
Database and File APIs (V5R2)

Table of Contents

Database and File APIs

APIs

Block EDRS Access (QxdaBlockEDRS)●

Bring Database Records (QDBBRCDS)●

Call Program (QxdaCallProgramEDRS)●

Cancel EDRS Request (QxdaCancelEDRS)●

Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics)●

Change Cross Reference CCSID (QDBCXRC)●

Change Dynamic Default Collection (QSQCHGDC)●

Check EDRS Block Status (QxdaCheckEDRSStatus)●

Check EDRS Block Status (QxdaCheckEDRSBlock)●

Clear SQL Database Monitor Statistics (QQQCSDBM)●

Commit EDRS Server (QxdaCommitEDRS)●

Connect to EDRS Server (QxdaConnectEDRS)●

Create Database Hash (QCreateDatabaseHash)●

Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics)●

Disconnect from EDRS Server (QxdaDisconnectEDRS)●

Dump SQL Database Monitor (QQQDSDBM)●

End SQL Database Monitor (QQQESDBM)●

Find EDRS Job (QxdaFindEDRSJob)●

Generate Data Definition Language (QSQGNDDL)●

List Database File Members (QUSLMBR)●

List Database Relations (QDBLDBR)●

List Fields (QUSLFLD)●

List Open Files (QDMLOPNF)●

List Record Formats (QUSLRCD)●

List Requested Statistics Collections(QDBSTLRS, QdbstListRequestedStatistics)●

List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics)●

List Statistics Collections (QDBSTLS, QdbstListStatistics)●

Process Command (QxdaProcessCommand EDRS)●

Process Extended Dynamic SQL (QSQPRCED)●

Process Immediate SQL Statement (QxdaProcessImmediateEDRS)●

Process Remote Extended Dynamic SQL (QxdaProcessExtDynEDRS)●

Query (QQQQRY)●

Query SQL Database Monitor (QQQQSDBM)●

Request Statistics Collections (QDBSTRS,QdbstRequestStatistics)●

Retrieve Database File Description (QDBRTVFD)●

Retrieve Display File Description (QDFRTVFD)●

Retrieve File Override Information (QDMRTVFO)●

Retrieve Job Record Locks (QDBRJBRL)●

Retrieve Member Description (QUSRMBRD)●

Retrieve Record Locks (QDBRRCDL)●

Retrieve Short Name (QDBRTVSN)●

Roll Back EDRS Server (QxdaRollbackEDRS)●

Run Database Hash (QDBRUNHA)●

Start SQL Database Monitor (QQQSSDBM)●

Syntax Check SQL Statement (QSQCHKS)●

Update Statistics Collection (QDBSTUS, QdbstUpdateStatistics)●

Visual Explain (QQQVEXPL)●

Exit programs

CLI Connection●

Close Database File●

SQL Client Integration●

Database and File APIs
The database and file APIs retrieve specific information about OS/400 files. These APIs also have the
ability to get data and manipulate files.

With the exception of QDBLDBR, QDFRTVFD, QSQPRCED, QDBSTRS, QDBSTDS, QDBSTUS,
QDBSTCRS, QDBSTLS, QDBSTLDS, and QDBSTLRS, the database and file APIs work with files that
are either local or remote. Local files are files that are on the server where the program is running. Remote
files are files on a target (remote) system that are accessed using a distributed data management (DDM) file
on a source (local) system. DDM files provide the information needed for a local system to locate a remote
system and to access data in the remote system's database files. The QDBLDBR, QDFRTVFD,
QSQPRCED, QDBSTRS, QDBSTDS, QDBSTUS, QDBSTCRS, QDBSTLS, QDBSTLDS, and
QDBSTLRS APIs work with local database files only.

When you call these APIs from a high-level language (HLL) program, you must specify whether to use file
override processing on your local or remote files. The QDBLDBR, QSQPRCED, and QDMRTVFO APIs,
however, do not support overrides.

Some of the database and file APIs return character values that have an associated coded character set
identifier (CCSID). If the CCSID value for the job calling the API is not 65535, the character values are
converted from their current CCSID to the CCSID of the job. This conversion may cause some data to be
lost. The CCSID associated with the job is returned to the user. If the CCSID value for the job is 65535, no
conversions are performed on the character values. The character value CCSID stored in the file object is
returned to the user.

The database and file APIs use the standard user space format for the lists of information they return. If you
are not familiar with this format, see User Space Format for List APIs before using these APIs.

For additional information, see the DB2 Universal Database for iSeries SQL Call Level Interface (ODBC)
and DB2 Universal Database for iSeries SQL Reference books.

The database and file APIs are:

Block EDRS Access (QxdaBlockEDRS) provides functions to allow client jobs to be temporarily
suspended or switched to a backup server system in a client/server environment.

●

Bring Database Records (QDBBRCDS) asynchronously brings database physical file records into
main storage.

●

Call Program (QxdaCallProgramEDRS) is used to call a user-defined program on the database
server system.

●

Cancel EDRS Request (QxdaCancelEDRS) cancels a previous call to the
QxdaProcessExtDynEDRS or QxdaProcessImmediateEDRS APIs.

●

Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) cancels
statistics collections that have been requested, but are not yet completed or not successfully
completed.

●

Change Cross Reference CCSID (QDBCXRC) changes the CCSID of the system cross reference
files.

●

Change Dynamic Default Collection (QSQCHGDC) defines a default collection for unqualified
table names in dynamically prepared statements or in dynamically executed statements.

●

Check EDRS Block Status (QxdaCheckEDRSStatus) returns information about the availability
status of a server system based on the provided job-suspension user data.

●

Check EDRS Block Status (QxdaCheckEDRSBlock) returns information about the availability●

status of a server system.

Clear SQL Database Monitor Statistics (QQQCSDBM) clears and frees the associated memory area
of the database monitor statistics.

●

Commit EDRS Server (QxdaCommitEDRS) is used to commit transactions on the database server.●

Connect to EDRS Server (QxdaConnectEDRS) is used to initiate a connection to a server system.●

Create Database Hash (QCreateDatabaseHash) sets up the environment to enable the Run Database
Hash (QDBRUNHA) API for a physical file that has a uniquely keyed logical file built over it.

●

Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) deletes existing, completed
statistics collections immediately.

●

Disconnect from EDRS Server (QxdaDisconnectEDRS) is used to end a connection to a server
system.

●

Dump SQL Database Monitor (QQQDSDBM) dumps the SQL database monitor that has been
gathered.

●

End SQL Database Monitor (QQQESDBM) ends the memory-based SQL database monitor.●

Find EDRS Job (QxdaFindEDRSJob) is used to find all jobs with user-defined data associated with
the Connect to EDRS Server (QxdaConnectEDRS) API that matches the data passed to this API.

●

Generate Data Definition Language (QSQGNDDL) generates the SQL data definition language
statements required to recreate a database object.

●

List Database File Members (QUSLMBR) generates a list of database file members and places the
list in a user space.

●

List Database Relations (QDBLDBR) provides information on how files and members are related
to a specified database file.

●

List Fields (QUSLFLD) generates a list of fields within a specified file record format name.●

List Open Files (QDMLOPNF) generates a list of *FILE objects that currently are open in the job
or that were opened by the thread that is specified in the job identification information input
parameter.

●

List Record Formats (QUSLRCD) generates a list of record formats contained within a specified
file.

●

List Requested Statistics Collections(QDBSTLRS, QdbstListRequestedStatistics) lists details for
not yet completed or not successfully completed statistics collection requests.

●

List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) lists additional
statistics data for a single statistics collection not returned by the List Statistics Collections
(QDBSTLS, QdbstListStatistics) API.

●

List Statistics Collections (QDBSTLS, QdbstListStatistics) lists all of the columns and
combination of columns for a given file member for which statistics are available.

●

Process Command (QxdaProcessCommand EDRS) is used to run a system command on the
database server system.

●

Process Extended Dynamic SQL (QSQPRCED) processes Structured Query Language (SQL)
extended dynamic statements in an SQL package object.

●

Process Immediate SQL Statement (QxdaProcessImmediateEDRS) is used to run an SQL statement
on the database server.

●

Process Remote Extended Dynamic SQL (QxdaProcessExtDynEDRS) is used to perform extended
dynamic SQL operations on the database server system.

●

Query (QQQQRY) gets a set of database records that satisfy a database query request.●

Query SQL Database Monitor (QQQQSDBM) returns information about the activity of the SQL
and the original database monitor.

●

Request Statistics Collections (QDBSTRS,QdbstRequestStatistics) requests that one or more
statistics collections for a given set of columns of a database file member be created.

●

Retrieve Database File Description (QDBRTVFD) provides complete and specific information
about a file on a local or remote system.

●

Retrieve Display File Description (QDFRTVFD) allows you to get specific information about the
data description specifications (DDS) definition used to create a display file.

●

Retrieve File Override Information (QDMRTVFO) returns the name of the file, library, member,
and final type of override that result from processing overrides for a specified file name.

●

Retrieve Job Record Locks (QDBRJBRL) lets you generate a list of record locks that a specific job
is holding or for which it is waiting.

●

Retrieve Member Description (QUSRMBRD) returns specific information about a single database
file member.

●

Retrieve Record Locks (QDBRRCDL) lets you generate a list of jobs that are either waiting for or
holding a specific record lock.

●

Retrieve Short Name (QDBRTVSN) allows you to get the 10-character name of a database file by
requesting the long file name of the database file.

●

Roll Back EDRS Server (QxdaRollbackEDRS) is used to roll back transactions on the database
server.

●

Run Database Hash (QDBRUNHA) allows the user to FETCH, UPDATE, DELETE, and INSERT
data into existing database files using an alternative access method.

●

Start SQL Database Monitor (QQQSSDBM) starts the memory-based SQL database monitor.●

Syntax Check SQL Statement (QSQCHKS) calls the DB2 for iSeries SQL parser to check the
syntax of an SQL statement.

●

Update Statistics Collection (QDBSTUS, QdbstUpdateStatistics) updates the attributes and
refreshes the data of an existing single statistics collection.

●

Visual Explain (QQQVEXPL) is used to create a query graph that graphically displays the
execution of an SQL statement

●

A database exit program provides additional (user-written) functions for the database. The database and file
exit programs are:

CLI Connection exit program is called by CLI through the registration facility before the
connection is made to the relational database.

●

Close Database File exit program is called when a process is trying to lock a file that is held by
another process.

●

SQL Client Integration exit program enables SQL applications to access data managed by a
database management system other than the OS/400 relational database.

●

Top | APIs by category

Block EDRS Access (QxdaBlockEDRS) API

 Required Parameter Group:

1 Input structure Input Char(*)
2 Input structure format Input Char(8)
3 Error code I/O Char(*)

 Service Program: QXDADBBK

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Block EDRS Access (QxdaBlockEDRS) API provides functions to allow client jobs to be temporarily
suspended or switched to a backup server system in a client/server environment. This API does not
physically block the system; all access must be controlled using the functions provided by the EDRS APIs.

Authorities and Locks

The user running the API must have *JOBCTL special authority.

Required Parameter Group

Input structure

I/O; CHAR(*)

The structure to pass information about the function to perform and the systems involved. For the
format of this parameter, see BLKI0100 Format.

Input structure format

INPUT; CHAR(8)

The format of the input structure being used. The possible value is:

BLKI0100 Basic structure

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

BLKI0100 Format

The following table shows the information to pass in the BLKI0100 format. For more details about the
fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Function

1 1 CHAR(256) EDRS server system name

257 101 CHAR(256) Backup EDRS server system name

513 201 CHAR(7) Reserved

520 208 BINARY(4) Offset to job-suspension user data

524 20C BINARY(4) Length of job-suspension user data

 CHAR(*) Job-suspension user data

Field Descriptions

Backup EDRS server system name. The name of the system that will take over as the server system when
function 2 is called. This parameter is required for function 1 and must be set to blanks for other functions.
The following special value is allowed:

*RESET This value should be specified on function 1 when switching back to the original EDRS
server system.

EDRS server system name. The name of the database server system. It is required for all functions. This
should always be the original server system name, even after a backup has been associated with the system.

Function. The function to perform. The possible values are:

1 - QXDA_BLOCK Block access to the server system specified.

2 - QXDA_SWITCH_SERVER Associate the backup server system passed to function 1 with the
original server system specified.

3 - QXDA_REGISTER_JOB Register the current job to be notified when the specified server system
is blocked. A job is notified by a SIGUSR1 signal being delivered to the
job.

4 - QXDA_REMOVE_JOB Remove the job from the list of jobs to be notified of a server system
block.

5 - QXDA_UNBLOCK Allow access to the server system that was previously blocked. This
function is not allowed when *RESET is specified as the backup system
name to function 1.

Job-suspension user data. The data to associate with a job or a system that is used to determine which
jobs on the client system should be blocked. If no job-suspension user data is supplied, all jobs connected to
the specified server system will be blocked.

Length of job-suspension user data. The length of job-suspension user data supplied.

Offset to job-suspension user data. The offset from the beginning of the input structure to the
job-suspension user data in the input structure, in bytes. This value must be set to 0 for functions 2 and 5,
and is optional for all other functions.

Reserved. This value must be initialized to blanks.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF0001 E Error found on &1 command.

CPF180C E Function &1 not allowed.

CPF222E E &1 special authority is required.

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAE14 E Cannot allocate &1 bytes.

CPFB751 E Parameter &1 passed not correct.

CPFB752 E Internal error in &1 API.

CPFB75A E Function &1 not valid while system &2 is blocked.

CPFB75B E Function &1 not valid while system &2 is not blocked.

CPFB75C E System name &1 is not valid.

CPFB75D E Function &1 not allowed.

CPFB75E E Job not removed.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Bring Database Records (QDBBRCDS) API

 Required Parameter Group:

1 Qualified database physical file name Input Char(20)
2 Database member name Input Char(10)
3 Relative record number array Input Array of

Binary(4)
4 Number of records to bring Input Binary(4)

 Optional Parameter Group 1:

5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Bring Database Records (QDBBRCDS) API asynchronously brings database physical file records into
main storage. You can use the QDBBRCDS API only with database file type *PF. DDM files and logical
files are not supported. If a distributed file is specified, only the records on the local system are brought.
File overrides do not affect the specified file, library, or member names.

Authorities and Locks

Library Authority

*EXECUTE

File Authority

*OBJOPR

File Lock

None

Required Parameter Group

Qualified database physical file name

INPUT; CHAR(20)

The name of the database physical file containing the specified member whose information is to be
retrieved and the library in which it is located. The first 10 characters contain the database physical
file name; the second 10 characters contain the library name.

You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Database physical file member name

INPUT; CHAR(10)

The name of the database physical file member for which information is to be retrieved.

Special values follow:

*FIRST The first database physical file member found.
*LAST The last database physical file member found.

Relative record array

INPUT; CHAR(*)

A array of unsigned Binary(4) variables that contain the relative record numbers that should be
brought.

If an invalid relative record number is specified, it is tolerated and no error is returned. All relative
record numbers prior to the invalid relative record number in the array are processed. All relative
record numbers after the invalid relative record number in the array are not processed.

Number of records in the array

INPUT; BINARY(4)

An unsigned Binary(4) variable that contains the number of relative record numbers in the array.
The number of relative record numbers must not exceed 1000.

Optional Parameter Group 1

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message ID Error Message Text
CPF24B4 E Severe error while addressing parameter list.
CPF3CF1 E Error code parameter not valid.
CPF3C23 E Object &1 is not a database file.
CPF3C26 E File &1 has no members.
CPF3C3A E Value for parameter &2 for API &1 not valid.
CPF3C90 E Literal value cannot be changed.
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

Top | Database and File APIs | APIs by category

API Introduced: V3R7

Call Program (QxdaCallProgramEDRS) API

 Required Parameter Group:

1 Connection handle Input Binary(4)
2 Qualified program name Input Char(20)
3 Number of parameters Input Binary(4)
4 Parameter information Input Char(*)
5 Error code I/O Char(*)

 Service Program Name: QXDAEDRS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Call Program (QxdaCallProgramEDRS) API is used to call a user-defined program on the database
server system. All parameters are passed to the program by reference.

Authorities and Locks

Any program

*USE

Library of the program

*EXECUTE

Required Parameter Group

Connection handle

INPUT; BINARY(4)

The handle number of the connection on which to call the program. The connection handle must
have been generated by the QxdaConnectEDRS API in the current job and activation group.

Qualified program name

INPUT; CHAR(20)

The library and name of the program to call. The special value *LIBL may be specified for the
library name; however, the library list of the server job may differ from that of the client job.

Number of parameters

INPUT; BINARY(4)

The number of parameters to pass to the program.

Parameter information

INPUT; CHAR(*)

Information about each of the parameters. This should be an array of type Qxda_ParmInfo_t, with
one entry for each parameter. For the format of each array element, see Qxda_ParmInfo_t Format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Qxda_ParmInfo_t Format

The following table shows the structure of the Qxda_ParmInfo_t format. For more details about the fields
in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 PTR Parameter address

16 10 BINARY(4) Parameter type

20 14 BINARY(4) Parameter length

24 18 BINARY(4) Parameter usage

28 1C CHAR(4) Reserved

Field Descriptions

Parameter address. The address where an input parameter exists or where an output parameter should be
returned.

Parameter length. The number of bytes allocated for the parameter.

Parameter type. The type of the parameter. The possible values are:

1 - QXDA_BIN4 The parameter at the address specified is a BINARY(4) value.

2 - QXDA_CHAR The parameter at the address specified is a character string. If the API is being
called from an OS/400 application, no CCSID conversion is performed.

3 - QXDA_HEX The parameter at the address specified is hexadecimal data and requires no
conversion.

3 - QXDA_BIN2 The parameter at the address specified is a BINARY(2) value. If the API is being
called from an OS/400 application, you cannot use this value.

Parameter usage. The usage of the parameter. The possible values are:

0 - QXDA_INPUT The parameter is used for input only.

1 - QXDA_OUTPUT The parameter is used for output only.
2 - QXDA_IN_OUT The parameter is used for both input and output.

Reserved. Reserved field; it must be initialized to 0x00.

Usage Notes

This function may be called from the initial thread of a job only. For the OS/400 version of this API, the
QXDA_CHAR and QXDA_HEX parameter types are equivalent.

Error Messages

Message ID Error Message Text

CPF180C E Function &1 not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAE14 E Cannot allocate &1 bytes.

CPFB750 E Connection handle specified not valid.

CPFB752 E Internal error in &1 API.

CPFB755 E Program &1 in library &2 not found.

CPFB756 E Rollback operation performed.

CPFB757 E The connection is suspended.

CPFB758 E The EDRS server system has been switched.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Cancel EDRS Request (QxdaCancelEDRS) API

 Required Parameter Group:

1 Connection handle Input Binary(4)
2 Input structure Input Char(*)
3 Input structure format Input Char(8)
4 Error code I/O Char(*)

 Service Program Name: QXDAEDRS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Cancel EDRS Request (QxdaCancelEDRS) API is used to cancel a previous call to the
QxdaProcessExtDynEDRS or QxdaProcessImmediateEDRS APIs. All parameters are passed to the
program by reference.

Authorities and Locks

Job Authority

To perform a cancel operation, you must be running under a user profile that is the same as the job
user identity of the job being canceled, or the issuer of the command must be running under a user
profile that has job control (*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management book on the V5R1 Supplemental Manuals
Web site.

Required Parameter Groups

Connection handle

INPUT; BINARY(4)

The handle number of the connection on which to execute the cancel request. The connection
handle must have been generated by the QxdaConnectEDRS API in the current job and activation
group. The connection must have been made to the same system where the qualified job name,
user, and number currently is executing.

Input structure

INPUT; CHAR(*)

The structure in which to pass information about the job to cancel. For the format of this parameter,
see CDBI0100 Format.

Input structure format

INPUT; CHAR(8)

The format of the input structure template being used. The possible value is:

CDBI0100 Basic input structure

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

CDBI0100 Format

The following table shows the information to pass in the CDBI0100 format. For more details about the
fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(26) Fully qualified job name

Field Descriptions

Fully qualified job name. The fully qualified name of the job to cancel. The qualified job name has three
parts:

Job name CHAR(10). The job name.

User name CHAR(10). The user profile name for the job.

Job number CHAR(6). The job number.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPFAE14 E Cannot allocate &1 bytes.

CPFB750 E Connection handle specified not valid.

CPFB757 E The connection is suspended.

CPFB758 E The EDRS server system has been switched.

CPF1344 E Not authorized to control job &1.

CPF1321 E Job &1 user &2 job number &3 not found.

API introduced: V5R2

Top | Database and File APIs | APIs by category

Cancel Requested Statistics Collections
(QDBSTCRS, QdbstCancelRequestedStatistics)
API

 Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Format of input data Input Char(8)
4 Feedback area Output Char(*)
5 Length of feedback area Input Binary(4)
6 Feedback keys Input Array(*) of Binary(4)
7 Number of feedback keys Input Binary(4)
8 Error code I/O Char(*)

 Service Program Name: QDBSTMGR

 Default Public Authority: *USE

 Threadsafe: Yes

The Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) API cancels
statistics collections that have been requested, but are not yet completed or not successfully completed. It
also provides an option to restart a single cancelled request.

Authorities and Locks

ASP Device Authority

*EXECUTE

File Authority

*OBJALTER, *OBJOPR

File Library Authority

*EXECUTE

File Lock

*SHRRD

Required Parameter Group

Input data

INPUT; CHAR(*)

The buffer containing the input parameters according to the format of input data parameter. The
buffer content has to start at a 4-byte boundary.

Length of input data

INPUT; BINARY(4)

The length of the input data buffer provided.

Format of input data

INPUT; CHAR(8)

The format of the input data. Possible values are:

STIC0100 Cancel a single requested statistics collection using an internal request ID.

STIC0200 Cancel all requested statistics collections for a single database file member.

Refer to STIC0100 Format and STIC0200 Format for more information.

Feedback area

OUTPUT; CHAR(*)

The buffer to receive feedback data. See Feedback Area Format for more information. The buffer
content has to start at a 4-byte boundary.

Length of feedback area

INPUT; BINARY(4)

The length of the feedback area buffer provided. The required minimum length is 16, to fit the
feedback area header (see Feedback Area Format).

Feedback keys

INPUT; ARRAY(*) OF BINARY(4)

The list of fields to return in the feedback area. For a list of valid keys, see Valid Keys - Feedback.

Number of feedback keys

INPUT; BINARY(4)

The number of fields to return in the feedback area. If 0 is specified, all other feedback area
parameters (Feedback area, Length of feedback area, and Feedback keys) are ignored.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

STIC0100 Format

Use this format to cancel the single statistics collection uniquely identified by an internal request ID. See
Field Descriptions for details of the fields listed.

Offset

Type FieldDec Hex

0 0 CHAR(16) Internal request ID

16 10 CHAR(12) Restart option

28 1C CHAR(*) Reserved

STIC0200 Format

Use this format to cancel all not yet completed statistics collection for a given file member. See Field
Descriptions for details of the fields listed.

Note: When using this option mainly to target system initiated requests, it is recommended that you first
use the blocking function provided by the Update Statistics Collection (QDBSTUS, QdbstUpdateStatistics)
API to prevent the system from issuing the requests again.

Offset

Type FieldDec Hex

0 0 CHAR(10) ASP device name

10 A CHAR(10) File name

20 14 CHAR(10) File library name

30 1E CHAR(10) File member name

40 28 CHAR(*) Reserved

Valid Keys - Feedback

See Field Descriptions for details of the fields listed.

Key Type Description

1 CHAR(10) ASP device name used

2 CHAR(10) File name used

3 CHAR(10) File library name used

4 CHAR(10) File member name used

21 BINARY(4) Number of statistics collection requests cancelled.

Feedback Area Format

The fields returned in the feedback area will be returned in the order requested. See Field Descriptions for
details of the fields listed.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 BINARY(4) Number of key fields returned

12 C BINARY(4) Number of key fields available

These fields
repeat, in the
order listed, for
each key
selected.

BINARY(4) Length of field information returned

BINARY(4) Key identifier

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved (padding to the next 4-byte boundary)

Field Descriptions

ASP device name. One auxiliary storage pool device identifying the ASP group in which the library and
file are located. This can be an ASP device name (for an ASP with a number greater than 32), or one of the
following special values:

*CURRENT The ASP device attached to the current thread or *SYSBAS when no ASP device name is
attached to the current thread.

*SYSBAS The system ASP (ASP number 1) and all basic ASPs (ASP numbers 2 through 32).

ASP device name used. The actual auxiliary storage pool device name used, after possible resolution of
special values.

Data. The data returned for the key identifier.

File library name. Where the file for which statistics collections are to be cancelled is located. You can use
these special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

File library name used. The actual file library name used, after possible resolution of special values.

File member name. The name of the file member to be used for the cancel request. This value can be a
specific file member name or one of the following special values:

*FIRST The first member (in the order created) in the specified file.

*LAST The last member (in the order created) in the specified file.

File member name used. The actual file member name used, after possible resolution of special values.

File name. The name of the file for which statistics collections are to be cancelled. The file has to be an
existing local, single format, physical file.

File name used. The actual file name used.

Internal request ID. Uniquely identifies statistics collections requested earlier. This ID can be obtained

from one of the following APIs:

Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) API,●

List Requested Statistics Collections QDBSTLRS, QdbstListRequestedStatistics) API, or●

Update Statistics Collection (QDBSTUS, QdbstUpdateStatistics) API.●

Key identifier. The field returned. For a list of valid keys, see Valid Keys - Feedback.

Length of data. The length of the data returned for the field.

Length of field information returned. Total number of bytes returned for this field in the feedback area.

Number of key fields available. Number of fields that could be returned in the feedback area.

Number of key fields returned. Number of fields returned in the feedback area.

Number of bytes available. Number of bytes that could be returned in the feedback area.

Number of bytes returned. Number of bytes returned in the feedback area.

Number of key fields available. Number of fields that could be returned in the feedback area.

Number of key fields returned. Number of fields returned in the feedback area.

Number of statistics collection requests cancelled. Number of statistics collection requests actually
cancelled .

Reserved. Reserved for future use. If this field is input, the field must set to hexadecimal zeros.

Reserved (in feedback area format). Structure padding to guarantee alignment to the next four-byte
boundary.

Restart option. Allows the cancelled request to optionally be restarted. The possible values are:

*NONE Do not restart, but just cancel the request, if its in active state, or remove the request, if
its in pending or error state.

Note: When using this option for system-initiated requests, it is recommended that you
first use the blocking function provided by the Update Statistics Collection
(QDBSTUS, QdbstUpdateStatistics) API to prevent the system from issuing the request
again.

*IMMEDIATE Restart the request immediately. The statistics collection will run in the user's process.
Control will not return to the API caller until the collection is complete.

Note: If the request has an active status and not a pending or error status, the cancel
request will be ignored.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

the <qdbst.h> include file in library QSYSINC, for API-related structure declarations and special
value declarations

●

the <qdbstmgr.h> include file in library QSYSINC, for the QdbstCancelRequestedStatistics API
prototype

●

the <qdbstcrs.h> include file in library QSYSINC, for the QDBSTCRS API prototype●

Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) API●

List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) API●

List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) API●

List Statistics Collections (QDBSTLS, QdbstListStatistics) API●

Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) API●

Update Statistics Collections (QDBSTUS, QdbstUpdateStatistics) API●

API introduced: V5R2

Top | Database and File APIs | APIs by category

Change Cross Reference CCSID (QDBCXRC)
API

 Required Parameter Group:

1 CCSID Input Binary(4)
2 Error Code I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Change Cross Reference CCSID (QDBCXRC) API changes the CCSID of the system cross reference
files.

Note: To be able to use this API, the system must be in the restricted state.

Authorities and Locks

API Public Authority

*EXCLUDE

User Special Authority

*ALLOBJ

Required Parameter Group

CCSID

INPUT; BINARY(4)

The desired coded character set identifier (CCSID) for the system cross reference files. Valid
values for the CCSID range from 1 through 65535. For a list of valid CCSID values, see the
Globalization topic. Only CCSID values to which a job can be changed are accepted.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3202 E File &1 in library &2 in use.

CPF328A E System not in proper state to do requested operation.

CPF3CF1 E Error code parameter not valid.

CPF9803 E Cannot allocate object &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

Top | Datebase and File APIs | APIs by category

Change Dynamic Default Collection
(QSQCHGDC) API

 Required Parameter Group:

1 Default collection name Input Char(18)

 Optional or Omissible Parameter:

2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Change Dynamic Default Collection (QSQCHGDC) API defines a default collection for unqualified
table names in dynamically prepared statements or in dynamically executed statements. The default
collection is defined only for the job issuing the API call. The default collection will take precedence over
the naming convention and default collection specified when the SQL program was created.

Authorities and Locks

None.

Required Parameter

Default collection name

INPUT; CHAR(18)

The name of the default collection. The following values are allowed:

*CURLIB The current library at the time the API is called is used as the default
collection. Subsequent changes of the current library will not change
the default collection. If no current library is defined, library QGPL is
used.

*PGM The default collection is determined by the attributes specified when
the SQL program was created. If DYNDFTCOL(*YES) was specified,
the default collection is the library name specified on the
DFTRDBCOL keyword. If DYNDFTCOL(*NO) was specified,
dynamically prepared and executed statements will use the default
collection rules based on the naming convention. For further
information on naming conventions, see DB2 Universal Database for
iSeries.

default collection name The name of the default collection. This value must be uppercase and
not delimited.

The API does not validate the existence or the user's authority to the specified default collection.
These validations occur on the execution of subsequent SQL prepare or execute operations.

Optional or Omissible Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Usage Notes

If a package is created with a DFTRDBCOL, QSQCHGDC has no effect.1.

In V5R2, the scope of QSQCHGDC was changed from job scoped to activation group scoped.2.

Error Messages

Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V4R5

Top | Database and File APIs | APIs by category

Check EDRS Block Status
(QxdaCheckEDRSStatus) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Receiver variable format Input Char(8)
4 EDRS server system name Input Char(256)
5 Job-suspension user data Input Char(*)
6 Length of job-suspension user data Input Binary(4)
7 Error code I/O Char(*)

 Service Program Name: QXDADBBK

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Check EDRS Block Status (QxdaCheckEDRSStatus) API returns information about the availability
status of a server system based on the provided job-suspension user data.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

I/O; CHAR(*)

The structure in which to return information about the availability status of the system specified.
For the format of this parameter, see BLKO0100 Format.

Length of receiver variable

INPUT; BINARY(4)

The number of bytes that the calling program provides for the receiver variable.

Receiver variable format

INPUT; CHAR(8)

The format of the receiver variable being used. The possible value is:

BLKO0100 Basic structure

EDRS server system name

INPUT; CHAR(256)

The name of the database server system to check.

Job-suspension user data

INPUT; CHAR(*)

The data to associate with a job or a system that is used to determine which jobs on the client
system should be blocked. If no job-suspension user data is supplied, a status of
QXDA_BLOCKED will be returned, if at least one server has this status. In that case,
QXDA_UNBLOCKED will only be returned, if all matching servers have this status.

Length of job-suspension user data

INPUT; BINARY(4)

The length of the job-suspension user data supplied.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

BLKO0100 Format

The following table shows the information to pass in the BLKO0100 format. For more details about the
fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) EDRS server status

12 12 CHAR(256) Backup server system name

268 10C BINARY(4) Offset to job-suspension user data

272 110 BINARY(4) Length of job-suspension user data

CHAR(*) Job-suspension user data

Field Descriptions

Backup server system name. The name of the system that is acting as the backup server system. This
value is set to blanks if the EDRS system is not blocked or switched.

Bytes available. The length of the information available to the API to return, in bytes.

Bytes returned. The actual number of bytes returned to the caller of the API.

EDRS server status. The status of the server system. The possible values are:

0 QXDA_UNBLOCKED: The EDRS system is not blocked.
1 QXDA_BLOCKED: The EDRS server system is blocked.
2 QXDA_SWITCHED: The backup system is acting as the EDRS server.

Job-suspension user data. The data associated with the block.

Length of job-suspension user data. The length of the job-suspension user data returned.

Offset to job-suspension user data. The offset from the beginning of the receiver variable to the the
job-suspension user data, in bytes.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF0001 E Error found on &1 command.

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB751 E Parameter &1 passed not correct.

CPFB752 E Internal error in &1 API.

API introduced: V5R1

Top | Database and File APIs | APIs by category

Check EDRS Block Status
(QxdaCheckEDRSBlock) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Receiver variable format Input Char(8)
4 EDRS server system name Input Char(256)
5 Error code I/O Char(*)

 Service Program: QXDADBBK

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Check EDRS Block Status (QxdaCheckEDRSBlock) API returns information about the availability
status of a server system.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

I/O; CHAR(*)

The structure in which to return information about the availability status of the system specified.
For the format of this parameter, see BLKO0100 Format.

Length of receiver variable

INPUT; BINARY(4)

The number of bytes that the calling program provides for the receiver variable.

Receiver variable format

INPUT; CHAR(8)

The format of the receiver variable being used. The possible value is:

BLKO0100 Basic structure

EDRS server system name

INPUT; CHAR(256)

The name of the database server system to check.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

BLKO0100 Format

The following table shows the information to pass in the BLKO0100 format. For more details about the
fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) EDRS server status

12 12 CHAR(256) Backup server system name

268 10C BINARY(4) Offset to job-suspension user data

272 110 BINARY(4) Length of job-suspension user data

 CHAR(*) Job-suspension user data

Field Descriptions

Backup server system name. The name of the system that is acting as the backup server system. This
value will be set to blanks if the EDRS system is not blocked or switched.

Bytes available. The length of the information available to the API to return, in bytes.

Bytes returned. The actual number of bytes returned to the caller of the API.

EDRS server status. The status of the server system. The possible values are:

0 QXDA_UNBLOCKED: The EDRS system is not blocked.

1 QXDA_BLOCKED: The EDRS server system is blocked.

2 QXDA_SWITCHED: The backup system is acting as the EDRS server.

Job-suspension user data. The data associated with the block.

Length of job-suspension user data. The length of job-suspension user data returned.

Offset to job-suspension user data. The offset from the beginning of the receiver variable to the the
job-suspension user data, in bytes.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF0001 E Error found on &1 command.

CPF3C1E E Required parameter &1 omitted.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB751 E Parameter &1 passed not correct.

CPFB752 E Internal error in &1 API.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Clear SQL Database Monitor Statistics
(QQQCSDBM) API

 Required Parameter Group:

1 Memory handle to clear Input Char(10)
2 Job or memory handle name Input Char(26)
3 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Clear SQL Database Monitor Statistics (QQQCSDBM) API clears and frees the associated memory
area of the database monitor statistics. Associated APIs include the following:

Dump SQL Database Monitor (QQQDSDBM)●

End SQL Database Monitor (QQQESDBM)●

Query SQL Database Monitor (QQQQSDBM)●

Start SQL Database Monitor (QQQSSDBM)●

Authorities and Locks

Current User Profile

*JOBCTL

Required Parameter Group

Memory area to clear

INPUT; CHAR(10)

The memory area to be cleared or freed. The possible values are:

*ALL Clear the monitor data associated with the *ALL monitor (the monitor started
against ALL jobs). Memory areas associated with QQQSSDBM started on
individual jobs will not be cleared. No storage is freed.

*NAMED Clear the memory handle specified by the job or memory handle name parameter
(and matches the name of a memory handle specified on the QQQSSDBM API).
No storage is freed. Only the first 6 characters will be used for naming the memory
handle.

*JOB Clear the job specific data associated with the job name specified in the job or
memory handle name parameter. No storage is freed.

*RESET Clear and free all memory associated with all active or inactive database monitors.
The *RESET option cannot be specified on a specific job or memory handle.

Job or memory handle name

INPUT; CHAR(26)

This parameter depends on the value specified for the memory area to clear parameter. If the value
is:

*ALL This parameter must be set to blanks.

*RESET This parameter must be set to blanks.

*NAMED The CHAR(10) name of a memory handle whose data is to be cleared. Only the
first 6 characters will be used for naming the memory handle, with the
remaining characters set to blanks.

*JOB The CHAR(26) qualified job name of a job-specific monitor to dump.
The qualified job name has three parts:

Job Name CHAR(10). A specific job name, a generic name, or one of the
following special values:

* or
*CURRENT

Only the job that this program is running in. The
rest of the qualified job name parameter must be
blank.

*ALL All jobs. The rest of the job name parameter must
be blank.

User Name CHAR(10). A specific user profile name.
Job
Number

CHAR(6). A specific job number.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text
CPD0172 D Error Parameters passed on CALL do ot match those required.
CPF222E E &1 special authority required.
CPF3CF1 E Error code parameter not valid.

API Introduced: V4R3

Top | Database and File APIs | APIs by category

Commit EDRS Server (QxdaCommitEDRS) API

 Required Parameter Group:

1 Connection handle Input Binary(4)
2 Additional commit options Input Binary(4)
3 SQL communications area Output Char(136)
4 Error code I/O Char(*)

 Service Program: QXDAEDRS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Commit EDRS Server (QxdaCommitEDRS) API is used to commit transactions on the database server.

Authorities and Locks

None.

Required Parameter Group

Connection handle

INPUT; BINARY(4)

The handle number of the connection on which to perform the commit operation. The connection
handle must have been generated by the QxdaConnectEDRS API in the current job and activation
group.

Additional commit options

INPUT; BINARY(4)

The following are valid commit options:

0 QXDA_COMMIT_WORK
1 QXDA_COMMIT_WITH_HOLD

SQL communications area

OUTPUT; CHAR(136)

Returns diagnostic information. It includes the SQLCODE variable, indicating whether an error has
occurred. If SQLCODE has a value of 0 after a call to this API, the function was successful.

The format of this structure is standard and is described more completely in the DB2 UDB for

iSeries SQL Programming Concepts and DB2 UDB for iSeries SQL Reference books.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text
CPF180C E Function &1 not allowed.
CPF24B4 E Severe error while addressing parameter list.
CPF3C90 E Literal value cannot be changed.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.
CPFB750 E Connection handle specified not valid.
CPFB751 E Parameter &1 passed not correct.
CPFB752 E Internal error in &1 API.
CPFB757 E The connection is suspended.
CPFB758 E The EDRS server system has been switched.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Connect to EDRS Server (QxdaConnectEDRS)
API

 Required Parameter Group:

1 Input structure Input Char(*)
2 Input structure format Input Char(8)
3 Receiver variable Output Char(*)
4 Length of receiver variable Input Binary(4)
5 Receiver variable format Input Char(8)
6 Error code I/O Char(*)

 Service Program: QXDAEDRS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Connect to EDRS Server (QxdaConnectEDRS) API is used to initiate a connection between the local
system (requesting system), and a server system. The connection can be local, where the server system is
the local system. For non-local connections, a corresponding shadow job is started on the server system. If
the input structure format used is the basic input structure (CDBI0100), then the shadow job is swapped to
run under the same user profile, using the same job description, coded character set identifier (CCSID), and
job priority as the client system job. The user profile, user password, and job description must be identical
on both systems for a successful connection. If the input structure format used is CDBI0200, then the
shadow job will run under the specified user profile name. It will use the specified user profile's associated
job description and job priority. The CCSID will be set to the CCSID of the server job field in the input
structure.

For TCP/IP or UNIX domain sockets connections, a controller job must be started on the server system
before calling the QxdaConnectEDRS API on the client system. The controller job can be started by using
the STRTCPSVR command, specifying the *EDRSQL server.

If a TCP/IP or UNIX domain socket connection is being requested, the password level (QPWDLVL system
value) of the server system must be compatible with the requesting server. If the password level is 0 or 1, or
is a pre-V5R1 system, then the requesting system should be 0 or 1. Likewise, if the V5R1 server system's
password level is 2 or 3, the V5R1 requesting system should also be set to 2 or 3. Failure to coordinate the
password level in this fashion will prevent a successful connection, resulting in the CPI2A5A message.

Note that the CDBI0200 format cannot be used when the connection type is 'O' (Opticonnect). CDBI0200 is
intended for use only with TCP/IP and UNIX socket connections. For additional restrictions that apply to
OptiConnect connections, see the OptiConnect API documentation.

The connection handle returned by this API is valid only in the same job and activation group in which it
was generated. A connection cannot span multiple jobs or activation groups.

If a relational database (RDB) name is specified for either the CDBI0100 or CDBI0200 format, it must be
blank padded to 18 characters, the maximum length of an RDB name. If the server system does not have
any active independent ASPs, the only RDB that can be connected is the *LOCAL RDB. All other RDB
names will cause the CPFB752 message to be sent to the caller. The *LOCAL RDB can be determined by

viewing the 'remote location' column when executing the WRKRDBDIRE command.

Authorities and Locks

None.

Required Parameter Group

Input structure

INPUT; CHAR(*)

The structure in which to pass information about the connection. For the format of this parameter,
see CDBI0100 Format.

Input structure format

INPUT; CHAR(8)

The format of the input structure template being used. The possible value is:

CDBI0100 Basic input structure

CDBI0200 Basic input structure with user profile and password fields

Receiver variable

OUTPUT; CHAR(*)

The structure in which to return information about the connection. For the format of this parameter,
see CDBO0100 Format.

Length of receiver variable

INPUT; BINARY(4)

The number of bytes that the calling program provides for the receiver variable data.

Receiver variable format

INPUT; CHAR(8)

The format of the receiver variable template being used. The possible value is:

CDBO0100 Basic receiver variable

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

CDBI0100 Format

The following table shows the information to pass in the CDBI0100 format. For more details about the
fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Connection type

1 1 CHAR(1) Commitment control

2 2 CHAR(10) Commit scope

12 C CHAR(1) Allow job suspension

13 D CHAR(256) Server system name

269 10D CHAR(1) Relational database (RDB) specified

270 10E CHAR(2) Reserved

272 110 BINARY(4) SQLDA cache size

276 114 BINARY(4) Offset to job-associated user data

280 118 BINARY(4) Length of job-associated user data

284 11C BINARY(4) Offset to job-suspension user data

288 120 BINARY(4) Length of job-suspension user data

292 124 CHAR(18) Relational database (RDB) name

 CHAR(*) Job-associated user data

 CHAR(*) Job-suspension user data

CDBI0200 Format

The following table shows the information to pass in the CDBI0200 format. For more details about the
fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Connection type

1 1 CHAR(1) Commitment control

2 2 CHAR(10) Commit scope

12 C CHAR(1) Allow job suspension

13 D CHAR(256) Server system name

269 10D CHAR(1) Convert Endian Data

270 10E CHAR(1) Relational database (RDB) specified

271 10F CHAR(1) Reserved

272 110 BINARY(4) SQLDA cache size

276 114 BINARY(4) Offset to job-associated user data

280 118 BINARY(4) Length of job-associated user data

284 11C BINARY(4) Offset to job-suspension user data

288 120 BINARY(4) Length of job-suspension user data

292 124 BINARY(4) Offset to user profile data

296 128 BINARY(4) Length of user profile data

300 12C BINARY(4) Offset to password associated with user profile

304 130 BINARY(4) Length of password associated with user profile

308 134 BINARY(4) CCSID of the server job

312 138 BINARY(4) CCSID of the password

316 13C CHAR(18) Relational database (RDB) name

 CHAR(*) Job-associated user data

 CHAR(*) Job-suspension user data

 CHAR(*) User profile data

 CHAR(*) Password associated with user profile data

CDBO0100 Format

The following table shows the information returned in the CDBO0100 format. For more details about the
fields in the following table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Connection handle

12 C CHAR(10) Server job name

22 16 CHAR(10) Server job user name

32 20 CHAR(6) Server job number

38 26 CHAR(1) Connection type used

Field Descriptions

Allow job suspension. Whether or not to allow this job to be suspended or switched to run to a backup
server if there is a server system failure or backup. The possible values are:

Y This job may be suspended or switched for server system failures or backups. If this option is
specified with a remote connection type and the server system has been switched to a backup by the
QxdaBlockEDRS API, the connection will be made to the backup system.

N This job should not be suspended or switched.

Bytes available. The length of the information available to the API to return, in bytes.

Bytes returned. The actual length of information returned to the caller of the API.

CCSID of password. The CCSID of the password. The possible values are:

0 Use the default CCSID for the current process.

1 - 65533 Valid range of CCSID values.

CCSID of server job The CCSID of the job on the server system. The possible values are:

0 Use the default CCSID for the current process.

1 - 65533 Valid range of CCSID values.

Commit scope. The commitment definition scope. The possible values are:

*JOB The job-level commitment definition is started for the job.

*ACTGRP An activation-group-level commitment definition is started for the activation group
associated with the program issuing the command. This value is allowed for connection
type L only. To simulate activation group commit scope in a remote environment, multiple
remote connections must be used.

Commitment control. The commit level to be used. The possible values are:

C *CHG: Every record read for update (for a file opened under commitment control) is locked. If a
record is changed, added, or deleted, that record remains locked until the transaction is committed or
rolled back. Records that are accessed for update operations, but are released without being changed,
are unlocked.

S *CS: Every record accessed for files opened under commitment control is locked. A record that is
read, but not changed or deleted, is unlocked when a different record is read. Records that are
changed, added, or deleted are locked until the transaction is committed or rolled back.

A *ALL: Every record accessed for files opened under commitment control is locked until the
transaction is committed or rolled back.

N *NONE: Commitment control should not be started.

Connection type. The communications type to use for the connection. The possible values are:

L Local connection: Only one local connection per job may be open at a time. If a second local
connection is attempted in the job, the connection actually will be made over UNIX domain sockets.

O OptiConnect

T TCP/IP sockets

U UNIX domain sockets

Connection type used. The connection type that was actually used for the connection.

Connection handle. A unique handle number for the connection. The maximum number of connections per
job that may be open at one time is 30.

Convert endian data. Whether integer data should be converted from OS/400 big-endian format to
Windows PC little-endian format. The field is only used by the Client Access Express version of this API
when returning data into the SQL Descriptor Area (SQLDA). The possible values are:

0 Do not convert endian data. If the API is called from an OS/400 application, you must code '0' for
this field.

1 Convert endian integer data from big-endian to little-endian.

Job-associated user data. Data to associate with the server job that allows the job to be found using the
QxdaFindJob API.

Job-suspension user data. Data associated with the current job to allow the job to be suspended
independent of an entire system suspension.

Length of job-associated user data. The length of the job-associated data passed.

Length of job-suspension user data. The length of the job-suspension user data passed. This parameter
must be set to 0 if the allow job suspension parameter is N.

Length of password associated with user profile. The length of the user profile password passed. The
maximum length for the password is 512 bytes. Passwords can have a maximum of 128 characters. 512
bytes can accommodate 128 double bytes characters with a shift-in, shift-out pairing.

Length of user profile data. The length of the user profile data passed.

Offset to job-associated user data. The offset from the beginning of the input structure to the
job-associated user data in the input structure, in bytes.

Offset to job-suspension user data. The offset from the beginning of the input structure to the
job-suspension user data in the input structure, in bytes. This value must be 0 if the allow job suspension
parameter is set to N.

Offset to password associated with user profile. The offset from the beginning of the input structure to
the password associated with the user profile in the input structure, in bytes.

Offset to user profile data. The offset from the beginning of the input structure to the user profile data in
the input structure, in bytes.

Password associated with user profile data. The password to be used in conjunction with the user profile
to connect to the server system.

Relational database (RDB) nameThe relational database on the server system to which the connection
should be made. This field should be blank padded to 18 characters or unpredictable results may occur. If
the field is set to all blanks, the connection will be made to the *LOCAL (SYSBAS) RDB on the server
system. If the server system does not have any active independent ASPs, an error will be signaled for any
RDB that is not defined as the the *LOCAL RDB.

Relational database (RDB) specifiedSpecifies whether the relational database (RDB) name field was
provided. Possible values are:

0 The relational database (RDB) name field was not specified.

1 The relational database (RDB) name was specified.

Reserved. Reserved field; it must be initialized to 0x00.

Server job name. The job name of the database server job. If this is a local connection, this will be the
current job name.

Server job number. The job number of the database server job. If this is a local connection, this will be the

current job number.

Server job user name. The user name of the database server job's initial user. If this is a local connection,
this will be the current job's initial user.

Server system name. The name of the system to which to connect. For connection type O, this is the
current system name as displayed on the Display Network Attributes (DSPNETA) display on the server
system. For connection type T, this is the server system name as displayed in the TCP/IP host table. It must
be initialized to blanks for all other connection types. If the server system name is the local system, the
connection actually will be made locally.

SQLDA cache size. The number of SQL descriptor areas to store for later reuse. An improvement in
performance will be seen if an SQL descriptor area can be reused.

User profile data. The name of the user profile to use to connect to the server system.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF180C E Function &1 not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAE14 E Cannot allocate &1 bytes.

CPFB751 E Parameter &1 passed not correct.

CPFB752 E Internal error in &1 API.

CPFB753 E Required OptiConnect support not installed.

CPFB754 E Unable to open connection.

CPFB757 E The connection is suspended.

CPFB758 E The EDRS server system has been switched.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Create Database Hash (QCreateDatabaseHash) API

 Required Parameter Group:

1 Hash name Input Char(10)
2 Physical file Input Char(10)
3 Physical file library Input Char(10)
4 Logical file Input Char(10)
5 Logical file library Input Char(10)
6 Expression Input Char(64)
7 Number-of-keys Input Binary(4)
8 Key ranges Input Char(*)

 Service Program Name: QDBCRTHA

 Default Public Authority: *USE

 Threadsafe: No

The Create Database Hash (QCreateDatabaseHash) API sets up the environment to enable the Run Database Hash (QDBRUNHA) API
for a physical file that has a uniquely keyed logical file built over it. The logical file may have up to five integer keys associated with it.
It is called as a function call of the form 'xx = Qcrtdbha(parameter-list)', where xx is a long integer and the parameter list is as defined
here. The value of xx is set to a return code as defined in the Returned Value topic.

Authorities and Locks

HASH User Space in Library QUSRSYS

*OBJOPR, *READ, and *UPDATE

Required Parameter Group

Hash name

INPUT; CHAR(10)

The hash name to be created. A unique name must be selected for each hash function that will be used on the system.

Physical file

INPUT; CHAR(10)

The name of the physical file that will be accessed using the hash.

Physical file library

INPUT; CHAR(10)

The name of the library where the physical file resides.

Logical file

INPUT; CHAR(10)

The name of the logical file that will be used to build the hash. The logical file must be uniquely keyed.

Logical file library

INPUT; CHAR(10)

The name of the library where the logical file resides.

Expression

INPUT; CHAR(64)

A valid mathematical expression that uses all the key values of a uniquely keyed logical file to determine the hash value for a
particular record. The special value of *DFT can be used to allow the API to create an expression based on expected
cardinalities (number of expected unique values for each key) of the keys in the logical file. Possible values are:

*DFT

The system default expression is used (requires the use of the number of keys parameter and the key ranges parameter).

expression

The user-defined expression is used. For example: (where K1, K2, ... K5 are the names of the key fields used in the
logical file)

Number of keys

INPUT; BINARY(4)

The number of keys used in the logical file.

Key ranges

INPUT; CHAR(*)

A two-value structure with up to five occurrences, containing the names of the key fields followed by the expected cardinality
of the key. For more details, see Field Descriptions.

Offset

Type FieldDec Hex

CHAR(10) Name of key

BINARY(4) Cardinality

Field Descriptions

Name of key. The name of the key field that is used in the logical file, which is referenced in this API. The names are for
documentation purposes only.

Cardinality. The number of sequential values expected to be used for each key, respectively. The cardinality values are required if
*DFT has been specified for the value of the expression parameter.

Returned Value

The returned value contains a numeric indication as to what took place during the request to add a hash function. The possible values
are:

0

No errors.

-2

The physical file has multiple formats. The create database hash function cannot be completed.

-3

The logical file is not uniquely keyed. The create database hash function cannot be completed.

-4

The logical file does not correlate to the physical file specified. The create database hash function cannot be completed.

-5

The wrong number of keys was specified for the logical file. The create database hash function cannot be completed.

-99

Another error was encountered and ignored. See job log for details.

Error Messages

Only the error conditions listed in the Returned Value are monitored. No error messages other than the value of the return code
parameter are returned.

API Introduced: V4R3

Top | Database and File APIs | APIs by category

Delete Statistics Collections (QDBSTDS,
QdbstDeleteStatistics) API

 Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Format of input data Input Char(8)
4 Feedback area Output Char(*)
5 Length of feedback area Input Binary(4)
6 Feedback keys Input Array(*) of Binary(4)
7 Number of feedback keys Input Binary(4)
8 Error code I/O Char(*)

 Service Program Name: QDBSTMGR

 Default Public Authority: *USE

 Threadsafe: Yes

The Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) API deletes existing, completed
statistics collections immediately. These statistics collections can be collections originally requested by a
user or system-requested statistics collections.

Authorities and Locks

ASP Device Authority

*EXECUTE

File Authority

*OBJALTER

File Library Authority

*EXECUTE

File Lock

*SHRRD

Required Parameter Group

Input data

INPUT; CHAR(*)

The buffer containing the input parameters according to the format of input data parameter. The
buffer content has to start at a 4-byte boundary.

Length of input data

INPUT; BINARY(4)

The length of the input data buffer provided. This must be the exact length of the used input format
as specified below.

Format of input data

INPUT; CHAR(8)

The format of the input data. Possible values are:

STID0100 Delete Statistics Collections input parameters using internal statistics ID.

STID0200 Delete Statistics Collections input parameters using detailed statistics description.

Refer to STID0100 Format and STID0200 Format for more information.

Feedback area

OUTPUT; CHAR(*)

The buffer to receive feedback data. See Feedback Area Format for more information. The buffer
content has to start at a 4-byte boundary.

Length of feedback area

INPUT; BINARY(4)

The length of the feedback area buffer provided. The required minimum length is 12, to fit the
feedback area header (see Feedback Area Format).

Feedback keys

INPUT; ARRAY(*) OF BINARY(4)

The list of fields to return in the feedback area. For a list of valid keys, see Valid Keys.

Number of feedback keys

INPUT; BINARY(4)

The number of fields to return in the feedback area. If zero is specified, all other feedback area
parameters (feedback area, length of feedback area, and feedback keys) are ignored.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

STID0100 Format

Delete statistics collections input parameters using internal statistics ID. See Field Descriptions for details
of the fields listed.

Offset

Type FieldDec Hex

0 0 CHAR(10) ASP device name

10 0 CHAR(10) File name

20 0 CHAR(10) File library name

30 0 CHAR(10) File member name

40 0 CHAR(16) Internal statistics ID

56 0 CHAR(*) Reserved

STID0200 Format

Delete statistics collections input parameters using detailed statistics description. See Field Descriptions for
details for the fields listed.

Offset

Type FieldDec Hex

0 0 CHAR(10) ASP device name

10 0 CHAR(10) File name

20 0 CHAR(10) File library name

30 0 CHAR(10) File member name

40 0 BINARY(4) Offset to columns

44 0 BINARY(4) Number of columns

48 0 CHAR(*) Reserved

These fields
repeat, in the
order listed, for
each column,
starting at the
given offset.

BINARY(4) Length of column definition

CHAR(10) Column name>

CHAR(10) Translation table name

CHAR(10) Translation table library name

CHAR(2) Reserved

CHAR(*) Reserved

Valid Keys

See Field Descriptions for details of the fields listed.

Key Type Description

1 CHAR(10) ASP device name used

3 CHAR(10) File library name used

4 CHAR(10) File member name used

20 BINARY(4) Number of statistics collections deleted.

Feedback Area Format

The fields returned in the feedback area are returned in the order requested. See Field Descriptions for
details of the fields listed.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

0 0 BINARY(4) Number of bytes available

0 0 BINARY(4) Number of key fields returned

0 0 BINARY(4) Number of key fields available

These fields
repeat, in the
order listed, for
each key
selected.

BINARY(4) Length of field information returned

BINARY(4) Key identifier

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved (padding to the next 4-byte boundary)

Field Descriptions

ASP device name. One auxiliary storage pool device identifying the ASP group in which the library and
file are located. This can be an ASP device name (for an ASP with a number greater than 32), or one of the
following special values:

*CURRENT The ASP device attached to the current thread or *SYSBAS, when no ASP device name is
attached to the current thread.

*SYSBAS The system ASP (ASP number 1) and all basic ASPs (ASP numbers 2 through 32).

ASP device name used. The actual auxiliary storage pool device name used, after possible resolution of
special values.

Column name. The name of a single column within the statistics collection definition.

Data.; The data returned for the key identifier.

File library name. Where the file for which statistics collections are to be deleted. You can use these
special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

File library name used. The actual file library name used, after possible resolution of special values.

File member name. The name of the file member to be used for the delete statistics collections request.
This value can be a specific file member name or one of the following special values:

*FIRST The first member (in the order created) in the specified file.

*LAST The last member (in the order created) in the specified file.

File member name used. The actual file member name used, after possible resolution of special values.

File name. The name of the file for which statistics collections are to be deleted. The file has to be an
existing local, single format, physical file.

Internal statistics ID. Together with the qualified file name and member name, this represents a unique ID
for the statistics collection to be deleted. See List Statistics Collections (QDBSTLS, QdbstListStatistics)
API for additional information.

Note: If set to all X'00', all statistics collections for the file member are deleted.

Key identifier. The field returned. For a list of valid keys, see Valid Keys.

Length of column definition. The lLength of this column definition.

Length of data. The length of the data returned for the field.

Length of field information returned. The total number of bytes returned for this field in the feedback
area.

Number of bytes available. The number of bytes that could be returned in the feedback area.

Number of bytes returned. The number of bytes returned in the feedback area.

Number of columns. The number of columns within the single statistics collection definition. The
maximum value for this number is 1. If set to zero, all statistics collections for the file member are deleted.

Number of key fields available.The number of fields that can be returned in the feedback area.

Number of key fields returned. The number of fields returned in the feedback area.

Number of statistics collections deleted. The number of actually deleted statistics collections.

Offset to columns. The offset to the start of the list of column definitions.

Reserved. Reserved for future use. If this field is input, the field must set to hexadecimal zeros.

Reserved (in feedback area format). Structure padding to guarantee alignment to the next four-byte
boundary.

Translation table name. The name of the translation table that was specified, when the statistics collection
was requested. The translation table does not necessarily have to exist anymore. The name is used for
identification purposes only.

Translation table library name. The actual name of the translation table library that was used, when the
statistics collection was requested. The translation table library does not necessarily have to exist anymore.
The name is used for identification purposes only.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

the <qdbst.h> include file in library QSYSINC, for API-related structure declarations and special
value declarations

●

the <qdbstmgr.h> include file in library QSYSINC, for the QdbstCancelRequestedStatistics API
prototype

●

the <qdbstcrs.h> include file in library QSYSINC, for the QDBSTCRS API prototype●

Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) API●

List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) API●

List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) API●

List Statistics Collections (QDBSTLS, QdbstListStatistics) API●

Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) API●

Update Statistics Collections (QDBSTUS, QdbstUpdateStatistics) API●

API introduced: V5R2

Top | Database and File APIs | APIs by category

Disconnect from EDRS Server
(QxdaDisconnectEDRS) API

 Required Parameter Group:

1 Connection handle Input Binary(4)
2 Additional disconnection options Input Binary(4)
3 Error code I/O Char(*)

 Service Program: QXDAEDRS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Disconnect from EDRS Server (QxdaDisconnectEDRS) API is used to end a connection to a server
system.

Authorities and Locks

None.

Required Parameter Group

Connection handle

INPUT; BINARY(4)

The handle number of the connection to end. The connection handle must have been generated by
the QxdaConnectEDRS API in the current job and activation group.

Additional disconnection options

INPUT; BINARY(4)

The following are valid disconnection options:

0 - QXDA_DISCONNECT_COMMIT Commit all uncommitted database work when the
connection is ended.

1 -
QXDA_DISCONNECT_ROLLBACK

Roll back all uncommitted database work when the
connection is ended.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF180C E Function &1 not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB750 E Connection handle specified not valid.

CPFB751 E Parameter &1 passed not correct.

CPFB752 E Internal error in &1 API.

CPFB756 E Rollback operation performed.

CPFB757 E The connection has been suspended.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Dump SQL Database Monitor (QQQDSDBM)
API

 Required Parameter Group:

1 Memory handle to dump Input Char(10)
2 Job or memory handle name Input Char(26)
3 Number of types to dump Input Binary(4)
4 Subtypes and files array Input Array(*) of Char(30)
5 Error code I/O Char(*)

 Service Program Name: QQQDSDBM

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Dump SQL Database Monitor (QQQDSDBM) API dumps the SQL database monitor that has been
gathered. The data that is gathered will be all data that has been committed (if the job is under commitment
control) or based on a 5-minute timer. Associated APIs include the following:

Clear SQL Database Monitor Statistics (QQQCSDBM)●

End SQL Database Monitor (QQQESDBM)●

Query SQL Database Monitor (QQQQSDBM)●

Start SQL Database Monitor (QQQSSDBM)●

Authorities and Locks

Current User Profile

*JOBCTL

Library Authority for New File

*ADD and *READ

Library Authority for Existing File

*EXECUTE

Existing File

*CHANGE and *OBJALTER

Required Parameter Group

Memory area to dump

INPUT; CHAR(10)

Memory area to dump. The possible values are:

*ALL Dump the monitor data associated with the *ALL monitor (the monitor started
against all jobs). The Start SQL Database Monitor (QQQSSDBM) must have been
started with job name *ALL.

*NAMED Dump the memory handle named by the job or memory handle name parameter
(and matches the name of a memory handle specified on the QQQSSDBM API).
Only the first 6 characters will be used for naming the memory handle. If
QQQSSDBM started the monitor with *JOB, you can also name the job to be
dumped with this parameter by giving the 6-character memory handle that contains
the job number.

*JOB Dump the job-specific data associated with the job named by the job or memory
handle name parameter.

Job or memory handle name

INPUT; CHAR(26)

This parameter depends on the value specified for the memory area to dump parameter. If the value
is:

*ALL This parameter is ignored.

*NAMED The CHAR(6) name of a memory handle whose data is to be dumped. Only the
first 6 characters will be used for naming the memory handle.

*JOB The CHAR(26) qualified job name of a job-specific monitor to dump. The
qualified job name has three parts:

Job name CHAR(10). A specific job name, a generic name, or one of
following special values:

* or *CURRENT Only the job that this program is running in.
The rest of the qualified job name parameter
must be blank.

*ALL All jobs. The rest of the job name parameter
must be blank.

User name CHAR(10). A specific user profile name.
Job
number

CHAR(6). A specific job number.

Number of types to dump

INPUT; BINARY(4)

The number of types passed in the subtypes and files array.

Subtypes and files array

INPUT; Array(*) of CHAR(30)

The list of all subtypes to dump and their associated receiving files. The format of each array
element is:

CHAR(10). Key to Dump.

The possible values are:

KEYT_3000 Summary: Arrival sequence

KEYT_3001 Summary: Index used

KEYT_3002 Summary: Index created

KEYT_3003 Summary: Sort

KEYT_3004 Summary: Temporary file

KEYT_3007 Summary: Optimizer time-out or all access paths considered

KEYT_3008 Summary: Subselect processing

KEYT_3010 Summary: Host variable values

KEYT_TEXT SQL statement text

KEYT_QRYI Summary: General SQL information including statement count,
maximum runtime, time last used, and so forth.

This subtype is always monitored because it is required for monitoring
all other subtypes. Although it is always monitored, it will not be
dumped unless requested.

CHAR(20). File name.

The name of the file to receive the data. The first 10 characters contain the file name, and
the second 10 characters contain the library name. A member name of *FIRST is assumed.
The following special values can be used for the library name:

*CURLIB The job's current library

*LIBL The library list

If the file already exists, it will be cleared prior to dumping the data. The files will be
created with authority of owner(*ALL) and PUBLIC(*CHANGE), and they are owned by
the profile of the job calling QQQDSDBM.

Note: If a subtype is specified multiple times, only the first occurrence of the subtype and the
associated file name is honored. The duplicates are ignored.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

This function is threadsafe but not thread enabled. Database monitor data is collected in the threaded
process but summarized at the job level.

The QQQDSDBM API does not force a clear operation (QQQCSDBM) of the memory. Data will continue
to be added to memory until the QQQCSDBM or QQQESDBM API is called.

Error Messages

Message ID Error Message Text
CPD0172 D Parameters passed on CALL do not match those required.
CPD222E E &1 special authority is required.
CPF3012 E File &1 in library &2 not found.
CPF3084 E Eror clearing member &3 in file &1.
CPF3130 E Member &2 already in use.
CPF3CF1 E Error code parameter not valid.
CPF9822 E Not authorized to file &1 in library &2.

API Introduced: V4R3

Top | Database and File APIs | APIs by category

End SQL Database Monitor (QQQESDBM) API

 Required Parameter Group:

1 Qualified job name Input Char(26)
2 Error code I/O Char(*)

 Service Program Name: QQQESDBM

 Default Public Authority: *USE

 Threadsafe: Yes

The End SQL Database Monitor (QQQESDBM) API ends the memory-based SQL database monitor.
Associated APIs include the following:

Clear SQL Database Monitor Statistics (QQQCSDBM)●

Dump SQL Database Monitor (QQQDSDBM)●

Query SQL Database Monitor (QQQQSDBM)●

Start SQL Database Monitor (QQQSSDBM)●

Authorities and Locks

Current User Profile

*JOBCTL

Required Parameter Group

Qualified job name

INPUT; CHAR(26)

The job to end monitoring on. The qualified job name has three parts:

Job name CHAR(10). A specific job name, a generic name, or one of the following
special values:

* or
*CURRENT

Only the job that this program is running in. The rest of the
qualified job name parameter must be blank.

*ALL All jobs. The rest of the job name parameter must be blank.

User name CHAR(10). A specific user profile name.

Job number CHAR(6). A specific job number.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text
CPD0172 D Parameters passed on CALL do not match those required.
CPF1321 E Job &1 user &2 job number &3 not found.
CPF3CF1 E Error code parameter not valid.
CPF436D E Job specified is not being monitored.
CPF436E E Job &1 user &2 job number &3 is not active.

API Introduced: V4R3

Top | Database and File APIs | APIs by category

Find EDRS Job (QxdaFindEDRSJob) API

 Required Parameter Group:

1 Connection handle Input Binary(4)
2 Job-associated user data Input Char(*)
3 Length of job-associated user data Input Binary(4)
4 Receiver variable Output Char(*)
5 Length of receiver variable Input Binary(4)
6 Receiver variable format Input Char(8)
7 Number of jobs found Output Binary(4)
8 Number of jobs returned Output Binary(4)
9 Error code I/O Char(*)

 Service Program: QXDAEDRS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Find EDRS Job (QxdaFindEDRSJob) API is used to find all jobs with user-defined data associated
with the Connect to EDRS Server (QxdaConnectEDRS) API that matches the data passed to this API.

Authorities and Locks

None.

Required Parameter Group

Connection handle

INPUT; BINARY(4)

The handle number of the connection in which to find jobs. The connection handle must have been
generated by the Connect to EDRS Server (QxdaConnectEDRS) API in the current job and
activation group.

Job-associated user data

INPUT; CHAR(*)

User data that also was passed to the Connect to EDRS Server (QxdaConnectEDRS) API. This may
be the complete user data or only a part of it. If it is only part, it must be the beginning of the user
data string.

Length of job-associated user data

INPUT; BINARY(4)

The length of the user data to compare.

Receiver variable

OUTPUT; CHAR(*)

Space for the job information to be returned. This information is returned as an array of QJBI0100
structures, one for each job found. For the format of each array element, see QJBI0100 Format.

Length of receiver variable

INPUT; BINARY(4)

Length (in bytes) of the receiver variable provided to return information about the jobs found.

Receiver variable format

INPUT; CHAR(8)

The format of the structure in which to return information about the jobs found. The possible value
is:

QJBI0100 Basic receiver variable structure.

Number of jobs found

OUTPUT; BINARY(4)

The number of jobs found with associated user data that matches the user data passed in. This is the
total number found, even if the information for all the jobs cannot fit in the space provided.

Number of jobs returned

OUTPUT; BINARY(4)

The actual number of jobs for which information was returned.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

QJBI0100 Format

The following table shows the structure of the QJBI0100 format. For more details about the fields in this
table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Process ID

4 4 CHAR(10) Job name

14 E CHAR(10) Job user name

24 18 CHAR(6) Job number

30 1E CHAR(16) Internal job identifier

46 2E CHAR(2) Reserved

Field Descriptions

Internal job identifier. The internal job identifier. This value is sent to other APIs to speed the process of
locating the job on the system.

Job name. The name of the job found.

Job number. The number of the job found.

Job user name. The name of the initial user of the job found.

Process ID. The process ID (PID) of the job found.

Reserved. Reserved field; it must be initialized to 0x00.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF180C E Function &1 not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB750 E Connection handle specified not valid.

CPFB751 E Parameter &1 passed not correct.

CPFB752 E Internal error in &1 API.

CPFB756 E Rollback operation performed.

CPFB757 E The connection is suspended.

CPFB758 E The EDRS server system has been switched.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Generate Data Definition Language
(QSQGNDDL) API

 Required Parameter Group:

1 Input template Input Char(*)
2 Length of input template Input Binary(4)
3 Input template format name Input Char(8)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Generate Data Definition Language (QSQGNDDL) API generates the SQL data definition language
statements required to recreate a database object. The results are returned in the specified database source
file member.

Database physical files or logical files that were created using an interface other than SQL may be
specified. For example, files created from DDS and the CRTPF or CRTLF commands may be specified.
Even if the object was created using SQL, the Standards option may restrict what can be generated. In
either of these cases:

the operation may succeed with warnings that are generated in the SQL statement source, or●

the operation may fail for certain non-relational files or objects not supported by the specified
Standards option.

●

If a database object was created using an SQL interface, the resulting SQL statements may be slightly
different than the SQL statements that created the object originally. For example:

When there is more than one way to specify an attribute in SQL, the more standard syntax is
generally chosen. For example, if a user creates a table with a FLOAT(52) column, DOUBLE
PRECISION is generated.

●

When a clause is not specified in the original SQL statement and a default is taken instead, a clause
may be generated to explicitly show the default. For example, if the default value for a nullable
column is the null value, the clause DEFAULT NULL is generated.

●

When a Standards option is used to restrict the generated SQL to the ANS and ISO standard or the
DB2 Universal Database Family, an attribute may be omitted. For example, if the ALLOCATE
clause is specified on a VARCHAR column, the ALLOCATE clause is not generated unless the
Standards option allows DB2 UDB for iSeries extensions.

●

For more information, see the Severity level field within the SQLR0100 Format.

You can use the QSQGNDDL API with database objects only. DDM files (other than SQL aliases) are not
supported. File overrides do not affect the specified object names. File overrides do affect the specified
source file names.

Authorities and Locks

Object Library Authority

*EXECUTE

Source File Library Authority

*EXECUTE

Object Authorities

*EXECUTE for *LIB objects.
*USE for the *DTADCT object in a library (if SCHEMA is specified for the object type).
*USE for *FILE objects (not including aliases).
*USE to QSYS2/SYSPARMS for functions and procedures.
*USE to QSYS2/SYSROUTINE for functions and procedures.
*USE to QSYS2/SYSTYPES for types.
*USE to QSYS2/SYSTABLES for aliases.

Source File Authority

*OPER and *ADD.
If replace is specified, *DLT and either *OBJMGT or *OBJALTER is required also.

Object Lock

*SHRRD for *LIB objects.
*SHRNUP for *FILE objects (not including aliases). (See note below.)
*SHRRD to QSYS2/SYSFUNCS for functions.
*SHRRD to QSYS2/SYSPARMS for functions and procedures.
*SHRRD to QSYS2/SYSPROCS for procedures.
*SHRRD to QSYS2/SYSTYPES for types.
*SHRRD to QSYS2/SYSTABLES for aliases.

Note: If the object is a *FILE object, the lock is acquired only on the file definition and not the
data. Applications that modify data can run concurrently with this API.

Source File Lock

*EXCLRD.

Required Parameter Group

Input template

INPUT;CHAR(*)

A structure that contains the input options used to generate DDL for the requested database object.
For the format of this parameter, see SQLR0100 Format.

Length of input template

INPUT; BINARY(4)

A variable that contains the length of the input template. The length must be greater than zero and
large enough to contain all the template fields up to and including the Header Option. The length

must not be larger than 32767.

Input template format name

INPUT; CHAR(8)

The format of the input template being used. The possible value is:

SQLR0100 Basic template

For more information, see SQLR0100 Format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

SQLR0100 Format

The following table shows the format of the input template parameter for the SQLR0100 format. For
detailed descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(258) Database object name

258 102 CHAR(258) Database object library name

516 204 CHAR(10) Database object type

526 20E CHAR(10) Database source file name

536 218 CHAR(10) Database source file library name

546 222 CHAR(10) Database source file member name

556 22C BINARY(4) Severity level

560 230 CHAR(1) Replace option

561 231 CHAR(1) Statement formatting option

562 232 CHAR(3) Date format

565 235 CHAR(1) Date separator

566 236 CHAR(3) Time format

569 239 CHAR(1) Time separator

570 23A CHAR(3) Naming option

573 23D CHAR(1) Decimal point

574 23E CHAR(1) Standards option

575 23F CHAR(1) Drop option

576 240 BINARY(4) Message level

580 244 CHAR(1) Comment option

581 245 CHAR(1) Label option

582 246 CHAR(1) Header option

583 247 CHAR(*) Reserved

Field Descriptions

Comment option. The comment option specifies whether COMMENT ON SQL statements should be
generated if a comment exists on the specified database object. If comments are not supported by the
specified database object, the comment option is ignored. The valid values are:

0 COMMENT ON SQL statements should not be generated.
1 COMMENT ON SQL statements should be generated. If the specified database object type is a table

or view, COMMENT ON SQL statements will also be generated for columns of the table or view.

If the Standards option is '2', comment option '1' is not valid.

Database object name. The name of the database object for which DDL will be generated. Either the SQL
name or the system name may be specified. The name is case sensitive. If delimiters are required for the
name to be valid, they must be specified. For example, a file with a name of "abc" must be specified with
the surrounding quotes. A file with a name of ABC must be specified in upper case.

If the object type is a FUNCTION or PROCEDURE, this name must be the specific name of the function or
procedure.

If TABLE or VIEW is specified for the object type, the object name may identify an alias. In this case, the
object that the alias points to will be generated. A CREATE ALIAS statement will be generated only if
ALIAS is specified for the object type.

Database object library name. The name of the library containing the object for which DDL will be
generated. The name is case sensitive. If delimiters are required for the name to be valid, they must be
specified. This name is ignored if the specified object type is SCHEMA. You can use these special values
for the library name:

*CURLIB The job's current library
*LIBL The library list

Database object type. The type of the database object or object attribute for which DDL is generated. You
can use these special values for the object type:

ALIAS The object is an SQL alias.
If the Standards option is '2', an ALIAS object type is not valid.

CONSTRAINT The object attribute is a constraint.
FUNCTION The object is an SQL function.
INDEX The object is an SQL index.

If the Standards option is '2', an INDEX object type is not valid.
PROCEDURE The object is an SQL procedure.
SCHEMA The object is an SQL schema (collection) or library.
TABLE The object is an SQL table or physical file.
TRIGGER The object attribute is a trigger.
TYPE The object is an SQL type.
VIEW The object is an SQL view or logical file.

Database source file name. The name of the source file that contains the SQL statements generated by the
API. The name must be a valid system name. The name is case sensitive. If delimiters are required for the
name to be valid, they must be specified. For example, a file with a name of "abc" must be specified with

the surrounding quotes. A file with a name of ABC must be specified in upper case.

The record length of the specified source file must be greater than or equal to 92.

Database source file library name. The name of the library containing the source file that contains the
SQL statements generated by the API. The name must be a valid system name. The name is case sensitive.
If delimiters are required for the name to be valid, they must be specified. You can use these special values
for the library name:

*CURLIB The job's current library
*LIBL The library list

Database source file member name. The name of the source file member that contains the SQL
statements generated by the API. The name must be a valid system name. The name is case sensitive. If
delimiters are required for the name to be valid, they must be specified. You can use these special values
for the member name.

*FIRST The first database physical file member found.
*LAST The last database physical file member found.

Date format. The date format used for date constants in a generated SQL CREATE TABLE statement. The
date format may not apply to date constants that are in ISO, EUR, USA, or JIS format in a CREATE
VIEW, CREATE TRIGGER, CREATE FUNCTION, or CREATE PROCEDURE statement. The valid
values are:

ISO International Standards Organization (yyyy-mm-dd)

EUR IBM European Standard (dd.mm.yyyy)
If the Standards option is '2', the EUR date format is not valid.

JIS Japanese Industrial standard Christian Era (yyyy-mm-dd)
If the Standards option is '2', the JIS date format is not valid.

USA IBM USA standard (mm/dd/yyyy)
If the Standards option is '2', the USA date format is not valid.

MDY Month/day/year (mm/dd/yy)
If the Standards option is '1' or '2', the MDY date format is not valid.

DMY Day/month/year (dd/mm/yy)
If the Standards option is '1' or '2', the DMY date format is not valid.

YMD Year/month/day (yy/mm/dd)
If the Standards option is '1' or '2', the YMD date format is not valid.

JUL Julian (yy/ddd)
If the Standards option is '1' or '2', the JUL date format is not valid.

Date separator. The date separator used for date constants in a generated SQL CREATE TABLE
statement. The date separator may not apply to date constants that are in ISO, EUR, USA, or JIS format in a
CREATE VIEW, CREATE TRIGGER, CREATE FUNCTION, or CREATE PROCEDURE statement. The
date separator is only applicable if the date format is MDY, DMY, YMD, or JUL. The valid values are:

/ Slash separator
. Period separator
, Comma separator
- Dash separator
blank Blank separator

Decimal point. The decimal point used for numeric constants. The valid values are:

. Period separator

, Comma separator
If the Standards option is '1' or '2', the comma separator is not valid.

Drop option. The drop option specifies whether DROP (or ALTER) SQL statements should be generated
prior to the CREATE statement to drop the specified object. The valid values are:

0 DROP statements should not be generated.
1 DROP statements should be generated.

Note that with the exception of DROP SCHEMA, the DROP statements generated will not include a
CASCADE or RESTRICT option even if the standards option is '2'.

Header option. The header option specifies whether a header should be generated prior to the CREATE
statement. The header consists of comments that describe the version, date and time, the relational database,
and some of the options used to generate the SQL statements. The valid values are:

0 A header should not be generated.
1 A header should be generated.

Label option. The label option specifies whether LABEL ON SQL statements should be generated if a
label exists on the specified database object. If labels are not supported by the specified database object, the
label option is ignored. The valid values are:

0 LABEL ON SQL statements should not be generated.
1 LABEL ON SQL statements should be generated. If the specified database object type is a table or

view, LABEL ON SQL statements will also be generated for columns of the table or view.

If the Standards option is '1' or '2', label option '1' is not valid.

Message level. The severity level at which the messages are generated. If errors occur that have a severity
level greater than this value, a message is generated in the output. The valid values are in the range 0
through 39 inclusive.

The message level must be less than or equal to the severity level.

Naming option. The naming convention used for qualified names in the generated SQL statements. The
valid values are:

SQL collection.table syntax
SYS library/file syntax

If the Standards option is '1' or '2', the SYS naming option is not valid.

If the object type is a FUNCTION, PROCEDURE, TRIGGER, or VIEW, and a column name
is qualified by a qualified table name in the SQL body of the function, procedure, trigger, or
view (that is, schema-name.table-name.column-name), the generated statement will not be
valid because this type of column name qualification is not allowed in SYS naming.

Replace option. The replace option for the database source file member. The valid values are:

0 The resulting SQL statements are appended to the end of the database source file member.
1 The database source file member is cleared prior to adding the resulting SQL statements. If this

option is chosen, the file may be cleared even if an error is returned from the API.

Reserved. A reserved field. It must contain hexadecimal zeroes.

Severity level. The severity level at which the operation fails. If errors occur that have a severity level
greater than this value, the operation ends. The valid values are in the range 0 through 39 inclusive. Any

severity 40 error will cause the API to fail.

0 No errors or warnings.
10 The following attributes will result in messages with this severity level:

Schema ASP and WITH DATA DICTIONARY

If the Standards option is 1 or 2, these clauses will be ignored.

●

Test libraries

A CREATE SCHEMA statement will be generated to create the schema. Schemas are
production libraries.

●

Libraries with a CRTAUT parameter value

Under SQL naming, schemas are always created with CRTAUT(*EXCLUDE). Under SYS
naming, schemas are always created with CRTAUT(*SYSVAL).

●

NODEGROUPs

If the Standards option is 1 or 2, the NODEGROUP clause will beignored.

●

LABEL ON TEXT

If the Standards option is 1, the text will be ignored.

●

COMMENT ON parameters

If the Standards option is 1, the comment will be ignored.

●

System file names

If the Standards option is 1 or 2, only the SQL names are generated. Otherwise, a RENAME
statement is generated after the CREATE statement to assign the system name.

●

System column names

If the Standards option is 1 or 2, only the SQL names are generated. Otherwise, a FOR
COLUMN clause will be generated to assign each system column name.

●

BIGINT data types

If the Standards option is 1 or 2, a DECIMAL(19,0) will be generated.

●

DBCS-open data types

If the Standards option is 1 or 2, a character field will be generated.

●

Binary with non-zero scale

A decimal data type will be generated.

❍

Files whose format name is different from the file name

The format name will be the same as the file name.

❍

Files with a REUSEDLT(*NO) attribute

REUSEDLT(*YES) will be used.

❍

Physical or logical files that use any of the following keywords: CHECK,
CHKMSGID, CMP, DATFMT, EDTCDE, EDTWRD, TIMFMT, RANGE,
REFSHIFT, VALUES

These keywords will be ignored.

❍

●

Logical files that use any of the following keywords: CCSID or TRNTBL

These keywords will be ignored.

❍

Join logical files with JDFTVAL or JDUPSEQ

A LEFT OUTER JOIN clause will be generated, but the join default value will be
the null value and the JDUPSEQ keyword will be ignored.

❍

Logical files with SST function

If the Standards option is 2, SUBSTRING is generated instead of SUBSTR.

❍

COBOLLE and C++ languages in external functions and procedures

If the Standards option is 1 or 2, COBOL or C is generated.

❍

RPGLE language in external functions and procedures

If the Standards option is 1, RPG is generated.

❍

20 The following attributes will result in messages with this severity level:

Multiple member files, files with no members, or files with MAXMBRS greater than one

The resulting file will contain one member.

●

Single format logical files with a member built over multiple physical file members

The resulting file will be based on the first physical file member.

●

Logical files that contain input/output fields that map an underlying physical file field to a
different data type, length, precision or scale.

A CAST scalar function will be generated to map the data to the correct attributes, but the
resulting column is input-only.

●

Keyed logical files that do not share the based on physical file's format, have more than one
based on file, or have select/omit specifications

If INDEX is specified, the format and select/omit will be ignored.

●

Triggers with MODE DB2ROW

If the Standards option is 1 or 2, MODE DB2SQL will be used.

●

30 The following attributes will result in messages with this severity level:

CHAR or VARCHAR CCSID 65535

If the Standards option is 2, a character field is generated.

●

GRAPHIC, VARGRAPHIC, or DBCLOB

If the Standards option is 2, a character field is generated.

●

DataLinks or Row IDs

If the Standards option is 1 or 2, a character field is generated.

●

Identity columns

If the Standards option is 2, the IDENTITY attribute is ignored.

●

Open, Only, or Either fields●

If the Standards option is 0, the CCSID clause will result in an open field. Only and Either
fields will result in a warning. If the Standards option is 1, FOR MIXED DATA is
generated. If the Standards option is 2, character fields will be generated.

Keyed logical files

If VIEW is specified, the key specifications will be ignored, because all views are
non-keyed.

●

Keyed physical files whose key is not a primary key

A CREATE TABLE will be generated without a primary key. The key specifications will be
ignored, however, because only tables with a primary key are keyed.

●

Files that use any of the following keywords: ALTSEQ, DIGIT, FCFO, FIFO, LIFO,
UNSIGNED, ZONE

These keywords will be ignored.

●

SRTSEQ

The sort sequence will be ignored.

●

Non-SQL triggers if TABLE object is specified.

The triggers will be ignored.

●

NO EXTERNAL ACTION, SCRATCHPAD, FINAL CALL, ALLOW PARALLEL, or
DBINFO, keywords in functions and procedures

If the standards option is 2, these attributes will be ignored.

●

COMMIT ON RETURN YES, NOT FENCED, or NEW SAVEPOINT LEVEL clauses in
functions and procedures

If the standards option is 1 or 2, these attributes will be ignored.

●

Functions and procedures with parameter style GENERAL WITH NULLS, DB2SQL, or
DB2GENERAL

If the Standards option is 2, PARAMETER STYLE SQL is used.

●

JAVA, REXX, RPG, and RPGLE language in functions and procedures

If the Standards option is 2, the C language is used instead.

●

CL language in functions and procedures

If the Standards option is 1 or 2, the C language is used instead.

●

40 The following attributes will result in messages with this severity level:

Physical file if either VIEW or INDEX object type is specified.●

Logical file if TABLE object type is specified.●

Non-keyed file if INDEX object type is specified.●

Non-alias file if ALIAS object type is specified.●

Function if PROCEDURE object type is specified.●

Procedure if FUNCTION object type is specified.●

Device files●

Program described physical files●

Multiple format logical files●

Indexes if the Standards option is 2.●

Aliases if the Standards option is 2.●

EVI Indexes if the Standards option is 1.●

UNIQUE WHERE NOT NULL if the Standards option is 1.●

Aliases that contain a member name if the Standards option is 1.●

System-generated UDFs●

Built-in data types●

SQL UDFs, if the Standards option is 1.●

Sourced UDFs, if the Standards option is 2.●

User-defined table functions, if the Standards option is 2.●

Non-SQL triggers if TRIGGER object is specified.●

Standards option. The standards option specifies whether the generated SQL statements should contain
DB2 UDB for iSeries extensions or whether the statements should conform to the DB2 Universal Database
Family SQL or to the ANS and ISO SQL standards. The valid values are:

0 DB2 Universal Database for iSeries extensions may be generated in SQL statements.
1 The generated SQL statements must conform to SQL statements common to the DB2 Universal

Database Family.
2 The generated SQL statements must conform to the following ANSI and ISO SQL standards:

ISO (International Standards Organization) 9075-1: 1999, Database Language SQL●

ANSI (American National Standards Institute) X3.135-1-1999, Database Language SQL●

If option 1 or 2 is chosen, the SQL statements generated may not completely represent the object in DB2
UDB for iSeries; however, the statements will be compatible with the specified DB2 Family or ANSI and
ISO standards option.

If the object is an SQL function, SQL procedure, SQL trigger, or SQL view, the SQL statements in the
body of the object are included in the generated SQL statement. Hence, if the option 1 or 2 is chosen, the
generated SQL statement may not conform to the specified standards option since the statements within the
body of the SQL object may not conform to the specified standard. For example, if a CREATE INDEX
statement exists in the body of an SQL procedure, the generated CREATE PROCEDURE statement will
contain the CREATE INDEX statement even if option 1 or 2 is chosen.

There is no attempt to take product specific limits into account. For example, a table name in DB2 UDB for
iSeries can be 128 bytes, but other products may not support table names that are that long. Thus, even if
the generated SQL statement is standard, it still may not work on other products if they have smaller limits

that those on DB2 Universal Database for iSeries.

If option 1 is specified,

The naming option must be SQL.●

The date format must be ISO, USA, EUR, or JIS.●

The time format must be ISO, USA, EUR, or JIS.●

The decimal point must be the period.●

If option 2 is specified,

The naming option must be SQL.●

The date format must be ISO.●

The time format must be ISO.●

The decimal point must be the period.●

An ALIAS object type must not be specified.●

Statement formatting option. The formatting option used in the generated SQL statements. The valid
values are:

0 No additional formatting characters are added to the generated SQL statements.
1 Additional end-of-line characters and tab characters are added to the generated SQL statements.

Time format. The format used for time constants in a generated SQL CREATE TABLE statement. The
time format may not apply to date constants that are in ISO, EUR, USA, or JIS format in a CREATE
VIEW, CREATE TRIGGER, CREATE FUNCTION, or CREATE PROCEDURE statement. in the
generated SQL statements. The valid values are:

ISO International Standards Organization (hh.mm.ss)
EUR IBM European Standard (hh.mm.ss)

If the Standards option is '2', the EUR time format is not valid.
JIS Japanese Industrial standard Christian Era (hh:mm:ss)

If the Standards option is '2', the JIS time format is not valid.
USA IBM USA standard (hh:mm AM, hh:mm PM)

If the Standards option is '2', the USA time format is not valid.
HMS Hour/minute/second (hh:mm:ss)

If the Standards option is '1' or '2', the HMS time format is not valid.

Time separator. The time separator used for time constants in a generated SQL CREATE TABLE
statement. The time separator may not apply to date constants that are in ISO, EUR, USA, or JIS format in
a CREATE VIEW, CREATE TRIGGER, CREATE FUNCTION, or CREATE PROCEDURE statement.
The time separator is only applicable if the time format is HMS. in the generated SQL statements. The valid
values are:

: Colon separator
. Period separator
, Comma separator
blank Blank separator

Usage Notes

If the value of the statement formatting option is 0, the generated SQL statements will be minimally
formatted by adding blanks. For example:

CREATE TABLE mjatst.table_one (
 column_one INTEGER,
 column_two INTEGER,
 column_three CHAR(4000));

If the value of the statement formatting option is 1, the generated SQL statements will be formatted by
inserting end-of-line characters, tab characters, and spaces. For example:

CREATE TABLE mjatst.table_one (
 column_one INTEGER,
 column_two INTEGER,
 column_three CHAR(4000));

Error Messages

Message ID Error Message Text
CPF24B4 E Severe error while addressing parameter list.
CPF3C21 E Format name &1 is not valid.
CPF3C39 E Value for reserved field not valid.
CPF3C3A E Value for parameter &2 for API &1 not valid.
CPF3C90 E Literal value cannot be changed.
CPF3CF1 E Error code parameter not valid.
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

API introduced: V5R1

Top | Database and File APIs | APIs by category

List Database File Members (QUSLMBR) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Qualified database file name Input Char(20)
4 Member name Input Char(10)
5 Override processing Input Char(1)

 Optional Parameter:

6 Error code I/O Char(*)

 Service Program Name: QUSLMBR

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The List Database File Members (QUSLMBR) API generates a list of database file members and places the
list in a specified user space. When you specify a generic member name, you can generate a subset of the
member list. You can use the QUSLMBR API with database file types *PF, *LF, and *DDMF. The
generated list replaces any existing information in the user space. The file members listed in the user space
are not in any predictable order. To retrieve additional information about each member in the list, see the
Retrieve Member Description (QUSRMBRD) API.

You can use the QUSLMBR API to:

List members more quickly than by using the *MBRLIST value on the TYPE parameter of the
Display File Description (DSPFD) command.

●

Retrieve information for all of the members of a database file more quickly and easily than by
multiple calls to the Retrieve Member Description (QUSRMBRD) API. It is your discretion to
decide which API best suits the needs of your application. For example, if you want to selectively
retrieve member descriptions for a subset of the member list, you might want to use both the
QUSLMBR and QUSRMBRD APIs.

●

Ensure that the last date the source was changed matches the date of the source used to create the
object.

●

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

File Authority

*OBJOPR

User Space Lock

*EXCLRD

File Lock

*SHRRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that is to receive the created list. The first 10 characters contain the user space
name, and the second 10 characters contain the name of the library where the user space is located.
You can use these special values for the library name:

*CURLIB The job's current library
*LIBL The library list

Format name

INPUT; CHAR(8)

The content and format of the information returned for each member. The possible format names
are:

MBRL0100 Member name
MBRL0200 Member name and source information This format requires more

processing than the MBRL0100 format.
MBRL0310 Member name and basic description. The member information is the same

as that generated by the Retrieve Member Description (QUSRMBRD) API
using format MBRD0100. This format requires more system processing
and takes longer to produce than the MBRL0200 format.

MBRL0320 Member name and expanded description. The member information is the
same as that generated by the Retrieve Member Description
(QUSRMBRD) API using format MBRD0200. The additional information
requires more system processing and takes longer to produce than the
MBRL0310 format.

MBRL0330 Member name and full description. The member information is the same as
that generated by the Retrieve Member Description (QUSRMBRD) API
using format MBRD0300. The additional information requires more
system processing and takes longer to produce than the MBRL0320
format.

For more information, see MBRL0100 List Data Section, MBRL0200 List Data Section, or
MBRL0300 List Data Section.

Qualified database file name

INPUT; CHAR(20)

The name of the database file whose member names are to be placed in the list. The first 10

characters contain the database file name, and the second 10 characters contain the name of the
library where the file is located. You can use these special values for the library name:

*CURLIB The job's current library
*LIBL The library list

Member name

INPUT; CHAR(10)

A specific member name, a generic member name, or this special value:

*ALL All members

Override processing

INPUT; CHAR(1)

Whether overrides are to be processed. The following character values are used:

0 No override processing
1 Override processing

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Format of the Generated Lists

The file member list consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section:

MBRL0100 format❍

MBRL0200 format❍

MBRL0300 format❍

●

The MBRL0300 list data section is generated if MBRL0310, MBRL0320, or MBRL0330 is specified as the
format name parameter.

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections. For detailed descriptions of the fields in the list returned,
see Field Descriptions.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header as a displacement to the next list entry. The size of each entry may be padded at the end. If
you do not use the entry size, the result may not be valid. For examples of how to process lists, see
Appendix A, Examples.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name

20 14 CHAR(8) Format name

28 1C CHAR(10) File name specified

38 26 CHAR(10) File library name specified

48 30 CHAR(10) Member name specified

58 3A CHAR(1) Override processing

Header Section

Offset

Type FieldDec Hex

0 0 CHAR(10) File name used

10 A CHAR(10) File library name used

20 14 CHAR(10) File attribute

30 1E CHAR(50) File text description

80 50 BINARY(4) Total number of members in file

84 54 CHAR(1) Source file

85 55 CHAR(3) Reserved

88 58 BINARY(4) File text description CCSID

MBRL0100 List Data Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Member name used

MBRL0200 List Data Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Member name used

10 A CHAR(10) Source type

20 14 CHAR(13) Creation date and time

33 21 CHAR(13) Last source change date and time

46 2E CHAR(50) Member text description

96 60 BINARY(4) Member text description CCSID

MBRL0300 List Data Section

The MBRL0300 format provides an offset to a retrieved member description. The member descriptions
have the same format as those generated by the Retrieve Member Description (QUSRMBRD) API. The
following relationship exists between the QUSLMBR format name and the QUSRMBRD member
descriptions:

MBRL0310 generates an MBRD0100 description.●

MBRL0320 generates an MBRD0200 description.●

MBRL0330 generates an MBRD0300 description.●

For more information about the member description formats, see Retrieve Member Description
(QUSRMBRD) API.

Offset

Type FieldDec Hex

0 0 CHAR(10) Member name used

10 A CHAR(2) Reserved

12 C BINARY(4) Offset to member description information

16 10 CHAR(16) Reserved

Field Descriptions

Creation date and time. The date and time the member was created. The format of this field is in the
CYYMMDDHHMMSS as follows:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.
YY Year
MM Month
DD Day
HH Hour

MM Minute
SS Second

File attribute. The type of file found:

PF Physical file
LF Logical file
DDMF Distributed data management file

File library name specified. The name of the library containing the file whose member names are to be
placed in the list.

File library name used. The name of the library containing the file whose member names are placed in the
list.

File name specified. The name of the file specified in the call to the API.

File name used. The name of the file whose member names are placed in the list.

File text description. The description of the file.

File text description CCSID. The CCSID for the file text description. The job default CCSID of the
current process will be used to translate the text. For more information about CCSID, see the globalization
topic.

Format name. The content and format of the information returned for each member.

Last source change date and time. The date and time that this source member was last changed. This field
is in the CYYMMDDHHMMSS format where the format is the same as for the creation date and time field.

Member name specified. The name of the member specified in the call to the API.

Member name used. The name of a member found in the file.

Member text description. Description of the member found in the file.

Member text description CCSID. The CCSID for the member text description. The job default CCSID of
the current process will be used to translate the text. For more information about CCSID, see the
globalization topic.

Offset to member description information. The number of bytes from the beginning of the user space to
the beginning of the retrieved member description.

Override processing. Whether overrides are to be processed. The possible values are:

0 No override processing
1 Override processing

Reserved. An ignored field.

Source file. Whether the file is a source file or a data file. The possible values are:

0 Data file

1 Source file

Source type. The type of source member if this is a source file. Some possible values are:

CL●

COBOL●

RPG●

TXT●

Total number of members in file. The total number of members in the file specified.

User space library name. The name of the library that contains the user space that is to receive the
generated list.

User space name. The name of the user space that is to receive the generated list.

Usage Notes

In multithreaded jobs, this API is not threadsafe and fails for distributed data management (DDM) files of
type *SNA.

