
OS/400 PASE APIs (V5R2)

Table of Contents

OS/400 PASE APIs●

APIs

Callable Program APIs

Run an OS/400 PASE Shell Program (QP2SHELL and QP2SHELL2)■

Run an OS/400 PASE Terminal Session (QP2TERM)■

❍

ILE Procedure APIs

Allocate OS/400 PASE Heap Memory (Qp2malloc)■

Call an OS/400 PASE Procedure (Qp2CallPase and Qp2CallPase2)■

Close a Dynamically Loaded OS/400 PASE Module (Op2dlclose)■

Dynamically Load an OS/400 PASE Module (Qp2dlopen)■

End an OS/400 PASE Program (Qp2EndPase)■

Find an Exported OS/400 PASE Symbol (Qp2dlsym)■

Free OS/400 PASE Heap Memory (Qp2free)■

Post an OS/400 PASE Signal (Qp2SignalPase)■

Retrieve Job CCSID for OS/400 PASE (Qp2jobCCSID)■

Retrieve OS/400 PASE CCSID (Qp2paseCCSID())■

Retrieve OS/400 PASE Dynamic Load Error Information (Qp2dlerror)■

Retrieve OS/400 PASE errno Pointer (Qp2errnop)■

Retrieve OS/400 PASE Pointer Size (Qp2ptrsize)■

Run an OS/400 PASE Program (Qp2RunPase)■

❍

Runtime Functions for Use by OS/400 PASE Programs

Build an ILE Argument List for OS/400 PASE (build_ILEarglist)■

Call an ILE Procedure for OS/400 PASE (_ILECALL and _ILECALLX)■

Call an OS/400 Program for OS/400 PASE (_PGMCALL)■

Compute ILE Argument List Size for OS/400 PASE (size_ILEarglist)■

Convert ILE errno to OS/400 PASE errno (_CVTERRNO)■

Convert Space Pointer for OS/400 PASE (_CVTSPP)■

Copy Character String for OS/400 PASE (_STRNCPY_SPP)■

Copy Memory With Tags for OS/400 PASE (_MEMCPY_WT and
_MEMCPY_WT2)

■

Determine Character String Length for OS/400 PASE (_STRLEN_SPP)■

❍

●

Find Exported ILE Symbol for OS/400 PASE (_ILESYM)■

Load an ILE Bound Program for OS/400 PASE (_ILELOAD)■

Override SQL CLI CCSID for OS/400 PASE (SQLOverrideCCSID400)■

Receive Nonprogram Message for OS/400 PASE (QMHRCVM and QMHRCVM1)■

Receive Program Message for OS/400 PASE (QMHRCVPM, QMHRCVPM1, and
QMHRCVPM2)

■

Resolve to an OS/400 Object for OS/400 PASE (_RSLOBJ)■

Retrieve Job CCSID for OS/400 PASE (Qp2jobCCSID)■

Retrieve OS/400 PASE CCSID (Qp2paseCCSID())■

Return without Exiting OS/400 PASE (_RETURN)■

Run a CL Command for OS/400 PASE (systemCL)■

Send Nonprogram Message for OS/400 PASE (QMHSNDM and QMHSNDM1)■

Send Program Message for OS/400 PASE (QMHSNDPM, QMHSNDPM1, and
QMHSNDPM2)

■

Set OS/400 PASE CCSID (_SETCCSID)■

Set Space Pointer for OS/400 PASE (_SETSPP)■

Related topics

OS/400 PASE Runtime Libraries❍

OS/400 PASE Locales❍

OS/400 PASE Environment Variables❍

OS/400 PASE Signal Handling❍

●

OS/400 PASE APIs

Portable Application Solutions Environment (OS/400 PASE) is an integrated runtime environment for AIX(R)

applications. OS/400 PASE supports the same binary executable format as AIX for PowerPC(R) and a large
subset of AIX runtime that allows many AIX applications to run with little or no change.

OS/400 PASE supports direct hardware execution of PowerPC instructions (not an emulator), while providing
access to the same OS/400 support used by ILE applications for file systems, sockets, security, and many other
system services.

An OS/400 PASE program can be stored in any bytestream file in the OS/400 Integrated File System because
it is simply a binary file. OS/400 PASE programs can be created by any compiler and linker that produce
executables compatible with AIX for PowerPC.

You must call a system API to run an OS/400 PASE program. The system provides both callable program
APIs and ILE procedure APIs to run OS/400 PASE programs. The callable program APIs can be easier to use,
but do not offer all the controls available with the ILE procedure APIs.

The functions available to you through OS/400 PASE are:

Callable Program APIs●

ILE Procedure APIs●

Runtime Functions for Use by OS/400 PASE Programs●

See also:

OS/400 PASE for information about creating OS/400 PASE programs.●

OS/400 PASE Runtime Libraries for information about OS/400 PASE interfaces that are also
supported on AIX.

●

OS/400 PASE Locales for information about OS/400 PASE locales.●

OS/400 PASE Environment Variables for information about OS/400 PASE environment variables.●

OS/400 PASE Signal Handling for information about OS/400 PASE signals and how they relate to
OS/400 exception messages.

●

Top | APIs by category

OS/400 PASE Callable Program APIs
The callable program APIs run an OS/400 PASE program. They are:

Run an OS/400 PASE Shell Program (QP2SHELL and QP2SHELL2) runs an OS/400 PASE program
in the job that calls the API.

●

Run an OS/400 PASE Terminal Session (QP2TERM) runs an interactive terminal session that
communicates with an OS/400 PASE program (defaulting to the Korn shell) running in a batch job.

●

Top | OS/400 PASE APIs | APIs by category

QP2SHELL() and QP2SHELL2()--Run an OS/400 PASE
Shell Program

 Syntax

 #include <qp2shell.h>

 void QP2SHELL(const char *pathName,
 ...);

 void QP2SHELL2(const char *pathName,
 ...);

 Default Public Authority: *USE

 Threadsafe: No

Programs QP2SHELL and QP2SHELL2 run an OS/400 Portable Application Solutions Environment (OS/400 PASE)
program in the job where the API is called. They load the OS/400 PASE program and any necessary shared libraries and
then transfer control to the program. QP2SHELL runs in a new ILE activation group, while QP2SHELL2 runs in the
caller's activation group. Control returns to the caller when the OS/400 PASE program either exits, terminates due to a
signal, or returns without exiting.

Parameters

pathName

(Input) Pointer to a null-terminated character string that identifies the stream file in the Integrated File System that
contains the OS/400 PASE program to run. The pathName string may include an absolute or relative path qualifier
in addition to the stream file name. Relative path names are resolved using the current working directory.

If the base name part of the pathName value (excluding any prefix path qualifier) begins with a hyphen (-),
QP2SHELL and QP2SHELL2 strip the hyphen when locating the bytestream file, but pass the full string (with the
hyphen) to the OS/400 PASE program as the program name. Standard OS/400 PASE shell programs (including sh
and ksh) run as login shells when called with a hyphen as the first character of the program name. Login shells look
for a profile file and run it automatically when the shell starts.

argument strings

(Input) Optional pointers to null-terminated character strings that are passed to the OS/400 PASE program as
arguments. The system copies argument strings into OS/400 PASE memory and converts them from the job default
CCSID to the CCSID specified by ILE environment variable QIBM_PASE_CCSID.

Note: When calling QP2SHELL or QP2SHELL2 from CL, be sure to quote any argument string that could be
interpreted as a numeric value. CL converts unquoted numeric arguments to decimal or floating-point format,
which does not match the assumption made by these APIs and OS/400 PASE programs that all arguments are
null-terminated character strings.

Authorities

Object Referred to
Authority
Required

Each directory in the path to the OS/400 PASE program and shared libraries *X

OS/400 PASE program (not a shell script) in a local file system *X

OS/400 PASE program in a remote file system or shell script *RX

OS/400 PASE shared library *R

Return Value

QP2SHELL and QP2SHELL2 return no function result. Escape messages are sent to report errors.

Error Messages

Some of the more common error messages sent by QP2SHELL and QP2SHELL2 are:

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB9C0 E Error loading program &1. See previous messages.

CPFB9C1 E System support for OS/400 Portable Application Solutions Environment not available.

CPFB9C2 E Hardware support for OS/400 Portable Application Solutions Environment not available.

CPFB9C3 E OS/400 PASE CCSID and job default CCSID are not compatible.

CPFB9C5 E OS/400 PASE program name required by QP2SHELL.

CPFB9C6 E OS/400 PASE ended for signal &1, error code &2.

CPFB9C7 E OS/400 PASE already running in this job.

CPFB9C8 E File descriptors 0, 1, and 2 must be open to run the OS/400 PASE program.

Usage Notes

QP2SHELL and QP2SHELL2 provide callable program interfaces to ILE procedure Qp2RunPase. See
Qp2RunPase()--Run an OS/400 PASE Program for details about running an OS/400 PASE program.

1.

QP2SHELL and QP2SHELL2 set the ILE pthread cancel state and cancel type to default values
(PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED) before running the OS/400 PASE
program. This is done to avoid unexpected behavior for the OS/400 PASE program if the job changed ILE pthread
attributes before calling the API.

2.

QP2SHELL and QP2SHELL2 set up handlers for all ILE signals (that call Qp2SignalPase to post an equivalent
OS/400 PASE signal) while the OS/400 PASE program runs. QP2SHELL always restores original ILE signal
handlers before returning to the caller. QP2SHELL2 restores original ILE signal handlers before returning if the
OS/400 PASE program exits, but if the OS/400 PASE program returns without exiting, original ILE signal handlers
are not restored until the system destroys the activation group that called QP2SHELL2.

3.

To avoid unpredictable results, do not not change ILE environment variables QIBM_USE_DESCRIPTOR_STDIO
or QIBM_PASE_DESCRIPTOR_STDIO in a job in which an OS/400 PASE program is running.

4.

QP2SHELL and QP2SHELL2 initialize OS/400 PASE environment variables with a modified copy of the entire
ILE environment. An OS/400 PASE environment variable is initialized for every ILE environment variable, but the
initial value of any OS/400 PASE variable (except those whose name begins with "PASE_") can be overridden by
the value of an ILE environment variable with a name that concatenates the prefix PASE_ with the original variable
name. This processing avoids some interference between OS/400 PASE runtime and ILE runtime when they
require different values for the same environment variable (for example, LANG).

5.

For a login shell (only), QP2SHELL and QP2SHELL2 set ILE environment variable PASE_SHELL to the path
name of the OS/400 PASE shell program.

6.

QP2SHELL and QP2SHELL2 initialize any of the following ILE environment variables that are not already set,
with default values as shown:

HOME If HOME is not already set, QP2SHELL and QP2SHELL2 set it to the home
directory path specified in the user profile identified by the LOGIN variable. If the
job is not currently authorized to the LOGIN user profile, the HOME environment
variable is set to a null string.

LOGIN If LOGIN is not already set, QP2SHELL and QP2SHELL set it to the middle
qualifier of the job name. For an interactive job, this is the name of the user who did
a signon to start the job.

PASE_PATH (Default:
"/QOpenSys/usr/bin:/usr/ccs/bin:/QOpenSys/usr/bin/X11:/usr/sbin:.:/usr/bin")

Initial value for the OS/400 PASE PATH environment variable.

PASE_LANG and
QIBM_PASE_CCSID

Initial value for the OS/400 PASE LANG environment variable and what coded
character set identifier (CCSID) the OS/400 PASE program will use. QP2SHELL
and QP2SHELL2 set both these ILE environment variables if either or both is
absent. The default values are function of the current LANGID and CNTRYID
attributes of the job, but the system will use PASE_LANG=POSIX and
QIBM_PASE_CCSID=819 if it does not recognize the LANGID and CNTRYID
pair. The OS/400 PASE LANG environment variable controls the default locale for
an OS/400 PASE program. See OS/400 PASE Locales to determine what locales are
supported by OS/400 PASE.

PASE_LOCPATH (Default: "/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat") Initial value for
the OS/400 PASE LOCPATH environment variable.

PASE_LC__FASTMSG (Default: "true") Initial value for the OS/400 PASE LC__FASTMSG environment
variable.

PASE_TZ (Default: "") Initial value for the OS/400 PASE TZ environment variable. If no
timezone information is provided in environment variable TZ, the OS/400 PASE
program sees UTC (Universal Standard Time) as local time. You may want to set
ILE environment variable PASE_TZ at the system level to provide a default
timezone other than UTC for OS/400 PASE programs. For example, this CL
command sets the default timezone to US Central time:

 ADDENVVAR ENVVAR(PASE_TZ) VALUE('CST6CDT') LEVEL(*SYS)

QIBM_IFS_OPEN_MAX (Default: "33000") Maximum number of Integrated File System open file descriptors
desired in the job. QP2SHELL and QP2SHELL call the DosSetRelMaxFH API to set
the maximum number of file descriptors to the value in this ILE environment
variable, and updates the environment variable to reflect the actual limit (in case the
requested limit is not currently allowed). Any change to the maximum number of file
descriptors persists after the API returns.

7.

OS/400 PASE programs assume the ability to open 32 767 files and the system
requires an open file for each OS/400 PASE executable it loads, so the default of
33 000 files accomodates a maximally large OS/400 PASE program with a fairly
large number of loaded executables.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

Qp2SignalPase()--Post an OS/400 PASE Signal●

QP2TERM()--Run an OS/400 PASE Terminal Session●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

QP2TERM()--Run an OS/400 PASE Terminal
Session

 Syntax

 #include <qp2term.h>

 void QP2TERM(...);

 Default Public Authority: *USE

 Threadsafe: No

The QP2TERM() program runs an interactive terminal session that starts a batch job to run an OS/400 Portable
Application Solutions Environment (OS/400 PASE) program. This program uses the workstation display in the
interactive to present output and accept input for files stdin, stdout, and stderr in the batch job.

Parameters

argument strings

(Input) Optional pointers to null-terminated character strings that specify the path name of the OS/400
PASE program to run and any argument strings to pass to the program. If no parameters are specified,
QP2TERM runs the default OS/400 PASE shell as an interactive login shell. The default OS/400
PASE shell is an implementation of the Korn shell, with path name /QOpenSys/usr/bin/sh.

Note: When calling QP2TERM from CL, be sure to quote any argument string that could be
interpreted as a numeric value. CL converts unquoted numeric arguments to decimal or floating-point
format, which does not match the assumption made by QP2TERM and OS/400 PASE programs that
all arguments are null-terminated character strings.

Authorities

Object Referred to
Authority
Required

Each directory in the path to the OS/400 PASE program and shared libraries *X

OS/400 PASE program (not a shell script) in a local file system *X

OS/400 PASE program in a remote file system or shell script *RX

OS/400 PASE shared library *R

Return Value

QP2TERM returns no function result. Escape messages are sent to report errors.

Error Messages

Message ID Error Message Text

CPFB9C4 E Error running OS/400 PASE terminal session, reason code &1, errno &2.

CPFB9C9 E Terminal session already in use.

CPFB9CA E Batch job ended in error.

Usage Notes

QP2TERM uses the Qp0zStartTerminal API to manage the interactive display and start a batch job.
The batch job copies most attributes of the interactive job and calls program QP2SHELL to run the
OS/400 PASE program. See QP2SHELL()--Run an OS/400 PASE Shell Program for details about
running an OS/400 PASE shell program.

1.

QP2TERM copies all ILE environment variables from the interactive job to the batch job before
starting the batch job, except the following ILE environment variables, which are set or replaced in the
batch job. These changes affect the batch job only. They do not modify the environment in the job that
called QP2TERM.

COLUMNS If COLUMNS is not already set, QP2TERM sets it to the
number of columns available for program output on the
interactive display.

ROWS If ROWS is not already set, QP2TERM sets it to the
number of rows available for program output on the
interactive display.

QIBM_USE_DESCRIPTOR_STDIO=I QP2TERM sets QIBM_USE_DESCRIPTOR_STDIO to
ensure that files stdin, stdout, and stderr use Integrated
File System descriptors 0, 1, and 2. The terminal session
manager attaches open pipes to these file descriptors in
the batch job.

QIBM_PASE_DESCRIPTOR_STDIO=T QP2TERM sets QIBM_PASE_DESCRIPTOR_STDIO
to ensure that OS/400 PASE runtime does
ASCII/EBCDIC text conversion for data that the OS/400
PASE program reads or writes to files stdin, stdout, and
stderr.

2.

Related Information

Qp0zStartTerminal()--Start a Terminal Session●

QP2SHELL()--Run an OS/400 PASE Shell Program●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

OS/400 PASE ILE Procedure APIs
The ILE procedure APIs run an OS/400 PASE program and allow ILE programs to communicate with an
OS/400 PASE program that is already running in the same job.

The OS/400 PASE ILE Procedure APIs are:

Allocate OS/400 PASE Heap Memory (Qp2malloc) allocates memory from the OS/400 PASE heap
by calling the OS/400 PASE malloc() function.

●

Call an OS/400 PASE Procedure (Qp2CallPase and Qp2CallPase2) calls a procedure in an OS/400
PASE program that is already running in the job that calls the API.

●

Close a Dynamically Loaded OS/400 PASE Module (Op2dlclose) closes and unloads an OS/400
PASE module previously opened by the Qp2dlopen API (or the OS/400 PASE dlopen function).

●

Dynamically Load an OS/400 PASE Module (Qp2dlopen) dynamically loads an OS/400 PASE
module by calling the OS/400 PASE dlopen() function.

●

End an OS/400 PASE Program (Qp2EndPase) ends any OS/400 PASE program currently running in
the job.

●

Find an Exported OS/400 PASE Symbol (Qp2dlsym) finds an exported OS/400 PASE symbol by
calling the OS/400 PASE dlsym() function.

●

Free OS/400 PASE Heap Memory (Qp2free) frees an OS/400 PASE heap memory allocation by
calling the OS/400 PASE free() function.

●

Post an OS/400 PASE Signal (Qp2SignalPase) posts an OS/400 PASE signal to an OS/400 PASE
program that is already running in the job that calls the API.

●

Retrieve Job CCSID for OS/400 PASE (Qp2jobCCSID) returns the job default CCSID (coded
character set identifier) from the last time the OS/400 PASE CCSID was set.

●

Retrieve OS/400 PASE CCSID (Qp2paseCCSID) returns the OS/400 PASE CCSID from the last
time the OS/400 PASE CCSID was set.

●

Retrieve OS/400 PASE Dynamic Load Error Information (Qp2dlerror) returns a pointer to a string
that provides error information for the most recent dynamic load function (Qp2dlopen, Qp2dlsym, or
Qp2dlclose API).

●

Retrieve OS/400 PASE errno Pointer (Qp2errnop) returns a pointer to the OS/400 PASE errno
variable for the current thread.

●

Retrieve OS/400 PASE Pointer Size (Qp2ptrsize) returns the pointer size, in bytes, for the OS/400
Portable Application Solutions Environment (OS/400 PASE) program currently running in the job.

●

Run an OS/400 PASE Program (Qp2RunPase) runs an OS/400 PASE program in the job that calls the
API.

