
iSeries

Distributed Data Management
Version 5

ERserver
���

iSeries

Distributed Data Management
Version 5

ERserver
���

© Copyright International Business Machines Corporation 1999, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About Distributed Data Management . ix
Who should read the Distributed Data Management book ix
Code disclaimer information . ix

Chapter 1. Introduction to OS/400 DDM . 1
System Compatibility. 3
Overview of DDM Functions . 4
Basic OS/400 DDM Concepts . 4
Parts of DDM . 5

Parts of DDM: Source DDM (SDDM) . 6
Parts of DDM: Target DDM (TDDM) . 6
Parts of DDM: DDM File . 7

Additional OS/400 DDM Concepts . 12
iSeries server as the source server for DDM . 12
iSeries Server as the Target Server for DDM . 16
DDM-Related Jobs and DDM Conversations . 18

Examples of Accessing Multiple Remote Files with DDM 21
Example of Accessing Files on Multiple Servers with DDM 21
Example of Processing Multiple Requests for Remote Files with DDM 22

Chapter 2. Language, Utility, and Application Considerations for DDM 23
Programming Language Considerations for DDM . 23

DDM Considerations for All Languages . 23
Commitment Control Support for DDM. 26
ILE RPG Considerations for DDM . 27
ILE COBOL Considerations for DDM . 28
BASIC Considerations for DDM . 30
PL/I Considerations for DDM . 30
CL Command Considerations for DDM . 31
ILE C Considerations for DDM . 31

Utility Considerations for DDM. 32
System/38-Compatible Database Tools . 32
Data File Utility for iSeries server. 35
OS/400 Database Query . 35
Sort Utility . 36

Application Programs Considerations for DDM . 36
OfficeVision . 36
iSeries Access . 36

Hierarchical File System API Support for DDM. 38

Chapter 3. Preparing to Use DDM . 41
Communications Requirements for DDM in an APPC network 41
Configuring a communications network in a TCP/IP network 41
Security Requirements for DDM . 42
DDM File Requirements . 42
Program Modification Requirements for DDM . 42

DDM Architecture-Related Restrictions. 43
iSeries Source and Target Restrictions and Considerations for DDM 43
Non-iSeries Target Restrictions and Considerations for DDM 44

Chapter 4. Security Considerations for DDM . 47
Elements of DDM Security in an APPC network . 47

APPN configuration lists . 48

© Copyright IBM Corp. 1999, 2002 iii

||

||

Conversation level security . 48
DDM source system security in an APPC network . 49
DDM target system security in an APPC network . 50

User-Related Elements of Target Security . 50
Object-Related Levels of Target Security . 51

Elements of DDM Security using TCP/IP . 52
Connection security protocols for DDM . 53
Secure Sockets Layer (SSL) for DDM . 53
Internet Protocol Security Protocol (IPSec) for DDM 54
Ports and port restrictions for DDM . 54
Source system security in a TCP/IP network . 54
Target system security in a TCP/IP network . 61

DDM server access control exit program for additional security. 62
User Exit Program Requirement . 62
User Exit Program Parameter List for DDM . 62
User Exit Program Example for DDM . 65
Parameter List Example for DDM . 66
DRDA Server Access Control Exit Programs With Example 67
User Exit Program Considerations for DDM . 69

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 71
DDM-Specific CL Commands . 71

CHGDDMF (Change DDM File) Command . 71
CRTDDMF (Create DDM File) Command. 71
DSPDDMF (Display DDM Files) Command . 72
RCLDDMCNV (Reclaim DDM Conversations) Command 72
SBMRMTCMD (Submit Remote Command) Command. 73
WRKDDMF (Work with DDM Files) Command . 77

DDM-Related CL Command Considerations. 83
File Management Handling of DDM Files . 84
ALCOBJ (Allocate Object) Command . 85
CHGJOB (Change Job) Command . 86
CHGLF (Change Logical File) Command . 86
CHGPF (Change Physical File) Command . 86
CHGSRCPF (Change Source Physical File) Command 87
CLRPFM (Clear Physical File Member) Command 87
Copy Commands with DDM . 87
CRTDTAARA (Create Data Area) Command . 89
CRTDTAQ (Create Data Queue) Command . 90
CRTLF (Create Logical File) Command . 91
CRTPF (Create Physical File) Command . 92
CRTSRCPF (Create Source Physical File) Command 93
DLCOBJ (Deallocate Object) Command . 94
DLTF (Delete File) Command . 94
DSPFD (Display File Description) Command . 94
DSPFFD (Display File Field Description) Command 95
OPNQRYF (Open Query File) Command . 95
OVRDBF (Override with Database File) Command 96
RCLRSC (Reclaim Resources) Command . 96
RNMOBJ (Rename Object) Command. 97
WRKJOB (Work with Job) Command . 97
WRKOBJLCK (Work with Object Lock) Command 97

DDM-Related CL Parameter Considerations. 98
DDMACC Parameter Considerations . 98
DDMCNV Parameter Considerations . 98
OUTFILE Parameter Considerations for DDM . 99

iv OS/400 Distributed Data Management

||

||
||
||
||
||

DDM-Related CL Command Lists . 99
Object-Oriented Commands with DDM . 100
Target iSeries-Required File Management Commands 101
Member-Related Commands with DDM . 102
Commands Not Supporting DDM . 103
Source File Commands . 104

Data Description Specifications (DDS) Considerations for DDM 104
iSeries Target Considerations for DDM . 105
Non-iSeries Target Considerations for DDM . 105
DDM-Related DDS Keywords and Information . 106

DDM User Profile Authority . 107

Chapter 6. Operating Considerations for DDM . 109
File Access Considerations for DDM . 109

Types of Files Supported by OS/400 DDM . 109
Existence of DDM File and Remote File . 110
Specifying Target Server File Names for DDM . 110
Examples of Accessing iSeries DDM Remote Files (iSeries-to-iSeries) 112
Example of Accessing System/36 DDM Remote Files (iSeries-to-System/36) 113

Member Access Considerations for DDM . 114
Examples of Accessing DDM Remote Members (iSeries server Only) 114
Example of a DDM File That Opens a Specific Member 114

Access Method Considerations for DDM . 115
Access Intents . 115
Key Field Updates. 116
Deleted Records . 116
Blocked Record Processing . 116
Variable-Length Records . 116

Other DDM-Related Functions Involving Remote Files 117
Performing File Management Functions on Remote Servers 117
Locking Files and Members for DDM . 117
Controlling DDM Conversations . 118
Displaying DDM Remote File Information . 119
Displaying DDM Remote File Records . 119
Coded Character Set Identifier (CCSID) with DDM 120
Using Object Distribution . 120
Using Object Distribution with DDM . 120

Manage the TCP/IP server . 121
DDM Terminology . 121
TCP/IP communication support concepts for DDM 122
DDM server jobs . 124
Configure the DDM server job subsystem . 126
Identifying server jobs . 127

Cancel Distributed Data Management work . 129
End Job (ENDJOB) command . 129
End Request (ENDRQS) Command . 129

Performance Considerations for DDM . 130
Batch File Processing with DDM . 133
Interactive File Processing with DDM . 134
DDM Conversation Length Considerations . 135

DDM Problem Analysis on the Remote Server . 135
Handling connection request failures for TCP/IP . 136

System/36 Source and Target Considerations for DDM 137
DDM-Related Differences between iSeries and System/36 Files 137
System/36 Source to iSeries Target Considerations for DDM 138
iSeries Source to System/36 Target Considerations for DDM 138

Contents v

||
||
||
||
||
||
||
||
||

||

Override Considerations to System/36 for DDM . 140
Personal Computer Source to iSeries Target Considerations for DDM 141

Appendix A. Examples of Coding DDM-Related Tasks 143
Communications Setup for DDM Examples and Tasks 143
DDM Example 1: Simple Inquiry Application . 144
DDM Example 2: ORDERENT Application . 146

DDM Example 2: Central Server ORDERENT Files 147
DDM Example 2: Description of ORDERENT Program 148
DDM Example 2: Remote Servers ORDERENT Files 149
DDM Example 2: Transferring a Program to a Target Server 150
DDM Example 2: Copying a File . 152

DDM Example 3: Accessing Multiple iSeries Files . 152
DDM Example 4: Accessing a File on System/36 . 153

Appendix B. DDM-Related CL Command Summary Charts 155

Appendix C. DDM Architecture Code Point Attributes 159

Appendix D. DDM Commands and Parameters . 169
Subsets of DDM Architecture Supported by OS/400 DDM 169

Supported DDM File Models . 169
Supported DDM Access Methods . 170

DDM Commands and Objects . 171
DDM Command Parameters . 173
CHGCD (Change Current Directory) Level 2.0 . 173
CHGEOF (Change End of File) Level 2.0 and Level 3.0 173
CHGFAT (Change File Attribute) Level 2.0 . 174
CLOSE (Close File) Level 1.0 and Level 2.0 . 174
CLRFIL (Clear File) Level 1.0 and Level 2.0 . 174
CLSDRC (Close Directory) Level 2.0 . 174
CPYFIL (Copy File) Level 2.0 . 175
CRTAIF (Create Alternate Index File) Level 1.0 and Level 2.0. 175
CRTDIRF (Create Direct File) Level 1.0 and Level 2.0 175
CRTDRC (Create Directory) Level 2.0 . 176
CRTKEYF (Create Keyed File) Level 1.0 and Level 2.0 176
CRTSEQF (Create Sequential File) Level 1.0 and Level 2.0 177
CRTSTRF (Create Stream File) Level 2.0 . 178
DCLFIL (Declare File) Level 1.0 and Level 2.0 . 179
DELDCL (Delete Declared Name) Level 1.0 . 179
DELDRC (Delete Directory) Level 2.0 . 179
DELFIL (Delete File) Level 1.0 and Level 2.0 . 179
DELREC (Delete Record) Level 1.0 . 180
EXCSAT (Exchange Server Attributes) Level 1.0 and Level 2.0 180
FILAL and FILATTRL (File Attribute List) Level 1.0, Level 2.0, and Level 3.0 180
FRCBFF (Force Buffer) Level 2.0 . 181
GETDRCEN (Get Directory Entries) Level 2.0 . 181
GETREC (Get Record at Cursor) Level 1.0 . 182
GETSTR (Get Substream) Level 2.0 and Level 3.0 182
INSRECEF (Insert at EOF) Level 1.0 . 182
INSRECKY (Insert Record by Key Value) Level 1.0 183
INSRECNB (Insert Record at Number) Level 1.0 183
LCKFIL (Lock File) Level 1.0 and Level 2.0 . 184
LCKSTR (Lock Substream) Level 2.0 and Level 3.0 184
LODRECF (Load Record File) Level 1.0 and Level 2.0 184
LODSTRF (Load Stream File) Level 2.0. 185

vi OS/400 Distributed Data Management

LSTFAT (List File Attributes) Level 1.0, Level 2.0, and Level 3.0 185
MODREC (Modify Record with Update Intent) Level 1.0 185
OPEN (Open File) Level 1.0 and Level 2.0 . 186
OPNDRC (Open Directory) Level 2.0 . 186
PUTSTR (Put Substream) Level 2.0 and Level 3.0 186
QRYCD (Query Current Directory) Level 2.0 . 186
QRYSPC (Query Space) Level 2.0 . 187
RNMDRC (Rename Directory) Level 2.0 . 187
RNMFIL (Rename File) Level 1.0 and Level 2.0 . 187
SBMSYSCMD (Submit server Command) Level 4.0 187
SETBOF (Set Cursor to Beginning of File) Level 1.0 187
SETEOF (Set Cursor to End of File) Level 1.0 . 188
SETFRS (Set Cursor to First Record) Level 1.0 . 188
SETKEY (Set Cursor by Key) Level 1.0 . 188
SETKEYFR (Set Cursor to First Record in Key Sequence) Level 1.0 189
SETKEYLM (Set Key Limits) Level 1.0 . 189
SETKEYLS (Set Cursor to Last Record in Key Sequence) Level 1.0 190
SETKEYNX (Set Cursor to Next Record in Key Sequence) Level 1.0 190
SETKEYPR (Set Cursor to Previous Record in Key Sequence) Level 1.0 191
SETLST (Set Cursor to Last Record) Level 1.0 . 191
SETMNS (Set Cursor Minus) Level 1.0 . 192
SETNBR (Set Cursor to Record Number) Level 1.0 193
SETNXT (Set Cursor to Next Number) Level 1.0 193
SETNXTKE (Set Cursor to Next Record in Key Sequence with a Key Equal to Value Specified)

Level 1.0 . 194
SETPLS (Set Cursor Plus) Level 1.0 . 194
SETPRV (Set Cursor to Previous Record) Level 1.0 195
SETUPDKY (Set Update Intent by Key Value) Level 1.0 196
SETUPDNB (Set Update Intent by Record Number) Level 1.0 196
ULDRECF (Unload Record File) Level 1.0 . 197
ULDSTRF (Unload Stream File) Level 2.0 . 197
UNLFIL (Unlock File) Level 1.0 and Level 2.0. 198
UNLIMPLK (Unlock Implicit Record Lock) Level 1.0 198
UNLSTR (Unlock Substreams) Level 2.0 and Level 3.0 198

User Profile Authority. 198

Appendix E. iSeries Server-to-CICS Considerations with DDM 201
iSeries Languages, Utilities, and Licensed Programs 201

CRTDDMF (Create DDM File) Considerations . 202
iSeries CL Considerations . 202

Language Considerations for iSeries Server and CICS 204
PL/I Considerations . 204
ILE COBOL Considerations . 206
ILE C Considerations . 208
ILE RPG Considerations . 208

Appendix F. DDM Differences . 213
iSeries server and System/36 DDM Differences . 213
iSeries server and System/38 DDM Differences . 214

Bibliography . 217

Index . 219

Contents vii

viii OS/400 Distributed Data Management

About Distributed Data Management

This information contains OS/400 distributed data management (DDM) concepts, information about
preparing for DDM communications, and DDM-related programming information. Although this book does
contain some information about systems other than iSeries, it does not contain all the information that the
other system types may need to communicate with the iSeries server using DDM. For complete
information for a particular remote system type, refer to that system’s documentation.

In this book, the term DDM refers to the distributed data management architecture used by distributed data
management (DDM) to define the protocols used for communicating between systems. DDM is also used
to refer to the following:

v Terms used to discuss DDM architecture (for example, DDM jobs, conversations, functions, requests,
and commands)

v Source and target implementations of the DDM architecture

v DDM files used by DDM to access remote files

v Non-iSeries DDM products that support DDM (for example, System/36, System/38, and CICS/DDM)

Distributed relational database architecture (DRDA) also uses the DDM architecture. For more information
about using distributed relational database architecture, see the Distributed Database Programming book.

Who should read the Distributed Data Management book
This book is intended for application programmers who are using OS/400 distributed data management
(DDM) to prepare a system to access data in remote files and to control access to local files by remote
systems.

Code disclaimer information
This document contains programming examples.

IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

All sample code is provided by IBM for illustrative purposes only. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The implied
warranties of non-infringement, merchantability and fitness for a particular purpose are expressly
disclaimed.

© Copyright IBM Corp. 1999, 2002 ix

../ddp/rbal1mst02.htm

x OS/400 Distributed Data Management

Chapter 1. Introduction to OS/400 DDM

This chapter describes the purpose of distributed data management (DDM), the functions that DDM
supplies on the iSeries server, and the concepts of Operating System/400 (OS/400) DDM.

DDM is part of the Operating System/400 licensed program. OS/400 DDM as a source supports Level 2.0
and below of the DDM architecture. OS/400 DDM as a target supports Level 2.0 and below for record file
(a file on disk in which the data is read and written in records) types and Level 3.0 and below of the DDM
architecture for stream files (documents) and directories (folders).

The DDM support on the iSeries server allows application programs or users to access data files that
reside on remote systems, and also allows remote systems to access data files on the local iSeries server,
as shown in Figure 1 on page 2. Any system that supports the DDM architecture as a source system can
access data (if authorized to do so) on any other system to which it is attached. The attached system must
support DDM as a target system (the system that receives a request from another system to use one or
more files located on the system). However, the source and target systems must support compatible
subsets and levels of the DDM architecture. (See “System Compatibility” on page 3.)

The folder management services (FMS) support allows personal computer users to access folders and
documents that reside on an iSeries target server. Remote systems that support Level 3.0 or Level 2.0 of
the DDM architecture for the stream access method can access folders and documents on the local
iSeries server.

DDM extends the file accessing capabilities of the iSeries server database management support. In this
manual, database management refers to the system function that controls local file processing; that is, it
controls access to data in files stored on the local iSeries server, and it controls the transfer of that data to
requesting programs on the same server.

Distributed data management (DDM) controls remote file processing. DDM enables application
programs running on one iSeries server to access data files stored on another server supporting DDM.
Similarly, other systems that have DDM can access files in the database of the local iSeries server. DDM
makes it easier to distribute file processing between two or more servers.

© Copyright IBM Corp. 1999, 2002 1

Systems that use DDM communicate with each other using the advanced program-to-program
communications (APPC) support, advanced peer-to-peer networking (APPN) support, or TCP/IP. See

Communications Management and the APPC, APPN, and HPR topic in the iSeries Information

Center for information needed to use APPC and APPN. See TCP/IP Configuration and Reference for
information needed to use TCP/IP.

Folder management services (FMS) allows local access to documents or folders that are on the iSeries
server. Personal computers may access folder management functions on the server via DDM.

Note: Distributed data management for the IBM Personal Computer uses the iSeries portion of the iSeries
Access licensed program.

As shown in Figure 2 on page 3, the server on which a user application issues a request involving a
remote file is called a source system. The server that receives the request for one of its files is called the
target system. A system can be both a source and target system for separate requests received at the
same time.

Using DDM, an application program can get, add, change, and delete data records in a file that exists on a
target system. It can also perform file-related operations, such as creating, deleting, renaming, or copying
a file from the target system to the source system. For an overview of the functions that can be done
using DDM, see “Overview of DDM Functions” on page 4.

When DDM is in use, neither the application program nor the program user needs to know if the file that is
needed exists locally or on a remote system. DDM handles remote file processing in essentially the same
way as local file processing is handled on the local system, and the application program normally does not
receive any indication of where the requested file is located. (However, in error conditions, messages are
returned to the user that indicate, when necessary, that a remote system was accessed.) Informational
messages about the use of target system files are included in the source system’s job log.

Figure 1. Source and Target Systems

2 OS/400 Distributed Data Management

|
|

|

|
|

../../books/c4154062.pdf
../rzahj/rzahjovr.htm
../../books/c4154204.pdf

When DDM is to be used, only the application programmer needs to know where the file is located and,
using control language (CL) commands outside of the high-level language (HLL) programs, he or she can
control which file is used. However, the programmer may also choose to use specific recovery functions to
handle certain communications failures; the HLL programs may need to be changed to include handling
any such failure.

Therefore, iSeries BASIC, ILE COBOL, ILE RPG, ILE C, and iSeries PL/I programs that are compiled to
process database files on the local server may not need to be changed or recompiled for DDM to process
those same files when they are moved to or exist on a remote server.

The following topics introduce OS/400 DDM:

v “System Compatibility”

v “Overview of DDM Functions” on page 4

v “Basic OS/400 DDM Concepts” on page 4

v “Parts of DDM” on page 5

v “Additional OS/400 DDM Concepts” on page 12

v “Examples of Accessing Multiple Remote Files with DDM” on page 21

For information about when programs on the source server need to be recompiled so they can access
remote files as well as local files, see Chapter 3, “Preparing to Use DDM”. For DDM limitations on the
various languages, utilities, and applications, see Chapter 2, “Language, Utility, and Application
Considerations for DDM”.

System Compatibility
DDM can be used to communicate between systems that are architecturally different. For example,
although the architectures of the iSeries server and System/36 are different, these systems can use DDM
to access files in each other’s database. To successfully communicate with each other, each system must
have an implementation of DDM that is compatible with Level 2.0 or below of the IBM DDM architecture.
Also, each type of system may use all or only part of the IBM DDM architecture or may have extensions to
the architecture.

Figure 2. Source and Target Systems

Chapter 1. Introduction to OS/400 DDM 3

|

|

|

|

|

|

|

If you are communicating with any non-iSeries servers, you must consider the level of DDM support
provided by those servers for such things as unique security considerations. OS/400 DDM security is
discussed in Chapter 4, “Security Considerations for DDM”.

For a list of the DDM architecture manuals that supply the details about Level 3.0 or below of the IBM
DDM architecture, see “Bibliography” on page 217.

Overview of DDM Functions
This section gives an overview of the types of DDM functions that can be done on a target server.

The following file operations, normally specified in HLL programs, can be done on files at target servers:

v Allocating, opening, or closing one or more files

v Reading, writing, changing, or deleting records in a file

The following file and nonfile operations, normally specified in CL programs or by CL commands, can be
done on files at the target servers:

v Copying the contents of a file.

v Performing operations on physical or logical file members (such as adding, clearing, or removing
members), but only if the target is an iSeries server or System/38.

v Accessing remote files for nondata purposes, such as:

– Displaying information about one or more files, using commands such as Display File Description
(DSPFD) and Display File Field Description (DSPFFD). These commands can display the file
attributes of the DDM file on the source system or the file or field attributes of the remote file on the
target system.

– Controlling the locking of files on the target system, using the Allocate Object (ALCOBJ) and
Deallocate Object (DLCOBJ) commands.

– Deleting, renaming, creating, and changing files using the Delete File (DLTF), Rename Object
(RNMOBJ), Create Physical File (CRTPF), Create Source Physical File (CRTSRCPF), Create
Logical File (CRTLF), Change Physical File (CHGPF), Change Logical File (CHGLF), and Change
Source Physical File (CHGSRCPF) commands.

v Accessing remote systems for nondata purposes:

– Sending a CL command to the target system (an iSeries server and a System/38 only) so it can be
run there, instead of on the source system (where it may not be useful to run it), using the Submit
Remote Command (SBMRMTCMD) command. The SBMRMTCMD command is the method you use
to move, save, or restore files on a target server. For example, a Move Object (MOVOBJ) command
might be sent to move a database file on the target server. (For typical uses of the SBMRMTCMD
command, refer to its description in Chapter 5, “CL Command Descriptions and DDS Considerations
for DDM” or refer to the CL topic in the iSeries Information Center for a more complete description.)

Various other nonfile-related operations, described later, can also be done on the target server.

Basic OS/400 DDM Concepts
The following topics give the basic concepts of OS/400 DDM:

v An overview of the three parts primarily used in DDM:

– Source DDM

– Target DDM

– DDM file

v Example of DDM file use

4 OS/400 Distributed Data Management

../rbam6/rbam6clmain.htm

Because remote file processing is much like local file processing, these topics should provide sufficient
conceptual information for most users of DDM. Another section provides additional, more detailed
concepts, and “Additional OS/400 DDM Concepts” on page 12 is intended primarily for the experienced
programmer who wants or needs to know more about DDM.

From an end user’s viewpoint, accessing data on a remote system is much the same as accessing data
on the local system. The main difference is the additional time needed for the data link to pass the data
between the systems whenever the remote file is accessed. Otherwise, the user or application program
does not need to know whether the data being accessed came from a local or remote file. Refer to
“Performance Considerations for DDM” on page 130 for additional considerations.

For DDM iSeries-to-iSeries file processing, remote file processing is done much the same as local file
processing. The purpose of this manual is to describe the things that are different for DDM. Also, because
other systems can use DDM, those considerations and concepts are covered as needed to enable the
iSeries programmer to successfully prepare the server for using DDM.

The DDM concepts that are described on the following pages describe mainly iSeries-to-iSeries remote file
processing. For purposes of illustration, concepts that relate to System/36 and System/38 are shown in
some examples. If you are using DDM on both System/36s and iSeries servers, you should be aware that
the concepts for both types are similar, except in the way they point to the remote file: An iSeries server
and a System/38 use a separate DDM file to refer to each remote file to be accessed; System/36 uses a
network resource directory that contains one network resource directory entry for each remote file to be
accessed.

Note: Although DDM supports other functions besides opening and accessing remote files, the concepts
described in this chapter deal primarily with remote file accessing.

Parts of DDM
OS/400 DDM consists of three parts to handle remote file processing among the systems using DDM:

Source DDM (SDDM), the support on the source (or local) iSeries server that is started, as needed, within
a source job to do DDM functions. The SDDM translates requests for remote file access from source
server application programs into DDM requests that are routed to the target server for processing. The
SDDM support establishes and manages a DDM conversation with the target server that has the desired
remote file.

Target DDM (TDDM), a target server job that is started on the target (or remote) server as a result of an
incoming DDM request and that ends when the associated DDM conversation ends. The TDDM translates
DDM requests for remote file access into data management requests on the target server and then
handles the return of the information that is to be sent to the source server.

DDM file, a system object with type *FILE that exists on the source server to identify a remote file. It
combines the characteristics of a device file and a database file. As a device file, the DDM file refers to a
remote location name, local location name, device name, mode, and a remote network ID to identify a
remote server as the target server. The DDM file appears to the application program as a database file
and serves as the access device between a source server program and a remote file.

Chapter 1. Introduction to OS/400 DDM 5

Figure 3 shows how the basic parts involved in DDM communications on both systems relate to each
other.

When a DDM file is accessed by a source system user or program, a DDM conversation is started
between SDDM and TDDM for the job in which the program or user is operating.

Parts of DDM: Source DDM (SDDM)
When an application program first attempts to access a remote file, a search for the requested DDM file is
done on the source server. As with local file processing, if the file name was not qualified with a library
name, the current library list for the job in which the program is running is searched for the specified file.
When the file is found, the server accesses the file, determines that it is a DDM file and starts the SDDM.

When the SDDM is started, it checks to see if a DDM conversation is already active between the source
job starting the SDDM and the target server identified by the remote location and mode values in the DDM
file. If a conversation exists that can be used, it is used. If not, a program start request is issued to the
appropriate target server to start a TDDM (a target job) on the target server to establish a DDM
conversation between the SDDM and TDDM. Parameters that were automatically created from information
in the DDM file about the remote file are passed when the remote server sends a program start request.

After the TDDM is started, the SDDM can forward each program request to the target job for processing.
If, for example, input/output (I/O) operations are to be done on a remote file, the program opens the file
and then issues the desired operation requests; the SDDM forwards the open request and the TDDM
opens the remote file. Then the SDDM forwards each file operation request to the TDDM, and both of
them handle the interchange of data between the application program and the remote file. When a DDM
function is being processed, the requesting program waits for the function to be completed and the results
to be received, the same as it does for local file operations.

For more detailed information about the SDDM on the iSeries server, see Figure 6 on page 14.

Parts of DDM: Target DDM (TDDM)
The TDDM is started when the remote server sends a program start request. The TDDM is started as a
batch job on the target server. After the TDDM is started and a DDM conversation is established, the
TDDM waits for a request (such as a file open or read operation, or a nonfile-related operation) to be sent
by the SDDM.

Figure 3. Communicating with DDM

6 OS/400 Distributed Data Management

When the TDDM receives a request to access an object on the target server, it searches for the requested
object. If the object was not qualified with a library or path name, the current library list or current directory
for the target job is searched.

When the requested object is found, the TDDM passes the first operation requested to database or folder
management on the target server, which performs the operation on the object. When the operation is
completed, database or folder management services returns the results of the operation to the TDDM,
which passes it to the SDDM. The SDDM passes the results and any accompanying data (such as records
requested on a read operation) to the application program. These actions are repeated for each
subsequent I/O operation request received, until the object is closed. If an operation does not complete
successfully, the SDDM returns an error message to the program, providing information about the error.

The TDDM and the target job remain active until the DDM conversation is ended by the source server job
that started it. For more information about the TDDM on the iSeries server, see Figure 8 on page 18.

Parts of DDM: DDM File
A DDM file is a file on the source server that contains the information needed to access a data file on a
target server. It is not a data file that can be accessed by a program for database operations. Instead,
when a source server program specifies the name of a DDM file, the file information is used by DDM to
locate the remote file whose data is to be accessed.

OS/400 DDM file information is based on locations. The remote location which is where the remote file is
located, is specified using the remote location name (RMTLOCNAME) parameter on the Create DDM File
(CRTDDMF) or Change DDM File (CHGDDMF) commands.

The remote file name specified on the CRTDDMF or CHGDDMF commands must be in the format used
by the remote system.

Another use of the DDM file is to submit control language (CL) commands to the target system to run on
that system. In this case, the remote file normally associated with the DDM file is ignored. For more
information on submitting commands, see “SBMRMTCMD (Submit Remote Command) Command” on
page 73.

Create a DDM File using SNA
You can create a DDM file that uses SNA as the communication protocol for connecting with the remote
system. Each DDM file that uses SNA contains the following information:

DDM File Value and Description of Values

DDM file name
The name of the DDM file on the source system that is used to identify a specific remote file.

Remote file name
The actual file name of the remote file; that is, the name by which it is known on the target server.
(For a target System/36, this is the file label of the remote file.)

Remote location name
The name of the remote location where the remote file exists. This remote location name provides
the data link to the target server (remote location) via APPN/APPC, over which a DDM
conversation is established when this DDM file is accessed.

Device
The name of the device on the source server used to communicate with the remote location.

Local location name
The name of the local location. This is the name the target server knows your server by. Your
server can consist of more than one local location.

Chapter 1. Introduction to OS/400 DDM 7

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

Mode The name of the mode to be used to communicate between the local location and remote location.

Remote network ID
The remote network ID to be used with the remote location. This value further qualifies the remote
location name. Two locations with the same remote location name but different remote network
IDs are viewed as two distinctly separate locations.

Type The type of connection to be used to communicate with the remote location when the DDM
conversation is established with the remote server. To create a DDM file that uses an SNA
connection, specify *SNA. This is the default type.

Create a DDM file using TCP/IP
You can create a DDM file that uses TCP/IP as the communication protocol for connecting with the remote
server. Each DDM file that uses TCP/IP contains the following information:

DDM File Value and Description of Values

DDM file name
The name of the DDM file on the source server that is used to identify a specific remote file.

Remote file name
The actual file name of the remote file; that is, the name by which it is known on the target server.

Remote location name
The name of the remote location where the remote file exists. This remote location name provides
the data link to the target server (remote location) via TCP/IP, over which a DDM conversation is
established when this DDM file is accessed.

Type The type of connection to be used to communicate with the remote location when the DDM
conversation is established with the remote server. To create a DDM file that uses TCP/IP, specify
*IP.

See Manage the TCP/IP server for more information on using DDM over TCP/IP.

Create a DDM file using RDB directory entry information
You can create a DDM file that uses the remote location information from a Relational Database (RDB)
directory entry. Each DDM file that uses an RDB directory entry contains the following information:

DDM File Value and Description of Values

DDM file name
The name of the DDM file on the source server that is used to identify a specific remote file.

Remote file name
The actual file name of the remote file; that is, the name by which it is known on the target server.

Remote location name
Specify *RDB to indicate that the remote location information is taken from an RDB directory entry.

Relational database
The name of the relational database entry used for the remote location information. The remote
location information in the RDB directory entry is used to establish the data link to the target
server (remote location), over which a DDM conversation is established when the DDM file is
accessed.

Specifying an RDB directory entry associated with an auxiliary storage pool (ASP) group for the DDM file’s
remote location information allows you to access that ASP group.

Effect of job description on ASP group selection: When the target DDM server is configured to use
ASP groups, and the DDM file specifies a relational database name, the relational database entry
specified in the DDM file on the client is used to establish the ASP group for the target job. When using a

8 OS/400 Distributed Data Management

||

|
|
|
|

||
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

||
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|
|

DDM file that does not specify a relational database name, the target job’s ASP group is established using
the initial ASP group attribute in the job description for the user profile that the target job is running under.

See the Distributed Database Programming book for more information on RDB directory entries.

See the Managing disk units in disk pools topic in the iSeries Information Center for more information on
ASP groups.

Example: Use the basic concepts of DDM in an APPC network
The following presents a sample application that uses DDM to access a remote file. The application could
be run by a company that has warehouses located in several cities. Figure 4 on page 10 illustrates the
relationships among the primary items included in a DDM file.

On an iSeries server in Chicago, an Open Database File (OPNDBF) command requests that file CUST021
be opened for input. Because the file name was not qualified on the command, the library list for the
source job is used to find the file, which is stored in the NYCLIB library.

Because CUST021 is a DDM file, the SDDM on the CHICAGO server is started in the source job when
the file is opened. The SDDM uses the remote location and mode names (NEWYORK and MODENYC)
from the DDM file to establish a DDM conversation with and start a target job (TDDM) on the appropriate
target server (NEWYORK). The remote file to be accessed by the source server program is CUSTMAST in
library XYZ.

The TDDM receives the remote file name from the SDDM and then allocates and opens the file named
CUSTMAST, which corresponds to the DDM file named CUST021 on the source server.

Chapter 1. Introduction to OS/400 DDM 9

|
|

|

|
|

../ddp/rbal1mst02.htm
../rzalb/rzalboverview.htm

The remote location name in the DDM file identifies the remote server where the file exists. The local
server uses the remote location name as well as other values specified in the DDM file to select a device
description. The device description can be either manually created or, if APPN is being used, automatically
created and activated by the server. The SDDM establishes a DDM conversation with the target server
using the values NEWYORK and MODENYC in the APPC remote location name. The APPC-related
support must have been started on the target server before the request is issued by the SDDM. (No
special support is required on the source server.)

Note: The APPN parameter on the Create Controller Description (APPC) (CRTCTLAPPC) and Create
Controller Description (SNA Host) (CRTCTLHOST) commands determines whether or not the APPN
support is used. Refer to the APPC, APPN, and HPR topic in the iSeries Information Center for
more information on using APPN, including how the server selects the device description to use.

Example: Use the basic concepts of DDM in an APPN network
As previously stated, the advanced peer-to-peer networking (APPN) support of an iSeries server can be
used to allow DDM access to systems not directly connected to the local server.

Figure 4. Relationships among DDM File Parameters and the Systems

10 OS/400 Distributed Data Management

../rzahj/rzahjovr.htm

Figure 4 shows a program on the Chicago server accessing a file on the New York server. Although the
servers were shown as directly connected, the same DDM concepts apply if the network is configured as
shown in Figure 5. When the DDM file CUST021 in Figure 5 is opened on the Chicago server, the APPN
support finds the remote location named NEWYORK, determines the optimal path through the network,
and establishes a DDM conversation with that location. Although there may be several other servers
(network nodes) forwarding the data between CHICAGO and NEWYORK, the source DDM and target
DDM function as if there were a direct connection between these two servers.

If the file CUSTMAST were moved from NEWYORK to some other server in the network (for example,
DALLAS), then in this example, the DDM file at CHICAGO would need to be changed. The remote
location name would be changed from NEWYORK to DALLAS. If a large number of servers in the network
refer to the file CUSTMAST, then movement of the file results in a change to the DDM file at each of these
servers. By using the iSeries capability to have multiple local location names, maintenance of these files is
reduced.

In Figure 5, the server NEWYORK could be given two local location names, NEWYORK and FILELOC.
The DDM file at CHICAGO uses FILELOC as the remote location name. When access to file CUSTMAST
is required, APPN finds the location FILELOC in the system named NEWYORK, and the DDM
conversation is established as before.

If the file CUSTMAST is now moved from NEWYORK to DALLAS, the user at NEWYORK deletes the
local location FILELOC from his server, and it is added to the server at DALLAS. This is done by using the

Figure 5. Using DDM in an APPN Network

Chapter 1. Introduction to OS/400 DDM 11

APPN local location list. When the program in CHICAGO now attempts to access the file CUSTMAST, the
APPN support finds the remote location FILELOC at the server in Dallas, and the DDM conversation is
established to that server. The movement of CUSTMAST did not result in a change to the DDM file at
CHICAGO.

This example shows the concept of multiple local locations and how reduced maintenance results when
files are moved from one server to another. The example is not intended to suggest that a unique location
name should be used for every file accessed through DDM. The decision of which files should be
associated with separate local locations should be based on such factors as the movement of these files
and the number of remote servers accessing these files.

Additional OS/400 DDM Concepts
Most users of DDM will not need the information in the remainder of this chapter; it is intended primarily
for experienced programmers who need to know more about DDM. These additional concepts should help
a programmer understand and use the information in Chapter 5, “CL Command Descriptions and DDS
Considerations for DDM” and Chapter 6, “Operating Considerations for DDM”, which describe DDM-related
command coding and working considerations.

Described are conceptual details and examples about:

v Program start requests, which start the TDDMs (target jobs)

v Open data paths (ODPs), used to access the files

v Remote location information

v DDM conversations, established for source and target communications

v Source and target jobs

v I/O operations within a job

See the following topics for more information:

v “iSeries server as the source server for DDM”

v “iSeries Server as the Target Server for DDM” on page 16

v “DDM-Related Jobs and DDM Conversations” on page 18

iSeries server as the source server for DDM
When an application program or user in a source server job first refers to a DDM file, several actions
occur as part of processing the request on the source server. All of these actions, as well as those
required on the target server, must complete successfully before any operations (file or nonfile) requested
by the source program can be done. When the DDM file is referred to:

v If the request is to open a file, its information is used simultaneously to create an open data path (ODP)
on the source server and to start the SDDM support, which runs within the same job as the source
program. The SDDM also uses the information: to convert the source server request into a DDM
request, to communicate with the appropriate target server, and to establish a DDM conversation to be
used for the source job. (The ODP is partially created with the DDM file information; it is not usable until
the SDDM processes the remaining information after the DDM conversation is established.)

v The communications portion of DDM establishes a communications path with the target server. The
target server is identified via the remote location information specified in the DDM file, and the target file
is identified by the remote file name. Other parts of the remote location information, not kept in the DDM
file, are stored by the SDDM. This includes the transaction program name, user ID, activation group
number, and scope of the conversation. Using the remote location information, the TDDM is started on
the target server and a DDM conversation is established when the remote server receives the program
start request. The conversation is established the first time the remote file is accessed, but only if a
conversation using the same remote location values for that target server does not already exist for the
source job.

12 OS/400 Distributed Data Management

|

|

|

|

|
|
|
|
|
|
|
|
|

v After the DDM conversation is established, the SDDM (which can be used by multiple programs and
multiple DDM files in the same source job) sends the DDM architecture command to the TDDM, for
file-related requests. This command describes the file operation to be done and contains the name of
the remote file (specified in the DDM file) to be accessed. (For nonfile-related requests, such as when
the Submit Remote Command (SBMRMTCMD) command is used, the remote file name is not sent to
the TDDM; the remote file name is ignored.)

The SDDM converts each program request for a file open or input/output operation (received via the DDM
file and ODP) into an equivalent DDM command request and then sends it to the target server.

Figure 6 on page 14 shows the basic parts on the source iSeries server that are involved in accessing
remote files.

Chapter 1. Introduction to OS/400 DDM 13

After each request is handled by the target job, the DDM response from the target server is returned,
converted by the SDDM into the appropriate form, and passed back to the user. The response may
include data (if data was requested) or an indication of status (for other types of file access). The source
program waits until the function completes and the results are received.

Figure 6. iSeries server as the DDM Source Server

14 OS/400 Distributed Data Management

|
|
|
|

Figure 7 shows a simplified example of the interchange of data between the source and target servers for
a typical request to access a remote file.

After the first DDM file that was opened in the job is closed, the DDM conversation that it used is normally
kept active. This allows the same program or another program in the job to use the same conversation
when opening another DDM file, or doing other DDM-related operations. (For example, in Figure 9 on
page 20, source job 3A has two DDM files using the same conversation.) This saves the time and
resources required to establish a new conversation every time a new DDM file that uses the same remote
location information is used in that job.

When a DDM file is closed, the DDM conversation remains active, but nothing happens in the
conversation until the SDDM processes the next DDM-related request from a program. While it is not
being used, however, the conversation can be dropped. This can occur if the DDMCNV job attribute’s
default value of *KEEP is changed to *DROP using the Change Job (CHGJOB) command, or if the
Reclaim DDM Conversations (RCLDDMCNV) command or Reclaim Resources (RCLRSC) command is
used while the job is active. The DDMCNV job attribute is described under “DDMCNV Parameter
Considerations” on page 98 and all the commands are discussed in Chapter 5, “CL Command Descriptions
and DDS Considerations for DDM”. Also, see “Controlling DDM Conversations” on page 118 for the
conditions under which the conversation is considered unused.

Integrated Language Environment (ILE) and DDM
ILE introduces the concept of activation groups that run within jobs on the iSeries server. An activation
group is a substructure of a run-time job. It consists of server resources (storage for program or
procedure variables, commitment definitions, and open files) allocated to one or more programs. An
activation group is like a miniature job within a job. By default, all DDM conversations are scoped to the
activation group level. To scope is to specify the boundary within which server resources can be used.
Programs that run in different activation groups start separate DDM conversations when they use the
same DDM file or the same remote location information. Sharing of existing DDM conversations takes
place within the confines of the activation group. A DDM conversation can be scoped to the job level by
specifying OPNSCOPE(*JOB) on the OPNDBF command.

Figure 7. Typical Handling of an I/O Operation Request

Chapter 1. Introduction to OS/400 DDM 15

For more information on ILE concepts, refer to the ILE Concepts book.

Source Server Actions Dependent on Type of Target Server
If the target server is not another iSeries server or System/38, only the DDM architecture commands
defined in Level 2.0 and below of the DDM architecture are used. If the target is an iSeries server or a
System/38, then iSeries server and System/38 extensions to the architecture are used to support some
operations not defined by the Level 2.0 DDM architecture. Examples of System/38 and iSeries extensions
to the architecture are the Submit Remote Command (SBMRMTCMD) and processing file members of
remote files. For further information, including restrictions on their use, see “SBMRMTCMD (Submit
Remote Command) Command” on page 73. For creating a file when the source is an iSeries server and
the target is also an iSeries server, an iSeries extension is used.

Target servers that are not iSeries servers or System/38s may not be capable of handling all of the
functions that an iSeries server or a System/38 can handle. For example, a System/36 does not support
relative record processing and keyed record processing with one open; therefore, programs that mix
accessing records in a file by key or relative record do not work if the file is on a System/36. In addition,
target servers that do not support Level 2.0 of the DDM architecture can only handle functions defined in
the level they support.

Neither the System/36 nor the System/38 support access to folder management objects.

Note: An iSeries server only allows access to folder management services (FMS) objects when the
source supports Level 2.0 of the DDM architecture for stream files (files on disks in which data is
read and written in consecutive fields without record boundaries) and directories, for example, the
IBM Personal Computer using DDM.

An iSeries server as a source server does not support access to stream files and directories.

Language and utility specific restrictions are discussed in Chapter 2, “Language, Utility, and Application
Considerations for DDM”. For other possible restrictions, consult the specific target server documentation.

iSeries Server as the Target Server for DDM
The iSeries target DDM (or TDDM) is actually a job that runs a DDM-related target server program; it is
started when the source server sends a program start request (a SDDM). For source iSeries servers, the
program start request is started on the source server using information contained in the IBM-supplied
intersystem communications function (ICF) file for DDM. The remote location information in the DDM file
being accessed is used to send the program start request to the appropriate target server.

The attributes of the target job are determined by the values specified on the Add Communications Entry
(ADDCMNE) command, which is used on the target server to add a communications entry to the
subsystem description used for the job. This command identifies the device description, the job description
(including the library list for the target job), and the default user profile to be used by the subsystem.

For an iSeries Access connection, the routing entry in the QIWS subsystem for DDM (CMPVAL (’DDM’)),
along with the device description the personal computer is connected to, is used to obtain the attributes of
the target job.

After it is started, the TDDM does the following:

v For database files:

– Handles communications with the source system via a DDM conversation established over an APPC,
over TCP/IP, or over an iSeries Access data link.

– Converts the access requests from the source server into the equivalent iSeries functions and runs
them on the target server. Once the target object is located, the target server-created ODP and

16 OS/400 Distributed Data Management

|
|

../../books/c4156066.pdf

target database management services are used to access the object for whatever operation is
requested. The TDDM can, for example, pass requests that open the object and then do requested
I/O operations to the objects.

– Includes iSeries or System/38 extensions to the DDM Level 2.0 architecture for requests received
from the source server (if the source is an iSeries server or a System/38), which allow most iSeries
functions that operate on local servers to also work on remote iSeries servers. For example, it might
receive a SBMRMTCMD command from the source server (an iSeries server or a System/38) to do
a nonfile-related operation, such as using the CL command Replace Library List (RPLLIBL) to
replace the library list within the current target job.

– Converts target iSeries responses to the equivalent DDM responses and sends them back to the
source server. When the source server is an iSeries server or System/38, the actual iSeries or
System/38 messages are sent back to the source server.

v For folder management services objects:

Converts the DDM stream and directory access requests into the equivalent iSeries folder management
services functions and then runs them on the target server. The following commands are supported:

Change Current Directory (CHGCD)

Change File Attributes (CHGFAT)

Close Directory (CLSDRC)

Close Document (CLOSE)

Copy File (CPYFIL)

Create Directory (CRTDRC)

Create Stream File (CRTSTRF)

Delete Directory (DELDRC)

Delete File (DELFIL)

Force Buffer (FRCBFF)

Get Data Stream (GETSTR)

Get Directory Entry (GETDRCEN)

List File Attributes (LSTFAT)

Load Stream File (LODSTRF)

Lock Data Stream (LCKSTR)

Open Directory (OPNDRC)

Open Document (OPEN)

Put Data Stream (PUTSTR)

Query Current Directory (QRYCD)

Query Space Available (QRYSPC)

Rename Directory (RNMDRC)

Rename File (RNMFIL)

Unload Stream File (ULDSTRF)

Unlock Data Stream (UNLSTR)

Figure 8 shows the basic parts on the target iSeries server that are involved in processing the requested
target file.

The TDDM runs as a separate batch job, just as any other user APPC, TCP/IP, or iSeries Access target
application. A new TDDM, using additional target server resources, is started for each distinct source
server program start request received by the target server. There is one target job for each DDM
conversation. Each TDDM can handle access requests for multiple files in the DDM conversation.

Chapter 1. Introduction to OS/400 DDM 17

|
|
|
|

The subsystem, user profiles, and server resources to be used by the TDDM are defined the same as they
are for other types of jobs.

DDM-Related Jobs and DDM Conversations
This section provides additional information about activation groups, source server jobs, target server jobs,
and the DDM conversations used by those jobs.

For more information on ILE concepts, refer to the ILE Concepts book.

For remote file processing, at least two separate jobs are used, one running on each server: a source job
and a target job. (The source server job is the one in which the user application is running.) Multiple
application programs can be running in different activation groups within a single source job. Each
activation group within a source job has a separate DDM conversation and target job for the remote
location information specified in the DDM files. Multiple DDM files share a conversation when the following
is true:

v The files are accessed in the same activation group within a source job.

v The files specify the same remote location combination.

For each DDM conversation, there is one target job, which includes the TDDM.

The SDDM runs within a source job or activation group on the source server. It can handle multiple DDM
conversations with one or more target servers at the same time. For the same source job or activation
group, one SDDM handles all the remote file access requests. This is true regardless of how many target
servers or remote files are involved. No separate job for the SDDM exists in the server.

Figure 8. iSeries Server as the DDM Target System

18 OS/400 Distributed Data Management

../../books/c4156066.pdf

If the source server DDM files involved all use the same remote location information to identify the target
server, one TDDM job is created for each source server job that requests access to one or more files on
the target server.

Figure 9 on page 20 shows five programs accessing six DDM files. The numbers in the upper set of boxes
representing DDM files correspond to the same numbers in the lower set of boxes representing the
associated remote files. These DDM files are using four different remote location descriptions to access six
different remote files, all on the same target server. Seven DDM conversations are needed to handle the
processing. An explanation of the DDM conversations follows:

v PGM1 and PGM2 run in different source jobs and are using DDM files (2 and 3) that contain the same
remote location information. A separate conversation is needed for each source job.

v PGM3 in source job 3 uses the two DDM files (5 and 6) that both use the same remote location
information. They will share the same conversation and target job (5B).

v PGM4 and PGM5 run in different activation groups within source job 4. They are using two DDM files (5
and 6) that both use the same remote location information. A separate conversation is needed for each
activation group.

In Figure 9 on page 20, jobs 1, 2, and 3 in System A each have a SDDM. Each activation group in job 4
has its own SDDM. Jobs 1B through 7B each have their own TDDM.

When the application program or the source job closes the DDM file on the source server, the DDM
conversation and its associated target job ends, unless the following are true:

v The value of the DDMCNV attribute of the Change Job (CHGJOB) command for the source job is
*KEEP (the server default).

v Any locks established during the job by the Allocate Object (ALCOBJ) command still exist.

Chapter 1. Introduction to OS/400 DDM 19

The CHGJOB and ALCOBJ commands are described in Chapter 5, “CL Command Descriptions and DDS
Considerations for DDM”. If DDMCNV(*KEEP) is specified, the DDM conversation remains active and
waits for another DDM request to be started.

From a performance viewpoint, if the DDM conversation is likely to be used again, *KEEP is the value that
should be used. This saves the time and resources used on the target server to start each TDDM and
establish the conversation and job.

Figure 10 on page 21 shows the relationship between the SDDM and two TDDMs on different target
servers and Figure 11 on page 22 shows the relationship between the SDDM and two TDDMs on one
target server.

An iSeries server can be a source server and a target server at the same time, and two servers can be
accessing files located on each other. In addition, an iSeries job can be a source job and a target job. A
DDM file can refer to a remote file that is another DDM file.

Figure 9. Relationships of DDM Source and Target Jobs

20 OS/400 Distributed Data Management

Examples of Accessing Multiple Remote Files with DDM
Two examples follow that show a single application program using DDM to access multiple remote files.
The first example shows the remote files on different target servers, and the second shows them on the
same target server.

v “Example of Accessing Files on Multiple Servers with DDM”

v “Example of Processing Multiple Requests for Remote Files with DDM” on page 22

Example of Accessing Files on Multiple Servers with DDM
Figure 10 shows the relationships among the source server, its DDM files, and two target servers. One
target server is a System/38 and the other is a System/36. Each system has DDM installed.

The user program running on the source server is shown accessing three files: FILEA, FILEB, and FILEC.
FILEA, located on the source server, is accessed using only local data management. FILEB and FILEC
are DDM files that correspond to remote files FILEX and FILEY (respectively) on different target servers.
When the program opens FILEB and FILEC, DDM allows the program to access the corresponding remote

Figure 10. Example of Accessing Multiple Local and Remote Files. An iSeries server with communications links to a
System/38 and to a System/36.

Chapter 1. Introduction to OS/400 DDM 21

|

|

|
|

files as if they were on the source server. Only the person who defines the DDM files needs to know
where each file is located or what the file’s name is on the remote server.

Example of Processing Multiple Requests for Remote Files with DDM
The following example shows how multiple programs access multiple files on the same target server. This
example shows a System/36 target server. The SDDM is shown handling requests for two files from two
programs in different jobs, and two TDDMs are handling the requests on the target server (one TDDM for
each requesting program). Notice that, although program B is accessing two files on the target server, only
one TDDM is created if all the associated DDM files specify the same remote location information to
identify the target server.

Notice that both programs A and B are sharing FILEA. However, because these programs are shown to be
in separate jobs, they cannot share the same open data path (ODP) to FILEA. If they were in the same
job, programs A and B could share both the ODP on the source server and the remote file. When multiple
programs within the same job are accessing a remote file at the same time (via one TDDM for each
program), the rules for file sharing are the same for remote files as for local files, and are based on how
the SHARE parameter is specified on the Create DDM File (CRTDDMF), the Override with Database File
(OVRDBF), and the Change DDM File (CHGDDMF) commands.

Figure 11. Example of Processing Multiple Program and File Requests

22 OS/400 Distributed Data Management

Chapter 2. Language, Utility, and Application Considerations
for DDM

This chapter describes the language, utility, and application program support that is provided on the
iSeries server for DDM. This chapter indicates which languages, utilities, and application programs support
DDM, and provides any DDM-specific information needed to properly access remote files.
Language-specific information concerning access to Customer Information Control System for Virtual
Storage (CICS) files is in Appendix E, “iSeries Server-to-CICS Considerations with DDM”.

For more information about language, utility, and application program support, see the following topics:

v “Programming Language Considerations for DDM”

v “Utility Considerations for DDM” on page 32

v “Application Programs Considerations for DDM” on page 36

v “Hierarchical File System API Support for DDM” on page 38

Programming Language Considerations for DDM
OS/400 DDM is supported by the following iSeries languages:

v ILE RPG

v ILE COBOL

v iSeries BASIC (interpretive and compiled forms)

v iSeries PL/I

v ILE C

v Control Language (CL) (interactive and compiled forms)

Note: iSeries Pascal does not support DDM.

The following topics describe programming language considerations for DDM in depth:

v “DDM Considerations for All Languages”

v “Commitment Control Support for DDM” on page 26

v “ILE RPG Considerations for DDM” on page 27

v “ILE COBOL Considerations for DDM” on page 28

v “BASIC Considerations for DDM” on page 30

v “PL/I Considerations for DDM” on page 30

v “CL Command Considerations for DDM” on page 31

v “ILE C Considerations for DDM” on page 31

DDM Considerations for All Languages
DDM files can be used as data files or source files by high-level language (HLL) programs. However, for
CL, data description specifications (DDS), PL/I, and BASIC, if a DDM file is to be used as a source file,
the target server must be an iSeries server or a System/38, and the file referred to by the DDM file must
be defined on the target iSeries server or System/38 as a source file. That is, the remote file must have
been created either by the Create Source Physical File (CRTSRCPF) command or as FILETYPE(*SRC)
by the Create Physical File (CRTPF) command. These restrictions are not enforced by the ILE RPG, ILE
COBOL, and ILE C compilers, which allow source files to be used from both iSeries and non-iSeries target
servers.

© Copyright IBM Corp. 1999, 2002 23

|

|

|

|

|

|

|

|

|

|

|

|

|

|

If a source file member name is specified when the target server is not an iSeries server or a System/38,
all the HLL compilers end compilation if the name of the source member specified on the SRCMBR
parameter is different from the name of the DDM file specified on the SRCFILE parameter.

