Performance Management APIs (V5R2)

Table of Contents

Performance Management APIs

o Collection Services APIs
o Collector APIs
= #*Add Collector Naotification (QypsAddCollectorNotification)&

» Change System Collector Attributes (QYPSCSCA,
QypsChgSysCaollectorAttributes)

= Cycle Collector (QYPSCY CC, QypsCycleCoallector)

= #Deregister Collector Data Category (QypsDeregCollectorDataCategory)<%
= End Collector (QYPSENDC, QypsEndCollector)

= #*Register Collector Data Category (QypsRegCollectorDataCategory)é

= #*Remove Collector Notification (QypsRmvCollectorNotificati on) <

= Retrieve System Collector Attributes (QY PSRSCA,
QypsRtvSysCollectorAttributes)

= Start Collector (QYPSSTRC, QypsStartCollector)
o Management Collection Object APIs

= #*Close Management Collection Object (QpmCloseMgtcol)4

= #*Close Management Collection Object Repository (QpmCloseM gtcol Repo)4.

= #*QOpen Management Collection Object (QpmOpenMgtcol)44

= #QOpen Management Collection Object Repository (QpmOpenM gtcol Repo)4
= #*Read Management Collection Object Data (QpmReadM gtcol Data)

= #*Retrieve Active Management Collection Object Name
(QpmRtvActiveM gtcol Name)<X

= #*Retrieve Management Collection Object Attributes (QpmRtvM gtcol Attrs)<
o User-Defined Transaction APIs

= #*End Transaction (QY PEENDT, gypeEndTransaction)4

= #Start Transaction (QY PESTRT, qypeStartTransaction)<
o Exit program

= #Collection Services Data Collection exit programs<¥,

o Performance Collector APIs

o APls
= List Performance Data (QPMLPFRD)

= Work with Collector (QPMWKCOL)

o Exit program
= Performance Monitor exit program
« Performance Explorer (PEX) APIs
o A*Add Trace Point (QY PEADDT, qypeAddTracePoint)4
o AEnd Transaction (QYPEENDT, qypeEndTransaction)<
o #+Log Transaction (QY PELOGT, qypel ogTransaction)<
o AStart Transaction (QY PESTRT, gypeStartTransaction)<¥
« Performance Management/400 (PM/400) APIs
o End PM/400 (Q1PENDPM)
o Retransmit PM/400 Data (Q1LPRTRN)
0 Start PM/400 (Q1PSTRPM)

»Performance Management APIs

The performance management APIs allow you to collect and manage performance data using Collection

Services, performance collector, performance explorer (PEX), and Performance Management/400
(PM/400).

The performance management APIs include:
« Collection Services APIs

« Performance Collector APIs
« Performance Explorer (PEX) APIs
o Performance Management/400 (PM/400) APIs

For additional information, see the Performance topic.
&

APIs by category

»Collection Services APIs

For information about Collection Services, see Collection Services.

The Collection Services APIs include:
o Collector APIs

« Management Collection Object APIs
o User-Defined Transaction APls

The Collection Services exit programiis:

« ZCollection Services Data Collection is called by Collection Services to collect performance data
for a user-defined performance category.<%

&

Top | Performance Management APIs | APIs by category

»Collector APIs

The collector APIs provide services to manage collections. These APIs:

Start, end, and cycle collections

Change and retrieve system parameters for the data collected
Register and deregister a user-defined data category

Add and remove collector naotification

The collector APIsinclude:

&

#»Add Collector Notification (QypsAddCollectorNotification) registers with a collector to provide
notifications to a specified data queue for a collection event.<%

Change System Callector Attributes (QY PSCSCA, QypsChgSysCollectorAttributes) changes
system collection attributes. System attributes provide the default values for each collector. These
include the collection interval in seconds, the library where the datais to be stored, the retention
period for data, the cycle time, the cycle interval, the companion job flag, and the name of the
default collection definition.

Cycle Coallector (QYPSCY CC, QypsCycleCallector) closes current collection objects and opens
new collection objects.

#Deregister Collector Data Category (QypsDeregCollectorDataCategory) removes a user-defined
data category from the Collection Services function of Management Central 4%

End Collector (QYPSENDC, QypsEndCollector) ends a specified collector.

#Register Collector Data Category (QypsRegCollectorDataCategory) adds a user-defined data
category to one or more collector definitions of the Collection Services function of Management
Central .4

#»Remove Collector Notification (QypsRmvCollectorNotification) removes a notification
registration from a collector. %

Retrieve System Collector Attributes (QY PSRSCA, QypsRtvSysCollectorAttributes) retrieves

system collection attributes. These include the collection interval in seconds, the library where the
datais to be stored, the retention period for data, the cycle time, the cycle interval, the companion
job flag, the name of the default collection definition, and the currently running collection
definition, if any.

Start Collector (QYPSSTRC, QypsStartCollector) starts a specified collector.

Top | Performance Management APIs | APIs by category

»Add Collector Notification
(QypsAddCaollectorNotification) API

Required Parameter Group:

1 Collector name [Char(10)
2 Qualified data queue name I Char(20)
3 Notification type I Binary(4)
4 Category list [Array of

Char(10)
5 Category count I Binary(4)
6 Error Code /10 Char(*)

Service Program Name: QY PSCOLL
Default Public Authority: *EXCLUDE

Threadsafe: Yes

The Add Collector Notification (QypsAddCollectorNotification) APl registers with a collector to provide
notifications to a specified data queue for a collection event. A collection event occurs when:

« Thecollector cycleinterva isreached.
« The collector is ended.
o The default data collection interval is reached.

When a collector is ended, notifications are removed. When a collector is started, no notifications are
registered.

Authorities and Locks

API Public Authority
*EXCLUDE

Data Queue Authority
*CHANGE

Library Authority
*EXECUTE

Required Parameter Group
Collector name
INPUT; CHAR(10)
The name of the collector that is adding a notification. One of these special values must be used:

*PFR Performance Collector

Qualified data queue name
INPUT; CHAR(20)

The data queue used to send the event notification. The first ten characters contain the data queue
name, and the second ten characters contain the data queue library name. The data queue must
aready exist, and the user profile running the APl must have * CHANGE authority to it. You can
use these special values for the library name:

*CURLIB Thejob's current library.
*LIBL Thelibrary list.

Notification type
INPUT; BINARY (4)

Notification is to be sent to the specified data queue when one of these events occur:
0 Collector - notify when a cycle, end, or interval event occurs.
1 Cycle- notify when the collection cycle interval occurs.
2 End - notify when the collection is ended.
3 Interval - notify when the collection interval occurs.
4

Category - notify when the category interval occurs.

For more information on the format of the notification record, see Notification Record Format.

Category list
INPUT; ARRAY OF CHAR(10)
List of category names, for which notification is to be sent. Thisfield is only applicable when

Notification typeis set to category notification (4). Category name can be a system-defined
category name or a user-defined category name.

System-defined category name

A 10 character name of a system-defined category. For the * PFR collector system-defined
categories are:

o *APPN
o *CMNBASE
o *CMNSAP

o *CMNSTN

o *DISK

o *HDWCFG
o *IOPBASE

o *IPCS

o *JOBMI

o *JOBOS

o *LCLRSP

o *POOL

o *POOLTUNE
o *SNA

o *SNADS

o *SUBSYSTEM
o *SYSBUS

o *SYSCPU

o *SYSLVL

o *TCPBASE
o *TCPIFC

o *USRTNS

Registered user-defined category name

A 10 character name of a user-defined category registered by the Register Collector Data Category
(QypsRegCaollectorDataCategory) API.

Category count
INPUT; BINARY (4)

The number of categories entered in input field Category list. Thisfield is only applicable when
Notification type is set to category notification (4). Category count must have a value of '0' when
Notification type is not a category notification (4).

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

An application uses the Add Collector Notification (QypsAddCollectorNatification) API to start receiving
notifications about collector events. The collector sends notifications using the data queue. The application
program has to create a data queue and pass the qualified name of this data queue to the Add Collector
Notification (QypsAddCollectorNotification) API. The collector sends notification messages or records to
the specified data queue. The format of the notification recordsis shown below. The application program is

responsible for reading and removing entries from the data queue.

When the application no longer needs to receive notifications from the collector, it uses the Remove
Collector Notification (QypsRmvCollectorNatification) API.

The application is responsible for cleaning up the data queue.

Notification Record Format

For detailed descriptions of the fieldsin this table, see Notification Record Field Descriptions.

| Offset ’ ’

IDec [Hex |Type Field

| 0 | 0 |Char(10) |Entry type

| 10 | A |[Cha(2 |Entry identifier

| 12 | C |Char(10) |Collection object name
| 22 | 16 |Char(10) |Library name

| 32 | 20 |Char(g) |Sequence identifier

| 40 | 28 |Char(10) |Category

50 | 32 |[Char(40) [Reserved

Notification Record Field Descriptions

Category The category associated with the notification. Thisfield is only applicable when the notification
event specified in Entry identifier is set to category notification ('04').

Collection object name The name of the collection object where any data collected was placed. This
name is generated when the collector starts, and is of the form QDDDHHMMSS.

Entry identifier The notification event that occurred. Values are:
'01' Cycle- acoallection cycleinterval occurred.
'02" End - acollection has ended.
'03" Interval - acollection interval occurred.

'04' Category - acategory collection interval occurred.

Entry type Thetype of this data queue entry. Set to value * COLNOT .

Library name The name of the library containing the collection object for which the event occurred.
Reserved This spaceisreserved for possible future use.

Sequenceidentifier A uniqueidentifier assigned to this collection event. Its format is based on the time

since the collector was started in the format DDHHMMSS , where 00000000 represents the time the
collector was started.

Error Messages

Message I D
CPF3C1EE
CPF3C3CE
CPF3CF2E
CPF9801 E
CPF9802 E
CPF9810 E
CPF9820 E
CPFBY94A E

&

Error Message Text

Required parameter & 1 omitted.

Value for parameter &1 not valid.

Error(s) occurred during running of &1 API.
Object &2 inlibrary &3 not found.

Not authorized to object &2 in & 3.

Library &1 not found.

Not authorized to use library & 1.

Collector communications error. Reason code & 1.

Introduced: V5R2

Top | Performance Management | APIs by category

Change System Collector Attributes
(QYPSCSCA, QypsChgSysCollectorAttributes)
API

Required Parameter Group:

1 Collector name Input Char(10)
2 Default collection interval Input Binary(4)
3 Library Input Char(10)
4 Retention period Input Binary(4)
5 Cycletime Input Binary(4)
6 Cycleinterval Input Binary(4)
7 Companion user jab flag Input Binary(4)
8 Default collector definition Input Char(10)
9 Error code /10 Char(*)

Default Public Authority: * USE
Service program: QY PSCOLL

Threadsafe: No

The Change System Collector Attributes (QY PSCSCA, QypsChgSysCollectorAttributes) API changes
system or global collection attributes. Attributes consist of the default collection interval in seconds, the
library used to store the collection data, the retention period for the data, the time the initial cycleisto
occur, the interval between cycles, whether a companion job is to be started, and the default collector
definition. If appropriate, system collector attributes changed while a collector is running will take effect
immediately.

Authorities and Locks

API Public Authority
*EXCLUDE

Job Authority
*JOBCTL

Library Authority
*EXECUTE

Required Parameter Group

Collector name
INPUT; CHAR(10)

The name of the collector whose default values are to be altered. The special valueis:

*PFR Performance collector

Default collection interval
INPUT; BINARY (4)

The default interval to use when collecting datafor a category in seconds. This may be specified as
15, 30, 60, 300, 900, 1800, or 3600 seconds. Changes take effect immediately. The following

specia values are alowed:
0 Do not collect on interval

-2 No change

Library
INPUT; CHAR(10)

The name of the library used to store the collection data. Changes take effect when the collector
starts or cycles. The following special values are alowed:

*CURLIB Current library of the job calling the API
*SAME No change

Retention period
INPUT; BINARY (4)

The retention period is used to determine how long collection datais to exist. Collection data older
than the retention period is deleted. The retention period is specified in hours. Changes take effect
immediately. The value specified must be between 1 and 720 hours, or one of the following special

values:
0 Permanent

-2 Nochange

Cycletime
INPUT; BINARY (4)

Thetime at which thefirst cycleisto occur. The cycletimeis specified in minutes past midnight.
The maximum allowed value is 1439 minutes, which is one minute less than 24 hours. Changes

take effect immediately. The following special valueis allowed:

-2 Nochange

Cycleinterval
INPUT; BINARY (4)

The lapse time between cycles. The cycletimeis specified in hours, and can range from a
minimum value of one hour to a maximum value of 24 hours. Changes take effect immediately.
The following special valueis allowed:

-2 No change

Companion user job flag
INPUT; BINARY (4)

Whether to start ajob to run in concert with the collector. Changes take effect when the collector is
started. The possible special values are:

-2 No change.
0 No companion user job is started.

1 A companion user job is started. (For the * PFR collector, thisis the database transfer job
CRTPFRDTA))

Default collector definition
INPUT; CHAR(10)

The name of the collector definition to run. Changes take effect when the collector is started or
cycled. The possible specia values are:

*CURRENT
*CUSTOM
*MINIMUM
*ENHCPCPLN
*SAME
*STANDARD
*STANDARDP

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text
CPF222E E &1 special authority isrequired.
CPF3CLEE Required parameter & 1 omitted.

CPF3C3CE Vaue for parameter &1 isnot valid.

CPF3C36 E Number of parameters, & 1, entered for this APl was not valid.
CPF3CF2E Errors occurred during running of &1 API.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library & 1.

API introduced: V4R4

Top | Performance Management APIs | APIs by category

Cycle Collector (QYPSCYCC,
QypsCycleCollector) API

Required Parameter Group:

1 Collector name Input Char(10)
2 Error code /0 Char(*)

Default Public Authority: * USE
Service program: QY PSCOLL

Threadsafe: No

The Cycle Collector (QYPSCY CC, QypsCycleCollector) API closes current collection objects and begins
writing collection data to new collection objects.

Authorities and Locks

API Public Authority
*EXCLUDE

Job Authority
*JOBCTL

Required Parameter Group

Collector name
INPUT; CHAR(10)

The name of the collector to be cycled. The special valueis:

*PFR Performance collector

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D
CPF222E E
CPF3C1EE
CPF3C3CE
CPF3C36 E
CPF3CF2E
CPFB94A E

Error Message Text

&1 special authority is required.

Required parameter & 1 omitted.

Vaue for parameter &1 isnot valid.

Number of parameters, & 1, entered for this APl was not valid.
Errors occurred during running of &1 API.

Collector communications error. Reason code & 1.

API introduced: V4R4

Top | Performance Management APIs | APIs by category

s»Deregister Collector Data Category
(QypsDeregCollectorDataCategory) API

Required Parameter Group:

1 Collector name [Char(10)
2 Category name I Char(10)
3 Error Code /10 Char(*)

Service Program Name: QY PSCOLL
Default Public Authority: *EXCLUDE

Threadsafe: Yes

The Deregister Collector Data Category (QypsDeregCollectorDataCategory) APl removes a user-defined
data category from the Collection Services function of Management Central.

Authorities and Locks

API Public Authority
*EXCLUDE

Required Parameter Group

Collector name
INPUT; CHAR(10)

The name of the collector where the category will be removed. The only currently supported
specia valueis:

*PFR Performance Collector

Category name
INPUT; CHAR(10)

The unique name of the user-defined data category. Category name must be avalid *NAME (basic
name) and all uppercase. See ELEM (Element) Statement in CL Reference for more information
about *NAME. Names of user-defined data categories registered by IBM products start with "Q".
Non-IBM applications are discouraged from prefixing names of user-defined categories with "Q".

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text
CPF24B4 E Severe error while addressing parameter list.
CPF222E E &1 special authority isrequired.
CPF3CLEE Required parameter & 1 omitted.
CPF3C3CE Vaue for parameter &1 not valid.
CPF3CF1 E Error code parameter not valid.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPFB94E E Category name & 1 does not exist.

&

Introduced: V5R2

Top | Performance Management | APIs by category

End Collector (QYPSENDC, QypsEndCollector)
API

Required Parameter Group:

1 Collector name Input Char(10)
2 Error code /0 Char(*)

Default Public Authority: *EXCLUDE
Service program: QY PSCOLL
Threadsafe: No

The End Callector (QY PSENDC, QypsEndCollector) APl ends the job running the specified collector.

Authorities and Locks

API Public Authority
*EXCLUDE

Job Authority
*JOBCTL

Required Parameter Group

Collector name
INPUT; CHAR(10)

The name of the collector to be ended. The specia valueis:

*PFR Performance collector job QY PSPFRCOL

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D
CPF222E E
CPF3C1EE
CPF3C3CE
CPF3C36 E
CPF3CF2E
CPFB94A E

Error Message Text

&1 special authority is required.

Required parameter & 1 omitted.

Vaue for parameter &1 isnot valid.

Number of parameters, & 1, entered for this APl was not valid.
Errors occurred during running of &1 API.

Collector communications error. Reason code & 1.

API Introduced: V4R4

Top | Performance Management APIs | APIs by category

»Register Collector Data Category
(QypsRegCollectorDataCategory) API

Required Parameter Group:

1 Collector name [Char(10)
2 Category name I Char(10)
3 Callector definition I Char(10)
4 CCSID I Binary(4)
5 Datacollection program I Char(*)
attributes
6 Category attributes [Char(*)
7 Error Code 1/10 Char(*)

Service Program Name: QY PSCOLL
Default Public Authority: *EXCLUDE

Threadsafe: Yes

The Register Collector Data Category (QypsRegCollectorDataCategory) APl adds a user-defined data
category to one or more collector definitions of the Collection Services function of Management Central.

Authorities and Locks

API Public Authority
*EXCLUDE

API cadler must have at least * USE authority to the user profile specified in the Data collection program
attributes parameter.

The user profile specified in the Data collection program attributes parameter must have at least * USE
authority to the specified job description.

Required Parameter Group

Collector name
INPUT; CHAR(10)

The name of the collector where the user-defined data category will be added. The only currently
supported valueis.

*PFR Performance Collector

Category name
INPUT; CHAR(10)
The unique name of the user-defined data category. The category name must be avalid *NAME
(basic name) and all uppercase. See ELEM (Element) Statement in CL Reference for more

information about *NAME. Names of user-defined data categories registered by IBM products start
with "Q". Non-IBM applications are discouraged from prefixing names of user-defined categories

with "Q".

Collector definition
INPUT; CHAR(10)
The collector definition that the user-defined data category will be added to. Only one collector
definition may be specified. Specifying * STANDARD registers the category to the* STANDARD,
*STANDARDP and * CUSTOM definitions. Specifying * STANDARDP registers the category to

the *STANDARDP and * CUSTOM definitions. Specifying * CUSTOM registers the category to
the * CUSTOM definition only. The possible values are:

o *CUSTOM
o *STANDARD
o *STANDARDP

CCSID
INPUT; BINARY (4)

The coded character set identifier (CCSID) for the user-defined data category. Refer to specific
field descriptions to determine where the CCSID is applicable. The CCSID will be validated by the

API. The default value is 0.
0 Use the current job default CCSID.
CCSD A vaid CCSID number. The valid range for this parameter is 1 through 65533.

Data collection program attributes
INPUT; CHAR(*)

The attributes of the data collection program associated with the category. For more information on
the format of the attributes, see Format of Data Collection Program Attributes.

Category attributes
INPUT; CHAR(*)

Additional attributes associated with the category. For more information on the format of the
category attributes, see Format of Category Attributes.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Data Collection Program Attributes

For detailed descriptions of the fields in this table, see Data Collection Program Attributes Field
Descriptions.

| Offset ’ ’

IDec [Hex |Type Field

| 0 | 0 |Binay(4) |Size of fixed portion of attributes

| 4 | 4 |Char(10) |Program type

| 14 | E |Char(g) |Parameter format

| 22 | 16 |Char(10) |User profile

| 32 | 20 |Char(20) |Qualified job description name

| 52 | 34 |Char(20) |Qualified (service) program name

| 72 | 48 |Binary(4) |Size of work area

| 76 | 4C |Binary(4) |Offset to service program entry point name
| 80 | 50 |Binary(4) |Length of service program entry point name
| 84 | 54 |Binary(4) |Offset to Java class name

| 8 | 58 |Binary(4) |Length of Java class name

| 92 | 5C |Binary(4) |Offset to Java class path

| 96 | 60 |Binary(4) |Length of Java class path

| 100 | 64 |Binary(4) |Offset to category parameter string

| 104 | 68 |Binary(4) |Length of category parameter string

| 108 | 6C |Binary(4) |Offset to Java options array

| 112 | 70 |Binary(4) INumber of entriesin Java options array
[116 [74 [Binay(4) |Reserved

Data Collection Program Attributes Field Descriptions

Overview of Offset/L ength usage of variable length character data The variable length character data
will follow the fixed portion of the Data collection program attributes structure and reside with the same
address space. The offset to the variable length character data specified in the fixed portion of the structure
isthe offset in bytes from the beginning of the attribute structure to the first byte of the character data.

Length of category parameter string Thelength of the string passed in for the category parameter string.
If 0 is specified then the null parameter string will be passed to the data collection program.

Length of Java classname The length of the string passed in for the Java class name. This parameter
must be set to 0 if Program typeis not * JVAPGM.

Length of Java classpath The length of the string passed in for the Java class path. This parameter must
be set to 0 if Program typeisnot * JVAPGM.

Length of service program entry point name The length of the string passed in for the service program
entry point name. This parameter must be set to 0 if Program type is not * SRV PGM.

Number of entriesin Java Options Array The number of entries in the Java Options Array (see Format

of Java Options Array below). If set to 0, no options will be passed to the Java Virtual Machine (JVM).
This parameter must be set to 0 if Program typeis not * VAPGM.

Offset to category parameter string The offset of the string passed in for the category parameter string.
The category parameter string is a character string which is passed to the data collection program to
customize its processing. The category parameter string must contain character data. The CCSID is
applicable to the category parameter string. If 0 is specified then anull parameter string will be passed to
the data collection program.

Offset to Java classname The offset in bytesto the string passed in for the Java class name. This
parameter must be set to O if Program typeis not * 3V APGM. The Java class name is the name of a Java
class which implements the data collection program interface for this category. Refer to the Java section of
the i Series Information Center for more information on Java class name format. The CCSID is applicable to
the Java class name.

Offset to Java class path The offset in bytes to the string passed in for the Java class path. This parameter
must be set to O if Program typeis not *JVAPGM. Refer to the Java section of the iSeries Information
Center for more information on the Java class path format. The CCSID is applicable to the Java class path.

Offset to Java optionsarray The offset of the Java Options Array (see Format of Java Options Array
below). The Java Options Array is an array of options passed to the VM. If the offset is set to O, no options
will be passed to the VM. This parameter must be set to 0 if Program typeis not * JVAPGM. All options
are character strings and the CCSID is applicable to them.

Offset to service program entry point name The offset in bytes to the string passed in for the service
program entry point name. This parameter must be set to 0 if Program typeis not * SRVPGM. The service
program entry point name is the name of an entry point in a service program which implements the data
collection program for this category.

Parameter format Thisfield definesthe format of the parameters passed to the data collection program
when it is called by Collection Services to collect data for the category. The only format currently
supported is PMDC0100.

Qualified job description name The job description which will be used by the Collection Services
secondary job to run the data collection program. Thefirst 10 characters contain the job description name
and the next 10 characters contain the library name. The following special values can be used for the job
description name:

*JOB Usethejob description associated with the current job. The specified library parameter is
ignored and must be filled with blank spaces or hex zeros.

*USER Usethe job description associated with the current user. The specified library parameter is
ignored and must be filled with blank spaces or hex zeros.

The following specia values can be used for the library name:
*CURLIB The current library of the job executing this API.
*LIBL Search the library list to find the specified job description.

Qualified (service) program name The qualified name of a program object if Program typeis*PGM or
the qualified name of a service program object if Program type is* SRVPGM. The first 10 characters
contain the program or service program name and the next 10 characters contain the library name. This
parameter must be set to O if Program typeis* JVAPGM.

Size of fixed portion of attributes The sizein bytes of the fixed portion of the Data collection program
attribute structure.

Size of work area The size in bytes of awork area Collection Services will provide to the data collection
program to save state information between the calls. This parameter must be set to O if Program typeis
*JVAPGM.

User profile User profile which will be used by Collection Services to run the data collection program.
The API caller must have at least * USE authority to this user profile.

Format of Java Options Array

For detailed descriptions of the fields in this table, see Java Options Array Field Descriptions.

| Offset ’ ’

IDec |Hex |Type Fied

| 0 | 0 |Binary(4) |Offset to Java option 1
| 4 | 4 |Binary(4) |Length of Java option 1
| 8 | 8 |Binay(4) |Offset to Java option 2
| 12 | C |Binary(4) |Length of Java option 2
I I =Char(*) iJava option 1

| | |Char(*) |Java option 2

The Java options array contains an array of option settings which will be passed to the Java Virtual
Machine (JVM) at Javainitiaization time. The number of elementsin thisarray is determined by the
Number of entriesin Java options array field in the Data collection program attributes structure. This array
isoptional and isignored when Program typeis not * JVAPGM.