●

Top | OS/400 PASE APIs | APIs by category

 Qp2malloc()--Allocate OS/400 PASE Heap
Memory

 Syntax

 #include <qp2user.h>

 void* Qp2malloc(QP2_dword_t size,
 QP2_ptr64_t *mem_pase);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2malloc() allocates memory from the OS/400 PASE heap by calling the OS/400 PASE malloc() function.

Parameters

size

(Input) The size, in bytes, of the desired memory allocation.

mem_pase

(Input) A pointer to a buffer, used to return the OS/400 PASE address of the allocated memory. The
return value is always 64-bits, even for a 32-bit OS/400 PASE program. mem_pase can be null if the
caller does not need the OS/400 PASE address of the memory allocation.

Authorities

None.

Return Value

The function result is a pointer to the OS/400 PASE heap memory allocation, or a null pointer if no memory
was allocated. A buffer addressed by the mem_pase argument is unchanged if no memory was allocated.

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Related Information

OS/400 PASE malloc()--See AIX documentation●

Qp2errnop()--Retrieve OS/400 PASE errno Pointer●

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

Qp2CallPase()--Call an OS/400 PASE Procedure

 Syntax

 #include <qp2user.h>

 int Qp2CallPase(const void *target,
 const void *arglist,
 const QP2_arg_type_t *signature,
 QP2_result_type_t result_type,
 void *buf);

 int Qp2CallPase2(const void *target,
 const void *arglist,
 const QP2_arg_type_t *signature,
 QP2_result_type_t result_type,
 void *buf,
 short bufLenIn);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp2CallPase() and Qp2CallPase2 functions call a procedure in an OS/400 Portable Application Solutions
Environment (OS/400 PASE) program in a job that is already running the OS/400 PASE program.

Parameters

target

(Input) Pointer to a function descriptor for the procedure (in the OS/400 PASE program) to call. The
format and contents of a function descriptor are specified by the PowerPC Application Binary
Interface (ABI) for AIX. A function descriptor contains three OS/400 PASE addresses (not MI
pointers) that point to the executable instructions, table of contents (TOC), and environment for the
target procedure.

arglist

(Input) Pointer to the argument list for the OS/400 PASE procedure. The format and contents of a
PASE argument list generally are specified by the PowerPC ABI for AIX. The specific argument list
structure for the OS/400 PASE procedure identified by the target parameter is determined by the list of
argument data types specified by the signature parameter.

signature

(Input) Pointer to an array of values that specify the sequence and type of arguments passed to the

OS/400 PASE procedure. Each element in the array is either a special value defined in header file
qp2user.h or a positive number that is the length in bytes of a structure or union argument passed by
value. The last value in the array must be QP2_ARG_END. Header file qp2user.h defines the
following constants for the data types supported as arguments for an OS/400 PASE procedure:

QP2_ARG_END (0) The end of the list of argument type values.

QP2_ARG_WORD (-1) A 4-byte signed or unsigned integer, or a structure or union no longer
than four bytes. This value is allowed only when calling a procedure in
a 32-bit OS/400 PASE program.

QP2_ARG_DWORD (-2) An 8-byte signed or unsigned integer, or a structure or union no longer
than eight bytes. This value is allowed only when calling a procedure
in a 64-bit OS/400 PASE program.

QP2_ARG_FLOAT32 (-3) A 4-byte floating point number.

QP2_ARG_FLOAT64 (-4) An 8-byte floating point number.

QP2_ARG_PTR32 (-5) A 4-byte pointer. The value in the arglist buffer is passed unchanged
unless its high-order bits (excluding the lower 16 bits) match the
corresponding part of constant QP2_ARG_PTR_TOSTACK
(0x0fff0000). In that case, the arglist value is changed to the memory
address used for a copy of the buf area plus an offset in the lower 16
bits of the arglist value, and the updated value is passed to the OS/400
PASE procedure. QP2_ARG_PTR32 is allowed only when calling a
procedure in a 32-bit OS/400 PASE program.

QP2_ARG_PTR64 (-6) An 8-byte pointer. The value in the arglist buffer is passed unchanged
unless its high-order bits (excluding the lower 16 bits) match the
corresponding part of constant QP2_ARG_PTR_TOSTACK
(0x000000000fff0000). In that case, the arglist value is changed to the
memory address used for a copy of the buf area plus an offset in the
lower 16 bits of the arglist value, and the updated value is passed to the
OS/400 PASE procedure. QP2_ARG_PTR64 is allowed only when
calling a procedure in a 64-bit OS/400 PASE program.

result_type

(Input) The data type of the function result returned by the OS/400 PASE procedure. result_type is
either a special value defined in header file qp2user.h or a positive number that is the length in bytes of
by-address result data copied from the OS/400 PASE stack to the buf area after the OS/400 PASE
procedure returns. Header file qp2user.h defines the following constants for function result data
types:

QP2_RESULT_VOID (0) No function result returned.

QP2_RESULT_WORD (-1) A 4-byte signed or unsigned integer, or a structure or union no longer
than four bytes. This value is allowed only when calling a procedure
in a 32-bit OS/400 PASE program.

QP2_RESULT_DWORD (-2) An 8-byte signed or unsigned integer, or a structure or union no
longer than eight bytes returned by a procedure in a 64-bit OS/400
PASE program.

QP2_RESULT_FLOAT64 (-4) An 8-byte floating point number.

QP2_RESULT_PTR32 (-5) A 4-byte pointer. A pointer result from the OS/400 PASE procedure
is returned unchanged. This value is allowed only when calling a
procedure in a 32-bit OS/400 PASE program.

QP2_RESULT_PTR64 (-6) An 8-byte pointer. A pointer result from the OS/400 PASE procedure
is returned unchanged. This value is allowed only when calling a
procedure in a 64-bit OS/400 PASE program.

buf

(Input/Output) Pointer to a buffer that contains by-address argument data and the function result. buf is
ignored if result_type is QP2_RESULT_VOID and bufLenIn is either zero or omitted (for
Qp2CallPase).

bufLenIn

(Input) Length of by-address argument input data. A positive number specifies the number of bytes
copied from the buf area to the OS/400 PASE stack before the OS/400 PASE procedure is called.

Authorities

None.

Return Value

The function result is an integer that indicates whether the OS/400 PASE function was called successfully.
Header file qp2user.h defines the following constants for the return code from Qp2CallPase and Qp2CallPase2:

QP2CALLPASE_NORMAL (0) The OS/400 PASE procedure ran to completion and its
function result (if any) was stored in the location identified by
the buf parameter.

QP2CALLPASE_RESULT_ERROR (1) The OS/400 PASE procedure ran to completion, but its
function result could not be stored at the location identified by
the buf parameter. buf may be a null pointer value, or the space
addressed by buf may be damaged or destroyed.

QP2CALLPASE_ENVIRON_ERROR (2) The operation is not allowed because no OS/400 PASE
program is running in the job, or the thread that called
Qp2CallPase or Qp2CallPase2 was neither the initial OS/400
PASE thread nor a thread created using OS/400 PASE pthread
interfaces.

QP2CALLPASE_ARG_ERROR (4) One or more values in the signature array are not valid.

QP2CALLPASE_TERMINATING (6) The OS/400 PASE program is terminating. No function result
was returned. The OS/400 PASE program may have run the
exit function, or a signal might have caused the program to
terminate.

QP2CALLPASE_RETURN_NOEXIT (7) The OS/400 PASE program returned without exiting by calling
the OS/400 PASE _RETURN function. No function result was
returned.

Usage Notes

Qp2CallPase and Qp2CallPase2 are supported only when an OS/400 PASE program is currently
running in the job. This means that Qp2RunPase must be running actively in the job, or the job must be
a fork child process.

1.

You can run Qp2CallPase and Qp2CallPase2 only in the initial thread that started the OS/400 PASE
program or in a thread created using OS/400 PASE pthread interfaces, unless OS/400 PASE
environment variable PASE_THREAD_ATTACH was set to Y when a thread-enabled OS/400 PASE
program was started.

2.

Once an ILE thread has attached to OS/400 PASE (by calling an OS/400 PASE procedure), that
thread is subject to asynchronous interruption for OS/400 PASE functions such as signal handling and
thread cancellation. In particular, the thread will be canceled as part of ending the OS/400 PASE
program (when exit runs or OS/400 PASE processing terminates for a signal).

3.

An OS/400 PASE procedure called by Qp2CallPase or Qp2CallPase2 must return to its caller.
Unpredictable results occur if the OS/400 PASE procedure attempts to longjmp to an older call or if it
performs an operation that terminates the thread or process (such as calling the exit function). If a
signal handler is on the OS/400 PASE stack when Qp2CallPase or Qp2CallPase2 is called, the called
OS/400 PASE procedure must also honor restrictions on runtime functions allowed in signal handlers
(see AIX signal handling documentation for details).

4.

A pointer to any function in an OS/400 PASE program is really a pointer to a function descriptor for
the procedure. An OS/400 PASE program can easily provide a function descriptor to ILE code by
passing an OS/400 PASE function pointer value converted to an ILE memory address. The conversion
can be done using the _SETSPP function or the ARG_MEMPTR argument type on the _ILECALLX
or _ILECALL function.

5.

Qp2CallPase and Qp2CallPase2 support arguments and results passed by-address through the use of6.

QP2_ARG_PTR32 or QP2_ARG_PTR64 values in the signature array and positive numbers for the
result_type and/or bufLenIn arguments.

If the buf area is 16-byte aligned, any tagged ILE pointers are preserved in by-address (input)
argument data copied from the buf area to OS/400 PASE memory, and in by-address result data copied
from OS/400 PASE memory to the buf area.

7.

A structure or union function result returned by-value that is short enough to fit into a register must
be handled as QP2_RESULT_WORD for a 32-bit OS/400 PASE program or as
QP2_RESULT_DWORD for a 64-bit OS/400 PASE program. Longer structure or union function
results returned by-value are actually returned by-address through a buffer pointer passed as the first
(hidden) argument to the OS/400 PASE procedure.

8.

You may need to limit result_type and bufLenIn to avoid overrunning the end of the OS/400 PASE
stack. Arguments and results that are too large for the stack can be passed by-address using argument
pointers to OS/400 PASE heap storage.

9.

The PowerPC ABI for AIX requires 4-byte alignment for each argument passed to a procedure in a
32-bit program, and 8-byte alignment for each argument passed to a procedure in a 64-bit program.
Qp2CallPase and Qp2CallPase2 assume the caller provides an arglist data structure that provides this
alignment, including any necessary pad bytes following a structure or union argument and following a
QP2_ARG_FLOAT32 argument passed to a 64-bit OS/400 PASE program. The arglist structure also
needs to store any 64-bit integer or floating point argument on a 4-byte boundary when the target
procedure is in a 32-bit OS/400 PASE program (rather than the 8-byte boundary used as the default for
these types in ILE C and C++ compilers).

10.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

 Qp2dlclose()--Close a Dynamically Loaded
OS/400 PASE Module

 Syntax

 #include <qp2user.h>

 int Qp2dlclose(QP2_ptr64_t id);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2dlclose() closes and unloads an OS/400 PASE module previously opened by API Qp2dlopen (or the
OS/400 PASE dlopen function).

Parameters

id

(Input) Specifies a value returned by API Qp2dlopen (or the OS/400 PASE dlopen function) that
specifies what module is closed and unloaded.

Authorities

None.

Return Value

The function result is zero for normal completion, or -1 with an error indicated in ILE errno or OS/400 PASE
errno (if ILE errno is zero). You can also call API Qp2dlerror for more information about any error.

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Related Information

OS/400 PASE dlclose()--See AIX documentation●

Qp2dlerror()--Retrieve OS/400 PASE Dynamic Load Error Information●

Qp2errnop()--Retrieve OS/400 PASE errno Pointer●

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

 Qp2dlopen()--Dynamically Load an OS/400
PASE Module

 Syntax

 #include <qp2user.h>

 QP2_ptr64_t Qp2dlopen(const char *path,
 int flags,
 int ccsid);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2dlopen() dynamically loads an OS/400 PASE module by calling the OS/400 PASE dlopen() function.

Parameters

path

(Input) A pointer to a null-terminated string that identifies the stream file in the Integrated File System
that contains the OS/400 PASE module to load. This API copies the input path string and converts the
copy from the CCSID specified by the ccsid argument to the current OS/400 PASE CCSID (required
by the OS/400 PASE dlopen function).

If the input path pointer is null, the function result is a value for the main application that lets you find
symbols in the OS/400 PASE process global name space, which includes all symbols exported by the
OS/400 PASE program and shared executables except those loaded by OS/400 PASE dlopen using
option RTLD_LOCAL.

flags

(Input) Flags passed to the OS/400 PASE dlopen function to control its behavior. These constants,
declared in qp2user.h, match constants in AIX header dlfcn.h (without the leading prefix, QP2_) and
can be ORed together for the flags argument:

QP2_RTLD_NOW (0x00000002) Load all dependents of the module being loaded and
resolve all symbols. Either QP2_RTLD_NOW or
QP2_RTLD_LAZY must be specified.

QP2_RTLD_LAZY (0x00000004) Allow the system to defer loading dependent
modules. Either QP2_RTLD_NOW or
QP2_RTLD_LAZY must be specified.

QP2_RTLD_GLOBAL (0x00010000) Load the module into the global name space.
Exported symbols in the module will be visible in
the main application and will be used when
resolving symbols used by other OS/400 PASE
dlopen calls.

QP2_RTLD_LOCAL (0x00080000) Load the module into a local name space. This
option is the default when neither
QP2_RTLD_GLOBAL nor QP2_RTLD_LOCAL is
specified. It prevents symbols in the module being
loaded from being used when resolving symbols
used by other dlopen calls.

QP2_RTLD_MEMBER (0x00040000) Specifies that the path argument string may contain
the name of a member in an archive (shared
library).

QP2_RTLD_NOAUTODEFER (0x00020000) Prevent deferred imports in the module being
loaded from being automatically resolved by
subsequent loads.

ccsid

(Input) Specifies the CCSID for the input path argument string. Zero means the path is in the
(EBCDIC) job default CCSID.

Authorities

Object Referred to
Authority
Required

Each directory in the path to the OS/400 PASE module *X

OS/400 PASE module *R

Return Value

Sucessful completion returns a non-zero function result that can be used to call APIs Qp2dlsym and
Qp2dlclose (and also OS/400 PASE functions dlsym and dlclose). Resources allocated for the function result
are not freed until the OS/400 PASE program ends or the value is passed to API Qp2dlclose (or OS/400 PASE
dlclose).

A zero function result indicates an error. The caller can check ILE errno or OS/400 PASE errno (if ILE errno
is zero), or call the Qp2dlerror API for more information about the error.

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Related Information

OS/400 PASE dlopen()--See AIX documentation●

Qp2dlerror()--Retrieve OS/400 PASE Dynamic Load Error Information●

Qp2errnop()--Retrieve OS/400 PASE errno Pointer●

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

 Qp2EndPase()--End an OS/400 PASE Program

 Syntax

 #include <qp2user.h>

 int Qp2EndPase(void);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: No

The Qp2EndPase() function ends any OS/400 PASE program currently running in the job.

Parameters

None.

Authorities

None.

Return Value

The function result is nonzero if an error is detected attempting to end the OS/400 PASE program.

Usage Notes

Qp2EndPase is normally used to end an OS/400 PASE program that ran the _RETURN OS/400 PASE
runtime function (to return without exiting). Such a program remains active (even if it exits or
terminates due to an OS/400 PASE signal) until either Qp2EndPase is called or the ILE activation
group that called the Qp2RunPase API exits. OS/400 PASE programs that do not use _RETURN are
ended automatically before control returns from the Qp2RunPase API.

1.

Qp2EndPase returns without error when no OS/400 PASE program is running in the job.2.

Undefined behavior results if Qp2EndPase is called while the Qp2RunPase API is running (in the same
job), or if the activation group that ran the Qp2RunPase API attempts to use the OS/400 PASE
program (without restarting it) after Qp2EndPase is called from a different activation group.

3.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

_RETURN()--Return Without Exiting OS/400 PASE●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

 Qp2dlsym()--Find an Exported OS/400 PASE
Symbol

 Syntax

 #include <qp2user.h>

 void* Qp2dlsym(QP2_ptr64_t id
 const char *name,
 int ccsid,
 QP2_ptr64_t *sym_pase);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2dlsym() finds an exported OS/400 PASE symbol by calling the OS/400 PASE dlsym() function.

Parameters

id

(Input) Specifies a value returned by API Qp2dlopen (or the OS/400 PASE dlopen function) that
controls what modules are searched for the exported symbol.

name

(Input) A pointer to a null-terminated string that contains the symbol name. This API copies the input
name string and converts the copy from the CCSID specified by the ccsid argument to the current
OS/400 PASE CCSID (required by the OS/400 PASE dlsym function).

ccsid

(Input) Specifies the CCSID for the input name argument string. Zero means the symbol name is in the
(EBCDIC) job default CCSID.

sym_pase

(Input) A pointer to a buffer, used to return the OS/400 PASE address of the exported symbol. The
return value is always 64-bits, even for a 32-bit OS/400 PASE program. sym_pase can be null if the
caller does not need the OS/400 PASE address of the symbol.

Authorities

None.

Return Value

The function result is a pointer to the specified symbol, or a null pointer if the symbol could not be resolved. A
buffer addressed by the sym_pase argument is unchanged if the symbol could not be resolved. The caller can
check ILE errno or OS/400 PASE errno (if ILE errno is zero), or call the Qp2dlerror API for more
information about any error.

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Related Information

OS/400 PASE dlsym()--See AIX documentation●

Qp2dlerror()--Retrieve OS/400 PASE Dynamic Load Error Information●

Qp2errnop()--Retrieve OS/400 PASE errno Pointer●

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

 Qp2free()--Free OS/400 PASE Heap Memory

 Syntax

 #include <qp2user.h>

 int Qp2free(void *mem);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2free() frees an OS/400 PASE heap memory allocation by calling the OS/400 PASE free() function.

Parameters

mem

(Input) A pointer to the start of the OS/400 PASE memory allocation to be freed.

Authorities

None.

Return Value

The function result is zero for normal completion, or -1 with an error indicated in ILE errno that is ususally
one of the following:

EPERM An error occurred attempting to call an OS/400 PASE function.

ETERM OS/400 PASE is terminating.

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Related Information

OS/400 PASE free()--See AIX documentation●

Qp2errnop()--Retrieve OS/400 PASE errno Pointer●

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

Qp2SignalPase()--Post an OS/400 PASE Signal

 Syntax

 #include <qp2user.h>

 int Qp2SignalPase(int signo);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp2SignalPase() function posts an OS/400 Portable Application Solutions Environment (OS/400 PASE)
signal to an OS/400 PASE program that is already running in the job.

Parameters

signo

(Input) Signal number to post. A positive value is an ILE signal number, which causes the system to
post a corresponding OS/400 PASE signal. ILE and OS/400 PASE signals correspond if they have the
same name (for example, SIGTERM) in a system-provided header file. A negative value is the
negation of an OS/400 PASE (and AIX) signal number.

Authorities

None.