If programs that accessed local files are to access remote files, certain restrictions may require that a
program be changed and recompiled. And, if the target server is not an iSeries server or a System/38,
externally described data must, in some cases, reside on the local (source) server. All of these restrictions
are described under “Program Modification Requirements for DDM” on page 42.

If the target system is not an iSeries server or a System/38, the number of records returned in the open
feedback may not be valid.

If you do not specify a library name for the SRCFILE parameter, the first file found in the user’s library list
with the same name as the file you specified for the SRCFILE parameter is used as the source file.

HLL Program Input and Output Operations with DDM
The high-level language operations, shown in two parts in Table 1 and in Table 2 on page 25, are
supported by DDM for keyed or nonkeyed operations.

Table 1. High-Level Language Operations Supported by DDM for Keyed or Nonkeyed Operations

OS/400 Database
Operation

High-Level Languages

ILE RPG Programming
Language

ILE COBOL Programming
Language BASIC PL/I

Open file OPEN OPEN OPEN OPEN
Query file
Read (keyed access) CHAIN (key) READ INVALID KEY READ KEY READ

EQUAL
Read first/last1 *LOVAL *HIVAL READ FIRST LAST READ FIRST

LAST
READ FIRST
LAST

Read next READ READE2 READ <NEXT> AT END READ READ NEXT
Read previous READP READ PRIOR AT END READ PRIOR READ PRV
Read next or previous3

Next equal Previous equal
Next unique Previous
unique

READ = =,
PRIOR

READ
NXTEQL
PRVEQL
NXTUNQ
PRVUNQ

Read (relative to start)4 CHAIN (rrn) READ RELATIVE KEY READ REC= READ KEY
Release record lock EXCPT or next I/O op (next I/O op) (next I/O op) (next I/O op)
Force end of data FEOD
Position file5 SETGT SETLL START KEY GREATER

KEY NOT LESS KEY
EQUAL

RESTORE

Update record UPDAT REWRITE6 REWRITE REWRITE
Write record WRITE/ EXCPT WRITE6 WRITE WRITE
Delete record DELET DELETE6 DELETE DELETE
Close file CLOSE CLOSE CLOSE CLOSE

24 OS/400 Distributed Data Management

Table 1. High-Level Language Operations Supported by DDM for Keyed or Nonkeyed Operations (continued)

OS/400 Database
Operation

High-Level Languages

ILE RPG Programming
Language

ILE COBOL Programming
Language BASIC PL/I

Notes:
1 For the ILE RPG language, if the keyed access path of a file specifies DESCENDING, then *LOVAL gets

the last record in the file and *HIVAL gets the first record in the file.

2 For duplicate keyed files, the ILE RPG language performs a READ NEXT operation and compares the key
of the returned record to determine if the record qualifies. If so, the record is returned to the program; if not,
an end-of-file indication is returned.

3 If the remote file is on a non-iSeries server, these operations cannot be performed using DDM.

4 An iSeries application program can open a keyed access open data path to a file and then access its
records using both keyed and relative record access methods. Although OS/400 DDM supports the
combined-access access method, a target server (such as System/36) may not. In this case, the iSeries
program can do relative record accessing of a keyed file on a non-iSeries target server if the target server
supports the combined-by-record-number access method and if the DDM file specifies that method. The
combined-by-record-number access method is specified on an iSeries server as ACCMTH(*ARRIVAL
*BOTH) on the Create DDM File (CRTDDMF) command. If these values are not specified for the DDM file
and the target server does not support the combined-access access method, relative record operations to a
keyed file are rejected.

5 Positioning operations (SETxx in the ILE RPG language, or START in the ILE COBOL language) do not
return the record data to the application program. These operations also cause the file to be opened for
random processing.

6 ILE COBOL operations that change indexed or relative files can lock the record prior to the operation to
make the record eligible. PL/I uses similar methods and options.

Table 2. High-Level Language Operations Supported by DDM for Keyed or Nonkeyed Operations

OS/400 Database Operation

High-Level Languages

CL ILE C Programming Language

Open file OPNDBF FOPEN, FREOPEN

Query file OPNQRYF

Read (keyed access)

Read first/last

Read next RCVF FREAD, FGETC

Read previous

Read next or previous: Next equal
Previous equal Next unique Previous
unique

Read (relative to start)

Release record lock (next I/O op)

Force end of data FFLUSH

Position file POSDBF FSEEK, FSETPOS

Update record FWRITE, FPUTC, FFLUSH

Write record FWRITE, FPUTC, FFLUSH

Delete record

Close file CLOF FCLOSE

Chapter 2. Language, Utility, and Application Considerations for DDM 25

Commitment Control Support for DDM
iSeries applications can commit or roll back transactions on remote iSeries servers. However, DDM does
not support the iSeries journaling commands (CRTJRN, CRTJRNRCV, and STRJRNPF). Before running
applications, a user must create a journal on the target iSeries servers for recoverable resources to be
used under commitment control, start journaling the physical files that are to be opened under commitment
control, and issue the Start Commitment Control (STRCMTCTL) command on the source server. The
STRCMTCTL command does not Support the Notify Object (NTFOBJ) command for DDM files. Another
way to setup journaling on the remote server is to use the SBMRMTCMD DDM support to submit the
journal commands to the target server to journal the remote files.

For DDM conversations to use two-phase commitment control, the DDM conversations need to be
protected. For DDM conversations to be protected, the appropriate DDM file must have been created with
the protected conversation (PTCCNV) parameter set to *YES. For more information on two-phase
commitment control, see the Commitment control topic in the iSeries Information Center.

Using DDM Files with Commitment Control
DDM files can be opened under commitment control. However, the following restrictions should be
considered when working with these DDM files:

v If more than one DDM file (with PTCCNV(*NO)) is opened under commitment control, the following
items must be the same for each file:

– Remote location name

– Local location name

– Device

– Mode

– Remote network ID

– Transaction program name (TPN)

– User ID

– Activation group number

– Open scope

The exception to this rule is when all of the DDM files opened under commitment control are scoped to
the job level. In this case, the activation group numbers are ignored and do not need to match.

v If a DDM file and a remote SQL object (Distributed Relational Database Architecture, DRDA) are
running under commitment control (with PTCCNV(*NO)),

v the following items must be the same for the file and object:

– Remote location name

– Local location name

– Device

– Mode

– Remote network ID

– TPN

– User ID

– Activation group number

– Open scope

v If the DDM file (with PTCCNV(*YES)) is being opened for output, update, or delete (not opened for input
only) then there can not be any one-phase DDM or DRDA conversations active.

v If a DDM with PTCCNV of *YES is being used, it must point to a target iSeries server that supports
two-phase commitment control protocols.

v DDM files (with PTCCNV(*NO)) and local database files cannot be opened under commitment control at
the same time within the same activation group.

26 OS/400 Distributed Data Management

../rzakj/rzakjcommitkickoff.htm

v DDM files (with PTCCNV(*NO)) and local database files cannot be opened under commitment control at
the same time within the same job if commitment control is scoped to the job level.

v To open a DDM file under commitment control and scope it to the job level, you must have specified
CMTSCOPE(*JOB) on the Start Commitment Control (STRCMTCTL) command.

v You cannot use the Submit Remote Command (SBMRMTCMD) command to call programs that expect
commitment control to be scoped to the job level. Because commitment control is always scoped to the
activation group level in DDM target jobs, the program fails.

v The SBMRMTCMD command should not be used to start or end commitment control.

v The target server specified from the iSeries server working under commitment control must be another
iSeries server.

Note: If the communications line fails during a COMMIT operation, the source and target servers will do a
ROLLBACK operation. However, the target server may successfully complete the COMMIT
operation before the line fails, but the source server will always do a ROLLBACK operation.

Table 3. High-Level Language Commit and Rollback Commands

Operation ILE RPG
Programming
Language

ILE COBOL
Programming
Language

PL/I CL ILE C
Programming
Language

Commit changes
in transaction

COMMIT COMMIT PLICOMMIT COMMIT _Rcommit

Cancel entire
transaction

ROLBK ROLLBACK PLIROLLBACK ROLLBACK _Rrollback

ILE RPG Considerations for DDM
ILE RPG programs and automatic report programs can both refer to DDM files. Generally, DDM file names
can be specified in ILE RPG programming language anywhere a database file name can be specified, for
both iSeries and non-iSeries target servers.

v DDM file names can be specified on the Create RPG Program (CRTRPGPGM) and Create Auto Report
Program (CRTRPTPGM) commands:

– To access remote files containing source statements, on an iSeries server or a non-iSeries server, a
DDM file name can be specified on the SRCFILE parameter, and a member name can be specified
on the SRCMBR parameter.

- For iSeries or System/38 target servers, a remote iSeries or System/38 source file (and, optionally,
member) can be accessed in the same manner as a local source file and member.

- For non-iSeries target servers, a remote source file can be accessed if both the PGM and
SRCMBR parameter defaults are used on either command. Or, if a member name is specified, it
must be the same as the DDM file name specified on the SRCFILE parameter. (The same is true
for member names specified either on the /COPY statement of the input specifications used to
create an automatic report program or as used by the compiler to include source specifications.)

– To place the compiler listing in a database file on a target server, a DDM file name can be specified
on the PRTFILE parameter of either command.

v A DDM file name and member name can be specified on the OUTFILE and OUTMBR parameters of the
CRTRPTPGM command, but before the output produced by the command can be stored in the remote
file referred to by the DDM file, the remote file must already exist. Also, as with local files, the record
format of the remote file must match the required OUTFILE parameter format. Generally, this means
that the target server must be an iSeries server or a System/38.

When an ILE RPG program opens a DDM file on the source server, the following types of I/O operations
can be performed on the remote file at the target server, for both iSeries and non-iSeries targets: CHAIN,
CLOSE, DELET, EXCPT, FEOD, OPEN, READ, READE, READP, SETGT, SETLL, UPDAT, and WRITE.

Chapter 2. Language, Utility, and Application Considerations for DDM 27

Other considerations are:

v If the DDM file is declared in the program to be externally described, the ILE RPG compiler copies the
external descriptions of the remote file referred to into the program at compile time. However, if the
remote file is not on an iSeries server or a System/38, the field declares for the record descriptions do
not have meaningful names. Instead, all of the field names are declared as Fnnnnn and the key fields
are declared as Knnnnn.

A recommended method for describing remote files, when the target is not an iSeries server or a
System/38, is to have the data description specifications (DDS) on the local server and enter a Create
Physical File (CRTPF) command or a Create Logical File (CRTLF) command on the local server.
Compile the program using the local file name. Ensure that the remote system’s file has the
corresponding field types and field lengths.

To access the remote file, use the Override with Database File (OVRDBF) command preceding the
program, for example:
OVRDBF FILE(PGMFIL) TOFILE(DDMFIL) LVLCHK(*NO)

v A DDM file is also valid as the file specified in the ILE RPG program that will be used implicitly in the
ILE RPG logic cycle.

v A record format name, if used, must match the DDM file name when the target server is not an iSeries
server or a System/38.

v An ADDROUT file created on a System/36 cannot be used on an iSeries server. iSeries
System/36-Compatible RPG II uses 3-byte ADDROUT files, and ILE RPG programming language on an
iSeries server and System/38 uses 4-byte ADDROUT files.

ILE COBOL Considerations for DDM
ILE COBOL programs can refer to DDM files. Generally, DDM file names can be specified in ILE COBOL
programming language anywhere a database file name can be specified, for both iSeries and non-iSeries
target servers.

v DDM file names can be specified on the Create COBOL Program (CRTCBLPGM) command:

– To access remote files containing source statements, on an iSeries server or a non-iSeries server, a
DDM file name can be specified on the SRCFILE parameter, and a member name can be specified
on the SRCMBR parameter.

- For iSeries or System/38 target servers, a remote iSeries or System/38 source file (and, optionally,
member) can be accessed in the same manner as a local source file and member.

- For non-iSeries target servers, a remote source file can be accessed if both the PGM and
SRCMBR parameter defaults are used on the CRTCBLPGM command. Or, if a member name is
specified, it must be the same as the DDM file name specified on the SRCFILE parameter.

– To place the compiler listing in a database file on a target server, a DDM file name can be specified
on the PRTFILE parameter of the CRTCBLPGM command.

v DDM file names can be specified as the input and output files for the ILE COBOL SORT and MERGE
operation. (The work file for this operation cannot be a DDM file.)

v A DDM file can be used in the ILE COBOL COPY statement when the DDS option on that statement is
used to copy one or all of the externally described record formats from the remote file referred to by the
DDM file into the program being compiled. If this is done when the remote file is not on an iSeries
server or a System/38, the field declares for the record descriptions will not have meaningful names.
Instead, all of the field names are declared as Fnnnnn and the key fields are declared as Knnnnn.

A recommended method for describing remote files, when the target is not an iSeries server or a
System/38, is to have the data description specifications (DDS) on the local server and enter a Create
Physical File (CRTPF) command or a Create Logical File (CRTLF) command on the local server.
Compile the program using the local file name. Ensure that the remote server’s file has the
corresponding field types and field lengths.

To access the remote file, use the Override with Database File (OVRDBF) command preceding the
program, for example:

28 OS/400 Distributed Data Management

OVRDBF FILE(PGMFIL) TOFILE(DDMFIL) LVLCHK(*NO)

v DDM file names can be specified on a COPY statement:

– If you do not specify the library name with the file name, the first file found with that file name in the
user’s library list is used as the include file.

– If the target server is not an iSeries server or a System/38, a DDM file name can be specified as the
include file on a COPY statement, but the member name must be the same as the DDM file name.

v If the target server is a System/36, ILE COBOL programming language cannot be used to open a DDM
file for output if the associated remote file has logical files built over it. For System/36 files with logical
files, the open operation (open output) will fail because ILE COBOL programming language attempts to
clear the file before using it.

When a ILE COBOL program opens a DDM file on the source server, the following statements can be
used to perform I/O operations on the remote file at the target server, for both iSeries and non-iSeries
targets: CLOSE, DELETE, OPEN, READ, REWRITE, START, and WRITE.

Direct File Support with ILE COBOL
An iSeries server does not support direct files as one of its file types. However, a ILE COBOL program on
iSeries server can specify that a file be accessed as a direct file. (An iSeries server normally creates direct
files as sequential files.) A ILE COBOL program on an iSeries server defines a file as a direct file by
specifying RELATIVE on the SELECT statement. If the program is to open the file for output only (by
specifying OUTPUT on the OPEN statement), the file must be created with deleted records and contain no
active records. This is also the file’s condition when a non-iSeries source server (such as System/36) uses
DDM to create or clear the direct file on an iSeries server, assuming that the file is created as described
below.

An iSeries server and System/38 support sequential and keyed file types. DDM recognizes sequential,
keyed, and direct file types. For a non-iSeries server to create a direct file on an iSeries server using
DDM, the DDM architecture command Create Direct File (CRTDIRF) is used.

When the CRTDIRF architecture command is issued from a non-iSeries server to create the file, the file is
created as a physical file and is designated as a direct file so that, for subsequent direct file access by
non-iSeries source servers, it will be identifiable to the other server as a direct file. If the file is not created
in this way, an iSeries server cannot later determine whether the file is a direct file or a sequential file,
again, because an iSeries server does not have direct files as one of its file types.

Therefore, if a ILE COBOL program on a server other than an iSeries server or a System/38 needs to
access an iSeries or a System/38 file in a direct mode (that is, by relative record number) for output, the
file must have been created by the CRTDIRF architecture command.

To support direct files on an iSeries server for output only, the ILE COBOL OPEN statement clears and
prepares a member of a file being opened. Therefore, existing iSeries or System/38 files can be accessed
via DDM files by ILE COBOL programs on other iSeries servers or System/38s. For non-iSeries target
servers, relative files opened for output must be defined as direct files or an error occurs.

In summary:

v If a file is created on the local iSeries server as a direct file by a program or user from a non-iSeries
server, the file can be accessed as a direct file by a ILE COBOL program from a remote non-iSeries
source server.

v If a file is created on the local iSeries server by a program or user on the same iSeries server, it cannot
be accessed as a direct file by a non-iSeries server because the iSeries target server cannot determine,
in this case, whether the file is a direct or sequential file.

v Any files created by a remote server can be used locally.

Chapter 2. Language, Utility, and Application Considerations for DDM 29

BASIC Considerations for DDM
Compiled BASIC programs and interpretive BASIC statements can refer to DDM files. In addition, DDM file
names can be specified on the Create BASIC Program (CRTBASPGM), Start BASIC (STRBAS), and
Execute BASIC Procedure (EXCBASPRC) commands.

v A DDM file name can be specified on the SRCFILE parameter, and a member name can be specified
on the SRCMBR parameter of the CRTBASPGM, STRBAS, and EXCBASPRC commands, but only if
the remote source file (and member) is on an iSeries server or a System/38. If one of these commands
refers to remote files on non-iSeries or non-System/38 target servers, the operation fails.

v A DDM file can be used as the source file for the following BASIC commands in the BASIC session:
FREE, LOAD, MERGE, PROC, REPLACE, SAVE, SRCFILE, and SUBPROC. It can also be used in the
CHAIN BASIC statement.

v A DDM file name can be specified in the DECLARE FILE statement. The remote file that the DDM file
refers to is used to bring in the field definitions for an externally described file. If this is done and the
remote file is not on an iSeries server or a System/38, the field declares for the record descriptions will
not have meaningful names. Instead, all of the field names are declared as Fnnnnn and the key fields
are declared as Knnnnn.

A recommended method for describing remote files, when the target is not an iSeries server or a
System/38, is to have the data description specifications (DDS) on the local server and enter a Create
Physical File (CRTPF) command or a Create Logical File (CRTLF) command on the local server.
Compile the program using the local file name. Ensure that the remote server’s file has the
corresponding field types and field lengths.

To access the remote file, use the Override with Database File (OVRDBF) command preceding the
program, for example:
OVRDBF FILE(PGMFIL) TOFILE(DDMFIL) LVLCHK(*NO)

v A DDM file can be specified as the file used in the LISTFMT and LISTFMTP BASIC commands. These
commands extract the file descriptions of the referred to remote file to list any fields used in the
program.

When BASIC is used to open a DDM file on the source server the following statements can be used to
perform I/O operations on the remote file at the target server, for both iSeries and non-iSeries targets:
CLOSE, DELETE, INPUT, LINPUT, OPEN, READ, REREAD, RESTORE, REWRITE, and WRITE
statements for processing record files, and GET and PUT statements for processing remote PL/I stream
files.

PL/I Considerations for DDM
Compiled PL/I programs can refer to DDM files. In addition, DDM file names can be specified on the
Create PL/I Program (CRTPLIPGM) command.

v A DDM file name can be specified on the SRCFILE parameter, and a member name can be specified
on the SRCMBR parameter, but only if the remote source file is on an iSeries server or a System/38.
The same is true for specifying DDM file and member names on the %INCLUDE source directive
statement. If the remote file referred to by the DDM file is not on an iSeries server or a System/38, an
error occurs if a DDM file name is specified on the CRTPLIPGM command or %INCLUDE statement.

v When a DDM file is accessed as the source file for a PL/I program, the margins used in the compilation
of the PL/I source are the default values of 2 and 72. No other margin values can be specified.

v If a %INCLUDE DDS directive statement specifies the name of a DDM file, the record descriptions of
the remote file are included in the compiled program. However, if the remote file is not on an iSeries
server or a System/38, the field declares for the record descriptions do not have meaningful names.
Instead, all of the field names are declared as Fnnnnn and the key fields are declared as Knnnnn.

A DDM file can be used to refer to remote record files or remote PL/I stream files. When a PL/I program
opens a DDM file on the source server, the following types of statements can be used to perform I/O

30 OS/400 Distributed Data Management

operations on the remote file at the target server, for both iSeries and non-iSeries targets: OPEN, CLOSE,
READ, WRITE, REWRITE, and DELETE statements for processing record files, and GET and PUT
statements for processing stream files.

Another consideration is if the target server is not an iSeries server or a System/38, the POSITION
parameter on a keyed READ statement to read from a remote file does not work if a value of NXTEQL,
PRVEQL, NXTUNQ, or PRVUNQ is specified for the parameter. (The values of NEXT, PREVIOUS, FIRST,
and LAST do work.) All the values are valid if the target system is an iSeries server or a System/38.

CL Command Considerations for DDM
Both compiled CL programs and interactively entered CL commands can refer to DDM files. Generally,
DDM file names can be specified in CL commands anywhere a database file name can be specified for
both iSeries and non-iSeries target servers. But there are some limitations, and they are discussed later in
this manual, primarily in Chapter 5, “CL Command Descriptions and DDS Considerations for DDM”.

Most of the information for using CL commands with DDM to access remote files is contained in
Chapter 5, “CL Command Descriptions and DDS Considerations for DDM” and Chapter 6, “Operating
Considerations for DDM”.

Below are some examples of where DDM file names can be specified:

v DDM file names can be specified on many of the database file-related commands, such as the copy,
display, and override file commands.

v DDM file names can be specified on the create file commands to access remote source files, but only if
the target server is an iSeries server or a System/38. A DDM file name can be specified on the
SRCFILE parameter, and a member name can be specified on the SRCMBR parameter. If the remote
source file referred to by the DDM file is not on an iSeries server or a System/38, an error occurs. The
considerations for remote iSeries or System/38 source members are the same as for local source
members.

v DDM file names can be specified on the FILE parameter of the Declare File (DCLF) command.

When a DDM file name is specified, some commands act on files on the source server, some act on target
files, and some parameter values allow you to specify either a source or target file.

For summary charts that include the commands allowing DDM file names to be specified, see Appendix B,
“DDM-Related CL Command Summary Charts”.

ILE C Considerations for DDM
ILE C programs can refer to DDM files. Generally, DDM file names can be specified in ILE C programming
language anywhere a database file name can be specified, for both iSeries and non-iSeries target servers.

Specify DDM file names on the Create C Program (CRTCPGM) command to do the following:

v Access remote files on an iSeries or non-iSeries server that contains source statements. To do this,
specify a DDM file name on the SRCFILE parameter, and a member name on the SRCMBR parameter.

Notes:

1. For iSeries or System/38 target systems, you access a remote iSeries or System/38 source file (or
member) in the same manner as a local source file and member.

2. For non-iSeries target servers, access a remote source file by using the same file name for the
SRCMBR and the SRCFILE parameters.

v Place the compiler listing in a database file on a target server. To do this, specify a DDM file name on
the PRTFILE parameter of the CRTCPGM command.

When using ILE C programming language, consider the following:

Chapter 2. Language, Utility, and Application Considerations for DDM 31

v If the target system is not an iSeries server or a System/38, you can specify a DDM file name as the
include file on the #INCLUDE source directive statement, but the member name must be the same as
the DDM file name.

v ILE C programming language only supports sequential I/O operations.

v Although ILE C programming language does not directly support keyed files, key exceptions may occur
if you are using a keyed file.

Utility Considerations for DDM
The following iSeries utilities support DDM for accessing remote files:

v iSeries System/38-compatible database tools:

– System/38-compatible data file utility (DFU/38)

– System/38-compatible query utility (Query/38)

v Data file utility for an iSeries server (part of iSeries Application Development Tools, Program
572xx–PW1 or 5769–PW1)

v OS/400 Database Query

v Sort utility

Notes:

1. The following utilities do not support DDM: iSeries Query, source entry utility (SEU), screen design aid
(SDA), and advanced printer function utility.

2. Except when the System/38-compatible database tools or DFU/400 is being used, DDM does not
support displaying lists of members in remote files. However, if the target server is an iSeries server or
a System/38, display station pass-through can be used to perform this function.

3. The SQL/400 licensed program and query management, part of the OS/400 licensed program, do not
support DDM. However, both support the Distributed Relational Database Architecture (DRDA) in a
distributed network.

System/38-Compatible Database Tools
This section describes the System/38-compatible data file utility (DFU/38) and the System/38-compatible
query utility (Query/38).

System/38-Compatible Data File Utility (DFU/38)
DFU/38 data entry applications can be created and used with DDM to work with remote files in the same
manner as with local files. If a remote file is on an iSeries server or System/38, most DFU/38 functions are
performed with the remote file as though it is a local file. When creating or changing a DFU/38 application
and the remote file is a logical file, the following consideration applies: either DDM files referring to each
remote based-on file must exist on the source server, and the DDM file and library names must match
those of the remote based-on files; or, alternatively, physical files with the same file and library names and
the same record formats as the remote based-on files must exist on the source server. Because only the
record formats are needed from the physical files, they need not contain data. Using this alternative, if the
record formats of the remote based-on files are changed, the record formats on the source server must
also be changed so that the record formats match.

However, DFU/38 does not support non-iSeries or non-System/38 target systems. If you attempt to use
DFU/38 with non-iSeries or non-System/38 remote files, you may experience processing problems when
trying to change or delete records in such a file. Although an iSeries server does not prevent any user
from creating and using such an application, the default field descriptions created on the source iSeries
server for the non-iSeries or non-System/38 remote file would probably be too general to be useful. (These
files appear to be physical files with one member, whose member name is the same as the file name. The
file has one record format and within that format: one field for the entire record, if it is a nonkeyed file; two
fields for keyed files, one for the key and one for the remainder of the record; or more than two fields for
keyed files with separate key fields.)

32 OS/400 Distributed Data Management

|
|

All the DFU/38 commands can be used in applications that access local files or DDM files. And, wherever
a local database file name can be specified on any of the DFU command parameters, a DDM file can also
be specified, as long as any other limitations are met.

A DDM file name can be specified in the SRCFILE parameter of the Create DFU Application
(CRTDFUAPP) or Retrieve DFU Source (RTVDFUSRC) command, but only if the target server is an
iSeries server or a System/38 and if the target file is a source physical file.

System/38-Compatible Query Utility (Query/38)
The System/38-compatible query utility (Query/38) can be used with DDM to create and use interactive or
batch query applications. (DDM considerations with interactive database query are described in “OS/400
Database Query” on page 35.) If the target server is an iSeries server or a System/38, most of these
functions can be performed as though the remote file is a local file. When creating or changing a Query/38
application and the remote file is a logical file, the following consideration applies: either DDM files
referring to each remote based-on file must exist on the source server, and the DDM file and library names
must match those of the remote based-on files; or, alternatively, physical files with the same file and library
names and the same record formats as the remote based-on files must exist on the source server.
Because only the record formats are needed from the physical files, they need not contain data. Using this
alternative, if the record formats of the remote based-on files are changed, the record formats on the
source server must also be changed so that the record formats match.

If the target system is not an iSeries server or a System/38, you should refer to a local file for the format
and fields that describe the data in the remote file, and then use the Override Database File (OVRDBF)
command to override the local file with a DDM file when the Query/38 application is run. This is explained
further in “Non-iSeries or Non-System/38 Query/38 Example”. The local file used to create (or re-create)
the query must have the same record format name as the source description of the non-iSeries or
non-System/38 target file. The default record format name is the name of the source DDM file.

Although Query/38 can create an application that uses a file on a non-iSeries or non-System/38 system,
the default field descriptions created on the source iSeries server for the non-iSeries remote file probably
would be too general to be useful. (These files appear to be physical files with one member, whose
member name is the same as the file name. The file has one record format and within that format: one
field for the entire record, if it is a nonkeyed file; two fields for keyed files, one for the key and one for the
remainder of the record; or more than two fields for keyed files with separate key fields.)

Non-iSeries or Non-System/38 Query/38 Example
The following is an example of how to create a local file and use it to define the data that is to be queried
in a non-iSeries or non-System/38 remote file.

Assume that a DDM file named RMTS36FILE exists on your iSeries server and it refers to a remote
System/36 file that you want to query. You can perform the following steps to: determine the attributes of
the remote System/36 file; locally create a physical file that has the attributes of the remote file; and
define, create, and run the Query/38 against the remote file.

1. Use the Display File Field Description (DSPFFD) command and specify SYSTEM(*RMT) to display the
attributes of the remote file associated with the RMTS36FILE DDM file.
DSPFFD FILE(RMTS36FILE) SYSTEM(*RMT)

In this example, the displayed results would show that the remote file’s record length is 80 characters,
its record format name is RMTS36FILE, and it has two fields: K00001, with 12 characters (starting in
position 1), and F00001, with 68 characters (starting in position 13). The K in field K00001 indicates it
is the key field for this format.

2. Using the DDS and the above information before defining your Query/38 application, create a local
physical file and call it LCLS36FILE. The DDS might look something like this:

A R RMTS36FILE
A CUSNO 6A
A BILLCODE 6A

Chapter 2. Language, Utility, and Application Considerations for DDM 33

A ADDR1 15A
A ADDR2 15A
A ADDR3 15A
A ZIP 5A
A AMTOWE 7S 2
A OUTBAL 7S 2
A MISC 4A
A K CUSNO
A K BILLCODE

Three main rules must be followed when defining the local file:

v The record format name must be the same as the record format name displayed by the Display File
Field Description (DSPFFD) command.

v Key integrity must be maintained. In this case, the key must be 12 characters long, and must start
at the beginning of the file in position 1.

v The total record length must be the same as the record length displayed by the DSPFFD command.

3. Define your Query/38 application using the local file created in step 2. Because the remote file is a
non-iSeries file, OPTIMIZE(*NO) should be specified on the query command. (See “Query/38
Optimization for DDM” on page 35 for more information.)

4. Before your Query/38 application is run, issue the following Override Database File (OVRDBF)
command:
OVRDBF FILE(LCLS36FILE) TOFILE(RMTS36FILE)

When the Query/38 application is run, this command overrides the local file you created with the DDM
file that is associated with the desired target file.

5. Run your Query/38 application using the Query Data (QRYDTA) command. The net effect is that a
query of the remote file is done using the local file description.

Query/38 Output Considerations for DDM
Query/38 output to an existing non-iSeries or a non-System/38 target file is possible, but only under
specific circumstances. Query/38 allows output to any local or remote file only if the file is sequential and if
its field attributes match those attributes required by the Query/38 application. If both conditions are not
met, Query/38 rejects the specified output file before the Query/38 application runs.

Because the source server description of a non-iSeries or a non-System/38 target file is very general, its
field attributes probably do not match the attributes required by the Query/38 application. Therefore, in
most cases, Query/38 rejects that file if it is specified for output. It works, however, if the Query/38 output
consists of one alphanumeric field only, and if the record length of the target file is large enough to hold
this field.

Query/38 Command Considerations for DDM
All the Query/38 commands can be used in applications that access local files or DDM files. And,
wherever a local database file name can be specified on any of the Query/38 command parameters, a
DDM file can also be specified, as long as any other limitations are met.

Note: If a Query/38 command uses a DDM file associated with a remote file on a non-iSeries or a
non-System/38 target server, either the DDM file should specify LVLCHK(*NO) or an OVRDBF
command should be used to override that parameter with *NO. This is recommended to avoid
level-checking problems with the target file.

A DDM file name can be specified in the SRCFILE parameter of the Create Query Application
(CRTQRYAPP) or Retrieve Query Source (RTVQRYSRC) command, but only if the target server is an
iSeries server or a System/38 and if the target file is a source physical file.

34 OS/400 Distributed Data Management

Query/38 Optimization for DDM
Query/38 has an optimization function, but because it causes OS/400 database query to be used, the
feature cannot be used when the query is performed against a remote file that is not on an iSeries server
or a System/38. Because OS/400 database query does not exist on non-iSeries servers or
non-System/38s, the optimization function cannot be used by the source iSeries server when performing a
query against a non-iSeries or a non-System/38 remote file. (See “OS/400 Database Query”.)

Therefore, when a Query/38 application is being created or changed that accesses a remote file on a
non-iSeries server or a non-System/38, the OPTIMIZE parameter on the Create Query Application
(CRTQRYAPP), Create Query Definition (CRTQRYDEF), or Change Query Definition (CHGQRYDEF)
command must be changed to *NO. Specifying OPTIMIZE(*NO) forces Query/38 to read the file
sequentially, which can be done with non-iSeries target files. If the default of *YES is used, an error occurs
when the Query/38 application is run.

Similarly, if the Design Query Application (DSNQRYAPP) command is used to create and run queries that
are to be performed on a non-iSeries target file, the Optimize Query prompt on the Application Creation
display must be changed from Y to N.

Existing Query/38 Application Considerations for DDM
Existing Query/38 applications, if they are to query remote files, must be re-created in all cases, even if
the target server is an iSeries server or a System/38. If the target server is an iSeries server or a
System/38, the re-created application that uses a DDM file is defined and run as if the remote file is a
local file. The optimization feature can be used to get the records from the target iSeries server or the
target System/38.

Data File Utility for iSeries server
DFU data entry applications can be created and started with DDM to work with remote files in the same
manner as with local files. Most DFU functions are performed with the remote file as though it were a local
file. When creating or changing a DFU function of Application Development Tools and the remote file is an
iSeries or System/38 logical file, the following consideration applies: either DDM files referring to each
remote based-on file must exist on the source server, and the DDM file and library names must match
those of the remote based-on files; or, alternatively, physical files with the same file and library names and
the same record formats as the remote based-on files must exist on the source server. Because only the
record formats are needed from the physical files, they need not contain data. Using this alternative, if the
record formats of the remote based-on files are changed, the record formats on the source server must
also be changed so that the record formats match. Similar considerations apply when the remote file is a
System/36 logical file.

DFU supports iSeries server, System/38, and System/36 remote files. However, DFU does not prevent you
from using non-iSeries, non-System/38, or non-System/36 remote files and you may experience problems
when using such files.

Non-iSeries or System/36 files are program-described files. DFU allows you to use either a local or remote
file containing ILE RPG file and input specifications to define these data files.

OS/400 Database Query
The database interactive query function, provided by the OS/400 licensed program, supports DDM files.
This support is used by iSeries Access, OfficeVision, and System/38-compatible query utility if
OPTIMIZE(*YES) is specified. You can query remote files using the Open Query File (OPNQRYF)
command, but only if the remote files are on a target iSeries server or a target System/38. See
“OPNQRYF (Open Query File) Command” on page 95 for more information on the OPNQRYF command.

The query utility on the System/38 can be used to query remote files that are not from an iSeries server.
(See “System/38-Compatible Query Utility (Query/38)” on page 33 for more information on the
System/38-compatible query utility support.)

Chapter 2. Language, Utility, and Application Considerations for DDM 35

Multiple Remote Files
Database query allows accessing of either multiple local files or multiple remote files (via DDM files) at the
same time, but not both. If all the files are remote, they must all reside on the same target server. Also, the
DDM files that refer to the remote files must all specify the same remote location information. If this
restriction is not met, an error message is displayed to the user of iSeries Access or to the user of the
Open Query File (OPNQRYF) command who requested the query.

Sort Utility
The sort utility supports remote file processing with DDM anywhere that it supports local file processing for
both iSeries and non-iSeries target servers.

Generally, on the Format Data (FMTDTA) command, DDM file names can be specified anywhere a
database file name can be specified.

v A DDM file name can be specified on the SRCFILE parameter, and a member name can be specified
on the SRCMBR parameter, for iSeries or System/38 target systems. If the remote file referred to by the
DDM file is not on an iSeries server or a System/38, a member name cannot be specified.

v DDM file names can also be specified on the INFILE parameter (to access a remote file as the input file
for conversion) or on the OUTFILE parameter (to access a remote file as the output file of the
conversion). Both parameters cannot specify DDM file names at the same time.

Application Programs Considerations for DDM
The following iSeries licensed programs support DDM for accessing remote files, with limitations:
v OfficeVision
v iSeries Access

Note: iSeries Business Graphics Utility does not support DDM.

OfficeVision
OfficeVision supports remote file processing using DDM for selected functions. The functions that support
DDM files are:

v The Print Document (PRTDOC) command may use DDM files if the OUTFILE parameter is specified or
if an output device of file is specified on the Print Options display. For more information, see “OUTFILE
Parameter Considerations for DDM” on page 99.

v The get and get graphic functions of the OfficeVision word processing function allow source and graphic
data to be retrieved from DDM files. These functions are interactive and can seriously affect
performance if large amounts of data are requested.

iSeries Access
The transfer function in iSeries Access can be used with DDM to transfer data between a personal
computer attached to a local iSeries server and another remote server. When the transfer function is being
used, the remote system must be an iSeries system or a System/38. The iSeries Access copy commands,
Copy to PC Document (CPYTOPCD) and Copy from PC Document (CPYFRMPCD), can be used to copy
data on a host server or between host servers.

Figure 12 on page 37 shows a personal computer attached to the local iSeries server. The iSeries Access
user can access data on remote servers through a DDM file defined on the local iSeries server. The
iSeries server with the personal computer attached can only be the source server.

v The iSeries Access transfer function can be used by a personal computer user to transfer data from
a remote file to the personal computer, or to transfer data from the personal computer to a remote file.
Only a personal computer user can start the requests, not an iSeries user.

36 OS/400 Distributed Data Management

v The iSeries Access copy commands can be used with DDM to copy data from a personal computer
document located on the local iSeries server to a database file on the remote iSeries server, or to copy
data to a personal computer document on the local iSeries server from a database file on the remote
iSeries server.

Note: For iSeries Access, database query allows accessing of multiple remote files (via DDM files) at the
same time. For more information, see “Multiple Remote Files” on page 36.

iSeries Access Transfer Function Considerations
A personal computer user can use the transfer function in iSeries Access and the DDM support on the
local iSeries server to which the personal computer is attached either to transfer data from the personal
computer to a remote file, or to transfer data from a remote file to the personal computer. The remote file
must be on an iSeries server or a System/38.

When DDM is used to transfer files or data from a remote server to an attached personal computer, the
DDM files (that refer to remote files) on the local iSeries server cannot be joined with local files to transfer
data to the personal computer. (That is, data from files on both the remote and local servers cannot be
joined.) However, a DDM file can specify a remote file that is a logical join file built over multiple physical
files. DDM files that refer to the same target server and use the same remote location information can be
joined.

A transfer request that requires group processing does not work if the local server is a System/38 and the
remote server is an iSeries server, or if the local server is an iSeries server and the remote server is a
System/38.

When DDM is used to transfer a file or data from an attached personal computer to a remote server, a
remote file cannot be created on the target server. The remote file must already exist before the data from
the personal computer can be transferred. However, because the target must be an iSeries server or a
System/38, a new member can be added in the remote file before personal computer data is transferred to
that file member.

iSeries Access Copy Command Considerations
The iSeries CL command Copy from Personal Computer Document (CPYFRMPCD) used in iSeries
Access can be used to copy data from a document located either on an iSeries server to a database file
member located on the same iSeries server or on a remote iSeries server using DDM. The CL command

Figure 12. Using DDM with iSeries Access

Chapter 2. Language, Utility, and Application Considerations for DDM 37

Copy to Personal Computer Document (CPYTOPCD) can be used to copy data from a database file
member on a local iSeries server or a remote iSeries server (using DDM) to a document on the local
iSeries server. The remote file can be on a target iSeries server or a non-iSeries server. To use these
commands, specify the name of a DDM file on the:

v TOFILE parameter in the Copy from PC Document (CPYFRMPCD) command, to copy a personal
computer document to an iSeries physical file.

v FROMFILE parameter in the Copy to PC Document (CPYTOPCD) command, to copy a member from
an iSeries database file to a personal computer document in a folder.

The following restrictions apply to the CL copy commands for iSeries Access:

v For the CPYFRMPCD command, a remote file cannot be created on the target server (whether it is an
iSeries server or a non-iSeries server). The remote file must already exist before the personal computer
document data can be copied to it. However, if the target is an iSeries server or a System/38, a new
member can be created for the remote file before the personal computer document data is copied to
that file member.

v The CPYFRMPCD and CPYTOPCD commands are iSeries CL commands and cannot be entered at the
DOS prompt from the personal computer.

For more information on the CPYTOPCD and the CPYFRMPCD commands, see the online help
information.

Hierarchical File System API Support for DDM
The hierarchical file system (HFS) APIs and the functions that they support are part of the OS/400
program. The APIs provide applications with a single, consistent interface to all the hierarchical file
systems available on your iSeries server. They automatically support the document library services (DLS)
file system and can support user- written file systems also.

DDM can be registered under HFS as one of the user-written file systems. DDM, however, only supports
the copy stream file (QHFCPYSF) HFS API. To register DDM under HFS, you must execute the following
command on your iSeries source system, CALL QTSREGFS. If no errors occur, DDM is successfully
registered with HFS. For additional information on the HFS APIs, see the Hierarchical File System APIs
topic in the iSeries Information Center.

Calling DDM using the HFS QHFCPYSF API causes one of two DDM-architected commands to be
generated, the LODSTRF (load stream file) or ULDSTRF (unload stream file) command. Both of these
DDM commands are part of the stream file DDM model (STRFIL). If the DDM target server you are
working with does not support the STRFIL DDM model, then errors will occur when trying to use this
support. DDM uses documents and folders (DLS) on the server to copy stream file data either to
(ULDSTRF case) or from (LODSTRF case).

The required parameters for the QHFCPYSF API can be found in the Application programming interfaces
(APIs) information.

To use the DDM HFS copy stream file support, note the following:

v Both the source and target file path names must begin with the string ’/QDDM/’ to indicate to HFS that
DDM is the file system that will handle the copy stream file function.

v The copy information HFS parameter is ignored by DDM, but you still must pass a valid HFS value.

v Either the source or target file path name parameter must be the name of a DDM file, but not both. The
DDM file used must point to a target server that supports the STRFIL DDM file model and the remote
file name value must end with the string ’ FMS’ if the DDM file points to another iSeries server.

v The other source or target file path name parameter that is not a DDM file, must be the name of an
existing DLS object (document in a folder) and the name must be followed by the string ’ FMS’.

38 OS/400 Distributed Data Management

../apis/hfs1.htm
../apis/api.htm
../apis/api.htm

v The maximum source or target path name length supported by DDM is 63 characters. The 63
characters do not include the ’/QDDM/’ or the ’ FMS’ possible appendages.

v In the LODSTRF case (source file path name is a local DLS object and target file path name is a DDM
file), the local DLS document is read starting at offset zero through the end of the file. Whether or not
the target file (pointed to by the DDM file) exists or not is dependent on the target server’s stream file
support.

v In the ULDSTRF case (source file path name is a DDM file and target file path name is a local DLS
object), the local or target DLS document must exist on the iSeries and will have its contents cleared
and then written to starting at offset zero.

Here is a copy stream file example that will generate a LODSTRF DDM command to a remote server:
CRTDDMF FILE(DDMLIB/DDMFILE) +
RMTFILE(*NONSTD ’TARGET/SYSTEM/
SYNTAX/PATHNAME FMS’) RMTLOCNAME(RMTSYSNM)

In this example, the local DLS object is ’PATH1/PATH2/FOLDER1/DOC1’.

You would call QHFCPYSF with the following parameter list:
1 Source file path name = ’/QDDM/PATH1/PATH2/FOLDER1/DOC1 FMS’
2 Source file path name length = 34
3 Copy information = valid HFS value that is ignored by DDM
4 Target file path name = ’/QDDM/DDMLIB/DDMFILE’
5 Target file path name length = 20

Just reverse the source and target file path names and lengths to generate an ULDSTRF DDM command.

This disclaimer information pertains to code examples.

The example PL/I program in Figure 13 on page 40 calls DDM HFS API:

Chapter 2. Language, Utility, and Application Considerations for DDM 39

Sample command source that can be used with the PL/I program in Figure 13:
CMD

PARM KWD(SRCFIL) TYPE(*CHAR) LEN(73) +
PROMPT(’SOURCE FILE NAME’)

PARM KWD(TRGFIL) TYPE(*CHAR) LEN(73) +
PROMPT(’TARGET FILE NAME’)

/**/
/**/
/* FUNCTION: This program copies a stream file using the QHFCPYSF */
/* HFS API. */
/* */
/* LANGUAGE: PL/I */
/* */
/* APIs USED: QHFCPYSF */
/* */
/**/
/**/
TRANSFER: PROCEDURE(SRCFIL,TRGFIL) OPTIONS(MAIN);

/* parameter declarations */
DCL SRCFIL CHARACTER (73);
DCL TRGFIL CHARACTER (73);

/* API entry declarations */
/* */
/* The last parameter, the error code, is declared as FIXED BIN(31) */
/* for the API. This always has a value of zero, specifying that */
/* exceptions should be returned. */
DCL QHFCPYSF ENTRY(CHAR(73),FIXED BIN(31),CHAR(6),CHAR(73),

FIXED BIN(31),FIXED BIN(31))
OPTIONS(ASSEMBLER);

/**/
/* Parameters for QHFCPYSF */
/**/
DCL srclen FIXED BIN(31);
DCL trglen FIXED BIN(31);
DCL cpyinfo CHAR(6);
DCL error_code FIXED BIN(31);

/**/
/* Mainline routine */
/**/

srclen = INDEX(SRCFIL,’ ’) - 1;
trglen = INDEX(TRGFIL,’ ’) - 1;
cpyinfo = ’1 ’;
error_code = 0;
/* Copy the stream file */
Call QHFCPYSF(SRCFIL,srclen,cpyinfo,TRGFIL,trglen,

error_code);

END TRANSFER;

Figure 13. PL/I program example

40 OS/400 Distributed Data Management

Chapter 3. Preparing to Use DDM

This chapter describes the requirements for using DDM.

The following kinds of requirements must be met in various situations for OS/400 DDM to be used
properly:
v Communications requirements
v Security requirements
v DDM file requirements

Note: Before determining which files should be accessed using DDM, review “Performance
Considerations for DDM” on page 130.

v High-level language (HLL) program modification requirements

Additionally, see the following topics for more information:

v “Configuring a communications network in a TCP/IP network”

v “Program Modification Requirements for DDM” on page 42

Note: Programming requirements and considerations for control language (CL) commands and data
description specifications (DDS) are covered in Chapter 5, “CL Command Descriptions and DDS
Considerations for DDM” and Chapter 6, “Operating Considerations for DDM”.

Communications Requirements for DDM in an APPC network
Each iSeries server in a DDM network that is not using OptiConnect must have:

v The APPC/APPN support or the iSeries Access licensed program installed and configured on the
server. For complete information about configuring APPC/APPN, see the Communications Configuration

book and the APPC, APPN, and HPR topic in the iSeries Information Center. For information on
configuring iSeries Access, see the iSeries Access for Windows topic in the iSeries Information Center.

v At least one Systems Network Architecture (SNA) communications line connection that uses
synchronous data link communications (SDLC), token-ring network, Ethernet, or X.25 protocol.

The number of sessions that can be used for DDM conversations is not limited by DDM. The maximum is
determined in the same manner as for any other APPC-related communications. For parallel sessions, the
session maximum is specified in the mode. For single session devices, the session maximum is always
one. The session values are described in the APPC, APPN, and HPR topic in the iSeries Information
Center.

iSeries servers in a DDM network that use OptiConnect must have the OptiConnect software and
hardware installed. OptiConnect replaces the need for SNA communications line connections. For more

information about OptiConnect, see the OptiConnect book.

Configuring a communications network in a TCP/IP network
The following steps provide a high-level overview of the steps you take to set up a TCP/IP network. For

details, see the TCP/IP Configuration and Reference book.

1. Identify your iSeries to the local network (the network that your iSeries is directly connected to).

a. Determine if a line description already exists.

b. If a line description does not already exist, create one.

c. Define a TCP/IP interface to give your iSeries an IP address.

© Copyright IBM Corp. 1999, 2002 41

|

|

|

|

|

|

|

|

|

|

../../books/c4154010.pdf
../rzahj/rzahjovr.htm
../rzahgicia.htm
../rzahj/rzahjovr.htm
../../books/c4154143.pdf
../../books/c4154204.pdf

2. Define a TCP/IP route. This allows your iSeries to communicate with servers on remote TCP/IP
networks (networks that your iSeries is not directly connected to).

3. Define a local domain name and host name. This assigns a name to your server.

4. Identify the names of the servers in your network.

a. Build a local host table.

b. Identify a remote name server.

5. Start TCP/IP.

6. Verify that TCP/IP works.

Security Requirements for DDM
You can prevent intentional and unintentional access to the data resources of a system by the DDM user.
Access to data in the DDM environment can be limited—or prevented altogether—by a server-level
network attribute, the DDMACC parameter on the Change Network Attributes (CHGNETA) command on
the server. This attribute allows the server (as a target server) to prevent all remote access; or it allows the
server to control file access by using standard authority to files and, further, by using an optional user exit
program to restrict the types of operations allowed on the files for particular users.

To provide adequate security, you may need to set up additional user profiles on the target server, one for
each source server user who can have access to one or more target server files. Or, a default user profile
should be provided for multiple source server users. The default user profile is determined by the
communications entry used in the subserver in which the target jobs are run.

See Chapter 4, “Security Considerations for DDM” for security information relating to DDM. For user
profiles (or their equivalent) on non-iSeries target servers, refer to that server’s documentation.

DDM File Requirements
Before remote files can be accessed by an iSeries server, DDM files must be created on the source
server. See Chapter 5, “CL Command Descriptions and DDS Considerations for DDM” for a description of
the Create DDM File (CRTDDMF) command. At the time a DDM file is used, the device (remote location
name) and mode (APPC session characteristics) specified in the DDM file must also exist on the server if
APPN is not used. If APPN is used, then the device does not need to exist on the server. However, the
server identified by the remote location name must exist within the APPN network. The APPN parameter
on the Create Controller Description (APPC) (CRTCTLAPPC) and the Create Controller Description (SNA
Host) (CRTCTLHOST) commands controls whether or not APPN is used.

Program Modification Requirements for DDM
Remote files can be accessed by iSeries application programs written in the HLL and control language. In
most cases, these applications can access both local or remote files without the programs being changed.
However, some considerations and restrictions may require the programs to be changed and recompiled.
These are grouped in three categories:

v iSeries functions that are not supported by the DDM architecture, but for which a System/38 extension
to the architecture may exist. These functions can be used only when the source and target servers are
System/38s or iSeries servers.

v Restrictions and considerations that apply when the source or target server is an iSeries server.

v Restrictions and considerations that apply to all target servers (iSeries servers and non-iSeries servers).
User programs accessing local files should program for abnormal conditions such as No record found,
End of file, and Record lock time-out on read for update. These conditions can also occur when a
remote file is being accessed using DDM. In addition, the use of DDM exposes the program to
communication line failures while sending disk I/O operations.

42 OS/400 Distributed Data Management

|
|

|

|

|

|

|

|

When a communications failure occurs, the server sends an appropriate message to the job, which is
returned to the application program as a generic file error. Each high-level language provides unique
user syntax capabilities for user-controlled handling or default processing of exceptional results of a disk
operation. Some languages may permit the user to retrieve the job message identification (ID) that
would specifically indicate a DDM communications failure. Refer to the appropriate language manual for
specific capabilities.

For secondary SDLC lines, it is recommended that the INACTTMR parameter of the Create Line
Description (SDLC) (CRTLINSDLC) command be set on the source and target servers to detect the
stopping of polling by the primary server. This prevents the possibility of a DDM read-for-update record
lock lasting indefinitely due to a communications failure on the primary server.

The restrictions and considerations relating to each of these groups are described in the following
sections:

v “DDM Architecture-Related Restrictions”

v “iSeries Source and Target Restrictions and Considerations for DDM”

v “Non-iSeries Target Restrictions and Considerations for DDM” on page 44

DDM Architecture-Related Restrictions
The following items are DDM architecture-related restrictions. Therefore, application programs that use
these items may have to be changed and recompiled before they can access remote files:

v For more information about how commitment control is supported by the DDM architecture, see
“Commitment Control Support for DDM” on page 26.

v The DDM architecture does not support iSeries multiformat logical files. However, because multiformat
logical files are supported as a System/38 extension to the DDM architecture, they can be used with
DDM, but only if the source and target servers are iSeries servers or System/38s.

v Externally described data (using data description specifications [DDS] on an iSeries server) is not
supported by the DDM architecture. However, DDS can still be used, especially if both systems are
iSeries servers or System/38s. If the target server is an iSeries server or a System/38, most of the DDS
support can be used as though the remote file is a local file. For the DDS considerations and limitations
when DDM is used, see “Data Description Specifications (DDS) Considerations for DDM” on page 104.

v To access folder management services objects, the source server must support Level 2.0 or Level 3.0
of the DDM architecture for stream files and the stream access method. The following restrictions for
the byte stream model apply:

– WAIT time is not supported by the folder management services on the Lock Data Stream (LCKSTR)
command. The user must handle the waiting function on the source server.

– The Copy File (CPYFIL) command used to copy a document on an iSeries server is supported with
the restrictions noted in Appendix D, “DDM Commands and Parameters”. Only the header
information is copied; no data is copied.

– The DELDRCOP (DRCALL) parameter is not supported on the Delete Directory (DELDRC)
command.

v Personal computer generic names are not allowed when performing operations on data management
objects such as files, libraries, or members. However, generic names are allowed when performing
operations on folder management services objects such as documents and folders. Generic names are
supported where the personal computer supports the operation and in the manner that the personal
computer supports the operation. For example, generic names are not supported for folders using the
rename and delete commands because the personal computer does not support them.

iSeries Source and Target Restrictions and Considerations for DDM
When the source server is an iSeries server, iSeries database functions can be used on remote files, with
the following restrictions:

Chapter 3. Preparing to Use DDM 43

|

|

|

v A source iSeries server can create files on a System/38, but the DDM architecture file models are used.
As a result, no multiformat logical or join logical files can be created on a non-iSeries target server,
including a System/38.

v Save or restore operations do not save or restore the data on a target server; only the DDM file object
can be saved or restored locally.

v Operations that delay for a time period (that is, that wait for a file or record) are determined by the time
values specified on the target server. (These values are specified by the WAITFILE and WAITRCD
parameters on various CL commands.) This can result in increased delay times when DDM is used to
access files or records remotely.

v Query requests (OPNQRYF) to a System/38 cannot use group selection and join processing.

v When running System/36 applications to or from an iSeries server, these applications may result in
time-outs while waiting for a resource to become available. When running System/36 applications to or
from another System/36, the application waits indefinitely for the resource to become available.

For both source and target DDM jobs, due to the way DDM sends APPC operations, it is possible for
the DDM job on the secondary side of the APPC conversation to wait indefinitely after a line failure or
other failures at the remote server.

Consider the following suggestions to avoid indefinite waits:

– If the remote server supports record lock time-outs, ensure reasonable time values are specified. For
example, on a target iSeries server or System/38 database file, do not use maximum values for
CRTPF ... WAITRCD.