Error Messages

Message ID Error Message Text
CPF24B4 E Severe error while addressing parameter list.
CPF3CF1 E Error code parameter not valid.
CPF3C20 E Error found by program &1.
CPF3C21 E Format name &1 is not valid.
CPF3C22 E Cannot get information about file &1.
CPF3C23 E Object &1 is not a database file.
CPF3C25 E Value &1 for file override parameter is not valid.
CPF3C27 E Cannot get information about member &3 from file &1.
CPF3C36 E Number of parameters, &1, entered for this API was not valid.
CPF3C90 E Literal value cannot be changed.
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

API Introduced: V1R3

Top | Database and File APIs | APIs by category

List Database Relations (QDBLDBR) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format Input Char(8)
3 Qualified file name Input Char(20)
4 Member Input Char(10)
5 Record format Input Char(10)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The List Database Relations (QDBLDBR) API gives relational information about database files. The
information identifies the physical and logical files that are dependent on a specific file, files that use a
specific record format, or file members that are dependent on a specific file member. The information is
placed in a user space specified by you.

Similar in function to the Display Database Relations (DSPDBR) command, this API allows more input
parameter values than does the command. Also, your program can have more direct access to the
information put in the user space by this API than when the command places similar information in an
output file.

The information generated by this API replaces any existing information in the user space. It does not
append information to any information already in the user space. If the space is bigger than needed, the
contents of the remainder of the space are not changed. If the space is not big enough, it is extended.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

File Authority

*USE

File Library Authority

*USE

File Lock

*SHRNUPD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that is to receive the database relations information. The first 10 characters contain
the user space name, and the second 10 characters contain the name of the library where the user
space is located. You can use these special values for the library name:

*CURLIB The job's current library
*LIBL The library list

Format

INPUT; CHAR(8)

The content and format of the information to be returned about the specified file, member, or record
format. One of the following format names must be used:

DBRL0100 File information

DBRL0200 Member information

DBRL0300 Record format information

For more information, see DBRL0100 Format (File), DBRL0200 Format (Member), or DBRL0300
Format (Record Format).

Qualified file name

INPUT; CHAR(20)

The name of the file for which database relations information is to be extracted. The first 10
characters contain the file name, and the second 10 characters contain the name of the library where
the file is located. The file name cannot be a DDM file. The file name can be a specific file name, a
generic name, or the following special value:

*ALL All files

You can use these special values for the library name:

*ALL All libraries in the system

*ALLUSR All nonsystem libraries

*CURLIB The job's current library

*LIBL The library list

*USRLIBL Libraries listed in the user portion of the library list

Member

INPUT; CHAR(10)

The name of the member to be used for retrieving database relations for format DBRL0200. This
value can be a specific member name, a generic member name, or one of the following special
values:

*FIRST Information about the first member (in the order created) in the specified file or
files is to be provided.

*LAST Information about the last member (in the order created) in the specified file or
files is to be provided.

*ALL Information about all members in the specified files is to be provided.

This parameter is ignored for formats DBRL0100 and DBRL0300.

Record format

INPUT; CHAR(10)

The name of the record format to be used for retrieving database relations for format DBRL0300.
This value can be a specific record format, a generic record format, or the following special value:

*ALL All record formats in the specified file

This input is ignored for formats DBRL0100 and DBRL0200.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the Generated List

The database relations list consists of an input parameter section and one of three possible formats for the
list data section. The three formats are determined by the kind of information you are looking for. The
format names are:

DBRL0100 Database relations (file)
DBRL0200 Database relations (member)
DBRL0300 Database relations (record format)

The layout of the contents of the user space is determined by the format used. The following tables show
how the contents of the input parameter section and the data format sections are organized. For descriptions
of each field, see Field Descriptions.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name

20 14 CHAR(8) Format name

28 1C CHAR(10) File name specified

38 26 CHAR(10) File library name specified

48 30 CHAR(10) Member name specified

58 3A CHAR(10) Record format name specified

DBRL0100 Format (File)

The structure of the information returned is determined by the value specified for the format name. The
DBRL0100 format includes information on files dependent on the file specified. The following table shows
how this information is organized. For detailed descriptions of the fields in the list, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) File name used

10 A CHAR(10) File library name used

20 14 CHAR(10) Dependent file name

30 1E CHAR(10) Dependent library name

40 28 CHAR(1) Dependency type

41 29 CHAR(3) Reserved

44 2C BINARY(4) Join reference number

48 30 CHAR(10) Constraint library name

58 3A BINARY(4) Constraint name length

62 3E CHAR(258) Constraint name

DBRL0200 Format (Member)

The structure of the information returned is determined by the value specified for the format name. The
DBRL0200 format includes information on files and members dependent on the file member specified. The
following table shows how this information is organized. For detailed descriptions of the fields in the list,
see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) File name used

10 A CHAR(10) File library name used

20 14 CHAR(10) Member name used

30 1E CHAR(10) Dependent file name

40 28 CHAR(10) Dependent library name

50 32 CHAR(10) Dependent member name

60 3C CHAR(1) Dependency type

61 3D CHAR(3) Reserved

64 40 BINARY(4) Join reference number

68 44 BINARY(4) Join file number

72 48 CHAR(10) Constraint library name

82 52 BINARY(4) Constraint name length

86 56 CHAR(258) Constraint name

DBRL0300 Format (Record Format)

The structure of the information returned is determined by the value specified for the format name. The
DBRL0300 format includes information on files dependent on the record format specified. The following
table shows how this information is organized. For detailed descriptions of the fields in the list, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) File name used

10 A CHAR(10) File library name used

20 14 CHAR(10) Record format name used

30 1E CHAR(10) Dependent file name

40 28 CHAR(10) Dependent library name

Field Descriptions

Constraint library name. The name of the library containing the file to which the constraint applies.

Constraint name. The name of the constraint. This only applies when the dependency type is C.

Constraint name length. The length of the constraint name. Delimited names can be a maximum of 258
characters and non-delimited names a maximum of 128 characters.

Dependency type. How a file or member is related to the file or member specified with the QDBLDBR
API. Possible values are:

blank No dependent files or members were found for the specified file.

C Constraint.

D The dependent file or member is dependent on the data in the specified file or member that
was extracted.

I The dependent file member is sharing the access path of the file that the information was
extracted from.

O If an access path is shared, one of the file members is considered the owner. The owner of
the access path is charged with the storage used for the access path. If the member displayed
is designated the owner, one or more file members are designated with an I for access path
sharing.

V The SQL view or member is dependent on the specified SQL view.

Dependent file name. The name of the file that is dependent on the file specified using the QDBLDBR
API. If no dependent files are found for the file specified, the dependent file name is *NONE.

Dependent library name. The name of the library that the dependent file is in. If there are no dependent
files found for the file specified, the dependent library name is blank.

Dependent member name. The name of the file member that is dependent on the file member specified
using the QDBLDBR API. If no dependent members are found for the member specified, the dependent
member name is *NONE.

File library name specified. The name of the library containing the file for which the database relations
information is requested.

File library name used. The name of the library containing the file used to extract the database relations
information in this list entry.

File name specified. The name of the file for which the database relations information is to be extracted.

File name used. The name of the file used to extract the database relations information in this list entry.

Format name. The name of the format in which the database relations information is returned to the user
space.

Join file number. If the file for which database relations information is being extracted is a join logical file,
this is the ordinal number of the file in the JFILE to which the dependency relates. The join file number is
zero if either of the following are correct:

No dependent files are found for the file specified.●

The file for which the information is being extracted is not a join file.●

Join reference number. If the dependent file listed is a join logical file, this is the ordinal number of the
file in the JFILE to which this dependency relates. The join reference number is zero if either of the
following are correct:

No dependent files are found for the file specified.●

The dependent file is not a join file.●

Member name specified. The name of the member for which the information is extracted.

Member name used. The name of the member used to extract the database relations information in this list
entry.

Record format name specified. The name of the record format for which the information is displayed.

Record format name used. The name of the record format used to extract the database relations
information in this list entry.

Reserved. An ignored field.

User space library name. The name of the library that contains the user space that receives the database
relations information requested.

User space name. The name of the user space that receives the database relations information requested.

Error Messages

Message ID Error Message Text
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF3C21 E Format name &1 is not valid.
CPF3C23 E Object &1 is not a database file.
CPF3C90 E Literal value cannot be changed.
CPF326C E File name &1 not valid special value.
CPF326D E Member name &1 not valid special value.
CPF326E E Record format name &1 not valid special value.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R2

Top | Database and File APIs | APIs by category

List Fields (QUSLFLD) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Qualified file name Input Char(20)
4 Record format name Input Char(10)
5 Override processing Input Char(1)

 Optional Parameter:

6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The List Fields (QUSLFLD) API generates a list of fields within a specified file record format name. The
list of fields is placed in a specified user space. The generated list replaces any existing information in the
user space. You can use the QUSLFLD API only with database file types, such as *PF, *LF, and *DDMF,
and device file types, such as *ICFF and *PRTF.

You can use the QUSLFLD API to:

Generate a list of field format names.●

Gather additional information about specific field formats.●

Create a product similar to the Structured Query Language (SQL) using the Open Query File
(OPNQRYF) command.

●

Create applications similar to the data file utility (DFU).●

Create a compiler supporting externally described data.●

Create applications that use data defined to the system.●

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

File Library Authority

*USE

File Authority

*OBJOPR

User Space Lock

*EXCLRD

File Lock

*SHRRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The name of the user space that is to receive the created list, and the library in which it is located.
The first 10 characters contain the user space name, and the second 10 characters contain the
library name. You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Format name

INPUT; CHAR(8)

The format of the information returned. You must use the following format name:

FLDL0100 Field information

FLDL0200 Field and default value information

FLDL0300 Field, alternative field name, and default value information

For more information, see Format of the Generated List.

Qualified file name

INPUT; CHAR(20)

The file whose member names are to be placed in the list, and the library in which it is located. The
first 10 characters contain the file name, and the second 10 characters contain the library name.
You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Record format name

INPUT; CHAR(10)

The record format name whose fields are to be returned.

Override processing

INPUT; CHAR(1)

Whether overrides are to be processed. The possible values are:

0 No override processing

1 Override processing

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Format of the Generated List

The field list consists of:

A user area●

A generic header●

An input parameter section●

A header section●

The FLDL0100, FLDL0200, or FLDL0300 list data section●

For details about the user area and generic header, see User space format for list APIs. For details about the
remaining items, see the following sections. For descriptions of each field in the list returned, see Field
Descriptions.

When you retrieve list entry information from a user space for format FLDL0100, you must use the entry
size returned in the generic header as a displacement to the next list entry. The size of each entry may be
padded at the end. If you do not use the entry size, the result may not be valid.

When you retrieve list entry information from a user space for format FLDL0200 or FLDL0300, you
must use the length provided at the beginning of format FLDL0200 or FLDL0300 as a displacement to the
next list entry. If you do not use the length provided in FLDL0200 or FLDL0300, the result may not be
valid.

For examples of how to process lists, see the API examples.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name

20 14 CHAR(8) Format name

28 1C CHAR(10) File name specified

38 26 CHAR(10) File library name specified

48 30 CHAR(10) Record format name specified

58 3A CHAR(1) Override processing

Header Section

Offset

Type FieldDec Hex

0 0 CHAR(10) File name used

10 A CHAR(10) File library name used

20 14 CHAR(10) File type

30 1E CHAR(10) Record format name used

40 28 BINARY(4) Record length

44 2C CHAR(13) Record format ID

57 39 CHAR(50) Record text description

107 6B CHAR(1) Reserved

108 6C BINARY(4) Record text description CCSID

112 70 CHAR(1) Variable length fields in format indicator

113 71 CHAR(1) Graphic fields indicator

114 72 CHAR(1) Date and time fields indicator

115 73 CHAR(1) Null-capable fields indicator

FLDL0100 List Data Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Field name

10 A CHAR(1) Data type

11 B CHAR(1) Use

12 C BINARY(4) Output buffer position

16 10 BINARY(4) Input buffer position

20 14 BINARY(4) Field length in bytes

24 18 BINARY(4) Digits

28 1C BINARY(4) Decimal position

32 20 CHAR(50) Field text description

82 52 CHAR(2) Edit code

84 54 BINARY(4) Edit word length

88 58 CHAR(64) Edit word

152 98 CHAR(20) Column heading 1

172 AC CHAR(20) Column heading 2

192 C0 CHAR(20) Column heading 3

212 D4 CHAR(10) Internal field name

222 DE CHAR(30) Alternative field name

252 FC BINARY(4) Length of alternative field name

256 100 BINARY(4) Number of DBCS characters

260 104 CHAR(1) Null values allowed

261 105 CHAR(1) Host variable indicator

262 106 CHAR(4) Date and time format

266 10A CHAR(1) Date and time separator

267 10B CHAR(1) Variable length field indicator (overlay for
MI mapping)

268 10C BINARY(4) Field text description CCSID

272 110 BINARY(4) Field data CCSID

276 114 BINARY(4) Field column headings CCSID

280 118 BINARY(4) Field edit words CCSID

284 11C BINARY(4) UCS-2 displayed field length

288 120 BINARY(4) Field data encoding scheme

292 124 BINARY(4) Maximum large object field length

296 128 BINARY(4) Pad length for large object

300 12C BINARY(4) Length of user-defined type name

304 130 CHAR(128) User-defined type name

432 1B0 CHAR(10) User-defined type library name

442 1BA CHAR(1) Datalink link control

443 1BB CHAR(1) Datalink integrity

444 1BC CHAR(1) Datalink read permission

445 1BD CHAR(1) Datalink write permission

446 1BE CHAR(1) Datalink recovery

447 1BF CHAR(1) Datalink unlink control

448 1C0 BINARY(4) Display or print row number

452 1C4 BINARY(4) Display or print column number

456 1C8 CHAR(1) ROWID column

457 1C9 CHAR(1) Identity column

458 1CA CHAR(1) GENERATED BY

459 1CB CHAR(1) Identity column - CYCLE

460 1CC DECIMAL(31,0) Identity column - Original START WITH

476 1DC DECIMAL(31,0) Identity column - Current START WITH

492 1EC BINARY(4) Identity column - INCREMENT BY

496 1F0 DECIMAL(31,0) Identity column - MINVALUE

512 200 DECIMAL(31,0) Identity column - MAXVALUE

528 210 BINARY(4) Identity column - CACHE

532 214 CHAR(1) Identity column - ORDER

533 215 CHAR(11) Reserved

FLDL0200 List Data Section

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of FLDL0200 format

4 4 BINARY(4) Displacement to default value

8 8 BINARY(4) Length of default value

12 C All fields defined by FLDL0100 format

* * CHAR(*) Default value

 FLDL0300 List Data Section

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of FLDL0300 format

4 4 BINARY(4) Displacement to all fields defined by FLDL0100
format

8 8 BINARY(4) Displacement to alternative field name

12 C BINARY(4) Displacement to default value

16 10 BINARY(4) Length of default value

* * All fields defined by FLDL0100 format

* * CHAR(*) Alternative field name (long)

* * CHAR(*) Default value

Field Descriptions

Alternative field name. The alternative name of the field the entry describes. This is the DDS keyword
ALIAS or a long column name in SQL. If the length of the alternative name is greater than 30, the
Alternative field name will contain blanks. If the FLDL0300 format is used, the Alternative field name
(long) will always contain the alternative name.

Alternative field name (long). The alternative name of the field the entry describes. This is the DDS
keyword ALIAS or a long column name in SQL.

Column heading 1. The description of the first column heading for this field. It contains blanks if the

heading is not defined.

Column heading 2. The description of the second column heading for this field. It contains blanks if the
heading is not defined.

Column heading 3. The description of the third column heading for this field. It contains blanks if the
heading is not defined.

Data type. The type of field:

A Alphanumeric (character)

B Binary

D Digits only

E Either DBCS or alphanumeric

F Floating point

G Graphic data type

H Hexadecimal

I Inhibit entry

J Double-byte character set (DBCS) data only

L Date

M Numeric only

N Numeric shift

O (Open) Both DBCS and alphanumeric

P Packed decimal

S Zoned decimal

T Time

W Katakana

X Alphabetic only (character)

Y Numeric only

Z Timestamp

1 Binary large object (BLOB)

2 Character large object (CLOB)

3 Graphic data large object (DBCLOB)

4 Datalink

Datalink integrity. How the control of the file is handled. This value applies to datalink fields. A datalink
is a field data type that is used to point to another object that contains the data for that field. If the datalink

link control field is 0 (no link control), this field is not applicable. The possible values are:

0 All linked files are under control of the database.

1 All linked files are under selective database control if the server has the Datalink File Manager
installed.

Datalink link control. Whether the file should be linked by the Datalink File Manager. The Datalink File
Manager is a function that tracks which files are linked to a specific database file. This value applies to
datalink fields. The possible values are:

0 No link control.

1 File link control.

Datalink read permission. The check that is done to read the file. This value applies to datalink fields. If
the datalink link control field is 0 (no link control), this field is not applicable. The possible values are:

0 The database controls whether a user has read authority.

1 The file system controls whether a user has read authority.

Datalink recovery. Whether file recovery is done. This value applies to datalink fields. If the datalink link
control field is 0 (no link control), this field is not applicable. The possible values are:

0 Recovery is not done.

1 Recovery is done.

Datalink unlink control. The action that is done to a file during an unlink operation. This value applies to
datalink fields. If the datalink link control field is 0 (no link control) or the datalink write permission field is
1 (File system control), this field is not applicable. The possible values are:

0 Restore the file owner and file authorities that existed prior to the file link when an unlink operation
occurs.

1 Delete the file when an unlink operation occurs.

Datalink write permission. The check that is done to write to the file. This value applies to datalink fields.
If the datalink link control field is 0 (no link control), this field is not applicable. The possible values are:

0 The file is blocked from accepting writing.

1 The file system controls whether a user has write authority.

Date and time fields indicator. Whether this format contains date and time fields. The possible values are:

0 The format does not contain date and time fields.

1 The format contains date and time fields.

Date and time format. This value applies to date, time, and timestamp fields. It also may apply to packed
decimal, zoned decimal, and character fields in a logical file. The possible values are:

*USA IBM USA standard (mm/dd/yyyy, hh:mm a.m., hh:mm p.m.)

*ISO International Standards Organization (yyyy-mm-dd, hh.mm.ss)

*EUR IBM European Standard (dd.mm.yyyy, hh.mm.ss)

*JIS Japanese Industrial Standard Christian Era (yyyy-mm-dd, hh:mm:ss)

*SAA SAA timestamp

*MDY Month/day/year (mm/DD/yy)

*DMY Day/month/year (DD/mm/yy)

*YMD Year/month/day (yy/mm/DD)

*JUL Julian (yy/ddd)

*HMS Hour/minute/second (hh:mm:Ss)

MDYY Month/day/year (mm/DD/yyyy)

DMYY Day/month/year (DD/mm/yyyy)

YYMD Year/month/day (yyyy/mm/DD)

JUL4 Long Julian (yyyy/ddd)

CMDY Century/month/day/year (c/mm/DD/yy)

CDMY Century/day/month/year (c/DD/mm/yy)

CYMD Century/year/month/day (c/yy/mm/DD)

*MY Month/year (mm/yy)

*YM Year/month (yy/mm)

*MYY Month/year (mm/yyyy)

*YYM Year/month (yyyy/mm)

Date and time separator. This value applies only to date or time fields. The possible values are:

/ Slash separator

- Dash separator

. Period separator

, Comma Separator

: Colon separator

(blank) Blank separator

Note: If the date and time separator field returns a blank, the separator may have been determined by the
default for the specified value of the date and time format field.

Decimal position. The number of decimal positions. This entry is zero if the field is not numeric.

Default value. The default value for this field. The default value is defined by the DFT or DFTVAL

keyword used in DDS, or by the WITH DEFAULT clause of the CREATE TABLE SQL statement. Some
examples of returned data are:

SQL clause WITH
DEFAULT value, where
value is:

DDS keyword
DFT(value), where value
is:

Returned by API:

'ABC' 'ABC' 'ABC'

+999 +999 +999

 999 +999

999 999

-999 -999 -999

USER
Note: This value means to
use the User ID as the
value.

 USER

COCODE ('ABC') COCODE ('ABC')

Digits. The number of digits. This entry is zero if the field is not numeric.

 Displacement to all fields defined by FLDL0100 format. This field contains the offset from the
beginning of this entry to the beginning of the data mapped by the FLDL0100 format.

Displacement to alternative field name. This field contains the offset from the beginning of this entry to
the beginning of the alternative field name. This field is zero if there is no alternative field name.

Displacement to default value. This field contains the offset from the beginning of this entry to the
beginning of the default data. This field is zero if there is no default data for the field.

Display or print column number. This field contains the column number specified in the DDS source or
as calculated at compile-time by the DDS compiler. If this value was not calculated at compile-time, it will
be set to -1.

Display or print row number. This field contains the row number specified in the DDS source. This value
will be relative to the start of the format. If spacing keywords (such as SPACEA, SKIPA, and SLNO) were
specified for the file, record or field, this value will be set to -1.

Edit code. The field edit code.

Edit word. The field edit word.

Edit word length. The length of the edit word used.

Field column headings CCSID.

0 There are no field column headings.

1-65,535 The CCSID for the field column headings.

Field data CCSID.

0 There is no field data.

1-65,535 The CCSID for the field data.

Field data encoding scheme. The encoding scheme associated with the field data CCSID.

Field edit words CCSID

0 There are no field edit words.

1-65,535 The CCSID for the field edit words.

Field length in bytes. The number of bytes the field occupies.

Field name. The name of the field the entry describes.

Field text description. The description of the field.

Field text description CCSID.

0 There is no field text description.

1-65,535 The CCSID for the field text description.

Record text description CCSID.

0 There is no record text description.

1-65,535 The CCSID for the record text description.

File library name specified. The library specified in the call to the API.

File library name used. The name of the library that contained the file.

File name specified. The file specified in the call to the API.

File name used. The name of the file where the member list was found.

File type. The type of file found.

BSCF Binary synchronous communications (BSC) file

CMNF Communications file

DDMF Distributed data management file

DKTF Diskette file

DSPF Display file

ICFF Intersystem communications function file

LF Logical file

MXDF Mixed file

PF Physical file

PRTF Printer file

SAVF Save file

TAPF Tape file

Format name. The content and format of the information returned for each field. The possible values are:

FLDL0100 Field information

FLDL0200 Field and default value information

FLDL0300 Field, alternative field name, and default value information

GENERATED BY. This value defines when DB2 will generate a value for the column when a row is
inserted or updated in a table. If the identity column field is 0 and the ROWID column field is 0, this field
is not applicable. The possible values are:

1 BY DEFAULT - Indicates that DB2 will generate a value for the column when a row is inserted or
updated in a table unless a value is specified.

2 ALWAYS - Indicates that DB2 will always generate a value for the column when a row is inserted or
updated in a table.

Graphic fields indicator. Whether this format contains graphic fields. The possible values are:

0 The format does not contain graphic fields.

1 The format does contain graphic fields.

Host variable indicator. Whether a query has been defined with a host variable or a parameter marker in
place of a comparison operand (for example, FIELDA > :hostvar) or an arithmetic operand (for example,
FIELDA * 10). Possible values follow:

0 The query definition does not contain a host variable or a parameter marker.

1 The query definition does contain a host variable or a parameter marker.

Identity column. This value specifies whether or not this column was created as an identity column. The
possible values are:

0 This is not an identity column.

1 This is an identity column.

Identity column - CACHE. This value is the number of cached values. If the Identity column field is 0 (no
value specified), this field is not applicable.

Identity column - CYCLE. This value specifies whether this identity column should continue to generate
values after generating either its maximum or minimum value. If the identity column field is 0, this field is
not applicable. The possible values are:

0 This identity column should not continue to generate values after generating either its minimum or
maximum value.

1 This identity column should continue to generate values after generating either its minimum or
maximum value.

Identity column - INCREMENT BY. This value specifies the interval between consecutive values of the
identity column. This value applies to identity column fields. If this value is positive, this is an ascending
identity column. If the value is negative, this is a descending identity column. If the identity column field is

0, this field is not applicable.

Identity column - MAXVALUE. This value specifies the maximum value at which an ascending identity
column either cycles or stops generating values, or a descending identity column cycles to after reaching
the minimum value. If the identity column field is 0, this field is not applicable.

Identity column - MINVALUE. This value specifies the minimum value at which a descending identity
column either cycles or stops generating values, or an ascending identity column cycles to after reaching
the maximum value. This value applies to identity column fields. If the identity column field is 0, this field
is not applicable.

Identity column - ORDER. This value specifies whether the identity values must be generated in order of
request. If the identity column field is 0, this field is not applicable. The possible values are:

0 Identity values need not be generated in order of request.

1 Identity values must be generated in order of request.

Identity column - Original START WITH. This value specifies the first value for the identity column as
defined when the table was created. If the identity column field is 0, this field is not applicable.

Identity column - Current START WITH. This value specifies the first value for the identity column. If
the START WITH value for the identity column was changed through the ALTER TABLE command, this
value will show the current setting. If the identity column field is 0, this field is not applicable.

Input buffer position. The field's position within the input record.

Internal field name. The internal name used to identify the field the entry describes.

Length of alternative field name. The length of the alternative field name definition.

Length of default value. The length of the default value for this field. If the field has no default value, this
field is zero.

Length of FLDL0200 format. The combined length of all data returned in format FLDL0200. Use this
value to access the next list data entry.

Length of FLDL0300 format. The combined length of all data returned in format FLDL0300. Use this
value to access the next list data entry.

Length of user-defined type name. The length of the user-defined type name. If the field has no
user-defined type, this field is zero.

Maximum large object field length. The maximum length of data that can be contained for this field. This
value applies to fields with the BLOB, CLOB or DBCLOB data type.

Null-capable fields indicator. Whether this format contains null-capable fields. The possible values are:

0 The format does not contain null-capable fields.

1 The format contains null-capable fields.

Null values allowed. Whether the result of this field can be the null value. The possible values are:

0 The field does not allow the null value.

1 The field does allow the null value.

Number of DBCS characters. The number of DBCS characters this field can contain if the field type is
graphic data type. This value does not include the 2 bytes for the variable length portion of the field.

Offset to default value. The offset from the beginning of format FLDL0200 to the start of the default value
for this field. If the field has no default value, this value is zero.

Output buffer position. The field's position within the output record.

Override processing. Whether overrides are to be processed. The possible values are:

0 No override processing

1 Override processing

Pad length for large object. This value applies fields with the BLOB, CLOB or DBCLOB data type. This
value is the pad length of the buffer for this field.

Record format ID. The record format identifier.

Record format name specified. The record format specified in the call to the API.

Record format name used. The name of this record format.

Record length. The length of this record format.

Record text description. The text description of this record format.

Record text description CCSID.

0 There is no record text description.

1-65,535 The CCSID for the record text description.

Reserved. An ignored field.

ROWID column. This value specifies that this field has been designated as a ROWID column. The
possible values are:

0 The ROWID attribute was not specified on this field.

1 This field was created with the ROWID attribute.

UCS-2 displayed field length. The display length of a field containing UCS-2 data. This value is zero if
the field does not contain UCS-2 data. For information about UCS-2, see the Globalization topic in the
iSeries Information Center.

User-defined type name. The name of the user-defined type object.

User-defined type library name. The library containing the user-defined type object.

Use. How the field is used:

I Input

O Output

B Both input and output

N Neither

Note: Use is from the program point of view and not necessarily the use specified in the DDS that created
the file. For example, *DSPF subfile record fields return B even if the field is O in the DDS.

User space library name. The name of the library that contains the user space that is to receive the
generated list.

User space name. The name of the user space that is to receive the generated list.

Variable length field indicator (overlay for MI mapping). Whether the field has been defined as
*VARCHAR, VARLEN, or *VARGRF. Possible values are:

0 The field is not variable length.

1 The field is variable length.

Variable length fields in format indicator. Whether this format contains variable length fields. The
possible values are:

0 The format does not contain variable length fields.

1 The format contains variable length fields.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C22 E Cannot get information about file &1.

CPF3C25 E Value &1 for file override parameter is not valid.

CPF3C28 E Record format &3 in file &1 not found.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

API Introduced: V1R3

Top | Database and File APIs | APIs by category

List Open Files (QDMLOPNF)

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Job identification information Input Char(*)
5 Format of job identification information Input Char(8)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The List Open Files (QDMLOPNF) API generates a list of *FILE objects that are currently open in the job
or that were opened by the thread that is specified in the job identification information input parameter.

Authorities and Locks

Job Authority

This API must be called from within the job for which the information is being retrieved, or the
caller of the API must be running under a user profile that is the same as the job user identity of the
job for which the information is being retrieved. Otherwise, the caller of the API must be running
under a user profile that has job control (*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is described

in more detail in the Work Management book on the V5R1 Supplemental Manuals Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that is to receive the information requested. You can specify the size of the
area to be smaller than the format requested as long as you specify the length of receiver variable
parameter correctly. As a result, the API returns only the amount of data specified in the length of
receiver variable.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The possible format name is:

OPNF0100 See Format OPNF0100 for details on the list of files that this job or thread has
open.

Job identification information

INPUT; CHAR(*)

The information that is used to identify the job or thread for which the list of open files is to be
returned. See Format of job identification information for details.

Format of job identification information

INPUT; CHAR(8)

The format of the job identification information. The possible format name is:

JIDF0100 See Format JIDF0100 for details.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format OPNF0100

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of open files available

12 C BINARY(4) Offset to list of open files

16 10 BINARY(4) Number of open files returned

20 14 BINARY(4) Length of open file entry

24 18 CHAR(10) Job name used

34 22 CHAR(10) Job user name used

44 2C CHAR(6) Job number used

50 32 CHAR(8) Thread identifier used

58 3A CHAR(*) Reserved

These fields
repeat, in the

CHAR(10) File name

CHAR(10) File library

order listed, for
the number of
open files.

CHAR(10) Member or device name

CHAR(10) File type

CHAR(10) Record format

CHAR(10) Activation group name

CHAR(8) Thread identifier

CHAR(1) Open option

CHAR(3) Reserved

BINARY(8) Activation group number

BINARY(8) Write count

BINARY(8) Read count

BINARY(8) Write/read count

BINARY(8) Other I/O count

BINARY(8) Relative record number

BINARY(8) Number of shared opens

 BINARY(4) Object auxiliary storage pool number

BINARY(4) Library auxiliary storage pool number

CHAR(10) Object auxiliary storage pool name

CHAR(10) Library auxiliary storage pool name

Field Descriptions

Activation group name. The name of the activation group to which an open file is scoped. This field can
contain the following special values:

*DFTACTGRP The file is scoped to the default activation group.

*JOB The file is scoped to the job, not a specific activation group.

*NEW The file is scoped to a *NEW activation group.

Activation group number. The number of the activation group to which an open file is scoped. This field
will contain zero for files scoped to the job.

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

File library. The name of the library that contains the open file. If the file is an inline data file, blanks are
returned. For DDM files, this is the library in which the DDM file is located.

File name. The name of the file that is open. This field will contain the value QINLINE for unnamed inline
data files. For DDM files, this is the name of the DDM file.

File type. The type of file that is open.

BSCF Binary Synchronous Communications (BSC) file

CMNF Communications file

DDMF Distributed Data Management file

DKTF Diskette file (spooled and non-spooled)

DSPF Display file

ICFF Intersystem Communications Function file

LF Logical file

MXDF Mixed file

PF Physical file

PRTF Printer file (spooled and non-spooled)

SAVF Save file

TAPF Tape file

*INLINE Inline data file

Job name used. The name of the job for which open files were listed.

Job number used. The number of the job for which open files were listed.

Job user name used. The user name of the job for which open files were listed.

Length of open file entry. The length of each open file entry.

Library auxilliary storage pool name. The name of the auxilliary storage pool (ASP) in which the
library of the open file resides. This field can contain the following special values:

*SYSBAS The library resides in the system ASP or a basic user ASP.

*N The ASP name could not be determined at this time.

Library auxiliary storage pool number. The number of the auxiliary storage pool (ASP) in which the
library of the open file resides. Possible values are:

1 System ASP

2-32 Basic user ASPs

33-255 Independent ASPs

Member or device name. If the file type is physical (PF) or logical (LF), this is the name of the database
member. If multiple member processing is being performed, the value *ALL is returned. For device files
(BSCF, CMNF, DKTF, DSPF, ICFF, MXDF, PRTF, SAVF, or TAPF), this is the name of the last program
device used for an I/O operation. This field is blank for device files when no I/O operation has been
performed, and always for inline data files. If the file is a spooled file, the value *SPOOL is returned. If the
file is a DDM file, blanks are returned.

Number of open files available. The number of open files available to be returned.

Number of open files returned. The number of complete open file entries that are returned.

Number of shared opens. The number of times the file was opened for shared processing. This field will
contain zero for open operations that are not shared.

Object auxilliary storage pool name. The name of the auxilliary storage pool (ASP) in which the open
file resides. This field can contain the following special values:

*SYSBAS The object resides in the system ASP or a basic user ASP.

*N The ASP name could not be determined at this time.

Object auxiliary storage pool number. The number of the auxiliary storage pool (ASP) in which the open
file resides. Possible values are:

1 System ASP

2-32 Basic user ASPs

33-255 Independent ASPs

Offset to list of open files. The offset in bytes from the beginning of the receiver variable to the first open
file entry.

Open option. The type of open operation that is performed:

0 The file was opened for input operations only.

1 The file was opened for output operations only.

2 The file was opened for all operations (input, output, update, and delete).

Other I/O count. Number of successful I/O operations of the following types:

update●

delete●

change end-of-data●

force end-of-data●

force end-of-volume●

release record lock●

acquire or release program device●

Read count. Number of successful read operations. If record blocking is not in effect for the file, this is the
number of records. If record blocking is in effect for the file, this is the number of record blocks.

Record format. The name of the last record format that was used for an I/O operation to the file. If no
record format name was used or no I/O operations have been performed, this field is blank.

Relative record number. Relative record number of the last record referred to by an I/O or open operation
for database files. Zero is returned for nondatabase files and database files on which no I/O operations have
been performed.

Reserved. A reserved field. It must contain a value of hexadecimal zeros.

Thread identifier. An 8-byte thread handle assigned by the system. It identifies the thread in which the file
was opened.

Thread identifier used. The identifier of the thread for which open files were listed. A value of zero
indicates open files were returned for all threads within the job.

Write count. The number of successful write operations. If record blocking is not in effect for the file, this
is the number of records. If record blocking is in effect for the file, this is the number of record blocks.

Write/Read count. The number of successful write/read operations.

Format JIDF0100

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with the job name.

Job name. A specific job name or one of the following special values.

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An ignored field.

Thread identifier. The unique value used to identify the thread within the job. If the thread indicator is not
0, this field must contain hexadecimal zeroes.

Thread indicator. The value that is used to specify the thread within the job for which information is to be
retrieved. The following values are supported:

0 The value in the thread identifier field should be used to locate the thread.

1 Information should be retrieved for the thread in which this program is running. The combination of
the internal job identifier, job name, job number, and user name fields also must identify the job
containing the current thread.

2 Information should be retrieved for the initial thread of the identified job.

3 Information should be retrieved for all threads within the specified job.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Error Messages

Message ID Error Message Text

CPF136A E Job not active.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3B E Value for parameter not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPF9999 E Function check.

API introduced: V5R1

Top | Database and File APIs | APIs by category

List Record Formats (QUSLRCD) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Qualified file name Input Char(20)
4 Override processing Input Char(1)

 Optional Parameter Group:

5 Error code I/O Char(*)

 Service Program Name: QUSLRCD

 Default Public Authority: *USE

 Threadsafe: No

The List Record Formats (QUSLRCD) API generates a list of record format information contained within
the specified file and places the list in a specified user space. The created list replaces any existing
information in the user space.

You can use the QUSLRCD API with database file types, such as *PF, *LF, and *DDMF, and device file
types, such as *DSPF, *TAPF, *DKTF, *PRTF, *SAVF, and *ICFF.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

File Library Authority

*USE

File Authority

*OBJOPR

User Space Lock

*EXCLRD

File Lock

*SHRRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The name of the user space that is to receive the generated list, and the library in which it is located.
The first 10 characters contain the user space name, and the second 10 characters contain the
library name. You can use these special values for the library name:

*CURLIB The job's current library
*LIBL The library list

Format name

INPUT; CHAR(8)

The format of the information returned. The possible format names are:

RCDL0100 Record format name only.
RCDL0200 Record format name and additional information. This format requires more system

paging and takes longer to produce than the RCDL0100 format.
RCDL0300 Record format name and device file information. This format requires more system

paging and takes longer to produce than the RCDL0100 format. This format is only
applicable to device file types.

For more information, see RCDL0100 List Data Section, RCDL0200 List Data Section or
RCDL0300 List Data Section

Qualified file name

INPUT; CHAR(20)

The name of the file whose record format names are placed in the list, and the library in which it is
located. The first 10 characters contain the file name, and the second 10 characters contain the
library name. You can use these special values for the library name:

*CURLIB The job's current library
*LIBL The library list

Override processing

INPUT; CHAR(1)

Whether overrides are to be processed. The possible values are:

0 No override processing
1 Override processing

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Format of the Generated List

The record format list consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section●

For details about the user area and generic header, see User Space Format for List APIs. For details about
the other items, see the following sections. For descriptions of each field, see Field Descriptions.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header as a displacement to the next list entry. The size of each entry may be padded at the end. If
you do not use the entry size, the result may not be valid. For examples of how to process lists, see API
examples.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name

20 14 CHAR(8) Format name

28 1C CHAR(10) File name specified

38 26 CHAR(10) File library name specified

48 30 CHAR(1) Override processing

Header Section

Offset

Type FieldDec Hex

0 0 CHAR(10) File name used

10 A CHAR(10) File library name used

20 14 CHAR(10) File type

30 1E CHAR(50) File text description

80 50 BINARY(4) File text description CCSID

84 54 CHAR (13) File creation date

RCDL0100 List Data Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Record format name

RCDL0200 List Data Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Record format name

10 A CHAR(13) Record format ID

23 17 CHAR(1) Reserved

24 18 BINARY(4) Record length

28 1C BINARY(4) Number of fields

32 20 CHAR(50) Record text description

82 52 CHAR(2) Reserved

84 54 BINARY(4) Record text description CCSID

RCDL0300 List Data Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Record format name

10 A CHAR(2) Lowest response indicator

12 C BINARY(4) Buffer size

16 10 CHAR(20) Record format type

36 24 CHAR(1) Starting line number

37 25 CHAR(1) Separate indicator area present

Field Descriptions

Buffer size. The user buffer size.

Record text description CCSID.

0 There is no record text description.
1-65,535 The CCSID for the record text description.

File creation date. The date of the file in the format CYYMMDDHHMMSS as follows:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.
YY Year
MM Month
DD Day
HH Hour
MM Minute
SS Second

File library name specified. The name of the file library specified in the call to the API.

File library name used. The name of the library that contained the file. If the library requested was *LIBL
or *CURLIB, this field contains the name of the library where the system found the file.

File name specified. The name of the file specified in the call to the API.

File name used. The name of the file whose record formats are listed. If override processing was requested,
this is the actual file.

File text description. The text description of the file.

File text description CCSID.

0 There is no file text description.
1-65,535 The CCSID for the file text description.

File type. The type of file found:

BSCF Binary synchronous communications (BSC) file
CMNF Communications file
DSPF Display file
DDMF Distributed data management file
DKTF Diskette file
ICFF Intersystem communications function file
LF Logical file
MXDF Mixed file
PF Physical file
PRTF Printer file

SAVF Save file
TAPF Tape file

Lowest response indicator. The lowest response indicator in the file. The possible values are:

00 No response indicators in the file or response indicators are not applicable
01-99 Response indicator

Number of fields. The number of fields contained in this record format. You can use the List Field
Description (QUSLFLD) API to retrieve field information about this record.

Override processing. Whether overrides are to be processed. The possible values are:

0 No override processing
1 Override processing

Record format name. The name of the format used to list records. The possible values are:

RCDL0100 Record format name only
RCDL0200 Record format name and additional information
RCDL0300 Record format name and device information

Record format name. The name of this record format.

Record length. The length of this record format.

Record text description. The text description of this record format.

Reserved. An ignored field.

Record format type. The type of this record format. The possible values are:

Normal Normal record
SFL Subfile record
SFLMSGRCD Subfile message record
SFLCTL Subfile control record
USRDFN User-defined record
WINDOW Window record

Separate indicator area present. The existence of a separate indicator area. The possible values are:

0 No indicator area
1 Indicator area

Starting line number. A starting line number was specified for this record format. The possible values are:

0 Starting line number is not specified.
1 Starting line number is specified.

User space library name. The name of the library that contains the user space that is to receive the
generated list.

User space name. The name of the user space that is to receive the generated list.

Error Messages

Message ID Error Message Text
CPF24B4 E Severe error while addressing parameter list.
CPF3CF1 E Error code parameter not valid.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF3C20 E Error found by program &1.
CPF3C21 E Format name &1 is not valid.
CPF3C22 E Cannot get information about file &1.
CPF3C25 E Value &1 for file override parameter is not valid.
CPF3C36 E Number of parameters, &1, entered for this API was not valid.
CPF3C90 E Literal value cannot be changed.
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V1R3

Top | Database and File APIs | APIs by category

List Requested Statistics Collections
(QDBSTLRS, QdbstListRequestedStatistics)
API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format of output Input Char(8)
3 Input data Input Char(*)
4 Length of input data Input Binary(4)
5 Format of input data Input Char(8)
6 Error code I/O Char(*)

 Service Program Name: QDBSTMGR

 Default Public Authority: *USE

 Threadsafe: Yes

The List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) API lists details for
not yet completed or not successfully completed statistics collection requests by a call to the Request
Statistics Collections (OPM, QDBSTRS; ILE QdbstRequestStatistics) API, the Update Statistics Collection
(QDBSTUS, QdbstUpdateStatistics) API, or automatically by the system.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

ASP Device Authority

*EXECUTE

File Authority

*OBJOPR

File Library Authority

*EXECUTE

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that is to receive the generated list and the library in which it is located. The first 10
characters contain the user space name, and the second 10 characters contain the library name. You
can use these special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

Format of output

INPUT; CHAR(8)

The format of the statistics collections list to be returned. If Format STOP0100 is specified, the
fields that were selected by the caller are returned for each statistics collection request in the list.
Possible format names are:

STOP0100 Statistics collection requests list with keyed return fields, with fields to return
specified in input format STIP0100.

Refer to Format of the generated list and STOP0100 Format for more information.

Input data

INPUT; CHAR(*)

The buffer containing the input parameters according to the format of input data parameter. The
buffer content has to start at a 4-byte boundary.

Length of input data

INPUT; BINARY(4)

The length of the input data buffer provided. This must be the exact length of the used input format
as specified below.

Format of input data

INPUT; CHAR(8)

The format of the input data. Possible values are:

STIP0100 List Requested Statistics Collections input parameters. To be used with output
format STOP0100.

Refer to STIP0100 Format for more information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

STIP0100 Format

The following table shows the input parameters for this API. See Field Descriptions for details of the fields
listed.

Offset

Type FieldDec Hex

0 0 BINARY(4) List filter option

4 4 CHAR(48) Continuation handle

52 34 BINARY(4) Offset to fields to return

56 38 BINARY(4) Number of fields to return

60 3C CHAR(*) Reserved

 Array(*) of
BINARY(4)

Keys of fields to return

 CHAR(*) Reserved

Valid Keys

The following keys describe information at the request level and are repeated in list entries describing the
single statistics collections within a request. See Field Descriptions for details of the fields listed.

Key Type Description

1 CHAR(10) ASP device name used

2 CHAR(10) File name used

3 CHAR(10) File library name used

4 CHAR(10) File member name used

6 CHAR(16) Internal request ID

34 CHAR(10) Name of requesting user profile

35 CHAR(26) Timestamp of request

36 CHAR(1) Request status

37 CHAR(26) Timestamp

38 CHAR(26) Qualified job name

39 CHAR(8) Thread ID

40 BINARY(4) Progress percentage

8 BINARY(4) Estimated time

42 CHAR(7) Message ID

49 CHAR(*) Message Data

50 CHAR(10) Message File Library

51 CHAR(10) Message File

43 BINARY(4) Total number of statistics collections for internal request ID

The following keys describe information at the statistics collection level for a request.

Key Type Description

44 BINARY(4) Running number of statistics collection for internal request ID

46 CHAR(*) Statistics collection name

18 CHAR(10) Aging mode

28 BINARY(4) Number of columns

29 Array(*) of
CHAR(10)

Column names

30 Array(*) of
CHAR(20)

Qualified translation table names

Format of the Generated List

The statistics collections list consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section●

The user area and generic header are described in User space format for list APIs. The remaining items are
described in the following sections.

Input Parameter Section

The following information is returned in the input parameter section. For detailed descriptions of the fields
in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name specified

10 0 CHAR(10) User space library name specified

20 0 CHAR(8) Format of output specified

28 0 BINARY(4) Length of input data specified

32 0 CHAR(8) Format of input data specified

40 0 BINARY(4) List filter option specified

44 0 CHAR(48) Continuation handle specified

96 0 BINARY(4) Offset to fields to return specified

100 0 BINARY(4) Number of fields to return specified

104 0 BINARY(4) Displacement to specified fields to return

100 0 Array(*) of
BINARY(4)

Keys of fields to return specified

Header Section

For detailed descriptions of the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(48) Continuation handle

STOP0100 Format

The following information is returned in the list data section per statistics collection list entry for Format
STOP0100. The fields are returned in the order requested. See Field Descriptions for details of the fields
listed.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of list entry

0 0 BINARY(4) Number of key fields returned

These fields
repeat, in the
order listed, for
each key
selected.

BINARY(4) Length of field information returned

BINARY(4) Key identifier

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved (padding to the next 4-byte boundary)

Field Descriptions

ASP device name used. The actual auxiliary storage pool device name used, after possible resolution of
special values.

Note: If the API caller does not have the documented ASP Device Authority for the ASP device, the ASP
device name returned will be set to all blanks.

Aging mode. Whether the system is allowed to age or remove the statistics collection. The possible values
are:

*SYS Refresh or removal of the resulting statistics collections will be performed automatically by the
statistics manager.

*USER Refresh or removal will only occur when a user requests it.

Column names. The array of names of the columns within the statistics collection, in the same order as at
request time. Each array elements also corresponds to the array element at the same position in the
Qualified translation table names field. The array dimension is given by the Number of columns field.

Note: If the API caller does not have the documented ASP Device Authority, File Authority, and File
Library Authority for the file containing these specific columns, the column names returned will be set to
all blanks.

Continuation handle (input section). The handle used to continue from a previous call to this API that
resulted in partially complete information. You can determine if a previous call resulted in partially
complete information by checking the Information Status variable in the generic user space header
following the API call.

If the API is not attempting to continue from a previous call, this parameter must be set to blanks.
Otherwise, a valid continuation value must be supplied. The value may be obtained from the list header
section of the user space used in the previous call. When continuing, the first entry in the returned list is the
entry that immediately follows the last entry returned in the previous call.

Continuation handle (header section). A continuation point for the API. This value is set based on the
contents of the Information Status variable in the generic header for the user space. The following situations
can occur:

Information status-C The information returned in the user space is valid and complete. No continuation
is necessary and the continuation handle is set to blanks.

Information status-P The information returned in the user space is valid but incomplete. The user may
call the API again, starting where the last call left off. The continuation handle
contains a value which may be supplied as an input parameter in later calls.

Information status-I The information returned in the user space is not valid and incomplete. The
content of the continuation handle is unpredictable.

Data. The data returned for the key identifier.

Displacement to specified fields to return. The displacement to the start of the array of specified fields to
return.

Note: This is not the offset specified on input, but the displacement within the input parameter section. See
Offset to fields to return specified instead.

Estimated time. The estimated time in seconds to collect the statistics for this request. This will be zero for
all request statuses but '0' (pending) and '1' (active).

Note: For request status '1' (active), the estimate is for the complete request, not for the remaining work to
be done. The also returned progress percentage can be used to calculate the estimated time left before the
request is complete.

File library name used. The actual file library name used, after possible resolution of special values.

Note: If the API caller does not have the documented ASP Device Authority and File Library Authority for
this specific library, the library name returned will be set to all blanks.

File member name used. The actual file member name used, after possible resolution of special values.

Note: If the API caller does not have the documented ASP Device Authority, File Authority, and File
Library Authority for the file containing this specific member, the file member name returned will be set to
all blanks.

File name used. The actual file name used.

Note: If the API caller does not have the documented ASP Device Authority, File Authority, and File
Library Authority for this specific file, the file name returned will be set to all blanks.

Internal request ID. Uniquely identifies a requested statistics collections. See the Request statistics
collections (OPM, QDBSTRS; ILE QdbstRequestStatistics) API.

Key identifier. The field returned. For a list of valid keys, see Valid Keys.

Keys of fields to return. The list of fields to return per list entry. For a list of valid keys, see Valid Keys.

Length of data. The length of the data returned for the field.

Length of field information returned. Total number of bytes returned for this field.

Length of list entry. Number of bytes returned for this list entry.

List filter option. The statistics collection requests to return. The filter option is a bit field and can be
computed by adding up desired single filter values from the following list:

1 List requests in '0' (pending) status.

2 List requests in '1' (active) status.

4 List requests in '2' (error) status.

For information on the request status, see the Request Status field.

Message ID. For request status '2' (error) only: A message ID describing the error.

Message File. For request status '2' (error) only: The message file for the Message ID.

Message File Library. For request status '2' (error) only: The library where the Message File is located.

Message Data. For request status '2' (error) only: The message field data for the Message ID.

Name of requesting user profile. The name of user profile that requested the statistics collection. The
name will be *SYS for statistics collections automatically requested by the system.

Number of columns. Number of columns within the single statistics collection.

Number of fields to return. The number of fields to return for each list entry.

Number of key fields returned. Number of fields actually returned.

Offset to fields to return specified. Offset to fields to return as specified on the call of the API.

Progress percentage. For request status '1' (active) only: The percentage of completion of the request. For
all other request statuses this will be zero.

Qualified job name. Depending on the request status, the following values are valid:

'0' (pending) The job that submitted the request.

'1' (active) The job processing the request.

'2' (error) The job that did process the request.

The qualified job name has three parts:

Job name Char(10).

User name Char(10).

Job number Char(6).

Qualified translation table names. The array of names of the translation tables that were specified, when
the statistics collection was requested, in the same order as requested. Each array elements corresponds to
the array element at the same position in the Column names field. The first 10 characters contain the
translation table name, and the second 10 characters contain the name of the library where the table is
located. The array dimension is given by the Number of columns field.

Note: For system initiated requests, the translation table name and the library can be set to the following
special value:

*UNKNOWN The information is not available in a suitable form.

Request status. The current status of the requested statistics collection. The possible values are:

'0' Pending. Request is scheduled for later processing.

'1' Active. Request is currently being processed.

'2' Error. Request processing did end in error and no statistics data was stored.

Note:Only the most recently-ended requests are listed.

Reserved. Reserved for future use. If this field is input, the field must set to hexadecimal zeros.

Reserved (in STOP0100 format). Structure padding to guarantee alignment to the next 4-byte boundary.

Running number of statistics collections for internal request ID. Current index of the statistics
collection definition for this request. The statistics collection definitions will be returned in the same order
as requested.

Statistics collection name. A name unique among all statistics collections for the file member.

Thread ID. For request status '1' (active) only: The thread that is currently processing the request.

Timestamp. Depending on the request status, this timestamp shows:

'0' (pending) The time the request was made (same as timestamp of request).

'1' (active) The time processing started.

'2' (error) The time the request ended in error.

Timestamp of request. The timestamp showing when the statistics collection was requested.

Total number of statistics collections for internal request ID. The number of statistics collection
definitions for this request, identifed by the internal request ID.

User space name specified. The user space name as specified on the call of the API.

User space library name specified. The user space library name as specified on the call of the API.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

the <qdbst.h> include file in library QSYSINC, for API-related structure declarations and special
value declarations.

●

the <qdbstmgr.h> include file in library QSYSINC, for the QdbstCancelRequestedStatistics API
prototype.

●

the <qdbstcrs.h> include file in library QSYSINC, for the QDBSTCRS API prototype.●

Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) API●

Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) API●

List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) API●

List Statistics Collections (QDBSTLS, QdbstListStatistics) API●

Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) API●

Update Statistics Collections (QDBSTUS, QdbstUpdateStatistics) API●

API introduced: V5R2

Top | Database and File APIs | APIs by category

List Statistics Collection Details (QDBSTLDS,
QdbstListDetailStatistics) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format of output Input Char(8)
3 Input data Input Char(*)
4 Length of input data Input Binary(4)
5 Format of input data Input Char(8)
6 Error code I/O Char(*)

 Service Program Name: QDBSTMGR

 Default Public Authority: *USE

 Threadsafe: Yes

The List Statistics Collection Details (QDBSTLDSE, QdbstListDetailStatistics) API lists additional
statistics data for a single statistics collection not returned by the List Statistics Collections (QDBSTLS,
QdbstListStatistics) API. This additional data can be lists of most frequent values and histogram range
values.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

ASP Device Authority

*EXECUTE

File Authority

*OBJOPR, *READ

File Library Authority

*EXECUTE

File Lock

*SHRRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that is to receive the generated list, and the library in which it is located. The first 10
characters contain the user space name, and the second 10 characters contain the library name. You
can use these special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

Format of output

INPUT; CHAR(8)

The format of the statistics collection details list to be returned. Possible format names are:

STOV0100 Statistics collection details list with list entries for the requested keys.

Refer to Format of generated list and STOV0100 Format for more information.

Input data

INPUT; CHAR(*)

The buffer containing the input parameters according to the format of input data parameter. The
buffer content has to start at a 4-byte boundary.

Length of input data

INPUT; BINARY(4)

The length of the input data buffer provided. This must be the exact length of the used input format
as specified below.

Format of input data

INPUT; CHAR(8)

The format of the input data. Possible values are:

STIV0100 List statistics collection details input parameters.

Refer to STIV0100 Format for more information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

STIV0100 Format

See Field Descriptions for details of the fields listed.

Offset

Type FieldDec Hex

0 0 CHAR(10) ASP device name

10 0A CHAR(10) File name

20 14 CHAR(10) File library name

30 1E CHAR(10) File member name

40 28 CHAR(16) Internal statistics ID

56 38 CHAR(48) Continuation handle

104 68 BINARY(4) Offset to fields to return

108 6C BINARY(4) Number of fields to return

112 70 CHAR(*) Reserved

 Array(*) of
BINARY(4)

Keys of fields to return

 CHAR(*) Reserved

Valid Keys

See Field Descriptions for details of the fields listed.

Key Type Description

32 CHAR(*) Most frequent values

33 CHAR(*) Histogram range values

Format of the Generated List

The statistics collection details list consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section●

The user area and generic header are described in User space format for list APIs. The remaining items are
described in the following sections.

Input Parameter Section

The following information is returned in the input parameter section. For detailed descriptions of the fields
in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name specified

10 0 CHAR(10) User space library name specified

20 0 CHAR(8) Format of output specified

28 0 BINARY(4) Length of input data specified

32 0 CHAR(8) Format of input data specified

40 0 CHAR(10) ASP device name specified

50 0 CHAR(10) File name specified

60 0 CHAR(10) File library name specified

70 0 CHAR(10) File member name specified

80 0 CHAR(48) Continuation handle specified

128 0 BINARY(4) Offset to fields to return specified

132 0 BINARY(4) Number of fields to return specified

136 0 BINARY(4) Displacement to specified fields to return

 Array(*) of
BINARY(4)

Keys of fields to return specified

Header Section

For detailed descriptions of the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) ASP device name used

10 0 CHAR(10) File library name used

20 0 CHAR(10) File member name used

30 0 CHAR(2) Reserved

32 0 CHAR(48) Continuation handle

80 0 BINARY(4) Displacement to detail values header of most
frequent values

84 0 BINARY(4) Displacement to detail values header of
histogram range values

Detail Values Header

This structure contains fields describing general information for list entries of a certain kind (most frequent
values or histogram range values) returned in the list data section.

See Field Descriptions for details of the fields listed.

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to first detail value entry

4 0 BINARY(4) Number of detail value entries

8 0 BINARY(4) Length of detail value entry

12 0 BINARY(4) Number of detail value columns

16 0 BINARY(4) Displacement to format of first detail value
column.

20 0 BINARY(4) Length of detail value column format

24 0

List Data Section - STOV0100 Format

The list data section returned for output format STOV0100 contains list entries as specified in the Most
frequent values list entry format and the Histogram range values list entry format.

See the Header Section for additional fields that describe information common to all Most frequent value
and Histogram range value list entries.

Most Frequent Values List Entry Format

The format below describes the layout of a single most frequent value returned as a list entry in the list data
section. See Field Descriptions and the Header Section for details of the fields listed.

Offsets given are relative to the start of the list entry.

Offset

Type FieldDec Hex

0 0 BINARY(8) Count for this most frequent value

0 0 BINARY(4) Displacement to first most frequent value
column value

0 0 CHAR(4) Reserved

 Array of
CHAR(*)

Most frequent value columns values

 CHAR(*) Reserved

Histogram Range Values List Entry Format

This format describes the layout of a single histogram range value returned as a list entry in the list data
section. See Field Descriptions and the Header Section for details of the fields listed.

Offsets given are relative to the start of the list entry.

Offset

Type FieldDec Hex

0 0 BINARY(8) Count for this histogram range value

0 0 BINARY(8) Count for this histogram range's high value

0 0 BINARY(4) Displacement to first histogram range value
column pair

0 0 CHAR(4) Reserved

 Array of
CHAR(*)

Low/High value pairs of histogram range value
columns

 CHAR(*) Reserved

Detail Value Format Description

The description of a single detail value column value. See Field Descriptions for details of the fields listed.

Offset

Type FieldDec Hex

0 0 BINARY(4) SQL data type

0 0 BINARY(4) Field length

0 0 BINARY(4) Length in bytes

0 0 BINARY(4) Scale

0 0 BINARY(4) Precision

0 0 BINARY(4) Radix

0 0 BINARY(4) CCSID

0 0 CHAR(10) Translation table name

0 0 CHAR(10) Translation table library name

Field Descriptions

ASP device name. One auxiliary storage pool device identifying the ASP group in which the library and
file are located. This can be an ASP device name (for an ASP with a number greater than 32), or one of the
following special values:

*CURRENT The ASP device attached to the current thread or *SYSBAS, when no ASP device name is
attached to the current thread.

*SYSBAS The system ASP (ASP number 1) and all basic ASPs (ASP numbers 2 through 32).

ASP device name used. The actual auxiliary storage pool device name used, after possible resolution of
special values.

CCSID. The value's CCSID for character type values.

Note: The CCSID here describes the CCSID of the orignal value, before translation using the also given
translation table.

Continuation handle (input section). The handle used to continue from a previous call to this API that
resulted in partially complete information. You can determine if a previous call resulted in partially
complete information by checking the Information Status variable in the generic user space header
following the API call.

If the API is not attempting to continue from a previous call, this parameter must be set to blanks.
Otherwise, a valid continuation value must be supplied. The value may be obtained from the list header
section of the user space used in the previous call. When continuing, the first entry in the returned list is the
entry that immediately follows the last entry returned in the previous call.

Continuation handle (header section). A continuation point for the API. This value is set based on the
contents of the Information Status variable in the generic header for the user space. The following situations
can occur:

Information status-C The information returned in the user space is valid and complete. No continuation
is necessary and the continuation handle is set to blanks.

Information status-P The information returned in the user space is valid but incomplete. The user may
call the API again, starting where the last call left off. The continuation handle
contains a value which may be supplied as an input parameter in later calls.

Information status-I The information returned in the user space is not valid and incomplete. The
content of the continuation handle is unpredictable.

Count for this histogram range's high value. If the statistics collection key choosen for the high value of
this histogram range value is estimated to occur very often compared to the other values in this histogram
range, this count will be set to the estimated number of occurences of this key value in the file member.

Note: A value of zero indicates, that this additional information about the high value is not available.

Count for this histogram range value. How many statistics collection key values are estimated to occur in
this histogram range.

Count for this most frequent value. How often the most frequent statistics collection key value is
estimated to occur in the file member.

Displacement detail values header of histogram range values. Displacement to the general information
for the histogram range values list entries.

Note: The displacement will be zero if no histogram range value information was returned.

Displacement to detail values header of most frequent values. Displacement to the general information
for the most frequent values list entries. The displacement will be zero if no most frequent value
information was returned.

Displacement to first histogram range value column pair. Displacement to the start of the array of
Low/High value pairs of histogram range value columns.

Displacement to first most frequent value column value. Displacement to the start of the array of Most

frequent value column values.

Displacement to format of first detail value column. Displacement to the array of format descriptions for
the detail value column values (see Number of detail value columns and Length of detail value column
format).

Note: Due to performance reasons, these formats might be different from the formats of the original
columns the detail value is based on. For example, long character columns might be represented in a
truncated form, or varying character columns might have been converted to a fixed length form.

Note: For DATE, TIME, and TIMESTAMP columns, the detail value column values will be returned as
*ISO formatted text and the column format will describe a character SQL data type of appropriate length.

>Displacement to specified fields to return. Displacement to the start of the array of specified fields to
return.

Note: This is not the offset specified on input, but the displacement> within the input parameter section.
See the Offset to fields to return specified instead.

Field length. Value field length.

File library name. The location of the file for which statistics collection details are to be listed. You can
use these special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

File library name used. The actual file library name used, after possible resolution of special values.

File member name. The name of the file member to be used for the list request. This value can be a
specific file member name or one of the following special values:

*FIRST The first member (in the order created) in the specified file.

*LAST The last member (in the order created) in the specified file.

File member name used. The actual file member name used, after possible resolution of special values.

File name. The name of the file for which statistics collection details are to be listed. The file has to be an
existing local, single format, physical file.

Histogram range values. The list of histogram range values. See Histogram range values list entry format
for the layout of this list.

Internal statistics ID. Together with the qualified file name and member name, this represents a unique ID
for the statistics collection details to be listed.

Key identifier. The field returned. For a list of valid keys, see Valid Keys.

Keys of fields to return. The list of fields in the list. For a list of valid keys, see Valid Keys.

Length in bytes. Length of returned column value in list entry, in bytes. This also gives the displacement to
the next column value, where appropriate.

Length of detail value column format. The number of bytes for a single detail value column format. This
is also the offset to the next detail value column format, for any but the last detail value column format of
this kind of detail values. (See Number of detail value columns).

Length of detail value entry. The number of bytes for a single detail value list entry. This is also the offset
to the next detail value list entry for any but the last detail value list entry of this kind of detail values in the
list data section (See Number of detail value entries).

Low/High value pairs of histogram range value columns. The array of lower, exclusive, and upper,
inclusive, histogram range column values for each column in the statistics collection key. The values are
returned in the following order: Low value of first range value column, high value of first range value
column, ... , low value of last range value column, high value of last range value column. The array
dimension is given by the Number of detail value columns and the formats of the column values are
referenced by the Displacement to format of first detail value column. Lower and upper value column
always have the same format for a single column in the statistics collection key. The size of a single value
column is given by the Length in bytes in the format.

Note: The column values for the low value of the first histogram range will be set to all X'00' and should be
treated as undefined, representing 'negative infinity'.

Most frequent value columns values. The array of this most frequent value's column values. The array
dimension is given by the Number of detail value columns and the formats of the column values are
referenced by the Displacement to format of first detail value column. The size of a single value column is
given by the Length in bytes in the corresponding format.

Most frequent values. The list of most frequent values. See Most frequent values list entry format for the
layout of this list.

Number of detail value columns. Number of columns in the statistics key for this kind of detail values.

Number of detail value entries. Number of list entries for this kind of detail values (most frequent values
or histogram range values) returned on this API call. This value will be zero if this kind of detail value was
not requested to be returned, or, if during this API call, space was no longer available to fit any value
information of this kind into the user space besides other requested detail information. See the Continuation
handle in the Header Section for information on how to retrieve the remaining API information in such a
case.

Number of fields to return. The number of fields to return in the list.

Offset to fields to return. Offset to the start of the array of fields to return.

Offset to fields to return specified. The offset to fields to return as specified on the call of the API.

Offset to first detail value entry. The offset to the start of the list of this kind of detail value entries within
the List data section - STOV0100 Format.

Note: The offset is relative to the start of the user space. The offset is valid only if the Number of detail
value entries field is not set to zero.

Offset to value of most frequent value column. The offset to the value of the most frequent value column.

Precision. The precision of the value for numeric data type values.

Radix. Whether the value precision is specified in number of binary or decimal digits for numeric data type
values. The possible values are:

2 Value precision is number of binary digits.

10 Value precision is number of decimal digits.

Reserved. Reserved for future use. If this field is input, the field must set to hexadecimal zeros.

SQL data type. The SQLTYPE of the value as explained in the SQL Reference.

Scale. The scale of the value for numeric data type values.

Translation table library name. The library where the translation table used was located. If no translation
table was used, the library name is set to all blanks.

Translation table name. The translation table used on the value, when the statistics collection was created.
If no translation table was used, the table name is set to all blanks.

Note: The value is actually returned in the translated form.

User space name specified. The user space name as specified on the call of the API.

User space library name specified. The user space library name as specified on the call of the API.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

the <qdbst.h> include file in library QSYSINC, for API-related structure declarations and special
value declarations.

●

the <qdbstmgr.h> include file in library QSYSINC, for the QdbstCancelRequestedStatistics API
prototype.

●

the <qdbstcrs.h> include file in library QSYSINC, for the QDBSTCRS API prototype.●

Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) API●

Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) API●

List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) API●

List Statistics Collections (QDBSTLS, QdbstListStatistics) API●

Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) API●

Update Statistics Collections (QDBSTUS, QdbstUpdateStatistics) API●

API introduced: V5R2

Top | Database and File APIs | APIs by category

List Statistics Collections (QDBSTLS,
QdbstListStatistics) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format of output Input Char(8)
3 Input data Input Char(*)
4 Length of input data Input Binary(4)
5 Format of input data Input Char(8)
6 Error code I/O Char(*)

 Service Program Name: QDBSTMGR

 Default Public Authority: *USE

 Threadsafe: Yes

The List Statistics Collections (QDBSTLS, QdbstListStatistics) API lists all of the columns and
combination of columns for a given file member for which statistics are available. It will optionally list
those columns not contained in any statistics collection.

Each returned list entry contains a number of different statistic data items, including the number of
histogram ranges and the number of most frequent values, while detailed information for these two can be
retrieved using the List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) API, using the
internal statistics ID returned by the QdbstListStatistics API.

The QdbstListStatistics API also allows the user to query statistics-related attributes at the file member
level.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

ASP Device Authority

*EXECUTE

File Authority

*OBJOPR, *READ

File Library Authority

*EXECUTE

File Lock

*SHRRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that is to receive the generated list, and the library in which it is located. The first 10
characters contain the user space name, and the second 10 characters contain the library name.

You can use these special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

Format of output

INPUT; CHAR(8)

The format of the statistics collections list to be returned. If format STOL0100 is specified, the
fields that were selected by the caller will be returned for each statistics collection in the list.
Possible format names are:

STOL0100 Statistics collections list with keyed return fields, with fields to return specified in
input format STIL0100.

Refer to Format of Generated List and STOL0100 Format for more information.

Input data

INPUT; CHAR(*)

The buffer containing the input parameters according to the format of input data parameter. The
buffer content has to start at a four-byte boundary.

Length of input data

INPUT; BINARY(4)

The length of the input data buffer provided. This must be the exact length of the used input format
as layed out below.

Format of input data

INPUT; CHAR(8)

The format of the input data. Possible values are:

STIL0100 List statistics collections input parameters. To be used with output format
STOL0100.

Refer to STIL0100 Format for more information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

STIL0100 Format

List statistics collections input parameters. See Field Descriptions for details for the fields listed.

Offset

Type FieldDec Hex

0 0 CHAR(10) ASP device name

10 0 CHAR(10) File name

20 0 CHAR(10) File library name

30 0 CHAR(10) File member name

40 0 CHAR(1) Column option

41 0 CHAR(3) Reserved

44 0 CHAR(48) Continuation handle

92 0 BINARY(4) Offset to fields to return

96 0 BINARY(4) Number of fields to return

100 0 CHAR(*) Reserved

 Array(*) of
BINARY(4)

Keys of fields to return

 CHAR(*) Reserved

Valid Keys

See Field Descriptions for details for the fields listed.

The keys listed belowed can be returned per list entry in the List Data Section - STOL0100 Format, where
each list entry describes a single statistics collection for a specific file member and can be thought of as two
groups of related keys:

Group 1: The following keys describe information at file member level and will repeat in list entries
describing different statistics collections (see group 2) for the same file member:

Key Type Description

1 CHAR(10) ASP device name used

2 CHAR(10) File name used

3 CHAR(10) File library name used

4 CHAR(10) File member name used

9 CHAR(26) Current timestamp of last change

10 BINARY(8) Current number of (undeleted) records.

11 BINARY(8) Current number of deleted records.

12 BINARY(8) Current total count of inserts, updates, and deletes.

47 CHAR(1) Current block system statistics collections option.

48 BINARY(8) Current size of statistics collections.

Group 2: The following keys describe information at statistics collection level per file member:

Key Type Description

7 CHAR(16) Internal statistics ID

46 CHAR(*) Statistics collection name

14 CHAR(10) Name of creating user profile

15 CHAR(26) Timestamp of create

52 CHAR(10) Name of last modifying user profile

53 CHAR(26) Timestamp of last modification

16 BINARY(4) Number of most frequent values available

17 BINARY(4) Number of histogram ranges available

18 CHAR(10) Aging mode

19 CHAR(1) Aging status

22 CHAR(1) Translation attribute

23 BINARY(8) Number of (undeleted) records

24 BINARY(8) Number of deleted records

25 BINARY(8) Total counts of inserts, updates, and deletes

26 BINARY(8) Number of distinct values (cardinality)

27 BINARY(8) Number of NULLs

28 BINARY(4) Number of columns

29 Array(*) of
CHAR(10)

Column names

41 Array(*) of
CHAR(1)

Translation attributes

30 Array(*) of
CHAR(20)

Qualified translation table names

31 Array(*) of
CHAR(*)

Column descriptions

Format of the Generated List

The statistics collections list consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section●

The user area and generic header are described in User Space Format for List APIs. The remaining items
are described in the following sections. For detailed descriptions of the fields in the tables, see Field
Descriptions.

Input Parameter Section

The following information is returned in the input parameter section. For detailed descriptions of the fields
in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name specified

10 0 CHAR(10) User space library name specified

20 0 CHAR(8) Format of output specified

28 0 BINARY(4) Length of input data specified

32 0 CHAR(8) Format of input data specified

40 0 CHAR(10) ASP device name specified

50 0 CHAR(10) File name specified

60 0 CHAR(10) File library name specified

70 0 CHAR(10) File member name specified

80 0 CHAR(1) Column option specified

81 0 CHAR(3) Reserved

84 0 CHAR(48) Continuation handle specified

136 0 BINARY(4) Offset to fields to return specified

140 0 BINARY(4) Number of fields to return specified

144 0 BINARY(4) Displacement to specified fields to return

 Array(*) of
BINARY(4)

Keys of fields to return specified

Header Section

For detailed descriptions of the fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(48) Continuation handle

List Data Section - STOL0100 Format

For output format STOL0100, the list data section has the following layout, where each list entry contains
the requested fields for a single statistics collection for a specific file member. See Valid Keys; note that the
fields for each list entry will be returned in the order requested.

See Field Descriptions for details for the fields listed in the layout.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of list entry

0 0 BINARY(4) Number of key fields returned

These fields
repeat, in the
order listed, for
each key
selected.

BINARY(4) Length of field information returned

BINARY(4) Key identifier

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved (padding to the next four-byte
boundary)

Column Description

See Field Descriptions for details of the fields listed.

Offset

Type FieldDec Hex

0 0 BINARY(4) SQL data type

4 0 BINARY(4) Field length

8 0 BINARY(4) Length in bytes

12 0 BINARY(4) Scale

16 0 BINARY(4) Precision

20 0 BINARY(4) Radix

24 0 BINARY(4) CCSID

28 0 CHAR(1) NULL capable

29 0 CHAR(1) Has default

30 0 CHAR(50) Column text

80 0 BINARY(4) Ordinal position

84 0

Field Descriptions

Aging mode. Whether the system is allowed to age or remove the statistics collection. The possible values
are:

*SYS Refresh or removal of the resulting statistics collections will be performed automatically by the
statistics manager.

*USER Refresh or removal will only occur when a user requests it.

Aging status. How current the statistics data is. The possible values are:

'0' There are no indications, that the statistics data needs to be refreshed.

'1' There are indications, that the statistics data needs to be refreshed.

ASP device name. One auxiliary storage pool device identifying the ASP group in which the library and
file are located. This can be an ASP device name (for an ASP with a number greater than 32), or one of the
following special values:

*CURRENT The ASP device attached to the current thread or *SYSBAS, when no ASP device name is
attached to the current thread.

*SYSBAS The system ASP (ASP number 1) and all basic ASPs (ASP numbers 2 through 32).

ASP device name used. The actual auxiliary storage pool device name used, after possible resolution of
special values.

CCSID. The column CCSID for character type columns.

Column descriptions. The array of detailed column descriptions in the same order as the columns were
requested. The array dimension is given by the number of columns field. See Column description for the
layout of a single column description.

Column names. The array of names of the columns within the statistics collection, in the same order as at
request time. The array dimension is given by the number of columns field.

Column option. Which columns and combination of columns to include in the list. The possible values are:

'0' Do not include pseudo, single column statistics collection list entries for columns not contained in
any actual statistics collection.

'1' Do include pseudo, single column statistics collection list entries for columns not contained in any
actual statistics collection.

Note: Pseudo statistics collections will be marked by having an internal statistics ID of zero. All
other fields besides number of columns, column names, and column descriptions fields will be
undefined, if requested to be returned.

Column text. The character string supplied with the LABEL ON SQL statement for this column.

Continuation handle (input section). The handle used to continue from a previous call to this API that
resulted in partially complete information. You can determine if a previous call resulted in partially
complete information by checking the Information Status variable in the generic user space header
following the API call.

If the API is not attempting to continue from a previous call, this parameter must be set to blanks.
Otherwise, a valid continuation value must be supplied. The value may be obtained from the list header
section of the user space used in the previous call. When continuing, the first entry in the returned list is the
entry that immediately follows the last entry returned in the previous call.

Continuation handle (header section). A continuation point for the API. This value is set based on the
contents of the Information Status variable in the generic header for the user space. The following situations
can occur:

Information status-C The information returned in the user space is valid and complete. No continuation
is necessary and the continuation handle is set to blanks.

Information status-P The information returned in the user space is valid but incomplete. The user may
call the API again, starting where the last call left off. The continuation handle
contains a value which may be supplied as an input parameter in later calls.

Information status-I The information returned in the user space is not valid and incomplete. The
content of the continuation handle is unpredictable.

Current block system statistics collections option. Whether system initiated (automatic) statistics
collection requests are being blocked (not allowed) for this file member. The possible values are:

'0' System initiated statistics collection requests are not blocked.
Note: This is the system default.

'1' System initiated statistics collection requests are blocked.

Current number of deleted records. The total count of deleted records in the file member at the time of
the list request.

Current number of (undeleted) records. The total count of active records in the file member at the time
of the list request.

Current size of statistics collections. The total amount of space in bytes used for statistics collections
related data for this file member.

Current timestamp of last change. The timestamp, when the file member was last changed at the time of
the list request.

Current total count of inserts, updates, and deletes. The number of insert, update, and deletes that were
recorded for the file member at the time of the list request.

Data. The data returned for the key identifier.

Displacement to specified fields to return. Displacement to the start of the array of specified fields to
return.

Note: This is not the offset specified on input, but the displacement within the input parameter section. See
the Offset to fields to return specified instead.

Field length. Column field length.

File library name. Where the file for which statistics collections are to be listed is located. You can use
these special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

File library name used. The actual file library name used, after possible resolution of special values.

File member name. The name of the file member to be used for the list request. This value can be a
specific file member name or one of the following special values:

*FIRST The first member (in the order created) in the specified file.

*LAST The last member (in the order created) in the specified file.

*ALL All members in the specified file.

File member name used. The actual file member name used, after possible resolution of special values.

File name. The name of the file for which statistics collections are to be listed, This can be a name of an
existing local, single format, physical file. If an actual name is specified for the file library name, then you
can also use the special value:

*ALL All local, single format, physical files in the specified library.

File name used. The actual file name used.

Has default. Whether the column has a default value (DEFAULT clause or null capable). The possible
values are:

'0' Column does not have a default value.

'1' Column has default value.

Internal statistics ID. Together with the qualified file name and member name this represents a unique ID
for the statistics collection listed.

Note: The ID is stored in binary, non printable form in the character array.

Key identifier. The field returned. For a list of valid keys, see Valid Keys.

Keys of fields to return. The list of fields to return per list entry. For a list of valid keys, see Valid Keys.

Length in bytes. Column length in bytes.

Length of data. The length of the data returned for the field.

Length of field information returned. Total number of bytes returned for this field.

Length of list entry. Number of bytes returned for this list entry.

Name of creating user profile. The name of the user profile, which requested the statistics collection. The
name will be *SYS for statistics collections automatically requested by the system.

Name of last modifying user profile. The name of the user profile, which modified the statistics collection
data last. The name will be *SYS for statistics collections automatically modified by the system.

Note:Updates to just statistics collection attributes will not be logged here.

NULL capable. Whether the column allows NULL values or not. The possible values are:

'0' Column does not allow NULL values.

'1' Column does allow NULL values.

Number of columns. Number of columns within the single statistics collection.

Number of deleted records. The total count of deleted records in the file member at the time the statistics
were collected.

Number of distinct values. The estimated number of distinct (non NULL) values found in the statistics
collection key.

Number of fields to return. The number of fields to return for each list entry.

Number of histogram ranges available. The number of histogram ranges available for this statistics
collection. The actual histogram range values can be obtained using the List Statistics Collection Details
(QDBSTLDS, QdbstListDetailStatistics) API.

Number of key fields returned. Number of fields actually returned.

Number of most frequent values available. The number of most frequent values available for this
statistics collection. The actual most frequent values can be obtained using the List Statistics Collection
Details (QDBSTLDS, QdbstListDetailStatistics) API.

Number of NULLs. The estimated number of NULL values found in the statistics collection key.

Number of (undeleted) records. The total count of active records in the file member at the time the
statistics were collected.

Number of deleted records. The total count of deleted records in the file at the time the statistics were
collected.

Offset to fields to return. Offset to the start of the array of fields to return.

Offset to fields to return specified. Offset to fields to return as specified on the call of the API.

Displacement to specified fields to return. Displacement to the start of the array of specified fields to
return.

Note: This is not the offset specified on input, but the >displacement within the input parameter section.
See the Offset to fields to return specified instead.

Ordinal position. Numeric place of the column in the file member, ordered from left to right, starting with
one.

Precision. The precision of the column for numeric data type columns.

Qualified translation table names. The array of names of the translation tables that were specified, when
the statistics collection was requested, in the same order as requested. The first 10 characters contain the
translation table name, and the second 10 characters contain the name of the library where the table is
located. The array dimension is given by the number of columns field.

Note: For system initiated requests, the translation table name and the library can be set to the special
value:

*UNKNOWN The information is not available in a suitable form.

Radix. Whether the column precision is specified in number of binary or decimal digits for numeric data
types columns. The possible values are:

2 Column precision is number of binary digits.

10 Column precision is number of decimal digits.

Reserved. Reserved for future use. If this field is input, the field must set to hexadecimal zeros.

Reserved (in STOL0100 format). Structure padding to guarantee alignment to the next four bytes
boundary.

Scale. The scale of the column for numeric data type columns.

SQL data type. The SQLTYPE of the column as explained in the SQL Reference.

Statistics collection name. A name unique amongst all statistics collections for the file member.

Timestamp of create. The timestamp, when the statistics collection was created.

Timestamp of last modification. The timestamp, when the statistics collection was last modified. This
includes the initial create and any update of the statistics collection data.

Note: Updates to just statistics collection attributes will not be logged here.

Total count of inserts, updates, and deletes. The number of insert, update, and deletes that were recorded
for the file member at the time the statistics were collected.

Translation attribute. The type of translation used on the combination of character columns in the
statistics collection key before the statistics were calculated. This attribute generalizes the information
given by the the single translation attribute values returned for each column. The possible values are:

'0' Uniquely weighted translation.

'1' Shared weight translation.

'9' No translation.

Translation attributes. The array of translation attributes for the single columns in the statistics collection
key in the same order as requested. The translation attribute indicates the type of translation used on a
character column before the statistics were calculated and generalizes the type of translation defined by the
translation table applied to this column. The possible values for each array entry are:

'0' Uniquely weighted translation.

'1' Shared weight translation.

'9' No translation.

User space name specified. User space name as specified on the call of the API.

User space library name specified. User space library name as specified on the call of the API.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

the <qdbst.h> include file in library QSYSINC, for API-related structure declarations and special
value declarations.

●

the <qdbstmgr.h> include file in library QSYSINC, for the QdbstCancelRequestedStatistics API
prototype.

●

the <qdbstcrs.h> include file in library QSYSINC, for the QDBSTCRS API prototype.●

Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) API●

Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) API●

List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) API●

List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) API●

Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) API●

Update Statistics Collections (QDBSTUS, QdbstUpdateStatistics) API●

API introduced: V5R2

Top | Database and File APIs | APIs by category

Process Command
(QxdaProcessCommandEDRS) API

 Required Parameter Group:

1 Connection handle Input Binary(4)
2 Command Input Char(*)
3 Length of command Input Binary(4)
4 Error code I/O Char(*)

 Service Program Name: QXDAEDRS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Process Command (QxdaProcessCommandEDRS) API is used to run a system command on the
database server system. The command is called exactly as passed, without coded character set identifier
(CCSID) conversion.

Authorities and Locks

Any command

*USE

Library of the command

*EXECUTE

Required Parameter Group

Connection handle

INPUT; BINARY(4)

The handle number of the connection on which to call the command. The connection handle must
have been generated by the QxdaConnectEDRS API in the current job and activation group.

Command

INPUT; CHAR(*)

The command you want to run entered as a character string. If the command contains blanks, it
must be enclosed in apostrophes. The maximum length of the string is 32702 characters.

Length of command

INPUT; BINARY(4)

The length of the command to run.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF180C E Function &1 not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAE14 E Cannot allocate &1 bytes.

CPFB750 E Connection handle specified not valid.

CPFB752 E Internal error in &1 API.

CPFB756 E Rollback operation performed.

CPFB757 E The connection is suspended.

CPFB758 E The EDRS server system has been switched.

xxxnnnn E Any escape message issued by any command may be returned.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Process Extended Dynamic SQL (QSQPRCED)
API

 Required Parameter Group:

1 SQL communications area Output Char(136)
2 SQL descriptor area Input Char(*)
3 Function template format Input Char(8)
4 Function template Input Char(*)
5 Error code I/O Char(*)

 Service Program Name: QSQPRCED

 Default Public Authority: *EXCLUDE

 Threadsafe: Conditional; see Usage Notes.

The Process Extended Dynamic SQL (QSQPRCED) API provides functions to process extended dynamic
SQL statements in an SQL package object. In particular, this API provides the user with the only way to do
blocked INSERT using SQLDA.

Authorities and Locks

Creating an SQL package requires that you have *ADD and *READ authority to the library that will
contain the package. Using an existing SQL package requires that you have *OBJOPR and *READ
authority to the package. To use the PREPARE function of the API, you must have *OBJOPR and *ADD
authority to the package. To use a sort sequence table, you must have *USE authority to the table and
*EXECUTE authority to the library containing the table. To delete a specified package, you must have
*OBJEXIST authority to the package and *EXECUTE authority to the library containing the package.

Required Parameter Group

SQL communications area

OUTPUT; CHAR(136)

This is used for returning diagnostic information. It includes the SQLCODE variable, indicating
whether an error has occurred. If SQLCODE has a value of 0 after a call to this API, the function
was successful.

You should have this space declared in the program that calls this API. This parameter is
considered output because the API uses the space to pass back information. The format of the
structure is standard and can be included using the INCLUDE SQLCA statement in an SQL
program. It is described more completely in the DB2 UDB for iSeries SQL Programming Concepts
topic and DB2 UDB for iSeries SQL Reference topic.

SQL descriptor area

INPUT; CHAR(*)

This is used for you to pass information about the variables being used on a specific SQL
statement. The SQLDA is used for passing the address, data type, length, and coded character set
identifier (CCSID)for variables on an OPEN, EXECUTE, FETCH, or DESCRIBE function.

The format of the structure is standard and can be included using the INCLUDE SQLDA statement
in an SQL program. It is described more completely in the DB2 UDB for iSeries SQL
Programming Concepts topic and DB2 UDB for iSeries SQL Reference topic.

Function template format

INPUT; CHAR(8)

The format of the function template being used. The possible values are:

SQLP0100 Basic template
SQLP0200 Template for using scrollable cursors or blocked INSERT
SQLP0300 Template for options that may improve query performance
SQLP0400 Template for specifying additional options that apply to package creation.

For more information, see SQLP0100 Format, SQLP0200 Format, SQLP0300 Format, or
SQLP0400 Format.

Function template

INPUT; CHAR(*)

A structure that determines the function to perform, the requested statement to process, and the
SQL package to be used. This also contains the text of the statement, which is required for the
PREPARE function. For the format of this parameter, see SQLP0100 Format, SQLP0200 Format,
SQLP0300 Format, or SQLP0400 Format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

SQLP0100 Format

The following shows the format of the function template parameter for the SQLP0100 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Function

1 1 CHAR(10) SQL package name

11 B CHAR(10) SQL package library name

21 15 CHAR(10) Main program name

31 1F CHAR(10) Main program library name

41 29 CHAR(18) Statement name

59 3B CHAR(18) Cursor name

77 4D CHAR(1) Open options

78 4E CHAR(1) Using clause for describe

79 4F CHAR(1) Commitment control

80 50 CHAR(3) Date format

83 53 CHAR(1) Date separator

84 54 CHAR(3) Time format

87 57 CHAR(1) Time separator

88 58 CHAR(3) Naming option

91 5B CHAR(1) Decimal point

92 5C BINARY(2) Blocking factor

94 5E BINARY(2) Statement length

96 5F CHAR(*) Statement text

SQLP0200 Format

The following shows the format of the function template parameter for the SQLP0200 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Function

1 1 CHAR(10) SQL package name

11 B CHAR(10) SQL package library name

21 15 CHAR(10) Main program name

31 1F CHAR(10) Main program library name

41 29 CHAR(18) Statement name

59 3B CHAR(18) Cursor name

77 4D CHAR(1) Open options

78 4E CHAR(1) Using clause for describe

79 4F CHAR(1) Commitment control

80 50 CHAR(3) Date format

83 53 CHAR(1) Date separator

84 54 CHAR(3) Time format

87 57 CHAR(1) Time separator

88 58 CHAR(3) Naming option

91 5B CHAR(1) Decimal point

92 5C BINARY(2) Blocking factor

94 5E BINARY(2) Scrollable option

96 60 BINARY(2) Position option

98 62 BINARY(4) Relative record

102 66 BINARY(4) Number of rows to insert

106 6A BINARY(2) Statement length

108 6C CHAR(*) Statement text

SQLP0300 Format

The following shows the format of the function template parameter for the SQLP0300 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Function

1 1 CHAR(10) SQL package name

11 B CHAR(10) SQL package library name

21 15 CHAR(10) Main program name

31 1F CHAR(10) Main program library name

41 29 CHAR(18) Statement name

59 3B CHAR(18) Cursor name

77 4D CHAR(1) Open options

78 4E CHAR(1) Using clause for describe

79 4F CHAR(1) Commitment control

80 50 CHAR(3) Date format

83 53 CHAR(1) Date separator

84 54 CHAR(3) Time format

87 57 CHAR(1) Time separator

88 58 CHAR(3) Naming option

91 5B CHAR(1) Decimal point

92 5C BINARY(2) Blocking factor

94 5E BINARY(2) Scrollable option

96 60 BINARY(2) Position option

98 62 BINARY(4) Relative record

102 66 BINARY(4) Number of rows to insert

106 6A CHAR(1) Direct map

107 6B CHAR(1) Reuse SQLDA

108 6C CHAR(1) Name check

109 6D CHAR(1) Use pointers

110 6E CHAR(1) WITH HOLD

111 6F CHAR(18) User-defined field

129 81 CHAR(10) Close file name

139 8B CHAR(10) Close library name

149 95 CHAR(1) Reopen

150 96 CHAR(1) Use performance area

151 97 CHAR(5) Reserved

156 9C BINARY(4) Statement text CCSID

160 A0 PTR(SYP) SQL-package system pointer

176 B0 PTR(SYP) Main-program system pointer

192 C0 BINARY(2) Statement length

194 C2 CHAR(*) Statement text

SQLP0400 Format

The following shows the format of the function template parameter for the SQLP0400 format. For detailed
descriptions of the fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Function

1 1 CHAR(10) SQL package name

11 B CHAR(10) SQL package library name

21 15 CHAR(10) Main program name

31 1F CHAR(10) Main program library name

41 29 CHAR(18) Statement name

59 3B CHAR(18) Cursor name

77 4D CHAR(1) Open options

78 4E CHAR(1) Using clause for describe

79 4F CHAR(1) Commitment control

80 50 CHAR(3) Date format

83 53 CHAR(1) Date separator

84 54 CHAR(3) Time format

87 57 CHAR(1) Time separator

88 58 CHAR(3) Naming option

91 5B CHAR(1) Decimal point

92 5C BINARY(2) Blocking factor

94 5E BINARY(2) Scrollable option

96 60 BINARY(2) Position option

98 62 BINARY(4) Relative record

102 66 BINARY(4) Number of rows to insert

106 6A CHAR(1) Direct map

107 6B CHAR(1) Reuse SQLDA

108 6C CHAR(1) Name check

109 6D CHAR(1) Use pointers

110 6E CHAR(1) WITH HOLD

111 6F CHAR(18) User-defined field

129 81 CHAR(10) Close file name

139 8B CHAR(10) Close library name

149 95 CHAR(1) Reopen

150 96 CHAR(1) Use performance area

151 97 CHAR(5) Reserved

156 9C BINARY(4) Statement text CCSID

160 A0 PTR(SYP) SQL-package system pointer

176 B0 PTR(SYP) Main-program system pointer

192 C0 CHAR(10) Sort sequence table name

202 CA CHAR(10) Sort sequence library name

212 D4 CHAR(10) Language identifier

222 DE CHAR(1) Allow copy of data

223 DF CHAR(1) Allow blocking

224 E0 BINARY(2) Statement length

226 E2 CHAR(*) Statement text

Field Descriptions

Allow copy of data. Whether a copy of the data can be used in a SELECT statement. The valid values
follow:

A A copy of the data is used only when necessary.

S The system determines whether to use the data retrieved directly from the database or
to use a copy of the data. The decision is based on which method provides the best
performance. If commitment control level is C or S and the Allow Blocking field is not
L, or if the commitment control level is A or R, then a copy of the data is used only
when it is necessary to run the query.

N A copy of the data is not allowed. If a temporary copy of the data is required to
perform the query, an error message is returned.

The allow copy of data value is required for function 1. It is ignored for other functions.

Allow blocking. Whether the database manager can use record blocking, and the extent to which blocking
can be used for read-only cursors. The valid values follow:

S *READ:
Records are blocked for read-only retrieval of data for cursors the following conditions
are met:

N is specified for the commitment control field, which indicates that commitment
control is not used.

●

The cursor is declared with a FOR FETCH ONLY clause or there are no dynamic
statements that could run a positioned UPDATE or DELETE statement for the
cursor.

●

You can specify S to improve the overall performance of queries that meet the above
conditions and retrieve a large number of records.

F *NONE:
Rows are not blocked for retrieval of data for cursors. If you specify F, the following
occurs:

Guarantees that the data retrieved is current.●

May reduce the amount of time required to retrieve the first row of data for a
query.

●

Stops the database manager from retrieving a block of data rows that is not used
by the program when only the first few rows of a query are retrieved before the
query is closed.

●

Can degrade the overall performance of a query that retrieves a large number of
rows.

●

L *ALLREAD:
Rows are blocked for read-only cursors if N or C is specified on the commitment control
field. All cursors in a program that are not explicitly able to be updated are opened for
read-only processing even though EXECUTE or EXECUTE IMMEDIATE statements
may be in the program.
If you specify L, the following occurs:

Allows record blocking under commitment control level C in addition to the
blocking allowed for S.

●

Can improve the performance of almost all read-only cursors in programs, but
limits queries in the following ways:

A ROLLBACK statement or ROLLBACK HOLD SQL statement does
not reposition a read-only cursor when L is specified.

❍

Dynamic running of a positioned UPDATE or DELETE statement (for
example, using EXECUTE IMMEDIATE) cannot be used to update a
row in a cursor unless the DECLARE statement for the cursor includes
the FOR UPDATE clause.

❍

●

The allow blocking value is required for function 1. It is ignored for other functions.

Blocking factor. The number of records to be passed on a blocked FETCH request. The same number
should be used on the OPEN and the FETCH request. The blocking factor is required for functions 4 and 5.
It is ignored for other functions.

Close file name. The name of the file for which all pseudo-closed open data paths should be closed. The
file name must be the system file name. It cannot be an SQL long table name. If all pseudo-closed open
data paths for the job are to be closed, the close file name and the close library name should be specified as
*ALL. The close file name is required for function B. It is ignored for other functions.

If the close library name is *NUMBER or *THRESHOLD, then the first 4 bytes of close file name should
contain an integer value. For *NUMBER, the value indicates the number of pseudo-closed cursors to close.
For *THRESHOLD, the value indicates the threshold of pseudo-closed cursors that should remain
following the closing of pseudo-closed cursors.

Close library name. The library of the close file name. If the close file name is specified as *ALL, the
close library name should be *ALL as well. The close library name is required for function B. It is ignored
for other functions.

*NUMBER indicates to close a specified number of pseudo-closed cursors. *THRESHOLD indicates to
continue closing pseudo-closed cursors until a specified threshold is reached.

Commitment control. The commit level to be used. The possible values are:

C *CHG
S *CS
A *ALL
N *NONE

The commitment control value is required for function 1. It is ignored for other functions.

Cursor name. The name of the SQL cursor. The cursor name is required for functions 4, 5, 6, and 8. It is
ignored for other functions.

Date format. The format used when accessing date result columns. All output date fields are returned in
the format you specify. For input date strings, the value you specify is used to determine whether the date is
a valid format. The valid values are:

USA IBM USA standard (mm.dd.yyyy, hh:mm a.m., hh:mm p.m.)
ISO International Standards Organization (yyyy-mm-dd, hh.mm.ss)
EUR IBM European Standard (dd.mm.yyyy, hh.mm.ss)
JIS Japanese Industrial standard Christian Era (yyyy-mm-dd, hh:mm:ss)
MDY Month/day/year (mm/dd/yy)
DMY Day/month/year (dd/mm/yy)
YMD Year/month/day (yy/mm/dd)
JUL Julian (yy/ddd)

The date format is required for function 1. It is ignored for other functions.

Date separator. The separator used when accessing date result columns. The valid values are:

/ Slash separator
. Period separator
, Comma separator
- Dash separator
blank Blank separator

The date separator is required for function 1. It is ignored for other functions.

Decimal point. The decimal point for numeric constants in SQL statements. The valid values are:

. Period separator
, Comma separator

The decimal point is required for function 1. It is ignored for other functions.

Direct map. Whether the data that is retrieved is to be moved directly into the user area. The possible
values follow:

Y Map the data to the user's area by using a single move operation. SQL obtains the
address for the beginning of the user's area from the first SQLDATA entry of the
SQLDA. The SQLDA must be set up correctly for all fields in the results list in case
the direct map cannot be performed.

N Use the SQLDA definitions to map the data to the user's area.

The direct map field is optional for function 5. The default value for direct map is N. It is ignored for all
other functions.

Function. The function being requested. The possible values follow:

1 Build a new package into the specified library.
2 Prepare a statement into the specified package.
3 Execute a statement from the specified package.
4 Open a cursor defined by a prepared statement in a package.
5 Fetch data from an open cursor.
6 Close an open cursor.
7 Describe a prepared statement in a package.
8 Close an open cursor and delete the open data path
9 Prepare and describe in one step.
A Inquire as to whether or not a specified statement has been prepared in the specified

package.
B Actually close pseudo-closed cursors.
C Delete the specified package.

Language identifier. The language identifier to be used when *LANGIDUNQ or *LANGIDSHR is
specified for the sort sequence table name. The valid values follow:

*JOB The language identifier for the job is retrieved when the package is created.
*JOBRUN The language identifier for the job is retrieved when the program is run.
language-id The language identifier to be used by the program.

The language identifier value is required for function 1 when a sort sequence value of *LNGIDUNQ or
*LNGIDSHR is specified. It is ignored for other functions.

Main program library name. The library of the main program.

Main program name. The name of the program representing the top program in the SQL application.
When this program completes, all cursors are closed and the SQL environment goes away. This program
must be on the stack or an error will occur (SQL0901). The main program name is required for all functions
except 1. This allows you to control the boundary of the application. If you want to scope to an activation
group, as opposed to the main program name, this can be done by specifying *ENDACTGRP for the main
program name. This special value is only allowed for function 1. For all other functions, specify the actual
main program name.

Main-program system pointer. A system pointer that has been resolved to point to the main program.
This field is ignored if the use pointers field has not been set to Y. If the use pointers field is specified, this
field is used in place of the main program name and main program library name.