Java options are not validated and are passed to the VM exactly as specified for the Registration API.

Java Options Array Field Descriptions

Length of Java option N
The length in bytes of the string passed in for the Nth Java option.
Offset to Java option N

The offset in bytes from the beginning of the Java Options Array to the string passed in for the Nth Java
option. All Java options are character strings and the CCSID applies to them.

Format of Category attributes

For detailed descriptions of the fieldsin this table, see Category attributes Field Descriptions.

| Offset
IDec [Hex |Type Field

| 0 | 0 |Binary(4) |Size of attribute structure

| 4 | 4 |Binay(4) |Minimum collection interval

| 8 | 8 |Binary(4) |Maximum collection interval

| 12 | C |Binary(4) |Default collection interval

| 16 | 10 |Char(27) |Qualified message file and message identifier
| 43 | 2B |Char(50) | Text description

93 [5D [Cha(® [Reserved

Category attributes Field Descriptions

Default collection interval

The default interval to use when collecting data for a category in seconds. This may be specified as one of
15, 30, 60, 300, 900, 1800, or 3600 seconds. The following special valueis allowed:

0 Usethe collector definition of the collector that the category isregistered to.

Minimum collection interval

The minimum interval this user-defined data category should be collected at. In other words, this represents
the smallest interval of data collection. This may be specified as one of 15, 30, 60, 300, 900, 1800, or 3600
seconds. Specifying 0 represents no restriction on the minimum collection interval.

Maximum collection interval

The maximum interval this user-defined data category should be collected at. In other words, this represents
the largest interval of data collection. This may be specified as one of 15, 30, 60, 300, 900, 1800, or 3600
seconds. Specifying O represents no restriction on the maximum collection interval.

Qualified message file and message identifier

The qualified message file and message identifier of the text description of the category. Thefirst 10
characters contain the message file name, the next 10 characters contain the library name of the message
file, and the final 7 characters contain the message identifier. If the text description is specified asa
character string (in Text description field), this field should be set to all blanks or hex zeros. The possible
valuesfor the library are:

*LIBL Search thelibrary list for the first occurrence of the messagefile.

Library name The name of the library the message file residesin.

Size of attribute structure

The size in bytes of the category attribute structure.

Text description

The text description associated with the category. The supplied CCSID will be applied to the text

description. This parameter isignored and must be filled with blank spaces or hex zerosif a qualified
message file and message identifier has been specified.

Error Messages

Message I D
CPF24B4 E
CPF222E E
CPF3C1EE
CPF3C3CE
CPF3CF1 E
CPF3CF2E
CPF9802 E

CPF9810 E

CPF9820 E

CPFB537 E
CPFB538 E
CPFB94CE
CPFB94D E

&

Error Message Text

Severe error while addressing parameter list.
&1 special authority isrequired.

Required parameter & 1 omitted.

Vaue for parameter &1 not valid.

Error code parameter not valid.

Error(s) occurred during running of &1 API.
Not authorized to object &2 in & 3.

Library &1 not found.

Not authorized to use library & 1.

Error found in parameter & 1 at offset & 2.
Error found in parameter & 1 at offset & 2.
Collection interval value must be one of 15, 30, 60, 300, 900, 1800, or 3600 seconds.
Category name & 1 aleady exists.

Introduced: V5R2

Top | Performance Management | APIs by category

sRemove Collector Notification
(QypsRmvCollectorNotification) API

Required Parameter Group:

1 Collector name [Char(10)
2 Qualified data queue name I Char(20)
3 Notification type I Binary(4)
4 Category list [Array of

Char(10)
5 Category count I Binary(4)
6 Error Code /10 Char(*)

Service Program Name: QY PSCOLL
Default Public Authority: *EXCLUDE

Threadsafe: Yes

The Remove Collector Notification (QypsRmvCollectorNotification) API removes a notification
registration from a collector for a specified data queue and collection event. A collection event occurs
when:

« Thecollector cycleinterva isreached.

« Thecollector is ended or stopped.

« Thedefault data collection interval is reached.

» The category data collection interval is reached.

Authorities and Locks

API Public Authority
*EXCLUDE

Data Queue Authority
*CHANGE

Library Authority
*EXECUTE

Required Parameter Group
Collector name
INPUT; CHAR(10)
The name of the collector that is removing notification. One of these specia values must be used:

*PFR Performance Collector

Qualified data queue name
INPUT; CHAR(20)

The data queue from which the notification isto be removed. Thefirst ten characters contain the
data queue name, and the second ten characters contain the data queue library name. The data
gueue must already exist. Y ou can use these special values for the library name;

*CURLIB Thejob's current library.
*LIBL Thelibrary list.

Notification type
INPUT; BINARY (4)

The type of event notification to remove:

0 Collector - remove the cycle, end, and interval notifications.
Cycle - remove the collection cycle event notification.
End - remove notification of the end event.

Interval - remove notification of the default collection interval event.

A W DN BB

Category - remove natification for the category event.

Category list
INPUT; ARRAY OF CHAR(10)
List of category names, for which notification is to be removed. Thisfield is only applicable when

Notification typeis set to category notification (4). Category name can be a system-defined
category name or a user-defined category name.

System-defined category name

A 10 character name of a system-defined category. For the * PFR collector system-defined
categories are:

o *APPN

o *CMNBASE
o *CMNSAP
o *CMNSTN

o *DISK

o *HDWCFG
o *IOPBASE

o *IPCS

o *JOBMI

o *JOBOS

o *LCLRSP

o *POOL

o *POOLTUNE
o *SNA

o *SNADS

o *SUBSYSTEM
o *SYSBUS

o *SYSCPU

o *SYSLVL

o *TCPBASE
o *TCPIFC

o *USRTNS

Registered user-defined category name

A 10 character name of a user-defined category registered by the Register Collector Data Category
(QypsRegCaollectorDataCategory) API.

Category count
INPUT; BINARY (4)

The number of categories entered in input field Category list. Thisfield is only applicable when
Notification type is set to category notification (4). Category count must have a value of '0' when
Notification type is not a category notification (4).

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text
CPF3CLEE Required parameter & 1 omitted.
CPF3C3CE Vaue for parameter &1 not valid.

CPF3CF2 E
CPF9802 E
CPF9820 E
CPFBY4A E

&«

Error(s) occurred during running of &1 API.
Not authorized to object &2 in & 3.
Not authorized to use library & 1.

Collector communications error. Reason code & 1.

API Introduced: V5R2

Top | Performance Management | APIs by category

Retrieve System Collector Attributes
(QYPSRSCA, QypsRtvSysCollectorAttributes)
API

Required Parameter Group:

1 Collector name Input Char(10)
2 Default collection interval Output Binary(4)
3 Library Output Char(10)
4 Retention period Output Binary(4)
5 Cycletime Output Binary(4)
6 Cycleinterval Output Binary(4)
7 Companion user job Output Binary(4)
8 Default collector definition Output Char(10)
9 Current collector definition Output Char(10)
10 Error code /10 Char(*)

Default Public Authority: *EXCLUDE
Service program: QY PSCOLL

Threadsafe: No

The Retrieve System Collector Attributes (QY PSRSCA, QypsRtvSysCallectorAttributes) API retrieves
system or global collection attributes. Attributes consist of the default collector state, the default collection
interval in seconds, the library used to store the collection data, the retention period for the data, the time
theinitia cycleisto occur, the interval between cycles, the companion user job flag, the default collection
definition, and the currently running collection definition.

Authorities and Locks

API Public Authority
*EXCLUDE

Required Parameter Group

Collector name
INPUT; CHAR(10)

The name of the collector whose default values are to be retrieved. The specia valueis:

*PFR Performance collector

Default collection interval
OUTPUT; BINARY (4)

The default interval used when collecting data for a category in seconds. The interval is 15, 30, 60,
300, 900, 1800, or 3600 seconds. The following special value may be returned:

0 Do not collect on interval

Library
OUTPUT; CHAR(10)

The name of the library used to store the collection data.
Retention period
OUTPUT; BINARY (4)
The retention period indicates how long collection datais to exist. Collection data older than the

retention period is deleted. The retention period is specified in hours. The maximum value that will
be returned is 720 hours, or 30 days. The following special value may be returned:

0 Permanent

Cycletime
OUTPUT,; BINARY (4)
Thetime at which thefirst cycleisto occur. The cycletimeis specified in minutes past midnight.
The maximum allowed value is 1439 minutes, which is one minute less than 24 hours.
Cycleinterval
OUTPUT; BINARY (4)
The lapse time between cycles. The cycle timeis specified in hours, and can range from a
minimum value of one hour to a maximum value of 24 hours.
Companion user job flag
OUTPUT,; BINARY (4)

Whether ajob is started to run in concert with the collector. One of the following values will be
returned:

0 No companion user job is started.

1 A companion user job is started. (For the * PFR collector, thisis the database transfer job
CVTPFRDTA))

Default collector definition
OUTPUT; CHAR(10)

The name of the collector definition to run. The possible special values are:

*CURRENT
*CUSTOM

*ENHCPCPLN
*MINIMUM
*STANDARD
*STANDARDP

Current collector definition
OUTPUT; CHAR(10)

The name of the currently running collector definition. The possible special values are:

*CUSTOM
*ENHCPCPLN
*MINIMUM
*NONE
*STANDARD
*STANDARDP

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message I D Error Message Text

CPF3C36 E Number of parameters, & 1, entered for this APl was not valid.
CPF3C3CE Value for parameter &1 is not valid.

CPF3CLEE Required parameter & 1 omitted.

CPF3CF2 E Errors occurred during running of &1 API.

API Introduced: V4R4

Top | Performance Management APIs | APIs by category

Start Collector (QYPSSTRC,
QypsStartCollector) API

Required Parameter Group:

1 Collector name Input Char(10)
2 Default collector definition Input Char(10)
3 Error code /O Char(*)

Default Public Authority: *EXCLUDE
Service program: QY PSCOLL

Threadsafe: No

The Start Collector (QY PSSTRC, QypsStartCollector) API starts a collector. When the collector job is not
running, the job is submitted to the QSY SNOMAX job queue and a start request passes to it. If no default
collection definition is provided, the default provided by the system value is used. When the collector job is
running and a new default collection definition is provided, the collector changes to use that definition. If
the collector job is running and no new default collector definition is provided, no action is taken.

Authorities and Locks

API Public Authority
*EXCLUDE

Job Authority
*JOBCTL

Required Parameter Group

Collector name
INPUT; CHAR(10)

The name of the collector to start. The specia valueis:

*PFR Performance collector job QY PSPFRCOL

Default collector definition
OUTPUT; CHAR(10)

The name of the collector definition to run. The possible special values are:

*CURRENT

*CUSTOM
*ENHCPCPLN
*MINIMUM
*SAME
*STANDARD
*STANDARDP

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message | D Error Message Text

CPF222E E & 1 specia authority is required.

CPF3CLEE Required parameter & 1 omitted.

CPF3C3CE Vaue for parameter &1 is not valid.

CPF3C36 E Number of parameters, & 1, entered for this APl was not valid.
CPF3CF2 E Errors occurred during running of &1 API.

CPFB94A E Collector communications error. Reason code & 1.

API Introduced: V4R4

Top | Performance Management APIs | APIs by category

»Management Collection Object APIs

The management collection object APIs support working with management collection objects (attribute
*PFR). These APIs:

Retrieve the active management collection object name
Retrieve the attributes of a management collection object
Open and close a management collection object

Open and close arepository of a management collection object
Read data from arepository of a management collection object

The management collection abject APIs are:

&

#»Close Management Collection Object (QpmCloseMgtcol) closes a management collection object.
L4

#»Close Management Collection Object Repository (QpmCloseMgtcol Repo) closes a repository of
amanagement collection object.<X

#»Open Management Collection Object (QpmOpenMgtcol) opens a specified management
collection object for processing. 4%

#»Open Management Collection Object Repository (QpmOpenM gtcol Repo) opens a specified
repository of a management collection object for processing. <%

#»*Read Management Collection Object Data (QpmReadMgtcol Data) positions to a specific record

in arepository of a management collection object, returns information about the record, and
optionally reads specified bytes of data from the record.<%

“Retrieve Active Management Collection Object Name (QpmRtvActiveM gtcolName) returns the
object name and library name of an active management collection object. <

#Retrieve Management Collection Object Attributes (QpmRtvMgtcol Attrs) returns information

about attributes of a management collection object and repositories of a management collection
object. &

Top | Performance Management APIs | APIs by category

»Close Management Collection Object
(QpmCloseMgtcol) API

Required Parameter Group:

1 Management collection object handle Input Binary(4)
2 Error code /0 Char(*)

Service Program Name: QPMAAPI
Default Public Authority: *EXCLUDE

Threadsafe: Y es

The Close Management Collection Object (QpmCloseMgtcol) API closes a management collection object
that was previously opened by the Open Management Collection Object (QpmOpenMgtcol) API. All

repositories that were opened for this management collection object by the Open Management Collection
Object Repository (QpmOpenMgtcolRepo) API are implicitly closed. After the management collection
object is closed, its handle is no longer valid.

Authorities and Locks

API Public Authority
*EXCLUDE

When the management collection object is closed, the * SHRRD lock placed on the object by the Open
Management Collection Object (QpmOpenMgtcol) APl isreleased.

Required Parameter Group

M anagement collection object handle
INPUT; BINARY (4)
A handle to an open management collection object. This handle was created by the Open
Management Collection Object (QpmOpenMgtcol) API.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message I D
CPFOAA4 E
CPF24B4 E
CPF3CF1E
CPF3CF2E
CPF3C3CE

&

Error Message Text

Lock reguest was not satisfied in a specified time.
Severe error while addressing parameter list.
Error code parameter not valid.

Error(s) occurred during running of &1 API.

Value for parameter &1 not valid.

API introduced:; V5R2

Top | Performance Management APIs | APIs by category

»Close Management Collection Object
Repository (QpmCloseMgtcolRepo) API

Required Parameter Group:

1 Management collection object Input Binary(4)
repository handle
2 Error code /0 Char(*)

Service Program Name: QPMAAPI
Default Public Authority: *EXCLUDE

Threadsafe: Yes

The Close Management Collection Object Repository (QpmCloseMgtcolRepo) API closes arepository of a
management collection object that was previously opened by the Open Management Collection Object

Repository (QpmOpenMgtcolRepo) API. After the repository is closed, its handle is no longer valid.

Authorities and Locks

API Public Authority
*EXCLUDE

Required Parameter Group

Management collection object repository handle
INPUT; BINARY (4)

A handle to an open repository of a management collection object. This handle was created by the
Open Management Collection Object Repository (QpmOpenMgtcol Repo) API.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message I D
CPFOAA4 E
CPF24B4 E
CPF3C3CE
CPF3CF1E
CPF3CF2E

&

Error Message Text

Lock reguest was not satisfied in a specified time.
Severe error while addressing parameter list.
Value for parameter &1 not valid.

Error code parameter not valid.

Error(s) occurred during running of &1 API.

API introduced:; V5R2

Top | Performance Management APIs | APIs by category

»Open Management Collection Object
(QpmOpenMgtcol) API

Required Parameter Group:

1 Quadified object name Input Char(20)
2 Management collection object handle Output Binary(4)
3 Error code /10 Char(*)

Service Program Name: QPMAAPI
Default Public Authority: *EXCLUDE
Threadsafe: Yes

The Open Management Collection Object (QpmOpenMgtcol) APl opens a specified management
collection object for processing and returns a handle to the open management collection object. This handle
uniquely identifies the open management collection object and is used by the following APIs:

« Close Management Collection Object (QpmCloseMgtcol) API

« Open Management Collection Object Repository (QpmOpenMgtcol Repo) API

The management collection object handleis valid until the management collection object is closed by the
Close Management Collection Object (QpmCloseMgtcol) API. The handle is scoped to ajob so that a
management collection object opened in one thread can be used by another thread provided the handleis
known.

Authorities and Locks

API Public Authority
*EXCLUDE

Authority to library containing collection object
*EXECUTE

If the open operation was successful, a* SHRRD lock is placed on the management collection object.

Required Parameter Group

Qualified object name
INPUT; CHAR(20)

Name of a management collection object and the library in which it islocated. The first 10
characters contain the object name and the second 10 characters contain the library name.

The system supports management collection objects with different attributes; they contain different
information. The Management Collection Object APIs support only collection objects which are
created by the Collection Services collector. These collection objects have the attribute * PFR.

M anagement collection object handle
OUTPUT; BINARY (4)

A handle to the open management collection object. This handle is used by the Close Management
Coallection Object (QpmCloseMgtcol) API and the Open Management Collection Object
Repository (QpmOpenMgtcol Repo) API to uniquely identify the open management collection
object.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message | D Error Message Text

CPFOAZB E Not able to process management collection object &1 in library & 2.
CPFOAA4 E Lock request was not satisfied in a specified time.

CPF2105E Object &1in &2 type *& 3 not found.

CPF2110E Library &1 not found.

CPF2114E Cannot allocate object &1 in &2 type *& 3.

CPF2207 E Not authorized to use object &1 in library &3 type *& 2.
CPF24B4 E Severe error while addressing parameter list.

CPF3CF1lE Error code parameter not valid.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPFO9810 E Library &1 not found.

&

API introduced: V5R2

Top | Performance Management APIs | APIs by category

»Open Management Collection Object
Repository (QpmOpenMgtcolRepo) API

Required Parameter Group:

1 Management collection object handle Input Binary(4)
2 Management collection object repository name Input Char(10)
3 Format name Input Char(8)
4 Management collection object repository handle Output Binary(4)
5 Error code /10 Char(*)

Service Program Name: QPMAAPI
Default Public Authority: *EXCLUDE

Threadsafe: Yes

The Open Management Collection Object Repository (QpmOpenM gtcolRepo) API opens a specified
repository of a management collection object for processing. The management collection object is
identified by a handle which was created by the Open Management Collection Object (QpmOpenMgtcol)

API. If the open operation is successful, a handle to the open repository is returned. This handle uniquely
identifies the open repository and is used by these APIs:

« Close Management Collection Object Repository (QpmCloseM gtcolRepo) API
« Read Management Collection Object Data (QpmReadMgtcolData) API

The management collection object repository handle is valid until the repository is closed by the Close
Management Collection Object Repository (QpmCloseM gtcolRepo) API. The repository handle is scoped
to ajob so that arepository opened in one thread can be used by another thread provided the handleis
known.

The API caller must specify aformat name which identifies the kind of processing to be performed on the
repository data. This format name also defines the format of the input and output parameters of the Read
Management Collection Object Data (QpmReadMgtcolData) APl when this API is used with this
repository.

Authorities and Locks

API Public Authority
*EXCLUDE

Required Parameter Group

Management collection object handle
INPUT; BINARY (4)

A handle to an open management collection object. This handle was created by the Open
Management Collection Object (QpmOpenMgtcol) API.
M anagement collection object repository name

INPUT; CHAR(10)

Name of arepository of a management collection object. Currently, the APl supports repositories
created by user-defined performance collection categories only.

Format name
INPUT; CHAR(8)

Name of the format that defines the kind of processing to be performed on the datain this
repository. Currently, the Management Collection Object APIs support format MCODO0100 only.

When this format is specified, the Read Management Collection Object Data

(QpmReadMgtcol Data) API will return raw data from the repository of the management collection
object. No additional processing will be performed and the data will be treated as an unstructured
sequence of bytes.

The format name also defines the format of the input and output parameters of the Read
Management Collection Object Data (QpmReadMgtcolData) APl when this APl is called for this
repository. See description of Read Management Collection Object Data (QpmReadMgtcolData)

API for more details.

Management collection object repository handle
OUTPUT; BINARY (4)
A handle to the open repository of the management collection object. This handle is used by other
APIsto uniquely identify the open repository of the management collection object.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message I D Error Message Text

CPFOAA2 E Repository &1 is not found in a collection object.
CPFOAA3 E Attempt to access unsupported repository.
CPFOAA4E L ock request was not satisfied in a specified time.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E

CPF3C3CE

CPF3CF1 E

CPF3CF2 E
&«

Format name & 1 is not valid.
Value for parameter &1 not valid.
Error code parameter not valid.

Error(s) occurred during running of &1 API.

API introduced: V5R2

Top | Performance Management APIs | APIs by category

»Read Management Collection Object Data
(QpmReadMgtcolData) API

Required Parameter Group:

1 Management collection object repository handle Input Binary(4)
2 Read options Input Char(*)
3 Record information Output Char(*)
4 Record data Output Char(*)
5 Error code /10 Char(*)

Service Program Name: QPMAAPI
Default Public Authority: *EXCLUDE

Threadsafe: Yes

The Read Management Collection Object Data (QpmReadMgtcolData) API performs the following actions:
« Positionsto a specific record in arepository of a management collection object.
« Returnsinformation about the record.
« Optionally reads specified bytes of data from the record.

Therepository isidentified by a handle which was previously created by the Open Management Collection
Object Repository (QpmOpenMgtcolRepo) API.

Record processing options are specified in the read options parameter.

Information about the repository record is returned in the record information parameter.

Data from arecord is returned in the record data parameter.

The formats of the read options, record information and record data parameters are determined by the

format name that was passed to the Open Management Collection Object Repository
(QpmOpenMgtcol Repo) API at the time the repository was opened for processing.

Authorities and Locks

API Public Authority
*EXCLUDE

Required Parameter Group

Management collection object repository handle
INPUT; BINARY (4)
A handle to an open repository of a management collection object. This handle was created by the
Open Management Collection Object Repository (QpmOpenMgtcol Repo) API.
Read options
INPUT; CHAR(*)

Contains control information that determines how the API will process the record. See Format of
Read Options Parameter.

Record information
OUTPUT; CHAR(*)

Information about the current repository record. See Format of Record Information Parameter. This

parameter should be large enough to accommodate the entire record information structure.
Otherwise, results are unpredictable.

Record data
OUTPUT; CHAR(*)
If requested in the read options parameter, data from the current repository record isreturned in this
parameter. The format of the data returned in this parameter is determined by the format name

passed to the Open Management Collection Object Repository (QpmOpenMgtcolRepo) API at the
time the repository was opened for processing.

The only format supported in this release is MCODQ0100. For the MCODO0100 format, the AP
returns an unformatted sequence of bytes from the current repository record.

This parameter should be large enough to accommodate all data requested in the read options
parameter. Otherwise, results are unpredictable

See Format of Read Options Parameter for more details.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of Read Options Parameter

The format of the read options parameter is determined by the format name passed to the Open
Management Collection Object Repository (QpmOpenMgtcolRepo) API at the time the repository was
opened for processing.

The only format supported in this release is MCODO0100. The table below shows the structure of the read
options parameter for the MCODO0100 format. For detailed descriptions of the fieldsin the table, see Field

Descriptions below.
| Offset | |

| |Hex |Type |Fie|d

| | 0 |BINARY(4) |Bytesprovided by API caller
| 4 | 4 |BINARY(4) |Record positioning option
| |
| |
| |

8 8 |BINARY(8) |Offsetin record data
16 10 [BINARY(8) [Number of bytesto read
24 18 |CHAR(8) |Record key

Format of Record Information Parameter

The format of the record information parameter is determined by the format name passed to the Open
Management Collection Object Repository (QpmOpenMgtcolRepo) API at the time the repository was
opened for processing.

The only format supported in this release is MCODO0100. The table below shows the structure of the record
information parameter for MCODO0100 format. For detailed descriptions of the fields in the table, see Field

Descriptions below.

| Offset ’ ’

IDec [Hex |Type Field

| 0 | 0 |BINARY(4) |Record status

| 4 | 4 |BINARY(4) |Recordtype

| 8 | 8 |BINARY(8) |Number of bytesreturned
| 16 | 10 |CHAR(9) |Record key

| 24 | 18 |CHAR() |Record timestamp

| 32 | 20 |BINARY(8) |Total record datalength

Field Descriptions

Bytes provided by API caller. The number of bytes of read options provided. For the MCODO0100 format,
this length should be at least 32 bytes.

Number of bytesreturned. The number of bytes of record data returned by the API in the record data
parameter.

Number of bytesto read. The number of bytes of record data that should be returned in the record data
parameter. If thisfield is set to zero, no record data will be returned. If the repository record contains less
data than requested by thisfield, the API returns only the available data. The number of bytes returned field
in the record information parameter will be set to the actual number of bytes returned.

Offset in record data. Byte offset into the record data identifying the first byte of the record data to be
returned in the record data parameter. This field and the number of bytesto read field together define which
part of the record data will be returned.

Record key. For the read options parameter, this field is used together with the record positioning option
field to specify the record key used in the record search.