WAITRCD addresses read-for-update operations, but does not apply to other file operations, such as
read only, add, and so on.

– When using an SDLC secondary line, use a time value for the line inactivity timer (INACTTMR). Do

not use the *NOMAX value. See the Communications Management book for additional
information on an SDLC line description.

– Provide the person responsible for server operation with the associated line, controller, and device
names (or a list of DDM jobs that may run). If a DDM job then appears to be waiting indefinitely, this
person could display the job information to determine if the job is waiting indefinitely by reviewing the
job’s processing unit time use (by using the Display Job (DSPJOB) command to display the active
run attributes).

When the target server is an iSeries server, iSeries database functions can be used to access remote
files, with the following restrictions:

v The physical files that the logical files or join logical files are based on must exist on the same iSeries
server.

v A logical file on a source iSeries server cannot share the access path of a remote file (on any target
server).

v Query requests (OPNQRYF), which require group selection and join processing from a System/38, do
not work.

Non-iSeries Target Restrictions and Considerations for DDM
In addition to the restrictions that apply when the target server is an iSeries server, the following
restrictions also may apply when the target server is not an iSeries server or a System/38. Whether they
apply depends on what the target server supports. You should refer to that server’s documentation for
more information.

v Only field data types that are common to the source and target servers can normally be processed by
HLL applications. Floating-point data is an example of a data type that may not be common. Records
can be transmitted that contain floating-point data, but the representation of floating-point data sent
between servers may differ.

The packed signs sent between systems may differ; for example, one server may use a C and another
server may use an F.

44 OS/400 Distributed Data Management

../../books/c4154062.pdf

Note: It is possible for you to write your application program so that it interprets the byte string for a
record processed through a DDM file in any way that you wish. However, whenever you do this,
it is your responsibility to ensure that the data is handled correctly.

v Any operations that request a delay period before returning, such as for record lock wait times, may be
rejected or changed to a zero wait time by the target server.

v Lock requests may be changed by the target server to a more restrictive lock. This may prevent some
operations from occurring at the same time that could otherwise be performed on the local iSeries
server. See “ALCOBJ (Allocate Object) Command” on page 85 for more information.

v Some iSeries parameters are ignored or cause errors if they are used during remote file processing on
non-iSeries target servers. Examples are the FRCRATIO and FMTSLR parameters on some of the file
commands. For more information, see “OVRDBF (Override with Database File) Command” on page 96
and see “Copy Commands with DDM” on page 87.

v Member names are not supported in the DDM architecture. When the target server is not an iSeries
server or a System/38, CL commands that have a MBR parameter, such as the Clear Physical File
Member (CLRPFM) command, must be changed if the parameter specifies a member name that is
different than the file name. If the member name is different, an error occurs if the command is used for
a non-iSeries remote file. For some commands, MBR(*FIRST) or MBR(*LAST) is also valid. See
“Member-Related Commands with DDM” on page 102 for a list of all the CL commands related to file
members, and for those that are not valid for accessing files on non-iSeries target servers.

Note: MBR(*LAST) is not supported by System/38.

v If a parameter on a CL command requires the name of a source file, then the names of the DDM files
that refer to non-iSeries target files cannot be specified. An iSeries server cannot determine whether a
remote file on a non-iSeries target is in fact a source file. (See “Source File Commands” on page 103
for a list of all the CL commands related to source files.)

v Certain iSeries commands that are valid for iSeries or System/38 target servers are not valid for other
targets. See “DDM-Related CL Command Lists” on page 99 for the lists of commands that are not
supported when the target is not an iSeries server or a System/38.

Chapter 3. Preparing to Use DDM 45

46 OS/400 Distributed Data Management

Chapter 4. Security Considerations for DDM

This chapter describes how iSeries security relates to DDM and how it can limit access to the data
resources of a target server by source server programs and users. The access to target iSeries data can
be limited by using standard authority to files, standard authority to commands, and an optional user exit
program in the DDM environment at the target server.

Security authentication is first performed when a remote user accesses the target iSeries. If the target
iSeries is not able to authenticate the remote user the conversation is rejected. Security authorization is
performed when a remote user accesses an iSeries file. The remote user must be authorized to perform
the operation (open, close, read, or write, for example), or the DDM request is rejected. Application
programs on the iSeries server can be isolated from each other by object authorities. For more information
about source and target server security when APPC is being used (as with DDM), see the APPC, APPN,
and HPR topic in the iSeries Information Center.

The following topics describe security considerations for DDM:

v “Elements of DDM Security in an APPC network”

v “DDM source system security in an APPC network” on page 49

v “DDM target system security in an APPC network” on page 50

v “Elements of DDM Security using TCP/IP” on page 52

v “DDM server access control exit program for additional security” on page 62

Elements of DDM Security in an APPC network
When DDM is used, the data resources of each server in the DDM environment should be protected. This
is done using three groups of security elements that are controlled by the following parameters:

v For system-related security or session, the LOCPWD parameter is used on each iSeries server to
indicate the server validation password to be exchanged between the source and target servers when
an APPC communications session is first established between them. Both servers must exchange the
same password before the session is started. (On System/36, this password is called the location
password. The password that the target System/38 uses is in its device description for the source
server.) In an APPC network, the LOCPWD parameter on the CRTDEVAPPC command specifies this
password. Devices are created automatically using APPN, and the location-password on the remote
location list specifies a password that is used by the two locations to verify identities. Use the Create
Configuration List (CRTCFGL) command to create a remote location list of type (*APPNRMT).

v For user-related or location security, the SECURELOC parameter is used on each iSeries server to
indicate whether it (as a target server) accepts incoming access requests that have their security
already verified by the source server or whether it requires a user ID and encrypted password. In an
APPC network, the SECURELOC parameter on the CRTDEVAPPC command specifies whether the
local server allows the remote server to verify security. Devices are created automatically using APPN,
and the secure-location on an APPN remote Configuration List is used to determine if the local server
allows the remote server to verify user security information. The SECURELOC value can be specified
differently for each remote location.

The SECURELOC parameter is used with the following security elements (for which more information is
given in the topics “DDM source system security in an APPC network” on page 49 and “DDM target
system security in an APPC network” on page 50):
– The user ID sent by the source server, if allowed by this parameter
– The user ID and encrypted password, if allowed by this parameter
– The target server user profiles, including default user profiles

v For object-related security, the DDMACC parameter is used on the Change Network Attributes
(CHGNETA) command to indicate whether the files on the iSeries server can be accessed at all by

© Copyright IBM Corp. 1999, 2002 47

|
|
|
|
|
|
|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

../rzahj/rzahjovr.htm
../rzahj/rzahjovr.htm

another server and, if so, at which level of security the incoming requests are to be checked. More
information about this object-related parameter is provided in the topic “DDM Network Attribute
(DDMACC Parameter)” on page 51.

– If *REJECT is specified on the DDMACC parameter, all DDM requests received by the target iSeries
server are rejected.

– If *OBJAUT is specified on the DDMACC parameter, normal object-level security is used on the
target server.

– If the name of an optional, user-supplied user exit program (or access control program) is specified
on the DDMACC parameter, an additional level of security is used. The user exit program can be
used to control whether a given user of a specific source server can use a specific command to
access (in some manner) a specific file on the target server. (See the topic “DDM server access
control exit program for additional security” on page 62 for details.)

– When a file is created on the target server using DDM, the library name specified contains the file. If
no library name is specified on the DDM request, the current library (*CURLIB) is used. The file
authority defaults to allow only the user who created the file or the target server’s security officer to
access the file.

Most of the security controls for limiting remote file access are handled by the target server. Except for the
user ID provided by the source server, all of these elements are specified and used on the target server.
The source server, however, also limits access to target server files by controlling access to the DDM file
on the source server and by sending the user ID, when needed, to the target server.

For additional information on DDM security in an APPC network, see the following topics:

v “APPN configuration lists”

v “Conversation level security”

APPN configuration lists
In an APPC network, location passwords are specified for those pairs of locations that are going to have
end-to-end sessions between them. Location passwords need not be specified for those locations that are
intermediate nodes.

The remote location list is created with the CRTCFGL command, and it contains a list of all remote
locations, their location password, and whether the remote location is secure. There is one system-wide
remote location configuration list on an iSeries server. A central site iSeries server can create location lists
for remote iSeries servers by sending them a control language (CL) program.

Changes can be made to a remote configuration list using the Change Configuration List (CHGCFGL)
command, however, they do not take effect until all devices for that location are all in a varied off state.

When the Display Configuration List (DSPCFGL) command is used, there is no indication that a password
exists. The CHGCFGL command indicates a password exists by placing *PASSWORD in the field if a
password has been entered. There is no way to display the password. If you have problems setting up
location security you may have to enter the password again on both systems to be sure the passwords
match.

For more information on configuration lists, see the APPC, APPN, and HPR topic in the iSeries Information
Center.

Conversation level security
Systems Network Architecture (SNA) logical unit (LU) 6.2 architecture identifies three conversation security
designations that various types of systems in an SNA network can use to provide consistent conversation
security across a network of unlike systems. The SNA security levels are:

48 OS/400 Distributed Data Management

|

|

|

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|

|
|
|

../rzahj/rzahjovr.htm

SECURITY(NONE)
No user ID or password is sent to establish communications.

SECURITY(SAME)
Sign the user on to the remote server with the same userid as the local server.

SECURITY(PGM)
Both a user ID and a password are sent for communications.

SECURITY(PROGRAM_STRONG)
Both a user ID and a password are sent for communications only if the password will not be sent
in the clear, otherwise an error is reported. This is not supported by DDM on OS/400.

While the iSeries server supports all four SNA levels of conversation security, DDM uses only the first
three. The target controls the SNA conversation levels used for the conversation.

For the SECURITY(NONE) level, the target does not expect a user ID or password. The conversation is
allowed using a default user profile on the target. Whether a default user profile can be used for the
conversation depends on the value specified on the DFTUSR parameter of the Add Communications Entry
(ADDCMNE) command or the Change Communications Entry (CHGCMNE) command for a given
subsystem. A value of *NONE for the DFTUSR parameter means the AS does not allow a conversation
using a default user profile on the target. SECURITY (NONE) is sent when no password or user ID is
supplied and the target has SECURELOC(*NO) specified.

For the SECURITY(SAME) level, the remote server’s SECURELOC value controls what security
information is sent, assuming the remote server is an iSeries. If the SECURELOC value is *NONE, no
userid or password is sent, as if SECURITY(NONE) had been requested; see the previous paragraph for
how SECURITY(NONE) is handled. If the SECURELOC value is *YES, the name of the user profile is
extracted and sent along with an indication that the password has already been verified by the local
server. If the SECURELOC value is *VFYENCPWD, the user profile and its associated password is sent to
the remote server after the password has been encrypted to keep its value secret, so the user must have
the same user profile name and password on both servers to use DDM.

Note: SECURELOC(*VFYENCPWD) is the most secure of these three options since the most information
is verified by the remote server; however, it requires that users maintain the same passwords on
multiple servers, which can be a problem if users change one server but do not update their other
servers at the same time.

For the SECURITY(PGM) level, the target expects both a user ID and password from the source for the
conversation. The password is validated when the conversation is established and is ignored for any
following uses of that conversation.

DDM source system security in an APPC network
The first area of source server security is with the DDM file itself. When the DDM file is created by the
Create DDM File (CRTDDMF) command, the AUT parameter is used to control what rights of use all users
on the source server have for the DDM file. The AUT parameter can allow all (or none) of the source
server users to use the DDM file to access a remote file, and it can specify how all users are authorized to
use the DDM file itself.

Once the DDM file is created, the Grant Object Authority (GRTOBJAUT) command or the Revoke Object
Authority (RVKOBJAUT) command can be used to explicitly grant (or revoke) rights to specific users for
the DDM file’s use. The AUT parameter and these commands work the same for DDM files as for any
other created OS/400 object.

The iSeries server, as a source server, never sends an unencrypted user password when starting the
TDDM on the target server. (System/36 sends no user password either.) If the source server security is

Chapter 4. Security Considerations for DDM 49

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

considered sufficient, the target server can specify that user IDs should be sent (and sometimes an
encrypted user password); if not, no user ID is sent. On the iSeries server, this is dictated by the
SECURELOC parameter value in effect on the target server; this parameter is specified in the target
server’s remote location configuration.

v If SECURELOC(*YES) is specified, it indicates that the target server accepts the source server security
procedures; the source server, on each program start request operation, sends the user ID and the
already verified indicator. The user ID is compared to those in the user profiles on the target server to
verify the source server user’s right for access.

v If SECURELOC(*VFYENCPWD) is specified, it indicates that the target server accepts the source
server security procedures, provided that the user’s user ID and password match; the source server, on
each program start request operation, sends the user ID and the encrypted password. The user ID and
password are compared to those in the user profiles on the target server to verify the source server
user’s right for access.

v If SECURELOC(*NO) is specified, it indicates that the target server does not accept the source server
security procedures. No user ID is sent; a default user profile on the target server must be created and
used to verify the right for access.

Additional security can be provided on the target server if a user exit program is written and used to
restrict each source server user that attempts to access its files or to perform other functions via
commands submitted on the Submit Remote Command (SBMRMTCMD) command.

Note: DDM does not allow the target server (as a target) to make requests, so the source server is
implicitly secure from the target.

DDM target system security in an APPC network
When the target server is an iSeries server, several elements used together, determine whether a request
to access a remote file is allowed or not:

User-related security elements: The SECURELOC parameter on the target server, the user ID sent by the
source server (if allowed), the encrypted password for the user ID sent by the source server, and a user
profile or default user profile on the target server.

Object-related security elements: The DDMACC parameter and, optionally, a user exit program supplied
by the user to supplement normal object authority controls.

User-Related Elements of Target Security
The value specified for the SECURELOC parameter in the target server’s remote location configuration of
a source server determines whether a user or program on the source server is to supply a user ID that
has already been verified by the source server or if a user ID and encrypted password is required. On the
target server for the remote location configuration:

v If SECURELOC(*YES) is specified, the source server sends the user ID of the user requesting remote
server access, and the target server verifies that it exists in a user profile. If the user ID matches a user
profile on the target server, a job is started to handle the remote file access requests from the source
server user. If no user profile exists for the user ID that was sent, or if the user ID is not valid, the initial
access request is rejected, and an error message is sent both to the source server user and to the
server operator message queue on the target server. (The message sent to the source server user is
different than the target server message.)

v If SECURELOC(*VFYENCPWD) is specified, the source server sends the user ID and encrypted
password of the user requesting remote server access, and the target server verifies that it exists in a
user profile. If the user ID and encrypted password match a user profile on the target server, a job is
started to handle the remote file access requests from the source server user. If no user profile exists
for the user ID that was sent, or if the user ID or encrypted password is not valid, the initial access

50 OS/400 Distributed Data Management

request is rejected, and an error message is sent both to the source server user and to the server
operator message queue on the target server. (The message sent to the source server user is different
than the target server message.)

v If SECURELOC(*NO) is specified, no user ID is sent by the source server, and the target server must
have a default user profile to initiate the target server job. The contents of this profile are controlled by
target server personnel. Examples of items that it should contain are: the names of libraries, objects,
and commands on the target server that can be used.

The name of the default user profile must be specified on the DFTUSR parameter of the Add
Communications Entry (ADDCMNE) command on the target server; this command adds a
communications entry to the subsystem description used for the target server job. If SECURELOC(*NO)
is specified and no default profile exists, the initial access request is rejected.

When the target server is an iSeries server, the user profiles associated with the target jobs must be
authorized to use CL commands before equivalent DDM requests can be performed. See Chapter 5, “CL
Command Descriptions and DDS Considerations for DDM” and Appendix D, “DDM Commands and
Parameters” for more information on the CL commands for which user profiles must be authorized. The
local user’s authorization to commands does not affect authorization on the target server.

Target Jobs and User Profiles
The iSeries server creates a separate target job for each different remote server user (that is, for each
separate program start request operation received from source servers). Separate jobs are also created
for different users from the same server. Before any operations can be performed on target server
database files in a job, the user profile associated with the target job must be specifically authorized to use
each of the files for which access has been requested by a user in the source job. In addition, the user
profile needs to be authorized to the iSeries commands equivalent to that a user in the source job request
.

The value specified for the limit capabilities (LMTCPB) parameter in the user profile associated with the
target job does not affect DDM requests. User profiles defined with limited capability on the target server
are allowed to enter commands when the user on the source server uses the Submit Remote Command
(SBMRMTCMD) command. See “SBMRMTCMD (Submit Remote Command) Command” on page 73 for
more information on the SBMRMTCMD command.

Object-Related Levels of Target Security
When the iSeries server is a target server, there are three different object-related levels at which security
can be enforced to control access to its database files: The server can be secured to prevent all DDM
requests from accessing its files, it can use normal object authorization support to determine which users
can access what files, or it can combine normal object authorization support with a user exit program
written by the user to further restrict file access. The server-level DDMACC parameter determines which of
the three level is used.

DDM Network Attribute (DDMACC Parameter)
The network attribute parameter DDMACC (DDM access) is used to determine how the iSeries server, as
a target server, processes requests from other servers. This parameter is initially set to *OBJAUT. the
Change Network Attributes (CHGNETA) command can change the value of this parameter.

The values for the DDMACC parameter are:

*SAME
Specifies that the current value of the DDMACC parameter remains unchanged. This is the default
value on the CHGNETA command for each iSeries server.

*REJECT
Specifies the server will not allow any DDM requests from remote servers. However, this server
(as a source server) can still use DDM to access files on other servers that allow it. No system
can access files on any iSeries server that specifies *REJECT.

Chapter 4. Security Considerations for DDM 51

If *REJECT is specified while DDM is already in use, all new jobs on any source server requesting
access to this server’s files are rejected and an error message is returned to those jobs; existing
jobs are not affected.

*OBJAUT
All remote requests are allowed, but the object authorizations control them on this server (normal
iSeries object level security). For each file on the server, all users, no users, or only specific users
(by user ID) can be authorized to access the file. If SECURELOC(*YES) is specified, specific (or
multiple) user profiles can be authorized to the file. Otherwise, the authorizations must be given in
the default user profile identified in the communications entry (on the ADDCMNE command). This
is the value that is shipped with the server.

When the value *OBJAUT is specified, it indicates that no further verification (beyond iSeries
object level security) is needed.

qualified-program-name
Specifies the name of the user exit program supplied by the user (and the library in which it is
stored) that can supplement iSeries object level security (which still applies). This user exit
program is passed a parameter list, built by the target server, that identifies the source server user
and the request. The program is used to determine whether to allow the request. See the topic
“DDM server access control exit program for additional security” on page 62 for more information.

Any error occurring while using or attempting to use this user exit program sends an error
message to the source system. If the source system is an iSeries server or a System/38, the
message might indicate (for example) that the user exit program was not found, the user was not
authorized to use it, or that the number of parameters was sent in the parameter list for the user
exit program is not valid.

For a description of the DDMACC parameter, see the Change Network Attributes (CHGNETA) command

described in the Communications Management book.

Changing the DDMACC Network Attribute: The DDMACC parameter, initially set to *OBJAUT, can be
changed to one of the previously described values by using the Change Network Attributes (CHGNETA)
command, and its current value can be displayed by the Display Network Attributes (DSPNETA) command.
You can also get the value in a CL program by the Retrieve Network Attributes (RTVNETA) command.

If the DDMACC parameter value is changed, although it takes effect immediately, it affects only new DDM
jobs started on this server (as the target server). Jobs running on this target server before the change was
made continue to use the old value.

Elements of DDM Security using TCP/IP
DDM over native TCP/IP does not use OS/400 communications security services and concepts such as
communications devices, modes, secure location attributes, and conversation security levels which are
associated with APPC communications. Therefore, security setup for TCP/IP is quite different.

The types of security possible with the TCP/IP server are:

v Connection security protocols for DDM

v Secure Sockets Layer (SSL) for DDM

v Internet Protocol Security Protocol (IPSec) for DDM

With the advent of new choices for security distributed data management (DDM) communications, the
iSeries server administrator can restrict certain communications modes by blocking the ports they use.
Ports and port restrictions for DDM discusses some of these considerations.

For detailed information about DDM security, see

52 OS/400 Distributed Data Management

|

../../books/c4154062.pdf

v Source system security in a TCP/IP network

v Target system security in a TCP/IP network

Connection security protocols for DDM
Several connection security protocols are supported by the current DB2 UDB for iSeries implementation of
DDM over TCP/IP:

v User ID only

v User ID with clear-text password

v User ID with encrypted password

v Kerberos

Secure Sockets Layer (SSL) for DDM
DB2 UDB for iSeries DDM clients do not support SSL. However, similar function is available with Internet
Protocol Security Protocol (IPSec) for DDM.

The DDM TCP/IP server supports the Secure Sockets Layer (SSL) data encryption protocol. You can use
this protocol to interoperate with clients such as iSeries Toolbox for Java and iSeries Access OLE DB
Provider that support SSL for record level access, and with any DDM file I/O clients provided by
independent software vendors that support SSL.

To use SSL with the iSeries DDM TCP/IP server, you must configure the client to connect to the
well-known port 448 on the server.

If you specify PWDRQD(*ENCRYPTED) on the CHGDDMTCPA command on the server, you can use any
valid password along with Secure Sockets Layer (SSL). This is possible since the whole datastream,
including the password, is encrypted.

For more information about SSL, see Securing applications with SSL in the Networking topic of the
iSeries Information Center.

Required programs
See the iSeries Access for Windows topic in the iSeries Information Center for complete documentation on
setting up and installing SSL support on the PC and iSeries server.

iSeries server requirements
For an iSeries server to communicate over SSL, it must be running OS/400 V4R4 or later, and have the
following installed:

v TCP/IP Connectivity Utilities for iSeries, 5769-TC1 (Base TCP/IP support)

v Cryptographic Access Provider, 5769-ACx

v IBM HTTP Server for iSeries, 5769-DG1 (for access to Digital Certificate Manager)

v Digital Certificate Manager, 5769-SS1 - Boss Option 34

v Client Encryption, 5769-CEx -- You must install this product on an iSeries, and any PC clients in your
network must retrieve the necessary SSL client code. This product is not required for the server to
conduct SSL communications, only the clients (see Note).

PC requirements (for PCs using iSeries Access and DDM
For the client PCs in your network to communicate over SSL, they must have one of the following
products installed:

v 40-bit Client Encryption, 5769-CE1

v 56-bit Client Encryption, 5769-CE2

v 128-bit Client Encryption, 5769-CE3

Chapter 4. Security Considerations for DDM 53

|

|

|

|
|

|

|

|

|

|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|

|

|

|

|
|
|

|
|
|

|

|

|

../rzain/rzainoverview.htm
../rzahgicia.htm

Note: Service for SSL Client Encryption products (5722-CEx) is handled through service packs
independent of the iSeries Access service packs. See Informational APAR II10598 on the iSeries
Access home page for details.

Internet Protocol Security Protocol (IPSec) for DDM
Internet Protocol Security Protocol (IPSec) is a security protocol in the network layer that provides
cryptographic security services. These services support confidential delivery of data over the internet or
intranets.

On iSeries, IPSec, a component of the Virtual Private Networking (VPN) support, allows all data between
two IP address or port combinations to be encrypted, regardless of application (such as DRDA or DDM).
You can configure the addresses and ports that are used for IPSec. IBM recommends using port 447 for
IPSec for either DRDA access or DDM access. For more information on setting up VPN support, see
Virtual Private Networking in the Networking topic of the iSeries Information Center.

Use of any valid password along with IPSec will not in general satisfy the requirement imposed by
specifying PWDRQD(*ENCRYPTED) on the CHGDDMTCPA command at the server, since the application
(DRDA or DDM) will not be able to determine if IPSec is being used. Therefore, you should avoid using
PWDRQD(*ENCRYPTED) with IPSec.

Ports and port restrictions for DDM
The DDM TCP/IP server listens on port 447 (the well-known DDM port) and 446 (the well-known DRDA
port) as well as 448 (the well-known SSL port). The DB2 UDB for iSeries implementation of DDM does not
distinguish between the two ports 446 and 447, however, so both DDM and DRDA access can be done on
either port.

Using the convention recommended for IPSec, the port usage for the DDM TCP/IP server follows:

v 446 for clear text datastreams

v 447 for IPSec encrypted datastreams (suggested)

v 448 for SSL encrypted datastreams (required)

You can block usage of one or more ports at the server by using the Configure TCP/IP (CFGTCP)
command. To do this, choose the ’Work with TCP/IP port restrictions’ option of that command. You can
add a restriction so that only a specific user profile other than the one that QRWTLSTN runs under
(normally QUSER) can use a certain port, such as 446. That effectively blocks 446. If 447 were configured
for use only with IPSec, then blocking 446 would allow only encrypted datastreams to be used for DDM
and DRDA access over native TCP/IP. You could block both 447 and 448 to restrict usage only to SSL. It
may be impractical to follow these examples for performance or other reasons (such as current limited
availability of SSL-capable clients), but they are given to show the possible configurations.

Source system security in a TCP/IP network
There are two ways in which DDM will determine which authentication method to use.

DDM files that use an RDB directory entry with a preferred remote authentication method will attempt to
authenticate to that target server using that method. If the target system does not support this method,
higher methods may be attempted. If allow lower authentication is specified in the entry, lower methods
may be attempted if no higher method is found.

DDM files that are not set to use an RDB directory entry will attempt to authenticate to the target server
using the equivalent of the user ID with encrypted password, if a password is available and the encryption
product is installed. If the target server does not accept that level (if the password is not available or if
encryption is not installed), the source may attempt to negotiate higher or lower authentication methods.

54 OS/400 Distributed Data Management

|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|

|

|

|
|
|
|

|
|
|
|

../rzaja/rzajagetstart.htm

A server authorization entry may be used to send a password over TCP/IP in a DDM conversation. A
server authorization list is associated with every user profile on the server. By default, the list is empty;
however, you can add entries by using the Add Server Authentication Entry (ADDSVRAUTE) command.
When you attempt a DDM connection over TCP/IP, DB2 UDB for iSeries checks the server authorization
list for the user profile under which the client job is running. DDM files that use an RDB directory entry
search for a match between the RDB name from the directory entry and the SERVER name in the
authorization entry. DDM files that do not use RDB directory entries search for a match between
’QDDMSERVER’ and the SERVER name in the authorization entry. The associated USRID parameter in
the entry is then used for the connection user ID. If a PASSWORD parameter is stored in the entry, that
password is also sent on the connect request.

To store a password using the ADDSVRAUTE command, you must set the QRETSVRSEC system value
to ’1’. By default, the value is ’0’. Type the following command to change this value:

CHGSYSVAL QRETSVRSEC VALUE(’1’)

The following example shows the syntax of the ADDSVRAUTE command when using an RDB directory
entry:

ADDSVRAUTE USRPRF(user-profile) SERVER(rdbname) USRID(userid) PASSWORD(password)

The USRPRF parameter specifies the user profile under which the application requester job runs. The
SERVER parameter should be QDDMSERVER unless you are connecting using an RDB. In this case,
SERVER should be the name of the remote RDB. The remote RDB name must be in upper case. The
USRID parameter specifies the user profile under which the server job will run. The PASSWORD
parameter specifies the password for the user profile.

If you omit the USRPRF parameter, it will default to the user profile under which the ADDSVRAUTE
command runs. If you omit the USRID parameter, it will default to the value of the USRPRF parameter. If
you omit the PASSWORD parameter, or if you set the QRETSVRSEC value to 0, no password will be
stored in the entry and when a connect attempt is made using the entry, the security mechanism used will
be user ID only.

You can remove a server authorization entry by using the Remove Server Authentication Entry
(RMVSVRAUTE) command. You can change a server authorization entry by using the Change Server
Authentication Entry (CHGSVRAUTE) command. See the Control Language (CL) topic in the Information
Center for a complete description of these commands.

For more information on the RDB directory entry, see Distributed Data Programming.

Kerberos Source Configuration
DDM can take advantage of Kerberos authentication if both systems are configured for Kerberos. See the
Network authentication service topic in the iSeries Information Center for information on Kerberos
configuration. If a job’s user profile has a valid ticket-granting ticket (TGT), the DDM file uses this TGT to
generate a service ticket and authenticate the user to the remote server. Having a valid TGT available
negates the need for a server authentication entry as no password is directly needed. However, if the job’s
user profile does not have a valid TGT, the user ID and password may be retrieved from the server
authentication entry to generate the necessary TGT and service ticket.

The remote location (RMTLOCNAME) in the RDB directory entry (in the case of DDM files using RDB
directory entries) or the remote location of the DDM file (in the case of DDM files not using RDB directory
entries) must be entered as the remote host name. IP addresses will not work.

In cases where the Kerberos realm name differs from the DNS suffix name, there must be an entry in the
krb5.conf file to map each remote host name to its correct realm name. This host name must be entered
the same as the remote location name (RMTLOCNAME). The parameters of the DSPRDBDIRE or

Chapter 4. Security Considerations for DDM 55

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

../rbam6/rbam6clmain.htm
../ddp/rbal1mst02.htm
../rzakh/rzakh000.htm

DSPDDMF commands must match the syntax of the krb5.conf file. The following graphics illustrate
examples of the DSPRDBDIRE and DSPDDMF screens, as well as an example of the krb5.conf file
syntax:

Display Relational Database Detail

Relational database : RCHASXXX

Remote location:
Remote location : rchasxxx.rchland.ibm.com
Type : *IP

Port number or service name . . . : *DRDA
Remote authentication method . . :
Preferred method : *KERBEROS
Allow lower authentication . . . : *NOALWLOWER

Text :

Relational database type : *REMOTE

Press Enter to continue.
F3=Exit F12=Cancel

Display Details of DDM File

Local file: :
File : LOCALFILE
Library : LOCALLIB

Remote file : RMTLIB/RMTFILE

Remote location: :
Name or address : rchasxxx.rchland.ibm.com

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

DSPF STMF(’/QIBM/UserData/OS400/NetworkAuthentication/krb5.conf’)
[domain_realm]
; Convert host names to realm names. Individual host names may be
; specified. Domain suffixes may be specified with a leading period
; and will apply to all host names ending in that suffix.
rchasxxx.rchland.ibm.com = REALM.RCHLAND.IBM.COM

Jobs using Kerberos must be restarted when configuration changes occur to the krb5.conf file.

Define DRDA service names for non-iSeries remote servers
To use Kerberos authentication to connect to non-iSeries servers, the non-iSeries service names need to
be defined under Enterprise Identity Mapping (EIM). To define DRDA service names, perform the following
steps:

1. Start iSeries Navigator.

2. Expand Network.

3. Expand Enterprise Identity Mapping.

4. Expand Domain Management.

56 OS/400 Distributed Data Management

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|

|

|
|
|
|

|

|

|

|

5. Expand your EIM domain name.

6. Right-click Identifiers, and select New Identifier.

7. Enter the local RDB name as the identifier and, if necessary, a description.

Chapter 4. Security Considerations for DDM 57

|

|

|

|

|

8. Click OK.

The identifier you created is shown on the right pane of iSeries Navigator.

58 OS/400 Distributed Data Management

|

|

|

|

9. Right-click the identifier you created, and select Properties.

10. Click on the Associations tab.

Chapter 4. Security Considerations for DDM 59

|

|

|

|

11. Click Add to add a new association.

12. Choose the local system’s registry, enter the remote location name (RMTLOCNAME) in the User
field, and select Source in the Association type field.

13. Click OK. You are brought back to the identifier’s Properties dialog.

14. Click Add to enter a second association.

60 OS/400 Distributed Data Management

|

|

|

|
|

|

|

|

|

15. Enter the Kerberos registry in the Registry field. Enter the Kerberos service name of the remote
server in the User field. Select Target in the Association type field.

16. Click OK.

Target system security in a TCP/IP network
The TCP/IP server has a default security of user ID with clear-text password. This means that, as the
server is installed, inbound TCP/IP connect requests must have a clear-text password accompanying the
user ID under which the server job is to run. The security may either be changed with the CL command
CHGDDMTCPA or under the Network->Servers->TCP/IP->DDM server properties in iSeries Navigator.
You must have *IOSYSCFG special authority to change this setting.

Password not required (PWDRQD(*NO)) and Password not required (must be valid if sent)
(PWDRQD(*VLDONLY)) may be used for lower security.

The difference between Password not required and Password not required (must be valid if sent) is that if
a password is sent from a client system, it is ignored in the Password not required option. In the Password
not required (must be valid if sent) option, however, if a password is sent, the password is validated for the
accompanying user ID, and access is denied if incorrect.

Encrypted password required or PWDRQD(*ENCRYPTED) and Kerberos or PWDRQD(*KERBEROS) may
be used for higher security levels. If Kerberos is used, user profiles must to be mapped to Kerberos
principles using Enterprise Identity Mapping (EIM). Refer to the Enterprise Identity Mapping (EIM) topic in
the iSeries Information Center for more information.

The CHGDDMTCPA command can also be used to specify that an encrypted password must accompany
the user ID. To set this option, enter:

CHGDDMTCPA PWDRQD(*ENCRYPTED)

Note: The DDM TCP/IP server was enhanced in V4R4 to support a form of password encryption called
password substitution. In V4R5, a more widely-used password encryption technique, referred to as
the Diffie-Hellman public key algorithm was implemented. This is the DDM standard algorithm and
is used by the most recently released IBM DDM application requestors. The older password
substitute algorithm is used primarily for DDM file access from PC clients. The client and server
negotiate the security mechanism that will be used, and either encryption method will satisfy the
requirement of PWDRQD(*ENCRYPTED), as does the use of Secure Sockets Layer (SSL)
datastreams.

Chapter 4. Security Considerations for DDM 61

|
|

|

|

|

../rzalv/rzalvmst.htm

DDM server access control exit program for additional security
Customers who use menu-level security, which is accomplished by restricting the end user’s access to
functions on the server, are likely to have a large number of public files. Public files are those files to
which the public has some or all authority. A user exit program lets you restrict each DDM user’s access to
public files and to private files. The name of the program must be specified on the DDMACC parameter of
the Change Network Attributes (CHGNETA) command.

User exit programs also let you block or filter DDM connection requests. All connect requests made by a
DDM source system can be denied, or access to selected users can be granted. The user exit program
must exist on the target server. The target DDM support calls this program:

v For each user’s initial reference to a file to verify whether the user can have access to the file. When a
file is referred to for I/O operations, this verification occurs only once, when the file is opened. The user
exit program indicates to the TDDM whether the access request is accepted or rejected.

v For each DDM connection request.

v For each of the other functions listed in the Subapplication field of the table in Table 4 on page 63.

When a user exit program is specified, the TDDM first checks for errors in the access request that is
received from the source server. If no errors are detected, the TDDM builds the parameter list, calls the
user exit program, and passes the parameter list to it.

For more information, see the following topics:

v “User Exit Program Requirement”

v “User Exit Program Parameter List for DDM”

v “User Exit Program Example for DDM” on page 65

v “Parameter List Example for DDM” on page 66

v “DRDA Server Access Control Exit Programs With Example” on page 67

v “User Exit Program Considerations for DDM” on page 69

User Exit Program Requirement
The purpose of the user exit program created by the user is to determine whether a user’s access request
is to be accepted or rejected. It does so using the values that are passed to it in the parameter list. The
program can be written to verify all the values in the parameter list, or to verify part of them. The program
must return a return code of 1 to indicate that the request is accepted, and it should return a 0 to indicate
that the request is rejected.

The user exit program executes on the target DDM or DRDA server and must be located in a library in the
system database (SYSBAS) if the target server is using independent auxiliary storage pools (independent
ASPs).

User Exit Program Parameter List for DDM
The user exit program on the target server passes two parameter values (a character return code field and
a character data structure containing various parameter values, shown in Table 4 on page 63). The user
exit program on the target server uses the character data structure parameter values, that are passed by
the TDDM, to evaluate whether to allow the request from the source server. The parameter list is created
each time a file access request or command request is sent to the TDDM; when any one of the functions
shown for the Subapplication field is requested, the parameter list is created. When file I/O operations are
performed, this parameter list is created only for the file open request, not for any of the I/O operation
requests that follow.

The program uses the parameter list to determine whether a source server user’s file access or command
request should be accepted or rejected. The list contains the following parameters and values:

62 OS/400 Distributed Data Management

|
|
|

|
|
|

|

|

|

|

|

|

|

|

|

|
|
|

v The name of the user profile or default user profile under which the source server user’s request is run.

v The name of the application program on the source server being used. For DDM use, the name is
*DDM. For DRDA use, the name is *DRDA.

v The name of the command or function (subapplication) being requested for use on the target server or
one of its files.

Most of the functions listed in Table 4 directly affect a file, including the EXTRACT function, which
extracts information from the file when commands such as Display File Description (DSPFD) or Display
File Field Description (DSPFFD) are specified by the source server user. Some functions are
member-related functions, such as the CHGMBR function, which allows characteristics of a member to
be changed. The COMMAND function indicates that a command string is submitted by the Submit
Remote Command (SBMRMTCMD) command to run on the target server. The SQLCNN function
specifies a DRDA connect attempt.

v The name of the file (object) to be accessed in the way specified on the previous parameter. This field
does not apply if a command string (COMMAND) or stream and directory access commands are being
submitted or if it is a DRDA command.

v If the stream and directory access commands are specified, then the object and directory fields have a
value of *SPC. The user must go to the Other field to get the alternative object name and alternative
path name.

v The name of the library containing the file, if a file is being accessed.

v The name of the file member, if a file member is being accessed. Stream and access commands have
a value of *N.

v The format field does not apply for DDM or DRDA.

v Depending on how the next field is used, the length varies.

v The Other field is used for as many as three of the following six values; the first two are always
specified (*N may be used for the second value if the system name cannot be determined), and either
of the last four may be specified, depending on the type of function specified in the Subapplication field.

– The location name of the source server. This matches the RMTLOCNAME parameter value specified
in the target server’s device description for the source server if APPC communications is being used.

– The system name of the source server.

– If a file was specified and it is to be opened, (OPEN) for I/O operations, this field indicates which
type of operation is being requested. For example, if a file is being opened for read operations only,
the input request value is set to a 1 and the remaining values are set to a 0.

– The alternative object name.

– The alternative directory name.

– The name of the iSeries command, if a command string is being submitted, followed by all of its
submitted parameters and values.

Examples of a user exit program and a parameter list follow Table 4.

Table 4. Parameter List for User Exit Program on Target Server

Field Type Length Description

User Character 10 User profile name of target DDM job.

Application Character 10 Application name:
’*DDM ’ for Distributed Data Management.

Chapter 4. Security Considerations for DDM 63

Table 4. Parameter List for User Exit Program on Target Server (continued)

Field Type Length Description

Subapplication Character 10 Requested function:
’ADDMBR ’ ’DELETE ’ ’RGZMBR ’
’CHANGE ’ ’EXTRACT ’ ’RMVMBR ’
’Change Data Area (CHGDTAARA) ’ ’INITIALIZE’
’RNMMBR ’
’CHGMBR ’ ’LOAD ’ ’Retrieve Data Area
(RTVDTAARA)’
’CLEAR ’ ’LOCK ’ ’SNDDTAQ ’
’CLRDTAQ ’ ’Move (MOVE) ’
’COMMAND ’ ’OPEN ’
’Copy (COPY) ’ ’RCVDTAQ ’
’CREATE ’ ’RENAME ’
’SQLCNN ’

Object Character 10 Specified file name. *N is used when the subapplication
field is ’COMMAND ’. *SPC is used when the file is a
document or folder.

Character 10 Specified library name. *N is used when the
subapplication field is ’COMMAND ’. *SPC is used when
the library is a folder.

Member Character 10 Specified member name. *N is used when the member
name is not applicable.

Format Character 10 Not applicable for DDM.

Length Decimal 5,0 Length of the next field.

Source Remote
Location

Character 10 Remote location unit name of source system (if SNA).

Source System
Name

Character 10 System name of remote server. If this value is not
available, this field contains ’*N ″.

64 OS/400 Distributed Data Management

Table 4. Parameter List for User Exit Program on Target Server (continued)

Field Type Length Description

Other Character 2000 The use of this 2000 byte area depends upon the request
function. If it is SQLCNN, then the DRDA mapping should be
used. For other functions, use the DDM mapping.

To use DDM:

The following varies, depending on the
function. If OPEN is specified to open a file:

1 Input request Char(1) 1=yes 0=no

1 Output request Char(1) 1=yes
0=no

1 Update request Char(1) 1=yes
0=no

1 Delete request Char(1) 1=yes 0=no

12 Alternative object name.

63 Alternative directory name.

1921 The command string if COMMAND is
specified to submit a command.

To use DRDA:

9 Type definition name of DRDA application
requester. Product ID of DRDA application
requester.

3 Product code.

2 Version ID.

2 Release ID.

1 Modification level.

1983 Reserved

Note:
*N = Null value indicates a parameter position for which no value is being specified, allowing other parameters to

follow it in positional form.

User Exit Program Example for DDM
The following user exit program represents the source code for a PL/I program that is created by a
security officer on a remote system in Chicago. To define this user exit program to the server, the security
officer specifies the following:
CHGNETA DDMACC(DJWLIB/$UEPGM)

where DJWLIB/$UEPGM is the qualified name of the user exit program.

Because the security officer wants to specifically prevent user KAREN from opening file RMTFILEX, the
user exit program returns a 0 in the return code field when she attempts to open file RMTFILEX; the user
exit program returns a 1 in the return code field in all other cases indicating that requests by other users
are permitted.

This disclaimer information pertains to code examples.

Chapter 4. Security Considerations for DDM 65

$UEPGM: PROCEDURE (RTNCODE,CHARFLD);
DECLARE

RTNCODE CHAR(1);
DECLARE
1 CHARFLD,

2 USER CHAR(10),
2 APP CHAR(10),
2 FUNC CHAR(10),
2 OBJECT CHAR(10),
2 DIRECT CHAR(10),
2 MEMBER CHAR(10),
2 RESERVED CHAR(10),
2 LNGTH PIC ’99999’,
2 LUNAME CHAR(10),
2 SRVNAME CHAR(10),
2 OTHER,

3 INRQS CHAR(1),
3 OUTRQS CHAR(1),
3 UPDRQS CHAR(1),
3 DELRQS CHAR(1),
3 ALTOBJ CHAR(12),
3 ALTDIR CHAR(63),
3 REMAING CHAR(1921);

DECLARE
OPEN CHAR(10) STATIC INIT(’OPEN’),
KAREN CHAR(10) STATIC INIT(’KAREN’),
RMTFILEX CHAR(10) STATIC INIT(’RMTFILEX’);

DECLARE
ZERO CHAR(1) STATIC INIT(’0’),
ONE CHAR(1) STATIC INIT(’1’);

IF (FUNC = OPEN) &
(USER = KAREN) &
(OBJECT = RMTFILEX)

THEN
RTNCODE = ZERO;

ELSE
RTNCODE = ONE;

END $UEPGM;

Parameter List Example for DDM
The following commands are in a CL program that a user named KAREN on the source server
(NEWYORK) is using. The remote location configuration of the target server (CHICAGO) specifies
SECURELOC(*YES) for the NEWYORK source server. This action indicates that user IDs are to be sent
and that a user profile for KAREN exists on the target server.

The program used by KAREN accesses a DDM file named LOCFILEX that opens a remote file named
RMTFILEX on the target server in Chicago. Both servers are iSeries servers. The file is being opened for
input.

This disclaimer information pertains to code examples.
CRTDDMF FILE(LOCFILEX) RMTFILE(LIBX/RMTFILEX)

RMTLOCNAME(CHICAGO)...
Open Database File (OPNDBF) FILE(LOCFILEX) OPTION(*INP)
Monitor Message (MONMSG) MSGID(CPF0000) EXEC(GOTO EXIT)...
CLOF OPNID(LOCFILEX)
EXIT: End Program (ENDPGM)

66 OS/400 Distributed Data Management

When the Open Database File (OPNDBF) command is run on the NEWYORK source server, the DDM file
named LOCFILEX is opened. DDM sends a request to the target server to open RMTFILEX in LIBX for
input operations. From this information, the target server builds the following parameter list to be used by
the user exit program for verification:
KAREN *DDM OPEN RMTFILEX LIBX *N 0 24 CHICAGO NEWYORK 1000

This parameter list shows only the significant characters that would be sent in each field; all the padded
blanks and zeros are not shown. For example, the field containing KAREN is padded with five blanks
because it is a 10-character field. This parameter list is sent only for the open operation, although several
input operations may be performed on RMTFILEX.

This parameter list is sent to the user exit program specified on the DDMACC parameter of the Change
Network Attributes (CHGNETA) command. The user exit program determines if user KAREN is authorized
to open RMTFILEX. If she is authorized, the program returns a 1 in the return code field, and she can
open the file and perform read operations. If the program returns a 0 in the return code field, user KAREN
receives a message in the job log indicating that she is not authorized to use the file.

When all the input operations are completed, the Close File (CLOF) command runs on the source server,
and DDM sends the request to close the file.

DRDA Server Access Control Exit Programs With Example
A security feature of the DRDA server, for both APPC and TCP/IP use, extends the use of the DDMACC
parameter of the CHGNETA command to DRDA. The parameter previously applied only to DDM file I/O
access. The DRDA usage of the function is limited to connection requests, however, and not to requests
for data after the connection is made.

If you do not choose to take advantage of this security function, you normally do not need to do anything.
The only exception is if you are currently using a DDM exit program that is coded to reject operations if an
unknown function code is received, and you are also using DRDA to access data on that server. In this
case, you must modify your exit program so that a ’1’ is returned to allow DRDA access if the function
code is ’SQLCNN ’.

To use the exit program for blocking or filtering DRDA connections, you need to create a new DDM exit
program, or modify an existing one.

This security enhancement includes a DRDA function code on the list of request functions that can be
input to the program in the input parameter structure. The function code, named ’SQLCNN ’ (SQL connect
request), indicates that a DRDA connection request is being processed (see the FUNC parameter in
Figure 14 on page 69). The APP (application) input parameter is set to ’*DRDA ’ instead of ’*DDM
’ for DRDA connect request calls.

In addition to this enhancement, the following parameters are useful for DRDA:

v The USER parameter, allows the program to allow or deny DRDA access based upon the user profile
ID.

v The SRVNAME parameter in Figure 14 on page 69 may also be of use. If this parameter is set, it
indicates the name of the client server. If it is not set, it has the value *N. It should always be set for an
iSeries DRDA Application Requester.

v The TYPDEFN gives additional information about the type of client attempting to connect.

v The PRDID (product ID) parameter identifies the product that is attempting to connect, along with the
product’s release level. A partial list of these codes follows. (You should verify the non-IBM codes before
you use them in an exit program.)

QSQ IBM DB2 UDB for iSeries

DSN IBM DB2 for OS/390

Chapter 4. Security Considerations for DDM 67

SQL IBM DB2 Connect (formerly called DDCS)

ARI IBM DB2 for VSE and VM

GTW Oracle Corporation products

GVW Grandview DB/DC Systems products

XDB XDB Systems products

IFX Informix Software products

RUM Wall Data Rumba for Database Access

SIG StarQuest products

STH FileTek products

The rest of the field is structured as vvrrm, where vv is version, rr is release, and m is modification
level.

The DDM Architecture Reference manual and the DRDA Reference (both available from The Open Group)
give more information on these fields.

If the exit program returns a RTNCODE value of ’0’, and the Application Requester system type is iSeries,
then the message indicating the connection failure to the user will be SQ30060, ’User is not authorized to
relational database’. In general, the response to a denial of access by the exit program is the DDM
RDBATHRM reply message, which indicates that the user is not authorized to the relational database.

Restrictions:

If a function check occurs in the user exit program, the same reply message will be returned, and the
connection attempt will fail. The exit program must not do any committable updates to DB2 UDB for
iSeries, or unpredictable results may occur. A further restriction results from the fact that when the prestart
jobs used with the TCP/IP server are recycled for subsequent use, some cleanup is done to the jobs for
security reasons. Part of this processing involves the use of the RCLACTGRP ACTGRP(*ELIGIBLE)
function. As a result, attempts to use any residual linkages in the prestart server job to activation groups
destroyed by the RCLACTGRP can result in MCH3402 exceptions (where the program tried to refer to all
or part of an object that no longer exists). Furthermore, example, an exit program should not attempt to
access a file that was opened in a prior invocation of the prestart server job.

Figure 14 on page 69 shows an example of a PL/I user exit program that allows all DDM operations, and
all DRDA connections except for when the user ID is ’ALIEN’.

This disclaimer information pertains to code examples.

68 OS/400 Distributed Data Management

User Exit Program Considerations for DDM
If the user exit program is a CL program that creates an OS/400 exception, an inquiry message is sent to
the server operator on the target server if, for the target job, the job attribute INQMSGRPY is *RQD (the
default) or *SYSRPYL with no value in the reply list for this message. The user exit program waits for a
response to the message on the target server, which causes the source job to wait also.

/***/
/* */
/* PROGRAM NAME: UEPALIEN */
/* */
/* FUNCTION: USER EXIT PROGRAM THAT IS DESIGNED TO */
/* RETURN AN UNSUCCESSFUL RETURN CODE WHEN */
/* USERID ’ALIEN’ ATTEMPTS A DRDA CONNECTION. */
/* IT ALLOWS ALL TYPES OF DDM OPERATIONS. */
/* */
/* EXECUTION: CALLED WHEN ESTABLISHED AS THE USER EXIT */
/* PROGRAM. */
/* */
/* ALL PARAMETER VARIABLES ARE PASSED IN EXCEPT: */
/* */
/* RTNCODE - USER EXIT RETURN CODE ON WHETHER FUNCTION IS */
/* ALLOWED: ’1’ INDICATES SUCCESS; ’0’ FAILURE. */
/* */
/***/

UEPALIEN: PROCEDURE (RTNCODE,CHARFLD);

DECLARE RTNCODE CHAR(1); /* DECLARATION OF THE EXIT */
/* PROGRAM RETURN CODE. IT */
/* INFORMS REQUEST HANDLER */
/* WHETHER REQUEST IS ALLOWED. */

DECLARE /* DECLARATION OF THE CHAR */
1 CHARFLD, /* FIELD PASSED IN ON THE CALL. */

2 USER CHAR(10), /* USER PROFILE OF DDM/DRDA USER*/
2 APP CHAR(10), /* APPLICATION NAME */
2 FUNC CHAR(10), /* REQUESTED FUNCTION */
2 OBJECT CHAR(10), /* FILE NAME */
2 DIRECT CHAR(10), /* LIBRARY NAME */
2 MEMBER CHAR(10), /* MEMBER NAME */
2 RESERVED CHAR(10), /* RESERVED FIELD */
2 LNGTH PIC ’99999’, /* LENGTH OF USED SPACE IN REST */
2 REST, /* REST OF SPACE = CHAR(2000) */

3 LUNAME CHAR(10), /* REMOTE LU NAME (IF SNA) */
3 SRVNAME CHAR(10), /* REMOTE SERVER NAME */
3 TYPDEFN CHAR(9), /* TYPE DEF NAME OF DRDA AR */
3 PRDID, /* PRODUCT ID OF DRDA AR */

5 PRODUCT CHAR(3), /* PRODUCT CODE */
5 VERSION CHAR(2), /* VERSION ID */
5 RELEASE CHAR(2), /* RELEASE ID */
5 MOD CHAR(1), /* MODIFICATION LEVEL */

3 REMAING CHAR(1983); /* REMAINING VARIABLE SPACE. */

START:
IF (USER = ’ALIEN’ & /* IF USER IS ’ALIEN’ AND */

FUNC = ’SQLCNN’) THEN /* FUNCTION IS DRDA CONNECT */
RTNCODE = ’0’; /* SET RETURN CODE TO UNSUCCESSFUL*/

ELSE /* IF ANY OTHER USER, OR DDM */
RTNCODE = ’1’; /* SET RETURN CODE TO SUCCESSFUL */

END UEPALIEN;

Figure 14. Example PL/I User Exit Program

Chapter 4. Security Considerations for DDM 69

There are other potential situations in which waiting could occur. For example, if lengthy wait values are
specified on the WAIT parameter of the Allocate Object (ALCOBJ) or Receive Message (RCVMSG)
command, both the source and target jobs wait up to the maximum time specified for an object lock to be
obtained or a message to be received by the target job.

70 OS/400 Distributed Data Management

Chapter 5. CL Command Descriptions and DDS
Considerations for DDM

This chapter contains DDM-related information about specific iSeries control language (CL) commands,
data description specifications (DDS) considerations, DDS keywords, and DDM user profile authority.

Refer to the CL topic in the iSeries Information Center for further information about the command
descriptions and syntax diagrams.

Described are:
v DDM-specific CL commands
v DDM-related CL commands, containing only information relating to DDM
v DDM-related parameter considerations, providing information about specific CL command parameters

affected by DDM
v Command lists, showing various groupings of all the DDM-related CL commands
v DDS specifications, providing only DDM-related DDS considerations and DDS keywords
v DDM user profile authority, for use with a remote system

DDM-Specific CL Commands
The DDM-specific CL commands include:
v Change DDM File (CRTDDMF)
v Create DDM File (CRTDDMF)
v Display DDM Files (DSPDDMF)
v Reclaim DDM Conversations (RCLDDMCNV)
v Submit Remote Command (SBMRMTCMD)
v Work with DDM Files (WRKDDMF)

CHGDDMF (Change DDM File) Command
The Change DDM File (CHGDDMF) command changes one or more of the attributes of a DDM file on the
local (source) server. The DDM file is used as a reference file by programs on the iSeries source server to
access files located on any target server in the OS/400’s DDM network.

To use this command, you can enter the command as shown in the following example or select option 2
(Change DDM File) from the Work with DDM Files display. For further information about using the menu
options, see the topic “WRKDDMF (Work with DDM Files) Command” on page 77.

Example: CHGDDMF Command
CHGDDMF FILE(SOURCE/SALES) MODE(MODEX)

This command changes the communications mode for the DDM file named SALES stored in the SOURCE
library on the source server; the mode is changed to MODEX.