Name check. Whether the statement names and cursor names are to be completely checked for valid name

syntax. The possible values follow:

Y Check the names for valid name syntax.
N Do not check the names for valid syntax.

The name check field is optional. The default value for name check is Y. It is ignored for functions 1 and B.

Naming option. The naming convention used for naming objects in SQL statements. The valid values are:

SYS library/file syntax
SQL collection/table syntax

The naming option is required for function 1. It is ignored for other functions.

Number of rows to insert. When you request an INSERT statement, this value indicates how many rows
are being inserted. Blocked INSERT using SQLDA is similar to blocked FETCH using SQLDA. Refer to
the DB2 UDB for iSeries SQL Reference topic for instructions on how to set up the SQLDA to do blocked
FETCH. Refer to Blocked INSERT Using SQLDA Setup Requirements for blocked INSERT requirements
that are different from blocked FETCH.

The prepared INSERT statement must be a blocked INSERT with a parameter marker specified for the
number of rows.

The number of rows to insert is required for function 3 but is used only when the statement is an INSERT.
It is ignored for all other functions.

Open options. The open options used on an SQL cursor. These are specified using the following bits:

Bit(0) Read
Bit(1) Write
Bit(2) Update
Bit(3) Delete

For example, if a cursor is only for FETCH statements, the bit pattern should be '10000000'B or hex 80. If
update capability is needed, the bit pattern should be '10100000'B. The syntax in the SQL statement takes
precedence over the open options. This means that the FOR UPDATE OF and FOR FETCH ONLY clauses
will be honored, even if they do not coincide with the requested open options. The open options are
required for functions 2 and 4. They are ignored for other functions.

Position option. The positioning option that is used for a FETCH statement. For options other than NEXT,
the cursor must have been opened as a scrollable cursor. The valid options are:

0 FETCH NEXT
1 FETCH PRIOR
2 FETCH FIRST
3 FETCH LAST
5 FETCH BEFORE
6 FETCH AFTER
6 FETCH CURRENT
7 FETCH RELATIVE

The position option is required for function 5. It is ignored for other functions.

Relative record. The number of rows forward or backward to move before retrieving data. A positive
number means forward and a negative number, backward. This is required when using function 5 (FETCH)
with a position option of FETCH RELATIVE. It is ignored for other options.

Reopen. Whether to allow a cursor that is currently open to be reopened. A reopen operation implicitly
closes and opens the cursor. If a reopen operation is requested on a cursor that is currently closed, only an
open operation is performed (no implicit close takes place). The valid values follow:

0 Do not allow an open cursor to be reopened.
1 Allow an open cursor to be reopened.

The reopen field is optional for function 4 with a default of 0. It is ignored for all other functions.

Use performance area. Use a performance area internally to store information about the invocation
environment. This option is beneficial in environments where statements are run repeatedly. The valid
values follow:

0 Do not use the internal performance area. The default value is 0.
1 Use the internal performance area.

Reserved. An ignored field.

Reuse SQLDA. Whether the SQLDA is being used again without changes. The possible values follow:

Y SQLDA is being reused without changes. Do not validate the SQLDA.
N SQLDA is not being reused. Validate the SQLDA.

The reuse SQLDA field is optional for functions 3, 4, and 5. The default value for reuse SQLDA is N. It is
ignored for all other functions.

Scrollable option. Specified if the cursor is scrollable. The cursor must be opened as scrollable if any
FETCH options other than FETCH NEXT are used. The valid values are:

0 Cursor is not scrollable
1 Cursor is scrollable

The scrollable option is required for function 4. It is ignored for other functions.

Sort sequence table name. The sort sequence table name to be used for string comparisons in SQL
statements. The possible values follow:

*JOB The sort sequence value for the job is retrieved when the package is created.
*JOBRUN The sort sequence value for the job is retrieved when the program is run.
*LANGIDUNQ The unique-weight sort table for the language that is specified on the language identifier

field is used.
*LANGIDSHR The shared-weight sort table for the language that is specified on the language identifier

field is used.
*HEX A sort sequence table is not used. The hexadecimal values of the characters are used to

determine the sort sequence.
table-name The name of the sort sequence table to be used.

The sort sequence table name value is required for function 1. It is ignored for other functions.

Sort sequence library name. The name of the sort sequence table can be qualified by one of the following
library values:

*LIBL All libraries in the job's library list are searched until the first match is found.
*CURLIB The current library for the job is searched. If no library is specified as the current library

for the job, the QGPL library is used.
library-name The name of the library to be searched.

The sort sequence library name value is required for function 1 when a table name is specified for the sort
sequence table name value. It is ignored for other functions.

SQL package library name. The library of the package.

SQL package name. The name of the SQL package used as the repository for the extended dynamic SQL
statements. The SQL package must not be a distributed SQL package created through the Create SQL
Package (CRTSQLPKG) or the Create SQL xxx (CRTSQLxxx) commands. Attempted use of a distributed
SQL package results in SQL0827. The SQL package name is required for all functions. Function 1 checks
the specified package name for valid name syntax. An invalid name results in SQL7023.

SQL-package system pointer. A system pointer that has been resolved to point to the SQL package. This
option is ignored if the use pointers field has not been set to Y. If the use pointers field is specified, this
field is used in place of the SQL package name and SQL package library name.

Statement length. The length of the SQL statement text that follows. The statement length is required for
function 2. It is ignored for other functions.

Statement name. The name of the prepared SQL statement. The statement name is required for functions
2, 3, 4, 7, 9, and A. It is ignored for other functions.

Statement text. The SQL statement text that will be prepared. The statement text is required for function 2.
It is ignored for other functions.

Statement text CCSID. The CCSID of the SQL statement text that will be prepared in this package. The
statement text CCSID is optional for function 1. It is ignored for other functions. If the SQLP0100 or
SQLP0200 formats are specified or if statement text CCSID is 0, the job CCSID is used.

Time format. The format used when accessing time result columns. All output time fields are returned in
the format you specify. For input time strings, the value you specify is used to determine whether the time
is a valid format. The valid values are:

HMS Hour/minute/second (hh:mm:ss)
USA IBM USA standard (mm.dd.yyyy, hh:mm a.m., hh:mm p.m.)
ISO International Standards Organization (yyyy-mm-dd, hh.mm.ss)
EUR IBM European Standard (dd.mm.yyyy, hh.mm.ss)
JIS Japanese Industrial standard Christian Era (yyyy-mm-dd, hh:mm:ss)

The time format is required for function 1. It is ignored for other functions.

Time separator. The separator used when accessing time result columns. The valid values are:

: Colon separator
. Period separator
, Comma separator
blank Blank separator

The time separator is required for function 1. It is ignored for other functions.

Use pointers. Whether the system pointers should be used to locate the main program and the SQL package
instead of the symbolic names. The possible values follow:

0 Do not use pointers to the main program and the SQL package. The symbolic names are
used to resolve to the objects.

1 Use the main-program and SQL-package system pointers instead of symbolic names. If 1
is specified, the pointers must address the main program and SQL package. The symbolic
names are ignored. If 1 is specified, both pointers must be set.

The use pointers field is optional for all functions. The default value for the use pointers field is 0.

User-defined field. Up to 18 bytes of user-defined data that is inserted into the database performance
monitor table. The data is only written to the table if you are collecting database performance monitor
statistics by using the Start Database Monitor (STRDBMON) or the Start Performance Monitor
(STRPFRMON) command. The user-defined field is optional for all functions. If this field is desired when
you collect data, you should use it consistently for all functions.

Using clause for describe. The value to assign to each SQLNAME variable in the SQLDA. The possible
values are:

N Column names
L Column labels
B Both (SQLDA must be allocated for twice as many entries)
A Any labels that exist

These are explained more completely in the DB2 UDB for iSeries SQL Reference topic. The using clause is
required for functions 7 and 9. It is ignored for other functions.

DLYPRP (delay PREPARE) is an option on an SQL precompile operation that cannot be specified on the
creation of a package (function 1). DLYPRP(*NO) is used as the default.

Refer to the DB2 Universal Database for iSeries documentation for a full description of all the options.

WITH HOLD. Whether the WITH HOLD SQL option should be applied to the statement. The possible
values follow:

Y The cursor is not closed as a consequence of a commit operation. The commit operation
commits all the changes in the current unit of work but releases only locks that are not
required to maintain the cursor.

N The cursor is closed at the time of commit.

The WITH HOLD field is optional for functions 2 and 9. The default for WITH HOLD is N. It is ignored
for all other functions.

Blocked INSERT Using SQLDA Setup Requirements

Just as in the case of blocked FETCH, the support for blocked INSERT with SQLDA expects the users to
have two contiguous areas. One is for the data and the other is for the indicators. The former contains rows
of data (the number of rows is given on function 3 calls), and the latter contains rows of indicators.

If none of the columns is null capable, there is no need to have an indicator area. If any of the columns is
null capable, all the columns should be turned into null capable (that is, sqltype in all the sqlvar entries
should be an odd number), and the row indicator area should have as many indicators per row as there are
columns.

In the SQLDA, the pointer sqldata in all the sqlvar entries should be pointing at the data elements for the
first row. Similarly, the pointer sqlind in all the sqlvar entries should be pointing at the indicators for the
first row, except in the case where there are no null-capable columns at all.

Usage Notes

This function is not threadsafe when called in the following way:

Using a Data Definition Language (DDL) SQL statement, for example: CREATE, DROP or
ALTER.

●

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

SQL0204 E &1. and &2 type &3 not found.

SQL0516 E Prepare statement &2 not found.

SQL0901 E SQL system error.

SQL7023 E Parameter value not valid.

API Introduced: V2R3

Top | Database and File APIs | APIs by category

Process Immediate SQL Statement
(QxdaProcessImmediateEDRS) API

 Required Parameter Group:

1 Connection handle Input Binary(4)
2 SQL statement Input Char(*)
3 Length of SQL statement Input Binary(4)
4 SQL communications area Output Char(136)
5 Error code I/O Char(*)

 Service Program: QXDAEDRS

 Default Public Authority: *USE

 nbsp;Threadsafe: Conditional; see Usage Notes

The Process Immediate SQL Statement (QxdaProcessImmediateEDRS) API is used to run an SQL
statement on the database server. The statement is processed exactly as provided, without coded character
set identifier (CCSID) conversion.

Authorities and Locks

None.

Required Parameter Group

Connection handle

INPUT; BINARY(4)

The handle number of the connection on which to process the SQL statement. The connection
handle must have been generated by the QxdaConnectEDRS API in the current job and activation
group.

SQL statement

INPUT; CHAR(*)

The SQL statement to process.

Length of SQL statement

INPUT; BINARY(4)

The length of the SQL statement passed.

SQL communications area

OUTPUT; CHAR(136)

Returns diagnostic information. It includes the SQLCODE variable, indicating whether an error has
occurred. If SQLCODE has a value of 0 after a call to this API, the function was successful.

The format of this structure is standard and is described more completely in the DB2 UDB for
iSeries SQL Programming Concepts topic and the DB2 UDB for iSeries SQL Reference topic.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF180C E Function &1 not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB750 E Connection handle specified not valid.

CPFB752 E Internal error in &1 API.

CPFB756 E Rollback operation performed.

CPFB757 E The connection is suspended.

CPFB758 E The EDRS server system has been switched.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Process Remote Extended Dynamic SQL
(QxdaProcessExtDynEDRS) API

 Required Parameter Group:

1 Connection handle Input Binary(4)
2 SQL descriptor area Input Char(*)
3 SQL communications area Output Char(136)
4 QSQPRCED function template format Input Char(8)
5 QSQPRCED function template Input Char(*)
6 Receiver variable Output Char(*)
7 Length of receiver variable Input Binary(4)
8 Receiver variable format Input Char(8)
9 Additional options Input Binary(4)
10 Error code I/O Char(*)

 Service Program Name: QXDAEDRS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Process Remote Extended Dynamic SQL (QxdaProcessExtDynEDRS) API is used to perform
extended dynamic SQL operations on the database server system. The SQL operations are performed by the
Process Extended Dynamic SQL (QSQPRCED API). For more information, see the Process Extended
Dynamic SQL (QSQPRCED) API documentation.

Authorities and Locks

See the Process Extended Dynamic SQL (QSQPRCED) API documentation for authorities required.

Required Parameter Group

Connection handle

INPUT; BINARY(4)

The handle number of the connection on which to perform the extended dynamic SQL operation.
The connection handle must have been generated by the QxdaConnectEDRS API in the current job
and activation group.

SQL descriptor area

INPUT; CHAR(*)

Passes information about the variables being used on a specific SQL statement. The SQLDA is

used for passing the address, data type, length, and CCSID for variables on an OPEN, EXECUTE,
FETCH, or DESCRIBE function.

The format of the structure is standard and is described more completely in the DB2 UDB for
iSeries SQL Programming Concepts and DB2 UDB for iSeries SQL Reference topics.

SQL communications area

OUTPUT; CHAR(136)

Returns diagnostic information. It includes the SQLCODE variable, indicating whether an error has
occurred. If SQLCODE has a value of 0 after a call to this API, the function was successful.

The format of this structure is standard and is described more completely in the DB2 UDB for
iSeries SQL Programming Concepts and DB2 UDB for iSeries SQL Reference books.

QSQPRCED function template format

INPUT; CHAR(8)

The format of the function template being used. For possible values, see the Process Extended
Dynamic SQL (QSQPRCED) API documentation. The SQLP0100 and SQLP0200 QSQPRCED
formats are not supported by this API.

QSQPRCED function template

INPUT; CHAR(*)

Determines the function to perform, the requested statement to process, and the SQL package to be
used. It also contains the text of the statement, which is required for the PREPARE function. For
the format of this parameter, see the Process Extended Dynamic SQL (QSQPRCED) API
documentation.

Receiver variable

OUTPUT; CHAR(*)

The structure in which to return information about the connection. For the format of this parameter,
see EXDO0100 Format.

Length of receiver variable

INPUT; BINARY(4)

The number of bytes that the calling program provides for the receiver variable data.

Receiver variable format

INPUT; CHAR(8)

The format of the receiver variable template being used. The possible value is:

EXDO0100 Basic receiver variable

Additional options

INPUT; BINARY(4)

The following are valid options. The binary OR operation can be used to use more than one of
these options together.

0x00000000 - 0 - QXDA_EXTDYN_NOOPTS

0x00000001 - 1 - QXDA_CREATE_OBJECTS

When preparing a statement into an SQL package, create the library and SQL package if
they do not already exist. This option is valid only for QSQPRCED functions 2 and 9; it is
ignored for all other functions. When this option is specified, all parameters required by the
Process Extended Dynamic SQL (QSQPRCED) API for function 1 must be provided in the
QSQPRCED function template.

0x00000010 - 16 - QXDA_DEFER_OPEN

Defer the open until a fetch is performed, when possible. The system will determine if the
open can be deferred. This option is valid only for QSQPRCED function 4, and only when
using a remote connection type. It is ignored in all other cases. It will cause a failure at
fetch time if the fetch immediately following an open using this option is not from the same
cursor as the open.

0x00000100 - 256 - QXDA_FIND_STMT

If this option is specified and the statement name parameter of the QSQPRCED function
template is blank, a search will be performed to see if there is already a prepared statement
in the specified library and package with the same statement text as the current text. If not,
a unique statement name will be generated and returned in the statement name field of the
receiver variable.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

EXDO0100 Format

The following table shows the information returned in the EXDO0100 format. For more details about the
fields in this table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(18) Statement name

Field Descriptions

Bytes available. The length of the information available to the API to return, in bytes.

Bytes returned. The actual number of bytes returned.

Statement name. The statement name generated when the QXDA_FIND_STMT option is specified.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF180C E Function &1 not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFAE14 E Cannot allocate &1 bytes.

CPFB750 E Connection handle specified not valid.

CPFB752 E Internal error in &1 API.

CPFB756 E Rollback operation performed.

CPFB757 E The connection is suspended.

CPFB758 E The EDRS server system has been switched.

CPFB759 E Cursor not valid for operation.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Query (QQQQRY) API

 Required Parameter Group:

1 Query option requested Input Char(10)
2 User file control block I/O Char(*)
3 Query definition template I/O Char(*)
4 Literal values I/O Char(*)
5 Access plan control block I/O Char(48)
6 Error code I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: Conditional; see Usage Notes.

The Query (QQQQRY) API gets a set of database records that satisfies a database query request. Using this
API you can do all the things you could do with the Open Query File (OPNQRYF) command. You can also
perform subqueries, perform unions, and use SQL host variables.

The QQQQRY API can be used to do any combination of the following database functions:

Join records from more than one file, member, and record format. The join operation that is
performed may be equal or nonequal in nature.

●

Calculate new field values by using numeric and character operations on field values and constants.●

Group records by like values of one or more fields, and calculate aggregate functions, such as
minimum field value and average field value, for each group.

●

Select a subset of the available records. Selection can be done both before and after grouping the
records.

●

Arrange result records by the value of one or more key fields.●

You can use this API to run a query, create an access plan, or get information from the query definition
template (QDT). When you run the query, the API uses the information you provide with the query
definition template to extract information and data from the database. Creating an access plan makes it
possible to run the query with better performance. Checking the query definition template allows you to
validate the values in this query definition template.

The format definition is part of the query definition template and can be created and saved with extracted
information by the Retrieve Database File Description (QDBRTVFD) API. When you are finished using
the QQQQRY API, you should close the file (using the Close File (CLOF) command) to free up resources.

Another part of the query definition template is the access plan for the query. Using this API with the
Create Query Access Plan (CRTQAP) value of the query option requested parameter, you can build an
access plan to more efficiently run a query more than once. You can then use the access plan control block
parameter to point to the access plan. This greatly improves the time it takes to perform subsequent runs of
this query using this API and the RUNQRY option. Every time a query is run, the system first checks to see
if an access plan has been specified. If one has, that is what is used to get the data requested by the query. If
no access plan has been specified, a new one is built dynamically.

DCVF section provides several examples that use the QQQQRY API.

Authorities and Locks

User Space Authority

*CHANGE

Library Authority

*EXECUTE

File Authority

*OBJOPR

User Space Lock

*SHRRD

Required Parameter Group

Query option requested

INPUT; CHAR(10)

One of three options to be used:

RUNQRY❍

Run query❍

CRTQAP❍

Create query access plan❍

CHKQDT❍

Check query definition templates❍

User file control block

I/O; CHAR(*)

One or more selected options for input and output of the specified query. This parameter need only
be used along with the RUNQRY query option. See User File Control Block (QDBUFCB_T)
Structure for a list of available options.

Query definition template

I/O; CHAR(*)

The information required to create objects that are used to query a database. It contains feedback
information from the creation of objects. If a pointer to the access plan is specified, the
corresponding query definition templates must also be specified.

Literal values

I/O; CHAR(*)

This parameter is used to put into effect SQL host variables. When SQL host variables are used,
this is a list of constant values used to run a query. If this parameter is to be ignored, a null pointer
can be specified for the parameter. Once the literal value is specified on a call, it must always be
specified.

Access plan control block

I/O; CHAR(48)

A string of bytes that point to the access plan control block and give the size the access plan
requires. This parameter must be specified for the RUNQRY query option when you want to
specify an access plan and for the CRTQAP query option. The format for this parameter is:

PTR(SPP) A space pointer that indicates the area of storage that contains the access plan. This
area must begin on a 16-byte boundary and be all zeros.

Bin(4) The size of storage needed to contain the access plan.
Char(28) Reserved.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Data Structures

The QQQQRY API uses information in four structures to carry out a query. All structures are used together
to perform the function you have selected using the query option requested parameter. The names of these
structures are:

QDBQH_T Query definition template
Qdb_Qddfmt_t Format definition template
QDBUFCB_T User file control block
QQQVALS_T Values for query variable fields

The following sections show you in a general way how this information is structured.

Query Definition Template (QDBQH_T)

The query definition template provides information about the query that is to be performed. Figure 1-1
shows the general layout of this format.

Notice the box marked with a (1) in Figure 1-1. The topic Format Definition Template (Qdb_Qddfmt_t)
provides the layout of the entire record format specification.

The offsets and descriptions of all the fields contained in this structure are shown in the following tables.
You can see this source in member QQQQRY in the QSYSINC library.

Figure 1-1. QDBQH_T Format

Query Definition Header (QDBQH_T)

This is the first structure and is located at offset zero. (Ref #1.)

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(4) qdbqfilo Offset to file, library, format, and
member specifications.

4 4 BIN(4) qdbqfldo Offset to the record specifications. 0
indicates that the record specifications
should be taken from the file format. 0
is not valid if there are multiple files
in the file specification and this is not
a group-by query.

8 8 BIN(4) qdbqjoio Offset to join specifications. 0
indicates that this is not a join query.

12 C BIN(4) qdbqselo Offset to the record selection
specifications. 0 indicates that no
record selection is to occur.

16 10 BIN(4) qdbqkeyo Offset to the order by specifications. 0
indicates that the records are returned
in the file's access path order. If this is
a join, the access path order of the
first file in the file array is used. -1
indicates that the result records are
returned in no guaranteed order;
running the same query twice may
produce a different result order.

20 14 BIN(4) qdbqgrpo Offset to the group-by-selection
specifications. 0 indicates that no
group by is to occur.

24 18 CHAR(4) qdbqdt_1 Reserved.

28 1C BIN(4) qdbqgpso Offset to the group by selection
specifications. 0 indicates that no
group by selection is to occur. If field
qdbqgrpo is 0, this offset is ignored.

32 20 CHAR(1) qdbqfin Query completion indicator.

A

Query need not be completed
before returning. The
database attempts to minimize
the entire query and retrieval
time. Selection may be done
at I/O time.

F

Query need not be complete
before returning. The
database attempts to minimize
the time to get the first buffer
of results. Selection may be
done at I/O time.

M

Query need not be complete
before returning; however,
selection at I/0 time should be
minimized so that long waits
for the next selected records
are minimized.

C

Query must be completed
before returning. If this is a
join, the records must be put
in a temporary file.

33 21 CHAR(1) qdbqtem Query temporary result indicator.

N

Temporary results should be
prohibited.

O

Temporary results are allowed
but should be used only if
necessary to do the query. If a
read previous operation can
be requested, then O must be
used.

T

Temporary results are allowed
but should be used only if
necessary to do the query.
However, if temporary results
are used, then use the last
TSORT method, which reads

directly from its sort. This
option cannot be specified if a
read previous operation is to
be used.

A

Temporary results are allowed
and should be used if better
performance can be achieved
by using a temporary result.
Use A when the user does not
request previous records to be
read.

34 22 CHAR(2) qdbqattr Query attributes.

34 22 0 BIT(1) qdbqnst Status messages. Status messages are
never sent for batch jobs.

0

Do not send status messages.

1

Send status messages during
query and I/O processing.

34 22 1 BIT(1) qdbqdist Distinct records.

0

Do not produce distinct
records.

1

Eliminate duplicate records
from the query result.

34 22 2 BIT(1) qdbqpgmd Program-defined files.

0

Ignore interactive data
definition utility (IDDU) data
definitions for
program-described files.

1

Use IDDU data definitions for
program-described files.

34 22 3 BIT(1) qdbqterr Tolerate decimal data errors.

0

Decimal data errors result in
an exception being issued.

1

Decimal data errors are
ignored.

34 22 4 BIT(1) qdbqdt_2 Reserved.

34 22 5 BIT(1) qdbqintd Integer division.

0

Do not perform integer
division.

1

Perform integer division.
Division of two integer
(binary) numbers produces a
zero precision result.

34 22 6 BIT(1) qdbqdt_3 Reserved.

34 22 7 BIT(1) qdbqchgx Changed files exception.

0

No exception requested.

1

Send an exception when a
queried file has changed since
creation of the input access
plan.

35 23 0 BIT(1) qdbqsaap Precision reduction (SAA(R))

0

Allow precision reduction.

1

Disallow reduction of the
precision of a derived result.
Instead, reduce significant
digits when necessary.

35 23 1 BIT(1) qdbqddmx Distributed data management (DDM)
files exception.

0

No exception requested.

1

Send an exception when a
queried file is a DDM file.

35 23 2 BIT(1) qdbqraut Resolve authority.

0

Normal authority checking.
User must have corresponding
data authority for each open
option.

1

Check for at least one data
authority (read, add, update,
or delete) regardless of the
open options.

35 23 3 BIT(1) qdbqsqlb SQL definition of binary.

0

Binary fields have digits as
known by the database.

1

Binary fields in SQL tables
and views have 11 digits if
the binary is large and 5 digits
if it is small.

35 23 4 BIT(1) qdbqaltc Alternate computation.

0

Do not use alternate
computation.

1

Use alternate computation.
Some derivations do not
overflow as fast when no
precision reduction (SAA) is
allowed (qdbqsaap=1). Also,
use the user-defined result
field size for one-operation
derivations (+, -, *, /).

35 23 5 BIT(1) qdbqsubq The query definition template
contains at least one subquery. This
does not span across unions.

35 23 6 BIT(1) qdbqsubx Subcharacters exception. This field
specifies what to do if, during CCSID
compatibility processing, a conversion
occurs on the data such that
information may be lost or
misinterpreted.

0

Allow the query to finish.
Information messages are
returned if this condition
occurs.

1

Send an exception.

For literals and host variable
values, the exception is sent
during the open operation;
check the query definition
template or create an access
plan of the query if
subcharacters were used
during the conversion of the
value.

For fields and conversion
tables, the error occurs during
I/O operations on the query if
subcharacters are used.

35 23 7 BIT(1) qdbqdt_4 Reserved.

36 24 BIN(2) qdbqkunum The NODUPKEY number of key
fields. The database does not return
any records with duplicate keys and
determines this by using this number
of key fields as a comparison length.
-1 indicates that all the key fields are
used as a comparison length. This
field is not applicable if field
qdbqkeyo is -1.

38 26 BIN(4) qdbqnumrcd This field is no longer supported.
Its value will be ignored.

42 2A BIN(4) qdbqnxqo Offset to next query definition
template. This value is 0 if this is the
only query definition template or if
this is the last query definition
template.

46 2E BIN(4) qdbqtoso Offset to the set operation
specifications. The set operation
specifications can only be specified on
the last query definition template. 0
indicates that no set operation is to
occur. If only one query definition
query template is specified, this offset
is ignored.

50 32 CHAR(4) qdbqdt_5 Reserved.

54 36 BIN(4) qdbqqdto Offset to the query definition template
table containing offsets to all query
definition templates between unions.

58 3A CHAR(8) qdbqdt_6 Reserved. (Ref #2.)

66 42 CHAR(1) qdbqdfmt Date format used as the preferred
format for validity checking a date
string or when mapping a character
field to a date.

X'FE'

Job default format

X'01'

USA format

X'03'

ISO format

X'05'

EUR format

X'07'

JIS format

X'17'

MDY format

X'18'

DMY format

X'19'

YMD format

X'1A'

JUL format

When the value of this field is X'FE',
the preferred format is obtained from
the job attributes, which have the
value X'17', X'18', X'19', or X'1A'.
(Ref #3.)

67 43 CHAR(1) qdbqdsep Date separator used as the preferred
format for validity checking a date
string or when mapping a character
field to a date. It is only set when field
qdbqdfmt is X'FE', X'17', X'18', X'19',
or X'1A'.

X'00'

Job default separator

X'EE'

Implied separator

/

Slash separator

-

Dash separator

.

Period separator

,

Comma separator

Blank

Blank separator

When the value of this field is X'00',
the preferred separator is obtained
from the job attributes, which are one
of the previously defined values
except X'00' and X'EE'. When the
value of this field is X'EE', the
implied separator for the format is
used.

(Ref #4.)

68 44 CHAR(1) qdbqtfmt The time format used as the preferred
format when validity checking a time
string or when mapping a character
field to a time.

X'FE'

Job default format

X'01'

USA format

X'03'

ISO format

X'05'

EUR format

X'07'

JIS format

X'1B'

HMS format

When the value of this field is X'FE',
the preferred format is obtained from
the job attributes, which will have the
value X'1B'. (Ref #5.)

69 45 CHAR(1) qdbqtsep The time separator used as the
preferred separator when validity
checking a time string or when
mapping a character field to a time. It
is only set when field qdbqtfmt is
X'FE' or X'1B'.

X'00'

Job default separator

X'EE'

Implied separator

.

Period separator

,

Comma separator

Blank

Blank separator

:

Colon separator

When the value of this field is X'00',
the preferred separator is obtained
from the job attributes, which are one
of the values previously defined
except X'00' and X'EE'. When the
value of this field is X'EE', the
implied separator for the format is
used.

70 46 BIN(2) qdbqcsdc The coded character set identifier
(CCSID) constant tag. If nonzero, this
specifies the CCSID with which the
literals in the query definition
template should be tagged. If this field
specifies a single-byte character set
(SBCS) CCSID and a literal has
double-byte character set (DBCS)
data, the associated mixed CCSID of
the SBCS CCSID is used for the
literal. Conversely, if the literal is
SBCS and this field specifies a mixed
or DBCS CCSID, the associated
SBCS CCSID is used for the literal.

72 48 CHAR(2) qdbqdt_7 More flags.

72 48 0 BIT(1) qdbqvlit Variable length literal.

0

No

1

Yes

72 48 1 BIT(5) qdbqdt_8 Reserved. (Ref #6.)

72 48 6 BIT(1) qdbqopta Optimize all indexes over the query
files.

0

The optimizer determines
how many indexes to consider
when optimizing the query.
The optimizer times out if the
time spent optimizing
becomes significant when
compared to the time it takes
for the query to run.

1

Optimize all indexes built
over the query files. This may
increase the time it takes for
the optimization of the query
to occur.

72 48 7 BIT(1) qdbqmapbd Reserved.

73 49 0 BIT(7) qdbqdt_9 Reserved.

73 49 7 BIT(1)
qdbq_force
_temp

Force query records to a temporary
result. Note that this is only honored if
set on for the last, outermost (that is,
non-subquery) QDT of a union. It is
ignored for all other QDTs of the
query.

0

Normal processing.

1

Force results of entire query
into a temporary result.

74 4A CHAR(2) QDBQDT_10 Reserved.

76 4C qdbqfbk Query feedback. The following
information is returned on successful
completion of the query.

76 4C CHAR(2) qdbqqtyp_t Query status indicators.

76 4C 0 BIT(1) qdbqtemp Temporary result.

0

No temporary result.

1

Temporary result created.

76 4C 1 BIT(1) qdbqcomp Selection completion.

0

Selection is not complete.

1

Selection is complete.

If selection is complete, the open
feedback area contains the number of
selected records. If selection is not
complete, record selection may be
performed while reading the records
and the open feedback may indicate
more records than are ultimately
selected.

76 4C 2 BIT(1) qdbqdt_11 Reserved.

76 4C 3 BIT(1) qdbqacpi Access plan indicator.

0

No access plan present.

1

Query definition template is
or is part of an access plan.

76 4C 4 BIT(1) qdbqsreg This field is set on if the query
definition template contains special
registers CURRENT USER,
CURRENT SERVER, or CURRENT
TIMEZONE.

76 4C 5 BIT(1) qdbqsubw Subcharacters warning. This field
specifies whether during CCSID
compatibility processing,
subcharacters are used in the query.

0

No subcharacters are used.

1

Subcharacters are used in the
query.

76 4C 6 BIT(1) qdbqsqlt SQL tables.

0

Not all SQL tables.

1

All SQL tables.

76 4C 7 BIT(1) qdbqlblst The library list was used to determine
the referenced table. This is possible
due to the use of the Override with
Database File (OVRDBF) command.

77 4D 0 BIT(1) qdbqcurdt The query definition template
contains CURRENT DATE,
CURRENT TIME, or CURRENT
TIMESTAMP.

77 4D 1 BIT(7) qdbqdt_12 Reserved.

78 4E CHAR(28) qdbqdt_13 Length of query definition structure.

78 4E BIN(4) qdbqdtln Length of query definition.

82 52 CHAR(24) qdbqdt_14 Reserved.

106 6A CHAR(1) qdbqdofmt Date format for output date fields.

X'FE'

Job default format

X'FF'

Format specified with
based-on field.

X'01'

USA format

X'03'

ISO format

X'05'

EUR format

X'07'

JIS format

X'17'

MDY format

X'18'

DMY format

X'19'

YMD format

X'1A'

JUL format

If the data type Qddfftyp is unknown
(X'FFFF') and this field is X'FF', the
format and separator are taken from
those specified with the based-on
field. If the data type Qddfftyp is date
(X'000B'), the format and separator
are taken from the extension of record
formats Qddfdttf and Qddfdtts.
However, if Qddfdttf is X'FF', the
format and separator are taken from
qdbqdofmt and qdbqdosep. If either of
these fields are not valid, it is an error.
When the value of qdbqdofmt is
X'FE', the format is obtained from the
job attributes, which will have the
value X'17', X'18', X'19', or X'1A'.

Qddfftyp, Qddfdttf, and Qddfdtts are
part of the QDBRTVFD include.

107 6B CHAR(1) qdbqdosep Date separator used as the output
separator for fields. It is only set when
qdbqdofmt is X'FE', X'17', X'18',
X'19', or X'1A'.

X'00'

Job default separator

X'EE'

Implied separator

/

Slash separator

-

Dash separator

.

Period separator

,

Comma separator

Blank

Blank separator

When the value of this field is X'00',
the separator is obtained from the job
attributes (any of the preceding values
except X'00' and X'EE'). When the
value of this field is X'EE', the
implied separator for the format is
used.

108 6C CHAR(1) qdbqtofmt Time format for output time fields.

X'FE'

Job default format

X'FF'

Format specified with
based-on field.

X'01'

USA format

X'03'

ISO format

X'05'

EUR format

X'07'

JIS format

X'1B'

HMS format

If the data type Qddfftyp is unknown
(X'FFFF') and this field is X'FF', the
format and separator are taken from
those specified with the based-on
field. If the data type Qddfftyp is time
(X'000C'), the format and separator
are taken from the extension of record
formats Qddfdttf and Qddfdtts.
However, if Qddfdttf is X'FF', the
format and separator are taken from
qdbqtofmt and qdbqtosep. If either of
these fields are not valid, it is an error.
When the value of qdbqtofmt is X'FE',
the format is obtained from the job
attributes, which have the value X'1B'.

Qddfftyp, Qddfdttf, and Qddfdtts are
part of the QDBRTVFD include.

109 6D CHAR(1) qdbqtosep Time separator used as the output
separator for fields. It is only set when
qdbqtofmt is X'FE' or X'1B'.

X'00'

Job default separator

X'EE'

Implied separator

.

Period separator

,

Comma separator

:

Colon separator

When the value of this field is X'00',
the separator is obtained from the job
attributes (any of the above values
except X'00' and X'EE'). When the
value of this field is X'EE', the
implied separator for the format is
used.

110 6E CHAR(1) qdbqtsofmt Timestamp format for output
timestamp fields.

X'FE'

Job default format

X'FF'

Format specified with
based-on field

X'09'

SAA timestamp format

If the data type Qddfftyp is unknown
(X'FFFF') and this field is X'FF', the
format and separator are taken from
those specified with the based-on
field. If the data type Qddfftyp is
timestamp (X'000D'), the format and
separator are taken from the extension
of record formats Qddfdttf and
Qddfdtts. However, if Qddfdttf is
X'FF', the format and separator are
taken from qdbqtsofmt and
qdbqtsosep. If qdbqtsofmt contains a
format that is not valid, it is an error.

Qddfftyp, Qddfdttf, and Qddfdtts are
part of the QDBRTVFD include.

111 6F CHAR(1) qdbqdt_15 Reserved.

112 70 BIN(4) qdbq_optmrows Optimization option. This field tells
the optimizer that the user does not
intend to retrieve more than n records
from the query result. n can be any
integer as long as it fits in a BIN(4)
type. If the optimizer optimizes for n
records, this could improve
performance. Specifying a number
does not mean the user cannot retrieve
more than n records. It just tells the
optimizer to optimize for only n
records. For more information about
the OPTIMIZE clause, see the DB2
UDB for iSeries SQL Reference topic.

116 74 CHAR(12) qdbqdt_16 Reserved.

128 80 BIN(4) qdbq_jrefo Offset to JREF Join specification.

132 84 CHAR(44) qdbqdt_65 Reserved.

176 B0 CHAR(2)
qdbq_posnopts
_t

The ORed byte containing an
indicator for every scrolling option
that is used for this query. Scrolling
option of next is always assumed.

176 B0 0 BIT(1)
qdbq_posnopts
_prior

Scrolling to previous record is used.

176 B0 1 BIT(1)
qdbq_posnopts
_first

Scrolling to first record is used.

176 B0 2 BIT(1)
qdbq_posnopts
_last

Scrolling to last record is used.

176 B0 3 BIT(1)
qdbq_posnopts
_before

Scrolling to before the first record is
used.

176 B0 4 BIT(1)
qdbq_posnopts
_after

Scrolling to after the last record is
used.

176 B0 5 BIT(1)
qdbq_posnopts
_current

Retrieval of the current record is used.

176 B0 6 BIT(1)
qdbq_posnopts
_relative

Scrolling to a record relative to the
current record is used.

176 B0 7 BIT(9) qdbqdt_17 Reserved.

178 B2 CHAR(1) qdbq_ext_bits Miscellaneous bits in the query
definition header.

178 B2 0 BIT(1) qdbq_ctlblk An indicator that the caller will be
control record blocking; therefore,
ignore SEQONLY() overrides.

178 B2 1 BIT(1) qdbq_norolb Rollback HOLD can leave the
position of this cursor as unknown.

178 B2 2 BIT(1)
qdbq_stream
_cursor

The user of this query attempts to read
records from this query as fast as
possible.

178 B2 3 BIT(4) qdbqdt_54 Reserved.

178 B2 7 BIT(1) qdbqdt_18 Reserved.

179 B3 CHAR(1) qdbq_ext_bits2 Miscellaneous bits in the query
definition header.

179 B3 0 BIT(2) qdbqdt_57 Reserved.

179 B3 2 BIT(1)
qdbq_trust
_posn

Trust scrolling option

0

Query optimizer assumes that
any type of cursor positioning
may be done.

1

Settings of qdbq_posnopts
can be trusted. The user that
built this QDT has knowingly
set the options and could
experience problems if cursor
positioning not indicated is
attempted. This bit should be
set on with qdbq_posnopts set
to '0000'X to give the query
optimizer more flexibility in
choosing the best data access
method and also to enable
symmetric multiprocessing
(SMP) methods such as
parallel table scan and hash
join.

179 B3 3 BIT(5) qdbqdt_58 Reserved.

180 B4 CHAR(1) qdbq_ext_bits3 Miscellaneous bits in the query
definition header.

180 B4 0 BIT(1) qdbqdt_62 Reserved.

180 B4 1 BIT(1) qdbq_searched_update Indicator if this is a searched
UPDATE QDT.

180 B4 2 BIT(1) qdbq_searched_delete Indicator if this is a searched
DELETE QDT.

180 B4 3 BIT(2) qdbqdt_63 Reserved.

180 B4 5 BIT(1) qdbq_drvtbl Indicates that this QDT is part of a
derived table QDT.

180 B4 6 BIT(2) qdbqdt_64 Reserved.

181 B5 CHAR(15) qdbqdt_19 Reserved.

196 C4 CHAR(10) qdbpopnid Optional OPENID to identify this
query. *FILE indicates the name of
first or only file specified in the file
specification. You can also specify a
name to associate with opened query
file.

206 CE BIN(4) qdbspcsize API users specify size for space
containing all API query definition
templates. (Ref #7.)

210 D2 BIN(4) qdbqnlss Displacement to QQQNLSS_T
structure (Sequence, Tables, Names,
and Parameters (QQQNLSS_T)) used
for sort sequence information. This is
an offset from the beginning of the
query definition template. 0 indicates
no QQQNLSS_T structure was
passed. For nonviews, if this is a
union or subquery, this field is
ignored unless it is the first query
definition template (for unions), or the
outermost query definition template
(for subqueries).

214 D6 BIN(2) qdbqsrts Sort sequence indicator. Possible
values for this field follow. When you
use value 2 or 3, you must include the
QQQNLSS_T structure (Sequence,
Tables, Names, and Parameters
(QQQNLSS_T)) at offset qdbqnlss.

0

*HEX

2

The table or CCSID passed in
structure QQQNLSS_T.

3

The sort sequence and
language identifier passed in
structure QQQNLSS_T.

216 D8 CHAR(5) qdbqdt_53 Reserved.

221 DD CHAR(1) qdbqic Whether query allows index creation.

N

Index creation is not allowed.

Y or X'00'

Index creation is allowed.

222 DE CHAR(178) qdbqdt_20 Reserved.

Sequence, Tables, Names, and Parameters (QQQNLSS_T)

Sequence, tables, names, and parameters structure. The displacement to this structure from the beginning of
structure QDBQH_T is an entry in the table at variable qdbqnlss.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR(42) qqqstb1 Sequence table name, library name, and
language identifier.

0 0 CHAR(10) qqqresv2 Reserved.

10 A CHAR(20) qqsrtseq Sort sequence.

10 A CHAR(10) qqqstbnm Table name. Possible special values are:

*JOB

The sort sequence of the job.

*LANGIDUNQ

The unique-weight sort sequence table
that is associated with the language
identifier requested parameter.

*LANGIDSHR

The shared-weight sort sequence table
that is associated with the language
identifier requested parameter.

*HEX

The sort sequence according to the
hexadecimal value of the characters.

20 14 CHAR(10) qqqstbnl Library name. Possible special values are:

*LIBL

The library list.

*CURLIB

The job's current library.

30 1E CHAR(10) qqqlangid Language identifier. Possible values are:

*JOB

The language identifier of the job.

xxx

3-character language identifier. See
Language identifiers and associated
default CCSIDs for a complete list of
language identifiers supported.

Blank

If blank, field qqqsrtseq cannot be *JOB,
*LANGIDUNQ, or *LANGIDSHR.

40 28 CHAR(2) qqqresv3 Reserved.

42 2A CHAR(38) qqqstb2 Reserved.

42 2A CHAR(2) qqqresv4 Reserved.

44 2C CHAR(10) qqqtbnm Reserved.

54 36 CHAR(10) qqqlbnm Reserved.

64 40 CHAR(14) qqqresv5 Reserved.

78 4E BIN(2) qqqtbl_ccsid Sequence table CCSID. This field is only used
when either qqqtbl is specified or qqqstboff is set
for a DBCS sort sequence table.

80 50 CHAR(10) qqqstbe1 User-specified DBCS sort sequence information.

80 50 CHAR(1) qqqstbtyp Type of DBCS sort sequence table.

X'00'

UCS-2 sort sequence table

81 51 CHAR(1) qqqstbloc Location of DBCS sort sequence table.

X'00'

Table is stored at qqqtbl.

X'01'

Table is stored at the DBCS sort
sequence table offset (qqqstboff).

82 52 BIN(4) qqqstblen Length of DBCS sort sequence table. If an SBCS
sort sequence table is specified, qqqstblen must
be zero.

86 56 BIN(4) qqqstboff Offset to the DBCS sort sequence table from
qqqstb1.

90 5A CHAR(22) qqqresv1 Reserved.

112 70 CHAR(256) qqqtbl User-specified sort sequence table.

File Name Specification (QDBQF_T)

File name specification. This structure defines the files, member, and formats that are used in the query.
This structure is required.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 qdbqfhdr File specification header.

0 0 BIN(2) qdbqfilnum The number of files, libraries, formats, and
members. (Ref #8.)

2 2 CHAR(1) qdbqmfop Multiple file option. This field is only
applicable if the qdbqfilnum field is greater
than one.

J

Inner join. No default values are
supplied if a join value does not exist
and no record is returned.

C

Partial outer join (file chaining).
Default values are supplied if a join
value does not exist.

E

Exception join. Default values are
supplied if a join value does not exist.
Only records with default values are
returned.

3 3 CHAR(1) qdbqmfor Multiple file order option. This field is only
applicable if field qdbqfilnum is greater than
one, field qdbqmfop equals J, and there is no
file-distinct processing. For each file specified
in the file specifications, qdbqfdst equals 1.
Partial-outer join, exception join, and
file-distinct processing implies no join
reordering.

A

Join the files in any order. The result
order may vary even when rerunning
the same query.

N

Join the files in the order they are
specified.

4 4 CHAR(1) qdbqdt_21 Flags.

4 4 BIT(1) qdbqmfio Multiple file I/O options allowed through this
query.

0

Only allow read operations against the
first file in the array (always read-only
for secondary files).

1

Allow insert, update, or delete
operations against the first file.

4 4 1 BIT(1) qdbqmfjn Join clause exists. An SQL JOIN clause syntax
exists in this query.

4 4 2 BIT(6) qdbqdt_22 Reserved.

5 5 CHAR(11) qdbqdt_23 Reserved.

16 10 ARRAY(32)
OF
CHAR(64)

qdbqn File, library, member, and format array. This
structure is defined at QDBQN_T on File,
Library, Member, and Format Array
(QDBQN_T).

File, Library, Member, and Format Array (QDBQN_T)

File, library, member and format names array. This structure defines the file, library, member, and format
names that are used in the query. This structure is required.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR(40) qdbqflmf File, library, member, and record format
names.

0 0 CHAR(10) qdbqfile File name. If an override is in effect to another
file, the actual file name is returned in this
field.

10 A CHAR(10) qdbqlib Library name. If the special value *LIBL is
used, the actual library name is resolved and
returned in this field.

20 14 CHAR(10) qdbqmbr Member name. If the special values *FIRST or
*LAST are used, the actual member name is
resolved and returned in this field.

30 1E CHAR(10) qdbqfmt Format name. If the special value *ONLY is
used, the actual format name is resolved and
returned in this field.

40 28 CHAR(1) qdbqfflg File specification flags.

40 28 0 BIT(1) qdbqfdst File-distinct flag. This field specifies, for the
records that make up the join secondaries for a
join query, whether only the first record or all
records that satisfy the join conditions should
participate in the join. This flag only applies to
join secondary files (files 2 through n, where n
equals the number of files in the join).

0

All records participate.

1

Only the first record participates.

40 28 1 BIT(1) qdbqfujn Unique join fanout. This field specifies
whether the number of join records found can
exceed 1. This field only applies to join
secondary files (files 2 through n, where n
equals the number of files in the join).

0

Multiple join records are allowed.

1

Only one join-to record may be found
for this file.

40 28 2 BIT(1) qdbqfgna Reserved.

40 28 3 BIT(1) qdbqfngn Reserved.

40 28 4 BIT(1) qdbqnmch Name change indicator

0

The library, file, or member name in
the specified query definition template
(at offset qdbqfilo in structure
qdbqh_t, Query Definition Header
(QDBQH_T)) did not change as a
result of an override.

1

The library, file, or member name in
the specified query definition template
(at field qdbqfilo) changed due to an
override.

40 28 5 BIT(1) qdbqflbo Library name overridden.

0

The library name in the specified
query definition template (at offset
qdbqfilo in structure qdbqh_t, Query
Definition Header (QDBQH_T)) did
not change as a result of an override.

1

The library name in the specified
query definition template (at offset
qdbqfilo) changed to *LIBL due to an
override, and the file was found using
*LIBL as the library name.

This bit is a feedback bit. The user of
the query definition template should
not set it.

40 28 6 BIT(1) qdbqf_nldft Null or default. The type of values to be
returned for unmatched records of a partial
outer or exception join.

0

Return default values

1

Return NULL values

40 28 7 BIT(1) qdbqdt_24 Reserved.

41 29 CHAR(1) qdbqmfvw Reserved.

42 2A CHAR(1) qdbqmfvw_spc Reserved.

43 2B BIN(2) qdbqf_qdtnum Index into the array of subquery offsets
(QDBQQDT_T) for the derived table QDT.

45 2D CHAR(19) QDBQDT_25 Reserved.

Record Format Specification (QDBQR_T)

Record format specification. This structure defines the fields that are used in the query. The structure
Qdb_Qddfmt_t is mapped by member QDBRTVFD in the QSYSINC library. If join is specified, this
specification is required.

Offset

Bit Type
Variable
Name FieldDec Hex

CHAR(*) QDBQR Record specifications.

Join Specification (QDBQJ_T)

Join specification. This structure defines how the files are joined by the query. One join specification exists
for the entire query definition. A join specification entry consists of a from-field, a join operator, and a
to-field. The join specification entries can be inserted in any order with respect to the file specifications.

If this is an inner join (the qdbqmfop field equals J, and no join specifications are given for a particular
to-file, the system searches the record selection specifications for any possible implied join specifications.
If no join specifications can be derived from the record selection specifications, Cartesian product is used to
do the join.

All join specifications can be given in the record selection specifications. In this case, it is not necessary to
provide a join specification.

If this is a partial-outer or exception join (qdbqmfop equals C or E) and no join specifications are given
for a particular to-file, the system uses Cartesian product to do the join. In addition, only one join operator
can be specified for a particular to-file.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 qdbqjhdr Join specifications header.

0 0 BIN(4) qdbqjln Length of this join specification.

4 4 BIN(2) qdbqjknum Number of from-join and to-join field
specifications.

6 6 CHAR(10) qdbqdt_26 Reserved.

16 10 ARRAY(1)
OF
CHAR(96)

qdbqjfld Join specification array. Array of fields that
define the from and to fields to use when
joining. The structure is defined at
QDBQJFLD_T on Join Specification Array
(QDBQJFLD_T).

112 70 CHAR(*) QDBQJNXT Join field pair arrays. Displacement to join
specifications array from structure QDBQJ_T
(see structure QDBQJFLD_T on Join
Specification Array (QDBQJFLD_T)).

Join Specification Array (QDBQJFLD_T)

Join specification array. This structure is an array of fields that define the from and to fields to use when
joining.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR(30) qdbqjfnm Join from field name.

30 1E BIN(2) qdbqjfnum Field join reference number. 0 indicates that
the QDBQR_T format (see Record Format
Specification (QDBQR_T)) is searched for
the external field name. If the field is not
found, the formats of the files in the file
specification are searched. A value in this
field indicates that the external field name is
to be found in the file format referenced by
using this value as an index into the file
name specification structure, qdbqf_t, (see
File Name Specification (QDBQF_T)). In
any case, the field found must exist in a file
joined prior to this file.

32 20 CHAR(2) qdbqdt_27 Reserved.

34 22 CHAR(2) qdbqjop Join option.

EQ

Equal

GT

Greater than

LT

Less than

NE

Not equal

GE

Greater than or equal

LE

Less than or equal

36 24 CHAR(30) qdbqjtnm Join to field name. Note that only character
and any DBCS fields may be joined to
character and any DBCS fields, and only
numeric fields may be joined to numeric
fields. The lengths of the two fields need not
be the same. However, if they are different, a
warning is sent to the user indicating that
padding occurred.

66 42 BIN(2) qdbqjtnum Field join reference number. 0 indicates that
the QDBQR_T format (see Record Format
Specification (QDBQR_T)) is searched for
the external field name.

If the field is found, it must have been
completely derived from the file associated
with this join specification. If the field is not
found, the format of the file associated with
this join specification is searched.

A value in this field indicates that the
external field name is to be found in the file
format referenced by using this value as an
index into the file list. This value must
reference the file associated with this join
specification.

68 44 CHAR(1) qdbqjpfmt Reserved.

69 45 CHAR(1) qdbqjpsep Reserved.

70 46 BIT(1) qdbqjfprf Reserved.

70 46 1 BIT(1) qdbqjvw Reserved

70 46 2 BIT(1) qdbqj_type_sup Join type specified. The type of join is
specified in field qdbqj_type.

70 46 3 BIT(5) qdbqdt_oj Reserved.

71 47 CHAR(1) qdbqj_type Type of join.

J

Inner join

C

Partial outer join

E

Exception join

72 48 CHAR(24) qdbqdt_28 Reserved.

JREF Join Specification (QDBQ_JREF_T)

JREF Join specification. This structure can be used to define the order in which the files are to be joined. It
can also be used to specify any join selection needed to implement the join. Two files (or join results) are
specified along with the appropriate join type to be used to join together the two operands. An offset can
also be specified to the Selection Specifications (QDBQS) that will define the join criteria that applies to
the operands.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 qdbq_jref_hdr JREF Join specifications header.

0 0 BIN(4) qdbq_jref_len Length of this JREF join specification.

4 4 BIN(2) qdbq_jref# Number of JREF Join entries.

6 6 CHAR(10) qdbqdt_66 Reserved.

16 10 CHAR(*) qdbq_jref_spec Start of the JREF Join entries. The structure is
defined at QDBQ_JREF_ENTRY_T on JREF
Join Entry (QDBQ_JREF_ENTRY_T).

JREF Join Entry (QDBQ_JREF_ENTRY_T)

JREF Join Entry.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(2) qdbq_jref_entry_type JREF Join entry type.

0

Join operand

2

Join operator

2 2 CHAR(*) qdbq_jref_item JREF Join items. The structure is defined at
QDBQ_JREF_OPERAND_T and
QDBQ_JREF_OPERATOR_T on JREF Join
Specification (QDBQ_JREF_T).

JREF Join Operand (QDBQ_JREF_OPERAND_T)

JREF Join entry operand.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 BIN(2) qdbq_jref_file# JREF Join reference number. The value
in this field is used to identify the entry
in the QDBQN array associated with
this file.

2 2 CHAR(8) qdbqdt_67 Reserved.

JREF Join Operator (QDBQ_JREF_OPERATOR_T)

JREF Join entry operator.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 BIN(4) qdbq_jref_jselo JREF Join entry offset. Offset to the join
selection for this JREF Join predicate. The
join selection is defined by the Selection
Specifications (QDBQS).

4 4 CHAR(1) qdbq_jref_jtype JREF Join type. Type of the join specified
for this JREF Join predicate.

J

Inner join

C

left partial outer join

E

Exception join

5 5 CHAR(5) qdbqdt_68 Reserved.

Record Selection Specification (QDBQS_T)

Record selection specification. This structure defines the selection specifications for the files being queried.
Selection on the file is done before grouping. If selection is desired on group by results, see structure
QDBQGS_T on Group-by-Selection Specification (QDBQGS_T).

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 BIN(4) qdbqsl Selection specifications length. This is the total
length of all selection specifications.

4 4 BIN(2) qdbqsnum Number of selection specifications.

6 6 CHAR(10) qdbqdt_29 Reserved. (Ref #9.)

16 10 CHAR(*) qdbqspec Start of selection specifications. Displacement
to selection item specifications array from
structure QDBQS_T (see structure
QDBQSIT_T on Selection Item Specifications
(QDBQSIT_T)).

Selection Item Specifications (QDBQSIT_T)

Selection item specifications. This structure is defined at field qdbqspec in structure QDBQS_T.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 BIN(4) qdbqslen Selection item length. This length includes the
length (QDBQSIT_T) plus the length of the
selection item structure.

4 4 BIN(2) qdbqsitt Selection item type.

0

Field operand

1

Constant operand

2

Operator

3

Subquery operand

4

Null operand (SAA). This operand is
used for is null and is not null functions.
Only equal and not equal operators are
allowed.

(Ref #10.)

6 6 CHAR(*) qdbqsitm Selection item. This field is overlaid by the
sequence of selection field structures.

Selection Field Operand (QDBQSOPF_T)

Selection field operand. This structure overlays field qdbqsitm in structure QDBQSIT_T.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR(30) qdbqsofn Field name. The field name must be an external
name.

30 1E BIN(2) qdbqsofj Field join reference number. 0 indicates that the
QDBQR_T format (see Record Format
Specification (QDBQR_T)) is searched for the
external field name. If the field is not found, the
formats of the files in the file specification are
searched. If the field name is found in more than
one file format, an error is signaled.

A value in this field indicates that the external field
name is to be found in the file format referenced by
using this value as an index into the file list.

32 20 BIN(2) qdbqsoqt Index into the query-definition-template table for
the correlated field's associated query definition
template. Use zero for noncorrelated fields.

34 22 CHAR(24) qdbqdt_30 Reserved.

Selection Field Subquery Operand (QDBQSOPS_T)

Selection field subquery operand. This structure overlays field qdbqsitm in structure QDBQSIT_T).

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 BIN(2) qdbqssub Index into the query-definition-template offset
table for the subquery's query definition template.

2 2 CHAR(1) qdbqstyp Subquery operator qualifier.

X'00'

Use the qdbqsop field only

X'01'

ALL

X'02'

ANY or SOME

Valid values for qdbqsop when qdbqstyp equals 00
are:

Basic predicate

0001-0006

Exists

0045

In

0046

Valid values for qdbqsop when qdbqstyp is not
equal to 00 are:

Operator

0001-0006

3 3 CHAR(23) qdbqdt_31 Reserved.

Selection Constant Operand (QDBQSOPC_T)

Selection Constant Operand. This structure overlays field qdbqsitm in structure QDBQSIT_T.

Offset

Bit Type
Variable
Name FieldDec Hex

CHAR
(32793)

qdbqsoch Constant operand header.

0 0 BIN(4) qdbqsocl Constant operand byte length. This only includes the
length of the constant in field qdbqsovl, including
apostrophes.

4 4 CHAR(1) qdbqdt_32 Constant attributes.

4 4 0 BIT(1) qdbqsoci DBCS open constant.

0

This constant is not a DBCS-open literal.

1

This constant is a DBCS-open literal.

4 4 1 BIT(1) qdbqdt_33 Reserved.

4 4 2 BIT(1) qdbqsocc Character constant type.

0

Character string in apostrophes. The
character constant is bracketed by
apostrophes and any imbedded apostrophes
must be represented by two apostrophes.

1

Character string not in apostrophes. The
character constant is not bracketed by
apostrophes.

If it is determined during query processing that the
constant should be numeric and if field qdbqsoac in
this table is 0, this bit is ignored.

4 4 3 BIT(1) qdbqsoac Character constant.

0

Do not assume that this is a character
constant. Determination of the type of
constant is made during query processing.

1

Assume that this is a character constant.

4 4 4 BIT(1) qdbqsoco DBCS-only constant.

0

This constant is not DBCS-only.

1

This constant is DBCS-only.

4 4 5 BIT(1) qdbqsosr Special register.

0

This constant operand is not a special
register.

1

This constant operand is a special register,
defined by the qdbqsorc field.

4 4 6 BIT(1) qdbqsonl SAA NULL indicator.

0

This constant operand is not a NULL literal.

1

This constant operand is a NULL literal.

The query definition template is synchronized with
the format description.

4 4 7 BIT(1) qdbqdt_34 Reserved.

5 5 CHAR(1) qdbqsorc Special register constant. This field is defined by
special register constants declared in the record
format definition. This field can only be specified if
field qdbqsosr is on.

X'01'

User

X'02'

Current date

X'03'

Current time

X'04'

Current timestamp

X'05'

Current time zone

X'06'

Current server

6 6 CHAR(1) qdbqsoft Date, time, timestamp, format attribute. This field
applies only to date, time, or timestamp literals.

X'FE'

Job default

X'FF'

Determine format

X'01'

USA format

X'03'

ISO format

X'05'

EUR format

X'07'

JIS format

X'09'

SAA timestamp

X'17'

MDY format

X'18'

DMY format

X'19'

YMD format

X'1A'

JUL format

X'1B'

HMS format

X'1D'

YYYYNNN format

X'1E'

YYYYMMDDHHMMSS format

When the value of this field is X'FF', the format and
separator specified in the query-definition-template
header (either the qdbqdfmt field or the qdbqtfmt
field, and either the qdbqdsep field or the qdbqtsep
field, for a date or time literal is used first in
determining the format and separator of the literal.

When the value of this field is X'FE' for a date or
time literal, the format and separator are determined
using the job attributes. The format value may be
X'17', X'18', X'19', X'1A', or X'1B'. The separator
specified for qddfdvsp is used first in determining
the format and separator.

When the value of this field is X'FE' for a timestamp
literal, the SAA timestamp format is used as the
format of the literal.

7 7 CHAR(1) qdbqsosp Date and time separator. This field applies only to
date or time literals. It should only be set when the
qdbqsoft field is X'FE', X'17', X'18', X'19', X'1A', or
X'1B'.

X'00'

Job default separator

X'EE'

Implied separator

/

Slash separator

-

Dash separator

.

Period separator

,

Comma separator

Blank

Blank separator

:

Colon separator

When the value of this field is X'00', the separator is
obtained from the job attributes, which will be one
of the preceding values except X'00' or X'EE'. When
the value of this field is X'EE', the implied separator
for the format is used.

8 8 CHAR(2) qdbqdt_35 Reserved.

10 A BIN(2) qdbqsocd CCSID value for this literal. If not set to zero, the
literal will be tagged with this CCSID. Otherwise,
the literal will be tagged with the CCSID specified
in the query-definition-template header (see Query
Definition Header (QDBQH_T)) or the job default,
in that order. This field is only valid for character,
DBCS-open, DBCS-only, DBCS-graphic, and
UCS-2 literals.

12 C CHAR(1) qdbqdt_36 Reserved.

12 C 0 BIT(2) qdbqdt_37 Reserved.

12 C 2 BIT(1) qdbqglit An indicator that the constant is a DBCS-graphic or
UCS-2 literal. If this field is a UCS-2 literal,
qdbqsocd must be set to a valid UCS-2 CCSID, or
qdbqsocd must be zero and qdbqcsdc (see Query
Definition Header (QDBQH_T)) must be set to a
valid UCS-2 CCSID.

12 C 3 BIT(5) qdbqdt_38 Reserved.

13 D CHAR(29) QDBQDT_39 Reserved. (Ref #11.)

42 2A CHAR
(32751)

qdbqsovl Operand value. The operand value must be in
external form.

Selection Operator Item (QDBQSOPR_T)

Selection Operator Item. This structure overlays field qdbqsitm in structure QDBQSIT_T.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR(2) qdbqsop Operators. Relational operators:

X'0001'

Equal

X'0002'

Not equal

X'0003'

Greater than or equal

X'0004'

Less than or equal

X'0005'

Greater than

X'0006'

Less than

X'0007'

Range (inclusive)

X'0041'

Scan

X'0042'

Wildcard scan

X'0043'

Values

X'0045'

Exists

X'0046'

In

Boolean operators:

X'000B'

OR

X'000C'

XOR

X'000D'

AND

X'000E'

NOT

Case selection operators:

X'0018'

WHEN

X'001B'

ELSE

Case operators are only valid when specified as
part of a case selection specification.

2 2 CHAR(1) qdbqswc1 Wildcard value for any single character. This
character indicates the value in the character
string operand that should be interpreted as
matching any single character. This field is only
applicable if the qdbqsop field is a wildcard scan.

3 3 CHAR(1) qdbqswc2 Wildcard value for any number of characters.
This character indicates the value in the character
string operand that should be interpreted as
matching any number of characters. This field is
only applicable if the qdbqsop field is a wildcard
scan.

4 4 BIN(2) qdbqvalcnt Values operand count. This count reflects the
number of selection constant operands (values)
associated with the values operator. This count
must be set if the operator is values and is
ignored for all other operators.

6 6 CHAR(1) qdbqdt_55 Selection operator flags.

6 6 0 BIT(1) qdbqescp Wildcard escape character indicator. This field is
valid only for wildcard scan.

0

There is no escape character.

1

There is an escape character specified for
the wildcard scan operator by using the
third operand.

6 6 1 BIT(1) qdbqdt_56 Reserved.

6 6 2 BIT(1) qdbqsopr_ext Selection operator extension area indicator.

0

Operator extension area
(QDBQSOP3_T) does not exist.

1

Operator extension area
(QDBQSOP3_T) exists.

6 6 3 BIT(5) qdbqdt_60 Reserved.

7 7 CHAR(3) qdbqdt_40 Reserved.

Note: The following fields are not present in a query definition restored from a System/38.

10 A CHAR(14) qdbqsop2 Wildcard value for double-byte characters

10 A CHAR(2) qdbqsdbl Wildcard value for any one double-byte
character. This value indicates the value in the
DBCS string operand that should be interpreted
as matching any one double-byte character. This
field is only applicable if field qdbqsop is a
wildcard scan and string operand is a DBCS or
graphic pattern.

12 C CHAR(2) qdbqsdb2 Wildcard value for any number of double-byte
characters. This value indicates the value in the
double-byte string operand that should be
interpreted as matching any number of
double-byte or single-byte characters. This field
is only applicable if field qdbqsop is a wildcard
scan and the string operand is a DBCS or graphic
pattern.

14 E CHAR(3) qdbqdt_41 Reserved.

17 11 CHAR(2) qdbqsuo1 Half-width wildcard value for any one
double-byte UCS-2 character. This value
indicates what value in the UCS-2 operand
matches any one double-byte UCS-2 character.
This field is only applicable if qdbqsop is a
wildcard scan and the pattern is a UCS-2
parameter marker, host variable value, or
constant.

19 13 CHAR(2) qdbqsuo2 Full-width wildcard value for any one
double-byte UCS-2 character. This value
indicates what value in the UCS-2 operand
matches any one double-byte UCS-2 character.
This field is only applicable if qdbqsop is a
wildcard scan and the pattern is a UCS-2
parameter marker, host variable value, or
constant.

21 15 CHAR(2) qdbqsum1 Half-width wildcard value for any number of
double-byte UCS-2 characters. This value
indicates what value in the UCS-2 operand
matches any number of double-byte UCS-2
characters. This field is only applicable if
qdbqsop is a wildcard scan and the pattern is a
UCS-2 parameter marker, host variable value, or
constant.

23 17 CHAR(2) qdbqsum2 Full-width wildcard value for any number of
double-byte UCS-2 characters. This value
indicates what value in the UCS-2 operand
matches any number of double-byte UCS-2
characters. This field is only applicable if
qdbqsop is a wildcard scan and the pattern is a
UCS-2 parameter marker, host variable value, or
constant.

25 19 CHAR(1) qdbqdt_59 Reserved.

Selection Operator Item Extension (QDBQSOP3_T)

Selection Operator Item Extension. This structure overlays field qdbqsitm in structure QDBQSIT_T by
following QDBQSOPR_T and is only present if qdbqsopr_ext is set to '1'.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(2) qdbqswc_ccsid CCSID of wildcard character values
that are specified in qdbqswc1,
qdbqswc2, qdbqsdb1, and qdbqsdb2.
The appropriate associated CCSID is
determined depending on the CCSID of
the pattern. If needed, this CCSID is
used to convert the relevant wildcard
characters to the CCSID of the pattern.
If set to zero, it is assumed that the
wildcard values are in the same CCSID
as that of the pattern.

2 2 BIN(2) qdbqswc_ccsid_ucs2 CCSID of wildcard character values
that are specified in qdbqsuo1,
qdbqsuo2, qdbqsum1, and qdbqsum2.
If needed, this CCSID is used to
convert the relevant wildcard
characters to the CCSID of the pattern.
If this field is set to 0, it is assumed that
the wildcard values are in the same
CCSID as the pattern. If this field is
specified, it must be a valid UCS-2
CCSID.

4 4 CHAR(28) qdbqdt_61 Reserved.

Order by Specification (QDBQK_T)

Order by specification. This structure contains a description of how the results of the query should be
ordered. Up to 10 000 bytes may be used in ordering.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR(16) qdbqkh Order by header.

0 0 BIN(2) qdbqknum The number of key positions in the order by
specifications.

2 2 CHAR(1) qdbqkt Key field ordering type.

U

Unique key fields

D

Duplicate key fields

F

FIFO duplicate key fields

L

LIFO duplicate key fields

C

FCFO duplicate key fields

A, X'00'

Any key field is considered.

This field is only used as a guide when
considering indexes. Field qdbqopta) should be
set to on to consider that all indexes build over
the query files.

3 3 CHAR(13) qdbqdt_42 Reserved.

16 10 ARRAY(1)
OF
CHAR(64)

qdbqkf Key specifications of 10 000.

16 10 CHAR(30) qdbqkfld Key field name. The field name must be an
external field name from the QDBQR_T format
(unless QDBQR_T is not specified, in which
case the field is an external field name from the
file format). For the QDBQR_T structure, see
Record Format Specification (QDBQR_T). Field
Qddffiob must not be X'04' (neither input nor
output) for a key field.

36 24 CHAR(1) qdbqksq Key field sequencing attributes.

36 24 0 BIT(1) qdbqksad Ascending or descending sequencing indicator.

0

Ascending sequence

1

Descending sequence

36 24 1 BIT(1) qdbqdt_43 Reserved.

36 24 2 BIT(1) qdbqkabs Absolute value sequence indicator. This bit is
ignored for character key fields.

0

Numeric sequence

1

Absolute value sequence

36 24 3 BIT(5) qdbqdt_44 Reserved.

37 25 CHAR(33) qdbqdt_45 Reserved.

Group by Specification (QDBQG_T)

Group by specification. This structure contains a description of how the record results of the query should
be grouped. All records for which equal values exist in the defined fields are grouped together. Up to 2000
bytes may be used.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR(16) qdbqgh Group by header.

0 0 BIN(2) qdbqgfnum The number of group by fields. If the
number of group fields is 0, all the records
are processed as one group.

2 2 CHAR(14) qdbqdt_46 Reserved.

16 10 ARRAY(120)
OF
CHAR(64)

qdbqgf Group field specification. Up to 120 fields
are allowed.

16 10 CHAR(30) qdbqgfld Group field name.

46 2E BIN(2) qdbqgflj Field-join reference number. 0 indicates that
the QDBQR_T format (Record Format
Specification (QDBQR_T)) is searched for
the external field name. If the field is not
found, the formats of the files in the file
specification are searched. If the field name
is found in more than one file format, an
error is signaled. A value in this field
indicates that the external field name is
found in the file format referred to by using
this value as an index into the file list.

48 30 CHAR(32) qdbqdt_47 Reserved.

Group-by-Selection Specification (QDBQGS_T)

Group-by-selection specification. This structure defines the selection specifications for the group by results.
Selection on the group results is performed after the selection on the record is complete and the grouping
has been completed.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR(*) QDBQGS_T Group-by-selection specification structure.
See Record Selection Specification
(QDBQS_T).

CHAR(*) QDBQGSIT_T The group by selection item specification
structure (see Selection Item Specifications
(QDBQSIT_T)).

Set Operation Specification (QDBQT_T)

Set operation specification. This structure defines the operation specifications being performed for each set
of results generated from each query definition template. These specifications are only valid when more
than one query definition template is specified. The set operation specifications must only be specified on
the last query definition template.

The specification structure is a stack of operands and operators in reverse notation. Operands are constant
literals that identify the relative position of a query definition template among others in the
query-definition-template chain. Operators are set operators such as union. For example, given the
following query definition templates:

The following operations can be performed:

 (1st QDT) UNION (2nd QDT) UNION ALL (3rd QDT)

The above can be specified in the set operation specification (in reverse notation) as:

 1 2 UNION 3 UNION ALL

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 BIN(4) qdbqtl Set specifications length. This is the total
length of all set specifications.

4 4 BIN(2) qdbqtnum Number of set specifications.

6 6 CHAR(10) qdbqdt_48 Reserved. (Ref #13.)

16 10 CHAR(*) qdbqtspc Start of set specifications.

Set Item Specifications (QDBQTIT_T)

Set item specifications. This structure overlays field qdbqtspc in structure QDBQT_T.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 BIN(4) qdbqtlen Set item length. This length includes the
length (QDBQTIT_T) plus the length of the
set item structure.

4 4 BIN(2) qdbqtitt Set item type.

1

Constant operand

2

Operator

(Ref #14.)

6 6 CHAR(10) qdbqtitm Set item. Use either table QDBQtopC_T or
QDBQtopR_T.

Relative Number of Query Definition Template (QDBQtopC_T)

Relative number of query definition template. This structure overlays field qdbqtitm in structure
QDBQTIT_T .

Offset

Bit Type
Variable
Name FieldDec Hex

BIN(2) qdbqtqdt Relative number of query definition
template.

CHAR(8) qdbqdt_49 Reserved.

Set Operators (QDBQtopR_T)

Set operators. This structure overlays field qdbqtitm in structure QDBQTIT_T .

Offset

Bit Type
Variable
Name FieldDec Hex

CHAR(2) qdbqtop Set operators.

X'0001'

Union

X'0002'

Union all

CHAR(8) qdbqdt_50 Reserved.

Query Definition Template Offset Table (QDBQQDTS_T)

Query definition template offset table. This structure is set for each unioned outermost query definition
template that contains subqueries. This offset table contains offsets for addressability to each query
definition template within a union.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR(16) qdbqqhdr Header.

0 0 BIN(2) qdbqqdtnum Number of subqueries defined with offsets.

2 2 CHAR(14) qdbqdt_51 Reserved.

16 10 ARRAY(32)
OF
CHAR(16)

qdbqqdt Array of subquery offsets. See structure
QDBQQDT_T (Array of Subquery Offsets
(QDBQQDT_T)) for the layout.

Array of Subquery Offsets (QDBQQDT_T)

Array of subquery offsets.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 BIN(4) qdbqo Offset to QDT from start of first QDT in the
union.

4 4 CHAR(12) qdbqdt_52 Reserved.

Format Definition Template (Qdb_Qddfmt_t)

The format definition (Qdb_Qddfmt_t) for the QQQQRY API is the same structure that is used by the
Retrieve Database File Description (QDBRTVFD) API called FILD0200. Figure 1-2 shows how this
information is organized. When more than one entry can appear, the figure indicates this as in (2). For a
description of the fields in Qdb_Qddfmt_t and their respective offsets, see FILD0200 Format (Qdb_Qddfmt
Structure) in Retrieve Database File Description (QDBRTVFD) API.

The description and offsets are also in the include source supplied with OS/400. You can see this source in
member QDBRTVFD in the QSYSINC library.

The QQQQRY API builds the format definition if it was not created prior to the query.

Figure 1-2. Qdb_Qddfmt_t Format

User File Control Block (QDBUFCB_T) Structure

User file control block. This structure holds information from the user file control block (UFCB). It
contains selected options for the input and output of the specified query.

The options available include:

Sequence only●

Commitment control●

Block records●

Keyed feedback●

Record length●

Open options●

Release number●

Version number●

Invocation mark count or activation group number●

iSeries system environment●

Null-capable fields●

File dependency●

Level check●

Record format specifications●

Secure●

Shared●

Open scope●

In addition, some validity checking is done for this UFCB. CPF4297 is issued if any reserved space in the
header of the QDBUFCB_T format is not zero.

The offsets and a description of all the fields contained in this structure are shown in the following table.
You can see this source in member QQQQRY in the QSYSINC library.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 CHAR
(1962)

qufcb Query base UFCB. A character view of the entire
user file control block.

0 0 CHAR(174) reserved1 Reserved.

174 AE CHAR(1) shr_secure Share and secure flags.

174 AE 0 BIT(3) flglrsva Reserved.

174 AE 3 BIT(1) flglshr Share specified.

0

No type of share was specified on the
UFCB.

1

SHARE(YES) or SHARE(NO) was
specified on the UFCB.

174 AE 4 BIT(1) flglshsw Share value.

0

Not share

1

Share

174 AE 5 BIT(1) flglsecr Secure specified.

174 AE 6 BIT(1) flglud Secure value.

0

Not secure

1

Secure

174 AE 7 BIT(1) flglsvb Reserved.

175 AF CHAR(1) open Open flags.

175 AF 0 BIT(2) flagrsva Reserved.

175 AF 2 BIT(1) flagui Open input.

175 AF 3 BIT(1) flaguo Open output.

175 AF 4 BIT(1) flaguu Open update.

175 AF 5 BIT(1) flagud Delete.

175 AF 6 BIT(2) flagsvb Reserved.

176 B0 CHAR(4) relver Release and version.

176 B0 CHAR(2) release Release number. This value must be set to 01.

178 B2 CHAR(2) version Version number. This value must be set to 00.

180 B4 BIN(4) invmkcnt Mark counter of call or activation group. Set this
field to the call mark count when scoping the
open to the default activation group. For this
case, a 0 indicates a permanent open, and any
value greater than 0 indicates a temporary open.
Set this field to the activation group mark count
when scoping the open to an activation group.

Note: Setting this field to the default activation
group is the same as specifying a call mark of 0
for a permanent open.

184 B8 CHAR(1) markcnt Mark count and blocked record.

184 B8 0 BIT(1) flg2mkcp Mark counter option.

0

The mark counter specified by the
invmkcnt field is not used.

1

The mark counter specified by the
invmkcnt field is used.

184 B8 1 BIT(1) flg2rsvl Reserved.

184 B8 2 BIT(1) flg2brcd Blocked records.

0

There are no blocked records.

1

There are blocked records.

184 B8 3 BIT(5) flg2rsv2 Reserved.

185 B9 CHAR(1) reserved2 Reserved.

186 BA CHAR(1) invact Mark count usage.

186 BA 0 BIT(1) flg4rsvl Reserved.

186 BA 1 BIT(1) flg4iact Mark counter usage.

0

The mark counter specified by the
invmkcnt field contains a call mark.

1

The mark counter specified by the
invmkcnt field contains an activation
group number.

186 BA 2 BIT(6) flg4rsv2 Reserved.

187 BB CHAR(1) reserved2a Reserved.

188 BC CHAR(1) native iSeries environment and process NULLS.

188 BC 0 BIT(2) flg3rsvl Reserved.

188 BC 2 BIT(1) flg3ntve This field must be set to 1.

188 BC 3 BIT(3) flg3rsv2 Reserved.

188 BC 6 BIT(1) flg3null Process null-capable fields.

188 BC 7 BIT(1) flg3rsv3 Reserved.

189 BD CHAR(2) reserved3a Reserved.

191 BF CHAR(1) opnscp Open scope.

A

Open is scoped to the specified
activation group, or if this is the default
activation group and a call mark is
specified, the open is scoped to the
program at the call mark specified.

J

Open is scoped to the job.

X'00'

Not specified. The value A is assumed.

192 BE CHAR(16) reserved3 Reserved.

Note: The parameter field through the ufcbend field are repeated in the variable-length data area for each
parameter.

208 D0 CHAR(73) parameter Variable parameters.

208 D0 BIN(2) primrlnl Primary record length. Initialize to -1 to
deactivate.

210 D2 BIN(2) primrlnv The user-specified record length.

212 D4 BIN(2) filedep File-dependent I/O. Initialize to -3 to deactivate.

214 D6 0 BIT(1) fildonoff File-dependent option.

On

This is file dependent.

Off

This is not file dependent.

214 D6 1 BIT(7) fldrsvl Reserved.

215 D7 BIN(2) lvlchk Level-check option. Initialize to -6 to deactivate.

217 D9 0 BIT(1) lvlonoff Level-check option.

On

Perform level checking

Off

Do not perform level checking

217 D9 1 BIT(7) lvlrsvl Reserved.

218 DA BIN(2) recfmts Record format sequence numbers for level
checking.

220 DC BIN(2) maximum The maximum number of formats.

222 DE BIN(2) curnum The current number of formats.

224 E0 ARRAY(75)
of
CHAR(23)

formats Array of format names and sequence numbers

224 E0 CHAR(10) name The format name.

234 EA CHAR(13) number The format sequence number.

1949 79D BIN(2) keyfdbk Key feedback. Initialize to -53 to deactivate.

1951 79F 0 BIT(1) keyonoff Key feedback option.

On

Provide feedback

Off

Do not provide feedback

1951 79F 1 BIT(7) keyrsvl Reserved.

1952 7A0 BIN(2) seqonly Sequential processing. Initialize to -58 to
deactivate.

1954 7A2 0 BIT(1) seqonoff Sequential processing option.

On

Use Fast sequence processing

Off

Use standard sequence processing

1954 7A2 1 BIT(1) numonoff Fast sequential processing option.

On

Number of records to transfer to or from
the I/O buffers for fast sequential
processing is specified.

Off

The number of records to transfer to or
from the I/O buffers is not specified.

1954 7A2 2 BIT(6) seqrsvl Reserved.

1955 7A3 BIN(2) numrecs The number of records to transfer to or from the
I/O buffers for fast sequential processing.

1957 7A5 BIN(2) commitc Commitment control. Initialize to -59 to
deactivate.

1959 7A7 CHAR(1) control Commitment control and optional record-locking
level. Possible values are:

X'00'

Do not place the member under
commitment control when it is opened.
This would be the same as specifying the
Start Commitment Control command as
STRCMTCLT COMMIT(*NO).

X'80'

Place the member under commitment
control when it is opened, and use the
record-locking level default used on the
Start Commitment Control command,
that is, STRCMTCTL COMMIT
(*YES).

X'82'

Place the member under commitment
control when it is opened and use

record-locking level *CHG, that is,
STRCMTCTL COMMIT
(*YES,*CHG).

X'86'

Place the member under commitment
control when it is opened and use
record-locking level *CS, that is,
COMMIT *YES,*CS).

X'87'

Place the member under commitment
control when it is opened and use
record-locking level *ALL, that is,
COMMIT (*YES,*ALL).

1960 7A8 BIN(2) ufcbend This field must be set to 32767, the end of the
variable area parameters. Set this field to
ENDLIST.

1962 7AA BIN(4) dummy Dummy pointer to force boundary alignment for
the user file control block structure.

Value for Query Variable Fields (QQQVALS_T) Structure

The structure is used to supply the values for the variable fields used by the QQQQRY API. The offsets and
a description of all the fields contained in this structure are shown in the following table. You can see this
source in member QQQQRY in the QSYSINC library.

Offset

Bit Type
Variable
Name FieldDec Hex

0 0 BIN(2) qqqvvalnum Number of values in list.

2 2 CHAR(30) qqqvals_l Reserved.

32 20 ARRAY(1)
OF
CHAR(48)

qqqvlst List of variable field values referenced by field
Qddfvarx. See field Qddfvarx for the Qddfvarx
field. (Ref #15.)

32 20 Pointer qqqvsptr Space pointer to the host variable value. The
value must be in internal form.

48 30 CHAR(7) qqqvattr Attributes of value.

48 30 0 CHAR(1) qqqvatyp Scalar type

X'00'

Binary

X'01'

Floating point

X'02'

Zoned decimal

X'03'

Packed

X'04'

Character

X'06'

Graphic

X'07'

DBCS-only

X'08'

DBCS-either

X'09'

DBCS-open

X'0B'

Date

X'0C'

Time

X'0D'

Timestamp

49 31 CHAR(2) qqqvalen Scalar length for character, binary, floating
point, only, either, or open. For graphic, this is
also the number of bytes (not characters).

49 31 CHAR(1) qqqvadec Fractional digits for zoned or packed.

50 32 CHAR(1) qqqvatot Total digits for zoned or packed.

51 33 CHAR(4) qqqvaary Container for precision and digits for binary
values.

51 33 CHAR(1) qqqvbind Fractional digits for binary value.

52 34 CHAR(1) qqqvbint Total digits for binary value.

53 35 CHAR(2) qqqvals_2 Reserved.

55 37 CHAR(1) qqqvals_3 Field attributes.

55 37 0 BIT(1) qqqvvlen Variable length host variable field.

0

The host variable field is not variable
length.

1

The host variable field is variable
length.

55 37 1 BIT(1) qqqvnulll The form of field qqqvsptr. If on, qqqvsptr is
ignored and the literal is the null value. If off,
the literal pointed to by qqqvsptr is used.

55 37 2 BIT(1) qqqvzerol The length of field qqqvsptr. If on, qqqvsptr is
ignored and the literal is zero length. If off, the
literal pointed to by qqqvsptr is used.

55 37 3 BIT(5) qqqvals_4 Reserved.

56 38 CHAR(1) qqqvdvft Date, time, and timestamp format attribute. This
field applies to date, time, or timestamp values
only, where the field qqqvatyp in this structure
is date, time, or timestamp.

X'00'

Job default

X'FF'

Determine format

X'01'

USA format

X'03'

ISO format

X'05'

EUR format

X'07'

JIS format

X'09'

SAA timestamp

X'17'

MDY format

X'18'

DMY format

X'19'

YMD format

X'1A'

JUL format

X'1B'

HMS format

X'1D'

YYYY NNN format

X'1E'

YYYY MM DDDD HH MM SS format

These formats are optional. If the value is X'FF',
the format is in the query definition template
header and that format is used first in
determining the format. See field qdbqdfmt or
field qdbqtfmt if the format is in the query
definition template header.

57 39 CHAR(1) qqqvdvsp Date, time, and timestamp separator. This field
is only set when field qqqvdvft in this structure
is X'17', X'18', X'19', X'1A', or X'1B'.

58 3A BIN(2) qqqvcsid CCSID of value.

59 3C CHAR(20) qqqvals_5 Reserved.

Usage Notes

In multithreaded jobs, this command is not threadsafe for distributed files and fails for distributed files that
use relational databases of type *SNA. This command also is not threadsafe and fails for Distributred Data
Management (DDM) files of type *SNA.

Error Messages

Message ID Error Message Text

CPF2114 E Cannot allocate object &1 in &2 type *&3.

CPF2115 E Object &1 in &2 type *&3 damaged.

CPF2169 E Job's sort sequence information not available.

CPF24B4 E Severe error while addressing parameter list.

CPF2619 E Table &1 not found.

CPF3BCC E Language identifier &1 not valid.

CPF3BC6 E Sort sequence &1 not valid.

CPF3BC7 E CCSID &1 outside of valid range.

CPF3BC8 E Conversion from CCSID &1 to CCISID &2 is not supported.

CPF3BC9 E Conversion from CCSID &1 to CCISID &2 is not defined.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter is not valid.

CPF3FC0 E Language identifier is not valid.

CPF4000 E All CPF40xx messages could be returned. xx is from 01 to FF.

CPF4100 E All CPF41xx messages could be returned. xx is from 01 to FF.

CPF4200 E All CPF42xx messages could be returned. xx is from 01 to FF.

CPF4300 E All CPF43xx messages could be returned. xx is from 01 to FF.

CPF5000 E All CPF50xx messages could be returned. xx is from 01 to FF.

CPF5100 E All CPF51xx messages could be returned. xx is from 01 to FF.

CPF5200 E All CPF52xx messages could be returned. xx is from 01 to FF.

CPF5300 E All CPF53xx messages could be returned. xx is from 01 to FF.

CPF8133 E Table &4 in &9 damaged.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

API Introduced: V2R2

Top | Database and File APIs | APIs by category

Query SQL Database Monitor (QQQQSDBM) API

 Required Parameter Group:

1 Qualified job name Input Char(26)
2 Number of active monitors Output Binary(4)
3 Size of active monitors array Input Binary(4)
4 Type of active monitors array Output Array(*) of

Char(10)
5 Memory handle Output Char(10)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Query SQL Database Monitor (QQQSSDBM) API returns information about the activity of the SQL and the original database
monitor. Associated APIs include the following:

Clear SQL Database Monitor Statistics (QQQCSDBM)●

Dump SQL Database Monitor (QQQDSDBM)●

End SQL Database Monitor (QQQESDBM)●

Start SQL Database Monitor (QQQSSDBM)●

Authorities and Locks

None

Required Parameter Group

Qualified job name

INPUT; CHAR(26)

The job for which status is being requested. The qualified job name has three parts:

Job name CHAR(10). A specific job name, a generic name, or one of the following special values:

* or
*CURRENT

Only the job that this program is running in. The rest of the qualified job
name parameter must be blank.

*ALL All jobs. The rest of the job name parameter must be blank.

User name CHAR(10). A specific user profile name.
Job number CHAR(6). A specific job number.

Number of active monitors

OUTPUT; BINARY(4)

The number of active database monitors. If the number of active monitors is greater than the size of the type of active monitors
array allocated by the user, the type of active monitors array is truncated to the size allocated by the user.

Size of active monitors array

INPUT; BINARY(4)

The amount of storage (number of character(10) array entries) allocated by the caller for the type of active monitors array
parameter.

Type of active monitors array

OUTPUT; Array(*) of CHAR(10)

The types of database monitors that are active. The values may include:

*FILE The file-based database monitor (STRDBMON) is active
*SQLMEMORY The SQL memory-based database monitor (QQQSSDBM) is active.

Memory handle

OUTPUT; CHAR(10)

The memory handle used for the specified job if the memory-based monitor is active. Only the first 6 characters will be used
for naming the memory handle.

This field is blank if the SQL memory-based database monitor is not active.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code Parameter.

Error Messages

Message ID Error Message Text
CPF0172 E Parameters passed on CALL do not match those required.
CPF1321 E job &1 user &2 job number &3 not found.
CPF3CF1 E Error code parameter not valid.
CPF436E E Job &1 user &2 job number &3 is not active.

API Introduced: V4R3

Top | Database and File APIs | APIs by category

Request Statistics Collections (QDBSTRS,
QdbstRequestStatistics) API

 Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Format of input data Input Char(8)
4 Feedback area Output Char(*)
5 Length of feedback area Input Binary(4)
6 Feedback keys Input Array(*) of Binary(4)
7 Number of feedback keys Input Binary(4)
8 Error code I/O Char(*)

 Service Program Name: QDBSTMGR

 Default Public Authority: *USE

 Threadsafe: Yes

The Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) API allows a user to request that
one or more statistics collections for a given set of columns of a database file member be created.

The created statistics collections are stored as part of the database file member.

Options are provided to control whether the statistics are generated in the background or to be processed
immediately, and whether the status of the resulting statistics collections is to be maintained automatically
by the system or manually by the user.

Authorities and Locks

ASP Device Authority

*EXECUTE

File Authority

*OBJALTER, *OBJOPR

File Library Authority

*EXECUTE

File Lock

*SHRRD

Translation Table Authority

*USE

Translation Table Library Authority

*EXECUTE

Translation Table Lock

*SHRRD

Required Parameter Group

Input data

INPUT; CHAR(*)

The buffer containing the input parameters according to the format of input data parameter. The
buffer content has to start at a four-byte boundary.

Length of input data

INPUT; BINARY(4)

The length of the input data buffer provided.

Format of input data

INPUT; CHAR(8)

The format of the input data. Possible values are:

STIR0100 Basic request statistics collections input parameters.

Refer to STIR0100 Format for more information.

Feedback area

OUTPUT; CHAR(*)

The buffer to receive feedback data. See Feedback Area Format for more information. The buffer
content has to start at a four-byte boundary.

Length of feedback area

INPUT; BINARY(4)

The length of the feedback area buffer provided. The required minimum length is 16, to fit the
feedback area header (see Feedback Area Format).

Feedback keys

INPUT; ARRAY(*) OF BINARY(4)

The list of fields to return in the feedback area. For a list of valid keys, see Valid Keys - Feedback.

Number of feedback keys

INPUT; BINARY(4)

The number of fields to return in the feedback area. If zero is specified, all other feedback area
parameters (Feedback area, Length of feedback area, and Feedback keys) are ignored.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

STIR0100 Format

The basic request statistics collections input parameters. See Field Descriptions for details of the fields
listed.

Offset

Type FieldDec Hex

0 0 CHAR(10) ASP device name

10 A CHAR(10) File name

20 14 CHAR(10) File library name

30 1E CHAR(10) File member name

40 28 CHAR(12) Collection mode

52 34 BINARY(4) Offset to statistics collections

56 38 BINARY(4) Number of statistics collections

60 3C CHAR(*) Reserved

The fields below follow the fields above and repeat, in the order listed, for each statistics collection, where
the first statistics collection starts at the given Offset to statistics collections.

Offset

Type FieldDec Hex

+0 +0 BINARY(4) Length of statistics collection

+4 +4 BINARY(4) Length of statistics collection name

+8 +8 CHAR(128) Statistics collection name

+136 +88 CHAR(10) Aging mode

+146 +92 CHAR(2) Reserved

+148 +94 BINARY(4) Displacement to columns

+152 +98 BINARY(4) Number of columns

+156 +9C CHAR(*) Reserved

The fields below follow for each statistics collection definition header struture as descibed above and
repeat, in the order listed, for each column in the current statistics collection, where the data for the first
column starts at the given offset Offset to columns.

Offset

Type FieldDec Hex

+0 +0 BINARY(4) Length of column definition

+4 +4 CHAR(10) Column name

+14 +E CHAR(10) Translation table name

+24 +18 CHAR(10) Translation table library name

+34 +22 CHAR(2) Reserved

+36 +24

Valid Keys - Feedback

See Field Descriptions for details for the fields listed.

Key Type Description

1 CHAR(10) ASP device name used

3 CHAR(10) File library name used

4 CHAR(10) File member name used

8 BINARY(4) Elapsed time

6 CHAR(16) Internal request ID

43 BINARY(4) Total number of statistics collections for internal request ID

46 Array of CHAR(*) Statistics collection names used

7 Array of CHAR(*) Internal statistics IDs created

Feedback Area Format

The fields returned in the feedback area will be returned in the order requested. See Field Descriptions for
details for the fields listed.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 BINARY(4) Number of key fields returned

12 C BINARY(4) Number of key fields available

These fields
repeat, in the
order listed, for
each key
selected.

BINARY(4) Length of field information returned

BINARY(4) Key identifier

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved (padding to the next 4 bytes boundary)

Field Descriptions

Aging mode. Whether the system is allowed to age or remove the resulting collected statistics collection.
The possible values are:

*SYS Refresh or removal of the resulting statistics collections will be performed automatically by the
statistics manager.

*USER Refresh or removal will only occur when a user requests it.

ASP device name. One auxiliary storage pool device identifying the ASP group in which the library and
file are located. This can be an ASP device name (for an ASP with a number greater than 32), or one of the

following special values:

*CURRENT The ASP device attached to the current thread or *SYSBAS, when no ASP device name is
attached to the current thread.

*SYSBAS The system ASP (ASP number 1) and all basic ASPs (ASP numbers 2 through 32).

ASP device name used. The actual auxiliary storage pool device name used, after possible resolution of
special values.

Collection mode. Where the processing for the statistics collection will be performed, or if merely an
estimate is requested. The possible values are:

*IMMEDIATE Execute the request immediately. The statistics collection will run in the user's
process. Control will not return to the API caller until the collection is complete.

*BACKGROUND The statistics collection will be scheduled for execution in system job
QDBFSTCCOL. Control will return to the API caller immediately.

Note: If the current setting of the system value QDBFSTCCOL does not allow user
requested background collections, then the request will be queued until the system
value is changed to a level allowing the execution of the request. Background
requests that have not completed are retained through an IPL.

*ESTIMATE An estimate is returned immediately for the time, that would be required to run the
statistics collection. No statistics collection will actually be created.

Column name. The name of a single column within a single statistics collection definition.

Data. The data returned for the key identifier.

Displacement to columns. Displacement to the start of the list of column definitions for the current
statistics collection definition.

Elapsed time. When the collection mode specified is *IMMEDIATE, the value represents the number of
seconds actually spent processing the requested statistics collection.

For any other collection mode, this value represents the estimated time in seconds, that the statistics
collection should take.

File library name. Where the file for which statistics collections are being requested is located.

You can use these special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

File library name used. The actual file library name used, after possible resolution of special values.

File member name. The name of the file member to be used for the statistics collections request.

This value can be a specific file member name or one of the following special values:

*FIRST The first member (in the order created) in the specified file.

*LAST The last member (in the order created) in the specified file.

File member name used. The actual file member name used, after possible resolution of special values.

File name. The name of the file for which statistics collections are being requested. The file has to be an
existing local, single format, physical file.

Internal request ID. For a Collection mode of *BACKGROUND only, this field is an unique ID for the
complete list of statistics collections requested here. The request ID stays valid until the request is
completed and the ID can be used on the Cancel Requested Statistics Collections (QDBSTCRS,
QdbstCancelRequestedStatistics) API.

Note: The ID is stored in binary, nonprintable form in the character array.

Internal statistics IDs created. For a Collection mode of *IMMEDIATE only, this will return an array of
the internal statistics ID created for each of the requested and successfully created statistics collections.
This statistics ID together with the qualified member name can serve as a unique idientifier for the created
statistics collection on the input to the QdbstDeleteStatistics, QdbstUpdateStatistics, and
QdbstListDetailStatistics APIs. Each ID is returned as a single key value. The single key values will be
returned in sequence and in the order the statistics collections were requested in the input format. The array
dimension can be determined either by the input format field Number of statistics collections or by
requesting this number again as Total number of statistics collections for internal request ID in the
feedback.

Note: The internal statistics ID for a statistics collection is also returned on the QdbstListStatistics API.

Note: The ID is stored in binary, nonprintable form in the character array.

Key identifier. The field returned. For a list of valid keys, see Valid Keys - Feedback.

Length of column definition. Length of this column definition.

Length of data. The length of the data returned for the field.

Length of field information returned. Total number of bytes returned for this field in the feedback area.

Length of statistics collection. Length of this statistics collection definition, which can be used to get to
the next definition.

Note: The length includes all the column definitions for this statistics collections.

Length of statistics collection name. Actual length of the statistics collection name, up to the maximum
length of 128 characters.

Number of bytes available. Number of bytes that could be returned in the feedback area.

Number of bytes returned. Number of bytes returned in the feedback area.

Number of columns. Number of columns in a single statistics collection definition.

Note: This number must be 1.

Number of key fields available. Number of fields that could be returned in the feedback area.

Number of key fields returned. Number of fields returned in the feedback area.

Number of statistics collections. Number of statistics collection definitions for this request.

Offset to statistics collections. Offset to the start of the list of statistics collection definitions for this
request.

Reserved. Reserved for future use. If this field is input, the field must set to hexadecimal zeros.

Reserved (in feedback area format). Structure padding to guarantee alignment to the next four bytes
boundary.

