The OS/400 PASE program returned without exiting by calling

the OS/400 PASE RETURN function. No function result was
returned.<%

Usage Notes

1

Qp2CallPase and Qp2CallPase2 are supported only when an OS/400 PASE program is currently
running in the job. This means that Qp2RunPase must be running actively in the job, or the job must be
afork child process.

. #*Y ou can run Qp2CallPase and Qp2CallPase2 only in the initial thread that started the 0S/400 PASE

program or in athread created using OS/400 PA SE pthread interfaces, unless OS/400 PASE
environment variable PASE. THREAD ATTACH was set to Y when a thread-enabled OS/400 PASE
program was started. 4%

#»Once an |LE thread has attached to OS/400 PASE (by calling an OS/400 PASE procedure), that
thread is subject to asynchronous interruption for OS/400 PA SE functions such as signal handling and
thread cancellation. In particular, the thread will be canceled as part of ending the OS/400 PASE
program (when exit runs or OS/400 PA SE processing terminates for asignal).<%

An OS/400 PASE procedure called by Qp2CallPase or Qp2CallPase2 must return to its caller.
Unpredictable results occur if the OS/400 PASE procedure attempts to longjmp to an older call or if it
performs an operation that terminates the thread or process (such as calling the exit function). If a
signal handler is on the OS/400 PA SE stack when Qp2CallPase or Qp2CallPase? is called, the called
0OS/400 PASE procedure must also honor restrictions on runtime functions allowed in signal handlers
(see AIX signal handling documentation for details).

. A pointer to any function in an OS/400 PASE program is really a pointer to a function descriptor for

the procedure. An OS/400 PASE program can easily provide a function descriptor to ILE code by
passing an OS/400 PA SE function pointer value converted to an ILE memory address. The conversion
can be done using the SETSPP function or the ARG_MEMPTR argument typeonthe ILECALLX
or ILECALL function.

#»Qp2CallPase and Qp2CallPase2 support arguments and results passed by-address through the use of

QP2_ARG_PTR32 or QP2_ARG_PTR64 vauesin the signature array and positive numbers for the
result_type and/or bufLenln arguments. 4

7. #1f the buf areais 16-byte aligned, any tagged ILE pointers are preserved in by-address (input)
argument data copied from the buf areato OS/400 PASE memory, and in by-address result data copied
from OS/400 PASE memory to the buf area 4

8. #A structure or union function result returned by-value that is short enough to fit into a register must
be handled as QP2 RESULT_WORD for a 32-bit 0OS/400 PASE program or as
QP2 _RESULT_DWORD for a64-bit OS/400 PASE program. Longer structure or union function
results returned by-value are actually returned by-address through a buffer pointer passed as the first
(hidden) argument to the OS/400 PA SE procedure. &

9. #Y ou may need to limit result_type and bufLenin to avoid overrunning the end of the 0S/400 PASE
stack. Arguments and results that are too large for the stack can be passed by-address using argument
pointers to OS/400 PASE heap storage. 4%

10. The PowerPC ABI for AlX requires 4-byte alignment for each argument passed to a procedure in a
32-bit program, and 8-byte alignment for each argument passed to a procedure in a 64-bit program.
Qp2CallPase and Qp2CallPase2 assume the caller provides an arglist data structure that provides this
alignment, including any necessary pad bytes following a structure or union argument and following a
QP2 _ARG_FLOAT32 argument passed to a 64-bit 0S/400 PASE program. The arglist structure also
needs to store any 64-bit integer or floating point argument on a 4-byte boundary when the target
procedure isin a 32-bit 0S/400 PASE program (rather than the 8-byte boundary used as the default for
these typesin ILE C and C++ compilers).

Related Information

o Op2RunPase()--Run an OS/400 PASE Program

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

» Qp2diclose()--Close a Dynamically Loaded
0S/400 PASE Module

Syntax

#i ncl ude <gp2user. h>

int Q2dlclose(Q2 ptr64 t id);

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: Yes

Qp2diclose() closes and unloads an OS/400 PASE module previously opened by APl Qp2diopen (or the
0OS/400 PASE dlopen function).

Parameters
id

(Input) Specifies avalue returned by APl Qp2diopen (or the OS/400 PASE dlopen function) that
specifies what module is closed and unloaded.

Authorities

None.

Return Value

The function result is zero for normal completion, or -1 with an error indicated in ILE errno or OS/400 PASE
errno (if ILE errnoiszero). You can aso cal APl Qp2dierror for more information about any error.

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

Related Information

o« 0S/400 PASE diclose()--See Al X documentation

Op2dierror()--Retrieve OS/400 PASE Dynamic Load Error Information

Op2errnop()--Retrieve 0S/400 PASE errno Pointer

Op2RunPase()--Run an OS/400 PASE Program

&«

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

» Qp2dlopen()--Dynamically Load an OS/400
PASE Module

Syntax

#i ncl ude <gp2user. h>

QP2_ptr64_t Q2dl open(const char *path,

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: Yes

i nt flags,
i nt ccsid);

Qp2diopen() dynamically loads an OS/400 PASE module by calling the OS/400 PASE dlopen() function.

Parameters

path

flags

(Input) A pointer to a null-terminated string that identifies the stream file in the Integrated File System
that contains the OS/400 PASE module to load. This API copies the input path string and converts the
copy from the CCSID specified by the ccsid argument to the current OS/400 PASE CCSID (required
by the OS/400 PASE dlopen function).

If the input path pointer is null, the function result is avalue for the main application that lets you find
symbolsin the OS/400 PASE process global name space, which includes al symbols exported by the
0S/400 PASE program and shared executables except those loaded by OS/400 PASE dlopen using
option RTLD_LOCAL.

(Input) Flags passed to the OS/400 PA SE dlopen function to control its behavior. These constants,
declared in gp2user.h, match constantsin AIX header difcn.h (without the leading prefix, QP2_) and
can be ORed together for the flags argument:

QP2_RTLD_NOW (0x00000002) Load all dependents of the module being loaded and
resolve al symbols. Either QP2_RTLD_NOW or
QP2_RTLD_LAZY must be specified.

QP2_RTLD_LAZY (0x00000004)

QP2 _RTLD_GLOBAL (0x00010000)

QP2 _RTLD_LOCAL (0x00080000)

QP2_RTLD_MEMBER (0x00040000)

QP2_RTLD_NOAUTODEFER (0x00020000)

Allow the system to defer loading dependent
modules. Either QP2_RTLD_NOW or
QP2 RTLD_LAZY must be specified.

L oad the module into the global name space.
Exported symbolsin the module will be visiblein
the main application and will be used when
resolving symbols used by other OS/400 PASE
diopen calls.

L oad the module into alocal hame space. This
option is the default when neither
QP2_RTLD_GLOBAL nor QP2_RTLD_LOCAL is
specified. It prevents symbols in the module being
loaded from being used when resolving symbols
used by other dliopen calls.

Specifies that the path argument string may contain
the name of a member in an archive (shared
library).

Prevent deferred imports in the module being
loaded from being automatically resolved by
subsequent loads.

(Input) Specifiesthe CCSID for the input path argument string. Zero meansthe path isin the

(EBCDIC) job default CCSID.

Authorities

Object Referred to

Authority
Required

Each directory in the path to the 0S/400 PASE module

*X

0S/400 PASE module

*R

Return Value

Sucessful completion returns a non-zero function result that can be used to call APIs Qp2disym and

Qp2diclose (and also OS/400 PASE functions disym and

diclose). Resources alocated for the function result

are not freed until the OS/400 PASE program ends or the value is passed to APl Qp2diclose (or OS/400 PASE

diclose).

A zero function result indicates an error. The caller can check ILE errno or OS400 PASE errno (if ILE errno
iszero), or call the Qp2dierror API for more information about the error.

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

Related Information

0S/400 PASE dlopen()--See Al X documentation

Op2dlerror()--Retrieve 05400 PASE Dynamic Load Error Information

Qp2errnop()--Retrieve 0S/400 PA SE errno Pointer

Qp2RunPase()--Run an 0S/400 PASE Program

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

» Qp2EndPase()--End an OS/400 PASE Program

Syntax

#i ncl ude <qgp2user. h>

int Qp2EndPase(voi d);

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: No

The Qp2EndPase() function ends any OS/400 PASE program currently running in the job.

Parameters

None.

Authorities

None.

Return Value

The function result is nonzero if an error is detected attempting to end the OS/400 PASE program.

Usage Notes

1. Qp2EndPase is normally used to end an OS/400 PASE program that ranthe RETURN OS/400 PASE
runtime function (to return without exiting). Such a program remains active (even if it exits or
terminates due to an OS/400 PASE signal) until either Qp2EndPase is called or the ILE activation
group that called the Qp2RunPase API exits. 0OS/400 PASE programs that do not use_ RETURN are
ended automatically before control returns from the Qp2RunPase API.

2. Qp2EndPase returns without error when no OS/400 PASE program is running in the job.

3. Undefined behavior results if Qp2EndPase is called while the Qp2RunPase API is running (in the same
job), or if the activation group that ran the Qp2RunPase API attempts to use the OS/400 PASE
program (without restarting it) after Qp2EndPase is called from a different activation group.

Related Information

o Op2RunPase()--Run an OS/400 PASE Program

o _RETURN()--Return Without Exiting OS/400 PASE

&«

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

» Qp2dIsym()--Find an Exported OS/400 PASE
Symbol

Syntax

#i ncl ude <gp2user. h>
voi d* Q2dl sym(QP2_ptr64 t id
const char *nane,

i nt ccsid,
QP2 _ptr64_t *sym pase);

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: Yes

Qp2disym() finds an exported OS/400 PASE symbol by calling the OS/400 PASE disym() function.

Parameters

id
(Input) Specifies avalue returned by APl Qp2diopen (or the OS/400 PASE dlopen function) that
controls what modules are searched for the exported symbol.

name

(Input) A pointer to a null-terminated string that contains the symbol name. This API copies the input
name string and converts the copy from the CCSID specified by the ccsid argument to the current
0S/400 PASE CCSID (required by the OS/400 PASE disym function).

ccsid

(Input) Specifies the CCSID for the input name argument string. Zero means the symbol nameisin the
(EBCDIC) job default CCSID.

sym_pase
(Input) A pointer to a buffer, used to return the OS/400 PASE address of the exported symbol. The

return value is always 64-bits, even for a 32-bit OS/400 PASE program. sym_pase can be null if the
caller does not need the OS/400 PA SE address of the symbol.

Authorities

None.

Return Value

The function result is a pointer to the specified symbol, or anull pointer if the symbol could not be resolved. A
buffer addressed by the sym_pase argument is unchanged if the symbol could not be resolved. The caller can
check ILE errno or OS/400 PASE errno (if ILE errnois zero), or call the Qp2dlerror API for more
information about any error.

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

Related Information

0S/400 PASE disym()--See Al X documentation

Op2dierror()--Retrieve 0S/400 PASE Dynamic Load Error Information

Qp2errnop()--Retrieve OS/400 PASE errno Pointer

Qp2RunPase()--Run an 0S/400 PASE Program

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

» Qp2free()--Free OS/400 PASE Heap Memory

Syntax
#i ncl ude <qgp2user. h>
int Q2free(void *nmem;

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: Yes

Qp2zfree() frees an OS/400 PA SE heap memory alocation by calling the OS/400 PASE free() function.

Parameters

mem
(Input) A pointer to the start of the OS/400 PASE memory allocation to be freed.

Authorities

None.

Return Value

The function result is zero for normal completion, or -1 with an error indicated in ILE errno that is ususally
one of the following:

EPERM An error occurred attempting to call an OS/400 PA SE function.

ETERM 0OS/400 PASE isterminating.

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

Related Information

o« 0OS/400 PASE freg()--See A1 X documentation

o Op2errnop()--Retrieve OS/400 PASE errno Pointer

o Op2RunPase()--Run an OS/400 PASE Program

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

Qp2SignalPase()--Post an OS/400 PASE Signal

Syntax
#i ncl ude <qgp2user. h>
i nt Q2Si gnal Pase(i nt si gnho) ;

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: Yes

The Qp2Signal Pase() function posts an OS/400 Portable A pplication Solutions Environment (OS/400 PASE)
signal to an OS/400 PASE program that is already running in the job.

Parameters

signo
(Input) Signal number to post. A positive value is an ILE signal number, which causes the system to
post a corresponding OS/400 PASE signal. ILE and OS/400 PASE signals correspond if they have the

same name (for example, SIGTERM) in a system-provided header file. A negative valueisthe
negation of an OS/400 PASE (and AlX) signal number.

Authorities

None.

Return Value

The function result is an integer that indicates whether the OS/400 PASE signal was posted successfully.
Header file gp2user.h defines the following constants for the return code from Qp2Signal Pase:

QP2CALLPASE_NORMAL(0) An OS/400 PASE signal was posted successfully.
QP2CALLPASE ENVIRON_ERROR(2) The operation is not allowed because no OS/400 PASE program
isrunning in the job, or the thread that called Qp2CallPase was

neither the initial OS/400 PASE thread nor athread created using
0S/400 PASE pthread interfaces.

QP2CALLPASE_ARG_ERROR(4) The signo parameter value isinvalid.

QP2CALLPASE_TERMINATING(6) The OS/400 PASE program is terminating. No function result
was returned. The OS/400 PA SE program may have run the exit
function, or asignal might have caused the program to terminate.

Usage Notes

1. Qp2SignaPase is supported only when an OS/400 PASE program is currently running in the job. This
means that Qp2RunPase must be actively called in the job, or the job must be afork child process.

2. Not dl ILE signals have an OS/400 PA SE equivalent and Qp2Signal Pase never converts ILE
SIGCHLD to acorresponding PASE signal. This special handling for SIGCHLD avoids duplicate
PASE signals for the termination of a single child process (because the system may send both ILE and
0S/400 PASE signals to the parent of any fork child process that ends).

3. If thereisonly one OS/400 PASE thread running in the job, the signal remains pending until control is
transferred to the OS/400 PASE program. If other OS/400 PA SE threads are running at the time
Qp2SignaPase is called, the system may chose one of the other threads to deliver the signal.

Related Information

o Op2RunPase()--Cal an OS/400 PASE Procedure

o OQp2RunPase()--Run an OS/400 PASE Program

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

» QP2JobCCSID()--Retrieve Job CCSID for OS/400
PASE

Syntax
#i ncl ude <gp2user. h> [* for ILE prograns */
#i ncl ude <as400_protos. h> /* for OS/400 PASE progranms */

i nt @2j obCCSI D voi d);

Service Program Name: QP2USER (for ILE programs)
0S/400 PASE Library: libc.a (for OS/400 PASE programs)
Default Public Authority: * USE

Threadsafe: Yes

Note: Thisfunction can be used in either an ILE program or an OS/400 PASE program. See OS/400 PASE for
more information about creating OS/400 PASE programs.

Qp2jobCCSID() returns the job default CCSID (coded character set identifier) from the last time the OS/400
PASE CCSID was set. The 0S/400 PASE CCSID is set when an OS/400 PA SE program starts, and can be
changed by the OS/400 PASE runtime function SETCCSID.

Parameters

None.

Authorities

None.

Return Value

The function result is a coded character set identifier (CCSID), or 0 if OS/400 PASE CCSID information is not
available (such as when no OS/400 PASE program is running in the job).

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

Related Information

o OQp2RunPase()--Run an 0S/400 PASE Program

o Qp2paseCCSID()--Retrieve 05400 PASE CCSID

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

» Qp2paseCCSID()--Retrieve OS/400 PASE CCSID

Syntax
#i ncl ude <qgp2user. h> /* for ILE prograns */
#i ncl ude <as400_protos. h> /* for OS/400 PASE prograns */

i nt Q2paseCCsl D voi d);

Service Program Name: QP2USER (for ILE programs)
0S/400 PASE Library: libc.a (for OS/400 PASE programs)
Default Public Authority: * USE

Threadsafe: Yes

Note: Thisfunction can be used in either an ILE program or an OS/400 PA SE program. See OS/400 PASE for
more information about creating OS/400 PASE programs.

Qp2paseCCSID() returns the OS/400 PASE CCSID (coded character set identifier) from the last time the
0S/400 PASE CCSID was set. The OS/400 PASE CCSID is set when an OS/400 PASE program starts, and
can be changed by the OS/400 PA SE runtime function _SETCCSID.