CRTDDMF (Create DDM File) Command
The Create DDM File (CRTDDMF) command creates a DDM file on the local (source) server. The DDM
file is used as a reference file by programs on an iSeries server to access files located on any remote
(target) server in the iSeries’s DDM network. Programs on the local iSeries server know a remote file only
by the DDM file’s name, not the remote file’s actual name. (The DDM file name, however, can be the
same as the remote file name.)

© Copyright IBM Corp. 1999, 2002 71

../rbam6/rbam6clmain.htm

The DDM file is also used when a CL command is submitted to the remote server. (The Submit Remote
Command (SBMRMTCMD) command is used to submit the CL command, and the remote server must be
an iSeries server or a System/38.) When the SBMRMTCMD command is being used, the remote file
normally associated with the DDM file is ignored.

The DDM file contains the name of the remote file being accessed and the remote location information
that identifies a remote (target) server where the remote file is located. It can also specify other attributes
that are used to access records in the remote file.

To use this command, you can enter the command as shown in the following examples or select F6
(Create DDM file) from the Work with DDM Files display. For further information about using the menu
options, see the topic “WRKDDMF (Work with DDM Files) Command” on page 77.

Examples: CRTDDMF Command
v Creating a DDM file to access a file on a System/38:

CRTDDMF FILE(SOURCE/SALES) RMTFILE(*NONSTD ’SALES.REMOTE’)
RMTLOCNAME(NEWYORK)

This command creates a DDM file named SALES and stores it in the SOURCE library on the source
server. This DDM file uses the remote location NEWYORK to access a remote file named SALES
stored in the REMOTE library on a System/38 in New York.

v Creating a DDM file to access a file member on an iSeries server:
CRTDDMF FILE(SOURCE/SALES) RMTLOCNAME(NEWYORK)

RMTFILE(*NONSTD ’REMOTE/SALES(APRIL)’)

This command creates a DDM file similar to the one in the previous example, except that now it
accesses the member named APRIL in the remote SALES file stored in the REMOTE library on an
iSeries server.

v Creating a DDM file to access a file on a System/36:
CRTDDMF FILE(OTHER/SALES) RMTFILE(*NONSTD ’PAYROLL’)

RMTLOCNAME(DENVER) LVLCHK(*NO)

This command creates a DDM file named SALES, and stores it in the library OTHER on the source
server. The remote location DENVER is used by the DDM file to access a remote file named PAYROLL
on a System/36 in Denver. No level checking is performed between the PAYROLL file and the
application programs that access it. Because the ACCMTH parameter was not specified, the access
method for the target server is selected by the source iSeries server when the DDM file is opened to
access the remote file.

Additional Considerations for using advanced program-to-program
communications (APPC) with DDM
For additional information about using advanced program-to-program communications (APPC) with DDM,
refer to APPC, APPN, and HPR topic in the iSeries Information Center.

DSPDDMF (Display DDM Files) Command
The Display DDM Files (DSPDDMF) command displays the details of a DDM file.

To use this command, you can type the command or select option 5 (Display details) from the Work with
DDM Files display. For further information about using the menu options, see the topic “WRKDDMF (Work
with DDM Files) Command” on page 77.

RCLDDMCNV (Reclaim DDM Conversations) Command
The Reclaim DDM Conversations (RCLDDMCNV) command is used to reclaim all DDM source server
conversations that are not currently being used by a source job. The conversations are reclaimed even if
the value of the job’s DDMCNV attribute is *KEEP, or if the command is entered within an activation group.

72 OS/400 Distributed Data Management

../rzahj/rzahjovr.htm

The command allows the user to reclaim unused DDM conversations without closing all open files or doing
any of the other functions performed by the Reclaim Resources (RCLRSC) command.

The RCLDDMCNV command applies only to the DDM conversations for the job on the source server in
which the command is entered. For each DDM conversation used by the source job, there is an
associated job on the target server; the target job ends automatically when the associated DDM
conversation ends.

Although this command applies to all DDM conversations used by a job, using it does not mean that all of
them will be reclaimed. A conversation is reclaimed only if it is not being actively used. For the conditions
under which the conversation is considered unused, see “Controlling DDM Conversations” on page 118.

SBMRMTCMD (Submit Remote Command) Command
The Submit Remote Command (SBMRMTCMD) command submits a command using DDM to run on the
target server. The remote location information in the DDM file is used to determine the communications
line to be used, and thus, indirectly identifies the target server that is to receive the submitted command.

You can use the SBMRMTCMD command to send commands to any of the following target servers:
v iSeries
v System/38
v Any server that supports the Submit System Command (SBMSYSCMD) DDM command

The SBMRMTCMD command can be used to send CL commands (and only CL) to an iSeries server or a
System/38. It can also be used to send commands to target servers other than iSeries or System/38
servers if the target server supports the DDM architecture Submit System command. The command must
be in the syntax of the target server. The SBMRMTCMD command cannot be used to send operation
control language (OCL) commands to a System/36 target because the System/36 server does not support
the function.

The primary purpose of this command is to allow a user or program using the source server to perform file
management operations and file authorization activities on files located on a target server. The user must
have the proper authority for the target server objects that the command is to operate on. The following
actions are examples of what can be performed on remote files using the SBMRMTCMD command:
v Create or delete device files
v Grant or revoke object authority to remote files
v Verify files or other objects
v Save or restore files or other objects

For more information on file management operations, see “Performing File Management Functions on
Remote Servers” on page 117.

Although the command can be used to do many things with files or objects, some are not as useful as
others. For example, you could use this command to display the file descriptions or field attributes of
remote files, or to dump files or other objects, but the output remains at the target server. Another way to
display remote file descriptions and field attributes at the source system is to use the Display File
Description (DSPFD) and Display File Field Description (DSPFFD) commands. Specify the
SYSTEM(*RMT) parameter and the names of the DDM files associated with the remote files. This returns
the information you desire directly to the local server.

A secondary purpose of this command is to allow a user to perform nonfile operations (such as creating a
message queue) or to submit user-written commands to run on the target server. The CMD parameter
allows you to specify a character string of up to 2000 characters that represents a command to be run on
the target server.

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 73

iSeries and System/38 Target Systems on the SBMRMTCMD Command
The SBMRMTCMD command can submit any CL command that can run in both the batch environment
and using the QCAEXEC server program. That is, a command can be submitted using the SBMRMTCMD
command if it has both of the following values for the ALLOW attribute:

*BPGM
The command can be processed in a compiled CL program that is called from batch entry.

*EXEC
The command can be used as a parameter on the CALL command and get passed as a character
string to the server program for processing.

You can look for these possible values using the Display Command (DSPCMD) command. (The
SBMRMTCMD command uses the QCAEXEC or QCMDEXEC system program to run the submitted
commands on the target server.) However, because some of these allowable commands require
intervention on the target server and may not produce the results expected, you should consider the items
listed in the topic “Restrictions for the SBMRMTCMD Command” first.

The user must have the proper authority for both the CL command being submitted and for the target
server objects that the command is to operate on. For the commands that are considered useful when
submitted by the SBMRMTCMD command to a target server, see Appendix B, “DDM-Related CL
Command Summary Charts”.

Restrictions for the SBMRMTCMD Command
1. Although remote file processing is synchronous within the user’s job, which includes two separate jobs

(one running on each server), file processing on the target server operates independently of the source
server. Commands such as Override with Database File (OVRDBF), Override with Message File
(OVRMSGF), and Delete Override (DLTOVR) that are dependent on the specific position of a program
in a program stack (recursion level) or request level may not function as expected.

For example, when multiple recursion levels that involve overrides at each level occur on the source
server, and one or more overrides at a given level are submitted to the target server on the
SBMRMTCMD command, the target server job has no way of knowing the level of the source server
job. That is, a target server override can still be in effect after the source server override for a
particular recursion level has ended.

2. Output (such as spooled files) created by a submitted command exists only on the target server. The
output is not sent back to the source server.

3. Some types of CL commands should not be submitted to a target iSeries server. The following are
examples of types that are not the intended purpose of the SBMRMTCMD command and that may
produce undesirable results:

v All of the OVRxxxF commands that refer to database files, message files, and device files (including
communications and save files).

v All of the DSPxxxx commands, because the output results remain at the target server.

v Job-related commands like Reroute Job (RRTJOB) that are used to control a target server’s job.
The Change Job (CHGJOB) command, however, can be used.

v Commands that are used to service programs, like Service Job (SRVJOB), Trace Job (TRCJOB),
Trace Internal (TRCINT), or Dump Job (DMPJOB).

v Commands that may cause inquiry messages to be sent to the system operator, like Start Printer
Writer (STRPRTWTR) or Copy to Diskette (CPYTODKT). (Pass-through can be used instead.)

4. Translation is not performed for any immediate messages created by the target server, because they
are not stored on the server; the text for an immediate message is sent directly to the source server to
be displayed. (For all other message types, the target server sends back a message identifier; the
message text that exists on the source server for that message identifier is the text that is displayed.
This message text is whatever the source server text has been translated to.)

74 OS/400 Distributed Data Management

5. A maximum of 10 messages, created during the running of a submitted command, can be sent by the
target server to the source server. If more than 10 messages are created, an additional informational
message is sent that indicates where the messages exist (such as in a job log) on the target server. If
one of those messages is an escape message, the first nine messages of other types are sent,
followed by the informational message and the escape message.

6. The only types of messages that are sent by the target server are completion, informational,
diagnostic, and escape messages.

Examples: SBMRMTCMD Command
Submitting a command to create another DDM file on the remote server:
SBMRMTCMD CMD(’CRTDDMF FILE(SALES/MONTHLY)

RMTFILE(*NONSTD ’’SALES/CAR(JULY)’’)
RMTLOCNAME(DALLAS)’) DDMFILE(CHICAGO)

This submitted command creates, on the target server identified by the information in the DDM file named
CHICAGO, another DDM file named MONTHLY; the new DDM file is stored in a library named SALES on
the server defined by DDMFILE CHICAGO. The new DDM file on the CHICAGO server is used to access
a file and member on a different server named DALLAS. The accessed file is named CAR in the library
SALES and the member name in the file is JULY.

Notice that this CRTDDMF command string contains three sets of single apostrophes: one set to enclose
the entire command being submitted (required by the CMD parameter on the SBMRMTCMD command),
and a double set to enclose the file and member named in the RMTFILE parameter. Because the use of
*NONSTD requires that nonstandard file names be enclosed in a set of apostrophes, this second set of
apostrophes must be doubled because it is within the first set of apostrophes.

Submitting a command to change text in a display file:
SBMRMTCMD CMD(’CHGDSPF FILE(LIBX/STANLEY)

TEXT(’’Don’’’’t forget to pair apostrophes.’’)’)
DDMFILE(SMITH)

This command changes the text in the description of the display device file named STANLEY stored in
library LIBX. Because the submitted command requires an outside set of single apostrophes (for the CMD
parameter), each single or double apostrophe normally required in the TEXT parameter for local server
processing must be doubled again for remote server processing. The coding above produces a single
apostrophe in the text when it is displayed or printed on the remote server.

Submitting a command to replace a library list on the remote server:
SBMRMTCMD CMD(’CHGLIBL LIBL(QGPL QTEMP SALES EVANS)’)

DDMFILE(EVANS)

This command changes the user’s portion of the library list being used by the target job associated with
the DDM file named EVANS, which is being used by the source job in which this SBMRMTCMD command
is being submitted. In that source job, if there are other open DDM files that specify the remote location
information, this library list is used for them also.

Additional Considerations: SBMRMTCMD Command
Override use example: The DDMFILE parameter on the SBMRMTCMD command is used to determine
which target server the command (CMD parameter) should be sent to. Overrides that apply to the DDM
file (not the remote file) are taken into account for this function. For example, if a file override was in effect
for a DDM file because of the following commands, which override FILEA with FILEX, then the target
server that the Delete File (DLTF) command is sent to is the one associated with the remote location
information specified in DDM FILEX (the values point to the DENVER system, in this case).
CRTDDMF FILE(SRCLIB/FILEA) RMTFILE(SALES/CAR)

RMTLOCNAME(CHICAGO)
CRTDDMF FILE(SRCLIB/FILEX) RMTFILE(SALES/CAR)

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 75

RMTLOCNAME(DENVER)
OVRDBF FILE(FILEA) TOFILE(SRCLIB/FILEX)
SBMRMTCMD CMD(’DLTF RMTLIB/FRED’) DDMFILE(SRCLIB/FILEA)

This SBMRMTCMD command deletes the file named FRED from the DENVER server.

DDM conversations: When a SBMRMTCMD command is run on the target server, it has a target server
job associated with it. Successive SBMRMTCMD commands submitted using the same DDM file and DDM
conversation may run in the same or different target server jobs, depending on the value of the DDMCNV
job attribute. The value of the DDMCNV job attribute determines whether the DDM conversation is
dropped or remains active when the submitted function has completed. If the conversation is dropped, the
next SBMRMTCMD command runs using a different target job. If several commands are submitted, either
DDMCNV(*KEEP) should be in effect, or display station pass-through should be used instead of DDM.

See the topic “DDM-Related Jobs and DDM Conversations” on page 18 for an explanation of how the
server handles DDM conversations, and see “DDMCNV Parameter Considerations” on page 98 for a
description of the DDMCNV job attribute.

Command syntax verifying: The syntax of the command character string being submitted by the CMD
parameter is not verified by the source server. In the case of a user-defined command, for example, the
command definition object may or may not exist on the source server.

Command running results: Because the submitted command runs as part of the target server’s job, the
attributes of that job (such as the library search list, user profile, wait times, and running priority) may
cause a different result than if the command were run locally. If you find that you are having difficulty
submitting a command and, for example, the reason is the target server uses a different library list, you
can use the SBMRMTCMD command to edit the library list.

Error message handling:

v
For errors detected by the target server when processing the submitted command, the source server
attempts to send the same error information that was created on the target server to the user. However,
if the source server does not have an equivalent message for the one created on the target server, the
message sent to the source server user has the message identifier and is of the message type and
severity that was created on the target server; the message text sent for the error is default message
text.

If the target server is a system other than an iSeries server or System/36, messages sent to the source
server have no message identifiers or message types. The only information received from such a target
server is the message text and a severity code. When a high severity code is returned from the target
server, the source server user receives a message that the SBMRMTCMD command ended abnormally.
Other messages sent by the target server are received as informational with no message identifiers.

For example, you might see the following in your job log when both the source and target are iSeries
servers:
INFO CPI9155 ‘Following messages created on target server.’
DIAG CPD0028 ‘Library ZZZZ not found.’
ESCP CPF0006 ‘Errors occurred in command.’

When a target server other than an iSeries server returns the same message to an iSeries source
server, the job log looks like this:
INFO CPI9155 ‘Following messages created on target server.’
INFO nomsgid ‘Library ZZZZ not found.’
INFO nomsgid ‘Errors occurred in command.’
ESCP CPF9172 ‘SBMRMTCMD command ended abnormally.’

76 OS/400 Distributed Data Management

The target server messages can be viewed on the source server by using pass-through and either the
Work with Job (WRKJOB) or Work with Job Log (WRKJOBLOG) command. If the target job ends, the
messages are in the target server’s output queue, where they can be displayed by the Work with Output
Queue (WRKOUTQ) command.

If the SBMRMTCMD command is used to call a CL program on the target server, any escape message
that is not monitored and is created by the program is changed into an inquiry message and is sent to
the system operator. If you don’t want the target system operator to have to respond to this inquiry
message before the job can continue, you can refer to the CL topic in the iSeries Information Center
and do either of the following on the target server:

– If you want to specify a default reply for a specific job, you can use the INQMSGRPY parameter on
either the Create Job Description (CRTJOBD) or Change Job Description (CHGJOBD) command to
specify either *DFT or *SYSRPYL in the job description for the target job. You can also do the same
thing if you use the SBMRMTCMD command to submit the Change Job (CHGJOB) command to the
target server.

– If you want to specify a default reply message for a specific inquiry message in the job, you can use
the Add Reply List Entry (ADDRPYLE) command (on the target server) to add an entry for that
message to the system-wide automatic message reply list (SYSRPYL). Then, if
INQMSGRPY(*SYSRPYL) is specified in the job description, this default reply can be sent whenever
that inquiry message occurs in the job.

WRKDDMF (Work with DDM Files) Command
The Work with DDM Files (WRKDDMF) command allows you to work with existing DDM files from a list
display. From the list display, you can change, delete, display, or create DDM files.

For the following displays, it is assumed that you have created DDM files using the Create DDM File
(CRTDDMF) command. If you enter the WRKDDMF command and specify library WILSON and file A, the
following display is shown:

Work with DDM Files

Position to _____________________

Type options, press Enter.
1=Create DDM file 2=Change DDM file 4=Delete 5=Display details
6=Print details

Remote
Option Local File Remote File Location

_ _____________________
_ WILSON/A A S36

Bottom
F3=Exit F5=Refresh F9=Print list F12=Cancel

To create a DDM file using this display, type a 1 in the option column and type the names of the library
and file you want to create, then press the Enter key. For example, type a 1 (Create DDM file) in the
option field and WILSON/TEST in the local file column of the top list entry (as shown in the following
display), and then press the Enter key. The Create DDM File display is shown.

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 77

../rbam6/rbam6clmain.htm

Work with DDM Files

Position to _____________________

Type options, press Enter.
1=Create DDM file 2=Change DDM file 4=Delete 5=Display details
6=Print details

Remote
Option Local File Remote File Location

1 WILSON/TEST__________
_ WILSON/A A S36

Bottom
F3=Exit F5=Refresh F9=Print list F12=Cancel

Create DDM File (CRTDDMF)

Type choices, press Enter.

DDM file TEST Name
Library WILSON Name, *CURLIB

Remote file:
File Name, *NONSTD

Library Name, *LIBL, *CURLIB
Nonstandard file ’name’ . . .

Remote location:
Name or address

Type *SNA *SNA, *IP

More...
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
F13=How to use this display F24=More keys

On the Create DDM File display, type the required values, and change or use the default values given. By
pressing F10 (Additional parameters), you can page through the command parameters as they are shown
on two displays. By pressing the Page Down key, you are shown these additional parameters:

78 OS/400 Distributed Data Management

Create DDM File (CRTDDMF)

Type choices, press Enter.

Text ’description’ *BLANK

Additional Parameters

Device:
APPC device description . . . *LOC Name, *LOC

Local location *LOC Name, *LOC, *NETATR
Mode *NETATR Name, *NETATR
Remote network identifier . . . *LOC Name, *LOC, *NETATR, *NONE
Port number *DRDA *DRDA, 1-65535
Access method:

Remote file attribute *RMTFILE *RMTFILE, *COMBINED...
Local access method *BOTH, *RANDOM, *SEQUENTIAL

Share open data path *NO *NO, *YES
Protected conversation *NO *NO, *YES

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

Create DDM File (CRTDDMF)

Type choices, press Enter.

Record format level check . . . *RMTFILE *RMTFILE, *NO
Authority *LIBCRTAUT Name, *LIBCRTAUT, *ALL...
Replace file *YES *YES, *NO

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

After you have typed in the values, press the Enter key to process the command and return to the Work
with DDM Files display.

If you want to change a DDM file, type a 2 (Change DDM file) on the Work with DDM Files display next to
the file that you want to change, or type the option number in the top list entry of the Options column and
specify the local file that you want changed. For example, type a 2 (Change DDM file) in the Option
column of the local file named WILSON/TEST.

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 79

Work with DDM Files

Position to _____________________

Type options, press Enter.
1=Create DDM file 2=Change DDM file 4=Delete 5=Display details
6=Print details

Remote
Option Local File Remote File Location

_ _____________________
_ WILSON/A A S36
2 WILSON/TEST TESTFILE.TESTLIB S38

Bottom
F3=Exit F5=Refresh F9=Print list F12=Cancel

Press the Enter key and the Change DDM File display is shown.

For example, if you only want to add a text description, type in the description and press the Enter key.
But, if you want to make additional changes, press F10 (Additional parameters), and you can page through
the command parameters as they are shown on two displays.

Change DDM File (CHGDDMF)

Type choices, press Enter.

DDM file TEST Name
Library WILSON Name, *LIBL, *CURLIB

Remote file:
File *SAME Name, *SAME, *NONSTD

Library Name, *LIBL, *CURLIB
Nonstandard file ’name’ . . .

Remote location:
Name or address *SAME

Type *SAME *SAME, *SNA, *IP
Record format level check . . . *SAME *SAME, *RMTFILE, *NO

More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

If you want to change the mode parameter, type in that value, and then press the Enter key.

80 OS/400 Distributed Data Management

Change DDM File (CHGDDMF)

Type choices, press Enter.

Text ’description’ *SAME

Additional Parameters

Device:
APPC device description . . . *SAME Name, *SAME, *LOC

Local location *SAME Name, *SAME, *LOC, *NETATR
Mode *SAME Name, *SAME, *NETATR
Remote network identifier . . . *SAME Name, *SAME, *LOC, *NETATR...
Port number *SAME *SAME, *DRDA, 1-65535
Access method:

Remote file attribute *SAME *SAME, *RMTFILE, *COMBINED...
Local access method *BOTH, *RANDOM, *SEQUENTIAL

Share open data path *SAME *SAME, *NO, *YES
Protected conversation *SAME *SAME, *NO, *YES

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

After you press the Enter key, you return to the Work with DDM Files display.

If you want to display the details of a DDM file, type a 5 (Display details) on the Work with DDM Files
display next to the file that you want to display, or type the option number in the top list entry of the
Options column and specify the local file you want to display. For example, type a 5 (Display details) in the
Option column and type WILSON/TEST in the Local File column of the top list entry.

You can also display the details of a file by using the Display DDM Files (DSPDDMF) command.

Work with DDM Files

Position to _____________________

Type options, press Enter.
1=Create DDM file 2=Change DDM file 4=Delete 5=Display details
6=Print details

Remote
Option Local File Remote File Location

5 WILSON/TEST__________
_ WILSON/A A S36
_ WILSON/TEST TESTFILE.TESTLIB S38

Bottom
F3=Exit F5=Refresh F9=Print list F12=Cancel

Press the Enter key and the Display Details of DDM File display is shown.

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 81

Display Details of DDM File SYSTEM: AS400B

Local file:
File . : TEST

Library : WILSON

Remote file : TESTFILE.TESTLIB

Remote location:
Remote location : S38
Device description : *LOC
Local location : *LOC
Remote location network ID : *LOC
Mode . : S38MODE1

Press Enter to continue.
More...

F3=Exit F12=Cancel

Page down to see the second display.

Display Details of DDM File
SYSTEM: AS400B

Access method
Remote file attribute : *RMTFILE
Local access method :

Share open data path : *NO
Check record format level ID . . : *RMTFILE
Text : TEST VERSION FOR DDM

Press Enter to continue.
Bottom

F3=Exit F12=Cancel

Press the Enter key to return to the Work with DDM Files display.

In addition to displaying the details of the DDM file, you can print the detail information by typing a 6 (Print
details) in the Option column.

You can also print a list of the DDM files by pressing F9 (Print list).

To delete a file or files, type a 4 (Delete) in the Option column next to the files you want to delete or in the
top list entry and specify the file you want to delete.

82 OS/400 Distributed Data Management

Work with DDM Files

Position to _____________________

Type options, press Enter.
1=Create DDM file 2=Change DDM file 4=Delete 5=Display details
6=Print details

Remote
Option Local File Remote File Location

_ _____________________
_ WILSON/A A S36
4 WILSON/TEST TESTFILE.TESTLIB S38

Bottom
F3=Exit F5=Refresh F9=Print list F12=Cancel

Press the Enter key. You are shown the Confirm Delete of Files display.

Confirm Delete of Files

Press Enter to confirm your choices for 4=Delete.
Press F12 to return to change your choices.

Remote
Option Local File Remote File Location

4 WILSON/TEST TESTFILE.TESTLIB S38

Bottom
F12=Cancel

Choose one of the actions on the display and then press the Enter key. You return to the Work with DDM
Files display.

DDM-Related CL Command Considerations
The following topics describe DDM-related specifics about iSeries CL commands when they are used with
DDM files. These topics discuss running the commands on the source server and do not discuss them
being submitted to run on the target server by the Submit Remote Command (SBMRMTCMD) command.
These and other commands are organized into various groups later in this chapter. See “DDM-Related CL
Command Lists” on page 99 for this kind of information. See File management handling of DDM files for
more information about DDM-related command considerations.

The following CL command descriptions are arranged in alphabetic order by command name. For
complete non-DDM-related information about any of these commands, refer to the CL topic in the iSeries
Information Center.

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 83

|
|
|
|
|
|

../rbam6/rbam6clmain.htm

v “ALCOBJ (Allocate Object) Command” on page 85

v “CHGJOB (Change Job) Command” on page 86

v “CHGLF (Change Logical File) Command” on page 86

v “CHGPF (Change Physical File) Command” on page 86

v “CHGSRCPF (Change Source Physical File) Command” on page 87

v “CLRPFM (Clear Physical File Member) Command” on page 87

v “Copy Commands with DDM” on page 87

v “CRTDTAARA (Create Data Area) Command” on page 89

v “CRTDTAQ (Create Data Queue) Command” on page 90

v “CRTLF (Create Logical File) Command” on page 91

v “CRTPF (Create Physical File) Command” on page 92

v “CRTSRCPF (Create Source Physical File) Command” on page 93

v “DLCOBJ (Deallocate Object) Command” on page 94

v “DLTF (Delete File) Command” on page 94

v “DSPFD (Display File Description) Command” on page 94

v “DSPFFD (Display File Field Description) Command” on page 95

v “OPNQRYF (Open Query File) Command” on page 95

v “OVRDBF (Override with Database File) Command” on page 96

v “RCLRSC (Reclaim Resources) Command” on page 96

v “RNMOBJ (Rename Object) Command” on page 97

v “WRKJOB (Work with Job) Command” on page 97

v “WRKOBJLCK (Work with Object Lock) Command” on page 97

Note: You see message CPF9810 if the following are true about a DDM file:
v The file is created into library QTEMP.
v The file is used by a CL command (such as CPYF).
v A remote file and library was specified in the CL command and the library does not exist on the remote

server.

Message CPF9810 indicates that the QTEMP library was not found. However, the library that was not
found is the remote library that was specified in the DDM file.

File Management Handling of DDM Files
Because of the way data management handles DDM files, you must be careful when specifying a member
name on commands. If a member name is specified, data management first searches for a local database
file containing the member specified, before looking for a DDM file.

For example, assume the following:
v DDM file CUST021 is in library NYCLIB.
v Database file CUST021 is in library CUBSLIB.

NYCLIB is listed before CUBSLIB in the user’s library list. CUBSLIB/CUST021 contains member NO1. The
remote file pointed to by the DDM file contains member NO1. If the following override is used on an
Override with Database File (OVRDBF) command:
OVRDBF FILE(CUST021) MBR(NO1)

Data management finds the database file CUBSLIB/CUST021 instead of the DDM file NYCLIB/CUST021.

To avoid this, you can do one of the following:
v Qualify the TOFILE on the override:

84 OS/400 Distributed Data Management

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

OVRDBF FILE(CUST021) TOFILE(NYCLIB/CUST021) MBR(NO1)
v Remove the library containing the database file from the library list:

RMVLIBLE LIB(CUBSLIB)
v Remove the override and change the remote file name in the DDM file to contain the member name:

CHGDDMF FILE(NYCLIB/CUST021)
RMTFILE(*NONSTD ’XYZ/CUSTMAST(NO1)’)

ALCOBJ (Allocate Object) Command
When the name of a DDM file is specified on the Allocate Object (ALCOBJ) command on the source
server, the command allocates the DDM file on the source server and its associated file or file member on
a target server. The command places locks on both the DDM file and the remote file in each pair. (These
files are locked on both servers to ensure that they are not changed or deleted while the files or members
are locked.) One or more pairs of files (DDM files on the source server and remote files on one or more
target servers) can be allocated at the same time.

Each DDM file is always locked with a shared-read (*SHRRD) lock. Shared-read is used for the DDM files
regardless of the lock types that may have been specified on the command to lock other local files at the
same time.

The lock placed on the remote file depends on the type of target server:

v When the target is an iSeries server or a System/38, the resulting locks on the remote file are the same
as if the file is a local database file. That is, the iSeries or the System/38 remote file is also locked with
a shared-read lock, and the member (the one specified, or the first one) is locked with the lock type
specified on the command.

v When the target is not an iSeries server or a System/38, the remote file is locked with the specified lock
type, except that some non-iSeries target servers may use a stronger lock than was specified on the
command. If an ALCOBJ command specifies multiple DDM files, and one or more are on non-iSeries
target servers, those remote files are locked with the lock type specified on the command. If a member
name is specified for a remote server that does not support members, the lock request is rejected with
an error message, unless the member name is the same as the DDM file name.

Member Names and iSeries Target Servers on the ALCOBJ Command
If a member name is specified with the DDM file name on an ALCOBJ command, the member (in the
remote file) is locked with the lock type specified on the command. If a member name is also specified in
the DDM file itself, the member names on both commands (ALCOBJ and CRTDDMF) must be the same.
If they are different, the lock request is rejected and an error message is sent to the user of the program.
The remote file containing the member is locked with a shared-read lock regardless of the lock type
specified for the member.

If no member name is specified when a DDM file name is specified on an ALCOBJ command for a remote
file on an iSeries server or a System/38, *FIRST is the default, and the target server attempts to locate
and lock the first member in the remote file, the same as if it had been specified by name. If a remote file
has no members, the lock request is rejected with an error message.

Locking Multiple DDM Files with the ALCOBJ Command
One ALCOBJ command can be used to specify multiple DDM files that are associated with remote files
located on multiple target servers. If it is not possible to lock all the files on all the servers, none are
locked.

ALCOBJ Command Completion Time with DDM
When DDM-related files are being allocated, a longer time will be required for the command to complete
because of the additional time required for communications to occur between the source and target
servers. You should not, however, increase the wait time specified in the WAIT parameter on the Allocate
Object (ALCOBJ) command; communications time and the WAIT parameter value have no relationship
with each other.

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 85

Note: If the DLTF command is used to delete the remote file without first releasing (using the DLCOBJ
command) the locks obtained by the ALCOBJ command, the DDM conversation is not reclaimed
until the source job has ended.

CHGJOB (Change Job) Command
The Change Job (CHGJOB) command can be used to change the DDMCNV parameter, which controls
whether advanced program-to-program communications (APPC) or iSeries Access conversations allocated
for DDM use are to be kept active or automatically dropped when they are not in use by a job. The new
value goes into effect immediately for the specified job.

To display the current value of the DDMCNV job attribute, use the Work with Job (WRKJOB) command
(described later).

See “DDMCNV Parameter Considerations” on page 98 for a description of this parameter’s values.

CHGLF (Change Logical File) Command
The Change Logical File (CHGLF) command can be used to change files on the source and target servers
through the SYSTEM parameter. Consider the following items when using the SYSTEM parameter values:

v When you specify *LCL, the logical file is changed on the local server.

v When you specify *RMT, the logical file is changed on the remote server. You must specify a DDM file
on the FILE parameter.

v When you specify *FILETYPE, a remote file is changed if a DDM file has been specified on the FILE
parameter. If a DDM file has not been specified, a local logical file is changed.

Consider the following items when using this command with DDM:

v The FILE parameter is the name of the DDM file that represents the remote logical file being changed.
The remote file specified on the DDM file is the logical file that is changed on the remote server (which
is also specified in the DDM file).

v For a target server other than an iSeries server:
– All parameters except TEXT are ignored.
– It is not verified that the remote file is a logical file.

CHGPF (Change Physical File) Command
The Change Physical File (CHGPF) command can be used to change files on the source and target
systems through the SYSTEM parameter. Consider the following items when using the SYSTEM
parameter values:

v When you specify *LCL, the physical file is changed on the local system.

v When you specify *RMT, the physical file is changed on the remote system. You must specify a DDM
file on the FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is
changed. If a DDM file has not been specified, a local physical file is changed.

Consider the following items when using this command with DDM:

v The FILE parameter is the name of the DDM file that represents the remote physical file being changed.
The remote file specified in the DDM file is the physical file that is changed on the remote system
(which is also specified in the DDM file).

v For a target server other than an iSeries server:
– All parameters except EXPDATE, SIZE, and TEXT are ignored.
– It is not verified that the remote file is a physical file.

86 OS/400 Distributed Data Management

CHGSRCPF (Change Source Physical File) Command
The Change Source Physical File (CHGSRCPF) command can be used to change files on the source and
target servers through the SYSTEM parameter. Consider the following items when using the SYSTEM
parameter values:

v When you specify *LCL, the source physical file is changed on the local server.

v When you specify *RMT, the source physical file is changed on the remote server. You must specify a
DDM file on the FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is
changed. If a DDM file has not been specified, a local source physical file is changed.

Consider the following items when using this command with DDM:

v The FILE parameter is the name of the DDM file that represents the remote source physical file being
changed. The remote file specified in the DDM file is the source physical file that is changed on the
remote server (which is also specified in the DDM file).

v The CCSID parameter is ignored on a target System/38 server.

v For a target server other than an iSeries server, the CHGSRCPF command cannot be used to change
files.

CLRPFM (Clear Physical File Member) Command
The Clear Physical File Member (CLRPFM) command can be used with DDM to clear all the records
either from a physical file member on a target iSeries server or from a file on a non-iSeries target server.
The command works the same way as it does for local files (clearing all data records and deleted
records).

Copy Commands with DDM
This section describes the DDM implications of all the following CL commands:
v Copy File (CPYF)
v Copy from Query File (CPYFRMQRYF)
v Copy from Diskette (CPYFRMDKT)
v Copy from Tape (CPYFRMTAP)
v Copy Source File (CPYSRCF)
v Copy to Diskette (CPYTODKT)
v Copy to Tape (CPYTOTAP)

These commands can be used to copy data or source between files on local and remote servers. You
specify with these commands which file to copy from and which file to copy to. The following table shows
you what database and device files can be copied between local and remote servers.

Table 5. Copying Database and Device Files

From File To File

Local or remote database files Local or remote database files

Local or remote database files Local device files

Local device files Local or remote database files

A DDM file is considered a device file that refers to a remote database file. Consider the following items
when using these copy commands with DDM:

v DDM conversations are not reclaimed for a job when a copy command produces an error.

Note: In releases prior to Version 3 Release 2, copy errors caused the Reclaim Resources (RCLRSC)
command to be run, which also ran the Reclaim Distributed Data Management Conversations
(RCLDDMCNV) command. The RCLRSC command is still run, but it no longer runs the

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 87

RCLDDMCNV command when a copy error occurs. The DDM conversations will remain unless
an explicit RCLDDMCNV is specified following the copy command with the error.

v If you specify a DDM file and a local file on the CPYF or CPYSRCF command, the server does not
verify that the remote and local files are not the same file on the source server. If one DDM file is
specified, a user can potentially copy to and from the same file.

v A DDM file can be specified on the FROMFILE and the TOFILE parameters for the CPYF and
CPYSRCF commands.

Note: For the Copy from Query File (CPYFRMQRYF), Copy from Diskette (CPYFRMDKT) and Copy
from Tape (CPYFRMTAP) commands, a DDM file name can be specified only on the TOFILE
parameter; for the Copy to Diskette (CPYTODKT) and Copy to Tape (CPYTOTAP) commands, a
DDM file name can be specified only on the FROMFILE parameter.

v If the target server is not an iSeries server or a System/38:

– When a file on the local iSeries server is copied to a remote file (or vice versa), FMTOPT(*NOCHK)
is usually required.

– When a source file on the local iSeries server is copied to a remote file (or vice versa),
FMTOPT(*CVTSRC) must be specified.

v If data is copied to a target System/36 file that has alternative indexes built over it,
MBROPT(*REPLACE) cannot be specified. In this case, the copy command attempts to clear the
remote file, but it fails because of the alternative indexes.

v When an iSeries file that can contain deleted records is copied to one that cannot contain deleted
records, you must specify COMPRESS(*YES), or an error message is sent and the job ends.

v If the remote file name on a DDM file specifies a member name, the member name specified for that
file on the copy command must be the same as the member name on the remote file name on the DDM
file. In addition, the Override Database File (OVRDBF) command cannot specify a member name that is
different from the member name on the remote file name on the DDM file.

v If a DDM file does not specify a member name and if the OVRDBF command specifies a member name
for the file, the copy command uses the member name specified on the OVRDBF command.

If the TOFILE parameter is a DDM file that refers to a file that does not exist, CPYF creates the file if
CRTFILE(*YES) is specified. The following are special considerations for remote files created with the
CPYF or CPYFRMQRYF commands:

v If the target system is an iSeries server or a System/38, the user profile for the target DDM job must be
authorized to the CRTPF command on the target server.

v If the target server is a server other than an iSeries server, the file specified by the FROMFILE
parameter cannot have any file or field CCSIDs other than *HEX or the CCSID of the source job.

v For the CPYF command, if the target server is a system other than an iSeries server, the FROMFILE
parameter cannot be a source file.

v If the target server is a System/38, the TOMBR parameter must be the same as the remote file’s name
or *FIRST for the copy to be successful. The copy creates a member with the same name as the
remote file’s name.

v If the target server is other than a System/38 or iSeries server, for the copy to be successful, the
TOMBR parameter must be *FIRST or specify the DDM file name. For DDM access to the remote file,
the file appears to have a member with the same name as the DDM file.

v For an iSeries target server, the TOFILE parameter has all the attributes of the FROMFILE parameter.

v For target systems that are other than iSeries servers, those attributes on the CRTPF command that
are ignored are also ignored when the copy command creates the file.

v If the target server is a System/38 and the FROMFILE parameter is a direct file that does not allow
deleted records, an attempt is made to copy the records after the last record for the file at its maximum
size. The system operator on the System/38 tells the server to either add the records or cancel the
copy.

88 OS/400 Distributed Data Management

v The CPYF or CPYFRMQRYF command with CRTFILE(*YES) creates a file on the target server with a
size description that is only as large as the target server allows.

v For all copies, if the number of records being copied exceeds the maximum allowed by the to-file, the
copy function ends when the maximum is reached.

v For copy commands executed on Version 2 Release 3 or earlier systems that reference a Version 3
Release 1 remote file having a constraint relationship, the ERRLVL parameter will not work for
constraint relationship violations. The copy ends regardless of the ERRLVL specified.

v The copy commands allow copying from and to DDM files that reference remote distributed files.

CRTDTAARA (Create Data Area) Command
The Create Data Area (CRTDTAARA) command creates a data area and stores it in a specified library. It
also specifies the attributes of the data. The data area can be optionally initialized to a specific value.

You can create a DDM data area by specifying *DDM on the TYPE parameter. The DDM data area is
used as a reference data area by programs to access data areas located on a remote (target) server in
the DDM network. Programs on the local (source) server reference a remote data area by the DDM data
area’s name, not by the remote data area’s name. (The DDM data area name can be the same as the
remote data area name.)

The DDM data area (on the source server) contains the name of the remote data area and the name of
the remote (target) server on which the remote data area is located.

The DDM data area can be used with the Retrieve Data Area (RTVDTAARA) command and the Change
Data Area (CHGDTAARA) command to retrieve and update data areas on remote servers. A DDM data
area can also be used with the Retrieve Data Area (QWCRDTAA) API.

Additional information on data areas can be found in the CL topic in the iSeries Information Center and the

CL Programming book.

Consider the following items when using this command with DDM:

v The RMTDTAARA parameter is the name of the remote data area on the target server. The data area
does not need to exist when the DDM data area is created.

v The RMTLOCNAME parameter is the name of the remote location that is used with this object.
RMTLOCNAME must point to a target server that is an iSeries running at a release of OS/400 that
supports remote data areas.

v The DEV parameter is the name of the APPC device description on the source server that is used with
this DDM data area. The device description does not need to exist when the DDM data area is created.

v The LCLLOCNAME parameter is the local location name.

v The MODE parameter is the mode name that is used with the remote location name to communicate
with the target server.

v The RMTNETID parameter is the remote network ID in which the remote location resides that is used to
communicate with the target server.

Consider the following restrictions when using this command with DDM:

v You cannot create a DDM data area using the names *LDA, *GDA, or *PDA.

v You cannot create a data area remotely. This function can be done remotely by using the Submit
Remote Command (SBMRMTCMD) command.

v You can remotely display data areas by using the SBMRMTCMD command.

v You can display the contents of remote data areas by using the Display Data Area (DSPDTAARA)
command; specify *RMT on the SYSTEM parameter. The data in the data area is displayed in the same
format as that used for local data areas, with the exception of the TEXT field, which is the text

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 89

../rbam6/rbam6clmain.htm
../../books/c4157215.pdf

description provided when the DDM data area was created. If you specify *LCL on the SYSTEM
parameter for a DDM data area, the output looks similar to the following:

Data area : DDMDTAARA
Library : DDMLIB

Type : *DDM
Length : 62
Text : ’This is a DDM data area’

Value
Offset *...+....1....+....2....+....3....+....4....+....5

0 ’*LOC *NETATR SYSTEMA *LOC *LOC LCLDTAAR’
50 ’A LCLLIB ’

Use the following chart to interpret the values:

Table 6. Offset Values
Offset CRTDDMDTAA Parameters
1-10 DEV
11-18 MODE
19-26 RTMLOCNAME
27-34 LCLLOCNAME
35-42 RMTNETID
43-52 RMTDTAARA (name)
53-62 RMTDTAARA (library)

CRTDTAQ (Create Data Queue) Command
The Create Data Queue (CRTDTAQ) command creates a data queue and stores it in a specified library.
Data queues are used to communicate and store data used by several programs either within a job or
between jobs. Multiple jobs can send or receive data from a single queue.

The CRTDTAQ command can optionally create a distributed data management (DDM) data queue. This is
done by specifying *DDM on the TYPE parameter. The DDM data queue is used as a reference data
queue by programs to access data queues located on a remote (target) server in the DDM network.
Programs on the local (source) server reference a remote data queue by the DDM data queue’s name, not
by the remote data queue’s name. (The DDM data queue name, however, can be the same as the remote
data queue name.)

The DDM data queue (on the source server) contains the name of the remote data queue and the name
of the remote (target) server on which the remote data queue is located.

For additional information on data queues, see the CL topic, the CL Programming book, and
Application programming interfaces (APIs) topic in the iSeries Information Center.

Consider the following items when using this command with DDM:

v The TYPE parameter specifies the type of data queue to be created. A standard data queue or a DDM
data queue can be created.

v The RMTDTAQ parameter is the name of the remote data queue on the target system. The data queue
does not need to exist when the DDM data queue is created.

v The RMTLOCNAME parameter is the name of the remote location that is used with this object.
RMTLOCNAME must point to a target server that is an iSeries server running at a release of OS/400
that supports remote data areas.

v The DEV parameter is the name of the APPC device description on the source system that is used with
this DDM data queue. The device description does not need to exist when the DDM data queue is
created.

90 OS/400 Distributed Data Management

../rbam6/rbam6clmain.htm
../../books/c4157215.pdf
../apis/api.htm

v The LCLLOCNAME parameter is the local location name.

v The MODE parameter is the mode name that is used with the remote location name to communicate
with the target system.

v The RMTNETID parameter is the remote network ID in which the remote location resides that is used to
communicate with the target system.

Consider the following restrictions when using this command with DDM:

v Only the API interface for data queues is supported when using DDM data queues. The following APIs
are supported:

– Send to Data Queue (QSNDDTAQ)

– Receive from Data Queue (QRCVDTAQ)

– Clear Data Queue (QCLRDTAQ)

The Retrieve Data Queue Description (QMHQRDQD) and Retrieve Data Queue Messages
(QMHRDQM) APIs are not supported for DDM data queues. See the Application programming
interfaces (APIs) topic in the iSeries Information Center for more information on the data queue APIs.

When using the *ASYNC parameter on the Send Data Queue API, messages resulting from errors
encountered when accessing the remote data queue are placed in the target server’s job log, and a
DDM protocol error (CPF9173 - Error detected in DDM data stream by target server) is posted in
the source system’s job log. Look in the target server’s job log for the cause of the error and correct the
problem before using the remote data queue. Attempts to access the remote data queue after you
receive this error message without first correcting the problem will produce unpredictable results.

v You cannot create a data queue remotely. This function can be done remotely by using the Submit
Remote Command (SBMRMTCMD) command.

CRTLF (Create Logical File) Command
The Create Logical File (CRTLF) command can be used to create files on the source and target servers
through the SYSTEM parameter. Consider the following items when using the SYSTEM parameter values:

v When you specify *LCL, the file is created on the local server.

v When you specify *RMT, the file is created on the remote server. You must specify a DDM file on the
FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is
created. If a DDM file has not been specified, a local file is created.

Consider the following items when using this command with DDM:

v The parameter FILE is the name of the DDM file that represents the remote logical file being created.
The remote file specified in the DDM file is the logical file that is created on the remote server (which is
also specified in the DDM file).

v The OPTION and GENLVL parameters have no effect on the remote command sent.

v The files specified on the PFILE or JFILE keywords in the DDS for the logical file must be at the same
server location as the logical file being created.

v If *JOB is specified as the value of a parameter or is in the data description specification (DDS) for that
file, the attribute of that source job is used for file and field attributes. The attribute of the source job is
also used when the default for a file or field attribute is the job attribute.

v For a target server other than an iSeries server:

– The format name is ignored.

– Only the value of *ALL is supported for the DTAMBRS parameter.

– These parameters are ignored:
- AUT
- FRCRATIO

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 91

../apis/api.htm
../apis/api.htm

- FRCACCPTH
- LVLCHK
- MAINT
- MBR
- RECOVER
- SHARE
- UNIT
- WAITFILE
- WAITRCD

Note: For System/38 targets, the SBMRMTCMD command can be used to change these attributes.

– Only the value of *NONE is supported for the FMTSLR parameter.

– FILETYPE must be *DATA.

– If a member name is specified, it must match the DDM file name.

v For an iSeries target server:

– All parameters of the CRTLF command are supported with one restriction: authorization lists are not
allowed for the AUT (public authority) parameter. DDM cannot guarantee the existence of the
authorization list on the target server or that the same user IDs are in the list if it does exist. The
public authority is changed to *EXCLUDE when you use an authorization list as a value for the AUT
parameter of the CRTLF command.

– The file names specified in the DTAMBRS parameter must be the names of the DDM files that
represent the remote based-on physical files. If a member name was specified as part of the remote
file name of the DDM file, then only that member name can be specified. The member names must
be the actual remote file member names.

CRTPF (Create Physical File) Command
The Create Physical File (CRTPF) command can be used to create files on the source and target servers
through the SYSTEM parameter. Consider the following items when using the SYSTEM parameter values:

v When you specify *LCL, the file is created on the local server.

v When you specify *RMT, the file is created on the remote server. You must specify a DDM file on the
FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is
created. If a DDM file has not been specified, a local file is created.

Consider the following items when using this command with DDM:

v The FILE parameter is the name of the DDM file that represents the remote file being created. The
remote file specified in the DDM file is the file that is created on the remote server (which is also
specified in the DDM file).

v The OPTION and GENLVL parameters create the same results as for local processing. These
parameters have no effect on the remote command sent.

v If *JOB is specified as the value of a parameter or is in the data description specification (DDS) for that
file, the attribute of that source job is used for file and field attributes. The attribute of the source job is
also used when the default for a file or field attribute is the job attribute.

v For a target server other than an iSeries server:

– The format name is ignored.

– These parameters are ignored:
- AUT
- CONTIG
- DLTPCT
- FRCRATIO
- FRCACCPTH
- LVLCHK

92 OS/400 Distributed Data Management

- MAINT
- MAXMBRS2
- MBR
- RECOVER
- REUSEDLT
- SHARE
- UNIT
- WAITFILE
- WAITRCD

Note: For System/38 targets, the SBMRMTCMD command can be used to change these attributes.

– FILETYPE must be *DATA.

– All other parameters are supported.

– If a member name is specified, it must match the DDM file name.

– The only CCSID values that are supported are:
- *HEX
- 65535
- *JOB
- Process CCSID of the source job

The file is not created if any other CCSID value is specified.

– When the DDS keyword VARLEN is used, DDM tries to create a variable-length record file on the
target server. There are some specific rules for this keyword. See “DDM-Related DDS Keywords and
Information” on page 105 for these rules.

v On an iSeries target server, all parameters of the CRTPF command are supported with one restriction:
authorization lists are not allowed for the AUT (public authority) parameter. DDM cannot guarantee the
existence of the authorization list on the target server or that the same user IDs are in the list if it does
exist. The public authority is changed to *EXCLUDE when you use an authorization list as a value for
the AUT parameter of the CRTPF command.

CRTSRCPF (Create Source Physical File) Command
The Create Source Physical File (CRTSRCPF) command can be used to create files on the iSeries source
and target servers through the SYSTEM parameter. Consider the following items when using the SYSTEM
parameter values:

v When you specify *LCL, the file is created on the local server.

v When you specify *RMT, the file is created on the remote server. You must specify a DDM file on the
FILE parameter.

v When you specify *FILETYPE, if a DDM file has been specified on the FILE parameter, a remote file is
created. If a DDM file has not been specified, a local file is created.

Consider the following items when using this command with DDM:

v The FILE parameter is the name of the DDM file that represents the remote file being created. The
remote file specified in the DDM file is the file that is created on the remote server (which is also
specified in the DDM file).

v The OPTION and GENLVL parameters create the same results as for local processing. These
parameters have no effect on the remote command sent.

v If *JOB is specified as the value of a parameter or is in the data description specification (DDS) for that
file, the attribute of that source job is used for file and field attributes. The attribute of the source job is
also used when the default for a file or field attribute is the job attribute.

All parameters of CRTSRCPF are supported with one restriction: authorization lists are not allowed for the
AUT (public authority) parameter. DDM cannot guarantee the existence of the authorization list on the

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 93

target server or that the same user IDs are in the list if it does exist. The public authority is changed to
*EXCLUDE when you use an authorization list as a value for the AUT parameter of the CRTSRCPF
command.

DLCOBJ (Deallocate Object) Command
When the name of a DDM file is specified on the Deallocate Object (DLCOBJ) command on the source
server, the command deallocates the DDM file on the source server and its associated file or file member
on a target server. The command releases the locks that were placed on the paired files on both the
source and target servers by the Allocate Object (ALCOBJ) command. One or more pairs of files (DDM
files on the source server and remote files on one or more target servers) can be deallocated at the same
time.

Member Names and iSeries Target Servers on the DLCOBJ Command
All of the information previously discussed in the ALCOBJ command description regarding member names
applies to the DLCOBJ command as well. Refer to the ALCOBJ command description for the details.

Unlocking Multiple DDM Files on the DLCOBJ Command
One DLCOBJ command can be used to specify multiple DDM files that are associated with remote files
that may be located on multiple target servers. In most cases, the command attempts to release as many
of the specified locks as possible. For example:

v If one of the DDM files specified on the DLCOBJ command refers to a remote file that is not a database
file, that lock is not released; but the specified locks on the remote files associated with the other DDM
files specified are released if, of course, they are valid.

v If a user tries to release a lock that he did not place on a file by a previous ALCOBJ command, that part
of the request is rejected and an informational message is returned to the user.

DLTF (Delete File) Command
The Delete File (DLTF) command can be used to delete files on the source and target servers. The
following items should be considered when using the SYSTEM parameter values:

v When you specify *LCL, only local files are deleted. This may include DDM files.

v When you specify *RMT, the file is deleted on the remote server. You must specify a DDM file on the
FILE parameter. If a generic name is specified, the remote files corresponding to any DDM files
matching the generic name are deleted. (The local DDM files are not deleted.)

v When you specify *FILETYPE, if a DDM file has been specified, the remote file is deleted. If a DDM file
has not been specified, the local file is deleted. When you specify generic names, local non-DDM files
are deleted first. Remote files for any DDM files matching the generic name are then deleted. Local
DDM files are not deleted.

Notes:

1. Structured Query Language/400 (SQL/400) DROP TABLE and DROP VIEW statements work only on
local files.

2. If the DLTF command is used to delete the remote file without first releasing (using the DLCOBJ
command) the locks obtained by the ALCOBJ command, the DDM conversation is not reclaimed until
the source job has ended.

DSPFD (Display File Description) Command
The Display File Description (DSPFD) command can be used to display (on the source server) the
attributes of the DDM file on the source server, the remote file on the target server, or both the DDM file
and the remote file. As with local files, the attributes of multiple DDM and/or remote files can be displayed
by the same command.

Note: Although this discussion mentions only one target server, the files for multiple target servers can be
displayed at the same time.

94 OS/400 Distributed Data Management

The SYSTEM parameter determines which group of attributes is displayed.
v To display the attributes of DDM files, which are local files, the SYSTEM parameter must specify *LCL

(the default). If SYSTEM(*LCL) is specified:

– The FILEATR parameter must either specify *DDM (to display DDM file attributes only) or default to
*ALL (to display all file types, including DDM files). The same kind of information is displayed for
DDM files (which are on the local system) as for any other types of files on the local server.

– If FILEATR(*DDM) is specified and the OUTFILE parameter specifies a file name, only local DDM file
information is given.

v To display the attributes of remote files, the SYSTEM parameter must specify *RMT. If SYSTEM(*RMT)
is specified:

– The FILEATR parameter must specify *ALL, *PHY, or *LGL.

– The type of information displayed for remote files depends on what type of target server the files are
on. If the target is an iSeries server or a System/38, the same type of information displayed for local
files on an iSeries server or a System/38 can be displayed. If the target is not an iSeries server or a
System/38, all the information that can be obtained through that server’s implementation of the DDM
architecture that is compatible with the iSeries server’s implementation is displayed.

v To display the attributes of both DDM and remote files, the SYSTEM parameter must specify *ALL.

DSPFFD (Display File Field Description) Command
The Display File Field Description (DSPFFD) command can be used to display the file, record format, and
field attributes of a remote file. To display the remote file attributes, however, you must enter the name of
the DDM file associated with the remote file, not the name of the remote file.

Note: Because the DDM file has no field attributes, the DSPFFD command cannot specify
SYSTEM(*LCL) to display local DDM file information.

If *ALL or a generic file name is specified on the FILE parameter, the DSPFFD command can also display
information about a group of both local files and remote files, or just a group of local files. In this case, the
SYSTEM parameter determines which are displayed.

v To display the attributes of local non-DDM files only, the SYSTEM parameter need not be specified
because *LCL is the default.

v To display the attributes of remote files, the SYSTEM parameter must specify *RMT. If SYSTEM(*RMT)
is specified, the field and record format information displayed for remote files depends on what type of
target server the files are on.