Return Value

The function result is an integer that indicates whether the OS/400 PASE signal was posted successfully.
Header file qp2user.h defines the following constants for the return code from Qp2SignalPase:

QP2CALLPASE_NORMAL(0) An OS/400 PASE signal was posted successfully.

QP2CALLPASE_ENVIRON_ERROR(2) The operation is not allowed because no OS/400 PASE program
is running in the job, or the thread that called Qp2CallPase was
neither the initial OS/400 PASE thread nor a thread created using
OS/400 PASE pthread interfaces.

QP2CALLPASE_ARG_ERROR(4) The signo parameter value is invalid.

QP2CALLPASE_TERMINATING(6) The OS/400 PASE program is terminating. No function result
was returned. The OS/400 PASE program may have run the exit
function, or a signal might have caused the program to terminate.

Usage Notes

Qp2SignalPase is supported only when an OS/400 PASE program is currently running in the job. This
means that Qp2RunPase must be actively called in the job, or the job must be a fork child process.

1.

Not all ILE signals have an OS/400 PASE equivalent and Qp2SignalPase never converts ILE
SIGCHLD to a corresponding PASE signal. This special handling for SIGCHLD avoids duplicate
PASE signals for the termination of a single child process (because the system may send both ILE and
OS/400 PASE signals to the parent of any fork child process that ends).

2.

If there is only one OS/400 PASE thread running in the job, the signal remains pending until control is
transferred to the OS/400 PASE program. If other OS/400 PASE threads are running at the time
Qp2SignalPase is called, the system may chose one of the other threads to deliver the signal.

3.

Related Information

Qp2RunPase()--Call an OS/400 PASE Procedure●

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

 Qp2jobCCSID()--Retrieve Job CCSID for OS/400
PASE

 Syntax

 #include <qp2user.h> /* for ILE programs */
 #include <as400_protos.h> /* for OS/400 PASE programs */

 int Qp2jobCCSID(void);

 Service Program Name: QP2USER (for ILE programs)

 OS/400 PASE Library: libc.a (for OS/400 PASE programs)

 Default Public Authority: *USE

 Threadsafe: Yes

Note: This function can be used in either an ILE program or an OS/400 PASE program. See OS/400 PASE for
more information about creating OS/400 PASE programs.

Qp2jobCCSID() returns the job default CCSID (coded character set identifier) from the last time the OS/400
PASE CCSID was set. The OS/400 PASE CCSID is set when an OS/400 PASE program starts, and can be
changed by the OS/400 PASE runtime function _SETCCSID.

Parameters

None.

Authorities

None.

Return Value

The function result is a coded character set identifier (CCSID), or 0 if OS/400 PASE CCSID information is not
available (such as when no OS/400 PASE program is running in the job).

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

Qp2paseCCSID()--Retrieve OS/400 PASE CCSID●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

 Qp2paseCCSID()--Retrieve OS/400 PASE CCSID

 Syntax

 #include <qp2user.h> /* for ILE programs */
 #include <as400_protos.h> /* for OS/400 PASE programs */

 int Qp2paseCCSID(void);

 Service Program Name: QP2USER (for ILE programs)

 OS/400 PASE Library: libc.a (for OS/400 PASE programs)

 Default Public Authority: *USE

 Threadsafe: Yes

Note: This function can be used in either an ILE program or an OS/400 PASE program. See OS/400 PASE for
more information about creating OS/400 PASE programs.

Qp2paseCCSID() returns the OS/400 PASE CCSID (coded character set identifier) from the last time the
OS/400 PASE CCSID was set. The OS/400 PASE CCSID is set when an OS/400 PASE program starts, and
can be changed by the OS/400 PASE runtime function _SETCCSID.

Parameters

None.

Authorities

None.

Return Value

The function result is a coded character set identifier (CCSID), or 0 if OS/400 PASE CCSID information is not
available (such as when no OS/400 PASE program is running in the job).

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

Qp2jobCCSID()--Retrieve Job CCSID for OS/400 PASE●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

 Qp2dlerror()--Retrieve OS/400 PASE Dynamic
Load Error Information

 Syntax

 #include <qp2user.h>

 char* Qp2dlerror(void);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: No

Qp2dlerror() returns a pointer to a string that provides error information for the most recent dynamic load
function (API Qp2dlopen, Qp2dlsym, or Qp2dlclose).

Parameters

None.

Authorities

None.

Return Value

The function result is a pointer to a null-terminated character string (in the job default CCSID). A null pointer
is returned if no error occurred during the most recent dynamic load operation. Once Qp2dlerror is called,
subsequent calls without an intervening dynamic load error also return a null pointer.

The ILE errno is set and a null pointer is returned for any internal processing error (such as an error converting
the string from the OS/400 PASE CCSID to the job default CCSID).

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Qp2dlerror is not threadsafe because it may call an OS/400 PASE function that is not threadsafe2.

(dlerror) and uses a buffer in static storage for the error string that is also updated by other dynamic
load functions (APIs Qp2dlopen, Qp2dlsym, and Qp2dlclose). Applications may need to serialize use
of dynamic load functions and copy the error information string to preserve its contents.

Related Information

OS/400 PASE dlerror()--See AIX documentation●

Qp2errnop()--Retrieve OS/400 PASE errno Pointer●

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

 Qp2errnop()--Retrieve OS/400 PASE errno
Pointer

 Syntax

 #include <qp2user.h>

 int* Qp2errnop(void);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2errnop() returns a pointer to the OS/400 PASE errno variable for the current thread.

Parameters

None.

Authorities

None.

Return Value

The function result is a pointer to the OS/400 PASE errno variable for the current thread, or a null pointer if
errno location is not available (such as when no OS/400 PASE program is running in the job).

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

 Qp2ptrsize()--Retrieve OS/400 PASE Pointer
Size

 Syntax

 #include <qp2user.h>

 size_t Qp2ptrsize(void);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: Yes

Qp2ptrsize() returns the pointer size, in bytes, for the OS/400 Portable Application Solutions Environment
(OS/400 PASE) program currently running in the job.

Parameters

None.

Authorities

None.

Return Value

The function result is 4 for a 32-bit program, or 8 for a 64-bit program. The result is zero if OS/400 PASE
pointer size is not available (such as when no OS/400 PASE program is running in the job).

Usage Notes

This API can only be used in the same activation group that started OS/400 PASE in the job. This is
either the activation group that called API Qp2RunPase, or the default activation group in a job started
by the OS/400 PASE runtime function fork.

1.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

Qp2RunPase()--Run an OS/400 PASE Program

 Syntax

 #include <qp2user.h>

 int Qp2RunPase(const char *pathName,
 const char *symbolName,
 const void *symbolData,
 unsigned int symbolDataLen,
 int ccsid,
 const char *const *argv,
 const char *const *envp);

 Service Program Name: QP2USER

 Default Public Authority: *USE

 Threadsafe: No

The Qp2RunPase() function runs an OS/400 Portable Application Solutions Environment (OS/400 PASE)
program in the job where the API is called. It loads the OS/400 PASE program and any necessary shared
libraries and then transfers control to the program. Control returns to the caller when the OS/400 PASE
program exits, terminates due to a signal, or returns without exiting.

Parameters

pathName

(Input) Pointer to a null-terminated character string that identifies the stream file in the Integrated File
System that contains the OS/400 PASE program to run. The pathName string may include an absolute
or relative path qualifier in addition to the stream file name. Relative path names are resolved using the
current working directory.

symbolName

(Input) Pointer to a null-terminated character string that names an external symbol in the OS/400
PASE program. The specified symbol is initialized with data addressed by the symbolData parameter.
The OS/400 PASE program is run without initializing symbol data (and no error is reported) if either
symbolName is a null pointer or the string does not match an external symbol name in the program.

The system copies the symbolName string internally and converts it from the job default CCSID to the
CCSID specified by the ccsid parameter before searching for the (converted) symbol name in the
OS/400 PASE program.

symbolData

(Input) Pointer to data used to initialize a symbol (identified by the symbolName parameter) in the
OS/400 PASE program. The system copies the data (without modification) into memory that can be
referenced by the OS/400 PASE program. Any MI pointers in the data are preserved in the copy.
symbolData is ignored if it is a null pointer or if no external symbol name in the program matches the
symbolName parameter.

symbolDataLen

(Input) The number of bytes to copy from the address specified by the symbolData parameter to
OS/400 PASE memory. symbolDataLen is ignored if symbolData is a null pointer or if no external
symbol name in the program matches the symbolName parameter.

ccsid

(Input) The coded character set identifier (CCSID) initially used by the OS/400 PASE program. ccsid
must specify a single-byte encoding (normally an ASCII CCSID) that OS/400 can convert to and from
the job default CCSID, or a value of 1208 to indicate that the OS/400 PASE program uses UTF-8
encoding.

The system uses ccsid to set the CCSID of any bytestream file created by the OS/400 PASE program,
and also to control character encoding conversions done for OS/400 PASE runtime interfaces that use
OS/400 services.

argv

(Input) Pointer to an array of pointers to null-terminated character strings that are passed as arguments
to the OS/400 PASE program. The last element in the array must be a null pointer. An error is reported
if the argv parameter pointer is null.

The system copies argument strings into OS/400 PASE memory and converts them from the job
default CCSID to the CCSID specified by the ccsid parameter. By convention, the first argument string
passed to an OS/400 PASE program should be the same as the pathName string.

envp

(Input) Pointer to an array of pointers to null-terminated character strings that are passed as
environment variables to the OS/400 PASE program. The last element in the array must be a null
pointer. envp can be a null pointer if no environment variables need to be initialized for the OS/400
PASE program.

The system copies environment variable strings into OS/400 PASE memory and converts them from
the job default CCSID to the CCSID specified by the ccsid parameter. By convension, environment
variable strings take the form "NAME=value".

Authorities

Object Referred to
Authority
Required

Each directory in the path to the OS/400 PASE program and shared libraries *X

OS/400 PASE program (not a shell script) in a local file system *X

OS/400 PASE program in a remote file system or shell script *RX

OS/400 PASE shared library *R

Return Value

The function result may be one of these special values:

QP2RUNPASE_ERROR (-1) An internal error occurred during Qp2RunPase processing.

QP2RUNPASE_RETURN_NOEXIT (-2) The OS/400 PASE program returned without exiting (by
calling the OS/400 PASE _RETURN function).

If the result is not one of the special values above, it is a value that contains status information about how the
OS/400 PASE program ended, in the same format as the stat_val parameter for the ILE waitpid function. You
can use these macros in file <sys/wait.h> to interpret such a result:

WIFEXITED(stat_val) Evaluates to a nonzero value if OS/400 PASE program ended normally.

WEXITSTATUS(stat_val) If the value of the WIFEXITED(stat_val) is nonzero, evaluates to the low-order
8 bits of the value the OS/400 PASE program specified as the argument to exit
or the function result returned by main.

WIFSIGNALED(stat_val) Evaluates to a nonzero value if OS/400 PASE program ended because of the
receipt of a terminating signal that was not caught by the process.

WTERMSIG(stat_val) If the value of WIFSIGNALED(stat_val) is nonzero, evaluates to the number of
the OS/400 PASE signal that caused the program to end. OS/400 PASE
programs use the same signal numbers as AIX (which differ from ILE signal
numbers).

Error Messages

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB9C0 E Error loading program &1. See previous messages.

CPFB9C1 E System support for OS/400 Portable Application Solutions Environment not available.

CPFB9C2 E Hardware support for OS/400 Portable Application Solutions Environment not available.

CPFB9C3 E OS/400 PASE CCSID and job default CCSID are incompatible.

CPFB9C7 E OS/400 PASE already running in this job.

CPFB9C8 E File descriptors 0, 1, and 2 must be open to run the OS/400 PASE program.

Usage Notes

Qp2RunPase works like the AIX execve function, including the ability to run shell scripts and the rules
for resolving shared libraries (which may include using OS/400 PASE environment variable
LIBPATH).

1.

 If an absolute path (starting with "/") is specified for the pathName string or in the first line of a
shell script identified by pathName and that path cannot be opened or is not a regular bytestream file,
the system generally searches the /QOpenSys file system for the file. See environment variable
PASE_EXEC_QOPENSYS in OS/400 PASE Environment Variables for more information.

2.

Qp2RunPase cannot run an OS/400 PASE program or shared library stored in a file system that is not
threadsafe in a job that is multithread capable. Any job started by the OS/400 PASE fork function is
multi-thread capable.

3.

You can set these ILE environment variables before calling Qp2RunPase to control the OS/400 PASE
operation:

QIBM_USE_DESCRIPTOR_STDIO When this ILE environment variable is set to Y or I, both
OS/400 PASE runtime and ILE C runtime use Integrated
File System file descriptors 0, 1, and 2 for stdin, stdout,
and stderr. Otherwise, OS/400 PASE file descriptors 0, 1,
and 2 are mapped to ILE C runtime files stdin, stdout, and
stderr (which may not use any Integrated File System file
descriptors).

OS/400 PASE and ILE generally use different descriptor
numbers for the same open file, but when
QIBM_USE_DESCRIPTOR_STDIO is set to Y or I, any
operation against OS/400 PASE file descriptors 0, 1, or 2
is also done for the same Integrated File System file
descriptor number so OS/400 PASE and ILE C use the
same files for stdin, stdout, and stderr.

QIBM_PASE_DESCRIPTOR_STDIO This ILE environment variable controls ASCII/EBCDIC
conversion for data read or written through OS/400 PASE
files stdin, stdout, and stderr to Integrated File System file
descriptors 0, 1, and 2. ASCII/EBCDIC conversion is
always done (and this variable is ignored) unless
QIBM_USE_DESCRIPTOR_STDIO is set to either Y or
I. If QIBM_PASE_DESCRIPTOR_STDIO is set to B, the
PASE program processes binary data (without
ASCII/EBCDIC conversion). Otherwise, ASCII/EBCDIC
conversion is done for any data read from or written to
OS/400 PASE file descriptors 0, 1, or 2.

QIBM_PASE_USE_PRESTART_JOBS When this ILE environment variable is set to Y, OS/400
PASE runtime uses prestarted jobs for child processes
created by fork and for any job started by the systemCL
OS/400 PASE runtime function (to run a CL command).
You should add prestarted job entries (ADDPJE
command) for programs QP0ZSPWT (used by fork) and
QP0ZSPWP (used by systemCL) to any subsystem
description that will run jobs that use this support.

4.

OS/400 PASE environment variables are independent of ILE environment variables. See OS/400
PASE Environment Variables for more information, including OS/400 PASE environment variables
you can set to control runtime behaviors that differ from AIX.

5.

A symbol name specified by the symbolName parameter must be defined (not just declared or
referenced) in the OS/400 PASE program. The system relocates the symbol to memory that is
dynamically allocated to ensure 16-byte alignment. Any initial value specified in the OS/400 PASE
program for the relocated symbol is ignored.

6.

The ccsid parameter provides the initial OS/400 PASE CCSID value, but the OS/400 PASE program
can use the _SETCCSID function to change the OS/400 PASE CCSID or to rebind to a change in the
job default CCSID. The OS/400 PASE CCSID should generally be the CCSID equivalent of the code
set for the current locale. See OS/400 PASE Locales to determine what locales are supported by
OS/400 PASE.

7.

OS/400 PASE programs generally should use functions _ILELOAD and _ILESYM to acquire MI
pointers to functions and data exported by an ILE program or service program rather than rely on
pointers passed using the symbolName, symbolData, and symbolDataLen parameters on Qp2RunPase.
This is because MI pointers in OS/400 PASE memory are destroyed by exec processing and pointers to
ILE procedures are unusable in a child process created by fork (because they point to an activation
group in the parent process).

8.

You may want to increase the number of file descriptors in the job by calling DosSetRelMaxFH before
you call Qp2RunPase. By default, OS/400 jobs support only 200 open file descriptors, while OS/400
PASE programs generally expect to be able to open 32 767 file descriptors, and the system requires
file descriptors to open bytestream files that contain the OS/400 PASE program and any shared
libraries it uses.

9.

You may want to establish Qp2SignalPase as the handler for any ILE signal that needs to be visible to
the OS/400 PASE program. For example, system support for Sockets (used by OS/400 PASE runtime)
only sends SIGIO and SIGURG as ILE signals, so ILE signal handling must be set up before calling an
OS/400 PASE program that relies on SIGIO or SIGURG as OS/400 PASE signals. OS/400 PASE
runtime automatically establishes Qp2SignalPase as the handler for every ILE signal in a fork child
process.

10.

You may want to call ILE interfaces pthread_setcancelstate and pthread_setcanceltype to set pthread
cancel state and cancel type before calling Qp2RunPase in a process that did prior pthread work.
OS/400 PASE pthreads use ILE pthreads and Qp2RunPase assumes that ILE pthread cancel state and
cancel type are set to defaults (PTHREAD_CANCEL_ENABLE and
PTHREAD_CANCEL_DEFERRED). The state of these attributes when a program ends is whatever
value was last set by either ILE or OS/400 PASE code.

11.

Time-of-day information in an OS/400 PASE program depends on the values for system value
QUTCOFFSET when the OS/400 PASE was started, and OS/400 PASE environment variable TZ
when the program retrieves the time. For example, the correct settings for Central Standard Time in the
USA are QUTCOFFSET=-6 and TZ=CST6CDT.

12.

Any credentials changes (user, group, or group list changes) made by an OS/400 PASE program are
generally persistent in the job. The job (thread) credentials before and after a call to Qp2RunPase may
not be the same if the OS/400 PASE program calls any of the setuid or setgid family of interfaces.

13.

However, the system saves credentials before running any OS/400 PASE program with the S_ISUID
or S_ISGID attribute, and automatically restores the saved credentials before returning to the caller of
Qp2RunPase.

Character conversions controlled by the ccsid parameter only handle the single-byte component of an
EBCDIC-mixed CCSID (for the job default CCSID). This restricts the OS/400 PASE program name
specified by the pathName parameter, argument strings passed through the argv parameter, and
environment variables passed through the envp parameter to single-byte characters. DBCS characters
can be passed (unconverted) to an OS/400 PASE program using the symbolData parameter.

14.

If an OS/400 PASE program needs to use DBCS characters for OS/400 PASE runtime functions such
as file system interfaces, it must run with the OS/400 PASE CCSID (ccsid parameter) set to 1208
because OS/400 PASE runtime provides complete support for DBCS characters using UTF-8 encoding
only.

15.

Related Information

The <sys/wait.h> file (see Header Files for UNIX-Type Functions)●

DosSetRelMaxFH()--Change Maximum Number of File Descriptors●

pthread_setcancelstate()--Set Cancel State●

pthread_setcanceltype()--Set Cancel Type●

QP2SHELL()--Run an OS/400 PASE Shell Program●

QP2TERM()--Run an OS/400 PASE Terminal Session●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

Runtime Functions For Use by OS/400 PASE
Programs
OS/400 PASE runtime includes interfaces supported on AIX and interfaces unique to OS/400 PASE. They are
unique to OS/400 PASE

The runtime functions are:

Build an ILE Argument List for OS/400 PASE (build_ILEarglist) builds an ILE argument list using
argument values copied from an OS/400 PASE function with the same signature.

●

Call an ILE Procedure for OS/400 PASE (_ILECALL and _ILECALLX) allows an OS/400 PASE
program to call an ILE procedure.