Parameters

None.

Authorities

None.

Return Value

The function result is a coded character set identifier (CCSID), or 0 if OS/400 PASE CCSID information is not
available (such as when no OS/400 PASE program is running in the job).

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

Related Information

o OQp2RunPase()--Run an 0S/400 PASE Program

o OQp2jobCCSID()--Retrieve Job CCSID for OS/400 PASE

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

» Qp2dlerror()--Retrieve OS/400 PASE Dynamic
Load Error Information

Syntax

#i ncl ude <gp2user. h>

char* Qz2dl error(void);

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: No

Qp2dierror() returns a pointer to a string that provides error information for the most recent dynamic load
function (APl Qp2dlopen, Qp2disym, or Qp2diclose).

Parameters

None.

Authorities

None.

Return Value

The function result is a pointer to a null-terminated character string (in the job default CCSID). A null pointer
isreturned if no error occurred during the most recent dynamic load operation. Once Qp2dierror is called,
subsequent calls without an intervening dynamic load error also return anull pointer.

ThelLE errnoisset and anull pointer isreturned for any internal processing error (such as an error converting
the string from the OS/400 PASE CCSID to the job default CCSID).

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

2. Qp2dierror is not threadsafe because it may call an OS/400 PASE function that is not threadsafe

(dlerror) and uses a buffer in static storage for the error string that is also updated by other dynamic
load functions (APIs Qp2diopen, Qp2disym, and Qp2diclose). Applications may need to serialize use
of dynamic load functions and copy the error information string to preserve its contents.

Related Information

« 0OS/400 PASE dlerror()--See Al X documentation

o Op2errnop()--Retrieve OS/400 PASE errno Pointer

o OQp2RunPase()--Run an OS/400 PASE Program

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

» Qp2errnop()--Retrieve OS/400 PASE errno
Pointer

Syntax
#i ncl ude <gp2user. h>
int* QZ2errnop(void);

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: Yes

Qp2errnop() returns a pointer to the OS/400 PASE errno variable for the current thread.

Parameters

None.

Authorities

None.

Return Value

The function result is a pointer to the OS/400 PASE errno variable for the current thread, or anull pointer if
errno location is not available (such as when no OS/400 PASE program is running in the job).

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

Related Information

o Op2RunPase()--Run an 0S/400 PASE Program

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

» Qp2ptrsize()--Retrieve OS/400 PASE Pointer
Size

Syntax
#i ncl ude <gp2user. h>
size t Q2ptrsize(void);

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: Yes

Qp2ptrsize() returns the pointer size, in bytes, for the OS/400 Portable Application Solutions Environment
(OS/400 PASE) program currently running in the job.

Parameters

None.

Authorities

None.

Return Value

The function result is 4 for a 32-bit program, or 8 for a 64-bit program. The result is zero if 0S/400 PASE
pointer sizeis not available (such as when no OS/400 PASE program is running in the job).

Usage Notes

1. ThisAPI can only be used in the same activation group that started OS/400 PASE in the job. Thisis
either the activation group that called APl Qp2RunPase, or the default activation group in ajob started
by the OS/400 PASE runtime function fork.

Related Information

o Op2RunPase()--Run an 0S/400 PASE Program

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

Qp2RunPase()--Run an OS/400 PASE Program

Syntax

#i ncl ude <qgp2user. h>

i nt 2RunPase(const char *pat hNane,
const char *synbol Nane,
const void *synbol Dat a,
unsi gned int synbol Dat aLen,
i nt ccsi d,

const char *const *argv,
const char *const *envp);

Service Program Name: QP2USER
Default Public Authority: *USE

Threadsafe: No

The Qp2RunPase() function runs an OS/400 Portable Application Solutions Environment (OS/400 PASE)
program in the job where the API is called. It loads the OS/400 PA SE program and any necessary shared
libraries and then transfers control to the program. Control returns to the caller when the OS/400 PASE
program exits, terminates due to asignal, or returns without exiting.

Parameters

pathName

(Input) Pointer to anull-terminated character string that identifies the stream file in the Integrated File
System that contains the OS/400 PA SE program to run. The pathName string may include an absolute
or relative path qualifier in addition to the stream file name. Relative path names are resolved using the
current working directory.

symbolName

(Input) Pointer to a null-terminated character string that names an external symbol in the OS/400
PASE program. The specified symbol isinitialized with data addressed by the symbol Data parameter.
The OS/400 PASE program is run without initializing symbol data (and no error is reported) if either
symbolNameisanull pointer or the string does not match an external symbol name in the program.

The system copies the symbolName string internally and convertsit from the job default CCSID to the
CCSID specified by the ccsid parameter before searching for the (converted) symbol name in the
0OS/400 PASE program.

symbolData

(Input) Pointer to data used to initialize a symbol (identified by the symbolName parameter) in the
0OS/400 PASE program. The system copies the data (without modification) into memory that can be
referenced by the OS/400 PASE program. Any MI pointersin the data are preserved in the copy.
symbolDataisignored if it isanull pointer or if no external symbol name in the program matches the
symbolName parameter.

symbolDatal en

argv

envp

(Input) The number of bytesto copy from the address specified by the symbol Data parameter to
0S/400 PASE memory. symbolDatal_en isignored if symbolDataisanull pointer or if no externa
symbol name in the program matches the symbol Name parameter.

(Input) The coded character set identifier (CCSID) initially used by the OS/400 PASE program. ccsid
must specify asingle-byte encoding (normally an ASCIlI CCSID) that OS/400 can convert to and from
the job default CCSID, or avalue of 1208 to indicate that the OS/400 PASE program uses UTF-8
encoding.

The system uses ccsid to set the CCSID of any bytestream file created by the OS/400 PASE program,
and also to control character encoding conversions done for OS/400 PASE runtime interfaces that use
0S/400 services.

(Input) Pointer to an array of pointers to null-terminated character strings that are passed as arguments
to the OS/400 PASE program. The last element in the array must be anull pointer. An error is reported
if the argv parameter pointer isnull.

The system copies argument strings into OS/400 PASE memory and converts them from the job
default CCSID to the CCSID specified by the ccsid parameter. By convention, the first argument string
passed to an OS/400 PASE program should be the same as the pathName string.

(Input) Pointer to an array of pointers to null-terminated character strings that are passed as
environment variables to the OS/400 PASE program. The last element in the array must be a null
pointer. envp can be a null pointer if no environment variables need to be initialized for the OS/400
PASE program.

The system copies environment variable strings into 0OS/400 PASE memory and converts them from
the job default CCSID to the CCSID specified by the ccsid parameter. By convension, environment
variable strings take the form "NAME=value".

Authorities

Object Referred to Required

Authority

Each directory in the path to the OS/400 PA SE program and shared libraries *X

0S/400 PASE program (not a shell script) in alocal file system *X

0S/400 PASE program in aremote file system or shell script *RX

0S/400 PASE shared library *R

Return Value

The function result may be one of these specia values:

QP2RUNPASE_ERROR (-1) An internal error occurred during Qp2RunPase processing.

#QP2RUNPASE_ RETURN _NOEXIT (-2) The OS/400 PASE program returned without exiting (by

calling the OS/400 PASE _RETURN function).<

If the result is not one of the special values above, it is avalue that contains status information about how the
0OS/400 PASE program ended, in the same format as the stat_val parameter for the ILE waitpid function. Y ou
can use these macrosin file <sys/wait.h> to interpret such a result:

WIFEXITED(stat_val) Evaluates to anonzero value if OS/400 PASE program ended normally.

WEXITSTATUS(stat_val) If the value of the WIFEXITED(stat_val) is nonzero, evaluates to the low-order

8 hits of the value the OS/400 PA SE program specified as the argument to exit
or the function result returned by main.

WIFSSGNALED(stat val) Evaluatesto anonzero value if OS/400 PA SE program ended because of the

receipt of aterminating signal that was not caught by the process.

WTERMS G(stat_val) If the value of WIFSIGNALED(stat_val) is nonzero, evaluates to the number of

the OS/400 PASE signal that caused the program to end. OS/400 PASE
programs use the same sighal numbers as Al X (which differ from ILE signal
numbers).

Error Messages

Message I D
CPFO872 E

CPFB9CO E
CPFBOC1 E
CPFBOC2 E
CPFB9C3 E
CPFBOC7 E
CPFBOCS8 E

Error Message Text

Program or service program &1 in library & 2 ended. Reason code & 3.

Error loading program & 1. See previous messages.

System support for OS/400 Portable Application Solutions Environment not available.
Hardware support for OS/400 Portable Application Solutions Environment not available.
0S/400 PASE CCSID and job default CCSID are incompatible.

0S/400 PASE dready running in thisjob.

File descriptors 0, 1, and 2 must be open to run the OS/400 PASE program.

Usage Notes

1. Qp2RunPase works like the AIX execve function, including the ability to run shell scripts and the rules
for resolving shared libraries (which may include using OS/400 PA SE environment variable
LIBPATH).

2. 2 If an absolute path (starting with "/") is specified for the pathName string or in the first line of a
shell script identified by pathName and that path cannot be opened or is not aregular bytestream file,
the system generally searches the /QOpenSys file system for the file. See environment variable
PASE_EXEC_QOPENSYSin OS/400 PASE Environment Variables for more information. 4%

3. Qp2RunPase cannot run an OS/400 PASE program or shared library stored in afile system that is not
threadsafe in ajob that is multithread capable. Any job started by the OS/400 PASE fork function is
multi-thread capable.

4. You can set these ILE environment variables before calling Qp2RunPase to control the OS/400 PASE
operation:;

QIBM_USE DESCRIPTOR _STDIO When this ILE environment variableissetto Y or I, both
0S/400 PASE runtime and ILE C runtime use Integrated
File System file descriptors 0, 1, and 2 for stdin, stdout,
and stderr. Otherwise, OS/400 PASE file descriptors 0, 1,
and 2 are mapped to ILE C runtime files stdin, stdout, and
stderr (which may not use any Integrated File System file
descriptors).

0S/400 PASE and ILE generally use different descriptor
numbers for the same open file, but when

QIBM_USE DESCRIPTOR _STDIOissettoY or I, any
operation against 0S/400 PA SE file descriptors 0, 1, or 2
is also done for the same Integrated File System file
descriptor number so OS/400 PASE and ILE C usethe
same files for stdin, stdout, and stderr.

QIBM_PASE_DESCRIPTOR STDIO ThisILE environment variable controls ASCII/EBCDIC
conversion for dataread or written through OS/400 PASE
files stdin, stdout, and stderr to Integrated File System file
descriptors 0, 1, and 2. ASCII/EBCDIC conversion is
always done (and this variable isignored) unless
QIBM_USE_DESCRIPTOR_STDIO is set to either Y or
I 1f QIBM_PASE_DESCRIPTOR_STDIO is set to B, the
PASE program processes binary data (without
ASCII/EBCDIC conversion). Otherwise, ASCII/EBCDIC
conversion is done for any data read from or written to
0S/400 PASE file descriptors 0, 1, or 2.

QIBM_PASE USE PRESTART JOBS When thisILE environment variableissetto Y, OS/400
PASE runtime uses prestarted jobs for child processes
created by fork and for any job started by the systemCL
0OS/400 PASE runtime function (to run a CL command).
Y ou should add prestarted job entries (ADDPJE
command) for programs QPOZSPWT (used by fork) and
QPOZSPWP (used by systemCL) to any subsystem
description that will run jobs that use this support.

10.

11.

12.

13.

. OS/400 PASE environment variables are independent of ILE environment variables. See 0S/400

PASE Environment Variables for more information, including OS/400 PASE environment variables
you can set to control runtime behaviors that differ from AlX.

. A symbol name specified by the symbolName parameter must be defined (not just declared or

referenced) in the OS/400 PASE program. The system relocates the symbol to memory that is
dynamically allocated to ensure 16-byte alignment. Any initial value specified in the OS/400 PASE
program for the relocated symbol isignored.

. The ccsid parameter provides theinitial 0OS/400 PASE CCSID value, but the OS/400 PASE program

can use the SETCCSID function to change the OS/400 PASE CCSID or to rebind to achangein the
job default CCSID. The OS/400 PASE CCSID should generally be the CCSID equivalent of the code
set for the current locale. See OS/400 PASE L ocales to determine what locales are supported by

0S/400 PASE.

. OS/400 PASE programs generally should use functions _ILELOAD and _ILESYM to acquire M|

pointers to functions and data exported by an ILE program or service program rather than rely on
pointers passed using the symbolName, symbolData, and symbolDatalen parameters on Qp2RunPase.
Thisis because MI pointersin OS/400 PASE memory are destroyed by exec processing and pointersto
ILE procedures are unusable in a child process created by fork (because they point to an activation
group in the parent process).

. You may want to increase the number of file descriptors in the job by calling DosSetRelMaxFH before

you call Qp2RunPase. By default, 0S/400 jobs support only 200 open file descriptors, while OS/400
PASE programs generally expect to be able to open 32 767 file descriptors, and the system requires
file descriptors to open bytestream files that contain the OS/400 PA SE program and any shared
librariesit uses.

Y ou may want to establish Qp2Signal Pase as the handler for any ILE signal that needsto be visible to
the OS/400 PASE program. For example, system support for Sockets (used by OS/400 PASE runtime)
only sends SIGIO and SIGURG as ILE signals, so ILE signal handling must be set up before calling an
0OS/400 PASE program that relies on SIGIO or SIGURG as OS/400 PASE signals. 0S/400 PASE
runtime automatically establishes Qp2Signal Pase as the handler for every ILE signal in afork child
process.

Y ou may want to call ILE interfaces pthread setcancelstate and pthread setcanceltype to set pthread
cancel state and cancel type before calling Qp2RunPase in a process that did prior pthread work.
0S/400 PASE pthreads use |LE pthreads and Qp2RunPase assumes that | LE pthread cancel state and
cancel type are set to defaults (PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DEFERRED). The state of these attributes when a program ends is whatever
value was last set by either ILE or OS/400 PASE code.

Time-of-day information in an OS/400 PASE program depends on the values for system value
QUTCOFFSET when the OS/400 PASE was started, and OS/400 PA SE environment variable TZ
when the program retrieves the time. For example, the correct settings for Central Standard Timein the
USA are QUTCOFFSET=-6 and TZ=CST6CDT.

Any credentials changes (user, group, or group list changes) made by an OS/400 PASE program are
generally persistent in the job. The job (thread) credentials before and after a call to Qp2RunPase may
not be the same if the OS/400 PASE program calls any of the setuid or setgid family of interfaces.

However, the system saves credential s before running any OS/400 PASE program with the S ISUID
or S_ISGID attribute, and automatically restores the saved credentials before returning to the caller of
Qp2RunPase.

14. Character conversions controlled by the ccsid parameter only handle the single-byte component of an
EBCDIC-mixed CCSID (for the job default CCSID). This restricts the OS/400 PASE program name
specified by the pathName parameter, argument strings passed through the argv parameter, and
environment variables passed through the envp parameter to single-byte characters. DBCS characters
can be passed (unconverted) to an OS/400 PASE program using the symbol Data parameter.

15. If an OS/400 PASE program needs to use DBCS characters for OS400 PA SE runtime functions such
asfile system interfaces, it must run with the OS/400 PASE CCSID (ccsid parameter) set to 1208
because OS/400 PA SE runtime provides complete support for DBCS characters using UTF-8 encoding
only.

Related Information

« The<syswait.h> file (see Header Files for UNIX-Type Functions)

o DosSetRelMaxFH()--Change Maximum Number of File Descriptors

o pthread setcancelstate()--Set Cancel State

o pthread setcanceltype()--Set Cancel Type

o OQP2SHELL()--Run an OS/400 PASE Shell Program

o QOP2TERM()--Run an OS/400 PASE Terminal Session

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

Runtime Functions For Use by OS/400 PASE
Programs

0S/400 PASE runtime includes interfaces supported on A1X and interfaces unique to OS/400 PASE. They are
unigue to OS/400 PASE

The runtime functions are;

Build an ILE Argument List for OS/400 PASE (build_ILEarglist) builds an ILE argument list using
argument values copied from an OS/400 PA SE function with the same signature.