For the record information parameter, this field returns the key of the record actually found.
Format of thisfieldis DDHHMMSS, where:

DD Number of days from the beginning of collection to this collection object. Day numbering
startsfrom O.

HHMMSS Timein hours, minutes and seconds when a particular collection sample was scheduled.

Record keys of repository records, with the possible exception of the first record in the collection period,
are normalized at the collection interval boundary. For example, for a 15-minute collection interval, valid
record keys will be 00124500 or 01223000, but not 00131014.

Record positioning option. The record that is the target of this call to the API. Supported positioning
options are:

0 Read next record. For this option, the API returns the next repository record in relation to the one
processed by the previous call to the API. If no records have been read from the repository, the very
first record isreturned. If the previous record was the last one in the repository or if the repository is
empty, the API returns record-not-found record status.

1 Read current record. For this option, the API returns the same record that was processed by the
previous call to the API. This option is used to read different parts of the same record. If no records
have been read from repository, the API returns a record-not-found record status.

2 Read first record. For this option, the API returns the very first record in the repository. This option
is used to start reading the repository from the beginning. If the repository is empty, the API returns
record-not-found record status.

3 Read record by key equal. For this option, the API returns the record with the key specified in the
record key field of the read options parameter. If no record is found, the API returns
record-not-found record status.

4 Read record by key less than or equal. For this option, the API returns the record with the largest key
that isless than or equal to the key specified in the record key field of the read options parameter. If
no record isfound, the API returns record-not-found record status.

5 Read record by key greater than or equal. For this option, the API returns the record with the
smallest key that is greater than or equal to the key specified in the record key field of the read
options parameter. If no record is found, the API returns record-not-found record status.

Record status. The result of record positioning. Valid values are:
0 Record was successfully found and processed.

1 Record-not-found status. Possible causes for this status are listed in the description of the record
positioning option field.

Record timestamp. The exact time when data collection started for the current repository record. Timeis
represented in the system timestamp format. See Convert Date and Time Format (QWCCVTDT) API for

details about time formats. Unlike the time represented by the record key field, this time is not normalized.
Note that data collection can be atime-consuming process. The record timestamp field contains the time
when data collection started for the current record, not necessarily the time when the collection was
completed and the last piece of data was written into this record.

Record type. The type of the current repository record. The following record types can be returned:

Interval record

Stop record

w N O

Collection control record

Unexpected record type

Total record data length. Length in bytes of the record datain the current repository record.

Usage Notes

To understand how this APl works, it isimportant to know how datais stored in the management collection

object.

Coallection Services stores performance data collected for a performance collection category in arepository
of amanagement collection object. Datais stored as a sequence of repository records of different types. The
following record types are defined:

« Collection control record. Thistype of record can be used by the performance collection category
to store some kind of control information necessary for the correct interpretation of the collected
data. Thistype of record is normally written as the first record of the collection session, but can
a so be written as the last record before the stop record.

« Interval record. Thistype of record contains actual performance data. One record of thistypeis
produced for every collection interval.

« Stop record. Thistype of record isthe last onein a series of records pertaining to one collection
session. If data collection for the performance collection category was restarted without cycling the
collector, the stop record will be followed by an (optional) collection control record, then interval
records for the new session and so on.

The repository records contain control information such as record type, record key, record timestamp, and
so on, and a variable amount of record data (between 0 and 4GB).

Error Messages

Message | D
CPF24B4 E
CPF3CF1E
CPF3CF2E
CPF3C3CE
CPFOAA4E

<

Error Message Text

Severe error while addressing parameter list.
Error code parameter not valid.

Error(s) occurred during running of &1 API.
Value for parameter &1 not valid.

Lock request was not satisfied in a specified time.

API introduced: V5R2

Top | Performance Management APIs | APIs by category

»Retrieve Active Management Collection Object
Name (QpmRtvActiveMgtcolName) API

Required Parameter Group:

1 Qualified object name Output Char(20)
2 Error code /0 Char(*)

Service Program Name: QPMAAPI
Default Public Authority: *EXCLUDE

Threadsafe: Yes

The Retrieve Active Management Collection Object Name (QpmRtvActiveM gtcolName) API returns the
object name and library name of an active management collection object. Thisis an object that is currently
used by the Collection Services collector to collect performance data.

Authorities and Locks

API Public Authority
*EXCLUDE

Required Parameter Group

Qualified object name
OUTPUT; CHAR(20)
The name of an active management collection object and the library in which it is located. On

successful return from the API, the first 10 characters contain the object name and the second 10
characters contain the library name.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Error Messages

Message I D Error Message Text

CPFOA1A E No active collection.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1LE Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.
&

API introduced: V5R2

Top | Performance Management APIs | APIs by category

»Retrieve Management Collection Object
Attributes (QpmRtvMgtcolAttrs) API

Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Quadlified object name Input Char(20)
5 Error code /0 Char(*)

Service Program Name: QPMAAPI
Default Public Authority: *EXCLUDE

Threadsafe: Yes

The Retrieve Management Collection Object Attributes (QpmRtvMgtcol Attrs) API returns information
about attributes of a management collection object and repositories of a management collection object.

Authorities and Locks

API Public Authority
*EXCLUDE

Authority to library containing collection object
*EXECUTE

While retrieving attributes, this API places a* SHRRD lock on the management collection abject.

Required Parameter Group

Receiver variable
OUTPUT; CHAR(*)
The variable that receives the requested information. It can be smaller than the format requested as

long as the next parameter, length of receiver variable, specifies the length correctly. When this
variable is smaller than the format, the API returns only the data that the variable can hold.

Length of receiver variable
INPUT; BINARY (4)
The length of the receiver variable. The minimum length is 8 bytes. Do not specify alength that is
longer than the receiver variable; the results are unpredictable.

Format name

INPUT; CHAR(S)

The content and format of the information returned in the receiver variable for a specified
management collection object. The possible format names are:

MCOAQ0100 Retrieve attributes of a management collection object only

MCOAQ0200 Retrieve attributes of a management collection object and attributes of repositories
of an object

Qualified object name

INPUT; CHAR(20)

Name of a management collection object for which you want to retrieve information and the library
inwhich it islocated. The first 10 characters contain the object name and the second 10 characters
contain the library name.

The system supports management collection objects with different attributes, or objects that contain
different information. The Management Collection Object APIs support collection objects that are
created by the Collection Services collector only. These collection objects have attribute * PFR.

Error code

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

MCOAOQ0100 Format

The following information is returned for the MCOAO0100 format. For detailed descriptions of the fieldsin
the table, see Field Descriptions.

| Offset ’ ’

IDec [Hex |Type Field

| 0 | 0 |BINARY(4) |Bytesreturned

| 4 | 4 |BINARY(4) |Bytesavailable

[8 | 8 |[BINARY(8) |Objectsize

| 16 | 10 |BINARY(4) |Object retention period

| 20 | 14 |BINARY(4) |Default collection interval

| 24 | 18 |BINARY(4) |Number of repositories

| 28 | 1C |CHAR(14) |Date and time when object was created
| 42 | 2A |CHAR(14) |Dateand time of last update to the object
| 56 | 38 |CHAR(10) |Partition serial number

| 66 | 42 |CHAR(1) |Object is active

| 67 | 43 |CHAR() |Object was repaired

| 68 | 44 |CHAR(D) |Summari zation status

[769 | 45 |[CHAR@®) |Reserved

MCOAQ0200 Format

When the MCOA0200 format is requested, this API will return information about the management
collection object (MCOAO0100 format) plus information about al of the repositories found in this
management collection object. This format returns zero or more repository entries, described later. The
number of repository entries returned in this format is specified in the number of repository entries returned
field. For detailed descriptions of the fields in the table, see Field Descriptions.

Offset
Dec ex ’Type ’Field
0 0 | |Everything from MCOA0100 format
72 48 [BINARY(4) [Number of repository entries returned

H

|

|

| 4C |[BINARY(4) |Offset to repository information
80 | 50 [CHAR(*) |Repository information

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|80
|
|
|
|
|
|
|

50 |BINARY(4) |Offsettorepository entry 1
84 54 |BINARY(4) |Lengthof repository entry 1
88 58 |BINARY(4) |Offset to repository entry 2
92 5C |BINARY(4) |Length of repository entry 2
=CHAR(*) =Repository entry 1
ICHAR(*) |Repository entry 2

Repository entry

Each repository entry contains attributes of one repository of a management collection object. It includes
one or more collection period entries, described later.

Offset
Dec Hex ’Type ’Fi ed
0 0 |CHAR(10) |Repository name
A |CHAR(10) |Category name

18 |BINARY(8) |Repository size
20 |CHAR(*) |Collection period entry 1

|
|
|
20 | 14 |[BINARY(4) |[Number of collection period entries
|
|

Collection period entry

A new collection period entry is created each time a collection is started or a collection interval is changed
for the performance category associated with arepository. Each repository has at least one collection
period.

| Offset ’ ’

IDec [Hex |Type Field

| 0 | 0 |BINARY(4) |Lengthof collection period entry

| 4 | 4 |CHAR(14) |Dateand timeof collection period start
| 18 | 12 |CHAR(14) |Date and time of collection period end
| 32 | 20 |BINARY(4) |Collectioninterval

| 36 | 24 |CHAR(4) |Reserved

Field Descriptions

Bytes available. The length of all the data available to return. All available dataisreturned if the receiver
variable has sufficient length.

Bytesreturned. The length of the data actually returned.
Category name. The name of the performance collection category that created this repository.

Coallection interval. The collection interval in seconds for the performance category that created this
repository. Each category can have its own collection interval. A performance category can have different
collection intervals at different times during the collection (for different collection periods). If the collection
interval is negative, this category was not configured to perform interval collections. Such categories
perform one-time-only collections; in the beginning of the collection (collection interval is set to minus 1)
or at the end of the collection (collection interval is set to minus 2).

Date and time of collection period end. The date and time when either the collection was ended in this
repository or the collection interval was changed for the performance category associated with this
repository. Thisisrepresented in aformat YYYYMMDDHHMMSS, where:

YYYY Year
MM Month
DD Day of the month

HH Hour
MM Minute
SS Second

Thisfield reports blanks for collection periods that are in progress.

Date and time of collection period start. The date and time when either the collection was started into this
repository or the collection interval was changed for the performance category associated with this
repository. For adescription of the format of this field, see the date and time of collection period end field.

Date and time when object was created. The date and time the collection object was created. For a
description of the format of this field, see the date and time of collection period end field.

Date and time of last update to the object. The date and time when the last update to collection object
data occurred. For a collection object that is not active, thisis the time when the collection ended to this
collection object. For a description of the format of thisfield, see the date and time of collection period end
field.

Default collection interval. The default collection interval in seconds for this collection object. Individual
performance categories may have different collection intervals.

Length of collection period entry. The length of a collection period entry, in bytes.

Length of repository entry. The length of arepository entry, in bytes. A repository entry contains
information about one particular repository and includes one or more collection period entries.

Number of collection period entries. The number of collection period entries reported for arepository.
Each repository has at |east one collection period entry. A new collection period starts when the collection
is started for the performance category associated with this repository or a new collection interval is set for
this category.

Number of repositories. The number of repositories found in this management collection object.

Number of repository entriesreturned. The number of repositories for which information isreturnedin a
receiver variable. This can be different than the value in the number of repositoriesfield if the receiver
variable is not big enough to hold the entire result.

Object isactive. Whether collection is currently in progress for this collection object. Possible values are:
0 Collection into this collection object has ended

1 Caoallectioninto this collection object isin progress

Object retention period. The number of hours the collection object should be kept on the system before it
is deleted automatically. The retention period starts when the collection is ended for this collection object.
When the collection object is set for permanent retention, the object retention period field is set to minus 1.

Object size. The size of the management collection object in Kbytes (K = 1024).

Object wasrepaired. Whether the collection object was repaired. When the collection object is not
correctly closed, for example, during abrupt system termination, it is repaired when it is touched the first
time after that. Such an object may have corrupted datainside. Using such an object may cause
unpredictable results. Possible values are:

0 Collection object did not require repair

1 Collection object was repaired

Offset to repository information. The offset in bytes from the beginning of areceiver variable to the
beginning of arepository information structure.

Offset to repository entry. The offset in bytes from the beginning of areceiver variable to the beginning
of aparticular repository entry.

Partition serial number. Thelogical seria number of a system partition where the collection object was
created.

Repository information. A variable-size field that contains information about repositoriesin a
management collection object. Thisfield contains an array of offset and length pairs (see offset to
repository entry field and length of repository entry field), followed by a series of corresponding repository
entry structures.

Repository name. The 10-character name of arepository of a management collection object.
Repository size. The size of arepository in Kbytes (K = 1024).
Reserved. A reserved field.

Summarization status. When the Collection Services collector cycles the management collection object, a
processis started for this collection object that will extract performance summary information to be used
for historical data analysis. The summarization status field indicates the status of this process:

0 Summarization was not performed for this collection object
1 Summarization is complete

2 Summarizationisin progress
3

Summarization was attempted but failed

Error Messages

Message | D Error Message Text
CPFOAZB E Not able to process management collection object &1 in library & 2.
CPF2105E Object &1 in &2 type &3 not found.

CPF2110E Library &1 not found.
CPF2114 E Cannot alocate object &1in &2 type *& 3.
CPF2207 E Not authorized to use object &1 in library &3 type *& 2.

CPF24B4 E Severe error while addressing parameter list.
CPF3C21 E Format name & 1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.
CPF3CF1 E Error code parameter not valid.

CPF3CF2E Error(s) occurred during running of &1 API.
CPF9810 E Library &1 not found.

%
API introduced: V5R2

Top | Performance Management APIs | APIs by category

sUser-Defined Transaction APIs

The user-defined transaction APIs are used by an application to gather timeinterval performance data for
application-defined transactions. These APIsindicate the start and end of a user-defined transaction.
The user-defined transaction APIs are:

« #End Transaction (QYPEENDT, qypeEndTransaction) indicates the end of a user-defined
transaction.&

o #Start Transaction (QY PESTRT, qypeStartTransaction) is called at the start of a user-defined
transaction.<

&

Top | Performance Management APIs | APIs by category

»End Transaction (QYPEENDT,
gypeEndTransaction) API

Required Parameter Group:

1 Applicationidentifier Input Char(20)

2 Transaction identifier Input Binary(4) Unsigned
3 Application trace data Input Char(*)

4 Length of application trace data Input Binary(4) Unsigned
5 Transaction start time Input Char(8)

6 Application performance counters Input Char(*)

7 Length of application performance Input Binary(4) Unsigned

counters
8 Error code 1/10 Char(*)

Service Program Name: QY PESV PG
Default Public Authority: *USE

Threadsafe: Yes

The End Transaction (OPM, QY PEENDT; ILE, qypeEndTransaction) API is used together with the Start
Transaction (QY PESTRT, qypeStartTransaction) APl and the Log Transaction (QY PELOGT,

gypeLogTransaction) API to collect performance data for user-defined transactions. The End Transaction
APl iscalled by an application at the end of a user-defined transaction.

This API can be used to provide both trace type of performance data - collected by Performance Explorer
(PEX) - and interval type of performance data - collected by Collection Services.

If the Performance Explorer (PEX) isrunning, this APl generates an end of transaction trace record. In
addition to the data supplied by the application in the application trace data parameter, PEX will capture the
current values of performance counters associated with the current thread such as CPU time used, 1/0
activity and seize/lock activity. After the End Performance Explorer (ENDPEX) command is run, the
application-supplied data for this record is written to the QMUDTA field in the QAYPEMIUSR file. The
performance counters are written to individual fieldsin the QAYPEMIUSR and QAYPETIDX files.

If Collection Servicesis collecting data for the user-defined transaction (* USRTNS) category, this API will
save transaction performance data for the current transaction. This data includes transaction response time
aswell as optional performance counters provided by the application in the application performance
counters parameter.

See Usage Notes for the Start Transaction (QY PESTRT, qypeStartTransaction) API for more information.

Authorities and Locks

API Public Authority
*USE

Required Parameter Group

Application identifier
INPUT; CHAR(20)

The name of the application. Given that many applications could use this API, the name should be
chosen so that it is unique. Application identifiers starting with "QIBM_Qccc ", wherecccisa
component identifier, are reserved for IBM use.

The application identifier is used as the transaction type by Collection Services. The application
identifier should be chosen carefully, because Collection Services will only report information
about the first 15 unique transaction types for every job which uses user-defined transaction APIs.
All other transaction types for each job will be combined in asingle type *OTHER.

Transaction identifier
INPUT; BINARY (4) UNSIGNED
Any sort of unique transaction identifier, such as a sequential number. In order to collect

meaningful data, the identifier passed to the End Transaction APl should be the same as the
identifier used in the call to the Start Transaction API for the same transaction.

The transaction identifier is not used by Collection Services.
Application trace data
INPUT; CHAR(*)

Application-defined trace data to be saved by PEX. This can be any data that the user wants to
associate with this transaction - for example, the user ID of the client performing the transaction,
the name of the file being updated by the transaction, or the account ID being accessed by the
transaction. The data can be up to 3032 byteslong. This datais reported by PEX in the
QAYPEMIUSR file. Application trace datais not processed by Collection Services.

Length of application trace data
INPUT; BINARY (4) UNSIGNED
The length (in bytes) of application-defined trace data to be saved by PEX. The value must be
between 0 and 3032.

Transaction start time
INPUT; CHAR(8)
Thetime (in MI timestamp format) that the transaction started. The user should provide the
transaction start time that was previoudly returned from the call to the corresponding Start

Transaction API. If anull pointer is passed for this parameter, Collection Services will ignore this
request. Transaction start timeis not used by PEX.

Application performance counters
INPUT; CHAR(*)

Application-provided counter data to be collected by Collection Services. The application can
define from 0 to 16 BINARY (8) UNSIGNED counters that Collection Services will collect. These
counters may contain any kind of information the application wants to associate with this
transaction; for exampel, the number of SQL statements processed to serve the transaction, the
number of pages printed for the transaction, and so on. The user should reset these counters just
before calling the Start Transaction API and provide these counters when calling the corresponding
End Transaction API. If the application trace data is suitably organized - if it is a sequence of
BINARY (8) UNSIGNED counters - the application performance counters parameter can be a
subset of the application trace data parameter .
Application performance counters are not processed by PEX.

L ength of application performance counters
INPUT; BINARY (4) UNSIGNED
The length (in bytes) of the application-provided counter data to be collected by Collection

Services. Thislength can range from 0 (no counters) to 128 (16 BINARY (8) UNSIGNED counters)
and must be amultiple of 8.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

For the description of how Performance Explorer (PEX) and Collection Services save and report
performance data for this API, see Usage Notes for the Start Transaction API.

Error Messages

Message|D Error Message Text

CPF3C36 E Number of parameters, &1, entered for this APl was not valid.
CPF3C3CE Vauefor parameter &1 isnot valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

“
API introduced: V5R2

Top | Performance Management APIs | APIs by category

»Start Transaction (QYPESTRT,
gypeStartTransaction) API

Required Parameter Group:

1 Applicationidentifier Input Char(20)

2 Transaction identifier Input Binary(4) Unsigned
3 Application trace data Input Char(*)

4 Length of application trace data Input Binary(4) Unsigned
5 Transaction start time Output Char(8)

6 Error code /10 Char(*)

Service Program Name: QY PESV PG
Default Public Authority: *USE

Threadsafe: Yes

The Start Transaction (OPM, QY PESTRT; ILE, qypeStartTransaction) API is used together with the End
Transaction (QYPEENDT, gypeEndTransaction) APl and the Log Transaction (QY PELOGT,

gypeLogTransaction) API to collect performance data for user-defined transactions. The Start Transaction
APl iscalled by an application at the beginning of a user-defined transaction.

This API can be used to provide both trace type of performance data - collected by Performance Explorer
(PEX) - and interval type of performance data - collected by Collection Services.

If the Performance Explorer (PEX) isrunning, this APl generates a start of transaction trace record. In
addition to the data supplied by the application in the application trace data parameter, PEX will capture the
current values of performance counters associated with the current thread such as CPU time used, 1/0
activity and seize/lock activity. After the End Performance Explorer (ENDPEX) command is run, the
application-supplied data for this record is written to the QMUDTA field in the QAYPEMIUSR file (see
Usage notes). The performance counters are written to individual fields in the QAYPEMIUSR and

QAYPETIDX files.

If Collection Servicesis collecting data for the user-defined transaction (* USRTNS) category, this API
provides a reference point for the End Transaction API to calculate transaction response time. (See the End

Transaction (QY PEENDT, qypeEndTransaction) API).

Authorities and Locks

API Public Authority
*USE

Required Parameter Group

Application identifier
INPUT; CHAR(20)

The name of the application. Given that many applications could use this API, the name should be
chosen so that it is unique. Application identifiers starting with "QIBM_Qccc ", wherecccisa
component identifier, are reserved for IBM use.

The application identifier is used as the transaction type by Collection Services. The application
identifier should be chosen carefully, because Collection Services will only report information
about the first 15 unique transaction types for every job which uses user-defined transaction APIs.
All other transaction types for each job will be combined in asingle type *OTHER.

Transaction identifier
INPUT; BINARY (4) UNSIGNED
Any sort of unigue transaction identifier, such as a sequential number. The transaction identifier is
not used by Collection Services.

Application trace data
INPUT; CHAR(*)
Application-defined trace data to be saved by PEX. This can be any data that the user wants to
associate with this transaction - for example, the user ID of the client performing the transaction,
the name of the file being updated by the transaction, or the account ID being accessed by the

transaction. The data can be up to 3032 byteslong. This datais reported by PEX in the
QAYPEMIUSR file. Application trace data is not processed by Collection Services. See Usage

notes for more information.

Length of application trace data
INPUT; BINARY (4) UNSIGNED
The length (in bytes) of user-defined data to be captured by PEX. The value must be between 0 and
3032.
Transaction start time
OUTPUT; CHAR(8)
The time (in MI timestamp format) that the transaction started. The user should save this value and

pass it unchanged to the corresponding End Transaction API. If anull pointer is passed for this
parameter, Collection Services will ignore this request. Transaction start time is not used by PEX.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes
How the data is collected

Performance data provided by an application to the user-defined transaction APIs (the Start Transaction

AP, the End Transaction APl and the Log Transaction APl) is collected by both Performance Explorer
(PEX) and Collection Services.

To capture the trace data provided by the APIs, a Performance Explorer session muct be active for the
current thread. To configure PEX to collect data for user-defined transaction APIs, use * USRTNS event on
the operating system events (OSEVT) parameter of the Add PEX Definition (ADDPEXDFN) command.

When aPEX session is active for the current thread, a call to the Start Transaction API, the End
Transaction API or the Log Transaction API will produce atrace record. In addition to the trace data passed
by the application in the application trace data parameter, PEX will capture current values of system
performance counters associated with the current thread.

The application trace data is reported by PEX in the QMUDTA field of the QAYPEMIUSR file (see
below). The performance counters are reported in individua fieldsin the QAYPEMIUSR and
QAYPETIDX files. This data can be used later to calculate resource consumption for the specific
transaction.

Collection Services collects transaction-rel ated statistics in a management collection (*MGTCOL) object
when the collection is enabled for the * USRTNS performance category. The Create Performance Data
(CRTPFRDTA) command exports the user transaction data collected by Collection Services from the
*MGTCOL object to the user-defined transaction (QAPMUSRTNS) file. Thisfile contains one record per
transaction type per job per Collection Services collection interval. The datareported in the file includes
standard data such as the total transaction time and total number of transactions, as well as optional
application-provided counters (see End Transaction (QY PEENDT, qypeEndTransaction) API).

Collection Services summarizes transaction data within ajob by transaction type. Collection Services uses
the API application identifier parameter as the transaction type. Collection Services stores transaction data
for thefirst 15 transaction typesit encountersfor ajob. If more than 15 transaction types are encountered in
ajob, it still collects the data; however, the datais combined and reported under a transaction type of
*OTHER. (See Callection Services for more information on Collection Services and performance database

files)

How to use collected data

It is the application's responsibility to decide what constitutes a transaction and to use the user-defined
transation APIsin a consistent way; that is, for every call to the Start Transaction API, there should be a
call to the End Transaction APl with the same transaction identifier.

Performance Explorer collects application-provided trace data as well as current values for a set of system
performance counters. These performance counters are a snapshot of the current thread activity when the
event was recorded - this means that all numeric values are total numbers for the entire life of the thread (in
other words, "raw" values as opposed to "delta’ values).

Note: The performance counters are defined as 8 byte unsigned binary valuesin the QAYPEMIUSR file.
However the datais coming from 4 byte unsigned binary values. For this reason, code which does
computations with the values of the performance counters must check for counter wrap - counters will
increment from 4,294,967,295 (or FFFFFFFF hexadecimal) to 0. The counters were defined as 8 byte fields
to allow expansion in the future.