●

Call an OS/400 Program for OS/400 PASE (_PGMCALL) calls an OS/400 program (object type
*PGM) from an OS/400 PASE program.

●

Compute ILE Argument List Size for OS/400 PASE (size_ILEarglist) computes the number of bytes
of memory required to build an ILE argument list.

●

Convert ILE errno to OS/400 PASE errno (_CVTERRNO) converts an ILE errno value to a
corresponding OS/400 PASE errno value.

●

Convert Space Pointer for OS/400 PASE (_CVTSPP) converts a tagged space pointer value to an
equivalent OS/400 PASE memory address.

●

Copy Character String for OS/400 PASE (_STRNCPY_SPP) copies a null-terminated character string.●

Copy Memory With Tags for OS/400 PASE (_MEMCPY_WT and _MEMCPY_WT2) allows an
OS/400 PASE program to copy memory with tagged pointers.

●

Determine Character String Length for OS/400 PASE (_STRLEN_SPP) determines the length of a
null-terminated character string.

●

Find Exported ILE Symbol for OS/400 PASE (_ILESYM) allows an OS/400 PASE program to get a
tagged pointer to the data or procedure exported for a symbol exported by an ILE activation.

●

Load an ILE Bound Program for OS/400 PASE (_ILELOAD) allows an OS/400 PASE program to
load (activate) an ILE bound program.

●

Override SQL CLI CCSID for OS/400 PASE (SQLOverrideCCSID400) allows an OS/400 PASE
program to specify a CCSID for character arguments and results on SQL runtime functions.

●

Receive Nonprogram Message for OS/400 PASE (QMHRCVM and QMHRCVM1) allows an OS/400
PASE program to receive a message from a nonprogram message queue.

●

Receive Program Message for OS/400 PASE (QMHRCVPM, QMHRCVPM1, and QMHRCVPM2)
allows an OS/400 PASE program to receive a message from a program call message queue or from the
job external message queue.

●

Resolve to an OS/400 Object for OS/400 PASE (_RSLOBJ) resolves to an OS/400 object.●

Retrieve Job CCSID for OS/400 PASE (Qp2jobCCSID) returns the job default CCSID (coded
character set identifier) from the last time the OS/400 PASE CCSID was set.

●

Retrieve OS/400 PASE CCSID (Qp2paseCCSID) returns the OS/400 PASE CCSID from the last
time the OS/400 PASE CCSID was set.

●

Return without Exiting OS/400 PASE (_RETURN) returns to the ILE called that called OS/400
PASE in this job, without exiting the OS/400 PASE program.

●

Run a CL Command for OS/400 PASE (systemCL) allows an OS/400 PASE program to run a CL●

command.

Send Nonprogram Message for OS/400 PASE (QMHSNDM and QMHSNDM1) allows an OS/400
PASE program to send a message to a nonprogram message queue so it can communicate with another
job or user.

●

Send Program Message for OS/400 PASE (QMHSNDPM, QMHSNDPM1, and QMHSNDPM2)
allows an OS/400 PASE program to send a message to a program call message queue or to the job
external message queue.

●

Set OS/400 PASE CCSID (_SETCCSID) retrieves and sets the OS/400 PASE Coded Character Set
Identifier (CCSID) value.

●

Set Space Pointer for OS/400 PASE (_SETSPP) sets a tagged space pointer to the teraspace equivalent
of an OS/400 PASE memory address.

●

Top | OS/400 PASE APIs | APIs by category

build_ILEarglist()--Build an ILE Argument List for
OS/400 PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 int build_ILEarglist(ILEarglist_base *ILEarglist,
 const void *PASEarglist,
 const arg_type_t *signature);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The build_ILEarglist() function builds an ILE argument list using argument values copied from an OS/400
PASE function with the same signature.

Parameters

ILEarglist

(Output) Pointer to a 16-byte aligned buffer allocated by the caller for the ILE argument list. ILEarglist
must be long enough to contain all arguments specified in the signature list.

PASEarglist

(Input) Pointer to the first argument passed to an OS/400 PASE function that accepts arguments
equivalent to those specified by the signature list.

signature

(Input) Pointer to a list of arg_type_t values that specify the sequence and type of arguments passed to
the ILE procedure. ILE procedures can accept a maximum of 400 arguments. The actual number of
arguments processed by the build_ILEarglist function is determined by the number of entries in the
signature list, which is determined by the location of the first ARG_END value in the list. The
following values are supported in the signature list:

ARG_END(0) Specifies the end of the signature list.

ARG_INT8 (-1) Signed 1-byte integer argument.

ARG_UINT8 (-2) Unsigned 1-byte integer argument.

ARG_INT16 (-3) Signed 2-byte integer argument.

ARG_UINT16 (-4) Unsigned 2-byte integer argument.

ARG_INT32 (-5) Signed 4-byte integer argument.

ARG_UINT32 (-6) Unsigned 4-byte integer argument.

ARG_INT64 (-7) Signed 8-byte integer argument.

ARG_UINT64 (-8) Unsigned 8-byte integer argument.

ARG_FLOAT32 (-9) 4-byte floating-point argument.

ARG_FLOAT64 (-10) 8-byte floating-point argument.

ARG_MEMPTR (-11) The argument is a memory address. The OS/400 PASE procedure argument
is an OS/400 PASE memory address that build_ILEarglist copies into the
ILEpointer type value in the ILE argument list. See Call an ILE Procedure
for OS/400 PASE (_ILECALLX or _ILECALL) for more information
about how ARG_MEMPTR arguments are handled.

Any positive number
(1-32767)

The argument is an aggregate (structure or union). The value in the
signature list is the length, in bytes, of the aggregate.

Authorities

build_ILEarglist requires no authority.

Return Value

build_ILEarglist returns the number of bytes used to build the ILE argument list (including storage for the
ILEarglist_base type), or zero if an error was detected in the input arguments.

Usage Notes

build_ILEarglist does no character encoding conversions, so the OS/400 PASE program may need to
convert argument and result character strings between ASCII and EBCDIC. OS/400 PASE runtime
function iconv can be used for character conversions.

1.

build_ILEarglist does not support argument types ARG_SPCPTR or ARG_OPENPTR (which are
supported by _ILECALLX and _ILECALL) because the AIX Application Binary Interface for
PowerPC provides no way to ensure 16-byte alignment for arguments pushed onto the stack.

2.

build_ILEarglist does not directly support aggregate function results. You need to set
result.r_aggregate.addr in the PASEarglist structure to the address of a buffer where the ILE procedure
will store the aggregate result.

3.

Older versions of build_ILEarglist accepted additional arguments in an attempt to handle aggregate
function results, but those arguments were removed because they cannot be supported reliably. If you
need to compile source that passes the additional arguments, you must define macro
OLD_build_ILEarglist and include <as400_types.h> to access the old support.

4.

Related Information

_ILECALLX()--Call an ILE Procedure for OS/400 PASE●

size_ILEarglist()--Compute ILE Argument List Size for OS/400 PASE●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_ILECALLX()--Call an ILE Procedure for OS/400
PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 int _ILECALLX(const ILEpointer *target,
 ILEarglist_base *ILEarglist,
 const arg_type_t *signature,
 result_type_t result_type,
 int flags);

 int _ILECALL(const ILEpointer *target,
 ILEarglist_base *ILEarglist,
 const arg_type_t *signature,
 result_type_t result_type);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information.

The _ILECALLX() and _ILECALL() functions call an ILE procedure from an OS/400 PASE program. They
transfer control to an ILE procedure specified by a 16-byte tagged ILE procedure pointer, passing arguments
and returning the function result.

Parameters

target

(Input) Pointer to a tagged procedure pointer that addresses the ILE procedure to call. target must be a
16-byte aligned OS/400 PASE memory address.

ILEarglist

(Input/Output) Pointer to a 16-byte aligned ILE argument list structure. ILEarglist is the address of the
structure that contains any argument values to pass to the ILE procedure, as well as memory for a
function result returned by the ILE procedure. ILEarglist must be long enough to contain all arguments
required by the target ILE procedure to avoid unpredictable results.

The base structure of an ILE argument list (including a function result area) is specified by type
ILEarglist_base. Any argument values for the ILE procedure are stored in memory immediately
following the ILEarglist_base type. The specific format of the argument list is determined by the list of

arg_type_t values addressed by the signature argument. The alignment requirements for each argument
value in the ILE argument list depends on its length:

Argument Length Alignment

1 byte any

2 bytes 2 bytes

3-4 bytes 4 bytes

5-8 bytes 8 bytes

9 or more bytes 16 bytes

signature

(Input) Pointer to a list of arg_type_t values that specify the sequence and type of arguments passed to
the ILE procedure. ILE procedures can accept a maximum of 400 arguments. The actual number of
arguments processed by the _ILECALLX or _ILECALL function is determined by the number of
entries in the signature list, which is determined by the location of the first ARG_END value in the list.
The following values are supported in the signature list:

ARG_END (0) Specifies the end of the signature list.

ARG_INT8 (-1) Signed 1-byte integer argument.

ARG_UINT8 (-2) Unsigned 1-byte integer argument.

ARG_INT16 (-3) Signed 2-byte integer argument.

ARG_UINT16 (-4) Unsigned 2-byte integer argument.

ARG_INT32 (-5) Signed 4-byte integer argument.

ARG_UINT32 (-6) Unsigned 4-byte integer argument.

ARG_INT64 (-7) Signed 8-byte integer argument.

ARG_UINT64 (-8) Unsigned 8-byte integer argument.

ARG_FLOAT32 (-9) 4-byte floating-point argument.

ARG_FLOAT64 (-10) 8-byte floating-point argument.

ARG_MEMPTR (-11) The argument is a field of type ILEpointer into which the caller has stored
an OS/400 PASE memory address (in member address). _ILECALLX and
_ILECALL convert the OS/400 PASE memory address to an equivalent
teraspace address, except that address zero is converted to a special value
for a null pointer. The converted result is passed as the argument value to
the target ILE procedure. Both functions generally update the ILEpointer
argument value in memory so it contains a tagged space pointer, but the
memory may not be updated if the target ILE procedure uses ARGOPT
linkage.

ARG_SPCPTR (-12) The argument is a field of type ILEpointer where the OS/400 PASE
program has stored a tagged space pointer (or an untagged or null pointer).

ARG_OPENPTR (-13) The argument is a field of type ILEpointer where the OS/400 PASE
program has stored a 16-byte pointer of any type (including possibly an
untagged or null pointer).

Any positive number
(1-32767)

The argument is an aggregate (structure or union). The value in the
signature list is the length, in bytes, of the aggregate.

result_type

(Input) Specifies the type of function result returned by the ILE procedure.

The following values are supported:

RESULT_VOID(0) No function result.

RESULT_INT8 (-1) Signed 1-byte integer result, returned in field result.s_int8.r_int8 in
the ILEarglist argument.

RESULT_UINT8 (-2) Unsigned 1-byte integer result, returned in field result.s_uint8.r_uint8
in the ILEarglist argument.

RESULT_INT16 (-3) Signed 2-byte integer result, returned in field result.s_int16.r_int16 in
the ILEarglist argument.

RESULT_UINT16 (-4) Unsigned 2-byte integer result, returned in field
result.s_uint16.r_uint16 in the ILEarglist argument.

RESULT_INT32 (-5) Signed 4-byte integer result, returned in field result.s_int32.r_int32 in
the ILEarglist argument.

RESULT_UINT32 (-6) Unsigned 4-byte integer result, returned in field
result.s_uint32.r_uint32 in the ILEarglist argument.

RESULT_INT64 (-7) Signed 8-byte integer result, returned in field result.r_int64 in the
ILEarglist argument.

RESULT_UINT64 (-8) Unsigned 8-byte integer result, returned in field result.r_uint64 in the
ILEarglist argument.

RESULT_FLOAT64 (-10) 8-byte floating-point result, returned in field result.r_float64 in the
ILEarglist argument.

Any positive number
(1-32767)

The function result is an aggregate (structure or union). result_type is
the length, in bytes, of the aggregate. An aggregate function result is
returned in a buffer allocated by the caller and passed to the target
ILE procedure using a special field in the argument list. The caller
must provide a buffer large enough for the result returned by the
target ILE procedure to avoid unpredictable results. An OS/400
PASE program must set field result.r_aggregate.addr in type
ILEarglist_base to the OS/400 PASE memory address of the result
buffer before calling an ILE procedure that returns an aggregate
result. _ILECALLX and _ILECALL convert the OS/400 PASE
memory address to a teraspace address the same way they convert
ARG_MEMPTR arguments.

flags

(Input) Specifies options to control how the ILE procedure program is called. The flags argument is a
bitwise logical-or of one or more of the following values:

ILECALL_NOINTERRUPT
(0x00000004)

Specifies that OS/400 PASE signals will not interrupt the called ILE
procedure. Some system functions (such as select) can be interrupted
by signals. Normally either an ILE signal or an OS/400 PASE signal
can interrupt such an operation, but ILECALL_NOINTERRUPT
delays OS/400 PASE signal processing until control returns from the
called ILE procedure. This option has no effect on ILE signal
handling.

Authorities

_ILECALL and _ILECALLX require no authority.

Return Value

Most errors from _ILECALLX and _ILECALL are reported with OS/400 exception messages that are
converted to OS/400 PASE signals. See OS/400 PASE Signal Handling for information about handling
OS/400 exceptions.

If no OS/400 PASE signal is sent, one of these values is returned:

ILECALL_NOERROR(0) The target ILE procedure was called and returned normally.

ILECALL_INVALID_ARG (1) An invalid value was found in the signature list.

ILECALL_INVALID_RESULT (2) The result_type value is invalid.

ILECALL_INVALID_FLAGS (3) The flags value is invalid.

Usage Notes

_ILECALLX and _ILECALL can only call ILE procedures in an OS/400 bound program. If your
OS/400 PASE program needs to call an OS/400 program object (object type *PGM), you must use the
_PGMCALL function or use the systemCL function to run the CL CALL command.

1.

Every module in a *PGM or *SRVPGM object containing a function directly called by PASE (using
_ILECALLX or _ILECALL) must be Teraspace-safe. If any module in the program was created as
TERASPACE(*NO), then OS/400 PASE will not be able to call any procedure in that program (even a
procedure in a module created as TERASPACE(*YES)).

2.

_ILECALLX and _ILECALL do no character encoding conversions, so the OS/400 PASE program
may need to convert argument and result character strings between ASCII and EBCDIC. OS/400
PASE runtime function iconv can be used for character conversions.

3.

An OS/400 PASE program can pass tagged space pointer arguments to an ILE procedure using either
ARG_SPCPTR or ARG_OPENPTR unless the target ILE procedure uses ARGOPT linkage, in which
case ARG_SPCPTR must be used. ARG_MEMPTR can be used for space pointer arguments
regardless of what linkage is used by the target ILE procedure.

4.

ILE procedure pointers address resources inside an ILE activation group. The machine prohibits use of
activation group resources from a process other than the owner of the activation group. This means that
the child process of a fork cannot use ILE procedure pointers inherited from the parent process. The
child process can, however, use _ILELOAD to load the bound program (creating a new activation in
the child process) and then use _ILESYM to obtain ILE procedure pointers into the new activation.

5.

See Set Space Pointer for OS/400 PASE (_SETSPP) for more information about tagged space pointers
and sharing tagged pointers between processes.

6.

_ILECALL is equivalent to _ILECALLX with the ILECALL_NOINTERRUPT flag. 7.

Related Information

 _PGMCALL()--Call an OS/400 Program for OS/400 PASE ●

_ILESYM()--Find an Exported ILE Symbol for OS/400 PASE●

_ILELOAD()--Load an ILE Bound Program for OS/400 PASE●

size_ILEarglist()--Compute ILE Argument List Size for OS/400 PASE●

build_ILEarglist()--Build an ILE Argument List for OS/400 PASE●

_SETSPP()--Set Space Pointer for OS/400 PASE●

 systemCL()--Run a CL Command for OS/400 PASE ●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

 _PGMCALL()--Call an OS/400 Program for
OS/400 PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 int _PGMCALL(const ILEpointer *target,
 void **argv,
 unsigned flags);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _PGMCALL() function calls an OS/400 program (object type *PGM) from an OS/400 PASE program. It
transfers control to the *PGM object specified by a 16-byte tagged system pointer (passing any necessary
arguments) and resumes execution when control returns.

Parameters

target

(Input) Pointer to a tagged system pointer that addresses the OS/400 program (object type *PGM) to
call. target must be a 16-byte aligned OS/400 PASE memory address.

argv

(Input/Output) Array of pointers to arguments. argv is the address of an array of pointers to argument
variables that are passed by-address to the OS/400 program. argv can be zero (null) if there are no
arguments to pass. The last element in the array must be a null pointer. A maximum of
PGMCALL_MAXARGS (255) arguments can be passed to an OS/400 program.

flags

(Input) Specifies options to control how the OS/400 program is called. The flags argument is a bitwise
logical-or of one or more of the following values:

PGMCALL_DIRECT_ARGS
(0x00000001)

Specifies that the addresses in the argv array are passed directly to
the OS/400 program as formal arguments. If
PGMCALL_DIRECT_ARGS is omitted, the system builds tagged
space pointers to the argument memory locations identified in the
argv array and passes the space pointers as formal arguments
(standard OS/400 program linkage).

PGMCALL_DROP_ADOPT
(0x00000002)

Specifies that authorizations adopted by OS/400 program
invocations already in the stack are dropped so the called program
only benefits from authorizations available to the user and group
profiles for the thread.

PGMCALL_NOINTERRUPT
(0x00000004)

Specifies that OS/400 PASE signals will not interrupt the called
OS/400 program. Some system functions (such as select) can be
interrupted by signals. Normally either an ILE signal or an OS/400
PASE signal can interrupt such an operation, but
PGMCALL_NOINTERRUPT delays OS/400 PASE signal
processing until control returns from the called OS/400 program.
This option has no effect on ILE signal handling.

Authorities

Object Referred to
Authority
Required

OS/400 program to call *X

Return Value

Most errors from _PGMCALL are reported with OS/400 exception messages that are converted to OS/400
PASE signals. See OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

If no OS/400 PASE signal is sent, a function result of zero indicates the OS/400 program was called and
returned normally. A function result of -1 indicates an error that is further qualified by an errno value.

Error Conditions

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE errno
EAPAR):

[EINVAL] An invalid flags value was specified, or more than PGMCALL_MAXARGS (255) arguments
were provided.

Usage Notes

_PGMCALL can only call OS/400 program objects (object type *PGM). If your OS/400 PASE
program needs to call a particular ILE procedure inside a *PGM or *SRVPGM object, you must to use
the _ILECALL function.

1.

You can use the _RSLOBJ or _RSLOBJ2 function to obtain a system pointer to an OS/400 program
(object type *PGM).

2.

Any OS/400 program that accepts arguments must be Teraspace-safe (created using
TERASPACE(*YES)) to be called using _PGMCALL because the arguments are always passed in
Teraspace storage.

3.

Arguments (addressed by pointers in the argv array) can be of any data type. Arguments are passed
by-address, so the called OS/400 program can modify argument variables to return results to the
OS/400 PASE program.