Call an ILE Procedure for OS/400 PASE (_ILECALL and _ILECALLX) alows an OS/400 PASE
program to call an ILE procedure.

#»Call an 0OS/400 Program for 0S/400 PASE (PGMCALL) calls an OS/400 program (object type
*PGM) from an OS/400 PASE program. <

Compute ILE Argument List Size for OS/400 PASE (size ILEarglist) computes the number of bytes
of memory required to build an ILE argument list.

Convert ILE errno to OS/400 PASE errno (CVTERRNO) convertsan ILE errno valueto a
corresponding OS/400 PASE errno value.

Convert Space Pointer for OS/400 PASE (CVTSPP) converts atagged space pointer valueto an
equivalent OS/400 PASE memory address.

Copy Character String for OS/400 PASE (STRNCPY _SPP) copies a null-terminated character string.

Copy Memory With Tags for OS400 PASE (MEMCPY_WT and _MEMCPY_WT2) alows an
0S/400 PASE program to copy memory with tagged pointers.

Determine Character String Length for OS/400 PASE (_ STRLEN_SPP) determines the length of a
null-terminated character string.

Find Exported ILE Symbol for OS/400 PASE (_ILESY M) allows an OS/400 PASE program to get a
tagged pointer to the data or procedure exported for a symbol exported by an ILE activation.

Load an ILE Bound Program for OS/400 PASE (_ILELOAD) allows an OS/400 PA SE program to
load (activate) an ILE bound program.

Override SQL CLI CCSID for OS/400 PASE (SQL OverrideCCSID400) allows an OS/400 PASE
program to specify a CCSID for character arguments and results on SQL runtime functions.

Receive Nonprogram Message for 0S/400 PASE (QMHRCVM and QMHRCVM1) alows an OS/400
PASE program to receive a message from a nonprogram message queue.

Receive Program Message for 0§400 PASE (QMHRCVPM, QMHRCVPM1, and QMHRCVPM?2)

alows an 0S/400 PA SE program to receive a message from a program call message queue or from the
job external message queue.

#Resolve to an OS/400 Object for 0S/400 PASE (_ RSLOBJ) resolves to an OS/400 object.
#Retrieve Job CCSID for OS/400 PASE (Qp2jobCCSID) returns the job default CCSID (coded
character set identifier) from the last time the OS/400 PASE CCSID was set. %

“Retrieve 0S/400 PASE CCSID (Qp2paseCCSID) returns the 0S/400 PASE CCSID from the last
time the OS/400 PASE CCSID was set. %

#Return without Exiting OS/400 PASE (_ RETURN) returnsto the | LE called that called OS/400
PASE in this job, without exiting the OS/400 PA SE program.<%

Run a CL Command for OS/400 PASE (systemCL) allows an OS/400 PASE program to run a CL

command.

Send Nonprogram Message for 0S/400 PASE (QMHSNDM and QMHSNDM1) alows an 0OS/400

PA SE program to send a message to a nonprogram message queue so it can communicate with another
job or user.

Send Program Message for 0S/400 PASE (QMHSNDPM, QMHSNDPM 1, and QMHSNDPM2)
alows an OS/400 PA SE program to send a message to a program call message queue or to the job
external message queue.

Set OS/400 PASE CCSID (_SETCCSID) retrieves and sets the OS/400 PASE Coded Character Set
Identifier (CCSID) value.

Set Space Pointer for OS/400 PASE (_ SETSPP) sets atagged space pointer to the teraspace equival ent
of an OS/400 PASE memory address.

Top | OS/400 PASE APIs | APIs by category

build_ILEarglist()--Build an ILE Argument List for
0S/400 PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

int build ILEarglist(ILEarglist_base *| LEargli st,
const void *PASEar gl i st
const arg type t *signature);

Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The build_ILEarglist() function builds an ILE argument list using argument val ues copied from an OS/400
PASE function with the same signature.

Parameters

ILEarglist

(Output) Pointer to a 16-byte aligned buffer allocated by the caller for the ILE argument list. ILEarglist
must be long enough to contain all arguments specified in the signature list.

PASEarglist

(Input) Pointer to the first argument passed to an OS/400 PA SE function that accepts arguments
equivalent to those specified by the signature list.

signature

(Input) Pointer to alist of arg_type t values that specify the sequence and type of arguments passed to
the ILE procedure. ILE procedures can accept a maximum of 400 arguments. The actual number of
arguments processed by the build_ILEarglist function is determined by the number of entriesin the
signature list, which is determined by the location of the first ARG_END valueinthelist. The
following values are supported in the signature list:

ARG_END(0) Specifies the end of the signature list.
ARG_INT8 (-1) Signed 1-byte integer argument.
ARG _UINTS8 (-2) Unsigned 1-byte integer argument.

ARG _INT16 (-3) Signed 2-byte integer argument.

ARG_UINT16 (-4) Unsigned 2-byte integer argument.
ARG _INT32 (-5) Signed 4-byte integer argument.
ARG_UINT32 (-6) Unsigned 4-byte integer argument.
ARG_INT64 (-7) Signed 8-byte integer argument.
ARG_UINT®64 (-8) Unsigned 8-byte integer argument.
ARG FLOAT32(-9) 4-bytefloating-point argument.
ARG_FLOAT64 (-10) 8-byte floating-point argument.

ARG_MEMPTR (-11) The argument is a memory address. The OS/400 PASE procedure argument
isan OS/400 PASE memory address that build_ILEarglist copiesinto the
ILEpointer type value in the ILE argument list. See Call an ILE Procedure

for 0S/400 PASE (_ ILECALLX or _ILECALL) for more information
about how ARG_MEMPTR arguments are handled.

Any positive number The argument is an aggregate (structure or union). The valuein the
(1-32767) signature list is the length, in bytes, of the aggregate.

Authorities

build_ILEarglist requires no authority.

Return Value

build_ILEarglist returns the number of bytes used to build the ILE argument list (including storage for the
ILEarglist_base type), or zero if an error was detected in the input arguments.

Usage Notes

1. build_ILEarglist does no character encoding conversions, so the OS/400 PA SE program may need to
convert argument and result character strings between ASCII and EBCDIC. OS/400 PASE runtime
function iconv can be used for character conversions.

2. build_ILEarglist does not support argument types ARG_SPCPTR or ARG_OPENPTR (which are
supported by ILECALLX and _ILECALL) because the AIX Application Binary Interface for
PowerPC provides no way to ensure 16-byte alignment for arguments pushed onto the stack.

3. build_ILEarglist does not directly support aggregate function results. Y ou need to set
result.r_aggregate.addr in the PASEarglist structure to the address of a buffer where the ILE procedure
will store the aggregate result.

4. Older versions of build_I L Earglist accepted additional arguments in an attempt to handle aggregate
function results, but those arguments were removed because they cannot be supported reliably. If you
need to compile source that passes the additional arguments, you must define macro
OLD_build_ILEarglist and include <as400_types.h> to access the old support.

Related Information

o |ILECALLX()--Call an|LE Procedure for OS/400 PASE
o Size ILEarglist()--Compute ILE Argument List Size for OS/400 PASE

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_ILECALLX()--Call an ILE Procedure for OS/400
PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

}}; nt | LECALLX(const |LEpointer *target,
| LEarglist_base *| LEargli st,
const arg_type_t *signature,
result _type t result _type,
i nt flags);

&

int _|LECALL(const |LEpointer *target,
| LEargli st _base *| LEargli st,
const arg_type_t *signature,
result_type_t result_type);

Library: Standard C Library (libc.a)

Threadsafe: Yes

Note: These functions can only used in an OS/400 PA SE program. See OS/400 PASE for more information.

The ILECALLX() and ILECALL() functions call an ILE procedure from an OS/400 PASE program. They
transfer control to an ILE procedure specified by a 16-byte tagged |LE procedure pointer, passing arguments
and returning the function result.

Parameters

tar get

(Input) Pointer to atagged procedure pointer that addresses the ILE procedure to call. target must be a
16-byte aligned OS/400 PASE memory address.

ILEarglist

(Input/Output) Pointer to a 16-byte aligned ILE argument list structure. ILEarglist is the address of the
structure that contains any argument values to pass to the ILE procedure, as well as memory for a
function result returned by the ILE procedure. ILEarglist must be long enough to contain all arguments
required by the target ILE procedure to avoid unpredictable results.

The base structure of an ILE argument list (including afunction result area) is specified by type
ILEarglist_base. Any argument values for the ILE procedure are stored in memory immediately
following the ILEarglist_base type. The specific format of the argument list is determined by the list of

arg_type t values addressed by the signature argument. The alignment requirements for each argument
valuein the ILE argument list depends on its length:

Argument Length Alignment
1 byte any
2 bytes 2 bytes
3-4 bytes 4 bytes
5-8 bytes 8 bytes
9 or more bytes 16 bytes
signature

(Input) Pointer to alist of arg_type t values that specify the sequence and type of arguments passed to
the ILE procedure. ILE procedures can accept a maximum of 400 arguments. The actual number of
arguments processed by the ILECALLX or _ILECALL function is determined by the number of
entriesin the signature list, which is determined by the location of the first ARG_END valuein thelist.
The following values are supported in the signature list:

ARG_END (0) Specifies the end of the signature list.
ARG _INT8 (-1) Signed 1-byte integer argument.
ARG_UINTS8 (-2) Unsigned 1-byte integer argument.
ARG _INT16 (-3) Signed 2-byte integer argument.

ARG _UINT16 (-4) Unsigned 2-byte integer argument.
ARG _INT32 (-5) Signed 4-byte integer argument.
ARG_UINT32 (-6) Unsigned 4-byte integer argument.
ARG _INT64 (-7) Signed 8-byte integer argument.
ARG_UINT64 (-8) Unsigned 8-byte integer argument.
ARG_FLOAT32(-9) 4-bytefloating-point argument.
ARG _FLOAT64 (-10) 8-byte floating-point argument.

ARG_MEMPTR (-11) Theargument isafield of type ILEpointer into which the caller has stored
an 0OS/400 PASE memory address (in member address). ILECALLX and
_ILECALL convert the 0OS/400 PASE memory address to an equivalent
teraspace address, except that address zero is converted to a specia value
for anull pointer. The converted result is passed as the argument value to
the target ILE procedure. Both functions generally update the IL Epointer
argument value in memory so it contains a tagged space pointer, but the
memory may hot be updated if the target ILE procedure uses ARGOPT
linkage.

ARG_SPCPTR (-12) The argument isafield of type ILEpointer where the OS/400 PASE
program has stored a tagged space pointer (or an untagged or null pointer).

ARG_OPENPTR (-13) Theargument isafield of type IL Epointer where the OS/400 PASE
program has stored a 16-byte pointer of any type (including possibly an
untagged or null pointer).

Any positive number The argument is an aggregate (structure or union). The valuein the
(1-32767) signature list isthe length, in bytes, of the aggregate.

result_type

(Input) Specifiesthe type of function result returned by the ILE procedure.

The following values are supported:

RESULT_VOID(0)
RESULT_INT8 (-1)

RESULT_UINTS (-2)

RESULT_INT16 (-3)

RESULT _UINT16 (-4)

RESULT_INT32 (-5)

RESULT _UINT32 (-6)

RESULT_INT64 (-7)

RESULT_UINT64 (-8)

RESULT FLOAT64 (-10)

Any positive number
(1-32767)

No function result.

Signed 1-byte integer result, returned in field result.s int8.r_int8 in
the ILEarglist argument.

Unsigned 1-byte integer result, returned in field result.s_uint8.r_uint8
in the ILEarglist argument.

Signed 2-byte integer result, returned in field result.s int16.r_int16in
the ILEarglist argument.

Unsigned 2-byte integer result, returned in field
result.s _uint16.r_uint16 in the ILEarglist argument.

Signed 4-byte integer result, returned in field result.s int32.r_int32in
the ILEarglist argument.

Unsigned 4-byte integer result, returned in field
result.s uint32.r_uint32 in the ILEarglist argument.

Signed 8-byte integer result, returned in field result.r_int64 in the
ILEarglist argument.

Unsigned 8-byte integer result, returned in field result.r_uint64 in the
ILEarglist argument.

8-byte floating-point result, returned in field result.r_float64 in the
ILEarglist argument.

The function result is an aggregate (structure or union). result_typeis
the length, in bytes, of the aggregate. An aggregate function result is
returned in a buffer allocated by the caller and passed to the target
ILE procedure using a special field in the argument list. The caller
must provide a buffer large enough for the result returned by the
target ILE procedure to avoid unpredictable results. An OS/400
PASE program must set field result.r_aggregate.addr in type
ILEarglist_base to the OS/400 PASE memory address of the result
buffer before calling an ILE procedure that returns an aggregate
result. _ILECALLX and _ILECALL convert the OS/400 PASE
memory address to a teraspace address the same way they convert
ARG_MEMPTR arguments.

#flags

(Input) Specifies options to control how the ILE procedure program is called. The flags argument isa
bitwise logical-or of one or more of the following values:

ILECALL NOINTERRUPT Specifiesthat OS/400 PASE signals will not interrupt the called ILE

(0Ox00000004) procedure. Some system functions (such as select) can be interrupted
by signals. Normally either an ILE signal or an OS/400 PASE signal
can interrupt such an operation, but ILECALL_NOINTERRUPT
delays OS/400 PASE signal processing until control returns from the
called ILE procedure. This option has no effect on ILE signal
handling. 4

Authorities

_ILECALL and _ILECALLX require no authority.

Return Value

Most errorsfrom _ILECALLX and _ILECALL are reported with OS/400 exception messages that are
converted to OS/400 PASE signals. See OS/400 PASE Signal Handling for information about handling

0OS/400 exceptions.

If no OS/400 PASE signdl is sent, one of these valuesis returned:
ILECALL_NOERROR(0) Thetarget ILE procedure was called and returned normally.
ILECALL INVALID ARG (1) Aninvalid value was found in the signature list.
ILECALL INVALID RESULT (2) Theresult typevaueisinvalid.
#LECALL_INVALID FLAGS(3) Theflagsvalueisinvalid.€

Usage Notes

1. Z ILECALLX and ILECALL canonly cal ILE proceduresin an OS/400 bound program. If your
0OS/400 PASE program needs to call an OS/400 program object (object type * PGM), you must use the
_PGMCALL function or use the systemCL function to run the CL CALL command.<

2. Every modulein a*PGM or * SRVPGM object containing afunction directly called by PASE (using
_ILECALLX or ILECALL) must be Teraspace-safe. If any module in the program was created as
TERASPACE(*NO), then OS/400 PASE will not be able to call any procedure in that program (even a
procedure in amodule created as TERASPACE(* YES)).

3. ILECALLX and _ILECALL do no character encoding conversions, so the OS/400 PASE program
may need to convert argument and result character strings between ASCII and EBCDIC. OS/400
PASE runtime function iconv can be used for character conversions.

4. An OS/400 PASE program can pass tagged space pointer arguments to an |LE procedure using either
ARG_SPCPTR or ARG_OPENPTR unless the target ILE procedure uses ARGOPT linkage, in which
case ARG_SPCPTR must be used. ARG_MEMPTR can be used for space pointer arguments
regardless of what linkage is used by the target ILE procedure.

5. ILE procedure pointers address resources inside an |ILE activation group. The machine prohibits use of
activation group resources from a process other than the owner of the activation group. This means that
the child process of afork cannot use ILE procedure pointers inherited from the parent process. The
child process can, however, use _ILEL OAD to load the bound program (creating a new activation in
the child process) and then use _ILESYM to obtain ILE procedure pointers into the new activation.

6. See Set Space Pointer for OS/400 PASE (_SETSPP) for more information about tagged space pointers
and sharing tagged pointers between processes.

7. & ILECALL isequivaentto ILECALLX withtheLECALL_NOINTERRUPT flag. &

Related Information

& PGMCALL()--Cal an 0S/400 Program for OS/400 PASE %

ILESYM()--Find an Exported |LE Symbol for OS400 PASE

ILELOAD()--Load an ILE Bound Program for OS/400 PASE

o size |LEarglist()--Compute ILE Argument List Size for OS/400 PASE

o build ILEarglist()--Build an ILE Argument List for OS/400 PASE

o SETSPP()--Set Space Pointer for OS/400 PASE

& systemCL ()--Run a CL Command for OS/400 PASE %

API Introduced: V4R5

Top | OS/400 PASE APIs| APIs by category

» PGMCALL()--Call an OS/400 Program for
0S/400 PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

int PGMCALL(const |LEpointer *target,

voi d **argv,
unsi gned flags);

Library: Standard C Library (libc.a)

Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The PGMCALL() function calls an OS/400 program (object type * PGM) from an OS/400 PASE program. It
transfers control to the * PGM aobject specified by a 16-byte tagged system pointer (passing any necessary
arguments) and resumes execution when control returns.