– If the target is an iSeries server or a System/38, the same information displayed for local files on an
iSeries server is displayed.

– If the target is other than a System/38 or iSeries server:
- Fields are Fnnnnn or Knnnnn (where nnnnn is some number), based on whether the file is a

keyed file or not.
- The record format name is the DDM file name.

If the remote file has a record length class of record varying or initially varying, fixed-length field
descriptions are displayed.

v To display the attributes of both local non-DDM files and remote files, the SYSTEM parameter must
specify *ALL. Only remote physical and logical files can be displayed.

OPNQRYF (Open Query File) Command
You can query remote files using the Open Query File (OPNQRYF) command, but only if the remote files
are on a target iSeries server or a target System/38. If multiple remote files are specified on one
OPNQRYF command, they must all exist on the same target server and use the same remote location
information. (See “System/38-Compatible Query Utility (Query/38)” on page 33 for more information on the
System/38-compatible query utility support.)

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 95

If the target server is an iSeries server or a System/38, a query request is created and sent to the target
server using the DDM file that the query refers to. If the target server is other than an iSeries server or a
System/38, the query request cannot be processed and an error message is created. However, the query
utility on the System/38 can be used to query remote files that are other than iSeries files. (See
“System/38-Compatible Query Utility (Query/38)” on page 33 for details.)

If the target server is a System/38 and the source is an iSeries server, or if the target server is an iSeries
server and the source is a System/38, OPNQRYF cannot use group-by and join functions. An error results.

OVRDBF (Override with Database File) Command
The Override with Database File (OVRDBF) command can be used with DDM to override (replace) a local
database file named in the program with a DDM file; the DDM file causes the associated remote file to be
used by the program instead of the local database file.

If a DDM file is specified on the TOFILE parameter and if other parameters are specified that change a
file’s attributes, the result is that the remote file actually used by the program is used with its attributes
changed by the parameter values specified on the OVRDBF command.

If the target server is an iSeries server or a System/38, existing programs that use the OVRDBF command
to access remote files work the same as when they access local files. All the OVRDBF parameters are
processed the same on source and target iSeries servers.

If end-of-file delay (EOFDLY) is used, it is recommended to end a job with an end-of-file record because if
the source job gets canceled, the target job does not get notified. The user must also end the target job.

If the target server is neither an iSeries server nor a System/38:

v The following parameters are still valid: TOFILE, POSITION, RCDMTLCK, WAITFILE, WAITRCD,
LVLCHK, EXPCHK, INHWRT, SECURE, SHARE, and SEQONLY.

– The TOFILE parameter is always processed on the source server. When a DDM file name is
specified on this parameter, the program uses the associated remote file instead of the local
database file specified in the program.

– The RCDMTLCK parameter, if specified, is valid only if both of the following are true of the remote
file used: only one type of lock condition can be requested for the remote file, and the record format
name in the remote file must be the same as the name of the DDM file.

– The WAITFILE and WAITRCD parameters have no effect on remote file processing.

v The MBR parameter causes an error if it is specified with a member name that is different than the
name of the file containing the member.

v The FRCRATIO and NBRRCDS parameters, if specified, are ignored.

v The FMTSLR parameter, if specified, causes an error when the file being opened is a DDM file.

v The SEQONLY parameter causes records to be blocked on the source side. Records may be lost if the
source job is canceled before a block is full.

For examples of how file overrides are applied in DDM, see “Additional Considerations: SBMRMTCMD
Command” on page 75 for the SBMRMTCMD command description, and see “Examples of Accessing
DDM Remote Members (iSeries server Only)” on page 114.

RCLRSC (Reclaim Resources) Command
The Reclaim Resources (RCLRSC) command, like the Reclaim DDM Conversations (RCLDDMCNV)
command, can be used to reclaim all DDM conversations that currently have no users in the job, as
defined under “Controlling DDM Conversations” on page 118. (This can be done even if the DDMCNV job
attribute is *KEEP.) The RCLRSC command, however, first attempts to close any unused files for the
appropriate recursion levels, as it would for local files. This action may result in some conversations

96 OS/400 Distributed Data Management

allocated to DDM being unavailable for the job. For example, if a DDM file is opened using the Open
Database File (OPNDBF) command, the RCLRSC command closes the file and reclaims the conversation.

After the files are closed, any unused DDM conversations are dropped. Whether or not a conversation can
be reclaimed is not affected by the recursion level or activation group in which the RCLRSC command is
issued.

RNMOBJ (Rename Object) Command
The Rename Object (RNMOBJ) command can be used to rename a remote file. The following items
should be considered when using the SYSTEM parameter values:

v When you specify *LCL, local objects are renamed. This may include DDM files.

v When you specify *RMT, this value applies only to OBJTYPE(*FILE). The DDM file containing the
remote file to be renamed is specified on the OBJ parameter.

The DDM file containing the new name for the remote file is specified on the NEWOBJ parameter. Both
DDM files must already exist in the same library (on the source server). The two DDM files must refer to
the same target servers and contain the same remote location information. Neither the two local DDM
files nor the RMTFILE names in the two DDM files are changed. Specify *LCL to rename the DDM file
or use the Change DDM File (CHGDDMF) command to change the RMTFILE name in a DDM file.

v When you specify *FILETYPE, this value applies only to OBJTYPE(*FILE). If the file specified in the
OBJ parameter is a DDM file, the rules when specifying *RMT apply. If the file is not a DDM file, the
rules when specifying *LCL apply.

When renaming remote files for iSeries and System/38 targets, if library names have been specified in the
RMTFILE parameter for the two DDM files, the library names must be the same but the file names must
be different.

WRKJOB (Work with Job) Command
The Work with Job (WRKJOB) command can be used to display two DDM-related items:

v The DDMCNV job attribute for the source job. See “DDMCNV Parameter Considerations” on page 98
for a description of the values for this attribute.

v The object lock requests (held locks and pending locks) for DDM files that are being used in the source
server job. These are shown by choosing option 12 (Work with locks, if active) from the Work with Job
menu.

The Job Locks display shows only the locks held for the local DDM files; locks for remote files are not
shown. Also, because DDM files do not have members, none are indicated on this display nor on the
Member Lock display.

An iSeries server does not display any locks for remote files; locks for the remote file, its members, or its
records cannot be displayed by the source server. However, these remote locks can be displayed using
pass-through.

The lock condition shown for DDM files is always shared read (*SHRRD) regardless of the lock conditions
used for their associated remote files or members.

WRKOBJLCK (Work with Object Lock) Command
The Work with Object Lock (WRKOBJLCK) command can be used to display the object lock requests
(held locks and pending locks) for DDM files. This command displays only the locks held for the local DDM
files, not locks held for the associated remote files.

An iSeries server does not display any locks for remote files; locks for the remote file, its members, or its
records cannot be displayed by the source server.

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 97

The lock condition shown for DDM files is always shared read (*SHRRD) regardless of the lock conditions
used for their associated remote files or members.

DDM-Related CL Parameter Considerations
The following parameter considerations apply to DDM-related CL commands:

v The DDMACC parameter controls how an iSeries server, as a target server, handles DDM requests
from other servers.

v The DDMCNV parameter controls, in a source server job, whether unused DDM conversations are to
be kept active or automatically dropped.

v For commands that cannot specify a DDM file name, see “Commands Not Supporting DDM” on
page 103.

Note: The Create DDM File (CRTDDMF) command can be used to create a DDM file. The other create
file commands (such as CRTPF or CRTxxxF) cannot be used to create a DDM file.

v The OUTFILE parameter can specify a DDM file only if the remote server is an iSeries server or a
System/38 and only if the file already exists on the remote iSeries server or System/38.

DDMACC Parameter Considerations
The DDMACC parameter is used on the Change Network Attributes (CHGNETA), Display Network
Attributes (DSPNETA), and Retrieve Network Attributes (RTVNETA) commands. The value of this
server-level parameter determines whether this iSeries server can accept DDM requests from other
servers. The values for this parameter are discussed as part of target server security under “DDM Network
Attribute (DDMACC Parameter)” on page 51.

DDMCNV Parameter Considerations
The DDMCNV parameter is a job-related parameter that controls whether advanced program-to-program
communications (APPC) or iSeries conversations in the job that are allocated for DDM use (that is, DDM
conversations) are to be automatically dropped or kept active for the source job. The default is to keep the
conversation active.

This parameter can drop a conversation when it has no active users. The conversation is unused when:

1. All the DDM files and remote files used in the conversation are closed and unlocked (deallocated).

2. No other DDM-related functions (like the Submit Remote Command [SBMRMTCMD] command or the
Display File Description [DSPFD] command to access the target server) are being done.

3. No DDM-related function has been interrupted (by a break program, for example) while running.

For other ways that conversations are normally dropped, or are explicitly dropped by another CL
command, see “Controlling DDM Conversations” on page 118.

The DDMCNV parameter values are:

*KEEP
Specifies that once each DDM conversation is started for the source job it is kept active at the
completion of a source program request, and it waits for another request to be received from the
same or another program running in the job. This is the default value.

*DROP
Specifies that each DDM conversation started in the source job is to be automatically dropped
when both of the following are true: no request from the source server program(s) running in the
job is being processed in the conversation, and all the DDM files are closed and all objects that
were allocated are now deallocated.

98 OS/400 Distributed Data Management

The DDMCNV parameter is changed by the Change Job (CHGJOB) command and is displayed by the
Work with Job (WRKJOB) command. Also, if the Retrieve Job Attributes (RTVJOBA) command is used,
you can get the value of this parameter and use it within a CL program.

OUTFILE Parameter Considerations for DDM
The OUTFILE parameter is used on such commands as the Display File Description (DSPFD), the Display
File Field Description (DSPFFD), the Display Object Description (DSPOBJD), and the Create Auto Report
Program (CRTRPTPGM). The parameter identifies a database file into which output data created by the
command is stored. When the name of a DDM file is specified on the OUTFILE parameter of these
commands, two restrictions apply:

v The remote server must be an iSeries server or a System/38. This is necessary to ensure that the
associated remote file has the proper format for the output data.

v The remote file associated with the DDM file must already exist. If the remote file does not exist, a
message is returned to the user indicating that the remote file must exist before the function can be
performed.

If the remote file named on the OUTFILE parameter does exist and is on an iSeries server or a
System/38, the file will be checked for three conditions before it can be used as an output database file to
store displayed output:

v The remote file must be a physical file.

v The remote file must not be a model outfile. That is, it cannot be one of the model output files provided
with OS/400 which has the required format, but no data.

v The record format name in the remote file must match the model outfile record format name. (This
condition requires that the remote system be an iSeries server or a System/38.)

If all of these conditions are met, the remote file member is cleared. (Outfile members must be cleared
before they can be used again.) If the remote file member does not exist, it is created and the output is
stored in it.

DDM-Related CL Command Lists
The control language (CL) commands that have a specific relationship with DDM are grouped in charts in
this section to show: the command functions that are available with DDM, those having common limitations
when used with DDM, and those that cannot be used with DDM.

Notes:

1. Not all of the CL commands on an iSeries server are shown in this section. Only those that are
intended (or recommended) by IBM for use with DDM or those specifically not intended for DDM use
are shown. The intended use could be either for commands that are run on the source server to affect
a remote file on the target server, or for commands that are submitted to the target server via the
Submit Remote Command (SBMRMTCMD) command to run there.

2. Some of these commands appear in more than one of the following charts.

3. For a list of all the CL commands that are likely to be used with DDM, see Appendix B, “DDM-Related
CL Command Summary Charts”.

The charts in this section show:

v Commands affecting only the DDM file:

Object-oriented commands that can be used with DDM files, but do not affect the associated remote
files. The Create DDM File (CRTDDMF), Change DDM File (CHGDDMF), and Reclaim DDM
Conversations (RCLDDMCNV) commands are included in this group. See “Object-Oriented Commands
with DDM” on page 100 for more information.

v Commands affecting both the DDM file and the remote file:

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 99

|
|
|
|

– File management commands that require that the target server be another iSeries server or a
System/38. The SBMRMTCMD command is included in this group. See “Target iSeries-Required File
Management Commands” on page 101 for more information.

– Member-related commands that can be used in some way on remote files. See “Member-Related
Commands with DDM” on page 102 for more information.

– Source file commands that can operate on source files while DDM is being used. See “Source File
Commands” on page 103 for more information.

These commands, normally used for processing local files, can (transparently to the programs) process
remote files when one of their parameters specifies the name of a DDM file.

v Commands that cannot be used with DDM. See “Commands Not Supporting DDM” on page 103 for
more information.

Many of these commands, when limited as shown in the charts, can still be submitted by the
SBMRMTCMD command to a target server (an iSeries server or a System/38 only) to run, but it may not
be useful to do so. Refer to Appendix B, “DDM-Related CL Command Summary Charts” for additional
information about these DDM-related commands. Shown, for example, are all the CL commands that can
produce meaningful results on the target server when they are submitted on the SBMRMTCMD command.

Object-Oriented Commands with DDM
The DDM file object on the source iSeries server can be accessed by the following object-oriented CL
commands. These commands work with DDM files as they normally do with any other files on the local
server. Some of these commands can operate on more than one object, and one or more of them could
be DDM files if, for example, a generic file name is specified.

Except as noted in the chart, these commands have no effect on the remote file associated with the DDM
file; that is, no reference is made over a communications line to the target server when one of these
commands specifies a DDM file.

However, if you do want one of these commands to operate on a remote file (instead of the DDM file), you
can use the Submit Remote Command (SBMRMTCMD) command to submit the command to run on the
target server, if it is an iSeries server or a System/38. The results of running the submitted command, in
this case, are not sent back to the source server, except for some indication to the source server user
(normally a message) about whether or not the function was performed successfully.

Command Name Descriptive Name

CHGDDMF Change DDM File
CHGLF1,2,3,4 Change Logical File
CHGOBJOWN Change Object Owner
CHGPF1,2,3,4 Change Physical File
CHGSRCPF1,2,3,4 Change Source Physical File
CHKOBJ Check Object
CRTDDMF Create DDM File
CRTDUPOBJ Create Duplicate Object
CRTLF1,2,3 Create Logical File
CRTPF1,2,3 Create Physical File
CRTSRCPF1,2,3 Create Source Physical File
CRTS36CBL6 Create S/36 COBOL Program
CRTS36DSPF7 Create S/36 Display File
CRTS36MNU7 Create S/36 Menu
CRTS36MSGF7 Create S/36 Message File
CRTS36RPG6 Create S/36 RPG II Program
CRTS36RPGR7 Create Console Display File
CRTS36RPT6 Create S/36 RPG II Auto Report

100 OS/400 Distributed Data Management

|
|
|

|
|

|
|

Command Name Descriptive Name

DLTF1,2,3 Delete File
DMPOBJ Dump Object
DMPSYSOBJ Dump System Object
DSPFD1,2,3 Display File Description
DSPFFD1,2,3 Display File Field Description
DSPOBJAUT Display Object Authority
DSPOBJD Display Object Description
GRTOBJAUT Grant Object Authority
MOVOBJ Move Object
RCLDDMCNV Reclaim DDM Conversations
RNMOBJ1,2,3 Rename Object
RSTLIB Restore Library
RSTOBJ Restore Object
RVKOBJAUT Revoke Object Authority
SAVCHGOBJ Save Changed Object
SAVLIB Save Library
SAVOBJ Save Object
WRKJOB5 Work with Job
WRKOBJLCK5 Work with Object Lock

Notes:
1 When run on the source system, this command does not refer to the remote file when SYSTEM(*LCL) is

used.

2 The remote operation is performed if SYSTEM(*RMT) is specified, or if SYSTEM(*FILETYPE) is specified
and the file is a DDM file.

3 Because DDM file names can be specified on these commands, the SBMRMTCMD command is not needed
to perform these functions on a target iSeries server or a target System/38.

4 The target must be an iSeries server at release 3.0 and above or support Level 2.0 of DDM architecture.

5 When run on the source server, this command displays any locks on the DDM file, not on the remote file.

6 This System/36 environment command is supported by DDM. For more information on commands when
working in the System/36 environment, see the CL topic in the iSeries Information Center.

7 This System/36 environment command is not supported by DDM. For more information on commands when
working in the System/36 environment, see the CL topic in the iSeries Information Center.

Target iSeries-Required File Management Commands
The following CL commands can be used only when the target server is another iSeries server or
System/38:

Command Name Descriptive Name

ADDLFM1 Add Logical File Member

ADDPFM Add Physical File Member

CHGLFM Change Logical File Member

CHGPFM Change Physical File Member

CPYSRCF Copy Source File

INZPFM Initialize Physical File Member

OPNQRYF Open Query File

RGZPFM Reorganize Physical File Member

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 101

../rbam6/rbam6clmain.htm
../rbam6/rbam6clmain.htm

Command Name Descriptive Name

RMVM Remove Member

RNMM Rename Member

Note:
1 The target server must be an iSeries server.

Because DDM file names can be specified on these commands, the Submit Remote Command
(SBMRMTCMD) command is not needed to perform these functions on a target iSeries server or a target
System/38.

Member-Related Commands with DDM
Database file operations that apply to a member can be used by DDM. When the name of a DDM file is
specified on any of the following CL commands, OS/400 DDM accesses the remote file (and member)
referred to by the DDM file. However, as indicated in the chart, some of these commands are valid only
when the remote file is on an iSeries server or a System/38.

Command Name Descriptive Name

ADDPFM1 Add Physical File Member

ADDLFM6 Add Logical File Member

ALCOBJ Allocate Object

CHGLFM1 Change Logical File Member

CHGPFM1 Change Physical File Member

CLOF Close File

CLRPFM Clear Physical File Member

CPYF2 Copy File

CPYFRMDKT Copy From Diskette

CPYFRMTAP Copy From Tape

CPYSPLF Copy Spooled File

CPYSRCF1 Copy Source File

CPYTODKT Copy To Diskette

CPYTOTAP Copy To Tape

DCLF Declare File

DLCOBJ Deallocate Object

DSPFD3 Display File Description

DSPFFD3 Display File Field Description

DSPPFM Display Physical File Member

INZPFM1 Initialize Physical File Member

OPNDBF4 Open Database File

OPNQRYF1 Open Query File

OVRDBF5 Override Database File

POSDBF Position Database File

RCVF Receive File

RCVNETF Receive Network File

102 OS/400 Distributed Data Management

Command Name Descriptive Name

RGZPFM1 Reorganize Physical File Member

RMVM1 Remove Member

RNMM1 Rename Member

SNDNETF Send Network File

Notes:
1 The target system must be an iSeries server or a System/38.

2 For other DDM-related considerations about this command, see “Copy Commands with DDM” on page 87.

3 These commands display remote file information if the SYSTEM parameter specifies *RMT or *ALL.

4 For information on commitment control, see “Commitment Control Support for DDM” on page 26.

5 This command does not access the remote file.

6 The target server must be an iSeries server.

The Submit Remote Command (SBMRMTCMD) command can also be used to submit some of the
commands to a target server.

The Send Network File (SNDNETF) and Receive Network File (RCVNETF) commands, whenever
possible, should run on the server on which the data exists, rather than using a DDM file to access the
remote file. For more information, see “Using Object Distribution” on page 120.

Commands Not Supporting DDM
The following CL commands are not supported for DDM files. However, useful results for some of them
may be produced on a target iSeries server or a System/38 using DDM if they are submitted on the
Submit Remote Command (SBMRMTCMD) command to run on the target server.

Command Name Descriptive Name

DSNFMT Design Format

DSPCHT Display Chart

DSPDBR Display Database Relations

DSPRCDLCK Display Record Locks

MNGDEVTBL Manage Device Table

MNGPGMTBL Manage Program Table

MNGUSRTBL Manage User Table

RTVQRYSRC Retrieve Query Source

SBMFNCJOB Submit Finance Job

Source File Commands
If the target server is an iSeries server or a System/38, the following CL commands can support a DDM
file as a source file (on the SRCFILE parameter). If the target server is not an iSeries server or a
System/38, a DDM file name should not be specified on the SRCFILE parameter, because the remote file
is neither an iSeries server nor a System/38 source file.

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 103

These commands can also be affected by file overrides (via the Override with Database File [OVRDBF]
command).

Note: These commands cannot run on the source server to create a file on any target server; they can,
however, be submitted to run on the target server using the Submit Remote Command
(SBMRMTCMD) command.

Command Name Descriptive Name

CRTBASPGM Create BASIC Program

CRTBSCF1 Create BSC File

CRTCBLPGM Create COBOL Program

CRTCLPGM Create CL Program

CRTCMD Create Command

CRTCMNF1 Create Communications File

CRTCPGM Create C Program

CRTDSPF Create Display File

CRTICFF Create Intersystem Communications Function File1

CRTMXDF2 Create Mixed File

CRTPLIPGM Create PL/I Program

CRTPRTF Create Printer File

CRTPRTIMG2 Create Print Image

CRTRPGPGM Create RPG Program

CRTRPTPGM Create Auto Report Program

CRTTBL Create Table

FMTDTA Format Data

STRBAS Start BASIC

STRBASPRC Start BASIC Procedure

Notes:
1 CRTICFF is valid on an iSeries server. CRTCMNF, CRTBSCF, and CRTMXDF commands are valid either

on System/38 or System/38 environment on an iSeries server.

2 If used with the SBMRMTCMD command, the target must be a System/38.

Data Description Specifications (DDS) Considerations for DDM
DDS, which is used to externally describe the fields and record formats, can also be used with DDM to
describe the file and record formats of a remote file.

The following topics further explain the DDS considerations for DDM:

v “iSeries Target Considerations for DDM” on page 105

v “Non-iSeries Target Considerations for DDM” on page 105

v “DDM-Related DDS Keywords and Information” on page 105

104 OS/400 Distributed Data Management

|

|

|

|

iSeries Target Considerations for DDM
As with any database file, DDS may or may not be used to externally describe the attributes of the remote
file when it is created on the remote iSeries server. If DDS is used, then the source server program uses
those attributes when it accesses the remote file (via the DDM file). If DDS is not used, then the file’s
attributes must be described in the program.

When a source server program that accesses a file on a target iSeries server is compiled (or recompiled),
the existing DDM file is used to establish communications with the target server, and the remote file is
actually accessed during compilation to extract its file and record attributes. Whether or not DDS is used to
describe the file, level check identifiers are created during compilation and are included in the compiled
program. These values are then used when the program is run and LVLCHK(*RMTFILE) is in effect for the
DDM file.

Whether or not DDS is used to describe a remote iSeries file, a source server program can still have its
own field and record format definitions provided in the program, or the program can substitute the
definitions of another source server file that is created using DDS. Either can be done if LVLCHK(*NO) is
in effect in the DDM file or specified in an Override with Database File (OVRDBF) command used at
program run time. LVLCHK(*NO) need only be used when the record format used on the source server is
different than that of the remote iSeries file.

Non-iSeries Target Considerations for DDM
DDS can be used with a non-iSeries file only if the local iSeries program is compiled using a local iSeries
file that has the same record format name as the DDM file being used. After the program is compiled, the
local file can be overridden by a DDM file that accesses the remote file. LVLCHK(*NO) must be specified
in the DDM file or in an OVRDBF command.

If no DDS exists on the local server to describe the remote file, the program must describe the fields. The
Display File Field Description (DSPFFD) command can be used to display the field attributes of the remote
file. LVLCHK(*NO) should be specified in the DDM file or in an OVRDBF command.

If LVLCHK(*RMTFILE) is specified or assumed, the program must be compiled (or recompiled) using a
DDM file that accesses the remote file. The iSeries server then creates a record format and fields for the
remote file. The names of the fields that are created are of the type Knnnnn for keyed fields and Fnnnnn
for nonkeyed fields.

DDM-Related DDS Keywords and Information
All the information about DDS keywords that relates specifically to DDM is provided in this section.

v Considerations for creating local files:

– The following DDS keywords cannot specify the name of a DDM file: REFACCPTH, and FORMAT.

– The DDS keywords REF and REFFLD can specify the names of DDM files to refer to remote files;
however, the remote files must be on an iSeries server or a System/38. When a DDM file name is
specified as the database file name in either keyword, it refers to the DDM file on the source server,
and the referred to field name and record format name refer to a field and record format used in the
remote file on the target server.

v Considerations for creating logical files when the remote server is not an iSeries server:

– At least one key field must be specified in the record format for the logical file.

– Only one file can be specified on the PFILE keyword.

– SELECT and OMIT functions are not supported.

– Logical join files are not supported.

– Field names of remote physical files have the naming convention of F00001, F00002, F00003, and
so forth (Fnnnnn) for nonkeyed fields and K00001, K00002, K00003, and so forth (Knnnnn) for keyed
fields.

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 105

The exception to this naming convention is when the target server is a System/38 and the physical
file was created locally. In this case the field names are the same as the field names specified when
the physical file was created.

– All the fields defined for the logical file must be specified in the same order as defined in the physical
file. This can be done by default.

– The SST keyword can be used to access partial fields of the physical file. The use of two or more
substring fields is required to define the entire physical field. In addition, the partial fields must be in
the same order as defined in the substring field of the physical file.

– The CONCAT keyword can be used to group physical file fields into one logical field. The
concatenation order of the fields must be in the same order as defined in the physical file.

– The fields of the physical file must be specified in the same order as defined in the physical file.

v Considerations for using the VARLEN DDS keyword when creating files on a non-iSeries target server:

– Target server must support variable-length record files

– Only one variable-length field is allowed in the file format and it must be the last field

– The field with the VARLEN keyword must not be a key field

v PFILE and JFILE considerations for creating remote files:

– The record format name specified for the physical file in the DDM file on the JFILE or PFILE
keyword must be the same name as the DDM file that represents the remote physical file.

– When creating a logical file, the file specified on PFILE or JFILE must be a DDM file, and the
location for each physical file in the DDM file on the JFILE or PFILE keyword must be the same as
the location of the DDM file for the logical file. In other words, the physical files and logical file must
be on the same remote server.

If the remote server is a release 1.0 or 1.2 iSeries server, attempting to create a file using the FCFO
keyword will fail.

v When the server is not an iSeries server, these keywords are either ignored or not supported for logical
files:

ABSVAL
ACCPTH
ALIAS
ALL
ALTSEQ
CHECK
CMP
COLHDG
COMP
DIGIT
DYNSLT

EDTCDE
EDTWRD
FCFO
FLTPCN
FORMAT
JDFTVAL
JDUPSEQ
JFILE
JFLD
JOIN
JREF

LIFO
NOALTSEQ
RANGE
REFSHIFT
RENAME
SIGNED
TEXT
TRNTBL
VALUES
ZONE

v When the server is not an iSeries server, these keywords are either ignored or not supported for
physical files:

ABSVAL
ALTSEQ
CHECK
CMP
COLHDG
COMP
DIGIT

EDTCDE
EDTWRD
FCFO
FLTPCN
FORMAT
LIFO
NOALTSEQ

RANGE
RESHIFT
SIGNED
TEXT
VALUES
ZONE

106 OS/400 Distributed Data Management

DDM User Profile Authority
iSeries server users are not allowed to perform functions equivalent to CL commands on remote iSeries
servers using DDM without the proper command authorization. The user profiles associated with the target
jobs must have *OBJOPR authority to the following CL commands to start the equivalent operation on the
remote iSeries server:

Command Name Descriptive Name

ADDLFM Add Logical File Member

ADDPFM Add Physical File Member

ALCOBJ Allocate Object

CHGLF Change Logical File

CHGLFM Change Logical File Member

CHGPF Change Physical File

CHGPFM Change Physical File Member

CRTLF Create Logical File

CRTPF Create Physical File

DLTF Delete File

INZPFM Initialize Physical File Member

RGZPFM Reorganize Physical File Member

RMVM Remove Member

RNMM Rename Member

RNMOBJ Rename Object

Chapter 5. CL Command Descriptions and DDS Considerations for DDM 107

108 OS/400 Distributed Data Management

Chapter 6. Operating Considerations for DDM

This chapter provides task-oriented information (with examples) that describes various aspects of DDM
operation considerations.

This chapter tells how the iSeries server functions, both as a source or target server, when it
communicates with another iSeries server to perform remote file processing. It also describes the
significant differences when an iSeries server is communicating with another server that is not an iSeries
server.

Note: Although this chapter contains information about servers other than the iSeries server, it does not
contain all the information that the other server types using DDM may need to communicate with an
iSeries server. For complete information about how DDM is used with a particular remote server,
refer to that server’s documentation.

Described in this chapter are:
v Remote file accessing considerations
v Remote file member accessing considerations
v File access methods used with DDM
v Other remote file functions
v Manage the TCP/IP server
v Cancel DDM work
v Performance considerations
v Problem analysis on the remote server
v System/36 considerations
v Personal computer source considerations

Note: Before reading this chapter, you might want to read (or review) the information under “Additional
OS/400 DDM Concepts” on page 12, particularly the information about DDM conversations and
about source and target jobs.

File Access Considerations for DDM
The following sections describe the types of files supported by an iSeries server, when the DDM file and
remote file must exist, and how to specify the names of remote files. Also included are examples and
considerations for iSeries-to-iSeries and iSeries-to-System/36 file accessing.

See the following topics for more information:

v “Types of Files Supported by OS/400 DDM”

v “Existence of DDM File and Remote File” on page 110

v “Specifying Target Server File Names for DDM” on page 110

v “Examples of Accessing iSeries DDM Remote Files (iSeries-to-iSeries)” on page 112

v “Example of Accessing System/36 DDM Remote Files (iSeries-to-System/36)” on page 113

Types of Files Supported by OS/400 DDM
OS/400 DDM supports all iSeries file types when the target server is another iSeries server. If the target
server is not an iSeries server, the corresponding file types may be known by different names on that
server. The following table shows the iSeries equivalents of non-iSeries files and DDM architecture files:

iSeries Types Non-iSeries and DDM Architecture Types

Non-keyed physical file Sequential (or direct) access file

Keyed physical file Keyed access file

© Copyright IBM Corp. 1999, 2002 109

|
|

|

|

|

|

|

|

iSeries Types Non-iSeries and DDM Architecture Types

Logical file Logical file

The following list describes the considerations that apply to the types of files supported by an iSeries
server.

v iSeries multiple-format logical files are not supported by DDM when the source or target server is
neither an iSeries server nor a System/38.

v For target physical (sequential or direct) files, if a record number is specified that is past the end of the
file, the file is not extended and an error occurs.

v For target nondirect sequential files, the Clear Physical File Member (CLRPFM) command does not
prepare a file member with deleted records.

v DDM files can be used as data files or source files by high-level language (HLL) programs. However,
when a DDM file is used as a source file, the target server must be an iSeries server or a System/38
and the remote file associated with the DDM file must be defined on the target server as a source file.
That is, the remote file must have been created on the target iSeries server or the target System/38 as
FILETYPE(*SRC) by the Create Physical File (CRTPF) command or with FMTOPT(*CVTSRC) specified
on the Copy File (CPYF) command.

For a list of control language (CL) commands that can support DDM files as source files, see “Source
File Commands” on page 103.

Existence of DDM File and Remote File
A file on a target server cannot be accessed for any type of operation (such as open, read, write, or
display) unless a DDM file associated with the remote file already exists on the source server. However,
the remote file does not need to exist at the time that the DDM file is created or changed using the Create
DDM File (CRTDDMF) command or the Change DDM File (CHGDDMF) command, because the remote
file is not referred to until the DDM file is actually opened for access.

Specifying Target Server File Names for DDM
The rules for specifying the name of a DDM file (on the local iSeries server) are the same as for any other
file type on an iSeries server. The rules, however, for specifying the name of a remote file depend on the
type of target server.

A remote file name can be specified only on the RMTFILE parameter of the Create DDM File (CRTDDMF)
and Change DDM File (CHGDDMF) commands. Following are the maximum number of characters that
can be used on the RMTFILE parameter to specify a remote file name:

v For the iSeries server (database management): 33 characters. This maximum can occur when a full
name is specified that includes a library qualifier and a member name. For example:
LIBRARY123/FILE123456(MEMBER1234)

The value DM can be added to the name to specify that this is a data management file. There can be
one or more blanks between the name and DM. This is the default.

v For the iSeries server (folder management services): 76 characters. This maximum can occur when a
fully qualified path name (consisting of 76 characters) is specified. For example:
/Path123/Path223/Path323/Path423/

Path523/Path623/Path723/Path823/Path923/DOC1 FMS

The value FMS specifies that this is a folder management object. There can be one or more blanks
between the name and FMS.

v For System/38: 33 characters. This maximum can occur when a full name is specified that includes a
library qualifier and a member name. For example:
FILE123456.LIBRARY123(MEMBER1234)

110 OS/400 Distributed Data Management

v For System/36 and CICS: 8 characters. For example:
FILE1234

v For other systems: 255 characters is the maximum length allowed by the DDM architecture. The actual
maximum length and syntax are determined by the target server.

Target iSeries File Names for DDM
As with local files, every iSeries remote file, library name, or member must begin with an alphabetic
character (A through Z, $, #, or @) and can be followed by no more than 9 alphanumeric characters, A
through Z, 0 through 9, $, #, @, _, or period (.). No name can exceed 10 characters. Blanks are not
allowed in iSeries names.

The use of an extended name allows additional graphic characters to be included in quotation marks (”).
The extended name also cannot exceed 10 characters, but quotation marks are included with the name,
thereby limiting the number of graphic characters to 8. Lowercase letters remain lowercase letters.
Examples of extended names are as follows:
”Test.Job”
”()/+=”

When an iSeries server is the target server, the file name can be specified in various forms, as shown in
the following examples.

library-name
Specifies the name of the library that contains the remote file. *LIBL causes the library list of the
job on the target server to be searched for the specified file name. *CURLIB specifies the current
library on the remote server.

remote-file-name
Specifies the name of a database file (physical, logical, or source file) on the target iSeries server.

*NONSTD
Specifies, for an iSeries target, that a member name is being included with the name of the
remote file. The value *NONSTD must precede the full name, and the full name must be enclosed
in apostrophes and be in all uppercase.

Note: If you press F4 (Prompt) when on the Create DDM File or Change DDM File displays, and
specify the *NONSTD value with the remote file name abcde, the server converts abcde to
’ABCDE’ (all uppercase) and the request is processed. However, if there is a slash or
parenthesis in the remote file name, the system puts apostrophes around the name but
does not convert it to uppercase.

Therefore, if you are using the *NONSTD value for the remote file name and the target server
requires uppercase file names, type the remote file name in uppercase characters even when
using F4 (Prompt).

member-name
Specifies the name of the member in the remote file. The member name must be enclosed in
parentheses and immediately follow the file name (with no space). If no member name is
specified, then *FIRST is assumed and the first (or only) member in the file is accessed. This is
the oldest (or only) member in the file.

*LAST is supported only on the Override with Database File (OVRDBF), Clear Physical File Member
(CLRPFM), Initialize Physical File Member (INZPFM), Reorganize Physical File Member (RGZPFM), Open
Database File (OPNDBF), and Open Query File (OPNQRYF) commands. *LAST is the newest (or only)
member in the file.

The following are examples of valid iSeries remote file names:

Chapter 6. Operating Considerations for DDM 111

CUSTMAST
PRODLIB/CUSTMAST
*NONSTD ’CUSTMAST(MBR1)’
*NONSTD ’*LIBL/CUSTMAST(MBR2)’
*NONSTD ’PRODLIB/CUSTMAST(MBR3) DM’
*NONSTD ’PRODLIB/CUSTMAST(*FIRST)’

Target Non-iSeries File Names for DDM
For non-iSeries remote file names, the name must be in the form required by the target server. If special
characters are used in the remote file name, *NONSTD and apostrophes must be used to specify the
name, as shown above for specifying an iSeries member name. If the name string contains no more than
10 characters and no special characters, it can be entered without the *NONSTD value and the
apostrophes.

Using Location-Specific File Names for Commonly Named Files for DDM
When multiple servers are involved in a network, naming DDM files with location-specific file names can
reduce confusion about which target server is being accessed for a file that has a commonly used name.
For example, for an inventory file that may be named INVEN on multiple servers, using location-specific
names such as NYCINVEN, STLINVEN, and DALINVEN for the DDM files on the local server to access
files in New York City, St. Louis, and Dallas helps you to access the correct file.

Using an abbreviation or code that identifies the destination target server as part of the DDM file names
makes it easier to remember where the desired remote file is located.

For non-iSeries remote files that have record formats, using the same name for the DDM file as for the
record format can also be useful.

Examples of Accessing iSeries DDM Remote Files (iSeries-to-iSeries)
The following examples show how access to a DDM file becomes an indirect reference (via DDM) to the
actual file on some other server. These examples are iSeries-to-iSeries examples.

Note: All of these examples assume that the DDM file on the local iSeries server is named
DDMLIB/RMTCAR and that it is associated with a remote file named SALES/CAR on an iSeries
server in Chicago.

v Creating a DDM file to access a remote file:
CRTDDMF FILE(DDMLIB/RMTCAR) RMTFILE(SALES/CAR)

RMTLOCNAME(CHICAGO) TEXT(’Chicago file SALES/CAR’)

This command creates a DDM file named RMTCAR and stores it in the DDMLIB library on the local
server. The remote file to be accessed is the CAR database file in the SALES library on the Chicago
server. (The remote file is not accessed at the time the Create DDM File [CRTDDMF] command is used
to create the DDM file. The existence of the file SALES/CAR is not checked when the DDM file is
created.) Later, when the DDM file is accessed by a local program, the remote location CHICAGO is
used by DDM to access the SALES/CAR file on the Chicago server.

v Copying a local file to a remote file:
CPYF FROMFILE(QGPL/AUTO) TOFILE(DDMLIB/RMTCAR)

This command copies the data from the AUTO file in the QGPL library on the local server into a remote
file named SALES/CAR on the Chicago server, via the DDM file DDMLIB/RMTCAR.

v Allocating a remote file and member for use:
ALCOBJ OBJ((DDMLIB/RMTCAR *FILE *EXCL))

The Allocate Object (ALCOBJ) command is used to allocate (lock) both the DDM file (RMTCAR) on the
source server and the first member of the remote file (as well as the file itself) on the target server. In
effect, the command
ALCOBJ OBJ((SALES/CAR *FILE *EXCL *FIRST))

112 OS/400 Distributed Data Management

is run on the target server.

v Overriding a local file with a DDM file:
OVRDBF FILE(FILEA) TOFILE(DDMLIB/RMTCAR)

POSITION(*RRN 3000)

This command overrides the database file FILEA with the DDM file RMTCAR, stored in the DDMLIB
library. Both files are on the source server. Whatever remote file is identified in the DDM file (in this
case, SALES/CAR on the Chicago system) is the file actually used by the source server program. When
the remote file is opened, the first record to be accessed is record 3000.

v Displaying records in a remote file:
DSPPFM FILE(DDMLIB/RMTCAR)

This command displays the records in the first member of the remote file SALES/CAR, which is
associated with the DDM file DDMLIB/RMTCAR.

v Displaying the object description of a DDM file:
DSPOBJD OBJ(DDMLIB/RMTCAR) OBJTYPE(*FILE)

This command displays, on the local server, the object description of the RMTCAR DDM file. No
reference is made by this command to the associated remote file on the Chicago server.

v Displaying the file description of a DDM file:
DSPFD FILE(DDMLIB/RMTCAR) TYPE(*ATR) FILEATR(*DDM)

SYSTEM(*LCL)

This command displays, on the source server, the file description of the DDM file named RMTCAR in
the DDMLIB library. As indicated by the TYPE parameter, the attributes of the DDM file are displayed.
Only the DDM file’s attributes are displayed because FILEATR(*DDM) is specified.

Because SYSTEM(*LCL) is specified, the attributes of the DDM file are displayed and the remote server
is not accessed. If SYSTEM(*RMT) is specified, the attributes of the associated remote file are
displayed. If *RMT or *ALL is specified, the remote server is accessed to get the attributes of the remote
file.

v Deleting a DDM file:
DLTF FILE(DDMLIB/RMTCAR) SYSTEM(*LCL)

This command deletes the DDM file on the local server. Again, no reference is made to the associated
SALES/CAR file on the Chicago server. If SYSTEM(*RMT) or SYSTEM(*FILETYPE) is specified,
SALES/CAR on the Chicago server would be deleted.

Example of Accessing System/36 DDM Remote Files
(iSeries-to-System/36)
Of the command examples given in the previous topic (showing iSeries-to-iSeries examples), all except
the first example can be coded the same way for accessing a file on a System/36. That is, if the remote
file name SALES/CAR is changed to CAR to meet the System/36 naming conventions, all the commands
(except the first) can be used without change to access a remote System/36 file instead of an iSeries file.

The first example from the previous section is recoded here to access a remote System/36 file. Besides
changing the remote file name, another parameter that should be coded is LVLCHK(*NO).
CRTDDMF FILE(DDMLIB/RMTCAR) RMTFILE(*NONSTD ’CAR’)

RMTLOCNAME(CHICAGO) TEXT(’Chicago file CAR on S/36’)
LVLCHK(*NO)

This command creates a DDM reference file named RMTCAR and stores it in the DDMLIB library on the
local iSeries server. The remote file to be accessed is the CAR file on the System/36 named CHICAGO.

Chapter 6. Operating Considerations for DDM 113

LVLCHK(*NO) is specified to prevent level checking because the level identifiers created for the System/36
file do not match those in the program when it accesses the file.

Member Access Considerations for DDM
Members are supported for database I/O operations only if the target server is an iSeries server or a
System/38. Members are not supported if the target server is neither an iSeries server nor a System/38.

Members can be locked before use, using the Allocate Object (ALCOBJ) command if the target server is
an iSeries server or a System/38.

The DDM file itself does not have members like a database file. However, if a member is identified on the
source server (for example, using the Override with Database File [OVRDBF] command) and the target
server is an iSeries server or a System/38, that member name is used to identify a member in the target
server’s file. When the target server is neither an iSeries server nor a System/38, and if the member name
is specified as *FIRST, or in some cases *LAST, or the file name is the same as the member name, then
the RMTFILE parameter values in the DDM file are sent without change. This allows file access on servers
that do not support members.

If the member name is other than *FIRST or in some cases *LAST, or the file name is different from the
member name (for example, when the file is opened) and the target server does not support members, an
error message is sent to the requesting program and the function is not performed.

For examples of member access considerations, see the following:

v “Examples of Accessing DDM Remote Members (iSeries server Only)”

v “Example of a DDM File That Opens a Specific Member”

Examples of Accessing DDM Remote Members (iSeries server Only)
The following examples show how access to a DDM file becomes an indirect reference (via DDM) to a
member of a file on a remote iSeries server. These examples are iSeries server-to-iSeries server
examples.
CRTDDMF FILE(DDMLIB/RMTCAR) RMTFILE(SALES/CAR)

RMTLOCNAME(CHICAGO)
OVRDBF FILE(FILE1) TOFILE(DDMLIB/RMTCAR) MBR(TEST1)
OVRDBF FILE(FILE2) TOFILE(DDMLIB/RMTCAR)

This example shows the creation of the same DDM file as in the previous examples. Then, OVRDBF
commands are used to override two local files named FILE1 and FILE2 with the local DDM file RMTCAR.
When an application program attempts to open the files, the DDM file DDMLIB/RMTCAR is opened twice
instead. (FILE1 and FILE2 are not opened.)

Once communications are established with the correct target server, the target server’s TDDM opens the
remote file SALES/CAR twice (two recursions) and opens two different (in this case) members in that file:
member TEST1 and member *FIRST (the first member). This example requires only one DDM
conversation and one target job because both open operations use the same DDM file and, therefore, the
same location.
CLRPFM FILE(DDMLIB/RMTCAR) MBR(FRED)

This command clears, via the DDM file named DDMLIB/RMTCAR, member FRED of the file SALES/CAR
on the target server.

Example of a DDM File That Opens a Specific Member
A specific file member can be specified in the RMTFILE parameter, which is used on only the Create DDM
File (CRTDDMF) and Change DDM File (CHGDDMF) commands, by using the *NONSTD value followed
by the file, library, and member name. This allows an application program to process a member other than

114 OS/400 Distributed Data Management

|

|

|

the first member (*FIRST) without using file overrides. However, if the program requires redirection to more
than one member, overrides should be used. Also, programs that already use overrides to specify
members of local files should continue to do so, even if overrides to remote files are also used; otherwise,
programs that worked locally would no longer do so. If the RMTFILE parameter contains a member name
and an override with a different member name is in effect, the file open requests fails.

Note: If you press F4 (Prompt) when on the Create DDM File or Change DDM File displays, and specify
the *NONSTD value with the remote file name abcde, the server converts abcde to ’ABCDE’ (all
uppercase) and the request is processed. However, if there is a slash or parenthesis in the remote
file name, the server puts single quotation marks around the name but does not convert it to
uppercase.

Therefore, if you are using the *NONSTD value for the remote file name and the target server requires
uppercase file names, type the remote file name in uppercase characters even when using F4 (Prompt).
CRTDDMF FILE(DDMLIB/RMTCAR) RMTFILE(*NONSTD

’SALES/CAR(JULY)’) RMTLOCNAME(CHICAGO)

When a program opens the DDM file named RMTCAR on the source server DDMLIB library, the target
iSeries server opens the member JULY in the file SALES/CAR.

Access Method Considerations for DDM
Basically, access methods control what subsets of functions can be performed after a particular remote file
is opened. This may mean that an iSeries program, or group of programs sharing a non-iSeries file,
cannot do all the same operations that are possible using a file that is on the local iSeries server.

For example, assume that an iSeries application program opens a keyed file with SHARE(*YES) and
performs keyed I/O operations. It then calls another program that does relative record number operations
using the same open data path (ODP) (because SHARE was specified). Relative record numbers specify
the relationship between the location of a record and the beginning of a database file, member, or subfile.
If the first program is redirected by an Override with Database File (OVRDBF) command to use a remote
keyed file on a System/36, this scheme no longer works. If a keyed access method is selected, record
number operations fail. If a record number access method is selected, keyed operations fail.

Notice that when both source and target servers are iSeries servers, access methods are not used. A
potential problem exists when the target server is neither an iSeries server nor a System/38. Notice also
that the combined-access access method (*COMBINED) is not supported by System/36, and probably not
by any target other than an iSeries server or System/38.

For more information, see the following topics:

v “Access Intents”

v “Key Field Updates” on page 116

v “Deleted Records” on page 116

v “Blocked Record Processing” on page 116

v “Variable-Length Records” on page 116

Access Intents
When a program opens a file, it must specify how it intends to work with the records in the file: read, add,
update, delete, or a combination of these. Of course, to successfully perform these operations, the job
and/or user running the program must have the corresponding data authorities. The iSeries server does
not check to make sure all data authorities exist when the file is opened, but it does check for each
required data authority when the corresponding I/O operation is done using the file. The System/36 does

Chapter 6. Operating Considerations for DDM 115

|

|

|

|

|

|

check these data authorities at open time; therefore, a program may no longer work using a remote file on
a System/36, even though the requester’s data authorities to the remote file are the same as for a local file
(which will work).

For example, assume that a program is used by two groups of users on an iSeries server to access the
same local iSeries file. Group A has only *READ authority, while group B has *READ, *ADD, and
*UPDATE. The program always opens the file for *READ, *ADD, and *UPDATE. But it has a read only
logic path that is used when a member of group A calls the program. In this way, no authority exceptions
are encountered, even though exceptions would be created if members of group A attempted to add or
update records. Now, if this program is redirected to a remote System/36 file to which members of both
user groups have the same data authorities as they had to the local iSeries file, the program may not work
for members of group A. This is because the System/36 may reject requests to open the file when the
requester does not have data authorities matching those specified in the access intent list accompanying
the open request.

Key Field Updates
An iSeries program is allowed to change any part of a data record including key fields. The exception to
this is a ILE COBOL program because the ILE COBOL language does not allow key field changes. A
System/36 program cannot change primary key fields in a record, regardless of the access method
specified when the file is opened. Logical file key fields can be changed under some circumstances, but
primary key fields can never be changed.

This means that an ILE RPG program, for example, that routinely changes key fields in a local keyed file
may fail when it is redirected to a remote keyed file on a System/36 (or other system with similar
restrictions). Several different errors may be returned by the DDM target, depending on the access method
or access path being used when the key field change is attempted.

Deleted Records
On the iSeries server, a record is marked as deleted by the server. This is done either when an active
record is deleted by an application or when a file is created with deleted records (for example, with the
Initialize Physical File Member [INZPFM] command). A record that is added to a file or changed in a file is
never marked as deleted, unless a subsequent delete operation is performed. On some other servers, like
the System/36, a special data value in the record may be used to indicate deleted status. For example, if a
record contains all hex FFs, it may be considered deleted.

This means that an iSeries application normally used to add or change records in a local file may
encounter errors when attempting these operations with a remote file on a server that is neither an iSeries
server nor a System/38. If the application happens to supply a record that is considered deleted by the
target DDM server, the target may reject the add-or-change request.

Blocked Record Processing
If SEQONLY is used to block records sent to a remote server, the records are not sent until the block is
full. If a source job is canceled before a block is sent, the records in the block are lost. If blocking is used,
the user should make sure a force end of data or close of the file is done before canceling the source job.

Variable-Length Records
If you are using a Version 2 Release 1 Modification 1 iSeries source server, DDM supports variable-length
record files as defined in the DDM architecture. You can use DDM on your iSeries server to open
variable-length record files on target systems that are not iSeries or S/38 servers. (Initially you can open
variable-length record files if you are not opening the file for updating.) For subsequent read operations,
variable-length records are padded with blanks to the maximum record length of the file. Trailing blanks
are removed on write operations.

116 OS/400 Distributed Data Management

If you are using a Version 2 Release 2 iSeries source server in addition to the Version 2 Release 1
Modification 1 support mentioned earlier, iSeries variable-length record access is supported using DDM.
Variable-length records can be used when opening a variable-length record file on target servers that are
not iSeries or System/38 servers. For subsequent read operations against files opened with variable-length
records, variable-length records are padded with blanks to the maximum record length of the file. Also, the
actual record length (maximum record length of file minus the number of padded blanks) is appended to
the end of each record. For write operations, the actual record length is used to determine the length of
the variable-length record to send to the target server. No counting of trailing blanks is necessary to
determine the actual length of record data.

Target DDM iSeries servers at Version 2 Release 2 also support variable-length record files. A
variable-length record file can be created on the iSeries target server as a result of a create file request.

Note: See Appendix D, “DDM Commands and Parameters” for more information on DDM commands and
parameters that are supported by an iSeries target server.

Other DDM-Related Functions Involving Remote Files
Besides accessing remote files for data record I/O operations, other operations related to remote files can
be performed. These are briefly described in the following sections.

For more information, see the following topics:

v “Performing File Management Functions on Remote Servers”

v “Locking Files and Members for DDM”

v “Controlling DDM Conversations” on page 118

v “Displaying DDM Remote File Information” on page 119

v “Displaying DDM Remote File Records” on page 119

v “Coded Character Set Identifier (CCSID) with DDM” on page 120

v “Using Object Distribution” on page 120

v “Using Object Distribution with DDM” on page 120

Performing File Management Functions on Remote Servers
OS/400 DDM supports creating, deleting, or renaming of files on a remote server. The Submit Remote
Command (SBMRMTCMD) command can be used to submit these types of file management commands,
or other CL commands, to the target server so they can run on that server. The Submit Network Job
(SBMNETJOB) command or display station pass-through can also be used, without the need for DDM.

Examples of how the SBMRMTCMD command can be used are provided in the topic “SBMRMTCMD
(Submit Remote Command) Command” on page 73 and in the task examples in Appendix A, “Examples of
Coding DDM-Related Tasks”.

For all the functions that can be performed with the SBMRMTCMD command, refer to the CL command
lists under “Object-Oriented Commands with DDM” on page 100, or refer to the summary chart in
Appendix B, “DDM-Related CL Command Summary Charts”.

Note: The CL commands in “Target iSeries-Required File Management Commands” on page 101,
“Member-Related Commands with DDM” on page 102, and “Source File Commands” on page 103
do not need to be used with the SBMRMTCMD command; they can run directly on the target server
by specifying a DDM file name on the CL command itself.

Locking Files and Members for DDM
Putting object locks on DDM files and their associated remote files requires special consideration.

Chapter 6. Operating Considerations for DDM 117

|

|

|

|

|

|

|

|

|

Allocate Object (ALCOBJ) and Deallocate Object (DLCOBJ) Commands
The ALCOBJ command locks DDM files on the source server and the associated remote files on the target
servers. When the target is an iSeries server or a System/38, resulting locks on the remote files are the
same as if the files were local files. When the target is neither an iSeries server nor a System/38,
equivalent locks are obtained, although the target server may promote the lock to a stronger lock condition
than was specified on the ALCOBJ command.

Note: On servers that are neither iSeries nor System/38 target servers, remote files are locked with the
specified lock condition, and on iSeries and System/38 target servers only, remote members are
locked with a minimum specified lock condition. (iSeries or System/38 remote files are locked with
shared-read locks.)

For more information on these commands, see the topics “ALCOBJ (Allocate Object) Command” on
page 85 and “DLCOBJ (Deallocate Object) Command” on page 94.

Work with Job (WRKJOB) and Work with Object Locks
(WRKOBJLCK) Commands

For both the WRKOBJLCK command and menu option 12 (Work with locks, if active) of the WRKJOB
command, only the locks held for the local DDM files are shown, not locks held for the remote files (or for
their members). If locked, DDM files are always locked as shared read (*SHRRD), regardless of the lock
conditions used for their associated remote files or members.

For more information on these commands, see the topics “WRKJOB (Work with Job) Command” on
page 97 and “WRKOBJLCK (Work with Object Lock) Command” on page 97.

Controlling DDM Conversations
Normally, the DDM conversation(s) associated with a source server job is kept active until:

1. All the DDM files and remote files used in the conversation are closed and unlocked (deallocated).

2. No other DDM-related functions like the use of the Submit Remote Command (SBMRMTCMD)
command or the Display File Description (DSPFD) command (to display remote file information) are
being performed.