Statistics collection names used. An array of the statistics collection names used. Each name is returned as
a single key value and is either the name specified on input, or the system generated name, if the special
value *GEN was used on input and if the Collection mode specified is *IMMEDIATE. The single key
values will be returned in sequence and in the order the statistics collections were requested in the input
format. The array dimension can be determined either by the input format field Number of statistics
collections or by requesting this number again as Total number of statistics collections for internal request
ID in the feedback.

Statistics collection name. A name unique amongst all statistics collections for the file member. The
following special value can be used:

*GEN The system will generate a unique name for the statistics collection.

Note: The name is given in varying length form, where the actual length is passed in the Length of statistics
collection name field, to indicate how many of the 128 characters are actually part of the name text.

Total number of statistics collections for internal request ID. Number of statistics collection definitions
for this request. Gives the array dimension of Statistics collection names used and Internal statistics IDs
created and is a copy of Number of statistics collections in the input format.

Translation table name. This field is relevant just for character columns and must be all blanks otherwise.
For character columns, this is the name of a translation table to be applied to the data in this column. The
name must be for an existing translation table, or all blanks, if no translation table is to be applied.

Translation table library name. Where the translation table is located. The name must be for an existing
library or all blanks, if no translation table is to be applied.

You can use these special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

the <qdbst.h> include file in library QSYSINC, for API-related structure declarations and special
value declarations.

●

the <qdbstmgr.h> include file in library QSYSINC, for the QdbstCancelRequestedStatistics API
prototype.

●

the <qdbstcrs.h> include file in library QSYSINC, for the QDBSTCRS API prototype.●

Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) API●

Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) API●

List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) API●

List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) API●

List Statistics Collections (QDBSTLS, QdbstListStatistics) API●

Update Statistics Collections (QDBSTUS, QdbstUpdateStatistics) API●

API introduced: V5R2

Top | Database and File APIs | APIs by category

Retrieve Database File Description (QDBRTVFD) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Qualified returned file name Output Char(20)
4 Format name Input Char(8)
5 Qualified file name Input Char(20)
6 Record format name Input Char(10)
7 Override processing Input Char(1)
8 System Input Char(10)
9 Format type Input Char(10)
10 Error Code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Retrieve Database File Description (QDBRTVFD) API allows you to get complete and specific information about a file on a local or remote system. The information is returned to a receiver variable in either a file
definition template or a format definition mapping. The file definition template provides more complete information about a database file than the Display File Description (DSPFD) command. The format definition provides
complete information on the record formats of the file.

The format definition is used with the Query (QQQQRY) API to get data from a file. You can run the QDBRTVFD API to build a format definition that is later used to run a query. This format definition can be used several
times to extract information from a database, making the Query API run faster. If the format definition is not created prior to running a query, the QQQQRY API must create one when it runs.

Authorities and Locks

Library Authority

*EXECUTE

File Authority

*OBJOPR

File Lock

*SHRNUP

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that is to receive the information requested. You can specify the size of the area smaller than the format requested as long as you specify the length of receiver variable parameter correctly. As a
result, the API returns only the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be specified up to the size of the receiver variable specified in the user program. If the length of receiver variable parameter
specified is larger than the allocated size of the receiver variable specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Qualified returned file name

OUTPUT; CHAR(20)

The actual qualified file name from which the file description has been extracted. If an override is active this file and library name may be different from the one entered with the API.

Format name

INPUT; CHAR(8)

The content and format of the information to be returned about the specified file, member, or format. You can use the following format names:

FILD0100 File definition template

FILD0200 Format definition template

FILD0300 Key field information template

FILD0400 Trigger information template

See Format of Generated Information for a description of these formats.

Qualified file name

INPUT; CHAR(20)

The name of the file about which the information is to be extracted and the library in which it is located. The first 10 characters contain the file name, and the second 10 characters contain the library name.

You can use the following special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Record format name

INPUT; CHAR(10)

The name of the record format in the specified file that is to be used to generate the file description. (This parameter is used only with format FILD0200.)

You can use the following special value for the record format name

*FIRST The first record format found

Override processing

INPUT; CHAR(1)

Whether overrides are to be processed. The following values are used:

0 No override processing

1 Override processing

System

INPUT; CHAR(10)

Whether the information that is returned is about a file on either a local or remote system, or both. The possible values are:

*LCL The information returned is about local files only.

*RMT The information returned is about remote files only.

*FILETYPE The information returned is about files on both the local and remote systems. For DDM files, the information returned is about the remote file that was named on the RMTFILE parameter of the Create
DDM File (CRTDDMF) command.

Format type

INPUT; CHAR(10)

Whether the logical formats returned are internal or external. (This parameter is used only with format FILD0200.) A description and examples of the internal (*INT) and external (*EXT) formats follow:

*EXT The formats returned are external. If the specified file is a logical file, the format returns data for the logical fields defined in the logical record format. If the specified file is a physical file, the internal and
external field names are the same.

*INT The formats returned are internal. If the specified file is a logical file, the format returns data for the fields on which the logical fields are based. If the specified file is a physical file, the internal and external
field names are the same.

The following are DDS, *EXT, and *INT format type examples: For a logical file definition of (1) that is based on a physical file definition of (2), a format type of *EXT would return (3) and a format type of *INT
would return (4).

 Format Type Example DDS

 Logical file definition (1):

 R CONCAT1 PFILE(PF1)
 LFLD1 RENAME(FLD1)
 FLD2
 CATFLD CONCAT(FLD1 FLD2 FLD3)
 K CATFLD

 Physical file definition (2):

 FLD1 5A
 FLD2 10A
 FLD3 5A
 K FLD1

 Format Type *EXT Example
 (3)

 Record format name CONCAT1
 Record length 35
 Number of fields 3
 Internal field name 1 FLD1
 External field name 1 LFLD1
 Length of field 1 5
 Internal field name 2 FLD2
 External field name 2 FLD2
 Length of field 2 10
 Internal field name 3 FLD1
 External field name 3 CATFLD
 Length of field 3 20

 Format Type *INT Example
 (4)

 Record format name CONCAT1
 Record length 35
 Number of fields 5
 Internal field name 1 FLD1
 External field name 1 LFLD1
 Length of field 1 5
 Internal field name 2 FLD2
 External field name 2 FLD2
 Length of field 2 10
 Internal field name 3 FLD1
 External field name 3 CATFLD
 Length of field 3 5
 Internal field name 4 FLD2
 External field name 4 CATFLD
 Length of field 4 10
 Internal field name 5 FLD3
 External field name 5 CATFLD
 Length of field 5 5

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code Parameter.

Format of Generated Information

The QDBRTVFD API can be used to provide information in the following formats:

FILD0100 File definition template

FILD0200 Format definition template

FILD0300 Key field information template

FILD0400 Trigger information template

The following sections provide an overview of each of these formats. If an offset equals zero in the returned information, there is no corresponding structure associated with it.

The asterisk (*) in the Field column represents a reserved field. No variable is associated with these reserved fields.

FILD0100 Format (File Definition Template (FDT) header)

FILD0100 provides detailed information about how the file is built. Figure 1-1 shows how this information is organized. When more than one entry can appear, the figure indicates this as in (5).

Descriptions of the fields in this structure follow Figure 1-1. The include source is supplied on the system, in source file H, member name QDBRTVFD, in the QSYSINC library. The field names in the following tables apply
only to the ILE C include. Refer to Data structures and the QSYSINC library for the names of the OPM and ILE RPG and COBOL includes.

Figure 1-1. FILD0100 Format

File Definition Header (Qdb_Qdbfh)

Qdb_Qdbfh is the first structure and is located at offset zero of the returned data.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qdbfyret Length of the data returned in bytes.

4 4 BINARY(4) Qdbfyavl Number of bytes provided for the file definition data.

8 8 BIT(16) Qdbfhflg Attributes bytes.

8 8 0 BIT(2) Reserved_1 Reserved.

8 8 2 BIT(1) Qdbfhfpl Type of file. If on, the file is a logical database file. If off, a physical database file.

8 8 3 BIT(1) Reserved_2 Reserved.

8 8 4 BIT(1) Qdbfhfsu File type (FILETYPE). If on, the file is a source file (*SRC). If off, a data file (*DATA).

8 8 5 BIT(1) Reserved_3 Reserved.

8 8 6 BIT(1) Qdbfhfky Access path. If on, the file has a keyed sequence access path. If off, an arrival sequence access path.

8 8 7 BIT(1) Reserved_4 Reserved.

9 9 0 BIT(1) Qdbfhflc Record format level check (LVLCHK). If on, the record format level identifiers are checked when the file is
opened (*YES) if off, they are not checked when the file is opened (*NO).

9 9 1 BIT(1) Qdbfkfso Select/omit. If on, the file is a select/omit logical file.

9 9 2 BIT(4) Reserved_5 Reserved.

9 9 6 BIT(1) Qdbfigcd Double-byte character set (DBCS) or Graphic data. If on, the file's record format(s) contains DBCS or
Graphic data fields.

9 9 7 BIT(1) Qdbfigcl Double-byte character set (DBCS) or Graphic literals. If on, the file's record format(s) contains DBCS or
Graphic literals.

10 A CHAR(4) Reserved_7 Reserved.

14 E BINARY(2) Qdbflbnum Number of data members. 0 indicates an externally described physical file or a program described physical
file that is not linked to a data dictionary. 1 through 32 indicates the number of data dictionary record formats
for a program described physical file that is linked to a data dictionary or the number of based-on physical
records for a logical file.

16 10 CHAR(13) Qdbfkdat Keyed sequence access path description. If this file has an arrival sequence access path, these fields are not
applicable.

16 10 BINARY(2) Qdbfknum Number of key fields for the file. 1 through 120.

18 12 BINARY(2) Qdbfkmxl Maximum key length for the file. 1 through 2000.

20 14 CHAR(1) Qdbfkflg Keyed sequence access path attributes.

20 14 0 BIT(1) Reserved_8 Reserved

20 14 1 BIT(1) Qdbfkfcs Alternate collating sequence (ALTSEQ). If on, an alternate collating sequence table is specified for the file.

20 14 2 BIT(4) Reserved_9 Reserved.

20 14 6 BIT(1) Qdbfkfrc Force keyed access path (FRCACCPTH). If on, the access path and changed records are forced to auxiliary
storage when the access path is changed (*YES).

20 14 7 BIT(1) Qdbfkflt Floating point key indicator. If on, the access path for the file contains floating point keys.

21 15 CHAR(1) Qdbfkfdm Access path maintenance (MAINT).

I

Immediate maintenance (*IMMED)

D

Delayed maintenance (*DLY)

R

Rebuild maintenance (*REBLD)

22 16 CHAR(8) Reserved_10 Reserved.

30 1E CHAR(10) Qdbfhaut Public authority (AUT).

*CHANGE

Public change authority

*ALL

Public all authority

*USE

Public use authority

*EXCLUDE

Public exclude authority

authorization-list-name

The name of the authorization list whose authority is used for the file. This is the original public
authority that the file was created with, not the current public authority for the file.

40 28 CHAR(1) Qdbfhupl Preferred storage unit (UNIT).

X'00'

The storage space and its members can be allocated on the available auxiliary storage unit (*ANY).

X'01' through X'FF'

The unit identifier of an auxiliary storage unit on the system.

41 29 BINARY(2) Qdbfhmxm Maximum members (MAXMBRS).

0

No maximum is specified; 32,767 is used (*NOMAX).

1 through 32,767

The maximum number of members the file can have.

43 2B BINARY(2) Qdbfwtfi Maximum file wait time (WAITFILE).

-1

The default wait time specified in the class description is used (*CLS).

0

The program does not wait for the file; an immediate allocation is required (*IMMED).

1 through 32,767

The number of seconds a program waits for the file.

45 2D BINARY(2) Qdbfhfrt Records to force a write (FRCRATIO).

0

There is force write ratio.

1 through 32,767

The number of inserted, updated, or deleted records that are explicitly forced to storage.

47 2F BINARY(2) Qdbfhmnum Number of members, 0 through 32,767.

49 31 CHAR(9) Reserved_11 Reserved.

58 3A BINARY(2) Qdbfbrwt Maximum record wait time (WAITRCD).

-2

The default wait time allowed by the system is used (*NOMAX).

-1

The program does not wait for the record, an immediate allocation is required (*IMMED).

1 through 32,767

The number of seconds a program waits for the record.

60 3C CHAR(1) Qaaf Additional attribute flags.

60 3C 0 BIT(7) Reserved_12 Reserved

60 3C 7 BIT(1) Qdbfpgmd Program described file indicator. If on, the file is program described.

61 3D BINARY(2) Qdbffmtnum Total number of record formats, 1 through 32.

63 3F CHAR(2) Qdbfhfl2 Additional attribute flags

63 3F 0 BIT(1) Qdbfjnap Access path journaled.

63 3F 1 BIT(1) Reserved_13 Reserved.

63 3F 2 BIT(4) File capability/operation flags.

63 3F 2 BIT(1) Qdbfrdcp Allow read operation. If on, records are not allowed to be read from the file.

63 3F 3 BIT(1) Qdbfwtcp Allow write operation. If on, records are not allowed to be written to the file.

63 3F 4 BIT(1) Qdbfupcp Allow update operation (ALWUPD). If on, records are not allowed to be updated in the file (*NO).

63 3F 5 BIT(1) Qdbfdlcp Allow delete operation (ALWDLT). If on, records are not allowed to be deleted from the file (*NO).

63 3F 6 BIT(9) Reserved_14 Reserved.

64 40 7 BIT(1) Qdbfkfnd Null values cause duplicates indicator (UNIQUE). Only valid if Qdbfpact is equal to 'KU'. If on, null values
do not cause duplicate keys in the file access path(s) (*EXCNULL).

65 41 BINARY(2) Qdbfvrm First supported version release modification level. New database support is used in the file that will prevent it
from being saved and restored to a prior version, release, and modification level.

X'0000'

Pre-Version 2 Release 1 Modification 0 file.

X'1500'

Version 2 Release 1 Modification 0 V2R1M0 file.

X'1501'

Version 2 Release 1 Modification 1 V2R1M1 file.

X'1600'

Version 2 Release 2 Modification 0 V2R2M0 file.

X'1700'

Version 2 Release 3 Modification 0 V2R3M0 file.

X'1F00'

Version 3 Release 1 Modification 0 V3R1M0 file.

X'2000'

Version 3 Release 2 Modification 0 V3R2M0 file.

X'2400'

Version 3 Release 6 Modification 0 V3R6M0 file.

X'2500'

Version 3 Release 7 Modification 0 V3R7M0 file.

X'2900'

Version 4 Release 1 Modification 0 V4R1M0 file.

X'2A00'

Version 4 Release 2 Modification 0 V4R2M0 file.

X'2B00'

Version 4 Release 3 Modification 0 V4R3M0 file.

X'2C00'

Version 4 Release 4 Modification 0 V4R4M0 file.

67 43 CHAR(2) Qaaf2 Additional attribute flags.

67 43 0 BIT(1) Qdbfhmcs Multiple coded character set identifier indicator (CCSID). If on, the file has more than one CCSID for its
input and output character type fields. If the file has no character type fields, this bit is off.

67 43 1 BIT(1) Reserved_15 Reserved.

67 43 2 BIT(1) Qdbfknll Allow null value key indicator (ALWNULL). If on, null value keys are allowed.

67 43 3 BIT(1) Qdbf_nfld Allow null value data (ALWNULL). If on, the file record format(s) allow null value fields.

67 43 4 BIT(1) Qdbfvfld Variable length data (VARLEN). If on, the file record format(s) contain variable length fields.

67 43 5 BIT(1) Qdbftfld Date/time/timestamp data. If on, the file record format(s) contain date, time, or timestamp fields.

67 43 6 BIT(1) Qdbfgrph Graphic data. If on, the file record formats contain graphic fields.

67 43 7 BIT(1) Qdbfpkey Primary key (*PRIKEY). If on, the access path for the file is a primary key.

68 44 0 BIT(1) Qdbfunqc Unique constraint (*UNQCST). If on, the access path for the file is a unique constraint.

68 44 1 BIT(2) Reserved_118 Reserved.

68 44 3 BIT(1) Qdbfapsz Access path size (ACCPTHSIZ). If on (*MAX1TB), all access paths associated with this file will be allowed
to occupy a maximum of 1 terabyte (1 099 511 627 776 bytes) of auxiliary storage. If off (*MAX4GB), all
access paths associated with this file will be allowed to occupy a maximum of 4 gigabytes (4 294 966 272
bytes) of auxiliary storage.

68 44 4 BIT(1) Qdbfdisf Distributed file. If on, the file is a distributed file.

68 44 5 BIT(1) Reserved_68 Reserved.

68 44 6 BIT(1) Reserved_69 Reserved.

68 44 7 BIT(1) Reserved_70 Reserved.

69 45 CHAR(13) Qdbfhcrt File level identifier. The date of the file in internal standard format (ISF), CYYMMDDHHMMSS.

82 52 CHAR(52) Qdbfhtx File text description.

82 52 CHAR(2) Reserved_18 Reserved.

84 54 CHAR(50) Qdbfhtxt Text description (TEXT)

134 86 CHAR(13) Reserved_19 Reserved.

147 93 CHAR(30) Qdbfsrc Source file fields. Must be hexadecimal zeros if there is no source file information.

147 93 CHAR(10) Qdbfsrcf Source file name.

157 9D CHAR(10) Qdbfsrcm Source file member name.

167 A7 CHAR(10) Qdbfsrcl Source file library name.

177 B1 CHAR(1) Qdbfkrcv Access path recovery (RECOVER).

A

The file access path is built after the IPL is completed (*AFTIPL).

N

The file access path is built when the file is next opened (*NO).

S

The file access path is built during the IPL (*IPL).

178 B2 CHAR(23) Reserved_20 Reserved.

201 C9 BINARY(2) Qdbftcid Coded character set identifier (CCSID) for text description.

0

There is no file text description.

1 through 65,535

The file text description CCSID.

203 CB CHAR(2) Qdbfasp Auxiliary storage pool (ASP).

X'0000'

The file is located on the system auxiliary storage pool.

X'0002' through X'0010'

On which user auxiliary storage pool the file resides.

205 CD CHAR(1) Qdbfnbit Complex objects flags.

205 CD 0 BIT(1) Qdbfhudt If on, the file record format has a user-defined type field.

205 CD 1 BIT(1) Qdbfhlob If on, the file record format has a large object field.

205 CD 2 BIT(1) Qdbfhdtl If on, the file record format has a datalink field. A datalink is a field data type that is used to point to another
object that contains the data for that field.

205 CD 3 BIT(1) Qdbfhudf If on, the file uses a user-defined function.

205 CD 4 BIT(1) Qdbfhlon If on, the file has a datalink field with FILE LINK CONTROL.

205 CD 5 BIT(1) Qdbfhlop If on, the file is a logical file without any large object fields, but the based-on physical file has a large object
field.

205 CD 6 BIT(1) Qdbfhdll If on, the file is a logical file without any datalink fields, but the based-on physical file has a datalink field.

205 CD 7 BIT(1) Reserved_21 Reserved.

206 CE BINARY(2) Qdbfmxfnum Maximum number of fields, 1 through 8000. Indicates the number of fields in the file's record format that
contains the largest number of fields.

208 D0 CHAR(76) Reserved_22 Reserved.

284 11C BINARY(4) Qdbfodic Offset from the start of the FDT header, Qdb_Qdbfh, to the IDDU/SQL Data Dictionary area, Qdbfdic.

288 120 CHAR(14) Reserved_23 Reserved.

302 12E BINARY(2) Qdbffigl File generic key length, 0 through 2000. The length of the key before the first *NONE key field for the file.
If this file has an arrival sequence access path, this field is not applicable.

304 130 BINARY(2) Qdbfmxrl Maximum record length, 1 through 32,766. The length of the record in the file's record format that contains
the largest number of bytes.

306 132 CHAR(8) Reserved_24 Reserved.

314 13A BINARY(2) Qdbfgkct File generic key field count, 0 through 120. The count of the number of key fields before the first *NONE
key field for the file. If this file has an arrival sequence access path, this field is not applicable.

316 13C BINARY(4) Qdbfos Offset from the start of the FDT header, Qdb_Qdbfh, to the file scope array, Qdbfb.

320 140 CHAR(8) Reserved_25 Reserved.

328 146 BINARY(4) Qdbfocs Offset from the start of the FDT header, Qdb_Qdbfh, to the alternative collating sequence table section,
Qdb_Qdbfacs.

332 14C CHAR(4) Reserved_26 Reserved.

336 150 CHAR(2) Qdbfpact Access path type.

AR

Arrival sequence access path.

KC

Keyed sequence access path with duplicate keys allowed. Duplicate keys are accessed in
first-changed-first-out (FCFO) order.

KF

Keyed sequence access path with duplicate keys allowed. Duplicate keys are accessed in
first-in-first-out (FIFO) order.

KL

Keyed sequence access path with duplicate keys allowed. Duplicate keys are accessed in
last-in-first-out (LIFO) order.

KN

Keyed sequence access path with duplicate keys allowed. No order is guaranteed when accessing
duplicate keys.

KU

Keyed sequence access path with no duplicate keys allowed (UNIQUE).

EV

Encoded vector with a 1-, 2-, or 4-byte vector.

338 152 CHAR(6) Qdbfhrls File version, release, and modification level. VxRyMz, where x is the version, y the release, and z the
modification level.

344 158 CHAR(20) Reserved_27 Reserved.

364 16C BINARY(4) Qdbpfof Offset from the start of the FDT header, Qdb_Qdbfh, to the physical file specific attributes section,
Qdb_Qdbfphys.

368 170 BINARY(4) Qdblfof Offset from the start of the FDT header, Qdb_Qdbfh, to the logical file specific attributes section,
Qdb_Qdbflogl.

372 174 CHAR(6) Qdbfssfp Sort sequence table.

372 174 CHAR(1) Qdbfnlsb Flags.

372 174 0 BIT(3) Qdbfsscs Sort sequence table (SRTSEQ) indicators.

B'000'

No sort sequence table for the file; however, an alternate collating sequence table was specified.

B'010'

No sort sequence table is used for the file, and the hexadecimal value of the characters will be used
to determine the sort sequence (*HEX).

B'100'

A sort sequence table was specified for the file.

372 174 3 BIT(5) Reserved_103 Reserved.

373 175 CHAR(3) Qdbflang Language identifier (LANGID).

376 178 CHAR(2) Qdbfcnty Country or region identifier (CNTRYID).

378 17A BINARY(4) Qdbfjorn Offset from the start of the FDT header, Qdb_Qdbfh, to the journal section, Qdb_Qdbfjoal.

382 17E BINARY(4) Qdbfevid Initial number of distinct values an encoded vector access path was allowed at creation.

386 182 CHAR(14) Reserved_28 Reserved.

Physical File Specific Attributes (Qdb_Qdbfphys)

You can locate the Qdb_Qdbfphys section with the offset Qdbpfof, in the FDT header section.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(2) Qdbfpalc Allocate/contiguous storage (ALLOCATE and CONTIG)

DN

New members added to the file allow the system to determine storage space that is allocated for the
member (ALLOCATE(*NO))

IC

New members added to file use the initial number of records to determine storage space that is
allocated for the member (ALLOCATE(*YES)) and the storage attempted to be allocated
contiguously (CONTIG(*YES)).

IN

New members added to file use the initial number of records to determine storage space that is
allocated for the member (ALLOCATE(*YES)) and storage is not attempted to be allocated
contiguously (CONTIG(*YES)).

2 2 CHAR(1) Qdbfcmps Maximum percentage of deleted records allowed (DLTPCT).

X'00'

The number of deleted records is not checked when the member is closed (*NONE).

X'01' through X'64'

The largest percentage of deleted records the member should have.

3 3 CHAR(8) Reserved_29 Reserved.

11 B BINARY(4) Qdbfprnum Initial number of records (SIZE).

0

The number of records that can be inserted into each member is not limited by the user. The system
determines the maximum member size (*NOMAX)

1 through 2,147,483,646

The number of records that can be inserted before an automatic extension occurs.

15 F BINARY(2) Qdbfpri Increment number of records (SIZE).

0 through 32,767

The maximum number of records that can inserted into the member after an automatic extension
occurs.

17 11 BINARY(2) Qdbfprinum Maximum number of increments (SIZE).

0 through 32,767

The maximum number of increments that can be automatically added to the member.

19 13 BINARY(4) Qdbforid Offset from the start of FDT header, Qdb_Qdbfh (Qdb_Qdbfh), to the Record ID Codes for program described
physical files, Qdbforid.

23 17 CHAR(1) Qflags Flags.

23 17 0 BIT(1) Qdbfrdel Reuse deleted records (RESUEDLT). If on, deleted member record space is reused by the system on write
(insert) requests (*YES).

23 17 1 BIT(3) Reserved_30 Reserved.

23 17 4 BIT(1) Qdbfsqlt SQL table indicator. If on, the file is a SQL table.

23 17 5 BIT(3) Reserved_31 Reserved.

24 18 BINARY(4) Qdbfotrg Offset from the start of the FDT header, Qdb_Qdbfh, to the trigger description area, Qdbftrg.

28 1C BINARY(2) Qdbftrgn Number of triggers.

30 1E BINARY(4) Qdbfofcs Offset from the start of the FDT header, Qdb_Qdbfh, to the constraint definition area, Qdbf_Constraint.

34 22 BINARY(4) Qdbfcstn Number of constraints for the file.

38 26 BINARY(4) Qdbfodl Offset from the start of the FDT header, Qdb_Qdbfh, to the datalinks area, Qdb_Qdbfdtalnk.

42 2A CHAR(6) Reserved_32 Reserved.

Trigger Description Area (Qdb_Qdbftrg)

You can locate the Qdb_Qdbftrg section with the offset Qdbfotrg in the Physical File Specific Attributes section. This section is repeated by the number of triggers, Qdbftrgn.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(1) Qdbftrgt Trigger time.

1

Run the trigger after the change operation.

2

Run the trigger before the operation.

1 1 CHAR(1) Qdbftrge Trigger event.

1

An insert operation.

2

A delete operation.

3

An update operation.

4

A read operation.

2 2 CHAR(10) Qdbftpgm Trigger program name.

12 C CHAR(10) Qdbftplb Trigger program library name.

22 16 CHAR(1) Qdbftupd Trigger update condition.

1

Always call the trigger program when updating the file.

2

Call the trigger program only when the updated values are changed.

This field is ignored for insert and delete operations.

23 17 CHAR(1) Qdbftrgf Trigger flags.

23 17 0 BIT(1) Qdbfalrc Allow repeated change indicator. If on, repeated changes are allowed.

23 17 1 BIT(2) Qdbftths Trigger threadsafe indicator.

B'00'

Not known.

B'10'

Not threadsafe.

B'11'

Threadsafe.

23 17 3 BIT(2) Qdbftmta Multithreaded job action indicator.

B'01'

Run, send diagnostic.

B'10'

Do not run, send escape.

B'11'

Run, do not send message.

23 17 5 BIT(1) Qdbftqmt QMLTTHDACN system value use. If on, the system value was used to determine Qdbftmta.

23 17 6 BIT(1) Qdbf_more_trg_info Whether more trigger information is available if format FILD0400 is requested.

B'0'

No more trigger information is available.

B'1'

More trigger information is available.

23 17 7 BIT(1) Reserved_200 Reserved.

Constraint Definition Header (Qdb_Qdbf_Constraint)

You can locate the Qdb_Qdbf_Constraint section with the offset Qdbfofcs located in the physical file specific attributes section, Qdb_Qdbfphys.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qdbf_csto Offset from Qdbf_Constraint to the next section for this constraint.

4 4 BINARY(4) Qdbf_hlen Constraint entry header length in bytes.

8 8 CHAR(1) Qdbf_type Constraint type (TYPE)

F

Referential constraint

P

Primary unique constraint

U

Unique constraint.

C

Check constraint.

9 9 CHAR(1) Qdbf_chkpd Check pending attribute.

N

The constraint is not in check pending.

Y

The constraint is in check pending.

10 A CHAR(1) Qdbf_state Constraint state.

D

The constraint is defined.

E

The constraint is established.

11 B CHAR(1) Qdbf_abled Constraint enablement.

D

The constraint is disabled.

E

The constraint is enabled.

12 C CHAR(13) Qdbf_add_ts Constraint date. The date is in the internal standard format (ISF), CYYMMDDHHMMSS.

25 19 CHAR(10) Qdbf_cst_lin Constraint library name.

35 23 BINARY(4) Qdbf_cst_lp2 Constraint name (delimited) length

39 27 CHAR(25) Reserved_54 Reserved.

64 40 CHAR(258) Qdbf_cst_name Constraint name (CST).

Constraint Definition Entries

The number of constraint definition entries depends on the type of constraint.

A referential constraint, type F, has three structures in this sequence:

Qdbf_Keyn for parent file1.

Qdbf_Keyn for dependent file2.

Qdbf_Riafk_Afkd3.

●

A unique constraint, type U, has one Qdbf_Keyn structure.●

A primary unique constraint, type P, has one Qdbf_Keyn structure.●

A check constraint, type C, has one Qdbf_Chk_Cst structure.●

Constraint Keys (Qdb_Qdbf_Keyn)

The Qdb_Qdbf_Keyn section is located with the offset Qdbf_Hlen in the constraint definition header, Qdbf_Constraint. When the constraint is referential constraint, the offset to the next section is located with the offset
Qdbf_Kslen in this structure.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qdbf_kslen Constraint key structure length. The length, in bytes, of this constraint key structure. This is also the
offset to from Qdbf_Keyn to the next structure for this constraint.

4 4 BINARY(4) Qdbf_nokys Number of keys, 1 through 120. The number of key fields for the constraint key.

8 8 BINARY(4) Qdbf_klen Constraint key length.

12 C CHAR(52) Revcst_7 Reserved.

64 40 Array of CHAR(32) Qdbf_narray Key name array.

Key Name Array (Qdb_Qdbf_Narray)

This array follows the constraint keys structure, Qdbf_Keyn. The number of constraint key name array entries is in field Qdbf_nokys in the constraint keys structure.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(10) Qdbf_kname Key name (PRNKEY KEY)

10 A CHAR(22) Revcst_6 Reserved.

Referential Constraint Definition (Qdb_Qdbf_Riafk_Afkd)

You can locate this section with the offset Qdbf_kslen in the constraint keys structure, Qdbf_Keyn, that precedes this structure. This structure exists only if the constraint is a referential constraint.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(64) Parent file (PRNFILE).

0 0 CHAR(10) Qdbf_riafk_pkfn Parent file name.

10 A CHAR(10) Qdbf_riafk_pkln Parent file library name.

20 14 CHAR(44) Revcst_3 Reserved.

64 40 CHAR(1) Qdbf_riafk_fkcdr Delete rule (DLTRULE).

C

*CASCADE

D

*SETDFT

L

*SETNULL

N

*NOACTION (default value)

R

*RESTRICT

65 41 CHAR(1) Revcst_4 Reserved

66 42 CHAR(1) Qdbf_riafk_fkcur Update rule (UPDRULE)

N

*NOACTION (default value)

R

*RESTRICT

67 43 CHAR(61) Revcst_5 Reserved.

Check Constraint (Qdb_Qdbf_Chk_Cst)

This section is located with the offset Qdbf_Hlen in the constraint definition header, Qdbf_Constraint. This structure exists only if the constraint is a check constraint.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qdbf_chkcst_len Check constraint structure length. The length, in bytes, of the check constraint structure
Qdb_Qdbf_Chk_Cst.

4 4 BINARY(4) Qdbf_chkexpr_len Check constraint expression length. The length of the check constraint expression Qdbf_chkexpr.

8 8 CHAR(24) Revcst_8 Reserved.

32 20 CHAR(*) Qdbf_chkexpr Check constraint expression.

Datalink Header (Qdb_Qdbfdtalnk)

The Qdb_Qdbfdtalnk section is the header for the datalink columns that have linked servers. There will be one header and one or more datalink column entries defined by the Qdb_Qdbfdlcole structure. You can locate this
structure with the offset Qdbfodl in the Physical File Specific Attributes structure, Qdb_Qdbfphys.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qdbfdlcoln Number of datalink columns with links to servers.

4 4 BINARY(4) Qdbfdlocole Offset from the start of Qdb_Qdbfdtalnk to the first datalink column entry, (Qdb_Qdbfdlcole).

8 8 CHAR(1) Qdbfdllnkp Link pending attribute. Link pending is a state that indicates to the user the file has one or more datalink field
values (under the file link control attribute) where the system does not know whether or not the field is really
linked to a file on the DataLink File Manager server. The Datalink File Manager is a function that tracks
which files are linked to a specific database file.

N

The file is not in link pending.

Y

The file is in link pending.

9 9 CHAR(23) Revdl_1 Reserved.

Datalink Column Entry (Qdb_Qdbfdlcole)

The Qdb_Qdbfdlcole section repeats for the number of columns (Qdbfdlcoln) defined in structure Qdb_Qdbfdtalnk. You can locate the first column entry using offset Qdbfdlocole in structure Qdb_Qdbfdtalnk. Since
Qdb_Qdbfdlcole is a varying length structure, use length Qdbfdlcelen to get to the next column entry.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qdbfdlcelen Length of this datalink column entry. Use this length to get to the next datalink column entry.

4 4 BINARY(4) Qdbfdlsevn Number of servers linked for this column.

8 8 CHAR(10) Qdbfdlcolnm Column name.

18 12 CHAR(14) Revdl_2 Reserved.

32 20 Array of CHAR(254) Qdbfdlsevnm Array of server names linked to the datalink column. The number of array entries is defined by
Qdbfdlsevn.

Record ID Codes (Qdb_Qdbfdrtb)

The Qdb_Qdbfdrtb section describes the record ID codes for program described physical files. The record ID code information is an array with variable length entries. You can locate this section with the offset Qdbforid
located in the physical file specific attributes section, Qdb_Qdbfphys.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(16) Record ID code header.

0 0 BINARY(2) Qdbfdrnum Number of record ID code array entries, 0 through 70.

2 2 BINARY(4) Qdbfdrtl Size of this record ID code table in bytes, 0 through 256.

6 6 CHAR(10) Reserved_33 Reserved.

16 10 Array of CHAR(32) Qdbfdrae Record ID code array entry.

Record ID Codes Array (Qdb_Qdbfdrae)

This array follows the record ID codes structure, (Qdb_Qdbfdrtb). The number of record ID code array entries is in Qdbfdrnum.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(4) Reserved_34 Reserved.

4 4 CHAR(10) Qdbfdrnm External name.

14 E BINARY(2) Qdbfdrrp Relative field position, 1 through 8000. The relative position of the field in the record format.

16 10 CHAR(2) Qdbfdrco Comparison operator.

EQ

Compare equal.

NE

Compare not equal.

ZN

Compare zone.

NZ

Compare not zone.

DG

Compare digit.

ND

Compare not digit.

18 12 BINARY(2) Qdbfdrln Length of test value. Test value length must be 1.

20 14 CHAR(1) Qdbfdrtv Test value.

21 15 CHAR(1) Qdbfdrao AND/OR/last operator.

0

Last operator entry.

1

AND with next array entry.

2

OR with next array entry.

22 16 CHAR(10) Reserved_35 Reserved.

Logical File Specific Attributes (Qdb_Qdbflogl)

You can locate the Qdb_Qdbflogl section with the offset Qdbflfof located in the FDT header section, Qdb_Qdbfh.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qdbfoj Offset from the start of the FDT header, Qdb_Qdbfh, to the join specifications, Qdbfj.

4 4 BINARY(2) Qdbfscsn Total number of select/omit statements for all record formats, 1 through 32,767.

6 6 CHAR(10) Qdbflxp Record format selector program (FMTSLR)

X'00'

No record format selector program (*NONE).

16 10 CHAR(10) Qdbflxl Record format selector program library (FMTSLR)

X'00'

No record format selector program (*NONE).

26 1A BINARY(4) Qdbfovw Offset from the start of the FDT header, Qdb_Qdbfh, to the SQL view area, Qdb_Qdbfv.

30 1E CHAR(1) Qlfa Logical file attributes

30 1E 0 BIT(2) Reserved_36 Reserved.

30 1E 2 BIT(1) Qdbfjoin Join logical file indicator (JFILE). If on, the file is a join logical file.

30 1E 3 BIT(1) Qdbfdyns Dynamic selection indicator (DYNSLT). If on, the selection and omission tests specified for the file are done
when the file is read. If off, when the access path is updated.

30 1E 4 BIT(1) Qdbfsqlv SQL view indicator. If on, the file is an SQL view.

30 1E 5 BIT(1) Qdbfsqli SQL index indicator. If on, the file is an SQL index.

30 1E 6 BIT(2) Reserved_37 Reserved.

31 1F CHAR(1) Qdbfjtyp Join file type.

I

An inner join. Default entries are not supplied if a join value does not exist.

P

A partial outer join. Default values are supplied if a join value does not exist.

32 20 BINARY(2) Qdbfsrcd Coded character set identifier (CCSID) for select/omit constants.

0

There are no select/omit constants for the file.

1 through 65,535

The CCSID.

34 22 CHAR(1) Qdbfwchk With check option.

C

The with-check option was specified with cascade.

L

The with-check option was specified with local.

N

No with-check option was specified.

The value N is set for all logical files. The values C and L only apply to SQL views.

35 23 CHAR(13) Reserved_38 Reserved.

SQL View Area (Qdb_Qdbfv)

The SQL view area, Qdb_Qdbfv, contains the SQL select statement. You can locate this section with the offset Qdbfovw located in the logical file specific attributes section, (Qdb_Qdbflogl).

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(56) SQL view area header.

0 0 CHAR(56) Reserved_39 Reserved.

56 38 SQL select statement structure

56 38 BINARY(4) Qdbfvssl Select statement length.

60 3C CHAR(*) Qdbfvsst SQL select statement.

Join Specifications (Qdb_Qdbfj)

The join specifications, Qdb_Qdbfj, are a linked list. There is an entry in the linked list for each join to-file. Each entry defines the join logical file's based on physical files and the fields in the from-file and the to-file used to
join the based on physical file.

You can locate this section with the offset Qdbfoj located in the FDT header section, Qdb_Qdbfh.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qdbfjnho Offset from the start of the FDT header, Qdb_Qdbfh, to the join specifications, Qdbfj, for the next join to-file.

4 4 CHAR(4) Reserved_40 Reserved.

8 8 BINARY(2) Qdbfjknum Number of join field specifications (JFLD), 1 through 32,767.

10 A BINARY(2) Qdbfjdnum Number of join duplicate sequence specifications (JDUPSEQ), 1 through 32,767.

12 C BINARY(2) Qdbfjffnum Join from-file number (JOIN), 1 through 31. This number indicates which based on physical file to join the
to-file from.

14 E BINARY(2) Qdbfjtfnum Join to-file number (JOIN), 2 through 32. This number indicates which based on physical to-file this join
specification relates to.

16 10 CHAR(24) Reserved_41 Reserved.

40 28 BINARY(4) Qdbfjsao Offset from the start of the FDT header, Qdb_Qdbfh, to the join specification array, Qdb_Qdbfjfld

44 2C BINARY(4) Qdbfjdao Offset from the start of the FDT header, Qdb_Qdbfh, to the join duplicate sequence array, Qdb_Qdbfjdup, for
this join to-file.

Join Specification Array (Qdb_Qdbfjfld)

You can locate the Qdb_Qdbfjfld section with the offset Qdbfjsao located in the join header section, Qdb_Qdbfj. The number of join specification array entries may be up to one less than the number of data members,
Qdbflbnum , located in the FDT header section, Qdb_Qdbfh.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(10) Qdbfjfnm Join from-field-name (JFLD)

10 A BINARY(2) Qdbfjfnum Join from-field reference number.

0

Join from-field is a field in the join logical file's record format.

1 through 31

The number of the base on physical from-file corresponding with its position in the JFILE statement
that contains this join from-field.

12 C CHAR(2) Reserved_42 Reserved.

14 E CHAR(2) Qdbfjop Join operation. This is always set to 'EQ'.

16 10 CHAR(10) Qdbfjtnm Join to-field name (JFLD).

26 1A BINARY(2) Qdbfjtnum Join to-field reference number.

0

The join to-field is a field in the logical file's record format.

2 through 32

The number of the based on physical to-file corresponding with its position in the JFILE statement
that contains this join to-field.

28 1C CHAR(20) Reserved_43 Reserved.

Join Duplicate Sequence Specification Array (Qdb_Qdbfjdup)

You can locate the Qdb_Qdbfjdup section with the offset Qdbfjdao in the join section, Qdb_Qdbfj. The number of join specification array entries may be up to one less than the number of data members, Qdbflbnum, located in
the FDT header section, Qdb_Qdbfh.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(10) Qdbfjdnm Join specification field name (JDUPSEQ).

10 A BINARY(2) Qdbfjdjnum Join sequence field name reference number.

0

The join sequencing field name is a file in the join logical file's record format.

2 through 32

The number of the based on physical to-file corresponding with its position in the JFILE statement
that contains this sequencing field name.

12 C CHAR(1) Qjsfna Join sequencing field name attributes.

12 C 0 BIT(1) Qdbfjdd Ascending/descending sequence indicator. If on, indicates a descending field (*DESCEND).

12 C 1 BIT(7) Reserved_44 Reserved.

13 D CHAR(19) Reserved_45 Reserved.

Alternative Collating Sequence Table (Qdb_Qdbfacs)

You can locate this section with the offset Qdbfocs in the FDT header section, Qdb_Qdbfh. This section is also referred to as the Sort Sequence Table. A sort sequence table can be either single-byte or UCS-2. If the UCS-2
table length, Qdbf_UCS2_Srtseq_Len, is non-zero, then it is a UCS-2 sort sequence table and the single-byte table, Qdbfacst, will be cleared.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(256) Qdbfacst Alternative collating sequence table or single-byte sort sequence (ALTSEQ/STRSEQ) table.

256 100 BINARY(2) Qdbfccsd Coded character set identifier (CCSID) for the single-byte table.

258 102 CHAR(20) qdbfsrts Sort sequence table.

258 102 CHAR(10) Qdbftbln Sort sequence table name.

268 10C CHAR(10) Qdbftbll Sort sequence table library name.

278 116 CHAR(1) Qdbfsrtf Sort sequence table attributes.

278 116 0 BIT(1) Qdbfwght Sort sequence table weight indicator for the single-byte table. If on, indicates the sort sequence table is
unique weighted. If off, it is share weighted.

278 116 1 BIT(1) Qdbfsubc Sort sequence table substitution character indicator for the single-byte table. If on, indicates the sort
sequence table has substitution character.

278 116 2 BIT(1) Qdbf_UCS2_Wght Sort sequence table weight indicator for the UCS-2 table. If on, indicates the sort sequence table is
unique weighted. If off, it is share weighted.

278 116 3 BIT(5) Reserved_104 Reserved.

279 117 BINARY(4)
Qdbf_UCS2
_Srtseq_Len

Length of the UCS-2 sort sequence table, Qdbf_UCS2_Srtseq, in bytes.

283 11B BINARY(2) Qdbf_UCS2_Ccsd Coded character set identifier (CCSID) for the UCS-2 table.

285 11D CHAR(19) Reserved_101 Reserved.

304 130 CHAR(*)
Qdbf_UCS2
_Srtseq

UCS-2 sort sequence table. The table exists if the length, Qdbf_UCS2_Srtseq_Len, is greater than zero.

IDDU/SQL Data Dictionary Area (Qdb_Qdbfdic)

You can locate the Qdb_Qdbfdic section with offset Qdbfodic in the FDT header section, Qdb_Qdbfh.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(1) Qdbfdilk Data dictionary link status.

L

The file is linked to the a data dictionary.

U

The file is not linked to the a data dictionary.

1 1 CHAR(10) Qdbfinm Data dictionary library name.

11 B CHAR(10) Qdbfifd Data dictionary file definition name.

21 15 CHAR(11) Qdbfdiid Data dictionary internal file definition identifier. This field maps to ZONED(11,0).

32 20 CHAR(4) Reserved_46 Reserved.

36 24 BINARY(4) Qdbfdicl Data dictionary file definition comment length.

40 28 BINARY(2) Qdbfdicc Data dictionary file definition comment CCSID.

0

There is no comment for the file.

1 through 65,535

The CCSID of the comment.

42 2A BINARY(4) Qdbfolng Offset from the start of the FDT header, Qdb_Qdbfh, to the SQL long/alias file names area, Qdb_Qdbflngn.

46 2E BINARY(2) Qdbflnnum Number of long/alias file names for the file.

48 30 CHAR(16) Reserved_47 Reserved.

64 40 CHAR(*) Qdbfdict Data dictionary file definition comment text.

SQL Long/Alias File Name Area (Qdb_Qdbflngn)

The SQL long/alias file name area contains the files alternate names that can be used to access the file when using the system's SQL interfaces. You can locate the Qdb_Qdbflngn section with the offset Qdbfolng in the
IDDU/SQL data dictionary section.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(2) Qdbflnel Long/alias file name entry length in bytes. The length of this entry. This is also the offset from Qdbflnen to
the next long/alias entry.

2 2 CHAR(1) Qdbflnfl Long/alias file name flags.

2 2 0 BIT(1) Qdbflndl Long/alias file name input delimited indicator. If on, indicates the long/alias file name was delimited when
input.

2 2 1 BIT(7) Reserved_111 Reserved

3 3 BINARY(2) Qdbflnlg Long/alias file name (non-delimited) length.

5 5 CHAR(11) Reserved_112 Reserved.

16 10 CHAR(*) Qdbflnam Long/alias file name (non-delimited).

File Scope Array (Qdb_Qdbfb)

A file scope array, Qdb_Qdbfb, is present for all database files. The number of data members, Qdbflbnum, contains the number of file scope array entries. Each entry contains a based on physical file name and, optionally, a
record format name.

Externally described physical files have one entry that names the physical file record format. The entry's file name portion is not used.

Program described physical files have one entry for each data dictionary record format. The entry names the data dictionary record format. The entry's file name portion is not used.

Non-join logical files have one entry for each based on physical file. The entry names the based on physical file and describes the logical file record format to use with that file.

Join logical files have one entry for each based on physical file. The entry names the based on physical file. Only the first entry describes the logical file record format.

SQL view logical files have one entry for each based on physical file. The entry names the based on physical file that will be either an externally described physical file or another view logical file. Only the first entry describes
the logical file record format.

You can locate this section with the offset Qdbfos in the FDT header section, Qdb_Qdbfh.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(48) Reserved_48 Reserved.

48 30 CHAR(10) Qdbfbf Based on physical file name.

58 3A CHAR(10) Qdbfbfl Based on physical file library name.

68 44 CHAR(10) Qdbft Record format name.

78 4E CHAR(37) Reserved_49 Reserved.

115 73 BINARY(2) Qdbfbgky Record format generic key field count, 0 through 120. If this file has an arrival sequence access path, this field
is not applicable.

117 75 CHAR(2) Reserved_50 Reserved.

119 77 BINARY(2) Qdbfblky Record format maximum key length, 1 through 2000. If this file has an arrival sequence access path, this field
is not applicable.

121 79 CHAR(2) Reserved_51 Reserved.

123 7B BINARY(2) Qdbffogl Record format generic key length, 1 through 2000. If this file has an arrival sequence access path, this field is
not applicable.

125 7D CHAR(3) Reserved_52 Reserved.

128 80 BINARY(2) Qdbfsoon Number of select/omit statements, 1 through 32,767.

130 82 BINARY(4) Qdbfsoof Offset from the start of the FDT header, Qdb_Qdbfh, to the select/omit specification array, Qdb_Qdbfss.

134 86 BINARY(4) Qdbfksof Offset from the start of the FDT header, Qdb_Qdbfh, to the key specification array, Qdb_Qdbfk.

138 8A BINARY(2) Qdbfkyct Record format full key field count, 0 through 120. If this file has an arrival sequence access path, this field is
not applicable.

140 8C BINARY(2) Qdbfgenf Generic key field count for all record formats with this record format name, 0 through 120. If this file has an
arrival sequence access path, this field is not applicable.

142 8E BINARY(4) Qdbfodis Offset from the start of the FDT header, Qdb_Qdbfh to the distributed file definition section.

146 92 CHAR(14) Reserved_53 Reserved.

Select/Omit Specification Array (Qdb_Qdbfss)

The select/omit specification array (Qdb_Qdbfss) entries describe the record format fields to which the select/omit statement refer.

Non-join logical files can have one select/omit specification array for each file scope array entry.

Join logical files can have only one select/omit specification array. The first scope array entry for the join logical file contains the offset to the select/omit specification array.

You can locate this section with the offset Qdbfsoof in the scope array entry section.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(2) Reserved_54 Reserved.

2 2 CHAR(1) Qdbfssso Select/omit statement rule.

A

A select/omit ANDed statement.

O

A select/omit omit statement.

S

A select/omit select statement.

3 3 CHAR(2) Qdbfssop Select/omit statement comparison (ALL COMP VALUES)

AL

Statement comparison for all (ALL).

EQ

Statement comparison for equal to (COMP EQ).

GE

Statement comparison for greater than or equal to (COMP GE).

GT

Statement comparison for greater than (COMP GT).

LE

Statement comparison for less or equal to (COMP LE).

LT

Statement comparison for less than (COMP LT).

NE

Statement comparison for not equal to (COMP NE).

NG

Statement comparison for not greater than (COMP NG).

NL

Statement comparison for not less than (COMP NL).

VA

Statement comparison for values (VALUES).

5 5 CHAR(10) Qdbfssfn Select/omit statement field name.

15 F BINARY(2) Qdbfsspnum Number of select/omit statement parameters, 1 through 32,767.

17 11 CHAR(1) Qsosaf Select/omit statement attribute flags.

17 11 0 BIT(7) Reserved_55 Reserved.

17 11 7 BIT(1) Qdbfssfi Select/omit statement external or internal name indicator. If on, indicates the statement is field name is an
external record format name.

18 12 BINARY(2) Qdbfssfj Select/omit statement join reference number (JREF), 1 through 32. If this is not a join logical file, this field is
not applicable.

20 14 CHAR(8) Reserved_56 Reserved.

28 1C BINARY(4) Qdbfsoso Offset from the start of the FDT header, Qdb_Qdbfh, to the select/omit parameters, Qdb_Qdbfsp, for this
select/omit statement.

Select/Omit Parameters (Qdb_Qdbfsp)

The Qdb_Qdbfsp section is a linked list of parameter descriptions. It describes the parameter values for this particular select/omit statement. The parameters are either a compare value or another record format field.

You can locate this section with the offset Qdbfsoso in the select/omit array section, Qdb_Qdbfss.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qdbfspno Offset from the start of the FDT header, Qdb_Qdbfh, to the next select/omit parameter for this select/omit
statement.

4 4 BINARY(2) Qdbfspln Select/omit parameter length, 1 through 32,767.

6 6 CHAR(1) Qdbfspin Select/omit parameter attribute indicator.

X'00'

The parameter is a compare value.

X'01'

The parameter is a internal record format field.

X'02'

The parameter is an external record format field.

7 7 CHAR(1) Qasopaf Select/omit attribute flags.

7 7 0 BIT(1) Qdbfsigc Double-byte character set (DBCS) and/or graphic data indicator. If on, indicates the non-field compare value
contains DBCS or graphic data.

7 7 1 BIT(1) Qdbfshex Hexadecimal data indicator. If on, indicates the non-field compare value is hexadecimal data.

7 7 2 BIT(1) Qdbfsnul Null value indicator. If on, indicates the non-field compare value is the null value.

7 7 3 BIT(5) Reserved_57 Reserved.

8 8 BINARY(2) Qdbfsppj Select/omit parameter join reference number (JREF), 1 through 32. This field is not applicable if this file is
not a join logical file or the compare value is a non-field value.

10 A CHAR(10) Reserved_58 Reserved.

20 14 CHAR(*) Qdbfspvl Select/omit parameter compare value or the record format field name. This is the compare value when
Qdbfspin contains X'00'. This is the record format field name when Qdbfspin contains X'01' or X'02'.

Key Specification Array (Qdb_Qdbfk)

The key specification array (Qdb_Qdbfk) entries describe the record format fields used in defining the file access path.

Non-join logical files can have one key specification array for each file scope array entry.

Join logical files can have only one key specification array. The first scope array entry for the join logical file contains the offset to the file's key specification array.

You can locate this section with the offset (Qdbfksof) in the scope array entry section, Qdb_Qdbfb.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(10) Qdbfkfld Key statement field name. X'40's indicate the key statement is a *NONE key field.

10 A CHAR(3) Reserved_59 Reserved.

13 D CHAR(1) Qdbfksq Key statement sequencing attribute flags.

13 D 0 BIT(1) Qdbfksad Ascending/descending sequence indicator. If on, indicates the descending sequence (*DESCEND).

13 D 1 BIT(2) Qdbfksn Numeric key field sequencing indicators.

B'00'

The numeric key field sequences as a string of unsigned binary data (UNSIGNED).

B'01'

The numeric key field ignores the sign of the field and sequences as absolute value data (ABSVAL).

B'10'

The numeric key field considers the sign of the field and sequences as signed value data (SIGNED).

13 D 3 BIT(1) Reserved_60 Reserved.

13 D 4 BIT(1) Qdbfksac Alternate collating sequence indicator (ALTSEQ). If on, indicates the alternate collating sequence table applies
to this key field.

13 D 5 BIT(1) Qdbfkszf Force zone sequencing indicator. If on, indicates the zone portion of the key field is zeroed so only the digit
portion (furthest right four bits) is used in key sequencing (DIGIT). If off, the zone portion is not zeroed.

13 D 6 BIT(1) Qdbfksdf Force digit sequencing indicator. If on, indicates the digit portion of the key field is zeroed so only the zone
portion (furthest left four bits) is used in key sequencing (ZONE). If off, the digit portion is not zeroed.

13 D 7 BIT(1) Qdbfkft Key statement external or internal name indicator. If on, indicates the field name is the external record format
name.

14 E CHAR(18) Reserved_61 Reserved.

Distributed File Definition Section and Partition Key Array (Qdb_Qdbf_dis_pkeyarr)

The distributed file definition section and partition key array (Qdb_Qdbf_dis_pkeyarr) contains the node group name and library name for the distributed file and the record format fields used in defining the partition key for
each scope entry.

You can locate this section with the offset Qdbfodis in the scope array entry section, Qdb_Qdbfb.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(10) Qdbf_dis_ndgpn Distributed file node group name.

10 A CHAR(10) Qdbf_dis_ndgpl Distributed file node group library name.

20 14 BINARY(4) Qdbf_dis_nkyn Number of partition key fields for this scope entry.

24 18 CHAR(40) Reserved_121 Reserved.

64 40 ARRAY of CHAR(32) Qdbf_dis_pkeyarr Distributed file partition key array.

64 40 CHAR(10) Qdbf_dis_kname Partition key field name.

74 4A CHAR(22) Reserved_122 Reserved.

Journal Information (Qdb_Qdbfjoal)

The section Qdb_Qdbfjoal contains the journal information for the physical file. You can locate this section with offset Qdbfjorn in the FDT header section, Qdb_Qdbfh.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(10) Qdbfojrn Journal name.

10 A CHAR(10) Qdbfolib Journal library name.

20 14 CHAR(1) Qdbfojpt Journaling options.

20 14 0 BIT(1) Reserved_106 Reserved.

20 14 1 BIT(1) Qdbfjbim Before image indicator. If on, indicates the before images are being journaled.

20 14 2 BIT(1) Qdbfjaim After image indicator. If on, indicates the after images are being journaled.

20 14 3 BIT(1) Reserved_107 Reserved.

20 14 4 BIT(1) Qdbfjomt Omit journal entries indicator. If on, indicates the open and close entries are being omitted from the journal.

20 14 5 BIT(3) Reserved_108 Reserved.

21 15 CHAR(1) Qdbfjact Journaling options.

0

The file is not being journaled.

1

The file is being journaled.

22 17 CHAR(13) Qdbfljrn Last journaling date stamp. This is the date that corresponds to the most recent time that journaling was
started. The date is in internal standard format (ISF), CYYMMDDHHMMSS.

35 23 CHAR(29) Reserved_105 Reserved.

FILD0200 Format (Qdb_Qddfmt Structure)

FILD0200 provides the format used by the records of the specified file. This structure is also used by the QQQQRY API to get data from the named file. Figure 1-2 shows how this information is organized. When more than
one entry can appear, the figure indicates this as in (6). Descriptions and offsets of the fields in this structure are in the tables immediately following Figure 1-2.

The descriptions and offsets are available in the include source supplied on the system. You can see this source in source file H, member name QDBRTVFD, in the QSYSINC library.

Figure 1-2. FILD0200 Format

Format Definition Header (Qdb_Qddfmt)

The Qdb_Qddfmt section is always located at the beginning of the returned data area.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qddbyrtn Bytes returned. The total length, in bytes, of the data returned.

4 4 BINARY(4) Qddbyava Bytes available. The total length, in bytes, of the format.

8 8 CHAR(24) Reserved_62 Reserved.

32 20 0 CHAR(1) Qddfmtf Record format DBCS flags.

32 20 0 BIT(1) Qddfrity Double byte character set and/or graphic data. If on, indicates the format contains DBCS or
graphic data.

32 20 1 BIT(1) Qddfrilt Double byte character set and/or graphic literals. If on, indicates the format contains DBCS or
graphic literals.

32 20 2 BIT(1) Qddfritx Double byte character set record format text description. If on, indicates the text description
contains DBCS data.

32 20 3 BIT(1) Qddfrmep Mapping error possible. If on, indicates the format contains fields that may return mapping
errors.

32 20 4 BIT(1) Qddfrdrv Derived fields (logical files only). If on, indicates the format contains fields derived from fields
in the physical file on which the logical file is based, or from fields in this logical file.

32 20 5 BIT(1) Qddfrni Neither or input-only files (logical files only). If on, indicates the format contains fields that
cannot be used for input or output operations, or fields that can be used for input operations
only.

32 20 6 BIT(1) Qddfrdfi Default values (physical files only). If on, indicates the format contains fields with default
values (DFT).

32 20 7 BIT(1) Qddfcato Concatenated fields (logical files only). If on, indicates the format contains fields that are
concatenations of two or more fields from the physical file.

33 21 BINARY(4) Qddfxlto Offset from the start of the Qdb_Qddfmt header to the translate table specifications, Qddfxl.

37 25 BINARY(4) Qddfrcao Offset from the start of the Qdb_Qddfmt header to the case selection specifications, Qddfcsl.

41 29 BINARY(4) Qddfdico Offset from the start of the Qdb_Qddfmt header to the IDDU/SQL dictionary format
information, Qddfdic .

45 2D BINARY(2) Qddfrcid Common coded character set identifier. Before using this field, see if Qddfrsid is zero. If it is
zero, not all character fields in the format use the same CCSID and this field is not valid.

47 2F BINARY(2) Qddfsrcd Source file coded character set identifier. The CCSID for the character portion of the source file
containing the DDS used to create the format.

49 31 BINARY(2) Qddfrtcd Format text coded character set identifier. The CCSID for the information about the text
description.

51 33 BINARY(2) Qddfrlcd Long comment coded character set identifier. The CCSID for the information about the format
content and purpose.

53 35 CHAR(7) Reserved_64 Reserved.

60 3C CHAR(1) Qddftflgs Format flags.

60 3C 0 BIT(1) Qddfr12 Reserved.

60 3C 1 BIT(1) Qddfucsd If on, the format contains UCS-2 fields.

60 3C 2 BIT(1) Qddfdlnk If on, the format contains datalink fields.

60 3C 3 BIT(1) Qddfdudt If on, the format contains user-defined type fields.

60 3C 4 BIT(1) Qddfdlob If on, the format contains large object fields.

60 3C 5 BIT(3) Reserved_114 Reserved.

61 3D CHAR(1) Qddflgs Flags

61 3D 0 BIT(1) Reserved_65 Reserved.

61 3D 1 BIT(1) Qddfrvar Variable length fields. If on, indicates the format contains variable length fields (VARLEN).

61 3D 2 BIT(1) Qddfrgph Graphic fields. If on, indicates the format contains graphic data fields.

61 3D 3 BIT(1) Qddfrdtt Date, time, or timestamp fields. If on, indicates the format contains data, time, or timestamp
fields.

61 3D 4 BIT(1) Qddfrnul Null capable fields. If on, indicates the format contains null capable fields.

61 3D 5 BIT(1) Qddfrsid Common coded character set identifier flag. If on, indicates all character fields use the same
CCSID.

61 3D 6 BIT(1) Qddfesid Explicit coded character set identifier flag. If on, indicates a CCSID was specified for the
format file or for one or more fields in the format.

61 3D 7 BIT(1) Reserved_66 Reserved.

62 3E CHAR(4) Reserved_67 Reserved.

66 42 BINARY(4) Qddfrlen Record length. The sum of the lengths of all format fields excluding neither fields.

70 46 CHAR(10) Qddfname Record format name.

80 50 CHAR(13) Qddfseq Level identifier. The modification level identifier of the format, used to verity the format has
not changed since compile time, if LVLCHK(*YES) is requested.

93 5D CHAR(50) Qddftext Text description (TEXT)

143 8F BINARY(2) Qddffldnum Number of fields. The number of fields in the format. There is one field header for each field.

 145 91 BINARY(4) Qddf_Identity_Off Offset from the start of the Format header to the identity information, Qddfidcl

256 100 Array of CHAR(*) Qddffldx Start of field definition array (Qdb_Qddffld).

Field Header (Qdb_Qddffld)

This section is located immediately after the Qdb_Qddfmt header. The number of entries in this structure is defined by variable Qddffldnum in the Qdb_Qddfmt header. This structure is to be defined at variable Qddffldx in the
Qdb_Qddfmt header.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qddfdefl Length of field header structure. The length of each occurrence of the field header structure, including
all subsections.

4 4 CHAR(30) Qddffldi Internal field name. The name of the physical format field. If this is a logical format, the name of the
physical field on which the logical field is based.

34 22 CHAR(30) Qddfflde External field name. If this is a logical format, the logical format field name. If this is a physical
format, the internal name is a duplicate of Qddfflde.

64 40 CHAR(2) Qddfftyp Data type.

X'0000'

BINARY

X'0001'

FLOAT

X'0002'

ZONED DECIMAL

X'0003'

PACKED DECIMAL

X'0004'

CHARACTER

X'8004'

VAR CHARACTER

X'0005'

GRAPHIC

X'8005'

VAR GRAPHIC

X'0006'

DBCS-CAPABLE

X'8006'

VAR DBCS-CAPABLE

X'000B'

DATE

X'000C'

TIME

X'000D'

TIMESTAMP

X'4004'

BLOB/CLOB

X'4005'

DBCLOB

X'4006'

CLOB-OPEN

X'8044'

DATALINK-CHAR

X'8046'

DATALINK-OPEN

X'FFFF'

NULL

66 42 CHAR(1) Qddffiob Usage

X'01'

The field can be used for input only.

X'02'

Output only.

X'03'

Both input and output.

X'04'

Neither input nor output.

X'FF'

The usage is unknown.

67 43 BINARY(4) Qddffobo Output buffer offset. The offset of this field from the start of the output buffer.

71 47 BINARY(4) Qddffibo Input buffer offset. The offset of this field from the start of the input buffer.

75 4B BINARY(2) Qddffldb Length. The length of the field. For character fields: the number of characters. For float fields: 4 for
single, 8 for double. For variable length fields: the maximum the field can be plus 2. For date, time, or
timestamp fields: the length of the formatted data. For graphic data fields: the number of bytes. For
LOB fields: the number of bytes in the buffer.

77 4D BINARY(2) Qddffldd Number of digits. The number of digits in the field. For numeric fields: the number of digits. For
graphic data fields: the number of DBCS characters the field can contain.

79 4F BINARY(2) Qddffldp Decimal positions. The number of position to the right of the decimal point.

81 51 CHAR(1) Qddffkbs Keyboard shift (RESHIFT) The keyboard shift attribute of the field.

X

Alphabetic only.

A

Alphameric shift.

N

Numeric shift.

S

Signed numeric.

Y

Numeric only.

D

Digits only.

M

Numeric only character.

W

Katakana.

H

Hexadecimal.

I

Inhibit keyboard entry.

J

DBCS only.

E

DBCS either.

O

DBCS open.

X'00'

No shift expected.

82 52 CHAR(1) Qddffldst Field status byte 1

82 52 0 BIT(1) Qddffiat Double-byte character set (DBCS) alternate type field. If on, indicates the alternate type for this field
contains DBCS data.

82 52 1 BIT(1) Qddffitx Double-byte character set (DBCS) field text description. If on, indicates the text description contains
DBCS data.

82 52 2 BIT(1) Qddffich Double-byte character set (DBCS) column headings. If on, indicates the column headings contains
DBCS data.

82 52 3 BIT(1) Qddffivc Double-byte character set (DBCS) validity checking literals. If on, indicates the compare, range, or
values literals contain DBCS data.

82 52 4 BIT(1) Qddffrnd Rounding. Rounding method for the field. If on, indicates round insignificant decimal digits. If off,
indicates truncate insignificant decimal digits.

82 52 5 BIT(1) Qddffcid Character identifier flag. If on, indicates a character identifier was specified.

82 52 6 BIT(2) Reserved_62 Reserved.

83 53 BINARY(2) Qddfjref Join reference (JREF) (logical files only). For fields whose names are specified in more than one
physical file, this values identifies which physical file contains the field.

85 55 CHAR(1) Qddffldst2 Field status byte 2.

85 55 0 BIT(1) Qddffnul Allow null value (ALWNULL). If on, indicates the null value is allowed for this field.

85 55 1 BIT(1) Qddffdft Column default value. If on, indicates the column does not have a default value.

85 55 2 BIT(1) Qddffvar If on, indicates the column is a variable length field.

85 55 5 BIT(5) Reserved_70 Reserved.

86 56 CHAR(1) Qddflgs2 Flags.

86 56 0 BIT(1) Qddfcorr Correlated field. If on, indicates this is a correlated field.

86 56 1 BIT(1) Qddffrrn File relative record number. If on, indicates this is a relative record number field.

86 56 2 BIT(5) Reserved_71 Reserved.

86 56 7 BIT(1) Qddffmep Mapping errors possible. If on, indicates the field may return data mapping errors.

87 57 BINARY(2) Qddfvarx Variable field index. Index into the list of all variable field values for the query.

89 59 CHAR(2) Reserved_72 Reserved.

91 5B BINARY(2) Qddflalc Allocated length. The number of bytes allocated for the field in the fixed portion of the file.

Or:

Date/time/timestamp length. The number of bytes the based on field occupies.

93 5D CHAR(1) Qddfdttf Date format (DATFMT) or time format (TIMFMT), depending on the use of the field. This field is
not valid unless Qddfftyp is X'000B', X'000C', or X'000D' except for the following cases. DATFMT
and TIMFMT are valid on '0002'X type logical file fields having based-on physical file fields that are
'000B'X and '000C'X. DATFMT is valid on '0003'X and '0004'X type logical file fields having
based-on physical file fields that are '000B'X. Some DATFMTs are valid only for the the '0002'X,
'0003'X, and '0004'X fields having based-on physical file '000B'X fields and are identified (by pseudo
date) below.

X'FE'

The format associated with the job.

X'FF'

The format associated with the QDT.

X'01'

The *USA format.

X'03'

The *ISO format.

X'05'

The *EUR format.

X'07'

The *JIS format (date only).

X'09'

The SAA timestamp.

X'17'

The *MDY format (date only).

X'18'

The *DMY format (date only).

X'19'

The *YMD format (date only).

X'1A'

The *JUL format (date only).

X'1B'

The *HMS format (time only).

X'25'

The *CMDY format (pseudo date).

X'26'

The *CDMY format (pseudo date).

X'27'

The *CYMD format (pseudo date).

X'28'

The *MDYY format (pseudo date).

X'29'

The *DMYY format (pseudo date).

X'2A'

The *YYMD format (pseudo date).

X'2B'

The *YM format (pseudo date).

X'2C'

The *MY format (pseudo date).

X'2D'

The *YYM format (pseudo date).

X'2E'

The *MYY format (pseudo date).

X'30'

The *LONGJUL format (pseudo date).

94 5E CHAR(1) Qddfdtts Date separator (DATSEP) or Time separator (TIMSEP) This field is not valid unless Qddfftyp is
X'000B', X'000C', or X'000D'.

X'00'

The separator associated with the job.

X'EE'

The implied separator is used.

'/'

The slash is used.

'-'

The dash is used.

'.'

The period is used.

' '

The blank is used.

':'

The colon is used.

95 5F BINARY(2) Qddfcsid Common coded character set identifier (CCSID).

00000

The CCSID associated with the job is used.

65535

No data translation is done.

nnnnn

The CCSID.

97 61 BINARY(2) Qddftsid Text description common coded character set identifier.

00000

The CCSID associated with the job is used.

65535

No data translation is done.

nnnnn

The CCSID.

99 63 BINARY(2) Qddfhsid Column heading common coded character set identifier.

00000

The CCSID associated with the job is used.

65535

No data translation is done.

nnnnn

The CCSID.

101 65 BINARY(2) Qddflsid Long comment common coded character set identifier.

00000

The CCSID associated with the job is used.

65535

No data translation is done.

nnnnn

The CCSID.

103 67 CHAR(1) Qddfldur Labeled duration. The type of labeled duration this field defines.

X'00'

The field not a labeled duration.

X'0D'

Year/years.

X'0E'

Month/months.

X'0F'

Day/days.

X'10'

Hour/hours.

X'11'

Minute/minutes.

X'12'

Second/seconds.

X'13'

Microsecond/microseconds.

104 68 CHAR(1) Reserved_73 Reserved.

105 69 BINARY(2) Qddfwsid Edit word common coded character set identifier.

00000

The CCSID associated with the job is used.

65535

No data translation is done.

nnnnn

The CCSID.

107 6B CHAR(1) Reserved_61 Reserved.

108 6C CHAR(1) Reserved_62 Reserved.

109 6D BIN(2) Reserved_63 Reserved.

111 6F CHAR(1) Qddflagco Flags.

111 6F 0 BIT(3) Reserved_64 Reserved.

111 6F 3 BIT(1) Qddffucs If on, indicates the column is a UCS-2 field.

111 6F 4 BIT(1) Qddfudt If on, indicates the column is a user-defined type field.

 111 6F 5 BIT(1) Qddf_Identity_Col If on, indicates the column is an identity column.

111 6F 6 BIT(1) Qddf_Rowid_Col If on, indicates the column is a row ID column.

111 6F 7 BIT(1) Reserved_65 Reserved.

112 70 CHAR(68) Reserved_74 Reserved.

180 B4 BINARY(4) Qddfcplx Offset from the start of the field header to the field information if the field was a user-defined type,
datalink, or large object. See structure Qdb_Qddfcpli.

184 B8 BINARY(4) Qddfbmaxl Maximum length of the large object field.

188 BC BINARY(2) Qddfbpadl Pad length of the large object field.

190 BE BINARY(4) Qddfdicd Offset from the start of the field header to the IDDU/SQL dictionary field information, Qddfdicf.

194 C2 BINARY(4) Qddfdftd Offset from the start of the field header to the default value description, Qddfdft.

198 C6 BINARY(4) Qddfderd
Offset from the start of the field header to the derived field description (or to the concatenated field
description if its file is externally described), Qddfderv.

202 CA CHAR(6) Reserved_75 Reserved.

208 D0 BINARY(4) Qddftxtd Offset from the start of the field header to the field text description, Qddfftxt.

212 D4 CHAR(2) Reserved_102 Reserved.

214 D6 BINARY(4) Qddfrefd Offset from the start of the field header to the field reference information, Qddfrefi.

218 DA BINARY(2) Qddfedtl Length of the edit code/edit word for the field.

220 DC BINARY(4) Qddfedtd Offset from the start of the field header to the edit code/edit word information, Qddfedcw.

224 E0 BINARY(2) Reserved_76 Reserved.

226 E2 BINARY(4) Qddfchd Offset from the start of the field header to the column heading information, Qddfcolh.

230 E6 BINARY(2) Qddfvckl Length of validity checking data present for the field.

232 E8 BINARY(4) Qddfvckd Offset from the start of the field header to the validity checking data, Qddfvchk.

236 EC BINARY(4) Qddfxals Offset from the start of the field header to the alias name entry.

240 F0 BINARY(4) Qddffpnd Offset from the start of the field header to the field prompted numeric editing information, Qddfdfne.

244 F4 CHAR(8) Reserved_77 Reserved.

252 FC CHAR(*) Qddfvpx Start of the variable portion of the field description.

Reference Information (Qdb_Qddfrefi)

You can locate the Qdb_Qddfrefi section with the offset Qddfrefd in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(1) Qddfrcde Modification flags.

0 0 0 BIT(1) Qddfdupe Modifications. If on, indicates the field has been modified.

0 0 1 BIT(1) Qddfnmec Name modification. If on, indicates the name of the field has been modified.

0 0 2 BIT(1) Qddftypc Data type modification. If on, indicates the data type of the field has been modified.

0 0 3 BIT(1) Qddflenc Field length modification. If on, indicates the length of the field has been modified.

0 0 4 BIT(1) Qddfdecc Precision modification. If on, indicates the precision of the field has been modified.

0 0 5 BIT(1) Qddfedtc Edit information modification. If on, indicates the edit information of the field has been modified.

0 0 6 BIT(1) Qddfvc Validity checking information modification. If on, indicates the validity checking information of the field has
been modified.

0 0 7 BIT(1) Qddfothr Other modification. If on, indicates other information of the field has been modified.

1 1 CHAR(10) Qddfrfil Reference file name.

11 B CHAR(10) Qddfrlib Reference file library.

21 15 CHAR(10) Qddfrfmt Referenced record format.

31 1F CHAR(30) Qddfrfld Referenced field.

61 3D CHAR(19) Reserved_78 Reserved.

Field Prompted Numeric Editing Information (Qdb_Qddfdfne)

You can locate the Qdb_Qddfdfne section with the offset Qddffpnd in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(2) Reserved_80 Reserved.

2 2 CHAR(1) Qddfddts Date separator (DATSEP) or Time separator (TIMSEP).

X'00'

This is not a date or time field.

1

The period (.).

2

The slash (/).

3

The colon (:).

4

The dash (-).

5

The comma (,).

3 3 CHAR(1) Qddfddpc Decimal point character. This field is not valid unless Qddfddts contains X'00'.

1

The period (.).

2

The comma (,).

3

The colon (:).

4

The dollar ($).

5

No decimal point is used.

4 4 CHAR(1) Qddfdtsc Thousands separator character. This field is not valid unless Qddfddts contains X'00'.

1

The period (.).

2

The comma (,).

3

The apostrophe (').

4

The blank ().

5

No thousands separator is used.

5 5 CHAR(13) Qnsi Negative sign information.

5 5 CHAR(1) Qddfdnsc Display negative sign. This field is not valid unless Qddfddts contains X'00'.

1

The negative sign is displayed for negative values.

2

The negative is not displayed for negative values.

6 6 CHAR(6) Qddfdnsl Left negative sign value. This field is not valid unless Qddfddts contains X'00'.

12 C CHAR(6) Qddfdnsr Right negative sign value. This field is not valid unless Qddfddts contains X'00'.

18 12 CHAR(13) Qcsi Currency symbol information.

18 12 CHAR(1) Qddfdcsv Display currency symbol. This field is not valid unless Qddfddts contains X'00'.

1

The currency symbol is displayed.

2

The currency symbol is not displayed.

19 13 CHAR(6) Qddfdcsl Left currency symbol value. This field is not valid unless Qddfddts contains X'00'.

25 19 CHAR(6) Qddfdcsr Right currency symbol value. This field is not valid unless Qddfddts contains X'00'.

31 1F CHAR(1) Qddfdpzv Print zero value. This field is not valid unless Qddfddts contains X'00'.

1

A zero value is displayed.

2

A zero value is not displayed.

32 20 CHAR(1) Qddfdrlz Replace leading zeros. This field is not valid unless Qddfddts contains X'00'.

1

Leading zeros are replaced.

2

Leading zeros are not replaced.

33 21 CHAR(1) Qddfdrlv Leading zero replacement value. This field is not valid unless Qddfddts contains X'00'.

1

Blanks ().

2

Asterisks (*).

3

Blanks () and the left currency symbol is shifted right.

34 22 CHAR(1) Qddfdlzo Single leading zero. This field is not valid unless Qddfddts contains X'00'.

1

A zero is displayed to the left of the decimal point when there are no significant digits to the left of the
decimal.

2

A zero is not displayed to the left of the decimal point.

35 23 CHAR(29) Reserved_81 Reserved.

Edit Code/Edit Word Information (Qdb_Qddfedcw)

You can locate the Qdb_Qddfedcw section with the offset Qddfedtd in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(2) Qddfecdi Edit code information.

0 0 CHAR(1) Qddfecde Edit code (EDTCDE). Edit code for the field when it is referred to during display or print file creation.

1 1 CHAR(1) Qddfecdx Floating currency symbol.

*

Asterisk protection: asterisks are displayed to the left of significant digits.

A currency symbol indicates the symbol displayed to the left the significant digits.

2 2 CHAR(14) Reserved_79 Reserved

16 10 CHAR(*) Qddfewd Edit word (EDTWRD). The form in which the field values are displayed.

Validity Checking Information (Qdb_Qddfvchk)

You can locate the Qdb_Qddfvchk section with the offset Qddfvckd in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(2) Qddfvcnume Number of validity check entries.

2 2 CHAR(14) Reserved_82 Reserved.

16 10 CHAR(*) Qddfvcen Validity checking entry array.

Validity Checking Entry (Qdb_Qddfvcst)

The first validity checking entry starts at Qddfvcen in the validity checking information section, Qdb_Qddfvchk.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(1) Qddfvccd DDSI keyword identifier.

X'63'

CHKMSGID

X'64'

CHECK(ME)

X'66'

CHECK(FE)

X'67'

CHECK(MF)

X'71'

RANGE

X'72'

VALUES

X'73'

COMP(GT)

X'74'

COMP(GE)

X'75'

COMP(EQ)

X'76'

COMP(NE)

X'77'

COMP(LE)

X'78'

COMP(LT)

X'79'

COMP(NL)

X'7A'

COMP(NG)

X'A0'

CHECK(M10)

X'A1'

CHECK(M11)

X'A2'

CHECK(VN)

X'A3'

CHECK(AB)

X'A5'

CHECK(VNE)

X'A6'

CHECK(M10F)

X'A7'

CHECK(M11F)

1 1 BINARY(2) Qddfvcnump Number of parameters.

3 3 BINARY(2) Qddfvcel Length of this validity checking entry.

5 5 CHAR(11) Reserved_83 Reserved.

16 10 CHAR(*) Qddfvcpm Validity checking parameter array.

Validity Checking Parameter (Qdb_Qddfvcpr)

The first validity checking parameter starts at Qddfvcpm in the validity checking entry section, Qdb_Qddfvcst.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(2) Qddfvcpl Length of validity checking parameter Qddfvcpv.

2 2 CHAR(14) Reserved_84 Reserved.

16 10 CHAR(*) Qddfvcpv Validity checking parameter value.

Complex Object Field Type Information (Qdb_Qddfcpli)

You can locate the Qdb_Qddfcpli section with the offset Qddfcplx in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qddflenu Length of the user-defined type name.

4 4 CHAR(128) Qddfnudt User-defined type name.

132 84 CHAR(10) Qddfludt User-defined type library name.

142 8E CHAR(1) Qddfdlink Link control.

N

No link control.

F

File link control.

143 8F CHAR(1) Qddfdinte Link integrity. Linked files are under control of the database if the field is a datalink.

A

All under control.

S

Selective control. This value is not supported yet.

144 90 CHAR(2) Qddfdrper Read permission. The file system controls authority to read a file if the field is a datalink.

FS

File system.

DB

Database.

146 92 CHAR(2) Qddfdwper Write permission. The file system controls authority to write to a file if the field is a datalink.

FS

File system.

BL

Blocked.

148 94 CHAR(1) Qddfdreco Recovery. The database manager will recover the file if the field is a datalink.

Y

Yes. This value is not supported yet.

N

No.

149 95 CHAR(1) Qddfdunlk On unlink. The database manager will either restore the file owner on an unlink, or delete the file when
unlinking the file.

R

Restore the owner.

D

Delete the file.

150 96 CHAR(10) Reserved_150 Reserved.

Field Text (Qdb_Qddfftxt)

You can locate the Qdb_Qddfftxt section with the offset Qddftxtd in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(50) Qddfftxt Text (TEXT). Text description of the field.

Alias Name Structure (Qdb_Qddfalis)

You can locate this section with the offset Qddfxals located in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(2) Qddfalsl Length of alternative name Qddfalsn.

2 2 CHAR(14) Reserved_85 Reserved.

16 10 CHAR(258) Qddfalsn Alternative name (ALIAS).

Default Value Description Information (Qdb_Qddfdft)

You can locate the Qdb_Qddfdft section with the offset Qddfdftd in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(2) Qddfdftl Length of default information.

2 2 CHAR(1) Qddfdfta Default attributes.

2 2 0 BIT(1) Qddfdfig DBCS or graphic default. If on, indicates the default is a DBCS or graphic literal.

2 2 1 BIT(1) Qddfdfhx Hex default. If on, indicates the default is a hexadecimal literal.

2 2 2 BIT(1) Qddfndft Null default. If on, indicates the default is null.

2 2 3 BIT(2) Reserved_86 Reserved.

2 2 5 BIT(1) Qddfdcur DATE, TIME, or TIMESTAMP default. On indicates the default is CURRENT_DATE, CURRENT_TIME,
or CURRENT_TIMESTAMP.

2 2 6 BIT(1) Reserved_109 Reserved.

2 2 7 BIT(1) Qddfdftk DFT or DFTVAL keyword. If on, indicates the DFTVAL keyword was specified.

3 3 CHAR(13) Reserved_87 Reserved.

16 10 CHAR(*) Qddfdftv Default (DFT) or (DFTVAL). A value of USER indicates that the default value for this field is the job's
current user.

Identity Column Information (Qdb_Qddfidcl)

You can locate the Qdb_Qddfidcl section with the offset Qddf_Identity_Off in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(2) Qddf_Id_Len Length of IDENTITY information.

2 2 DECIMAL(31,0) Qddf_Id_Orig_Start_With Original START WITH value.

18 12 DECIMAL(31,0) Qddf_Id_Curr_Start_With Current START WITH value.

34 22 BINARY(4) Qddf_Id_Increment_By INCREMENT BY value.

38 26 DECIMAL(31,0) Qddf_Id_Minimum MINIMUM value.

54 36 DECIMAL(31,0) Qddf_Id_Maximum MAXIMUM value.

70 46 CHAR(1) Qddf_Id_Cycle CYCLE indicator.
1 = Cycling will occur.
0 = Cycling will not occur.

71 47 CHAR(1) Qddf_Id_Order ORDER mode indicator.
1 = Values are generated in order of request.
0 = Values do not need to be generated in order of request.

72 48 CHAR(1) Qddf_Id_Generate Identity GENERATE indicator.
1 = GENERATE ALWAYS.
0 = GENERATE BY DEFAULT.

73 49 BINARY(4) UNSIGNED Qddf_Id_Curr_Cache CACHE value.

77 4D CHAR(1) Qddf_Rowid_Generate Rowid GENERATE indicator.
1 = GENERATE ALWAYS.
0 = GENERATE BY DEFAULT.

78 4E CHAR(53) Qddf_Id_Reserved1 Reserved.

Derived Field Description Information

The derived field structure is a stack of operators and operands in postfix notation. Postfix notation is a method of forming mathematical expressions in which each operator is preceded by its operands and indicates the
operation to be performed on the operands or the intermediate results that precede it. For example:

A + B
would be:
A B +

Numeric operands and character operands cannot be mixed in one derived field description. If numeric operands are specified, the resulting field attributes must be numeric. If character operands are specified, the resulting field
attributes must be character or DBCS. Character and DBCS only fields cannot be mixed in one derived field description.

Substringing DBCS fields is allowed, although the data is treated as character data, that is, there is no true double-byte substring support. This applies to query formats only.

Derived Field Header (Qdb_Qddfderv)

You can locate this section, Qdb_Qddfderv, with the offset Qddfderd in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qddfdvtl Length of derived field information Qddfderv.

4 4 BINARY(2) Qddfdvnume Number of derived field entries. 0 indicates it is a concatentated field.

6 6 BINARY(4) Qddfdvot Offset from the start of this header to the derived field text (or to the concatenated field text), Qddfdvtx .

10 A CHAR(6) * Reserved.

16 10 CHAR(*) Qddfdven Derived field entry.

Derived Field Entry (Qdb_Qddfdvst)

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Qddfdvln Length of derived field entry, Qddfdvst.

4 4 BINARY(2) Qddfdtyp Derived field entry type.

0

A field operand.

1

A constant operand.

2

An operator.

6 6 CHAR(*) Qddfdv The union of the Field operand (Qdddvof), Constant operand (Qddffvoc), and Operator entry (Qddfdvo).

Field Operand Entry (Qdb_Qddfdvof)

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(30) Qddfdvon Field name.

30 1E BINARY(2) Qddfdvjr Join reference (JREF). Relative file number of the physical file containing the external file referenced.

0

The fields previously defined in this format are searched for the field name.

If the field is not found, the based on file formats are searched. If the field name is found in more than
one file format, an error is signalled.

n

The file containing the field name.

32 20 BINARY(2) Qddfdv01 Starting position. The starting position in the field of the substring (SST) specified.

34 22 BINARY(2) Qddfdvo2 Ending position. The ending position in the field of the substring (SST) specified.

36 24 BINARY(2) Qddfqdtnum Qdt from which this correlated field originates (only applicable for SQL subqueries.

38 26 CHAR(20) * Reserved.

Constant Operand Entry (Qdb_Qddfdvoc)

Offset

Bit Type Field DescriptionDec Hex

0 0 * Qddfdvoh Constant operand header.

0 0 BINARY(4) Qddfdvol Length of constant Qddfdvov.

4 4 CHAR(1) Qca Constant attributes.

4 4 0 BIT(1) Qddfdvci DBCS constant. If on, indicates the constant is a DBCS-open literal.

4 4 1 BIT(1) Reserved_90 Reserved.

4 4 2 BIT(1) Qddfdvcc Character constant type. If on, indicates the constant is an unquoted character string not bracketed by single
quotes. Imbedded quotes are represented with a single quote. If off, indicates it is quoted, bracketed by single
quotes. Imbedded quotes are represented with two single quotes.

4 4 3 BIT(1) Qddfdvac Assume character constant. If on, indicates the system assumes this is a character constant.

4 4 4 BIT(1) Qddfdvco DBCS-only literal. If on, indicates the constant is a DBCS-only literal.

This attribute is not valid if the DBCS constant attribute, Qddfdvci, is off.

4 4 5 BIT(1) Qddfdvsr Special register. If on, indicates this constant is a special register defined by Qddfdvrc.

4 4 6 BIT(1) Qddfdvnl Null indicator. If on, indicates the constant is a null literal.

4 4 7 BIT(1) Reserved_91 Reserved.

5 5 CHAR(1) Qddfdvrc Special register constant. Defined by special register constants, can only be specified if Qddfdvsr is on.

6 6 CHAR(1) Qddfdvft Date constant format (DATFMT) or Time constant format (TIMFMT)

X'FE'

Format associated with the job is used.

X'FF'

Format associated with QDT is used.

X'01'

The *USA format.

X'03'

The *ISO format.

X'05'

The *EUR format.

X'07'

The *JIS format.

X'09'

The SAA timestamp format.

X'17'

The *MDY date format.

X'18'

The *DMY date format.

X'19'

The *YMD date format.

X'1A'

The *JUL date format.

X'1B'

The *HMS time format.

7 7 CHAR(1) Qddfdvsp Date constant separator (DATSEP) or Time constant separator (TIMSEP)

X'00'

Default separator associated with job is used.

X'EE'

The implied separator is used.

'/'

The slash.

'-'

The dash.

'.'

The period.

','

The comma.

' '

The blank.

':'

The colon.

8 8 CHAR(2) Reserved_92 Reserved.

10 A BINARY(2) Qddfdvcd Constant coded character set identifier (CCSID).

13 C CHAR(1) Qddfcflg Constant flags.

13 C 0 BIT(2) Reserved_93 Reserved.

13 C 2 BIT(1) Qddfglit Graphics literal. If on, indicates this is a graphics literal.

13 C 3 BIT(5) Reserved_94 Reserved.

14 E CHAR(29) Reserved_95 Reserved.

43 2B CHAR(*) Qddfdvov Derived constant. The external form of the constant.

Operator Entry (Qdb_Qddfdvo)

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(1) Qddfdvop Derived operator.

Operators requiring three operands:

X'27'

Substring

 Operators requiring two operands:

X'01'

Concatenation

X'04'

Addition

X'05'

Subtraction

X'06'

Multiplication

X'07'

Division

X'08'

Minimum

X'09'

Maximum

X'1A'

X to the Y power

X'1B'

Binary OR

X'1C'

Binary XOR

X'1D'

Binary AND

X'24'

Strip leading

X'25'

Strip tailing

X'26'

Strip both

X'35'

Compute

X'41'

String position

X'80'

Remainder

 Operators requiring one operand:

X'02'

Map

X'03'

Direct map

X'0A'

Absolute value

X'0B'

Translate

X'0C'

Natural logarithm

X'0D'

Exponential

X'0E'

Sine

X'0F'

Cosine

X'10'

Tangent

X'11'

Cotangent

X'12'

Arc sine

X'13'

Arc cosine

X'14'

Arc tangent

X'15'

Hyperbolic sine

X'16'

Hyperbolic cosine

X'17'

Hyperbolic tangent

X'18'

Hyperbolic arctangent

X'19'

Square root

X'1E'

Binary NOT

X'1F'

Negation

X'23'

Length

X'29'

Year

X'2A'

Month

X'2B'

Day

X'2C'

Days.

X'2D'

Hour

X'2E'

Minute

X'2F'

Second

X'30'

Microsecond

X'31'

Date

X'32'

Time

X'34'

Hex

X'36'

Test translate CCSID

X'37'

Translate monocase

X'3C'

Node number

X'3D'

Cast

X'47'

Partition

X'48'

Node name

X'83'

Log (base 10)

X'84'

Anti log (base 10)

X'85'

Digits

X'86'

Char

X'8F'

Graphic representation of character

X'90'

Character representation of graphic

 Label duration operators:

X'87'

Year

X'88'

Month

X'89'

Day

X'8A'

Hour

X'8B'

Minute

X'8C'

Second

X'8D'

Microsecond

 Operators requiring one to many operands:

X'3A'

Hash function

 Operators requiring two to many operands:

X'28'

Null values

X'3E'

Case Expression

 Operators requiring one or two operands:

X'33'

Timestamp

 Group by operators: All require one operand except count that requires one or two.

X'A1'

Count

X'A3'

Sum

X'A4'

Minimum

X'A5'

Maximum

X'B0'

Average

X'B1'

Standard deviation

X'B2'

Variance

1 1 CHAR(2) Qddfdvxnum Translate table index or case selection specification index. This field is valid only if Qddfdvop is X'OB'
or X'3E'.

1 1 CHAR(1) Qddfdvdtfmt Operator date format index.

1 1 CHAR(1) Qddfdvdtsep Operator date separator index.

3 3 CHAR(1) Qddfdvfm Operator date format (DATFMT) or Operator time format (TIMFMT).

X'FE'

Format associated with the job is used.

X'FF'

Format associated with QDT is used.

X'01'

The *USA format.

X'03'

The *ISO format.

X'05'

The *EUR format.

X'07'

The *JIS format.

X'09'

The SAA timestamp format.

X'17'

The *MDY date format.

X'18'

The *DMY date format.

X'19'

The *YMD date format.

X'1A'

The *JUL date format.

X'1B'

The *HMS time format.

4 4 CHAR(1) Qddfdvsa Operator date separator (DATSEP) or Operator time separator (TIMSEP)

X'00'

Default separator associated with job is used.

X'EE'

The implied separator is used.

'/'

The slash.

'-'

The dash.

'.'

The period.

','

The comma.

' '

The blank.

':'

The colon.

5 5 BINARY(2) Qddfdvno Number of operands.

7 7 CHAR(1) Qoa Operator attributes.

7 7 0 BIT(1) Reserved_96 Reserved.

7 7 1 BIT(1) Qddfdvdttm Operator date format and separator source. If on, indicates Qddfdvdtfmt and Qddfdvdtsep are used as the
date format and separator with the CHAR operator. Qddfdvfm and Qddfdvsa are used as the time format
and separator with the CHAR operator.

7 7 2 BIT(1) Reserved_n Reserved.

7 7 3 BIT(1) Qddfdvdf Group operators. If on, do not include duplicate field values in group by operation. If off, include
duplicate field values in group by operation.

7 7 4 BIT(1) Reserved_97 Reserved.

7 7 5 BIT(1) Qddffunc_char Number of characters option. If on, the result of the operator is based on the number of characters. If off,
the result of the operator is based on the number of bytes. This field is only applicable when Qddfdvop is
POSSTR(X'41'), LENGTH(X'23'), or SUBSTRING(X'27).

7 7 6 BIT(2) Reserved_115 Reserved.

8 8 CHAR(2) Reserved_98 Reserved.

10 A CHAR(1) Qddfd_decptchar

The character to use for the decimal point. Only applicable if Qddfdvop is a CAST(X'3D') and one of the
operands is numeric and the other is character, or if Qddfdvop is a CHAR(X'86') and the first operand is
packed decimal.

11 B BIN(4) Qddfdo_func_def Offset from the beginning of this derived field entry (Qdb_Qddfdvst) to the Function Name Specification
section, Qddfunc_def . If this offset is specified, then the function is resolved to using the name in the
Function Name Specification section. If the Function Name section is specified, all entries in this
operator section are ignored except for the number of operands for the function, Qddfdvno, which is
required to be set, and the duplicate field values indicator, Qddfdvdf, which can be optionally set.
decimal.

15 F CHAR(11) Reserved_101 Reserved.

Derived Field Text Information (Qdb_Qddfdvtx)

You can locate the Qdb_Qddfdvtx section with the offset Qddfdvot in the Derived Field Header section, Qdb_Qddfderv.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(2) Qddfdvlt Length of derived field text information or concatenated field text information.

2 2 CHAR(*) Qddfdtxt Derived field text description or concatenated field text description.

Column Heading Information (Qdb_Qddfcolh)

You can locate the Qdb_Qddfcolh section with the offset Qddfchd in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(20) Qddfch1 Column heading #1. The first column heading specified on the COLHDG DDS keyword without the quotes.

20 14 CHAR(20) Qddfch2 Column heading #2. The second column heading specified on the COLHDG DDS keyword without the quotes.

40 28 CHAR(20) Qddfch3 Column heading #3. The third column heading specified on the COLHDG DDS keyword without the quotes.

IDDU/SQL Dictionary Format Information (Qdb_Qddfdic)

You can locate the Qdb_Qddfdic section with the offset Qddfdico in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(32) Reserved_100 Reserved.

32 20 Qddfdicm Format definition long comment information.

32 20 BINARY(2) Qddfdilt Length of format definition long comment information, Qddfdicm.

34 22 CHAR(*) Qddfditx Format definition long comment.

IDDU/SQL Dictionary Field Information (Qdb_Qddfdicf)

You can locate the Qdb_Qddfdicf section with the offset Qddfdicd located in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(16) * Reserved.

16 10 Qddfdfco Field definition long comment.

16 10 BINARY(2) Qddffcl Length of field definition long comment Qddfdfco.

18 12 CHAR(*) Qddfdfct Field definition comment text.

Translate Table Specification (Qdb_Qddfxl)

You can locate the Qdb_Qddfxl section with the offset Qddfxlto in the field header section, Qdb_Qddffld.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(2) Qddfxlnum Number of elements in the translate table array.

2 2 Qddfxarr Translate table array.

2 2 CHAR(10) Qddfxtnm Translate table name.

12 C CHAR(10) Qddfxtln Translate table library name.

22 16 BINARY(2) Qddfxcid Translate table constant coded character set identifier.

24 18 CHAR(10) Reserved_99 Reserved.

34 22 CHAR(256) Qddfxtbl Translate table.

Case Selection Specification (Qdb_Qddfcsl)

You can locate the Qdb_Qddfcsl section with the offset Qddfrcao in the field header section, Qdb_Qddffld. For a description of selection specifications, see QDBQS in the QQQQRY API.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(2) Qddfcsnum Number of elements in the case selection specification array.

2 2 BINARY(4) Qddfcln Length of this plus the length of all the selection specifications.

6 6 CHAR(10) Reserved Reserved.

16 10 Array of BINARY(4) Qddfcao Offset to the selection specification. Offset is from the start of Qdb_qdffcsl.

Function Name Specification (Qdb_Qddfunc_def)

You can locate the Qdb_Qddfunc_def section with the offset Qddfdo_func_def in the derived operator entry section, Qdb_Qddfdvo.

This section can only be specified when used in conjunction with the QQQQRY API.

This section can be used to reference a function by name rather than opcode qddfdvop. It can be used to resolve to existing built-in functions provided by the database or to user-defined functions defined in the SYSROUTINE
SQL catalog in the QSYS2 library. Resolution is based on function name, number of parameters, compatible parameters and library list, in that order.

See the DB2 UDB for iSeries SQL Reference book for more information on user-defined functions and the SYSROUTINE catalog.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(20) Reserved Reserved.