If atransaction ends in the same thread it was started in, values captured by the Start Transaction APl can
be subtracted from the values captured by the End Transaction APl to get the amount consumed by this
transaction:

value per transaction =
value from the End Transaction APl - value from the Start Transaction APl

However, if atransaction endsin a different thread than it was started in, this simple subtraction cannot be

done. Rather, it is necessary to use the Log Transaction APl to record two additional events - one when the
transaction in the first thread ends and the other one when the transaction in the second thread begins. Then
values per transaction can be be calculated in the following way:

value per transaction =

(value from the Log Transaction APl in thread 1 - value from the Start Transaction API)
+ (value from the End Transaction API - value from the Log Transaction API inthread 2)

Collection Services does not collect additional system performance counters for the * USRTNS category.
However, Collection Services collects many types of performance data for other performance categories.
By joining records from the QAPMUSRTNS file with records from other performance database files

produced for the same collection interval, one can calcul ate average resource consumption for transactions
of different types.

The format of the QMUDTA field of the QAYPEMIUSR file

The QMUDTA field has a common header. The following APIs use this header:
» Start Transaction (QYPESTRT, gypeStartTransaction)

o End Transaction (QYPEENDT, qypeEndTransaction)
o Log Transaction (QY PELOGT, gypel ogTransaction)
o Add Trace point (QY PEADDT, gypeAddTracePoint)

| Offset ’ ’

IDec [Hex |Type Field

[0 [0 [CHAR® "API " eye catcher

| 4 | 4 |CHAR(20) |Application identifier
24 18 [CHAR(1) Type of data:

0 Generic trace point
1 Start of transaction
2 End of transaction

3 Log transaction

After the common header, the QMUDTA field has the following format for the Start Transaction, End
Transaction, and Log Transaction APIs:

| Offset

IDec [Hex |Type Field

| 25 | 19 |CHAR(10) | Transaction identifier

[35 [23 [CHAR®) |Reserved

’ 36 ’ 24 |BINARY(4) |Length of application trace data
UNSIGNED

| 40 | 28 |CHAR(*) |Application trace data

Error Messages

Message I D
CPF3C36 E
CPF3C3CE
CPF3CF2E

<

Error Message Text
Number of parameters, & 1, entered for this APl was not valid.
Value for parameter &1 is not valid.

Error(s) occurred during running of &1 API.

API introduced: V5R2

Top | Performance Collector APIs | APIs by category

»Collection Services Data Collection Exit
Program

Required Parameter Group:

1 Collection request parameters 1/10 Char(*)
2 Databuffer Output Char(*)
3 Work area /10 Char(*)
4 Return code Output Binary(4)

QSY SINC member name: QPMDCPRM

A Collection Services Data Collection exit program is called by Collection Servicesto collect performance
data for a user-defined performance category. The Collection Services collector will store this datain the
management collection object. For the exit program to be called by the collector, it must first be registered
using the Register Collector Data Category (QypsRegCollectorDataCategory) API. User-defined
performance data that is stored in the management collection object can be read using the Read

Management Collection Object Data (QpmReadM gtcol Data) API.

At the time a user-defined category is registered, a single entry point is specified for the data collection
program. This entry point can be a program object (* PGM) or an entry point in a service program
(*SRVPGM).

Collection Services calls this entry point with parameters which specify the type of request to perform and
the control information necessary for the data collection program to complete the request.

Collection Services provides a data buffer where the data collection program will return collected data.

Collection Services also provides awork areawhich can be used by the data collection program to save its
state between the calls.

The parameter structure passed to the data collection program is mapped by the QPMDCPRM header file
shipped with the system in the QSY SINC library.

Required Parameter Group

Collection request parameters
1/0; CHAR(*)

Thisisastructure in which Collection Services passes control information about the data collection
reguest to the data collection program. The data collection program uses this structure to return
information about actions performed. The format of the data in this structure is determined by the
parameter format specified when the user-defined category was registered using the Register
Collector Data Category (QypsRegCollectorDataCategory) API. Currently, PMDCO0100 is the only
format supported. The layout of this structure is described in Layout of Collection Request

Structure below.
Data buffer

OUTPUT; CHAR(*)

Thisisadata buffer in which the data collection program returns data to be stored in the
management collection object. Collection Services will store this datain arecord of the repository
of the management collection object.

For start collection and end collection requests, thisis control data and will be stored in a collection
control record. For interval collection request, thisis collected performance data and will be stored
in an interval record.

The length of this buffer is defined in the data buffer bytes available field of the collection request
parameters structure. Writing to the data buffer beyond this length will have unpredictable results.

Work area
1/0; CHAR(*)

Thework areais a storage area created by Collection Services for the sole use of the data collection
program. Initialy, the work areais set to zeroes. The same work areais passed in every call to the
data collection program. This work area can be used by the data collection program to save some
state information between the calls. Collection Services will preserve the work area contents
between the calls. The length of the work areais set at category registration time and is defined in
the length of work areafield of the collection request.

Return code
OUTPUT; BINARY (4)

Return code set by the data collection program. Collection Services will take an action based on the
code returned from the data collection program. The return code isignored for the cleanup and
terminate request. Possible return codes and Collection Services actions:

0 Data collection request was performed successfully.

> 0 Datacollection request encountered recoverable errors. A non-zero return code will be
logged in the job log. Action taken by Collection Services depends on the collection
request:

o For start collection and end collection requests, Collection Services will assume
that no data can be collected for this category and data collection for this category
will be stopped.

o For interval collection request, Collection Services will assume that future
requests may still be successful. No datawill be stored for this request. However,
Collection Services will continue collecting data for this category.

< 0 Datacollection request encountered unrecoverable errors. Collection Services will assume
that no further data collection is possible for this category and stop collecting data for this
category. The data collection program may use a negative return code to cause immediate
termination of data collection for the user-defined category.

Layout of Collection Request Structure

The layout of the collection request structure is determined by the parameter format specified when the
user-defined category was registered using the Register Collector Data Category
(QypsRegCaollectorDataCategory) API.

Currently, PMDCO0100 is the only format supported. The table below shows the layout of the collection

reguest structure for the PMDC0100 format. For detailed descriptions of the fieldsin the table, see Field
Descriptions below.

| Offset ’
|Dec |Hex Input/Output | Type Field
| 0 | 0 [INPUT ICHAR(8) |Format name
| 8 | 8 [INPUT |ICHAR(10) |Category name
| 18 | 12 |- ICHAR(2) |Reserved
| 20 | 14 [INPUT IBINARY (4) |Request type
| 24 | 18 [INPUT IBINARY (4) [Request type modifier
| 28 | 1C [INPUT IBINARY (4) [Data buffer bytes available
32 20 |INPUT BINARY (4) [Offset to category parameter
string
36 24 |INPUT BINARY (4) |Length of category parameter
string
| 40 | 28 [INPUT IBINARY (4) [Length of work area
| 4 | 2Cc |- ICHAR(4) |Reserved
| 48 | 30 |I NPUT |CHAR(8) |Interva| key
| 56 | 38 [INPUT ICHAR(8) [Interval time
| 64 | 40 |OUTPUT [BINARY (4) |Databuffer bytes provided
| 68 | 44 |OUTPUT |BINARY (4) More dataindicator
| 72 | 48 |- ICHAR(8) |Reserved

Field Descriptions

Category name. Name of the user-defined category for which data collection is performed. This name was
registered previously uisng the Register Collector Data Category (QypsRegCollectorDataCategory) API.

Data buffer bytes available. Size of the data buffer passed in the data buffer parameter.

Data buffer bytes provided. The data collection program indicates in this field how many bytes of datain
the data buffer should be stored by Collection Services in the repository of the management collection
object. If thisfield is set to O for start collection or end collection requests, a collection control record will
not be created. If thisfield isset to O for an interval collection request, Collection Services will still create
an interval record but will not store any datain it. Thisfield is set to zero at entry to the data collection
program.

Format name. Name of the collection request structure format passed to the data collection program. This
isthe parameter format specified when the user-defined category was registered using the Register
Collector Data Category (QypsRegCollectorDataCategory) API. Currently, PMDCO0100 is the only format
supported.

Interval key. Record key of the repository record about to be written into the repository of the management
collection object. Format of thisfieldis DDHHMMSS, where:

DD Number of days from the beginning of collection to this collection object. Day numbering
starts from O.

HHMMSS Time in hours, minutes and seconds when a particular collection sample was schedul ed.

Record keys of interval records, with the possible exception of the key of thefirst interval record in a
collection period, are normalized to the collection interval boundary. For example, for a 15 minute
collection interval, valid record keys will be 00124500 or 00223000, but not 00131014.

Interval time. Exact time in system timestamp format when the Collection Services collector initiated a
particular request. Thistimeis provided for reference only. Normally thistimeis close to the time implied
by the interval key field but, unlike the interval key, thistime is not normalized. See Convert Date and

Time Format (QWCCVTDT) API for details about time formats.

Length of category parameter string. Length of the category parameter string. If the parameter string was
not registered for this category, thisfield is set to 0.

Length of work area. Length of the work area passed in the work area parameter. The size of the work
areais set during category registration.

More dataindicator. By setting this field to a non-zero value, the data collection program may indicate to
Collection Services that it has more data to store in the repository of the management collection object for
this request. When this field is returned with a non-zero value, Collection Services will transfer the returned
datato the current repository record then will call the data collection program again with all parameters
identical to the previous call except that the request type maodifier field will be set to 20. The data collection
program may use the more data indicator field as many times as needed to transfer al collected data to
Collection Services. Thisfield is set to zero at entry to the data collection program.

Offset to category parameter string. Offset in bytes to the category parameter string starting from the
beginning of the collection request. This parameter string was specified when the user-defined category was
registered using the Register Collector Data Category (QypsRegCollectorDataCategory) API. The
parameter string can be used to pass customization information to the data collection program. The length
of this string is defined in the length of category parameter string field. If a parameter string was not
registered for this category, thisfield is set to 0. The parameter string is only passed when the request type
isset to 10 - start collection request.

Request type. Type of action requested from the data collection program. The data collection program
must support the following request types:

10 Sart collection request. Thisisthefirst request that the data collection program will receivein a
data collection session. When receiving this request, the data collection program is expected to
initialize whatever interfaces it uses to collect the data. Optionally, in the provided data buffer, the
data collection program may return collection control information to be stored in a collection
control record in the repository of the management collection object.

20 End collection request. Thisisthe last request the data collection program will receive in adata
collection session. When receiving this request, the data collection program is expected to close
whatever interfaces it uses to collect the data, rel ease resources, and so on. Optionally, in the
provided data buffer, the data collection program may return collection control information to be
stored in acollection control record in the repository of the management collection object.

30 Interval collection request. The data collection program will receive areguest of this type each time
the interval collection for this user-defined category is scheduled. The time between interval
collection requests is specified at category registration time. When receiving this request, the data
collection program is expected to perform its regular collection of performance data and return
collected datain the provided data buffer. This datawill be stored in an interval record in the
repository of the management collection object.

40 Cleanup and terminate (shutdown) request. This request is sent to the data collection program when
Collection Services cannot continue data collection. An example of such a problem is the loss of
contact with the Callection Services collector job. When receiving this request, the data collection
program is expected to perform necessary cleanup, release resources, and so on. The data collection
program cannot return any data for this request. Any data placed in the data buffer will be ignored.

Request type modifier. This field modifies the meaning of the request type field. Thisfield can have two
values:

10 Normal request to collect data.

20 Continuation of the previous request. This value is used to indicate to the data collection program
that thisis the continuation of the same collection request. When the data collection program returns
with the more data indicator set to a non-zero value, Collection Services will transfer the returned
datato the current repository record then will call the data collection program again with the same
parameters except that the request type modifier field will be set to 20. In this way, the data
collection program may store more collected data in the management collection object than fitsinto
the data buffer.

A

API introduced: V5R2

Top | Performance Management APIs | APIs by category

Performance Collector APIs

The Performance Collector APIs are:
o List Performance Data (QPMLPFRD) returns data from the data collector to the user space
specified in theWork with Collector API.

« Work with Collector (QPMWKCOL) controls the starting and stopping of collections of

information for certain types of resources. This API allows you to change the way data about a
certain resourceis collected.

Note: The Work with Collector API must be used before using the List Performance Data API.

The Performance Collector exit programis:

« Performance Monitor processes the performance data that is collected by the performance monitor
as the monitor ends.

Note: Starting in Version 5 Release 1, the Start Performance Monitor (STRPFRMON) command is no
longer supported.

Top | Performance Management APIs | APIs by category

List Performance Data (QPMLPFRD) API

Required Parameter Group:

1 Typeof resource Output Char(10)
2 Seguence number of collection Output Binary(4)
3 Error Code /10 Char(*)

Default Public Authority: *EXCLUDE

Threadsafe; Yes

The List Performance Data (QPMLPFRD) API returns the latest collection of performance datain the user
space specified for the resource on the Work with Collector (QPMWKCOL) API. When QPMLPFRD is
caled, it will return dataimmediately if any datais available; otherwise, it will wait until data becomes
available and then return the data. QPMLPFRD only returns data for one type of aresource at atime. The
user cannot specify the type of datathat is returned by QPMLPFRD. It returns whatever resource datais
available at the time. The type of resource must be tested to determine its type if more than onetypeis
collected. The call to QPMLPFRD returns the type of resource data and the sequence number of the
collection. The sequence number isincreased by the user-specified interval time and can be used to seeif a
collection was missed. For example, if job datais being collected at 15-second intervals and the previous
call to QPMLPFRD returned a sequence number of 265, the sequence number for the next collection
retrieved should be 280 or else a collection was missed. This API should be called once per interval for
each type of resource data being collected.

The data returned by QPMLPFRD isin araw format and the user needs to perform delta cal culations on the
data before it can be used (just as in the sequence number example above). Deltas are the difference
between the latest data numbers and the previous data numbers. For example, a user requests job data every
15 seconds using the Work with Collector (QPMWKCOL) API. The user then calls QPMLPFRD to copy
the latest collection of datainto the resource's user space. The transaction count for JOB1 is 256. In the
previous collection, the transaction count for JOB1 was 251. By subtracting the previous data from the
current data (256 - 251), the number of transactions performed by JOB1 in that 15 secondsis found. Thus,
the user must retain the previousinterval's data to calculate deltas from. After the deltas are calculated, the
current data becomes the previous data in preparation for the next interval. Because QPMLPFRD replaces
the data in the resource's user space with the new data, the user must either save the previousinterval's data
of interest or use QPMWK COL to change the resource's user space before calling QPMLPFRD again. This
also means that after starting a collection, a user must call QPMLPFRD twice before he can do any
calculations.

Using deltas, the impact of missed collectionsis lessened by the delta calculations. For example, if you
were collecting data at 15-second intervals and the sequence numbers for your last two collections were 315
and 345, a collection was missed. Y ou can still perform delta cal culations using these two collections and
get datafor the time period you missed. Of course, the data represents an interval of 30 seconds instead of
15. However, you should never calculate deltas for a period of greater than 4 minutes (the longest collection
interval). When the time between collections exceeds 4 minutes, there isarisk that counters will wrap
twice. Because thereisno way to tell if counters wrapped twice, the user would perform delta calculations
as normal and end up with inaccurate data.

There are three situations to consider when calculating deltas. First, the data between the two collections
must be matched by item. When doing this, be aware that the number of items reported and their order
could change from one collection to another due to jobs starting and ending, communications lines varying
on and off, disks and 10Ps being replaced and added, as well as the order that the devices report in with

their data.

The second situation is when the raw-data counters wrap. For example, assume counter A can hold up to 99
and currently it is set at 96. If the system adds 10 to the count, the value of counter A becomes 6 because
when it reaches 100 it starts over again at 0. When a counter wraps, it makes the delta calculation result in a
negative number. To compensate for this, awrap factor equal to the largest number the field can hold plus 1
should be added to the negative delta. The following excerpt of code (written in C) shows how a subroutine
can be defined to calculate deltas.

int CalculateDelta(int CurrentData, int PrevData)

#defi ne MAXBI N4 2147483647
int Delta;

Delta = CurrentData - PrevDat a;
if (Delta < 0)

Delta = (Delta + MAXBI Nd) + 1;
return Delta;

}
Note: Some of the fields wrap at smaller values. See the format tables for any differences.

The third situation involves communications lines varying off and on. When a communication line goes
from inactive to active, its counters might get reset. If you had been calculating deltas for such aline, you
should restart the calculations (save the current data but skip the delta calculation until the next collection is
processed). To determine whether you need to restart delta cal cul ations due to a line activation, you can
check for a mismatch between the current and previous value of the Number of Vary On Operations field.
Also be aware that when a communications line goes inactive, it will be reported for at least one collection
in the inactive state and then disappear from the list of lines reported.

QPMLPFRD relies on the Work with Collector (QPMWKCOL) API. First, QPMWKCOL must be used to
start a collection before QPMLPFRD can be called. Second, the user space specified for aresource on the
QPMWKCOL call isthe user space that QPMLPFRD will copy the datainto.

The datain the user spacesisreplaced only if QPMLPFRD is called. However, internal data spaces get
updated with every collection. It isthese internal data spaces that are copied to the user spaces when
QPMLPFRD iscalled. Therefore, if you do not call QPMLPFRD for every collection every interval, data
will be missed. Although, as mentioned above, deltas can help compensate for missed collections, it is not
recommended to make aregular practice of skipping collections. Data can also be missed if the
performance collector takes along timeto retrieve it or is unable to retrieve it due to system problems.

The QPMLPFRD and QPMWKCOL APIs alow multiple usersto be able to share the same data collection.
This sharing minimizes the system overhead when multiple users are collecting data and ensures that each
user is getting data consistent and synchronized with other users.

Authorities and Locks

None.

Required Parameter Group

Type of resource
OUTPUT; CHAR(10)

The type of resource the collected dataisfor. It will be set to one of the following values:
*JOB Job-related information (Job Format)
*POOL Pool-related information (Pool Format)
*DIXK Disk-related information (Disk Format)
*10P |OP-related information (1OP Format)

*COMM Communications-related information (Communications Data Formats)

Sequence number of collection
OUTPUT; BINARY (4)

The sequence number of this collection of data. This value increases by one for every second.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the Generated List

Thelist of performance data that the QPMLPFRD API returnsinto the user space consists of :
o A user area
» A generic header
« Aninput parameter section
« A header section
« A list data section

The user area and generic header are described in User Space Format for List APIs. For details about the
remaining items, see the following sections.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see the APl Examples.

Except where noted, delta cal culations need to be performed on all numeric (BINARY (4)) fields.

Input Parameter Section

For adescription of the fieldsin this format, see Field Descriptions.

| Offset ’ ’

IDec [Hex |Type Field

| 0 | 0 |CHAR(10) | Type of resource

[10 [A [CHAR® |Reserved

| 12 | C |BINARY(4) |Sequencenumber of collection

Header Section

For a description of the fieldsin this format, see Field Descriptions.

| Offset ’ ’

IDec [Hex |Type Field

| 0 | 0 |CHAR(10) | Type of resource
| 10 A |CHAR(2) |Reserved

| 12 C |B|NARY(4) |Interva| time

| 16 10 |BINARY(4) |Total CPU seconds used
| 20 14 |BINARY(4) |Number of CPUs
|

|

|

|

|
|
|
|
24 | 18 |[BINARY(4) |Seguence number of collection
|
|
|

28 1C |CHAR(10) |System name
38 26 |CHAR(6) |Release |evel
44 2C |CHAR(12) |Date and time of collection

Field Descriptions

Date and time of collection. The date and time the data collection interval ended. Thiswill bein the
format YYMMDDHHMMSS, where:

YY Year
MM Month
DD Day
HH Hour
MM Minute
SS Second

The date and time reported here are the same as those reported by the generic header, but the generic header
also reports the century digit.

Interval time. The number of seconds since the initial datawas collected. Thisvalue is used in calculations
of utilization, counts per second, and other time-based calculations.

Number of CPUs. The number of CPUs configured on the system. No delta calculation should be
performed on thisfield.

Release level. The version, release, and modification level of the operating system the data was collected
on.

Reserved. Anignored field.

Sequence number of collection. The sequence number of the data collection. Each time dataiis collected,
this number isincreased by the user-specified interval time. This number might not accurately represent the
elapsed time and should not be used in place of interval time for time-related calculations. This number can
be used to detect missed intervals.

System name. The name of the system the data was collected on.

Total CPU seconds used. The total number of CPU seconds that are used during the collection interval for
all processors.

Type of resour ce. The type of resource the collected dataisfor. The possible values for thisfield are:
*JOB Job-related information
*POOL Pool-related information
*DIXK Disk-related information
*|OP |OP-related information
*COMM Communications-related information

Job Format

For adescription of the fieldsin this format, see Job Field Descriptions.

This format returns datafor each job and task that are active in the system when datais collected for the
reported interval. Datais not returned for jobs and tasks that end during an interval.

The amount of job and task data that this API returnsis limited to the amount of datathat can fit in the user
and internal job spaces. Thisresultsin alimit of approximately 18,000 jobs and tasks reported. While the
spaces support thousands of jobs and tasks, the APl might take longer than the collection interval to collect
data on this many jobs and tasks. Collecting data for alarge number of jobs and tasks might also lead to
undesirable system performance impacts.

Every job (threaded or not) has a primary thread. The primary thread is the first thread started for any job
and it remains active for the duration of the job. A multi-threaded job has additional threads that may start
and end at any point during the life of the job.

Only limited support is provided for multi-threaded jobs. When ajob has multiple threads, some of the data
that is reported isincomplete. Only one entry is returned for ajob regardless of how many threads are
active within the job. Within this entry some fields are atotal of all thread activity while other fields contain
datafor the primary thread only. Fields that apply only to the primary thread are identified in the table

below.

| Offset ’ ’

IDec |[Hex |Type Field

| 0 | 0 |CHAR(10) |Job name

| 10 | A |CHAR(2 |User name

| 20 | 14 |CHAR(®) |Job number

| 26 | 1A |CHAR(1) |Job type

[27 [1B [CHAR®) |Jobsubtype

| 28 | 1C |CHAR() | Pass-through source job flag

| 29 | 1D |CHAR(1) | Pass-through target job flag

| 30 | 1E |CHAR() |Emulation job flag

| 31 | 1F |CHAR() |Client Access application job flag
| 32 | 20 |CHAR(1) |Target DDM job flag

[33 [21 [CHAR() |MRTjobflag

| 34 | 22 |CHARQ) |System/36 environment job flag

| 35 | 23 |CHAR(2 |Job priority

[37 [25 |[CHAR® [Jobpool

| 39 | 27 |CHARQ) |Machine interactive flag

[40 [28 [CHAR®) |Reserved

[48 | 30 [BINARY(4) |DatabaseCPU time

[52 | 34 |[BINARY(4) |[Timesice

| 56 | 38 |BINARY(4) |CPUtime

| 60 | 3C |BINARY(4) |Transaction count

| 64 | 40 |BINARY(4) |Transactiontime

| 68 | 44 |[BINARY(4) |Synchronous database reads?

| 72 | 48 |BI NARY (4) |Synchronous database writes?

| 76 | 4C |BINARY(4) [Synchronous nondatabase reads?
| 80 | 50 |[BINARY(4) |Synchronousnondatabase writes?
| 84 | 54 |BI NARY (4) |Awnchronous database reads?

| 8 | 58 |[BINARY(4) |Asynchronous database writes?

| 92 | 5C |BI NARY (4) |Asynchronous nondatabase reads?
| 96 | 60 |BI NARY (4) |Asynchronous nondatabase writes?
| 100 | 64 |BINARY(4) |Communications puts

| 104 | 68 |BINARY(4) |Communications gets

[108 | 6C |[BINARY(4) |Reserved

| 112 | 70 [BINARY(4) [Binary overflows?

| 116 | 74 [BINARY(4) [Decimal overflows?

| 120 | 78 |[BINARY(4) |Floating-point overflows?

| 124 | 7C |BINARY(4) |Logical database reads

| 128 | 80 |BINARY(4) |Logical database writes

| 132 | 84 |BINARY(4) |Miscellaneous database operations

| 136 | 8 |[BINARY(4) [Permanent writes?
| 140 | 8C |BINARY(4) |Reserved
| 144 | 90 ([BINARY(4) [PAG faults?
| 148 | 94 |BINARY(4) |Number of printlines
| 152 | 98 |BINARY(4) |Number of print pages
| 156 | 9C |[BINARY(4) |Activeto-wait transitionst2
| 160 | A0 |[BINARY(4) |Wait-to-indligible transitionsl.2
| 164 | A4 |[BINARY(4) |Activeto-indigible transitionsl2
| 168 | A8 |CHAR(10) |Line description
| 178 | B2 |CHAR(10) |Secondary line description
| 188 | BC |CHAR(2 | Task type
| 190 | BE |CHAR(2 | Task type extender
| 192 | CO |BINARY(4) |Threadscurrently active
| 196 | C4 |BINARY(4) |Thread count
Note:
1 This counter does not wrap at the standard wrap value. Instead, it increments
up to 65535, then wrapsto 0.
2 This counter is supported for primary threads only. For multithreaded jobs, the
value reported may not reflect the total job activity.