Parameters
target

(Input) Pointer to atagged system pointer that addresses the OS/400 program (object type * PGM) to
call. target must be a 16-byte aligned OS/400 PASE memory address.

argv
(Input/Output) Array of pointersto arguments. argv is the address of an array of pointers to argument
variables that are passed by-address to the OS/400 program. argv can be zero (null) if there are no
argumentsto pass. The last element in the array must be a null pointer. A maximum of
PGMCALL_MAXARGS (255) arguments can be passed to an OS/400 program.

flags

(Input) Specifies options to control how the OS/400 program is called. The flags argument is a bitwise
logical-or of one or more of the following values:

PGMCALL_DIRECT ARGS
(0x00000001)

PGMCALL_DROP_ADOPT
(0x00000002)

PGMCALL_NOINTERRUPT
(0x00000004)

Authorities

Authority
Object Referred to Required

0S/400 program to call *X

Return Value

Specifies that the addresses in the argv array are passed directly to
the OS/400 program as formal arguments. If
PGMCALL_DIRECT_ARGS isomitted, the system builds tagged
space pointers to the argument memory locations identified in the
argv array and passes the space pointers as formal arguments
(standard OS/400 program linkage).

Specifies that authorizations adopted by OS/400 program
invocations already in the stack are dropped so the called program
only benefits from authorizations available to the user and group
profilesfor the thread.

Specifies that 0S/400 PASE signals will not interrupt the called
0S/400 program. Some system functions (such as select) can be
interrupted by signals. Normally either an ILE signal or an OS/400
PASE signal can interrupt such an operation, but
PGMCALL_NOINTERRUPT delays OS/400 PASE signa
processing until control returns from the called OS/400 program.
This option has no effect on ILE signal handling.

Most errorsfrom _PGMCALL are reported with OS/400 exception messages that are converted to OS/400
PASE signals. See OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

If no OS/400 PASE signal is sent, afunction result of zero indicates the OS/400 program was called and
returned normally. A function result of -1 indicates an error that is further qualified by an errno value.

Error Conditions

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE errno

EAPAR):

[EINVAL] Aninvalid flags value was specified, or more than PGM CALL MAXARGS (255) arguments

were provided.

Usage Notes

1. PGMCALL canonly call OS/400 program objects (object type * PGM). If your OS/400 PASE
program needs to call a particular ILE procedureinside a* PGM or * SRVPGM object, you must to use
the ILECALL function.

2. Youcanusethe RSLOBJ or RSLOBJ2 function to obtain a system pointer to an OS/400 program
(object type * PGM).

3. Any OS/400 program that accepts arguments must be Teraspace-safe (created using
TERASPACE(*YES)) to be called using _PGM CAL L because the arguments are always passed in
Teraspace storage.

4. Arguments (addressed by pointersin the argv array) can be of any data type. Arguments are passed
by-address, so the called OS/400 program can modify argument variables to return results to the
0S/400 PASE program.

5. _"PGMCALL does no character encoding conversions, so the OS400 PASE program may need to
convert argument and result character strings between ASCII and EBCDIC. OS/400 PA SE runtime
function iconv can be used for character conversions.

Related Information

¢ RSLOBJ)--Resolve to an OS/400 Object for OS/400 PASE

e |LECALL()--Cal an ILE Procedure for 0S/400 PASE

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

size_|ILEarglist()--Compute ILE Argument List
Size for OS/400 PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

size t size ILEarglist(const arg type t *signature);

Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

Thesize ILEarglist() function computes the number of bytes of memory required to build an ILE argument
list for a specific function signature.

Parameters

signature

(Input) Pointer to alist of arg_type t values that specify the sequence and type of arguments passed to
the ILE procedure. ILE procedures can accept a maximum of 400 arguments. The actual number of
arguments processed by the size |L Earglist function is determined by the number of entriesin the
signature list, which is determined by the location of the first ARG_END valueinthelist. The
following values are supported in the signature list:

ARG_END (0) Specifies the end of the signature list.
ARG _INT8 (-1) Signed 1-byte integer argument.
ARG_UINT8 (-2) Unsigned 1-byte integer argument.
ARG_INT16 (-3) Signed 2-byte integer argument.

ARG_UINT16 (-4) Unsigned 2-byte integer argument.

ARG_INT32 (-5) Signed 4-byte integer argument.

ARG_UINT32 (-6) Unsigned 4-byte integer argument.

ARG_INT64 (-7) Signed 8-byte integer argument.

ARG _UINT64 (-8) Unsigned 8-byte integer argument.

ARG_FLOAT32 (-9) 4-byte floating-point argument.

ARG_FLOAT64 (-10) 8-byte floating-point argument.

ARG _MEMPTR(-11) Theargument isafield of type ILEpointer.

ARG_SPCPTR (-12) The argument isafield of type ILEpointer.

ARG_OPENPTR (-13) The argument isafield of type ILEpointer.

Any positivenumber The argument is an aggregate (structure or union). The valuein the
(1-32767) signature list is the length, in bytes, of the aggregate.

Authorities

size |ILEarglist requires no authority.

Return Value

size ILEarglist returns the number of bytes required to build the ILE argument list (including storage for the
ILEarglist_base type and any necessary bytes skipped for alignment between arguments), or zero if an error
was detected in the signature list.

Related Information

e ILECALLX()--CAdl an ILE Procedure for OS/400 PASE

o build ILEarglist()--Build an ILE Argument List for OS/400 PASE

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_CVTERRNO()--Convert ILE errno to OS/400
PASE errno

Syntax
#i ncl ude <as400_protos. h>

int CVITERRNQ(int errno_ile);

Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information.

The CVTERRNO() function converts an ILE errno value to a corresponding OS/400 PASE errno value.

Parameters
errno_ile
(Input) Specifiesthe ILE errno value to convert to a corresponding OS/400 PASE errno value. ILE and

0S/400 PASE errno values correspond if they have the same name (for example, EFAULT) ina
system-provided header file.

Authorities

_CVTERRNO requires no authority.

Return Value

_CVTERRNO returns the 0S/400 PASE equivaent of the input ILE errno value. If the input has no OS/400
PASE errno equivalent (for example, EAPAR isan ILE errno value with no OS400 PA SE equivalent), the
input is returned unchanged.

Usage Notes

1. Theerrno value set by an ILE runtime function must be determined by code running in the same thread
and activation group that called the runtime function because | L E runtime sometimes maintains a
separate errno variable for each activation group.

Related Information

o OQp2RunPase()--Run an 0S/400 PASE Program

API Introduced: V5R1

Top | OS/400 PASE APIs | APIs by category

_CVTSPP()--Convert Space Pointer for OS/400
PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

voi d* _CVTSPP(const |LEpointer *source);

Default Public Authority: * USE
Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information.

The CVTSPP() function converts the teraspace address in a tagged space pointer to an equivalent OS/400
PASE memory address.

Parameters
Sour ce

(Input) Pointer to a tagged space pointer or 16-byte null pointer. The source address must 16-byte
aligned.

Authorities

_CVTSPP requires no authority.

Return Value

_CVTSPP returns the OS/400 PASE memory address equivalent of the input tagged space pointer. The result
iszero (null) if the input is a 16-byte null pointer or atagged space pointer that does not contain the teraspace
address equivalent of some valid OS/400 PASE memory address.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an 0OS/400 PASE signal.
See 0OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

1. CVTSPPreturns an OS/400 PASE memory address regardless of whether thereis currently any
memory at that address (as long as the input tagged pointer contains the teraspace address equivalent
of avalid 0S/400 PASE memory address).

Related Information

o« SETSPP()--Set Space Pointer for OS/400 PASE

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_STRNCPY_SPP()--Copy Character String for
0S/400 PASE

Syntax

#i ncl ude <as400_protos. h>
void _STRNCPY_SPP(const | LEpointer *target,

const | LEpointer *source,
si ze t | engt h);

Library: Standard C Library (libc.a)

Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The STRNCPY _SPP() function copies a null-terminated character string. It performs the same operation as
the strncpy function, but uses 16-byte tagged space pointers to locate the source and target strings.

Parameters

target

(Output) Pointer to target buffer. Target is the 16-byte aligned address of a tagged space pointer to the
target buffer.

source

(Input) Pointer to source string. source is the 16-byte aligned address of a tagged space pointer to the
source character string.

length

(Input) Specifies the maximum number of bytesto copy between the source and target. If the source
string is too long, then only the specified number of bytes are copied and the target string is not
terminated with a null. If the source string is too short, the copy is padded with nulls to fill the target
buffer.

Authorities

_STRNCPY _SPP requires no authority.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an 0OS/400 PASE signal.
See 0OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

1. STRNCPY_SPP can copy between any memory areas addressabl e through tagged space pointers,
which need not be in the OS/400 PA SE address space.

2. _STRNCPY_SPP isimplemented with akernel system call, so it generally runs slower than strncpy.

Related Information

o CVTSPP()--Convert Space Pointer for OS/400 PASE

o SETSPP()--Set Space Pointer for OS/400 PASE

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_MEMCPY_WT()--Copy Memory With Tags for
0S/400 PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

voi d* _MEMCPY WI(void *target,
const void *source,
size_t | engt h);

void MEMCPY WI2(const |LEpointer *target,
const | LEpointer *source,
size_t | engt h);

Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The MEMCPY_WT() and _MEMCPY_WT2() functions copy memory without destroying 16-byte tagged
pointers.

Standard memory copy functions such as memcpy never produce a usable tagged pointer in the target memory.
_MEMCPY_WT and MEMCPY_WT2 copy memory in away that preseves the integrity of any complete
(16-byte) tagged pointers copied, as long as the source and target have the same alignment with respect to a
16-byte boundary.

Parameters

tar get

(Output) Pointer to target memory. For _MEMCPY _WT, target is the OS/400 PASE address of the
target memory. For _MEMCPY_WT2, target isthe 16-byte aligned address of a tagged space pointer
to the target memory.

source

(Input) Pointer to source memory. For MEMCPY_WT, source is the 0S/400 PASE address of the
source memory. For MEMCPY_WT?2, source isthe 16-byte aligned address of atagged space pointer
to the source memory.

length
(Input) Specifies the number of bytes to copy between the source and target.

Authorities

_MEMCPY_WT and MEMCPY_WT2 require no authority.

Return Value

_MEMCPY_WT returns the target memory address. _ MEMCPY_WT2 returns no function result.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE signal.
See 0S/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

1. MEMCPY_WT only copies between memory areasin the OS/400 PA SE address space.
_MEMCPY_WT2 can copy between any memory areas addressabl e through tagged space pointers,
which need not be in the 0S/400 PA SE address space.

2. Memory is copied without error if the source and target do not have the same alignment with respect to
a 16-byte boundary or if only part of atagged pointer is copied, but the target will not contain a usable
tagged pointer.

3. _MEMCPY_WT and _MEMCPY_WT2 are implemented with kernel system calls, so they generally
run slower than memcpy.

Related Information

o CVTSPP()--Convert Space Pointer for OS/400 PASE
o SETSPP()--Set Space Pointer for OS/400 PASE

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_STRLEN_SPP()--Determine Character String
Length for OS/400 PASE

Syntax

#i ncl ude <as400_protos. h>

size t _STRLEN SPP(const |LEpointer *string);
Library: Standard C Library (libc.a)

Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The STRLEN_SPP() determines the length of anull-terminated character string. It performs the same
operation as the strlen function, but uses a 16-byte tagged space pointer to locate the string.

Parameters
string

(Input) Pointer to character string. string is the 16-byte aligned address of a tagged space pointer to the
character string.

Authorities

_STRLEN_SPP requires no authority.

Return Value

_STRLEN_SPP returns length of the character string.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an 0OS/400 PASE signal.
See 0OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

1. STRLEN_SPP can reference any memory addressabl e through a tagged space pointer, which need
not be in the OS/400 PASE address space.

2. STRLEN_SPPisimplemented with akernel system call, so it generally runs slower than strlen.

Related Information

o CVTSPP()--Convert Space Pointer for OS/400 PASE
o _SETSPP()--Set Space Pointer for OS/400 PASE

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_ILESYM()--Find an Exported ILE Symbol for
0S/400 PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

int _|LESYM I LEpoi nter *export,

i nt act mark,
const char *synbol);

Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The ILESYM/() function finds an exported symbol in the activation of an ILE bound program and returns a
16-byte tagged pointer to the data or procedure for the symbol.

Parameters

export

(Output) Pointer to a 16-byte aligned buffer for the tagged pointer return value. The export buffer used
to store atagged pointer to the data or procedure for the exported symbol.

actmark

(Input) Specifies an activation mark that identifies the activation (in the current OS/400 job) to search
for the symbol. A value of zero causes the system to search all activations in the activation group that
started OS/400 PASE (either the activation group that called the Qp2RunPase AP, or the default
activation group for ajob running program QP2FORK). The ILEL OAD function returns an
activation mark when it loads a bound program.

symbol

(Input) Pointer to the symbol nameto find. symboal is the address of a null-terminated character string
in the OS/400 PASE CCSID that specifies the name of a symbol exported by the actmark activation.

Authorities

_ILESYM callsthe ILE QleGetExp API to find the exported symbol. See QleGetExp()--Get Export for
information about authorities required to use _ILESYM.

Return Value

A function result of -1 indicates an error that is further qualified by an errno value. If the symbol was
successfully found, the export pointer is set to the address of the function or data for the symbol, and the
function result is set to one of these values:

ILESYM_PROCEDURE (1) The export return value is a tagged pointer to an ILE procedure. An ILE
procedure pointer can be used withthe ILECALLX or ILECALL function
to call the ILE procedure.

ILESYM_DATA(2) The export return value is atagged space pointer to adataiteminthe ILE
activation.

Error Conditions

Memory errors and errors during |LE symbol resolution processing may be reported with an OS/400 exception
message that the system convertsto an OS/400 PASE signal (not return code and errno values). See 0S/400

PASE Signal Handling for information about handling OS/400 exceptions.

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE errno
EAPAR):

[EACCES Not authorized to the actmark activation.

[ENOENT] The symbol was not found in the actmark activation.

Related Information

e |LELOAD()--Load an ILE Bound Program for OS/400 PASE
e |ILECALLX()--Call an|LE Procedurefor OS/400 PASE

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_ILELOAD()--Load an ILE Bound Program for

0OS/400 PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

int | LELOAD(#const voi d& *id,
unsi gned

Library: Standard C Library (libc.a)
Threadsafe: Yes

int);

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _ILEL OAD() function loads a bound program into the I L E activation group associated with the procedure
that started OS/400 PA SE (either the activation group that called the Qp2RunPase AP, or the default
activation group for ajob running program QP2FORK).

Parameters

2id

flags

(Input) Pointer to the identification of the bound program.id is either the address of a null-terminated
character string in the OS/400 PASE CCSID that names the program, or the address of a system
pointer to the program, depending on the value of the flags argument. <X

(Input) Specifies options to control how the bound program is found and activated. The flags argument
isabitwise logical-or of one or more of the following values:

ILELOAD_PATH
(0x00000000)

ILELOAD_LIBOBJ
(0x00000001)

Specifiesthat the id argument is the address of a string that contains an
absolute or relative path in the Integrated File System to a program or
service program object. Alphabetic caseis either ignored or honored
depending on the attributes of the File System that contains the path.
ILELOAD_PATH, ILELOAD_LIBOBJ, and ILELOAD_PGMPTR are
mutually exclusive.

Specifies that the id argument is the address of a string that contains a
qualified library/object name of a service program (where omitting the
library name implies resolving to the object through the job library list).
Alphabetic case is honored when searching for alibrary/object name (so the
string should be all uppercase). ILELOAD_PATH, ILELOAD_LIBOBJ,
and ILELOAD_PGMPTR are mutually exclusive.