3. No DDM-related function has been interrupted (by a break program, for example) while running.

4. The ENDCMTCTL command was issued (if commitment control was used with a DDM file).

5. No distributed relational database architecture-related functions are being performed.

6. The activation group, in which the DDM conversation was started, ends. 1

7. The job or routing step ends.

If 1, 2, and 3 are true and the source job or activation group has not ended, the conversation is
considered to be unused; that is, the conversation is kept active but no requests are being processed.

DDM conversations can be active and unused because the default value of the DDMCNV job attribute is
*KEEP. This is desirable for the usual situation of a source server program accessing a remote file for
multiple I/O operations; these operations are handled one at a time, as shown in Figure 7 on page 15 and
explained in the text following it.

1. A DDM conversation is not dropped when the activation group ends under the following conditions:

v The DDM conversation is scoped to the job level.

v The commitment control of the activation group is scoped to the job level, and a unit of work is outstanding. The conversation
remains until the next job level commit or rollback, or until the job ends.

118 OS/400 Distributed Data Management

If multiple DDM requests are to be made in a job and the DDM files are being continually opened and
closed in the job, *KEEP should be used to keep an unused DDM conversation active. (However, as long
as one DDM file remains open or locked, *KEEP has no effect.)

For source jobs that access remote files but do not access data records in them, it may be desirable,
depending on the frequency of the file accesses, to automatically drop each DDM conversation at the
completion of each file-related source job request. Whether the conversation in the source job is kept
active or automatically dropped during the time a conversation is unused is determined by the DDMCNV
job attribute value (*KEEP or *DROP). See “DDMCNV Parameter Considerations” on page 98 for the
description of these values.

Regardless of the value of the DDMCNV job attribute, conversations are dropped when one of the
following occurs:

v The job ends

v The activation group ends 1

v The job initiates a Reroute Job (RRTJOB) command

Unused conversations within an active job can also be dropped by the Reclaim DDM Conversations
(RCLDDMCNV) or Reclaim Resources (RCLRSC) command. Errors, such as communications line failures,
can also cause conversations to drop.

Displaying DDMCNV Values (WRKJOB Command)
To display the current value (*KEEP or *DROP) of the DDMCNV job attribute for your source job, you can
use menu option 2 (Work with definition attributes) on the Work with Job (WRKJOB) Command display.
You can also find out the value within a CL program by using the Retrieve Job Attributes (RTVJOBA)
command.

Changing DDMCNV Values (CHGJOB Command)
To control whether the server is to automatically reclaim (or drop) DDM conversations in a source job
whenever they become unused, the server default *KEEP can be changed to *DROP by using a Change
Job (CHGJOB) command. If the value is left as *KEEP, the Reclaim DDM Conversations (RCLDDMCNV)
or Reclaim Resources (RCLRSC) command can be used at any time to drop all DDM conversations
(within that job only) that currently do not have any active users.

Reclaiming DDM Resources (RCLRSC and RCLDDMCNV Commands)
When an iSeries user wants to ensure that the resources for all APPC conversations (including DDM
conversations) that are no longer active are returned to the server, the Reclaim Resources (RCLRSC)
command can be used. To reclaim currently unused DDM conversations in a job, use the Reclaim DDM
Conversations (RCLDDMCNV) command. The DDM-related information about these commands is
described in Chapter 5, “CL Command Descriptions and DDS Considerations for DDM”. For complete
non-DDM-related information about these commands, refer to the Control Language (CL) topic in the
iSeries Information Center.

Displaying DDM Remote File Information
The CL commands Display File Description (DSPFD) and Display File Field Description (DSPFFD) can be
used by an iSeries source server user to display the attributes of one or more DDM files on the source
server, or to display the attributes of one or more remote files on a target server. See the topics “DSPFD
(Display File Description) Command” on page 94 and “DSPFFD (Display File Field Description) Command”
on page 95 for how this is done.

Displaying DDM Remote File Records
The Display Physical File Member (DSPPFM) command can be used to display a remote file on a target
server. For performance reasons, however, whenever possible, you should use display station
pass-through to sign on the remote server, and display the file directly. When display station pass-through

Chapter 6. Operating Considerations for DDM 119

../rbam6/rbam6clmain.htm

is used, only the display images are transmitted over the communications line. When DDM is used to
access the remote file, each record is transmitted separately over the line, which requires many more
transmissions.

If pass-through cannot be used (for example, if the remote file is not on an iSeries server, a System/38, or
a System/36, or if pass-through is not configured on your server), direct record positioning rather than
relative positioning should be used whenever possible. For example, if record number 100 is being
displayed and you want to see record number 200 next, that record is accessed faster if you enter 200 in
the control field instead of +100. The results are the same, unless the file contains deleted records.

Coded Character Set Identifier (CCSID) with DDM
Support for the national language of any country requires the proper handling of a set of characters. A
cross-system support for the management of character information is provided with the Character Data
Representation Architecture (CDRA). CDRA defines the coded character set identifier (CCSID) values to
identify the code points used to represent characters, and to convert these codes (character data), as
needed to preserve their meanings.

The following are some considerations when you are using CCSIDs with DDM:

v Data is converted to the process CCSID of the source job if both the source and target servers support
CCSIDs.

v Data is not converted if one server is an iSeries server that supports CCSIDs and the other server is
any other server that does not support CCSIDs.

v A file created on an iSeries target server by any source server that does not support CCSIDs is always
created with CCSID 65535.

v The SBMRMTCMD (Submit Remote Command) command can be used to change the file CCSID on an
iSeries target server by specifying the CHGPF (Change Physical File) command and the CCSID
parameter.

Using Object Distribution
Although DDM file names can be specified on the Send Network File (SNDNETF) and Receive Network
File (RCVNETF) commands, these commands should be run, whenever possible, on the server where the
data actually exists. Therefore, if both servers are iSeries servers and both are part of a SNADS network,
object distribution can be used instead of DDM to transfer the data between them.
v The SNDNETF command should run directly on the server that contains the data being sent. If

necessary, the Submit Remote Command (SBMRMTCMD) or Submit Network Job (SBMNETJOB)
command can be used to submit the SNDNETF command to the server where the data exists.

Note: Another way to use the SNDNETF command without using DDM is to run it on the target server
using display station pass-through.

v The RCVNETF command must be run on the server where the data has been sent. If necessary, a
DDM file may be referred to on the RCVNETF command to place the data on another server. However,
if possible, you should arrange to have the data sent to the server where the data is to be used, to
avoid using a DDM file.

For both sending and receiving operations, the file types of the data files must match and can only be a
save file or a physical database file. If DDM is being used, however, the file being transferred cannot be a
save file.

Using Object Distribution with DDM
You can also use both SNADS (on iSeries servers) and DDM (on iSeries servers and non-iSeries servers)
to transfer files between iSeries servers and servers that are not part of a SNADS network but that do
have DDM installed. (Although a System/36 may have SNADS, it cannot be used for iSeries object
distribution.)

120 OS/400 Distributed Data Management

For example, if an OS/400 DDM file refers to a file on a System/36, the iSeries server can use the
SNDNETF command to send the file to another iSeries server using object distribution. Similarly, if a file
has been sent to an iSeries server, the RCVNETF command can be used to receive the file onto a
System/36 using DDM.

For more information on using object distribution with SNADS, see the SNA Distribution Services book.

Manage the TCP/IP server
This section describes how to manage the DRDA/DDM server jobs that communicate using sockets over
TCP. It describes the subsystem in which the server runs, the objects that affect the server and how to
manage those resources.

The DRDA/DDM TCP/IP server that is shipped with the OS/400 program does not typically require any
changes to your existing system configuration in order to work correctly. It is set up and configured when
you install OS/400. At some time, you may want to change the way the system manages the server jobs
to better meet your needs, solve a problem, improve the system’s performance, or simply look at the jobs
on the system. To make such changes and meet your processing requirements, you need to know which
objects affect which pieces of the system and how to change those objects.

This section describes, at a high level, some of the work management concepts that need to be
understood in order to work with the server jobs and how the concepts and objects relate to the server. In
order to fully understand how to manage your iSeries server, it is recommended that you carefully review
the Work Management topic in the iSeries Information Center before you continue with this section. This
section then shows you how the servers can be managed and how they fit in with the rest of the server.

For more information, see the following topics:

v “DDM Terminology”

v “TCP/IP communication support concepts for DDM” on page 122

v “DDM server jobs” on page 124

v “Configure the DDM server job subsystem” on page 126

v “Identifying server jobs” on page 127

DDM Terminology
The same server is used for both DDM and DRDA TCP/IP access to DB2 UDB for iSeries. For brevity, we
will use the term DDM server rather than DRDA/DDM server in the following discussion. Sometimes,
however, it may be referred to as the TCP/IP server, the DRDA server, or simply the server when the
context makes the use of a qualifier unnecessary.

The DDM server consists of two or more jobs, one of which is what is called the DDM listener (or
daemon), because it listens for connection requests and dispatches work to the other jobs. The other job
or jobs, as initially configured, are prestart jobs which service requests from the DRDA or DDM client after
the initial connection is made. The set of all associated jobs, the listener and the server jobs, are
collectively referred to as the DDM server.

The term client is used interchangeably with DRDA Application Requester (or AR) in the DRDA application
environment. The term client will be used interchangeably with DDM source system in the DDM
(distributed file management) application environment.

The term server is used interchangeably with DRDA Application Server (or AS) in the DRDA application
environment. The term client will be used interchangeably with DDM target system in the DDM (distributed
file management) application environment.

Chapter 6. Operating Considerations for DDM 121

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

../../books/c4154101.pdf
../rzaks/rzaks1.htm

TCP/IP communication support concepts for DDM
There are several concepts that pertain specifically to the TCP/IP communications support used by DRDA
and DDM. These concepts are described here in detail.

Establish a DRDA or DDM connection over TCP/IP
To initiate a DDM server job that uses TCP/IP communications support, the DRDA Application Requester

or DDM source system will connect to the well-known port number, 446 or 447. The DDM server also
listens on port 448, but only for use with secure sockets (SSL) connections, which are not supported by
DB2 UDB for iSeries application requesters or DDM clients. �1�. The DDM listener program must have
been started (by using the STRTCPSVR SERVER(*DDM) command, for example) to listen for and accept
the client’s connection request. The DDM listener, upon accepting this connection request, will issue an
internal request to attach the client’s connection to a DDM server job �2�. This server job may be a
prestarted job or, if the user has removed the QRWTSRVR prestart job entry from the QUSRSYS or
user-defined subsystem (in which case prestart jobs are not used), a batch job that is submitted when the
client connection request is processed. The server job will handle any further communications with the
client.

The initial data exchange that occurs includes a request that identifies the user profile under which the
server job is to run �3�. Once the user profile and password (if it is sent with the user profile id) have been
validated, the server job will swap to this user profile as well as change the job to use the attributes, such
as CCSID, defined for the user profile �4�.

The functions of connecting to the listener program, attaching the client connection to a server job and
exchanging data and validating the user profile and password are comparable to those performed when an
APPC program start request is processed.

DDM listener program
The DDM listener program runs in a batch job. There is a one-to-many relationship between it and the
actual server jobs; there is one listener and potentially many DDM server jobs. The server jobs are
normally prestart jobs. The listener job runs in the QSYSWRK subsystem.

The DDM listener allows client applications to establish TCP/IP connections with an associated server job
by handling and routing inbound connection requests. Once the client has established communications
with the server job, there is no further association between the client and the listener for the duration of
that connection.

Figure 15. DRDA/DDM TCP/IP Server

122 OS/400 Distributed Data Management

|

|
|
|

|

|
|

|
||

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

The DDM listener must be active in order for DRDA Application Requesters and DDM source systems to
establish connections with the DDM TCP/IP server. You can request that the DRDA listener be started
automatically by either using the CHGDDMTCPA AUTOSTART(*YES) CL command or through iSeries
Navigator. In iSeries Navigator, navigate to the DDM settings: Network->Servers->TCP/IP. This will cause
the listener to be started when TCP/IP is started. When starting the DRDA listener, both the QSYSWRK
subsystem and TCP/IP must be active.

Start TCP/IP Server (STRTCPSVR) CL Command
The Start TCP/IP Server (STRTCPSVR) command, with a SERVER parameter value of *DDM or *ALL, is
used to start the listener.

DDM listener restriction: Only one DDM listener can be active at one time. Requests to start the
listener when it is already active will result in an informational message to the command issuer.

Note: The DDM server will not start if the QUSER password has expired. It is recommended that the
password expiration interval be set to *NOMAX for the QUSER profile. With this value the password
will not expire.

Examples: Start TCP/IP Server (STRTCPSVR) CL Command: Example 1: Starting all TCP/IP
servers
STRTCPSVR SERVER(*ALL)

The command starts all of the TCP/IP servers, including the DDM server.

Example 2: Starting just the DDM TCP/IP server
STRTCPSVR *DDM

This command starts only the DDM TCP/IP server.

End TCP/IP Server (ENDTCPSVR) CL Command
The End TCP/IP Server (ENDTCPSVR) command ends the DDM server.

If the DDM listener is ended, and there are associated server jobs that have active connections to client
applications, the server jobs will remain active until communication with the client application is ended.
Subsequent connection requests from the client application will fail, however, until the listener is started
again.

End TCP/IP server restrictions: If the End TCP/IP Server command is used to end the DDM listener
when it is not active, a diagnostic message will be issued. This same diagnostic message will not be sent
if the listener is not active when an ENDTCPSVR SERVER(*ALL) command is issued.

End TCP/IP server examples: Example 1: Ending all TCP/IP servers
ENDTCPSVR *ALL

The command ends all active TCP/IP servers.

Example 2: Ending just the DDM server
ENDTCPSVR SERVER(*DDM)

This command ends the DDM server.

Start DDM listener in iSeries Navigator
The DDM listener can also be administered using iSeries Navigator, which is part of iSeries Access. This
can be done by following this path: Network –>Servers –>TCP/IP directory.

Chapter 6. Operating Considerations for DDM 123

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|

|

|

|

|

|
|

|
|
|
|

|
|
|

|

|

|

|

|

|

|
|
|

DDM server jobs

Subsystem Descriptions and Prestart Job Entries with DDM
A subsystem description defines how, where, and how much work enters a subsystem, and which
resources the subsystem uses to perform the work. The following paragraphs describe how the prestart
job entries in the QUSRWRK subsystem description affect the DDM server.

A prestart job is a batch job that starts running before a program on a remote server initiates
communications with the server. Prestart jobs use prestart job entries in the subsystem description to
determine which program, class, and storage pool to use when the jobs are started. Within a prestart job
entry, you must specify attributes that the subsystem uses to create and manage a pool of prestart jobs.

Prestart jobs provide increased performance when initiating a connection to a server. Prestart job entries
are defined within a subsystem. Prestart jobs become active when that subsystem is started, or they can
be controlled with the Start Prestart Job (STRPJ) and End Prestart Job (ENDPJ) commands.

DDM prestart jobs
System information that pertains to prestart jobs (such as DSPACTPJ) will use the term ’program start
request’ exclusively to indicate requests made to start prestart jobs, even though the information may
pertain to a prestart job that was started as a result of a TCP/IP connection request.

The following list contains the prestart job entry attributes with the initial configured value for the DDM
TCP/IP server. They can be changed with the Change Prestart Job Entry (CHGPJE) command.

v Subsystem Description. The subsystem that contains the prestart job entries is QUSRWRK.

v Program library and name. The program that is called when the prestart job is started is
QSYS/QRWTSRVR.

v User profile. The user profile that the job runs under is QUSER. This is what the job shows as the user
profile. When a request to connect to the server is received from a client, the prestart job function
swaps to the user profile that is received in that request.

v Job name. The name of the job when it is started is QRWTSRVR.

v Job description. The job description used for the prestart job is *USRPRF. Note that the user profile is
QUSER so this will be whatever QUSER’s job description is. However, the attributes of the job are
changed to correspond to the requesting user’s job description after the userid and password (if
present) are verified.

v Start jobs. This indicates whether prestart jobs are to automatically start when the subsystem is started.
These prestart job entries are shipped with a start jobs value of *YES. You can change these to *NO if
the DDM TCP/IP communications support is to be used. Note: If the DDM server jobs are not running
and the DDM listener job is batch immediate DDM server jobs will still be run under the QSYSWRK
subsystem.

v Initial number of jobs. As initially configured, the number of jobs that are started when the subsystem is
started is 1. This value can be adjusted to suit your particular environment and needs.

v Threshold. The minimum number of available prestart jobs for a prestart job entry is set to 1. When this
threshold is reached, additional prestart jobs are automatically started. This is used to maintain a certain
number of jobs in the pool.

v Additional number of jobs. The number of additional prestart jobs that are started when the threshold is
reached is initially configured at 2.

v Maximum number of jobs. The maximum number of prestart jobs that can be active for this entry is
*NOMAX.

v Maximum number of uses. The maximum number of uses of the job is set to 200. This value indicates
that the prestart job will end after 200 requests to start the server have been processed. In certain
situations, you might need to set the MAXUSE parameter to 1 in order for the TCP/IP server to function

124 OS/400 Distributed Data Management

|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|
|
|

|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|
|

properly. When the server runs certain ILE stored procedures, pointers to destroyed objects might
remain in the prestart job environment; subsequent uses of the prestart job would cause MCH3402
exceptions.

v Wait for job. The *YES setting causes a client connection request to wait for an available server job if
the maximum number of jobs is reached.

v Pool identifier. The subsystem pool identifier in which this prestart job runs is set to 1.

v Class. The name and library of the class the prestart jobs will run under is set to QSYS/QSYSCLS20.

When the start jobs value for the prestart job entry has been set to *YES, and the remaining values are as
provided with their initial settings, the following happens for each prestart job entry:

v When the subsystem is started, one prestart job is started.

v When the first client connection request is processed for the TCP/IP server, the initial job is used and
the threshold is exceeded.

v Additional jobs are started for the server based on the number defined in the prestart job entry.

v The number of available jobs will not reach below 1.

v The subsystem periodically checks the number of prestart jobs in a pool that are unused and ends
excess jobs. It always leaves at least the number of prestart jobs specified in the initial jobs parameter.

Monitoring Prestart Jobs: Prestart jobs can be monitored by using the Display Active Prestart Jobs
(DSPACTPJ) command.

The DSPACTPJ command provides the following information:

v Current number of prestart jobs

v Average number of prestart jobs

v Peak number of prestart jobs

v Current number of prestart jobs in use

v Average number of prestart jobs in use

v Peak number of prestart jobs in use

v Current number of waiting connect requests

v Average number of waiting connect requests

v Peak number of waiting connect requests

v Average wait time

v Number of connect requests accepted

v Number of connect requests rejected

Managing Prestart Jobs: The information presented for an active prestart job can be refreshed by
pressing the F5 key while on the Display Active Prestart Jobs display. Of particular interest is the
information about program start requests. This information can indicate to you whether or not you need to
change the available number of prestart jobs. If you have information indicating that program start requests
are waiting for an available prestart job, you can change prestart jobs using the Change Prestart Job Entry
(CHGPJE) command.

If the program start requests were not being acted on fast enough, you could do any combination of the
following:

v Increase the threshold.

v Increase the Initial number of jobs (INLJOBS) parameter value.

v Increase the Additional number of jobs (ADLJOBS) parameter value.

The key is to ensure that there is an available prestart job for every request that is sent that starts a server
job.

Chapter 6. Operating Considerations for DDM 125

|
|
|

|
|

|

|

|
|

|

|
|

|

|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|

|

|

|

|
|

Removing Prestart Job Entries: If you decide that you do not want the servers to use the prestart job
function, you must do the following:

1. End the prestarted jobs using the End Prestart Job (ENDPJ) command.

Prestarted jobs ended with the ENDPJ command will be started the next time the subsystem is started
if start jobs *YES is specified in the prestart job entry or when the STRHOSTSVR command is issued
for the specified server type. If you only end the prestart job and do not perform the next step, any
requests to start the particular server will fail.

2. Remove the prestart job entries in the subsystem description using the Remove Prestart Job Entry
(RMVPJE) command.

The prestart job entries removed with the RMVPJE command are permanently removed from the
subsystem description. Once the entry is removed, new requests for the server will be successful, but
will incur the performance overhead of job initiation.

Routing Entries: When an OS/400 job is routed to a subsystem, this is done using the routing entries in
the subsystem description. The routing entry for the listener job in the QSYSWRK subsystem is present
after OS/400 is installed. This job is started under the QUSER user profile, and the QSYSNOMAX job
queue is used.

The server jobs run in the QUSRWRK subsystem also. The characteristics of the server jobs are taken
from their prestart job entry which also comes automatically configured with OS/400. If this entry is
removed so that prestart jobs are not used for the servers, then the server jobs are started using the
characteristics of their corresponding listener job.

The following provides the initial configuration in the QSYSWRK subsystem for the listener job.

Subsystem QSYSWRK

Job Queue QSYSNOMAX

User QUSER

Routing Data QRWTLSTN

Job Name QRWTLSTN

Class QSYSCLS20

Configure the DDM server job subsystem
By default, the DDM TCP/IP server jobs run in the QUSRWRK subsystem. Using iSeries Navigator, you
can configure DDM server jobs to run all or certain server jobs in alternate subsystems based on the
client’s IP address. To set up the configuration:

1. Create a prestart job entry for each desired subsystem with the ADDPJE CL command. See “DDM
prestart jobs” on page 124 for more information on prestart job attributes.

2. Start the prestart job entry you created with the STRPJ CL command.

3. In iSeries Navigator, expand Network.

4. Expand Servers.

5. Click TCP/IP.

6. Right-click DDM in the list of serves that are displayed in the right panel and select Properties.

7. On the Subsystems tab, add the specific client and the name of the subsystems.

In the example below, the administrator could connect and run in the QADMIN subsystem, while another
server in the network could connect and run in QUSRWRK. All other clients would be rejected.

126 OS/400 Distributed Data Management

|
|

|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

|

||

||

||

||

||

||

|

|
|
|

|
|

|

|

|

|

|

|

|
|

Identifying server jobs
If you look at the server jobs started on the system, you may find it difficult to relate a server job to a
certain application requester job or to a particular PC client. Being able to identify a particular job is a
prerequisite to investigating problems and gathering performance data. iSeries Navigator provides support
for these tasks that make the job much easier.

This section provides information on how to identify server jobs before starting debug or performance
investigation when you are not using iSeries Navigator.

iSeries Job Names
The job name used on the iSeries consists of three parts:

v The simple job name

v User ID

v Job number (ascending order)

Chapter 6. Operating Considerations for DDM 127

|

|

|

|
|
|
|

|
|

|
|

|

|

|

The DDM server jobs follow the following conventions:

v Job name is QRWTSRVR.

v User ID

– Will always be QUSER, whether prestart jobs are used or not.

– The job log will show which user is currently using the job.

v The job number is created by work management.

Displaying Server Jobs
There are three methods that can be used to aid in identifying server jobs. One method is to use the
WRKACTJOB command. Another method is to use the WRKUSRJOB command. A third method is to
display the history log to determine which job is being used by which client user.

Displaying Active Jobs Using WRKACTJOB: The WRKACTJOB command shows all active jobs. All
server jobs are displayed, as well as the listener job.

The following figures show a sample status using the WRKACTJOB command. Only jobs related to the
server are shown in the figures. You must press F14 to see the available prestart jobs.

The following types of jobs are shown in the figures.

v �1� - Listener job

v �2� - Prestarted server jobs

Work with Active Jobs AS400597
04/25/97 10:25:40

CPU %: 3.1 Elapsed time: 21:38:40 Active jobs: 77

Type options, press Enter.
2=Change 3=Hold 4=End 5=Work with 6=Release 7=Display message
8=Work with spooled files 13=Disconnect ...

Opt Subsystem/Job User Type CPU % Function Status
.

___ QUSRWRK QSYS SBS .0 DEQW
.

___ �1�
QRWTLSTN QUSER BCH .0 SELW

.

.
___ �2�

QRWTSRVR QUSER PJ .0 TIMW
___ QRWTSRVR QUSER PJ .0 TIMW
___ QRWTSRVR QUSER PJ .0 TIMW
___ QRWTSRVR QUSER PJ .0 TIMW
___ QRWTSRVR QUSER PJ .0 TIMW

. More...

The following types of jobs are shown:

PJ The prestarted server jobs.

SBS The subsystem monitor jobs.

BCH The listener job.

Displaying Active User Jobs Using WRKUSRJOB: The command WRKUSRJOB USER(QUSER)
STATUS(*ACTIVE) will display all active server jobs running under QUSER. This includes the DDM listener
and all DDM server jobs. This command may be preferable, in that it will list fewer jobs for you to look
through to find the DDM-related ones.

128 OS/400 Distributed Data Management

|

|

|

|

|

|

|
|
|
|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

||

||

||

|
|
|
|

Display the history log
Each time a client user establishes a successful connection with a server job, that job is swapped to run
under the profile of that client user. To determine which job is associated with a particular client user, you
can display the history log using the DSPLOG command. An example of the information provided is shown
in the following figure.

Display History Log Contents
.
.

DDM job 036995/QUSER/QRWTSRVR servicing user MEL on 08/18/97 at 15:26:43.
.

DDM job 036995/QUSER/QRWTSRVR servicing user REBECCA on 08/18/97 at 15:45:08.
.

DDM job 036995/QUSER/QRWTSRVR servicing user NANCY on 08/18/97 at 15:56:21.
.

DDM job 036995/QUSER/QRWTSRVR servicing user ROD on 08/18/97 at 16:02:59.
.

DDM job 036995/QUSER/QRWTSRVR servicing user SMITH on 08/18/97 at 16:48:13.
.

DDM job 036995/QUSER/QRWTSRVR servicing user DAVID on 08/18/97 at 17:10:27.
.
.
.

Press Enter to continue.

F3=Exit F10=Display all F12=Cancel

Cancel Distributed Data Management work
Whether you are testing an application, handling a user problem, or monitoring a particular device, there
are times when you may want to end work that is being done on a server. When you are using an
interactive job, you normally end the job by signing off the server. There are other ways that you can
cancel or discontinue jobs on the server. They depend on what kind of a job it is and what server it is on.
The ways are:

v End job

v End request

End Job (ENDJOB) command
The End Job (ENDJOB) command ends any job. The job can be active, on a job queue, or already ended.
You can end a job immediately or by specifying a time interval so that end of job processing can occur.

Ending a source job ends the job on both the source and the target. If the application is under commitment
control, all uncommitted changes are rolled back.

End Request (ENDRQS) Command
The End Request (ENDRQS) command cancels a local or source operation (request) that is currently
stopped at a breakpoint. This means the command cancels an AR operation or request. You can cancel a
request by entering ENDRQS on a command line or you can select option 2 from the System Request
menu.

If it cannot be processed immediately because a server function that cannot be interrupted is currently
running, the command waits until interruption is allowed.

When a request is ended, an escape message is sent to the request processing program that is currently
called at the request level being canceled. Request processing programs can monitor for the escape
message so that cleanup processing can be done when a request is canceled. The static storage and

Chapter 6. Operating Considerations for DDM 129

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|
|

|

|

|

|
|

|
|

|

|
|
|
|

|
|

|
|
|

open files are reclaimed for any program that was called by the request processing program. None of the
programs called by the request processing program are notified of the cancel, so they have no opportunity
to stop processing.

Attention: Using the ENDRQS command on a source job may produce unpredictable results and can
cause the loss of the connection to the target.

Performance Considerations for DDM
This section provides information to help you improve performance when using DDM and also provides
some information about when to use something other than DDM to accomplish some functions.

v When a DDM file is specified on the CPYF command, optimal performance is obtained if the following
are all true:

– The from-file is a logical or physical file and the to-file is a physical file.

– FMTOPT is *NONE, *NOCHK, or not specified.

– INCHAR, INCREL, ERRLVL, RCDDMT (*ALL), PRINT(*COPIED), PRINT(*EXCLD), SRCSEQ,
TOKEY, SRCOPT, or FROMKEY parameter is not specified.

– The from-file is not overridden with the POS keyword, other than *NONE or *START.

– The to-file is not overridden with INHWRT(*YES).

v The Open Query File (OPNQRYF) command uses System/38 extensions to the DDM architecture. The
System/38 DDM architecture extensions minimize DDM system processing time. These extensions are
not used when:

– The source server is neither a System/38 nor an iSeries server

– The target server is neither a System/38 nor an iSeries server

v You can greatly reduce the amount of data transferred between servers if you use query functions such
as the iSeries command OPNQRYF OPTIMIZE(*YES). However, for user-written applications, the
amount of data exchanged between the servers is larger than that used to communicate using DDM
with non-iSeries servers. The additional data provides iSeries extended DDM functions and also
reduces source server DDM processing overhead. Using normal read, write, update, add, and delete
operations as examples, consider the following:

– Standard DDM architecture DDM overhead data includes such information as a file identification,
operation code, and simple result information. A user program read-by-key operation uses
approximately 40 characters of DDM information in addition to the length of the key data. Data
returned from the remote server uses approximately 32 characters of DDM information plus the
length of the data file record.

– System/38 DDM architecture extensions cause additional data overhead such as record format
identification and a major portion of the I/O feedback area information. A user program read-by-key
operation uses approximately 60 characters of DDM information in addition to the length of the key
data. Data returned from the remote server uses approximately 80 characters of DDM information
plus the length of the data file record. Normally the additional length in data streams is not
noticeable. However, as line activity increases, line utilization may peak sooner when using these
extended data streams versus standard DDM data streams.

v The target DDM job priority is controlled by the job class specified by the associated subsystem
description routing entry. The following routing entry is normally the one used for all target (program
start request) jobs:
ADDRTGE ... PGM(*RTGDTA) ... CMPVAL(PGMEVOKE 29)

The subsystems QBASE and QCMN, which are shipped with the iSeries server, have this routing entry.

To have target DDM jobs in a subsystem run at a different priority than other APPC target jobs in the
same subsystem, insert the following routing entry with the appropriate sequence number:

130 OS/400 Distributed Data Management

|
|
|

|
|

ADDRTGE SBSD(xxx) SEQNBR(nnn) CMPVAL(QCNTEDDM 37)
PGM(*RTGDTA) CLS(uuu)

The class uuu is used to determine target job priority.

v Using the get and get graphic functions of the OfficeVision word processing function to retrieve large
amounts of data may cause serious performance effects. For more information, see “OfficeVision” on
page 36.

v To display records in a remote file, display station pass-through should be used whenever possible.
Otherwise, direct record positioning should be used with the Display Physical File Member (DSPPFM)
command, as described under “Displaying DDM Remote File Records” on page 119.

v If a DDM user exit security program (described in Chapter 4, “Security Considerations for DDM”) is a CL
program and it creates an OS/400 exception and an inquiry message that requires the target system
operator to respond, both the user exit program and the source server job must wait for the response.
Consider using the default system reply list by specifying INQMSGRPY(*SYSRPYL) for the TDDM job’s
description specified on the Add Communications Entry (ADDCMNE) command for that APPC remote
location information. See “User Exit Program Considerations for DDM” on page 69 for more information.

v The WAIT and WAITFILE parameters, used on commands like Allocate Object (ALCOBJ) or Receive
Message (RCVMSG), have no effect on the source server program. These parameters function the
same as they do when local files are accessed. The wait time values specified on commands run on the
source server do not take effect on the source system; they affect only the target server and only if it is
an iSeries server or a System/38.

Notes:

1. The WAITFILE parameter of the create or change OS/400-Intersystems Communications Function
(ICF) file command determines how long the APPC support will wait for session resources to
become available when doing an acquire operation or a start function. The WAITFILE value is not
used for sessions where the connection to the adjacent server is over a switched connection. An
example is an SDLC switched line, an X.25 SVC line, an Ethernet line, or a token-ring connection.
Using a switched connection, acquire operations and start functions do not time out.

2. Because APPN sessions may cross multiple servers and lines to reach the remote server, the
WAITFILE timer should be adjusted to allow more time in these cases. You should not specify
*IMMED for the WAITFILE parameter if your application is running in a network configured to use
APPN functions. The value you specify for this parameter is dependent on the size and type of the
network.

v As for any LU session type 6.2 data exchange, certain SNA parameters can affect performance. These
parameters include the path information unit size (MAXFRAME), the request/response unit size
(MAXLENRU), SNA pacing (INPACING, OUTPACING), and for X.25, packet size and window size. In
general, the larger the value used, the better the realized performance.

v SNA path information unit size

The path information unit (PIU) is the size of the actual data transmission block between two servers.
The MAXFRAME parameter on the Create Controller Description (APPC) (CRTCTLAPPC) or Create
Controller Description (SNA Host) (CRTCTLHOST) command specifies the path information unit size the
local server attempts to use. During session establishment, both servers determine which size is used,

and it is always the smaller value. See the Communications Management book for additional
considerations on PIU size. Other remote servers may have different PIU size considerations.

v SNA response/request unit size

The response/request unit (RU) size (CRTMODD MAXLENRU) controls the amount of server buffering
before fitting that data into the path information unit that is actually transmitted. In APPC, the transmit
and receive RU lengths are negotiated during session establishment. Again, the negotiation results in
the smallest value being used. See the APPC, APPN, and HPR topic in the iSeries Information Center
for additional considerations on RU size. Other remote servers have different RU size considerations.

v SNA pacing values

Chapter 6. Operating Considerations for DDM 131

../../books/c4154062.pdf
../rzahj/rzahjovr.htm

The pacing value determines how many request/response units (RUs) can be received or sent before a
response is required indicating buffer storage is available for more transmissions. During session
establishment, both servers determine which size is used, and it is always the smaller value.

In cases where both batch and interactive processing occur at the same time on the same
communications line, iSeries job priority may be used to favor interactive processing over batch
processing. In addition, reducing the value of pacing for a batch application and raising it for an
interactive application may be necessary to provide a level of line activity priority for the interactive
application.

On an iSeries server, different pacing values can be specified through the creation of different MODES
(Create Mode Description [CRTMODD] command) to the different applications. See the APPC, APPN,
and HPR topic in the iSeries Information Center for additional considerations on pacing values. Other
remote systems have different SNA pacing value considerations.

v X.25 packet

An X.25 packet smaller than the MAXFRAME value adds data transmission time over a non-X.25 data
link. In general, for X.25, the longer the MAXFRAME and the actual amount of data being transmitted,
the greater this difference is. In the case of DDM, which adds DDM control information to the normal file
record data, the packet size has an additional effect on the difference between local and remote file
processing and between non-X.25 and X.25 data links.

In cases of many deblocked DDM operations, the number of packets required to transmit data may
become so high that packet processing overhead within the X.25 adapter affects performance
significantly. Use the largest X.25 packet window size supported by the network and communicating
products to maximize performance.

When X.25 must be used to access remote files, successive transmission of many small deblocked
records, such as less than 80 character records, may cause the X.25 adapter to expend a
disproportionate amount of time processing X.25 packet characters versus transmission of user data.

See the LAN, Frame-Relay and ATM Support book for additional X.25 considerations. Other
remote servers may have different packet window size considerations.

In general, the overhead in processing X.25 packets results in less throughput than the use of a
conventional line when identical line speeds are used and data transfer is in only one direction. When
data is transferred at the same time in both directions, the advantages of X.25 duplex support is
realized. On the System/38, the overall processing effect is minimal, because the overhead in
processing the packets is done within the Integrated X.25 Adapter.

In general, the processing of remote files via DDM is transparent to an application program or utility
function, such as that provided by the Copy File (CPYF) command. However, additional time is required
when accessing remote files via a communications line. The performance difference between local file and
remote file processing is proportional to the number of accesses to remote files, the data record length,
and the line speed during a unit of performance measurement.

An additional difference between local and remote file processing is that the input or output operation to a
local file may not result in an immediate physical disk operation because the server transfers blocks of
data from the disk and writes blocks of data to the disk. There are times, then, that the user program
accesses data within main storage and the physical I/O occurs at a different time. Therefore, to minimize
the difference between local file and remote file performance, it is essential that knowledge of an
application design and the amount and type of accesses to files be considered when determining which
files are to be accessed remotely using DDM.

The additional time for each remote access is comprised of:
v Additional system processing to convert local server file interfaces to the DDM architecture interfaces
v Amount of data transmitted over the communications line
v Amount of remote system processing of the file operations
v Speed of the communications line

132 OS/400 Distributed Data Management

../rzahj/rzahjovr.htm
../rzahj/rzahjovr.htm
../../books/c4154041.pdf

The communications line time accounts for most of the additional time, though the actual time is
dependent on line speed and the amount of line activity during the DDM function.

As is true in non-DDM cases, local and remote server job priorities have the most significant effect on
performance. On an iSeries server, the PRIORITY and TIME SLICE values of the class being used control
job priority. The SDDM runs under the source job, and the TDDM runs under the class assigned to the
APPC routing entry of the target server’s subsystem. In applications that access multiple files, the best
results are achieved when the most heavily accessed files are on the same server as the program that is
running and the less heavily accessed files are on a remote server. Key considerations regarding the
placement of files and application programs follow:

v The system having primary responsibility for file maintenance needs to be identified. In all cases of
multiple servers applications, the best performance results if only one server is responsible for file
maintenance. If an application program maintains the file through exclusive (nonshared) processing,
best performance can be realized when the application program resides on the system with the file.

In some cases, transmitting the file back to the local server may require:
– An APPC program.
– A program using remote DDM files.
– The Copy File (CPYF) command via DDM.
– Object distribution SNDNETF and RCVNETF operations. In interactive applications, display station

pass-through should be considered when the amount of display data transferred is significantly less
than the amount of database file data that would be sent via DDM.

v In cases where file placement requires movement of application processing to a remote server for best
performance results, use of the Submit Remote Command (SBMRMTCMD) command should be
considered. This works best in a batch processing input stream where each program waits for the
preceding program to complete. The use of the SBMRMTCMD command is valid only when the source
and target servers are iSeries servers or Systems/38s. For example, assume that program A accesses
local files. Program A would run on a local server. Program B accesses remote files. You can use the
SBMRMTCMD command to run program B on the remote server.

v In cases where file maintenance is shared across servers, the best performance can be obtained if the
file is placed on the server with the largest percentage of file update, add, and delete operations.

In certain cases, a pair of source and target APPC programs can provide performance improvements
over DDM. For example, assume 10 records are to be retrieved from the remote server. When DDM is
used and record blocking cannot be used (for example, user program random input operation,
sequential input for change, or use of the OVRDBF SEQONLY[*NO] command), assume 10 data
transmissions are sent and 10 are received, for a total of 20 transmissions. User-written APPC
programs can build additional intelligence into the data stream such that request for the data and receipt
of the data can be done in two data transmissions instead of 20, one request for all records of customer
00010 and one response containing 10 records for customer 00010.

Consider two sample application processing techniques, one Batch file processing and the other
Interactive file processing. For additional information, see the DDM conversation length considerations
topic.

Batch File Processing with DDM
Consider the following when using batch file processing with DDM:

v When an application opens a local file for sequential input only or output add, the server uses blocking
techniques to achieve maximum throughput. To ensure blocking is used for a remote file accessed via
DDM, do not use random record processing operations in the program but specify OVRDBF
SEQONLY(*YES) against the DDM files opened by the program.

v Use of read and read-next operations in the high-level language (HLL) program to access the file
maximizes the effect of the SEQONLY(*YES) specification.

v The use of random processing operations, such as chain operations of ILE RPG or start operations of
ILE COBOL programming language, causes DDM to send deblocked operations across the

Chapter 6. Operating Considerations for DDM 133

communications line even if the application processes the file data sequentially. This results in
significant differences between local and remote file processing.

v When simple physical file transfer is desired (all records transferred and no application processing of
the data), use of DDM via the Copy File (CPYF) command, or a user-written program using DDM with
the Override Database File (OVRDBF) command SEQONLY(*YES number-of-records) specified,
transfers the data more quickly than a user-written APPC program. The Copy File command and the
DDM SEQONLY(*YES) support require less calls and returns between the program and APPC data
management modules than does a standard ILE RPG or ILE COBOL APPC program.

v For ILE RPG or ILE COBOL sequential input-only applications, SEQONLY(*YES) should be specified
with no number of records to achieve best throughput. For ILE RPG or ILE COBOL sequential
output-only applications to keyed files, a large number-of-records value should be used. Refer also to

the Communications Management book for considerations when using the SEQONLY parameter
of the Override Database File OVRDBF command.

v The Send Network File (SNDNETF) command can be considered as an alternative to DDM or
user-written APPC programs when transferring all records within a file to a remote iSeries server. The
SNDNETF command requires SNADS to be configured on the source and target iSeries server. If one
or more intermediate servers are between the source and target iSeries servers, SNADS provides
intermediate node routing of the data when correctly configured.

v Use of the SNDNETF command via SNADS offers the advantages of transmitting one copy of the data
to multiple users on one or more target servers through a multiple node network, and the time
scheduled transmission of that data via the SNADS distribution queue parameter.

However, in addition to requiring SNADS to use the SNDNETF command, the target server user must
also run the Receive Network File (RCVNETF) command to make the file usable on the target server.
Use of DDM would not require this additional target server processing. For further information on Object
Distribution and SNADS, refer to the SNA Distribution Services book or see the topic “Using Object
Distribution” on page 120.

In general, the file transmission times via SNADS (user program DDM sequential file processing, the
DDM Copy File command, and a user-written APPC program between two iSeries servers) are within
10% of each other. However, the use of the SNDNETF and RCVNETF commands to make a copy of
the data usable on the target server does add total processing time over the other methods of file
transfer.

v Because the SNDNETF command can transmit objects within a save file, the amount of data that is
actually sent via this technique may be less than that sent using the other techniques. If the database
file data sent contains a significant number of duplicate character strings, use of the Save Object
(SAVOBJ) command parameter DTACPR(*YES) (data compression) can significantly reduce the amount
of data that is actually sent via a SNADS distribution. However, if there are few duplicate character
strings, there is little change in the amount of data sent.

v The iSeries file transfer subroutines may also be used to transfer an entire file between iSeries servers
and an iSeries server and a System/36. These subroutines may be called from high-level language
programs, and in some cases throughput is achieved similar to that via DDM. See the ICF Programming

book.

Interactive File Processing with DDM
Consider the following when using interactive file processing with DDM:

v The greater the number of random file operations per unit of performance measurement, the greater the
difference between local and remote file processing because each operation has to be sent separately
across the communications line. DDM cannot anticipate the next operation.

Using a simple inquiry application that produces display output, via work station subfile support (as an
example), consider an application that does 2 random record retrievals per Enter key versus one that
does 15 random record retrievals. The operator may barely notice a delay in response time when 2

134 OS/400 Distributed Data Management

../../books/c4154062.pdf
../../books/c4154101.pdf
../../books/c4154420.pdf

records are retrieved. However, there would be a noticeable difference between local and remote
response time when 15 records are retrieved randomly from the remote server.

v Use of display station pass-through should be considered when the amount of data transferred back to
the local (source) server per unit of performance measurement significantly exceeds the amount of data
presented on the display. Test results have shown that the total elapsed time between a single
deblocked DDM get record operation and an equivalent user-written APPC operation is very close, with
APPC being slightly quicker. The DDM operation does require more processing seconds than the direct
APPC interface.

Also, because each DDM operation always requires an operation result response from the remote
server to ensure data integrity, user-designed partner APPC programs can offer an advantage for
update, add, and delete operations by not validating the result of the operation until a later time.

v Be aware that additional time is needed when accessing files on other servers, particularly the time
required for communications over the line. This should be considered when determining whether the file
should be a local or remote file, especially if it is to be used often.

DDM Conversation Length Considerations
Consider the following information regarding the length of conversations when using DDM:

v Within a source job, if it is likely that a DDM conversation will be used by more than one program or
DDM file, *KEEP is the value that should be specified for the DDMCNV job attribute. This saves the
time and resources needed to start a target job (TDDM) each time a DDM file is accessed for the same
location and mode combination within the source job.

v There is significant server and communications line overhead when a target DDM manager is started.
The processing includes the APPC program start request, server type identification, and file open
processing. However, if it is not necessary to keep the conversation active, *DROP should be specified
for DDMCNV. When the local DDM file is closed, the session being used is released for use by other
jobs using DDM or other APPC functions, such as SNADS and display station pass-through, to the
same remote server.

v When the source and target servers are iSeries servers or System/38, the file input and output requests
made by an application program use a form of DDM support that minimizes the amount of time needed
to code and decode each request. This is accomplished by System/38 extensions to the DDM
architecture.

When the source and target servers are neither an iSeries server nor a System/38, then System/38
extensions to the DDM architecture are not used.

DDM Problem Analysis on the Remote Server
Some functions that involve a target server may take a relatively long period of time to complete. In these
situations, the target server may not appear to be functioning when it is actually waiting for a reply. Any
messages created on the target server (such as file full) are sent to the system operator’s message queue
on the target server. (All DDM-related messages are logged in the target server’s job log.) In most cases,
a message similar to the one sent to the target system operator is also sent to the source server (with a
different message number), but only after the target system operator has replied to the message.

If no job log is found on the target server, the Submit Remote Command (SBMRMTCMD) command can
be used to send a Change Job Description (CHGJOBD) command to the target server to change the
message logging level.

Another consideration is when end-of-file delay is being used between two iSeries servers. When this
function is being used, canceling the job on the source server does not cancel the job on the target server.
Or, if the source system job is canceled while the target job is performing some function, the target job is
not canceled.

Chapter 6. Operating Considerations for DDM 135

In some situations, it may be necessary for a user on either the source or target server to call the other
location or use pass-through to determine the status of the job on that end and to reply to any messages
waiting for a response.

For more information, see “Handling connection request failures for TCP/IP”.

Handling connection request failures for TCP/IP
The main causes for failed connection requests at a server configured for TCP/IP use is that the DDM
TCP/IP server is not started, an authorization error occurred, or the machine is not running.

DDM Server Is Not Started or the Port ID Is Not Valid
The error message given if the DDM TCP/IP server is not started is CPE3425:
A remote host refused an attempted connect operation.

You can also get this message if you specify the wrong port on the Add or Change DDM File command.
For a DB2 UDB for iSeries server, not using the secure sockets protocol, the port should always be 446 or
447. It is recommended that the 446 always be used for clear text transmissions, and 447 be used for
IPSec (Internet Protocol Security Protocol Transmissions). To start the DDM server on the remote server,
run the STRTCPSVR *DDM command. You can request that it be started whenever TCP/IP is started by
running the CHGDDMTCPA AUTOSTART(*YES) command.

DDM Connection Authorization Failure
The error messages given for an authorization failure is CPF9190:
Authorization failure on DDM TCP/IP connection attempt.

The cause section of the message gives a reason code and a list of meanings for the possible reason
codes. Reason code 17 means that there was an unsupported security mechanism (SECMEC).

Prior to V4R5, there were two SECMECs implemented by DB2 UDB for iSeries that an iSeries application
requester could use: user ID only and user ID with password. In V4R5, support was added for the
encrypted password security mechanism. However, the encrypted password will be sent only if a password
is available at the time the connection is initiated.

The default required SECMEC for an iSeries server is user ID with password. If the source server sends
only a user ID to a server with the default SECMEC, the above error message with reason code 17 is
given.

Solutions for the unsupported SECMEC failure are:

1. To allow the userId–only SECMEC at the server by running the CHGDDMTCPA PWDRQD (*NO)
command

2. To send at least a clear-text password on the connect request if PWDRQD (*YES) is in effect at the
server

3. To send an encrypted password if PWDRQD (*ENCRYPTED) is in effect at the server.

A password can be sent by using the ADDSVRAUTE command to add the remote user ID and password
in a server authorization entry for the user profile under which the connection attempt is to be made.

An attempt will automatically be made to send the password encrypted in V4R5 and later systems. Note
that pre-V4R5 iSeries servers cannot send encrypted passwords, nor can they decrypt encrypted
passwords of the type sent by V4R5 iSeries servers.

Note that you have to have system value QRETSVRSEC (Retain Server Security Data) set to ’1’ to be
able to store the remote password in the server authorization entry.

136 OS/400 Distributed Data Management

|

|
|

|
|

|

|
|
|
|
|
|

|
|

|

|
|

|
|
|
|

|
|
|

|

|
|

|
|

|

|
|

|
|
|

|
|

Attention: You must enter the RDB name of QDDMSERVER on the ADDSVRAUTE command in upper
case for use with DDM or the name will not be recognized during connect processing, and the information
in the authorization entry will not be used.

DDM Server Not Available
If a remote server is not up and running, or if you specify an incorrect IP address or remote location name
in the DDM File, you will get message CPE3447:
A remote host did not respond within the timeout period.

There is normally a several minute delay before this message occurs. It may appear that something is
hung up or looping during that time.

Not Enough Prestart Jobs at Server
If the number of prestart jobs associated with the TCP/IP server is limited by the QRWTSRVR prestart job
entry of the QUSRWRK or user-defined subsystem, and all prestart jobs are being used for a connection,
an attempt at a new connection will fail with the following messages:

CPE3426
A connection with a remote socket was reset by that socket.

CPD3E34
DDM TCP/IP communications error occurred on recv() — MSG_PEEK.

You can avoid this problem at the server by setting the MAXJOBS parameter of the CHGPJE command
for the QRWTSRVR entry to a higher number or to *NOMAX, and by setting the ADLJOBS parameter to
something other than 0.

System/36 Source and Target Considerations for DDM
Before an iSeries server can access files on a System/36, Level 1.0 of the DDM architecture (Release 5 or
later of System/36 DDM) must be installed on the System/36.

The following sections contain information that applies when an iSeries server is the source or target
server communicating with a System/36. Described are:
v DDM-related differences between iSeries and System/36 files
v System/36 source to iSeries target considerations
v iSeries source to System/36 target considerations
v Override considerations to System/36 for DDM

DDM-Related Differences between iSeries and System/36 Files
Because of differences between the types of files supported by an iSeries server and a System/36, several
items need to be considered when DDM is used between these two servers. Generally, when a System/36
file is created locally (by the BLDFILE utility, for example), the System/36 user specifies such things as the
type of file (S = sequential, D = direct, or I = indexed), whether records or blocks are to be allocated, how
many of them are to be allocated, and how many additional times this amount can be added to the file to
extend it.

Also, you can specify whether the file is to be delete-capable (DFILE) or not (NDFILE). In files specified as
not delete-capable, records can be added or changed in the file, but not deleted.

Once these attributes have been specified, System/36 then creates the file and fills it with the appropriate
hexadecimal characters. If a System/36 user specifies the file as:

v A sequential file, the entire file space is filled with hex 00 characters and the end-of-file (EOF) pointer is
set to the beginning of the initial extent. If you attempt to read an empty sequential file, an EOF
condition is received.

Chapter 6. Operating Considerations for DDM 137

|
|
|

|
|
|

|

|
|

|
|
|
|

|
|

|
|

|
|
|

v A direct file that is delete-capable, the entire file space is filled with hex FF characters (deleted records)
and the EOF pointer is set to the end of the initial extent. If you attempt to read an empty direct file that
is delete-capable, a record-not-found condition is received.

v A direct file that is not delete-capable, the entire file space is filled with hex 40 characters (blank or null
records) and the EOF pointer is set to the end of the initial extent. If you attempt to read an empty
direct file that is not delete-capable, a blank record is returned for every record in the file until the end of
the file is reached.

v An indexed file, it is prepared in the same manner as sequential files.

Typically, once a delete-capable file has been in use, it contains a relatively continuous set of active
records with only a few deleted records, possibly an end of data marker, and then a continuous set of
deleted records to the end of the file (EOF) space. This means that, unless the file is reorganized, a user
can undelete (recover) a deleted record.

Of the three types of System/36 files, System/36 indexed files differ little from iSeries-supported logical
files. If an iSeries source program is to use DDM to access the other types of files on a System/36, the
iSeries application programmer should first consider the items remaining in this chapter that relate to
System/36.

System/36 Source to iSeries Target Considerations for DDM
When System/36 is using DDM to communicate as a source server to access files on an iSeries target
server, the following information applies and should be considered:

v When System/36 creates a direct file on an iSeries server, the iSeries server creates a nonkeyed
physical file with the maximum number of records, and prepares them as deleted records. The DDM
architecture command Clear File (CLRFIL), when issued from a non-iSeries source server, clears and
prepares the file; the CL command Clear Physical File Member (CLRPFM), when issued by a local or
remote iSeries server, does not prepare the file.

v System/36 supports a maximum of three key definitions for logical files and one key definition for keyed
physical files.

v Nondelete-capable direct files cannot be created using DDM on an iSeries server. In addition, the
iSeries server does not support nondelete-capable files for all file organizations.

iSeries Source to System/36 Target Considerations for DDM
When an iSeries server is using DDM to communicate as a source server to access files on a System/36
target server, the following information applies and should be considered:

v Some file operations that are not rejected by a target iSeries server may be rejected by a target
System/36. Examples are:
– A delete record operation is rejected if the System/36 file is not a delete-capable file. To the iSeries

source user, the rejection may appear to occur for unknown reasons.
– Change operation that attempts to change the key in the primary index of a System/36 file is always

rejected.

v In the System/36 environment, when System/36 users try to copy a delete-capable file to a file that is
not delete-capable with the NOREORG parameter, a warning message is issued stating that deleted
records may be copied. The user can choose option 0 (Continue) to continue the process. By selecting
this option, the file is copied and any deleted records in the input file become active records in the
output file. An iSeries server rejects the copy request if the user specifies COMPRESS(*NO).

v If data is copied to a target System/36 file that is a direct file and is not delete capable, default values
for all Copy File (CPYF) command parameters except FROMMBR, TOMBR, and MBROPT must be
specified.

v An iSeries server does not support the overwriting of data on the Delete File (DLTF) command. If an
iSeries user accessing a System/36 wants to overwrite the data, an application program must be written
on the iSeries server, or the user must access the target System/36 and perform the overwrite
operation.