Job Field Descriptions

Active-to-ineligible transitions. The total number of transitions from active state to ineligible state.
Active-to-wait transitions. The total number of transitions from active state to wait state.

Asynchronous database reads. The total number of physical asynchronous read operations for database
functions.

Asynchronous database writes. The total number of physical asynchronous write operations for database
functions.

Asynchronous nondatabase reads. The total number of physical asynchronous read operations for
nondatabase functions.

Asynchronous nondatabase writes. The total number of physical asynchronous write operations for
nondatabase functions.

Binary overflows. The number of binary overflows.

Client Access application job flag. Thisfield will be set to 1 if thisisa Client Access application job.
Otherwise, it will be set to 0.

CPU time. The processing unit time (in milliseconds) used by this job.

Communications gets. The number of communications read (logical) operations. These do not include
remote work station activity. They include only activity related to intersystem communication function

(ICF) fileswhen the 1/O isfor an ICF device.

Communications puts. The number of communications writes. These do not include remote work station
activity. They include only activity related to | CF files when the I/O isfor an ICF device.

Database CPU time. The processing unit time (in milliseconds) used by thisjob for database processing.
For any particular job, this field contains the total database CPU time for all threads of the job.

Decimal overflows. The number of decimal overflows.

Emulation job flag. Thisfield will be set to 1 if thisisaemulation job. Otherwise, it will be set to 0.
Floating-point over flows. The number of floating point overflows.

Job name. The name of the job or task. For an interactive job, the system assigns the job the name of the
work station where the job started. For a batch job, the name is specified in the command when thejobis

submitted. For atask name, thisfield will contain the first 10 characters of the 16-character task name.

Job number. The number of thejob (in decimal) or task (in hexadecimal). Note that the numbering system
for jobs and tasks is different such that ajob and a task could have the same number.

Job pool. The pool that the job ranin.

Job priority. Thejob's priority over other jobs.

Job subtype. The subtype of the job. The possible values for thisfile are;
blank The job has no specia subtype

Immediate

Evoke job (communications batch)

Prestart job

Print driver job

Multiple requester terminal (MRT) job (System/36 environment only)

cC 4 ©W <« m

Alternate spool user

Job type. The type of job or task. The possible values for thisfield are:
A Autostart job
B Batchjob

Interactive job

Subsystem monitor job

Spooled reader job

System job

Vertical Licensed Internal Code (VLIC) (tasks only)
Spooled writer job

X £ < 0w T Z

Start-control -program-function (SCPF) system job

Line description. The name of the communications line this work station and its controller are attached to.
Thisisonly available for remote work stations.

L ogical database reads. The number of times the database module was called. This does not include I/0
operations to readers/writers, or 1/O operations caused by the Copy Spooled File (CPY SPLF) or Display
Spooled File (DSPSPLF) command. If SEQONLY (*YES) is specified on the Override with Database File
(OVRDBF) command, these numbers show each block of records read, not the number of individual
numbers read.

L ogical database writes. The number of times the internal database write function was called. This does
not include 1/0O operations to readers/writers, or 1/0O operations caused by the CPY SPLF or DSPSPLF
commands. If SEQONLY (*YES) is specified on OVRDBF command, these numbers show each block of
records written, not the number of individual records written.

Machineinteractiveflag. Thisfield is set to 1 if the machine is counting the processor resources
consumed by this job or task against the interactive workload. Otherwise, it is set to O.

Miscellaneous database oper ations. The number of update, del ete, force-end-of-data, and release
operations.

MRT job flag. Thisfield will be set to 1 if thisis amultiple requester terminal (MRT) job. Otherwise, it
will be set to O.

Number of print lines. The number of lines written by the program. This does not reflect what is actually
printed. Spooled files can be ended or printed with multiple copies.

Number of print pages. The number of pages printed by the program.

PAG faults. The total number of times the process access group (PAG) was referred to, but was not in
main storage.

Permanent writes. The number of permanent writes.

Pass-through sourcejob flag. Thisfield will be set to 1 if thisis a pass-through source job. Otherwise, it
will be set to 0.

Pass-through target job flag. Thisfield will be set to 1 if thisis a pass-through target job. Otherwise, it
will be set to O.

Reserved. Anignored field.

Secondary line description. The name of the communications line thiswork station and its controller are
attached to. Thisis only available for pass-through and emulation.

Synchronous database reads. The total number of physical synchronous read operations for database
functions.

Synchronous database writes. The total number of physical synchronous write operations for database
functions.

Synchronous nondatabase reads. The total number of physical synchronous read operations for
nondatabase functions.

Synchronous nondatabase writes. The total number of physical synchronous write operations for
nondatabase functions.

System/36 environment job flag. Thisfield will be set to 1 if thisis a System/36 environment job.

Otherwise, it will be set to 0.
Target DDM job flag. Thisfield will be set to 1if thisisatarget DDM job. Otherwise, it will be set to O.
Task type. Type of task. Possible values are:

01 Resident task

02 Supervisor task

03 MI processtask

04 System/36 environment task

Task type extender. A task type extender identifies the area of functional support provided by the task. See
the task type field description for types of functions supported.

For detailed information on task type extender values, see Task Type Extender in the Work Management

@ book on the V5R1 Supplemental Manuals Web site.

Thread count The count of the number of threads initiated within the job.

Threads currently active The count of the current number of active threads in the process when the data
was sampled. An active thread may be actively running, suspended, or waiting for aresource. No delta
calculation should be done on thisfield.

Time dlice. Thetime dlice value in seconds. No delta calculation should be performed on thisfield.
Transaction count. The number of transactions performed by the job.

Transaction time. The total transaction time (in seconds).

User name. The user profile under which the job isrun. The user name is the same as the user profile name
and can come from several different sources depending on the type of job. For atask, thisfield will be
blank.

Wait-to-ineligible transitions. Total number of transitions from wait state to ineligible state.

Pool Format

For a description of the fieldsin this format, see Pool Field Descriptions.

Offset
Dec [Hex ’Type ’Field
0 0 |BINARY(4) |Pool number
4 4 |BINARY(4) |Activity level
8 8 |BINARY(4) [Pool size

|
|
|
12 | C |[BINARY(4) |Machine-reserved portion
|
|
|
|

16 10 [BINARY(4) |Database faults
20 14 |BINARY(4) |Nondatabase faults
24 18 |BINARY(4) |Database pages
28 1C |[BINARY(4) |Nondatabase pages

| 32 | 20 |BINARY(4) |Activeto-wait transitions!

| 36 | 24 |[BINARY(4) |Wait-to-indligible transitionst
| 40 | 28 |BINARY(4) |Active-to-ineligibletransitions!
| 44 | 2C |BINARY(4) |Activeto-wait transitions?

| 48 | 30 |[BINARY(4) |Wait-to-indligible transitions?
| 52 | 34 |[BINARY(4) |Activeto-ineligible transitions?
Note:

1 This counter does not wrap at the standard wrap value. Instead, it increments
up to 32767, then wrapsto 0.

2 This counter wraps at the standard wrap value. It will increment up to
2,147,483,647 (231 - 1), then wrap to O.

Pool Field Descriptions

Active-to-ineligible transitions. The total number of transitions by processes assigned to this pool from
active state to ineligible state. There are two versions of this counter--one that wraps at the standard wrap
value and one that wraps at a nonstandard wrap value.

Active-to-wait transitions. The total number of transitions by processes assigned to this pool from active
state to wait state. There are two versions of this counter--one that wraps at the standard wrap value and one
that wraps at a nonstandard wrap value.

Activity level. The maximum number of processes that can be active in the machine at the same time. No
delta calculation should be performed on thisfield.

Database faults. The total number of interruptions to processes (not necessarily assigned to this pool) that
were required to transfer data into the pool to permit the M1 instruction to process the database function.

Database pages. The total number of pages of database data transferred from auxiliary storage to the pool
to permit the instruction to run as a consequence of set access state, implicit access group movement, and
internal machine actions.

Machine-reserved portion. The amount of storage (in kilobytes) from the pool that is dedicated to
machine functions. No delta calculation should be performed on thisfield.

Nondatabase faults. The total number of interruptions to processes (not necessarily assigned to this pool)
that were required to transfer data into the pool to permit the MI instruction to process the nondatabase
function.

Nondatabase pages. The total number of pages of nondatabase data transferred from auxiliary storageto
the pool to permit the instruction to run as: a consequence of set access state, implicit access group
movement, and internal machine actions.

Pool number. The unique identifier of this pool. The valueisfrom 1 to 64. No delta calculation should be
performed on thisfield.

Pool size. The amount of main storage (in kilobytes) assigned to the pool. Note that if a pool is reported
with a pool size of zero, then the pool does not exist. No delta cal culation should be performed on thisfield.

Wait-to-ineligible transitions. Total number of transitions by processes assigned to this pool from wait
state to indligible state. There are two versions of this counter--one that wraps at the standard wrap value

and one that wraps at a nonstandard wrap value.

Disk Format

For a description of the fieldsin thisformat, see Disk Field Descriptions.

| Offset

IDec |Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Reserved

[4 | 4 |[BINARY(4) |Reserved

| 8 | 8 |CHAR(®4) Disk arm number

| 12 | C |CHAR(4) |Disk drive type

| 16 | 10 |CHAR(1) IMirror flag

| 17 | 11 |CHAR(1) |Mirror status

| 18 | 12 |CHAR(2 |Reserved

| 20 | 14 |BINARY(4) |Timesthearm not busy

[24 | 18 |[BINARY(4) |Samplestaken

| 28 | 1C |BINARY(4) |Drive capacity

| 32 | 20 |BINARY(4) |Driveavailable space

| 36 | 24 |BINARY(4) |Blocksread

| 40 | 28 |BINARY(4) |Blockswritten

| 44 | 2C |BINARY(4) |Read commands

| 48 | 30 |BINARY(4) |Writecommands

| 52 | 34 |BINARY(4) |Processor idleloop count
| 56 | 38 |BINARY(4) |Processor idlelooptime

[60 | 3C |[BINARY(4) [Seeks>2/3of disk

| 64 | 40 |BINARY(4) |Seeks>1/3and < 2/3of disk
[68 | 44 |[BINARY(4) [Seeks> U/6and < U3 of disk
| 72 | 48 |BINARY(4) |Seeks>1/12and < 1/6 of disk
| 76 | 4C |BINARY(4) [Seeks< 1/12 of disk

[80 [50 [BINARY(4) |Zeroseeks

| 84 | 54 |BINARY(4) |Buffer overruns

| 88 | 58 |BINARY(4) |Buffer underruns

| 92 | 5C |BINARY(4) |Total queueelements

| 9% | 60 |CHAR(2) |ASP number

[98 [62 [CHAR®) |Reserved

[7100 | 64 |[BINARY(4) |Reserved

[7104 | 68 |[BINARY(4) |Reserved

| 108 | 6C |CHAR(10) ||OP resource name

| 118 | 76 |CHAR(10) |Unit resource name

| 128 | 80 |CHAR(1) |Compressed unit

| #2129 | 81 |CHAR(1) [Reserved
| 130 | 82 |CHAR(10) |ASP resource name
| 140 | 8C |BINARY(4) |ASPnumber - extended<

Disk Field Descriptions

#ASP resour ce name. The resource name of the ASP to which this unit currently is allocated. A value of
blanks specifies the system ASP or abasic ASP.4%

ASP number. The auxiliary storage pool (ASP) to which thisunit is currently allocated. The values are:

-1 The ASP number is greater than 99 and cannot be reported in this field. Use the value in the ASP
number - extended field instead. €

00 This unit currently is not alocated.
01 The system ASP.

02-32 A basic ASP.

33-99 Anindependent ASP.

#ASP number - extended. Thefield is defined the same as the ASP number field except that it also can
report ASP numbers greater than 99. The values reported are:

0 This unit currently is not alocated.
1 The system ASP.

2-32 A basic ASP.

33-255 Anindependent ASP.

No delta calculation should be done on thisfield. <

Blocksread. The number of blocks read. The block length is 520 bytes, which includes 8 bytes of system
control information.

Blockswritten. The number of blocks written. The block length is 520 bytes, which includes 8 bytes of
system control information.

Buffer overruns. The number of times that data was available to be read into the disk controller buffer
from the disk, but the disk controller buffer still contained valid data that was not retrieved by the storage
device controller. Consequently, the disk had to take an additional revolution until the buffer was available
to accept data.

Buffer underruns. The number of times that the disk controller was ready to transfer datato the disk on a
write operation, but the disk controller buffer was empty. The data was not transferred in time by the disk
IOP to the disk controller buffer. The disk was forced to take an extra revolution awaiting the data.
Compressed unit. A compressed unit indicator. The values are:

0 Thisunitisnot compressed.

1 Thisunitis compressed.

Disk arm number. Theidentifier of the unit. Each actuator arm on the disk drivesthat are available to the
machine represents a unit of auxiliary storage. The value of the unit number is assigned by the system when
the unit is alocated to an ASP. If the disk arm number is 0000, then the arm is not configured. Both arms of
amirrored-arm pair have the same disk arm number and can be differentiated by the mirror flag value.

Disk drivetype. The type of disk drive, such as 9332, 9335, or 6100.

Drive available space. The total number of kilobytes of auxiliary storage space that is not currently
assigned to objects or to internal machine functions. No delta cal culations should be done on thisfield.

Drive capacity. The total number of kilobytes of auxiliary storage provided on the unit for the storage of
objects and internal machine functions.

| OP resour ce name. System-unique name to identify the 10OP.

Mirror flag. The flag indicating whether this disk arm is mirrored. The values are:
blank The armisnot mirrored.
A Thefirst arm of amirrored pair.

B The second arm of amirrored pair.

Mirror status. The status of file mirroring. The values are:
« X'00' - Not mirrored
o X'01'- Active
o X'02' - Resuming
o X'03' - Suspended

Processor idleloop count. The number of times the disk controller passed through the idle loop. The count
isincreased differently for the 9332 and 9335 disk drives. For the 9332, this counter isincreased only if the
disk controller istotally idle (no I/O operations are active). For the 9335, even though the disk controller
may be idle and the counter gets increased, an 1/O operation can be active (for example, seek is being
performed). Thisfield is nonzero for drive types that support a dedicated disk processor and is zero for
other drive types.

Processor idle loop time. The time (in hundredths of microseconds) to make one pass through the idle
loop. The value reported could be a multiple of the actual processor idle loop time. In that case, the value
reported for the processor idle loop count is reduced by the same multiple so that the calculated disk
processor utilization is correct. This field applies to drive types that support a dedicated disk processor and
is zero for other drive types. No delta calculation should be done on thisfield.

Read commands. The number of read data commands.
Reserved. Anignored field.
Samplestaken. The number of samples taken at approximately two per second.

Seeks < 1/12 of disk. The number of times the arm traveled from its current position to less than 1/12 of the
disk on a seek request.

Seeks> 1/12 and < 1/6 of disk. The number of times the arm traveled more than 1/12 but less than 1/6 of
the disk on a seek request.

Seeks > 1/6 and < 1/3 of disk. The number of times the arm traveled more than 1/6 but less than 1/3 of the
disk on a seek request.

Seeks > 1/3 and < 2/3 of disk. The number of times the arm traveled more than 1/3 but less than 2/3 of the
disk on a seek request.

Seeks > 2/3 of disk. The number of times the arm traveled more than 2/3 of the disk on a seek request.

Timesthe arm not busy. The number of times there were no outstanding 1/O operations active at sample
time.

Total queue elements. The number of 1/O operations waiting service at sample time. This number includes
the I/O operation that isin progress. Divide this by the number of samples taken to get the average queue
length.

Unit resour ce name. System-unique name to identify the disk.

Write commands. The number of write data commands.

Zero seeks. The number of times the access arm did not physically move on a seek request. The operation
may have resulted in a head switch.

IOP Format

For a description of the fieldsin thisformat, see |OP Field Descriptions.

| Offset ’ ’

Dec [Hex |Type Field

| 0 | 0 |BINARY(4) |Reserved

[4 [4 |[BINARY(4) |Reserved

[8 | 8 |[CHAR®) [iOPtype

| 9 | 9 |[CHAR(®4) |Resource type

13 [D [CHAR®) |Reserved

| 16 | 10 |BINARY(4) |ldieloop count

| 20 | 14 |BINARY(4) |Idielooptime

[24 [18 [BINARY(4) |RAM utilization

| 28 | 1C |BINARY(4) |IOP system functiontime

| 32 | 20 |BINARY(4) |All protocols communications time
| 36 | 24 |BINARY(4) |SDLC communicationstime

| 40 | 28 |BINARY(4) |Asynchronous communicationstime
| 44 | 2C |BINARY(4) |Bisynchronouscommunicationstime
| 48 | 30 |BINARY(4) |X.25LLC communicationstime

| 52 | 34 |BINARY(4) |X.25PLC communicationstime

| 56 | 38 |BINARY(4) |X.25DLC communicationstime

| 60 | 3C |BINARY(4) |LAN communicationstime

| 64 | 40 |BINARY(4) |SDLC short-hold modetime

| 68 | 44 |BINARY(4) |ISDN LAPEand LAPD time

| 72 | 48 |BINARY(4) |ISDN Q931 communicationstime
[76 | 4C |BINARY(4) |Disktime

| 80 | 50 |CHAR(1) |Function 1 identifier
| 81 | 51 |CHAR()) |Function 2 identifier
| 82 | 52 |CHAR(1) |Function 3 identifier
| 83 | 53 |CHAR(1) |Function 4 identifier
| 84 | 54 |CHAR() |Function 5 identifier
[8 | 55 |[CHAR®) |Reserved

| 88 | 58 |BINARY(4) |Function1time
[92 [5C |[BINARY(4) |Function2time

| 96 | 60 |BINARY(4) |Function3time

| 100 | 64 |BINARY(4) |Function4time
[104 | 68 |[BINARY(4) |Function5time

| 108 | 6C |BINARY(4) |Processor 2time

| 112 | 70 |CHAR(10) ||OP resource name
[[122 [7A [CHAR() |Reserved

[124 | 7C |BINARY(4) |Reserved

| 128 | 80 |BINARY(4) |Twinaxial time
|%132 | 84 |BINARY(4) |Other functiontime
| 136 | 88 |BINARY(4) |Interrupt level time
| 140 | 8C |BINARY(4) [Remoteaccesstime®

IOP Field Descriptions

All protocols communications time. The total processing unit time (in milliseconds) used by all of the
communication protocol tasks that are running in the primary 10P processor. Thisfield only appliesto
communications and multifunction |OPs. Otherwise, it will be set to O.

Asynchronous communicationstime. The total processing unit time (in milliseconds) used by
asynchronous communications tasks that are running in the primary |OP processor. Thisfield only applies
to communications and multifunction |OPs. Otherwise, it will be set to 0.

Bisynchronous communicationstime. The total processing unit time (in milliseconds) used by
bisynchronous communications tasks that are running in the primary |OP processor. Thisfield only applies
to communications and multifunction 10Ps. Otherwise, it will be set to 0.

Disk time. The total processing unit time (in milliseconds) used by disk tasks that are running in the
primary 10P processor. Thisfield only applies to multifunction |OPs. Otherwise, it will be set to 0.

Function 1-5identifier. Theidentifier for additional functions that may be running in the primary 10P
processor. Each function identifier has an associated function time value. Function identifier may have the
following values:

« X'00' - No time value supplied

o X'11'- Integrated xSeries Server for iSeries pipe task (Integrated xSeries Server for iSeriesis aso
known as file server 1/O processor and FSIOP.)

o X'20' - Storage subsystem task

o X'22' - Tapetask

o X'23' - Diskette task

o X'24' - Optical task

o X'30' - Communications subsystem task
o X'42' - Localtalk task

o X'43 - Wirelesstask

o X'50' - Service processor task

o X'60' - Cryptography task

Thisfield only appliesto communications and multifunction |OPs. Otherwise, it will be set to X'00'.

Function 1-5 time. The total processing unit time (in milliseconds) used by the IOP function that is
running in the primary 10P processor. This field only applies to communications and multifunction |OPs.
Otherwise, it will be set to 0.

Idle loop count. The number of times the primary |OP processor ran an idle loop. Thisis done when the
|OP has no work to perform. This count is used with idle loop time to calculate the primary |OP processor
utilization in seconds:

U=1I1T- (ILC* ILT / 100, 000, 000)
where:
U isthe processor utilization in seconds for the interval
IT isthechangein theinterval time during the interval
ILC isthechangein theidleloop count during the interval

ILT istheidlelooptime

Idle loop time. Thetime (in hundredths of microseconds) for the primary 0P processor to run theidle
loop once. The value reported could be a multiple of the actual idle loop time. In that case, the value
reported for the idle loop count is reduced by the same multiple so that the calculated 10OP processor
utilitzation is correct. No delta calculation should be done on thisfield.

ZInterrupt level time. Thetotal processing unit time (in milliseconds) used by interrupt level processing
that is running in the primary |OP processor. This does not include interrupt level processing time that can
be associated with a particular task. This field only applies to multifunction 10Ps. Otherwise, it is set to 0.
&

| OP resour ce name. System-unique name to identify the 10OP.

| OP system function time. The total time (in milliseconds) used by the IOP for basic system function that
isrunning in the primary 1OP processor. This field only applies to communications and multifunction 10Ps.
Otherwise, it will be setto 0.

|OP type. Thetype of IOP. The possible values for thisfield are:

C Communications |OP

D DiskIOP

L Loca work station |OP
M Multifunction |OP

Note that QPMLPFRD will report 1/0 processor (I0OP) statistics differently starting with Version 3 Release
7. Performance statistics for IOPs introduced in Version 3 Release 7 or later will be reported as
multifunction |OPs even if the IOP supports only one of the three |OP functions (communications, disk, or
local workstation). There will be no change in the reporting of performance statistics for |OPs introduced
before Version 3 Release 7, which will still be reported under the appropriate 10OP type (communications,
disk, local workstation, or multifunction).

ISDN LAPE and LAPD time. Thetotal processing unit time (in milliseconds) used by integrated services
digital network (ISDN) communications tasks that are running in the primary 10OP processor. Thisfield only
applies to communications and multifunction 10OPs. Otherwise, it will be set to 0. The ISDN
communications tasks are:

LAPD Link access procedure D-channel
LAPE Enhanced version of LAPD

ISDN Q.931 communicationstime. The total processing unit time (in milliseconds) used by ISDN Q.931
communications tasks that are running in the primary |OP processor. Thisfield only appliesto
communications and multifunction 1OPs. Otherwise, it will be set to 0.

LAN communicationstime. The total processing unit time (in milliseconds) used by the token-ring
network, Ethernet, framerelay, fiber distributed data interface (FDDI), and asynchronous transfer mode
(ATM) communications tasks that are running in the primary 10P processor. This includes processing time
due to token-ring and Ethernet LAN emulation. Thisfield only applies to communications and
multifunction |OPs. Otherwise, it will be set to O.

#Other function time. The total processing unit time (in milliseconds) used by other 0P functions that
are running in the primary 10P processor. Other functions include those that cannot be reported in the
function 1-5 identifier fields because all of the function 1-5 identifier fields are in use. Thisfield appliesto
communications and multifunction 10Ps only. Otherwisg, it is set to 0. &

Processor 2 time. The utilization (in milliseconds) of the second |OP processor, which handles specialized
functions. Thisfield applies to wireless |IOPs, and is zero for other |OPs.

RAM utilization. Available local storage (in bytes). The number of bytes of free local storage in the |IOP.
The free local storage will probably be nhoncontiguous because of fragmentation. Thisfield only appliesto
communications and multifunction |OPs. Otherwise, it will be set to 0. No delta calculations should be
done on thisfield.

#Remote accesstime. The total processing unit time (in milliseconds) used by remote access tasks that are
running in the primary 10P processor. This field applies to multifunction IOPs only. Otherwise, it is set to
0.«

Reserved. Anignored field.

Resour ce type. The model number of the |OP.

SDL C communicationstime. Thetotal processing unit time (in milliseconds) used by SDLC
communications tasks that are running in the primary |OP processor. Thisfield only appliesto

communications and multifunction |OPs. Otherwise, it will be set to 0.

SDL C short-hold modetime. The total processing unit time (in milliseconds) that is used by SDLC

short-hold mode tasks that are running in the primary 10P processor. This field only appliesto
communications and multifunction 10Ps. Otherwise, it will be set to 0.

Twinaxial time. The total processing unit time (in milliseconds) used by workstation and local twinaxial
tasks that are running in the primary 1OP processor. Thisfield only applies to multifunction |OPs.
Otherwise, it will be set to 0.