20 14 CHAR(10) Qddfunc_libname Library where function can be found. Special values follow.

' '

Blank. Use the path (library list) to find the function.

'QSYS2'

Use the built-in operator provided by the database.

30 1E BIN(2) Qddfunc_namelen Length of function name in Qddfunc_funcname.

32 20 CHAR(128) Qddfunc_funcname Name of function to resolve.

Built-in functions provided by the database in library QSYS2:

'+'

Addition. Two operands

'-'

Subtraction. Two operands

'*'

Multiplication. Two operands

'/'

Division. Two operands

'ABS'

Absolute value. One operand

'ACOS'

Arc cosine. One operand

'ANTILOG'

Antilog. One operand

'ASIN'

Arc sine. One operand

'ATAN'

Arc tangent. One operand

'ATANH'

Hyperbolic arc tangent. One operand

'AVG'

Average. One operand

'CHAR'

Character. One to two operands

'COALESCE'

First non-null value. Two to N operands

'CONCAT'

Concatenation. Two operands

'COS'

Cosine. One operand

'COSH'

Hyperbolic cosine. One operand

'COT'

Co-tangent. One operand

'COUNT'

Count. One operand

'CURDATE'

Current date. Zero operand

'CURTIME'

Current time. Zero operand

'DATE'

Date. One operand

'DAY'

Day. One operand

'DAYOFMONTH'

Day of month. One operand

'DAYOFWEEK'

Day of week. One operand

'DAYOFYEAR'

Day of year. One operand

'DAYS'

Days. One operand

'DECIMAL'

Decimal of operand. One operand

'DEGREES'

Degrees. One operand

'DIGITS'

Character form of number. One operand

'DOUBLE'

Double precision. One operand

'EXP'

Natural log to the power. One operand

Built-in functions (continued)

'FLOAT'

Floating point. One operand

'FLOOR'

Integer. One operand

'HASH'

Hash value. One to N operands

'HEX'

Hex value. One operand

'HOUR'

Hour. One operand

'IFNULL'

First non-null value. Two operands

'INT'

Integer. One operand

'LAND'

Logical AND. Two operands

'LCASE'

Lower case. One operand

'LEFT'

Left N characters. Two operands

'LENGTH'

Length. One operand

'LN'

Natural log. One operand

'LNOT'

Logical NOT. One operand

'LOCATE'

Search string in source string. Two to three operands

'LOG'

Base 10 log. One operand

'LOR'

Logical OR. Two operands

'LOWER'

Lower case. One operand

'LTRIM'

Remove leading blanks. One operand

Built-in functions (continued)

'MAX'

Max. One operand

'MAX'

Max. Two to N operands

'MICROSECOND'

Microsecond. One operand

'MIN'

Min. One operand

'MIN'

Min. Two to N operands

'MINUTE'

Minute. One operand

'MOD'

Modulo. Two operands

'MONTH'

Month. One operand

'NOW'

Current timestamp. Zero operands

'POSSTR'

Search string in source string. Two operands

'POWER'

Raise to power of. Two operands

'QUARTER'

Quarter. One operand

'REAL'

Single precision float. One operand

'RTRIM'

Trim trailing blanks. One operand

'SECOND'

Second. One operand

'SIN'

Sine. One operand

'SINH'

Hyperbolic sine. One operand

'SMALLINT'

Small integer. One operand

'SQRT'

Square root. One operand

'STDDEV'

Standard deviation. One operand

'SUBSTR'

Substr. Two to three operands

'SUM'

Sum. One operand

Built-in functions (continued)

'TAN'

Tangent. One operand

'TANH'

Hyperbolic tangent. One operand

'TIME'

Time. One operand

'TIMESTAMP'

Timestamp. One to two operands

'TRANSLATE'

Translate. One to four operands

'UCASE'

Uppercase. One operand

'UPPER'

Uppercase. One operand

'VALUE'

First non-null value. Two to N operands

'VARCHAR'

Varchar. One to three operands

'VARGRAPHIC'

Vargraph. One to three operands

'VARIANCE'

Variance. One operand

'WEEK'

Week. One operand

'XOR'

Logical exclusive OR. Two operands

'YEAR'

Year. One operand

'ZONED'

Zoned. One to four operands

FILD0300 Format (Key Field Information)

FILD0300 provides detailed information for key fields of each record format of the specified file. This structure is used by the QQQQRY API to get data from the named file. Figure 1-3 shows how this information is
organized. When more than one entry can appear, the figure indicates this as in (7). To get a description of all the fields contained in this structure and to determine the offsets, see the include source supplied on the system. An
offset to the key field information array of each record format is provided in the record format information structure. If 0 is returned for this offset, this record format has no key field. If -1 is returned for this offset, the size of
the receiver provided is insufficient to hold the returned data. You can see this source in source file H, member name QDBRTVFD, in the QSYSINC library.

Figure 1-3. FILD0300 Format

Key Information Header (Qdb_Qdbwh)

The Qdb_Qdbwh section is always located at the beginning of the returned data area.

Offset

Bit Type Field DescriptionDec Hex

0 0 BINARY(4) Byte_Ret Bytes returned. The total length, in bytes, of the data returned.

4 4 BINARY(4) Byte_Avail Bytes available. The total length, in bytes, of the key information.

8 8 BINARY(2) Max_Key_Len Maximum key length. The maximum length, in bytes, of any of the keys.

10 A BINARY(2) Key_Count File generic key field count.

12 C CHAR(10) Reserved Reserved.

22 16 BINARY(2) Fmt_Counts Number of formats for the file.

Record Format Key Information Array (Qdb_Qdbwhrec)

The Qdb_Qdbwhrec section is located immediately after the Qdb_Qdbwh header. This is a linked list. There is a format record for each format. The number of formats is stored in Fmt_Counts in the Qdb_Qdbwh header.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(10) Rec_Name Record format name. The name of this particular record format for the file.

10 A CHAR(2) Reserved Reserved.

12 C BINARY(2) Num_Of_Keys Number of record format key fields.

14 E CHAR(14) Reserved Reserved.

28 1C BINARY(4) Key_Info_Offset Offset to the key field description array for this record format.

Key Field Description Array (Qdb_Qdbwhkey)

You can locate the Qdb_Qdbwhkey section with the offset Key_Info_Offset in the Qdb_Qdbwhrec array member. This is a linked list. There is a key field information array member for each key in the record format. The
number of key fields is stored in Num_Of_Keys in the Qdb_Qdbwhrec array member.

Offset

Bit Type Field DescriptionDec Hex

0 0 CHAR(10) Int_Field_Name Internal key field name. If this is a logical format, this name is the name of the field in the logical
format. If this is a physical format, this name is the same as the external field name.

10 A CHAR(10) Ext_Field_Name External key field name. If this is a physical format, this is the name of the field in the physical format.
If this is a logical format, this name is the name of the field in a physical format on which this format
is based.

20 14 BINARY(2) Data_Type The data type of this key field.

22 16 BINARY(2) Field_Len The length of this key field.

24 18 BINARY(2) Num_Of_Digs The number of digits in this key field. For numeric fields, this is the number of digits. For graphic data
fields, this is the number of DBCS characters the field can contain. This field is applicable only to
numeric and graphic fields.

26 1A BINARY(2) Dec_Pos The number of decimal positions for this key field.

28 1C 0 CHAR(1) Qdb_Qdbwhkattr_t Key field attributes flags.

28 1C 0 BIT(1) Descending Descending/ascending sequence indicator.

28 1C 1 BIT(2) Numeric Numeric key field sequencing indicator.

28 1C 3 BIT(1) Reserved Reserved.

28 1C 4 BIT(1) Alt_Collating Alternative collating sequence indicator.

28 1C 5 BIT(1) Force_Zone Force zone sequence indicator.

28 1C 6 BIT(1) Force_Digit Force digit sequence indicator.

28 1C 7 BIT(1) Statement_Format Key statement external or internal name indicator.

29 1D BINARY(2) Alt_Name_Len Length of the alternative name. If the length of the alternative name is greater than 30, this field will
be 0. The longer alternative name will have to be accessed by the Alias Name Structure
(Qdb_Qddfalis).

31 1F CHAR(30) Alt_Name Alternative name (Alias). If the length of the alternative name is greater than 30, this field will be
blank. The longer alternative name will have to be accessed by the Alias Name Structure
(Qdb_Qddfalis).

61 3D CHAR(1) Reserved Reserved.

62 3E 0 CHAR(1) Qdb_Qdbwhkatt1_t Additional key field attribute flags.

62 3E 0 BIT(1) Null_Value Allow null value (ALNULL) indicator.

62 3E 1 BIT(1) Alt_Name_Exists The alternative name indicator. If the key field has an alternative name, this field will be 1, even if the
length of the alternative name is greater than 30.

62 3E 2 BIT(6) Reserved Reserved.

63 3F CHAR(1) Reserved Reserved.

FILD0400 Format (Qdb_qdbftrg_head structure)

FILD0400 provides detailed information about triggers defined for a file. Figure 1-4 shows how this information is organized. When more than one entry can appear, the figure indicates this as in (8).

Descriptions of the fields in this structure follow Figure 1-4. The include source is supplied on the system, in the appropriate language source file, member name QDBRTVFD, in the QSYSINC library. The field names in the
following tables apply only to the ILE C include. Refer to Data structures and the QSYSINC library for the names of the OPM and ILE RPG and COBOL includes.

Figure 1-4. FILD0400 Format

Trigger Information Header (Qdb_qdbftrg_head)

This is the first structure and is located at offset zero of the returned data.

Offset

Type Field DescriptionDec Hex

0 0 BINARY(4) UNSIGNED Qdb_Qdbftrg_Bytes_Returned Length of the data returned in bytes.

4 4 BINARY(4) UNSIGNED Qdb_Qdbftrg_Bytes_Avail Number of bytes available for the trigger information data.

8 8 CHAR(52) Qdb_Qdbftrg_Reserved1 Reserved.

60 3C BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Trgs Number of trigger definitions.

64 40 CHAR(8) Qdb_Qdbftrg_Reserved2 Reserved.

72 48 BINARY(4) UNSIGNED Qdb_Qdbftrg_Off_Ent_Num1 Offset to first trigger definition entry.

76 4C BINARY(4) UNSIGNED Qdb_Qdbftrg_Off_Ins_Grp Offset to the beginning of the insert group.

80 50 BINARY(4) UNSIGNED Qdb_Qdbftrg_Off_Upd_Grp Offset to the beginning of the update group.

84 54 BINARY(4) UNSIGNED Qdb_Qdbftrg_Off_Del_Grp Offset to the beginning of the delete group.

88 58 BINARY(4) UNSIGNED Qdb_Qdbftrg_Off_Read_Grp Offset to the beginning of the read group.

92 5C CHAR(28) Qdb_Qdbftrg_Reserved36 Reserved.

120 78 BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Sql_Trgs Number of SQL triggers.

124 7C BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Ntv_Trgs Number of native triggers.

128 80 BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Insb_Trg Number of INSERT/BEFORE triggers.

132 84 BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Insa_Trg Number of INSERT/AFTER triggers.

136 88 BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Delb_Trg Number of DELETE/BEFORE triggers.

140 8C BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Dela_Trg Number of DELETE/AFTER triggers.

144 90 BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Updb_Trg Number of UPDATE/BEFORE triggers.

148 94 BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Upda_Trg Number of UPDATE/AFTER triggers.

152 98 BINARY(4) UNSIGNED Qdb_Qdbftrg_Num_Reada_Trg Number of READ/AFTER triggers.

156 9C CHAR(548) Qdb_Qdbftrg_Reserved3 Reserved.

Trigger Definition Entry Header (Qdb_Qdbftrg_Def_Head)

The number of entries is defined by variable Qdb_Qdbftrg_Num_Trgs in the trigger header, Qdb_Qdbftrg_Head. You can locate the Qdb_Qdbftrg_Def_Head section with the offset Qdb_Qdbftrg_Def_Off_Ent_Num1 in the
trigger header, Qdb_Qdbftrg_Head.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved4 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Len Length of the entire trigger definition. This includes all structures. This length
added to the pointer to this entry gets you to the next trigger definition entry.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_Head_Len Length of the trigger definition header Qdb_Qdbftrg_Def_Head.

28 1C CHAR(52) Qdb_Qdbftrg_Reserved5 Reserved.

80 50 CHAR(10) Qdb_Qdbftrg_Def_Pgm Trigger program name.

90 5A CHAR(10) Qdb_Qdbftrg_Def_Lib Trigger program library.

100 64 CHAR(4) Qdb_Qdbftrg_Reserved6 Reserved.

104 68 BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Ord_Num Trigger ordinal number.

108 6C CHAR(1) Qdb_Qdbftrg_Def_State Trigger state.

'E'

Trigger is enabled.

'D'

Trigger is disabled.

109 6D CHAR(1) Qdb_Qdbftrg_Def_Operative Trigger is operative.

'O'

Trigger is operative.

'I'

Trigger is inoperative.

110 6E CHAR(1) Qdb_Qdbftrg_Def_Type Trigger type.

'N'

Native/System (added using ADDPFTRG).

'S'

SQL (added using CREATE TRIGGER).

111 6F CHAR(1) Qdb_Qdbftrg_Def_Mode Trigger mode. Used only when the trigger type QDBFTRG_DEF_TYPE is set
to an SQL trigger. The mode is used to determine the I/O model used during
the trigger program execution.

'00'X

Not applicable.

'01'X

DB2 SQL.

'02'X

DB2 Row.

112 70 CHAR(1) Qdb_Qdbftrg_Def_Orient Trigger orientation.

'R'

Row trigger

'C'

Column trigger

113 71 CHAR(1) Qdb_Qdbftrg_Def_Time Trigger time.

'1'

After

'2'

Before

114 72 CHAR(1) Qdb_Qdbftrg_Def_Event Trigger event.

'1'

Insert

'2'

Delete

'3'

Update

'4'

Read

115 73 CHAR(45) Qdb_Qdbftrg_Reserved7 Reserved.

160 A0 BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Off_Trg_Name Offset to the trigger name structure Qdb_Qdbftrg_Name_Area.

164 A4 BINARY(4) UNSIGNED Qdb_Qdbftrg_Reserved8 Reserved.

168 A8 BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Off_Sql_Path Offset to the SQL path structure Qdb_Qdbftrg_Path_Area.

172 AC BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Off_Upd_Cols Offset to the update columns structure Qdb_Qdbftrg_Updc_Area.

176 B0 BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Off_When_Cols Offset to the structure containing the list of columns referenced in the WHEN
condition Qdb_Qdbftrg_When_Area.

180 B4 BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Off_Body_Cols Offset to the structure containing the list of columns referenced in the trigger
body Qdb_Qdbftrg_Body_Area.

184 B8 BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Off_Dep_Objs Offset to the structure containing the list of dependent objects referenced in
the trigger body Qdb_Qdbftrg_Depo_Area.

188 BC BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Off_Transition Offset to the structure containing the transition tables,
Qdb_Qdbftrg_Trns_Area.

192 C0 BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Off_Trg_Stmt Offset to the structure containing the CREATE TRIGGER statement
rQdb_Qdbftrg_Stmt_Area.

196 C4 BINARY(4) UNSIGNED Qdb_Qdbftrg_Def_Off_Trg_Long Offset to the structure containing the trigger long comment
Qdb_Qdbftrg_Long_Area.

200 C8 CHAR(64) Qdb_Qdbftrg_Reserved9 Reserved.

264 108 CHAR(1) Qdb_Qdbftrg_Def_Updcond Trigger update condition. For system triggers only (Qdb_Qdbftrg_Def_Type
= 'N'). This field is valid for the UPDATE event only. This field is ignored for
INSERT or DELETE or READ events.

'1'

Always calls the trigger when updating the file.

'2'

Only calls the trigger when the updated values are changed.

265 109 CHAR(1) Qdb_Qdbftrg_Def_Allow_Repchg Allow repeated change.

X'00'

*NO (Repeated change not allowed)

X'01'

*YES (Repeated change allowed)

266 10A CHAR(1) Qdb_Qdbftrg_Def_Threadsafe Threadsafe indicator.

X'00'

*UNKNOWN (Threadsafe status is not known)

X'01'

*NO (Not threadsafe)

X'10'

*YES (Threadsafe)

267 10B CHAR(1) Qdb_Qdbftrg_Def_Multijob Multithreaded job action indicator

X'00'

*SYSVAL (default)

X'01'

*MSG (Run, diagnostic)

X'10'

*NORUN (Escape)

X'11'

*RUN (Run, no message)

268 10C CHAR(1) Qdb_Qdbftrg_Def_Old_Tvar Old correlation variable indicator. Only applies to SQL triggers.

X'00'

No

X'01'

Yes

269 10D CHAR(1) Qdb_Qdbftrg_Def_New_Tvar New correlation variable indicator. Only applies to SQL triggers.

X'00'

No

X'01'

Yes

270 10E CHAR(1) Qdb_Qdbftrg_Def_Old_Ttable Old transition table indicator.

X'00'

No

X'01'

Yes

271 10F CHAR(1) Qdb_Qdbftrg_Def_New_Ttable New transition table indicator

X'00'

No

X'01'

Yes

272 110 CHAR(1) Qdb_Qdbftrg_Def_Self_Ref Self-referencing indicator. Indicates whether or not the user explicitly
specified this file's name in the trigger body.

X'00'

Not self-referencing.

X'01'

Self-referencing.

273 111 CHAR(13) Qdb_Qdbftrg_Def_Crt_Ts Trigger creation timestamp. The format is CYYMMDDHHMMSS.

286 11E CHAR(10) Qdb_Qdbftrg_Def_Crt_User User profile that created the trigger.

296 11F CHAR(10) Qdb_Qdbftrg_Def_Pgm_Owner User profile that owns the trigger program. For SQL triggers only.

306 132 BIN(4) UNSIGNED Qdb_Qdbftrg_Def_Trg_Ccsid CCSID of the CREATE TRIGGER statement.

310 136 CHAR(1) Qdb_Qdbftrg_Reserved34 Reserved.

311 137 CHAR(1) Qdb_Qdbftrg_Def_Mod_Tvar The trigger contains a SET statement that modifies the new correlation
variable. (Indicates whether or not update authority is required to the table.)
For SQL *BEFORE *UPDATE triggers only.

X'00'

No.

X'01'

Yes.

312 138 CHAR(152) Qdb_Qdbftrg_Reserved10 Reserved.

Trigger Definition Name Structure (Qdb_Qdbftrg_Name_Area)

You can locate the Qdb_Qdbftrg_Name_Area section with the offset Qdb_Qdbftrg_Def_Off_Trg_Name in the Qdb_Qdbftrg_Def_Head section.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved11 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Name_Area_Tot_Len Total length of the trigger name area Qdb_Qdbftrg_Name_Area.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_Name_Lib_Len Length of the trigger library name.

28 1C BINARY(4) UNSIGNED Qdb_Qdbftrg_Name_Len Length of the trigger program name.

32 20 CHAR(1) Qdb_Qdbftrg_Name_Sysgen System-generated trigger name indicator.

X'00'

The user specified the trigger name.

X'01'

Originally, the user generated the name, but a name collision
occurred and the system generated a new name.

X'02'

The system generated the trigger name.

33 21 CHAR(1) Qdb_Qdbftrg_Name_Delim Delimited name indicator. If the trigger name is delimited, it will contain
double quotes.

X'00'

The trigger name is not delimited.

X'01'

The trigger name is delimited.

34 22 CHAR(1) Qdb_Qdbftrg_Lib_Delim Delimited library name indicator. If the trigger library name is delimited, it
will contain double quotes.

X'00'

The trigger library name is not delimited.

X'01'

The trigger library name is delimited.

35 23 CHAR(1) Qdb_Qdbftrg_Name_Type Trigger naming convention.

X'00'

System naming.

X'01'

SQL naming.

36 24 CHAR(58) Qdb_Qdbftrg_Reserved12 Reserved.

94 5E CHAR(268) Qdb_Qdbftrg_Name_Qual Qualified trigger name. The trigger name and library name are in two parts.
Part 1 is the trigger library name, which is padded to 10 characters, if
necessary, with blanks. Qdb_Qdbftrg_Name_Lib_Len defines the length of
the trigger library name. Part 2 is the trigger name. Qdb_Qdbftrg_Name_Len
defines the length of the trigger name.

SQL Path Structure (Qdb_Qdbftrg_Path_Area)

You can locate the Qdb_Qdbftrg_Path_Area section with the offset Qdb_Qdbftrg_Def_Off_Sql_Path in the Qdb_Qdbftrg_Def_Head section. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved13 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Path_Tot_Len Total length of the SQL path area Qdb_Qdbftrg_Path_Area.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_Path_Len Length of the SQL path structure Qdb_Qdbftrg_Path.

28 1C CHAR(36) Qdb_Qdbftrg_Reserved14 Reserved.

64 40 CHAR(*) Qdb_Qdbftrg_Path SQL path. See DB2 UDB for iSeries SQL Reference CURRENT PATH special
register for information on the format of this structure.

UPDATE Columns Structure (Qdb_Qdbftrg_Updc_Area)

You can locate the Qdb_Qdbftrg_Updc_Area section with the offset Qdb_Qdbftrg_Def_Off_Upd_Col in the Qdb_Qdbftrg_Def_Head section. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved15 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Updc_Tot_Len Total length of the update columns area Qdb_Qdbftrg_Updc_Area.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_Updc_Num_Cols Number of columns in the list Qdb_Qdbftrg_Updc_List_Struc.

28 1C CHAR(52) Qdb_Qdbftrg_Reserved16 Reserved.

80 50 CHAR(*) Qdb_Qdbftrg_Updc_List_Struc Update column list structure.

UPDATE Columns Entry Structure (Qdb_Qdbftrg_Updc_List_Ent)

The Qdb_Qdbftrg_Updc_List_Ent section maps an entry in the structure Qdb_Qdbftrg_Updc_List_Struc.

Offset

Type Field DescriptionDec Hex

0 0 BINARY(4)
UNSIGNED

Qdb_Qdbftrg_Updc_Le_Len Update column list entry length. Addressability to this entry plus
Qdb_Qdbftrg_Updc_Le_Len gets addressability to the next entry in this
structure.

4 4 CHAR(10) Qdb_Qdbftrg_Updc_Le_Short_Name Short name of the column.

14 E CHAR(1) Qdb_Qdbftrg_Updc_Le_Short_Del Short name is delimited indicator.

X'00'

Name is not delimited.

X'01'

Name is delimited.

15 F CHAR(1) Qdb_Qdbftrg_Updc_Le_Long_Del Long name is delimited indicator.

X'00'

Name is not delimited.

X'01'

Name is delimited.

16 10 CHAR(1) Qdb_Qdbftrg_Updc_Le_Long_Same Short name and long name are the same indicator.

X'00'

Names are different.

X'01'

Names are the same.

17 11 BINARY(4)
UNSIGNED

Qdb_Qdbftrg_Updc_Le_Long_Len Length of the long name Qdb_Qdbftrg_Updc_Le_Long_Name.

21 15 CHAR(27) Qdb_Qdbftrg_Reserved17 Reserved.

48 30 CHAR(*) Qdb_Qdbftrg_Updc_Le_Long_Name Long name of the column.

WHEN Columns Structure (Qdb_Qdbftrg_When_Area)

You can locate the Qdb_Qdbftrg_When_Area section with the offset Qdb_Qdbftrg_Def_Off_When_Cols in the Qdb_Qdbftrg_Def_Head section. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved18 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_When_Tot_Len Total length of the WHEN columns area Qdb_Qdbftrg_When_Area.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_When_Num_Cols Number of columns in the list Qdb_Qdbftrg_When_List_Struc.

28 1C CHAR(1) Qdb_Qdbftrg_When_Self_Ref Whether columns in the WHEN list belong to this file.

X'00'

All columns belong to the ON table.

X'01'

Some of the columns belong to the ON table.

X'02'

None of the columns belong to the ON table.

29 1D CHAR(51) Qdb_Qdbftrg_Reserved19 Reserved.

80 50 Qdb_Qdbftrg_When_Array WHEN column array.

WHEN Columns Entry Structure (Qdb_Qdbftrg_When_Array)

This Qdb_Qdbftrg_When_Array section maps an entry in the structure Qdb_Qdbftrg_When_Array. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 BINARY(4) UNSIGNED Qdb_Qdbftrg_When_Col_Off WHEN column name offset into the WHEN portion of the CREATE TRIGGER
statement Qdb_Qdbftrg_Stmt_Crt_Trg .

4 4 BINARY(4) UNSIGNED Qdb_Qdbftrg_When_Col_Len Length of the column name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg .

8 8 BINARY(4) UNSIGNED Qdb_Qdbftrg_When_File_Off Offset to the column's file name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg relative to the start of the CREATE TRIGGER
statement.

12 C BINARY(4) UNSIGNED Qdb_Qdbftrg_When_File_Len Length of the column's file name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg .

16 10 BINARY(4) UNSIGNED Qdb_Qdbftrg_When_Lib_Off Offset to the column's library name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg relative to the start of the CREATE TRIGGER
statement.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_When_Lib_Len Length of the column's library name in the trigger string
Qdb_Qdbftrg_Stmt_Crt_Trg .

24 18 CHAR(1) Qdb_Qdbftrg_When_1st_Entry Whether the column name is the first in the list of entries.

X'00'

Column is not the first in the list.

X'01'

Column name is the first in the list.

25 19 CHAR(1) Qdb_Qdbftrg_When_This_File Whether the column name is in this file.

X'00'

Column is not in this file.

X'01'

Column name is in this file.

26 1A CHAR(1) Qdb_Qdbftrg_When_Col_Long Whether the column name is a short or long name.

X'00'

Column name is short name.

X'01'

Column name is long name.

27 1B CHAR(1) Qdb_Qdbftrg_When_Col_Del Whether the column name is a delimited name.

X'00'

Column name is is not delimited.

X'01'

Column name is delimited.

28 1C CHAR(1) Qdb_Qdbftrg_When_File_Long Whether the column's file name is a short or long name.

X'00'

File name is short name.

X'01'

File name is long name.

29 1D CHAR(1) Qdb_Qdbftrg_When_File_Del Whether the column's file name is a delimited name.

X'00'

File name is not delimited.

X'01'

File name is delimited.

30 1E CHAR(1) Qdb_Qdbftrg_When_Lib_Long Whether the column's library name is a short or long name.

X'00'

Library name is short name.

X'01'

Library name is long name.

31 1F CHAR(1) Qdb_Qdbftrg_When_Lib_Del Whether the column's library name is a delimited name.

X'00'

Columns name is not delimited.

X'01'

Column name is delimited.

32 20 CHAR(32) Qdb_Qdbftrg_Reserved20 Reserved.

BODY Columns Structure (Qdb_Qdbftrg_Body_Area)

You can locate this Qdb_Qdbftrg_Body_Area section with the offset Qdb_Qdbftrg_Def_Off_Body_Cols in the Qdb_Qdbftrg_Def_Head section. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved21 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Body_Tot_Len Total length of the BODY columns area Qdb_Qdbftrg_Body_Area.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_Body_Num_Cols Number of columns in the list Qdb_Qdbftrg_Body_List_Struc.

28 1C CHAR(1) Qdb_Qdbftrg_Body_Self_Ref Whether columns in the body list belong to this file.

X'00'

All self-referencing.

X'01'

Some self-referencing.

X'10'

Not self-referencing.

29 1D CHAR(51) Qdb_Qdbftrg_Reserved22 Reserved.

80 50 Qdb_Qdbftrg_Body_Array Array used to access the list of BODY referenced columns.

BODY Columns Entry Structure (Qdb_Qdbftrg_Body_Array)

The Qdb_Qdbftrg_Body_Array section maps an entry in the structure Qdb_Qdbftrg_Body_Array. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 BINARY(4) UNSIGNED Qdb_Qdbftrg_Body_Col_Off BODY column name offset into the BODY portion of the CREATE TRIGGER
statement Qdb_Qdbftrg_Stmt_Crt_Trg.

4 4 BINARY(4) UNSIGNED Qdb_Qdbftrg_Body_Col_Len Length of the column name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg .

8 8 BINARY(4) UNSIGNED Qdb_Qdbftrg_Body_File_Off Offset to the column's file name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg relative to the start of the CREATE TRIGGER
statement.

12 C BINARY(4) UNSIGNED Qdb_Qdbftrg_Body_File_Len Length of the column's file name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg .

16 10 BINARY(4) UNSIGNED Qdb_Qdbftrg_Body_Lib_Off Offset to the column's library name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg relative to the start of the CREATE TRIGGER
statement.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Body_Lib_Len Length of the column's library name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg .

24 18 CHAR(1) Qdb_Qdbftrg_Body_1st_Entry Whether the column name is the first in the list of entries.

X'00'

Column is not first in the list.

X'01'

Column name is first in the list.

25 19 CHAR(1) Qdb_Qdbftrg_Body_This_File Whether the column name is in this file.

X'00'

Column is not in this file.

X'01'

Column name is in this file.

26 1A CHAR(1) Qdb_Qdbftrg_Body_Col_Long Whether the column name is a short or long name.

X'00'

Column name is short name.

X'01'

Column name is long name.

27 1B CHAR(1) Qdb_Qdbftrg_Body_Col_Del Whether the column name is a delimited name.

X'00'

Column name is is not delimited.

X'01'

Column name is delimited.

28 1C CHAR(1) Qdb_Qdbftrg_Body_File_Long Whether the column's file name is a short or long name.

X'00'

File name is short name.

X'01'

File name is long name.

29 1D CHAR(1) Qdb_Qdbftrg_Body_File_Del Whether the column's file name is a delimited name.

X'00'

File name is not delimited.

X'01'

File name is delimited.

30 1E CHAR(1) Qdb_Qdbftrg_Body_Lib_Long Whether the column's library name is a short or long name.

X'00'

Library name is short name.

X'01'

Library name is long name.

31 1F CHAR(1) Qdb_Qdbftrg_Body_Lib_Del Whether the column's library name is a delimited name.

X'00'

Columns name is not delimited.

X'01'

Column name is delimited.

32 20 CHAR(32) Qdb_Qdbftrg_Reserved23 Reserved.

Dependent Objects Structure (Qdb_Qdbftrg_Depo_Area)

You can locate the Qdb_Qdbftrg_Depo_Area section with the offset Qdb_Qdbftrg_Def_Off_Dep_Objs in the Qdb_Qdbftrg_Def_Head section. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved24 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Depo_Tot_Len Total length of the dependent objects area Qdb_Qdbftrg_Depo_Area.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_Depo_Num_Off Number of dependent object offsets in Qdb_Qdbftrg_Depo_Array. These are
offsets into the CREATE TRIGGER statement Qdb_Qdbftrg_Stmt_Crt_Trg that
will position you to a dependent object of the type Qdb_Qdbftrg_Depo_Type.

28 1C CHAR(1) Qdb_Qdbftrg_Depo_Self_Ref Whether this file is referenced at least once somewhere in the WHEN or BODY.
This is a self-referencing dependency.

X'00'

Not self-referencing.

X'01'

Is self-referencing.

29 1D CHAR(51) Qdb_Qdbftrg_Reserved25 Reserved.

80 50 Qdb_Qdbftrg_Depo_Array Update column list structure.

Dependent Objects Entry Structure (Qdb_Qdbftrg_Depo_Array)

The Qdb_Qdbftrg_Depo_Array section maps an entry in the structure Qdb_Qdbftrg_Depo_Array. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(2) Qdb_Qdbftrg_Depo_Type Type of dependent object.

'TB'

Table

'PF'

Physical File

'VW'

View

'LF'

Logical File

'IX'

Index

'UF'

User Defined Function

'UT'

User Defined Type

'PR'

Procedure

'AL'

Alias

2 2 BINARY(4) UNSIGNED Qdb_Qdbftrg_Depo_Off Offset to the dependent object relative to the beginning of the CREATE
TRIGGER string Qdb_Qdbftrg_Stmt_Crt_Trg .

6 6 BINARY(4) UNSIGNED Qdb_Qdbftrg_Depo_Len Length of the dependent object in the CREATE TRIGGER string
Qdb_Qdbftrg_Stmt_Crt_Trg .

10 A BINARY(4) UNSIGNED Qdb_Qdbftrg_Depo_Lib_Off Offset to the qualifying library name of the dependent object. Offset relative from
the start of Qdb_Qdbftrg_Stmt_Crt_Trg . A length of 0 indicates no qualifying
library.

14 E BINARY(4) UNSIGNED Qdb_Qdbftrg_Depo_Lib_Len Length of the qualifying library name of the dependent object. A length of 0
indicates there is no qualifying library.

18 12 CHAR(1) Qdb_Qdbftrg_Depo_1st_Entry Whether the object name is the first in the list of entries. Criteria is based on object
name, library name, and object type.

X'00'

Object is 2nd or greater occurance in the list.

X'01'

Object is the first in the list.

19 13 CHAR(1) Qdb_Qdbftrg_Depo_This_File Whether the object is this file.

X'00'

Object is not this file.

X'01'

Object name is this file.

20 14 CHAR(1) Qdb_Qdbftrg_Depo_Obj_Long Whether the object name is is a short or long name.

X'00'

Object name is short name.

X'01'

Object name is long name.

21 15 CHAR(1) Qdb_Qdbftrg_Depo_Obj_Del Whether the object name is a delimited name.

X'00'

Object name is is not delimited.

X'01'

Object name is delimited.

22 16 CHAR(1) Qdb_Qdbftrg_Depo_Lib_Long Whether the library's name is a short or long name.

X'00'

Library name is short name.

X'01'

Library name is long name.

23 17 CHAR(1) Qdb_Qdbftrg_Depo_Lib_Del Whether the library's name is a delimited name.

X'00'

Library name is not delimited.

X'01'

Library name is delimited.

24 18 CHAR(40) Qdb_Qdbftrg_Reserved26 Reserved.

Transition Area Structure (Qdb_Qdbftrg_Trns_Area)

You can locate the Qdb_Qdbftrg_Trns_Area section with the offset Qdb_Qdbftrg_Def_Off_Transition in the Qdb_Qdbftrg_Def_Head section. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved27 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Tot_Len Total length of the transition area Qdb_Qdbftrg_Trns_Area.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Oldvar_Len Old correlation variable name length.

28 1C BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Newvar_Len New correlation variable name length.

32 20 BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Oldtbl_Len Old transition table name length.

36 24 BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Newtbl_Len New transition table name length.

40 28 BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Oldvar_Off Old correlation variable name offset.

44 2C BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Newvar_Off New correlation variable name offset.

48 30 BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Oldtbl_Off Old transition table name offset.

52 34 BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Newtbl_Off New transition table name offset.

56 38 CHAR(1) Qdb_Qdbftrg_Trns_Oldvar_Del Whether the old correlation variable name is delimited.

X'00'

Name is not delimited.

X'01'

Name is delimited.

57 39 CHAR(1) Qdb_Qdbftrg_Trns_Newvar_Del Whether the new correlation variable name is delimited.

X'00'

Name is not delimited.

X'01'

Name is delimited.

58 3A CHAR(1) Qdb_Qdbftrg_Trns_Oldtbl_Del Whether the old table name is delimited.

X'00'

Name is not delimited.

X'01'

Name is delimited.

59 3B CHAR(1) Qdb_Qdbftrg_Trns_Newtbl_Del Whether the new table name is delmited.

X'00'

Name is not delimited.

X'01'

Name is delimited.

60 3C BINARY(4) UNSIGNED Qdb_Qdbftrg_Trns_Names_Len Length of the transition names Qdb_Qdbftrg_Trns_Names.

64 40 CHAR(48) Qdb_Qdbftrg_Reserved28 Reserved.

112 70 CHAR(*) Qdb_Qdbftrg_Trns_Names Old/new transition variable/table names.

Trigger Statement Area (Qdb_Qdbftrg_Stmt_Area)

You can locate the Qdb_Qdbftrg_Stmt_Area section with the offset Qdb_Qdbftrg_Def_Off_Trg_Stmt in the Qdb_Qdbftrg_Def_Head section. This structure is for SQL triggers only.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved29 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Stmt_Tot_Len Total length of the statement area.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_Stmt_Onfile_Off Offset to the user-specified file table name in the CREATE TRIGGER statement
Qdb_Qdbftrg_Stmt_Crt_Trg .

28 1C BINARY(4) UNSIGNED Qdb_Qdbftrg_Stmt_Onfile_Len Length of the qualified library file name of the ON file/TABLE name, including
the period, in Qdb_Qdbftrg_Stmt_Crt_Trg .

32 20 CHAR(1) Qdb_Qdbftrg_Stmt_Onfile_Del Whether the ON table/file name is delimited.

X'00'

Name is not delimited.

X'01'

Name is delimited.

33 21 CHAR(1) Qdb_Qdbftrg_Stmt_Onlib_Del Whether the ON library name is delimited.

X'00'

Name is not delimited.

X'01'

Name is delimited.

34 22 CHAR(1) Qdb_Qdbftrg_Stmt_Onfile_Long Whether the ON table/file name is a long name.

X'00'

Name is not a long name.

X'01'

Name is a long name.

35 23 CHAR(1) Qdb_Qdbftrg_Reserved30 Reserved.

36 24 BINARY(4) UNSIGNED Qdb_Qdbftrg_Stmt_Crt_Trg_Len Length of the SQL CREATE TRIGGER string in variable
Qdb_Qdbftrg_Stmt_Crt_Trg .

40 28 BINARY(4) UNSIGNED Qdb_Qdbftrg_Stmt_When_Len Length of the WHEN clause for the SQL CREATE TRIGGER string in variable
Qdb_Qdbftrg_Crt_Trg.

44 2C BINARY(4) UNSIGNED Qdb_Qdbftrg_Stmt_When_Off Offset to the WHEN clause of the SQL CREATE TRIGGER string in variable
Qdb_Qdbftrg_Stmt_Crt_Trg .

48 30 BINARY(4) UNSIGNED Qdb_Qdbftrg_Stmt_Body_Len Length of the BODY portion of the SQL CREATE TRIGGER string in variable
Qdb_Qdbftrg_Stmt_Crt_Trg.

52 34 BINARY(4) UNSIGNED Qdb_Qdbftrg_Stmt_Body_Off Offset to the BODY portion of the SQL CREATE TRIGGER string in variable
Qdb_Qdbftrg_Stmt_Crt_Trg.

56 38 CHAR(56) Qdb_Qdbftrg_Reserved31 Reserved.

112 70 CHAR(*) Qdb_Qdbftrg_Stmt_Crt_Trg SQL CREATE TRIGGER string.

Trigger Long Comment Area (Qdb_Qdbftrg_Long_Area)

You can locate the Qdb_Qdbftrg_Long_Area section with the offset Qdb_Qdbftrg_Def_Off_Trg_Long in the Qdb_Qdbftrg_Def_Head section.

Offset

Type Field DescriptionDec Hex

0 0 CHAR(20) Qdb_Qdbftrg_Reserved32 Reserved.

20 14 BINARY(4) UNSIGNED Qdb_Qdbftrg_Long_Tot_Len Total length of the long comment area Qdb_Qdbftrg_Long_Area.

24 18 BINARY(4) UNSIGNED Qdb_Qdbftrg_Long_Len Length of the trigger long comment that is located in variable
Qdb_Qdbftrg_Long_Comment.

28 1C BINARY(2) UNSIGNED Qdb_Qdbftrg_Long_Ccsid CCSID of the long comment in Qdb_Qdbftrg_Long_Comment.

30 1E CHAR(34) Qdb_Qdbftrg_Reserved33 Reserved.

64 40 CHAR(*) Qdb_Qdbftrg_Long_Comment Trigger long comment.

Usage Notes

In multithreaded jobs, this API is not threadsafe and fails for distributed data management (DDM) files of type *SNA.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter is not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C22 E Cannot get information about file &1.

CPF3C23 E Object &1 is not a database file.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C25 E Value &1 for file override parameter is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3021 E File &1 not allowed with SYSTEM(*RMT).

CPF3025 E File &1 not allowed with SYSTEM(*LCL).

CPF325F E Conversion of the text failed.

CPF327A E Value &1 for format type parameter is not valid.

CPF3270 E Keyed file operation not allowed for file &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Top | Database and File APIs | APIs by category

Retrieve Display File Description (QDFRTVFD)
API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified file name Input Char(20)
5 Error code Output Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Display File Description (QDFRTVFD) API allows you to get specific information about the
data description specifications (DDS) definition used to create a display file.

If the returned data does not fill the receiver variable, the contents of the remainder of the variable are not
changed.

Authorities and Locks

Library Authority

*USE

File Authority

*OBJOPR

File Lock

*EXCLRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
smaller than the format requested as long as you specify the length of receiver variable parameter
correctly. As a result, the API returns only the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the data available is larger than the length of the receiver
variable, the result is truncated. The minimum length is 8 bytes. The actual length of the structure is
returned in variable WDFFSIZE in structure QDFFBASE (see the Base File Section
(QDFFBASE)).

Format name

INPUT; CHAR(8)

The content of the information to be returned about the specified display file. You can use the
following format name:

DSPF0100 Display file information

See Format DSPF0100 for a description of these formats.

Qualified file name

INPUT; CHAR(20)

The name of the file about which the information is to be extracted and the library in which it is
located. The first 10 characters contain the file name. The second 10 characters contain the library
name.

The special values for the library name follow:

*CURLIB The job's current library

*LIBL The library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format DSPF0100

Format DSPF0100 provides detailed information about how display files are built. The various structures
that comprise the display file information format are organized in the following manner:

Base file formats (see Base File Formats)●

File formats (see File Formats)●

Record formats (see Record Formats)●

Field formats (see Field Formats)●

Keyword formats (see Keyword Formats)●

Where-used formats (see Where-Used Formats)●

The structures for each format follow Figure 1. The structures include the variable names, field information,
and offsets. Unlike many APIs, which use an offset from the beginning of the variable, most QDFRTVFD
offsets are relative to the start of a base structure. To determine how to arrive at the data, see the
introduction to each structure.

The use of the term optioned in the tables refers to an indicator that controls whether the DDS keyword is
in effect or not. For more information about option indicators, see Conditioning for display files (positions
7 through 16).

The asterisk (*) in the Variable Name column represents a reserved field. No variable is associated with
these reserved fields.

Figure 1 provides an overview of format DSPF0100 by showing how this information is organized. The
abbreviated names in the figure correspond to the structure names of the tables. The formats are shown by
section (for example, base file, file header, record header, and so forth). The keyword formats do not appear
in the figure.

Figure 1. DSPF0100 Format

Base File Formats

The base file formats follow.

Base File Section (QDFFBASE)

Base file structure. This is the first structure and is located at offset zero of the returned data.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(31) WDFFRETN Length of the returned data.

4 4 BIN(31) WDFFSIZE Size of the display file description.

8 8 BIN(15) WDFFINOF Displacement to file header section (see structure QDFFINFO,
File Header Section (QDFFINFO)).

10 A BIN(15) WDFFRCS Number of record formats specified. This number includes
internally generated record formats.

12 C CHAR(1) WDFFDPAT Display attribute bits.

12 C 0 BIT(1) WDFFSEPI If on, INDARA keyword is specified.

12 C 1 BIT(1) WDFFDESF If on, ERRSFL keyword is specified.

Note: The ERRSFL keyword generates additional internal
records (*ERRSFL).

12 C 2 BIT(6) * Reserved.

13 D BIN(15) WDFFSCR Number of valid file screen sizes (see structure QDFFSCRA,
Screen Size Table (QDFFSCRA)).

15 F BIN(15) WDFFSRSQ Displacement to sort sequence table (see structure
QDFFSSEQ, Sort Sequence Table (QDFFSSEQ)).

17 11 CHAR(2) WDFFACCSID CCSID of source member used to create the device file.

19 13 CHAR(*) WDFFSCRS Screen size table. This area defines the screen sizes valid for
externally defined files. This is specified by the DSPSIZ
keyword. When not specified, a default DSPSIZ(*DS3) is
generated. Structure QDFFSCRA (Screen Size Table
(QDFFSCRA)) defines the entries. The elements are in the
sequence that the DSPSIZ keywords are specified.

Screen Size Table (QDFFSCRA)

Screen ID array. The number of entries in this structure is defined by variable WDFFSCR in structure
QDFFBASE. This structure is defined at variable WDFFSCRS in structure QDFFBASE. The structure is
ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFFSCIA Screen ID. X'03' is defined as *DS3; X'04' is defined as *DS4.

1 1 CHAR(4) * Reserved.

Sort Sequence Table (QDFFSSEQ)

Sort sequence table information used for the ALTSEQ keyword. The displacement to this structure from the
beginning of structure QDFFBASE is at variable WDFFSRSQ in QDFFBASE.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(256) WDFFSST Sort sequence table.

256 100 BIN(16) WDFFSSC CCSID associated with the table.

258 102 CHAR(10) WDFFSSN Table name.

268 10C CHAR(10) WDFFSSL Library name.

278 116 CHAR(2) WDFFSSFL Indicator flags.

278 116 0 BIT(1) WDFFSSUS Weighted indicator. 0 is defined as shared weighted; 1 is
defined as unique weighted.

278 116 1 BIT(1) WDFFSSSB Substitution characters indicator. 0 is defined as having no
substitution characters; 1 is defined as having substitution
characters.

278 116 2 BIT(14) * Reserved.

280 118 CHAR(26) * Reserved.

File Formats

Figure 2 shows the file section of the overview figure (Figure 1).

Figure 2. File Header Section

File Header Section (QDFFINFO)

File header structure. The displacement to this structure from the beginning of structure QDFFBASE is at
variable WDFFINOF in structure QDFFBASE.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(31) WDFFDFLO Length of the file header section. This includes the
display-file-level device-dependent section. This is also the
displacement from structure QDFFINFO to the record format
table (see structure QDFARFTE, Record Format Table
(QDFARFTE)).

4 4 BIN(31) WDFFWUOF Displacement to the where-used file-level information
structure from structure QDFFINFO (see structure
QDFWFLEI, Where-Used File-Level Information Structure
(QDFWFLEI)).

8 8 BIN(31) WDFFFMWU Length of file header section and the where-used file-level
information structure.

12 C BIN(31) WDFFSEQO Displacement from structure QDFFINFO to the sequence
number table defined by structure QDFFSEQT (see Sequence
Number Table (QDFFSEQT)). 0, if not present.

16 10 BIN(15) WDFFSFL Maximum number of entries in the selection tables defined
by structure QDFFSTBL (see Selection Table Entry
(QDFFSTBL)) at the record and field levels.

18 12 BIN(15) WDFFSCE Maximum number of entries in the selection tables for this
file (structure QDFFSTBL, Selection Table Entry
(QDFFSTBL)) at the record levels.

20 14 CHAR(2) WDFFFFLG File level flag.

20 14 0 BIT(1) * Reserved.

20 14 1 BIT(1) WDFFGRPH If on, the file contains at least one field with a graphic (G)
data type.

20 14 2 BIT(14) * Reserved.

22 16 CHAR(12) * Reserved.

34 22 BIN(15) WDFFXDOF Displacement to display-file-level device-dependent section
from structure QDFFINFO (see structure QDFFDPDD,
Display-File-Level Device-Dependent Section
(QDFFDPDD)).

Display-File-Level Device-Dependent Section (QDFFDPDD)

Display device dependent section. The displacement to this structure from the beginning of structure
QDFFINFO is at variable WDFFXDOF in QDFFINFO.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(8) * Reserved.

8 8 CHAR(2) WDFFFKWD Miscellaneous keyword indicator.

8 8 0 BIT(1) WDFFOPEN If on, OPENPRT keyword specified in file.

8 8 1 BIT(1) WDFFCLRL If on, CLRL keyword specified in some record format in
this file.

8 8 2 BIT(1) WDFFFICV If on, IGCCNV keyword specified in file.

Note: The IGCCNV keyword generates additional
internal records (*IGCFMT).

8 8 3 BIT(1) WDFFAGPH If on, ALWGPH keyword specified on at least one
record format in file.

8 8 4 BIT(1) WDFFXHRD If on, file-level HLPRCD keyword is specified.

8 8 5 BIT(1) WDFFUDMT If on, USRDSPMGT keyword is specified.

8 8 6 BIT(1) WDFFPRPG If on, PRINT(*PGM) keyword is specified.

8 8 7 BIT(1) WDFFHSIO If on, file-level HLPSCHIDX keyword is specified.

9 9 0 BIT(1) WDFFXHTL If on, file-level HLPTITLE keyword is specified.

9 9 1 BIT(1) WDFFXUIM If on, file-level HLPPNLGRP keyword is specified.

9 9 2 BIT(1) WDFFXHDC If on, file-level HLPDOC keyword is specified.

9 9 3 BIT(1) * Reserved.

9 9 4 BIT(1) WDFFALTN If on, at least one ALTNAME keyword is specified in
file.

9 9 5 BIT(1) WDFFHFUL If on, HLPFULL keyword is specified in file.

9 9 6 BIT(1) WDFFESFL If on, ERRSFL keyword is specified in file.

Note: The ERRSFL keyword generates additional
internal records (*ERRSFL).

9 9 7 BIT(1) WDFFWDW If on, WINDOW keyword is specified in file.

10 A CHAR(2) * Reserved.

12 C CHAR(1) WDFFSHB1 Start-of-header (SOH) bits.

12 C 0 BIT(1) WDFFSHCS If on, CHECK(RLTB) keyword is specified.

12 C 1 BIT(1) * Reserved.

12 C 2 BIT(1) WDFFAUTO If on, DSPRL keyword is specified.

12 C 3 BIT(5) * Reserved.

13 D CHAR(2) * Reserved.

15 F CHAR(1) WDFFSHRA Row address of the message line for primary display
size.

16 10 CHAR(1) WDFFCKY1 File-level CA keys 17 through 24.

16 10 0 BIT(1) WDFFCK24 If on, CA key 24 is specified.

16 10 1 BIT(1) WDFFCK23 If on, CA key 23 is specified.

16 10 2 BIT(1) WDFFCK22 If on, CA key 22 is specified.

16 10 3 BIT(1) WDFFCK21 If on, CA key 21 is specified.

16 10 4 BIT(1) WDFFCK20 If on, CA key 20 is specified.

16 10 5 BIT(1) WDFFCK19 If on, CA key 19 is specified.

16 10 6 BIT(1) WDFFCK18 If on, CA key 18 is specified.

16 10 7 BIT(1) WDFFCK17 If on, CA key 17 is specified.

17 11 CHAR(1) WDFFCKY2 File-level CA keys 9 through 16.

17 11 0 BIT(1) WDFFCK16 If on, CA key 16 is specified.

17 11 1 BIT(1) WDFFCK15 If on, CA key 15 is specified.

17 11 2 BIT(1) WDFFCK14 If on, CA key 14 is specified.

17 11 3 BIT(1) WDFFCK13 If on, CA key 13 is specified.

17 11 4 BIT(1) WDFFCK12 If on, CA key 12 is specified.

17 11 5 BIT(1) WDFFCK11 If on, CA key 11 is specified.

17 11 6 BIT(1) WDFFCK10 If on, CA key 10 is specified.

17 11 7 BIT(1) WDFFCK9 If on, CA key 9 is specified.

18 12 CHAR(1) WDFFCKY3 File-level CA keys 1 through 8.

18 12 0 BIT(1) WDFFCK8 If on, CA key 8 is specified.

18 12 1 BIT(1) WDFFCK7 If on, CA key 7 is specified.

18 12 2 BIT(1) WDFFCK6 If on, CA key 6 is specified.

18 12 3 BIT(1) WDFFCK5 If on, CA key 5 is specified.

18 12 4 BIT(1) WDFFCK4 If on, CA key 4 is specified.

18 12 5 BIT(1) WDFFCK3 If on, CA key 3 is specified.

18 12 6 BIT(1) WDFFCK2 If on, CA key 2 is specified.

18 12 7 BIT(1) WDFFCK1 If on, CA key 1 is specified.

19 13 CHAR(1) WDFFMKWD Miscellaneous keyword indicators.

19 13 0 BIT(1) WDFFBRDR If on, file-level WDWBORDER keyword is specified.

19 13 1 BIT(1) * Reserved.

19 13 2 BIT(1) WDFFRTCR If on, RTNCSRLOC keyword is specified.

19 13 3 BIT(1) WDFFFFCP If on, FLDCSRPRG keyword is specified.

19 13 4 BIT(1) WDFFDSPP If on, DSPATR program-to-system field is specified in
file.

19 13 5 BIT(1) WDFFHBKS If on, HLPSHELF keyword is specified in file.

19 13 6 BIT(1) WDFFINLYF If on, CSRINPONLY keyword is specified in file.

19 13 7 BIT(1) WDFFDBCSCNFLD If on, CNTFLD keyword is used on a DBCS field in the
file.

20 14 CHAR(1) WDFFMKW2 More miscellaneous keywords.

20 14 0 BIT(1) WDFFHTML If on, the HTML keyword was specified in the file.

20 14 1 BIT(7) * Reserved.

21 15 CHAR(3) * Reserved.

24 18 BIN(15) WDFFXDOC Displacement to keyword category displacement string
from structure QDFFINFO (see structure QDFFCOSA,
Keyword Category Displacement String (QDFFCOSA)).
0, if no file keyword categories.

Record Format Table (QDFARFTE)

Record format table array. The number of entries in this structure is defined by variable WDFFRCS in
structure QDFFBASE. The displacement to this structure from the beginning of structure QDFFINFO is at
variable WDFFDFLO in QDFFINFO. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFARFNM Record format name. Names that begin with * are internally
generated record formats.

10 A BIN(15) WDFARCND Miscellaneous record contents.

10 A 0 BIT(1) WDFFRECD If on, RECID keyword specified on this format.

10 A 1 BIT(15) * Reserved.

12 C BIN(31) WDFARFOF Displacement to the record header section (see structure
QDFFRINF, Record Header Section (QDFFRINF)) from
structure QDFFINFO.

Sequence Number Table (QDFFSEQT)

Sequence number table. The number of entries in this structure is defined by variable WDFFRCS in
structure QDFFBASE. The displacement to this structure from the beginning of structure QDFFINFO is at
variable WDFFSEQO in QDFFINFO. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(13) WDFFSEQ Level-check number for format. There is a one-to-one
correspondence between this array and the entries in the
record format table.

13 D CHAR(3) * Reserved.

Record Formats

Figure 3 shows the record section of the overview figure (Figure 1).

Figure 3. Record Header Section

Record Header Section (QDFFRINF)

Record header section. The displacement to this structure from the beginning of structure QDFFINFO is at
variable WDFARFOF in structure QDFARFTE.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(31) WDFFRDDO Length of the record header section. This length includes
the device-dependent sections (that is, it is the
displacement to structure QDFFFINF for the first field in
that record format).

4 4 BIN(31) WDFFOFIT The displacement from structure QDFFRINF to the field
indexing table defined by structure QDFFFITB (see
Field Indexing Table (QDFFFITB)).

8 8 BIN(31) WDFFSTBO The displacement from structure QDFFRINF to the
selection table defined by structure QDFFSELT (see
Selection Table (QDFFSELT)). 0, if no selection table
present.

12 C BIN(31) WDFFRFLG Miscellaneous record contents.

12 C 0 BIT(1) WDFFUDDS If on, USRDFN keyword is specified.

12 C 1 BIT(1) WDFFSFL If on, SFL keyword is specified (next record is
SFLCTL).

12 C 2 BIT(1) WDFFSFLC If on, SFLCTL keyword is specified (previous record is
SFL).

12 C 3 BIT(1) WDFFMSGR If on, SFLMSGRCD keyword is specified.

12 C 4 BIT(1) WDFFRICV If on, IGCCNV record is specified.

Note: The IGCCNV keyword generates additional
internal records.

12 C 5 BIT(3) * Reserved.

13 D 0 BIT(1) WDFFALLH If on, all fields in format are hidden.

13 D 1 BIT(1) * Reserved.

13 D 2 BIT(1) WDFFREXC If on, DBCS data that can be processed is specified in
record. This occurs when the O, J, or E data type is
specified; when DBCS literals are specified on a DFT,
DFTVAL, SFLMSG, RECID, ERRMSG, or RTGCON
keyword.

13 D 3 BIT(1) WDFFRIDV If on, format requires a DBCS device.

13 D 4 BIT(1) WDFFREXT If on, extractable DBCS data is in format.

13 D 5 BIT(1) WDFFRALT If on, at least one field in format was specified as
IGCALTTYP.

13 D 6 BIT(1) WDFFMEMF If on, CHECK(ME) or CHECK(MF) specified in at least
one field in record.

13 D 7 BIT(1) WDFFNDLC If on, ALWENDLOC keyword is specified in record.

14 E 0 BIT(1) WDFFRGPH If on, graphic fields are specified in record.

14 E 1 BIT(1) WDFFRCL If on, RTNCSRLOC keyword is specified in record.

14 E 2 BIT(1) WDFFMBAR If on, MNUBAR keyword is specified in record.

14 E 3 BIT(1) WDFFPULL If on, PULLDOWN keyword is specified in record.

14 E 4 BIT(1) WDFFPLSI Selection indicators on PULLDOWN keyword. 0 is
defined as *NOSLTIND; 1 is defined as *SLTIND
(default).

14 E 5 BIT(1) WDFFFCPF If on, FLDCSRPRG specified on field in record.

14 E 6 BIT(1) WDFFCNTMCFFLD If on, CNTFLD, MLTCHCFLD, or SNGCHCFLD
keyword is specified on a field within this record.

14 E 7 BIT(1) WDFFEDTMSK If on, EDTMSK keyword is specified in record.

15 F 0 BIT(1) WDFFGRIDREC If on, GRDRCD keyword is specified in record.

15 F 1 BIT(7) * Reserved.

16 10 BIN(15) WDFFFLD Number of fields in this record.

18 12 CHAR(4) * Reserved.

22 16 BIN(15) WDFFINDO If INDARA keyword is specified and response
indicators are in this record, this is the displacement
from structure QDFFRINF to the response indicator
keyword array (see structure QDFKMSCP, Response
Indicator Keyword Array (QDFKMSCP)) in category 4.
0 means the INDARA keyword is not specified or if
INDARA is specified, there are no response indicators.

24 18 CHAR(4) * Reserved.

28 1C BIN(15) WDFFRAOF Displacements to display-record-level device-dependent
section and subfile control record from structure
QDFFRINF (see structures QDFFRDPD,
Display-Record-Level Device-Dependent Section
(QDFFRDPD), and QDFFSFCR, Subfile Control Record
(QDFFSFCR)).

Display-Record-Level Device-Dependent Section (QDFFRDPD)

Display device-dependent section for nonsubfile records. Structure QDFFSFCR (Subfile Control Record
(QDFFSFCR)) is used when subfiles are specified. The displacement to this structure from the beginning of
structure QDFFRINF is an entry in the table at variable WDFFRAOF in QDFFRINF.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(31) WDFFDRCO Displacement to first row-column table (QDFFRCTB)
from structure QDFFRINF. One row-column table exists
for each display size (see variable WDFFSCR in structure
QDFFBASE). The following may be used to access the
correct table: let n = index into screen size array
QDFFSCRA. (WDFFDRCO + (n - 1) * (WDFFFLD *
LENGTH(WDFFRC)) + LENGTH(WDFFFRTO)) from
QDFFRINF.

4 4 BIN(15) WDFFINCP Number of input-capable fields (that is, total input, both,
and hidden).

6 6 BIN(15) WDFFIBF Number of input and both fields.

8 8 BIN(15) WDFFOIS Number of option indicators.

10 A CHAR(2) * Reserved.

12 C CHAR(4) WDFACKYS Indicates if a CA or CF key is specified. To determine
which key (CA or CF) is specified, check the
corresponding WDFFCKnn bit in structure QDFFDPDD
(see Display-File-Level Device-Dependent Section
(QDFFDPDD)).

12 C CHAR(1) WDFACKY1 Keys 1 through 8 without option indicators.

12 C 0 BIT(1) WDFACK1 If on, CA/CF key 1 is specified.

12 C 1 BIT(1) WDFACK2 If on, CA/CF key 2 is specified.

12 C 2 BIT(1) WDFACK3 If on, CA/CF key 3 is specified.

12 C 3 BIT(1) WDFACK4 If on, CA/CF key 4 is specified.

12 C 4 BIT(1) WDFACK5 If on, CA/CF key 5 is specified.

12 C 5 BIT(1) WDFACK6 If on, CA/CF key 6 is specified.

12 C 6 BIT(1) WDFACK7 If on, CA/CF key 7 is specified.

12 C 7 BIT(1) WDFACK8 If on, CA/CF key 8 is specified.

13 D CHAR(1) WDFACKY2 Keys 9 through 16 without option indicators.

13 D 0 BIT(1) WDFACK9 If on, CA/CF key 9 is specified.

13 D 1 BIT(1) WDFACK10 if on, CA/CF key 10 is specified.

13 D 2 BIT(1) WDFACK11 If on, CA/CF key 11 is specified.

13 D 3 BIT(1) WDFACK12 If on, CA/CF key 12 is specified.

13 D 4 BIT(1) WDFACK13 If on, CA/CF key 13 is specified.

13 D 5 BIT(1) WDFACK14 If on, CA/CF key 14 is specified.

13 D 6 BIT(1) WDFACK15 If on, CA/CF key 15 is specified.

13 D 7 BIT(1) WDFACK16 If on, CA/CF key 16 is specified.

14 E CHAR(1) WDFACKY3 Keys 17 through 24 without option indicators.

14 E 0 BIT(1) WDFACK17 If on, CA/CF key 17 is specified.

14 E 1 BIT(1) WDFACK18 If on, CA/CF key 18 is specified.

14 E 2 BIT(1) WDFACK19 If on, CA/CF key 19 is specified.

14 E 3 BIT(1) WDFACK20 If on, CA/CF key 20 is specified.

14 E 4 BIT(1) WDFACK21 If on, CA/CF key 21 is specified.

14 E 5 BIT(1) WDFACK22 If on, CA/CF key 22 is specified.

14 E 6 BIT(1) WDFACK23 If on, CA/CF key 23 is specified.

14 E 7 BIT(1) WDFACK24 If on, CA/CF key 24 is specified.

15 F CHAR(1) WDFFCMDK Other command keys without option indicators.

15 F 0 BIT(1) WDFFRLUP If on, ROLLUP keyword is specified.

15 F 1 BIT(1) WDFFRLDN If on, ROLLDOWN keyword is specified.

15 F 2 BIT(1) WDFFPRNT If on, PRINT keyword is specified.

15 F 3 BIT(1) WDFFHOME If on, HOME keyword is specified.

15 F 4 BIT(1) WDFFCLR If on, CLEAR keyword is specified.

15 F 5 BIT(1) WDFFHELP If on, HELP keyword is specified.

15 F 6 BIT(2) * Reserved.

16 10 CHAR(2) WDFFPUTK Miscellaneous PUT conditions.

16 10 0 BIT(1) WDFFFSEL If on, field selection.

16 10 1 BIT(1) WDFFPUTR If on, PUTRETAIN keyword is specified on some fields
for this format.

16 10 2 BIT(1) WDFFVSLN If on, SLNO(*VAR) keyword is specified.

16 10 3 BIT(1) WDFFALRL If on, ALWROL keyword is specified.

16 10 4 BIT(1) WDFFNOCO Currently set for records containing floating point fields
or DBCS data that requires a DBCS device (refer to
WDFFRIDV).

16 10 5 BIT(1) WDFFALGP If on, unconditioned ALWGPH keyword is specified.

16 10 6 BIT(1) WDFFRDMD If on, DSPMOD keyword is specified.

16 10 7 BIT(1) WDFFRMID If on, MSGID keyword is specified on field in record.

17 11 0 BIT(1) WDFFRKEY If on, RETKEY keyword is specified.

17 11 1 BIT(1) WDFFRCKY If on, RETCMDKEY keyword is specified.

17 11 2 BIT(1) WDFFRDVL If on, DFTVAL keyword is specified on field.

17 11 3 BIT(1) WDFFVSL1 If on, SLNO(*VAR) keyword is specified and a field in
row 1, column 1 is specified for at least one display size.

17 11 4 BIT(1) WDFFMSGA If on, unconditioned MSGALARM keyword is specified.

17 11 5 BIT(1) WDFFRLST If on, unconditioned RETLCKSTS keyword is specified.

17 11 6 BIT(1) WDFFURDS If on, unconditioned USRRSTDSP keyword is specified.

17 11 7 BIT(1) WDFFRMVW If on, unconditioned RMVWDW keyword is specified

18 12 CHAR(2) WDFFGETK Miscellaneous get conditions.

18 12 0 BIT(1) * Reserved.

18 12 1 BIT(1) WDFFLOGN If on, LOGINP keyword is specified.

18 12 2 BIT(1) WDFFINZR If on, INZRCD keyword is specified.

18 12 3 BIT(1) WDFFRTND If on, RTNDTA keyword is specified.

18 12 4 BIT(1) WDFFUNLK If on, UNLOCK keyword is specified.

18 12 5 BIT(1) WDFFRSET If on, UNLOCK(*MDTOFF) keyword specified or
UNLOCK keyword specified with GETRETAIN.

18 12 6 BIT(1) WDFFEARS If on, UNLOCK(*ERASE) keyword specified or
UNLOCK keyword specified without GETRETAIN.

18 12 7 BIT(1) WDFFASUM If on, ASSUME keyword is specified.

19 13 0 BIT(1) WDFFKEEP If on, KEEP keyword is specified.

19 13 1 BIT(1) * Reserved.

19 13 2 BIT(1) WDFFWDWR If on, WINDOW keyword specified in record.

19 13 3 BIT(1) WDFFQILE If on, SFLPGMQ(276) keyword is specified.

19 13 4 BIT(1) WDFFSFLCHCCTL If on, SFLCHCCTL keyword is specified.

19 13 5 BIT(3) * Reserved.

20 14 BIN(15) WDFFERRM Index to first field in index table with either ERRMSG or
ERRMSGID keyword. 0, if record has no field with
either keyword. See structure QDFFFITB, Field Indexing
Table (QDFFFITB).

22 16 CHAR(1) WDFFBITS Miscellaneous flags.

22 16 0 BIT(1) WDFFERIN If on, unconditioned ERASEINP(*MDTON) keyword is
specified and ERASEINP(*ALL) is not specified.

22 16 1 BIT(1) WDFFMDTO If on, unconditioned MDTOFF(*UNPR) is specified and
MDTOFF(*ALL) is not specified.

22 16 2 BIT(6) * Reserved.

23 17 CHAR(1) WDFFBITF Miscellaneous flags.

23 17 0 BIT(2) * Reserved.

23 17 2 BIT(2) WDFFBLKC Blink flags. X'00' is defined as reserved; X'01' is defined
as blink cursor and keyword BLINK unconditioned; X'10'
is defined as reset blink cursor and no keyword BLINK;
X'11' is defined as reserved.

23 17 4 BIT(1) WDFFNOLK If on, no unconditioned lock. 0 is defined as lock
unconditioned (do not unlock keyboard); 1 is defined as
no LOCK keyword or conditioned lock (unlock
keyboard).

23 17 5 BIT(1) WDFFALRM If on, ALARM keyword unconditioned.

23 17 6 BIT(2) * Reserved.

24 18 BIN(15) WDFFCGRI Response indicator for record-level CHANGE keyword.
For files with INDARA keyword, this is the response
indicator minus 1. For those without INDARA keyword,
this is the response indicator input buffer displacement. -1
shows keyword is not present.

26 1A CHAR(2) WDFFHFLG Help flags.

26 1A 0 BIT(1) WDFFHSEQ If on, HLPSEQ keyword on record.

26 1A 1 BIT(1) WDFFHLP If on, help specifications on record.

26 1A 2 BIT(1) WDFFNHLP If on, record cannot be used as help text. It contains one
of the keywords USRDFN, SFL, or SFLCTL.

26 1A 3 BIT(1) WDFFHRTN If on, HLPRTN keyword on record.

26 1A 4 BIT(1) WDFFHTLE If on, HLPTITLE keyword on record.

26 1A 5 BIT(1) WDFFHCLR If on, HLPCLR keyword on record.

26 1A 6 BIT(1) WDFFCHNG If on, no parameter for CHANGE keyword.

26 1A 7 BIT(1) WDFFRPGM If on, PRINT keyword on record level with *PGM.

27 1B 0 BIT(1) WDFFHLPC If on, HLPCMDKEY keyword on record.

27 1B 1 BIT(1) WDFFRSTCSR If on, *RSTCSR parameter is specified on the
PULLDOWN keyword on the record.

27 1B 2 BIT(1) WDFFINLY If on, CSRINPONLY keyword is specified and is
unoptioned.

27 1B 3 BIT(1) WDFFNOSEP If on, *NOSEPARATOR parameter is specified on the
MNUBAR keyword on this record.

27 1B 4 BIT(4) * Reserved.

28 1C BIN(15) WDFFXRDO Displacement to display-record-level device-dependent
extension structure from structure QDFFRINF (see
structure QDFFXRDP, Display-Record-Level
Device-Dependent Section Extension Structure
(QDFFXRDP)).

30 1E CHAR(2) * Reserved.

32 20 BIN(15) WDFFRDOC Displacement to keyword category displacement string
from structure QDFFRINF. (See structure QDFFCOSA,
Keyword Category Displacement String (QDFFCOSA).)
0, if no keyword categories.

Display-Record-Level Device-Dependent Section Extension
Structure (QDFFXRDP)

Extension structure. The displacement to this structure from the beginning of structure QDFFRINF is at
variable WDFFXRDO in structure QDFFRDPD.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(31) WDFFOTO Displacement to field order table from structure
QDFFRINF (see structure QDFFOT, Field Order Table
(QDFFOT)).

4 4 BIN(31) WDFFNRCO Displacement to first field name in row-column order
table (see variable WDFFDRCO in structure
QDFFRDPD,. For every row-column table, there is a
corresponding field name in row-column order in the
field name table (see structure QDFFNTB, Field Name
Table (QDFFNTB)).

8 8 CHAR(4) * Reserved.

12 C BIN(15) WDFFNUMOFSEGS Number of segments in record for CNTFLD and
EDTMSK.

14 E CHAR(2) * Reserved.

16 10 BIN(15) WDFFSFLCHCTLO Buffer displacement to the field containing control for
selection list.

18 12 CHAR(6) * Reserved.

Subfile Control Record (QDFFSFCR)

Display device-dependent section for records specifying subfiles. This structure replaces structure
QDFFRDPD when subfiles are specified (variable WDFFSFLC in structure QDFFRINF is set on. The
displacement to this structure from the beginning of structure QDFFRINF is an entry in the table at variable
WDFFRAOF in QDFFRINF.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(34) WDFFSFLG Display-record-level device-dependent section
(structure QDFFRDPD, Display-Record-Level
Device-Dependent Section (QDFFRDPD)) is mapped
here.

34 22 CHAR(1) WDFFSFEN Command key associated with SFLENTER keyword.
X'00' indicates the keyword is not present.

35 23 CHAR(1) WDFFSFDR Command key associated with SFLDROP or
SFLFOLD keyword. X'00' indicates neither keyword is
specified (see WDFFSFFD in this table).

36 24 CHAR(1) WDFFSFLFLG Subfile flags.

36 24 0 BIT(1) WDFFSFLSNGCHC If on, SFLSNGCHC keyword is specified.

36 24 1 BIT(1) WDFFSFLMLTCHC If on, SFLMLTCHC keyword is specified.

36 24 2 BIT(1) WDFFSFLSELRSC If on, *RSTCSR parameter is specified on
SFLMLTCHC or SFLSNGCHC keyword.

36 24 3 BIT(1) WDFFSFLSELSND If on, *SLTIND parameter is specified on
SFLMLTCHC or SFLSNGCHC keyword.

36 24 4 BIT(1) WDFFSFLSELAST If on, *AUTOSLT parameter is specified on
SFLSNGCHC keyword.

36 24 5 BIT(1) WDFFSFLSCRBAR If on, SFLEND(*SCRBAR) keyword is specified.

36 24 6 BIT(1) WDFFSFLRTNSEL If on, SFLRTNSEL keyword is specified.

36 24 7 BIT(1) WDFFSFLSCROLL If on, SFLSCROLL keyword is specified.

37 25 CHAR(1) WDFFSFST Miscellaneous flags.

37 25 0 BIT(1) WDFFSFNA If on, SFLRNA keyword is specified.

37 25 1 BIT(1) WDFFSFCU If on, SFLRCDNBR(CURSOR) keyword is specified.

37 25 2 BIT(1) WDFFSFDM If on, DSPMOD keyword is specified.

37 25 3 BIT(1) WDFFSFFD 0 indicates the initial display is fold; 1 indicates the
initial display is drop. If WDFFSFDR equals X'00',
there is no SFLDROP or SFLFOLD keyword, and this
value equals 0. If WDFFSFDR does not equal X'00',
either this value equals 0 (SFLFOLD) or 1
(SFLDROP).

Note: Also refer to comments for variable WDFFSFDR
in this structure.

37 25 4 BIT(1) WDFFSFFDI 0 indicates that SFLDROP or SFLFOLD are not
optioned; use WDFFSFFD to determine which one to
use. 1 indicates that SFLDROP and SFLFOLD are
optioned; use indicators.

Note: Also refer to comments for variable WDFFSFDR
in this structure.

37 25 5 BIT(1) WDFFSFEM If on, SFLEND(*MORE) keyword is specified.

37 25 6 BIT(1) WDFFSFLRCDtop If on, SFLRCDNBR(*top) keyword is specified.

37 25 7 BIT(1) WDFFSFLSELSTE If on, *AUTOSLTENH parameter is specified on
SFLSNGCHC keyword.

38 26 BIN(15) WDFFSFPQ Contains the value specified for the SFLPGMQ
keyword.

40 28 BIN(15) WDFFSFVL SFLROLVAL field length. 0 indicates that the keyword
is not specified.

42 2A BIN(15) WDFFSFVO Displacement in input buffer to SFLROLVAL.

44 2C BIN(15) WDFFSFFI Index into field indexing table of field with
SFLROLVAL.

46 2E BIN(15) WDFFSFL SFLRCDNBR field length. 0 indicates that the keyword
is not specified.

48 30 BIN(15) WDFFSFO Displacement in output buffer to SFLRCDNBR.

50 32 BIN(15) WDFFSFLEXTOFF Displacement to the QDFFSFCREXT extension
structure (see Subfile Control Record Extension
(QDFFSFCREXT)) from this structure.

52 34 CHAR(1) WDFFSFLNOFL Miscellaneous bits.

52 34 CHAR(1) WDFFSFNOFL Miscellaneous flags.

52 34 0 BIT(1) WDFFSFLSELNRS If on, *NORSTCSR parameter is specified on
SFLMLTCHC or SFLSNGCHC keyword.

52 34 1 BIT(1) WDFFSFLSELNST If on, *NOAUTOSLT parameter is specified on
SFLSNGCHC keyword.

52 34 2 BIT(6) * Reserved

53 35 CHAR(1) * Reserved.

54 36 CHAR(*) WDFFSFPM SFL parameter values (see structure QDFFSFHR,
Subfile Control Entry (QDFFSFHR)). One entry is
present for each specified display size (see WDFFSCRS
in structure QDFFBASE). The order of this array is the
same as structure QDFFSCRA (Screen Size Table
(QDFFSCRA)).

Subfile Control Entry (QDFFSFHR)

Subfile control entry in the subfile control record. This structure is defined at variable WDFFSFPM in
structure QDFFSFCR. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFFSFSZ SFLSIZ.

2 2 BIN(15) WDFFSFPG SFLPAG. If this is a field selection subfile, this is the number
of lines occupied by subfile. If this is a nonfield selection
subfile, this is the maximum number of subfile records on the
screen.

4 4 CHAR(2) * Reserved.

6 6 BIN(15) WDFFSFT Number of fields not dropped, that is, the number of fields on
first line of SFL record with SFLDROP specified.

8 8 BIN(15) WDFFSFR1 Subfile start row.

8 8 CHAR(1) * Reserved.

9 9 CHAR(1) WDFFSFSR Subfile start row. For SFLMSGRCD, this is line number.

10 A BIN(15) WDFFSFR2 Subfile end row.

10 A CHAR(1) * Reserved.

11 B CHAR(1) WDFFSFER Subfile end row.

12 C CHAR(4) WDFFSFLN Horizontal subfile (SFLLIN). 0 is defined as not horizontal
subfile.

12 C BIN(15) WDFFSFH1 Number of horizontal records per line.

14 E BIN(15) WDFFSFH2 Number of characters from field 1, record n to field 1, record
n+1.

16 10 BIN(15) WDFFSFF Number of fields per record.

18 12 CHAR(6) * Reserved.

Subfile Control Record Extension (QDFFSFCREXT)

Subfile control record extension entry in the subfile control record (see structure QDFFSFCR, Subfile
Control Record (QDFFSFCR)). Variable WDFFSFLEXTOFF contains the displacement to this structure
from structure QDFFSFCR.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFFSFLSCRLLO Displacement to the field with the SFLSCROLL
keyword.

2 2 BIN(15) WDFFSFLSIZSFO Displacement to the field specified on the SFLSIZ
keyword. -1 indicates a number was specified.

4 4 BIN(15) WDFFSFLSELOFF Displacement to the field specified on the SFLMLTCHC
keyword that is used to tell the application the number of
selections made from the selection list.

6 6 CHAR(1) WDFFSFLSELCH1 Primary character to be used to indicate a selection list
item has been selected.

7 7 CHAR(1) WDFFSFLSELCH2 Secondary character to be used to indicate a selection list
item has been selected.

8 8 CHAR(8) * Reserved.

Row-Column Table (QDFFRCTB)

Row-column table, one table per screen size. The displacement to this structure from the beginning of
structure QDFFRINF is at variable WDFFDRCO in structure QDFFRDPD.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFFFRRO From row of attribute of first field in format.

1 1 CHAR(1) WDFFFRCO From column of attribute of first field in format.

2 2 CHAR(1) WDFFTORO To row of last data character of last field in format (excluding
trailing attribute).

3 3 CHAR(1) WDFFTOCO To column of last data character of last field in format
(excluding trailing attribute).

4 4 CHAR(1) WDFFRBIT Miscellaneous flags.

4 4 0 BIT(1) WDFFMDF Multiple defined fields (MDF) present for this screen size.
MDF fields are defined to be a group of fields that have the
same beginning row-column, and the first field in the group
must have field selection.

4 4 1 BIT(1) WDFFFRC1 First field in the record has attribute in column 1 for this
screen size.

4 4 2 BIT(1) WDFFTRAT If on, the trailing attribute for this screen size was in column
one.

4 4 3 BIT(1) WDFFR1C1 First field in record begins in row 1, column 1 for this screen
size.

4 4 4 BIT(1) WDFFR2C1 First field in record begins in row 2, column 1 for this screen
size and the SLNO(nn) keyword.

4 4 5 BIT(3) * Reserved.

5 5 CHAR(1) * Reserved.

6 6 CHAR(*) WDFFRC Row-column table, one entry per field (see structure
QDFFRCTE, Row-Column Table Entry (QDFFRCTE)).

Row-Column Table Entry (QDFFRCTE)

Row-column table with one table entry per field. The number of entries in this structure is defined by
variable WDFFFLD in structure QDFFRINF. This structure is defined at variable WDFFRC in structure
QDFFRCTB. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFFSROW Starting row. X'FF' indicates that the location for the
secondary display size was *NOLOC, or was a hidden field, a
program field, or a message line.

1 1 CHAR(1) WDFFSCOL Starting column. X'FF' indicates that the location for the
secondary display size was *NOLOC, or was a hidden field, a
program field, or a message line.

Field Name Table (QDFFNTB)

Field name table with one field name entry per field. This structure is present when the RTNCSRLOC
keyword is specified in the DDS. The number of entries in this structure is defined by variable WDFFFLD
in structure QDFFRINF. The displacement to this structure from the beginning of structure QDFFRINF is
at variable WDFFNRCO in structure QDFFXRDP. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFFNAM Field name entry.

Field Order Table (QDFFOT)

Field order table with one field order entry per field. This structure is present when the USRDFNMGT
keyword is specified in the DDS. The number of entries in this structure is defined by variable WDFFFLD
in structure QDFFRINF. The displacement to this structure from the beginning of structure QDFFRINF is
at variable WDFFOTO in structure QDFFXRDP. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFFLD Order of field in DDS source.

Field Indexing Table (QDFFFITB)

Field indexing table. The number of entries in this structure is defined by variable WDFFFLD. The
displacement to this structure from the beginning of structure QDFFRINF is at variable WDFFOFIT in
QDFFRINF. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(31) WDFFFOFS Displacement from the record header (structure QDFFRINF) to
this field's header section (see structure QDFFFINF, Field
Header Section (QDFFFINF)).

4 4 BIN(15) WDFFSELI Index to the entry in the selection table (see variable WDFFSTE
in structure QDFFSELT) for the condition selecting this field. 1
represents no field selection.

6 6 BIN(15) WDFFDLEN Display length. Edited field length and UCS-2 displayed field
length. For floating point edited fields, this value is the
significand plus 7. For nonfloating-point edited fields when the
FLTFIXDEC keyword is specified, this value is the length
specified for the field plus 2. When the FLTFIXDEC keyword
is not specified, this value is 7 plus the length specified for the
field.

Field Formats

Figure 4 shows the field section of the overview figure (Figure 1).

Figure 4. Field Header Section

Field Header Section (QDFFFINF)

Field header declare. The displacement to this structure from the beginning of structure QDFFRINF is at
variable WDFFFOFS in structure QDFFFITB.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFFFLEN Length of this declare, including all the device-dependent
sections.

2 2 CHAR(1) WDFFFIOA Field attribute. X'01' indicates Constant (see structure
QDFFFCON, Constant Field Header Table
(QDFFFCON)), X'02' indicates Output (O), X'03'
indicates Message (M), X'04' indicates Input (I), X'05'
indicates Both (B), X'06' indicates Hidden (H), and X'07'
indicates Program to System (P).

3 3 CHAR(1) WDFFBFLG Miscellaneous flags.

3 3 0 BIT(1) WDFFDATE If on, DATE keyword is specified.

3 3 1 BIT(1) WDFFDATY If on, DATEY keyword is specified.

3 3 2 BIT(1) WDFFTIME If on, TIME keyword is specified.

3 3 3 BIT(1) WDFFFOLD If on, BLKFOLD keyword is specified.

3 3 4 BIT(1) WDFFEDIT If on, EDTCDE or EDTWRD keyword is specified.

3 3 5 BIT(1) WDFFINBT If on, field is either input or both.

3 3 6 BIT(1) WDFFDFT If on, DFT or DFTVAL keyword is specified.

3 3 7 BIT(1) WDFFFALT If on, IGCALTTYP keyword is specified.

4 4 CHAR(1) WDFFFBIT Miscellaneous flags.

4 4 0 BIT(1) WDFFIGCC If on, DBCS literals are specified on DFT or DFTVAL
keyword.

4 4 1 BIT(1) WDFFFCSO If on, first character of DFT or DFTVAL keyword is shift
out (SO).

4 4 2 BIT(1) WDFFOPDV If on, optioned DFTVAL keyword is specified.

4 4 3 BIT(1) WDFFALWE If on, ALWENDLOC applies to field. Trailing attribute
byte should be truncated for at least one display size.

4 4 4 BIT(1) WDFFUSER If on, USER keyword is specified.

4 4 5 BIT(1) WDFFSYSN If on, SYSNAME keyword is specified.

4 4 6 BIT(1) WDFFEDFT If on, EDTWRD was generated due to the DATE or
TIME keyword, or due to the L, T, or Z edit code.

4 4 7 BIT(1) WDFF_EDTCDE_Y If on, the edit code specified on the EDTCDE keyword is
used for formatting dates. The edit code is either a W or a
Y.

5 5 CHAR(1) * Reserved.

6 6 CHAR(*) WDFFFTBE Field header table entries. Use structure QDFFFCON
(Constant Field Header Table (QDFFFCON)) for
constant fields and structure QDFFFNAM (Named Field
Header Table (QDFFFNAM)) for named fields.

Constant Field Header Table (QDFFFCON)

Field header declare for constant fields. This structure is defined at variable WDFFFTBE in structure
QDFFFINF.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(2) * Reserved.

2 2 BIN(15) WDFFFAOC Displacement for constant fields to field-level
device-dependent sections (structure QDFFFDPD,
Display-Field-Level Device-Dependent Section
(QDFFFDPD)) from structure QDFFFINF (Field Header
Section (QDFFFINF)).

Named Field Header Table (QDFFFNAM)

Field header declare for named fields. This structure is defined at variable WDFFFTBE in structure
QDFFFINF.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFFINPO Input buffer displacement. -1 indicates no buffer location.

2 2 BIN(15) WDFFOUTO Output buffer displacement. -1 indicates no buffer location.

4 4 BIN(15) WDFFPLEN Program length. User's program field length for floating point
fields indicates precision 4 is defined as *SINGLE; 8 is
defined as *DOUBLE.

6 6 CHAR(1) WDFFDEC Decimals (X'00' through X'1F'). X'FF' indicates field is
character or DBCS-capable.

7 7 CHAR(1) WDFFKBDT Keyboard shift and data type. X'00' indicates Alpha
shift/character (A), X'01' indicates Alpha only (X), X'02'
indicates Numeric shift (N), X'03' indicates Numeric only (Y),
X'04' indicates Katakana (K), X'05' indicates Digits only (D),
X'06' indicates Inhibit keyboard (I), X'07' indicates Signed
numeric/zoned (S), X'08' indicates Binary (B), X'09' indicates
Packed (P), X'0A' indicates Floating (F), X'0B' indicates
DBCS (J), X'0C' indicates Open (O), X'0D' indicates Either
(E), X'0E' indicates Numeric-only character (M), X'0F'
indicates Graphic (G), X'10' indicates Date (L), X'11' indicates
Time (T), and X'12' indicates Timestamp (Z).

8 8 CHAR(2) * Reserved.

10 A BIN(15) WDFFFAOF Displacement for nonconstant (named) fields to
display-field-level device-dependent section (structure
QDFFFDPD, Display-Field-Level Device-Dependent Section
(QDFFFDPD)) from structure QDFFFINF (Field Header
Section (QDFFFINF)).

Display-Field-Level Device-Dependent Section (QDFFFDPD)

Display device-dependent section. The displacement to this structure from the beginning of structure
QDFFFINF is an entry in the table at variable WDFFFAOF in structure QDFFFNAM.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFFFLGS Miscellaneous flags.

0 0 0 BIT(1) WDFFDSPC If on, unconditioned DSPATR(PC) keyword is specified.

0 0 1 BIT(1) WDFFUCND If on, unconditioned DSPATR(ND) keyword is specified.

0 0 2 BIT(1) WDFFFXDC If on, FLTFIXDEC keyword is specified.

0 0 3 BIT(1) WDFFIACV If on, IGCANKCNV keyword is specified.

0 0 4 BIT(1) WDFFCSCP If on, CHRID keyword is specified.

0 0 5 BIT(1) WDFFMGID If on, MSGID keyword is specified.

0 0 6 BIT(1) WDFFDPNR If on, DUP keyword is specified without a response indicator
on a numeric field.

0 0 7 BIT(1) WDFFDSPN Field's base cursor position. If on, the field is input-capable
and no unoptioned DSPATR(PR) or no unoptioned
DSPATR(PC) is in any field in the record.

1 1 CHAR(1) WDFFSA Default screen attribute byte for workstation.

1 1 0 BIT(3) * Reserved. Always B'001'.

1 1 3 BIT(1) WDFFCLOS If on, unconditioned DSPATR(CS) keyword is specified.

1 1 4 BIT(1) WDFFBLNK If on, unconditioned DSPATR(BL) keyword is specified.

Note: If the following three bits are on, unconditioned DSPATR(ND) is specified.

1 1 5 BIT(1) WDFFUDLN If on, unconditioned DSPATR(UL) keyword is specified.

1 1 6 BIT(1) WDFFHILI If on, unconditioned DSPATR(HI) keyword is specified.

1 1 7 BIT(1) WDFFRVIM If on, unconditioned DSPATR(RI) keyword is specified.

2 2 BIN(15) WDFFXFDO Displacement to field-dependent extension structure from
QDFFFINF (see structure QDFFXFDP, Field-Dependent
Extension Structure (QDFFXFDP)). 0 indicates no extension
structure is present.

4 4 BIN(15) WDFFFDOC Displacement to keyword category displacement string from
structure QDFFFINF (see structure QDFFCOSA, Keyword
Category Displacement String (QDFFCOSA)). 0, if no
keyword categories.

6 6 CHAR(*) WDFFFICE Input-capable display field-level device-dependent section
entries (see structure QDFFFDIC, Input-Capable Display
Field-Level Device-Dependent Section (QDFFFDIC)). Only
used for types X'04' (input) and X'05' (both); see variable
WDFFFIOA in structure QDFFFINF.

Input-Capable Display Field-Level Device-Dependent Section
(QDFFFDIC)

Input-capable display device-dependent section. This structure is used for types X'04' (input) and X'05'
(both); see variable WDFFFIOA in structure QDFFFINF. This structure is defined at variable WDFFFICE)
in structure QDFFFDPD.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(2) WDFFFWFW Miscellaneous flags.

0 0 0 BIT(2) * Reserved.

0 0 2 BIT(1) WDFFFWPR If on, unconditioned DSPATR(PR) keyword is specified.

0 0 3 BIT(1) WDFFFWDP If on, unconditioned DUP keyword is specified.

0 0 4 BIT(1) WDFFFWMD If on, unconditioned DSPATR(MDT) keyword is specified.

0 0 5 BIT(3) WDFFFWSF Keyboard shift. B'000' indicates alpha shift, B'001' indicates
alpha only, B'010' indicates numeric shift (also floating point),
B'011' indicates numeric only (also numeric-only character
keyboard shift), B'100' indicates Katakana/CHECK(RL),
B'101' indicates digits only, B'110' indicates inhibit keyboard,
B'111' indicates signed numeric.

1 1 0 BIT(1) WDFFFWRA If on, unconditioned AUTO(RA) keyword is specified.

1 1 1 BIT(1) WDFFFWFE If on, CHECK(FE) keyword is specified.

1 1 2 BIT(1) WDFFFWLW Lowercase (not monocase). 0 indicates lowercase; 1 indicates
not lowercase (uppercase).

1 1 3 BIT(1) * Reserved.

1 1 4 BIT(1) WDFFFWME If on, unconditioned CHECK(ME) keyword is specified.

1 1 5 BIT(3) WDFFFWAJ Adjustments. B'000' indicates no adjustment, B'101' indicates
AUTO(RAZ), B'110' indicates AUTO(RAB), B'111' indicates
CHECK(MF).

2 2 CHAR(1) WDFFSSKW Keywords present.

2 2 0 BIT(1) WDFFBLKS If on, BLANKS keyword is specified.

2 2 1 BIT(1) WDFFSSCH If on, CHANGE keyword is specified.

2 2 2 BIT(1) WDFFSSDR If on, DUP keyword is specified with a response indicator.

2 2 3 BIT(1) WDFFSSDP If on, DUP keyword is specified with or without a response
indicator.

2 2 4 BIT(1) WDFFSSAB If on, CHECK(AB) keyword is specified.

2 2 5 BIT(1) WDFFDSOD If on, DSPATR(OID) keyword is specified.

2 2 6 BIT(1) WDFFDSSP If on, DSPATR(SP) keyword is specified.

2 2 7 BIT(1) WDFFVLCK If on, validity checking keywords specified in category 25,
Category 25 (GET Validation Keywords) (that is, category 25
is present).

3 3 CHAR(1) WDFFCHKB Miscellaneous flags.

3 3 0 BIT(1) WDFFCM10 If on, CHECK(M10) keyword is specified.

3 3 1 BIT(1) WDFFCM11 If on, CHECK(M11) keyword is specified.

3 3 2 BIT(1) WDFFM10F If on, CHECK(M10F) keyword is specified.

3 3 3 BIT(1) WDFFM11F If on, CHECK(M11F) keyword is specified.

3 3 4 BIT(4) * Reserved.

Field-Dependent Extension Structure (QDFFXFDP)

Field-dependent extension structure. The displacement to this structure from the beginning of structure
QDFFFINF is at variable WDFFXFDO in structure QDFFFDPD.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(2) WDFFKFLG Miscellaneous flag.

0 0 0 BIT(1) WDFFNOBA If on, field has no beginning attribute.

0 0 1 BIT(1) WDFFNOEA If on, field has no ending attribute.

0 0 2 BIT(1) * Reserved.

0 0 3 BIT(1) WDFFFDCP If on, this field is referenced by another field using the
FLDCSRPRG keyword.

0 0 4 BIT(1) WDFFSFCP If on, SFLCSRPRG keyword specified on field.

0 0 5 BIT(1) WDFFMLTC If on, MLTCHCFLD keyword is specified.

0 0 6 BIT(1) WDFFSNGC If on, SNGCHCFLD or PSHBTNFLD keyword is
specified.

0 0 7 BIT(1) WDFFCNTF If on, CNTFLD keyword is specified.

1 1 0 BIT(1) WDFFENFA If on, ENTFLDATR keyword is specified.

1 1 1 BIT(1) WDFFFCRP If on, FLDCSRPRG keyword is specified.

1 1 2 BIT(1) WDFFEDTM If on, EDTMSK keyword is specified.

1 1 3 BIT(1) WDFFPFLD If on, field has associated program-to-system field.

1 1 4 BIT(1) WDFFNOCC If on, NOCCSID keyword is specified.

1 1 5 BIT(1) WDFFPUSHBTN If on, PSHBTNFLD keyword is specified.

1 1 6 BIT(1) WDFFCHCHDHEXP If on, structure QDFKCHC (CHCFLD Keyword
Structure (QDFKCHC)) has an extension structure
appended to it.

1 1 7 BIT(1) WDFFWRDWRAP If on, WRDWRAP keyword is specified.

2 2 BIN(15) WDFFFLDINX Field index of current field.

4 4 CHAR(1) WDFFXLFLGS Miscellaneous flags.

4 4 0 BIT(1) WDFFVALNUM If on, VALNUM keyword is specified.

4 4 1 BIT(1) WDFFUCS2OF If on, WDFF_UCS2_CCSID contains the output buffer
offset where the CCSID is located.

4 4 2 BIT(6) * Reserved.

5 5 BIN(16) WDFF_UCS2_CCSID The UCS-2 CCSID specified on the CCSID keyword. If
WDFFUCS2OF is on, this is the output buffer offset
where the CCSID is located.

7 7 CHAR(1) * Reserved.

Selection Table (QDFFSELT)

Selection table. The table entries are defined in structure QDFFSTBL (page Selection Table Entry
(QDFFSTBL)). The entries in the where-used section (Where-Used Formats) are stored in the same order
as the selection table. The displacement to this structure from the beginning of structure QDFFRINF is at
variable WDFFSTBO in structure QDFFRINF.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(31) WDFFSTLN Selection table length.

4 4 BIN(15) WDFFSTT Total number of table entries used by the display to resolve
record- and field-level selection entries.

6 6 CHAR(2) * Reserved.

8 8 CHAR(*) WDFFSTE Selection table entries (see structure QDFFSTBL, Selection
Table Entry (QDFFSTBL)).

Selection Table Entry (QDFFSTBL)

Selection table entry. The number of entries in this structure is defined by variable WDFFSTT in structure
QDFFSELT. This structure is defined at variable WDFFSTE in structure QDFFSELT. The structure is
ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFFSTEL Length of this table entry.

2 2 BIN(15) WDFFCND Number of conditions in the entry.

4 4 ARRAY(*) OF CHAR(1) WDFFSELM Array of selection table indicators. The
number of entries in this structure is defined
by variable WDFFCND in this table. Each
character contains a displacement into the
output buffer for an option indicator. An entry
is used to designate whether the indicator must
be on (X'F1') or off (X'F0'). If an entry is on,
the indicator must be on; if it is off, the
indicator must be off. The value X'7F' in this
field designates the end of the entry.

Keyword Category Displacement String (QDFFCOSA)

Category displacement string. This structure occurs for each display file-, record-, or field-level section that
has keyword structures. For file-level sections, the displacement to this structure is from the beginning of
structure QDFFINFO at variable WDFFXDOC) in structure QDFFDPDD. For record-level sections, the
displacement to this structure is from the beginning of structure QDFFRINF at variable WDFFRDOC) in
structure QDFFRDPD. For field-level sections, the displacement to this structure is from the beginning of
structure QDFFFINF at variable WDFFFDOC) in structure QDFFFDPD.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFFCCT Number of entries in the category displacement string.

2 2 CHAR(*) WDFFCCOS Category displacement string (see structure QDFFCCOA,
Keyword Category Displacement String Entry
(QDFFCCOA)).

Keyword Category Displacement String Entry (QDFFCCOA)

Category displacement string array. Each keyword category type that is present in the file, record, or field
section has an entry. The number of entries in this structure is defined by variable WDFFCCT in structure
QDFFCOSA. This structure is defined at variable WDFFCCOS in structure QDFFCOSA. The structure is
ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFFCAID Category ID (X'01' through X'FF').

1 1 BIN(15) WDFFCAOF Displacement to category from the start of each section header
(see structure QDFFINFO on File Header Section
(QDFFINFO) for file-level keywords, structure QDFFRINF
on Record Header Section (QDFFRINF) for record-level
keywords, or structure QDFFFINF on Field Header Section
(QDFFFINF) for field-level keywords).