ILELOAD_PGMPTR 2 Specifies that the id argument is the address of a system pointer to the

(Ox00000002) bound program (object type * SRVPGM or *PGM) to load.
ILELOAD_PATH, ILELOAD_LIBOBJ, and ILELOAD_PGMPTR are
mutually exclusive. <

Authorities

_ILELOAD cdlsthelLE QleActBndPgm API to activate the bound program. See
QleActBndPgm()--Activate Bound Program for information about authorities required to use _ILEL OAD.

Return Value

A function result of -1 indicates an error that is further qualified by an errno value. If the bound program was
successfully activated (including the case where it was aready activated before _ILELOAD ran), the function
result is an activation mark that uniquely identifies the activation within the process.

Error Conditions

Memory errors and errors while activating the bound program may be reported with an OS/400 exception
message that the system convertsto an OS/400 PASE signal (not return code and errno values). See 0S/400

PASE Signal Handling for information about handling OS/400 exceptions.

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE errno
EAPAR):

[EACCEY Not authorized to alibrary or directory needed to resolve theid.

[EBUSY] A library or directory needed to resolve the specified id is currently in use (locked).
[EFAULT] A memory fault occurred attempting to reference theid.

[EINVAL] Aninvalid argument value was specified.

[EINTER] An signal interrupted the operation.

[ENAMETOOLONG] Some component of the specified id istoo long, or the entire id exceeds the system
limit.

[ENOENT] No file/object was found for the specified id.

[ENOTDIR] A quadlifier part of theid is not adirectory.

[ELOOP] Too many levels of symbolic links.

Related Information

o ILECALLX()--Call an|LE Procedurefor OS/400 PASE
e ILESYM()--Find an Exported |LE Symbol for OS400 PASE
o & RSLOBJ()--Resolve to an OS/400 Object for OS/400 PA SE4%

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

SQLOverrideCCSID400()--Override SQL CLI
CCSID for OS/400 PASE

Syntax

#i ncl ude <as400_protos. h>

int SQLOverri deCCSI D400(i nt newCCSI D) ;

Library: OS/400 PASE SQL CLI Library (libdb400.a)
Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The SQL OverrideCCSI D400() function allows an OS/400 PA SE program to specify a Coded Character Set
Identifier (CCSID) used to convert character data arguments and results on OS/400 PASE SQL Call Level
Interface (CLI) functions.

Parameters

newCCSID
(Input) Specifies the CCSID used for OS/400 PASE SQL CLI functions.

Authorities

No specia authorities required.

Return Value

The function result is zero for success, or -1 for an error that is further qualified by an errno value.

Error Conditions

At least these errno values can be returned:

[EINVAL] The conversion between newCCSID and the OS/400 job default CCSID is not supported.

[ENFILE] A converter could not be opened because the maximum number of filesin the system are
already opened.

[EMFILE] A converter could not be opened because the maximum number of files are already opened.

Usage Notes

1. The system automatically converts character arguments and results between the CCSID of thejob or
database field and a CCSID used for OS/400 PASE SQL CLI functions that defaults to the OS/400
PASE CCSID value in effect when the first 0S/400 PASE SQL CLI function iscalled. Y ou must call

SQL OverrideCCSID400 before any other 0S/400 PASE SQL CLI function, or it will have no effect
on CCSID conversions.

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

QMHRCVM()--Receive Nonprogram Message for
0S/400 PASE

Syntax

#i ncl ude <o0s400nsg. h>

int QWHRCVM voi d *negi nf o,
i nt negi nfoLen,
const char *format,
const void *nsgq,
const char *negt ype,

i nt *nsgkey,
i nt wai t,
const char *action,
voi d *errcode) ;
i nt QVHRCVML(voi d *negi nf o,
i nt negi nf oLen,

const char *format,
const void *msgq,
const char *nmsgtype,

i nt *negkey,

i nt wai t,
const char *action,
voi d *errcode,
i nt ccsid);

Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The Receive Nonprogram Message (QMHRCVM and QMHRCV M 1) 0OS/400 PASE runtime functions allow
an 0S/400 PASE program to receive a message from a nonprogram message gqueue.

Parameters

These 0S/400 PA SE runtime functions accept the same arguments as the Receive Nonprogram Message
(QMHRCVM) 0S/400 AP, except that the OS/400 PA SE functions use character string inputs that are
null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input
character stringsto the job default CCSID and pads with blanks (as necessary) to match the fixed-length inputs
required by the system API.

No conversions are done by OS/400 PA SE runtime for the msginfo and errcode (input/output) arguments
because they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID for
character data returned by the system API in the msginfo argument, and users can request CCSID information

for the errcode argument by using ERRC0200 format. The QMHRCVM 0OS/400 PASE runtime function uses a
default for the ccsid value passed to the system API that does not do any CCSID conversion for character data
in the received message.

See QMHRCV M()--Receive Nonprogram Message for further description of the arguments for the
QOMHRCVM and QMHRCVM 1 OS/400 PASE runtime functions.

Authorities

See QMHRCV M ()--Receive Nonprogram Message for information about authorities required for the
QOMHRCVM and QMHRCVM 1 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string could not
be converted to the job default CCSID or wastoo long for the QMHRCVM API, or if the QMHRCVM API
returned error information in the errcode argument.

Related Information

o OMHRCVM()--Receive Nonprogram Message (system API)

¢ OMHRCVM()--Receive Nonprogram Message for OS/400 PASE

¢ OMHSNDPM()--Send Program Message for OS/400 PASE

« OMHRCVPM()--Receive Program Message for OS/400 PASE

API Introduced: V5R1

Top | OS/400 PASE APIs | APIs by category

QMHRCVPM()--Receive Program Message for

0OS/400 PASE

Syntax

Threadsafe: Yes

#i ncl ude <o0s400nsg. h>

i nt QVWHRCVPM voi d

i nt
const
const
i nt
const
i nt

i nt
const char
voi d

char
char

char

i nt QWHRCVPML(voi d

i nt
const
const
i nt
const
i nt
i nt
const
voi d
i nt
const

char
char
char

char

char

i nt QWHRCVPM2(voi d

i nt
const
const
i nt
const
i nt

i nt
const
voi d
i nt
const
const
i nt

char
voi d

char

char

char
char

Library: Standard C Library (libc.a)

*megi nf o,
nsgi nf oLen,
*format,
*pgny,
pgnylel t a,
*megt ype
*megkey,
wai t,
*action,
*errcode);

*megi nf o,
nsgi nf oLen,
*formt,
*pgny,
pgnylel t a,
*megt ype
*nmegkey,
wait,
*action,
*errcode
pgnglLen,
*pgmgQual) ;

*megi nf o,
nsgi nf oLen,
*format,
*pgny,
pgnylel t a,
*megt ype
*megkey,
wait,
*action,
*errcode
pgnglLen,
*pgnyQual ,
*pgnyType,
ccsid);

Note: These functions can only used in an OS/400 PA SE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The Receive Program Message (QMHRCVPM, QMHRCVPM1, and QMHRCVPM2) 0S/400 PASE runtime
functions allow an OS/400 PA SE program to receive a message from a program call message queue or from
the job external message queue.

Parameters

These OS/400 PA SE runtime functions accept the same arguments as the Receive Program M essage
(QMHRCVPM) OS/400 AP, except that the OS/400 PA SE functions use character string inputs that are
null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input
character stringsto the job default CCSID and pads with blanks (as necessary) to match the fixed-length inputs
required by the system API.

No conversions are done by OS/400 PA SE runtime for the msginfo and errcode (input/output) arguments
because they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID for
character data returned by the system API in the msginfo argument, and users can request CCSID information
for the errcode argument by using ERRC0200 format. The QMHRCVPM and QMHRCVPM1 OS/400 PASE
runtime functions use a default for the ccsid value passed to the system API that does not do any CCSID
conversion for character datain the received message.

See QMHRCVPM ()--Receive Program Message for further description of the arguments for the
QMHRCVPM, QMHRCVPM1, and QMHRCVPM2 OS/400 PASE runtime functions.

Authorities

See QMHRCV PM ()--Receive Program Message for information about authorities required for the
QMHRCVPM, QMHRCVPM1, and QMHRCVPM2 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string could not
be converted to the job default CCSID or wastoo long for the QMHRCVPM API, or if the QMHRCVPM API
returned error information in the errcode argument.

Usage Notes

1. The system only creates program call message queues ILE procedures and OMI programs, so you
cannot send to or receive from a program message queue for a specific function in an OS/400 PASE
program.

2. When "*" is specified for the pgmg argument, the system locates the program call message queue for
an (internal) ILE procedure in service program QP2USER that is the apparent caller of any ILE
procedure called by the OS/400 PASE program using OS/400 PASE runtime function ILECALLX or
_ILECALL. Thisqueueisthe target for messages a called ILE procedure sendsto itscaller, and isalso
used for machine exceptions caused by operations inside the OS/400 PASE program (such as message
MCHO0601 afor storage reference error).

Related Information

OQMHRCVPM()--Receive Program Message (system API)

OMHRCVPM()--Receive Program Message for OS/400 PASE

OMHSNDM ()--Send Nonprogram Message for OS/400 PASE

OMHRCVM ()--Receive Nonprogram M essage for OS/400 PASE

API Introduced: V5R1

Top | OS/400 PASE APIs| APIs by category

» RSLOBJ()--Resolve to an OS/400 Object for
0S/400 PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

int RSLOBJ(ILEpointer *sysptr,
const char *pat h,
char *obj type);
int RSLOBJ2(ILEpointer *sysptr,
unsi gned short type_subtype,
const char *obj narne,
const char *| i bnane) ;

Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The RSLOBJ() and _RSLOBJ2() functions resolve to an OS/400 object. They accept symbolic information
that identifies the object and return a 16-byte tagged system pointer to the specified object.

Parameters

Sy sptr

(Output) Pointer to the OS/400 object. sysptr is the address of a 16-byte aligned buffer alocated by the
caller and used to return a system pointer to the OS/400 object.

path
(Input) Pointer to an Integrated File System path name that locates the OS/400 object. path isthe
address of a null-terminated string in the OS/400 PASE CCSID that contains a path name for the
0OS/400 object.

objtype

(Output) Pointer to the returned OS/400 object type. objtype is the address of a buffer allocated by the
caller and used to return a null-terminated string in the 0S/400 PASE CCSID that identifies the

0OS/400 abject type. If objtypeisanull pointer, no OS/400 object type is returned. When objtype is not
null, the caller must provide a buffer of length RSLOBJ_OBJTYPE_MAXLEN (11) to avoid errors.

type_subtype

(Input) Object type and subtype. type_subtype specifies the M| abject type and M1 object subtype of
the OS/400 object. Header file <as400_types.h> declares these constants for type and subtype values:

RSLOBJ_TS PGM Specifies the MI type and subtype for an OS/400 program (object type
(0x0201) *PGM).

RSLOBJ TS SRVPGM Specifies the MI type and subtype for an OS/400 service program (object
(0x0203) type * SRVPGM).

objname

(Input) Pointer to the name of the OS/400 object. objname is the address of a null-terminated string in
the OS/400 PASE CCSID that contains the name of the OS/400 object.

libname

(Input) Pointer to the name of the OS/400 library that contains the object. libname is the address of a
null-terminated string in the OS/400 PASE CCSID that contains the name of an OS/400 library.
Specifying anull pointer or a pointer to anull string is the same as specifying "*LIBL", which
searches the thread library list.

Authorities

Authority
Object Referred to Required

Every directory in the Integrated File System path to the OS/400 object *X

0OS/400 library that contains the object *X

Return Value

The function result is zero if the OS/400 object was found and a system pointer was returned in the sysptr
argument. A function result of -1 indicates an error that is further qualified by an errno value.

Error Conditions

Memory errors may be reported with an OS/400 exception message that the system converts to an OS/400
PASE signa (not return code and errno values). See OS/400 PASE Signal Handling for information about

handling OS/400 exceptions.

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE errno
EAPAR):

[EACCEY Not authorized to alibrary or directory needed to resolve to the OS/400 object.

[EBUSY] A library or directory needed to resolve to the OS/400 object is currently in use
(locked).

[EFAULT] A memory fault occurred attempting to reference an argument.

[EINVAL] Aninvalid argument value was specified.

[EINTER] An signal interrupted the operation.

[ENAMETOOLONG] Some component of the specified path istoo long, or the entire path exceeds the
system limit, or the objname or libname string is longer than 30 characters.

[ENOENT] The specified OS/400 object was not found.
[ENOTDIR] A quadlifier part of the path is not adirectory.
[ELOOP] Too many levels of symboalic links.

Usage Notes

1. For _RSLOBJ, aphabetic caseis either ignored or honored depending on the attributes of the file
system that contains the path. Alphabetic caseis always honored by _RSL OBJ2, so the objname and
libname strings must be uppercase.

Related Information

e ILELOAD()--Load an ILE Bound Program for OS/400 PASE

o _PGMCALL()--Call an OS/400 Program for OS400 PASE

&

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

» RETURN()--Return Without Exiting OS/400
PASE

Syntax

#i ncl ude <as400_protos. h>

int RETURN(void);

Default Public Authority: * USE
Library: Standard C Library (libc.a)

Threadsafe: No

Note: This function can only be used in an OS/400 PA SE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The RETURN() function returnsto the ILE caller that called OS/400 PASE in thisjob, without exiting the
0S/400 PASE program. OS/400 PASE remains active in the job, so APIs Qp2CallPase and Qp2CallPase2 can
be used to call procedures in the OS/400 PASE program.

Parameters

None.

Authorities

None.

Return Value

_RETURN does not return to the OS/400 PASE program if it successfully returnsto the ILE caler. A function
result of -1 with an errno is returned for any error.

Error Conditions

EPERM issetif RETURN isused in afork child process or in an OS/400 PA SE program that is currently
running multiple threads.

Usage Notes

1. The system provides two OS/400 PASE programs, /ust/lib/start32 (for 32-bits) and /usr/lib/start64 (for
64-bits), that return without exiting immediately after intializing the standard C library (libc.a) and
pthreads library (libpthreads.a).

2. The system ends any OS/400 PASE program when it destroys the activation group that called API
Qp2RunPase. API program QP2SHEL L aways calls Qp2RunPase in a* NEW activation group that is
destroyed before return, so QP2SHELL is not useful for running an OS/400 PASE program that
returns without exiting.

3. You may need to call ILE API Qp2EndPase to end an OS/400 PASE program that uses_ RETURN.
See Qp2EndPase()--End an OS/400 PASE Program for more information.

Related Information

o OQp2RunPase()--Run an 0S/400 PASE Program
o OQp2EndPase()--End an OS/400 PASE Program

<

API Introduced: V5R2

Top | OS/400 PASE APIs| APIs by category

systemCL()--Run a CL Command for OS/400

PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

i nt systenCL(const char *conmmand,
i nt flags);

Library: Standard C Library (libc.a)
Threadsafe: Conditional

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information

about creating OS/400 PASE programs.

The systemCL () function runs a CL command.

Parameters

command

(Input) Pointer to a null-terminated string in the OS400 PASE CCSID that specifies the CL command

with any parameters.

flags

(Input) Specifies option flags that control how the CL command runs. flagsis a bit-wise OR of any of

the following values:

SYSTEMCL_MSG_STDOUT (0x00000001)

SYSTEMCL_MSG_STDERR (0x00000002)

Directs the system to receive OS/400 messages
after normal command completion, convert the
text of each message from the job default CCSID
to the OS/400 PASE CCSID, and write converted
text lines to Integrated File System descriptor 1
(stdout).

Directs the system to receive OS/400 messages
after error command completion, convert the text
of each message from the job default CCSID to the
0S/400 PASE CCSID, and write converted text
linesto Integrated File System descriptor 2
(stderr).

SYSTEMCL_MSG_NOMSGID (0x00000004)

SYSTEMCL_SPOOL_STDOUT (0x00000008)

SYSTEMCL_SPOOL_KEEP (0x00000010)

SYSTEMCL_FILTER_STDIN (0x00000020)

SYSTEMCL_FILTER _STDOUT (0x00000040)

SYSTEMCL_FILTER _STDERR (0x00000080)

SYSTEMCL_SPAWN (0x00000100)

SYSTEMCL_SPAWN_JOBLOG (0x00000200)

Suppresses message identifiersin text lines written
to stdout or stderr for messages processed on
behalf of SYSTEMCL_MSG_STDOUT and
SYSTEMCL_MSG_STDERR. When this option
is omitted, message text lines have the form
"XXX1234: message text", where "X XX1234" is
the OS/400 message identifier.