X.25 DL C communications time. The total processing unit time (in milliseconds) used by X.25 data link
control (DL C) and Point-to-Point Protocol (PPP) communications tasks that are running in the primary 10P
processor. Thisfield only applies to communications and multifunction |OPs. Otherwise, it will be set to 0.

X.25LLC communicationstime. Thetotal processing unit time (in milliseconds) used by X.25 logical
link control (LLC) communications tasks that are running in the primary 10P processor. Thisfield only
applies to communications and multifunction 10Ps. Otherwise, it will be set to O.

X.25 PLC communicationstime. The total processing unit time (in milliseconds) used by X.25 packet
layer communications (PLC) tasks that are running in the primary |OP processor. Thisfield only appliesto
communications and multifunction |OPs. Otherwise, it will be set to O.

Communications Data Formats

The formats for communications data are handled differently from the formats for other types of resources.
All communications protocols are kept in the same space, but, because each protocol has unique data fields,
each individual field in the space will have a different meaning depending on the protocol. Therefore,
different formats are presented for each protocol. Also, because the protocols vary in the number of data
fields, some protocol formats will not use all the space provided (each record in the space has the same
length). The communications data formats are:

« Asynchronous Format (Asynchronous Format)

 Bisynchronous Format (Bisynchronous Format)

« Token-Ring Format (Token-Ring Format)
« Ethernet Format (Ethernet Format)

o IDLC Format (IDLC Format)

o LAPD Format (LAPD Format)

o SDLC Format (SDLC Format)

o X.25 Format (X.25 Format)

« £PPP Format (PPP Format)%

Asynchronous Format

For a description of the fieldsin this format, see Asynchronous Field Descriptions.

| Offset ’ ’

IDec |Hex |Type Field

| 0 | 0 |BINARY(4) |Reserved
[4 [4 [BINARY(4) |Reserved
| 8 | 8 |CHAR(1) | Protocol

| 9 | 9 |CHAR(10) |Line description

| 19 | 13 |CHAR(1) |Line active

| 20 | 14 |CHAR(12 |Reserved

[32 [20 [BINARY(4) |Linespeed

| 36 | 24 |BINARY(4) |Number of vary on operations
| 40 | 28 |BINARY(4) |Activetime

["44 | 2C [BINARY(4) [Bytestransmitted

| 48 | 30 |BINARY(4) |Bytesreceived

| 52 | 34 |BINARY(4) |Protocol dataunitstransmitted
| 56 | 38 |BINARY(4) |Protocol data units received

| 60 | 3C |BINARY(4) |Protocol dataunitsreceived in error
| 64 | 40 |CHAR(10) ||OP resource name

Asynchronous Field Descriptions

Activetime. The amount of time in seconds that the line was active (varied on). This field should be used
instead of interval time for al time-dependent fields calculated (for example, line utilization) to get accurate
statistics.

Bytesreceived. The number of bytes received (data and control characters), including characters received
in error.

Bytestransmitted. The number of bytes transmitted (data and control characters) including bytes
transmitted again because of errors.

| OP resour ce name. System-unique name to identify the I0OP.
Line active. The state of the line when the collection interval ended. The values are:
0 Thelineisnot active.

1 Thelineisactive.

Linedescription. The name of the description for thisline.

Line speed. The speed of thisline in bits per second (bps). No delta cal culation should be performed on
thisfield.

Number of vary on operations. The total number of vary on operations.
Protocal. Protocol type. Thiswill be set to A for asynchronous.
Protocol data unitsreceived. The total number of protocol data units received.

Protocol data unitsreceived in error. The total number of protocol data units received with parity and
stop bit errors.

Protocol data unitstransmitted. The total number of protocol data units successfully transmitted and the
data circuit-terminating equipment (DCE) acknowledged.

Bisynchronous Format

For a description of the fieldsin this format, see Bisynchronous Field Descriptions.

| Offset

IDec |Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Reserved

[4 [4 [BINARY(4) |Reserved

| 8 | 8 |CHAR(1) | Protocol

| 9 | 9 |CHAR(10) |Line description

| 19 | 13 |CHAR() |Line active

[20 [14 [CHAR(12) |Reserved

| 32 | 20 |BINARY(4) |Line speed

| 36 | 24 |BINARY(4) |Number of vary on operations
| 40 | 28 |BINARY(4) |Activetime

| 44 | 2C |BINARY(4) |Bytestransmitted

48 [30 [BINARY(4) |Bytesreceived

| 52 | 34 |BINARY(4) |Datacharacterstransmitted

| 56 | 38 |BINARY(4) |Datacharacters received

| 60 | 3C |BINARY(4) |Datacharacters retransmitted

| 64 | 40 |BINARY(4) |Datacharactersreceivedin error
| 68 | 44 |BINARY(4) |Charactersreceivedin error

[72 [48 [BINARY(4) |NAK received to text sent

| 76 | 4C |BINARY(4) |Wrong ACK to text sent

| 80 | 50 |BINARY(4) |Enquiry to text sent

| 84 | 54 |BINARY(4) |Invalid (unrecognized) format
| 88 | 58 |BINARY(4) |Enquiry to ACK

| 92 | 5C |BINARY(4) |Disconnect received (abort)
[96 | 60 |[BINARY(4) |EOT received (abort)

| 100 | 64 |BINARY(4) |Disconnect received (forward abort)
| 104 | 68 |BINARY(4) |EOT received (forward abort)
| 108 | 6C |BINARY(4) |Datablocks transmitted

| 112 | 70 |BINARY(4) |Datablocks received

| 116 | 74 |CHAR(10) |IOP Resource name

Bisynchronous Field Descriptions

Activetime. The amount of time in seconds that the line was active (varied on). This field should be used
instead of interval time for al time-dependent fields calculated (for example, line utilization) to get accurate
statistics.

Bytesreceived. The number of bytes received (data and control characters), including bytes received in
error.

Bytestransmitted. The number of bytes transmitted (data and control characters) including bytes
transmitted again because of errors.

Charactersreceived in error. The number of characters received with a block-check character error.
Data blocksreceived. The number of data blocks received.
Data blocks transmitted. The number of data blocks transmitted.

Data charactersreceived. The number of data characters received successfully (excluding synchronous
characters) while in data mode.

Data charactersreceived in error. The number of data characters received with a block-check character
error while in data mode.

Data charactersretransmitted. The number of data characters transmitted again.
Data characterstransmitted. The number of data characters transmitted successfully while in data mode.

Disconnect received (abort). The number of times the remote station issued a disconnect with abnormal
end. This could occur when error recovery did not succeed or the binary synchronous job was ended.

Disconnect received (forward abort). The number of times the host station issued a disconnect with
abnormal end. This could occur when error recovery did not succeed or the binary synchronous job was
ended.

EOT received (abort). The end of transmission was received (abnormal end). Thisissimilar to a
disconnect.

EOT received (forward abort). The end of transmission was received (forward abnormal end). Thisis
similar to a disconnect.

Enquiry to ACK. An enquiry to acknowledged character. The remote station returned an acknowledgment
(for example, ACKO), and the host system sent an ENQ character. This indicates that the host station did
not recognize the acknowledgment as a valid acknowledgment.

Enquiry to text sent. The number of times text was sent by a station and an ENQ character was returned.
The receiving station expected some form of acknowledgment, such as an ACKO, ACK1, or NAK.

| OP resour ce name. System-unique name to identify the IOP.

Invalid (unrecognized) format. The number of times one of the delimiter characters that encloses the data
in brackets being sent or received is not valid.

Line active. The state of the line when the collection interval ended. The values are:
0 Thelineisnot active.

1 Thelineisactive.

Line description. The name of the description for thisline.

Line speed. The speed of thislinein bits per second (bps). No delta calculation should be performed on
thisfield.

NAK received to text sent. Negative acknowledgment character received to text sent. The number of times
the remote station did not understand the command sent from the host system.

Number of vary on operations. The total number of vary on operations.

Protocol. The protocol type. Thiswill be set to B for bisynchronous.

Reserved. Anignored field.

Wrong ACK to text sent. Wrong acknowledgment character to text sent. The host system received an

acknowledgment from the remote device that was not expected. For example, the host system expected an
ACKO and recelved an ACK1.

Token-Ring Format

Token-ring format was formerly known as establishment communications link (ECL) format.

Thisformat reports token-ring LAN protocol statistics for asynchronous transfer mode (ATM) ports that
support token-ring LAN emulation and for token-ring ports.a

For a description of the fieldsin thisformat, see Token-Ring Field Descriptions.

| Offset ’ ’

IDec |Hex |Type Fied

| 0 | 0 |BINARY(4) |Reserved

[4 | 4 |[BINARY(4) |Reserved

| 8 | 8 |CHAR(1) | Protocol

| 9 | 9 |CHAR(10) |Line description

| 19 | 13 |CHAR() |Line active

[20 | 14 |[CHAR(12) |Reserved

| 32 | 20 |BINARY(4) |Line speed

| 36 | 24 |BINARY(4) |Number of vary on operations
| 40 | 28 |BINARY(4) |Activetime

| 44 | 2C |BINARY(4) |I-frame characters transmitted
| 48 | 30 |BINARY(4) |I-framecharacters received
| 52 | 34 |BINARY(4) |RNR framestransmitted

| 56 | 38 |BINARY(4) |RNR framesreceived

| 60 | 3C |BINARY(4) |Reject framestransmitted

| 64 | 40 |BINARY(4) |Reject framesreceived

| 68 | 44 |BINARY(4) |I-framestransmitted

| 72 | 48 |BINARY(4) |I-framesreceived

| 76 | 4C |BINARY(4) |SABME framestransmitted
| 80 | 50 |BINARY(4) |SABME frames received

| 84 | 54 |BINARY(4) |N2retries expiration count

| 88 | 58 |BINARY(4) |T1timer expiration count

| 92 | 5C |[BINARY(4) |Framestransmitted?

| 96 | 60 |[BINARY(4) |Frames received?

| 100 | 64 |[BINARY(4) |Routing I-frames transmitted?.2

| 104 | 68 |[BINARY(4) |Routing I-frames received!2

| 108 | 6C [BINARY(4) |Lineerors?

| 112 | 70 |BINARY(4) ||nterna| errorsl.2

| 116 | 74 |[BINARY(4) [Bursterror?

| 120 | 78 |[BINARY(4) [ARI/FCI error2

| 124 | 7C [BINARY(4) |Abort delimiter2

| 128 | 80 |[BINARY(4) |Lost framel2

| 132 | 84 |[BINARY(4) |Receive congestion?

| 136 | 88 |[BINARY(4) |Frame-copied error2

| 140 | 8C |[BINARY(4) [Frequency errorl2

| 144 | 90 |[BINARY(4) [Token errorl2

| 148 | 94 |BINARY(4) |Direct memory access bus errorl.2
| 152 | 98 |[BINARY(4) |Direct memory access parity errorl2
| 156 | 9C |BINARY(4) |Addressnot recognizedl.2

| 160 | A0 |[BINARY(4) |Framenot-copied errorl2

| 164 | A4 |[BINARY(4) |Transmitstrip errorl2

| 168 | A8 |[BINARY(4) |Unauthorized APL2

| 172 | AC |[BINARY(4) |Unauthorized MAC framel.2

| 176 | BO |[BINARY(4) [Softerrorl2

| 180 | B4 |[BINARY(4) |Transmit beaconl2

| 184 | B8 |[BINARY(4) |[IOA statusoverrunl2

| 188 | BC |[BINARY(4) |Framesdiscardedl?

| 192 | CO |[BINARY(4) [Spuriousinterruptst2

| 196 [C4 [BINARY(4) [Total MAC bytes received OK

| 200 | C8 |BINARY(4) |Total MAC bytestransmitted OK

| 204 | cC |BINARY(4) |Tota| frames not transmitted - hardware error2
| 208 | DO [BINARY(4) [Ring usecount2

| 212 | D4 |[BINARY(4) |Ring sample count?

| 216 | D8 |BINARY(4) |FCS/codevioIationsinrepeated frames?
| 220 | DC |BINARY(4) |Framestransmitted and failed to return2
| 224 | EO |[BINARY(4) [Number of underruns?

| 228 | E4 |CHAR(10) ||OP resource name

| 238 [EE [CHAR(L) [Duplex

| 239 | EF |CHAR(1) |Reserved

| 240 | FO |BINARY(8) |Linespeed-long

| 248 | F8 |BINARY(8) |I-framecharacters transmitted - long
| 256 | 100 |BINARY(8) |I-frame charactersreceived - long

| 264 | 108 |BINARY(8) |I-framestransmitted - long

| 272 | 110 |BINARY(8) |I-framesreceived - long

280 | 118 [BINARY(8) |Framestransmitted - long2
288 120 [BINARY(8) |Frames received - long?
296 128 [BINARY(8) |Routing I-frames transmitted - longl2
304 130 [BINARY(8) |Routing I-framesreceived - longl:2

| |
| |
| |
| |
| 312 | 138 |BINARY(8) |Total MAC bytesreceived OK - long
| |
| |
| |

320 140 |BINARY(8) |Tota MAC bytes transmitted OK - long
%328 | 148 |BINARY(4) |Unsupported protocol framesl.2

332 14C |BINARY(4) |Reserved4
Notes:

1 Not applicablefor file server I/O processor.
2 Not applicable for token-ring LAN emulation over ATM.

Token-Ring Field Descriptions

ARI/FCI error. Address-recognized indicator or frame-copied indicator error. Thisisaphysical control
field-extension field error.

Abort delimiter. The number of times an abnormal ending delimiter was transmitted because of an internal
error.

Activetime. The amount of time in seconds that the line was active (varied on). This field should be used
instead of interval time for al time-dependent fields calculated (for example, line utilization) to get accurate
statistics.

Address not recognized. Total number of frames with address-not-recognized error.

Burst error. The number of burst errors. Burst of same polarity is detected by the physical unit after the
starting delimiter of aframe or token.

Direct memory access bus error. Direct memory access (DMA) error for the IOP/IOA bus.
Direct memory access parity error. DMA parity error for the IOP/IOA.

Duplex. The duplex state of the line. For some lines, this value might change over time. This field can have
the following values:

blank The duplex stateis not known.
F Full duplex: The line can simultaneously transmit and receive data.

H Half duplex: The line can either transmit data or receive data, but the line cannot simultaneously
transmit and receive data.

FCS/code violationsin repeated frames. This counter isincremented for every frame that has a code
violation or fails the frame check sequence (FCS) cyclic redundancy check.

Frame-copied error. The number of times aframe with a specific destination address was copied by
another adapter.

Frames discarded. The total number of frames discarded.

Frame-not-copied error. Total number of frames with frame not copied error.

Framesreceived. The total number of frames (logical link control (LLC) and medium access control
(MACQ)) received. For high-speed lines, this counter might wrap multiple times during the interval, resulting
in a calculated delta value that isincorrect. To avoid this problem, use the frames received - long field.
Framesreceived - long. The same as the frames received field, but larger.

Framestransmitted. The total number of frames (LLC and MAC) transmitted. For high-speed lines, this
counter might wrap multiple times during the interval, resulting in a calculated delta value that isincorrect.
To avoid this problem, use the frames transmitted - long field.

Framestransmitted - long. The same as the frames transmitted field, but larger.

Framestransmitted and failed to return. This counter is incremented when atransmitted frame fails to
return.

Frequency error. The number of frequency errors on the adapter.

|-frame charactersreceived. The total number of charactersreceived in al I-frames. For high-speed lines,
this counter might wrap multiple times during the interval, resulting in a calculated delta value that is
incorrect. To avoid this problem, use the |-frame characters received - long field.

|-frame char actersreceived - long. The same as the I-frame characters received field, but larger.

|-frame character stransmitted. Thetotal number of characters transmitted in all I1-frames. For high-speed
lines, this counter might wrap multiple times during the interval, resulting in a calculated deltavalue that is
incorrect. To avoid this problem, use the I-frame characters transmitted - long field.

|-frame character stransmitted - long. The same as the |-frame characters transmitted field, but larger.
|-framesreceived. The number of I-frames received. For high-speed lines, this counter might wrap
multiple times during the interval, resulting in a calculated delta value that isincorrect. To avoid this
problem, use the |-frames received - long field.

|-framesreceived - long. The same asthe |-frames received field, but larger.

[-frames transmitted. The number of |-frames transmitted, excluding I-frames transmitted again. For
high-speed lines, this counter might wrap multiple times during the interval, resulting in a calculated delta
value that isincorrect. To avoid this problem, use the |-frames transmitted - long field.
[-framestransmitted - long. The same as the I-frames transmitted field, but larger.

| OA status overrun. The number of adapter interrupt status queue overruns. The earliest results are
discarded.

| OP resour ce name. System-unique hame to identify the IOP.
Internal errors. The number of adapter internal errors.
0 Thelineisnot active.

1 Thelineisactive.

Linedescription. The name of the description for thisline.

Line errors. The number of code violations of frame-check sequence errors.

Line speed. The speed of thisline in bits per second (bps). No delta calculation should be performed on
thisfield. A value of -1 isreported if the size of thisfield istoo small to report the actual value. When -1 is
reported, the actual value must be obtained from the line speed - long field.

Line speed - long. The same as the line speed field, but larger.

L ost frame. The number of times the adapter could not remove its own frame from the ring.

N2 retries expiration count. This count is updated when the host has attempted to contact a station n
times, and the T1 timer ended n times before the station responded.

Number of underruns. This counter isincremented each time a DMA underrun is detected.
Number of vary on operations. The total number of vary on operations.
Protocol. Protocol type. Thiswill be set to E for establishment communications link (ECL).

Receive congestion. The number of times aframe was not copied because no buffer was available for the
|OA to receive.

Reject frames received. The number of reject frames received.
Re ect frames transmitted. The number of reject frames transmitted.
Reserved. Anignored field.

Ring sample count. The number of times the ring use count was sampled or accumulated.

Ring utilization % = Ri ng use count/Ri ng sanple count

Ring use count. The number of times the ring wasin use.

Routing I-framesreceived. Total number of frames (LLC and MAC) with arouting-information field
received. For high-speed lines, this counter might wrap multiple times during the interval, resulting in a
calculated deltavalue that isincorrect. To avoid this problem, use the routing I-frames received - long field.
Routing |-framesreceived - long. The same as the routing I-frames received field, but larger.

Routing I-framestransmitted. Total number of frames (LLC and MAC) with arouting-information field
transmitted. For high-speed lines, this counter might wrap multiple times during the interval, resultingin a
calculated deltavalue that isincorrect. To avoid this problem, use the routing I-frames transmitted - long
field.

Routing I-framestransmitted - long. The same as the routing I-frames transmitted field, but larger.

RNR frames received. The number of receive-not-ready frames received.

RNR framestransmitted. The number of receive-not-ready frames transmitted.

SABME framesreceived. The number of set-asynchronous-balanced-mode-extended frames received.

SABME framestransmitted. The number of set-asynchronous-bal anced-mode-extended frames
transmitted.

Soft error. The total number of soft errors as reported by the adapter. A soft error is an intermittent error on
anetwork that requires retransmission.

Spuriousinterrupts. The total number of interrupts that medium access control (MAC) could not decode.
T1timer expiration count. The number of timesthe T1 timer ended.

Token error. When this adapter serves as ring monitor, the number of times the adapter token timer ended
without detecting any frames or tokens on the ring.

Total framesnot transmitted - hardwareerror. A count of frames that could not be transmitted due to
the hardware not signaling transmission completion for an excessive period of time.

Total MAC bytesreceived OK. The count of bytesin frames that were successfully received. It includes
bytes from received multicast and broadcast frames. This number includes everything, starting from
destination address up to but excluding FCS. For high-speed lines, this counter might wrap multiple times
during the interval, resulting in a calculated delta value that isincorrect. To avoid this problem, use the total
MAC bytesreceived OK - long field.

Total MAC bytesreceived OK - long. The same as the total MAC bytes received OK field, but larger.
Total MAC bytestransmitted OK. The total number of bytes transmitted successfully. This number
includes everything, starting from destination address up to but excluding FCS. For high-speed lines, this
counter might wrap multiple times during the interval, resulting in a calculated delta value that is incorrect.
To avoid this problem, use the total MAC bytes transmitted OK - long field.

Total MAC bytestransmitted OK - long. The same as the total MAC bytes transmitted OK field, but
larger.

Transmit beacon. The total number of beacon frames transmitted.
Transmit strip error. The total number of adapter-frame-transmit or frame-stripping-process errors.

Unauthorized AP. Unauthorized access priority. The number of times the access priority request is not
authorized.

Unauthorized MAC frame. The number of unauthorized MAC frames. The adapter is not authorized to
send aMAC frameif:

« A sourceclassis specified.

« The MAC frame has a source class of zero.

« MAC frame physical-control-attention field is greater than 1.

#Unsupported protocol frames. Number of frames that were discarded because they specified an
unsupported protocol. This count isincluded in the frames discarded counter. 4%

Ethernet Format

This format reports Ethernet LAN protocol statistics for asynchronous transfer mode (ATM) ports that
support Ethernet LAN emulation and for Ethernet ports.

For adescription of the fields in this format, see Ethernet Field Descriptions.

| Offset ’ ’

IDec |Hex |Type Field

| 0 | 0 |BINARY(4) |Reserved
| 4 | 4 |BINARY(4) |Reserved

| 8 | 8 |CHAR() | Protocol

| 9 | 9 |CHAR(10) |Line description

| 19 | 13 |CHAR() |Line active

| 20 | 14 |CHAR(12 |Reserved

| 32 | 20 |[BINARY(4) |Linespeed

| 36 | 24 |BINARY(4) |Number of vary on operations
| 40 | 28 |BINARY(4) |Activetime

| 44 | 2C |BINARY(4) |I-frame characters transmitted
| 48 | 30 |BINARY(4) |I-frame characters received

| 52 | 34 |BINARY(4) |RNR framestransmitted

| 56 | 38 |[BINARY(4) |RNRframesreceived

| 60 | 3C |BINARY(4) |Reject framestransmitted

| 64 | 40 |BINARY(4) |Reject framesreceived

| 68 | 44 |BINARY(4) |I-framestransmitted

| 72 | 48 |BINARY(4) |I-framesreceived

| 76 | 4C |BINARY(4) |SABME framestransmitted
| 80 | 50 |[BINARY(4) [SABME frames received

| 84 | 54 |BINARY(4) |N2retries expiration count

| 8 | 58 |BINARY(4) |T1timer expiration count

| 92 | 5C |[BINARY(4) |Total frames transmittedt

| 96 | 60 |[BINARY(4) |Total frames received

| 100 | 64 |[BINARY(4) |Inbound frames missedl4

| 104 | 68 |[BINARY(4) [CRCeror4

| 108 | 6C |[BINARY(4) |Morethan 16 retriest

| 112 | 70 |BINARY(4) |Out-of-window collisionsl.24
| 116 | 74 |[BINARY(4) |Alignment error4

| 120 | 78 |[BINARY(4) [Carrier los?4

| 124 | 7C |BINARY(4) |Timedomain reflectometryl.24
| 128 | 80 |[BINARY(4) |Receive buffer errorst4

| 132 | 84 |BINARY(4) |Spuriousinterruptsl.24

| 136 | 88 |BINARY(4) |Discarded inbound framesl4
| 140 | 8C |[BINARY(4) |Receiveoverruns®

| 144 | 90 [BINARY(4) [Memory errorl24

| 148 | 94 |[BINARY(4) |[interrupt overrunl4

| 152 | 98 |[BINARY(4) |Transmit underflow?

| 156 | 9C |[BINARY(4) [Babbleerrorsl.24

| 160 | A0 |[BINARY(4) |Signd quality errorl24

| 164 | A4 |BINARY(4) |Morethan oneretry to transmit4
| 168 | A8 |[BINARY(4) |Exactly oneretry to transmit24
| 172 | AC |[BINARY(4) |Deferred conditions?

| 176 | BO |[BINARY(4) |Transmit frames discarded34

| 180 | B4 |[BINARY(4) |[Total MAC bytesreceived OK
[184 | B8 [BINARY(4) |[Total MAC bytestransmitted OK
| 188 | BC |[BINARY(4) |Total framesnot transmitted - hardware error4
| 192 | CO |[BINARY(4) |Total mail frames discarded34
| 196 | C4 |CHAR(10) ||OP resource name
| 206 | CE |CHAR(1) |Duplex
[207 | CF [CHAR(Q) [Reserved
| 208 | DO |BINARY(8) |Linespeed-long
| 216 | D8 |BINARY(8) |I-frame characters transmitted - long
| 224 | EO |BINARY(8) |I-framecharacters received - long
| 232 | E8 |BINARY(8) |I-framestransmitted - long
| 240 | FO |BINARY(8) |I-framesreceived - long
| 248 | F8 |BINARY(8) |Total framestransmitted - ong?
| 256 | 100 |[BINARY(8) |Total framesreceived - long
| 264 | 108 |BINARY(8) |Total MAC hytesreeived OK - long
| 272 | 110 |BINARY(8) |Total MAC bytestransmitted OK - long
| 280 | 118 |[BINARY(4) |Unsupported protocol framesl.24
| 284 | 11C |BINARY(4) |Reserved®
Notes:
1 Not applicable for file server |/O processor.
2 Not applicable for wireless LAN support.
3 Wireless LAN support only.
4 Not applicable for Ethernet LAN emulation over ATM.