4.

_PGMCALL does no character encoding conversions, so the OS/400 PASE program may need to
convert argument and result character strings between ASCII and EBCDIC. OS/400 PASE runtime
function iconv can be used for character conversions.

5.

Related Information

_RSLOBJ()--Resolve to an OS/400 Object for OS/400 PASE●

_ILECALL()--Call an ILE Procedure for OS/400 PASE●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

size_ILEarglist()--Compute ILE Argument List
Size for OS/400 PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 size_t size_ILEarglist(const arg_type_t *signature);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The size_ILEarglist() function computes the number of bytes of memory required to build an ILE argument
list for a specific function signature.

Parameters

signature

(Input) Pointer to a list of arg_type_t values that specify the sequence and type of arguments passed to
the ILE procedure. ILE procedures can accept a maximum of 400 arguments. The actual number of
arguments processed by the size_ILEarglist function is determined by the number of entries in the
signature list, which is determined by the location of the first ARG_END value in the list. The
following values are supported in the signature list:

ARG_END (0) Specifies the end of the signature list.

ARG_INT8 (-1) Signed 1-byte integer argument.

ARG_UINT8 (-2) Unsigned 1-byte integer argument.

ARG_INT16 (-3) Signed 2-byte integer argument.

ARG_UINT16 (-4) Unsigned 2-byte integer argument.

ARG_INT32 (-5) Signed 4-byte integer argument.

ARG_UINT32 (-6) Unsigned 4-byte integer argument.

ARG_INT64 (-7) Signed 8-byte integer argument.

ARG_UINT64 (-8) Unsigned 8-byte integer argument.

ARG_FLOAT32 (-9) 4-byte floating-point argument.

ARG_FLOAT64 (-10) 8-byte floating-point argument.

ARG_MEMPTR (-11) The argument is a field of type ILEpointer.

ARG_SPCPTR (-12) The argument is a field of type ILEpointer.

ARG_OPENPTR (-13) The argument is a field of type ILEpointer.

Any positive number
(1-32767)

The argument is an aggregate (structure or union). The value in the
signature list is the length, in bytes, of the aggregate.

Authorities

size_ILEarglist requires no authority.

Return Value

size_ILEarglist returns the number of bytes required to build the ILE argument list (including storage for the
ILEarglist_base type and any necessary bytes skipped for alignment between arguments), or zero if an error
was detected in the signature list.

Related Information

_ILECALLX()--Call an ILE Procedure for OS/400 PASE●

build_ILEarglist()--Build an ILE Argument List for OS/400 PASE●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_CVTERRNO()--Convert ILE errno to OS/400
PASE errno

 Syntax

 #include <as400_protos.h>

 int _CVTERRNO(int errno_ile);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information.

The _CVTERRNO() function converts an ILE errno value to a corresponding OS/400 PASE errno value.

Parameters

errno_ile

(Input) Specifies the ILE errno value to convert to a corresponding OS/400 PASE errno value. ILE and
OS/400 PASE errno values correspond if they have the same name (for example, EFAULT) in a
system-provided header file.

Authorities

_CVTERRNO requires no authority.

Return Value

_CVTERRNO returns the OS/400 PASE equivalent of the input ILE errno value. If the input has no OS/400
PASE errno equivalent (for example, EAPAR is an ILE errno value with no OS/400 PASE equivalent), the
input is returned unchanged.

Usage Notes

The errno value set by an ILE runtime function must be determined by code running in the same thread
and activation group that called the runtime function because ILE runtime sometimes maintains a
separate errno variable for each activation group.

1.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V5R1

Top | OS/400 PASE APIs | APIs by category

_CVTSPP()--Convert Space Pointer for OS/400
PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 void* _CVTSPP(const ILEpointer *source);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information.

The _CVTSPP() function converts the teraspace address in a tagged space pointer to an equivalent OS/400
PASE memory address.

Parameters

source

(Input) Pointer to a tagged space pointer or 16-byte null pointer. The source address must 16-byte
aligned.

Authorities

_CVTSPP requires no authority.

Return Value

_CVTSPP returns the OS/400 PASE memory address equivalent of the input tagged space pointer. The result
is zero (null) if the input is a 16-byte null pointer or a tagged space pointer that does not contain the teraspace
address equivalent of some valid OS/400 PASE memory address.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE signal.
See OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

_CVTSPP returns an OS/400 PASE memory address regardless of whether there is currently any
memory at that address (as long as the input tagged pointer contains the teraspace address equivalent
of a valid OS/400 PASE memory address).

1.

Related Information

_SETSPP()--Set Space Pointer for OS/400 PASE●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_STRNCPY_SPP()--Copy Character String for
OS/400 PASE

 Syntax

 #include <as400_protos.h>

 void _STRNCPY_SPP(const ILEpointer *target,
 const ILEpointer *source,
 size_t length);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _STRNCPY_SPP() function copies a null-terminated character string. It performs the same operation as
the strncpy function, but uses 16-byte tagged space pointers to locate the source and target strings.

Parameters

target

(Output) Pointer to target buffer. Target is the 16-byte aligned address of a tagged space pointer to the
target buffer.

source

(Input) Pointer to source string. source is the 16-byte aligned address of a tagged space pointer to the
source character string.

length

(Input) Specifies the maximum number of bytes to copy between the source and target. If the source
string is too long, then only the specified number of bytes are copied and the target string is not
terminated with a null. If the source string is too short, the copy is padded with nulls to fill the target
buffer.

Authorities

_STRNCPY_SPP requires no authority.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE signal.
See OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

_STRNCPY_SPP can copy between any memory areas addressable through tagged space pointers,
which need not be in the OS/400 PASE address space.

1.

_STRNCPY_SPP is implemented with a kernel system call, so it generally runs slower than strncpy.2.

Related Information

_CVTSPP()--Convert Space Pointer for OS/400 PASE●

_SETSPP()--Set Space Pointer for OS/400 PASE●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_MEMCPY_WT()--Copy Memory With Tags for
OS/400 PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 void* _MEMCPY_WT(void *target,
 const void *source,
 size_t length);

 void _MEMCPY_WT2(const ILEpointer *target,
 const ILEpointer *source,
 size_t length);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _MEMCPY_WT() and _MEMCPY_WT2() functions copy memory without destroying 16-byte tagged
pointers.

Standard memory copy functions such as memcpy never produce a usable tagged pointer in the target memory.
_MEMCPY_WT and _MEMCPY_WT2 copy memory in a way that preseves the integrity of any complete
(16-byte) tagged pointers copied, as long as the source and target have the same alignment with respect to a
16-byte boundary.

Parameters

target

(Output) Pointer to target memory. For _MEMCPY_WT, target is the OS/400 PASE address of the
target memory. For _MEMCPY_WT2, target is the 16-byte aligned address of a tagged space pointer
to the target memory.

source

(Input) Pointer to source memory. For _MEMCPY_WT, source is the OS/400 PASE address of the
source memory. For _MEMCPY_WT2, source is the 16-byte aligned address of a tagged space pointer
to the source memory.

length

(Input) Specifies the number of bytes to copy between the source and target.

Authorities

_MEMCPY_WT and _MEMCPY_WT2 require no authority.

Return Value

_MEMCPY_WT returns the target memory address. _MEMCPY_WT2 returns no function result.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE signal.
See OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

_MEMCPY_WT only copies between memory areas in the OS/400 PASE address space.
_MEMCPY_WT2 can copy between any memory areas addressable through tagged space pointers,
which need not be in the OS/400 PASE address space.

1.

Memory is copied without error if the source and target do not have the same alignment with respect to
a 16-byte boundary or if only part of a tagged pointer is copied, but the target will not contain a usable
tagged pointer.

2.

_MEMCPY_WT and _MEMCPY_WT2 are implemented with kernel system calls, so they generally
run slower than memcpy.

3.

Related Information

_CVTSPP()--Convert Space Pointer for OS/400 PASE●

_SETSPP()--Set Space Pointer for OS/400 PASE●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_STRLEN_SPP()--Determine Character String
Length for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 size_t _STRLEN_SPP(const ILEpointer *string);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _STRLEN_SPP() determines the length of a null-terminated character string. It performs the same
operation as the strlen function, but uses a 16-byte tagged space pointer to locate the string.

Parameters

string

(Input) Pointer to character string. string is the 16-byte aligned address of a tagged space pointer to the
character string.

Authorities

_STRLEN_SPP requires no authority.

Return Value

_STRLEN_SPP returns length of the character string.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE signal.
See OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

_STRLEN_SPP can reference any memory addressable through a tagged space pointer, which need
not be in the OS/400 PASE address space.

1.

_STRLEN_SPP is implemented with a kernel system call, so it generally runs slower than strlen.2.

Related Information

_CVTSPP()--Convert Space Pointer for OS/400 PASE●

_SETSPP()--Set Space Pointer for OS/400 PASE●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_ILESYM()--Find an Exported ILE Symbol for
OS/400 PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 int _ILESYM(ILEpointer *export,
 int actmark,
 const char *symbol);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _ILESYM() function finds an exported symbol in the activation of an ILE bound program and returns a
16-byte tagged pointer to the data or procedure for the symbol.

Parameters

export

(Output) Pointer to a 16-byte aligned buffer for the tagged pointer return value. The export buffer used
to store a tagged pointer to the data or procedure for the exported symbol.

actmark

(Input) Specifies an activation mark that identifies the activation (in the current OS/400 job) to search
for the symbol. A value of zero causes the system to search all activations in the activation group that
started OS/400 PASE (either the activation group that called the Qp2RunPase API, or the default
activation group for a job running program QP2FORK). The _ILELOAD function returns an
activation mark when it loads a bound program.

symbol

(Input) Pointer to the symbol name to find. symbol is the address of a null-terminated character string
in the OS/400 PASE CCSID that specifies the name of a symbol exported by the actmark activation.

Authorities

_ILESYM calls the ILE QleGetExp API to find the exported symbol. See QleGetExp()--Get Export for
information about authorities required to use _ILESYM.

Return Value

A function result of -1 indicates an error that is further qualified by an errno value. If the symbol was
successfully found, the export pointer is set to the address of the function or data for the symbol, and the
function result is set to one of these values:

ILESYM_PROCEDURE (1) The export return value is a tagged pointer to an ILE procedure. An ILE
procedure pointer can be used with the _ILECALLX or _ILECALL function
to call the ILE procedure.

ILESYM_DATA(2) The export return value is a tagged space pointer to a data item in the ILE
activation.

Error Conditions

Memory errors and errors during ILE symbol resolution processing may be reported with an OS/400 exception
message that the system converts to an OS/400 PASE signal (not return code and errno values). See OS/400
PASE Signal Handling for information about handling OS/400 exceptions.

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE errno
EAPAR):

[EACCES] Not authorized to the actmark activation.

[ENOENT] The symbol was not found in the actmark activation.

Related Information

_ILELOAD()--Load an ILE Bound Program for OS/400 PASE●

_ILECALLX()--Call an ILE Procedure for OS/400 PASE●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_ILELOAD()--Load an ILE Bound Program for
OS/400 PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 int _ILELOAD(const void *id,
 unsigned int);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _ILELOAD() function loads a bound program into the ILE activation group associated with the procedure
that started OS/400 PASE (either the activation group that called the Qp2RunPase API, or the default
activation group for a job running program QP2FORK).

Parameters

id

(Input) Pointer to the identification of the bound program.id is either the address of a null-terminated
character string in the OS/400 PASE CCSID that names the program, or the address of a system
pointer to the program, depending on the value of the flags argument.

flags

(Input) Specifies options to control how the bound program is found and activated. The flags argument
is a bitwise logical-or of one or more of the following values:

ILELOAD_PATH
(0x00000000)

Specifies that the id argument is the address of a string that contains an
absolute or relative path in the Integrated File System to a program or
service program object. Alphabetic case is either ignored or honored
depending on the attributes of the File System that contains the path.
ILELOAD_PATH, ILELOAD_LIBOBJ, and ILELOAD_PGMPTR are
mutually exclusive.

ILELOAD_LIBOBJ
(0x00000001)

Specifies that the id argument is the address of a string that contains a
qualified library/object name of a service program (where omitting the
library name implies resolving to the object through the job library list).
Alphabetic case is honored when searching for a library/object name (so the
string should be all uppercase). ILELOAD_PATH, ILELOAD_LIBOBJ,
and ILELOAD_PGMPTR are mutually exclusive.

ILELOAD_PGMPTR
(0x00000002)

 Specifies that the id argument is the address of a system pointer to the
bound program (object type *SRVPGM or *PGM) to load.
ILELOAD_PATH, ILELOAD_LIBOBJ, and ILELOAD_PGMPTR are
mutually exclusive.

Authorities

_ILELOAD calls the ILE QleActBndPgm API to activate the bound program. See
QleActBndPgm()--Activate Bound Program for information about authorities required to use _ILELOAD.

Return Value

A function result of -1 indicates an error that is further qualified by an errno value. If the bound program was
successfully activated (including the case where it was already activated before _ILELOAD ran), the function
result is an activation mark that uniquely identifies the activation within the process.

Error Conditions

Memory errors and errors while activating the bound program may be reported with an OS/400 exception
message that the system converts to an OS/400 PASE signal (not return code and errno values). See OS/400
PASE Signal Handling for information about handling OS/400 exceptions.

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE errno
EAPAR):

[EACCES] Not authorized to a library or directory needed to resolve the id.

[EBUSY] A library or directory needed to resolve the specified id is currently in use (locked).

[EFAULT] A memory fault occurred attempting to reference the id.

[EINVAL] An invalid argument value was specified.

[EINTER] An signal interrupted the operation.

[ENAMETOOLONG] Some component of the specified id is too long, or the entire id exceeds the system
limit.

[ENOENT] No file/object was found for the specified id.

[ENOTDIR] A qualifier part of the id is not a directory.

[ELOOP] Too many levels of symbolic links.

Related Information

_ILECALLX()--Call an ILE Procedure for OS/400 PASE●

_ILESYM()--Find an Exported ILE Symbol for OS/400 PASE●

_RSLOBJ()--Resolve to an OS/400 Object for OS/400 PASE●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

SQLOverrideCCSID400()--Override SQL CLI
CCSID for OS/400 PASE

 Syntax

 #include <as400_protos.h>

 int SQLOverrideCCSID400(int newCCSID);

 Library: OS/400 PASE SQL CLI Library (libdb400.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The SQLOverrideCCSID400() function allows an OS/400 PASE program to specify a Coded Character Set
Identifier (CCSID) used to convert character data arguments and results on OS/400 PASE SQL Call Level
Interface (CLI) functions.

Parameters

newCCSID

(Input) Specifies the CCSID used for OS/400 PASE SQL CLI functions.

Authorities

No special authorities required.

Return Value

The function result is zero for success, or -1 for an error that is further qualified by an errno value.

Error Conditions

At least these errno values can be returned:

[EINVAL] The conversion between newCCSID and the OS/400 job default CCSID is not supported.

[ENFILE] A converter could not be opened because the maximum number of files in the system are
already opened.

[EMFILE] A converter could not be opened because the maximum number of files are already opened.

Usage Notes

The system automatically converts character arguments and results between the CCSID of the job or
database field and a CCSID used for OS/400 PASE SQL CLI functions that defaults to the OS/400
PASE CCSID value in effect when the first OS/400 PASE SQL CLI function is called. You must call
SQLOverrideCCSID400 before any other OS/400 PASE SQL CLI function, or it will have no effect
on CCSID conversions.

1.

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

QMHRCVM()--Receive Nonprogram Message for
OS/400 PASE

 Syntax

 #include <os400msg.h>

 int QMHRCVM(void *msginfo,
 int msginfoLen,
 const char *format,
 const void *msgq,
 const char *msgtype,
 int *msgkey,
 int wait,
 const char *action,
 void *errcode);

 int QMHRCVM1(void *msginfo,
 int msginfoLen,
 const char *format,
 const void *msgq,
 const char *msgtype,
 int *msgkey,
 int wait,
 const char *action,
 void *errcode,
 int ccsid);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The Receive Nonprogram Message (QMHRCVM and QMHRCVM1) OS/400 PASE runtime functions allow
an OS/400 PASE program to receive a message from a nonprogram message queue.

Parameters

These OS/400 PASE runtime functions accept the same arguments as the Receive Nonprogram Message
(QMHRCVM) OS/400 API, except that the OS/400 PASE functions use character string inputs that are
null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input
character strings to the job default CCSID and pads with blanks (as necessary) to match the fixed-length inputs
required by the system API.

No conversions are done by OS/400 PASE runtime for the msginfo and errcode (input/output) arguments
because they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID for
character data returned by the system API in the msginfo argument, and users can request CCSID information

for the errcode argument by using ERRC0200 format. The QMHRCVM OS/400 PASE runtime function uses a
default for the ccsid value passed to the system API that does not do any CCSID conversion for character data
in the received message.

See QMHRCVM()--Receive Nonprogram Message for further description of the arguments for the
QMHRCVM and QMHRCVM1 OS/400 PASE runtime functions.

Authorities

See QMHRCVM()--Receive Nonprogram Message for information about authorities required for the
QMHRCVM and QMHRCVM1 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string could not
be converted to the job default CCSID or was too long for the QMHRCVM API, or if the QMHRCVM API
returned error information in the errcode argument.

Related Information

QMHRCVM()--Receive Nonprogram Message (system API)●

QMHRCVM()--Receive Nonprogram Message for OS/400 PASE●

QMHSNDPM()--Send Program Message for OS/400 PASE●

QMHRCVPM()--Receive Program Message for OS/400 PASE●

API Introduced: V5R1

Top | OS/400 PASE APIs | APIs by category

QMHRCVPM()--Receive Program Message for
OS/400 PASE

 Syntax

 #include <os400msg.h>

 int QMHRCVPM(void *msginfo,
 int msginfoLen,
 const char *format,
 const char *pgmq,
 int pgmqDelta,
 const char *msgtype,
 int *msgkey,
 int wait,
 const char *action,
 void *errcode);

 int QMHRCVPM1(void *msginfo,
 int msginfoLen,
 const char *format,
 const char *pgmq,
 int pgmqDelta,
 const char *msgtype,
 int *msgkey,
 int wait,
 const char *action,
 void *errcode,
 int pgmqLen,
 const char *pgmqQual);

 int QMHRCVPM2(void *msginfo,
 int msginfoLen,
 const char *format,
 const void *pgmq,
 int pgmqDelta,
 const char *msgtype,
 int *msgkey,
 int wait,
 const char *action,
 void *errcode,
 int pgmqLen,
 const char *pgmqQual,
 const char *pgmqType,
 int ccsid);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The Receive Program Message (QMHRCVPM, QMHRCVPM1, and QMHRCVPM2) OS/400 PASE runtime
functions allow an OS/400 PASE program to receive a message from a program call message queue or from
the job external message queue.

Parameters

These OS/400 PASE runtime functions accept the same arguments as the Receive Program Message
(QMHRCVPM) OS/400 API, except that the OS/400 PASE functions use character string inputs that are
null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input
character strings to the job default CCSID and pads with blanks (as necessary) to match the fixed-length inputs
required by the system API.