Directs the system to process any spooled output
files created by the CL command by reading each
file, converting file data from the job default
CCSID to the OS/400 PASE CCSID, and writing
converted text lines to Integrated File System
descriptor 1 (stdout).

Directs the system to keep any spooled output files
after they are processed for option
SYSTEMCL_SPOOL_STDOUT, instead of
deleting the files after their contents is written to
stdout.

Directs the system to setup afilter thread that
converts from the 0S/400 PASE CCSID to the job
default CCSID for any datathe CL command
reads from Integrated File System descriptor O
(stdin).

Directs the system to setup afilter thread that
converts any data the CL command writes to
Integrated File System descriptor 1 (stdout) from
the job default CCSID to the OS/400 PASE
CCsSID.

Directs the system to setup afilter thread that
converts any datathe CL command writesto
Integrated File System descriptor 2 (stderr) from
the job default CCSID to the OS/400 PASE
CCSID.

Directs the system to run the CL command in a
separate process. If this option is omitted, the CL
command runsin the process that calls the
systemCL function.

Forces the system to generate an OS/400 job log
for the job submitted using option
SYSTEMCL_SPAWN.

SYSTEMCL_ENVIRON (0x00000400) Directs the system to copy OS/400 PASE
environment variablesto ILE environment
variables before running the CL command. This
option sets |LE environment variablesin the
process that calls the systemCL function,
regardless of whether the command runsin this
process or a child process (created for option
SYSTEMCL_SPAWN).

Authorities

No authority is needed to run the systemCL function, but the caller must be authorized to run the specified CL
command.

Return Value

If the command argument is a null pointer, the function result is zero if system support to call the OS/400
Command Analyzer is available, or anonzero value otherwise.

If option SYSTEMCL _SPAWN is specified, the function result is the exit code from the spawned job
(returned by the ILE waitpid function), which is non-zero if any error occured.

Otherwise, the function result is zero for normal command completion, or -1 if an error occurred. No errno
valueis set for CL command errors.

Usage Notes

1. systemCL isonly threadsafe in these two cases:
o You useoption SYSTEMCL_SPAWN and do not use SYSTEMCL _ENVIRON.

o You only run threadsafe CL commands and do not use SYSTEMCL _SPAWN,
SYSTEMCL _FILTER_STDIN, SYSTEMCL _FILTER_STDOUT,
SYSTEMCL _FILTER_STDERR, or SYSTEMCL_ENVIRON.

2. You must set ILE environment variable QIBM_USE_DESCRIPTOR_STDIO to Y or | before the
CL command does any file I/O to stdin, stdout, or stderr if you need CCSID conversion controlled by
optionsSYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT, and
SYSTEMCL _FILTER_STDERR.

3. Processing for options SYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT, and
SYSTEMCL_FILTER_STDERR creates |ILE pthreads (not OS/400 PA SE threads) for CCSID
conversion in the process that calls the sysstemCL function. Integrated File System descriptors 0, 1,
and 2 are replaced in whatever job runs the CL command with pipes handled by the filter threads. The
original file descriptors are restored and the filter threads are ended before the systemCL function
returns.

4. Many CL commands are not supported in ajob with multiple threads. Processing for
SYSTEMCL_SPAWN runsthe CL command in ajob that is not multithread-capable, so it can run
commands that do not work in ajob that is multithread-capable.

5. Processing for option SYSTEMCL _SPAWN uses the ILE spawn API to run abatch job that inherits
ILE attributes such as Integrated File System descriptors and job CCSID, but the batch job does not
inherit any OS/400 PASE program (unlike a job created by the OS/400 PASE fork function).

6. Processing for SYSTEMCL_ENVIRON uses the same name for the ILE copy and the OS/400 PASE
environment variable for most variables, but the system adds a prefix "PASE_" to the name of the ILE
copy of some environment variables. Y ou you can control what variables names add the prefix by
storing a colon-delimited list of variable namesin OS/400 PASE environment variable
PASE_ENVIRON_CONFLICT. If PASE_ENVIRON_CONFLICT is not defined, the system
defaults to adding the prefix when copying OS/400 PASE environment variables SHEL L, PATH,
NLSPATH, and LANG.

7. Processing for SYSTEMCL_ENVIRON setstwo ILE environment variables for each OS/400 PASE
environment variable with a name prefix of "ILE_". The OS/400 PASE environment variable valueis
used to set both a variable with the same name and a variable with the name minus the prefix "ILE_"
in the ILE environment. For example, if the OS/400 PASE environment contains a variable named
ILE_PATH, the value of thisvariableis used to set both ILE_PATH and PATH inthelLE
environment.

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

QMHSNDM()--Send Nonprogram Message for
0S/400 PASE

Syntax

#i ncl ude <o0s400nsg. h>

i nt QWHSNDM const char *nsgid,
const char *negf,
const void *negdat a,
i nt nsgdat aLen,
const char *negt ype,
const char *negqLi st,

i nt nsgqCount ,
const char *rpyd,

i nt *nsgkey,
voi d *errcode) ;

i nt QWHSNDML(const char *nsgid,
const char *nsgf,
const void *nsgdata,

i nt nsgdat aLen,
const char *nsgtype,
const char *msgqli st,

i nt nsgqCount ,
const char *rpyq,

i nt *nmsgkey,
voi d *errcode,
i nt ccsid);

Public Default Authority: *USE
Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The Send Nonprogram Message (QMHSNDM and QMHSNDM 1) OS/400 PASE runtime functions allow an
0S/400 PASE program to send a message to a nonprogram message queue so it can communicate with another
job or user.

Parameters

These OS/400 PA SE runtime functions accept the same arguments as the Send Nonprogram Message
(QMHSNDM) OS/400 API, except that the OS/400 PASE functions use character string inputs that are
null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input
character stringsto the job default CCSID and pads with blanks (as necessary) to match the fixed-length inputs
required by the system API.

No conversions are done for the msgdata (input) argument and the errcode (input/output) argument because
they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID for character
data in the msgdata argument, and users can regquest CCSID information for the errcode argument by using
ERRC0200 format. The QMHSNDM OS/400 PA SE runtime function uses the current OS/400 PASE CCSID
as adefault for the ccsid value passed to the system API.

See QMHSNDM ()--Send Nonprogram Message for further description of the arguments for the QMHSNDM
and QMHSNDM1 0S/400 PASE runtime functions.

Authorities

See QMHSNDM ()--Send Nonprogram Message for information about authorities required for the QMHSNDM
and QMHSNDM1 0S/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string could not
be converted to the job default CCSID or was too long for the QMHSNDM API, or if the QMHSNDM API
returned error information in the errcode argument.

Related Information

QMHSNDM()--Send Nonprogram Message (system API)

OMHRCV M ()--Receive Nonprogram Message for 0S/400 PASE

OMHSNDPM ()--Send Program Message for OS/400 PASE

« OMHRCVPM()--Receive Program Message for OS/400 PASE

API Introduced: V5R1

Top | OS/400 PASE APIs | APIs by category

QMHSNDPM()--Send Program Message for
0S/400 PASE

Syntax

#i ncl ude <o0s400nsg. h>

i nt QVHSNDPM const char *megi d,
const char *megf,
const void *megdat a,
i nt nsgdat aLen,
const char *megt ype,
const char *pgnyg,

i nt pgngDel t a,
i nt *nmegkey,
voi d *errcode);

i nt QVHSNDPML(const char *nsgid,
const char *msgf,
const void *nsgdata,

i nt nsgdat aLen,
const char *nsgtype,
const char *pgng,

i nt pgngDel t a,
i nt *nmegkey,
voi d *errcode,
i nt pgngLen,
const char *pgmgQual ,
i nt extWait);

i nt QVHSNDPM2(const char *nsgid,
const char *msgf,
const void *nsgdata,

i nt nsgdat alLen,
const char *nsgtype,
const void *pgng,

i nt pgngDel t a,
i nt *nmegkey,
voi d *errcode,
i nt pgngLen,
const char *pgmgQual ,
i nt extWai t,
const char *pgmgType,
i nt ccsid);

Library: Standard C Library (libc.a)
Default Public Authority: * USE

Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PA SE programs.

The Send Program Message (QMHSNDPM, QMHSNDPM 1, and QMHSNDPM2) OS/400 PASE runtime
functions allow an OS/400 PA SE program to send a message to a program call message queue or to the job
external message queue.

Parameters

These OS/400 PA SE runtime functions accept the same arguments as the Send Program M essage
(QMHSNDPM) OS/400 API, except that the OS/400 PA SE functions use character string inputs that are
null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input
character stringsto the job default CCSID and pads with blanks (as necessary) to match the fixed-length inputs
required by the system API.

No conversions are done for the msgdata (input) argument and the errcode (input/output) argument because
they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID for character
data in the msgdata argument, and users can request CCSID information for the errcode argument by using
ERRC0200 format. The QMHSNDPM and QMHSNDPM1 OS/400 PA SE runtime functions use the current
0S/400 PASE CCSID as adefault for the ccsid value passed to the system API.

See QMHSNDPM ()--Send Program Message for further description of the arguments for the QMIHSNDPM,
QMHSNDPM1, and QMHSNDPM 2 0S/400 PA SE runtime functions.

Authorities

See QMHSNDPM()--Send Program Message for information about authorities required for the QMHSNDPM,
QMHSNDPM1, and QMHSNDPM2 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string could not
be converted to the job default CCSID or was too long for the QMHSNDPM API, or if the QVUIHSNDPM API
returned error information in the errcode argument.

Usage Notes

1. The system only creates program call message queues ILE procedures and OMI programs, so you
cannot send to or receive from a program message queue for a specific function in an OS/400 PASE
program.

2. When "*" is specified for the pgmqg argument, the system locates the program call message queue for
an (internal) ILE procedure in service program QP2USER that is the apparent caller of any ILE
procedure called by the OS/400 PASE program using OS/400 PASE runtime function ILECALLX or
_ILECALL. OS/400 PASE programs should generally use "*PGMBDY" or "*CTLBDY" instead of
"*" t0 send messages to their caller because a variable number of program call message queues can
exist between the queue identified by pgmg "*" and the queue for the ILE API that called the OS/400

PASE program.

Related Information

o QMHSNDPM()--Send Program Message (system API)

« OMHRCVPM()--Receive Program Message for OS/400 PASE

¢ OMHSNDM ()--Send Nonprogram Message for OS/400 PASE

¢ OMHRCVM()--Receive Nonprogram Message for OS/400 PASE

API Introduced: V5R1

Top | OS/400 PASE APIs | APIs by category

_SETCCSID()--Set OS/400 PASE CCSID

Syntax

#i ncl ude <as400 protos. h>

int SETCCSID(int ccsid);

Default Public Authority: * USE
Library: Standard C Library (libc.a)
Threadsafe: No

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The _SETCCSID() function returns the previous value of the OS/400 PASE Coded Character Set Identifier
(CCSID) and optionally sets a new OS/400 PASE CCSID.

Parameters

ccsid
(Input) Specifies the new OS/400 PASE CCSID value, or -1 to retrieve the current OS/400 PASE
CCSID without changing it. An OS/400 PASE CCSID must be either asingle-byte ASCII encoding

that the ILE version of iconv can convert to and from the job default CCSID, or 1208 for UTF-8
encoding.

Authorities

_SETCCSID requires no authority.

Return Value

_SETCCSID returns either the original OS/400 PASE CCSID (before it was changed), or -1 if an error
occurred and the OS/400 PASE CCSID was left unchanged.

Error Conditions

The only error condition that causes a function result of -1 is that the new ccsid cannot be converted to or from
the OS/400 job default CCSID.

Usage Notes

1. Theinitial OS/400 PASE CCSID valueis specified as a parameter on the Qp2RunPase API. The
0S/400 PASE CCSID has two primary uses:

0 Itisusedto set the the CCSID attribute of any bytestream file created in the Integrate File
System by an OS/400 PASE program.

o Itisused by OS/400 PASE runtime functions to convert character arguments and results
between the OS/400 PASE CCSID and whatever encoding is required by the OS/400 service
used to implement the function.

2. The OS/400 PASE CCSID should generaly be the CCSID equivalent of the code set for the current
locale. See OS/400 PASE L ocales to determine what locales are supported by OS/400 PASE.

3. Character arguments and results for OS/400 PA SE runtime functions that use OS/400 services are
almost always automatically converted using the OS/400 PASE CCSID. For example, the name of a
bytestream file passed to the OS/400 PA SE open function is converted from the OS/400 PASE CCSID
to the internal encoding required by the OS/400 Integrated File System.

4. Any dataan OS/400 PASE program writes to or reads from afile descriptor for an open bytestream
file, socket, FIFO, or pipeis generally not converted. The only exception isfor theinitia file
descriptors 0, 1, and 2 provided when the Qp2RunPase API is called to start an OS/400 PASE
program, which default to converting file data between the 0S/400 PASE CCSID and the job default
CCSID (see Run an OS/400 PA SE Program (Qp2RunPase) for more information).

5. Other than special support for file descriptors 0, 1, and 2, OS/400 PASE runtime does no CCSID
conversion of file data. This differsfrom ILE runtime, which does CCSID conversion between the file
CCSID and job default CCSID for any file opened in text mode. OS/400 PA SE runtime sets the
CCSID attribute of any fileit creates to the OS/400 PASE CCSID, so an ILE program that uses text
mode to open an ASCI| file created by an OS/400 PA SE program can read and write EBCDIC data.

6. The OS/400 PASE runtime functions cstoccsid and ccsidtocs convert between Al X Character Set

names and CCSID values.

Related Information

¢« Op2RunPase()--Run an OS/400 PASE Program

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_SETSPP()--Set Space Pointer for OS/400 PASE

Syntax

#i ncl ude <as400_types. h>
#i ncl ude <as400_protos. h>

void _SETSPP(I LEpoi nter *target,
const void *nenory);

Default Public Authority: * USE
Library: Standard C Library (libc.a)
Threadsafe: Yes

Note: Thisfunction can only used in an OS/400 PASE program. See OS/400 PA SE for more information
about creating OS/400 PASE programs.

The _SETSPP() function sets a tagged space pointer to the teraspace equivalent of an OS/400 PASE memory
address.

Parameters

target
(Output) Pointer to a 16-byte aligned buffer where the tagged space pointer (or null pointer) is
returned.

memory
(Input) Pointer containing either an OS/400 PASE memory address, or anull pointer (zero).

Authorities

_SET SPP requires no authority.

Return Value

_SETSPP returns no function result. A tagged space pointer or 16-byte null pointer is returned in the target
buffer.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an 0OS/400 PASE signal.
See 0OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

1. SETSPP returns a 16-byte null pointer if the input OS/400 PASE memory addressis null (zero) or if a
64-bit memory value points to alocation that cannot contain OS/400 PASE memory. OS/400 PASE
memory is allocated from teraspace, but teraspace has alimited capacity smaller than 64-bits, so
0S/400 PASE can only provide addressability to a subset of a 64-bit address space.

2. _SETSPP returns atarget space pointer regardless of whether thereis currently any memory at the
0S/400 PASE memory address. The tagged space pointer returned by _ SET SPP can reference any
memory later mapped to the OS/400 PASE memory address, until the OS/400 PASE program either
calls exec or ends.

3. A tagged space pointer to ateraspace location must only be used by the process that owns the
teraspace, although the current system implementation does not reliably enforce this restriction.
Applications must not assume that a process can reference memory in the teraspace of another process
because future system implementations may make this impossible. Tagged space pointers to teraspace
memory that were either inherited by the child process of afork or stored in shared memory by another
process should be considered unusable.

4. Tagged (16-byte) pointers must not be stored in memory mapped from a bytestream file (by either
mmap or shmat, although the current system implementation does not reliably enforce this restriction.
Tagged pointers can be stored in shared memory objects (created by shmget and mapped by shmat),
but atagged space pointer to teraspace memory cannot be reliably used by a process other than the one
that owns the teraspace.