Ethernet Field Descriptions

Activetime. The amount of time in seconds that the line was active (varied on). This field should be used
instead of interval time for al time-dependent fields calculated (for example, line utilization) to get accurate
statistics.

Alignment error. The number of times an inbound frame contained a noninteger number of bytesand a
cyclic-redundancy-check (CRC) error.

Babble errors. The number of times the transmitter exceeded the maximum allowable time on the channel.
Carrier loss. Access to the network has been disconnected.
CRC error. The number of cyclic-redundancy-check (CRC) errors detected by the receiver.

Deferred conditions. The number of times the chip set on the IOAs deferred transmission due to a busy
channel.

Discarded inbound frames. The number of receiver-discarded frames due to the lack of queue entries.

Duplex. The duplex state of the line. For some lines, this value might change over time. This field can have
the following values:

blank The duplex stateis not known.
F Full duplex: The line can simultaneously transmit and receive data.

H Half duplex: The line can either transmit data or receive data, but the line cannot simultaneously
transmit and receive data.

Exactly oneretry to transmit. The number of frames that required one retry for successful transmission.
I-frame char acter sreceived. The total number of charactersreceived in al I-frames. For high-speed lines,
this counter might wrap multiple times during the interval, resulting in a calculated delta value that is
incorrect. To avoid this problem, use the I-frame characters received - long field.

|-frame charactersreceived - long. The same as the |-frame characters received field, but larger.

|-frame char acterstransmitted. The total number of characters transmitted in all 1-frames. For high-speed
lines, this counter might wrap multiple times during the interval, resulting in a calculated deltavalue that is
incorrect. To avoid this problem, use the I-frame characters transmitted - long field.

|-frame character stransmitted - long. The same as the |-frame characters transmitted field, but larger.
|-framesreceived. The number of I-frames received. For high-speed lines, this counter might wrap
multiple times during the interval, resulting in a calculated delta value that isincorrect. To avoid this
problem, use the |-frames received - long field.

|-framesreceived - long. The same as the |-frames received field, but larger.

|-frames transmitted. The number of |-frames transmitted, excluding |-frames transmitted again. For
high-speed lines, this counter might wrap multiple times during the interval, resulting in a calculated delta
value that isincorrect. To avoid this problem, use the |-frames transmitted - long field.
|-framestransmitted - long. The same as the I-frames transmitted field, but larger.

| OP resour ce name. System-unique name to identify the IOP.

Inbound frames missed. The number of times areceive buffer error or missed frame was detected by the
I0A.

Interrupt overrun. The number of interrupts not processed due to lack of status queue entries.
Line active. The state of the line when the collection interval ended. The values are:
0 Thelineisnot active.

1 Thelineisactive.

Linedescription. The name of the description for thisline.

Line speed. The speed of thisline in bits per second (bps). For some lines, this value might change over
time. No delta calculation should be performed on thisfield. A value of -1 is reported if the size of thisfield
istoo small to report the actual value. When -1 is reported, the actual value must be obtained from the line
speed - long field.

Line speed - long. The same as the line speed field, but larger.

Memory error. The number of timesthe IOA did not receive aready signal within 25.6 microseconds of
asserting the address on the data or address lines.

Morethan oneretry to transmit. The number of frames that required more than one retry for successful
transmission.

Morethan 16 retries. The number of frames unsuccessfully transmitted due to excessive retries.

N2 retries expiration count. This count is updated when the host has attempted to contact a station n
times, and the T1 timer ended n times before the station responded.

Number of vary on operations. The total number of vary on operations.

Out-of-window collisions. The number of collisions that occurred after the allotted time interval for a
collision to occur and after the transmission attempt to be retried.

Protocal. Protocol type. Thiswill be set to T for Ethernet.

Reserved. Anignored field.

RNR frames received. The number of receive-not-ready frames received.

RNR framestransmitted. The number of receive-not-ready frames transmitted.

Receive buffer errors. The number of hardware buffer overflows that occurred upon receiving aframe.

Receive overruns. The number of times the receiver haslost all or part of an incoming frame due to buffer
shortage.

Reject frames received. The number of reject frames received.
Reject framestransmitted. The number of reject frames transmitted.
SABME framesreceived. The number of set-asynchronous-balanced-mode-extended frames received.

SABME framestransmitted. The number of set-asynchronous-balanced-mode-extended frames
transmitted.

Signal quality error. The number of times a signal indicating the transmit is successfully complete did not
arrive within 2 microseconds of successful transmission.

Spuriousinterrupts. The number of times an interrupt was received but could not be decoded into a
recognizable interrupt.

T1timer expiration count. The number of timesthe T1 timer ended.

Time domain reflectometry. Counter used to approximate distance to a cable fault. Thisvalueis
associated with the last occurrence of more than 16 retries.

Total frames not transmitted - hardware error. A count of frames that could not be transmitted due to
the hardware not signaling transmission completion for an excessive period of time.

Total framesreceived. The total number of type Il frames received. For high-speed lines, this counter
might wrap multiple times during the interval, resulting in a calculated delta value that isincorrect. To
avoid this problem, use the total frames received - long field.

Total framesreceived - long. The same as the total frames received field, but larger.

Total framestransmitted. The total number of type |l frames transmitted. For high-speed lines, this

counter might wrap multiple times during the interval, resulting in a calculated delta value that is incorrect.
To avoid this problem, use the total frames transmitted - long field.

Total framestransmitted - long. The same as the total frames transmitted field, but larger.

Total MAC bytesreceived OK. The count of bytesin frames that were successfully received. It includes
bytes from received multicast and broadcast frames. This number includes everything, starting from
destination address up to but excluding FCS. For high-speed lines, this counter might wrap multiple times
during the interval, resulting in a calculated delta value that is incorrect. To avoid this problem, use the total
MAC bytes received OK - long field.

Total MAC bytesreceived OK - long. The same asthe total MAC bytes received OK field, but larger.
Total MAC bytestransmitted OK. The total number of bytes transmitted successfully. This number
includes everything, starting from destination address up to but excluding FCS. For high-speed lines, this
counter might wrap multiple times during the interval, resulting in a calculated delta value that isincorrect.
To avoid this problem, use the total MAC bytes transmitted OK - long field.

Total MAC bytestransmitted OK - long. The same as the total MAC bytes transmitted OK field, but
larger.

Total mail frames discarded. The number of stored and forward mail products dropped.
Transmitted frames discarded. The number of outbound frames discarded by input/output adapter (10A).

Transmit underflow. The number of times the transmitter has truncated a message due to the late data
received from main storage.

#Unsupported protocol frames. Number of frames that were discarded because they specified an
unsupported protocol. This count isincluded in the discarded inbound frames counter. 4

IDLC Format

For a description of the fields in thisformat, see IDLC Field Descriptions.

| Offset ’ ’

IDec |Hex |Type Field

[0 [0 |[BINARY(4) |Reserved

[4 | 4 |[BINARY(4) |Reserved

| 8 | 8 |CHAR(1) | Protocol

| 9 | 9 |CHAR(10) |Line description

| 19 | 13 |CHAR(10) |Network interface description
| 29 | 1D |CHAR(1) |Line active

[30 [1IE [CHAR® |Reserved

[32 | 20 |[BINARY(4) |Linespeed

| 36 | 24 |BINARY(4) |Number of vary on operations
[40 [28 [BINARY(4) |Activetime

| 44 | 2C |BINARY(4) |Bytestransmitted

| 48 | 30 |BINARY(4) |Bytesreceived

| 52 | 34 |BINARY(4) |Receive CRC errors

| 56 | 38 |BINARY(4) |Shortframeerrors

| 60 | 3C |BINARY(4) |Abortsreceived

| 64 | 40 |BINARY(4) [Sequenceerrors

| 68 | 44 |BINARY(4) |Framestransmitted

| 72 | 48 |BINARY(4) |Framesretransmitted
| 76 | 4C |BINARY(4) |Framesreceived

| 80 | 50 |BINARY(4) |Framesreceivedin error
[8 [54 [CHAR®) [BLchamne

[8 [55 |[CHAR®D) |B2chamne

| 8 | 56 |CHAR(10) ||OP resource name

| 9% | 60 |CHAR(4) |B channel used

IDLC Field Descriptions

Abortsreceived. The number of frames received that contained high-level datalink control (HDLC) abort
indicators. This indicates that the remote equipment ended frames before they were complete.

Activetime. The amount of time in seconds that the line was active (varied on). This field should be used
instead of interval time for al time-dependent fields calculated (for example, line utilization) to get accurate
statistics.

B channel used. The B channel used is associated with abit in thisfield being set to 1. Bit 0 (most
significant bit) and 31 (least significant bit) are reserved. Bits 1 to 30 are associated with B channels 30 to
1, respectively.

B1 channel. The user can send data on this channel. Thisisset to 1 if the B1 channel was used.
B2 channel. The user can send data on this channel. Thisisset to 1 if the B2 channel was used.
Bytesreceived. The total number of bytes received from the remote link station. Thisincludes no errors.

Bytestransmitted. The total number of bytes transmitted to aremote link station. Thisincludes bytes
retransmitted and bytes sent on transmissions stopped by transmit underrun, in addition to successful
transmissions.

Frames received. Total number of information (1), unnumbered information (Ul), and supervisory (S)
frames received from the remote link station. Thisincludes no errors.

Framesreceived in error. The sum of receive CRC errors, short frame errors, overrun, underrun, aborts
received, and frame sequence errors.

Frames retransmitted. The number of frames that required retransmission due to errors. Errors can be
caused by aremote device that isfailing or by not receiving data fast enough.

Framestransmitted. Total number of information (1), unnumbered information (UI), and supervisory (S)
frames sent to aremote link station. This includes frames retransmitted and frames sent on transmissions
stopped by transmit underruns, in addition to successful transmissions.

| OP resour ce name. System-unique name to identify the IOP.

Line active. The state of the line when the collection interval ended. The values are:
0 Thelineisnot active.

1 Thelineisactive.

Linedescription. The name of the description for thisline.

Line speed. The speed of thisline in bits per second (bps). No delta cal culation should be performed on
thisfield.

Network inter face description. The name of the network interface description.
Number of vary on operations. The total number of vary on operations.
Protocol. Protocol type. Thiswill besetto | for IDLC.

Reserved. Anignored field.

Receive CRC errors. The number of received frames that contain a cyclic-redundancy-check (CRC) error.
This indicates that the data was not received error-free.

Sequence errors. The number of frames received during the time interval that contained sequence numbers
indicating that frames were lost.

Short frame errors. The number of short frames received. A short frameis aframe that has fewer octets

between its start flag and end flag than are permitted.

LAPD Format

For a description of the fieldsin thisformat, see LAPD Field Descriptions.

| Offset ’ ’

IDec |Hex |Type Fied

| 0 | 0 |BINARY(4) |Reserved

[4 | 4 |[BINARY(4) |Reserved

| 8 | 8 |CHAR(1) | Protocol

| 9 | 9 |CHAR(10) |Network interface description
| 19 | 13 |CHAR() |Line active

[20 [14 |[CHAR(12) |Reserved

| 32 | 20 |BINARY(4) |Line speed

| 36 | 24 |BINARY(4) |Number of vary on operations
| 40 | 28 |BINARY(4) |Activetime

| 44 | 2C |BINARY(4) |Bytestransmitted

[48 | 30 |[BINARY(4) |Bytesreceived

| 52 | 34 |BINARY(4) |Lossof framealignment

| 56 | 38 |BINARY(4) |Reserved

[60 | 3C |[BINARY(4) |Reserved

[64 | 40 |[BINARY(4) |Reserved

[68 [44 [BINARY(4) |Reserved

| 72 | 48 |BINARY(4) |Errored Seconds

| 76 | 4C |BINARY(4) |Severely Errored Seconds
[80 [50 |BINARY(4) |Collison detect

| 84 | 54 |BINARY(4) |Receive CRCerrors

| 8 | 58 |BINARY(4) |Shortframeerrors

| 92 | 5C |BINARY(4) |Abortsreceived

| 96 | 60 |BINARY(4) |Sequenceerrors

| 100 | 64 |BINARY(4) |Framestransmitted

| 104 | 68 |BINARY(4) |Framesretransmitted

| 108 | 6C |BINARY(4) |Framesreceived

| 112 | 70 |BINARY(4) |Framesreceivedin error
| 116 | 74 |BINARY(4) |Total outgoing calls

| 120 | 78 |BINARY(4) |Retry for outgoing calls
| 124 | 7C |BINARY(4) |Total incoming calls

| 128 | 80 |BINARY(4) |Retry for incoming calls
| 132 | 84 |CHAR(1) |S1 maintenance channel
| 133 | 8 |CHAR(10) ||OP resource name

LAPD Field Descriptions

Abortsreceived. The number of frames received that contained high-level datalink control (HDLC) abort
indicators. This indicates that the remote equipment ended frames before they were complete.

Activetime. The amount of time in seconds that the line was active (varied on). This field should be used
instead of interval time for al time-dependent fields calculated (for example, line utilization) to get accurate
statistics.

Bytesreceived. The total number of bytes received from the remote link station. This includes no errors.
Bytestransmitted. The total number of bytes transmitted to a remote link station. Thisincludes bytes
retransmitted and bytes sent on transmissions stopped by transmit underrun, in addition to successful
transmissions.

Collision detect. The number of times the terminal equipment (TE) detected that its transmitted frame has
been corrupted by another TE attempting to use the same bus.

Errored Seconds. The number of seconds that had one or more Path Coding Violations, one or more Out
of Frame defects, one or more Controlled Slip events, or a detected Alarm Indication Signal defect.

Frames received. The total number of information (1), unnumbered information (Ul), and supervisory (S)
frames received from the remote link station. Thisincludes no errors.

Framesreceived in error. The sum of receive CRC errors, short frame errors, overrun, underrun, aborts
received, and frame sequence errors.

Frames retransmitted. The number of frames requiring retransmission due to errors. Errors can be caused
by aremote device that isfailing or cannot receive data fast enough.

Framestransmitted. The total number of information (1), unnumbered information (Ul), and supervisory
(S) frames sent to aremote link station. This includes frames retransmitted and frames sent on
transmissions stopped by transmit underrun, in addition to successful transmissions.

| OP resour ce name. System-unique name to identify the IOP.

Line active. The state of the line when the collection interval ended. The values are:

0 Thelineisnot active.

1 Thelineisactive.

Line speed. The speed of thisline in bits per second (bps). No delta cal culation should be performed on
thisfield.

L oss of frame alignment. The total number of times when atime period equivalent to two 48-bit frames
has elapsed without having detected valid pairs of line code violations.

Network inter face description. The name of the network interface description.

Number of vary on operations. The total number of vary on operations.

Protocal. Protocol type. Thiswill be set to D for LAPD.

Receive CRC errors. The number of frames received that contain a cyclic-redundancy-check (CRC) error.
Reserved. Anignored field.

Retry for incoming calls. The number of incoming calls that were rejected by the network.

Retry for outgoing calls. The number of outgoing calls that were rejected by the network.

S1 maintenance channel. Thisfield will be set to oneif this ISDN had maintenance channel active.

Sequence errors. The number of received frames that contained sequence numbers that indicated frames
were lost.

Severely Errored Seconds.

« For ESF signals, the number of seconds that had 320 or more Path Coding Violation error events,
one or more Out of Frame defects, or adetected Alarm Indication Signal defect.

« For E1-CRC signals, the number of seconds that had 832 or more Path Coding Violation error
events, or one or more Out of Frame defects.

« For E1-noCRC signals, the number of seconds that had 2048 or more Line Coding Violations.

« For D4 signals, the number of seconds that had Framing Error events, an Out of Frame defect, or
1544 or more Line Coding Violations.

Short frame errors. The number of short frames received. A short frame is aframe that has fewer octets
between its start flag and end flag than are permitted.

Total incoming calls. The total number of incoming call attempts.

Total outgoing calls. The total number of outgoing call attempts.

SDLC Format

For a description of the fieldsin thisformat, see SDL C Field Descriptions.

| Offset

IDec |Hex ’Type ’Field

| 0 | 0 |BINARY(4) |Reserved

[4 [4 [BINARY(4) |Reserved

| 8 | 8 |CHAR(1) | Protocol

| 9 | 9 |CHAR(10) |Line description

| 19 | 13 |CHAR() |Line active

[20 [14 [CHAR(12) |Reserved

| 32 | 20 |BINARY(4) |Line speed

| 36 | 24 |BINARY(4) |Number of vary on operations
| 40 | 28 |BINARY(4) |Activetime

| 44 | 2C |BINARY(4) |Bytestransmitted
48 [30 [BINARY(4) |Bytesreceived

| 52 | 34 |BINARY(4) |I-frames retransmitted

| 56 | 38 |BINARY(4) |Error-freeframes received
| 60 | 3C |BINARY(4) |Framesreceived in error
| 64 | 40 |BINARY(4) |[Invalid frames received
| 68 | 44 |BINARY(4) |Link resets

| 72 | 48 |BINARY(4) |I-framestransmitted

| 76 | 4C |BINARY(4) |Framesretransmitted

| 80 | 50 |BINARY(4) |RR framestransmitted

| 84 | 54 |BINARY(4) |RR framesreceived

| 88 | 58 |BINARY(4) |RNR framestransmitted
| 92 | 5C |BINARY(4) |RNR framesreceived
[96 [60 |[BINARY(4) |Pollingwaittime

| 100 | 64 |CHAR(10) ||OP resource name

SDLC Field Descriptions

Active time. The amount of time in seconds that the line was active (varied on). Thisfield should be used
instead of interval time for all time-dependent fields calculated (for example, line utilization) to get accurate
statistics.

Bytesreceived. The number of bytes received (data and control characters), including bytes received in
error.

Bytestransmitted. The number of bytes transmitted (data and control characters) including bytes
transmitted again because of errors.

Error-freeframesreceived. The number of I-frames, supervisory frames, and frames not numbered that
were received without error (whether or not they were transmitted again from the remote side).

Framesreceived in error. The number of I-frames, supervisory frames, and frames not numbered that
were received in error. The following are the error possibilities:

« A supervisory frame or I-frame was received with an Nr count that is requesting retransmission of a
frame.

« An|-frame was received with an Ns count that indicates that frames were missed.

« A frameisreceived with a frame-check-sequence error, an abnormal end, a receive overrun, or a
frame-truncated error.

Frames retransmitted. The number of I-frames, supervisory frames, and frames not numbered that were
transmitted again.

|-framesretransmitted. The number of [-frames transmitted again.
|-framestransmitted. The number of I-frames transmitted.
| OP resour ce name. System-unique name to identify the IOP.

Invalid framesreceived. The number of invalid frames received. These are frames received with either a
short frame error (frameis less than 32 bits) or aresidue error (frame is not on a byte boundary).

Line active. The state of the line when the collection interval ended. The values are:
0 Thelineisnot active.

1 Thelineisactive.

Line description. The name of the description for thisline.

Line speed. The speed of thislinein bits per second (bps). No delta cal culation should be performed on
thisfield.

Link resets. The number of times a set normal response mode (SNRM) was received when the station was
aready in normal response maode.

Number of vary on operations. The total number of vary on operations.

Polling wait time. The length of time (in tenths of seconds) that the system waits for the response to a poll
whilein normal disconnect mode before polling the next station. No delta cal culation should be done on
thisfield.

Protocoal. Protocol type. Thiswill be set to Sfor SDLC.

RNR frames received. The number of receive-not-ready supervisory frames received.

RNR framestransmitted. The number of receive-not-ready supervisory frames transmitted.

RR framesreceived. The number of receive-ready supervisory frames received.

RR framestransmitted. The number of receive-ready supervisory frames transmitted.

X.25 Format

For adescription of the fieldsin this format, see X.25 Field Descriptions.

| Offset ’ ’

IDec [Hex |Type Field

[0 | 0 |[BINARY(4) |Reserved

[4 | 4 |[BINARY(4) |Reserved

| 8 | 8 |CHAR() | Protocol

| 9 | 9 |CHAR(10) |Line description

| 19 | 13 |CHAR(1) |Line active

| 20 | 14 |CHAR(12 |Reserved

[32 | 20 |[BINARY(4) |Linespeed

| 36 | 24 |BINARY(4) |Number of vary on operations
| 40 | 28 |BINARY(4) |Activetime

[44 | 2C [BINARY(4) |Bytestransmitted

| 48 | 30 |BINARY(4) |Bytesreceived

| 52 | 34 |BINARY(4) |I-frames retransmitted

| 56 | 38 |BINARY(4) |Framesreceivedin error

| 60 | 3C |BINARY(4) |Invalid frames received

| 64 | 40 |BINARY(4) |Link resets

| 68 | 44 |BINARY(4) |I-framestransmitted

| 72 | 48 |BINARY(4) |Error-freeframes received
| 76 | 4C |BINARY(4) |RR framestransmitted

[80 [50 [BINARY(4) |RRframesreceived

| 84 | 54 |BINARY(4) |RNR framestransmitted

| 88 | 58 |BINARY(4) |RNR framesreceived

| 92 | 5C |BINARY(4) |Reset packetstransmitted
| 96 | 60 |BINARY(4) |Reset packetsreceived

| 100 | 64 |CHAR(10) ||OP resource name

X.25 Field Descriptions

Activetime. The amount of time in seconds that the line was active (varied on). This field should be used
instead of interval time for al time-dependent fields calculated (for example, line utilization) to get accurate
statistics.

Bytesreceived. The number of bytes received (data and control characters), including bytes received in
error.

Bytestransmitted. The number of bytes transmitted (data and control characters) including bytes
transmitted again because of errors.

Error-free framesreceived. The number of I-frames, supervisory frames, and frames not numbered that

were received without error (whether or not they were transmitted again from the remote side).

Framesreceived in error. The number of I-frames, supervisory frames, and frames not numbered that
were received in error. The following are the error possibilities:

« A supervisory frame or |-frame was received with an Nr count that is requesting retransmission of a
frame.

« An|-frame was received with an Ns count that indicates that frames were missed.

« A frameisreceived with aframe-check-sequence error, an abnormal end, areceive overrun, or a
frame-truncated error.

|-framesretransmitted. The number of |-frames transmitted again.
|-frames transmitted. The number of I-frames transmitted excluding I-frames transmitted again.
| OP resour ce name. System-unique name to identify the IOP.

Invalid framesreceived. The number of invalid frames received. These are frames received with either a
short frame error (frame isless than 32 bits) or aresidue error (frameis not on a byte boundary).

Line active. The state of the line when the collection interval ended. The values are;
0 Thelineisnot active.

1 Thelineisactive.

Linedescription. The name of the description for thisline.

Line speed. The speed of thisline in bits per second (bps). No delta cal culation should be performed on
thisfield.

Link resets. The number of times a set normal response mode (SNRM) was received when the station was
aready in normal response mode.

Number of vary on operations. The total number of vary on operations.

Protocal. Protocol type. Thiswill be set to X for X.25.

Reserved. Anignored field.

Reset packetsreceived. The number of reset packets received.

Reset packets transmitted. The number of reset packets transmitted.

RNR frames received. The number of receive-not-ready supervisory frames received.

RNR framestransmitted. The number of receive-not-ready supervisory frames transmitted.
RR framesreceived. The number of receive-ready supervisory frames received.

RR framestransmitted. The number of receive-ready supervisory frames transmitted.

»PPP Format

For a description of the fields in this format, see PPP Field Descriptions.

PPP lines are full duplex.

| Offset ’ ’

IDec [Hex |Type Field

[0 | 0 |[BINARY(4) |Reserved

| 4 | 4 |BINARY(4) |Reserved

| 8 | 8 |CHAR() | Protocol

| 9 | 9 |CHAR(10) |Line description

| 19 | 13 |CHAR(1) |Line active

[20 | 14 [CHAR®) |Reserved

[28 [1C |[BINARY(8) |Linespeed

| 36 | 24 |BINARY(4) |Number of vary on operations
[40 | 28 |[BINARY(4) |[Activetime

| 44 | 2C |CHAR(10) ||OP resource name

54 [36 |[CHARQ®) |Reserved

[56 | 38 |[BINARY(S) |Bytestransmitted

| 64 | 40 |BINARY(8) |Bytesreceived

| 72 | 48 |BINARY(8) |Framestransmitted

| 80 | 50 |BINARY(8) |Error-freeframesreceived
| 88 | 58 |BINARY(4) |Framesreceivedin error

| 92 | 5C |BINARY(4) |Invalid frames received

PPP Field Descriptions

Activetime. The amount of time in seconds that the line was active (varied on). This field should be used
instead of interval time for al time-dependent fields calculated (for example, line utilization) to get accurate
statistics.