Keyword Formats

Category 1 (File-Level Keywords)

The following table shows the keyword ID that corresponds to the file-level keywords. Not all keywords
require a structure. There are no structures for keyword IDs X'01', X'03', and X'0D'. The text associated
with the HLPTITLE keyword is contained in variable WDFKFLNM in structure QDFKFLPP.

ID Keyword ID Keyword

X'01' PASSRCD X'07' HLPDOC

X'02' MSGLOC X'08' HLPSCHIDX

X'03' PRINT X'09' HLPTITLE

X'04' IGCCNV X'0A' ALTNAME

X'05' HLPRCD X'0B' ERRSFL

X'06' HLPPNLGRP X'0C' WDWBORDER

File-Level Keywords (QDFKFILK)

File-level keywords. The displacement to this structure from the beginning of the appropriate section (file,
record, or field) is from variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKFIL Number of keywords to follow.

0 0 CHAR(*) WDFKFILE File-level keyword with parameters (see structure
QDFKFLPM, File-Level Keyword with Parameters
(QDFKFLPM)).

File-Level Keyword with Parameters (QDFKFLPM)

File-level keyword with parameters. The number of entries in this structure is defined by variable
WDFKFIL in structure QDFKFILK. This structure is defined at variable WDFKFILE in structure
QDFKFILK. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKFLID Keyword ID.

1 1 BIN(15) WDFKFLST Index into selection table (see structure QDFFSELT, Selection
Table (QDFFSELT)). 1 indicates not optioned.

3 3 BIN(15) WDFKFLRS Response indicator minus one for files with INDARA
keyword. Response indicator input buffer displacement for
those without INDARA keyword. In either case, -1 represents
no response indicator specified.

5 5 BIN(15) WDFKFLP Number of parameters to follow.

7 7 CHAR(*) WDFKFLEX Category 1 keyword parameter entries.

Category 1 Parameter Entry (QDFKFLPP)

Parameter entries for category 1. The number of entries in this structure is defined by variable WDFKFLP
in structure QDFKFLPM. This structure is defined at variable WDFKFLEX in structure QDFKFLPM. The
structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKFLLN Length of the following keyword parameter entry.

2 2 CHAR(*) WDFKFLNM Keyword parameter structure.

MSGLOC Keyword Structure (QDFKFLSZ)

MSGLOC keyword structure. Use this structure for the category 1 keyword that has a keyword ID of X'02'
in structure QDFKFLPM (File-Level Keyword with Parameters (QDFKFLPM)). The number of entries in
this structure is defined by variable WDFFSCR in structure QDFFBASE. This structure is defined at
variable WDFKFLNM in structure QDFKFLPP. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKFLML MSGLOC values.

2 2 CHAR(4) * Reserved.

IGCCNV Keyword Structure (QDFKICVP)

IGCCNV keyword structure. Use this structure for the category 1 keyword that has a keyword ID of X'04'
in structure QDFKFLPM (File-Level Keyword with Parameters (QDFKFLPM)). This structure is defined
at variable WDFKFLNM in structure QDFKFLPP.

Note: The IGCCNV keyword generates additional internal records.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKICVN IGCCNV format line number.

2 2 BIN(15) WDFKICVK IGCCNV format CF key.

4 4 BIN(15) WDFKICVT Index to internally generated record in the record format table.

HLPRCD Keyword Structure (QDFKHARD)

HLPRCD keyword structure. Use this structure for the category 1 keyword that has a keyword ID of X'05'
in structure QDFKFLPM (File-Level Keyword with Parameters (QDFKFLPM)). This structure is defined
at variable WDFKFLNM in structure QDFKFLPP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKHRFM Record format name.

10 A CHAR(10) WDFKHFIL File name.

20 14 CHAR(10) WDFKHLIB File library name.

HLPPNLGRP Keyword Structure (QDFKHXPS)

HLPPNLGRP keyword structure. Use this structure for the category 1 keyword that has a keyword ID of
X'06' in structure QDFKFLPM (File-Level Keyword with Parameters (QDFKFLPM)). This structure is
defined at variable WDFKFLNM in structure QDFKFLPP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKHXHG Help panel group.

10 A CHAR(10) WDFKHXHL Help panel group library name.

20 14 BIN(15) WDFKHXML Length of module name.

22 16 CHAR(*) WDFKHXMN Help module name.

HLPDOC Keyword Structure (QDFKHDOC)

HLPDOC keyword structure. Use this structure for the category 1 keyword that has a keyword ID of X'07'
in structure QDFKFLPM (File-Level Keyword with Parameters (QDFKFLPM)). This structure is defined
at variable WDFKFLNM in structure QDFKFLPP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKHDLA Help text label name.

10 A CHAR(12) WDFKHDDO Document name.

22 16 BIN(15) WDFKHDFL Length of folder name.

24 18 CHAR(*) WDFKHDFD Folder name.

HLPSCHIDX Keyword Structure (QDFKSIDX)

HLPSCHIDX keyword structure. Use this structure for the category 1 keyword that has a keyword ID of
X'08' in structure QDFKFLPM (File-Level Keyword with Parameters (QDFKFLPM)). This structure is
defined at variable WDFKFLNM in structure QDFKFLPP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKSIOB Search index object name.

10 A CHAR(10) WDFKSILB Search index object library name.

ALTNAME Keyword Structure (QDFKFALX)

ALTNAME keyword structure. Use this structure for the category 1 keyword that has a keyword ID of
X'0A' in structure QDFKFLPM. This structure is defined at variable WDFKFLNM in structure
QDFKFLPP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKALT Count of ALTNAME keywords.

2 2 CHAR(*) WDFKAARY Alternative names (see structure QDFKFALK, ALTNAME
Keyword Entry (QDFKFALK)).

ALTNAME Keyword Entry (QDFKFALK)

ALTNAME keyword entry. This structure is defined at variable WDFKAARY in structure QDFKFALX.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKANME ALTNAME keyword value (excluding apostrophes).

10 A BIN(15) WDFKAINX Index to record format in record format table.

ERRSFL Keyword Structure (QDFKESFL)

ERRSFL keyword structure. Use this structure for the category 1 keyword that has a keyword ID of X'0B'
in structure QDFKFLPM (File-Level Keyword with Parameters (QDFKFLPM)). This structure is defined
at variable WDFKFLNM in structure QDFKFLPP.

Note: The ERRSFL keyword generates additional internal records.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKESCR Subfile control record name.

WDWBORDER Keyword Structure (QDFKBODR)

WDWBORDER keyword structure. Use this structure for the category 1 keyword that has a keyword ID of
X'0C' in structure QDFKFLPM (File-Level Keyword with Parameters (QDFKFLPM)). This structure is
defined at variable WDFKFLNM in structure QDFKFLPP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKCLOR Values for *COLOR. X'00' indicates not specified, X'3A'
indicates BLU, X'20' indicates GRN, X'22' indicates WHT,
X'28' indicates RED, X'30' indicates TRQ, X'32' indicates
YLW, X'38' indicates PNK.

1 1 CHAR(1) WDFKDATR Values for *DSPATR. Combination of two or more of these
values: X'00' indicates no attribute X'30' indicates (*DSPATR
CS), X'28' indicates (*DSPATR BL), X'24' indicates
(*DSPATR UL), X'22' indicates (*DSPATR HI), X'21'
indicates (*DSPATR RI), and X'27' indicates (*DSPATR
ND).

2 2 CHAR(8) WDFKCHRS WDWBORDER characters in the following order: top-left
corner, top horizontal, top-right corner, left vertical, right
vertical, bottom-left corner, bottom horizontal, bottom-right
corner. If not specified, eight entries of X'00' will occur.

Category 2 (Record-Level Command Key Keywords)

The following table shows the keyword ID that corresponds to the record-level command-key keywords.
Use structure QDFKCKKE for category 2 keyword IDs X'01' through X'25' and X'30'.

ID Keyword ID Keyword ID Keyword

X'01' CA/CF01 X'0E' CA/CF14 X'1A' ROLLDOWN

X'02' CA/CF02 X'0F' CA/CF15 X'1B' PRINT

X'03' CA/CF03 X'10' CA/CF16 X'1C' HOME

X'04' CA/CF04 X'11' CA/CF17 X'1D' CLEAR

X'05' CA/CF05 X'12' CA/CF18 X'1E' HELP

X'06' CA/CF06 X'13' CA/CF19 X'20' HLPRTN

X'07' CA/CF07 X'14' CA/CF20 X'21' VLDCMDKEY

X'08' CA/CF08 X'15' CA/CF21 X'22' ALTHELP

X'09' CA/CF09 X'16' CA/CF22 X'23' ALTPAGEUP

X'0A' CA/CF10 X'17' CA/CF23 X'24' ALTPAGEDWN

X'0B' CA/CF11 X'18' CA/CF24 X'25' MNUBARSW

X'0C' CA/CF12 X'19' ROLLUP X'30' MNUCNL

X'0D' CA/CF13

Command Key Keyword Structure (QDFKCKKW)

Structure for command key keywords. The displacement to this structure from the beginning of the
appropriate section (file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKCKS Number of entries in the array.

2 2 CHAR(*) WDFKCKCM Command key keyword entries (see structure QDFKCKKE,
Command Key Keyword Entries (QDFKCKKE)).

Command Key Keyword Entries (QDFKCKKE)

Command key keyword array. The number of entries in this structure is defined by variable WDFKCKS in
structure QDFKCKKW. This structure is defined at variable WDFKCKCM in structure QDFKCKKW. The
structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKCKID Keyword ID.

1 1 BIN(15) WDFKCKIN Index into selection table. 1 indicates not optioned.

3 3 BIN(15) WDFKCKRS Response indicator minus one for files with INDARA
keyword. Response indicator input buffer displacement for
those without INDARA. -1 indicates no response indicator is
specified.

5 5 CHAR(4) WDFKCKMA Key mask (ignored for VLDCMDKEY and HLPRTN
keywords). The OR values for the key mask follow:
X'80000000' CA/CF01, X'40000000' CA/CF02, X'20000000'
CA/CF03, X'10000000' CA/CF04, X'08000000' CA/CF05,
X'04000000' CA/CF06, X'02000000' CA/CF07, X'01000000'
CA/CF08, X'00800000' CA/CF09, X'00400000' CA/CF10,
X'00200000' CA/CF11, X'00100000' CA/CF12, X'00080000'
CA/CF13, X'00040000' CA/CF14, X'00020000' CA/CF15,
X'00010000' CA/CF16, X'00008000' CA/CF17, X'00004000'
CA/CF18, X'00002000' CA/CF19, X'00001000' CA/CF20,
X'00000800' CA/CF21, X'00000400' CA/CF22, X'00000200'
CA/CF23, X'00000100' CA/CF24, X'00000080' ROLLUP,
X'00000040' ROLLDOWN, X'00000020' PRINT,
X'00000010' HOME, X'00000008' CLEAR, X'00000004'
HELP.

Note: The following keywords use the first three bytes of the mask field (WDFKCKMA) for the
command key mask for the command key associated with the keyword. If the keyword is specified without
a command key, a default command key is used. In addition, these keywords use the last byte of
WDFKCKMA for a special purpose. The last byte contains the AID byte which is returned when the
command key associated with the keyword is pressed. For example, if ALTPAGEDWN is specified as
ALTPAGEDWN(CF04), then the last byte of the mask is X'34'. If you need to OR the masks of these
keywords with the masks of the other keywords, zero out the last byte of the mask first. The keywords and
the AID bytes for the default command keys are:

Keyword Default AID byte
ALTHELP X'31'
ALTPAGEUP X'37'
ALTPAGEDWN X'38'
MNUBARSW X'3A'
MNUCNL X'3C'

Category 3 (OVERLAY-Related Keywords and PUTRETAIN)

The following table shows the keyword ID that corresponds to the OVERLAY-related keywords and
PUTRETAIN. Not all keywords require a structure. There are no structures for keyword IDs X'02', X'03',
X'04', X'05', X'06', X'08', and X'09'.

ID Keyword ID Keyword

X'01' OVERLAY X'07' PUTRETAIN

X'02' PUTOVR X'08' PROTECT

X'03' ERASEINP(*MDTON) X'09' INZINP

X'04' MDTOFF(*UNPR) X'10' ERASE

X'05' ERASEINP(*ALL) X'11' CLRL

X'06' MDTOFF(*ALL)

OVERLAY Keyword Structure (QDFKOVRR)

OVERLAY-related keywords. This structure is used if the keyword ID in structure QDFKFLPM
(File-Level Keyword with Parameters (QDFKFLPM)) is X'01'. The displacement to this structure from the
beginning of the appropriate section (file, record, and field) is at variable WDFFCAOF in structure
QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKOLS Number of keyword entries to follow.

2 2 CHAR(*) WDFKOVRT Array of keyword entries. Entries are contained in structure
QDFKOVRE (Keyword Structure (QDFKOVRE)) or
QDFKOVRP (OVERLAY and PUTRETAIN-Related
Keyword Structure (QDFKOVRP)).

Keyword Structure (QDFKOVRE)

Array structure for keywords. Use this structure for category 3 keywords that have a keyword ID of X'02',
X'03', X'04', X'05', X'06', X'08', or X'09'. This structure is defined at variable WDFKOVRT in structure
QDFKOVRR. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKOLAD Keyword ID.

1 1 BIN(15) WDFKOLAN Index into selection table. 1 indicates not optioned.

OVERLAY and PUTRETAIN-Related Keyword Structure
(QDFKOVRP)

Structure for OVERLAY and PUTRETAIN-related keywords. Use this structure for category 3 keywords
that have a keyword ID of X'01', X'07', X'10', or X'11'. This structure is defined at variable WDFKOVRT in
structure QDFKOVRR. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKOLID Keyword ID.

1 1 BIN(15) WDFKOLIN Index into selection table. 1 indicates not optioned.

3 3 CHAR(*) WDFKOLEX Extra remaining portion of this category for ERASE and
CLRL.

ERASE Keyword Structure (QDFKOLER)

ERASE keyword structure. Use this structure for the category 3 keyword that has a keyword ID of X'10'.
This structure is defined at variable WDFKOLEX in structure QDFKOVRP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKOLE Number of bytes to follow.

2 2 ARRAY(*) OF BIN(15) WDFKOLAR Indexes to the record format table for the format
to be erased. 0, if format does not exist.

CLRL Keyword Structure (QDFKOLCL)

CLRL keyword structure. Use this structure for the category 3 keyword that has a keyword ID of X'11'.
This structure is defined at variable WDFKOLEX in structure QDFKOVRP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKOLC Number of bytes to follow (always 2).

2 2 BIN(15) WDFKOLCN Clear line number.

Category 4 (Record-Level Miscellaneous Keywords)

The following table shows the keyword ID that corresponds to the record-level miscellaneous keywords.
Not all keywords require a structure. There are no structures for keyword IDs X'01', X'02', X'03', X'04',
X'05', X'06', X'07', X'08', and X'09'.

Note: Keywords INDARA2 and RTNCSRLOC2 are internally generated.

ID Keyword ID Keyword

X'01' LOCK X'09' RMVWDW

X'02' ALARM X'0F' DSPMOD

X'03' BLINK X'10' CSRLOC

X'04' LOGOUT X'11' INDARA

X'05' ALWGPH X'13' SETOFF

X'06' MSGALARM X'15' RTNCSRLOC

X'07' RETLCKSTS X'16' MNUBARDSP

X'08' USRRSTDSP

Miscellaneous Record-Level Keywords (QDFKMSRL)

Miscellaneous record-level keywords. The displacement to this structure from the beginning of the
appropriate section (file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKMSS Number of keywords to follow.

2 2 CHAR(*) WDFKMSKW Array of keyword entries. Entries are contained in structure
QDFKMSAP (Parameter Structure (QDFKMSAP)).

Parameter Structure (QDFKMSAP)

Array structure for keywords with simple parameters. This structure is defined at variable WDFKMSKW in
structure QDFKMSRL. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

2 2 CHAR(1) WDFKMSAD Keyword ID.

3 3 BIN(15) WDFKMSAN Index into selection table. 1 indicates not optioned.

Response Indicator Keyword Array (QDFKMSCP)

Miscellaneous record-level keywords. Use this structure for category 4 keywords that have a keyword ID of
X'10', X'11', X'0F', or X'13'. The displacement to this structure from the beginning of structure QDFFRINF
is at variable WDFFINDO in structure QDFFRINF.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKMSID Keyword ID.

1 1 BIN(15) WDFKMSIN Index into selection table. 1 indicates keyword is not optioned.
For SETOFF, this contains the response indicator
displacement.

3 3 CHAR(*) WDFKMSEX Additional structures for CSRLOC, INDARA, DSPMOD, and
MNUBARDSP keywords. (See structures QDFKMSK1 on
CSRLOC Keyword Structure (QDFKMSK1), QDFKMSK2 on
INDARA Keyword Structure (QDFKMSK2), QDFKMSK3 on
DSPMOD Keyword Structure (QDFKMSK3), and
QDFKMSMBDSP on MNUBARDSP Keyword Structure
(QDFKMSMBDSP).)

CSRLOC Keyword Structure (QDFKMSK1)

Remaining portion of CSRLOC keyword. Use this structure for a category 4 keyword that has a keyword
ID of X'10'. This structure is defined at variable WDFKMSEX in structure QDFKMSCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKMSLC Length of data follows.

2 2 CHAR(1) * Reserved.

3 3 BIN(15) WDFKMSRW Output buffer displacement for row value field.

5 5 BIN(15) WDFKMSCL Output buffer displacement for column value field.

7 7 BIN(31) WDFKMSFA Index into name table for line number field.

11 B BIN(31) WDFKMSFB Index into name table for position number field.

INDARA Keyword Structure (QDFKMSK2)

Remaining portion of INDARA keyword. Use this structure for a category 4 keyword that has a keyword
ID of X'11'. This structure is defined at variable WDFKMSEX in structure QDFKMSCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKMSLN Length of data that follows. Length may be
zero.

2 2 ARRAY(*) OF BIN(15) WDFKMSRI List of response indicators that are referred to in
this record (including SETOFF). The value is
the indicator displacement (that is, the indicator
number minus one). If an indicator is only an
option indicator (and not a response indicator),
this value is -1.

DSPMOD Keyword Structure (QDFKMSK3)

Remaining portion of DSPMOD keyword. Use this structure for a category 4 keyword that has a keyword
ID of X'0F'. This structure is defined at variable WDFKMSEX in structure QDFKMSCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKMSDM Index into display size array (valid values are 1 through 4).

RTNCSRLOC and RTNCSRLOC2 Keyword Structure
(QDFKMSCLN)

Remaining portion of RTNCSRLOC and RTNCSRLOC2 keywords. Use this structure for a category 4
keyword that has a keyword ID of X'15'. This structure is defined at variable WDFKMSEX in structure
QDFKMSCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKMSCRO Displacement into input buffer to the hidden field that
contains the name of the record that the cursor is on. Valid
for RTNCSRLOC keyword or for the *RECNAME
parameter of the RTNCSRLOC2 keyword.

0 0 BIN(15) WDFKRCLR Displacement into input buffer to the hidden field that
contains the row number the cursor is on. Valid for
*WINDOW or *MOUSE parameter of RTNCSRLOC2
keyword.

2 2 BIN(15) WDFKMSCFO Displacement into input buffer to the hidden field that
contains the name of the field that the cursor is on. Valid for
RTNCSRLOC keyword or for the *RECNAME parameter
of the RTNCSRLOC2 keyword.

2 2 BIN(15) WDFKRCLC Displacement into input buffer to the hidden field that
contains the column number the cursor is on. Valid for
*WINDOW or *MOUSE parameter of RTNCSRLOC2
keyword.

4 4 BIN(15) WDFKMSCLO Displacement into input buffer to the hidden field that
contains the relative position into the field that the cursor is
on. Valid for RTNCSRLOC keyword or for the
*RECNAME parameter of the RTNCSRLOC2 keyword.

4 4 BIN(15) WDFKCLWR Displacement into input buffer to the hidden field that
contains the row of the cursor relative to the active window
or to the location of the cursor after the mouse button action
has been processed. Valid for *WINDOW or *MOUSE
parameter of RTNCSRLOC2 keyword.

6 6 BIN(15) WDFKRCLWC Displacement into input buffer to the hidden field that
contains the column of the cursor relative to the active
window or to the location of the cursor after the mouse
button action has been processed. Valid for *WINDOW or
*MOUSE parameter of RTNCSRLOC2 keyword and does
not exist for the RTNCSRLOC keyword.

8 8 CHAR(1) WDFKRCTYPE The type of RTNCSRLOC format specified. X'00' indicates
*RECNAME is specified, X'01' indicates *WINDOW is
specified, and X'02' indicates *MOUSE is specified. This
section is only valid for the RTNCSRLOC2 keyword and
does not exist for the RTNCSRLOC keyword.

9 9 CHAR(1) WDFKRCFLGS Miscellaneous flags for the RTNCSRLOC2 keyword. This
section is only valid for the RTNCSRLOC2 keyword and
does not exist for the RTNCSRLOC keyword.

9 9 0 BIT(1) WDFKRCLFMT2 1 indicates this is returning row-column information. 0
indicates this is returning record name and field name
information. This section is only valid for the
RTNCSRLOC2 keyword and does not exist for the
RTNCSRLOC keyword.

9 9 1 BIT(7) * Reserved.

MNUBARDSP Keyword Structure (QDFKMSMBDSP)

Remaining portion of MNUBARDSP. Use this structure for a category 4 keyword that has a keyword ID of
X'16'. This structure is defined at variable WDFKMSEX in structure QDFKMSCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKMBDRCN The name of the menu bar record that the MNUBARDSP
keyword wants to display. If MNUBARDSP is on a
MNUBAR keyword record, this field contains hexadecimal
zeros.

10 A BIN(15) WDFKMBDCFO Displacement into input buffer to the hidden field that
contains the number of the CHOICE specified by the user.
-1, if not used.

12 C BIN(15) WDFKMBDPIO If the PULLDOWN contains only the SNGCHCFLD
keyword, this is the displacement into the input buffer to
the hidden field that contains the input from the
PULLDOWN. -1, if not used.

Category 6 Keywords (Record-Level Keywords)

The following table shows the keyword ID that corresponds to category 6 keywords. Both of these keyword
IDs require a structure.

ID Keyword

X'01' INVITE

X'09' FRCDTA

Record-level Keywords with selection array index (QDFRCAT06).

Record-level keywords with only an index into the selection table. The displacement to this structure from
the beginning of the appropriate section (file, record, or field) is at variable WDFFCAOF in structure
QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKC6ID Keyword ID.

1 1 BIN(15) WDFKCINX Index into selection table. 1 indicates not optioned.

Category 0B Keywords (File-Level Keywords with Parameters)

The following table shows the keyword ID that corresponds to category 0B keywords. Both of these
keyword IDs require a structure.

ID Keyword

X'01' GRDATR

X'02' HLPSHELF

File-Level Keywords with Parameters Structure (QDFK0BPR)

File-level keywords with parameters. The displacement to this structure from the beginning of the
appropriate section (file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFK0BPCT Number of keywords to follow.

2 2 CHAR(*) WDFK0BKW File-level keyword entries. See structure QDFK0BXWP
(File-Level Keyword Structure (QDFK0BXWP)).

File-Level Keyword Structure (QDFK0BXWP)

File-level keyword structure. This structure is defined at variable WDFK0BKW in structure QDFK0BPR.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFK0BPID Keyword ID.

1 1 BIN(15) WDFK0BPIN Index into selection table. 1 indicates keyword is not optioned.

3 3 BIN(15) WDFK0BPLN Length of parameter for keyword.

5 5 CHAR(*) WDFK0BPEX Extra remaining portion for keywords. The actual length is in
variable WDFKMPLN in structure QDFKMRWP.

GRDATR Parameter Structure (QDFK0BGATR)

GRDATR parameter structure. Use this structure for category 0B keywords that have a keyword ID of
X'01'. The structure is defined at variable WDFK0BPEX in structure QDFK0BXWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFK0BCLR Color parameter. X'FE' indicates not specified.

1 1 CHAR(1) * Reserved.

2 2 CHAR(1) WDFK0BLT Line type. X'FE' indicates not specified.

3 3 CHAR(1) * Reserved.

HLPSHELF Parameter Structure (QDFKHBKPRM)

Structure for HLPSHELF parameters. Use this structure for category 0B keywords that have a keyword ID
of X'02'. The structure is defined at variable WDFK0BPEX in structure QDFK0BXWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(8) WDFKHBKNAM Bookshelf name.

Category 17 (Record-Level Miscellaneous Keywords with
Parameters)

The following table shows the keyword ID that corresponds to the record-level miscellaneous keywords
with parameters. Not all keywords require a structure. There are no structures for keyword IDs X'03', X'04',
and X'05'.

Note: HLP is an internal keyword generated when an H-specification is specified.

ID Keyword ID Keyword

X'01' HLP X'05' TIMER

X'02' HLPSEQ X'06' PRINT

X'03' HLPTITLE X'07' WDWBORDER

X'04' HLPCLR X'08' WINDOW

Miscellaneous Record-Level Structure (QDFKMRPR)

Miscellaneous record-level with parameters. The displacement to this structure from the beginning of the
appropriate section (file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKRPS Number of keywords to follow

2 2 CHAR(*) WDFKRPKW Record-level keyword entries (see structure QDFKMRWP,
Miscellaneous Record-Level Keywords (QDFKMRWP)).

Miscellaneous Record-Level Keywords (QDFKMRWP)

Miscellaneous record-level keywords. This structure is defined at variable WDFKRPKW in structure
QDFKMRPR. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKMPID Keyword ID.

1 1 BIN(15) WDFKMPIN Index into selection table. 1 indicates keyword is not optioned.

3 3 BIN(15) WDFKMPLN Length of parameter for keyword.

5 5 CHAR(*) WDFKMPEX Extra remaining portion for keywords. Actual length of
parameter is specified in variable WDFKMPLN in this
structure.

HLP Keyword Structure (QDFKHSTR)

Remaining portion of H-specification. Use this structure for a category 17 keyword that has a keyword ID
of X'01'. This structure is defined at variable WDFKMPEX in structure QDFKMRWP.

Note: HLP is an internal keyword generated when an H-specification is specified.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKH Count of H-specifications.

2 2 CHAR(*) WDFKHV Variable part of parameter.

HLP Keyword Entry Structure (QDFKHPRM)

Entry for the internal HLP keyword. The total number of entries is contained in variable WDFKH in
structure QDFKHSTR. This structure is defined at variable WDFKHV in structure QDFKHSTR.
Displacements to subsequent entries are calculated using variable WDFKHOFS in structure QDFKHSTR.
The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKHOFS Length of this H-specification.

2 2 BIN(15) WDFKHFLG Flags for H-specification.

2 2 0 BIT(1) WDFKHBDY If on, HLPBDY keyword is specified.

2 2 1 BIT(1) WDFKHPRD If on, HLPRCD keyword is specified. Structure QDFKHNMS
(HLPRCD Keyword Structure (QDFKHNMS)) is defined at
variable WDFKHVAR of this structure.

2 2 2 BIT(1) WDFKHPNL If on, HLPPNLGRP keyword is specified. Structure
QDFKHPS (HLPPNLGRP Keyword Structure (QDFKHPS))
is defined at variable WDFKHVAR.

2 2 3 BIT(1) WDFKHPDC If on, HLPDOC keyword is specified. Structure QDFKHRDC
(HLPDOC Keyword Structure (QDFKHRDC)) is defined at
variable WDFKHVAR.

2 2 4 BIT(1) WDFKDFHR If on, file name on HLPRCD keyword is the default.

2 2 5 BIT(1) WDFKHEXC If on, HLPEXCLD keyword is specified.

2 2 6 BIT(1) WDFKENPT If on, CHOICE, MNUBAR, or PULLDOWN help was
specified in this H-specification. This indicates enhanced
display structure QDFKHARX (HLPARA Keyword Enhanced
Display Structure (QDFKHARX)) is mapped at variable
WDFKHEXT in structure QDFKHARA.

2 2 7 BIT(9) * Reserved.

4 4 BIN(15) WDFKHSRO Displacement to structure containing help source information.
(See structure QDFKHNMS on HLPRCD Keyword Structure
(QDFKHNMS), QDFKHPS on HLPPNLGRP Keyword
Structure (QDFKHPS), or QDFKHRDC on HLPDOC
Keyword Structure (QDFKHRDC).)

6 6 BIN(15) WDFKHCRD Selection string for help source on HLPRCD, HLPDOC, and
HLPPNLGRP keywords. 1 indicates not specified or no
indicator on keyword.

8 8 BIN(15) WDFKHCBY Selection string for HLPBDY keyword. 1 indicates keyword
not specified or no indicator on keyword.

10 A BIN(15) WDFKHARO Displacement to HLPARA information (see structure
QDFKHARA, HLPARA Keyword Structure (QDFKHARA)).

12 C BIN(15) WDFKHCEX Selection string for HLPEXCLD. 1 indicates keyword not
specified or no indicator on keyword.

14 E CHAR(3) * Reserved.

17 11 CHAR(*) WDFKHVAR Variable length parameters.

HLPRCD Keyword Structure (QDFKHNMS)

HLPRCD keyword structure. This structure is present only if variable WDFKHPRD in structure
QDFKHPRM is set on. This structure is defined at variable WDFKHVAR in structure QDFKHPRM.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKHRCD Record format name.

10 A CHAR(10) WDFKHFLE File name.

20 14 CHAR(10) WDFKHRLB File library name. If file and library were not specified, these
are the display file and library names. If file but not library is
specified, the library name is *LIBL.

HLPPNLGRP Keyword Structure (QDFKHPS)

HLPPNLGRP keyword structure. This structure is present only if variable WDFKHPNL in structure
QDFKHPRM is set on. This structure is defined at variable WDFKHVAR in structure QDFKHPRM.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKHPNN Help panel group name.

10 A CHAR(10) WDFKHPLB Help panel group library name. If library was not specified,
the library name is *LIBL.

20 14 BIN(15) WDFKHMLN Length of help module name.

22 16 CHAR(*) WDFKHMN Help module name.

HLPDOC Keyword Structure (QDFKHRDC)

HLPDOC keyword structure. This structure is present only if variable WDFKHPDC in structure
QDFKHPRM is set on. This structure is defined at variable WDFKHVAR in structure QDFKHPRM.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKHRLA Help text label name.

10 A CHAR(12) WDFKHRDO Document name.

22 16 BIN(15) WDFKHRFL Length of folder name.

24 18 CHAR(*) WDFKHRFD Folder name.

HLPARA Keyword Structure (QDFKHARA)

HLPARA keyword structure. This structure is repeated for each display size specified. The number of
display sizes is defined by variable WDFFSCR in structure QDFFBASE. This structure is defined at
variable WDFKHARO in structure QDFKHPRM. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKHFRO From row.

1 1 CHAR(1) WDFKHFCO From column.

2 2 CHAR(1) WDFKHTRO To row.

3 3 CHAR(1) WDFKHTCO To column.

4 4 CHAR(*) WDFKHEXT Enhanced display extension (see structure QDFKHARX,
HLPARA Keyword Enhanced Display Structure
(QDFKHARX)). This field is present only if variable
WDFKENPT in structure QDFKHPRM is on.

HLPARA Keyword Enhanced Display Structure (QDFKHARX)

HLPARA enhanced display mapping. This structure is present only if variable WDFKHPRD in structure
QDFKHPRM is on. This structure is defined at variable WDFKHEXT in structure QDFKHARA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKHAFLG Help area flags.

0 0 0 BIT(1) WDFKHCHC Choice-level help.

0 0 1 BIT(2) * Reserved.

0 0 3 BIT(1) WDFKHFLDC Choice-level help, with no choice number.

0 0 4 BIT(1) WDFKHRC If on, HLPARA(*RCD) keyword is specified.

0 0 5 BIT(3) * Reserved.

1 1 BIN(15) WDFKHFLDI Index to field on choice-level help.

3 3 CHAR(2) WDFKHCHID Choice number for choice-level help.

HLPSEQ Keyword Structure (QDFKHSEQ)

Remaining portion of HLPSEQ. Use this structure for a category 17 keyword that has a keyword ID of
X'02'. This structure is defined at variable WDFKMPEX in structure QDFKMRWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(10) WDFKHSGN Help group name.

10 A BIN(15) WDFKHSS Help sequence number.

12 C BIN(15) WDFKHSIF Index to first record in help group.

14 E BIN(15) WDFKHSIL Index to last record in help group.

16 10 BIN(15) WDFKHSIN Index to next record in help group.

18 12 BIN(15) WDFKHSIP Index to previous record in help group.

PRINT Keyword Structure (QDFKPRTR)

PRINT keyword structure. Use this structure for a category 17 keyword that has a keyword ID of X'06'.
This structure is defined at variable WDFKMPEX in structure QDFKMRWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKRLRS Response indicator; -1, if no response indicator.

2 2 BIN(15) WDFKRLP Number of parameters to follow.

4 4 CHAR(*) WDFKPRTP Remaining print structure.

Record-Level Print Parameters (QDFKPPRM)

Record-level print parameters. This structure is defined at variable WDFKMPEX in structure
QDFKMRWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKPLEN Length of parameter to follow.

2 2 CHAR(*) WDFKPFLN Print file or library name.

WDWBORDER Keyword Structure (QDFKBRDR)

WDWBORDER keyword structure. Use this structure for a category 17 keyword that has a keyword ID of
X'07'. This structure is defined at variable WDFKMPEX in structure QDFKMRWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKCOLR Value for *COLOR. X'00' indicates not specified, X'3A'
indicates BLU, X'20' indicates GRN, X'22' indicates WHT,
X'28' indicates RED, X'30' indicates TRQ, X'32' indicates
YLW, X'38' indicates PNK.

1 1 CHAR(1) WDFKDSPA Value for *DSPATR (combination of two or more of these
values): X'00' indicates no attribute, X'30' indicates
(*DSPATR CS), X'28' indicates (*DSPATR BL), X'24'
indicates (*DSPATR UL), X'22' indicates (*DSPATR HI),
X'21' indicates (*DSPATR RI), X'27' indicates (*DSPATR
ND). If multiple values are specified, they are ORed together.

2 2 CHAR(8) WDFKCHAR Border characters in the following order: top-left corner, top
horizontal, top-right corner, left vertical, right vertical,
bottom-left corner, bottom horizontal, bottom-right corner.

Window Data Array Structure (QDFKWDTA)

Window data array. Use this structure for a category 17 keyword that has a keyword ID of X'08'. There is
one array entry for each display size specified. This structure is defined at variable WDFKMPEX in
structure QDFKMRWP. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(2) WDFWDWB Miscellaneous flags that describe the type of information
provided by this window keyword.

0 0 0 BIT(1) WDFKDEFN 1 indicates window definition; do not use variable
WDFKWNAM in this structure. 0 indicates window
reference; use WDFKWNAM.

0 0 1 BIT(1) WDFKLINC 1 indicates actual line number provided. 0 indicates
displacement to line number field provided. This field is not
used if variable WDFKDEFN in this structure equals 0.

0 0 2 BIT(1) WDFKLFL1 1 indicates line number field length is 1 digit long. 0
indicates line number is not 1 digit long. This field is not
used if WDFKDEFN equals 0 or WDFKLINC equals 1.

0 0 3 BIT(1) WDFKLFL2 1 indicates line number field length is 2 digits long. 0
indicates line number is not 1 digit long. This field is not
used if WDFKDEFN equals 0 or WDFKLINC equals 1.

Note: If WDFKLFL1 and WDFKLFL2 both equal 0, the
field length is 3 digits.

0 0 4 BIT(1) WDFKPOSC 1 indicates actual position number provided. 0 indicates
displacement to position number field provided. This field is
not used if WDFKDEFN equals 0.

0 0 5 BIT(1) WDFKPFL1 1 indicates position number field length is 1 digit long. 0
indicates position number is not 1 digit long. This field is not
used if WDFKDEFN equals 0 or WDFKPOSC equals 1.

0 0 6 BIT(1) WDFKPFL2 1 indicates position number field length is 2 digits long. 0
indicates position number is not 1 digit long. This field is not
used if WDFKDEFN equals 0 or WDFKPOSC equals 1.

Note: If WDFKPFL1 and WDFKPFL2 both equal 0, the
field length is 3 digits.

0 0 7 BIT(1) WDFKDFTB Default specified in place of first two parameters. Bits
WDFKLINC and WDFKPOSC will also be set and
WDFKLINW and WDFKPOSW will be set to 0.

1 1 0 BIT(1) WDFKNMLN If on, *NOMSGLIN parameter is specified. This window
does not contain a message line.

1 1 1 BIT(1) WDFKWRST If on, *NORSTCSR parameter is specified. This window
allows the function keys to work outside of the window.

1 1 2 BIT(6) * Reserved.

2 2 CHAR(10) WDFKWNAM Name of window definition record.

2 2 BIN(15) WDFKLIN Line number or displacement.

4 4 BIN(15) WDFKPOS Position number or displacement.

6 6 BIN(15) WDFKLINW Number of window lines in window.

8 8 BIN(15) WDFKPOSW Number of window positions in window.

10 A CHAR(2) * Reserved.

Window Title Structure (QDFKWDWTTL)

Window title structure. This structure is defined at variable WDFKRPKW in structure QDFKMRPR.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(5) WDFKWDWOVL Miscellaneous record-level keywords. Structure
QDFKMRWP (Miscellaneous Record-Level Keywords
(QDFKMRWP)) overlays this field.

5 5 CHAR(1) WDFKWTFLAGS Miscellaneous flags that describe the type of information
provided by this window title keyword.

5 5 0 BIT(1) WDFKWTTXTF 1 indicates window title text is in a program-to-system
field. 0 indicates window title text is a text literal.

5 5 1 BIT(1) WDFKWTCLRF 1 indicates window title color value is in a
program-to-system field. 0 indicates window title color
value is in the parameter.

5 5 2 BIT(1) WDFKWTATRF 1 indicates window title attribute value is in a
program-to-system field. 0 indicates window title
attribute value is in the parameter.

5 5 3 BIT(1) WDFKWTALNF 1 indicates window title alignment value is in a
program-to-system field. 0 indicates window title
alignment value is in the parameter.

5 5 4 BIT(1) WDFKWTPOS 1 indicates window title goes in the bottom border. 0
indicates window title goes in the top border.

5 5 5 BIT(3) * Reserved.

6 6 BIN(15) WDFKWTCLRPF Buffer displacement to field that contains the color.

6 6 CHAR(1) * Reserved.

7 7 CHAR(1) WDFKWTCOLOR Value for *COLOR. X'00' indicates not specified, X'3A'
indicates BLU, X'20' indicates GRN, X'22' indicates
WHT, X'28' indicates RED, X'30' indicates TRQ, X'32'
indicates YLW, and X'38' indicates PNK.

8 8 BIN(15) WDFKWTDSPPF Buffer displacement to the field that contains the
attribute.

8 8 CHAR(1) * Reserved.

9 9 CHAR(1) WDFKWTDSPA Value for *DSPATR (combination of two or more of the
values below). X'00' indicates no attribute, X'30' indicates
(*DSPATR CS), X'28' indicates (*DSPATR BL), X'24'
indicates (*DSPATR UL), X'22' indicates (*DSPATR
HI), X'21' indicates (*DSPATR RI), and X'27' indicates
(*DSPATR ND).

10 A BIN(15) WDFKWTALGN Buffer displacement to the field that contains the
alignment.

10 A CHAR(1) * Reserved.

11 B CHAR(1) WDFKWTALIGN Value for alignment. X'00' indicates not specified, X'01'
indicates *left specified, X'02' indicates *CENTER
specified, and X'03' indicates *RIGHT specified.

12 C BIN(15) WDFKWTTXTO Buffer displacement to the field that contains the text if
variable WDFKWTTXTF in this structure is on.
Displacement is from structure QDFKWDWTTL
(Window Title Structure (QDFKWDWTTL)).

14 E BIN(15) WDFKWTTXTL Length of the text.

15 F CHAR(10) * Reserved.

26 1A CHAR(*) WDFKWTTEXT Text if entered on the parameter as a literal.

Mouse Button Structure (QDFKMB)

Mouse button structure. This structure is defined at variable WDFKMPEX in structure QDFKMRWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKMBFLAGS Miscellaneous flags that describe the type of information
provided by this mouse button keyword.

0 0 0 BIT(1) WDFKMBTYPE 1 indicates two event mouse button definition. 0 indicates
single event mouse button definition.

0 0 1 BIT(1) WDFKMBTCSR 1 indicates move text cursor to mouse cursor. 0 indicates
do not move text cursor to mouse cursor.

0 0 2 BIT(1) WDFKMBQUE 1 indicates queue if keyboard locked. 0 indicates do not
queue if keyboard locked.

0 0 3 BIT(1) WDFKMBKRB 1 indicates marker box drawn. 0 indicates marker box not
drawn.

0 0 4 BIT(4) * Reserved.

1 1 CHAR(1) WDFKMBFIRST Value for first event ID. X'01' indicates left button
pressed, X'02' indicates left button released, X'03'
indicates left button double-clicked, X'04' indicates right
button pressed, X'05' indicates right button released,
X'06' indicates right button double-clicked, X'07'
indicates middle button pressed, X'08' indicates middle
button released, X'09' indicates middle button
double-clicked, X'0A' indicates shift left button pressed,
X'0B' indicates shift left button released, X'0C' indicates
shift left button double-clicked, X'0D' indicates shift right
button pressed, X'0E' indicates shift right button released,
X'0F' indicates shift right button double-clicked, X'10'
indicates shift middle button pressed, X'11' indicates shift
middle button released, and X'12' indicates shift middle
button double-clicked.

2 2 CHAR(1) WDFKMBSECOND Value for second event ID. X'01' indicates left button
pressed, X'02' indicates left button released, X'03'
indicates left button double-clicked, X'04' indicates right
button pressed, X'05' indicates right button released,
X'06' indicates right button double-clicked, X'07'
indicates middle button pressed, X'08' indicates middle
button released, X'09' indicates middle button
double-clicked, X'0A' indicates shift left button pressed,
X'0B' indicates shift left button released, X'0C' indicates
shift left button double-clicked, X'0D' indicates shift right
button pressed, X'0E' indicates shift right button released,
X'0F' indicates shift right button double-clicked, X'10'
indicates shift middle button pressed, X'11' indicates shift
middle button released, and X'12' indicates shift middle
button double-clicked.

3 3 CHAR(1) WDFKMBAID AID code to be returned. X'31' through X'3C' indicates
CA/CF01-12, X'70' through X'7F' indicates E00-E15,
X'B1' through X'BC' indicates CA/CF13-24, X'BD'
indicates CLEAR, X'F1' indicates ENTER, X'F3'
indicates HELP, X'F4' indicates Roll Down, X'F5'
indicates Roll Up, X'F6' indicates Print, and X'F8'
indicates Home.

Category 18 (SFL Control Keywords)

The following table shows the keyword ID that corresponds to the following:

The SFL control keywords that can be optioned●

The SFL control keywords processed by SFL and workstation●

Not all keywords require a structure. There are no structures for keyword IDs X'01', X'02', X'03', X'04',
X'05', X'06', X'07', X'08', and X'09'.

ID Keyword ID Keyword

X'01' SFLDSP X'09' SFLDROP

X'02' SFLDSPCTL X'0D' SFLMSG

X'03' SFLINZ X'0E' SFLMSGID

X'04' SFLDLT X'0F' SFLEND(*MORE)

X'05' SFLCLR X'10' SFLCSRRRN

X'06' SFLEND X'11' SFLMODE

X'07' SFLNXTCHG X'12' SFLEND(*SCRBAR)

X'08' SFLFOLD

SFL Keyword Structure (QDFKSCSF)

SFL keyword structure. The displacement to this structure from the beginning of the appropriate section
(file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKSCS Number of keywords to follow.

2 2 CHAR(*) WDFKSCSE SFL keyword entries (see structure QDFKSCCP, SFL
Keyword Entry (QDFKSCCP)).

SFL Keyword Entry (QDFKSCCP)

SFL keyword entry. This structure is defined at variable WDFKSCSE in structure QDFKSCSF.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKSCID Keyword ID.

1 1 BIN(15) WDFKSCIN Index into selection table. 1 indicates not optioned.

3 3 CHAR(*) WDFKSCEX Extra remaining portion of this category.

SFLMSG and SFLMSGID Keyword Structure (QDFKSCSM)

Structure for SFLMSG and SFLMSGID keywords. Use this structure for a category 18 keyword that has a
keyword ID of X'0D' or X'0E'. This structure is defined at variable WDFKSCEX in structure QDFKSCCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKSCRS Response indicator minus one for files with INDARA
keyword. Response indicator input buffer displacement for
those without INDARA keyword. In either case, -1 represents
no response indicator is specified. For SFLMSGID, this field
contains hexadecimal zeros.

2 2 CHAR(1) WDFKSCTY Parameter type (for SFLMSG). X'00' indicates character, X'08'
indicates DBCS.

3 3 BIN(15) WDFKSCLN Length of data to follow.

5 5 CHAR(*) WDFKSCTX Parameters of text or data.

SFLMSGID Keyword Structure (QDFKSCSI)

SFLMSGID keyword structure. Use this structure for a category 18 keyword that has a keyword ID of
X'0E'. The first three fields are specified. If the user does not specify a library, *LIBL is the default. This
structure is defined at variable WDFKSCTX in structure QDFKSCSM.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(7) WDFKSCMI Message ID.

7 7 CHAR(10) WDFKSCMF Message file name.

17 11 CHAR(10) WDFKSCML Message library name.

27 1B BIN(15) WDFKSCDL Message data field length.

29 1D BIN(15) WDFKSCMO Output buffer displacement to message data field.

SFLEND(*MORE) Keyword Structure (QDFKSFLM)

SFLEND(*MORE) keyword structure. Use this structure for a category 18 keyword that has a keyword ID
of X'0F'. This structure is defined at variable WDFKSCEX in structure QDFKSCCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(12) WDFKMORE Text to be used for More....

12 C CHAR(12) WDFKBOTT Text to be used for Bottom.

SFLEND(*SCRBAR) Keyword Structure (QDFKSFLS)

SFLEND(*SCRBAR) keyword structure. Use this structure for a category 18 keyword that has a keyword
ID of X'12'. This structure is defined at variable WDFKSCEX in structure QDFKSCCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKSFLENDSPM Second parameter value for SFLEND(*SCRBAR).
X'00' indicates *SCRBAR, X'01' indicates *MORE,
and X'02' indicates *PLUS.

1 1 CHAR(12) WDFKSFLMORE Text to be used for More....

13 D CHAR(12) WDFKSFLBOTT Text to be used for Bottom.

SFLCSRRRN Keyword Structure (QDFKCSRRRN)

SFLCSRRRN keyword structure. Use this structure for a category 18 keyword that has a keyword ID of
X'10'. This structure is defined at VARIABLE WDFKSCEX in structure QDFKSCCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKCSRNO Displacement into input buffer to the hidden field containing the
subfile relative record number of where the cursor is located.

SFLMODE Keyword Structure (QDFKMODE)

SFLMODE keyword structure. Use this structure for a category 18 keyword that has a keyword ID of X'11'.
This structure is defined at variable WDFKSCEX in structure QDFKSCCP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKSCMDO Displacement into input buffer to the hidden field containing
the mode of the subfile. If set to 0, the MODE keyword was not
specified.

Category 20 (Screen-Attribute-Related Keywords)

The following table shows the keyword ID that corresponds to the screen-attribute-related keywords. None
of these keyword IDs require a structure.

ID Keyword ID Keyword

X'01' COLOR X'07' DSPATR(HI)

X'04' DSPATR(CS) X'08' DSPATR(RI)

X'05' DSPATR(BL) X'09' DSPATR(ND)

X'06' DSPATR(UL) X'0A' DSPATR(PC)

Screen Attribute Keyword Structure (QDFKSASA)

Structure for screen attribute keywords. The displacement to this structure from the beginning of the
appropriate section (file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKSAS Number of keyword entries to follow.

2 2 CHAR(*) WDFKSASE Screen attribute keywords (see structure QDFKSAPM, Screen
Attribute Keyword Array (QDFKSAPM)).

Screen Attribute Keyword Array (QDFKSAPM)

Array of screen attribute keywords. This structure is defined at variable WDFKSASE in structure
QDFKSASA. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKSAIA Keyword ID.

1 1 BIN(15) WDFKSAII Index into selection table. For color keywords, 1 indicates
keyword is not optioned. Unoptioned DSPATR keywords are
not in this category but are indicated in the screen attribute
variable WDFFSA in structure QDFFFDPD.

3 3 CHAR(1) WDFKSAOA OR value color. X'20' indicates GRN, X'22' indicates WHT,
X'28' indicates RED, X'30' indicates TRQ, X'32' indicates
YLW, X'38' indicates PNK, and X'3A' indicates BLU.
DSPATR. X'30' indicates CS, X'28' indicates BL, X'24'
indicates UL, X'22' indicates HI, X'21' indicates RI, and X'27'
indicates ND.

Category 21 Keywords

The following table shows the keyword ID that corresponds to category 21 keywords. All of these keyword
IDs require a structure.

ID Keyword

X'01' DSPATR(PR)

X'02' DUP

X'03' DSPATR(MDT)

X'04' AUTO(RA)

X'05' CHECK(ME)

FFW and FCW Keyword Structure (QDFKFFWR)

Structure for field format word (FFW) and field control word (FCW) keywords. The displacement to this
structure from the beginning of the section is an entry in the table at variable WDFFCAOF in structure
QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKFWS Number of keywords to follow.

2 2 CHAR(*) WDFKFWEN FFW keyword entries (see structure QDFKCHKP, FFW
Keyword Structure (QDFKCHKP)).

FFW Keyword Structure (QDFKCHKP)

Structure for FFW-related keywords. Use this structure for category 21 keywords that have keyword IDs of
X'01', X'02', X'03', X'04', and X'05'. This structure is defined at variable WDFKFWEN in structure
QDFKFFWR. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKFWID Keyword ID.

1 1 BIN(15) WDFKFWIN Index into selection table. 1 indicates keyword is not optioned.
Keywords DSPATR(PR | MDT), DUP, AUTO(RA), and
CHECK(ME), which are not optioned, are not in this category
but are indicated in the FFW WDFFFWFW VARIABLE in
structure QDFFFDIC.

3 3 CHAR(2) WDFKFWOV OR value for FFW. X'6000' indicates DSPATR(PR), X'5000'
indicates DUP, X'4800' indicates DSPATR(MDT), X'4080'
indicates AUTO(RA), X'4008' indicates CHECK(ME).

Category 22 (Miscellaneous Field-Level Keywords)

The following table shows the keyword ID that corresponds to miscellaneous field-level keywords. Not all
keywords require a structure. There are no structures for keyword IDs X'01', X'02', X'03', X'04', X'05', X'06'
and X'07'.

ID Keyword ID Keyword

X'01' PUTRETAIN X'10' MSGID

X'02' OVRDTA X'15' ERRMSG

X'03' OVRATR X'16' ERRMSGID

X'04' BLANKS X'17' DSPATR(PFLD)

X'05' CHANGE X'18' DATTIMFMT

X'06' DUP X'19' DATTIMSEP

X'07' DUP X'1A' DATE (special value)

X'1B' MAPVAL

Miscellaneous Field-Level Keyword Structure (QDFKMFDK)

Miscellaneous field-level keywords. The displacement to this structure from the beginning of the
appropriate section (file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKMFS Number of keywords to follow.

2 2 BIN(15) WDFKMFNO Index into field index table of next field that has either
ERRMSG or ERRMSGID. 0, if this the last one in the record
or none exist.

4 4 CHAR(*) WDFKMFEN Field-level keyword entry (see structure QDFKMFDP,
Field-Level Keyword Structure (QDFKMFDP)).

Field-Level Keyword Structure (QDFKMFDP)

Field-level keyword parameters. The number of keyword parameters is contained in variable WDFKMFS
in structure QDFKMFDK. This structure is defined at variable WDFKMFEN in structure QDFKMFDK.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKMFID Keyword ID.

1 1 BIN(15) WDFKMFIN Index into selection table. 1 indicates keyword is not optioned.

3 3 CHAR(*) WDFKMFEX Extra remaining portion of this category.

Response Indicator Structure (QDFKMFRS)

Response indicator. This structure is defined at variable WDFKMFEX in structure QDFKMFDP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKMFRP Response indicator minus one for files with INDARA
keyword. Response indicator input buffer displacement for
those without INDARA. In either case, -1 represents no
response indicator specified. For ERRMSGID, this field
contains hexadecimal zeros.

2 2 CHAR(*) WDFKMFEE ERRMSG and ERRMSGID data.

ERRMSG and ERRMSGID Keyword Structure (QDFKMFEM)

Structure for ERRMSG and ERRMSGID keywords. Use this structure for category 22 keywords that have
keyword IDs of X'15' and X'16'. This structure is defined at variable WDFKMFEE in structure
QDFKMFRS.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKMFTP Type of parameter (for ERRMSG). X'00' indicates character,
X'08' indicates DBCS.

1 1 BIN(15) WDFKMFEL Length of data to follow.

3 3 CHAR(*) WDFKMFTX ERRMSG and ERRMSGID data.

ERRMSGID Keyword Structure (QDFKMFSI)

ERRMSGID keyword structure. Use this structure for category 22 keywords that have a keyword ID of
X'16'. The first three fields are specified. If the user does not specify library, *LIBL is the default. This
structure is defined at variable WDFKMFTX in structure QDFKMFEM.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(7) WDFKMFMI Message ID.

7 7 CHAR(10) WDFKMFMF Message file name.

17 11 CHAR(10) WDFKMFML Message library name.

27 1B BIN(15) WDFKMFDL Message data field length.

29 1D BIN(15) WDFKMFMO Output buffer displacement to message data field.

MSGID Keyword Common Structure (QDFKMFMV)

MSGID keyword structure. Use this structure for category 22 keywords that have a keyword ID of X'10'.
This structure is defined at variable WDFKMFEX in structure QDFKMFDP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKMFMM Mode of MSGID keyword. X'01' indicates
prefix specified, X'02' indicates no prefix
specified, X'03' indicates constant message ID,
and X'04' indicates none. For mode 1 or 2, use
this structure. For mode 3, use structure
QDFKMFM3 (Type Three MSGID Keyword
Structure (QDFKMFM3)). For mode 4, use
structure QDFKMFM4 (Type Four MSGID
Keyword Structure (QDFKMFM4)).

1 1 CHAR(3) WDFKMFMP Message prefix. This field contains
hexadecimal zeros when variable
WDFKMFMM in this structure equals X'02'.
When WDFKMFMM equals X'03', this field is
the same value as variable WDFKMF1 in
structure QDFKMFM3.

4 4 BIN(15) WDFKMFFL Message file length. This is the length of the
field that contains the message file name. This
field is not set when the file is a constant or
special value.

6 6 CHAR(10) WDFKMFFV Message file name set when a constant or
special value is specified for the message file.

16 10 CHAR(10) WDFKMFLV Message file library name set when a constant
or no library is specified for the message file.

26 1A ARRAY(3) OF BIN(15) WDFKMFB Three output buffer displacements to the fields
in the following order: (1) MSGID field, (2)
message file field, and (3) message library field.
For message file or message library, X'FFFF'
indicates constants. When variable
WDFKMFMM equals X'03', the MSGID field
equals X'FFFF'.

32 20 ARRAY(3) OF BIN(31) WDFKMFNT Indexes to a field in structure QDFFNTB (Field
Name Table (QDFFNTB)) in the same order as
variable WDFKMFB in this structure. If not
specified, set to hexadecimal zeros.

43 2B CHAR(*) WDFKMFMX Extension for type three MSGID keyword
structure (only when variable WDFKMFMM
equals X'03').

Type Three MSGID Keyword Structure (QDFKMFM3)

Structure for MSGID keyword when variable WDFKMFMM in structure QDFKMFMV equals X'03'. This
structure is defined at variable WDFKMFMX in structure QDFKMFMV.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(3) WDFKMF1 Constant message number. Message prefix (same as
WDFKMFMP in structure QDFKMFMV).

3 3 CHAR(4) WDFKMF2 Message ID.

Type Four MSGID Keyword Structure (QDFKMFM4)

Structure for MSGID(*NONE) keyword when variable WDFKMFMM in structure QDFKMFMV equals
X'04'. This structure is defined at variable WDFKMFEX in structure QDFKMFDP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKMFD4 Mode of MSGID keyword. MSGID(*NONE) equals X'04'.

DSPATR Keyword Structure (QDFKDFLD)

DSPATR keyword structure. Use this structure for a category 22 keyword that has a keyword ID of X'17'.
This structure is defined at variable WDFKMFEX in structure QDFKMFDP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKDFLO Displacement to attribute field.

DATTIMFMT Keyword Structure (QDFK_DATTIM_Format)

The DATFMT or TIMFMT keyword structure. Use this category 22 keyword structure for ID X'18'. This
structure is defined at variable WDFKMFEX in structure QDFKMFDP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15)
WDFK_DATTIM
_Fmt

Format used for a field with the date or time data type. X'01'
indicates *JOB, X'02' indicates *MDY, X'03' indicates *DMY,
X'04' indicates *YMD, X'05' indicates *JUL, X'06' indicates
*ISO, X'07' indicates *USA, X'08' indicates *EUR, X'09'
indicates *JIS, X'0A' indicates *HMS.

DATTIMSEP Keyword Structure (QDFK_DATTIM_Separator)

The DATSEP or TIMSEP keyword structure. Use this category 22 keyword structure for ID X'19'. This
structure is defined at variable WDFKMFEX in structure QDFKMFDP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1)
WDFK_DATTIM
_Sep

Separator used for a field with the date or time data type. The
separator can be a period (.), comma (,), slash (/), dash (-),
colon (:), blank () or (J) to indicate *JOB.

DATE Keyword Structure (QDFK_DATEP)

The DATE (with parameters) keyword structure. Use this category 22 keyword structure for ID X'1A'. This
structure is defined at variable WDFKMFEX in structure QDFKMFDP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 0 BIT(1) WDFK_DATE_SYS If on, the *SYS parameter is specified on the DATE
keyword.

0 0 1 BIT(1) WDFK_DATE_YY If on, the *YY parameter is specified on the DATE
keyword.

0 0 2 BIT(1)
WDFK_DATE
_EDTCDEY

If on, the EDTCDE(Y) keyword was specified with the
DATE keyword.

0 0 2 BIT(5) * Reserved.

MAPVAL Keyword Structure (QDFK_MAPVAL)

The MAPVAL keyword structure. Use this category 22 keyword structure for ID X'1B'. This structure is
defined at variable WDFKMFEX in structure QDFKMFDP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15)
WDFK_MAPVAL
_Count

Number of MAPVAL keyword parameters.

2 2 BIN(15)
WDFK_MAPVAL
_Length

Length of each MAPVAL keyword parameter.

4 4 CHAR(*)
WDFK_MAPVAL
_Length

List of MAPVAL keyword parameters. Length of this
structure is WDFK_MAPVAL_Count *
WDFK_MAPVAL_Length.

Category 23 (DFT Keyword)

The following table shows the keyword ID that corresponds to the DFT keyword. Not all keywords require
a structure. There are no structures for keyword IDs X'01' and X'03'.

ID Keyword

X'01' DFT

X'02' MSGCON

X'03' DFTVAL

X'04' HTML

Category 23 Keyword Structure (QDFKDFT)

Category 23 keyword structure. The displacement to this structure from the beginning of the appropriate
section (file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKDFS Number of keywords to follow.

2 2 CHAR(*) WDFKDFPE Category 23 parameter entries (see structure QDFKDFPM,
Category 23 Keyword Parameters (QDFKDFPM)).

Category 23 Keyword Parameters (QDFKDFPM)

Category 23 keyword parameters. This structure is defined at variable WDFKDFPE in structure
QDFKDFT. Displacements to subsequent entries are calculated using variable WDFKDFLN in this
structure. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKDFID Keyword ID.

1 1 CHAR(1) WDFKDFTY Parameter type. X'00' indicates character, X'03' indicates
graphic literal, and X'08' indicates DBCS.

2 2 BIN(15) WDFKDFIN Index into selection table. 1 indicates keyword is not optioned.

4 4 BIN(15) WDFKDFLN Length of data to follow. For the MSGCON keyword, this
value is only the length of the message text.

6 6 CHAR(*) WDFKDFDF Parameter for MSGCON keyword.

MSGCON Keyword Structure (QDFKDFMM)

MSGCON keyword structure. Use this structure for a category 23 keyword that has a keyword ID of X'02'.
All three fields are specified. This structure follows variable WDFKDFDF in structure QDFKDFPM.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(7) WDFKDFMI Message ID.

7 7 CHAR(10) WDFKDFMF Message file name.

17 11 CHAR(10) WDFKDFML Message file library name. If the user does not specify
library, *LIBL is the default.

HTML Keyword Structure (QDFKDFHTML)

HTML keyword structure. Use this structure for a category 23 keyword that has a keyword ID of X'04'.
This structure is defined at variable WDFKDFDF in structure QDFKDFPM.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKDFHFLAG Miscellaneous HTML tags

0 0 0 BIT(1) WDFKDFHPFLD If the bit is set on, then a program-to-system field was
specified on the HTML keyword.

0 0 1 BIT(7) * Reserved.

1 1 BIN(15) WDFKDFHLEN Length of HTML text string or program-to-system
field length.

3 3 BIN(15) WDFKDFHOFF Offset to the program-to-system field from the start of
the output buffer. This field is set to zero if a
program-to-system field is not used.

5 5 CHAR(*) WDFKDFHTMLTEXT HTML text string. The length of this field is given in
WDFKDFHLEN.

Category 24 (Field-Level Editing and Time Keywords)

The following table shows the keyword ID that corresponds to the field-level editing and time keywords.

ID Keyword

X'01' EDTWRD

X'02' EDTCDE

EDIT Keyword Structure (QDFKEDTR)

Structure for editing date and time type keywords. The displacement to this structure from the beginning of
the appropriate section (file, record, and field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKEDS Number of keywords to follow.

2 2 CHAR(*) WDFKEDKW EDIT keyword parameters (see structure QDFKEDTP, EDIT
Keyword Structure (QDFKEDTP)).

EDIT Keyword Structure (QDFKEDTP)

EDIT keyword structure. Use this structure for category 24 keywords that have keyword IDs of X'01' and
X'02'. This structure is defined at variable WDFKEDKW in structure QDFKEDTR. The structure is
ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKEDID Keyword ID.

1 1 CHAR(1) WDFKEDSY Zero suppress or fill character for the EDTCDE keyword.

2 2 BIN(15) WDFKEDML Length of the edit mask.

4 4 CHAR(1) * Reserved.

5 5 CHAR(*) WDFKEDMS The edit mask for the EDTCDE and EDTWRD keywords.

Category 25 (GET Validation Keywords)

The following table shows the keyword ID that corresponds to the GET validation keywords.

ID Keyword ID Keyword ID Keyword

X'01' RANGE X'07' CMP(LE) X'0D' CHECK(M11)

X'02' VALUES X'08' CMP(LT) X'0E' CHECK(VN)

X'03' CMP(GT) X'09' CMP(NL) X'0F' CHECK(VNE)

X'04' CMP(GE) X'0A' CMP(NG) X'10' CHECK(M10F)

X'05' CMP(EQ) X'0B' CHKMSGID X'11' CHECK(M11F)

X'06' CMP(NE) X'0C' CHECK(M10)

Validity Checking Keyword Structure (QDFKVAKW)

Structure for validity-checking type keywords. The displacement to this structure from the beginning of the
appropriate section (file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKVAL Number of validity checking structures to follow. This value is
1. If the CHKMSGID keyword is present, variable
WDFKCMID in structure QDFKVARL is set on and structure
QDFKCKMI (CHKMSGID Keyword Structure
(QDFKCKMI)) is present.

2 2 CHAR(*) WDFKVACK Validity checking keywords (see structure QDFKVARL,
Validity Checking Keywords (QDFKVARL)).

Validity Checking Keywords (QDFKVARL)

Validity-checking type keywords. Use this structure for category 25 keywords that have keyword IDs of
X'01' through X'11'. This structure is defined at variable WDFKVACK in structure QDFKVAKW.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKVALC Miscellaneous flags.

0 0 0 BIT(1) WDFKM10F If on, CHECK(M10F) keyword is specified.

0 0 1 BIT(1) WDFKM11F If on, CHECK(M11F) keyword is specified.

0 0 2 BIT(1) WDFKCHVN If on, CHECK(VN) keyword is specified.

0 0 3 BIT(1) WDFKCHVE If on, CHECK(VNE) keyword is specified. f

0 0 4 BIT(1) WDFKCMID If on, CHKMSGID keyword is specified. The structure
QDFKCKMI (CHKMSGID Keyword Structure
(QDFKCKMI)) is present.

0 0 5 BIT(1) WDFKM10 If on, CHECK(M10) keyword is specified.

0 0 6 BIT(1) WDFKM11 If on, CHECK(M11) keyword is specified.

0 0 7 BIT(1) * Reserved.

1 1 CHAR(1) WDFKVALB Flags for CMP, RANGE, and VALUE keywords.

1 1 0 BIT(4) WDFKVAL B'0000' indicates NONE, B'0001' indicates RANGE, B'0010'
indicates VALUE, B'0011' indicates CMP(GT), B'0100'
indicates CMP(GE or NL), B'0101' indicates CMP(EQ),
B'0110' indicates CMP(NE), B'0111' indicates CMP(LE or
NG), and B'1000' indicates CMP(LT).

1 1 4 BIT(4) * Reserved.

2 2 CHAR(1) * Reserved.

3 3 CHAR(1) WDFKVATP Type of parameters. If a parameter has graphic literals, this
value is X'03'. If any parameter has DBCS literals, this value is
X'08'. Otherwise, this field contains 0.

4 4 BIN(15) WDFKLAP Number of parameters.

6 6 BIN(15) WDFKLATP Total length of parameters. (Each parameter length is wdffplen
in structure QDFFFNAM.)

8 8 CHAR(*) WDFKAPRM Validity checking keywords (see structure QDFKCKMI,
CHKMSGID Keyword Structure (QDFKCKMI)). This
structure is present if variable WDFKCMID in this structure is
on.

CHKMSGID Keyword Structure (QDFKCKMI)

CHKMSGID keyword structure. This structure is present if variable WDFKCMID in structure
QDFKVARL is on. This structure is defined at variable WDFKAPRM in structure QDFKVARL.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(7) WDFKCKMD Message identifier.

7 7 CHAR(10) WDFKCKMF Message file name.

17 11 CHAR(10) WDFKCKML Message file library name.

27 1B BIN(15) WDFKCKDL Message data length. Length of field that contains message
data name. If no message data name exists, this is set to 0.

29 1D BIN(15) WDFKCKB Output buffer displacement to message data field.

Category 26 (Field-Level Keywords for CUA Constructs)

The following table shows the keyword ID that corresponds to field-level keywords for Common User
Access(R) (CUA(R)) constructs. All of these keyword IDs require a structure.

Note: CHCFLD is generated internally whenever the CHOICE, MNUBARCHC, or PSHBTNCHC
keyword is specified.

ID Keyword ID Keyword

X'01' CHCFLD X'06' ENTFLDATR

X'02' MNUBARSEP X'07' FLDCSRPRG

X'03' CHCAVAIL X'08' CNTFLD

X'04' CHCSLT X'09' EDTMSK

X'05' CHCUNAVAIL

Field-Level CUA Keyword Structure (QDFKFCPR)

Structure for field-level CUA keywords with parameters. The displacement to this structure from the
beginning of the appropriate section (file, record, or field) is at variable WDFFCAOF in structure
QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKFCS Number of keywords to follow.

2 2 CHAR(*) WDFKFCKW Field-level CUA keywords (see structure QDFKFC,
Field-Level CUA Keywords (QDFKFC)).

Field-Level CUA Keywords (QDFKFC)

CUA keyword structure. This structure is defined at variable WDFKFCKW in structure QDFKFCPR. The
structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKFCID Keyword ID.

1 1 BIN(15) WDFKFCIN Index into selection table. 1 indicates keyword is not optioned.

3 3 BIN(15) WDFKFCLN Length of parameter for keyword.

5 5 CHAR(*) WDFKFCEX Extra remaining portion for keywords.

CHCFLD Keyword Structure (QDFKCHC)

CHCFLD keyword structure. Use this structure for a category 26 keyword that has a keyword ID of X'01'.
This structure is defined at variable WDFKFCEX in structure QDFKFC.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKCHCCT Number of choice entries to follow.

2 2 CHAR(10) WDFKCHCFN Name of the choice field.

Note: The following two fields are maximum dimensions of the choice field. Set only for single- and
multiple-choice selection fields and push-button fields.

12 C BIN(15) WDFKCHCR Maximum number of rows.

14 E BIN(15) WDFKCHCC Maximum number of columns.

Note: The following two fields are selection characters to be used for multiple-choice selection fields.

16 10 CHAR(1) WDFKSELCHAR1 First character to be used.

17 11 CHAR(1) WDFKSELCHAR2 Second character to be used.

18 12 CHAR(1) * Reserved.

19 13 CHAR(*) WDFKCHCS Choice entries.

CHCFLD Keyword Header Expansion Structure
(QDFKCHCHDREXP)

CHCFLD header expansion structure. If bit WDFFCHCHDHEXP in structure QDFFXFDP is on, this
structure is used. This structure is defined at variable WDFKCHCS in structure QDFKCHC.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKCHCEXPLEN Length of the CHCFLD header expansion area.

2 2 BIN(15) WDFKROWCOL Value with either the *NUMROW or *NUMCOL
parameter. Valid only if variable WDFKHORIZ in this
structure is on.

4 4 BIN(15) WDFKGUTTER Value with the *GUTTER parameter.

6 6 CHAR(2) WDFKFLAGS Miscellaneous flags to describe how the choice fields
were specified.

6 6 0 BIT(1) WDFKRSTCSR If on, *RSTCSR parameter is specified on the
SNGCHCFLD, MLTCHCFLD, or PSHBTNFLD
keyword.

6 6 1 BIT(1) WDFKNORSTCSR If on, *NORSTCSR parameter is specified on the
SNGCHCFLD, MLTCHCFLD, or PSHBTNFLD
keyword.

6 6 2 BIT(1) * Reserved.

6 6 3 BIT(1) WDFKSLTIND If on, *SLTIND parameter is specified on the
SNGCHCFLD or MLTCHCFLD keyword.

6 6 4 BIT(1) WDFKNOSLTIND If on, *NOSLTIND parameter is specified on the
SNGCHCFLD or MLTCHCFLD keyword.

6 6 5 BIT(1) * Reserved.

6 6 6 BIT(1) WDFKAUTOSLT If on, *AUTOSLT parameter is specified on the
SNGCHCFLD keyword.

6 6 7 BIT(1) WDFKAUTOSLTEN If on, *AUTOSLTENH parameter is specified on the
SNGCHCFLD keyword.

6 6 8 BIT(1) WDFKNOAUTOSLT If on, *NOAUTOSLT parameter is specified on the
SNGCHCFLD keyword.

6 6 9 BIT(1) WDFKHORIZ If on, *NUMCOL or *NUMROW parameter is
specified on the SNGCHCFLD, MLTCHCFLD, or
PSHBTNFLD keyword.

6 6 A BIT(1) WDFKCOLMAJOR If on, *NUMCOL parameter is specified on the
SNGCHCFLD, MLTCHCFLD, or PSHBTNFLD
keyword.

6 6 B BIT(1) WDFKAUTOENT If on, *AUTOENT parameter is specified on the
SNGCHCFLD keyword.

6 6 C BIT(1) WDFKAUTOENTNN If on, *AUTOENTNN parameter is specified on the
SNGCHCFLD keyword.

6 6 D BIT(1) WDFKNOAUTOENT If on, *NOAUTOENT parameter is specified on the
SNGCHCFLD keyword.

6 6 E BIT(2) * Reserved.

7 7 CHAR(10) * Reserved.

Choice Entry Structure (QDFKCHCE)

Choice entry structure. Use this structure for a category 26 keyword that has a keyword ID of X'01'. The
number of entries in this structure is defined by variable WDFKCHCCT in structure QDFKCHC. This
structure is defined at variable WDFKCHCS in structure QDFKCHC. The structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) * Reserved.

1 1 BIN(15) WDFKCLEN Length of this entry. Displacement to the subsequent
choice entry.

3 3 CHAR(1) WDFKCFLG Flags for choice entry.

3 3 0 BIT(1) WDFKCCTXT On indicates choice text structure is specified; off indicates
choice text is in a program-to-system field.

3 3 1 BIT(1) WDFKCRTN If on, return control specified is set only for a menu bar
choice.

3 3 2 BIT(1) WDFKCSPC If on, *SPACEB parameter is specified on the CHOICE or
PCHBTNCHC keyword.

3 3 3 BIT(1) WDFKCPBC If on, command key specified on choice.

3 3 4 BIT(4) * Reserved.

4 4 CHAR(2) WDFKC Choice number.

6 6 BIN(15) WDFKCINX26 Index into selection string for this choice.

8 8 BIN(15) WDFKCTXTO Displacement to choice text. If variable WDFKCCTXT is
on, this is a displacement to the choice text structure (see
structure QDFKCTXT, Choice Text Structure
(QDFKCTXT)). If WDFKCCTXT is off, this is a buffer
displacement to the field containing the choice text.

10 A BIN(15) WDFKCTXTL Choice text length. If choice text string is specified, this is
the length of the text including trailing blanks. If choice
text is a program-to-system field, this is the length of the
program-to-system field.

12 C BIN(15) WDFKCMSGO Displacement to CHCCTL keyword structure (see structure
QDFKCMSG, CHCCTL Keyword Structure
(QDFKCMSG)). This is set only for a selection field
choice (single or multiple). 0 indicates no message is
specified.

14 E BIN(15) WDFKCACCO Displacement to the accelerator text structure (see structure
QDFKCACC, CHCACCEL Keyword Structure
(QDFKCACC)). 0 indicates accelerator text is not
specified.

16 10 CHAR(10) WDFKCPRCD Name of pull-down record. Set only for a menu bar choice.

16 10 CHAR(1) WDFKCPBCAID AID code specified on the push button choice. X'31'
through X'3C' indicates CA/CF01-12, X'70' through X'7F'
indicates E00-E15, X'B1' through X'BC' indicates
CA/CF13-24, X'BD' indicates CLEAR, X'F1' indicates
ENTER, X'F3' indicates HELP, X'F4' indicates Roll Down,
X'F5' indicates Roll Up, X'F6' indicates Print, and X'F8'
indicates Home.

17 11 CHAR(9) * Reserved.

26 1A BIN(15) WDFKCRTNO Buffer displacement to the menu bar return field (see
structure QDFKMBSEPS, MNUBARSEP Keyword
Structure (QDFKMBSEPS)). Set only for a menu bar
choice. -1 indicates no return field is specified.

28 1C BIN(15) WDFKCRTNL Length of the return field.

30 1E BIN(15) WDFKCCTLO Buffer displacement to the choice control field (see
structure QDFKCMSG, CHCCTL Keyword Structure
(QDFKCMSG)). This is in the output buffer. -1 indicates
no control field is specified.

32 20 BIN(15) WDFKCCTLIO Buffer displacement to the choice control field (see
structure QDFKCMSG, CHCCTL Keyword Structure
(QDFKCMSG)). This is in the input buffer. -1 indicates no
control field is specified.

34 22 CHAR(*) WDFKCV Additional structures.

Choice Text Structure (QDFKCTXT)

Choice text structure. The length of the text is in the fixed choice entry string (variable WDFKCTXTL in
structure QDFKCHCE). The displacement to this structure from the beginning of structure QDFKCHCE is
at variable WDFKCTXTO in QDFKCHCE.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKCMNEM Position of the mnemonic. 0 indicates no mnemonic is
specified.

2 2 CHAR(*) WDFKCTXTT Choice text (including trailing blanks).

CHCACCEL Keyword Structure (QDFKCACC)

CHCACCEL keyword structure. The displacement to this structure from the beginning of structure
QDFKCHCE is at variable WDFKCACCO in QDFKCHCE.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKCACCSL Length of accelerator structure.

2 2 BIN(15) WDFKCACCL Length of text or variable for accelerator.

4 4 BIN(15) WDFKCACCFO Displacement into the output buffer for the accelerator
program-to-system field. -1 indicates no accelerator
program-to-system field is specified.

6 6 CHAR(*) WDFKCACCT Accelerator text.

CHCCTL Keyword Structure (QDFKCMSG)

CHCCTL keyword structure. The displacement to this structure from the beginning of structure
QDFKCHCE is at variable WDFKCCTLO in QDFKCHCE.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKCMFLG Message flags.

0 0 0 BIT(1) WDFKCMIDP On indicates the message ID is the buffer displacement to
program-to-system field; off indicates the actual message ID
is specified.

0 0 1 BIT(1) WDFKCMFLP On indicates the message file is the buffer displacement to
program-to-system field; off indicates the actual message file
is specified.

0 0 2 BIT(1) WDFKCMLBP On indicates the message file library is the buffer
displacement to program-to-system field; off indicates the
actual message library is specified.

0 0 3 BIT(5) * Reserved.

1 1 CHAR(7) WDFKCMID26 Message ID.

1 1 BIN(15) WDFKMIDO Buffer displacement to field that contains the message ID.

3 3 CHAR(5) * Reserved.

8 8 CHAR(10) WDFKCMFL Message file name.

8 8 BIN(15) WDFKCMFLO Buffer displacement to field that contains the message file.

10 A CHAR(8) * Reserved.

18 12 CHAR(10) WDFKCMLB Message file library name.

18 12 BIN(15) WDFKCMLBO Buffer displacement to field that contains the message
library.

20 14 CHAR(8) * Reserved.

MNUBARSEP Keyword Structure (QDFKMBSEPS)

MNUBARSEP keyword structure. Use this structure for a category 26 keyword that has a keyword ID of
X'02'. This structure is defined at variable WDFKFCEX in structure QDFKFC.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKMBSEPF MNUBARSEP keyword flags.

0 0 0 BIT(1) WDFKMBSCP On indicates the color is specified in a program-to-system
field; off indicates the actual color is specified.

Note: If on, use variable WDFKMBSCO; otherwise, use
variable WDFKMBSCLR.

0 0 1 BIT(1) WDFKMBSAP On indicates the display attribute is specified in a
program-to-system field; off indicates the actual attribute is
specified.

Note: If on, use variable WDFKMBSAO; otherwise, use
variable WDFKMBSATR.

0 0 2 BIT(1) WDFKMBSHP On indicates the character is specified in a
program-to-system field; off indicates the actual character is
specified.

Note: If on, use variable WDFKMBSCHO; otherwise, use
variable WDFKMBSCHR.

0 0 3 BIT(5) * Reserved.

1 1 BIN(15) WDFKMBSCO Buffer displacement to field that contains the color.

1 1 CHAR(1) WDFKMBSCLR Actual value for *COLOR. X'00' indicates not specified,
X'3A' indicates BLU, X'20' indicates GRN, X'22' indicates
WHT, X'28' indicates RED, X'30' indicates TRQ, X'32'
indicates YLW, and X'38' indicates PNK.

2 2 CHAR(1) * Reserved.

3 3 BIN(15) WDFKMBSAO Buffer displacement to field that contains the attribute.

3 3 CHAR(1) WDFKMBSATR Actual value for *DSPATR. Combination of two or more of
these values: X'00' indicates no attribute, X'30' indicates
(*DSPATR CS), X'28' indicates (*DSPATR BL), X'24'
indicates (*DSPATR UL), X'22' indicates (*DSPATR HI),
X'21' indicates (*DSPATR RI), and X'27' indicates
(*DSPATR ND). If multiple values are specified, they are
ORed together.

4 4 CHAR(1) * Reserved.

5 5 BIN(15) WDFKMBSCHO Buffer displacement to field that contains the separator
character.

5 5 CHAR(1) WDFKMBSCHR Actual separator character. X'00' indicates not specified.

6 6 CHAR(1) * Reserved.

Choice Keywords Structure (QDFKCHCX)

Structure for CHCAVAIL, CHCSLT, and CHCUNAVAIL keywords. Use this structure for category 26
keywords that have keyword IDs of X'03', X'04', and X'05'. This structure is defined at variable
WDFKFCEX in structure QDFKFC.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) * Reserved.

1 1 CHAR(1) WDFKCHCCLR Color (from the MNUBARSEP keyword).

2 2 CHAR(1) * Reserved.

3 3 CHAR(1) WDFKCHCATR Display attribute. Combination of two or more of these
values: X'00' indicates no attribute, X'30' indicates
(*DSPATR CS), X'28' indicates (*DSPATR BL), X'24'
indicates (*DSPATR UL), X'22' indicates (*DSPATR HI),
X'21' indicates (*DSPATR RI), and X'27' indicates
(*DSPATR ND).

4 4 CHAR(1) * Reserved.

ENTFLDATR Keyword Structure (QDFKEFATR)

ENTFLDATR keyword structure. Use this structure for a category 26 keyword that has a keyword ID of
X'06'. This structure is defined at variable WDFKFCEX in structure QDFKFC.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKEFATRF Entry field attribute flags.

0 0 0 BIT(1) WDFKEFACP On indicates the color is a program-to-system field; off
indicates the actual color is specified.

0 0 1 BIT(1) WDFKEFAAP On indicates the attribute is a program-to-system field; off
indicates the actual attribute is specified.

0 0 2 BIT(1) WDFKEFACV On indicates the cursor is visible; off indicates the cursor is
invisible.

0 0 3 BIT(5) * Reserved.

1 1 CHAR(1) WDFKEFACLR Actual color. X'00' indicate no color is specified.

2 2 CHAR(1) * Reserved.

3 3 CHAR(1) WDFKEFAATR Actual attribute. X'00' indicate no attribute is specified.

4 4 CHAR(1) * Reserved.

FLDCSRPRG Keyword Structure (QDFKFLDCP)

FLDCSRPRG keyword structure. Use this structure for a category 26 keyword that has a keyword ID of
X'07'. This structure is defined at variable WDFKFCEX in structure QDFKFC.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKFCPFLDNUM Field number.

2 2 CHAR(1) * Reserved.

CNTFLD Keyword Structure (QDFKCNTFLD)

CNTFLD keyword structure. Use this structure for a category 26 keyword that has a keyword ID of X'08'.
This structure is defined at variable WDFKFCEX in structure QDFKFC.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKCNTFLDNUM Width of segment.

2 2 CHAR(1) * Reserved.

EDTMSK Keyword Structure (QDFKEDTMSK)

EDTMSK keyword structure. Use this structure for a category 26 keyword that has a keyword ID of X'09'.
This structure is defined at variable WDFKFCEX in structure QDFKFC.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKEDMNUM Number of segments.

2 2 CHAR(*) WDFKEDMSEG EDTMSK keyword segment structure (see structure
QDFKEDTSEG, EDTMSK Keyword Segment Structure
(QDFKEDTSEG)).

EDTMSK Keyword Segment Structure (QDFKEDTSEG)

Segment structure for EDTMSK keyword. This structure is defined at variable WDFKEDMSEG in
structure QDFKEDTMSK.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKEDMPOS Position of segment.

2 2 BIN(15) WDFKEDMLEN Length of segment.

SFLCHCCTL Message Structure (QDFKSMSG)

SFLCHCCTL message structure. This structure is defined at variable wdfkfcex in structure QDFKFC.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKSMFLG Flags for SFLCHCCTL keyword.

0 0 0 BIT(1) WDFKSMIDP If on, message ID is buffer displacement to
program-to-system field.

0 0 1 BIT(1) WDFKSMFLP If on, message file is buffer displacement to
program-to-system field.

0 0 2 BIT(1) WDFKSMLBP If on, message library is buffer displacement to
program-to-system field.

0 0 3 BIT(5) * Reserved.

1 1 CHAR(7) WDFKSMID Message ID.

1 1 BIN(15) WDFKSMIDO Output buffer displacement to the field containing the
message ID.

3 3 CHAR(5) * Reserved.

8 8 CHAR(10) WDFKSMFL Message file name.

8 8 BIN(15) WDFKSMFLO Output buffer displacement to the field containing the
message file name.

10 A CHAR(8) * Reserved.

18 12 CHAR(10) WDFKSMLB Message library name.

18 12 BIN(15) WDFKSMLBO Output buffer displacement to the field containing the
message library name.

20 14 CHAR(8) * Reserved.

Category 27 Keywords (Record-Level Grid Keywords with
Parameters)

The following table shows the keyword ID that corresponds to category 27 keywords. All of these keyword
IDs require a structure.

ID Keyword

X'01' GRDATR

X'02' GRDCLR

X'03' GRDBOX

X'04' GRDLIN

Record-Level Grid Keywords with Parameters Structure
(QDFKGRPR)

Record-level grid keywords with parameters. The displacement to this structure from the beginning of the
appropriate section (file, record, or field) is at variable WDFFCAOF in structure QDFFCCOA.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKPCNT Number of keywords to follow.

2 2 CHAR(*) WDFKGRKW Category 27 parameter entries (see structure QDFKGRWP,
Record-Level Grid Keywords (QDFKGRWP)).

Record-Level Grid Keywords (QDFKGRWP)

Record-level grid keywords. This structure is defined at variable wdfkgrkw in structure QDFKGRPR.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKGPID Keyword ID.

1 1 BIN(15) WDFKGPIN Index into selection table. 1 indicates keyword is not optioned.

3 3 BIN(15) WDFKGPLN Length of parameter for keyword.

5 5 CHAR(*) WDFKGPEX Extra remaining portion for keywords. Actual length is in
variable WDFKMPLN in structure QDFKMRWP.

GRDATR Parameters (QDFKGRDATR)

GRDATR parameters. Use this structure for category 27 keywords that have a keyword ID of X'01'. The
structure is defined at variable WDFKGPEX in structure QDFKGRWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFKGCLRO Buffer displacement to program-to-system field for color.

0 0 CHAR(1) WDFKGCLOR Color parameter. X'FE' indicates not specified.

1 1 CHAR(1) * Reserved.

2 2 BIN(15) WDFKGLNTO Buffer displacement to program-to-system field for line type.

2 2 CHAR(1) WDFKGLT Line type. X'FE' indicates not specified.

3 3 CHAR(1) * Reserved.

4 4 CHAR(1) WDFKGCBIT Miscellaneous flags.

4 4 0 BIT(1) WDFKGCLRP If on, program-to-system field was used for color.

4 4 1 BIT(1) WDFKGLNTP If on, program-to-system field was used for line type.

4 4 2 BIT(6) * Reserved.

GRDCLR Parameters Structure (QDFKGRDCLR)

GRDCLR parameters structure. Use this structure for category 27 keywords that have a keyword ID of
X'02'. The structure is defined at variable WDFKGPEX in structure QDFKGRWP. The structure is
ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFGCFLG Miscellaneous flags.

0 0 0 BIT(1) WDFKGCSRP If on, program-to-system field was used for start-row.

Note: If on, use variable WDFKGCSRO; otherwise, use
variable WDFKGCSROW.

0 0 1 BIT(1) WDFKGCSCP If on, program-to-system field was used for start-column.

Note: If on, use variable WDFKGCSCO; otherwise, use
variable WDFKGCSOL.

0 0 2 BIT(1) WDFKGCDP If on, program-to-system field was used for depth.

Note: If on, use variable WDFKGCDEO; otherwise, use
variable WDFKGCDEP.

0 0 3 BIT(1) WDFKGCWP If on, program-to-system field was used for width.

Note: If on, use variable WDFKGCWIO; otherwise, use
variable WDFKGCWID.

0 0 4 BIT(1) WDFKGCNP If on, no parameters are specified on keyword. Clear all grid
lines.

0 0 5 Bit(3) * Extra bits.

1 1 BIN(15) WDFKGCSROW Start row.

1 1 BIN(15) WDFKGCSRO Buffer displacement to program-to-system field for row.

3 3 BIN(15) WDFKGCSCOL Start column.

3 3 BIN(15) WDFKGCSCO Buffer displacement to program-to-system field for column.

5 5 BIN(15) WDFKGCDEP Depth.

5 5 BIN(15) WDFKGCDEO Buffer displacement to program-to-system field for depth.

7 7 BIN(15) WDFKGCWID Width.

7 7 BIN(15) WDFKGCWIO Buffer displacement to program-to-system field for width.

GRDBOX Parameters (QDFKGRDBOX)

GRDBOX parameters. Use this structure for category 27 keywords that have a keyword ID of X'03'. The
structure is defined at variable WDFKGPEX in structure QDFKGRWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKGBBIT Miscellaneous flags.

0 0 0 BIT(1) WDFKGBHZP If on, program-to-system field was used for HRZ rule *TYPE
parameter.

Note: If on, use variable WDFKGBHZO; otherwise, use
variable WDFKGHZV.

0 0 1 BIT(1) WDFKGBVTP If on, program-to-system field was used for VRT rule *TYPE
parameter.

Note: If on, use variable WDFKGBVTO; otherwise, use
variable WDFKGBVT.

0 0 2 BIT(1) WDFKGBCLP If on, program-to-system field was used for color.

Note: If on, use variable WDFKGBCLO; otherwise, use
variable WDFKGBCLR.

0 0 3 BIT(1) WDFKGBLTP If on, program-to-system field was used for line type.

Note: If on, use variable WDFKGBTO; otherwise, use
variable WDFKGBNT.

0 0 4 BIT(4) * Reserved.

1 1 CHAR(1) WDFKGBTOB Type of box. X'04' indicates not specified or PLAIN, X'05'
indicates HRZ, X'06' indicates VRT, and X'07' indicates
HRZVRT.

2 2 BIN(15) WDFKGBHZO Buffer displacement to program-to-system field for
horizontal rule on *TYPE parameter.

2 2 BIN(15) WDFKGHZV Horizontal rule value. X'01' indicates not specified.

4 4 BIN(15) WDFKGBVTO Buffer displacement to program-to-system field for vertical
rule on *TYPE parameter.

4 4 BIN(15) WDFKGVTV Vertical rule value. X'01' indicates not specified.

6 6 BIN(15) WDFKGBCLO Buffer displacement to program-to-system field for color.

6 6 CHAR(1) WDFKGBCLR Color parameter. X'FE' indicates not specified.

7 7 CHAR(1) * Reserved.

8 8 BIN(15) WDFKGBLTO Buffer displacement to program-to-system field for line type.

8 8 CHAR(1) WDFKGBLNT Line type. X'00' indicates not specified.

9 9 CHAR(1) * Reserved.

10 A BIN(15) WDFKGBCTLO Buffer displacement to program-to-system field for
*CONTROL parameter. -1 indicates not specified.

12 C CHAR(*) WDFKGBOXD Array for parameters that are display-size dependent. There is
one entry for each display size for the file (see structure
QDFKGBOXDFM, GRDBOX Parameter Entry Structure
(QDFKGBOXDFM)).

GRDBOX Parameter Entry Structure (QDFKGBOXDFM)

GRDBOX parameter entry structure. The number of entries in this structure is defined by variable
WDFFSCR in structure QDFFBASE. This structure is defined at variable WDFKGBOXD in structure
QDFKGRDBOX. This structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKGBFLG Miscellaneous flags.

0 0 0 BIT(1) WDFKGBSRP If on, program-to-system field was used for start-row.

Note: If on, use variable WDFKGBSRO; otherwise, use
variable WDFKGBSROW.

0 0 1 BIT(1) WDFKGBSCP If on, program-to-system field was used for start-column.

Note: If on, use variable WDFKGBSCO ; otherwise, use
variable WDFKGBSCOL.

0 0 2 BIT(1) WDFKGBDP If on, program-to-system field was used for depth.

Note: If on, use variable WDFKGBDEO; otherwise, use
variable WDFKGBDEP.

0 0 3 BIT(1) WDFKGBWP If on, program-to-system field was used for width.

Note: If on, use variable WDFKGBWIO; otherwise, use
variable WDFKGBWID.

0 0 4 BIT(4) * Reserved.

1 1 BIN(15) WDFKGBSROW Start row,

1 1 BIN(15) WDFKGBSRO Buffer displacement to program-to-system field for row.

3 3 BIN(15) WDFKGBSCOL Start column.

3 3 BIN(15) WDFKGBSCO Buffer displacement to program-to-system field for column.

5 5 BIN(15) WDFKGBDEP Depth.

5 5 BIN(15) WDFKGBDEO Buffer displacement to program-to-system field for depth.

7 7 BIN(15) WDFKGBWID Width.

7 7 BIN(15) WDFKGBWIO Buffer displacement to program-to-system field for width.

GRDLIN Parameters Structure (QDFKGRDLIN)

GRDLIN parameters structure. Use this structure for category 27 keywords that have a keyword ID of
X'04'. The structure is defined at variable WDFKGPEX in structure QDFKGRWP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKGLBIT Miscellaneous flags.

0 0 0 BIT(1) WDFKGLIVP If on, program-to-system field was used for interval on
*TYPE parameter.

Note: If on, use variable WDFKGLINO; otherwise, use
variable WDFKGLINT.

0 0 1 BIT(1) WDFKGLRPP If on, program-to-system field was used for repeat on *TYPE
parameter.

Note: If on, use variable WDFKGLRPO; otherwise, use
variable WDFKGLRPT.

0 0 2 BIT(1) WDFKGLCLP If on, program-to-system field was used for color.

Note: If on, use variable WDFKGLCLO; otherwise, use
variable WDFKGLCLR.

0 0 3 BIT(1) WDFKGLLTP If on, program-to-system field was used for line type.

Note: If on, use variable WDFKGLLTO; otherwise, use
variable WDFKGLLNT.

0 0 4 BIT(4) * Reserved.

1 1 CHAR(1) WDFKGLTYPL Type of line. X'00' indicates UPPER or not specified, X'01'
indicates LOWER, X'02' indicates left, and X'03' indicates
RIGHT.

2 2 BIN(15) WDFKGLINO Buffer displacement to program-to-system field for interval.

2 2 BIN(15) WDFKGLINT Interval. Set to 1 if not specified.

4 4 BIN(15) WDFKGLRPO Buffer displacement to program-to-system field for repeat.

4 4 BIN(15) WDFKGLRPT Repeat. Set to 1 if not specified.

6 6 BIN(15) WDFKGLCLO Buffer displacement to program-to-system field for color.

6 6 CHAR(1) WDFKGLCLR Color parameter. X'FE' indicates not specified.

7 7 CHAR(1) * Reserved.

8 8 BIN(15) WDFKGLLTO Buffer displacement to program-to-system field for line type.

8 8 CHAR(1) WDFKGLLNT Line type. X'FE' indicates not specified.

9 9 CHAR(1) * Reserved.

10 A BIN(15) WDFKGLCTLO Buffer displacement to program-to-system field for
*CONTROL parameter. -1 indicates not specified.

12 C CHAR(*) WDFKGLIND Array for parameters that are display-size dependent (see
structure QDFKGLINDFM, GRDLIN Parameter Entry
Structure (QDFKGLINDFM)).

GRDLIN Parameter Entry Structure (QDFKGLINDFM)

GRDLIN parameter entry structure. The number of entries in this structure is defined by variable
WDFFSCR in structure QDFFBASE. This structure is defined at variable WDFKGLIND in structure
QDFKGRDLIN. This structure is ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFKGLMISC Miscellaneous flags.

0 0 0 BIT(1) WDFKGLSRP If on, program-to-system field was used for start-row.

Note: If on, use variable WDFKGLSRO ; otherwise, use
variable WDFKGLSROW.

0 0 1 BIT(1) WDFKGLSCP If on, program-to-system field was used for start-column.

Note: If on, use variable WDFKGLSCO; otherwise, use
variable WDFKGLSCOL.

0 0 2 BIT(1) WDFKGLLTH If on, program-to-system field was used for length.

Note: If on, use variable WDFKGLLNO ; otherwise, use
variable WDFKGLLEN.

0 0 3 Bit(5) * Reserved.

1 1 BIN(15) WDFKGLSROW Start row.

1 1 BIN(15) WDFKGLSRO Buffer displacement to program-to-system field for row.

3 3 BIN(15) WDFKGLSCOL Start column.

3 3 BIN(15) WDFKGLSCO Buffer displacement to program-to-system field for column.

5 5 BIN(15) WDFKGLLEN Length.

5 5 BIN(15) WDFKGLLNO Buffer displacement to program-to-system field for length.

Where-Used Formats

Figure 5 shows the where-used section of the overview figure (Figure 1).

Figure 5. Where-Used Section

Where-Used File-Level Information Structure (QDFWFLEI)

The tables in this section can be used to map to the row-column table to determine the corresponding entry
in the applicable keyword table. (For the row-column table, see structure QDFFRCTB on Row-Column
Table (QDFFRCTB).) The where-used entries appear from left to right and top to bottom. The keyword

entries appear in the same order as defined by the user.

File level information. The displacement to this structure from the beginning of structure QDFFINFO is at
variable wdffwuof in QDFFINFO.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFWXLEN Length of the file section. This is also a displacement from this
structure to the first record section defined by structure
QDFWRCDI (Where-Used Record Information Structure
(QDFWRCDI)). 0 indicates internally defined files or where
no record- or field-level sections exist.