138 OS/400 Distributed Data Management

v Depending on how a System/36 file is originally created, the maximum number of records it can contain
is approximately eight million. This number may be significantly smaller if the file is not extendable or if
sufficient storage space is not available to extend the file to add more records.

v System/36 supports a maximum of three key definitions for logical files and one key definition for keyed
physical files.

v System/36 file support does not allow a file with active logical files to be cleared. When some iSeries
programs (like ILE COBOL programs) open a file for output only, a command to clear the file is issued.
A target System/36 rejects any such command to clear the file if a logical file exists over the file to be
cleared.

v System/36 file support automatically skips deleted records. If an iSeries source user wishes to change
the records in a System/36 base file over which at least one logical file has been built, the file must be
opened in I/O mode, specifying direct organization and random access by record number. Then each
record can be read by record number and changed. If a deleted record is found, a record-not-found
indication is returned, and the record may be written rather than rewritten for that position (PL/I write
operation rather than a change operation).

v System/36 file support also handles file extensions differently, depending on the file type and the
language being used. However, an iSeries user cannot extend any type of System/36 file unless the
access method used to access the file is similar to the method used when the file was created.

If an iSeries user is accessing a System/36 file with an access method similar to the one used to create
the file, the file can be extended during its use in the following manner:

– If the file was created as a sequential file, the iSeries user should, if the iSeries language is:

- ILE COBOL programming language: open the file using the EXTEND option.

- PL/I: open the file using the UPDATE option. Perform a read operation using the POSITION option
of LAST, and then perform the write operations.

(BASIC and ILE RPG programming language both handle any needed file extensions automatically.)

v If the file was created as a direct file, the iSeries user should, if the iSeries language is:
– ILE COBOL programming language: open the file using the I-O option, position the end of file pointer

to the end of the file (using, for example, READ LAST), and perform a write operation.
– PL/I: open the file using the UPDATE option, position the end of file (EOF) pointer to the end of the

file (using, for example, READ LAST), and perform a write operation.

(BASIC and ILE RPG programming language both handle any needed file extensions automatically.)
– If the file was created as an indexed file, the file is extended each time a write operation is

performed for a record having a key that does not already exist in the file.

v The iSeries user can access sequential System/36 files using either sequential or direct (by relative
record number) methods, but significant differences occur when EOF or end of data occurs. If a
System/36 sequential file is being processed using relative record number access and is opened for
either input/output or output only, then, on reaching the end of active records (EOF), you cannot add
new records in the available free space beyond the end of data. You will have to close and reopen the
file to extend it. To extend the file, you can either reopen it as a sequential file or open a logical file that
uses this file as the base file.

v Because the normal access method used for a System/36 file can be changed by iSeries parameters to
values other than *RMTFILE, it is possible that DDM may attempt to access the System/36 file in ways
that the System/36 may not support. Normally, the default value (*RMTFILE) on the ACCMTH
parameter gives the user the needed method of access. The use of access methods not normally
expected (such as direct or sequential access to indexed files, or sequential access to direct files)
requires the use of an ACCMTH parameter explicitly for the access.

The normal access method used for a System/36 file can be changed on the iSeries server: by the
ACCMTH parameter of the DDM file commands Create DDM File (CRTDDMF) and Change DDM File
(CHGDDMF), by the SEQONLY parameter of the Override with Database File (OVRDBF) command, or
by using the OVRDBF command to override one DDM file with another DDM file having a different
ACCMTH value in effect.

Chapter 6. Operating Considerations for DDM 139

v The iSeries user can access a System/36 file using a member name if the member name is *FIRST, or
in some cases *LAST, or if the file name is the same as the member name.

v Target System/36 DDM cannot support creating logical files with duplicate (nonunique) keys, because
the System/36 local data management key sort sends messages to the target server console with
options 1 or 3 when duplicate keys are detected. This forces the target system operator either to
change the file attributes to allow duplicate keys or to cancel the target data manager.

Note: Never cancel the target data manager using a SYSLOG HALT.

Override Considerations to System/36 for DDM
When a file override is issued on the iSeries server to get records in an logical file on a System/36, the
results may be different than expected, because of the difference in how each system deals with keyed
files. An iSeries server uses access paths and logical files, which produce a single view of a file. A
System/36 logical file can be considered a list of keys and relative record numbers.

When an iSeries server accesses a System/36 logical file:

v If you specify a relative record number, you receive the record from the underlying System/36 base file
that corresponds to that record number. Then if you request to read the next record, you receive the
next sequential record from the base file.

v If you specify a key, you receive the record that corresponds to the first occurrence of that key in the
index file. If you request to read the next record, you receive the record that matches the next entry in
the index file.

The following example shows the various results for records being retrieved from a System/36 logical file
by an iSeries program. The example assumes that:

v File S36FILEA is the base file and S36FILEB is the logical file that is built over the base file.

v Both files have DDM files named S36FILEA and S36FILEB that point to corresponding remote files on
the target System/36.

v The key field is numeric and it always contains the record number.

v The records in the base file (S36FILEA) are in ascending sequence by key, and the records in the
logical file (S36FILEB) are in descending sequence with the same key.

v To create the results shown in the following table, the POSITION parameter value is shown to vary, and
no NBRRCDS parameter is specified on either command (which means the total records read is
dependent only on the POSITION parameter value).
OVRDBF FILE(S36FILEA) TOFILE(S36FILEB)

POSITION(*RRN ... or *KEY ...)
CPYF FROMFILE(S36FILEA) TOFILE(ISERIESFILEB)
CRTFILE(*YES) FMTOPT(*NOCHK)

Depending on the values specified on the Override with Database File (OVRDBF) command for the
POSITION parameter, the following are the resulting records that are copied into the file ISERIESFILEB
when it is created on the source iSeries server:

POSITION Parameter (See Note) Resulting Records Retrieved

*RRN 1 299 records, 1 through 299

*KEY 1 1 record, first record only

*RRN 299 1 record, last record only

*KEY 299 299 records, 299 through 1

*RRN 150 150 records, 150 through 299

*KEY 150 150 records, 150 through 1

140 OS/400 Distributed Data Management

POSITION Parameter (See Note) Resulting Records Retrieved

Note: This column assumes only one key field for *KEY values and uses the remote file name as the default value
for the record format name.

Personal Computer Source to iSeries Target Considerations for DDM
iSeries Access uses DDM to allow a personal computer to communicate as a source server to access
objects on an iSeries target. iSeries Access uses Level 3.0 of the DDM architecture stream file access
support to access folder management services (FMS) folders and documents.

The following considerations apply to iSeries Access use of the OS/400 DDM target support for the DDM
architecture, Level 3.0. Other source servers that send Level 2.0 or Level 3.0 DDM architecture requests
for stream files and directories may be able to use this information to help in connecting to an iSeries
server via DDM.

v A FMS must follow the file or directory name to access folder management services (FMS) folders and
documents. There can be one or more blanks between the end of the name and the FMS.

v A leading slash (/) signifies the name is fully qualified. If there is no leading slash, any current directory
in use is added to the front of the name given.

v The total length of a fully qualified document name is 76 characters. This includes any current directory
that may be in use. This does not include the trailing FMS, which is used for typing purposes.

v A / FMS signifies the root folder for a directory name.

v To reduce the number of messages logged to the job log, some errors occurring on the iSeries target
during open, get, put, and close document operations are not logged to the job log. See Table 7 for an
illustration of these return codes.

Table 7. iSeries Return Codes

Description DDM Reply Function

Folder not found DRCNFNRM OPEN

Folder in use DRCIUSRM OPEN

Document in use FILIUSRM OPEN

Document not found FILNFNRM OPEN

Document not found EXSCNDRM DELFIL

Document is read only ACCINTRM OPEN

End of data SUBSTRRM GET

Data stream (DS) in use STRIUSRM GET

Data stream (DS) in use STRIUSRM PUT

Substring not valid SUBSTRRM UNLOCK

Unlocking a region that is not locked EXSCNDRM UNLOCK

File already open for the declare
name

OPNCNFRM OPEN

File not open FILNOPRM GET, PUT, LOCK, UNLOCK

Delete document SHDONL(TRUE)
specified, but shadow does not exist

EXSCNDRM DELFIL

v To provide better performance, the iSeries target handles the closing document in a manner such that
when the document is closing, a command completion reply message (CMDCMPRM) is returned to the
source server before the document is actually closed. If the document is damaged during the closing
time, the user never receives this reply message unless he views the job log. When the user opens the
file again, the updated data may not be there.

Chapter 6. Operating Considerations for DDM 141

v An iSeries server does not support wait on the locking data stream function. The user on the source
system must handle the wait function.

142 OS/400 Distributed Data Management

Appendix A. Examples of Coding DDM-Related Tasks

The examples in this appendix are based on representative application programs that might be used for
processing data both on the local iSeries server and on one or more remote servers. The first example is
a simple inquiry application, and the second example is an order entry application. The third example
accesses multiple files on multiple iSeries servers. The fourth example accesses multiple iSeries servers
and a System/36.

The coding for each of these examples and tasks has one or two parts:

v Coding, shown in pseudo-coded form, not related to DDM but used to build the programming
environment. The examples show you the task steps needed, independent of the language you use for
your applications. You can write or adapt your programs in your language with the necessary coding to
perform these or similar tasks.

v Coding, mostly done in CL, related to communicating with the other servers using DDM in the network.

References are made to other parts of this manual and to other manuals for additional information that is
helpful in understanding or using these examples.

This disclaimer information pertains to code examples.

For more information, see the following topics:

v “Communications Setup for DDM Examples and Tasks”

v “DDM Example 1: Simple Inquiry Application” on page 144

v “DDM Example 2: ORDERENT Application” on page 146

v “DDM Example 3: Accessing Multiple iSeries Files” on page 152

v “DDM Example 4: Accessing a File on System/36” on page 153

Communications Setup for DDM Examples and Tasks
This section describes the network in which DDM is used for the following task examples. The network
contains a central server in Philadelphia (an iSeries server), two remote iSeries servers in Toronto and
New York City, a System/38 in Chicago, and a System/36 in Dallas. The advanced program-to-program
communications (APPC) network for these servers was configured with the values shown in Figure 16 on
page 144.

In this set of task examples, the System/36 has Release 5 of DDM installed and DDM with the compatible
PTF installed. The System/38 has Release 8 of CPF installed with the DDM licensed program and the
compatible program temporary fix (PTF) change applied to the server.

© Copyright IBM Corp. 1999, 2002 143

DDM Example 1: Simple Inquiry Application
This first example shows how multiple locations in a customer’s business may be processing the same
inquiry application on their own servers, using their own primary files. Without DDM, the two locations
shown here (Chicago and Toronto) have their own primary file (CUSTMAST), both with different and
duplicate levels of information.

Figure 16. DDM Network Used in ORDERENT Application Tasks

Figure 17. Two Non-DDM Servers Doing Local Inquiries

144 OS/400 Distributed Data Management

The following program (in pseudo-coded form) is run at each location to access its own primary file named
CUSTMAST.

Open CUSTMAST
LOOP: Prompt for CUSTNO

If function 1, go to END
Get customer record
Display
Go to LOOP

END: Close CUSTMAST
RETURN

Using DDM, the CUSTMAST files are consolidated into one file at a centralized location (Philadelphia, in
these examples), and then the local files in Chicago and Toronto can be deleted. The inquiry program
used at each remote location and at the central location to access that file is identical to the program used
previously.

To perform remote inquiries without changing the program, each of the remote locations need only create
a DDM file and use an override command:
CRTDDMF FILE(INQ) RMTFILE(CUSTMAST) RMTLOCNAME(PHILLY)...
OVRDBF FILE(CUSTMAST) TOFILE(INQ)

The DDM file points to the Philadelphia server as the target server and to the CUSTMAST file as the
remote file. The same values for this command can be used at each remote location if they also have a
remote location named PHILLY. For more information on these parameters, see the Create DDM File
(CRTDDMF) command description in the Control Language (CL) information.

Because CUSTMAST is the file name used in the program, the Override with Database File (OVRDBF)
command must be used to override the nonexistent CUSTMAST file with the DDM file INQ. (If the
CUSTMAST file still exists on the local server, the override is needed to access the central server’s
primary file; without it, the local file is accessed.)

Figure 18 on page 146 shows the same two servers accessing the centralized CUSTMAST file via their
DDM files, each named INQ.

An alternative to this approach is to leave the CUSTMAST files on the Chicago and Toronto servers and
use them for nonessential inquiries, such as name and address, and use the central CUSTMAST file in
Philadelphia for any changes. The CUSTMAST files on the Chicago and Toronto servers could be changed
periodically to the current level of the primary file on the Philadelphia server.

This alternative method will be used in the next example.

Appendix A. Examples of Coding DDM-Related Tasks 145

../rbam6/rbam6clmain.htm

DDM Example 2: ORDERENT Application
This second example shows how multiple locations in a customer’s business can process the same order
entry application using DDM. The first task in this example shows how to use DDM to put copies of the
same application program on remote servers with one primary file at a central location. The second task in
this example shows how to use DDM to copy a file to a remote server.

See the following topics for more information:

v “DDM Example 2: Central Server ORDERENT Files” on page 147

v “DDM Example 2: Description of ORDERENT Program” on page 148

v “DDM Example 2: Remote Servers ORDERENT Files” on page 149

v “DDM Example 2: Transferring a Program to a Target Server” on page 150

Figure 18. Two DDM Servers Doing Remote Inquiries

146 OS/400 Distributed Data Management

v “DDM Example 2: Copying a File” on page 152

DDM Example 2: Central Server ORDERENT Files
At the central site of Philadelphia, the four files in Figure 19 are being used by the ORDERENT application
program:

At the central server, the CUSTMAST file is a physical file that is the primary file of customer data for all
locations. The CUSTMST2 file is a logical file that is based on the CUSTMAST physical file. Using a
logical file at the central server provides at least two advantages:

v The same program, ORDERENT, can be used without change by the central server and by each of the
remote servers.

v The data can be accessed through a separate file and cannot keep a customer’s primary record locked
for the duration of the order.

The four files at the central site are used as follows:

v The CUSTMAST file contains all the data about all its customers. After a customer order is completed,
the CUSTMAST file is changed with all the new information provided by that order.

v The CUSTMST2 file, which is a logical file at the central server, is used at the beginning of a customer
order. When an operator enters a customer number, the program reads the customer data from the
CUSTMST2 logical file, but the data actually comes from the primary file, CUSTMAST.

v The INVEN file contains the current quantities of all items available for sale to customers. When the
operator enters an item number and quantity ordered, the corresponding primary item in the INVEN file
is changed.

v The DETAIL file is a list of all the individual items ordered; it contains a record for each item and
quantity ordered by customers.

Figure 19. Files Used by Central Server ORDERENT Program

Appendix A. Examples of Coding DDM-Related Tasks 147

DDM Example 2: Description of ORDERENT Program
Initially, the ORDERENT program exists only in library PGMLIB on the central server (in Philadelphia). This
program does the following:

v When an order entry operator enters a customer number, ORDERENT reads the customer number,
then reads the first member of file CUSTMST2 in the PGMLIB library to find the customer name,
address, and other information. The retrieved information is displayed to the operator, and the program
asks for an item number and quantity desired.

v When the operator enters an item number and quantity desired and presses the Enter key, the program
changes the corresponding primary item in the first member of the INVEN file, and it adds a record to
the DETAIL file for each item and quantity entered. The program continues asking for another item
number and quantity until the operator ends the program.

v When the operator ends the program, the file CUSTMAST is changed with the information for the entire
order. (See the pseudo-code of ORDERENT for details.)

For the following examples, it is assumed that all users on the remote servers who need to access
CUSTMAST in Philadelphia already have authority to do so, and that those who do not need authority do
not have it. In these examples, the iSeries server in Chicago does not have a compiler.

If we want this program to be used at all the remote locations that also stock a physical inventory, the
program needs to be sent to each of the remote servers. We can assume that each of the remote servers
has its own inventory and primary files INVEN, DETAIL, and CUSTMST2 (which is a copy of CUSTMAST).
How the program can be sent to a remote server is described in “DDM Example 2: Transferring a Program
to a Target Server” on page 150.

148 OS/400 Distributed Data Management

DDM Example 2: Remote Servers ORDERENT Files
The ORDERENT program remains the same at all locations, but the CUSTMST2 file is now a copy of the
central server’s customer primary file CUSTMAST. By using CUSTMST2 whenever possible for data that
does not change often, we can minimize the amount of communications time needed to process each
order entry request. The remote ORDERENT program reads the local CUSTMST2 file at the beginning of
each order, and then, using DDM, updates the CUSTMAST file on the central server only when an order
has been completed.

The other two files, INVEN and DETAIL, have the same functions on each remote server as on the central
server.

Pseudo-Code for ORDERENT Program
•
•
•

DECLARE CUSTMAST CHANGE
* Declare file CUSTMAST and allow changing.

DECLARE CUSTMST2 READ
* Declare file CUSTMST2 as read only.

DECLARE INVEN CHANGE
* Declare inventory file INVEN and allow changing.

DECLARE DETAIL OUTPUT
* Declare file DETAIL as output only.

•
•
•

Open CUSTMAST, CUSTMST2, INVEN, and DETAIL files
* Begin program.

Show order entry display asking for CUSTNO.
* Order entry operator enters CUSTNO.

If function key, go to End.
Read CUSTNO from display.

For CUSTNO, return NAME, ADDR, and other
information from CUSTMST2 file.

Show NAME, ADDR, and other information on display.
LOOP: Display ’Item Number ___ Quantity Desired ____’.

* Order entry operator enters item number and quantity.
Read ITEMNO and Quantity Desired from display.
If ITEMNO = 0 then go to LOOPEND.

Change INVEN with ITEMNO and Quantity Desired.
Write an item record to the DETAIL file.

Go to LOOP.
LOOPEND: For CUSTNO, change CUSTMAST using

information in file INVEN.
End

* Program has ended.
Close CUSTMAST, CUSTMST2, INVEN, and DETAIL files.
RETURN

Figure 20. Pseudo-Code for ORDERENT Program

Appendix A. Examples of Coding DDM-Related Tasks 149

The CUSTMAST file is changed by all locations and contains the most current information for each
customer (for constantly changing data such as the customer’s account balance). The CUSTMST2 file,
which is used for reading data that changes only occasionally (such as name and address), should be
changed periodically (once a week, for example), by recopying the CUSTMAST file into it. Task 2 of this
example explains one way to do this.

DDM Example 2: Transferring a Program to a Target Server
In this task, the central server in the DDM network, located in Philadelphia, sends a program named
ORDERENT to a remote System/38 in Chicago.

The program ORDERENT is transferred from the Philadelphia server to the user in Chicago whose user ID
is ANDERSON CHICAGO, and then the program is set up so that ORDERENT in Chicago changes the
CUSTMAST file in library PGMLIB on the central server in Philadelphia. The read-only function is
performed against the local file (in Chicago) and the change is done in the remote file (in Philadelphia).

Figure 21. Files Used by Remote ORDERENT Programs

150 OS/400 Distributed Data Management

For this task, two methods are shown for transferring the ORDERENT program in Philadelphia to the
remote server in Chicago. Basically, the same sets of commands are used in both methods, except that
the second group of commands used in the pass-through method are embedded in Submit Remote
Command (SBMRMTCMD) commands used in the SBMRMTCMD method.

v The first method uses pass-through and object distribution, allowing the operator on the source server
to set up both servers without involving the target system operator or to using the SBMRMTCMD
command. This method can be used only for iSeries servers or System/38s.

v The second method uses the SBMRMTCMD command because, in this task, the target server is a
System/38. (The SBMRMTCMD command can be used when the target server is an iSeries server or a
System/38.)

DDM Example 2: Pass-Through Method
One set of commands is entered on the source server, a pass-through session is started with the target
server, and a second set of commands is entered on the source server and run on the target server.

The following commands are issued on the source server in Philadelphia:
CRTSAVF FILE(TRANSFER)
SAVOBJ OBJ(ORDERENT) LIB(PGMLIB) SAVF(TRANSFER)

UPDHIST(*NO) DTACPR(*YES)
SNDNETF FILE(TRANSFER) TOUSRID(ANDERSON CHICAGO)

Next, a pass-through session is started between the Philadelphia and Chicago servers with the Begin
Pass-Through (BGNPASTHR) command. (For more information on the use of this command and

pass-through, see the Remote Work Station Support book.) The session is used at the source server
to enter the following commands, which are run on the target server:
CRTSAVF FILE(RECEIVE)
RCVNETF FROMFILE(TRANSFER) TOFILE(RECEIVE)
CRTLIB LIB(PGMLIB)
RSTOBJ OBJ(ORDERENT) SAVLIB(PGMLIB) SAVF(RECEIVE)
CRTDDMF FILE(CUSTMAST.PGMLIB) RMTFILE(*NONSTD ’PGMLIB/CUSTMAST’)

DEVD(PHILLY)

These commands create a save file named RECEIVE, into which the TRANSFER file is copied after it is
received as a network file from the source server in Philadelphia. A library is created on the Chicago
server and the RECEIVE file is restored as the ORDERENT program in the newly created library named
PGMLIB. Lastly, a DDM file is created on the Chicago server which allows the Chicago server to access
the CUSTMAST file on the Philadelphia server (remote location named PHILLY).

DDM Example 2: SBMRMTCMD Command Method
Commands needed to accomplish the task are entered at the source server. The source server sends
commands that are needed on the target iSeries server by using the Submit Remote Command
(SBMRMTCMD) command between the servers.

The following commands are issued on the source server in Philadelphia to send the ORDERENT
program to the target server in Chicago:
CRTSAVF FILE(TRANSFER)
SAVOBJ OBJ(ORDERENT) LIB(PGMLIB) SAVF(TRANSFER)

UPDHIST(*NO)
SNDNETF FILE(TRANSFER) TOUSRID(ANDERSON CHICAGO)
CRTDDMF FILE(CHICAGO) RMTFILE(xxxxx) RMTLOCNAME(CHIC)
SBMRMTCMD CMD(’CRTSAVF FILE(RECEIVE)’) DDMFILE(CHICAGO)
SBMRMTCMD CMD(’RCVNETF FROMFILE(TRANSFER)

TOFILE(RECEIVE)’) DDMFILE(CHICAGO)
SBMRMTCMD CMD(’CRTLIB LIB(PGMLIB)’) DDMFILE(CHICAGO)
SBMRMTCMD CMD(’RSTOBJ OBJ(ORDERENT) SAVLIB(PGMLIB)

Appendix A. Examples of Coding DDM-Related Tasks 151

../../books/c4154020.pdf

SAVF(RECEIVE)’) DDMFILE(CHICAGO)
SBMRMTCMD CMD(’CRTDDMF FILE(CUSTMAST.PGMLIB)

RMTFILE(*NONSTD ”PGMLIB/CUSTMAST”) DEVD(PHILLY)’)
DDMFILE(CHICAGO)

These commands create a save file named TRANSFER, which saves the ORDERENT program and then
sends it as a network file to the target server in Chicago. There, the commands embedded in the
SBMRMTCMD command are used to create a save file (named RECEIVE) on the target server, receive
the TRANSFER file, and restore it as ORDERENT into the newly created PGMLIB library. Lastly, a DDM
file is created on the Chicago server which allows the Chicago server wants to access the CUSTMAST file
on the Philadelphia server. The Create DDM File (CRTDDMF) command is in System/38 syntax.

After either of these two methods is used to send the ORDERENT program to, and to create the DDM file
on, the Chicago server, the ORDERENT program on that server can be used to access the CUSTMAST
file on the Philadelphia server.

DDM Example 2: Copying a File
After performing the first task in Example 2, you decide you want to copy the current level of the
CUSTMAST file (in Philadelphia) to the server in Chicago so you can bring the CUSTMST2 file up to date.
This example assumes that the CUSTMST2 file already exists in Chicago.

The following commands can be used to copy the CUSTMAST file from the Philadelphia server to the
CUSTMST2 file on the Chicago server. (These commands are issued on the server in Philadelphia.)
CRTDDMF FILE(PHILLY/COPYMAST) RMTFILE(*NONSTD ’CUSTMST2.CHICAGO’)

RMTLOCNAME(CHIC)
CPYF FROMFILE(PGMLIB/CUSTMAST) TOFILE(PHILLY/COPYMAST)

MBROPT(*REPLACE)

Note: One might assume that, as an alternative method, you could create a DDM file on the source
server, use the SBMRMTCMD command to submit a Create DDM File (CRTDDMF) command to
the target server, and then attempt to use the newly created target DDM file with another
SBMRMTCMD command to perform the copy function back to the original server. However, that
method will not work, because an iSeries server cannot be both a source and target server within
the same job.

DDM Example 3: Accessing Multiple iSeries Files
Using the same communications environment as in the previous examples, you wish to ask inventory
questions of identically named files on the two remote iSeries servers and the remote System/38. To do
so, a program must be written (shown here in pseudo-code) on the central server that can access the files
named LIB/MASTER on the servers in Chicago, in Toronto, and in New York. (In this example, the
MASTER files are keyed files, and the first member of each of these files is the one used. Also, data
description specifications [DDS] for the MASTER files exist on the central server in Philadelphia.)

The program asks the local order entry operator for an item number (ITEMNO), and returns the
quantity-on-hand (QOH) information from the files in Chicago, Toronto, and New York.

The following commands are issued on the server in Philadelphia:
CRTDDMF PGMLIB/CHIFILE RMTFILE(*NONSTD ’MASTER.LIB’)

RMTLOCNAME(CHIC)
CRTDDMF PGMLIB/TORFILE RMTFILE(LIB/MASTER) RMTLOCNAME(TOR)
CRTDDMF PGMLIB/NYCFILE RMTFILE(LIB/MASTER) RMTLOCNAME(NYC)

Following is a sample of the pseudo-code to accomplish the task:

152 OS/400 Distributed Data Management

Before the program is compiled, Override with Database File (OVRDBF) commands can be used to
override the three files used in the program with local files that contain the external description formats,
identical to the remote files being accessed. Doing so significantly reduces the time required for the
compile, since the files on the remote server do not have to be accessed then.

After the program has been compiled correctly, the overrides should be deleted so that the program is able
to access the remote files.

An alternative to the use of overrides is to keep the file definitions in a different library. The program could
be compiled using the file definitions in that library and then run using the real library.

DDM Example 4: Accessing a File on System/36
The following shows how the pseudo-coded program for the previous task can be changed so a MASTER
file on the System/36 in Dallas can be accessed in the same way as the MASTER files on the iSeries
servers and System/38 in Example 3.

Assume that either you have pass-through to the System/36, or that an operator at the System/36 can
make changes, if necessary, on the System/36 for you.

The following command is issued on the server in Philadelphia:
CRTDDMF FILE(PGMLIB/DALFILE) RMTFILE(MASTER)

RMTLOCNAME(DAL) ACCMTH(*KEYED)

Because the remote file referred to by the DDM file named DALFILE is on a System/36, either of two
things must be done:

v The record format of the remote file must be described in the program; that is, it must be a
program-described file.

v The program must be compiled with the program referring to a local iSeries file instead of the
System/36 file. This local file must have the same record format name as the DDM file name. Note that
the local file need not contain any data records.

For more information about describing a non-iSeries file, see the non-iSeries considerations under “Data
Description Specifications (DDS) Considerations for DDM” on page 104.

Following is a sample of the pseudo-code to accomplish the task:

DECLARE CHIFILE, TORFILE, NYCFILE INPUT
Open CHIFILE, TORFILE and NYCFILE
LOOP: Show a display asking for ITEMNO

Read ITEMNO from the display
Read record from CHIFILE with the key ITEMNO
Read record from TORFILE with the key ITEMNO
Read record from NYCFILE with the key ITEMNO
Write all QOH values to the display

If not function key, go to LOOP
Close CHIFILE, TORFILE and NYCFILE
END

Figure 22. Pseudo-Code to Access Multiple iSeries Files

Appendix A. Examples of Coding DDM-Related Tasks 153

DECLARE CHIFILE, TORFILE, NYCFILE, DALFILE INPUT
Open CHIFILE, TORFILE, NYCFILE and DALFILE
LOOP: Show a display asking for ITEMNO
Read ITEMNO from the display

Read record from CHIFILE with the key ITEMNO
Read record from TORFILE with the key ITEMNO
Read record from NYCFILE with the key ITEMNO
Read record from DALFILE with the key ITEMNO
Write all QOH values to the display
If not function key, go to LOOP

Close CHIFILE, TORFILE, NYCFILE and DALFILE
END

Figure 23. Pseudo-Code to Access a System/36 File

154 OS/400 Distributed Data Management

Appendix B. DDM-Related CL Command Summary Charts

This appendix shows summary charts containing most of the control language (CL) commands used with
DDM: to determine the DDM job environment, to perform remote file processing (by specifying a DDM file
name on a file-related parameter of a CL command), or to perform other actions on a remote server by
submitting a CL command to the target server on the Submit Remote Command (SBMRMTCMD)
command.

The charts show which commands:

v Are file-related (that operate on file objects)

v Are object-related (that operate on objects other than files, in addition to file objects)

v Can be performed on the source side or on the target side

v Can be affected by file overrides via the Override with Database File (OVRDBF) command

v Are allowed, and have a useful purpose, to be submitted to a target iSeries server to run (via the
SBMRMTCMD command), rather than running on the source server

Notes are included in the charts that can be helpful to the DDM user.

The following describes the kinds of information provided in these charts:

v The first column lists all the CL commands that can be used by DDM: (a) to operate on a remote file
identified in a DDM file, or (b) to be submitted on a SBMRMTCMD command using a DDM file.

v In the second column, an F means the command is file related, an O means it is related to OS/400
objects other than files, and a blank means neither of these.

v In the third column, an S means the command operates on objects on the source side, and a T means
it operates on objects on the target side. For example, with the create commands that create a file or
program using a DDM file as a source file, the T indicates that a source file on the target server is used
for the creation; the command runs on the source server and creates a file or program on the source
server, but uses a source file on the target server to do it.

If neither S nor T is shown, the name of a DDM file should not be specified on the command; the
command should not run on the source server as a DDM function. However, the command may be
useful when submitted on the SBMRMTCMD command to run on the target server (see the last
column).

v In the last two columns, an X indicates that the command is valid and useful when used with the
command indicated at the top (OVRDBF or SBMRMTCMD) of the column. A blank indicates that the
command is not valid.

Generally, when the target server is an iSeries server or a System/38, any CL command that can be used
in either a batch job or batch program can be specified on the SBMRMTCMD command. If a command
has a value of *BPGM and *EXEC specified for the ALLOW attribute, which you can display by using the
Display Command (DSPCMD) command, that command can be submitted by the SBMRMTCMD
command. (The SBMRMTCMD command uses the QCAEXEC server program to run the submitted
commands on the target server.)

Notes:
1. The SBMRMTCMD command can be used to send commands to an iSeries, System/38, or any other

target server that supports the submit remote command function. The command submitted must be in
the syntax of the target server.

2. Although most of the commands listed in this chart can be submitted to a remote server with the
SBMRMTCMD command, several can just as easily be run on the source server specifying a DDM file
name. These commands are listed in the CL command charts under “Target iSeries-Required File
Management Commands” on page 101 and “Member-Related Commands with DDM” on page 102.

© Copyright IBM Corp. 1999, 2002 155

Table 8. DDM-Related CL Commands

Command Name
Related to File
and/or Object

Affects Objects on
Source and/or
Target OVRDBF Command

SBMRMTCMD
Command1

ADDLFM
ADDPFM
ALCOBJ
CHGDFUDEF
CHGDTA

F
F
F O

T2

T3

S T
T
T

X
X
X
X

CHGJOB
CHGLF
CHGLFM
CHGNETA
CHGOBJOWN

F
F

F O

S T
T3

S

X
X
X
X
X

CHGPF
CHGPFM
CHGQRYDEF
CHGSRCPF
CHKOBJ

F
F

F
F O

S T
T3

T
S T
S

X
X

X
X

CLOF
CLRPFM
COMMIT
CPYF
CPYFRMDKT
CPYFRMQRYF
CPYFRMTAP

F
F
F
F
F
F
F

T
T
S T
S T
S T
S T
S T

X

X
X
X
X

X
X
X11

X
X4

X
X4

CPYSPLF
CPYSRCF
CPYTODKT
CPYTOTAP
CRTBASPGM

F
F
F
F

T
S T
S T
S T
T

X
X
X

X
X
X4

X4

X

CRTCBLPGM
CRTCLPGM
CRTCMD

T
T
T

X
X
X

CRTDFUAPP
CRTDFUDEF
CRTDSPF
CRTDUPOBJ
CRTICFF

F
O
F

T
T
T
S
T

X

X

X
X
X

CRTLF
CRTPF
CRTPLIPGM
CRTPRTF
CRTPRTIMG

F
F

F

S T
S T
T
T
T

X
X
X
X
X
X

CRTQRYAPP
CRTQRYDEF
CRTRPGPGM
CRTRPTPGM
CRTSRCPF

F

T
T
T
T
S T X

X

X
X
X

156 OS/400 Distributed Data Management

Table 8. DDM-Related CL Commands (continued)

Command Name
Related to File
and/or Object

Affects Objects on
Source and/or
Target OVRDBF Command

SBMRMTCMD
Command1

CRTTBL
DCLF
DLCOBJ
DLTDFUAPP
DLTF

F
F O

F

T
T
S T

S T

X

X
X
X

DLTQRYAPP
DMPOBJ
DMPSYSOBJ
DSNDFUAPP
DSNQRYAPP

F O
O

S
S
T
T

X
X5

X5

DSPDTA
DSPFD
DSPFFD
DSPNETA
DSPOBJAUT

F
F

F O

T
S T
S T

S

X5

X5

X
X5

DSPOBJD
DSPPFM
ENDCMTCTL
FMTDTA
GRTOBJAUT
INZPFM

F O
F
F

F O
F

S
T
S T
T
S
T2

X5

X11

X
X
X

MOVOBJ
OPNDBF6

OPNQRYF
OVRDBF
POSDBF

O
F
F
F
F

S
T
T
S
T

X
X

X

X
7

X

QRYDTA
RCVF
RCVNETF
RGZPFM
RMVM

F
F
F
F

T
T

T
T

X

X
X
X

RNMM
RNMOBJ
ROLLBACK
RSTLIB
RSTOBJ
RTVDFUSRC

F
F O
F

F O

T
S T8

S T
S
S
T

X
X
X11

X9

X9

X

RTVQRYSRC
RVKOBJAUT
SAVCHGOBJ
SAVLIB
SAVOBJ

F O
O

F O

T
S
S
S
S

X
X
X9

X9

X9

Appendix B. DDM-Related CL Command Summary Charts 157

Table 8. DDM-Related CL Commands (continued)

Command Name
Related to File
and/or Object

Affects Objects on
Source and/or
Target OVRDBF Command

SBMRMTCMD
Command1

SBMDBJOB
SNDNETF
STRBAS
STRBASPRC
STRCMTCTL
STRDBRDR
WRKJOB
WRKOBJLCK10

F

O
F

O
F O

T
T
T
T
S T
T

S

X
X
X
X
X11

X
X5

X5

Notes:
1 The use of the SBMRMTCMD command is not valid with any of the commands in these charts

unless the target server is an iSeries server or a System/38.
2 This member-related command can be used only if the target server is an iSeries server.
3 This member-related command can be used only if the target server is an iSeries server or a

System/38.
4 These commands require intervention on the target server to load a tape or diskette and they may

not produce the results expected.
5 When submitted to the target server, these commands produce output on the target server only;

the output is not sent to the source server.
6 OPNDBF command: For more information on commitment control restrictions, see “Commitment

Control Support for DDM” on page 26.
7 OVRDBF command: Although this command works when submitted on the SBMRMTCMD

command to a target iSeries server or a System/38, it is not recommended.
8 RNMOBJ command: OBJTYPE*FILE must be specified.
9 When submitted to the target server, these commands require target server resources when tape

or diskettes are used to produce the output.
10 WRKOBJLCK command: This command displays any locks on the DDM file, not the remote file.
11 This command will work, but its use is not recommended.

158 OS/400 Distributed Data Management

Appendix C. DDM Architecture Code Point Attributes

All DDM architecture words are grouped into classes. Each word in DDM specifies the class to which it
belongs with a 2-byte hexadecimal code point. The code point is used to reduce the number of bytes
needed to identify the class of a word in main storage and in data streams. The code point specifies the
location of the class of the word in the DDM Architecture: Reference manual.

When a system message is displayed, a reference is made to a hexadecimal code point. This appendix
provides a list of those code points arranged by hexadecimal value.

Table 9. DDM Architecture Code Points Attributes

Code Point (Hex) Term Message Text

0001 ASSOCIATION Name with value association
0002 MINLVL Minimum level
0003 BIN Binary integer number
0004 BITDR A single bit data representation
0005 BITSTRDR Bit string data representation
0006 BOOLEAN Truth state
0007 QLFATT Qualified attribute
0008 CHRDR A graphic character data representation
0009 CHRSTRDR Character string data representation
000A CLASS Object descriptor
000B CNSVAL Constant value
000C CODPNT Code point attribute
000D COLLECTION Collection object
000E COMMAND Command
000F DATE Date and time
0011 DFTVAL Default value attribute
0012 DGTSTRDR Digit string data representation
0013 DGTDR Numeric character data representation
0014 NOTE Note attribute
0015 ENULEN Enumerated length attribute
0016 ENUVAL Enumerated value attribute
0017 ERROR Error severity code
0018 FALSE False state
0019 HELP Help text
001A HEXDR Hexadecimal number data representation
001B HEXSTRDR Hexadecimal string data representation
001C IGNORABLE Ignorable value attribute
001D INDEX File index
001E INFO Information only severity code
001F LENGTH Length of value attribute
0020 LETTER Alphabetic character
0021 MAXLEN Maximum length attribute
0022 MAXVAL Maximum value attribute
0023 MENU Menu
0024 MAGNITUDE Linearly comparable scalar
0025 MINLEN Minimum length attribute
0026 MINVAL Minimum value attribute
0027 NAME Name
002A NIL Nil object
002B NUMBER Number
002C OBJECT Architected data entity
002D OPTIONAL Optional value attribute

© Copyright IBM Corp. 1999, 2002 159

Table 9. DDM Architecture Code Points Attributes (continued)

Code Point (Hex) Term Message Text

002E PRMDMG Permanent damage severity code
0031 REPEATABLE Repeatable variable attribute
0032 REQUIRED Required value attribute
0033 RESERVED Reserved value attribute
0034 SCALAR Scalar object
0036 SPCVAL Special value attribute
0037 SPRCLS Superclass
0038 STRING String
003A SEVERE Severe error severity code
003B TRUE True state
003C DATA Encoded information
003D WARNING Warning severity code
003E ACCDMG Access damage severity code
003F SESDMG Session damage severity code
0040 ENUCLS Enumerated class attribute
0041 CMDTRG Command target
0042 BINDR Binary data representation
0043 BYTDR An 8-bit value data representation
0044 BYTSTRDR Byte string data representation
0045 TITLE A brief description
0046 ATTLST Attribute list
0047 DEFLST Definition list
0048 DEFINITION Definition
0049 INHERITED Inherited definitions attribute
004A STSLST Term status array
004B ARRAY Object array
004C ORDCOL Ordered collection
004D ELMCLS Element of enumerated class attribute
0050 CONSTANT Constant value
005D INSTANCE_OF Instance of
0064 CODPNTDR Code point data representation
0065 DATDR Date and time data
0066 NAMDR Name date
0067 MTLEXC Mutually exclusive attribute
1001 CLRFIL Clear file
1002 CLOSE Close file
1003 CRTAIF Create alternative index file
1004 CLSDRC Close directory
1005 FRCBFF Force buffers
1006 DELFIL Delete file
1007 GETREC Get record
1008 INSRECNB Insert by record number
1009 LSTFAT List file attributes
100A GETDRCEN Get directory entry
100B LCKFIL Lock file
100C SETUPDNB Set update intent by record number
100D OPEN Open file
100E DELREC Delete record
100F MODREC Modify record
1010 OPNDRC Open directory
1011 RNMDRC Rename directory
1013 SETNBR Set cursor to record number
1014 SETBOF Set cursor to beginning of file

160 OS/400 Distributed Data Management

Table 9. DDM Architecture Code Points Attributes (continued)

Code Point (Hex) Term Message Text

1015 SETEOF Set cursor to end of file
1016 SETFRS Set cursor to first record
1017 SETKEY Set cursor by key
101B SETUPDKY Set update intent by key value
101C SETLST Set cursor to last record
101D SETMNS Set cursor minus
101E SETNXT Set cursor to next record
101F SETPLS Set cursor plus
1020 SETPRV Set cursor to previous record
1023 UNLFIL Unlock file
1024 INSRECEF Insert record at end of file
1025 SETKEYLM Set key limits
1028 CRTDIRF Create direct file
1029 CRTKEYF Create keyed file
102A CRTSEQF Create sequential file
102C DCLFIL Declare file
102D DELDCL Delete declared name
102E LODRECF Load records into file
1032 INSRECKY Insert by key value
1036 RNMFIL Rename file
1037 SETKEYFR Set cursor to first record in key sequence
1039 SETKEYLS Set cursor to last record in key sequence
103B SETKEYNX Set cursor to next record in key sequence
103C SETKEYPR Set cursor to previous record in key

sequence
103D UNLIMPLK Unlock implicit record lock
1040 ULDRECF Unload records from file
1041 EXCSAT Exchange server attributes
1042 SETNXTKE Set cursor to next record with equal key
1043 CHGFAT Change file attributes
1044 CRTDRC Create directory
1045 CRTSTRF Create stream file
1047 GETSTR Get stream
1048 LCKSTR Lock stream
1049 PUTSTR Put stream
104B UNLSTR Unlock stream
104C LODSTRF Load stream file
104D ULDSTRF Unload stream file
104E CPYFIL Copy file
104F CHGCD Change current directory
1050 CHGEOF Change end-of-file
1051 DELDRC Delete directory
1052 QRYSPC Query space available
1053 SBMSYSCMD Submit System Command command
1059 QRYCD Query current directory
1101 BGNNAM Beginning search name
1102 FILATTRL File attribute request list
1103 BASFILNM Base file name
1104 BYPINA Bypass inactive record
1105 DELDRCOP Delete directory option
1108 FILCRTDT File creation date
1109 CSRDSP Cursor displacement
110A RELOPR Relational operator

Appendix C. DDM Architecture Code Point Attributes 161

Table 9. DDM Architecture Code Points Attributes (continued)

Code Point (Hex) Term Message Text

110B EOFNBR End of file record number
110C FILEXNSZ File extent size
110D FILEXPDT File expiration date
110E FILNAM File name
110F FILSIZ File size
1110 FILCLS File class
1111 DFTRECOP Default record option
1113 LSTACCDT Last access date
1114 KEYDEF Key definition
1115 KEYVAL Key value
1116 MAXGETCN Maximum get count
1117 FILMAXEX File maximum number of extents
1118 PRPSHD Prepare shadow
1119 OVRDTA Overwrite data
111A RECCNT Record count
111B DELCP Deletion capability
111C RECLEN Record length
111D RECNBR Record number
111E RECNBRFB Record number feedback
1122 SHDEXS Shadow exists
1123 SHDONL Shadow only
1124 UPDCSR Update cursor
1125 SHDPRC Shadow processing
1126 ERRFILNM Error file name
1128 RTNREC Return record
1129 STRORD Stream order
112A FILPRT File protected
112B EOFOFF End of file offset
112F KEYHLM Key high limit
1130 KEYLLM Key low limit
1132 FILHDD Hidden file
1133 FILSYS System file
1134 ACCINTLS Access intent list
1136 DCLNAM Declared name
1137 DUPFILOP Duplicate file option
1139 FILBYTCN File byte count
113A FILCHGDT File change date
113B FILEXNCN File extent count
113C FILINISZ Initial file size
113D KEYDUPCP Duplicate keys capability
113F PRCCNVCD Conversational protocol error code
1142 RECLENCL Record length class
1143 RLSFILLK Release file lock
1145 RQSFILLK Requested file lock
1146 UPDINT Update intent
1147 SRVCLSNM Server class name
1148 RTNCLS File retention class
1149 SVRCOD Severity code
114A SYNERRCD Syntax error code
114B TEXT Text character string
114C WAIT Wait for lock
114D FILSHR File sharing
114E ACCMTHCL Access method class

162 OS/400 Distributed Data Management

Table 9. DDM Architecture Code Points Attributes (continued)

Code Point (Hex) Term Message Text

114F NEWFILNM New file name
1150 BYPDMG Bypass damaged records
1151 LCKMGRNM Lock manager name
1152 AGNNAM Agent name
1153 SRVDGN Server diagnostic information
1154 ALCINIEX Allocate initial extent
1155 RTNINA Return inactive record
1156 ALWINA Allow cursor to be set to inactive record
1157 MAXOPN Maximum number of files opened
1159 MAXARNB Maximum active record number
115A SRVRLSLV Server product release level
115B CSRPOSST Cursor position status
115C DTALCKST Data lock status
115D SPVNAM Supervisor name
115E EXTNAM External name
115F HLDCSR Hold cursor position
1160 KEYVALFB Key value feedback
1161 ALWMODKY Allow modified keys
1162 ACCORD Access order
1163 RLSUPD Release update intent
1164 KEYDEFCD Key definition error code
1165 DRCNAM Directory name
1166 MODCP File modify capability
1169 STRLEN Stream length
116A STRPOS Position of a stream in a stream file
116B STRSIZ Stream file size
116D SRVNAM Server name
1174 SPCUNT Space units
1175 SPCTTL Total space
117E SPCAVL Available space
1183 STROFF Stream offset
118A LSTARCDT Last archived date
118B RQSSTRLK Request stream lock
118C STRLOC Substream location
118D CPYNEW Copy to new file option
118E CPYOLD Copy to existing file option
118F NEWDRCNM New directory name
1191 GETCP File get capability
1192 INSCP File insert capability
1194 FILCHGFL File change flag
11B8 SYSCMD System command
11BC SYSCMDMSG System command message
11D8 SYCMMGNM System command manager name
1201 KEYUDIRM Key update not allowed by different index

reply message
1203 SYSCMDRM System command reply message
1204 DFTRECRM Default record error
1205 CSRNSARM Cursor not selecting a record position

reply message
1206 DTARECRM Data record reply message not valid
1207 DUPFILRM Duplicate file name reply message
1208 DUPKDIRM Duplicate key different index reply

message

Appendix C. DDM Architecture Code Point Attributes 163

Table 9. DDM Architecture Code Points Attributes (continued)

Code Point (Hex) Term Message Text

1209 DUPKSIRM Duplicate key same index reply message
120A DUPRNBRM Duplicate record number reply message
120B ENDFILRM End of file reply message
120C FILFULRM File is full reply message
120D FILIUSRM File in use reply message
120E FILNFNRM File not found reply message
120F FILSNARM File space not available reply message
1210 MGRLVLRM Manager level conflict reply message
1211 FILNOPRM File not opened reply message
1212 FILNAMRM File name reply message not valid
1214 SHDEXSRM Shadow exists reply message
1215 RECLENRM Record length mismatch reply message
1218 MGRDEPRM Manager dependency error reply

message
121C CMDATHRM Not authorized to command reply

message
121E FILTNARM File temporarily not available reply

message
1220 DCLCNFRM Declare conflict reply message
1221 DRCTNARM Directory temporarily not available reply

message
1224 RECNBRRM Record number out of bounds reply

message
1225 RECNFNRM Record not found reply message
122D KEYLENRM Key length reply message not valid
1230 ACCATHRM Not authorized to access method reply

message
1231 ACCMTHRM Access method reply message not valid
1232 AGNPRMRM Permanent agent error reply message
1233 RSCLMTRM Resource limits reached reply message
1234 BASNAMRM Base file name reply message not valid
1237 DRCATHRM Not authorized to directory reply message
123A EXSCNDRM Existing condition reply message
123B FILATHRM Not authorized to file reply message
123C INVRQSRM Invalid request reply message
123D KEYDEFRM Key definition reply message not valid
123F KEYUSIRM Key update not allowed by same index

reply message
1240 KEYVALRM Key value reply message not valid
1242 OPNCNFRM Open conflict error reply message
1243 OPNEXCRM Open exclusive by same user reply

message
1244 OPNMAXRM Opens at the same time exceed

maximum reply message
1245 PRCCNVRM Conversational protocol error reply

message
1249 RECDMGRM Record damaged reply message
124A RECIUSRM Record in use reply message
124B CMDCMPRM Command processing completed reply

message
124C SYNTAXRM Data stream syntax error reply message
124D UPDCSRRM Update cursor error reply message
124E UPDINTRM No update intent on record reply message
124F NEWNAMRM New file name reply message not valid

164 OS/400 Distributed Data Management

Table 9. DDM Architecture Code Points Attributes (continued)

Code Point (Hex) Term Message Text

1250 CMDNSPRM Command not supported reply message
1251 PRMNSPRM Parameter not supported reply message
1252 VALNSPRM Parameter value not supported reply

message
1253 OBJNSPRM Object not supported reply message
1254 CMDCHKRM Command check reply message
1255 DUPDCLRM Duplicate declared name reply message
1256 DCLNAMRM Declared name reply message not valid
1257 DCLNFNRM Declared name not found reply message
1258 DRCFULRM Directory full reply message
1259 RECINARM Record inactive reply message
125A FILDMGRM File damaged reply message
125B LODRECRM Load records count mismatch reply

message
125C INTATHRM Not authorized to open intent for named

file reply message
125E CLSDMGRM File closed with damage reply message
125F TRGNSPRM Target not supported reply message
1260 KEYMODRM Key value modified after cursor was last

set reply message
1261 CHGFATRM Change file attributes rejected reply

message
1262 DRCNAMRM Directory name not valid
1263 DRCNFNRM Directory not found reply message
1264 STRIUSRM Stream in use error
1265 SUBSTRRM Substream reply message not valid
1266 ACCINTRM Access intent not valid for access method
1267 DRCIUSRM Directory in use reply message
1268 STRDMGRM Stream damaged reply message
1269 DRCENTRM Directory entry reply message not valid
126A DUPDRCRM Duplicate directory name
126B DRCSNARM Directory space not available
126C DTAMAPRM Data mapping error reply message
126E LODSTRRM Load stream count mismatch reply

message
126F RECNAVRM Record not available reply message
1270 DRCNEMRM Directory not empty reply message
127E DRCDMGRM Directory damaged reply message
1282 DRCSUBRM Directory contains subdirectory reply

message
1283 NEWDRNRM New directory name reply message not

valid
1401 ACCMTH Access method
1402 ACCMTHLS Access method list
1403 AGENT Agent
1404 MGRLVLLS Manager level list
1405 CMBACCAM Combined access method
1406 CMBKEYAM Combined keyed access method
1407 CMBRNBAM Combined record number access method
1408 CMNMGR Communications manager
140A RECCSR Record cursor
140B DELAI Delete access intent
140C DIRFIL Direct file

Appendix C. DDM Architecture Code Point Attributes 165

Table 9. DDM Architecture Code Points Attributes (continued)

Code Point (Hex) Term Message Text

140D DSSFMT Data stream structure format
140F KEYFLDDF Key field definition
1410 EXTENT File extent
1411 RECFIL Record file manager
1413 GETGETLK Get intent willing to share with get intents

at the same time
1414 GETMODLK Get intent willing to share with modify

intents at the same time
1415 GETNONLK Get intent not willing to share with any

users at the same time
1416 GETAI Get access intent
1417 INSAI Insert access intent
1418 DCAL3P Document content architecture level three
1419 DRCAM Directory access method
141A DRCCSR Directory cursor
141B DRCEMP Directory empty option
141C DRPSHD Drop shadow
141E KEYFIL Keyed file
1420 SEQASC Ascending key sequence
1421 SEQDSC Descending key sequence
1422 LCKMGR Lock manager
1423 ALTINDF Alternative index file
1424 FILAL File attribute list
1425 MODGETLK Modify intent willing to share with get

intents at the same time
1426 MODMODLK Modify intent willing to share with modify

intents at the same time
1427 MODNONLK Modify intent not willing to share with any

users at the same time
1428 MODAI Modify access intent
1429 OBJDSS Object data stream structure
142A PRMFIL Permanent file
142B DFTREC Default record
142C PCEXE PC EXE formatted stream file
142D RECINA Inactive record
142E RECFIX Fixed length record
142F RECIVL Initially varying length record
1430 RECAL Record attribute list
1431 RECVAR Varying length record
1432 RELKEYAM Relative by key access method
1433 RELRNBAM Relative by record number access method
1434 RNDKEYAM Random by key access method
1435 RNDRNBAM Random by record number access

method
1436 RPYDSS DDM reply data stream structure
1437 RPYMSG Reply message
1438 RQSCRR Request correlation identifier
1439 RQSDSS Request data stream structure
143A BOF Beginning of file
143B SEQFIL Sequential file
143C SUPERVISOR Supervisor
143D SHRRECLK Share record lock
143E TMPFIL Temporary file

166 OS/400 Distributed Data Management

Table 9. DDM Architecture Code Points Attributes (continued)

Code Point (Hex) Term Message Text

143F EXCRECLK Exclusive record lock
1440 SECMGR Security manager
1441 EOF End of file
1442 MGRLVL Manager level
1443 EXCSATRD Server attributes reply data
1444 CMNAPPC APPC conversational communications

manager
1445 KEYAE Key after or equal to relational operator
1446 KEYAF Key after operator
1447 KEYEQ Key equal relational operator
1448 SERVER Server
1449 DFTSRCIN Default source initialization
144A RECORD Record
144B KEYBE Key before or equal to relational operator
144C KEYBF Key before operator
144D FILIND File index
144E ALTINDLS Alternative index list
144F FILINDEN File index entry
1450 DCTIND Dictionary index
1451 DCTINDEN Dictionary index entry
1452 MGRNAM Manager name
1453 MGRADR Manager address
1454 DRCIND Directory index
1455 DRCINDEN Directory index entry
1456 MANAGER Resource manager
1457 DIRECTORY Directory file
1458 DICTIONARY Dictionary
1459 DUPFILDO Duplicate file reply message duplicate

option
145A EXSCNDDO Existing condition reply message

duplicate option
145C CLRFILDO Clear file duplicate option
145D KEYORD Key order processing
145E RNBORD Record number order processing
145F DFTTRGIN Default target initialization
1460 DFTINAIN Default inactive record initialization
1461 DCAFFT Document content architecture final form

text
1462 CPYNCR Copy with no create option
1463 STRAM Stream access method
1464 STREAM Stream
1465 STRFIL Stream file
1466 CPYDTA Copy with data option
1467 CPYNDT Copy with no data option
1468 CURSOR Access method cursor
1469 STRCSR Stream cursor
146A FILE File manager
1471 DCARFT Document content architecture revisable

form text
1473 MGRLVLN Manager level number attribute
1479 QRYSPCRD Query space reply data
147F SYSCMDMGR System command manager
1482 CPYAPP Copy append option

Appendix C. DDM Architecture Code Point Attributes 167

Table 9. DDM Architecture Code Points Attributes (continued)

Code Point (Hex) Term Message Text

1483 CPYERR Copy duplicate file error option
1484 CPYRPL Copy replace option
1485 EXCSTRLK Exclusive stream lock
1486 SHRSTRLK Share stream lock
1487 MODSTRLK Modify stream lock
1488 DRCALL Delete all files in directory option
1489 DRCANY Delete any accessible files in directory

168 OS/400 Distributed Data Management

Appendix D. DDM Commands and Parameters

This appendix presents the following topics:
v Subsets of DDM architecture supported by OS/400 DDM

– Supported DDM file models
– Supported DDM access methods

v Supported DDM commands and parameters
v User profile authority

For additional information on DDM subsets, see the DDM Architecture: Implementation Planner’s Guide or
the DDM Architecture: Reference

Note: The abbreviation KB appears throughout the tables in this appendix. It represents a quantity of
storage equal to 1024 bytes.