No conversions are done by OS/400 PASE runtime for the msginfo and errcode (input/output) arguments
because they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID for
character data returned by the system API in the msginfo argument, and users can request CCSID information
for the errcode argument by using ERRC0200 format. The QMHRCVPM and QMHRCVPM1 OS/400 PASE
runtime functions use a default for the ccsid value passed to the system API that does not do any CCSID
conversion for character data in the received message.

See QMHRCVPM()--Receive Program Message for further description of the arguments for the
QMHRCVPM, QMHRCVPM1, and QMHRCVPM2 OS/400 PASE runtime functions.

Authorities

See QMHRCVPM()--Receive Program Message for information about authorities required for the
QMHRCVPM, QMHRCVPM1, and QMHRCVPM2 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string could not
be converted to the job default CCSID or was too long for the QMHRCVPM API, or if the QMHRCVPM API
returned error information in the errcode argument.

Usage Notes

The system only creates program call message queues ILE procedures and OMI programs, so you
cannot send to or receive from a program message queue for a specific function in an OS/400 PASE
program.

1.

When "*" is specified for the pgmq argument, the system locates the program call message queue for
an (internal) ILE procedure in service program QP2USER that is the apparent caller of any ILE
procedure called by the OS/400 PASE program using OS/400 PASE runtime function _ILECALLX or
_ILECALL. This queue is the target for messages a called ILE procedure sends to its caller, and is also
used for machine exceptions caused by operations inside the OS/400 PASE program (such as message
MCH0601 a for storage reference error).

2.

Related Information

QMHRCVPM()--Receive Program Message (system API)●

QMHRCVPM()--Receive Program Message for OS/400 PASE●

QMHSNDM()--Send Nonprogram Message for OS/400 PASE●

QMHRCVM()--Receive Nonprogram Message for OS/400 PASE●

API Introduced: V5R1

Top | OS/400 PASE APIs | APIs by category

 _RSLOBJ()--Resolve to an OS/400 Object for
OS/400 PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 int _RSLOBJ(ILEpointer *sysptr,
 const char *path,
 char *objtype);

 int _RSLOBJ2(ILEpointer *sysptr,
 unsigned short type_subtype,
 const char *objname,
 const char *libname);

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _RSLOBJ() and _RSLOBJ2() functions resolve to an OS/400 object. They accept symbolic information
that identifies the object and return a 16-byte tagged system pointer to the specified object.

Parameters

sysptr

(Output) Pointer to the OS/400 object. sysptr is the address of a 16-byte aligned buffer allocated by the
caller and used to return a system pointer to the OS/400 object.

path

(Input) Pointer to an Integrated File System path name that locates the OS/400 object. path is the
address of a null-terminated string in the OS/400 PASE CCSID that contains a path name for the
OS/400 object.

objtype

(Output) Pointer to the returned OS/400 object type. objtype is the address of a buffer allocated by the
caller and used to return a null-terminated string in the OS/400 PASE CCSID that identifies the
OS/400 object type. If objtype is a null pointer, no OS/400 object type is returned. When objtype is not
null, the caller must provide a buffer of length RSLOBJ_OBJTYPE_MAXLEN (11) to avoid errors.

type_subtype

(Input) Object type and subtype. type_subtype specifies the MI object type and MI object subtype of
the OS/400 object. Header file <as400_types.h> declares these constants for type and subtype values:

RSLOBJ_TS_PGM
(0x0201)

Specifies the MI type and subtype for an OS/400 program (object type
*PGM).

RSLOBJ_TS_SRVPGM
(0x0203)

Specifies the MI type and subtype for an OS/400 service program (object
type *SRVPGM).

objname

(Input) Pointer to the name of the OS/400 object. objname is the address of a null-terminated string in
the OS/400 PASE CCSID that contains the name of the OS/400 object.

libname

(Input) Pointer to the name of the OS/400 library that contains the object. libname is the address of a
null-terminated string in the OS/400 PASE CCSID that contains the name of an OS/400 library.
Specifying a null pointer or a pointer to a null string is the same as specifying "*LIBL", which
searches the thread library list.

Authorities

Object Referred to
Authority
Required

Every directory in the Integrated File System path to the OS/400 object *X

OS/400 library that contains the object *X

Return Value

The function result is zero if the OS/400 object was found and a system pointer was returned in the sysptr
argument. A function result of -1 indicates an error that is further qualified by an errno value.

Error Conditions

Memory errors may be reported with an OS/400 exception message that the system converts to an OS/400
PASE signal (not return code and errno values). See OS/400 PASE Signal Handling for information about
handling OS/400 exceptions.

At least these errno values can be returned, with other values also possible (such as OS/400-unique ILE errno
EAPAR):

[EACCES] Not authorized to a library or directory needed to resolve to the OS/400 object.

[EBUSY] A library or directory needed to resolve to the OS/400 object is currently in use
(locked).

[EFAULT] A memory fault occurred attempting to reference an argument.

[EINVAL] An invalid argument value was specified.

[EINTER] An signal interrupted the operation.

[ENAMETOOLONG] Some component of the specified path is too long, or the entire path exceeds the
system limit, or the objname or libname string is longer than 30 characters.

[ENOENT] The specified OS/400 object was not found.

[ENOTDIR] A qualifier part of the path is not a directory.

[ELOOP] Too many levels of symbolic links.

Usage Notes

For _RSLOBJ, alphabetic case is either ignored or honored depending on the attributes of the file
system that contains the path. Alphabetic case is always honored by _RSLOBJ2, so the objname and
libname strings must be uppercase.

1.

Related Information

_ILELOAD()--Load an ILE Bound Program for OS/400 PASE●

_PGMCALL()--Call an OS/400 Program for OS/400 PASE●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

 _RETURN()--Return Without Exiting OS/400
PASE

 Syntax

 #include <as400_protos.h>

 int _RETURN(void);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: No

Note: This function can only be used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _RETURN() function returns to the ILE caller that called OS/400 PASE in this job, without exiting the
OS/400 PASE program. OS/400 PASE remains active in the job, so APIs Qp2CallPase and Qp2CallPase2 can
be used to call procedures in the OS/400 PASE program.

Parameters

None.

Authorities

None.

Return Value

_RETURN does not return to the OS/400 PASE program if it successfully returns to the ILE caller. A function
result of -1 with an errno is returned for any error.

Error Conditions

EPERM is set if _RETURN is used in a fork child process or in an OS/400 PASE program that is currently
running multiple threads.

Usage Notes

The system provides two OS/400 PASE programs, /usr/lib/start32 (for 32-bits) and /usr/lib/start64 (for
64-bits), that return without exiting immediately after intializing the standard C library (libc.a) and
pthreads library (libpthreads.a).

1.

The system ends any OS/400 PASE program when it destroys the activation group that called API
Qp2RunPase. API program QP2SHELL always calls Qp2RunPase in a *NEW activation group that is
destroyed before return, so QP2SHELL is not useful for running an OS/400 PASE program that
returns without exiting.

2.

You may need to call ILE API Qp2EndPase to end an OS/400 PASE program that uses _RETURN.
See Qp2EndPase()--End an OS/400 PASE Program for more information.

3.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

Qp2EndPase()--End an OS/400 PASE Program●

API Introduced: V5R2

Top | OS/400 PASE APIs | APIs by category

systemCL()--Run a CL Command for OS/400
PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 int systemCL(const char *command,
 int flags);

 Library: Standard C Library (libc.a)

 Threadsafe: Conditional

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The systemCL() function runs a CL command.

Parameters

command

(Input) Pointer to a null-terminated string in the OS/400 PASE CCSID that specifies the CL command
with any parameters.

flags

(Input) Specifies option flags that control how the CL command runs. flags is a bit-wise OR of any of
the following values:

SYSTEMCL_MSG_STDOUT (0x00000001) Directs the system to receive OS/400 messages
after normal command completion, convert the
text of each message from the job default CCSID
to the OS/400 PASE CCSID, and write converted
text lines to Integrated File System descriptor 1
(stdout).

SYSTEMCL_MSG_STDERR (0x00000002) Directs the system to receive OS/400 messages
after error command completion, convert the text
of each message from the job default CCSID to the
OS/400 PASE CCSID, and write converted text
lines to Integrated File System descriptor 2
(stderr).

SYSTEMCL_MSG_NOMSGID (0x00000004) Suppresses message identifiers in text lines written
to stdout or stderr for messages processed on
behalf of SYSTEMCL_MSG_STDOUT and
SYSTEMCL_MSG_STDERR. When this option
is omitted, message text lines have the form
"XXX1234: message text", where "XXX1234" is
the OS/400 message identifier.

SYSTEMCL_SPOOL_STDOUT (0x00000008) Directs the system to process any spooled output
files created by the CL command by reading each
file, converting file data from the job default
CCSID to the OS/400 PASE CCSID, and writing
converted text lines to Integrated File System
descriptor 1 (stdout).

SYSTEMCL_SPOOL_KEEP (0x00000010) Directs the system to keep any spooled output files
after they are processed for option
SYSTEMCL_SPOOL_STDOUT, instead of
deleting the files after their contents is written to
stdout.

SYSTEMCL_FILTER_STDIN (0x00000020) Directs the system to setup a filter thread that
converts from the OS/400 PASE CCSID to the job
default CCSID for any data the CL command
reads from Integrated File System descriptor 0
(stdin).

SYSTEMCL_FILTER_STDOUT (0x00000040) Directs the system to setup a filter thread that
converts any data the CL command writes to
Integrated File System descriptor 1 (stdout) from
the job default CCSID to the OS/400 PASE
CCSID.

SYSTEMCL_FILTER_STDERR (0x00000080) Directs the system to setup a filter thread that
converts any data the CL command writes to
Integrated File System descriptor 2 (stderr) from
the job default CCSID to the OS/400 PASE
CCSID.

SYSTEMCL_SPAWN (0x00000100) Directs the system to run the CL command in a
separate process. If this option is omitted, the CL
command runs in the process that calls the
systemCL function.

SYSTEMCL_SPAWN_JOBLOG (0x00000200) Forces the system to generate an OS/400 job log
for the job submitted using option
SYSTEMCL_SPAWN.

SYSTEMCL_ENVIRON (0x00000400) Directs the system to copy OS/400 PASE
environment variables to ILE environment
variables before running the CL command. This
option sets ILE environment variables in the
process that calls the systemCL function,
regardless of whether the command runs in this
process or a child process (created for option
SYSTEMCL_SPAWN).

Authorities

No authority is needed to run the systemCL function, but the caller must be authorized to run the specified CL
command.

Return Value

If the command argument is a null pointer, the function result is zero if system support to call the OS/400
Command Analyzer is available, or a nonzero value otherwise.

If option SYSTEMCL_SPAWN is specified, the function result is the exit code from the spawned job
(returned by the ILE waitpid function), which is non-zero if any error occured.

Otherwise, the function result is zero for normal command completion, or -1 if an error occurred. No errno
value is set for CL command errors.

Usage Notes

systemCL is only threadsafe in these two cases:

You use option SYSTEMCL_SPAWN and do not use SYSTEMCL_ENVIRON.❍

You only run threadsafe CL commands and do not use SYSTEMCL_SPAWN,
SYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT,
SYSTEMCL_FILTER_STDERR, or SYSTEMCL_ENVIRON.

❍

1.

You must set ILE environment variable QIBM_USE_DESCRIPTOR_STDIO to Y or I before the
CL command does any file I/O to stdin, stdout, or stderr if you need CCSID conversion controlled by
options SYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT, and
SYSTEMCL_FILTER_STDERR.

2.

Processing for options SYSTEMCL_FILTER_STDIN, SYSTEMCL_FILTER_STDOUT, and
SYSTEMCL_FILTER_STDERR creates ILE pthreads (not OS/400 PASE threads) for CCSID
conversion in the process that calls the systemCL function. Integrated File System descriptors 0, 1,
and 2 are replaced in whatever job runs the CL command with pipes handled by the filter threads. The
original file descriptors are restored and the filter threads are ended before the systemCL function
returns.

3.

Many CL commands are not supported in a job with multiple threads. Processing for
SYSTEMCL_SPAWN runs the CL command in a job that is not multithread-capable, so it can run
commands that do not work in a job that is multithread-capable.

4.

Processing for option SYSTEMCL_SPAWN uses the ILE spawn API to run a batch job that inherits
ILE attributes such as Integrated File System descriptors and job CCSID, but the batch job does not
inherit any OS/400 PASE program (unlike a job created by the OS/400 PASE fork function).

5.

Processing for SYSTEMCL_ENVIRON uses the same name for the ILE copy and the OS/400 PASE
environment variable for most variables, but the system adds a prefix "PASE_" to the name of the ILE
copy of some environment variables. You you can control what variables names add the prefix by
storing a colon-delimited list of variable names in OS/400 PASE environment variable
PASE_ENVIRON_CONFLICT. If PASE_ENVIRON_CONFLICT is not defined, the system
defaults to adding the prefix when copying OS/400 PASE environment variables SHELL, PATH,
NLSPATH, and LANG.

6.

Processing for SYSTEMCL_ENVIRON sets two ILE environment variables for each OS/400 PASE
environment variable with a name prefix of "ILE_". The OS/400 PASE environment variable value is
used to set both a variable with the same name and a variable with the name minus the prefix "ILE_"
in the ILE environment. For example, if the OS/400 PASE environment contains a variable named
ILE_PATH, the value of this variable is used to set both ILE_PATH and PATH in the ILE
environment.

7.

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

QMHSNDM()--Send Nonprogram Message for
OS/400 PASE

 Syntax

 #include <os400msg.h>

 int QMHSNDM(const char *msgid,
 const char *msgf,
 const void *msgdata,
 int msgdataLen,
 const char *msgtype,
 const char *msgqList,
 int msgqCount,
 const char *rpyq,
 int *msgkey,
 void *errcode);

 int QMHSNDM1(const char *msgid,
 const char *msgf,
 const void *msgdata,
 int msgdataLen,
 const char *msgtype,
 const char *msgqList,
 int msgqCount,
 const char *rpyq,
 int *msgkey,
 void *errcode,
 int ccsid);

 Public Default Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The Send Nonprogram Message (QMHSNDM and QMHSNDM1) OS/400 PASE runtime functions allow an
OS/400 PASE program to send a message to a nonprogram message queue so it can communicate with another
job or user.

Parameters

These OS/400 PASE runtime functions accept the same arguments as the Send Nonprogram Message
(QMHSNDM) OS/400 API, except that the OS/400 PASE functions use character string inputs that are
null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input
character strings to the job default CCSID and pads with blanks (as necessary) to match the fixed-length inputs
required by the system API.

No conversions are done for the msgdata (input) argument and the errcode (input/output) argument because
they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID for character
data in the msgdata argument, and users can request CCSID information for the errcode argument by using
ERRC0200 format. The QMHSNDM OS/400 PASE runtime function uses the current OS/400 PASE CCSID
as a default for the ccsid value passed to the system API.

See QMHSNDM()--Send Nonprogram Message for further description of the arguments for the QMHSNDM
and QMHSNDM1 OS/400 PASE runtime functions.

Authorities

See QMHSNDM()--Send Nonprogram Message for information about authorities required for the QMHSNDM
and QMHSNDM1 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string could not
be converted to the job default CCSID or was too long for the QMHSNDM API, or if the QMHSNDM API
returned error information in the errcode argument.

Related Information

QMHSNDM()--Send Nonprogram Message (system API)●

QMHRCVM()--Receive Nonprogram Message for OS/400 PASE●

QMHSNDPM()--Send Program Message for OS/400 PASE●

QMHRCVPM()--Receive Program Message for OS/400 PASE●

API Introduced: V5R1

Top | OS/400 PASE APIs | APIs by category

QMHSNDPM()--Send Program Message for
OS/400 PASE

 Syntax

 #include <os400msg.h>

 int QMHSNDPM(const char *msgid,
 const char *msgf,
 const void *msgdata,
 int msgdataLen,
 const char *msgtype,
 const char *pgmq,
 int pgmqDelta,
 int *msgkey,
 void *errcode);

 int QMHSNDPM1(const char *msgid,
 const char *msgf,
 const void *msgdata,
 int msgdataLen,
 const char *msgtype,
 const char *pgmq,
 int pgmqDelta,
 int *msgkey,
 void *errcode,
 int pgmqLen,
 const char *pgmqQual,
 int extWait);

 int QMHSNDPM2(const char *msgid,
 const char *msgf,
 const void *msgdata,
 int msgdataLen,
 const char *msgtype,
 const void *pgmq,
 int pgmqDelta,
 int *msgkey,
 void *errcode,
 int pgmqLen,
 const char *pgmqQual,
 int extWait,
 const char *pgmqType,
 int ccsid);

 Library: Standard C Library (libc.a)

 Default Public Authority: *USE

 Threadsafe: Yes

Note: These functions can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The Send Program Message (QMHSNDPM, QMHSNDPM1, and QMHSNDPM2) OS/400 PASE runtime
functions allow an OS/400 PASE program to send a message to a program call message queue or to the job
external message queue.

Parameters

These OS/400 PASE runtime functions accept the same arguments as the Send Program Message
(QMHSNDPM) OS/400 API, except that the OS/400 PASE functions use character string inputs that are
null-terminated strings in the OS/400 PASE CCSID. OS/400 PASE runtime automatically converts input
character strings to the job default CCSID and pads with blanks (as necessary) to match the fixed-length inputs
required by the system API.

No conversions are done for the msgdata (input) argument and the errcode (input/output) argument because
they can contain a mixture of character and binary data. The ccsid argument specifies the CCSID for character
data in the msgdata argument, and users can request CCSID information for the errcode argument by using
ERRC0200 format. The QMHSNDPM and QMHSNDPM1 OS/400 PASE runtime functions use the current
OS/400 PASE CCSID as a default for the ccsid value passed to the system API.

See QMHSNDPM()--Send Program Message for further description of the arguments for the QMHSNDPM,
QMHSNDPM1, and QMHSNDPM2 OS/400 PASE runtime functions.

Authorities

See QMHSNDPM()--Send Program Message for information about authorities required for the QMHSNDPM,
QMHSNDPM1, and QMHSNDPM2 OS/400 PASE runtime functions.

Return Value

The function result is zero for normal completion. The result is nonzero if any input character string could not
be converted to the job default CCSID or was too long for the QMHSNDPM API, or if the QMHSNDPM API
returned error information in the errcode argument.

Usage Notes

The system only creates program call message queues ILE procedures and OMI programs, so you
cannot send to or receive from a program message queue for a specific function in an OS/400 PASE
program.

1.

When "*" is specified for the pgmq argument, the system locates the program call message queue for
an (internal) ILE procedure in service program QP2USER that is the apparent caller of any ILE
procedure called by the OS/400 PASE program using OS/400 PASE runtime function _ILECALLX or
_ILECALL. OS/400 PASE programs should generally use "*PGMBDY" or "*CTLBDY" instead of
"*" to send messages to their caller because a variable number of program call message queues can
exist between the queue identified by pgmq "*" and the queue for the ILE API that called the OS/400

2.

PASE program.