2 2 BIN(15) WDFWXOKW Displacement to a keyword area structure from this structure.
0, if none (see structure QDFWKWDA, Keyword Area
Structure (QDFWKWDA)).

4 4 BIN(31) WDFWWULN Length of the where-used section.

8 8 BIN(31) WDFWNTBO Displacement from this structure to the name table defined by
structure QDFFNTBL (Name Table Structure (QDFFNTBL)).
0 indicates the name table is not present.

12 C BIN(15) WDFWXIN Number of indicator table entries (see variable WDFWINDX
in this structure).

14 E CHAR(4) * Reserved.

18 12 CHAR(*) WDFWINDX Indicator table entry structure containing the file-level
indicator entries. Each entry is defined by structure
QDFWITBE (page Indicator Table Entry Structure
(QDFWITBE)).

Where-Used Record Information Structure (QDFWRCDI)

Record-level information. The displacement to this structure from the beginning of structure QDFWFLEI is
at variable WDFWXLEN in QDFWFLEI. Displacements to subsequent structures are calculated using
WDFWNXTR in this structure.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFWRLEN Length of record-level where-used section. Also, this is the
displacement from this structure to the first field if there is one
in structure QDFWFLDI (Where-Used Field Information
Structure (QDFWFLDI)).

2 2 BIN(15) WDFWROKW Displacement to a keyword area structure from this structure
(see structure QDFWKWDA, Keyword Area Structure
(QDFWKWDA)). 0 indicates no where-used keywords.

4 4 BIN(31) WDFWNXTR Length of entire where-used section for this record. This is
also the displacement from this record to the next record entry.

8 8 BIN(15) WDFWRIN Number of indicator table entries (see variable WDFWINDR
in this structure).

10 A CHAR(2) * Reserved.

12 C CHAR(*) WDFWINDR Indicator table containing the record-level indicator entries.
These entries with the file indicator table are all the indicators
(optioned and response) that are valid for this record. Each
entry is defined by structure QDFWITBE (Indicator Table
Entry Structure (QDFWITBE)).

Where-Used Field Information Structure (QDFWFLDI)

Field-level information (including constants). The displacement to this structure from the beginning of
structure QDFWRCDI is at variable WDFWRLEN in QDFWRCDI. Displacements to subsequent
structures are calculated using WDFWFLDL in this structure.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFWFLDL Length of field-level where-used section. Also, this is the
displacement from this structure to the next field, if there is
one.

2 2 BIN(15) WDFWFOKW Displacement to where-used keywords from this structure. 0,
if none (see structure QDFWKWDA, Keyword Area Structure
(QDFWKWDA)).

4 4 BIN(15) WDFWRRDX Index into field indexing table (see structure QDFFFITB, Field
Indexing Table (QDFFFITB)) for this field.

6 6 BIN(31) WDFWNMEI Index into the name table (see structure QDFFNTBL, Name
Table Structure (QDFFNTBL)) for this field. 0 indicates
constants.

10 A BIN(15) WDFWLFLD Specified length of field (DDS field length). For floating-point
fields, variable WDFWLFLD equals variable wdffdlen minus
7.

12 C CHAR(1) WDFWFFLG Keyword flags.

12 C 0 BIT(1) WDFWRFFD If on, REFFLD keyword is specified.

12 C 1 BIT(1) WDFWMGDO If on, MSGID keyword is specified on an output-only field.

12 C 2 BIT(1) WDFWMGDB If on MSGID keyword is specified on a both field.

12 C 3 BIT(5) * Reserved.

13 D CHAR(1) * Reserved.

Indicator Table Entry Structure (QDFWITBE)

Indicator table entry. These entries are obtained from the keywords and their values. This structure is
defined at variable WDFWINDX in structure QDFWFLEI and variable WDFWINDR in structure
QDFWRCDI.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFWINBR Indicator number.

1 1 CHAR(1) WDFWIOBF Output buffer displacement. X'FF' indicates not used as an
option indicator.

2 2 CHAR(1) WDFWIIBF Input buffer displacement X'FF' indicates not used as a
response indicator.

3 3 BIN(15) WDFWITXT Indicator text displacement. File-level displacement is from
structure QDFWFLEI to the indicator text for this indicator.
Record-level displacement is from structure QDFWRCDI to
the indicator text for this indicator. The format of the text is an
A-type parameter (see structure QDFWATYP, Variable
Length Structure (QDFWATYP)).

Keyword Area Structure (QDFWKWDA)

Keyword area. For file-level keywords, this structure is defined at variable WDFWXOKW in structure
QDFWFLEI. For record-level keywords, this structure is defined at variable WDFWROKW in structure
QDFWRCDI. For field-level keywords, this structure is defined at variable WDFWFOKW in structure
QDFWFLDI.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFWKWDC Keyword count.)

2 2 CHAR(*) WDFWKWDS Keyword entries.

Keyword Entry Structure (QDFWATTR)

Keyword entries. Figure 6 shows the keyword types that correspond to the keyword entries and the specific
structure that each keyword type uses. This figure also shows which keyword types do not require a
structure.

Figure 6. Keyword Types

Keyword Type Structure QDFWATYP Structure QDFWBTYP No Structure

ALIAS X'001D'

EDTWRD X'007E'

EDTCDE X'007F'

REF X'00D8'

REFFLD X'00D9'

TEXT X'00DD'

 SFLMSGKEY X'0187'

SFLPGMQ X'0186'

SFLRCDNBR X'0197'

SFLROLVAL X'0196'

This structure is defined at variable WDFWKWDS in structure QDFWKWDA. The structure is
ARRAY(*).

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFWKTYP Keyword type (see Figure 1-11).

0 0 CHAR(1) * Reserved.

1 1 CHAR(1) WDFWKWID Where-used keyword ID.

2 2 BIN(15) WDFWKLEN Length of this keyword and value.

4 4 CHAR(*) WDFWPRMS Associated parameters. Use structure QDFWATYP (Variable
Length Structure (QDFWATYP)) or structure QDFWBTYP
(Multiple Variable Length Structure (QDFWBTYP)). (See
Figure 6.)

Variable Length Structure (QDFWATYP)

Variable length structure. This structure is defined at variable WDFWPRMS in structure QDFWATTR, or
this structure is an array defined at variable WDFWBPRM in structure QDFWBTYP (where the number of
entries is WDFWATS).

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFWALEN Length of parameter.

2 2 CHAR(1) * Reserved.

3 3 CHAR(1) WDFWPRMT Parameter type. X'00' indicates character; X'08' indicates
DBCS.

4 4 CHAR(*) WDFWAPRM Parameter value.

Multiple Variable Length Structure (QDFWBTYP)

Multiple variable length structure. This structure is defined at variable WDFWPRMS in structure
QDFWATTR.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(15) WDFWATS Number of variable length parameters.

2 2 CHAR(*) WDFWBPRM Multiple variable length structures. Each parameter is defined
by structure QDFWATYP, Variable Length Structure
(QDFWATYP).

Reference Information Structure (QDFWRSTR)

Reference information. This structure is defined at variable WDFWAPRM in structure QDFWATYP.

Offset

Bit Type Variable Name FieldDec Hex

0 0 CHAR(1) WDFWRFLG Miscellaneous flags.

0 0 0 BIT(1) WDFWSRC If on, source reference is specified.

0 0 1 BIT(5) * Reserved.

0 0 6 BIT(1) WDFWDCHK If on, validity checking is deleted.

0 0 7 BIT(1) WDFWDEDT If on, editing is deleted.

1 1 CHAR(1) WDFWRCHG Miscellaneous flags.

1 1 0 BIT(1) WDFWDUPE If on, field is duplicated.

1 1 1 BIT(1) WDFWNMEC If on, name is changed.

1 1 2 BIT(1) WDFWTYPC If on, field type is changed.

1 1 3 BIT(1) WDFWLENC If on, field length is changed.

1 1 4 BIT(1) WDFWDECC If on, decimals are changed.

1 1 5 BIT(1) WDFWEDTC If on, editing is changed.

1 1 6 BIT(1) WDFWVLCK If on, validity checking is changed.

1 1 7 BIT(1) WDFWOTHR If on, other changes occurred.

2 2 BIN(31) WDFWRFEI Index into the name table for the file name being referred to
(see structure QDFFNTBL, Name Table Structure
(QDFFNTBL)).

6 6 BIN(31) WDFWRLBI Index into the name table for the referenced library name (see
structure QDFFNTBL, Name Table Structure (QDFFNTBL)).

10 A BIN(31) WDFWRRFI Index into the name table for the referenced format name (see
structure QDFFNTBL, Name Table Structure (QDFFNTBL)).

14 E BIN(31) WDFWRFDI Index into the name table for the referenced field name (see
structure QDFFNTBL, Name Table Structure (QDFFNTBL)).

Name Table Structure (QDFFNTBL)

Name table. Internally generated fields begin with *IN and end with 2 digits, such as, *IN03 and *IN27.
The displacement to this structure from the beginning of structure QDFWFLEI is at variable WDFWNTBO
in QDFWFLEI.

Offset

Bit Type Variable Name FieldDec Hex

0 0 BIN(31) WDFFNMS Number of names in the table.

4 4 ARRAY(*) OF CHAR(10) WDFFNMES Name entries.

Error Messages

Message ID Error Message Text

CPF0679 E Object &1 is not a display file.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C22 E Cannot get information about file &1.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API Introduced: V2R2

Top | Database and File APIs | APIs by category

Retrieve File Override Information
(QDMRTVFO) API

 Required Parameter Group:

1 Returned override information Output Char(*)
2 Length of override information Input Binary(4)
3 Format name Input Char(8)
3 File name Input Char(10)
4 Error code I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The Retrieve File Override Information (QDMRTVFO) API returns the name of the file, library, member
and final type of override that result from processing TOFILE or MBR overrides for the user specified file
name. Overrides will be processed in the following sequence:

Any call level overrides up to and including the level of the activation group's oldest procedure●

Any activation group level overrides●

Any remaining call level overrides●

Overrides at the job level●

Required Parameter Group

Returned override information

OUTPUT; CHAR(*)

The structure in which to return information for file overrides processed. It can be smaller than the
format requested as long as the next parameter, length of override information, specifies the length
correctly. When this variable is smaller than the format, the API returns only the data the variable
can hold.

Length of override information

INPUT; BINARY(4)

Variable that contains the length of the user provided output area. The minimum length is 8 bytes.
If you specify a length that is longer than the returned override information, the results will be
unpredictable.

Format name

INPUT; CHAR(8)

The content and format of the information returned for each file. The possible format names are:

OVRL0100 File override information.

For more information, see OVRL0100 Format

File name

INPUT; CHAR(10)

The name of the file to return override information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

OVRL0100 Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) File name used

18 12 CHAR(10) Library name used

28 1C CHAR(10) Member name used

38 26 CHAR(10) Final override type

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

File name used. The file name that results from processing file overrides for the user provided file name.
This field will be set to blanks in the following cases:

There are no overrides for the file name specified.●

Overrides exist but the TOFILE parameter was not specified.●

Final override type. This field will contain the final override type applied to the file.
This field will be set to the final type of override command specified as follows:

BSC Binary synchronous communications (BSC)
CMN Communications
DB Database
DDM Distributed data management
DKT Diskette
DSP Display

ICF Intersystem communications function
MXD Mixed
PRT Printer
SAV Save
TAP Tape

This field will be set to blanks in the following cases:

There are no overrides for the file name specified.●

There are overrides but neither TOFILE nor MBR parameters were specified.●

Library name used. The library name which results from processing file overrides for the user provided
file name including the values *LIBL and *CURLIB.

This field will be set to blanks in the following cases:

There are no overrides for the file name specified.●

Overrides exist but TOFILE was not specified.●

This will be set to *LIBL if the file name is being overridden and library name is not.

Member name used. The member name which results from processing file overrides for the user provided
file name including the values *FIRST, *LAST and *ALL. This field will be set to *FIRST when the final
override type is Data Base and the member is not being overridden.

This field will be set to blanks in the following cases:

There are no overrides for the file name specified.●

Override type is not DB.●

Override type is DB, but neither TOFILE nor MBR were specified.●

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

API Introduced: V3R1

Top | Database and File APIs | APIs by category

Retrieve Job Record Locks (QDBRJBRL) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Job or thread identification information Input Char(*)
5 Error code I/O Char(*)

 Optional Parameter Group:

6 Format of job or thread identification
information

Input Char(8)

7 Lock filters Input Char(*)
8 Format of lock filters Input Char(8)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Job Record Locks (QDBRJBRL) API lets you generate a list of record locks that a specific
job or thread is holding or for which it is waiting. Lock information is returned for local physical files
only. The Retrieve Job Record Locks API places the list in the specified receiver variable.

Authorities and Locks

Object Authority

None

Object Library Authority

None

File Lock

None

Job Authority

The API must be called from within the job for which the information is being retrieved, or the
caller of the API must be running under a user profile that is the same as the job user identity of the
job for which the information is being retrieved. Otherwise, the caller of the API must be running
under a user profile that has job control (*JOBCTL) special authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the list of record locks. The size of this variable is specified in the
Length of receiver variable parameter. See Format of receiver information for details on the format
of the receiver information.

Length of receiver variable

INPUT; BINARY(4)

The number of bytes that are provided in the Receiver variable parameter. At least 16 bytes must be
provided. If the size of the receiver variable provided is less than the length of the list that is
available, the list will be truncated; this can be determined by examining the first two fields in the
receiver variable, the number of record locks returned, and the number of record locks available. If
the receiver variable length specified is greater than the actual receiver variable, the results are
unpredictable.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The possible format name is:

RJBL0100 Record lock list. See RJBL0100 Format for details.

Job or thread identification information

INPUT; CHAR(*)

The information that is used to identify the job or thread for which the job lock information is to be
returned. See Format of job or thread identification information for details.

If the Format of record identification information parameter is omitted, format JIDI0100 is
assumed. See JIDI0100 Format for details.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group

Format of job or thread identification information

INPUT; CHAR(8)

The format of the job or thread identification information. The possible format names are:

JIDI0100 This format is used to retrieve the locks that a job is holding or waiting to hold. See
JIDI0100 Format for details. This is the default if this parameter is omitted.

JIDF0100 This format is used to retrieve the locks that a job or threads are holding or waiting
to hold. See JIDF0100 Format for details.

JIDF0200 This format is used to retrieve the locks that a specific thread is holding or waiting
to hold. See JIDF0200 Format for details.

Lock filters

INPUT;CHAR(*)

Filters used for the lock information that is returned. See Format of lock filters for further
information. If this parameter is omitted, the returned lock information is not filtered.

Format of lock filters

INPUT; CHAR(8)

The format of the lock filters used on the returned data. The possible format name is:

RJFL0100 Lock filter format. See RJFL0100 Format for details.

If this parameter is omitted, the returned lock information is not filtered.

Format of receiver information

The format of the information returned in the receiver variable.

RJBL0100 Format

The following information is returned for the RJBL0100 format. For detailed descriptions of the fields in
the table, see RJBL0100 Format Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of record locks available

4 4 BINARY(4) Number of record locks returned

8 8 BINARY(4) Offset to list of record locks

12 C BINARY(4) Size of information for each record lock
returned

Each record lock returned will have the following structure.

Offset

Type FieldDec Hex

0 0 CHAR(10) Database file name

10 A CHAR(10) Database file library name

20 14 CHAR(10) Database member name

30 1E CHAR(1) Lock status

31 1F CHAR(1) Lock state

32 20 UNSIGNED
BINARY(4)

Relative record number

 36 24 CHAR(10) Database file ASP name

46 2E CHAR(10) Database file library ASP name

56 38 BINARY(4) Database file ASP number

60 3C BINARY(4) Database file library ASP number

64 40 CHAR(8) Thread identifier

72 48 UNSIGNED
BINARY(4)

Thread handle

76 4C CHAR(20) Lock space identifier

96 60 CHAR(1) Lock scope

97 61 CHAR(3) Reserved

RJBL0100 Format Field Descriptions

Database file library name. The name of the library that contains the file.

Database file name. The name of the file.

Database member name. The name of the member.

Database file ASP name. The name of the auxiliary storage pool (ASP) that contains the file. The
following special values may also be returned:

*SYSBAS The file is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Database file ASP number. The numeric identifier of the ASP containing the file. The following values
may be returned:

1 The file is located in the system ASP.

2-32 The file is located in a basic user ASP.

33-255 The file is located in an independent ASP.

-1 The ASP number cannot be determined.

Database file library ASP name. The name of the auxiliary storage pool (ASP) that contains the library.
The following special values also may be returned:

*SYSBAS The library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Database file library ASP number. The numeric identifier of the ASP containing the library. The
following values may be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Lock scope. The scope of the lock. The scope may be job, thread scope, or lock space. The possible values
are:

0 Job scope.

1 Thread scope.

2 Lock space scope.

Lock space identifier. This field will contain a value only when the lock scope value is lock space scope
and the lock is being waited on by a thread. This field will then contain the identifier of the lock space for
which the lock is being waited on.

Lock state. The state of the lock. The possible values are:

0 Shared read.

1 Exclusive update.

2 Shared internal.

Lock status. The status of the lock. The possible values are:

0 The record lock is held by the given job or thread.
1 The job or thread given is waiting for the record lock.

Number of record locks available. The number of record lock structures that are available to be returned.
If this field is the same as the number of record locks returned field, all the record lock information has
been returned.

Number of record locks returned. The number of record lock structures that were returned to the caller of
the API. If enough space is provided in the receiver variable, all record locks are returned. If there is more
record lock information than can fit in the space provided, the number of record locks returned is less than
the number of record locks available.

Offset to list of record locks. The byte offset from the beginning of the receiver variable to the first record
lock information structure.

Relative record number. The relative record number for which record lock information is being returned.

Reserved. An unused field.

Size of information for each lock returned. The number of bytes of each of the returned lock information
structures. In future releases, the amount of information returned for each lock may be expanded, so this
value should be used to move from one lock structure to another.

Thread handle. This is a value which is used to address a particular thread holding a thread scope lock or
the thread waiting for a lock. If the lock is a job scope lock, this is zero.

Thread identifier. The unique value that is used to identify the thread holding a thread scope lock or the
thread waiting for a lock. If the lock is a job scope lock, this is zero.

Format of job or thread identification information

The format of the information needed to identify the job or thread whose locked object information is
returned.

JIDI0100 Format

The following information is to be specified for the JIDI0100 format. For detailed descriptions of the fields
in the table, see JIDI0100 Format Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

JIDI0100 Format Field Descriptions

Job name. A specific job name.

Job number. A specific job number.

User name. A specific user profile name.

JIDF0100 Format

The following information is to be specified for the JIDF0100 format. For detailed descriptions of the fields
in the table, see JIDF0100 Format Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

JIDF0100 Format Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with the job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value which is used to uniquely identify a thread within a job.

Thread indicator. The value that is used to specify the thread within the job for which information is to be
retrieved. The following values are supported:

0 Information should be retrieved for the thread specified in the thread identifier field.

1 Information should be retrieved for the thread in which this program is running currently.

2 Information should be retrieved for the initial thread of the identified job.

3 Information should be retrieved for the job and its associated threads.

Note: For all supported values, the combination of the internal job identifier, job name, job number, and
user name fields must identify the job containing the thread(s).

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format

The following information is to be specified for the JIDF0200 format. For detailed descriptions of the fields
in the table, see JIDF0200 Format Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C UNSIGNED
BINARY(4)

Thread handle

48 30 CHAR(8) Thread identifier

JIDF0200 Format Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value which is used to address a particular thread within a job. A valid thread handle
must be specified. The thread handle is returned on several other interfaces.

Thread identifier. A value which is used to uniquely identify a thread within a job.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Format of lock filters

The format of the lock filters used on the returned lock information.

RJFL0100 Format

The following information is to be specified for the RJFL0100 format. For detailed descriptions of the
fields in the table, see RJFL100 Format Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Filter size

4 4 BINARY(4) Filter lock state

8 8 BINARY(4) Filter lock scope

12 C BINARY(4) Filter lock status

16 10 CHAR(10) Filter file name

26 1A CHAR(10) Filter file member name

36 24 CHAR(10) Filter file library name

46 2E CHAR(10) Filter file library ASP name

RJFL0100 Format Field Descriptions

Filter lock scope: This value is used to filter information that is returned so that it contains only
information about locks that have a certain lock scope.

0 Do not filter on lock scope value

1 Return only the job scope locks

2 Return only the thread scope locks

3 Return only the lock space scope locks

Default: Do not filter on lock scope value

Filter lock state: This value is used to filter information that is returned so that it contains only information
about locks that have a certain lock state.

0 Do not filter on lock scope value

1 Return only the shared locks

2 Return only the exclusive locks

Default: Do not filter on lock scope value

Filter lock status: This value is used to filter information that is returned so that it contains only
information about locks that have a certain lock status.

0 Do not filter on lock scope value

1 Return only locks with a status of held

2 Return only locks with a status of waiting

3 Return only locks with a status of requested.

Default: Do not filter on lock scope value

Filter file library ASP name: The name of the library's Auxiliary Storage Pool (ASP) to be filtered on.
Special value of *SYSBAS can be specified. A blank field will cause no filtering to be done on this field.
The default is not to filter on this field.

Filter file library name: This is the library name to be filtered on. A blank field will cause no filtering to
be done on this field. The default is not to filter on this field.

Filter file member name: This is the member name to be filtered on. A blank field will cause no filtering
to be done on this field. The default is not to filter on this field.

Filter file name: This is the file name to be filtered on. A blank field will cause no filtering to be done on
this field. The default is not to filter on this field.

Filter size: The size of the filter information passed. Valid values are:

4 No filtering will be performed. The default values will be used for each filter.

56 All filters are required.

Error Messages

Message ID Error Message Text

 CPF0941 E Job &3/&2/&1 no longer in system.

CPF18BF E Thread &1 not found.

CPF1321 E Job &1 user &2 job number &3 not found.

CPF136A E Job &3/&2/&1 not active.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C1E E Required parameter &1 omitted.

CPF3C21 E Format name &1 is not valid.

 CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C57 E Not authorized to retrieve job information.

 CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3CF1 E Error code parameter not valid.

API Introduced: V5R1

Top | Database and File APIs | APIs by category

Retrieve Member Description (QUSRMBRD) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified database file name Input Char(20)
5 Database member name Input Char(10)
6 Override processing Input Char(1)

 Optional Parameter Group 1:

7 Error code I/O Char(*)

 Optional Parameter Group 2:

8 Find member processing Input Char(1)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Retrieve Member Description (QUSRMBRD) API retrieves specific information about a single database file member and returns
the information to the calling program in a receiver variable. The length of the receiver variable determines the amount of data returned.
You can only use the QUSRMBRD API with database file types *PF, *LF, and *DDMF.

You can use the QUSRMBRD API to:

Retrieve specific information about a database file member that is specified to a calling program.●

Automate reorganization when the deleted record space reaches the maximum specified.●

Ensure that the last date the source was changed matches the date the source was used to create the object.●

Authorities and Locks

Library Authority

*USE

File Authority

*OBJOPR

File Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that is to receive the information requested. You can specify that the size of the area be smaller than the
format requested as long as you specify the length of the receiver variable parameter correctly. As a result, the API returns only
the data the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be specified up to the size of the

receiver variable specified in the user program. If the length of receiver variable parameter specified is larger than the allocated
size of the receiver variable specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The content and format of the information to be returned for each specified member. The following format names are valid:

MBRD0100

Member name and basic source information. This is similar to the information provided by the List Database File
Members (QUSLMBR) API using format MBRL0200.

MBRD0200

Member name and expanded information. The additional information requires more system processing and takes longer
to produce than the MBRD0100 format.

MBRD0300

Member name and full information. The additional information requires more system processing and takes longer to
produce than the MBRD0200 format.

For more information, see MBRD0100 Format, MBRD0200 Format or MBRD0300 Format.

Qualified database file name

INPUT; CHAR(20)

The name of the database file containing the specified member whose information is to be retrieved, and the library in which it
is located. The first 10 characters contain the database file name, and the second 10 characters contain the library name.

You can use these special values for the library name:

*CURLIB

The job's current library

*LIBL

The library list

Database member name

INPUT; CHAR(10)

The name of the database member for which information is to be retrieved. Special values follow:

*FIRST

The first database member found.

*LAST

The last database member found.

Override processing

INPUT; CHAR(1)

Whether overrides are to be processed. The possible values are:

0

Overrides are not processed

1

Overrides are processed

Optional Parameter Group 1

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code Parameter. If this parameter is
omitted, diagnostic and escape messages are issued to the application.

Optional Parameter Group 2

Find member processing

INPUT; CHAR(1)

The method to use to find the member. There are two ways to find the member for which information is to be retrieved. The
possible values are:

0

Find the file first and then look for the member in that file. This is the default value if this parameter is not specified.

1

Find the specified member directly. This method is more efficient when *LIBL is used for the library name and a
specific member name is specified.

If a specific library is used to find the member, or if the member name specified is *FIRST or *LAST, the two ways will
always find the same member. If *LIBL is used for the library name and a specific member name is specified (not *FIRST or
*LAST), then the two ways can produce different results. See Figure 1-12.

The find member directly method is not supported when all of the following conditions exist:

*LIBL is specified as the library.❍

The member name is not specified as *FIRST or *LAST.❍

The member name is not found in any of the files in the library list.❍

The first occurrence of the file in the library list is a DDM file.❍

The library name specified for the remote file (RMTFILE parameter on the Create DDM File (CRTDDMF) command)
is *LIBL.

❍

When this situation occurs, an error is returned from QUSRMBRD because it cannot determine which file on the remote system
on OPEN operation would find. API users can monitor for this error and then re-issue the API call specifying the find file first
method.

Figure 1-12. Find Member Example. File F exists in libraries LIB1 and LIB2 in the library list. If *LIBL is specified as the
library for file F and member X, option 0 will not find member X because it does not exist in the file LIB1/F. Option 1 will find
member X in the file LIB2/F.

Format of the Generated Information

The file member description can be provided in one of three formats:

MBRD0100●

MBRD0200●

MBRD0300●

The structure of the information returned is determined by the value specified for the format name. For details about these formats, see
the following sections. For detailed descriptions of the fields in the list, see Field Descriptions.

If an offset equals zero in the returned information, there is no corresponding structure associated with it.

Figure 1-13, Figure 1-14, and Figure 1-15 show how the information for the three formats is organized. When more than one entry can
appear, the figure indicates this as in (A).

Figure 1-13. MBRD0100 Format

Figure 1-14. MBRD0200 Format

Figure 1-15. MBRD0300 Format

MBRD0100 Format

The MBRD0100 format includes the file member list and source information shown in the following table.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Database file name

18 12 CHAR(10) Database file library name

28 1C CHAR(10) Member name

38 26 CHAR(10) File attribute

48 30 CHAR(10) Source type

58 3A CHAR(13) Creation date and time

71 47 CHAR(13) Last source change date and time

84 54 CHAR(50) Member text description

134 86 CHAR(1) Source file

MBRD0200 Format

The MBRD0200 format includes the file member name and the expanded information shown in the following table.

Offset

Type FieldDec Hex

0 0 Everything from the MBRD0100 format

135 87 CHAR(1) Remote file

136 88 CHAR(1) Logical file or physical file

137 89 CHAR(1) ODP sharing

138 8A CHAR(2) Reserved

140 8C BINARY(4) Current number of records for all based-on
members, if less than 2,147,483,647

144 90 BINARY(4) Number of deleted records, if less than
2,147,483,647

148 94 BINARY(4) Data space size

152 98 BINARY(4) Access path size

156 9C BINARY(4) Number of based-on physical file members

160 A0 CHAR(13) Change date and time

173 AD CHAR(13) Save date and time

186 BA CHAR(13) Restore date and time

199 C7 CHAR(7) Expiration date

206 CE CHAR(6) Reserved

212 D4 BINARY(4) Number of days used

216 D8 CHAR(7) Date last used

223 DF CHAR(7) Use reset date

230 E6 CHAR(2) Reserved

232 E8 BINARY(4) Data space size multiplier

236 EC BINARY(4) Access path size multiplier

240 F0 BINARY(4) Member text description CCSID

244 F4 BINARY(4) Offset to additional MBRD0200 format
information

248 F8 BINARY(4) Length of additional MBRD0200 format
information

252 FC BINARY(4), UNSIGNED Current number of records for all based-on
members

256 100 BINARY(4), UNSIGNED Number of deleted records

260 104 CHAR(6) Reserved

MBRD0300 Format

The MBRD0300 format includes the file member list and the full information shown in the following table. This includes some key
fields that are applicable only to the file (not member) one might use, and fields unique to the member.

Offset

Type FieldDec Hex

0 0 Everything from the MBRD0200 format

266 10A CHAR(1) Join member

267 10B CHAR(1) Access path maintenance

268 10C CHAR(10) SQL file type

278 116 CHAR(1) Reserved

279 117 CHAR(1) Allow read operation

280 118 CHAR(1) Allow write operation

281 119 CHAR(1) Allow update operation

282 11A CHAR(1) Allow delete operation

283 11B CHAR(1) Reserved

284 11C BINARY(4) Records to force a write

288 120 BINARY(4) Maximum percent deleted records allowed

292 124 BINARY(4) Initial number of records

296 128 BINARY(4) Increment number of records

300 12C BINARY(4) Maximum number of increments

304 130 BINARY(4), UNSIGNED Current number of increments

308 134 BINARY(4), UNSIGNED Record capacity

312 138 CHAR(10) Record format selector program name

322 142 CHAR(10) Record format selector library name

332 14C BINARY(2) Number of constraint indexes

334 14E BINARY(4) Offset to constraint indexes information

338 153 CHAR(46) Reserved

384 180 Array of CHAR(112) Record format and based-on file list

* * Array of CHAR(320) Constraint indexes information

Record Format and Based-On File List Entry

The second from the last entry in the MBRD0300 format is the record format and based-on file list. There can be several entries with
the information presented in the order shown in the following table. Because there can be several, it is not possible to list the exact
offsets for the 112 bytes. Physical files always have only one entry. To determine the number of entries for a logical file, refer to the
value in the number of based-on physical file members field in the MBRD0200 format.

Offset

Type FieldDec Hex

0 0 CHAR(10) Based-on physical file name

10 A CHAR(10) Based-on physical file library name

20 14 CHAR(10) Based-on physical file member name

30 1E CHAR(10) Format name

40 28 BINARY(4) Logical file record format number

44 2C BINARY(4) Current number of records, if less than
2,147,483,647

48 30 BINARY(4) Number of deleted records, if less than
2,147,483,647

52 34 BINARY(4) Access path size

56 38 BINARY(4) Access path size multiplier

60 3C CHAR(1) Access path shared

61 3D CHAR(1) Access path valid

62 3E CHAR(1) Access path held

63 3F CHAR(10) Access path owner file name

73 49 CHAR(10) Access path owner library name

83 53 CHAR(10) Access path owner member name

93 5D CHAR(1) Access path journaled

94 5E CHAR(2) Reserved

96 60 BINARY(4), UNSIGNED Current number of records

100 64 BINARY(4), UNSIGNED Number of deleted records

104 68 CHAR(8) Reserved

Constraint Indexes Information

The last entry in the MBRD0300 format is the constraint indexes information list. There can be several entries with the information
presented in the order shown in the following table. Because there can be several entries, it is not possible to list the exact offsets of the
321 bytes in each entry. The CHAR(8) fields (number of constraint logical-access-path read requests and the number of constraint
physical-access-path read requests) are actually BINARY(8) fields and require conversion by the high-level language program that is
used.

Offset

Type FieldDec Hex

0 0 CHAR(10) Constraint library name

10 A BINARY(2) Constraint name length

12 C CHAR(258) Constraint name

270 10E BINARY(4) Access path size

274 112 BINARY(4) Access path size multiplier

278 116 CHAR(1) Access path shared

279 117 CHAR(1) Access path valid

280 118 CHAR(1) Access path held

281 119 CHAR(8) a Number of constraint logical-access-path read requests

289 121 CHAR(8) a Number of constraint physical-access-path read requests

297 12F CHAR(24) Reserved
a CHAR(8) requires conversion to BINARY(8). Values are not supported for
Version 3 Release 2.

Additional MBRD0200 Format Information

Additional information for the MBRD0200 format is accessed using the offset to additional MBRD0200 format information and length
of additional MBRD0200 format information values. The offset places the data at the end of the format requested. There can be only
one entry with the information presented in the order shown in the following table. The CHAR(8) fields for the data space activity
statistics and for the data space index activity statistics are actually BINARY(8) fields and require redefinition by the high-level
language program used.

The counts for the data space activity statistics are intended to be approximate counts that are associated with the object since the last
IPL. These counts are intended to monitor performance statistics on the object and are meant only to show trends in the operational use

against the object.

Offset

Type FieldDec Hex

0 0 CHAR(224) Data space activity statistics

0 0 CHAR(8) a Number of activate operations

8 8 CHAR(8) a Number of deactivate operations

16 10 CHAR(8) a Number of insert operations

24 18 CHAR(8) a Number of update operations

32 20 CHAR(8) a Number of delete operations

40 28 CHAR(8) a Number of reset operations

48 30 CHAR(8) a Number of copy operations

56 38 CHAR(8) a Number of reorganize operations

64 40 CHAR(8) a Number of access path build and rebuild
operations

72 48 CHAR(8) a Number of logical read operations

80 50 CHAR(8) a Number of physical read operations

88 58 CHAR(8) a Number of records rejected by key selection

96 60 CHAR(8) a Number of records rejected by nonkey
selection

104 68 CHAR(8) a Number of records rejected by group-by
selection

112 70 BINARY(4), UNSIGNED Number of distinct valid indexes

116 74 BINARY(4), UNSIGNED Number of distinct invalid indexes

120 78 BINARY(4), UNSIGNED Variable length data size

124 7C CHAR(68) Reserved

192 C0 CHAR(36) Data space index activity statistics

192 C0 CHAR(8) a Number of logical-member access-path read
operations

200 C8 CHAR(8) a Number of physical-member access-path read
operations

208 D0 CHAR(8) a Number of unique partial keys for key field 1
or number of unique full key values for an
encoded vector access path. Will contain zero
for access paths that do not have unique key
statistics available.

216 D8 CHAR(8) a Number of unique partial keys for key fields 1
through 2. Will contain 0 if the access path is
defined with only 1 key field, the access path
is an encoded vector, or the access path does
not have unique key statistics available.

224 E0 CHAR(8) a Number of unique partial keys for key fields 1
through 3. Will contain 0 if the access path is
defined with only less than 3 key fields, the
access path is an encoded vector, or the access
path does not have unique key statistics
available.

232 E8 CHAR(8) a Number of unique partial keys for key field 1
through 4 Will contain 0 if the access path is
defined with only less than 4 key fields, the
access path is an encoded vector, or the access
path does not have unique key statistics
available.

244 F4 BINARY(4), UNSIGNED Number of overflow values

248 F8 BINARY(4), UNSIGNED Number of delayed maintenance keys

252 FC BINARY(4), UNSIGNED Logical page size

256 100 BINARY(4) Estimated rebuild time

260 104 BINARY(2), UNSIGNED Code size, in bytes

262 106 CHAR(13) Last rebuild date and time

275 113 CHAR(13) Reserved
a CHAR(8) requires redefinition to BINARY(8). Values are not supported for
Version 3 Release 2.

Field Descriptions

Access path held. Indicates if rebuild of access path is held. More information can be found in the Control Language (CL) information
in the iSeries Information Center under the Edit Rebuild Access Path (EDTRBDAP) command. Possible values are:

blank Not applicable unless the access path is for a join logical file or keyed file. Only indexes that are not
valid can be held.

0 Access path is not held.
1 Access path is held.

Access path journaled. Whether the access path is journaled.

blank Does not apply.
0 Access path is not journaled.
1 Access path is journaled.
2 Access path is journaled for system managed access path protection (SMAPP).

Access path maintenance. Specifies, for files with key fields or join logical files, the type of access path maintenance used for all
members of the physical or logical file. The possible values are:

blank Does not apply unless the access path is for a join logical file or a keyed file.
0 The access path is updated each time a record is changed, added, or deleted from a member. Files

that require unique keys are 0.
1 The access path is updated when the member is opened with records that have been added, deleted,

or changed from the member since the last time the member was opened.
2 The access path is completely rebuilt each time a file member is opened. The access path is

maintained until the member is closed, then the access path is deleted.

Access path owner file name. The file name that owns the access path. This field only applies to join logical files or keyed files.

Access path owner library name. The library in which the file resides that owns the access path. This field only applies to join logical
files or keyed files.

Access path owner member name. The member within the qualified file name that owns the access path. This field only applies to
join logical files or keyed files.

Access path recovery. Whether the access path for the constraint, is rebuild immediately when damage to the access path is
recognized.

blank Does not apply.
0 Does not apply.
1 Access path is rebuilt *IMMED.

Access path shared. Whether an access path is shared. The possible values are:

blank Does not apply unless the access path is for a join logical file or keyed file.
0 Access path is not shared by other files.
1 Access path is shared by other files.

Access path size. The access path size in bytes for this file member. If the file member is not keyed, the value 0 is returned. DDM files,
which are not from a System/38 or iSeries system, return value 0.

Access path size multiplier. The value to multiply the access path size by to get its true size.

Access path valid. Whether the access path is valid. The possible values are:

blank Does not apply unless the access path is for a join logical file or a keyed file.
Y Index is valid.
N Index is not valid and must be rebuilt.

Allow delete operation. Whether records in this file can be deleted. The possible values are:

Y Records in this file can be deleted.
N Records in this file cannot be deleted.

Allow read operation. Whether records in the physical file can be read. The possible values are:

Y Records in this file can be read.
N Records in this file cannot be read.

Allow update operation. Whether records in this file can be updated. The possible values are:

Y Records in this file can be updated.
N Records in this file cannot be updated.

Allow write operation. Whether records can be written to the file. The possible values are:

Y Records can be written to this file.
N Records cannot be written to this file.

Based-on physical file library name. The library in which the based-on physical file resides. This field is blank for a physical file.

Based-on physical file member name. The physical file member this logical file member is based on. The number of elements in this
array is defined by the number of based-on physical file members field. This field is blank for a physical file.

Based-on physical file name. The name of the physical file that contains the data associated with the logical file member. This field is
blank for a physical file.

Bytes available. The number of bytes of data available to be returned. All available data is returned if enough space is provided.

Bytes returned. The number of bytes of data returned.

Change date and time. The date and time this member was changed. This field is in the CYYMMDDHHMMSS format as follows:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.
YY Year
MM Month
DD Day
HH Hour
MM Minute
SS Second

Code size. The length of the code assigned to each distinct key value of an encoded vector index. If the access path is not an encoded
vector, the value 0 is returned.

Constraint library name. The name of the library containing the file to which the referential constraint applies.

Constraint name. The name of the referential constraint that controls the insertion, deletion, and update of fields that refer to like fields
in a parent file.

Constraint name length. The length of the referential constraint name. The maximum length is 258 characters for delimited names and
128 characters for non-delimited names.

Creation date and time. The date and time the member was created. This field is in the CYYMMDDHHMMSS format, which is
described in the change date and time field description.

Current number of increments. The number of increments that have been added to the member size (data space size). This field is 0
for logical files because the number of increments only applies to physical files.

Current number of records. The number of records that currently exist in this member. A keyed logical file member returns the
number of index entries. A nonkeyed logical file member returns the number of records in the based-on physical file member. If the
requested physical file member is suspended, the value 0 is returned.

Current number of records, if less than 2,147,483,647. The number of records that currently exist in this member. A keyed logical
file member returns the number of index entries. A nonkeyed logical file member returns the number of records in the based-on
physical file member. If the requested physical file member is suspended, the value -1 is returned. If the number of records is greater
than or equal to 2,147,483,647, the value -2 is returned.

Current number of records for all based-on members. The number of records that currently exist in this member. A logical member
returns the summarization of index entries. If the requested physical file member is suspended, the value 0 is returned.

Current number of records for all based-on members, if less than 2,147,483,647. The number of records that currently exist in this
member. A logical member returns the summarization of index entries. If the requested physical file member is suspended, the value -1
is returned. If the number of records is greater than or equal to 2,147,483,647, the value -2 is returned.

Data space activity statistics. Information on the activity that has occurred on this member since the last IPL. All of these values are
reset to binary 0 the first time the object is used after or during an IPL.

Data space index activity statistics. Information on the activity that has occurred on this member access path since the last IPL. All of
these values are reset to binary 0 the first time the object is used after or during an IPL.

Data space size. The size of the space that contains the data of the file member, in bytes. A logical file returns a 0.

Data space size multiplier. The value to multiply the data space size by to get its true size. Typically this is 1, but for large files, the
value may be greater than 1. If the data space size multiplier is greater than 1, then the value in the data space size field is not the actual
size of the file.

Database file library name. The name of the library that contains the file.

Database file name. The name of the file from which the member list was retrieved.

Date last used. The century and date this member was last used. The date last used field is in the CYYMMDD format as follows:

blank *NONE
C Century, where 0 indicates years 19xx and 1 indicates years 20xx.
YY Year
MM Month
DD Day

Estimated rebuild time. The estimated time, in seconds, to completely rebuild the access path. If the access path is being rebuilt
currently, the value is -1. If a delayed maintenance index is being caught up currently, the value is -2. For an encoded vector index, the
value is 0.

Expiration date. The date that this member expires. This is in the CYYMMDD format, which is the same format described for the date
last used field description.

File attribute. The type of file found:

PF Physical file
LF Logical file
DDMF Distributed data management file

Force keyed access path. Force the access path to be keyed.

0 Do not force keyed access path
1 Force a keyed access path

Format name. The definition of how data is structured in the records contained in a file. If this is a join logical file or SQL view file,
the format name is only valid for the entry in the record format and based-on file member list array.

Increment number of records. The maximum number of records that are automatically added to the member when the number of
records in the member is greater than the initial member size. This field applies only to physical files and is 0 for logical files.

Initial number of records. The number of records that can be written to each member of the file before the member size is
automatically extended. This field applies only to physical files and is 0 for logical files.

Join member. Whether the member's logical file member combines (in one record format) fields from two or more physical file
members.

0 Not a join member
1 Join member

Last rebuild date and time. The data and time of the most recent, successful rebuild or delayed maintenance catch up of the access
path. This field is in the CYYMMDDHHMMSS format, which is described in the change date and time field description.

Last source change date and time. The date and time that this source member was last changed. The last source changed date and
time is in the CYYMMDDHHMMSS format, which is in the same format as the change date and time field.

Logical file or physical file. Whether the file is a logical or physical file. The possible values are:

0 Member retrieved from a physical file
1 Member retrieved from a logical file

Logical file record format number. The entry number in the record format and based-on file member list. This number then
corresponds to the based-on member listed in this entry. This field only applies to logical files and is 0 for a physical file.

Logical page size. The number of bytes used for the access path's logical page size. If the access path is an encoded vector, the value 0
is returned.

Maximum number of increments. The maximum number of increments automatically added to the member size. This field only
applies to physical files and is 0 for a logical file.

Maximum percentage of deleted records allowed. The maximum allowed percentage of deleted records for each member in the
physical file. The percentage check is made when the member is closed. If the percentage of deleted records is greater than the value
shown, a message is sent to the history log. This field only applies to physical files and is 0 when either no deleted records are allowed
or the file is a logical file.

Member name. The name of the member whose description is being retrieved.

Member text description. The member's text description.

Member text description CCSID. The CCSID for the member text description. The job default CCSID of the current process will be
used to translate the text. For more information about CCSID, see the Globalization topic.

Number of access path build and rebuild operations. The number of access paths, both permanent and temporary, that have been
built over this member since the last IPL.

Number of access path entries. The number of access path entries the physical file has for constraints.

Number of activate operations. The number of times that an open operation has been performed over this member since the last IPL.

Number of based-on physical file members. The number of database file members for the logical file member. If the member is a
physical file member, the value is 0.

Number of constraint logical-access-path read requests. The number of logical read requests that have been made on keys in this
constraint access path since the last IPL. This count reflects read requests issued regardless of whether a physical read request was
actually performed. Decommit operations will affect this count.

Number of constraint physical-access-path reads. The number of read requests that resulted in actual physical I/O requests on
constraint keys in this member since the last IPL. Logical read requests do not necessarily result in a physical read request. Decommit
operations will affect this count.

Number of copy operations. The number of times that this member has been the target of a single-entry copy instruction since the last
IPL.

Number of days used. The number of days the member has been used. If the member does not have a last-used date, the value 0 is
returned.

Number of deactivate operations. The number of times that a close operation has been performed over this member since the last IPL.
Note that the difference between the number of activate operations and the number of deactivate operations will indicate the number of
currently active open operations over this member.

Number of delayed maintenance keys. The number of access path entries that will be processed during delayed maintenance catch up
time. If the access path is an encoded vector, the value 0 is returned.

Number of delete operations. The number of records deleted from this member since the last IPL. Delete operations performed on this
member as a result of the cascade referential constraint rule will affect this count. Applying journal entries that result in delete
operations will affect this count. Delete operations that occur during decommit will also affect this count.

Number of deleted records. The number of deleted records returned in the file member. Keyed logical files return a 0. DDM files that
are not from a System/38 or iSeries system return a 0. If the requested physical file member is suspended, the value 0 is returned.

Number of deleted records, if less than 2,147,483,647. The number of deleted records returned in the file member. Keyed logical files
return a 0. DDM files that are not from a System/38 or iSeries system return a 0. If the requested physical file member is suspended, the
value -1 is returned. If the number of records is greater than or equal to 2,147,483,647, the value -2 is returned.

Number of distinct invalid indexes. The number of distinct invalid indexes built over this member. This includes the index created if
the file is keyed, any indexes created for dependent keyed logical files, any indexes created for dependent join logical files, any indexes
created for dependent SQL indexes, and any indexes created for unique or referential constraints on the file. Access paths that share an
index are not included.

Number of distinct valid indexes. The number of distinct valid indexes built over this member. This includes the index created if the
file is keyed, any indexes created for dependent keyed logical files, any indexes created for dependent join logical files, any indexes
created for dependent SQL indexes, and any indexes created for unique or referential constraints on the file. Access paths that share an

index are not included.

Number of insert operations. The number of records inserted into this member since the last IPL. This count does not reflect records
added to a member on behalf of a single entry copy instruction. Applying journal entries that result in inserts will affect this count.

Number of logical-member access-path read requests. The number of logical read requests that have been made on keys in this
member access path since the last IPL. This count reflects read requests issued regardless of whether a physical read request was
actually performed. Decommit operations will affect this count.

Number of logical read requests. The number of logical read requests that have been made on entries in this member since the last
IPL. This count reflects read requests issued regardless of whether a physical read request was actually performed. Decommit
operations will affect this count.

Number of member level constraint information array entries. The number of entries in the member level constraint information
array. The maximum number of entries is 300.

Number of overflow values. The number of unique key values that do not collate in sequential order in an encoded vector. If the
access path is not an encoded vector, the value 0 is returned.

Number of physical-member access-path read requests. The number of read requests that resulted in actual physical I/O requests on
keys in this member since the last IPL. Logical read requests do not necessarily result in a physical read request. Decommit operations
will affect this count.

Number of physical read requests. The number of read requests that resulted in actual physical I/O requests on entries in this member
since the last IPL. Logical read requests do not necessarily result in a physical read request. Decommit operations will affect this count.

Number of records rejected by group-by selection. The number of records that were rejected by the selection that is associated with
group-by processing on the member.

Number of records rejected by key selection. The number of records that were rejected by key record selection in open operations
that are associated with the member.

Number of records rejected by nonkey selection. The number of records that were rejected by the nonkey record selection in open
operations that are associated with the member.

Number of rejected entries. The number of member entries rejected by retrieve operations since the last IPL.

Number of reorganize operations. The number of times that this member has been reorganized since the last IPL.

Number of reset operations. The number of times that this member has been cleared since the last IPL. Applying journal entries that
result in clear operations will affect this count.

Number of unique partial keys for key field 1. The number of unique key values considering only the first key field for keyed access
paths. If the access path is an encoded vector, this number represents the number of full key distinct values. If this value is zero, then
the unique key statistics are not available for this access paths. The number of unique key values are not available for access paths
restored from previous releases, have keys which contain varying length character fields, or have multiple based on files.

Number of unique partial keys for key field 1 through 2. The number of unique key values from the first two key fields for keyed
access paths. If this value is zero, then the unique key statistics are not available for this partial key. This number is not available for
access paths restored from previous releases, containing only 1 key field, are encoded vector, have keys which contain varying length
character fields, or have multiple based on files.

Number of unique partial keys for key field 1 through 3. The number of unique key values from the first three key fields for keyed
access paths. If this value is zero, then the unique key statistics are not available for this partial key. This number is not available for
access paths restored from previous releases, containing less than 3 key fields, are encoded vector, have keys which contain varying
length character fields, or access paths with multiple based on files.

Number of unique partial keys for key field 1 through 4. The number of unique key values from the first four key fields for keyed
access paths. If this value is zero, then the unique key statistics are not available for this partial key. This number is not available for
access paths restored from previous releases, containing less than 4 key fields, are encoded vector, have keys which contain varying
length character fields, or access paths with multiple based on files.

Number of update operations. The number of records updated in this member since the last IPL. Updates performed on the member
as a result of the set null and set default referential constraint rules will affect this count. Applying journal entries that result in updates
will affect this count. Update operations that occur during decommit will also affect this count.

ODP sharing. Whether the open data path (ODP) allows sharing with other programs in the same job. Possible values are:

0 ODP sharing is not allowed. A distributed data management (DDM) file that is sent to a
system other than a System/38 or iSeries system returns a 0.

1 ODP sharing is allowed.

Offset to additional MBRD0200 format information. The number of bytes from the start of the MBRD0200 format to the beginning
of the additional MBRD0200 format information.

Offset to member level constraint information. The number of bytes from the start of the MBRD0200 format to the beginning of the
first member level constraint information array.

Record capacity. The actual number of records this member can contain. The value is calculated by multiplying the increment number
of records by the maximum number of increments, and adding the initial number of records. This field only applies to a physical file
and is 0 for a logical file.

Record format and based-on file list. The number of physical file members this logical file member is based on. There is a maximum
of 32 entries. A physical file only has one entry. See Record Format and Based-On File List Entry for a list of the fields contained in
this list.

Record format selector library name. The library in which the record format selector program resides. This field is blank for physical
files.

Record format selector program name. The name of a record format selector program that is called when the logical file member
contains more than one logical record format.

The user-written selector program is called when a record is written to the database file and a record format name is not included in the
high-level language (HLL) program. The selector program receives the record as input, determines the record format used, and returns
it to the database. This field is blank for physical files.

Records to force a write. The number of inserted, updated, or deleted records that are processed before the records are forced into
auxiliary storage. A 0 indicates that records are not forced into auxiliary storage.

Remote file. Whether the file is a remote file. Possible values are:

0 Local file
1 Remote file

Reserved. An ignored field.

Restore date and time. The date and time that the member was last restored. The restore date and time field is in the
CYYMMDDHHMMSS format, which is the same as for the change date and time field. The field contains blanks if the member was
never restored. DDM files that are not from a System/38 or iSeries system return blanks.

Save date and time. The date and time that this member was last saved. The save date and time field is in the CYYMMDDHHMMSS
format, which is the same as the change date and time field. This field contains blanks if it was never saved. DDM files that are not
from a System/38 or iSeries system return blanks.

Source file. Whether the file is a source file. The possible values are:

0 Data file
1 Source file

Source type. The type of source member if this is a source file.

SQL file type. The kind of SQL file type the file is. The possible values are:

blank Not an SQL file.
TABLE Nonkeyed physical file that contains field characteristics.
VIEW Logical file over one or more tables or views. This SQL file type provides a subset of data

in a particular table or a combination of data from more than one table or view.
INDEX Keyed logical file over one table that is used whenever access to records in a certain order

is to be requested frequently.

Use reset date. The century and date when the days-used count was last set to 0. This field is in the CYYMMDD format, which is the
same as for the date last used field. If the date is not available, this field is blank.

Variable length data size. The number of pages (4096 bytes each) of variable length data in the data space.

Usage Notes

In multithreaded jobs, this API is not threadsafe and fails for DDM files of type *SNA.

Error Messages

Message ID Error Message Text
CPF24B4 E Severe error while addressing parameter list.
CPF32DE E Cannot get information about member &3 from file &1.
CPF32DF E Value &1 for find member parameter is not valid.
CPF3CF1 E Error code parameter is not valid.
CPF3C19 E Error occurred with receiver variable specified.
CPF3C20 E Error found by program &1.
CPF3C21 E Format name &1 is not valid.
CPF3C22 E Cannot get information about file &1.
CPF3C23 E Object &1 is not a database file.
CPF3C24 E Length of the receiver variable is not valid.
CPF3C25 E Value &1 for file override parameter is not valid.
CPF3C26 E File &1 has no members.
CPF3C27 E Cannot get information about member &3 from file &1.
CPF3C36 E Number of parameters, &1, entered for this API was not valid.
CPF3C90 E Literal value cannot be changed.
CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.
CPF9800 E All CPF98xx messages could be returned. xx is from 01 to FF.

API Introduced: V1R3

Top | Database and File APIs | APIs by category

Retrieve Record Locks (QDBRRCDL) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Record identification information Input Char(*)
5 Member name Input Char(10)
6 Relative record number Input Unsigned

binary(4)
7 Error code I/O Char(*)

 Optional Parameter Group:

8 Format of record identification
information

Input Char(8)

9 Lock filters Input Char(*)
10 Format of lock filters Input Char(8)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Record Locks (QDBRRCDL) API lets you generate a list of jobs, threads and lock spaces
that are either waiting for or holding locks on one or more records. The Retrieve Record Locks API places
the list in the specified receiver variable. Lock information is returned for records in local physical files
only and file overrides are not processed.

Authorities and Locks

Object Authority

None

Object Library Authority

*EXECUTE

Object Library ASP Device Authority

*EXECUTE

File Lock

*SHRRD

Note: If the user does not have *EXECUTE authority to the object's library and *EXECUTE authority to
the object library's ASP device, the user must have *JOBCTL authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the list of record locks. The size (in bytes) of this variable is specified
in the length of receiver variable parameter.

See Format of receiver information for details on the format of the receiver information.

Length of receiver variable

INPUT; BINARY(4)

The number of bytes that are provided in the Receiver variable parameter. At least 16 bytes must be
provided. If the size of the receiver variable provided is less than the length of the list that is
available, the list will be truncated; this can be determined by examining the first two fields in the
receiver variable, the number of record locks returned, and the number of record locks available. If
the receiver variable length specified is greater than the actual receiver variable, the results are
unpredictable.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The possible format names are:

RRCD0100 Job record lock list. See RRCD0100 Format for details.

 RRCD0200 Lock holder record lock list. See RRCD0200 Format for details.

Record identification information

INPUT; CHAR(*)

The information that is to be used to identify the record or records for which locks are to be
retrieved. See Format of record identification information for details.

If the Format of record identification information parameter is omitted, format RRRC0100 is
assumed. See RRRC0100 Format for details.

Member name

INPUT; CHAR(10)

The name of the member in the specified file that is to be checked for record locks. This value
must be blanks if RRRC0200 is specified for the format of record identification information
parameter, and in that case the member value must be specified as part of the record identification
information parameter. The following special value is allowed:

*FIRST The first member of the specified file is used.

Relative record number

INPUT; UNSIGNED BINARY(4)

The record number in the specified file and member for which lock information is to returned.

This value must be 0 if RRRC0200 is specified for the format of record identification information
parameter, and in that case the relative record number value must be specified as part of the record
identification information parameter. The following special value is allowed:

0 Record lock information for all records in the member should be returned.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group

Format of record identification information

INPUT; CHAR(8)

The format of the record identification information. The possible format names are:

RRRC0100 This format is used to identify the file and library for which locks are to be
retrieved. See RRRC0100 Format for details. This is the default if this parameter is
omitted.

RRRC0200 This format is used to identify the records for which locks are to be retrieved. See
RRRC0200 Format for details.

Lock filters

INPUT; CHAR(*)

Filters used for the lock information that is returned. See Format of lock filters for further
information. If this parameter is omitted, the returned lock information is not filtered.

Format of lock filters

INPUT; CHAR(8)

The format of the lock filters used on the returned data. The possible format name is:

RRFL0100 Lock filter format. See RRFL0100 Format for details.

If this parameter is omitted, the returned lock information is not filtered.

Format of Receiver Information

The format of the information returned in the receiver variable.

RRCD0100 Format

The following information is returned for RRCD0100 format. When this format is used, only job and
thread scope locks are returned. Lock space scope locks are not returned. Thread scope locks for all of the
job's threads are returned. For detailed descriptions of the fields in the table, see RRCD0100 Format Field
Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of record locks available

4 4 BINARY(4) Number of record locks returned

8 8 BINARY(4) Offset to list of record locks

12 C BINARY(4) Size of information for each record lock
returned

Each record lock returned will have the following structure.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) Job user name

20 14 CHAR(6) Job number

26 1A CHAR(1) Lock status

27 1B CHAR(1) Lock state

28 1C UNSIGNED
BINARY(4)

Relative record number

 32 20 CHAR(8) Thread identifier

40 28 UNSIGNED
BINARY(4)

Thread handle

RRCD0100 Format Field Descriptions

Job name. The simple job name of the job that issued the lock request.

Job number. The system-assigned job number of the job that issued the lock request.

Job user name. The user name under which the job that issued the lock request is run.

Lock status. The status of the lock. The possible values are:

0 The record lock is held by the given job or thread.

1 The job or thread given is waiting for the record lock.

Lock state. The lock state to be processed. The possible values are:

0 The record lock is a shared read lock.

1 The record lock is an exclusive update lock.

2 The record lock is a shared internal lock.

Number of record locks available. The number of record lock structures that are available to be returned.
If this field is the same as the number of record locks returned field, all the record lock information has
been returned.

Number of record locks returned. The number of record lock structures that were returned to the caller of
the API. If enough space is provided in the receiver variable, all record locks are returned. If there is more
record lock information than can fit in the space provided, the number of record locks returned is less than
the number of record locks available.

Offset to list of record locks. The byte offset from the beginning of the receiver variable to the first record
lock information structure.

Relative record number. The relative record number for which job record lock information is being
returned.

Size of information for each record lock returned. The number of bytes of each of the returned record
lock information structures. In future releases, the amount of information returned for each record lock may
be expanded, so this value should be used to move from one record lock structure to another.

Thread handle. This is a value which is used to address a particular thread holding a thread scope lock or
the thread waiting for a lock. If the lock is not a thread scope lock, this is zero.

Thread identifier. The unique value that is used to identify the thread holding a thread scope lock or the
thread waiting for a lock. If the lock is not a thread scope lock, this is hex zeros.

RRCD0200 Format

The following information is returned for RRCD0200 format. For detailed descriptions of the fields in the
table, see RRCD0200 Format Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of record locks available

4 4 BINARY(4) Number of record locks returned

8 8 BINARY(4) Offset to list of record locks

12 C BINARY(4) Size of information for each record lock
returned

Each record lock returned will have the following structure.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) Job user name

20 14 CHAR(6) Job number

26 1A CHAR(1) Lock status

27 1B CHAR(1) Lock state

28 1C BINARY(4) Relative record number

32 20 CHAR(8) Thread identifier

40 28 UNSIGNED
BINARY(4)

Thread handle

44 2C CHAR(1) Lock scope

45 2D CHAR(1) Holder type

46 2E CHAR(20) Lock space identifier

66 42 CHAR(2) Reserved

RRCD0200 Format Field Descriptions

Holder type. If the lock status indicates the lock is held, this indicates the type of holder. If the lock status
indicates the lock is not yet held, this indicates the type of holder that is waiting on the lock. This field will
be the same as the lock scope field except in the case when a thread is waiting for a lock space scope lock.
The possible values are:

0 Job.

1 Thread.

2 Lock space.

Job name. The simple job name of the job that issued the lock request. If the holder type is not job or
thread, this is hex zeros.

Job number. The system-assigned job number of the job that issued the lock request. If the holder type is
not job or thread, this is hex zeros.

Job user name. The user name under which the job that issued the lock request is run. If the holder type is
not job or thread, this is hex zeros.

Lock scope. If the lock status indicates the lock is held, this indicates the type of holder. If the lock status
indicates the lock is not yet held, this indicates the type of holder will hold the lock once the lock request is
satisfied. This field will be the same as the holder type field except in the case when a thread is waiting for
a lock space scope lock. The possible values are:

0 Job.

1 Thread.

2 Lock space.

Lock space identifier. The identifier of the lock space that holds this lock. If the lock scope is not lock
space scope, this is hex zeros.

Lock status. The status of the lock. The possible values are:

0 The record lock is held. The holder may be a job, thread or lock space as indicated by
the lock holder type field.

1 The record lock is being waited on. The waiter may be a job or thread as indicated by
the lock holder type field.

Lock state. The lock state to be processed. The possible values are:

0 The record lock is a shared read lock.

1 The record lock is an exclusive update lock.

2 The record lock is a shared internal lock.

Number of record locks available. The number of record lock structures that are available to be returned.
If this field is the same as the number of record locks returned field, all the record lock information has
been returned.

Number of record locks returned. The number of record lock structures that were returned to the caller of
the API. If enough space is provided in the receiver variable, all record locks are returned. If there is more
record lock information than can fit in the space provided, the number of record locks returned is less than
the number of record locks available.

Offset to list of record locks. The byte offset from the beginning of the receiver variable to the first record
lock information structure.

Relative record number. The relative record number for which job record lock information is being
returned.

Reserved. An unused field.

Size of information for each record lock returned. The number of bytes of each of the returned record
lock information structures. In future releases, the amount of information returned for each record lock may
be expanded, so this value should be used to move from one record lock structure to another.

Thread handle. This is a value which is used to address a particular thread holding a thread scope lock or
the thread waiting for a lock. If the holder type is not thread, this is zero.

Thread identifier. The unique value that is used to identify the thread holding a thread scope lock or the
thread waiting for a lock. If the holder type is not thread, this is hex zeros.

Format of Record Identification Information

The format of the information that is to be used to identify the record or records for which locks are to be
retrieved. If this parameter is specified, the member and relative record number parameters are ignored, and
the member and relative number specified in the format fields are used to identify the records.

RRRC0100 Format

The following information is specified for the RRRC0100 format. For detailed descriptions of the fields in
the table, see RRRC0100 Format Field Descriptions

Offset

Type FieldDec Hex

0 0 CHAR(10) File name

10 A CHAR(10) Library name

RRRC0100 Format Field Descriptions

File name. The name of the file for which record locks are to be retrieved.

Library name. The name of the library where the object is located. The library is assumed to be in the
name space of the thread that called the API. You can use these special values for the library name:

*CURLIB The current library is used to locate the object. If there is no current library, QGPL
(general purpose library) is used.

*LIBL The library list is used to locate the object.

RRRC0200 Format

The following information is specified for the RRRC0200 format. For detailed descriptions of the fields in
the table, see RRRC0200 Format Field Descriptions

Offset

Type FieldDec Hex

0 0 BINARY(4) Record identification information size

4 4 CHAR(10) File name

14 E CHAR(10) Library name

24 18 CHAR(10) Member name

34 22 CHAR(10) Library ASP name

44 2C UNSIGNED
BINARY(4)

Relative record number

RRRC0200 Format Field Descriptions

File name. The name of the file for which record locks are to be retrieved.

Library ASP name. The name of the auxiliary storage pool (ASP) device that contains the file's library.
Special values used are:

* Thread name space

*SYSBAS System or basic user ASP

Library name. The name of the library where the object is located. You can use these special values for
the library name:

*CURLIB The current library is used to locate the object. If there is no current library, QGPL
(general purpose library) is used.

*LIBL The library list is used to locate the object.

Member name. The name of the member in the specified file that is to be checked for record locks.

The following special value is allowed:

*FIRST The first member of the specified file is used.

Record identification information size. The amount of data provided for the RRRC0200 format. This
field must be set to 48.

Relative record number. The record number in the specified file and member for which lock information
is to be returned. The following special value is allowed:

0 Record lock information for all records in the member should be returned.

Format of lock filters

The format of the lock filters used on the returned lock information.

RJFL0100 Format

The following information is to be specified for the RJFL0100 format. For detailed descriptions of the
fields in the table, see RJFL100 Format Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Filter size

4 4 BINARY(4) Filter lock state

8 8 BINARY(4) Filter lock scope

12 C BINARY(4) Filter lock status

RJFL0100 Format Field Descriptions

Filter lock scope: This value is used to filter information that is returned so that it contains only
information about locks that have a certain lock scope.

0 Do not filter on lock scope value

1 Return only the job scope locks

2 Return only the thread scope locks

3 Return only the lock space scope locks

Default: Do not filter on lock scope value

Filter lock state: This value is used to filter information that is returned so that it contains only information
about locks that have a certain lock state.

0 Do not filter on lock state value

1 Return only the shared locks

2 Return only the exclusive locks

Default: Do not filter on lock state value

Filter lock status: This value is used to filter information that is returned so that it contains only
information about locks that have a certain lock status.

0 Do not filter on lock status value

1 Return only locks with a status of held

2 Return only locks with a status of waiting

3 Return only locks with a status of requested.

Default: Do not filter on lock status value

Filter size: The size of the filter information passed. Valid values are:

4 No filtering will be performed. The default values will be used for each filter.

16 All filters are required

Error Messages

Message ID Error Message Text
CPF24B4 E Severe error while addressing parameter list.
CPF3130 E Member &2 already in use.
CPF3210 E File &1 in library &2 not correct type.
CPF3247 E Record number &4 does not exist in member &3.
CPF3275 E Member &3 file &1 in &2 not found.
CPF3C19 E Error occurred with receiver variable specified.
CPF3C1E E Required parameter &1 omitted.
CPF3C21 E Format name &1 is not valid.
CPF3CF1 E Error code parameter not valid.
CPF9803 E Cannot allocate object &2 in library &3.
CPF9810 E Library &1 not found.
CPF9812 E File &1 in library &2 not found.

API Introduced: V5R1

Top | Database and File APIs | APIs by category

Retrieve Short Name (QDBRTVSN) API

 Required Parameter Group:

1 Qualified file name Output Char(20)
2 Long file name Input Char(128)
3 Length of long file name Input Binary(4)
4 Library name Input Char(10)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Short Name(QDBRTVSN) APIallows you to get the 10-character file name of a database file
by providing the long file name of the database file. The information is returned as a qualified file name.

Authorities and Locks

File Authority

*OBJOPR

Required Parameter Group

Qualified file name

OUTPUT; CHAR(20)

The short file name being retrieved and the library in which it is located. The first 10 bytes contain
the file name, and the second 10 bytes contain the library name. If the input library name is *LIBL,
or *CURLIB, the library name will be returned. If the 20 bytes are blanks, this means the file name
could not be returned.

Long file name

INPUT; CHAR(128)

The long file name from which the short name will be retrieved.

Length of long file name

INPUT; BINARY(4)

The length of the long file name.

Library name

INPUT; CHAR(10)

The name of the library of the file. If you use one of the special values, the actual name of the
library will be returned in the qualified file name parameter. You can use the following special
values for the library name:

*CURLIB The job's current library.
*LIBL The library list.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF2207 E Not authorized to use object &1 in library &3 type *&2.

CPF24B4 E Severe error while addressing parameter list.

CPF3C22 E Cannot get information about file &1.

CPF5715 E File &1 in library &2 not found.

API Introduced: V3R7

Top | Database and File APIs | APIs by category

Roll Back EDRS Server (QxdaRollbackEDRS)
API

 Required Parameter Group:

1 Connection handle Input Binary(4)
2 Additional rollback options Input Binary(4)
3 SQL communications area Output Char(136)
4 Error code I/O Char(*)

 Service Program: QXDAEDRS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Roll Back EDRS Server (QxdaRollbackEDRS) API is used to roll back transactions on the database
server.

Authorities and Locks

None.

Required Parameter Group

Connection handle

INPUT; BINARY(4)

The handle number of the connection on which to perform the rollback operation. The connection
handle must have been generated by the QxdaConnectEDRS API in the current job and activation
group.

Additional rollback options

INPUT; BINARY(4)

The following are valid rollback options:

0 QXDA_ROLLBACK_WORK
1 QXDA_ROLLBACK_WITH_HOLD

SQL communications area

OUTPUT; CHAR(136)

Returns diagnostic information. It includes the SQLCODE variable, indicating whether an error has
occurred. If SQLCODE has a value of 0 after a call to this API, the function was successful.

The format of this structure is standard and is described morecompletely in the DB2 UDB for
iSeries SQL Programming Concepts and DB2 UDB for iSeries SQL Reference books.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

This function may be called from the initial thread of a job only.

Error Messages

Message ID Error Message Text

CPF180C E Function &1 not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB750 E Connection handle specified not valid.

CPFB751 E Parameter &1 passed not correct.

CPFB752 E Internal error in &1 API.

CPFB757 E The connection is suspended.

CPFB758 E The EDRS server system has been switched.

API Introduced: V4R4

Top | Database and File APIs | APIs by category

Run Database Hash (QDBRUNHA) API

 Required Parameter Group:

1 Hash name Input Char(10)
2 Function Input Char(1)
3 Number of keys Input Binary(4)
4 Key values Input Char(*)
5 Data I/O Char(*)
6 Length of Data Input Binary(4)
7 Return code Output Binary(4)

 Default Public Authority: *USE

 Threadsafe: No

The Run Database Hash (QDBRUNHA) API allows the user to FETCH, UPDATE, DELETE and INSERT
data into existing database files using an alternative access method. The hash approach can be used on
relatively static files in situations where it is desirable to reduce the amount of memory that is consumed by
indexes. Its affectiveness is reduced in memory-rich environments or environments with dynamic data.

Authorities and Locks

HASH User Space in Library QUSRSYS

*OBJOPR, *READ, and *UPDATE

Required Parameter Group

Hash name

INPUT; CHAR(10)

The hash name used to access the data. See the description of the Create Database Hash
(QCreateDatabaseHash) API for information on defining and naming the hash.

Function

INPUT; CHAR(1)

The function to be performed. The possible values are character digits as follows:

1 Fetch a row for read purposes only
2 Fetch a row with intent to update
3 Update the currently locked row
4 Delete the currently locked row
5 Insert a row into the database

Number of keys

INPUT; BINARY(4)

The number of keys used by the hash.

Key values

INPUT; CHAR(*)

A structure containing up to five rows of the name of key fields and the value of key fields in the
order that they appear in the logical file used to create the hash. For more details, see Field
Descriptions.

Offset

Type FieldDec Hex

CHAR(10) Name of key

Binary(4) Value of key

Data

I/O; CHAR(*)

A pointer to the actual row of data from the database to be manipulated according to the function
parameter. The row will be inserted, deleted, updated, or fetched from the database.

Data length

INPUT; BINARY(4)

The length of the buffer in the application that will receive or contain the data.

Return code

OUTPUT; BINARY(4)

A numeric indication as to what took place during the hash function request. The possible values
are:

0 No errors.
1 Hash user space does not exist.
2 Hash does not exist.
100 Record not found.
812 Lock-wait time-out.
-99 Another error was encountered and ignored. See job log for details.

Field Descriptions

Name of key. The name of the key field in the order that they appear in the logical file referenced in the
associated Create Database Hash (QDBCRTHA) API. The names are for documentation purposes only.

Value of key. The key value used by the API to access the appropriate record in the file.

Error Messages

Only the error conditions listed in the return code parameter are monitored. No error messages other than
the value of the return code parameter are returned.

API Introduced: V4R3

Top | Database and File APIs | APIs by category

Start SQL Database Monitor (QQQSSDBM) API

 Required Parameter Group:

1 Qualified job name Input Char(26)
2 Memory handle Input Char(10)
3 Storage size Input Binary(4)
4 Free storage method Input Char(10)
5 Number of types to monitor Input Binary(4)
6 Subtypes to monitor Input Array(*) of

Char(10)
7 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Start SQL Database Monitor (QQQSSDBM) API starts the memory-based SQL database monitor.
Associated APIs include the following:

Clear SQL Database Monitor Statistics (QQQCSDBM)●

Dump SQL Database Monitor (QQQDSDBM)●

End SQL Database Monitor (QQQESDBM)●

Query SQL Database Monitor (QQQQSDBM)●

Authorities and Locks

Current User Profile

*JOBCTL

Required Parameter Group

Qualified job name

INPUT; CHAR(26)

The job to be monitored. The qualified job name has three parts:

Job name CHAR(10). A specific job name, a generic name, or one of the following
special values:

* or
*CURRENT

Only the job that this program is running in. The rest of the
qualified job name parameter must be blank.

*ALL All jobs. The rest of the job name parameter must be blank.

User name CHAR(10). A specific user profile name.

Job number CHAR(6). A specific job number.

Memory handle

INPUT; CHAR(10)

The handle used for consolidating data. This parameter is only valid when the qualified job name
parameter is not *ALL (that is, you are starting the monitor on a specific job). If multiple jobs are
monitoring with the same memory handle, their database activity will be consolidated together.

If *JOB is specified, the job's database activity will be monitored in its own memory area (the
activity will not be consolidated with any other job's database activity, unless the other job
explicitly specifies this job's job number as the memory handle.). For example, assume
QQQSSDBM is issued by job 111111 with a memory handle of *JOB. This implies a memory
handle of 111111 is used. If job 999999 issues QQQSSDBM and names a memory handle of
111111, then both jobs 111111 and 999999 will use memory area 111111. Consequently, the
database monitor data for both jobs will be summarized within this memory area.

The possible values are:

User defined Up to 6-character value to name a memory area that will contain consolidated
data. Only the first 6 characters will be used for a named memory.

*JOB Use the memory area associated with the job, and do not consolidate data with
any other job.

Storage size

INPUT; BINARY(4)

The maximum amount of storage to use for in-memory data (specified in megabytes). A value of -1
implies no maximum.

Free storage method

INPUT; CHAR(10)

When maximum storage is reached in the storage size parameter, the method used to free storage.
The possible value is:

*LRU Free the statement least recently used

Number of types to monitor

INPUT; BINARY(4)

The number of types passed in the subtypes to monitor array.

Subtypes to monitor

INPUT; Array(*) of CHAR(10)

The list of all subtypes that should be monitored. The possible values are:

KEYT_3000 Summary: Arrival sequence (file QAQQ3000)

KEYT_3001 Summary: Index used (file QAQQ3001)

KEYT_3002 Summary: Index created (file QAQQ3002)

KEYT_3003 Summary: Sort (file QAQQ3003)

KEYT_3004 Summary: Temporary file (file QAQQ3004)

KEYT_3007 Summary: Optimizer time-out or all access paths considered (file QAQQ3007)

KEYT_3008 Summary: Subselect processing (file QAQQ3008)

KEYT_3010 Summary: Host variable values (file QAQQ3010)

KEYT_TEXT SQL statement text (file QAQQTEXT)

KEYT_QRYI Summary: General SQL information including statement count, maximum
runtime, time last used, and so forth. This subtype is always monitored because
it is required for monitoring all other subtypes (file QAQQQRYI). It should still
be specified, and is required if it is the only subtype to be monitored.

*EDSQL Monitor all subtypes. If this option is specified, the number of types to monitor
should be set to 1, and no other subtypes should be requested.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

This function is threadsafe but not thread enabled. Database monitor data is collected in the threaded
process but summarized at the job level.

Error Messages

Message ID Error Message Text

CPD0172 D Parameters passed on CALL do not match those required.

CPF1321 E Job &1 user &2 job number &3 not found.

CPF222E E &1 special authority is required.

CPF3CF1 E Error code parameter not valid.

CPF436C E Job specified is already being monitored.

CPF436E E Job &1 user &2 job number &3 is not active.

API Introduced: V4R3

Top | Database and File APIs | APIs by category

Syntax Check SQL Statement (QSQCHKS) API

 Required Parameter Group:

1 Source records containing SQL
statement

Input Char(*)

2 Record length Input Binary(4)
3 Number of records provided Input Binary(4)
4 Language Input Char(10)
5 Options Input Char(*)
6 Statement information Output Char(*)
7 Length of statement information Input Binary(4)
8 Number of records processed Output Binary(4)
9 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Syntax Check SQL Statements (QSQCHKS) API calls the DB2 UDB for iSeries SQL parser to check
the syntax of an SQL statement. If a specific language is specified, the parser will scan the source records
passed according to the rules of the language. If a language is not passed, the parser will scan an SQL
statement using the Interactive SQL syntax rules.

Authorities and Locks

No additional authority is required and no locks are acquired.

Required Parameters

Source records containing SQL statement

INPUT; CHAR(*)

The SQL statement that is to be parsed. This parameter can be passed as source text records for an
HLL or as an SQL statement.

If the statement is contained in source text records for an HLL, the SQL statements must be in the
form required by the precompiler for the specified language. For example, in COBOL, the
statements must be preceded by EXEC SQL and followed by END-EXEC. Multiple statements will
be processed. All the records will be processed as long as enough storage is provided for the
statement information.

If a language is not specified, a single SQL statement must be passed without any additional
delimiters (such as EXEC SQL or ;).

Record length

INPUT; BINARY(4)

The length of each record or the length of the SQL statement if language is *NONE. If language is
*NONE the length must be between 1 and 32767. Record length for other languages must be at
least as long as the right margin and cannot be longer than 100.

Number of records provided

INPUT; BINARY(4)

The number of source records to scan for the statement. This must be 1 if *NONE is specified for
the language. If a language is specified, the number of records must be between 1 and 32767.

Language

INPUT; CHAR(10)

The programming language for which the syntax check is to be performed. Valid values include the
following:

*NONE A syntax check is performed on the SQL statement using the Interactive SQL
language syntax rules.

*CBL A syntax check is performed on the SQL statement using the COBOL language
syntax rules.

*FTN A syntax check is performed on the SQL statement using the FORTRAN
language syntax rules.

*PLI A syntax check is performed on the SQL statement using the PL/I language
syntax rules.

*RPG A syntax check is performed on the SQL statement using the RPG language
syntax rules.

*CLE A syntax check is performed on the SQL statement using the ILE C language
syntax rules.

*CBLLE A syntax check is performed on the SQL statement using the ILE COBOL
language syntax rules.

*RPGLE A syntax check is performed on the SQL statement using the ILE RPG language
syntax rules.

Options

INPUT; CHAR(*)

The options required by SQL to parse the statement. The options must be specified as keys. The
first part of the template is the number of keys passed, followed by variable length records for each
option specified. For a description of the option data and keys, see Format for Options.

Number of options
specified

BINARY(4)

Total number of all the options (keys) specified. If this is 0, then
defaults are used for the options.

Variable length option
data

Variable length records containing the key indicating what key is
passed, followed by the length of the data and the data.

Statement information

OUTPUT; CHAR(*)

The structure in which to return statement information for all statements processed. For the format
of the structure, see Statement Information.

Length of area for statement information

Input; BINARY(4)

The length of the area in which to return statement information. This length must be at least 68 for
information to be returned for statement. If a syntax error occurs, the length must be long enough to
also contain the replacement text for the message. If more than 1 statement is processed, each
statement after the first requires 44 bytes plus the length of the replacement text for any syntax
errors.

Number of records processed

Output; BINARY(4)

The number of records processed. If the number of records processed is less than the number of
records provided, the either an error occurred or there was not enough room in the statement
information area to continue. This would never be greater than the number of records provided.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format for Options

The following table defines the format for the options.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of keys

0 0 BINARY(4) Key

04 04 BINARY(4) Length of data

08 08 CHAR(*) Data

If the length of character data is longer than the key field's data length, the data will be truncated at the
right. No message will be issued.

If the length of character data is smaller than the key field's data length, the data will be padded with blanks
at the right. No message will be issued.

If the same key is specified more than once, the last value for the option is used.

Field Descriptions

Data. The option used by SQL to scan the source and syntax check the SQL statement.

Key. Identifies a field of the options parameters. See Keys for the list of valid keys.

Length of data. The length of the data specified for the option.

Number of keys. The number of keys passed. This specifies the number of key arrays following this field.
The arrays contain the key, length of data, and the data.

Keys

The following table lists the valid keys and the corresponding option.

Key Type Field

1 CHAR(10) Naming convention

2 CHAR(1) Operation

3 CHAR(1) Character for delimited host strings

4 CHAR(1) Character for delimited SQL strings

5 CHAR(1) Character for the decimal point

6 BINARY(4) left margin

7 BINARY(4) right margin

8 BINARY(4) CCSID

9 CHAR(10) Target release

Field Descriptions

CCSID. The CCSID to use for the source. The CCSID must be a valid CCSID. If not specified, the job
CCSID will be used.

Character for delimited host strings. The character that is to be used to delimit host character strings.
This parameter is not valid if the language is C or *NONE, and must be apostrophe if specified for
FORTRAN, PL/I and RPG. If not specified for COBOL, the default is the quotation mark. Valid values
include the following:

(') apostrophe
(") quotation mark

Character for delimited SQL strings. The character that is to be used to delimit character constants
within an SQL statement. If the language is COBOL, either values can be specified and the default is
quotation mark. If *NONE is specified for the language, either values can be specified and the default is
apostrophe. For other languages, only the apostrophe can be specified. Valid values include the following:

(') apostrophe
(") quotation mark

Character for the decimal point. The character that is to be used for the decimal point. This parameter is
valid for all languages. If not specified, the system value (QDECFMT) will be used. Valid values include
the following:

(.) period
(,) comma

left margin. The left margin for the source. This parameter is only valid if language is PL/I or C and the
valid values are from 1 to 80. If not specified, the default for PL/I is 2 and the default for C is 1. The left
margin for RPG, COBOL, and FORTRAN is defined by the language and cannot be modified.

Naming convention. The naming convention used to qualify table names in the SQL statement. If this
parameter is not passed, the default is *NONE. Valid values include the following:

*NONE The naming convention is not known. Errors in the qualification of table names are not
returned.

*SYS Table names are qualified using the system naming convention in the form library/table.
*SQL Table names are qualified in the SQL naming convention in the form library.table.

Operation. The operation indicates what operations are to be performed by SQL. For performance, work
areas can be reused across calls to the syntax checker, but SQL must be called eventually to terminate. The
default is to syntax check the statement and terminate (2). However, for performance it is recommended
that operation 0 be used in most cases when more than 1 SQL statement is to be checked. In this case, SQL
must be called eventually to terminate. Valid values include the following:

0 Syntax check the statement and do not terminate. If this is specified, SQL must be called
again to indicate the syntax check is complete.

1 Syntax check is complete. This option must be used to inform SQL to terminate when no
more SQL statements need to be syntax checked.

2 Syntax check the statement and terminate.

Right margin. The right margin for the source. This parameter is only valid if language is PL/I or C and
the valid values are from 1 to 80. The right margin must always be greater than the left margin. If not
specified, the default for both PL/I and C is 80. The right margin for RPG, COBOL, and FORTRAN is
defined by the language and cannot be modified.

Target release. The target release for which the statement should be syntax checked. If the statement
cannot be taken back to the release specified, SQL7906 will be returned in the statement information. The
default is the current release. Valid values include the following:

V2R3M0 The target release is Version 2, Release 3, Modification 0.
V3R0M5 The target release is Version 3, Release 0, Modification 5.
V3R1M0 The target release is Version 3, Release 1, Modification 0.
V3R6M0 The target release is Version 3, Release 6, Modification 0.

Statement Information

Offset

Type FieldDec Hex

Statement information header

0 0 CHAR(10) Message file name

10 0A CHAR(10) Message file library name

20 14 BINARY(4) Number of statements processed

Statement information returned for statements processed (repeated for each
statement processed for HLL):

0 0 BINARY(4) Length of information returned for this
statement

4 4 BINARY(4) Record number of first byte of statement

8 8 BINARY(4) Column number of first byte of statement

12 C BINARY(4) Record number of last byte of statement

16 10 BINARY(4) Column number of last byte of statement

20 14 BINARY(4) Record number of the syntax error

24 18 BINARY(4) Column number of the syntax error

28 1C CHAR(7) SQL message ID

35 23 CHAR(5) SQLSTATE

40 28 BINARY(4) Length of message replacement text

44 2C CHAR(*) Message replacement text

Field Descriptions

Column number of first byte of statement. The column containing the first byte of the beginning
delimiter for the SQL statement. This would be the EXEC SQL in COBOL. This is blank if language is
*NONE.

Column number of last byte of statement. The column containing the last byte of the ending delimiter for
the SQL statement. This would be the END-EXEC in COBOL. If the record and column number of the first
byte of the statement is set and the record and column number of the last byte of the statement is not, then
we were processing a statement but did not find the end. No more records would be processed. This is
blank if language is *NONE.

Column number of the syntax error. The column containing the syntax error if one was found.

Length of information returned for this statement. The length of the information returned for a single
statement. This can be used as a displacement to the next statement.

Length of message replacement text. The length of the replacement text associated with the SQL message
ID. If this is 0, then there is no replacement text for the message.

Message file library name. The library containing the SQL message file.

Message file name. The SQL Message file containing the message for the syntax error returned.

Message replacement text. A The replacement text for the message.

Number of statements processed. The number of statements processed. If called with language *NONE,
this would always be 1 if enough space was provided for the statement information area.

Record number of first byte of statement. The record containing the first byte beginning delimiter for the
SQL statement. This would be the EXEC SQL in COBOL. This is blank if language is *NONE.

Record number of last byte of statement. The record containing the last byte of the ending delimiter for
the SQL statement. This would be the END-EXEC in COBOL. This is blank if language is *NONE.

Record number of the syntax error. The record containing the syntax error if one was found. If this is 0,
then no error was found. If an error is found when language is *NONE, this value would be 1.

SQL message ID. If an error or warning is found, the message ID is set to th name of the message
corresponding to the syntax error that occurred.

SQLSTATE. The SQLSTATE is additional information corresponding to the SQL return code. The
SQLSTATEs are common across IBM SQL products for errors. For detailed information on this, see the
DB2 UDB for SQL Programming Concepts topic.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

SQL0901 E Record length parameter not valid.

SQL5502 E Number of source records not valid.

SQL5503 E Character for delimited host string not valid.

SQL5504 E Character for delimited SQL string not valid.

SQL5505 E Language not valid.

SQL5506 E Naming convention not valid.

SQL5507 E Margins not valid.

SQL5508 E CCSID not valid.

SQL5509 E Character specified as decimal point not valid.

SQL5510 E Option parameter not valid.

SQL5511 E Key field &1 not valid.

SQL5512 E Number of keys not valid.

SQL5513 E Target release not valid.

SQL5514 E Length of data for key &1 not valid.

SQL5515 E Length of area for statement information not valid.

API Introduced: V3R1

Top | Database and File APIs | APIs by category

Update Statistics Collections (QDBSTUS,
QdbstUpdateStatistics) API

 Required Parameter Group:

1 Input data Input Char(*)
2 Length of input data Input Binary(4)
3 Format of input data Input Char(8)
4 Feedback area Output Char(*)
5 Length of feedback area Input Binary(4)
6 Feedback keys Input Array(*) of Binary(4)
7 Number of feedback keys Input Binary(4)
8 Error code I/O Char(*)

 Service Program Name: QDBSTMGR

 Default Public Authority: *USE

 Threadsafe: Yes

The Update Statistics Collection (QDBSTUS, QdbstUpdateStatistics) API updates the attributes and
refreshes the data of an existing single statistics collection.

In addition, the QdbstUpdateStatistics API allows the user to block all future system-initiated statistics
collection requests for a specific file member.

Authorities and Locks

ASP Device Authority

*EXECUTE

File Authority

*OBJALTER

File Library Authority

*EXECUTE

File Lock

*SHRRD

Required Parameter Group

Input data

INPUT; CHAR(*)

The buffer containing the input parameters according to the format of input data parameter. The
buffer content has to start at a four-byte boundary.

Length of input data

INPUT; BINARY(4)

The length of the input data buffer provided. This must be the exact length of the used input format
as defined below.

Format of input data

INPUT; CHAR(8)

The format of the input data. Possible values are:

STIU0100 Basic update statistics collections input parameters.

Refer to STIU0100 Format for more information.

Feedback area

OUTPUT; CHAR(*)

The buffer to receive feedback data. See Feedback Area Format for more information. The buffer
content has to start at a four-byte boundary.

Length of feedback area

INPUT; BINARY(4)

The length of the feedback area buffer provided. The required minimum length is 12, to fit the
feedback area header (see Feedback Area Format).

Feedback keys

INPUT; ARRAY(*) OF BINARY(4)

The list of fields to return in the feedback area. For a list of valid keys, see Valid Keys - Feedback.

Number of feedback keys

INPUT; BINARY(4)

The number of fields to return in the feedback area. If zero is specified, all other feedback area
parameters (feedback area, length of feedback area, and feedback keys) are ignored.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

STIU0100 Format

The basic update statistics collection input parameters. See Field Descriptions for details of the fields listed.

Offset

Type FieldDec Hex

0 0 CHAR(10) ASP device name

10 0 CHAR(10) File name

20 0 CHAR(10) File library name

30 0 CHAR(10) File member name

40 0 CHAR(16) Internal statistics ID

56 0 BINARY(4) Offset to fields to update

60 0 BINARY(4) Number of fields to update

64 0 CHAR(*) Reserved

These fields
repeat, in the
order listed, for
each field to be
updated, started
at the given
offset.

BINARY(4) Length of field information

BINARY(4) Key identifier

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved (padding to the next 4-byte boundary)

 CHAR(*) Reserved

Valid Keys - Update

Use the following keys to specify the fields to be updated when using input format STIU0100. See Field
Descriptions for details of the fields listed.

Key Type Description

45 CHAR(12) Statistics data (key value is the collection mode)

18 CHAR(10) Aging mode

46 CHAR(*) Statistics collection name

47 CHAR(1) Block system statistics collections option

Valid Keys - Feedback

Use the following keys to specify the fields to be returned in the feedback area. See Field Descriptions for
details of the fields listed.

Key Type Description

1 CHAR(10) ASP device name used

3 CHAR(10) File library name used

4 CHAR(10) File member name used

5 BINARY(4) Return code

18 CHAR(10) Previous aging mode

46 CHAR(*) Previous statistics collection name

47 CHAR(1) Previous block system statistics collections option

Feedback Area Format

The fields returned in the feedback area are returned in the order requested. See Field Descriptions for
details of the fields listed.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

0 0 BINARY(4) Number of bytes available

0 0 BINARY(4) Number of key fields returned

0 0 BINARY(4) Number of key fields available

These fields
repeat, in the
order listed, for
each key
selected.

BINARY(4) Length of field information returned

BINARY(4) Key identifier

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved (padding to the next 4 bytes boundary)

Field Descriptions

Aging mode. Whether the system is allowed to age or remove the statistics collection. The possible values
to change to are:

*SYS Refresh or removal of the statistics collections will be performed automatically by the statistics
manager.

*USER Refresh or removal will only occur when a user requests it.

ASP device name. One auxiliary storage pool device identifying the ASP group in which the library and
file are located. This can be an ASP device name (for an ASP with a number greater than 32) or one of the
following special values:

*CURRENT The ASP device attached to the current thread or *SYSBAS when no ASP device name is
attached to the current thread.

*SYSBAS The system ASP (ASP number 1) and all basic ASPs (ASP numbers 2 through 32).

ASP device name used. The actual auxiliary storage pool device name used, after possible resolution of
special values.

Block system statistics collections option. Whether future system initiated (automatic) statistics collection
requests will be blocked (not allowed) for this file member. The possible values are:

'0' Do not block system initiated statistics collection requests.

Note: This is the system default.

'1' Block system initiated statistics collection requests.

Note: The internal statistics ID is ignored for this option, which operates at file member level, but the ID
has to be a valid statistics ID if any other update option besides the block option is specified.

Note: Currently active system requests will not be affected by changing this option. See Cancel Requested
Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) API.

Data (in feedback area format). The data returned for the key identifier.

Data - (in STIU0100 input format). The data with which the field is to be updated.

File library name. Where the file for which statistics collection attributes are to be updated is located. You
can use these special values for the library name:

*CURLIB The job's current library or QGPL if the current library is not set.

*LIBL The library list.

*USRLIBL Libraries listed in the user portion of the library list.

File library name used. The actual file library name used, after possible resolution of special values.

File member name. The name of the file member to be used for the statistics collection update request.

This value can be a specific file member name or one of the following special values:

*FIRST The first member (in the order created) in the specified file.

*LAST The last member (in the order created) in the specified file.

File member name used. The actual file member name used, after possible resolution of special values.

File name. The name of the file for which statistics collection attributes are to be updated. The file has to
be an existing local, single format, physical file.

Internal statistics ID. Together with the qualified file name and member name, this represents a unique ID
for the statistics collection to be updated. See the List statistics collections (OPM, QDBSTLS; ILE
QdbstListStatistics) API.

Key identifier (in the STIU0100 input format). The field to be updated. For a list of valid keys, see Valid
Keys - Update.

Key identifier (in the feedback area format). The field returned. For a list of valid keys, see Valid Keys -
Feedback.

Keys of fields to update. The list of fields to update per list entry. For a list of valid keys, see Valid Keys -
Update.

Length of data (in feedback area format). The length of the data returned for the field.

Length of data (in STIU0100 input format). The length of the data the field is to be updated with.

Length of field information. Total number of bytes being passed for the field to be updated.

Length of field information returned. Total number of bytes returned for this field in the feedback area.

Number of bytes available. Number of bytes that could be returned in the feedback area.

Number of bytes returned. Number of bytes returned in the feedback area.

Number of key fields available. Number of fields that could be returned in the feedback area.

Number of key fields returned. Number of fields returned in the feedback area.

Number of fields to update. The number of fields to update.

Offset to fields to update. Offset to the start of the array of fields to update.

Previous aging mode. The aging mode in effect before the update.

Note: If the aging mode was not requested to be updated, the aging mode returned will be blank.

Previous block system statistics collections option. The block option in effect before the update.

Note: If the block option was not requested to be updated, the block option returned will be blank.

Previous statistics collection name. The name in effect before the update.

Note: If the statistics collection name was not requested to be updated, the statistics collection name
returned will have a length of 0.

Reserved. Reserved for future use. If this field is input, the field must set to hexadecimal zeros.

Reserved (in feedback area format). Structure padding to guarantee alignment to the next four bytes
boundary.

Reserved (in STIU0100 input format). Structure padding to guarantee alignment to the next four bytes
boundary.

Return code. Completion information. The possible values are:

-1 Request failed. The error code parameter has additional information.

0 Successful request.

Statistics collection name. A name unique amongst all statistics collections for the file member.

Statistics data. The statistics data is to be refreshed. The key value is the collection mode (see also the
Request statistics collections (OPM, QDBSTRS; ILE QdbstRequestStatistics) API), under which the
refresh should take place. The possible values are:

*IMMEDIATE Execute the request immediately. The statistics engine will run in the user's process.
Control will not return to the API caller until the collection is complete.

*BACKGROUND The statistics manager will schedule the execution in a special server job. Control
will return to the API caller before the collection is completed.

Note: If the system value QDBFSTCCOL does not allow user requested
background collections, then the request will be queued to the statistics manager, but
the statistics manager will not schedule the actual execution until the system value is
changed to a higher level.

Error Messages

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

the <qdbst.h> include file in library QSYSINC, for API-related structure declarations and special
value declarations.

●

the <qdbstmgr.h> include file in library QSYSINC, for the QdbstCancelRequestedStatistics API
prototype.

●

the <qdbstcrs.h> include file in library QSYSINC, for the QDBSTCRS API prototype.●

Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) API●

Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) API●

List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) API●

List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) API●

List Statistics Collections (QDBSTLS, QdbstListStatistics) API●

Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) API●

API introduced: V5R2

Top | Database and File APIs | APIs by category

Visual Explain (QQQVEXPL) API

 Required Parameter Group:

1 Pointer to qualified query name Input CHAR(*)
2 Pointer to qualified database monitor

table
Input CHAR(*)

3 Pointer to the set of records returned I/O PTR(SPP)
4 Pointer to the return code structure I/O CHAR(*)

 Threadsafe: Conditional; see Usage Notes.

The Visual Explain (QQQVEXPL) API is used to create a query graph that graphically displays the
execution of an SQL statement. You can use this tool to see information about both static and dynamic SQL
statements. QQQVEXPL supports the following types of SQL statements:

Select●

Insert●

Update●

Delete●

You can use this tool to better understand where the highest costs of your queries are taking place. You can
improve query performance by:

Rewriting your SQL statement.●

Changing query attributes and environment settings.●

Creating any recommended indexes.●

You also can use the QQQVEXPL API to:

View the statistics that were used at the time of optimization.●

Determine whether an index was used to access a table. If an index was not used, Visual Explain
can help you determine which columns might benefit from being indexed.

●

View the effects of performing various tuning techniques by comparing the before and after
versions of the query graph.

●

Obtain information about each operation in the query graph, including the total estimated cost and
number of rows retrieved.

●

Input to the Visual Explain (QQQVEXPL) API is two structures. One contains the information the Visual
Explain consolidator needs to uniquely identify which query within the database monitor table is to be
explained. The other contains the name of the database monitor table. The database monitor table is a table
that contains the records resulting from an execution of the STRDBMON command. Output from the
Visual Explain (QQQVEXPL) API is a pointer to a stream of data located in user domain storage. This data
contains the information necessary to create a pictorial view of how the specified query was implemented.
It is up to the user to clean up the user domain storage. Also, output is a structure that contains an error
return code, the number of entries in the output data, and the entry number of the Final Select ICON. To
create the picture, the user starts with the entry of the Final Select ICON and works back to the beginning
ICONs.