Related Information

o CVTSPP()--Convert Space Pointer for OS/400 PASE

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

0S/400 PASE Runtime Libraries

0S/400 PASE runtime supports alarge subset of the interfaces provided by AlX runtime. Most runtime
interfaces supported by OS/400 PASE provide the same options and behavior as A1X. The latest information
about what AlX runtime interfaces are supported by OS/400 PASE can found at the PartnerWorld for

Developers, i Series web site.

0S/400 PASE interfaces for Structured Query Language (SQL) Call Level Interface (CLI1) are somewhat
different from any Al X database. OS/400 PASE library libdb400.a handles (ASCII/EBCDIC) character
encoding conversions, but supports only the options and behaviors provided by DB2 Universal Database for
iSeries. An OS/400 PASE program that uses SQL CLI must compile using OS/400 header file sglcli.h. See
0OS/400 PASE for more information.

0OS/400 PASE runtime includes the following libraries, installed (as symboalic links) in /ust/lib. See AIX
documentation for information about most of the interfaces exported by these libraries, DB2 Universal
Database for iSeries documentation for information about SQL CLI interfaces, and OS/400 PASE APIsfor
information about interfaces that are unique to OS/400 PASE:

Library Description

libbsd.a BSD UNIX(TM) equivalence runtime
libc.a C runtime

libC.a C++ runtime

libcl28.a C 128-hit (type long double€) runtime
libC128.a C++ 128-hit (type long double) runtime
libcrypt.a C runtime cryptographic interfaces
Zlibcur.a AlX legacy Curses library<%

libdb400.a DB2 Universal Database SQL CLI runtime
libdbm.a New Database Manager (NDBM) interfaces
libdbx.a dbx (debugger) utility support

libdl.a Dynamic load runtime

Zrlibg.a Debug support<

libgaimisc.a Internal X Windows support

#rlibgair4.a Internal X Windows support<

libil8n.a Internationalization runtime

libICE.a Inter-Client Exchange library

libiconv.a Character conversion runtime

liblM.a

Input method library

2libl.a lex supporté

Zrlibld.a Object File Access Routine library<
Alibm.a |EEE Math library<&

libMrm.a Motif Runtime library for UIL
libpthdebug.a Threads debug support
libpthreads.a Threads runtime

libpthreads compat.a

Old threads compatability

2ibPW.a Programmers Workbench library4%
librtl.a Runtime linking runtime

libSM.a X Session Management library
libUil.a Motif User Interface Language library

#libxcurses.a

Curses library<

libX1l.a C interface for the X Window System protocol
libXaw.a Athena Widget Set

libXext.a Interfacesto X windows extensions

ZlibXi.a X Windows input processing<

libxIf90 r.a FORTRAN runtime

libxIfpthrds_compat.a

Old FORTRAN threads compatability

libxlomp_ser.a

Open mp (multi-processing) support

libxlsmp.a Symmetric mp (multiprocessing) support
libXm.a Motif widget library

libXmu.a Miscellaneous X Windows utility functions
2libXtst.a X Windows testing support<

libXt.a X Toolkit Intrinsics

Zliby.a yacc support

Top | OS/400 PASE APIs | APIs by category

0S/400 PASE Locales

0S/400 PASE includes a subset of the locales provided by AlX, supporting both 32-bit and 64-bit applications.
0OS/400 PASE locales are installed as symbolic links in directory /usr/lib/nls/loc.

The full name of any OS/400 PASE locale includes a code set name, which equates to the Coded Character Set
Identifier (CCSID) shown in the table. Some locales also have a short name that exclude the code set part of
the name. Any locale with aname ending in " @euro” uses the Euro as the currency symbol.

#Most OS/400 PASE locales are shipped with OS/400 language feature codes. Only locales in the base

*CODE load and locales for installed language feature codes will exist on a paticular OS/400 system.

L ocale Names
Feature | Short Name Full Name Language Region CCsID
*CODE be BY be BY.1SO8859-5 Byelorussian Byelorussian SSR 915
BE BY BE BY.UTF-8 Byelorussian Byelorussian SSR 1208
ET EE ET_EE.UTF-8 Estonian Estonia 1208
UK_UA UK_UA.UTF-8 Ukrainian Ukraine 1208
2903 LT LT LT LT.UTF-8 Lithuanian Lithuania 1208
2904 LV_LV LV_LV.UTF-8 Latvian Latvia 1208
2905 VI_VN VI_VN.UTF-8 Vietnamese Vietnam 1208
2911 d_Sl d_S1.1S08859-2 Slovene Slovenia 912
SL_Sl SL_SI.UTF-8 Slovene Slovenia 1208
2912 hr HR hr_ HR.1SO8859-2 Croatian Croatia 912
HR_HR HR_HR.UTF-8 Croatian Croatia 1208
2913 mk_MK mk_MK.1S08859-5 Macedonian Macedonia 915
MK_MK MK_MK.UTF-8 Macedonian Macedonia 1208
2914 sh SP sh_SP.1SO8859-2 Serbian Latin Yugoslavia 912
sh YU sh_YU.IS08859-2 Serbian Latin Yugoslavia 912
s YU sr_YU.1SO8859-2 Serbian Yugoslavia 912
SH_SP SH_SP.UTF-8 Serbian Latin Yugoslavia 1208
SH YU SH YU.UTF-8 Serbian Latin Yugoslavia 1208
SR YU SR YU.UTF-8 Serbian Yugoslavia 1208
s SP sr_SP.1S08859-5 Serbian Latin Yugoslavia 915

SR SP SR SP.UTF-8 Serbian Latin Yugoslavia 1208

2922 pt PT pt PT.1SO8859-1 Portuguese Portugal 819
pt_ PT.IBM-1252 Portuguese Portugal 1252

pt_PT.IBM-1252@euro Portuguese Portugal 1252

pt_PT.8859-15 Portuguese Portugal 923

pt_PT.8859-15@euro Portuguese Portugal 923

PT_PT PT_PT.UTF-8 Portuguese Portugal 1208
PT_PT.UTF-8@euro Portuguese Portugal 1208

2923 nl_NL nl_NL.1SO8859-1 Dutch Netherlands 819
nl_NL.IBM-1252 Dutch Netherlands 1252

nl_NL.IBM-1252@euro Dutch Netherlands 1252

nl_NL.8859-15 Dutch Netherlands 923

nl_NL.8859-15@euro Dutch Netherlands 923

NL_NL NL_NL.UTF-8 Dutch Netherlands 1208
NL_NL.UTF-8@euro Dutch Netherlands 1208

2024 en AU en_AU.8859-15 English Austraia 923
EN_AU EN_AU.UTF-8 English Australia 1208

en BE en BE.8859-15 English Belgium 923
en_BE.8859-15@euro English Belgium 923

EN_BE EN_BE.UTF-8 English Belgium 1208
EN_BE.UTF-8@euro English Belgium 1208

en CA en CA.8859-15 English Canada 923

EN_CA EN_CA.UTF-8 English Canada 1208

en GB en_GB.|S08859-1 English Great Britain 819
en_GB.IBM-1252 English Great Britain 1252

en_GB.IBM-1252@euro English Great Britain 1252

en_GB.8859-15 English Great Britain 923

en_GB.8859-15@euro English Great Britain 923

EN_GB EN_GB.UTF-8 English Great Britain 1208

en IE en |E.8859-15 English Ireland 923
en_|E.8859-15@euro English Ireland 923

EN_IE EN_IE.UTF-8 English Ireland 1208
EN_IE.UTF-8@euro English Ireland 1208

en IN en IN.8859-15 English India 923

EN_IN EN_IN.UTF-8 English India 1208

en NZ en NZ.8859-15 English New Zealand 923

EN_NZ EN_NZ.UTF-8 English New Zealand 1208

en US en _US.1S08859-1 English United States 819
en_US.8859-15 English United States 923

EN_US EN_USUTF-8 English United States 1208

en ZA en ZA.8859-15 English South Africa 923

EN_ZA EN_ZA.UTF-8 English South Africa 1208

HI_IN HI_IN.UTF-8 Hindi India 1208

2925 fi_FI fi_FI1.1SO8859-1 Finnish Finland 819
fi_Fl.IBM-1252 Finnish Finland 1252

fi_Fl.IBM-1252@euro Finnish Finland 1252

fi_F1.8859-15 Finnish Finland 923

fi_F1.8859-15@euro Finnish Finland 923

FlI_FI FI_FI.UTF-8 Finnish Finland 1208
FI_FI.UTF-8@euro Finnish Finland 1208

2926 da DK da_DK.ISO8859-1 Danish Denmark 819
da_DK.8859-15 Danish Denmark 923

DA_DK DA_DK.UTF-8 Danish Denmark 1208

2928 fr FR fr_ FR.1SO8859-1 French France 819
fr FR.IBM-1252 French France 1252

fr FR.IBM-1252@euro French France 1252

fr FR.8859-15 French France 923
fr_FR.8859-15@euro French France 923

FR_FR FR_FR.UTF-8 French France 1208
FR_FR.UTF-8@euro French France 1208

2929 de AT de AT.8859-15 German Austria 923
de AT.8859-15@euro German Austria 923

DE AT DE _AT.UTF-8 German Austria 1208
DE AT.UTF-8@euro German Austria 1208

de DE de DE.ISO8859-1 German Germany 819
de DE.IBM-1252 German Germany 1252

de DE.IBM-1252@euro German Germany 1252

de DE.8859-15 German Germany 923

de DE.8859-15@euro German Germany 923

DE_DE DE_DE.UTF-8 German Germany 1208
DE DE.UTF-8@euro German Germany 1208

2931 ca ES ca_ES.1S08859-1 Catalan Spain 819
ca ESIBM-1252 Catalan Spain 1252

ca ES.IBM-1252@euro Catalan Spain 1252

ca ES.8859-15 Catalan Spain 923

ca ES.8859-15@euro Catalan Spain 923

CA_ES CA_ES.UTF-8 Catalan Spain 1208
CA_ESUTF-8@euro Catalan Spain 1208

es AR es AR.8859-15 Spanish Argentina 923
ES AR ES ARUTF-8 Spanish Argentina 1208
es CL es CL.8859-15 Spanish Chile 923
ES CL ES CL.UTF-8 Spanish Chile 1208
es CO es C0.8859-15 Spanish Columbia 923
ES CO ES CO.UTF-8 Spanish Columbia 1208

es ES es ES.1S08859-1 Spanish Spain 819

es ES.IBM-1252 Spanish Spain 1252

es ES.IBM-1252@euro Spanish Spain 1252

es ES.8859-15 Spanish Spain 923

es ES.8859-15@euro Spanish Spain 923

ES ES ES ES.UTF-8 Spanish Spain 1208

ES ES.UTF-8@euro Spanish Spain 1208

es MX es MX.8859-15 Spanish Mexico 923

ES MX ES MX.UTF-8 Spanish Mexico 1208

es PE es PE.8859-15 Spanish Peru 923

ES PE ES PE.UTF-8 Spanish Peru 1208

es PR es PR.8859-15 Spanish Paraguay 923

ES PR ES PR.UTF-8 Spanish Paraguay 1208

es Uy es UY.8859-15 Spanish Uruguay 923

ES UY ES UY.UTF-8 Spanish Uruguay 1208

es VE es VE.8859-15 Spanish Venezuela 923

ES VE ES VE.UTF-8 Spanish Venezuela 1208

2932 it 1T it_1T.1SO8859-1 Italian Italy 819
it_IT.IBM-1252 Italian Italy 1252

it_IT.IBM-1252@euro Italian Italy 1252

it_1T.8859-15 Italian Italy 923

it_1T.8859-15@euro Italian Italy 923

ITIT IT IT.UTF-8 Italian Italy 1208
IT_IT.UTF-8@euro Italian Italy 1208

2933 no_NO no_NO.1S0O8859-1 Norwegian Norway 819
no_NO.8859-15 Norwegian Norway 923

NO_NO NO_NO.UTF-8 Norwegian Norway 1208

2937 sv_SE sv_SE.IS0O8859-1 Swedish Sweden 819

sv_SE.8859-15 Swedish Sweden 923
SV_SE SV_SE.UTF-8 Swedish Sweden 1208
2939 de LU de LU.8859-15 German Luxembourg 923
de LU.8859-15@euro German Luxembourg 923
DE LU DE LU.UTF-8 German Luxembourg 1208
DE LU.UTF-8@euro German Luxembourg 1208
de CH de CH.IS08859-1 German Switzerland 819
de CH.8859-15 German Switzerland 923
DE_CH DE _CH.UTF-8 German Switzerland 1208
2940 fr CH fr_CH.ISO8859-1 French Switzerland 819
fr_ CH.8859-15 French Switzerland 923
FR_CH FR_CH.UTF-8 French Switzerland 1208
2942 it CH it_CH.8859-15 Italian Switzerland 923
IT_CH IT_CHUTF-8 Italian Switzerland 1208
2954 ar_AA ar_AA.1S08859-6 Arabic Arabic Countries 1089
ar_AE ar_AE.ISO8859-6 Arabic Unite_d Arab 1089
Emirates
ar_BH ar_BH.ISO8859-6 Arabic Bahrain 1089
a EG ar_EG.1SO8859-6 Arabic Egypt 1089
ar_JO ar_JO.1S0O8859-6 Arabic Jordan 1089
ar_KW ar_ KW.1S0O8859-6 Arabic Kuwait 1089
a LB ar_LB.1S0O8859-6 Arabic Lebanon 1089
ar_OM ar_OM.ISO8859-6 Arabic Oman 1089
a QA ar_QA.1S08859-6 Arabic Qatar 1089
ar_SA ar_SA.1S08859-6 Arabic Saudi Arabia 1089
ar_SY ar_SY.1S08859-6 Arabic Syrian Arab 1089
Republic
AR_AA AR _AA.UTF-8 Arabic Arabic Countries 1208
AR_AE AR_AE.UTF-8 Arabic United Arab 1208

Emirates

AR _BH AR_BH.UTF-8 Arabic Bahrain 1208
AR EG AR _EG.UTF-8 Arabic Egypt 1208
AR_JO AR_JO.UTF-8 Arabic Jordan 1208
AR_KW AR_KW.UTF-8 Arabic Kuwait 1208
AR LB AR_LB.UTF-8 Arabic Lebanon 1208
AR_OM AR_OM.UTF-8 Arabic Oman 1208
AR QA AR _QA.UTF-8 Arabic Qatar 1208
AR_SA AR_SA.UTF-8 Arabic Saudi Arabia 1208
AR_SY AR_SY.UTF-8 Arabic Syrian Arab 1208
Republic
2956 tr TR tr_TR.ISO8859-9 Turkish Turkey 920
TR TR TR TR.UTF-8 Turkish Turkey 1208
2957 e _GR el_GR.1SO8859-7 Greek Greece 813
EL_GR EL_GR.UTF-8 Greek Greece 1208
2958 is IS is 1S.1S08859-1 Icelandic Iceland 819
is 1S.8859-15 Icelandic Iceland 923
IS IS IS ISUTF-8 Icelandic Iceland 1208
2961 iw_IL iw_IL.1SO8859-8 Hebrew |srael 916
HE_IL HE IL.UTF-8 Hebrew |srael 1208
2962 ja JP ja JP.IBM-eucJP Japanese Japan 33722
Ja JP ja JP.IBM-943 Japanese Japan 943
JA_JP JA_JP.UTF-8 Japanese Japan 1208
2963 nl_BE nl_BE.ISO8859-1 Dutch Belgium 819
nl_BE.IBM-1252 Dutch Belgium 1252
nl_BE.IBM-1252@euro Dutch Belgium 1252
nl_BE.8859-15 Dutch Belgium 923
nl_BE.8859-15@euro Dutch Belgium 923
NL_BE NL_BE.UTF-8 Dutch Belgium 1208
NL_BE.UTF-8@euro Dutch Belgium 1208

2966 fr BE fr_ BE.ISO8859-1 French Belgium 819
fr BE.IBM-1252 French Belgium 1252

fr_ BE.IBM-1252@euro French Belgium 1252

fr BE.8859-15 French Belgium 923

fr_BE.8859-15@euro French Belgium 923

FR BE FR_BE.UTF-8 French Belgium 1208
FR_BE.UTF-8@euro French Belgium 1208

fr LU fr_LU.8859-15 French Luxembourg 923
fr_LU.8859-15@euro French Luxembourg 923