Related Information

QMHSNDPM()--Send Program Message (system API)●

QMHRCVPM()--Receive Program Message for OS/400 PASE●

QMHSNDM()--Send Nonprogram Message for OS/400 PASE●

QMHRCVM()--Receive Nonprogram Message for OS/400 PASE●

API Introduced: V5R1

Top | OS/400 PASE APIs | APIs by category

_SETCCSID()--Set OS/400 PASE CCSID

 Syntax

 #include <as400_protos.h>

 int _SETCCSID(int ccsid);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: No

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _SETCCSID() function returns the previous value of the OS/400 PASE Coded Character Set Identifier
(CCSID) and optionally sets a new OS/400 PASE CCSID.

Parameters

ccsid

(Input) Specifies the new OS/400 PASE CCSID value, or -1 to retrieve the current OS/400 PASE
CCSID without changing it. An OS/400 PASE CCSID must be either a single-byte ASCII encoding
that the ILE version of iconv can convert to and from the job default CCSID, or 1208 for UTF-8
encoding.

Authorities

_SETCCSID requires no authority.

Return Value

_SETCCSID returns either the original OS/400 PASE CCSID (before it was changed), or -1 if an error
occurred and the OS/400 PASE CCSID was left unchanged.

Error Conditions

The only error condition that causes a function result of -1 is that the new ccsid cannot be converted to or from
the OS/400 job default CCSID.

Usage Notes

The initial OS/400 PASE CCSID value is specified as a parameter on the Qp2RunPase API. The
OS/400 PASE CCSID has two primary uses:

It is used to set the the CCSID attribute of any bytestream file created in the Integrate File
System by an OS/400 PASE program.

❍

It is used by OS/400 PASE runtime functions to convert character arguments and results
between the OS/400 PASE CCSID and whatever encoding is required by the OS/400 service
used to implement the function.

❍

1.

The OS/400 PASE CCSID should generally be the CCSID equivalent of the code set for the current
locale. See OS/400 PASE Locales to determine what locales are supported by OS/400 PASE.

2.

Character arguments and results for OS/400 PASE runtime functions that use OS/400 services are
almost always automatically converted using the OS/400 PASE CCSID. For example, the name of a
bytestream file passed to the OS/400 PASE open function is converted from the OS/400 PASE CCSID
to the internal encoding required by the OS/400 Integrated File System.

3.

Any data an OS/400 PASE program writes to or reads from a file descriptor for an open bytestream
file, socket, FIFO, or pipe is generally not converted. The only exception is for the initial file
descriptors 0, 1, and 2 provided when the Qp2RunPase API is called to start an OS/400 PASE
program, which default to converting file data between the OS/400 PASE CCSID and the job default
CCSID (see Run an OS/400 PASE Program (Qp2RunPase) for more information).

4.

Other than special support for file descriptors 0, 1, and 2, OS/400 PASE runtime does no CCSID
conversion of file data. This differs from ILE runtime, which does CCSID conversion between the file
CCSID and job default CCSID for any file opened in text mode. OS/400 PASE runtime sets the
CCSID attribute of any file it creates to the OS/400 PASE CCSID, so an ILE program that uses text
mode to open an ASCII file created by an OS/400 PASE program can read and write EBCDIC data.

5.

The OS/400 PASE runtime functions cstoccsid and ccsidtocs convert between AIX Character Set
names and CCSID values.

6.

Related Information

Qp2RunPase()--Run an OS/400 PASE Program●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

_SETSPP()--Set Space Pointer for OS/400 PASE

 Syntax

 #include <as400_types.h>
 #include <as400_protos.h>

 void _SETSPP(ILEpointer *target,
 const void *memory);

 Default Public Authority: *USE

 Library: Standard C Library (libc.a)

 Threadsafe: Yes

Note: This function can only used in an OS/400 PASE program. See OS/400 PASE for more information
about creating OS/400 PASE programs.

The _SETSPP() function sets a tagged space pointer to the teraspace equivalent of an OS/400 PASE memory
address.

Parameters

target

(Output) Pointer to a 16-byte aligned buffer where the tagged space pointer (or null pointer) is
returned.

memory

(Input) Pointer containing either an OS/400 PASE memory address, or a null pointer (zero).

Authorities

_SETSPP requires no authority.

Return Value

_SETSPP returns no function result. A tagged space pointer or 16-byte null pointer is returned in the target
buffer.

Error Conditions

Any error is reported with an OS/400 exception message that the system converts to an OS/400 PASE signal.
See OS/400 PASE Signal Handling for information about handling OS/400 exceptions.

Usage Notes

_SETSPP returns a 16-byte null pointer if the input OS/400 PASE memory address is null (zero) or if a
64-bit memory value points to a location that cannot contain OS/400 PASE memory. OS/400 PASE
memory is allocated from teraspace, but teraspace has a limited capacity smaller than 64-bits, so
OS/400 PASE can only provide addressability to a subset of a 64-bit address space.

1.

_SETSPP returns a target space pointer regardless of whether there is currently any memory at the
OS/400 PASE memory address. The tagged space pointer returned by _SETSPP can reference any
memory later mapped to the OS/400 PASE memory address, until the OS/400 PASE program either
calls exec or ends.

2.

A tagged space pointer to a teraspace location must only be used by the process that owns the
teraspace, although the current system implementation does not reliably enforce this restriction.
Applications must not assume that a process can reference memory in the teraspace of another process
because future system implementations may make this impossible. Tagged space pointers to teraspace
memory that were either inherited by the child process of a fork or stored in shared memory by another
process should be considered unusable.

3.

Tagged (16-byte) pointers must not be stored in memory mapped from a bytestream file (by either
mmap or shmat, although the current system implementation does not reliably enforce this restriction.
Tagged pointers can be stored in shared memory objects (created by shmget and mapped by shmat),
but a tagged space pointer to teraspace memory cannot be reliably used by a process other than the one
that owns the teraspace.

4.

Related Information

_CVTSPP()--Convert Space Pointer for OS/400 PASE●

API Introduced: V4R5

Top | OS/400 PASE APIs | APIs by category

OS/400 PASE Runtime Libraries
OS/400 PASE runtime supports a large subset of the interfaces provided by AIX runtime. Most runtime
interfaces supported by OS/400 PASE provide the same options and behavior as AIX. The latest information
about what AIX runtime interfaces are supported by OS/400 PASE can found at the PartnerWorld for
Developers, iSeries web site.

OS/400 PASE interfaces for Structured Query Language (SQL) Call Level Interface (CLI) are somewhat
different from any AIX database. OS/400 PASE library libdb400.a handles (ASCII/EBCDIC) character
encoding conversions, but supports only the options and behaviors provided by DB2 Universal Database for
iSeries. An OS/400 PASE program that uses SQL CLI must compile using OS/400 header file sqlcli.h. See
OS/400 PASE for more information.

OS/400 PASE runtime includes the following libraries, installed (as symbolic links) in /usr/lib. See AIX
documentation for information about most of the interfaces exported by these libraries, DB2 Universal
Database for iSeries documentation for information about SQL CLI interfaces, and OS/400 PASE APIs for
information about interfaces that are unique to OS/400 PASE:

Library Description

libbsd.a BSD UNIX(TM) equivalence runtime

libc.a C runtime

libC.a C++ runtime

libc128.a C 128-bit (type long double) runtime

libC128.a C++ 128-bit (type long double) runtime

libcrypt.a C runtime cryptographic interfaces

libcur.a AIX legacy Curses library

libdb400.a DB2 Universal Database SQL CLI runtime

libdbm.a New Database Manager (NDBM) interfaces

libdbx.a dbx (debugger) utility support

libdl.a Dynamic load runtime

libg.a Debug support

libgaimisc.a Internal X Windows support

libgair4.a Internal X Windows support

libi18n.a Internationalization runtime

libICE.a Inter-Client Exchange library

libiconv.a Character conversion runtime

libIM.a Input method library

libl.a lex support

libld.a Object File Access Routine library

libm.a IEEE Math library

libMrm.a Motif Runtime library for UIL

libpthdebug.a Threads debug support

libpthreads.a Threads runtime

libpthreads_compat.a Old threads compatability

libPW.a Programmers Workbench library

librtl.a Runtime linking runtime

libSM.a X Session Management library

libUil.a Motif User Interface Language library

libxcurses.a Curses library

libX11.a C interface for the X Window System protocol

libXaw.a Athena Widget Set

libXext.a Interfaces to X windows extensions

libXi.a X Windows input processing

libxlf90_r.a FORTRAN runtime

libxlfpthrds_compat.a Old FORTRAN threads compatability

libxlomp_ser.a Open mp (multi-processing) support

libxlsmp.a Symmetric mp (multiprocessing) support

libXm.a Motif widget library

libXmu.a Miscellaneous X Windows utility functions

libXtst.a X Windows testing support

libXt.a X Toolkit Intrinsics

liby.a yacc support

Top | OS/400 PASE APIs | APIs by category

OS/400 PASE Locales
OS/400 PASE includes a subset of the locales provided by AIX, supporting both 32-bit and 64-bit applications.
OS/400 PASE locales are installed as symbolic links in directory /usr/lib/nls/loc.

The full name of any OS/400 PASE locale includes a code set name, which equates to the Coded Character Set
Identifier (CCSID) shown in the table. Some locales also have a short name that exclude the code set part of
the name. Any locale with a name ending in "@euro" uses the Euro as the currency symbol.

Most OS/400 PASE locales are shipped with OS/400 language feature codes. Only locales in the base
*CODE load and locales for installed language feature codes will exist on a paticular OS/400 system.