The format for the output records (or array entries) can be found in Output Format. Each record has a

unique I CON number associated with it. The unique ICON number associates the records to a particular
ICON. That is, all records with the same unique ICON number are associated with one specific ICON. For
example, if the Final Select ICON has a unique ICON number of 12, then all records with a unique ICON
number of 12 contain information about the Final Select ICON. The record immediately following the Final
Select record is the record that tells the user how many ICONs (called child ICONs) are branched off the
Final Select ICON. This record will have a record type of 11, which means it contains the number of child
ICONs. The unique ICON number will match the unique ICON number of the Final Select ICON.
Therefore, we know this record is telling us how many child ICONs there are for the Final Select ICON.
The next records will contain the ICON number of the child ICONs. There will be one record for each child
ICON and they will have a record type of 12 (unique ICON number of the child ICON). The user can find
the record that corresponds to the child ICON by searching for the record that has a record type of 10 (new
ICON) and a unique ICON number that matches the ICON number of the child ICON. Once the record of
the child ICON is found, the process starts over again. All the records associated with that ICON (that is,
that have the same unique ICON number) are read and processed. Any child ICONs are put on a stack or
queue to be processed next. To see the list of possible record types, see Record Types.

The heart of the picture that is generated is the ICONs. In general, each ICON represents an operation
performed during the execution of the query. It is up to the user to create and design the ICONs to be used.
The connection between the output data and the user's ICONs is the label of the ICON that is returned
within the new ICON record (record type of 10). The user is expected to match the non-translated label that
is returned to the label that corresponds to the specific ICON. The non-translated ICON label is returned in
the character output field. The translated ICON label is returned in the column heading field. For a list of
ICON labels, see ICON Labels. For a detailed description of the operation represented by each ICON, see
Database Performance and Query Optimization in the iSeries Information Center.

Authorities and Locks

Library Authority

*EXECUTE

Table Authority

*OBJOPR, *READ

Required Parameter Group

Pointer to the qualified query

INPUT; CHAR(*)

A pointer to a variable length structure that is used to determine the query to be explained. The
structure contains two variables:

Type Description

BINARY(2) Length of the structure that contains the qualified query.

CHAR(*) Structure used to determine the specific query to be explained. This structure
contains seven variables. Generally, these variables are set to the same value as
the corrsponding variables in the QQJFLD field within the QQQ1000 record of
the query to be explained. One way to find the appropriate QQQ1000 record
within the database monitor table is to view the SQL statement text (field
QQ1000) and compare it to the SQL statement text of the query you wish to
have explained.

System name

CHAR(8). A specific iSeries name. It is set to the same value as the
QQSYS field or the first 8 bytes of field QQJFLD.

Job name

CHAR(10). A specific job name. It is set to the same value as the
QQJOB field or bytes 9 to 18 of field QQJFLD.

Job user

CHAR(10). A specific user profile name. It is set to the same value as
the QQUSER field or bytes 19 to 28 of field QQJFLD.

Job number

CHAR(6). A specific job number. It is set to the same value as the
QQJNUM field or bytes 29 to 34 of field QQJFLD.

Unique query count

BINARY(4). A unique query number. It is set to the same value as
found in bytes 35 to 38 of field QQJFLD (that is, Select
hex(substr(QQJFLD,35,4)) From Montable).

Statement number

BINARY(4). A specific statement number. It is set to the same value as
found in bytes 39 to 42 of field QQJFLD (that is, Select
hex(substr(QQJFLD,39,4)) From Montable).

Query Definition Template (QDT) number

BINARY(4). A specific QDT number. It is set to the same value as
found in bytes 43 to 46 of field QQJFLD (that is, Select
hex(substr(QQJFLD,43,4)) From Montable).

Pointer to qualified monitor table

INPUT; CHAR(*)

A pointer to a CHAR(72) structure containing the name of the database monitor table and other
optional variables. The structure contains nine variables:

Type Variable Description

CHAR(10) Monitor table name Name of the database monitor table that contains the
query to be explained.

CHAR(10) Monitor library name Library of the database monitor table.

CHAR(3) Date format A specific date format or blanks. I f blank, the date
format of the current job will be extracted and used.
Possible date formats are:

USA❍

ISO❍

EUR❍

JIS❍

MDY❍

DMY❍

YMD❍

JUL❍

CHAR(1) Date separator A specific date separator or J. If J, the date separator of
the current job will be extracted and used. Possible
date separators are:

"/"❍

"-"❍

"."❍

","❍

" "❍

CHAR(3) Time format A specific time format. It must be one of the following
values:

USA❍

ISO❍

EUR❍

JIS❍

HMS❍

CHAR(1) Time separator A specific time separator or J. If J, the time separator
of the current job will be extracted and used. Possible
time separators are:

":"❍

"."❍

","❍

" "❍

CHAR(1) Decimal point A specific decimal point, J, or blank. If J or blank, the
decimal point of the current job will be extracted and
used. Possible decimal points are:

"."❍

","❍

CHAR(3) Language ID A specific language ID, J, or blanks. If J or blanks, the
language ID of the current job will be extracted and
used. Currently, the language ID is not used and it is
recommended this value be set to blanks.

CHAR(40) Reserved Open for future expansion. These should be set to
hexadecimal zeros.

Pointer to output data

I/O; PTR(SPP)

A pointer to data that can be viewed as a set of records or multiple entries within an array. This data
is used to determine the pictorial representation of the query. The user can retrieve the data in any
manner. One suggested method is to view the returned data as a set of records and use the SET
RESULTS SETS command within an SQL procedure to retrieve the output data. To see the format
of the output data, see Output Format. Once finished, it is up to the user to deallocate or destroy the
space containing the output data.

Pointer to output return code

I/O; CHAR(*)

Pointer to a CHAR(32) structure that contains the following output information:

Type Variable Description

BINARY(4) Error code Error code returned from the Visual Explain
consolidator. See Error Codes for a list of possible
return codes.

BINARY(4) Number of records
returned

Number of records (or array entries) returned.

BINARY(4) Final select record Record number (or array entry), within the set of
records returned, of the Final Select ICON.

BINARY(4) Reserved Currently not used.

BINARY(4) Reserved Currently not used.

BINARY(4) Reserved Currently not used.

BINARY(4) Reserved Currently not used.

BINARY(4) Reserved Currently not used.

Usage Notes

This function is threadsafe, but not thread-enabled. Database monitor data is collected in the threaded
process.

Output Format

The format for each record (or each array entry) in the output data is as follows:

Offset

Type FieldDec Hex

0 0 BINARY(4) Unique ICON number.

Each icon in the picture is given a unique
number. This value is what ties the records
together; that is, all records with the same
unique ICON number are associated with that
specific ICON.

4 4 BINARY(4) Record type or ID.

Each record can be one of many possible types.
See Record Types for the list of possible record
types. A record type of 10 (new ICON)
indicates another ICON was added to the picture
and its unique number can be found in the
unique ICON number field.

8 8 BINARY(4) Context type.

The type of context with which this record is
associated. A context is a group of values used
for a special purpose. See Context Types for the
list of possible contexts.

12 C BINARY(4) Context order.

If this record is associated with a context type,
this is the order, or position, within the context
for the value. For example, table name would
have a context order of two since it is the second
variable of information associated with the table
description context. Table library would have a
context order of one.

16 10 BINARY(4) Flyover order.

The order, or position, within the flyover
information for this value. The flyover
information is the information that is shown
when the cursor is held over a particular ICON
and a window pops up showing some of the data
attributes associated with that ICON.

20 14 BINARY(4) Arrow order.

The order, or position, within the arrow
information for this value. The arrow
information is the information shown on the
arrows that connect the ICONs.

24 18 BINARY(4) Arrow value.

The value shown on the arrow that connects the
ICONs together. Generally, this value is either
the estimated number of rows or the estimated
processing time.

28 1C BINARY(4) Format value.

Used to highlight or format output data. For
example, all header lines within the data
attributes will have a format value associated
with them. This identifies all the header records
and allows users the option to format these
specific records in the same manner. See Format
Values for a list of format values.

32 20 CHAR(1) Specifies (yes or no) if the data attributes
associated with the ICON are returned in a
predetermined (numerical) order. This variable
is set only for the record whose context type is
new ICON. This variable is pertinent only to
those users who wish to show the data attributes
in the same order that the Visual Explain
consolidator returned them. Users who wish to
choose their own order of data attributes can
simply ignore this indicator.

33 21 CHAR(1) Type of output data.

The type of output data is either "C", "N", or
"X". It is the field that contains the character
output ("C") or the field that contains the
numeric output ("N"). It tells the user which
field to look in for the output data. A value of
"X" indicates the character output exceeds 1000
bytes and the remaining character output is
found on the following array entry.

34 22 BINARY(2) Length, in bytes, of the column heading.

36 24 CHAR(128) Column heading.

The description, or heading, of the output data.
For a record type of new ICON, this will be the
label of the ICON. For a data attribute record
type, this will be a description of the data
attribute; for example, Table name.

164 A4 BINARY(4) Reserved.

168 A8 BINARY(4) Reserved.

172 AC BINARY(4) Reserved.

176 B0 BINARY(2) Length, in bytes, of the character output data.

It is set only if the type of output is "C" or "X".

178 B2 CHAR(1000) Character output.

The character output could be many things,
depending on the record type. For a new ICON
record, the character output is the label
associated with the ICON. For a data attribute,
the character output is the value for that data
attribute. For example, if the column heading
was Table name, then the character output
would be TABLE001. It is set only if the type of
output is "C" or "X".

1178 49A BINARY(4) Numeric output.

The numeric output is used only for a record
that has a numeric output (that is, the child
ICON record type or number of child ICONs
record type). Generally, most records
(especially data attribute records) have their
output converted to character format. It is set
only if the type of output is "N".

1182 49E BINARY(2) Reserved.

ICON Labels

To determine which ICON should be shown, look at the non-translated ICON label that is returned in the
character output field. Compare this text string to the text string associated with the user-generated ICONs.
The ICON labels that may be returned are shown below. For a detailed description of the operation
represented by the ICON, refer to Database Performance and Query Optimization in the iSeries Information
Center.

ICON Label Description

Table Scan All rows in the table were paged in and selection criteria was
applied against each row. Only those rows meeting the
selection criteria were retrieved. To get the result in a
particular sequence, you must specify the ORDER BY clause.

Table Scan, Parallel A table scan access method was used and multiple tasks were
used to select the rows in parallel. The table was partitioned
and each task was given a portion of the table with which to
work.

Index Scan - Key Selection All entries of the index were paged in. (This is different from
key positioning, where only a specified range of key entries
were paged in.) Any selection criteria, whose predicates match
the key columns of the index, were applied against the index
entries. Only selected key entries were used to select rows
from the corresponding table data.

Index Scan - Key Selection, Parallel Multiple tasks were used to perform key selection in parallel.
The table was partitioned and each task was given a portion of
the table with which to work.

Index Scan - Key Positioning

Index Scan - Key Positioning, Parallel Multiple tasks were used to perform the key positioning in
parallel. The range of key values was determined by the
selection criteria whose predicates matched the key columns
of the index. The number of selected key entries were further
reduced by the use of index key selection or derived selection
after key positioning was completed. Only selected key entries
were used to select rows from the corresponding table data.

Skip Sequential Table Scan A bitmap was used to determine which rows would be
selected. No CPU processing was done on rows not selected
and I/O was minimized by bringing in only those pages that
contained rows to be selected.

Skip Sequential Table Scan, Parallel A skip sequential table scan access method was used and
multiple tasks were used to select the rows in parallel. The
table was partitioned and each task was given a portion of the
table with which to work.

Encoded Vector Index Access was provided to a database file by assigning codes to
distinct key values, and then representing these values in an
array (vector). The elements of the array can be 1, 2, or 4 bytes
in length, depending on the number of distinct values that must
be represented. Because of their compact size and relative
simplicity, encoded vector indexes provide for faster scans that
can be more easily processed in parallel.

Encoded Vector Index, Parallel Multiple tasks were used to perform the encoded vector index
selection in parallel. T his allows for faster scans that can be
more easily processed in parallel. The elements of the array
can be 1, 2, or 4 bytes in length, depending on the number of
distinct values that must be represented. Because of their
compact size and relative simplicity, encoded vector indexes
provide for faster scans and can be more easily processed in
parallel.

Dynamic Bitmap A bitmap was generated dynamically from an existing index.
It then was used to determine which rows were to be retrieved
from the table. To improve performance, dynamic bitmaps can
be used in conjunction with any of the following access
methods:

Skip sequential table scan●

Index scan - key positioning●

Index scan - key selection●

Temporary Table A temporary table was required to contain the intermediate
results of the query, or the queried table could not be queried
as it currently exists and a temporary table was created to
replace it.

Temporary Hash Table A temporary hash table was created to perform hash
processing.

Temporary Index A temporary hash table was created to perform hash
processing.

Hash Join A temporary hash table was created to perform the join. T he
tables queried were joined together using a hash join
implementation where a hash table was created for each
secondary table. Therefore, matching values were hashed to
the same hash table entry.

Nested Loop Join Queried tables were joined together using a nested loop join
implementation. Values from the primary file were joined to
the secondary file using an index whose key columns matched
the specified join columns.

Index Grouping Selected rows were grouped or summarized. Therefore,
duplicate rows within a group were eliminated.

Hash Grouping Selected rows were grouped or summarized. Therefore,
duplicate rows within a group were eliminated.

Sort Selected rows were sorted using a sort algorithm.

Union Merge The results of multiple subselects were merged or combined
into a single result.

Subquery Merge The results of multiple subselects were merged or combined
into a single result.

Bitmap Merge Multiple bitmaps were merged or combined to form a final
bitmap. The merging of the bitmaps simulates boolean logic
(AND/OR selection).

Distinct Duplicate rows in the result were prevented. You can specify
that you do not want any duplicates by using the DISTINCT
keyword, followed by the selected column names.

Select A point in the query where multiple results are brought
together into a single result set. For example, if a query is the
union of two different select statements, at the point before the
union occurs, the Select icon indicates the points where the
select statements finished and the union is about to occur.

Final Select The original text and summary information of how the query
was implemented.

Insert The original text and summary information of how the query
was implemented.

Update The original text and summary information of how the query
was implemented.

Delete The original text and summary information of how the query
was implemented.

Unknown The operation performed is not recognized by Visual Explain.
For example, the system may support a new function that is
not yet supported by Visual Explain.

Context Types

BINARY(4) A context is a group of values used for a special purpose.

Context Type Description

21 Table Description The variables needed to retrieve information about the table.
These variables are:

Table library1.

Table name2.

22 Index Description The variables needed to retrieve information about the index.
These variables are:

Index library1.

Index name2.

23 Create Index Attributes The information needed to create an index. This includes:

Library of base table1.

Name of base table2.

Type of index to create

"B" Binary radix index
"E" Encoded vector index

3.

Number of unique values4.

Key columns5.

Alternate collating sequence library name6.

Alternate collating sequence table name7.

24 Environment Attributes Information about the environment when the query was
executed. This includes:

Memory pool size1.

Memory pool ID2.

Date format3.

Date separator4.

Time format5.

Time separator6.

Decimal point7.

Sort sequence table name8.

Sort sequence library name9.

Language ID10.

Query INI table name11.

Query INI library name12.

Query time limit13.

Parallel degree14.

Maximum number of tasks15.

Parameter marker conversion16.

Format Types

BINARY(4) The formatting value is used to format or highlight similar output data. For example, all header
lines within the data attribute output will have a format value associated with them. This allows the user the
option to identify and format all these particular header lines in the same manner.

Format Type Description

8 Index Advised Data attributes associated with the index advised function.

16 Header Header line within the data attribute output.

Record Types

Generally, record types with a value less than 100 are used to construct the picture. For example, they
determine which ICONs are connected together. Record types with a value greater than 1000 are data
attributes (information associated with a particular ICON). For a detailed description of the data attributes,
look in the Database Performance and Query Optimization in the iSeries Information Center.

Record Type Description
10 New ICON.
11 Number of child ICONs.
12 Unique ICON number of the child ICON.
111 Heading only, no output data.
1010 Name of the index created.
1011 Library of the index created.
1012 Name of the temporary table created.
1013 Library of the temporary table created.
1014 Name of the temporary hash table created.
1015 Library of the temporary hash table created.
1031 Library of the table being queried.
1032 Name of the table being queried.
1033 Member name of the table being queried.
1034 Long name of the table being queried.
1035 Long library of the table being queried.
1041 Library of the base table.
1042 Name of the base table (underlying physical table).
1043 Member name of the base table.
1044 Long name of the base table.
1045 Long library of the base table.
1051 Library of the index used.
1052 Name of the index used.
1053 Member name of the index used.
1054 Long name of the index used.
1055 Long library of the index used.
1102 Time when the database monitor record was created.
1104 Timestamp of when the SQL statment started.
1106 Timestamp of when the SQL statement ended.
1108 Amount of time spent during optimization, in seconds.
1110 Amount of time spent creating the cursor (open data path), in seconds.
1112 Total time for the SQL statement, in milliseconds.
1114 Total time for the SQL statement, in microseconds.
1120 Statement OPEN time, in milliseconds.
1122 Statement FETCH time, in milliseconds.
1124 Statement CLOSE time, in milliseconds.
1220 Statement number.
1222 Statement function.
1224 Statement operation.

1226 Statement type.
1228 Statement name.
1230 Statement outcome.
1232 SQL return code.
1234 SQLSTATE.
1240 Cursor name.
1242 Package name.
1244 Package library.
1250 Number of rows returned.
1252 Number of rows fetched.
1260 SQL statement text.
1306 CLOSQLCSR value.
1308 ALWCPYDTA value.
1310 Pseudo open.
1312 Pseudo close.
1313 Hard close reason code.
1314 Open data path implementation.
1320 Dynamic replan reason code.
1324 Dynamic replan reason subcode.
1326 Timestamp of the last replan.
1330 Parse required.
1332 Data conversion.
1334 Level of commitment control.
1336 Blocking enabled.
1338 Delay preperation.
1339 Statement is explainable.
1340 Type of naming convention.
1342 Type of dynamic execution.
1344 Optimize LOB.
1350 User profile, static.
1352 User profile, dynamic.
1354 Default collection.
1360 Procedure name on the call.
1362 Procedure library on the call.
1364 Directory path.
2012 Estimated processing time, in seconds.
2016 Cumulative processing time, in seconds.
2018 Total number of rows in the table.
2020 Size of the table.
2042 Estimated number of rows selected.
2044 Estimated number of joined rows.
2046 Join position.
2048 Original file position.
2050 Join method.
2052 Join type.
2054 Join operator.
2056 Join fanout.
2058 Number of files joined.

2070 I/O or CPU bound.
2080 Reason code.
2110 Index scan, key positioning.
2112 Number of key columns for key positioning.
2114 Estimated number of entries selected through key positioning.
2116 Index scan, key selection.
2118 Estimated number of entries selected through key selection.
2122 Index only access.
2124 Index fits into main memory.
2126 Memory pool size.
2128 Memory pool ID.
2130 Skip key processing.
2140 Type of index.
2141 Index usage.
2142 Number of entries in the index.
2144 Number of unique values in the index.
2146 Percent overflow for the index.
2148 Vector size of the index.
2150 Size of the index used.
2152 Page size of the index used.
2154 Reason code of why index was used.
2160 Index is a constraint.
2162 Name of the constraint.
2182 Data space selection exists.
2184 Skip sequential processing was used.
2190 Reason code for the table scan processing.
2220 Index is a constraint.
2222 Name of the constraint.
2224 Data space selection exists.
2226 Skip sequential processing was used.
2320 The query optimizer timed out.
2322 Reason code of why the index was not used.
2324 List of indexes which the query optimizer considered.
2346 The query optimizer is advising an index to be created.
2348 The number of key columns within the index advised that will use key positioning.
2350 The list of key columns for the index advised.
2380 Was parallel pre-fetch used.
2382 Was parallel pre-load used.
2384 Parallel degree requested by the query optimizer.
2386 Parallel degree used.
2388 Reason code why the parallel degree requested by the optimizer was not used.
2402 Number of entries in the temporary index created.
2404 Page size of the temporary index created.
2406 Row size of the temporary index created.
2408 Was an alternate collating sequence table used to create the temporary index.
2409 Name of the alternate collating sequence table used to create the temporary index.
2410 Library of the alternate collating sequence table used to create the temporary index.
2412 Is the temporary index that was created reusable.

2414 Is the temporary index that was created a sparse or select/omit index.
2416 Type of index that was created.
2418 Was the index created as a permanent object.
2420 Was the index created from another index.
2422 Parallel degree requested by query optimizer for creation of the index.
2424 Parallel degree used during creation of the index.
2426 Reason code why the parallel degree requested by the optimizer for the index creation was

not used.
2428 Reason code why a temporary index was created.
2430 Key columns used when creating the temporary index.
2510 Number of rows within the temporary table.
2512 Size of the temporary table.
2514 Row size of the temporary table.
2516 Default values exist in temporary table.
2518 Temporary table created is a temporary result table.
2520 Temporary table created is a distributed table.
2522 Nodes where the temporary distributed table was created.
2524 Reason code why a temporary table was created.
2550 Number of rows within the temporary hash table.
2552 Size of the temporary hash table.
2554 Row size of the temporary hash table.
2556 Key size of the temporary hash table.
2558 Element size of the temporary hash table.
2560 Memory pool size where temporary hash table was created.
2562 Memory pool ID where temporary hash table was created.
2563 Reason code why a temporary hash table was created.
2564 Columns used when creating the temporary hash table.
2612 Columns used for dataspace selection.
2614 Was derived selection used.
2616 Columns used for derived selection.
2620 Columns used for key positioning.
2622 Columns used for key selection.
2624 Columns used for join selection.
2626 Columns used for ordering.
2628 Columns used for grouping.
2810 Type of grouping implementation.
2812 Does HAVING selection exist.
2814 Was the HAVING selection converted into WHERE seletion.
2816 Estimated number of groups.
2818 Average number of rows within each group.
2820 Grouping columns.
2822 MIN columns.
2824 MAX columns.
2826 SUM columns.
2828 COUNT columns.
2830 AVERAGE columns.
2910 Subselect number of the inner subselect.
2912 Nested level of the inner subselect.
2914 Subselect number of the materialized view containing the inner subselect.

2916 Nested level of the materialized view containing the inner subselect.
2920 Subquery operator.
2922 Correlated columns exist.
2924 List of the correlated columns.
3020 Size of the bitmap created.
3022 Number of bitmaps created.
3024 IDs of the bitmaps created.
3026 IDs of the bitmaps that were merged together.
4020 System name.
4022 Job name.
4024 Job user.
4026 Job number.
4028 Unique query count.
4032 Subselect count.
4040 Relational database name.
4042 Thread ID.
4044 Unique refresh count.
4046 Subselect nested level.
4048 Materialization number of the subselect.
4050 Nested level of the subselect that was materialized.
4052 Materialization number for the decomposed subselect.
7008 List of the host variable values.
7009 Type of host variable implementation.
7010 Type of processing for the specified ordering.
7011 Name of the index used to satisfy ordering.
7012 Library of the index used to satisfy ordering.
7013 Long name of the index used to satisfy ordering.
7014 Long library of the index used to satisfy ordering.
7020 Type of processing for the specified grouping.
7021 Name of the index used to satisfy grouping.
7022 Library of the index used to satisfy grouping.
7023 Long name of the index used to satisfy grouping.
7024 Long library of the index used to satisfy grouping.
7026 Query contains UNION.
7027 Query contains subquery (subselect).
7030 Type of join processing.
7032 Query contains distinct.
7034 Query contains distributed tables.
7036 List of the nodes containing the distributed tables.
7050 Quick summary of the implementation.
8014 Memory pool size.
8016 Memory pool ID.
8020 Date format.
8022 Date separator.
8024 Time format.
8026 Time separator.
8028 Decimal point.
8030 Name of the sort sequence table associated with the query.

8032 Library of the sort sequence table associated with the query.
8034 Language ID.
8036 Country or region ID.
8040 Query INI table name.
8042 Query INI library.
8044 Maximum query time limit.
8046 Parallel options.
8048 Maximum number of tasks.
8050 Apply CHGQRYA options to remote systems.
8052 Asynchronous job usage.
8054 Join order was forced.
8056 Print debug messages.
8060 Parameter marker conversion.
8062 User defined function (UDF) time limit.
8064 Optimizer limitations.

Error Codes

Possible error codes returned from the Visual Explain consolidator are:

Error Code Description
0 Successful.
71 Invalid date format.
72 Invalid date separator.
73 Invalid time format.
74 Invalid time separator.
75 Invalid decimal point.
90 No records in the specified database monitor table.
91 Failure trying to read records from specified database monitor table.
92 Query too complex to be explained.
93 Specified database monitor table not found.
99 Query function not supported.

1000 Missing or invalid QQQ1000 record within the database monitor table.
3000 Missing or invalid QQQ3000 record within the database monitor table.
3001 Missing or invalid QQQ3001 record within the database monitor table.
3002 Missing or invalid QQQ3002 record within the database monitor table.
3003 Missing or invalid QQQ3003 record within the database monitor table.
3004 Missing or invalid QQQ3004 record within the database monitor table.
3014 Missing or invalid QQQ3014 record within the database monitor table.
3021 Missing or invalid QQQ3021 record within the database monitor table.
3022 Missing or invalid QQQ3022 record within the database monitor table.
3023 Missing or invalid QQQ3023 record within the database monitor table.
3025 Missing or invalid QQQ3025 record within the database monitor table.
3027 Missing or invalid QQQ3027 record within the database monitor table.
3028 Missing or invalid QQQ3028 record within the database monitor table.
0nnn SQL error code (converted to a positive value) that occurred while reading records from

the specified database monitor table.

API introduced: V5R1

Top | Database and File APIs | APIs by category

CLI Connection Exit Program

 Required Parameter Group:

1 Connection user profile Input CHAR(10)

 QSYSINC Member Name: None

 Exit Point Name: QIBM_QSQ_CLI_CONNECT

 Exit Point Format Name: CLIC0100

The CLI Connection exit program is called by CLI through the registration facility before the conection is
made to the relational database. CLI must be running in server mode for the exit program to be called. The
exit point supports one CLI Connection exit program at a time. This exit program can be used for such
things as changing the library list depending on the user making the connection or to enable debug for the
prestart job handling the SQL requests.

Authorities and Locks

You must have *ALLOBJ and *SECADM special authorities to register an exit program for the
QIBM_QSQ_CLI_CONNECT exit point.

Required Parameter Group

Connection user profile

INPUT; CHAR(10)

The user profile that requested the connection.

Exit program introduced: V4R5

Top | Database and File APIs | APIs by category

Close Database File Exit Program (xclosedbf)

 Required Parameter Group:

1 Database close exit information Input Char(*)

 Exit Point Name: QIBM_QDB_CLOSE

 Exit Point Format Name: DBCL0100

The Close Database File exit program is called when a process is trying to lock a file that is held by another
process. This exit is called in the process that is holding the lock. The intent is the the holding process can
give up the lock and the requesting process' lock request will be satisfied.

When a database lock request is issued, the operating system calls the user-written exit program through the
registration facility. The exit point supports a single exit program.

For information about adding an exit program to an exit point, see the Registration Facility APIs.

Note: The Close database file exit point ignores any return codes or error messages that are sent from the
exit program.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add exit programs to the registration facility

Required Parameter

Database close information

Input; CHAR(*)

Information needed by the exit program for the database file to close.

Format of Database Close Exit Information

The following table shows the structure of the change profile exit information for format DBCL0100. For a
description of the fields in this format, see the Field Descriptions immediately following the table.

Offset

Type FieldDec Hex

0 0 CHAR(10) Database file name

10 0A CHAR(10) Database file library name

20 14 CHAR(10) Database file member name

Field Descriptions

Database file name. The database file name that another process is attempting to lock. This is always the
10-character system name.

Database file library name. The name of the library containing the database file.

Database file member name. The specific member that another process is attempting to lock. If the
member name is *NONE, a file lock is being requested.

Exit program introduced: V5R1

Top | Database and File APIs | APIs by category

SQL Client Integration Exit Program

 Required Parameter Group:

1 Interface level Input Binary(4)
2 Input format Input Char(*)
3 Length of input format Input Binary(4)
4 Input format name Input Char(8)
5 SQLCA Output Char(136)
6 CCSID Output Binary(4)
7 Output format Output Char(*)
8 Length of output format Output Binary(4)

 QSYSINC Member Name: ERWSCI

The SQL Client Integration exit program enables SQL applications to access data managed by a database
management system other than the OS/400 relational database. An application requester driver (ARD)
program is the generic term for this type of exit program. The two terms are used interchangeably
throughout this topic. The system calls the ARD program during the following operations:

During the package creation step, performed by using the CRTSQLPKG or CRTSQLxxx
commands, when the relational database (RDB) parameter matches the RDB name corresponding
to the ARD program. During these calls, the system passes information about the SQL statements
and host variables contained in the program. An ARD program can use this information to build
what is comparable to an SQL access plan for the program. SQL statements passed to the ARD
program at package creation can be correlated with the statement at run time by using the package
name, collection, consistency token, and section number of the statement passed on the package
creation and run-time interfaces.

●

During CONNECT processing when the RDB name specified on the CONNECT statement
matches the RDB name corresponding to the ARD program. During these calls information about
the environment the statements are to run under is passed to the ARD program. An ARD program
can use this information to establish the environment for running statements of the program.

●

During processing of SQL statements when the current connection is to an RDB name
corresponding to the ARD program. During these calls, the system passes information about the
statement being run. An ARD program can either use this information alone or use the information
in conjunction with the package name, collection, consistency token, and section number to process
the SQL statement.

●

The CL commands that correspond to this exit program are the Add Relational Database Directory Entry
(ADDRDBDIRE) and the Change Relational Database Directory Entry (CHGRBDDIRE) commands.
Information about the ARD program must be defined to the system by adding it to the RDB directory using
the ADDRDBDIRE command. Entries in the RDB directory that refer to ARD programs contain the
keyword *ARDPGM in the remote location field. Each entry must identify the qualified ARD program
name and the RDB name that it should be associated with. Also stored in the RDB directory entry is the
level of interface that the ARD program expects to be called with. Currently the only value allowed is 1. An
ARD program can be defined to process requests for several different RDBs by specifying the same ARD
program for each RDB directory entry the ARD program is to process.

Restrictions

The following operations are not allowed in the ARD program or any program it calls:

Commit operations for the commitment definition that is associated with the statement that the
ARD program is currently handling.

●

Rollback operations for the commitment definition that is associated with the statement that the
ARD program is currently handling.

●

End Commitment Control (ENDCMTCTL) command for the commitment definition that is
associated with the statement that the ARD program is currently handling.

●

Any SQL statements. SQL statements encountered while an ARD program is running will return
messages SQLCODE (-84) and SQLSTATE (42612).

●

DECLARE CURSOR statements must parse successfully on the application requester to be used through
this interface.

The ARD program must be in a library that is part of the system auxiliary storage pool (ASP number 1)
or a configured basic ASP (ASP numbers 2-32).

The following functions are not supported for the SQL Client Integration exit program interface:

Database large objects (BLOBs, CLOBs, DBCLOBs)●

Data links●

Passwords longer than ten characters●

Stored procedure result sets●

SQL statements longer than 32K●

Stored procedures with Commit on Return●

Required Parameter Group

Interface level

INPUT; BINARY(4)

The level of the ARD program. The only value that will currently be passed is 1 because no value
can be specified on the RDB directory commands. It is possible that updates to the interface could
be made in the future.

For example, such updates could include:

Additional parameters.❍

Changes to the input format structures.❍

Changes to the SQLCA structure.❍

Changes to the SQLDA structure.❍

Changes to the output format structures.❍

Changes to enumerated values without changes to a structure will not result in a new interface
level. Therefore, the ARD program should reject any unexpected values in the input format
structures, or in the input SQLDA structure. In addition, the product identifier field on the
ARCN0100 format can be used to determine the level of the local database that also identifies the
values that could be expected for enumerated values in the input format and SQLDA structure. If

updates are made to the interface, it may be possible for ARD programs to be registered with levels
other than one by specifying the level on the RDB directory commands. At such time, a user
registering the ARD program may incorrectly specify a level other than one for a program that only
understands the level one interface. Therefore, ARD programs written to understand the current
interface, the level one interface, should return an error if a level other than one is passed.

Input format

INPUT; CHAR(*);

The input format. The following table identifies the formats that the system will pass to the ARD
program for each of the input format name values.

Note: General information on the nature of the functions associated with the various input formats
listed may be found in the Distributed Relational Database Architecture Reference, SC26-4651.
The chapter about the DRDA processing model and command flows should be of particular interest
in this regard.

Relationship between Input Format Name and Input Format

Input Format Name Input Format

ARCN0100 See Format ARCN0100 (Connect Format).

ARDI0100 See Format ARDI0100 (Disconnect Format).

ARBB0100 See Format ARBB0100 (Begin Package Bind Format).

ARBS0100 See Format ARBS0100 (Bind Statement for Package Creation Format).

AREB0100 See Format AREB0100 (End of Package Bind Format).

ARPS0100 See Formats ARPS0100 and ARPD0100 (Prepare Format).

ARPD0100 See Formats ARPS0100 and ARPD0100 (Prepare Format).

ARXD0100 See Formats ARXD0100 and ARXB0100 (Execute Bound Statement).

ARXB0100 See Formats ARXD0100 and ARXB0100 (Execute Bound Statement).

ARXP0100 See Format ARXP0100 (Execute Prepared Statement).

ARXI0100 See Format ARXI0100 (Execute Immediate Statement Format).

AROC0100 See Format AROC0100 (Open Cursor Format).

ARFC0100 See Format ARFC0100 (Fetch from a Cursor Format).

ARCC0100 See Format ARCC0100 (Close a Cursor Format).

ARDS0100 See Format ARDS0100 (Describe a Statement Format).

ARDT0100 See Format ARDT0100 (Describe Object Format).

Length of input format

INPUT; BINARY(4)

The length of the input format in bytes.

Input format name

INPUT; CHAR(8)

The format of the information passed to the ARD program. The possible format names follow:

ARCN0100

Connect format. This format will be used by the system to pass information to the ARD
program when a user or application attempts to connect to an RDB name corresponding to
the ARD program. This format will always be passed to the ARD program before any other
formats for a given connection. If running under commitment control, the system will
register an RDB resource with commitment control. However, the provider of the ARD
program must also register with commitment control using the commitment control APIs to
be informed of commit and rollback requests so that it processes those requests and closes
cursors as necessary. Refer to Commit APIs for a description of how to use commitment
control APIs with ARD programs. See Format ARCN0100 (Connect Format) for the
structure of the input format that the system will pass to the ARD program for this input
format name. See Output Connect Format for the structure of the output format that the
ARD program must return to the system in response to this input format name.

ARDI0100

Disconnect format. This format will be used by the system to pass information to the ARD
program when a user, application, or the system attempts to disconnect from an RDB name
that corresponds to the ARD program. See Format ARDI0100 (Disconnect Format) for the
structure of the input format that the system will pass to the ARD program for this input
format name. No output format is returned from ARD program for this input format name.

ARBB0100

Begin package bind format. This format will be used by the system to pass information to
the ARD program when a user or application attempts to create a package and specifies an
RDB name corresponding to the ARD program. See Format ARBB0100 (Begin Package
Bind Format) for the structure of the input format that the system will pass to the ARD
program for this input format name. No output format is returned from the ARD program
for this input format name.

ARBS0100

Bind statement for package creation format. This format will be used by the system to pass
information about an SQL statement to the ARD program when a user or application
attempts to create a package and specifies an RDB name corresponding to the ARD
program. See Format ARBS0100 (Bind Statement for Package Creation Format) for the
structure of the input format that the system will pass to the ARD program for this input
format name. No output format is returned from ARD program for this input format name.

AREB0100

End of package bind format. This format will be used by the system to pass information to
the ARD program about the end-the-package-creation function when a user or applications
attempts to create a package and specifies an RDB name that corresponds to the ARD
program. See Format AREB0100 (End of Package Bind Format) for the structure of the
input format that the system will pass to the ARD program for this input format name. No
output format is returned from ARD program for this input format name.

ARPS0100

Prepare statement format. This format will be used by the system to pass information about
an SQL statement to the ARD program when an application attempts to prepare a
statement. See Formats ARPS0100 and ARPD0100 (Prepare Format) for the structure of
the input format that the system will pass to the ARD program for this input format name.
No output format is returned from ARD program for this input format name.

ARPD0100

Prepare and describe format. This format will be used by the system to pass information
about an SQL statement to the ARD program when an application attempts to prepare a
statement and expects a description of the prepared statement to be returned into an SQL
descriptor area (SQLDA). See Formats ARPS0100 and ARPD0100 (Prepare Format) for
the structure of the input format that the system will pass to the ARD program for this input
format name. See SQLDA for the structure of the output format that the ARD program
must return to the system in response to this input format name.

ARXD0100

Execute bound statement that returns data format. This format will be used by the system to
pass information about an SQL statement to the ARD program when an application
attempts to execute a statement that expects data to be returned and was bound at package
creation time by a call to the ARD program with format ARDSB001. An example of a
statement that expects data to be returned is a SELECT INTO statement. See Formats
ARXD0100 and ARXB0100 (Execute Bound Statement) for the structure of the input
format that the system will pass to the ARD program for this input format name. See
Output Execute Format for the structure of the output format that the ARD program must
return to the system in response to this input format name.

ARXB0100

Execute bound statement that does not return data format. This format will be used by the
system to pass information about an SQL statement to the ARD program when an
application attempts to execute a statement that does not return data and was bound at
package creation time by a call to the ARD program with format ARDSB001. See Formats
ARXD0100 and ARXB0100 (Execute Bound Statement) for the structure of the input
format that the system will pass to the ARD program for this input format name. The
output format that the ARD program must return to the system in response to this input
format name is a character (CHAR(1)) field containing an indication of whether the
statement resulted in an update. An update is any operation that results in a change to an
object such that the object is under commitment control.

Valid values follow:

0 The operation did not result in an update.

1 An update occurred from the operation.

ARXP0100

Execute prepared statement format. This format will be used by the system to pass
information about an SQL statement to the ARD program when an application attempts to
execute a statement that was previously prepared by a call to the ARD program with either
format ARPS0100 or ARPD0100. See Format ARXP0100 (Execute Prepared Statement)
for the structure of the input format that the system will pass to the ARD program for this
input format name. The output format that the ARD program must return to the system in
response to this input format name is a character (CHAR(1)) field containing an indication
of whether the statement resulted in an update. An update is any operation that results in a
change to an object such that the object is under commitment control.

Valid values follow:

0 The operation did not result in an update.

1 An update occurred from the operation.

ARXI0100

Execute immediate statement format. This format will be used by the system to pass
information about an SQL statement to the ARD program when an application attempts to
execute a statement that was not previously prepared. See Format ARXI0100 (Execute
Immediate Statement Format) for the structure of the input format that the system will pass
to the ARD program for this input format name. The output format that the ARD program
must return to the system in response to this input format name is a character (CHAR(1))
field that contains an indication of whether the statement resulted in an update. An update
is any operation that results in a change to an object such that the object is under
commitment control.

Valid values follow:

0 The operation did not result in an update.

1 An update occurred from the operation.

AROC0100

Open a cursor format. This format will be used by the system to pass information about an
SQL OPEN statement to the ARD program when an application attempts to execute the
statement. See Format AROC0100 (Open Cursor Format) for the structure of the input
format that the system will pass to the ARD program for this input format name. See
Output Open Cursor Format for the structure of the output format that the ARD program
must return to the system in response to this input format name.

ARFC0100

Fetch from a cursor format. This format will be used by the system to pass information
about an SQL FETCH statement to the ARD program when an application attempts to
execute the statement. See Format ARFC0100 (Fetch from a Cursor Format) for the
structure of the input format the system will pass to the ARD program for this input format
name. See Output Fetch Cursor Format for the structure of the output format that the ARD
program must return to the system in response to this input format name.

ARCC0100

Close a cursor format. This format will be used by the system to pass information about an
SQL CLOSE statement to the ARD program when an application attempts to execute the
statement. See Format ARCC0100 (Close a Cursor Format) for the structure of the input
format that the system will pass to the ARD program for this input format name. No output
format is returned from ARD program for this input format name.

ARDS0100

Describe an SQL statement format. This format will be used by the system to pass
information about an SQL DESCRIBE STATEMENT statement to the ARD program
when an application attempts to execute the statement. See Format ARDS0100 (Describe a
Statement Format) for the structure of the input format that the system will pass to the
ARD program for this input format name. See SQLDA for the structure of the output

format that the ARD program must return to the system in response to this input format
name.

ARDT0100

Describe an SQL table format. This format will be used by the system to pass information
about an SQL DESCRIBE TABLE statement to the ARD program when an application
attempts to execute the statement. See Format ARDT0100 (Describe Object Format) for
the structure of the input format that the system will pass to the ARD program for this input
format name. See SQLDA for the structure of the output format that the ARD program
must return to the system in response to this input format name.

SQLCA

OUTPUT; CHAR(136)

The SQL communication area. This is used for returning diagnostic information. The format of the
structure is standard, and can be included using the INCLUDE SQLCA statement in an SQL
program. The SQLCA has the following fields (shown in the C-language format):

struct sqlca
 {
 unsigned char sqlcaid[8];
 long sqlcabc;
 long sqlcode;
 short sqlerrml;
 unsigned char sqlerrmc[70];
 unsigned char sqlerrp[8];
 long sqlerrd[6];
 unsigned char sqlwarn[11];
 unsigned char sqlstate[5];
 };

Fields that must be set by the ARD program prior to returning follow:

sqlcaid An eye-catcher for diagnostic purposes. This must be set to 'SQLCA'.

sqlcabc The byte length of the SQLCA. This must be set to 136.

sqlcode The SQL return code. If the sqlcode is 0, the statement completed successfully
although a warning may have occurred. If the sqlcode is positive, the statement
completed successfully but a warning occurred during execution. If the sqlcode
is negative, an error occurred while running the statement. A discussion about
setting the sqlcode to match a system message identifier follows this list of
fields.

sqlerrp The program that detected the error and built the SQLCA.

sqlerrd[2] The number of rows affected for successful INSERT, and DELETE statements.
This cannot be zero for INSERT, UPDATE, and DELETE statements when the
sqlstate is 00000.

sqlstate A return code field that indicates the outcome of the most recently executed
SQL statement. An sqlstate of 00000 indicates an unqualified successful
completion. ANS/ISO standard sqlstate values should be used and are
documented in the DB2 UDB for iSeries SQL Programming topic in the
Information center.

Another field in the SQLCA, sqlerrmc, is used to return additional pertinent information about the
last statement run. Tokens in this field must be separated by X'FF' to be interpreted properly.

Each sqlcode has a corresponding message in message file QSQLMSGin library QSYS.For
negative SQLCODEs and positive SQLCODEs other than +100, the corresponding message for the
SQLCODE will be put in the job log. In addition, messages about how a statement ran are also put
in the job log when running in debug mode. An ARD program can determine if the application is
running in debug mode by using the debug APIs. The message ID is constructed by appending the
absolute value (5 digits) of the sqlcode to SQ and changing the third character to L if the third
character is a zero. For example, if the sqlcode is -501, the message identifier is SQL0501. Each
message may optionally have replacement variables. These variables are placed in the sqlerrmc
field of the SQLCA in the previous paragraph. A Display Message Description (DSPMSGD)
command or format RTVM0300 of the Retrieve Message (QMHRTVM) API can be used to
determine the correct length and type for replacement variables for a particular message. The
sqlerrmc field for a message should be built up according to the field data for that message. Refer
to SQLCODEs and SQLSTATEs in the DB2 UDB for iSeries SQL Programming topic in the
Information Center for more information about SQLCODEs, SQLSTATEs, and their meaning.

CCSID

OUTPUT; BINARY(4)

The CCSID of the sqlerrm, sqlerrp, and sqlwarn fields in the SQLCA.

Output format

OUTPUT; CHAR(*)

The format of the information passed from the ARD program. The following table identifies the
formats that the ARD program must return for each of the input format name values that the system
will pass to it.

Figure 1-17. Relationship between Input Format Name and Output Format

Input Format Name Output Format

ARCN0100 See Output Connect Format.

ARDI0100 No output format.

ARBB0100 No output format.

ARBS0100 No output format.

AREB0100 No output format.

ARPS0100 No output format.

ARPD0100 See SQLDA.

ARXD0100 See Output Execute Format.

ARXB0100 Update performed (see the description following this table).

ARXP0100 Update performed (see the description following this table).

ARXI0100 Update performed (see the description following this table).

AROC0100 See Output Open Cursor Format.

ARFC0100 See Output Fetch Cursor Format.

ARCC0100 No output format.

ARDS0100 See SQLDA.

ARDT0100 See SQLDA.

Update performed. CHAR(1)

An indicator of whether the statement resulted in an update. An update is any operation that results
in a change to an object such that the object is under commitment control. Valid values follow:

0 The operation did not result in an update.

1 Update occurred from the operation.

Length of output format

OUTPUT; BINARY(4)

The length of the output format in bytes. This must be zero for the following input format names:
ARDI0100, ARBB0100, ARBS0100, AREB0100, ARPS0100, and ARCC0100.

Input Format Structures

In the following structures, the CCSID of the character fields is the job CCSID unless a specific CCSID
field is included in the format for the field.

Format ARCN0100 (Connect Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(10) Device name

36 24 CHAR(8) Mode name

44 2C CHAR(8) Remote location name

52 34 CHAR(8) Local location name

60 3C CHAR(8) Remote network identifier

68 44 CHAR(8) TPN name

76 4C CHAR(10) User ID

86 56 CHAR(10) Password

96 60 CHAR(8) Product identifier

Field Descriptions for Format ARCN0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

Device name. The device name that is specified in the directory entry. This will be blank if
RMTLOCNAME(*ARDPGM) is specified for the RDB directory entry.

Local location name. The local location name that is specified in the directory entry. This will be blank if
RMTLOCNAME(*ARDPGM) is specified for the RDB directory entry.

Mode name. The mode name that is specified in the directory entry. This will be blank if
RMTLOCNAME(*ARDPGM) is specified for the RDB directory entry.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter for a description of the output format associated with this input format.

Password. The password that the application or user specified on the CONNECT statement. This field is
blank if no password is specified. The system does not verify that this password is correct.

Product identifier. The product identifier for the local database in the form QSQvvrrm, where:

vv is a 2-digit version identifier such as 03.●

rr is a 2-digit release identifier such as 01.●

m is a 1-digit modification level such as 0.●

For example, if the local database is Version 3 Release 1 Modification 0 of DB2/400, the product identifier
is QSQ03010.

RDB name. The name of the relational database that the request was directed to.

Remote location name. The remote location name that is specified in the RDB directory entry. This will be
*ARDPGM if RMTLOCNAME(*ARDPGM) is specified for the RDB directory entry.

Remote network identifier. The remote network identifier that is specified in the directory entry. This will
be blank if RMTLOCNAME(*ARDPGM) is specified for the RDB directory entry.

TPN name. The transaction program name that is specified in the directory entry. This will be blank if

RMTLOCNAME(*ARDPGM) is specified for the RDB directory entry.

User ID. The user identifier that the application or user specified on the CONNECT statement. This field is
blank if no user ID is specified.

Format ARDI0100 (Disconnect Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(2) Reserved

28 1C BINARY(4) Disconnect type

Field Descriptions for Format ARDI0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

Disconnect type. The system will set this field to indicate the type of disconnection that is being
performed. Values passed follow:

1 Disconnection is occurring because the application performed a DISCONNECT statement
for only the relational database that the ARD program is associated with or the application
was compiled with the RDB connection method of *RUW and it performed a CONNECT.
If the ARD program returns a negative SQLCODE, the disconnection fails and the
connection is not ended. The system will never pass this value to the ARD program if the
ARD program indicated the conversation uses a protected conversation on the
ARCN0100 format.

2 Disconnection is occurring because a DISCONNECT ALL was performed by the
application or because all connections for the activation group are ending by an implicit
disconnection. Regardless of the SQLCODE value returned by the ARD program, the
connection will be ended. The system will never pass this value to the ARD program if
the ARD program indicated that the conversation uses a protected conversation on the
ARCN0100 format.

3 Disconnection is occurring as part of a commit or rollback. The connection is ending for
one of the following reasons:

The connection was released and a commit is being performed.●

The SQL application ended.●

The activation group ended.●

An error was detected during an earlier call to the ARD program. The connection
had pending changes.

●

4 Disconnection is occurring because an error was detected during an earlier call to the
ARD program. Regardless of the SQLCODE value returned by the ARD program, the
connection will be ended.

Output format buffer size. The amount of storage allocated for the output format that is returned by
theARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter for a description of the output format associated with this input format.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Format ARBB0100 (Begin Package Bind Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) CCSID

76 4C CHAR(1) Existence required

77 4D CHAR(1) Errors allowed

78 4E CHAR(1) Replace allowed

79 4F CHAR(1) String delimiter

80 50 CHAR(1) Decimal delimiter

81 51 CHAR(1) Blocking type

82 52 CHAR(10) Date format

92 5C CHAR(10) Time format

102 66 CHAR(10) Isolation level

112 70 CHAR(18) Default collection

130 82 CHAR(50) Text

Field Descriptions for Format ARBB0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

Blocking type. An indicator of when blocking should be performed for read-only cursors in the program.
This value may be overridden on the call to the ARD program with the AROC0100 format when the cursor
is opened. Values passed follow:

0 Blocking is never performed.
1 Blocking is only performed for cursors declared FOR FETCH ONLY or if there are no

dynamic statements or positioned UPDATE or DELETE statements for the cursor.
2 Blocking is performed as long as the cursor is not declared FOR UPDATE and there are

no positioned UPDATE or DELETE statements for the cursor.

CCSID. The CCSID of the text. This will always be set to 500.

Date format. The format that is used when the exit program accesses date result columns. Values passed
follow (where m=month, d=day, and y=year):

*USA The United States date format mm/dd/yyyy.
*ISO The International Organization for Standardization (ISO) date format yyyy-mm-dd.
*EUR The European date format dd.mm.yyyy.
*JIS The Japanese Industrial Standard date format yyyy-mm-dd.

Decimal delimiter. The statement decimal delimiter for the SQL statements. Values passed follow:

. The value used as the decimal point in numeric literals is a period.
, The value used as the decimal point in numeric literals is a comma.

Default collection. The name of the collection identifier that is used for the unqualified names of the tables,
views, indexes, and SQL packages. This parameter applies only to static SQL statements. A special value of
*NONE indicates no default collection.

Errors allowed. Whether errors are allowed. Values passed follow:

0 All statements are checked for correct syntax and semantics. If any error occurs, the
package should not be created. When processing the AREB0100 format and an error
occurs, the ARD program should return a negative sqlcode for any statement in error.
When the AREB0100 format is processed, the ARD program should return a negative
sqlcode.

1 Even if errors occur while processing the statements, the package should be created.
Reserved sections should be generated for statements in error. When processing the
ARBS0100 format and an error occurs, the ARD program should return a negative
sqlcode for any statement in error. However, when processing the AREB0100 format, the
ARD program should return a non-negative sqlcode.

Existence required. Whether existence of and authority to an object is required. Values passed follow:

0 The absence of an object or lack of authority to an object is not treated as an error. When
processing the ARBS0100 format and an object is not found or an authority error occurs,
a non-negative sqlcode should be returned from the ARD program in the SQLCA
parameter.

1 The absence of an object or lack of authority to an object is treated as an error. When
processing the ARBS0100 format and an object is not found or an authority error occurs,
a negative sqlcode should be returned from the ARD program in the SQLCA parameter.

Isolation level. The level of record locking that occurs under commitment control. Values passed follow:

*CHG The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

Uncommitted changes in other jobs can be seen.
*CS The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

A row that is selected but not updated is locked until the next row is selected.
Uncommitted changes in other jobs cannot be seen.

*ALL The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are selected, updated, deleted, and inserted●

Uncommitted changes in other jobs cannot be seen.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package that is being created. A collection is a name that
provides a logical grouping for SQL objects.

Package consistency token. The consistency token for the package that is being created. Refer to
Consistency Token for a description of this field.

Package name. The name of the package that is being created.

RDB name. The name of the relational database that the request was directed to.

Replace allowed. Whether the package can be replaced. Values passed follow:

0 The SQL package is not created if the SQL package of the same name already exists in
the specified collection. When processing the AREB0100 format and the package with the
same name already exists, the ARD program returns a negative sqlcode.

1 The SQL package is created and any existing SQL package of the same name in the
specified collection replaced. The authorities for the existing SQL package are kept for
the new SQL package.

Reserved. An ignored field.

String delimiter. The statement string delimiter for the SQL statements. Values passed follow:

' The character used as the string delimiter is the apostrophe (').
" " The character used as the string delimiter is the quotation mark (").

Text. Text that briefly describes the packages function.

Time format. The format that is used when the exit program accesses time result columns. Values passed
follow (where h=hour, m=minute, and s=second):

*USA The United States time format hh:mm xx is used, where xx is A.M. or P.M.
*ISO The International Organization for Standardization (ISO) time format hh.mm.ss.
*EUR The European time format hh.mm.ss.
*JIS The Japanese Industrial Standard time format hh:mm:ss.

Format ARBS0100 (Bind Statement for Package Creation Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Section number

76 4C BINARY(4) CCSID

80 50 BINARY(4) Offset to SQLDA

84 54 BINARY(4) Length of SQLDA

88 58 BINARY(4) Offset to SQL statement

92 5C BINARY(4) Length of SQL statement

CHAR(*) SQLDA

CHAR(*) SQL statement

Field Descriptions for Format ARBS0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

CCSID. The CCSID of the statement text.

Length of SQLDA. The length of the SQLDA structure that describes the host variables that are used on
the statement. If zero, no host variables were used on the statement.

Length of SQL statement. The length of the SQL statement as contained in the program.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Offset to SQLDA. The offset from the start of the input format structure to the SQLDA structure that
describes the host variables that are used on the statement. If zero, no host variables were used on the
statement.

Offset to SQL statement. The offset from the start of the input format structure to the SQL statement as
contained in the program.

Package collection. The collection for the package being created. A collection is a name that provides a
logical grouping for SQL objects.

Package consistency token. The consistency token for the package being created. Refer to Consistency
Token for a description of this field.

Package name. The name of the package being created.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Section number. The section number of the statement. Refer to Section Number for a description of this
field.

SQLDA. An SQLDA structure that describes the host variables that are used on the statement. The SQLDA
structure is described in SQLDA. The SQLDATA and SQLIND pointers are set to NULL for package
creation.

SQL statement. The SQL statement as contained in the program except that :H has been substituted for
the host variable identifiers.

Format AREB0100 (End of Package Bind Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Maximum section number

Field Descriptions for Format AREB0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

Maximum section number. The last section number in the package. This value may be greater than the
last number passed on a call to the ARD program with format ARBS0100 when section numbers are
reserved. Refer to Section Number for more information on section numbers.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package being created. A collection is a name that provides a
logical grouping for SQL objects.

Package consistency token. The consistency token for the package being created. Refer to Consistency
Token for a description of this field.

Package name. The name of the package being created.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Formats ARPS0100 and ARPD0100 (Prepare Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Section number

76 4C BINARY(4) CCSID

80 50 CHAR(1) String delimiter

81 51 CHAR(1) Decimal delimiter

82 52 CHAR(10) Date format

92 5C CHAR(10) Time format

102 66 CHAR(10) Isolation level

112 70 BINARY(4) Offset to SQL statement

116 74 BINARY(4) Length of SQL statement

120 78 CHAR(18) Statement name

CHAR(*) SQL statement

Field Descriptions for Formats ARPS0100 and ARPD0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

CCSID. The CCSID of the statement text and statement name.

Date format. The format that is used when the exit program accesses date result columns. Values passed
follow (where m=month, d=day, and y=year):

*USA The United States date format mm/dd/yyyy.
*ISO The International Organization for Standardization (ISO) date format yyyy-mm-dd.
*EUR The European date format dd.mm.yyyy.
*JIS The Japanese Industrial Standard date format yyyy-mm-dd.

Decimal delimiter. The statement decimal delimiter for the SQL statements. Values passed follow:

. The value used as the decimal point in numeric literals is a period.
, The value used as the decimal point in numeric literals is a comma.

Isolation level. The level of record locking that occurs under commitment control. Values passed follow:

*CHG The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

Uncommitted changes in other jobs can be seen.
*CS The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

A row that is selected but not updated is locked until the next row is selected.
Uncommitted changes in other jobs cannot be seen.

*ALL The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are selected, updated, deleted, and inserted●

Uncommitted changes in other jobs cannot be seen.

Length of SQL statement. The length of the statement string being prepared.

Offset to SQL statement. The offset from the start of the input format structure to the statement string
being prepared.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the

output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package that the statement is associated with. A collection is a
name that provides a logical grouping for SQL objects.

Package consistency token. The consistency token for the package that the statement is associated with.
Refer to Consistency Token for a description of this field.

Package name. The name of the package that the statement is associated with.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Section number. The section number that the statement is associated with. Refer to Section Number for
more information on section numbers.

SQL statement. The statement string being prepared.

Statement name. The SQL statement name that is specified on the PREPARE statement.

String delimiter. The statement string delimiter for the SQL statements. Values passed follow:

' The character used as the string delimiter is the apostrophe (').
" The character used as the string delimiter is the quotation mark (").

Time format. The format that is used when the exit program accesses time result columns. Values passed
follow (where h=hour, m=minute, and s=second):

*USA The United States time format hh:mm xx is used, where xx is A.M. or P.M.
*ISO The International Organization for Standardization (ISO) time format hh.mm.ss.
*EUR The European time format hh.mm.ss.
*JIS The Japanese Industrial Standard time format hh:mm:ss.

Formats ARXD0100 and ARXB0100 (Execute Bound Statement)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Section number

76 4C BINARY(4) CCSID

80 50 CHAR(1) String delimiter

81 51 CHAR(1) Decimal delimiter

82 52 CHAR(10) Date format

92 5C CHAR(10) Time format

102 66 CHAR(10) Isolation level

112 70 CHAR(18) Default collection

130 82 CHAR(2) Reserved

132 84 BINARY(4) Offset to input SQLDA

136 88 BINARY(4) Length of input SQLDA

140 8C BINARY(4) Offset to SQL statement

144 90 BINARY(4) Length of SQL statement

148 94 BINARY(4) Offset to DECLARE PROCEDURE

152 98 BINARY(4) Length of DECLARE PROCEDURE

156 9C BINARY(4) Offset to procedure name

160 A0 BINARY(4) Length of procedure name

CHAR(*) Input SQLDA

CHAR(*) SQL statement

CHAR(*) DECLARE PROCEDURE statement

CHAR(*) Procedure name

Field Descriptions for Formats ARXD0100 and ARXB0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

CCSID. The CCSID of statement text.

Date format. The format that is used when the exit program accesses date result columns. Values passed
follow (where m=month, d=day, and y=year):

*USA The United States date format mm/dd/yyyy.
*ISO The International Organization for Standardization (ISO) date format yyyy-mm-dd.
*EUR The European date format dd.mm.yyyy.
*JIS The Japanese Industrial Standard date format yyyy-mm-dd.

Decimal delimiter. The statement decimal delimiter for the SQL statements. Values passed follow:

. The value used as the decimal point in numeric literals is a period.
, The value used as the decimal point in numeric literals is a comma.

DECLARE PROCEDURE statement. The DECLARE PROCEDURE statement as contained in the
program that is associated with the statement when the statement is a CALL statement. 1403 class A

Input SQLDA. An SQLDA structure that describes the host variables that are used on the statement. The
SQLDA structure is described in the SQLDA.

Isolation level. The level of record locking that occurs under commitment control. Values passed follow:

*CHG The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

Uncommitted changes in other jobs can be seen.
*CS The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

A row that is selected but not updated is locked until the next row is selected.
Uncommitted changes in other jobs cannot be seen.

*ALL The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are selected, updated, deleted, and inserted●

Uncommitted changes in other jobs cannot be seen.

Length of DECLARE PROCEDURE. If the statement being executed is a CALL statement and if 1 was
returned for the include bound statements field when the ARD program was called using the ARCN0100
format, this field is the length of the associated DECLARE PROCEDURE statement as contained in the
program. If there is no associated DECLARE PROCEDURE statement, the statement is not a CALL
statement or if 0 was returned for the include bound statements field, this field is set to zero.

Length of input SQLDA. The length of the SQLDA structure that describes the input host variables that
are used on the statement. If zero, no input host variables were used on the statement.

Length of procedure name. If the statement being executed is a CALL statement, this field is the length of
the procedure name. Otherwise, this field is set to zero.

Length of SQL statement. If the value 1 was returned for the include bound statements field when the
ARD program was called using the ARCN0100 format, this field is the length of the statement as contained
in the program. Otherwise, this field is set to zero.

Offset to DECLARE PROCEDURE. If the statement being executed is a CALL statement and if 1 was
returned for the include bound statements field when the ARD program was called using the ARCN0100
format, this field is the offset of the associated DECLARE PROCEDURE statement as contained in the
program. If there is no associated DECLARE PROCEDURE statement, the statement is not a CALL
statement, or if 0 was returned for the include bound statements field, this field is set to zero.

Offset to input SQLDA. The offset from the start of the input format structure to the SQLDA structure that
describes the input host variables that are used on the statement. If zero, no input host variables were used
on the statement.

Offset to procedure name. If the statement being executed is a CALL statement, this field is the offset
from the start of the input format structure to the procedure name as contained in the CALL statement.
Otherwise, this field is set to zero.

Offset to SQL statement. If 1 was returned for the include bound statements field when the ARD program

was called using the ARCN0100 format, this field is the offset from the start of the input format structure to
the SQL statement as contained in the program. Otherwise, this field is set to zero.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package that the statement is associated with. A collection is a
name that provides a logical grouping for SQL objects.

Package consistency token. The consistency token for the package that the statement is associated with.
Refer to Consistency Token for a description of this field.

Package name. The name of the package that the statement is associated with.

Procedure name. If the statement being executed is a CALL statement, this field contains the procedure
name as specified in the CALL statement.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Section number. The section number the statement is associated with. Refer to Section Number for more
information on section numbers.

SQL statement. The statement as contained in the program.

String delimiter. The statement string delimiter for the SQL statements. Values passed follow:

' The character used as the string delimiter is the apostrophe (').
" The character used as the string delimiter is the quotation mark (").

Time format. The format that is used when the exit program accesses time result columns. Values passed
follow (where h=hour, m=minute, and s=second):

*USA The United States time format hh:mm xx is used, where xx is A.M. or P.M.
*ISO The International Organization for Standardization (ISO) time format hh.mm.ss.
*EUR The European time format hh.mm.ss.
*JIS The Japanese Industrial Standard time format hh:mm:ss.

Format ARXP0100 (Execute Prepared Statement)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Section number

76 4C BINARY(4) CCSID

80 50 CHAR(1) String delimiter

81 51 CHAR(1) Decimal delimiter

82 52 CHAR(10) Date format

92 5C CHAR(10) Time format

102 66 CHAR(10) Isolation level

112 70 BINARY(4) Offset to SQLDA

116 74 BINARY(4) Length of SQLDA

120 78 BINARY(4) Offset to procedure name

124 7C BINARY(4) Length of procedure name

128 80 CHAR(18) Statement name

CHAR(*) SQLDA

CHAR(*) Procedure name

Field Descriptions for Format ARXP0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

CCSID. The CCSID of statement name.

Date format. The format that is used when the exit program accesses date result columns. Values passed
follow (where m=month, d=day, and y=year):

*USA The United States date format mm/dd/yyyy.
*ISO The International Organization for Standardization (ISO) date format yyyy-mm-dd.
*EUR The European date format dd.mm.yyyy.
*JIS The Japanese Industrial Standard date format yyyy-mm-dd.

Decimal delimiter. The statement decimal delimiter for the SQL statements. Values passed follow:

. The value used as the decimal point in numeric literals is a period.
, The value used as the decimal point in numeric literals is a comma.

Isolation level. The level of record locking that occurs under commitment control. Values passed follow:

*CHG The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

Uncommitted changes in other jobs can be seen.

*CS The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

A row that is selected but not updated is locked until the next row is selected.
Uncommitted changes in other jobs cannot be seen.

*ALL The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are selected, updated, deleted, and inserted●

Uncommitted changes in other jobs cannot be seen.

Length of procedure name. If the statement being executed is a CALL statement, this field is the length of
the procedure name. This field will always be set to 0; it is reserved for future use.

Length of SQLDA. The length of the SQLDA structure that describes the host variables that are used on
the statement. If zero, no host variables were used on the statement.

Offset to procedure name. If the statement being executed is a CALL statement, this field is the offset
from the start of the input format structure to the procedure name as contained in the CALL statement. This
field will always be set to 0; it is reserved for future use.

Offset to SQLDA. The offset from the start of the input format structure to the SQLDA structure that
describes the host variables that are used on the statement. If zero, no host variables were used on the
statement.

Output format buffer size. The amount of storage allocated for the output format that is returned by
theARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package that the statement is associated with. A collection is a
name that provides a logical grouping for SQL objects.

Package consistency token. The consistency token for the package that the statement is associated with.
Refer to Consistency Token for a description of this field.

Package name. The name of the package that the statement is associated with.

Procedure name. If the statement being executed is a CALL statement, this field contains the procedure
name as specified in the CALL statement. This field will not be passed; it is reserved for future use.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Section number. The section number that the statement is associated with. Refer to Section Number for
more information on section numbers.

SQLDA. An SQLDA structure that describes the host variables that are used on the statement. The SQLDA
structure is described in the SQLDA.

Statement name. The SQL statement name that is specified on the EXECUTE statement.

String delimiter. The statement string delimiter for the SQL statements. Values passed follow:

' The character used as the string delimiter is the apostrophe (').
" The character used as the string delimiter is the quotation mark (").

Time format. The format that is used when the exit program accesses time result columns. Values passed
follow (where h=hour, m=minute, and s=second):

*USA The United States time format hh:mm xx is used, where xx is A.M. or P.M.
*ISO The International Organization for Standardization (ISO) time format hh.mm.ss.
*EUR The European time format hh.mm.ss.
*JIS The Japanese Industrial Standard time format hh:mm:ss.

Format ARXI0100 (Execute Immediate Statement Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Section number

76 4C BINARY(4) CCSID

80 50 CHAR(1) String delimiter

81 51 CHAR(1) Decimal delimiter

82 52 CHAR(10) Date format

92 5C CHAR(10) Time format

102 66 CHAR(10) Isolation level

112 70 BINARY(4) Offset to SQL statement

116 74 BINARY(4) Length of SQL statement

CHAR(*) SQL statement

Field Descriptions for Format ARXI0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

CCSID. The CCSID of the statement text.

Date format. The format that is used when the exit program accesses date result columns. Values passed
follow (where m=month, d=day, and y=year):

*USA The United States date format mm/dd/yyyy.
*ISO The International Organization for Standardization (ISO) date format yyyy-mm-dd.
*EUR The European date format dd.mm.yyyy.
*JIS The Japanese Industrial Standard date format yyyy-mm-dd.

Decimal delimiter. The statement decimal delimiter for the SQL statements. Values passed follow:

. The value used as the decimal point in numeric literals is a period.
, The value used as the decimal point in numeric literals is a comma.

Isolation level. The level of record locking that occurs under commitment control. Values passed follow:

*CHG The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

Uncommitted changes in other jobs can be seen.
*CS The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

A row that is selected but not updated is locked until the next row is selected.
Uncommitted changes in other jobs cannot be seen.

*ALL The following are locked until the end of the unit of work (transaction):

referred to in SQL ALTER, COMMENT ON, CREATE, DROP, GRANT,
LABEL ON, and REVOKE statements

●

Rows that are selected, updated, deleted, and inserted●

Uncommitted changes in other jobs cannot be seen.

Length of SQL statement. The length of the SQL statement to execute.

Offset to SQL statement. The offset from the start of the input format structure to the SQL statement to
execute.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package that the statement is associated with. A collection is a
name that provides a logical grouping for SQL objects.

Package consistency token. The consistency token for the package that the statement is associated with.
Refer to Consistency Token for a description of this field.

Package name. The name of the package that the statement is associated with.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Section number. The section number that the statement is associated with. Refer to Section Number for
more information on section numbers.

SQL statement. The SQL statement to execute.

String delimiter. The statement string delimiter for the SQL statements. Values passed follow:

' The character used as the string delimiter is the apostrophe (').
" The character used as the string delimiter is the quotation mark (").

Time format. The format that is used when the exit program accesses time result columns. Values passed
follow (where h=hour, m=minute, and s=second):

*USA The United States time format hh:mm xx is used, where xx is A.M. or P.M.
*ISO The International Organization for Standardization (ISO) time format hh.mm.ss.
*EUR The European time format hh.mm.ss.
*JIS The Japanese Industrial Standard time format hh:mm:ss.

Format AROC0100 (Open Cursor Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Section number

76 4C BINARY(4) CCSID

80 50 CHAR(1) String delimiter

81 51 CHAR(1) Decimal delimiter

82 52 CHAR(10) Date format

92 5C CHAR(10) Time format

102 66 CHAR(10) Isolation level

112 70 CHAR(18) Default collection

130 82 CHAR(1) Blocking allowed

131 83 CHAR(1) Reserved

132 84 BINARY(4) Offset to SQLDA

136 88 BINARY(4) Length of SQLDA

140 8C BINARY(4) Offset to DECLARE CURSOR

144 90 BINARY(4) Length of DECLARE CURSOR

148 94 CHAR(18) Cursor name

CHAR(*) SQLDA

CHAR(*) DECLARE CURSOR statement

Field Descriptions for Format AROC0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

Blocking allowed. Whether blocking should be performed for the cursor. Values passed follow:

0 Blocking is not allowed.
1 Blocking is allowed.

CCSID. The CCSID of the statement text and cursor name.

Cursor name. The cursor name that is specified on the OPEN statement.

Date format. The format that is used when the exit program accesses date result columns. Values passed
follow (where m=month, d=day, and y=year):

*USA The United States date format mm/dd/yyyy.
*ISO The International Organization for Standardization (ISO) date format yyyy-mm-dd.
*EUR The European date format dd.mm.yyyy.
*JIS The Japanese Industrial Standard date format yyyy-mm-dd.

DECLARE CURSOR statement. The DECLARE CURSOR statement as contained in the program that is
associated with the OPEN statement.

Decimal delimiter. The statement decimal delimiter for the SQL statements. Values passed follow:

. The value used as the decimal point in numeric literals is a period.
, The value used as the decimal point in numeric literals is a comma.

Isolation level. The level of record locking that occurs under commitment control. Values passed follow:

*CHG The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

Uncommitted changes in other jobs can be seen.
*CS The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

A row that is selected but not updated is locked until the next row is selected.
Uncommitted changes in other jobs cannot be seen.

*ALL The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are selected, updated, deleted, and inserted●

Uncommitted changes in other jobs cannot be seen.

Length of DECLARE CURSOR. If 1 was returned for the include bound statements field when the ARD
program was called using the ARCN0100 format, this field is the length of the associated DECLARE
CURSOR statement as contained in the program. Otherwise, this field is set to zero.

Length of SQLDA. The length of the SQLDA structure that describes the host variables that are used on
the statement. If zero, no host variables were used on the statement.

Offset to DECLARE CURSOR. If 1 was returned for the include bound statements field when the ARD
program was called using the ARCN0100 format, this field is the offset of the associated DECLARE
CURSOR statement as contained in the program. Otherwise, this field is set to zero.

Offset to SQLDA. The offset from the start of the input format structure to the SQLDA structure that
describes the host variables that are used on the statement. If zero, no host variables were used on the
statement.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package that the statement is associated with. A collection is a
name that provides a logical grouping for SQL objects.

Package consistency token. The consistency token for the package that the statement is associated with.
Refer to Consistency Token for a description of this field.

Package name. The name of the package that the statement is associated with.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Section number. The section number that the statement is associated with. Refer to Section Number for

more information on section numbers.

SQLDA. An SQLDA structure that describes the host variables that are used on the statement. The SQLDA
structure is described in the SQLDA.

String delimiter. The statement string delimiter for the SQL statements. Values passed follow:

' The character used as the string delimiter is the apostrophe (').
" The character used as the string delimiter is the quotation mark (").

Time format. The format that is used when the exit program accesses time result columns. Values passed
follow (where h=hour, m=minute, and s=second):

*USA The United States time format hh:mm xx is used, where xx is A.M. or P.M.
*ISO The International Organization for Standardization (ISO) time format hh.mm.ss.
*EUR The European time format hh.mm.ss.
*JIS The Japanese Industrial Standard time format hh:mm:ss.

Format ARFC0100 (Fetch from a Cursor Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Section number

76 4C BINARY(4) CCSID

80 50 CHAR(1) String delimiter

81 51 CHAR(1) Decimal delimiter

82 52 CHAR(10) Date format

92 5C CHAR(10) Time format

102 66 CHAR(10) Isolation level

112 70 CHAR(18) Cursor name

Field Descriptions for Format ARFC0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

CCSID. The CCSID of the cursor name.

Cursor name. The cursor name that is specified on the FETCH statement.

Date format. The format that is used when the exit program accesses date result columns. Values passed
follow (where m=month, d=day, and y=year):

*USA The United States date format mm/dd/yyyy.
*ISO The International Organization for Standardization (ISO) date format yyyy-mm-dd.
*EUR The European date format dd.mm.yyyy.
*JIS The Japanese Industrial Standard date format yyyy-mm-dd.

Decimal delimiter. The statement decimal delimiter for the SQL statements. Values passed follow:

. The value used as the decimal point in numeric literals is a period.
, The value used as the decimal point in numeric literals is a comma.

Isolation level. The level of record locking that occurs under commitment control. Values passed follow:

*CHG The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

Uncommitted changes in other jobs can be seen.
*CS The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are updated, deleted, and inserted●

A row that is selected but not updated is locked until the next row is selected.
Uncommitted changes in other jobs cannot be seen.

*ALL The following are locked until the end of the unit of work (transaction):

Objects that are referred to in SQL ALTER, COMMENT ON, CREATE, DROP,
GRANT, LABEL ON, and REVOKE statements

●

Rows that are selected, updated, deleted, and inserted●

Uncommitted changes in other jobs cannot be seen.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package that the statement is associated with. A collection is a

name that provides a logical grouping for SQL objects.

Package consistency token. The consistency token for the package that the statement is associated with.
Refer to Consistency Token for a description of this field.

Package name. The name of the package that the statement is associated with.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Section number. The section number that the statement is associated with. Refer to Section Number for
more information on section numbers.

String delimiter. The statement string delimiter for the SQL statements. Values passed follow:

' The character used as the string delimiter is the apostrophe (').
" The character used as the string delimiter is the quotation mark (").

Time format. The format that is used when the exit program accesses time result columns. Values passed
follow (where h=hour, m=minute, and s=second):

*USA The United States time format hh:mm xx is used, where xx is A.M. or P.M.
*ISO The International Organization for Standardization (ISO) time format hh.mm.ss.
*EUR The European time format hh.mm.ss.
*JIS The Japanese Industrial Standard time format hh:mm:ss.

Format ARCC0100 (Close a Cursor Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Section number

76 4C BINARY(4) CCSID

80 50 CHAR(18) Cursor name

Field Descriptions for Format ARCC0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

CCSID. The CCSID of the cursor name.

Cursor name. The cursor name specified on the CLOSE statement.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package that the statement is associated with. A collection is a
name that provides a logical grouping for SQL objects.

Package consistency token. The consistency token for the package that the statement is associated with.
Refer to Consistency Token for a description of this field.

Package name. The name of the package that the statement is associated with.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Section number. The section number that the statement is associated with. Refer to Section Number for
more information on section numbers.

Format ARDS0100 (Describe a Statement Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(18) Package collection

44 2C CHAR(18) Package name

62 3E CHAR(8) Package consistency token

70 46 CHAR(2) Reserved

72 48 BINARY(4) Section number

76 4C BINARY(4) CCSID

80 50 CHAR(18) Statement name

Field Descriptions for Format ARDS0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

CCSID. The CCSID of the statement name.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

Package collection. The collection for the package that the statement is associated with. A collection is a
name that provides a logical grouping for SQL objects.

Package consistency token. The consistency token for the package that the statement is associated with.
Refer to Consistency Token for a description of this field.

Package name. The name of the package that the statement is associated with.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Section number. The section number that the statement is associated with. Refer to Section Number for
more information on section numbers.

Statement name. The statement name that is specified on the DESCRIBE statement.

Format ARDT0100 (Describe Object Format)

Offset

Type FieldDec Hex

0 0 BINARY(4) Output format buffer size

4 4 BINARY(4) Activation group number

8 8 CHAR(18) RDB name

26 1A CHAR(2) Reserved

28 1C BINARY(4) CCSID

32 20 BINARY(4) Offset to object name

36 24 BINARY(4) Length of object name

CHAR(*) Object name

Field Descriptions for Format ARDT0100

Activation group number. The activation group number of the program that is performing the request. See
Activation Group for a description of what an activation group is.

CCSID. The CCSID of the object name.

Length of object name. The length of the name of the SQL object to describe.

Object name. The name of the SQL object to be described. This may be either a qualified or unqualified
table name. If it is qualified, it will be in the SQL naming format, that is, a collection name followed by a
period and an SQL identifier.

Offset to object name. The offset from the start of the input format structure to the name of the SQL object
to describe.

Output format buffer size. The amount of storage allocated for the output format that is returned by the
ARD program. The length of the output format must be less than or equal to this value. It must also
conform to the description of the output format associated with this input format. See the description of the
output format parameter on for a description of the output format associated with this input format.

RDB name. The name of the relational database that the request was directed to.

Reserved. An ignored field.

Output Format Structures

In the following structures, the CCSID of the character fields is the job CCSID unless a specific CCSID
field is included in the format for the field.

Output Connect Format

Offset

Type FieldDec Hex

0 0 CHAR(3) Server product

3 3 CHAR(2) Server version

5 5 CHAR(2) Server release

7 7 CHAR(1) Server level

8 8 CHAR(10) User ID

18 12 CHAR(1) Include bound statements

19 13 CHAR(1) Protected conversation

Field Descriptions for Output Connect Format

Include bound statements. Whether statements that were sent at package-creation time should be included
in run-time formats ARXD0100, ARXB0100, and AROC0100. Valid values follow:

0 Do not include bound statements.
1 Include bound statements.

Protected conversation. Whether a protected conversation is used for the connection. If the connection
uses a protected conversation, the system rejects attempts by the application to run the DISCONNECT SQL
statement. Connections that use protected conversations are only ended during commit and rollback
processing. See the description of the disconnect type field (page Disconnect type) for format ARDI0100
for more information. Valid values follow:

0 Conversation is not protected.
1 Conversation is protected.

Server level. An identifier for the level of the database server that is accessed by the ARD program. This
value must be a character representation of a hexadecimal value. That is, it may only consist of the
characters 0-9 and A-F.

Server product. An identifier for the database server that is accessed by the ARD program. The system
does no verification of the value of this field.

Server release. An identifier for the release of the database server that is accessed by the ARD program.
This value must be a character representation of a hexadecimal value. That is, it may only consist of the
characters 0-9 and A-F.

Server version. An identifier for the version of the database server that is accessed by the ARD program.
This value must be a character representation of a hexadecimal value. That is, it may only consist of the
characters 0-9 and A-F. The system does no verification of the value of this field.

User ID. The user ID that is used at the server.

Output Execute Format

Offset

Type FieldDec Hex

0 0 CHAR(1) Update performed

1 1 CHAR(3) Reserved

4 4 BINARY(4) Offset to SQLDA

8 8 BINARY(4) Offset to result set

CHAR(*) SQLDA

CHAR(*) Result set

Field Descriptions for Output Execute Format

Offset to result set. The offset from the start of the output format to the result set. If the SQLCA indicates
an error occurred, this field must be set to 0.

Offset to SQLDA. An offset from the start of the output format to the SQLDA structure that describes the
columns for the results of the statement. This field can only have a value of 0 or a multiple of 16. If the
SQLCA indicates an error occurred, this field must be set to 0. If the SQLCA does not indicate an error,
this field cannot be 0.

Reserved. An ignored field.

Result set. The result for the SQL statement. Columns are contiguous with null indicators (if appropriate)
that precede the column data. Refer to Query (Fetch) Data Format for more information. If the offset to
result set field is 0, this field must not be included in the output format.

Note: This null indicator is not the same as the NULL in the C language.

SQLDA. An SQLDA structure that describes the columns for the results of the statement. The SQLDA
structure is described in SQLDA. If the offset to SQLDA field is 0, this field must not be included in the
output format.

Update performed. Whether the statement resulted in an update. An update is any operation that results in
a change to an object such that the object is under commitment control. Valid values follow:

0 The operation did not result in an update.
1 An update occurred from the operation.

Output Open Cursor Format

Offset

Type FieldDec Hex

0 0 CHAR(1) Block data

1 1 CHAR(1) Cursor held

1 1 CHAR(2) Reserved

4 4 BINARY(4) Offset to SQLDA

CHAR(*) SQLDA

Field Descriptions for Output Open Cursor Format

Block data. Whether the ARD program will block the data. Valid values follow:

0 A single row of data will be returned.
1 Data will be returned in blocks.

Cursor held. Whether the cursor is held open after commits. Valid values follow:

0 Cursor is closed after commits.
1 Cursor is held open after commits.

Offset to SQLDA. The offset from the start of the output format to the SQLDA structure that describes the
columns for the results of the statement. This field can only have a value of 0 or a multiple of 16. If the
SQLCA indicates that an error occurred, this field must be set to 0. If the SQLCA does not indicate an
error, this field cannot be 0.

Reserved. An ignored field.

SQLDA. An SQLDA structure that describes the columns for the results of the statement. The SQLDA
structure is described in SQLDA. If the offset to SQLDA field is 0, this field must not be included in the
output format.

Output Fetch Cursor Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Offset to result set

4 4 CHAR(1) Cursor closed

CHAR(*) Result set

Field Descriptions for Output Fetch Cursor Format

Cursor closed. Whether the cursor is closed. Valid values follow:

0 The cursor is open.
1 The cursor is closed.

Offset to result set. The offset from the start of the output format to the result set. If no data is returned,
this field should be set to 0.

Result set. The result for the SQL statement. Columns are contiguous with null indicators (if appropriate)
that precede the column data. Refer to Query (Fetch) Data Format for more information. If the offset to
result set field is 0, this field must not be included in the output format.

Note: This null indicator is not the same as the NULL in the C language.

Activation Group

An activation group provides the following:

Run-time data structures to support the running of programs●

Addressing protection●

A logical boundary for message creation●

A logical boundary for application cleanup processing●

Connections are scoped to the activation group. Therefore, the activation group mark and the RDB name
together are used to uniquely identify the connection. It is not possible to have more than one connection
active with the same RDB name in the same activation group at a point in time. However, it is possible to
have multiple connections with different RDB names in the same activation group and to have multiple
connections with the same RDB name in different activation groups.

Consistency Token

The system associates a consistency token with every program. If a program is compiled again, a new
consistency token is created. When a user or application creates a package with the CRTSQLxxx
commands or the CRTSQLPKG command and an RDB that is associated with an ARD program is
specified on the command, the package consistency token from the program along with a package name
and package collection is passed to the ARD program. In addition, at program run time, the ARD program
will be passed the package name, package collection, and package consistency token that are currently
associated with the program.

The ARD program can use this information passed to it during run time to verify that information passed to
it during package creation is correct for the instance of the program being run. If a package does not exist
for the given package consistency token, package name, and package collection, the exit program should
return messages SQLCODE (-805) and SQLSTATE (51002).

Section Number

When a user or application creates a package with the CRTSQLxxx commands or the CRTSQLPKG
command and an RDB that is associated with an ARD program is specified on the command, statements
contained in the program are passed to the ARD program. A section number is associated with the
statements. A section number is a signed binary number ranging from 1 to 32767. Section numbers may not
necessarily be consecutive.

Related statements share the same section numbers. Therefore, a cursor declared for a statement and each
statement that references the declared statement or cursor (FETCH, EXECUTE, OPEN, CLOSE,
PREPARE) have the same section number. However, each uniquely declared statement or cursor has a
different section number.

The system assigns a unique section number to the following statements and any other statements that it
does not understand:

ALTER●

COMMENT ON●

CREATE●

DELETE●

DROP●

EXPLAIN●

GRANT●

INSERT●

LABEL ON●

LOCK●

REVOKE●

SELECT (embedded)●

SET●

UPDATE●

EXECUTE IMMEDIATE●

CALL●

DECLARE PROCEDURE●

The following statements are not passed to the ARD program during the package creation process. Also,
local statements that are understood by the precompiler but do not result in calls to the ARD program at run
time are not passed.

INCLUDE●

WHENEVER●

PREPARE●

EXECUTE●

EXECUTE IMMEDIATE●

DESCRIBE●

OPEN●

FETCH●

CLOSE●

COMMIT●

CONNECT●

ROLLBACK●

RELEASE●

SET CONNECTION●

DISCONNECT●

BEGIN DECLARE SECTION●

END DECLARE SECTION●

Query (Fetch) Data Format

Query data is returned as a continuous collection of columns. Multiple rows of data may also be returned
for format ARFC0100 when the ARD program returned 1 for the block data field on format AROC0100.
When multiple rows of data are returned, the rows are also contiguous.

If a column is a null-capable or a derived field (for example COL1/COL2), the column data is preceded
with a 1-byte null indicator. The length of data returned for variable-length data types should be based on
the length in the length indicator. It should not be padded to the length of the field. Representation of all
data types is assumed to be in the format used by OS/400.

The null indicator is a 1-byte signed binary integer. If the null indicator is negative (between X'80' and
X'FF', inclusive), no column data should follow the indicator. For data conversion errors, -2 (X'FE') should
be used for the null indicator.

If a data conversion error occurs and the column is non-null-capable, an error sqlcode should be returned in
the SQLCA. When an error (negative SQLCODE) is indicated in the SQLCA and the ARD program is not
returning multiple rows, no data should be returned. When multiple rows of data are being returned for a
query and the ARD program returns an error in the SQLCA, the row that the error applies to should not be
included in the block and the row previous to the row in error should be the last row returned.

When a warning (positive SQLCODE) is indicated in the SQLCA and the ARD program is not returning
multiple rows, the row should be returned. When multiple rows of data are being returned for a query and
an ARD program returns a warning in the SQLCA, the row that the warning applies to should be the last
row in the block.

If the ARD program has not indicated that the cursor is closed in the cursor closed field of the output format
for ARFC0100, the system will call the ARD program to get additional rows when the application requests
a row after the row that the warning or error applies to. If the ARD program indicated the cursor was
closed, the system will not call the ARD program for that cursor again until the application performs
another SQL OPEN.

The following illustration shows an example of two rows of data being returned for a FETCH. The two
rows each consist of a null-capable smallint COL1, a non-null-capable CHAR(3) COL2, a null-capable
smallint COL3, and a non-null-capable VARCHAR(20) COL4.

Hex Representation Description
00 Row 1 - Null byte for COL1 - not null
0001 Row 1 - COL1 (smallint) value = 1
D1E6E3 Row 1 - COL2 (CHAR(3)) value = JWT
FF Row 1 - Null byte for COL3 - null
0007D1C5C6C6D9C5E8 Row 1 - COL4 Length = 7 value = JEFFREY
FF Row 2 - Null byte for COL1 - null
D1D4C2 Row 2 - COL2 (CHAR(3)) value = JMB
00 Row 2 - Null byte for COL3 - not null
0002 Row 2 - COL3 (smallint) value = 2
0004D1D6C8D5 Row 1 - COL4 Length = 4 value = JOHN

In response to format ARXD0100 when data is returned for a CALL statement, a null indicator must
precede each field regardless of whether the field is null-capable or not. For any parameters declared as
input-only on the DECLARE PROCEDURE statement, the null indicator must be set to X'80'.

The following illustration shows an example of the data returned for a CALL where the first parameter was
an input-only parameter and the second was an output smallint.

Hex Representation Description
80 Parm 1 - Null byte - input only
00 Parm 2 - Null byte - not null
0001 Parm 2 - Value = 1

SQLDA

An SQLDA is a set of variables that describe either host variables or column attributes. Included in this
topic are the SQLDA structure, the relevant settings for those fields that the ARD program returns to the
operating system, and the relevant fields that are passed to the ARD program.

For more information about SQLDA, see SQL Descriptor Area (SQLDA) in the DB2 UDB for iSeries SQL

Reference topic.

The SQLDA has the following fields (shown in C-language format):

struct sqlda
{
 unsigned char sqldaid[8];
 long sqldabc;
 short sqln;
 short sqld;
 struct sqlvar
 {
 short sqltype;
 short sqllen;
 unsigned char sqlres[12];
 unsigned char *sqldata;
 short *sqlind;
 struct sqlname
 {
 short length;
 unsigned char data[30];
 } sqlname;
 } sqlvar[1];
};

In response to the ARPD0100, ARDS0100, and ARDT0100 formats, the following fields must be set on the
return from the ARD program:

sqldaid An eye-catcher for diagnostic purposes. This must be set to 'SQLDA'.
sqldabc The length of the SQLDA. Its value is calculated as '2*sqld*sizeof(sqlvar) + 16'.
sqld A number equal to the number of columns described. The actual number of sqlvar

occurrences returned should be twice this number. If the statement being described is not
a SELECT statement, this field is set to 0.

sqlvar A structure that contains two entries for each column in the result table. If nis the number
of columns being described, the first n sqlvar entries contain the following:

sqltype The sqltype of the column in the select list of the result table. See the DB2
UDB for iSeries SQL Reference topic for a complete list of field data types
and their corresponding sqltype value.

sqllen The length attribute of the column.
sqldata For character data, the CCSID of the field in the following format: bytes 1

and 2 are set to X'00' and bytes 3 and 4 are set to the CCSID value.
sqlind Reserved. This must be set to X'00'.
sqlname The unqualified name of the column.

sqlname.length The length of the unqualified name of the column.
sqlname.data The unqualified column name. The CCSID of the value is

the CCSID of the job.

And the second n entries contain the following:

sqltype Reserved. This must be set to X'00'.
sqllen Reserved. This must be set to X'00'.
sqldata Reserved. This must be set to X'00'.

sqlind Reserved. This must be set to X'00'.
sqlname The label of the column.

sqlname.length The length of the column label.
sqlname.data The column label. The CCSID of the value is the CCSID of the job.

In response to formats AROC0100 and ARXD0100, the following fields must be set on the return from the
ARD program:

sqldaid An eye-catcher for diagnostic purposes. This must be set to 'SQLDA'.
sqldabc The length of the SQLDA. Its value is calculated as 'sqld*sizeof(sqlvar) + 16'.
sqld The number of columns in the result table.
sqlvar A structure that contains an entry for each column in the result table. The entries contain

the following fields:

sqltype The sqltype of the column in the select list of the result table. See the DB2
UDB for iSeries SQL Reference topic for a complete list of field data types
and their corresponding sqltype value.

sqllen The length attribute of the column.
sqldata For character data, the CCSID of the field in the following format: bytes 1

and 2 are set to X'00' and bytes 3 and 4 are set to the CCSID value.
sqlind Reserved. This must be set to X'00'.
sqlname The unqualified name of the column.

sqlname.length The length of the unqualified name of the column.
sqlname.data The unqualified column name. The CCSID of the value is

the CCSID of the job.

On input to the ARD program on formats ARBS0100, ARXD0100, ARXB0100, ARXP0100, and
AROC0100, the ARD program must interpret the SQLDA because it describes host variables to be used
with the statement. The relevant fields are:

sqld The number of host variables for the statement.
sqlvar A structure that contains one entry for each host variable. The entries contain the

following:

sqltype The sqltype of the host variable. See the DB2 UDB for iSeries SQL
Reference topic for a complete list of field data types and their
corresponding sqltype value. An odd value for sqltype indicates that this
sqlvar entry contains a pointer to an indicator variable that is addressed by
sqlind.

sqllen The length attribute of the host variable.
sqldata A pointer to the host variable data. This field is set to NULL for format

ARBS0100.
sqlind A pointer to an indicator variable. The indicator variable is a 2-byte binary

value that signifies a NULL value when sqlind is set to a negative value.
This field is only relevant if the sqltype field is odd. This field is set to
NULL for format ARBS0100.

sqlname The coded character set identifier (CCSID) for character host variables.

sqlname.data The CCSID of the field in the following format: bytes 1
and 2 are set to X'00' and bytes 3 and 4 are set to the
CCSID value.

sqlname.length This field is set to 8.

Commit APIs

To process commit and rollback requests, providers of ARD programs must register a commitment control
resource. Refer to for more information on the commitment control APIs. The following section assumes an
understanding of the commit APIs.

The Add Commitment Resource (QTNADDCR) API should be called to add a commitment resource to a
commitment definition. After the resource is added, the exit program specified on the Add Commitment
Resource API is called during commitment control operations for the commitment definition. When
registering commitment resources for use with ARD programs, the commitment resource should be added
after the first successful operation after the ARCN0100 format call. It is best not to perform this operation
as part of the ARCN0100 format call since once a commitment control API resource is registered, the
commitment definition is no longer at a logical unit-of-work boundary. A CONNECT operation does not
normally change the logical unit-of-work boundary of a commitment definition. If a commitment resource
is registered during the ARCN0100 format call, the create SQL package (CRTSQLPKG) function fails.

The Remove Commitment Resource (QTNRMVCR) API should be called to remove a resource from a
commitment definition. This API should be called after processing the ARDI0100 format call. It cannot be
called during the ARDI0100 format call if the ARDI0100 format indicates that the disconnection is
occurring as part of a commit or rollback. A disconnect type of 3 indicates that the disconnect is occurring
as part of a commit or rollback. In this situation, the commit resource should be removed either during the
next SQL operation the ARD program processes or during the next commit or rollback operation. In the
latter case, the commitment control exit program can have the resource removed by using the changes
ended field in the return information format. Until this resource is removed, the Create SQL Package
(CRTSQLPKG) command will fail.

Exit program introduced: V3R6

Top | Database and File APIs | APIs by category

	Database and File APIs (V5R2)
	Table of Contents
	Database and File APIs
	APIs
	Block EDRS Access (QxdaBlockEDRS) API
	Retrieve Backup Detail (QEZRTBKD) API
	Call Program (QxdaCallProgramEDRS) API
	Cancel EDRS Request (QxdaCancelEDRS) API
	Cancel Requested Statistics Collections (QDBSTCRS, QdbstCancelRequestedStatistics) API
	Change Cross Reference CCSID (QDBCXRC) API
	Change Dynamic Default Collection (QSQCHGDC) API
	Check EDRS Block Status (QxdaCheckEDRSStatus) API
	Check EDRS Block Status (QxdaCheckEDRSBlock) API
	Clear SQL Database Monitor Statistics (QQQCSDBM) API
	Commit EDRS Server (QxdaCommitEDRS) API
	Connect to EDRS Server (QxdaConnectEDRS) API
	Create Database Hash (QCreateDatabaseHash) API
	Delete Statistics Collections (QDBSTDS, QdbstDeleteStatistics) API
	Disconnect from EDRS Server (QxdaDisconnectEDRS) API
	Dump SQL Database Monitor (QQQDSDBM) API
	End SQL Database Monitor (QQQESDBM) API
	Find EDRS Job (QxdaFindEDRSJob) API
	Generate Data Definition Language (QSQGNDDL) API
	List Database File Members (QUSLMBR) API
	List Database Relations (QDBLDBR) API
	List Fields (QUSLFLD) API
	List Open Files (QDMLOPNF)
	List Record Formats (QUSLRCD) API
	List Requested Statistics Collections (QDBSTLRS, QdbstListRequestedStatistics) API
	List Statistics Collection Details (QDBSTLDS, QdbstListDetailStatistics) API
	List Statistics Collections (QDBSTLS, QdbstListStatistics) API
	Process Command (QxdaProcessCommandEDRS) API
	Process Extended Dynamic SQL (QSQPRCED) API
	Process Immediate SQL Statement (QxdaProcessImmediateEDRS) API
	Process Remote Extended Dynamic SQL (QxdaProcessExtDynEDRS) API
	Query (QQQQRY) API
	Query SQL Database Monitor (QQQQSDBM) API
	Request Statistics Collections (QDBSTRS, QdbstRequestStatistics) API
	Retrieve Database File Description (QDBRTVFD) API
	Retrieve Display File Description (QDFRTVFD) API
	Retrieve File Override Information (QDMRTVFO) API
	Retrieve Job Record Locks (QDBRJBRL) API
	Retrieve Member Description (QUSRMBRD) API
	Retrieve Record Locks (QDBRRCDL) API
	Retrieve Short Name (QDBRTVSN) API
	Roll Back EDRS Server (QxdaRollbackEDRS) API
	Run Database Hash (QDBRUNHA) API
	Start SQL Database Monitor (QQQSSDBM) API
	Syntax Check SQL Statement (QSQCHKS) API
	Update Statistics Collections (QDBSTUS, QdbstUpdateStatistics) API
	Visual Explain (QQQVEXPL) API

	Exit programs
	CLI Connection Exit Program
	Close Database File Exit Program
	SQL Client Integration Exit Program