FR LU FR LU.UTF-8 French Luxembourg 1208
FR_LU.UTF-8@euro French Luxembourg 1208

2972 th_TH TH_TH.TIS-620 Thai Thailand 874
TH_TH TH_TH.UTF-8 Thai Thailand 1208

2974 bg BG bg_BG.ISO8859-5 Bulgarian Bulgaria 915
BG BG BG BG.UTF-8 Bulgarian Bulgaria 1208

2975 cs Cz cs CZ.1S08859-2 Czech Czech Republic 912
CS Cz CS CZ.UTF-8 Czech Czech Republic 1208

2976 hu_HU hu_HU.IS08859-2 Hungarian Hungary 912
HU HU HU HU.UTF-8 Hungarian Hungary 1208

2978 pl_PL pl_PL.ISO8859-2 Polish Poland 912
PL_PL PL_PL.UTF-8 Polish Poland 1208

2979 ru RU ru_RU.1SO8859-5 Russian Russia 915
RU_RU RU_RU.UTF-8 Russian Russia 1208

2980 pt BR pt BR.ISO8859-1 Portuguese Brazil 819
pt BR.8859-15 Portuguese Brazil 923

PT BR PT BR.UTF-8 Portuguese Brazil 1208

2981 fr_CA fr_CA.1SO8859-1 French Canada 819
fr_ CA.8859-15 French Canada 923

FR_CA FR_CA.UTF-8 French Canada 1208
2986 ko KR ko KR.IBM-euckR Korean Korea 970
KO_KR KO_KR.UTF-8 Korean Korea 1208
2987 zh TW zh TW.IBM-eucTW Traditional Taiwan 964
Chinese
Zh TW ZH_TW.bigb Traditional Taiwan 950
Chinese
zh TW ZH_TW.UTF-8 Traditional Taiwan 1208
Chinese
2989 zh CN zh CN.IBM-eucCN Simplified Chinese | People's Republic 1383
of China
Zh CN zh CN.GBK Simplified Chinese | People's Republic 1386
of China
ZH CN ZH_CN.UTF-8 Simplified Chinese | People's Republic 1208
of China
2992 ro RO ro_RO.1S08859-2 Romanian Romania 912
RO RO RO _RO.UTF-8 Romanian Romania 1208
2994 sk_SK sk_SK.ISO8859-2 Slovak Slovakia 912
SK_SK SK_SK.UTF-8 Slovak Slovakia 1208
2995 sq AL sq AL.IS08859-1 Serbian Cyrillic Yugoslavia 915
sq AL.8859-15 Serbian Cyrillic Yugoslavia 923
SQ AL SQ AL.UTF-8 Serbian Cyrillic Yugoslavia 1208

&

Top | OS/400 PASE APIs | APIs by category

0S/400 PASE Environment Variables

Overview

0S/400 PASE environment variables are independent of ILE environment variables. Setting a variable in one
environment has no effect on the other environment, but several system interfaces allow you to copy variables
between environments:

o The Qp2RunPase API lets you specify any list of environment variables you want to initialize for the
0S/400 PASE program. See Run an OS/400 PASE Program (Qp2RunPase) documentation for more

information.

o« The QP2SHELL and QP2TERM APIsinitialize the OS/400 PASE environment with a copy of nearly
al ILE environment variables. See Run an OS/400 PASE Shell Program (QP2SHEL L) documentation

for more information.

o ThesystemCL OS/400 PASE runtime function copies nearly all OS/400 PA SE environment variables
to the ILE environment for option SYSTEMCL_ENVIRON. See Run a CL Command for OS/400

PASE (systemCL) documentation for more information.

o The OS/400 PASE system utility copies nearly all OS/400 PASE environment variablesto the ILE
environment for option -e. See Run a CL Command (0S/400 PASE system utility) documentation for

more information.

Special OS/400 PASE Environment Variables

Some OS/400 PASE runtime behaviors are different from AlX because of differences between the two operating
systems. Y ou can use these OS/400 PA SE environment variables to control some of the differences:

WPASE_EXEC_QOPENSYS

PASE_EXEC_QOPENSY S can be used to prevent the system from searching the /QOpenSysfile
system for an absolute path (starting with "/") specified as an argument to exec or Qp2RunPase, or in
thefirst line of ashell script. The system normally searches the /QOpenSys file system if the absolute
path name for an OS/400 PA SE program or script cannot be opened or is not aregular bytestream file.
0OS/400 directory /ust/bin contains links to QShell utilities that cannot run as OS/400 PASE programs,
so searching /QOpenSys allows more AlX programs and shell scripts to run unchanged (using OS/400
PASE utilitiesin directory /QOpenSy</ust/bin). The system does not do an extended search in the
/QOpenSysfile system if the OS/400 PASE shell or other program that calls exec or Qp2RunPase has
changed credentials (setuid or setgid) or if the OS/400 PASE environment specifies

PASE_EXEC _QOPENSYS=N.&

PASE_MAXDATAG4

PASE_MAXDATAG64 specifies the maximum number of 256MB segments provided for brk (heap)
storage in a 64-bit 0S/400 PASE program. If PASE_ MAXDATAG64 isomitted or contains an invalid
value (either non-numeric or less than one), a default of 256 segments (64GB) is used.
PASE_MAXDATA®B64 has no effect on 32-bit OS/400 PASE programs, and it must be set either in the
initial environment passed to Qp2RunPase or before running exec for a 64-bit 0S/400 PASE program.

PASE_MAXSHR64

PASE_M AXSHR64 specifies the maximum number of 256MB segments provided for shared memory
(shmat and mmap) in a 64-bit 0S/400 PASE program. If PASE_ MAXSHR64 is omitted or contains an
invalid value (either non-numeric or less than one), a default of 256 segments (64GB) is used.
PASE_MAXSHRG64 has no effect on 32-bit OS/400 PASE programs, and it must be set either in the
initial environment passed to Qp2RunPase or before running exec for a 64-bit 0S/400 PASE program.

PASE_STDIO_ISATTY

The default behavior of the OS/400 PASE isatty runtime function returns true for file descriptors 0, 1,
and 2 (stdin, stdout, and stderr), regardless of whether the open fileis atty device. Setting OS/400 PASE
environment variable PASE_STDIO_ISATTY to N, either in theinitial environment passed to
Qp2RunPase or before the first invocation of isatty, causesisatty to return an accurate indication of
whether the open fileis atty device.

PASE_SYSCALL_NOSIGILL

The OS/400 PASE kernel exports some system calls that are implemented by the AlX kernel but are
unsupported by OS/400 PASE. ##The default behavior for any unsupported syscall is to send exception
message M CH3204, which the system converts to OS/400 PASE signal SIGIL L. The unsupported
syscall returns afunction result of -1 with OS/400-unique errno EUNKNOWN (3474) if the signal is
ignored or the handler returns. Message MCH3204 appearsin the OS/400 job log to provide the name of
the unsupported system call and the OS/400 PASE instruction address that caused the error. The
message may also include the internal dump identifier for a VLOG entry that contains this information:
L4

syscal |l nunber (GPR2 val ue)

OS/ 400 PASE instruction address

Li nk regi ster val ue

GPR3-10 values (if available, or zero otherw se)
syscall nane (if known, converted to uppercase)

0S/400 PASE programs can suppress the exception message and SIGIL L signal for unsupported
system calls by setting environment variable PASE_SYSCALL _NOSIGILL either intheinitial
environment passed to Qp2RunPase or before running exec. PASE_SYSCALL_NOSIGILL is
ignored if the OS/400 PASE program hasthe S_ISUID or S_ISGID attribute, but otherwiseis
interpreted as alist of syscall function names with optional errno values, delimited by colons. The
colon-delimited values must take one of these forms:

syscal | _nane
syscal | _nane=errno_nane (errno_nane is EINVAL, EPERM and so on)
syscal | _nane=errno_nunber (errno_nunber is 0-127)

SIGILL issuppressed for any syscall_namein the list that is recognized as an OS/400 PASE system
call. Thefirst or only entry in the list may use a special syscall_name of "ALL" to set adefault behavior
for all unsupported syscalls. Any entry in the list that is not an OS/400 PASE syscall name isignored,
and specifying the name of asyscall that is supported by the OS/400 PASE kernel has no effect on the
operation of that syscall.

Any syscall inthe PASE_SYSCALL _NOSIGILL list that is unsupported by the OS/400 PASE kernel
returns a function result of -1 with the specified errno value (defaulting to ENOSY S) except that
specifying errno_number of 0 causes the unsupported syscall to return a function result of zero (without
setting errno). An invalid errno_name or errno_number defaultsto ENOSY'S.

For example, the following PASE_SYSCALL_NOSIGILL vaue suppresses SIGILL for al
unsupported syscalls. "quotact!” returns EPERM and "audit" returns function result of zero, while all
other unsupported syscalls return ENOSY S:

export PASE_SYSCALL_NOSI G LL=ALL: quot act | =EPERM audi t =0

Note: PASE_SYSCALL_NOSIGILL isnot intended for production programs. It is provided asa
convenience for feasability testing using unchanged Al X binaries that need to be modified for
production.

ZPASE_THREAD_ATTACH

If OS/400 PASE environment variable PASE_ THREAD_ATTACH issetto Y when an OS/400 PASE
program runs libpthreads.ainitiaization (usually at program startup), an ILE thread that was not started
by OS/400 PA SE will be attached to OS/400 PASE when it calls an OS/400 PASE procedure (using
Qp2CallPase or Qp2CallPase?). Once an |LE thread has attached to OS/400 PASE, that thread is
subject to asynchronous interruption for OS/400 PASE functions such as signal handling and thread
cancellation. In particular, the thread will be canceled as part of ending the OS/400 PASE program
(when exit runs or OS/400 PA SE processing terminates for asignal). 4

PASE_UNLIMITED_PATH_MAX

The OS/400 Integrated File System supports longer path names than the value of PATH_MAX (1023)
in AlX header file <limits.h>. Setting OS/400 PASE environment variable
PASE_UNLIMITED_PATH_MAXtoY, either in theinitial environment passed to Qp2RunPase or
before running exec, allows an OS/400 PA SE program to access objects with long path names. 0S/400
PASE loader functions and some library runtime functions can fail with path names longer than AIX
PATH_MAX.

»PASE_USRGRP_LOWERCASE

0S/400 user names and group names are case-insensitive, but the system stores and returns them in
uppercase. 0S/400 PASE runtime functions that return user names and group names (getpwnam,
getpwuid, getgrnam, and getgrgid) default to converting them to lowercase unless 0S/400 PASE
environment variable PASE_ USRGRP_LOWERCASE isset to N.4

Top | 0S/400 PASE APIs| APIs by category

0OS/400 PASE Signal Handling

0OS/400 PASE Signals and ILE Signals

OS/PASE signals and POSIX/ILE signals are independent, so it is not possible to directly call a handler for one
signal type by raising the other type of signal. However, the Post an OS/400 PASE Signal (Qp2Signal Pase)

API can be used as the handler for any ILE signal to post a corresponding OS/400 PASE signal. An OS/400
PASE program can aso define handlers for OS/400 PASE signals that call ILE proceduresto post equivalent
ILE signals. Program QP2SHEL L and the OS/400 PASE fork function always setup handlers to map every
ILE signal to a corresponding OS/400 PASE signal.

0OS/400 Messages and OS/400 PASE Programs

Many OS/400 applications and system functions report errors with exception messages sent to program call
message gqueues. See M essage Handling Terms and Concepts for information about exception messages and

program call message queues.

The system only creates program call message queues for ILE procedures and OMI programs. Any machine
exception caused by an operation inside an OS/400 PASE program (such as MCHO601 for a storage reference
error) is sent to the program call message queue for an (internal) ILE procedure in service program QP2USER.
ThisILE procedureis also the apparent caller of any ILE procedure the OS/400 PASE program calls directly
(using _ILECALLX or _ILECALL), so any OS/400 message the called procedure sendsto its caller goesto the
same message queue used for machine exceptions.

0OS/400 Exceptions and OS/400 PASE Signals

The ILE procedure in service program QP2USER that runs OS/400 PASE programs handles any exception and
convertsit to an OS/400 PASE signal, the same way POSIX/ILE C runtime converts exceptions to ILE signals.
The specific signal used depends on the OS/400 message identifier for the exception. OS/400 PASE and ILE
use different signal numbers, but both map any specific message identifier to the same signal name (such as

SIGSEGV). See the WebSphere Development Studio: |LE C/C++ Programmer's Gui de@ for details.

#An OS/400 PASE signal handler can determine whether asignal is associated with an exception message by
inspecting field msgkey in the ucontext_t 03400 structure (declared in header file as400_types.h) that is passed
as an argument to the handler. <X A non-zero value is the message reference key for the OS/400 message that
caused the signal. Zero indicates the signal is not associated with an OS/400 message (which is always true for
asynchronous signals). The OS/400 PASE program can use the message reference key to receive the exception
message (see Receive Program Message for OS/400 PASE) for more details about the error.

Top | OS/400 PASE APIs | APIs by category

	OS/400 PASE APIs (V5R2)
	Table of Contents
	OS/400 PASE APIs
	OS/400 PASE Callable Program APIs
	QP2SHELL() and QP2SHELL2()--Run an OS/400 PASE Shell Program
	QP2TERM()--Run an OS/400 PASE Terminal Session

	OS/400 PASE ILE Procedure APIs
	Qp2malloc()--Allocate OS/400 PASE Heap Memory
	Qp2CallPase()--Call an OS/400 PASE Procedure
	Qp2dlclose()--Close a Dynamically Loaded OS/400 PASE Module
	Qp2dlopen()--Dynamically Load an OS/400 PASE Module
	Qp2EndPase()--End an OS/400 PASE Program
	Qp2dlsym()--Find an Exported OS/400 PASE Symbol
	Qp2free()--Free OS/400 PASE Heap Memory
	Qp2SignalPase()--Post an OS/400 PASE Signal
	Qp2jobCCSID()--Retrieve Job CCCSID for OS/400 PASE
	Qp2paseCCSID()--Retrieve OS/400 PASE CCSID
	Qp2dlerror()--Retrieve OS/400 PASE Dynamic Load Error Information
	Qp2errnop()--Retrieve OS/400 PASE errno Pointer
	Qp2ptrsize()--Retrieve OS/400 PASE Pointer Size
	Qp2RunPase()--Run an OS/400 PASE Program

	Runtime Functions For Use by OS/400 PASE Programs
	build_ILEarglist()--Build an ILE Argument List for OS/400 PASE
	_ILECALLX()--Call an ILE Procedure for OS/400 PASE
	_PGMCALL()--Call an OS/400 Program for OS/400 PASE
	size_ILEarglist()--Compute ILE Argument List Size for OS/400 PASE
	_CVTERRNO()--Convert ILE errno to OS/400 PASE errno
	_CVTSPP()--Convert Space Pointer for OS/400 PASE
	_STRNCPY_SPP()--Copy Character String for OS/400 PASE
	_MEMCPY_WT()--Copy Memory With Tags for OS/400 PASE
	_STRLEN_SPP()--Determine Character String Length for OS/400 PASE
	_ILESYM()--Find an Exported ILE Symbol for OS/400 PASE
	_ILELOAD()--Load an ILE Bound Program for OS/400 PASE
	SQLOverrideCCSID400()--Override SQL CLI CCSID for OS/400 PASE
	QMHRCVM()--OS/400 PASE Receive Nonprogram Message
	QMHRCVPM()--OS/400 PASE Receive Program Message
	_RSLOBJ()--Resolve to an OS/400 Object for OS/400 PASE
	_RETURN()--Return Without Exiting OS/400 PASE
	systemCL()--Run a CL Command for OS/400 PASE
	QMHSNDM()--OS/400 PASE Send Nonprogram Message
	QMHSNDPM()--Send Program Message for OS/400 PASE
	_SETCCSID()--Set OS/400 PASE CCSID
	_SETSPP()--Set Space Pointer for OS/400 PASE

	OS/400 PASE Runtime Libraries
	OS/400 PASE Locales
	OS/400 PASE Environment Variables
	OS/400 PASE Signal Handling