Bytesreceived. The number of bytes received, including all bytesin frames that had any kind of error.
Bytestransmitted. The number of bytes transmitted, including bytes transmitted again.
Error-freeframesreceived. The number of frames received without error.

Framesreceived in error. The number of frames received with one of the following errors. aframe check
sequence error, an abnormal end, areceive overrun, or aframe truncated error.

Frames transmitted. The number of frames transmitted.

Invalid framesreceived. The number of frames received with aresidue error (frameis not on a byte
boundary).

I OP resour ce name. System-unique name to identify the IOP.

Line active. The state of the line when the collection interval ended. The values are;
0 Thelineisnot active.

1 Thelineisactive.

Line description. The name of the description for thisline.

Line speed. The speed of thisline in bits per second (bps). No delta cal culation should be performed on
thisfield.

Number of vary on operations. The total number of vary on operations.
Protocoal. Protocol type. Thisis set to P for PPP.

Reserved. Anignored field. 4

Error Messages

Message | D Error Message Text

CPFOA42 E Collector ended abnormally.

CPFOA43 E Data not available.

CPFOA44 E Collection not active for user.

CPFOA45E Cannot copy datato user space & 1.
CPFOA4T E User space &1 inlib &2 not large enough.
CPF24B4 E Severe error while addressing parameter list.
CPF3C90 E Literal value cannot be changed.
CPF3CF1E Error code parameter not valid.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

API introduced: V2R3

Top | Performance Management APIs | APIs by category

Work with Collector (QPMWKCOL) API

OOk, WN PP

Required Parameter Group:

Default Public Authority: *EXCLUDE

Threadsafe: Conditional; see Usage Notes.

Type of action to perform Input Char(10)
Type of resource Input Char(10)
Time between collections Input Binary(4)
Qualified user space name Input Char(20)
First sequence number Output Binary(4)
Error Code /10 Char(*)

The Work with Collector (QPMWKCOL) API starts, ends, or changes the collection of performance data
for a particular resource on your system. The performance collector used by the API has the following
attributes:

It collects data for user-specified resource types that can include job, pool, disk, input/output
processor (I0OP), and communications.

It collects data at time intervals ranging from 15 seconds to four minutes.
It deposits the collected data into user spaces.
Multiple users can collect data at the same time.

The same resource type data can be collected by different users with the same or different interval
lengths.

Different resources can be collected at different interval times.

It will collect data until al collections have been explicitly ended or al of the user's jobs have
ended.

It does not calculate deltas on the data collected. For more information on deltas, see the List
Performance Data (QPMLPFRD) API.

It will report job datafor ajob or task that is active when the datais collected. A job or task that
terminates during an interval will no longer be reported.

Itsintent is to provide performance data useful for real-time monitoring of system performance.
Thus, it will not support all of the counters that collection services supports. It is not intended to be
used in place of collection services for detailed performance analysis, capacity planning, and other
such functions.

When the first user of the collector issues a call to the QPMWKCOL API, two jobs (QPMASERV and
QPMACLCT) are submitted to batch. QPMASERYV acts as a server, communicating between the APIs
(QPMWKCOL and QPMLPFRD) and the QPMACLCT job, which does the actual data collection. These
jobsrun at priority 0 in subsystem QSY SWRK. No matter how many users are collecting data, there will
only be one instance of each job running. The programswill continue to run until al users have ended all of
their collections. They will aso end if none of the users jobs are till active.

To start adata collection for aresource, call the QPMWKCOL API using the following:
« Thevaue*START for the type of action to perform parameter

« Thetype of resource datato collect (job, pool, disk, input/output processor (I0P), or
communications)

« Thelength of time between collections (15, 30, 60, 120, or 240 seconds)

« Thename and library of the user space the data should be copied into. £ The user space must be
created in the system ASP or in abasic ASP and not in an independent ASP. This ensures that the
server job QPMASERV, which processes the API request, can access the user space. 4

« Theerror code parameter

A separate request must be made for each resource desired. When the request is valid, the sequence number
of the first collection will be passed back to the user. The sequence number isincreased by the
user-specified interval time and can be used to seeif aninterval collection was missed. For example, if 15
isthe first sequence number received back from the QPMWKCOL API but 30 is the sequence number
received back from the List Performance Data (QPMLPFRD) API, you missed the collection of datawith a
sequence number of 15.

By using * CHANGE for the type of action to perform parameter, the interval time or the user space for a
resource can be changed.

To end acollection, use *END for the type of action to perform parameter. Because a collection will
continue to be active until it is ended, it isimportant that any collections that are no longer needed be
ended. If an *END request is from the last user of aresource, data collection of the resource stops. If not,
the resource will still be collected, but this user will no longer have access to data until a* START request
isissued again. After the last user of the collector ends all of his collections, the collector jobs
(QPMASERV and QPMACLCT) end.

Because QPMWK COL works with the QPMLPFRD API, the parameters selected for QPMWKCOL will
affect QPMLPFRD. For example, the interval time selected determines how often QPMLPFRD should be
called. Because the new data replaces old data, if QPMLPFRD is not called before the next interval is
collected, the data from the previousinterval will belost, although the deltas may still be calculated for the
longer interval. The qualified user space is also an important parameter to QPMLPFRD because thisis the
space that QPMLPFRD will copy the performance datainto. If the space is not large enough to hold all the
dataor if the space islocked, an error message will be issued to the user.

Starting in Version 5 Release 1, performance data is collected by the performance data collector used by
collection services. This has the following implications:

« The collection services performance data collector (QY PSPFRCOL) job runsin addition to the
QPMASERV and QPMACLCT jobs.

« Performance datais stored in the management collection (*MGTCOL) object, alowing it to be
processed by the create performance data (CRTPFRDTA) command.

« The collection services performance data collector supports data collection at one-minute intervals,
but not at two- or four-minute intervals. Therefore, when the APl user requests data at two- or
four-minute intervals, the datawill be collected at one-minute intervals, but reported back to the
user every two or four minutes.

Authorities and Locks

User Space Authority
*CHANGE

Library Authority
*EXECUTE

User Space Lock
*EXCLRD

Required Parameter Group

Type of action to perform
INPUT; CHAR(10)

Whether you want to start, end, or change the collection of aresource. The following values may be
specified:

*START Start the collection of the specified resource.
*END End the collection of the specified resource.

*CHANGE Change the collection of the specified resource.

Type of resource
INPUT; CHAR(10)

The type of resource to start, end, or change. The following values may be specified.
*JOB Job-related information
*POOL Pool-related information
*DIXK Disk-related information
*|OP |OP-related information

*COMM Communications-related information

Time between collections
INPUT; BINARY (4)

The number of seconds between each new collection of data. The following values may be
specified.

15 Collect every 15 seconds.
30 Collect every 30 seconds.
60 Collect every 60 seconds.
120 Collect every 120 seconds (2 minutes).

240 Collect every 240 seconds (4 minutes).

Notes:
1. Thedisk- and IOP-related data require a minimum of 30 seconds between collections.

2. The communication-related data requires a minimum of 60 seconds between collections.

3. Thejobs-related data should be collected as infrequently as possible to minimize the
impact on system performance.

Qualified user space name
INPUT; CHAR(20)

The name of the user space that isto receive the data for this type of resource. The first 10
characters contain the user space name, and the second 10 characters contain the name of the
library where the user space islocated. #*The user space must be created in the system ASPor in a
basic ASP and not in an independent ASP. This ensures that the server job QPMASERYV, which
processes the API request, can access the user space. 4The special values for the library name are:

*LIBL Library listis used.
*CURLIB Current library is used.

Thelibrary name value is resolved when this API is called. If no library is specified as the current
library for the job, QGPL is used. Both entries are |eft-justified.

First sequence number
OUTPUT; BINARY (4)

The sequence number of the first data collection that will be available for the user.
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

The QPMWKCOL API has been classified as conditionally threadsafe. This classification is the result of a
dependency on the Submit Job (SBMJOB) command, which has been classified conditionally threadsafe.
Refer to the SBMJOB command in the Control Language information for restrictions.

Error Messages

Message I D
CPFOA37E
CPFOA38 E
CPFOA39 E
CPFOA40E
CPFOA41 E
CPFOA42 E
CPFOA44 E
CPFOA45 E
CPFOA46 E
CPFOA47 E
CPF24B4 E
CPF3C90 E
CPF3CF1 E
CPFO872 E

Error Message Text

Request type & 1 not valid.

Resource type & 1 not valid.

Interval time of & 1 seconds not valid.

Interval time of & 1 seconds for IOP data not valid.
&1 seconds for communications data not valid.
Collector ended abnormally.

Collection not active for user.

Cannot copy datato user space & 1.

Interval time of & 1 seconds for disk data not valid.
User space &1 inlib &2 not large enough.

Severe error while addressing parameter list.
Literal value cannot be changed.

Error code parameter not valid.

Program or service program & 1 in library & 2 ended. Reason code & 3.

API introduced: V2R3

Top | Performance Management APIs | APIs by category

Performance Monitor Exit Program

Required Parameter Group:

1 Member name Input Char(10)
2 Library name Input Char(10)

The Performance Monitor exit program is called to process the performance data just collected by the
performance monitor. Y ou would write an exit program for the performance monitor if you wanted to be
sure that the performance data being collected was processed as soon as the monitor was done collecting it.

Note: The Performance Monitor exit program pertains to the Start Performance Monitor (STRPFRMON)

command, not the Performance Monitor Collector APIs. Starting in Version 5 Release 1, the Start
Performance Monitor (STRPFRMON) command is no longer supported.

Required Parameter Group

Member name
INPUT; CHAR(10)

The performance data member name.
Library name
INPUT; CHAR(10)

Thelibrary that contains the performance data.

Error Messages

The performance monitor handles any error that could occur in the exit program. Not only does the
performance monitor contain generic MCH (machine), CPF (0S/400), and PFR (performance) error
messages, it also contains a function-check handler.

Exit program introduced: V2R3

Top | Performance Management APIs | APIs by category

»Performance Explorer (PEX) APIs

For information about performance explorer (PEX), see Performance explorer.

The PEX APIs are used to collect trace performance data for user-defined (application-defined) transactions
and to record application-defined trace data. The user-defined transaction APIsindicate the start and end of
atransaction and allow logging during a transaction.

The PEX APIsare:
o #Add Trace Point (QYPEADDT, qypeAddTracePoint) records application-defined trace data. %

« #End Transaction (QYPEENDT, qypeEndTransaction) indicates the end of a user-defined
transaction. <

« #Log Transaction (QYPELOGT, qypelogTransaction) generates a transaction log record in the
PEX trace data. €%

« #Start Transaction (QY PESTRT, qypeStartTransaction) is called at the start of a user-defined
transaction.€

<

Top | Performance Management APIs | APIs by category

»Add Trace Point (QYPEADDT,
gypeAddTracePoint) API

Required Parameter Group:

1 Applicationidentifier Input Char(20)

2 Event subtypeidentifier Input Char(10)

3 Application trace data Input Char(*)

4 Length of application trace data Input Binary(4) Unsigned
5 Error code /0 Char(*)

Service Program Name: QY PESV PG
Default Public Authority: *USE

Threadsafe: Yes

The Add Trace Point (OPM, QYPEADDT; ILE, gypeAddTracePoint) API is used to record
application-defined trace data.

If Performance Explorer (PEX) isrunning, this APl generates a trace record of the type specified in the
event subtype identifier parameter. In addition to the data supplied by the application in the application
trace data parameter, PEX will capture the current values of performance counters associated with the
current thread such as CPU time used, 1/0 activity and seize/lock activity. After the End Performance
Explorer (ENDPEX) command is run, the application trace data is written to the QMUDTA field in the
QAYPEMIUSR file (see Usage Notes). The performance counters are written to individual fieldsin the

QAYPEMIUSR and QAYPETIDX files.

Authorities and Locks

API Public Authority
*USE

Required Parameter Group

Application identifier
INPUT; CHAR(20)
The name of the application. Given that many applications could use this API, the name should be

chosen so that it is unique. Application identifiers starting with "QIBM_Qccc ", wherecccisa
component identifier, are reserved for IBM use.

Event subtypeidentifier
INPUT; CHAR(10)

The Performance Explorer (PEX) event subtype to be used for the trace record. Allowed values for
this parameter are:

*APPEVT1
*APPEVT2
*APPEVT3
*APPEVT4

To configure PEX to collect data generated by this API, use the same event subtype identifier on
the application events (APPEVT) parameter of the Add PEX Definition (ADDPEXDFN)
command.

Application trace data

INPUT; CHAR(*)

Application-defined trace data to be saved by PEX. This can be any data that the user wants to
associate with this trace record. The data can be up to 3042 byteslong. This datais reported by
PEX inthe QAYPEMIUSR file.

Length of application trace data

INPUT; BINARY (4) UNSIGNED

The length (in bytes) of application-defined trace data to be saved by PEX. The value must be
between 0 and 3042.

Error code

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

Application-defined trace datais reported in the QMUDTA field of the QAYPEMIUSR file.

The format of the QMUDTA field of the QAYPEMIUSR fileis described below.

The QMUDTA field has a common header. The following APIs use this header:

« Start Transaction (QYPESTRT, gypeStartTransaction)
« End Transaction (QYPEENDT, qypeEndTransaction)
o Log Transaction (QYPELOGT, qypel ogT ransaction)
» Add Trace point (QYPEADDT, gypeAddTracePoint)

Offset

IDec [Hex ’Type ’Field

0 [0 [CHAR®) "API " eye catcher

4 | 4 |CHAR(20) |Application identifier

24 18 [CHAR(1) Type of data:

0 Generic trace point
1 Start of transaction
2 End of transaction
3 Log transaction

After the common header, the QMUDTA field has the following format for the Add Trace Point API:

| Offset

IDec [Hex |Type Field

[25 [19 [CHAR®) |Reserved

’ 26 ’ BINARY(4) |Length of application trace data
UNSIGNED

| 30 | 1E |CHAR(*) |Application trace data

Error Messages

Message | D Error Message Text
CPF3C36 E Number of parameters, & 1, entered for this APl was not valid.
CPF3C3CE Value for parameter &1 isnot valid.

&

API introduced: V5R2

Top | Performance Management APIs | APIs by category

»Log Transaction (QYPELOGT,

gypeLogTransaction) API

Required Parameter Group:

Application identifier
Transaction identifier
Application trace data

Length of application trace data
Error code

gaa b~ wDNPRk

Service Program Name: QY PESV PG
Default Public Authority: *USE

Threadsafe: Yes

Input
Input
Input
Input
/0

Char(20)

Binary(4) Unsigned
Char(*)

Binary(4) Unsigned
Char(*)

The Log Transaction (OPM, QY PELOGT; ILE, qypeLogTransaction) API is used together with the Start
Transaction (QY PESTRT, qypeStartTransaction) APl and the End Transaction (QY PEENDT,

gypeEndTransaction) API to collect performance data for user-defined transactions. The Log Transaction
API iscalled by an application any time between the callsto the Start Transaction APl and the End

Transaction API to trace the progress of a user-defined transaction.

This API can be used to provide trace type of performance data - collected by Performance Explorer (PEX).

Collection ServicesignoresthisAPI.

If the Performance Explorer (PEX) isrunning, this APl generates alog transaction trace record. In addition
to the data supplied by the application in the application trace data parameter, PEX will capture the current
values of performance counters associated with the current thread such as CPU time used, 1/O activity and
seize/lock activity. After the End Performance Explorer (ENDPEX) command is run, the
application-supplied data for this record is written to the QMUDTA field in the QAYPEMIUSR file. The
performance counters are written to individual fieldsin the QAYPEMIUSR and QAYPETIDX files.

See Usage Notes for the Start Transaction (QY PESTRT, gypeStartTransaction) API for more information.

Authorities and Locks

API Public Authority
*USE

Required Parameter Group

Application identifier
INPUT; CHAR(20)
The name of the application. Given that many applications could use this API, the name should be

chosen so that it is unique. Application identifiers starting with "QIBM_Qccc ", wherecccisa
component identifier, are reserved for IBM use.

Transaction identifier
INPUT; BINARY (4) UNSIGNED
Any sort of unique transaction identifier, such as a sequential number. In order to collect

meaningful data, the identifier passed to the Log Transaction API should be the same as the
identifier used in the call to the Start Transaction API for the same transaction.

Application trace data
INPUT; CHAR(*)

Application-defined trace data to be saved by PEX. This can be any data that the user wants to
associate with this transaction - for example, the user ID of the client performing the transaction,
the name of the file being updated by the transaction, or the account ID being accessed by the
transaction. The data can be up to 3032 byteslong. This datais reported by PEX in the
QAYPEMIUSR file.

Length of application trace data
INPUT; BINARY (4) UNSIGNED

The length (in bytes) of application-defined trace data to be saved by PEX. The value must be
between 0 and 3032.

Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Usage Notes

For the description of how Performance Explorer (PEX) saves and reports performance data for this AP,
see Usage Notes for the Start Transaction API.

Error Messages

Message|D Error Message Text
CPF3C36 E Number of parameters, &1, entered for this API was not valid.
CPF3C3CE Vauefor parameter &1 isnot valid.

<

API introduced: V5R2

Top | Performance Management APIs | APIs by category

»Performance Management/400 (PM/400) APIs

For information about Performance Management/400 (PM/400), see PM/400 concepts.

The PM/400 APIs can start PM/400, end PM/400, and retransmit PM/400 data.

The PM/400 APIs follow:

« End PM/400 (Q1PENDPM) ends Performance Management/400 jobs. PM/400 jobs will not run
again until the Start APl (Q1PSTRPM) isissued or the product is configured using the CFGPM 400
command.

« Retransmit PM/400 Data (Q1PRTRN) marks previously transmitted data as untransmitted data,
thus allowing the data to be retransmitted.

« Start PM/400 (Q1PSTRPM) configures Performance Management/400 to start sending
performance datato IBM.

&«

Top | Performance Management APIs | APIs by category

End PM/400 (Q1PENDPM) API

Required Parameter Group:

1 Endtype Input Char(10)
2 Delay time Input Binary(4)
3 Error Code /0 Char(*)

Default Public Authority: *EXCLUDE

Threadsafe: No

The End PM/400 (Q1LPENDPM) API ends Performance Management/400 jobs. PM/400 jobs will not run
again until the Start APl (Q1PSTRPM) isissued or the product is configured using the CFGPM 400
command.

Authorities and Locks

Public Authority
*EXCLUDE
Special authorities
Y ou must have * JOBCTL specia authority to use this API.

Required Parameter Group

End type
Input; Char(10)

The Performance Management jobs to have controlled endings or the jobs that are to be ended
immediately. The possible values are:

*CNTRLD The Performance Management/400 jobs end in a controlled manner.

*IMMED The Performance Management/400 jobs end immediately. The programs that are
running do not get time to perform cleanup. This option may cause undesirable
results if data has been partially updated. Therefore, this option should be used only
if acontrolled end was unsuccessful.

Delay time
Input; Binary(4)

The delay time when "End type" is* CNTRLD. This parameter isignored if "End type" is
*IMMED. The possible values are:

-1

The Performance Management/400 jobs continue processing until the
activity processing currently is complete.

Delay time (seconds) The Performance Management/400 jobs end immediately after the delay

Error code

time.

1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message I D
CPFBO3A E
CPFBO3D E
CPFBO3E E
CPFBO3F E
CPF24B4 E
CPF3C1EE
CPF3CF1E
CPF3CF2E

Error Message Text

Range of parameter & 2 does not include &4.
PM/400 already ended.

PM/400 already ending with *IMMED option.
PM/400 already ending with * CNTRLD option.
Severe error addressing parameter list.
Required parameter & 1 omitted.

Error code parameter not valid.

Error(s) occurred during running of &1 API.

API introduced: V5R1

Top | Performance Management APIs | APIs by category

Retransmit PM/400 Data (Q1PRTRN) API

Required Parameter Group:
1 Start Date Input Char(7)

Default Public Authority: *EXCLUDE

Threadsafe: No

The Retransmit PM/400 Data (Q1LPRTRN) API marks previously transmitted data as untransmitted data.
This allows the data to be retransmitted. This API should be used only with the assistance of IBM service.

The date entered isin CYYMMDD format.

This API does not validate that the date entered isavalid date. For example, you could enter a date of
1000230 even though there are not 30 daysin February. The APl begins marking data for retransmission
with the records that are greater than or equal to the passed date parameter. The API does some date
validation; for example, 1000232 would not be accepted. If successful, you would expect to see message
CPCO0BO01 Program Q1PRTRN completed successfully. If no message is received, display the job log for
details.

Authorities and Locks

API Public Authority
*EXCLUDE
Special authorities
User must have * ALLOBJ authority to use thisAPI.

Required Parameter Group

Start date
INPUT; Char(7)

Records with this date or greater are marked for retransmission. The date should be entered in
CYYMMDD format.

Error Messages

Message I D Error Message Text

CPF9802 E Not authorized to object QA1PONE in QUSRSYS.

CPF0555 E Date not in specified format or date not valid.
CPC0B0O1 C Program Q1PRTRN completed successfully.

API introduced: V5R1

Top | Performance Management APIs | APIs by category

Start PM/400 (Q1PSTRPM) AP

1

Required Parameter Group:

Default Public Authority: *EXCLUDE

Threadsafe: No

Error code /0 Char(*)

The Start PM/400 (Q1PSTRPM) API configures Performance Management/400 to start sending
performance datato IBM. This allows customersto receive periodic performance reports of their systems.
See Performance Management/400 for more information on this topic.

This API sets the following configurations:

The server is configured to send performance datato IBM.

The server is configured so that it does not receive performance data from remote systems to which
itis attached.

The Q1PLIN line description is created through the CRTLINSDLC command or reuses the line
description if it already exists.

The Q1PCTL controller description is created through the CRTCTLAPPC command or reuses the
controller description if it already exists.

The Q1PDEYV device description is created through the CRTDEV APPC command or reuses the
device description if it already exists.

The Q1PMOD mode description is created through the CRTMODD command or reuses the mode
description if it already exists.

Contact person information is taken from the "Work with Contact Information" (WRKCNTINF)
interface.

The PM400 scheduler job, Q1PSCH, is submitted.

Authorities and Locks

Public authority

*EXCLUDE

Soecial authorities

Y ou must have * JOBCTL specia authority to use this API.

Required Parameter Group
Error code
1/0; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message I D Error Message Text

CPFBO3B E PM/400 not started.

CPFBO3CE PM/400 already started.

CPF24B4 E Severe error addressing parameter list.
CPF3CLEE Required parameter & 1 omitted.
CPF3CF1E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

API introduced: V5R1

Top | Performance Management APIs | APIs by category

	Performance Management APIs (V5R2)
	Table of Contents
	Performance Management APIs
	Collection Services APIs
	Collector APIs
	Add Collector Notification (QypsAddCollectorNotification) API
	Change System Collector Attributes (QYPSCSCA, QypsChgSysCollectorAttributes) API
	Cycle Collector (QYPSCYCC, QypsCycleCollector) API
	Deegister Collector Data Category (QypsDeregCollectorDataCategory) API
	End Collector (QYPSENDC, QypsEndCollector) API
	Register Collector Data Category (QypsRegCollectorDataCategory) API
	Remove Collector Notification (QypsRmvCollectorNotification) API
	Retrieve System Collector Attributes (QYPSRSCA, QypsRtvSysCollectorAttributes) API
	Start Collector (QYPSSTRC, QypsStartCollector) API

	Management Collection Object APIs
	Close Management Collection Object (QpmCloseMgtcol) API
	Close Management Collection Object Repository (QpmCloseMgtcolRepo) API
	Open Management Collection Object (QpmOpenMgtcol) API
	Open Management Collection Object Repository (QpmOpenMgtcolRepo) API
	Read Management Collection Object Data (QpmReadMgtcolData) API
	Retrieve Active Management Collection Object Name (QpmRtvActiveMgtcolName) API
	Retrieve Management Collection Object Attributes (QpmRtvMgtcolAttrs) API

	User-Defined Transaction APIs
	End Transaction (QYPEENDT, qypeEndTransaction) API
	Start Transaction (QYPESTRT, qypeStartTransaction) API

	Exit program
	Collection Services Data Collection Exit Program

	Performance Collector APIs
	APIs
	List Performance Data (QPMLPFRD) API
	Work with Collector (QPMWKCOL) API

	Exit program
	Performance Monitor Exit Program

	Performance Explorer (PEX) APIs
	Add Trace Point (QYPEADDT, qypeAddTracePoint) API
	End Transaction (QYPEENDT, qypeEndTransaction) API
	Log Transaction (QYPELOGT, qypeLogTransaction) API
	Start Transaction (QYPESTRT, qypeStartTransaction) API

	Performance Management/400 (PM/400) APIs
	End PM/400 (Q1PENDPM) API
	Retransmit PM/400 Data (Q1PRTRN) API
	Start PM/400 (Q1PSTRPM) API