Feature

Locale Names

Language Region CCSIDShort Name Full Name

*CODE be_BY be_BY.ISO8859-5 Byelorussian Byelorussian SSR 915

BE_BY BE_BY.UTF-8 Byelorussian Byelorussian SSR 1208

ET_EE ET_EE.UTF-8 Estonian Estonia 1208

UK_UA UK_UA.UTF-8 Ukrainian Ukraine 1208

2903 LT_LT LT_LT.UTF-8 Lithuanian Lithuania 1208

2904 LV_LV LV_LV.UTF-8 Latvian Latvia 1208

2905 VI_VN VI_VN.UTF-8 Vietnamese Vietnam 1208

2911 sl_SI sl_SI.ISO8859-2 Slovene Slovenia 912

SL_SI SL_SI.UTF-8 Slovene Slovenia 1208

2912 hr_HR hr_HR.ISO8859-2 Croatian Croatia 912

HR_HR HR_HR.UTF-8 Croatian Croatia 1208

2913 mk_MK mk_MK.ISO8859-5 Macedonian Macedonia 915

MK_MK MK_MK.UTF-8 Macedonian Macedonia 1208

2914 sh_SP sh_SP.ISO8859-2 Serbian Latin Yugoslavia 912

sh_YU sh_YU.ISO8859-2 Serbian Latin Yugoslavia 912

sr_YU sr_YU.ISO8859-2 Serbian Yugoslavia 912

SH_SP SH_SP.UTF-8 Serbian Latin Yugoslavia 1208

SH_YU SH_YU.UTF-8 Serbian Latin Yugoslavia 1208

SR_YU SR_YU.UTF-8 Serbian Yugoslavia 1208

sr_SP sr_SP.ISO8859-5 Serbian Latin Yugoslavia 915

SR_SP SR_SP.UTF-8 Serbian Latin Yugoslavia 1208

2922 pt_PT pt_PT.ISO8859-1 Portuguese Portugal 819

pt_PT.IBM-1252 Portuguese Portugal 1252

pt_PT.IBM-1252@euro Portuguese Portugal 1252

pt_PT.8859-15 Portuguese Portugal 923

pt_PT.8859-15@euro Portuguese Portugal 923

PT_PT PT_PT.UTF-8 Portuguese Portugal 1208

PT_PT.UTF-8@euro Portuguese Portugal 1208

2923 nl_NL nl_NL.ISO8859-1 Dutch Netherlands 819

nl_NL.IBM-1252 Dutch Netherlands 1252

nl_NL.IBM-1252@euro Dutch Netherlands 1252

nl_NL.8859-15 Dutch Netherlands 923

nl_NL.8859-15@euro Dutch Netherlands 923

NL_NL NL_NL.UTF-8 Dutch Netherlands 1208

NL_NL.UTF-8@euro Dutch Netherlands 1208

2924 en_AU en_AU.8859-15 English Australia 923

EN_AU EN_AU.UTF-8 English Australia 1208

en_BE en_BE.8859-15 English Belgium 923

en_BE.8859-15@euro English Belgium 923

EN_BE EN_BE.UTF-8 English Belgium 1208

EN_BE.UTF-8@euro English Belgium 1208

en_CA en_CA.8859-15 English Canada 923

EN_CA EN_CA.UTF-8 English Canada 1208

en_GB en_GB.ISO8859-1 English Great Britain 819

en_GB.IBM-1252 English Great Britain 1252

en_GB.IBM-1252@euro English Great Britain 1252

en_GB.8859-15 English Great Britain 923

en_GB.8859-15@euro English Great Britain 923

EN_GB EN_GB.UTF-8 English Great Britain 1208

en_IE en_IE.8859-15 English Ireland 923

en_IE.8859-15@euro English Ireland 923

EN_IE EN_IE.UTF-8 English Ireland 1208

EN_IE.UTF-8@euro English Ireland 1208

en_IN en_IN.8859-15 English India 923

EN_IN EN_IN.UTF-8 English India 1208

en_NZ en_NZ.8859-15 English New Zealand 923

EN_NZ EN_NZ.UTF-8 English New Zealand 1208

en_US en_US.ISO8859-1 English United States 819

en_US.8859-15 English United States 923

EN_US EN_US.UTF-8 English United States 1208

en_ZA en_ZA.8859-15 English South Africa 923

EN_ZA EN_ZA.UTF-8 English South Africa 1208

HI_IN HI_IN.UTF-8 Hindi India 1208

2925 fi_FI fi_FI.ISO8859-1 Finnish Finland 819

fi_FI.IBM-1252 Finnish Finland 1252

fi_FI.IBM-1252@euro Finnish Finland 1252

fi_FI.8859-15 Finnish Finland 923

fi_FI.8859-15@euro Finnish Finland 923

FI_FI FI_FI.UTF-8 Finnish Finland 1208

FI_FI.UTF-8@euro Finnish Finland 1208

2926 da_DK da_DK.ISO8859-1 Danish Denmark 819

da_DK.8859-15 Danish Denmark 923

DA_DK DA_DK.UTF-8 Danish Denmark 1208

2928 fr_FR fr_FR.ISO8859-1 French France 819

fr_FR.IBM-1252 French France 1252

fr_FR.IBM-1252@euro French France 1252

fr_FR.8859-15 French France 923

fr_FR.8859-15@euro French France 923

FR_FR FR_FR.UTF-8 French France 1208

FR_FR.UTF-8@euro French France 1208

2929 de_AT de_AT.8859-15 German Austria 923

de_AT.8859-15@euro German Austria 923

DE_AT DE_AT.UTF-8 German Austria 1208

DE_AT.UTF-8@euro German Austria 1208

de_DE de_DE.ISO8859-1 German Germany 819

de_DE.IBM-1252 German Germany 1252

de_DE.IBM-1252@euro German Germany 1252

de_DE.8859-15 German Germany 923

de_DE.8859-15@euro German Germany 923

DE_DE DE_DE.UTF-8 German Germany 1208

DE_DE.UTF-8@euro German Germany 1208

2931 ca_ES ca_ES.ISO8859-1 Catalan Spain 819

ca_ES.IBM-1252 Catalan Spain 1252

ca_ES.IBM-1252@euro Catalan Spain 1252

ca_ES.8859-15 Catalan Spain 923

ca_ES.8859-15@euro Catalan Spain 923

CA_ES CA_ES.UTF-8 Catalan Spain 1208

CA_ES.UTF-8@euro Catalan Spain 1208

es_AR es_AR.8859-15 Spanish Argentina 923

ES_AR ES_AR.UTF-8 Spanish Argentina 1208

es_CL es_CL.8859-15 Spanish Chile 923

ES_CL ES_CL.UTF-8 Spanish Chile 1208

es_CO es_CO.8859-15 Spanish Columbia 923

ES_CO ES_CO.UTF-8 Spanish Columbia 1208

es_ES es_ES.ISO8859-1 Spanish Spain 819

es_ES.IBM-1252 Spanish Spain 1252

es_ES.IBM-1252@euro Spanish Spain 1252

es_ES.8859-15 Spanish Spain 923

es_ES.8859-15@euro Spanish Spain 923

ES_ES ES_ES.UTF-8 Spanish Spain 1208

ES_ES.UTF-8@euro Spanish Spain 1208

es_MX es_MX.8859-15 Spanish Mexico 923

ES_MX ES_MX.UTF-8 Spanish Mexico 1208

es_PE es_PE.8859-15 Spanish Peru 923

ES_PE ES_PE.UTF-8 Spanish Peru 1208

es_PR es_PR.8859-15 Spanish Paraguay 923

ES_PR ES_PR.UTF-8 Spanish Paraguay 1208

es_UY es_UY.8859-15 Spanish Uruguay 923

ES_UY ES_UY.UTF-8 Spanish Uruguay 1208

es_VE es_VE.8859-15 Spanish Venezuela 923

ES_VE ES_VE.UTF-8 Spanish Venezuela 1208

2932 it_IT it_IT.ISO8859-1 Italian Italy 819

it_IT.IBM-1252 Italian Italy 1252

it_IT.IBM-1252@euro Italian Italy 1252

it_IT.8859-15 Italian Italy 923

it_IT.8859-15@euro Italian Italy 923

IT_IT IT_IT.UTF-8 Italian Italy 1208

IT_IT.UTF-8@euro Italian Italy 1208

2933 no_NO no_NO.ISO8859-1 Norwegian Norway 819

no_NO.8859-15 Norwegian Norway 923

NO_NO NO_NO.UTF-8 Norwegian Norway 1208

2937 sv_SE sv_SE.ISO8859-1 Swedish Sweden 819

sv_SE.8859-15 Swedish Sweden 923

SV_SE SV_SE.UTF-8 Swedish Sweden 1208

2939 de_LU de_LU.8859-15 German Luxembourg 923

de_LU.8859-15@euro German Luxembourg 923

DE_LU DE_LU.UTF-8 German Luxembourg 1208

DE_LU.UTF-8@euro German Luxembourg 1208

de_CH de_CH.ISO8859-1 German Switzerland 819

de_CH.8859-15 German Switzerland 923

DE_CH DE_CH.UTF-8 German Switzerland 1208

2940 fr_CH fr_CH.ISO8859-1 French Switzerland 819

fr_CH.8859-15 French Switzerland 923

FR_CH FR_CH.UTF-8 French Switzerland 1208

2942 it_CH it_CH.8859-15 Italian Switzerland 923

IT_CH IT_CH.UTF-8 Italian Switzerland 1208

2954 ar_AA ar_AA.ISO8859-6 Arabic Arabic Countries 1089

ar_AE ar_AE.ISO8859-6 Arabic United Arab
Emirates

1089

ar_BH ar_BH.ISO8859-6 Arabic Bahrain 1089

ar_EG ar_EG.ISO8859-6 Arabic Egypt 1089

ar_JO ar_JO.ISO8859-6 Arabic Jordan 1089

ar_KW ar_KW.ISO8859-6 Arabic Kuwait 1089

ar_LB ar_LB.ISO8859-6 Arabic Lebanon 1089

ar_OM ar_OM.ISO8859-6 Arabic Oman 1089

ar_QA ar_QA.ISO8859-6 Arabic Qatar 1089

ar_SA ar_SA.ISO8859-6 Arabic Saudi Arabia 1089

ar_SY ar_SY.ISO8859-6 Arabic Syrian Arab
Republic

1089

AR_AA AR_AA.UTF-8 Arabic Arabic Countries 1208

AR_AE AR_AE.UTF-8 Arabic United Arab
Emirates

1208

AR_BH AR_BH.UTF-8 Arabic Bahrain 1208

AR_EG AR_EG.UTF-8 Arabic Egypt 1208

AR_JO AR_JO.UTF-8 Arabic Jordan 1208

AR_KW AR_KW.UTF-8 Arabic Kuwait 1208

AR_LB AR_LB.UTF-8 Arabic Lebanon 1208

AR_OM AR_OM.UTF-8 Arabic Oman 1208

AR_QA AR_QA.UTF-8 Arabic Qatar 1208

AR_SA AR_SA.UTF-8 Arabic Saudi Arabia 1208

AR_SY AR_SY.UTF-8 Arabic Syrian Arab
Republic

1208

2956 tr_TR tr_TR.ISO8859-9 Turkish Turkey 920

TR_TR TR_TR.UTF-8 Turkish Turkey 1208

2957 el_GR el_GR.ISO8859-7 Greek Greece 813

EL_GR EL_GR.UTF-8 Greek Greece 1208

2958 is_IS is_IS.ISO8859-1 Icelandic Iceland 819

is_IS.8859-15 Icelandic Iceland 923

IS_IS IS_IS.UTF-8 Icelandic Iceland 1208

2961 iw_IL iw_IL.ISO8859-8 Hebrew Israel 916

HE_IL HE_IL.UTF-8 Hebrew Israel 1208

2962 ja_JP ja_JP.IBM-eucJP Japanese Japan 33722

Ja_JP ja_JP.IBM-943 Japanese Japan 943

JA_JP JA_JP.UTF-8 Japanese Japan 1208

2963 nl_BE nl_BE.ISO8859-1 Dutch Belgium 819

nl_BE.IBM-1252 Dutch Belgium 1252

nl_BE.IBM-1252@euro Dutch Belgium 1252

nl_BE.8859-15 Dutch Belgium 923

nl_BE.8859-15@euro Dutch Belgium 923

NL_BE NL_BE.UTF-8 Dutch Belgium 1208

NL_BE.UTF-8@euro Dutch Belgium 1208

2966 fr_BE fr_BE.ISO8859-1 French Belgium 819

fr_BE.IBM-1252 French Belgium 1252

fr_BE.IBM-1252@euro French Belgium 1252

fr_BE.8859-15 French Belgium 923

fr_BE.8859-15@euro French Belgium 923

FR_BE FR_BE.UTF-8 French Belgium 1208

FR_BE.UTF-8@euro French Belgium 1208

fr_LU fr_LU.8859-15 French Luxembourg 923

fr_LU.8859-15@euro French Luxembourg 923

FR_LU FR_LU.UTF-8 French Luxembourg 1208

FR_LU.UTF-8@euro French Luxembourg 1208

2972 th_TH TH_TH.TIS-620 Thai Thailand 874

TH_TH TH_TH.UTF-8 Thai Thailand 1208

2974 bg_BG bg_BG.ISO8859-5 Bulgarian Bulgaria 915

BG_BG BG_BG.UTF-8 Bulgarian Bulgaria 1208

2975 cs_CZ cs_CZ.ISO8859-2 Czech Czech Republic 912

CS_CZ CS_CZ.UTF-8 Czech Czech Republic 1208

2976 hu_HU hu_HU.ISO8859-2 Hungarian Hungary 912

HU_HU HU_HU.UTF-8 Hungarian Hungary 1208

2978 pl_PL pl_PL.ISO8859-2 Polish Poland 912

PL_PL PL_PL.UTF-8 Polish Poland 1208

2979 ru_RU ru_RU.ISO8859-5 Russian Russia 915

RU_RU RU_RU.UTF-8 Russian Russia 1208

2980 pt_BR pt_BR.ISO8859-1 Portuguese Brazil 819

pt_BR.8859-15 Portuguese Brazil 923

PT_BR PT_BR.UTF-8 Portuguese Brazil 1208

2981 fr_CA fr_CA.ISO8859-1 French Canada 819

fr_CA.8859-15 French Canada 923

FR_CA FR_CA.UTF-8 French Canada 1208

2986 ko_KR ko_KR.IBM-eucKR Korean Korea 970

KO_KR KO_KR.UTF-8 Korean Korea 1208

2987 zh_TW zh_TW.IBM-eucTW Traditional
Chinese

Taiwan 964

Zh_TW ZH_TW.big5 Traditional
Chinese

Taiwan 950

zh_TW ZH_TW.UTF-8 Traditional
Chinese

Taiwan 1208

2989 zh_CN zh_CN.IBM-eucCN Simplified Chinese People's Republic
of China

1383

Zh_CN zh_CN.GBK Simplified Chinese People's Republic
of China

1386

ZH_CN ZH_CN.UTF-8 Simplified Chinese People's Republic
of China

1208

2992 ro_RO ro_RO.ISO8859-2 Romanian Romania 912

RO_RO RO_RO.UTF-8 Romanian Romania 1208

2994 sk_SK sk_SK.ISO8859-2 Slovak Slovakia 912

SK_SK SK_SK.UTF-8 Slovak Slovakia 1208

2995 sq_AL sq_AL.ISO8859-1 Serbian Cyrillic Yugoslavia 915

sq_AL.8859-15 Serbian Cyrillic Yugoslavia 923

SQ_AL SQ_AL.UTF-8 Serbian Cyrillic Yugoslavia 1208

Top | OS/400 PASE APIs | APIs by category

OS/400 PASE Environment Variables

Overview

OS/400 PASE environment variables are independent of ILE environment variables. Setting a variable in one
environment has no effect on the other environment, but several system interfaces allow you to copy variables
between environments:

The Qp2RunPase API lets you specify any list of environment variables you want to initialize for the
OS/400 PASE program. See Run an OS/400 PASE Program (Qp2RunPase) documentation for more
information.

●

The QP2SHELL and QP2TERM APIs initialize the OS/400 PASE environment with a copy of nearly
all ILE environment variables. See Run an OS/400 PASE Shell Program (QP2SHELL) documentation
for more information.

●

The systemCL OS/400 PASE runtime function copies nearly all OS/400 PASE environment variables
to the ILE environment for option SYSTEMCL_ENVIRON. See Run a CL Command for OS/400
PASE (systemCL) documentation for more information.

●

The OS/400 PASE system utility copies nearly all OS/400 PASE environment variables to the ILE
environment for option -e. See Run a CL Command (OS/400 PASE system utility) documentation for
more information.

●

Special OS/400 PASE Environment Variables

Some OS/400 PASE runtime behaviors are different from AIX because of differences between the two operating
systems. You can use these OS/400 PASE environment variables to control some of the differences:

PASE_EXEC_QOPENSYS

PASE_EXEC_QOPENSYS can be used to prevent the system from searching the /QOpenSys file
system for an absolute path (starting with "/") specified as an argument to exec or Qp2RunPase, or in
the first line of a shell script. The system normally searches the /QOpenSys file system if the absolute
path name for an OS/400 PASE program or script cannot be opened or is not a regular bytestream file.
OS/400 directory /usr/bin contains links to QShell utilities that cannot run as OS/400 PASE programs,
so searching /QOpenSys allows more AIX programs and shell scripts to run unchanged (using OS/400
PASE utilities in directory /QOpenSys/usr/bin). The system does not do an extended search in the
/QOpenSys file system if the OS/400 PASE shell or other program that calls exec or Qp2RunPase has
changed credentials (setuid or setgid) or if the OS/400 PASE environment specifies
PASE_EXEC_QOPENSYS=N.

PASE_MAXDATA64

PASE_MAXDATA64 specifies the maximum number of 256MB segments provided for brk (heap)
storage in a 64-bit OS/400 PASE program. If PASE_MAXDATA64 is omitted or contains an invalid
value (either non-numeric or less than one), a default of 256 segments (64GB) is used.
PASE_MAXDATA64 has no effect on 32-bit OS/400 PASE programs, and it must be set either in the
initial environment passed to Qp2RunPase or before running exec for a 64-bit OS/400 PASE program.

PASE_MAXSHR64

PASE_MAXSHR64 specifies the maximum number of 256MB segments provided for shared memory
(shmat and mmap) in a 64-bit OS/400 PASE program. If PASE_MAXSHR64 is omitted or contains an
invalid value (either non-numeric or less than one), a default of 256 segments (64GB) is used.
PASE_MAXSHR64 has no effect on 32-bit OS/400 PASE programs, and it must be set either in the
initial environment passed to Qp2RunPase or before running exec for a 64-bit OS/400 PASE program.

PASE_STDIO_ISATTY

The default behavior of the OS/400 PASE isatty runtime function returns true for file descriptors 0, 1,
and 2 (stdin, stdout, and stderr), regardless of whether the open file is a tty device. Setting OS/400 PASE
environment variable PASE_STDIO_ISATTY to N, either in the initial environment passed to
Qp2RunPase or before the first invocation of isatty, causes isatty to return an accurate indication of
whether the open file is a tty device.

PASE_SYSCALL_NOSIGILL

The OS/400 PASE kernel exports some system calls that are implemented by the AIX kernel but are
unsupported by OS/400 PASE. The default behavior for any unsupported syscall is to send exception
message MCH3204, which the system converts to OS/400 PASE signal SIGILL. The unsupported
syscall returns a function result of -1 with OS/400-unique errno EUNKNOWN (3474) if the signal is
ignored or the handler returns. Message MCH3204 appears in the OS/400 job log to provide the name of
the unsupported system call and the OS/400 PASE instruction address that caused the error. The
message may also include the internal dump identifier for a VLOG entry that contains this information:

 syscall number (GPR2 value)
 OS/400 PASE instruction address
 Link register value
 GPR3-10 values (if available, or zero otherwise)
 syscall name (if known, converted to uppercase)

OS/400 PASE programs can suppress the exception message and SIGILL signal for unsupported
system calls by setting environment variable PASE_SYSCALL_NOSIGILL either in the initial
environment passed to Qp2RunPase or before running exec. PASE_SYSCALL_NOSIGILL is
ignored if the OS/400 PASE program has the S_ISUID or S_ISGID attribute, but otherwise is
interpreted as a list of syscall function names with optional errno values, delimited by colons. The
colon-delimited values must take one of these forms:

 syscall_name
 syscall_name=errno_name (errno_name is EINVAL, EPERM, and so on)
 syscall_name=errno_number (errno_number is 0-127)

SIGILL is suppressed for any syscall_name in the list that is recognized as an OS/400 PASE system
call. The first or only entry in the list may use a special syscall_name of "ALL" to set a default behavior
for all unsupported syscalls. Any entry in the list that is not an OS/400 PASE syscall name is ignored,
and specifying the name of a syscall that is supported by the OS/400 PASE kernel has no effect on the
operation of that syscall.

Any syscall in the PASE_SYSCALL_NOSIGILL list that is unsupported by the OS/400 PASE kernel
returns a function result of -1 with the specified errno value (defaulting to ENOSYS) except that
specifying errno_number of 0 causes the unsupported syscall to return a function result of zero (without
setting errno). An invalid errno_name or errno_number defaults to ENOSYS.

For example, the following PASE_SYSCALL_NOSIGILL value suppresses SIGILL for all
unsupported syscalls. "quotactl" returns EPERM and "audit" returns function result of zero, while all
other unsupported syscalls return ENOSYS:

 export PASE_SYSCALL_NOSIGILL=ALL:quotactl=EPERM:audit=0

Note: PASE_SYSCALL_NOSIGILL is not intended for production programs. It is provided as a
convenience for feasability testing using unchanged AIX binaries that need to be modified for
production.

PASE_THREAD_ATTACH

If OS/400 PASE environment variable PASE_THREAD_ATTACH is set to Y when an OS/400 PASE
program runs libpthreads.a initialization (usually at program startup), an ILE thread that was not started
by OS/400 PASE will be attached to OS/400 PASE when it calls an OS/400 PASE procedure (using
Qp2CallPase or Qp2CallPase2). Once an ILE thread has attached to OS/400 PASE, that thread is
subject to asynchronous interruption for OS/400 PASE functions such as signal handling and thread
cancellation. In particular, the thread will be canceled as part of ending the OS/400 PASE program
(when exit runs or OS/400 PASE processing terminates for a signal).

PASE_UNLIMITED_PATH_MAX

The OS/400 Integrated File System supports longer path names than the value of PATH_MAX (1023)
in AIX header file <limits.h>. Setting OS/400 PASE environment variable
PASE_UNLIMITED_PATH_MAX to Y, either in the initial environment passed to Qp2RunPase or
before running exec, allows an OS/400 PASE program to access objects with long path names. OS/400
PASE loader functions and some library runtime functions can fail with path names longer than AIX
PATH_MAX.

PASE_USRGRP_LOWERCASE

OS/400 user names and group names are case-insensitive, but the system stores and returns them in
uppercase. OS/400 PASE runtime functions that return user names and group names (getpwnam,
getpwuid, getgrnam, and getgrgid) default to converting them to lowercase unless OS/400 PASE
environment variable PASE_USRGRP_LOWERCASE is set to N.

Top | OS/400 PASE APIs | APIs by category

OS/400 PASE Signal Handling

OS/400 PASE Signals and ILE Signals

OS/PASE signals and POSIX/ILE signals are independent, so it is not possible to directly call a handler for one
signal type by raising the other type of signal. However, the Post an OS/400 PASE Signal (Qp2SignalPase)
API can be used as the handler for any ILE signal to post a corresponding OS/400 PASE signal. An OS/400
PASE program can also define handlers for OS/400 PASE signals that call ILE procedures to post equivalent
ILE signals. Program QP2SHELL and the OS/400 PASE fork function always setup handlers to map every
ILE signal to a corresponding OS/400 PASE signal.

OS/400 Messages and OS/400 PASE Programs

Many OS/400 applications and system functions report errors with exception messages sent to program call
message queues. See Message Handling Terms and Concepts for information about exception messages and
program call message queues.

The system only creates program call message queues for ILE procedures and OMI programs. Any machine
exception caused by an operation inside an OS/400 PASE program (such as MCH0601 for a storage reference
error) is sent to the program call message queue for an (internal) ILE procedure in service program QP2USER.
This ILE procedure is also the apparent caller of any ILE procedure the OS/400 PASE program calls directly
(using _ILECALLX or _ILECALL), so any OS/400 message the called procedure sends to its caller goes to the
same message queue used for machine exceptions.

OS/400 Exceptions and OS/400 PASE Signals

The ILE procedure in service program QP2USER that runs OS/400 PASE programs handles any exception and
converts it to an OS/400 PASE signal, the same way POSIX/ILE C runtime converts exceptions to ILE signals.
The specific signal used depends on the OS/400 message identifier for the exception. OS/400 PASE and ILE
use different signal numbers, but both map any specific message identifier to the same signal name (such as

SIGSEGV). See the WebSphere Development Studio: ILE C/C++ Programmer's Guide for details.

An OS/400 PASE signal handler can determine whether a signal is associated with an exception message by
inspecting field msgkey in the ucontext_t_os400 structure (declared in header file as400_types.h) that is passed
as an argument to the handler. A non-zero value is the message reference key for the OS/400 message that
caused the signal. Zero indicates the signal is not associated with an OS/400 message (which is always true for
asynchronous signals). The OS/400 PASE program can use the message reference key to receive the exception
message (see Receive Program Message for OS/400 PASE) for more details about the error.

Top | OS/400 PASE APIs | APIs by category

	OS/400 PASE APIs (V5R2)
	Table of Contents
	OS/400 PASE APIs
	OS/400 PASE Callable Program APIs
	QP2SHELL() and QP2SHELL2()--Run an OS/400 PASE Shell Program
	QP2TERM()--Run an OS/400 PASE Terminal Session

	OS/400 PASE ILE Procedure APIs
	Qp2malloc()--Allocate OS/400 PASE Heap Memory
	Qp2CallPase()--Call an OS/400 PASE Procedure
	Qp2dlclose()--Close a Dynamically Loaded OS/400 PASE Module
	Qp2dlopen()--Dynamically Load an OS/400 PASE Module
	Qp2EndPase()--End an OS/400 PASE Program
	Qp2dlsym()--Find an Exported OS/400 PASE Symbol
	Qp2free()--Free OS/400 PASE Heap Memory
	Qp2SignalPase()--Post an OS/400 PASE Signal
	Qp2jobCCSID()--Retrieve Job CCCSID for OS/400 PASE
	Qp2paseCCSID()--Retrieve OS/400 PASE CCSID
	Qp2dlerror()--Retrieve OS/400 PASE Dynamic Load Error Information
	Qp2errnop()--Retrieve OS/400 PASE errno Pointer
	Qp2ptrsize()--Retrieve OS/400 PASE Pointer Size
	Qp2RunPase()--Run an OS/400 PASE Program

	Runtime Functions For Use by OS/400 PASE Programs
	build_ILEarglist()--Build an ILE Argument List for OS/400 PASE
	_ILECALLX()--Call an ILE Procedure for OS/400 PASE
	_PGMCALL()--Call an OS/400 Program for OS/400 PASE
	size_ILEarglist()--Compute ILE Argument List Size for OS/400 PASE
	_CVTERRNO()--Convert ILE errno to OS/400 PASE errno
	_CVTSPP()--Convert Space Pointer for OS/400 PASE
	_STRNCPY_SPP()--Copy Character String for OS/400 PASE
	_MEMCPY_WT()--Copy Memory With Tags for OS/400 PASE
	_STRLEN_SPP()--Determine Character String Length for OS/400 PASE
	_ILESYM()--Find an Exported ILE Symbol for OS/400 PASE
	_ILELOAD()--Load an ILE Bound Program for OS/400 PASE
	SQLOverrideCCSID400()--Override SQL CLI CCSID for OS/400 PASE
	QMHRCVM()--OS/400 PASE Receive Nonprogram Message
	QMHRCVPM()--OS/400 PASE Receive Program Message
	_RSLOBJ()--Resolve to an OS/400 Object for OS/400 PASE
	_RETURN()--Return Without Exiting OS/400 PASE
	systemCL()--Run a CL Command for OS/400 PASE
	QMHSNDM()--OS/400 PASE Send Nonprogram Message
	QMHSNDPM()--Send Program Message for OS/400 PASE
	_SETCCSID()--Set OS/400 PASE CCSID
	_SETSPP()--Set Space Pointer for OS/400 PASE

	OS/400 PASE Runtime Libraries
	OS/400 PASE Locales
	OS/400 PASE Environment Variables
	OS/400 PASE Signal Handling