Subsets of DDM Architecture Supported by OS/400 DDM
The iSeries server supports the following subsets of the DDM architecture.

v Supported DDM file models

v Supported DDM access methods

Supported DDM File Models
OS/400 DDM supports the following DDM file models:

Alternate index file (ALTINDF)
Direct file (DIRFIL)
Directory file (DIRECTORY)
Keyed file (KEYFIL)
Sequential file (SEQFIL)
Stream file (STRFIL)

By using the above file models, the iSeries server supports access to the iSeries physical and logical files.
The following table shows how DDM file models and iSeries data files correspond.

Table 10. iSeries Data Files

DDM File Model Corresponding iSeries Data File

Alternate index file (ALTINDF) Logical file with one format

Direct file (DIRFIL) Nonkeyed physical file

Directory file (DIRECTORY) Folder management services (FMS) folders or data
management libraries

Keyed file (KEYFIL) Keyed physical file

Sequential file (SEQFIL) Nonkeyed physical file

Stream file (STRFIL) Folder management services (FMS) document

The following headings discuss each DDM file model and corresponding iSeries data file.

Alternate Index File (ALTINDF)
OS/400 DDM supports access to a logical file via the DDM alternate index file model. A logical file allows
access to the data records stored in a physical file via an alternate index defined over the physical file.
Only single format logical files can be accessed through OS/400 DDM. Logical files with select/omit logic
can be accessed but records that are inserted may not be retrievable, if they are omitted by the select/omit
logic.

© Copyright IBM Corp. 1999, 2002 169

|

|

|

Supported Record Classes: An iSeries alternate index file can have fixed-length record (RECFIX) or
variable-length record (RECVAR) for storage. Once a non-iSeries source server opens a file on the iSeries
target using variable-length record access, the iSeries target continues to send and receive variable-length
records on all subsequent I/O operations.

Note: OS/400 DDM supports the DDM file transfer commands Load Record File (LODRECFIL) and
Unload Record File (ULDRECFIL) for all of the file models except alternate index file.

Direct File (DIRFIL)
OS/400 DDM supports access to nonkeyed physical files via the DDM direct file model. The support has
the following characteristics:

Delete Capabilities: An iSeries direct file is delete capable or nondelete capable. A nondelete capable
file must have an active default record.

Supported Record Classes: An iSeries direct file can have a fixed-length record (RECFIX) or
variable-length record (RECVAR) for storage. Once a non-iSeries source server opens a file on the iSeries
target using variable-length record access, the iSeries target continues to send and receive variable-length
records on all subsequent I/O operations.

Note: The iSeries server does not support the concept of a direct file. OS/400 DDM creates a direct file
by creating a nonkeyed physical file and initializing it, with deleted or active default records, to the
maximum size requested. No extensions to the file are allowed.

Directory File (DIRECTORY)
OS/400 DDM supports access to a folder management services folder or a data management library via
the DDM directory file model. Folders can be created, opened, renamed, closed, or deleted. Libraries can
be created, renamed, or deleted.

Keyed File (KEYFIL)
OS/400 DDM supports access to keyed physical files via the DDM keyed file model. The support has the
following characteristics:

Supported Record Classes: An iSeries keyed file can have fixed-length record (RECFIX) or
variable-length record (RECVAR) for storage. Once a non-iSeries source server opens a file on the iSeries
target using variable-length record access, the iSeries target continues to send and receive variable-length
records on all subsequent I/O operations.

Sequential File (SEQFIL)
The iSeries server supports access to nonkeyed physical files via the DDM sequential file model. The
support has the following characteristics:

Delete Capabilities: The sequential file can be delete or nondelete capable on an iSeries server.

Supported Record Classes: The sequential file on an iSeries server can have a fixed-length record
(RECFIX) or variable-length record (RECVAR) for storage. Once a non-iSeries source server opens a file
on the iSeries target using variable-length record access, the iSeries target continues to send and receive
variable-length records on all subsequent I/O operations.

Stream File (STRFIL)
OS/400 DDM supports access to a folder management services document via the DDM stream file model.

Supported DDM Access Methods
OS/400 DDM supports the following DDM access methods. DDM abbreviations for the access methods
are given in parentheses.
v Combined access method (CMBACCAM)
v Combined keyed access method (CMBKEYAM)

170 OS/400 Distributed Data Management

v Combined record number access method (CMBRNBAM)
v Directory access method (DRCAM)
v Random by key access method (RNDKEYAM)
v Random by record number access method (RNDRNBAM)
v Relative by key access method (RELKEYAM)
v Relative by record number access method (RELRNBAM)
v Stream access method (STRAM)

See Table 11 for a summary of the access methods that OS/400 DDM supports for each DDM file model.
For a description of these access methods, refer to the DDM Architecture: Implementation Planner’s Guide

Table 11. Supported Access Methods for Each DDM File Model

Term
Access
Method

DDM File Models

Sequential
File Direct File Keyed File

Alternate
Index File Stream File

Directory
File

CMBACCAM Combined
access

N T T N

CMBKEYAM Combined
keyed

T T

CMBRNBAM Combined
record
number

T T T N

DRCAM Directory T

RELKEYAM Relative by
key

T T

RELRNBAM Relative by
record
number

T T T N

RNDKEYAM Random by
key

T T

RNDRNBAM Random by
record
number

T T T N

STRAM Stream T

Note:
N = Not supported
T = Target DDM supported
Blank = Not applicable

DDM Commands and Objects
This section describes the DDM command parameters that an iSeries server supports for each DDM
architecture command. For more detailed information about these parameters, see the DDM Architecture:
Reference manual. For more information about command parameters, see the DDM command parameters
topic.

The description of the commands may include:
v Limitations for the use of each command
v Objects that the source server may send to the target server
v Objects that the target server may return to the source server
v DDM parameters that the iSeries server supports for the command and how the iSeries server responds

to each parameter

Appendix D. DDM Commands and Parameters 171

The following commands are supported:

v “CHGCD (Change Current Directory) Level 2.0” on page 173

v “CHGEOF (Change End of File) Level 2.0 and Level 3.0” on page 173

v “CHGFAT (Change File Attribute) Level 2.0” on page 174

v “CLOSE (Close File) Level 1.0 and Level 2.0” on page 174

v “CLRFIL (Clear File) Level 1.0 and Level 2.0” on page 174

v “CLSDRC (Close Directory) Level 2.0” on page 174

v “CPYFIL (Copy File) Level 2.0” on page 175

v “CRTAIF (Create Alternate Index File) Level 1.0 and Level 2.0” on page 175

v “CRTDIRF (Create Direct File) Level 1.0 and Level 2.0” on page 175

v “CRTDRC (Create Directory) Level 2.0” on page 176

v “CRTKEYF (Create Keyed File) Level 1.0 and Level 2.0” on page 176

v “CRTSEQF (Create Sequential File) Level 1.0 and Level 2.0” on page 177

v “CRTSTRF (Create Stream File) Level 2.0” on page 178

v “DCLFIL (Declare File) Level 1.0 and Level 2.0” on page 178

v “DELDCL (Delete Declared Name) Level 1.0” on page 179

v “DELDRC (Delete Directory) Level 2.0” on page 179

v “DELFIL (Delete File) Level 1.0 and Level 2.0” on page 179

v “DELREC (Delete Record) Level 1.0” on page 180

v “EXCSAT (Exchange Server Attributes) Level 1.0 and Level 2.0” on page 180

v “FILAL and FILATTRL (File Attribute List) Level 1.0, Level 2.0, and Level 3.0” on page 180

v “FRCBFF (Force Buffer) Level 2.0” on page 181

v “GETDRCEN (Get Directory Entries) Level 2.0” on page 181

v “GETREC (Get Record at Cursor) Level 1.0” on page 182

v “GETSTR (Get Substream) Level 2.0 and Level 3.0” on page 182

v “INSRECEF (Insert at EOF) Level 1.0” on page 182

v “INSRECKY (Insert Record by Key Value) Level 1.0” on page 183

v “INSRECNB (Insert Record at Number) Level 1.0” on page 183

v “LCKFIL (Lock File) Level 1.0 and Level 2.0” on page 184

v “LCKSTR (Lock Substream) Level 2.0 and Level 3.0” on page 184

v “LODRECF (Load Record File) Level 1.0 and Level 2.0” on page 184

v “LODSTRF (Load Stream File) Level 2.0” on page 185

v “LSTFAT (List File Attributes) Level 1.0, Level 2.0, and Level 3.0” on page 185

v “MODREC (Modify Record with Update Intent) Level 1.0” on page 185

v “OPEN (Open File) Level 1.0 and Level 2.0” on page 186

v “OPNDRC (Open Directory) Level 2.0” on page 186

v “PUTSTR (Put Substream) Level 2.0 and Level 3.0” on page 186

v “QRYCD (Query Current Directory) Level 2.0” on page 186

v “RNMDRC (Rename Directory) Level 2.0” on page 187

v “RNMFIL (Rename File) Level 1.0 and Level 2.0” on page 187

v “SBMSYSCMD (Submit server Command) Level 4.0” on page 187

v “SETBOF (Set Cursor to Beginning of File) Level 1.0” on page 187

v “SETEOF (Set Cursor to End of File) Level 1.0” on page 188

v “SETFRS (Set Cursor to First Record) Level 1.0” on page 188

v “SETKEY (Set Cursor by Key) Level 1.0” on page 188

172 OS/400 Distributed Data Management

v “SETKEYFR (Set Cursor to First Record in Key Sequence) Level 1.0” on page 189

v “SETKEYLM (Set Key Limits) Level 1.0” on page 189

v “SETKEYLS (Set Cursor to Last Record in Key Sequence) Level 1.0” on page 190

v “SETKEYNX (Set Cursor to Next Record in Key Sequence) Level 1.0” on page 190

v “SETKEYPR (Set Cursor to Previous Record in Key Sequence) Level 1.0” on page 191

v “SETLST (Set Cursor to Last Record) Level 1.0” on page 191

v “SETMNS (Set Cursor Minus) Level 1.0” on page 192

v “SETNBR (Set Cursor to Record Number) Level 1.0” on page 193

v “SETNXT (Set Cursor to Next Number) Level 1.0” on page 193

v “SETNXTKE (Set Cursor to Next Record in Key Sequence with a Key Equal to Value Specified) Level
1.0” on page 194

v “SETPLS (Set Cursor Plus) Level 1.0” on page 194

v “SETPRV (Set Cursor to Previous Record) Level 1.0” on page 195

v “SETUPDKY (Set Update Intent by Key Value) Level 1.0” on page 196

v “SETUPDNB (Set Update Intent by Record Number) Level 1.0” on page 196

v “ULDRECF (Unload Record File) Level 1.0” on page 197

v “ULDSTRF (Unload Stream File) Level 2.0” on page 197

v “UNLFIL (Unlock File) Level 1.0 and Level 2.0” on page 198

v “UNLIMPLK (Unlock Implicit Record Lock) Level 1.0” on page 198

v “UNLSTR (Unlock Substreams) Level 2.0 and Level 3.0” on page 198

DDM Command Parameters
This section lists alphabetically the DDM commands that the iSeries server supports. Level 1.0, Level 2.0
and Level 3.0 indicate which level of the DDM architecture is supported by the commands.

CHGCD (Change Current Directory) Level 2.0
This command changes the current path. The path is a string of folders. The current path is added to the
front of a file or directory name if it does not start with a slash.

This command is not sent by a source iSeries server.

Parameter Name Source Target

AGNNAM N/A Ignored
DRCNAM1 N/A iSeries name
Note: 1 Name formats are server defined. The architecture specifies that a directory name length of zero indicates the
root directory for the Change Current Directory command. For other commands, a directory name length of zero
indicates the current directory which may or may not be the root directory at the time the command is issued.

CHGEOF (Change End of File) Level 2.0 and Level 3.0
This command changes the end-of-file mark of a document. The end may be truncated or expanded. A
source iSeries server does not send this command.

Parameter Name Source Target

DCLNAM N/A Program defined
EOFNBR N/A Supported
EOFOFF N/A Supported

Appendix D. DDM Commands and Parameters 173

CHGFAT (Change File Attribute) Level 2.0
This command changes the attributes of a file, document, or folder.

Parameter Name Stream File Directory
Sequential, Direct,
and Keyed Files Alternate Index File

DTAFMT T

FILCHGDT T T N N

FILCHGFL T N N

FILINISZ N S, T

FILEXNSZ N S, T

FILEXPDT S, T

FILHDD T T N N

FILMAXEX N S, T

FILPRT T N

FILSYS T T N N

DELCP N N

GETCP T N

INSCP N

MODCP T N

TITLE T T S, T S, T

Note: N = Not supported; T = Target DDM supported; S = Source DDM supported; Blank = Not applicable.

CLOSE (Close File) Level 1.0 and Level 2.0
This command ends the logical connection between the source server and the data set accessed on the
target server. Once the target DDM begins running this command, it must close the data set regardless of
the reply message returned.

Parameter Name Source Target

DCLNAM Program defined Program defined
SHDPRC Not sent Supported
Note: Names are implementation defined.

CLRFIL (Clear File) Level 1.0 and Level 2.0
This command clears an existing file and reinitializes it as if it had just been created.

Parameter Name Source Target

FILNAM1 Target defined iSeries server
OVRDTA Not sent False only
Note: 1 Name formats are server defined.

CLSDRC (Close Directory) Level 2.0
This command closes a folder. This command is not sent by a source iSeries server.

Parameter Name Source Target

DCLNAM 1 N/A Program defined

174 OS/400 Distributed Data Management

Parameter Name Source Target

Note: 1 Names are implementation defined.

CPYFIL (Copy File) Level 2.0
This command copies one document to another document. If the new document does not exist, it may be
created. This command is not sent by a source iSeries server.

Parameter Name Source Target

ACCORD N/A Ignored
BYPDMG N/A Ignored
BYPINA N/A Ignored
CPYNEW1 N/A Supported
CPYOLD2 N/A Supported
DCLNAM3 N/A Program defined
FILNAM4 N/A iSeries name
NEWFILNM4 N/A iSeries name
Notes:
1 CPYNDT only supported parameter value. All others are rejected with VALNSPRM.
2 CPYERR only supported parameter value. All others are rejected with VALNSPRM.
3 Names are implementation defined.
4 Name formats are server defined.

CRTAIF (Create Alternate Index File) Level 1.0 and Level 2.0
This command creates an alternate index file on the target server.

Parameter Name Source Target

BASFILNM1 Program defined iSeries name
DUPFILOP Not sent Supported
FILCLS2 Not sent Ignored
FILHDD Not sent Ignored
FILNAM3 Program defined iSeries name
FILSYS Not sent Ignored
KEYDEF4 Sent Supported
KEYDUPCP Sent Supported
RTNCLS5 Not sent Supported
TITLE Sent Supported
Notes:
1 Name formats are server defined.
2 Only ALTINDF is valid for CRTAIF command.
3 Name formats are server defined.
4 iSeries maximum key length is 2000.
5 Library QTEMP is used for temporaries.

CRTDIRF (Create Direct File) Level 1.0 and Level 2.0
This command creates a direct file on the target server.

Parameter Name Source Target

ALCINIEX Sent Ignored
DCLNAM1 Not sent Supported
DELCP2 Sent Supported
DFTREC Sent Supported

Appendix D. DDM Commands and Parameters 175

Parameter Name Source Target

DFTRECOP Sent Supported
DUPFILOP Not sent Supported
FILCLS3 Not sent Ignored
FILEXNSZ4 Sent Supported
FILEXPDT5 Sent Supported
FILHDD Not sent Ignored
FILINISZ4 Sent Supported
FILMAXEX6 Sent Supported
FILNAM7 Program defined iSeries name
FILSYS Not sent Ignored
GETCP Sent Supported
INSCP8 Sent Supported
MODCP Sent Supported
RECLEN9 Sent Supported
RECLENCL Sent Supported
:row. RTNCLS10 Not sent
Supported
TITLE Sent Supported
Notes:
1 Names are implementation defined.
2 Value must be TRUE unless DFTRECOP (DFTSRCIN) is specified.
3 Only DIRFIL is valid for CRTDIRF command.
4 iSeries default is 1,000 records.
5 iSeries default is *NONE.
6 iSeries default is 3.
7 Name formats are server defined.
8 Only TRUE is valid.
9 iSeries maximum record length = 2**15-2.
10 Library QTEMP is used for temporaries.

CRTDRC (Create Directory) Level 2.0
This command creates folders or libraries on the target server, based on the name received. This
command is not sent by a source iSeries server.

Parameter Name Source Target

DCLNAM1 N/A Program defined
DRCNAM2 N/A iSeries name
FILCLS3 N/A Ignored
FILPRT4 N/A Supported
RTNCLS N/A PRMFIL only
TITLE N/A Supported
Notes:
1 Names are implementation defined.
2 Name formats are server defined.
3 Only DIRECTORY is valid for CRTDRC command.
4 FALSE only for libraries.

CRTKEYF (Create Keyed File) Level 1.0 and Level 2.0
This command creates a keyed file on the target server.

Parameter Name Source Target

ALCINIEX Sent Ignored

176 OS/400 Distributed Data Management

Parameter Name Source Target

DCLNAM1 Not used Supported
DELCP Sent Supported
DFTREC Not sent Supported
DFTRECOP Not sent Supported
DUPFILOP Not sent Supported
FILCLS2 Not sent Ignored
FILEXNSZ3 Sent Supported
FILEXPDT4 Sent Supported
FILHDD Not sent Ignored
FILINISZ3 Sent Supported
FILMAXEX5 Sent Supported
FILNAM6 Program defined iSeries name
FILSYS Not sent Ignored
GETCP Sent Supported
INSCP Sent Supported
KEYDEF7 Sent Supported
KEYDUPCP Sent Supported
MODCP Sent Supported
RECLEN8 Sent Supported
RECLENCL Sent Supported
RTNCLS9 Not sent Supported
TITLE Sent Supported
Notes:
1 Names are implementation defined.
2 Only KEYFIL is valid for CRTKEYF command.
3 iSeries default is 1,000 records.
4 iSeries default is *NONE.
5 iSeries default is 3.
6 Name formats are server defined.
7 iSeries maximum key length is 2000.
8 iSeries maximum record length = 2**15-2.
9 Library QTEMP is used for temporaries.

Note: When a CRTKEYF request is received by an iSeries target server, the new keyed file reuses
deleted records when it is created. If duplicate keys are allowed (KEYDUPCP=TRUE sent), the
order of the duplicate keys is not guaranteed.

CRTSEQF (Create Sequential File) Level 1.0 and Level 2.0
This command creates a sequential file on the target server.

Parameter Name Source Target

ALCINIEX Sent Ignored
DCLNAM1 Not sent Supported
DELCP Sent Supported
DFTREC Not sent Supported
DFTRECOP Not sent Supported
DUPFILOP Not sent Supported
FILCLS2 Not sent Ignored
FILEXNSZ3 Sent Supported
FILEXPDT4 Sent Supported
FILHDD Not sent Ignored
FILINISZ3 Sent Supported
FILMAXEX5 Sent Supported

Appendix D. DDM Commands and Parameters 177

Parameter Name Source Target

FILNAM6 Program defined iSeries name
FILSYS Not sent Ignored
GETCP Sent Supported
INSCP Sent Supported
MODCP Sent Supported
RECLEN7 Sent Supported
RECLENCL Sent Supported
RTNCLS8 Not sent Supported
TITLE Sent Supported
Notes:
1 Names are implementation defined.
2 Only SEQFIL is valid for CRTSEQF command.
3 iSeries default is 1,000 records.
4 iSeries default is *NONE.
5 iSeries default is 3.
6 Name formats are server defined.
7 iSeries maximum record length = 2**15-2.
8 Library QTEMP is used for temporaries.

CRTSTRF (Create Stream File) Level 2.0
This command creates a stream file on the target server. This command is not sent by a source iSeries
server.

Parameter Name Source Target

ALCINIEX N/A Ignored
DCLNAM1 N/A Program defined
DTAFMT N/A Supported
DUPFILOP N/A Supported
FILCLS2 N/A Ignored
FILEXNSZ N/A Ignored
FILEXPDT N/A Ignored
FILHDD N/A Supported
FILINISZ N/A Ignored
FILMAXEX N/A Ignored
FILNAM3 N/A iSeries name
FILPRT N/A Supported
FILSYS N/A Supported
GETCP N/A Supported
MODCP N/A Supported
RTNCLS N/A Supported
TITLE N/A Supported
Notes:
1 Names are implementation defined.
2 Only STRFIL is valid for CRTSTRF command.
3 Name formats are server defined.

DCLFIL (Declare File) Level 1.0 and Level 2.0
This command associates a declared name (DCLNAM) with a collection of object-oriented parameters in
the target agent. This collection is stored by the receiving agent for later use. At the time it is received, the
command does not affect objects currently opened by the agent. The primary access to the DCLFIL
collection is the DCLNAM parameter.

178 OS/400 Distributed Data Management

Parameter Name Source Target

AGNNAM1 Not sent Ignored
DCLNAM2 Program defined Program defined
DRCNAM3 Not sent iSeries name
FILEXNSZ4 Not sent Ignored
FILMAXEX4 Not sent Ignored
FILNAM3 Program defined iSeries name
Notes:
1 Only one agent on an

iSeries server.
2 Names are implementation

defined.
3 Name formats are server

defined.
4 Create value is used.

DELDCL (Delete Declared Name) Level 1.0
This command deletes a declared agent name.

Parameter Name Source Target

AGNNAM Not sent Ignored
DCLNAM1 Program defined Program defined
Note: 1Names are implementation defined.

DELDRC (Delete Directory) Level 2.0
This command deletes a folder or a library. This command is not sent by a source iSeries server.

Parameter Name Source Target

DELDRCOP1 N/A DRCEMP or DRCANY
DRCNAM2 N/A iSeries name

OVRDTA N/A FALSE only
Notes:
1 DRCALL not supported.
2 Name formats are server defined. Generic names are not supported.

DELFIL (Delete File) Level 1.0 and Level 2.0
This command deletes a file or document.

Parameter Name Source Target

FILNAM1 Target defined generics allowed iSeries name
OVRDTA2 Not sent FALSE only
SHDONL3 Not sent Supported
Notes:
1 Name formats are server defined. Generic names are only allowed for documents.
2 The iSeries server does not support overwriting.
3 FALSE only for files.

Appendix D. DDM Commands and Parameters 179

DELREC (Delete Record) Level 1.0
This command deletes the record that currently has an update intent placed on it. It does this without
affecting the current cursor position.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
Note: 1Names are implementation defined.

EXCSAT (Exchange Server Attributes) Level 1.0 and Level 2.0
This command exchanges information between servers, such as the server’s class name, architectural
level of each class of managers it supports, server’s product release level, server’s external name, and
server’s name.

Parameter Name Source Target

EXTNAM Sent Supported
MGRLVLS Sent Supported
SPVNAM Not sent Ignored
SRVCLSNM Sent Supported
SRVNAM Sent Supported
SRVRLSLV Sent Supported

Reply Objects
The following reply object is returned:

EXCSATRD
Server attributes reply data

FILAL and FILATTRL (File Attribute List) Level 1.0, Level 2.0, and Level
3.0
This is a list of file attributes that DDM may request on a LSTFAT, OPEN, or GETDRCEN. Some
parameters are only valid for specific file types.

Table 12. File Attribute List

Parameter Name Source Target

ACCMTHLS Requested Supported
BASFILNM1 Requested iSeries name
DELCP Requested Supported
DFTREC Requested Supported
DTAFMT Not requested Supported
EOFNBR Requested Supported
EOFOFF Not requested Supported
FILBYTCN Not requested Supported
FILCHGDT Requested Supported
FILCHGFL Not requested Supported
FILCLS Requested Supported
FILCRTDT Requested Supported
FILEXNCN Requested Supported
FILEXNSZ Requested Supported
FILEXPDT Requested Supported
FILHDD Not requested Supported
FILINISZ Requested Supported

180 OS/400 Distributed Data Management

Table 12. File Attribute List (continued)

Parameter Name Source Target

FILMAXEX Requested Supported
FILNAM Requested Supported
FILPRT Not requested Supported
FILSIZ Requested Supported
FILSYS Not requested Supported
GETCP Requested Supported
INSCP Requested Supported
KEYDEF Requested Supported
KEYDUPCP Requested Supported
LSTACCDT Not requested Not supported
LSTARCDT Requested Supported
MAXARNB Requested Not supported
MODCP Requested Supported
RECLEN Requested Supported
RECLENCL Requested Supported
RTNCLS2 Not requested PRMFIL
SHDEXS Not requested Supported
STRSIZ Not requested Supported
TITLE3 Requested Supported
Notes:
1 Name formats are server defined. Qualified name if FILCLS is ALTINDF.
2 Unless the library is QTEMP.
3 Maximum length of text is 50 characters for data file, 44 for document or folder.

FRCBFF (Force Buffer) Level 2.0
This command forces the data of the referred object to nonvolatile storage.

Parameter Name Source Target

DCLNAM1 Requested Program defined
Note: 1Names are implementation defined.

GETDRCEN (Get Directory Entries) Level 2.0
This command gets a list of folders and/or documents. This command is not sent by a source iSeries
server.

Parameter Name Source Target

BGNNAM1 N/A iSeries name
DCLNAM2 N/A Program defined
FILATTRL N/A Supported
FILCLS N/A DIRECTORY or STRFIL only
FILHDD N/A Supported
FILSYS N/A Supported
MAXGETCN N/A Supported
NAME1 N/A iSeries name
Notes:
1 Name formats are server defined.
2 Names are implementation defined.

Reply Objects
The following reply object is possible:

Appendix D. DDM Commands and Parameters 181

FILAL File attribute list

GETREC (Get Record at Cursor) Level 1.0
This command gets and returns the record indicated by the current cursor position.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
KEYVALFB Requested Supported
RECNBRFB Requested Supported
RTNINA2 As required Supported
UPDINT Not sent Supported
Notes:
1 Names are implementation defined.
2 Application dependent.

Reply Objects
The following reply objects are possible:

RECAL
Record attribute list

RECINA
Inactive record (-1 not supported, maximum =2**15-2)

RECORD
Fixed length record (maximum length 2**15-2)

GETSTR (Get Substream) Level 2.0 and Level 3.0
This command gets stream data from a document. This command is not sent by a source iSeries server.

Parameter Name Source Target

DCLNAM1 N/A Program defined
STRLEN N/A Supported
STROFF N/A Supported
STRPOS N/A Supported
Note: 1Names are implementation defined.

INSRECEF (Insert at EOF) Level 1.0
This command inserts a record at the end of the file.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
KEYVALFB Requested Supported
RECCNT2 As required Supported
RECNBRFB Requested Supported
RLSUPD Always FALSE Supported
UPDCSR Not sent Supported
Notes:
1 Names are implementation defined.
2 Application dependent.

Command Objects
The following command objects are possible:

182 OS/400 Distributed Data Management

RECINA
Inactive record (-1 not supported, maximum = 2**15-2)

RECORD
Fixed length record (maximum length 2**15-2)

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECNBR
Record number

INSRECKY (Insert Record by Key Value) Level 1.0
This command inserts one or more records according to their key values wherever there is available space
in the file.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
RECCNT As required Supported
RECNBRFB Requested Supported
RLSUPD Always FALSE Supported
UPDCSR Not sent Supported
Note: 1Names are implementation defined.

Command Objects
The following command object is possible:

RECORD
Fixed length record (maximum length 2**15-2)

Reply Objects
Because the iSeries server does not support variable length records, only the following reply object is
possible:

RECNBR
Record number

INSRECNB (Insert Record at Number) Level 1.0
This command inserts one or more records at the position specified by the record number parameter.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
KEYVALFB Requested Supported
RECCNT As required Supported
RECNBR Sent Supported
UPDCSR Not sent Supported
Note: 1Names are implementation defined.

Command Objects
The following command objects are possible:

Appendix D. DDM Commands and Parameters 183

RECINA
Inactive record (-1 not supported, maximum = 2**15-2)

RECORD
Fixed length record (maximum length 2**15-2)

Reply Objects
The following reply object is possible:

KEYVAL
Key value

LCKFIL (Lock File) Level 1.0 and Level 2.0
This command locks the file for subsequent use by the requester.

Parameter Name Source Target

FILNAM1 Target name iSeries name
LCKMGRNM Not used Ignored
RQSFILLK Sent Supported
WAIT Sent Supported
Note: 1Name formats are server defined.

LCKSTR (Lock Substream) Level 2.0 and Level 3.0
This command locks a stream file substream. This command is not sent by a source iSeries server.

Parameter Name Source Target

DCLNAM1 N/A Program defined
RQSSTRLK N/A EXCSTRLK and SHRSTRLK only
STRLOC N/A Supported
STROFF N/A Supported
WAIT2 N/A Supported
Notes:
1 Names are implementation defined.
2 The WAIT parameter is neither rejected nor performed.

LODRECF (Load Record File) Level 1.0 and Level 2.0
This command puts a whole record file on the target server.

Parameter Name Source Target

FILNAM1 Sent iSeries name
Note: 1Name formats are server defined.

Command Objects
The following command objects are possible:

RECAL
Record attribute list

RECCNT
Record count

RECINA
Inactive record (-1 not supported, maximum = 2**15-2)

184 OS/400 Distributed Data Management

RECORD
Fixed length record (maximum length 2**15-2)

LODSTRF (Load Stream File) Level 2.0
This command sends a whole stream file from the source server to the target server. This command is
sent by a source iSeries server when using the copy stream file HPS API. See the “Hierarchical File
System API Support for DDM” on page 38 for more information.

Parameter Name Source Target

FILNAM1 Sent iSeries name
Note: 1Name formats are server defined.

Command Objects
The following command objects are possible:

STREAM
Stream

STRSIZ
Stream size

LSTFAT (List File Attributes) Level 1.0, Level 2.0, and Level 3.0
This command retrieves selected attributes of a file, document, or folder.

Parameter Name Source Target

FILATTRL Sent Supported
FILNAM1 Target name iSeries name
DCLNAM2 Not sent Supported

Notes:
1 Name formats are server

defined.
2 Names are implementation

defined.

Reply Objects
The following reply object is possible:

FILAL List file attributes reply data

MODREC (Modify Record with Update Intent) Level 1.0
This command changes the record that currently has update intent placed on it without affecting the
current cursor position.

Parameter Name Source Target

ALWMODKY Sent Supported
DCLNAM1 Sent Program defined
Note: 1Names are implementation defined.

Command Objects
The following command object is possible:

RECORD
Fixed length record (maximum length 2**15-2)

Appendix D. DDM Commands and Parameters 185

OPEN (Open File) Level 1.0 and Level 2.0
This command establishes a logical connection between the using program on the source server and the
object on the target server.

Parameter Name Source Target

ACCINTLS Sent Supported
ACCMTHCL Sent Supported
DCLNAM1 Program defined Program defined
FILATTRL Not sent Supported
FILSHR Sent Supported
PRPSHD Not sent Supported for stream files only
Note: 1Names are implementation defined.

OPNDRC (Open Directory) Level 2.0
This command opens a folder on the target server. This command is not sent by a source iSeries server.

Parameter Name Source Target

ACCMTHCL N/A DRCAM only
DCLNAM1 N/A Program defined
Note: 1Names are implementation defined.

PUTSTR (Put Substream) Level 2.0 and Level 3.0
This command puts stream data into a document. This command is not sent by a source iSeries server.

Parameter Name Source Target

DCLNAM1 N/A Program defined
STROFF N/A Supported
STRPOS N/A Supported
Note: 1Names are implementation defined.

Command Objects
The following command object is possible:

STREAM
Stream

QRYCD (Query Current Directory) Level 2.0
This command returns the current directory. This command is not sent by a source iSeries server.

Parameter Name Source Target

AGNNAM N/A Ignored

Reply Objects
The following reply object is possible:

DRCNAM
Directory name

Note: A directory name length of zero indicates that the root directory is the current directory.

186 OS/400 Distributed Data Management

QRYSPC (Query Space) Level 2.0
This command returns the amount of space available to a user. This command is not sent by a source
iSeries server.

Parameter Name Source Target

AGNNAM N/A Ignored

Reply Objects
The following reply object is possible:

QRYSPCRD
Query space reply data

RNMDRC (Rename Directory) Level 2.0
This command renames a folder or database library, does not support moving folders, and is not sent by a
source iSeries server.

Parameter Name Source Target

DRCNAM N/A iSeries name
NEWDRCNM N/A iSeries name
Notes: Name formats are server defined. Generic names are not allowed.

RNMFIL (Rename File) Level 1.0 and Level 2.0
This command changes the name of an existing database file or document and can also be used for
moving documents.

Parameter Name Source Target

FILNAM1 Sent iSeries name
NEWFILNM2 Sent iSeries name
Notes:
1 Name formats are server defined. Generic names are allowed for documents only.
2 Name formats are server defined.

SBMSYSCMD (Submit server Command) Level 4.0
This command submits a server command, in the target control language syntax, to the target server.

Parameter Name Source Target

SYSCMD1 Sent Supported
Note: 1Command string to be run.

SETBOF (Set Cursor to Beginning of File) Level 1.0
This command sets the cursor to the beginning-of-file position of the file.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
Note: 1Names are implementation defined.

Appendix D. DDM Commands and Parameters 187

SETEOF (Set Cursor to End of File) Level 1.0
This command sets the cursor to the end-of-file position of the file.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
Note: 1Names are implementation defined.

SETFRS (Set Cursor to First Record) Level 1.0
This command sets the cursor to the first record of the file.

Parameter Name Source Target

BYPINA1 As required Supported
DCLNAM2 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECNBRFB Requested Supported
RTNREC3 Sent Supported
UPDINT3 Sent Supported
Notes:
1 Application dependent.
2 Names are implementation defined.
3 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECINA
Inactive record (-1 not supported, maximum = 2**15-2)

RECNBR
Record number

RECORD
Record

SETKEY (Set Cursor by Key) Level 1.0
This command positions the cursor based on the key value supplied and the relational operator specified
for RELOPR.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
HLDCSR Requested Supported
KEYVAL2 Max = 2000 Max = 2000
KEYVALFB Requested Supported
RECNBRFB Requested Supported
RELOPR Sent Supported
RTNREC3 Sent Supported
UPDINT3 Sent Supported

188 OS/400 Distributed Data Management

Parameter Name Source Target

Notes:
1 Names are implementation defined.
2 Maximum key size allowed by an iSeries server.
3 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECNBR
Record number

RECORD
Record

SETKEYFR (Set Cursor to First Record in Key Sequence) Level 1.0
This command sets the cursor to the first record in the key sequence.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECNBRFB Requested Supported
RTNREC2 Sent Supported
UPDINT2 Sent Supported
Notes:
1 Names are implementation defined.
2 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECNBR
Record number

RECORD
Record

SETKEYLM (Set Key Limits) Level 1.0
This command sets the limits of the key values for subsequent SETKEYNX and SETNXTKE commands.
This command is not sent by a source iSeries server.

Parameter Name Source Target

DCLNAM1 N/A Program defined
KEYHLM2 N/A Supported

Appendix D. DDM Commands and Parameters 189

Parameter Name Source Target

KEYLLM2 N/A Supported
Notes:
1 Names are implementation defined.
2 Application dependent.

SETKEYLS (Set Cursor to Last Record in Key Sequence) Level 1.0
This command sets the cursor to the last record of the file in key sequence order.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECNBRFB Requested Supported
RTNREC2 Sent Supported
UPDINT2 Sent Supported
Notes:
1 Names are implementation defined.
2 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECNBR
Record number

RECORD
Record

SETKEYNX (Set Cursor to Next Record in Key Sequence) Level 1.0
This command sets the cursor to the next record of the file in the key sequence order following the record
currently indicated by the cursor.

Parameter Name Source Target

BYPDMG1 Not sent Supported
DCLNAM2 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECCNT1 As required Supported
RECNBRFB Requested Supported
RTNREC3 Sent Supported
UPDINT3 Sent Supported
Notes:
1 Application dependent.
2 Names are implementation defined.
3 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

190 OS/400 Distributed Data Management

KEYVAL
Key value

RECAL
Record attribute list

RECNBR
Record number

RECORD
Record

SETKEYPR (Set Cursor to Previous Record in Key Sequence) Level 1.0
This command sets the cursor to the previous record of the file in the key sequence order preceding the
record currently indicated by the cursor.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECCNT2 As required Supported
RECNBRFB Requested Supported
RTNREC3 Sent Supported
UPDINT3 Sent Supported
Notes:
1 Names are implementation defined.
2 Application dependent.
3 iSeries server preferred implementation.

Reply Objects
KEYVAL

Key value

RECAL
Record attribute list

RECNBR
Record number

RECORD
Record

SETLST (Set Cursor to Last Record) Level 1.0
This command sets the cursor to the last record of the file.

Parameter Name Source Target

BYPINA1 As required Supported
DCLNAM2 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECNBRFB Requested Supported
RTNREC3 Sent Supported
UPDINT3 Sent Supported
Notes:
1 Application dependent.
2 Names are implementation defined.
3 iSeries server preferred implementation.

Appendix D. DDM Commands and Parameters 191

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECINA
Inactive record (-1 not supported, maximum = 2**15-2)

RECNBR
Record number

RECORD
Record

SETMNS (Set Cursor Minus) Level 1.0
This command sets the cursor to the record number of the file indicated by the cursor minus the number
of record positions specified by CSRDSP.

Parameter Name Source Target

ALWINA1 As required Supported
CSRDSP1 Sent Supported
DCLNAM2 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECNBRFB Requested Supported
RTNINA1 As required Supported

RTNREC3 Sent Supported
UPDINT3 Sent Supported
Notes:
1 Application dependent.
2 Names are implementation defined.
3 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECINA
Inactive record (-1 not supported, maximum = 2**15-2)

RECNBR
Record number

RECORD
Record

192 OS/400 Distributed Data Management

SETNBR (Set Cursor to Record Number) Level 1.0
This command sets the cursor to the record of the file indicated by the record number specified by
RECNBR.

Parameter Name Source Target

ALWINA1 As required Supported
DCLNAM2 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECNBR Sent Supported
RTNINA1 As required Supported
RTNREC3 Sent Supported
UPDINT3 Sent Supported
Notes:
1 Application dependent.
2 Names are implementation defined.
3 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECINA
Inactive record (-1 not supported, maximum = 2**15-2)

RECORD
Record

SETNXT (Set Cursor to Next Number) Level 1.0
This command sets the cursor to the next record of the file with a record number one greater than the
current cursor position.

Parameter Name Source Target

BYPDMG1 Not sent Supported
BYPINA1 As required Supported
DCLNAM2 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECCNT1 As required Supported
RECNBRFB1 As required Supported
RTNREC3 Sent Supported
UPDINT3 Sent Supported
Notes:
1 Application dependent.
2 Names are implementation defined.
3 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

Appendix D. DDM Commands and Parameters 193

KEYVAL
Key value

RECAL
Record attribute list

RECINA
Inactive record (-1 not supported, maximum = 2**15-2)

RECNBR
Record number

RECORD
Record

SETNXTKE (Set Cursor to Next Record in Key Sequence with a Key
Equal to Value Specified) Level 1.0
This command positions the cursor to the next record in the key sequence if the key field of that record
has a value equal to the value specified in the KEYVAL parameter. This command is not sent by a source
iSeries server.

Parameter Name Source Target

DCLNAM1 N/A Program defined
HLDCSR N/A Supported
KEYVAL2 N/A Max = 2000
KEYVALFB N/A Supported
RECNBRFB N/A Supported
RTNREC3 N/A Supported
UPDINT3 N/A Supported
Notes:
1 Names are implementation defined.
2 Maximum key size allowed by an iSeries server.
3 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECNBR
Record number

RECORD
Record

SETPLS (Set Cursor Plus) Level 1.0
This command sets the cursor to the record number of the file indicated by the cursor plus the integer
number of records specified by CSRDSP.

Parameter Name Source Target

ALWINA1 As required Supported
CSRDSP1 Sent Supported
DCLNAM2 Program defined Program defined
HLDCSR Requested Supported

194 OS/400 Distributed Data Management

Parameter Name Source Target

KEYVALFB Requested Supported
RECNBRFB Requested Supported
RTNINA1 As required Supported
RTNREC3 Sent Supported
UPDINT3 Sent Supported
Notes:
1 Application dependent.
2 Names are implementation defined.
3 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECINA
Inactive record (-1 not supported, maximum = 2 **15-2)

RECNBR
Record number

RECORD
Record

SETPRV (Set Cursor to Previous Record) Level 1.0
This command sets the cursor to the record of the file with a record number one less than the current
cursor position.

Parameter Name Source Target

BYPINA1 As required Supported
DCLNAM2 Program defined Program defined
HLDCSR Requested Supported
KEYVALFB Requested Supported
RECCNT1 As required Supported
RECNBRFB Requested Supported
RTNREC3 Sent Supported
UPDINT3 Sent Supported
Notes:
1 Application dependent.
2 Names are implementation defined.
3 iSeries server preferred implementation.

Reply Objects
The following reply objects are possible:

RECAL
Record attribute list

RECINA
Inactive record (-1 not supported, maximum = 2 **15-2)

RECNBR
Record number

Appendix D. DDM Commands and Parameters 195

RECORD
Record

SETUPDKY (Set Update Intent by Key Value) Level 1.0
This command places an update intent on the record that has a key value equal to the key value specified
by KEYVAL.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
KEYVAL2 Max = 2000 Max = 2000
KEYVALFB Requested Supported
RECNBRFB Requested Supported
RTNREC3 Sent Supported
Notes:
1 Names are implementation defined.
2 Maximum key size allowed by an iSeries server.
3 Only RTNREC(FALSE) is supported.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

RECNBR
Record number

RECORD
Record

SETUPDNB (Set Update Intent by Record Number) Level 1.0
This command places an update intent on the record of the file indicated by the record number specified
by RECNBR.

Parameter Name Source Target

ALWINA1 As required Supported
DCLNAM2 Program defined Program defined
KEYVALFB Requested Supported
RECNBR Sent Supported
RTNINA1 As required Supported
RTNREC3 Sent Supported
Notes:
1 Application dependent.
2 Names are implementation defined.
3 Only RTNREC(FALSE) is supported.

Reply Objects
The following reply objects are possible:

KEYVAL
Key value

RECAL
Record attribute list

196 OS/400 Distributed Data Management

RECINA
Inactive record (-1 not supported, maximum = 2 **15-2)

RECORD
Record

ULDRECF (Unload Record File) Level 1.0
This command sends records from a target record file to the source.

Parameter Name Source Target

ACCDORD1 Sent Supported
BYPDMG1 Sent Supported
FILNAM2 Sent iSeries name
RTNINA1 Sent Supported
Notes:
1 Application dependent.
2 Name formats are server defined.

Reply Objects
The following reply objects are possible:

RECAL
Record attribute list

RECCNT
Record count

RECINA
Inactive record (-1 not supported, maximum = 2 **15-2)

RECORD
Record

ULDSTRF (Unload Stream File) Level 2.0
This command sends a document from the target to the source. This command is sent by a source iSeries
server when using the copy stream file HPS API. See “Hierarchical File System API Support for DDM” on
page 38 for more information.

Parameter Name Source Target

BYPDMG Not sent FALSE only
FILNAM1 Sent iSeries name
STRORD Not sent Supported
Note: 1Name formats are server defined.

Reply Objects
The following reply objects are possible:

STREAM
Stream

STRPOS
Stream position

STRSIZ
Stream size

Appendix D. DDM Commands and Parameters 197

UNLFIL (Unlock File) Level 1.0 and Level 2.0
This command releases explicit file locks held by the requester on the file.

Parameter Name Source Target

FILNAM1 Target name iSeries name
LCKMGRNM Not sent Ignored
RLSFILLK Sent Supported
Note: 1Name formats are server
defined.

UNLIMPLK (Unlock Implicit Record Lock) Level 1.0
This command releases all implicit record locks currently held by the cursor.

Parameter Name Source Target

DCLNAM1 Program defined Program defined
Note: 1Names are implementation defined.

UNLSTR (Unlock Substreams) Level 2.0 and Level 3.0
This command unlocks a stream file substream. This command is not sent by a source iSeries server.

Parameter Name Source Target

DCLNAM1 N/A Program defined
STRLOC N/A Supported
Note: 1Names are implementation defined.

User Profile Authority
The user profile associated with target iSeries server jobs must be authorized to the equivalent CL
commands before the DDM command can be processed. The target job’s user profile must be authorized
to use the CL commands listed in the following table before DDM requests can be processed.

Table 13. User Profile Authority CL Commands

DDM Command
Received DDM Command Description Object Type

Authorized CL
Command

CHGDRC Change Current Directory FLR NONE 1

CHGFAT Change File Attributes PFILE LF DOC/FLR CHGPF CHGLF
NONE 1

CLOSE Close File FILE DOC NONE 2 NONE 1

CLRFIL Clear File FILE DOC NONE NONE 1

CLSDRC Close Directory FLR NONE 1

CPYFIL Copy File DOC NONE 1

CRTAIF Create Alternate Index File LF CRTLF
CRTDIRF Create Direct File PF CRTPF
CRTKEYF Create Key File PF CRTPF
CRTSEQF Create Sequential File PF CRTPF
CRTSTRF Create Stream File DOC NONE 1

CRTDRC Create Directory LIB FLR CRTLIB CRTFLR
DELFIL Delete File FILE DOC DLTF NONE 1

DELDRC Delete Directory LIB FLR DLTLIB NONE 1

GETDRCEN Get Directory Entry DOC/FLR NONE 1

LCKFIL Lock File FILE ALCOBJ

198 OS/400 Distributed Data Management

Table 13. User Profile Authority CL Commands (continued)

DDM Command
Received DDM Command Description Object Type

Authorized CL
Command

LODRECF Load (Put) Records to File FILE NONE 3

LSTFAT List File Attributes FILE DOC/FLR NONE 4 NONE 1

OPEN Open File FILE DOC NONE 2 NONE 1

OPENDRC Open Directory FLR NONE 1

QRYSPC Query Space Available to User USRPRF NONE 5

RNMDRC Rename Directory FLR LIB NONE 1 RNMOBJ
RNMFIL Rename File FILE DOC MBR RNMOBJ NONE 1

RNMM
UNLFIL Unlock File FILE NONE 6

ULDRECF Unload Records From File FILE NONE 3

Notes:
1 With the exception of CRTFLR, authorization to the CL commands that operate on folders and documents is

not verified because there are other ways for the user to start those functions through the OfficeVision
interface. If a user is enrolled in OfficeVision (which DDM does verify), that user is allowed to perform all
document and folder operations except CRTFLR.

2 Authorization to a command is not verified because there are means other than using a command interface
by which iSeries users can open and close files.

3 Command authorization is not verified because there is not a direct, one-to-one mapping between a CL
command and the DDM LODRECF/ULDRECF command.

4 Authorization to the DSPFD and DSPFFD commands is not verified because it cannot be determined which
command should be verified. In addition, the conditions under which the DDM command was issued by the
source server are not known.

5 The space available to a user can be obtained by issuing the DSPUSRPRF command, but this is only a
small piece of the data available through the use of this command.

6 Authorization to the CL DLCOBJ command is not checked because if the remote user was able to allocate
files, DDM must be able to deallocate them.

The following list is an explanation of the object type codes used in Table 13 on page 198

Object Type
Object Type Definition

DOC Document

FLR Folder

PF Physical File

LF Logical File

LIB Library

MBR Member

SRCF Source Physical File

USRPRF
User Profile

Appendix D. DDM Commands and Parameters 199

200 OS/400 Distributed Data Management

Appendix E. iSeries Server-to-CICS Considerations with DDM

This appendix discusses iSeries server to Customer Information Control System (CICS) additional
programming considerations.

Note: A System/370 host must have installed CICS/OS/VS Version 1.7 or later and CICS/DDM Version
1.1.

See the following topics for more information:

v “iSeries Languages, Utilities, and Licensed Programs”

v “Language Considerations for iSeries Server and CICS” on page 204

iSeries Languages, Utilities, and Licensed Programs
The following iSeries languages, utilities, and licensed programs can access remote CICS files:

v Programs written in the following languages on an iSeries server can access remote CICS files:

ILE C Programming Language
See “ILE C Considerations” on page 208.

CL See “iSeries CL Considerations” on page 202.

ILE COBOL Programming Language
See “ILE COBOL Considerations” on page 206.

PL/I See “PL/I Considerations” on page 204.

ILE RPG Programming Language
See “ILE RPG Considerations” on page 208.

v Programs written in BASIC may cause results that cannot be predicted when accessing remote CICS
files.

v iSeries Query can access the remote entry sequence data set (ESDS), relative record data set (RRDS),
and key sequence data set (KSDS). However, iSeries Query cannot access virtual storage access
method (VSAM) files through DDM.

v The following licensed programs may cause results that cannot be predicted when accessing remote
CICS files:
– OfficeVision
– iSeries Access

Note: Some of the high-level languages provide access to the server database I/O feedback area. When
accessing a remote VSAM RRDS, this area will contain the relative record number. However, when
accessing other types of VSAM data sets, the relative record number is not known and a value of
-1 is returned as the relative record number.

Additional considerations may apply when accessing CICS files which are to be read or written by a
System/370 host due to the way a System/370 host stores data. For example, the System/370 host
representation of a floating point number is different from the iSeries server representation of a floating
point number.

For more information, see the following topics:

v “CRTDDMF (Create DDM File) Considerations” on page 202

v “iSeries CL Considerations” on page 202

© Copyright IBM Corp. 1999, 2002 201

|

|

|

|

|

|

CRTDDMF (Create DDM File) Considerations
For applications running on an iSeries server to access remote files, the programmer must use the
CRTDDMF command to create an object called a DDM file. The ACCMTH parameter of this command
shows which DDM access method should be used when opening the remote file. If *RMTFILE is used,
OS/400 DDM selects an access method that is compatible with:
v The type of VSAM data set being accessed
v The access methods supported by CICS/DDM for the VSAM data set

Table 14 shows how the possible values for the ACCMTH parameter correspond to VSAM data sets.

Table 14. ACCMTH Parameter of iSeries CRTDDMF Command

ACCMTH Parameter
Values

VSAM Data Set Organization

ESDS RRDS KSDS VSAM Path

*ARRIVAL R R E E

*KEYED E E R R

*BOTH E O O O

*RANDOM E O O O

*SEQUENTIAL R O O O

*COMBINED E O E E

Where:

R Shows the parameter is required for accessing the VSAM data set.

O Shows the parameter is optional for accessing the VSAM data set.

E Shows the parameter causes an OS/400 message.

To improve performance, the iSeries user may want to supply values other than *RMTFILE for the
ACCMTH parameter. To avoid server messages, use the values specified in Table 14 when accessing
remote VSAM data sets.

The value specified for the RMTFILE file parameter must be the same as the value specified for the
DATASET parameter of the CICS DFHFCT macro when the VSAM data set is defined to the CICS system.

iSeries CL Considerations
Besides the information in this manual, consider the following sections when using iSeries CL commands
to access VSAM data sets on a remote CICS system.

Note: Commands that do not appear in the following headings have no considerations besides those
stated in this manual.

ALCOBJ (Allocate Object)
Unless the CICS system programmer replaces the CICS/DDM-supplied exclusive file lock program with a
special version of the program, a lock condition value of *SHRRD or *SHRUPD must be used when using
the Allocate Object (ALCOBJ) command to allocate a remote VSAM data set. All other lock condition
values result in a server message on the iSeries server.

CLRPFM (Clear Physical File Member)
The Clear Physical File Member (CLRPFM) command cannot clear a VSAM data set on a remote CICS
system.

CPYF (Copy File)
The Copy File (CPYF) command can access remote VSAM data sets defined to a CICS system. However,
consider the following:

202 OS/400 Distributed Data Management

v When the TOFILE parameter is a remote VSAM data set:
– The CRTFILE parameter must have a value of *NO.
– The MBROPT parameter must have a value of *ADD.
– The FMTOPT parameter must have a value of *NOCHK.

v When the TOFILE parameter is a remote VSAM ESDS or KSDS, the COMPRESS parameter must
have a value of *YES.

CPYTODKT, CPYFRMDKT, CPYTOTAP, CPYFRMTAP and CPYSPLF Commands
The Copy to Diskette (CPYTODKT), the Copy from Diskette (CPYFRMDKT), the Copy to Tape
(CPYTOTAP), and the Copy from Tape (CPYFRMTAP) commands access remote VSAM data sets defined
to a CICS system. However, *ADD must be used for the MBROPT parameter. The Copy Spool File
(CPYSPLF) command cannot access remote VSAM data sets.

DLCOBJ (Deallocate Object)
The Deallocate Object (DLCOBJ) command can release any lock successfully acquired for a remote
VSAM data set.

DSPFD and DSPFFD Commands
The Display File Description (DSPFD) and Display File Field Description (DSPFFD) commands can display
information about a remote VSAM data set. However, the information for many of the fields is not available
to CICS/DDM and is not returned to OS/400 DDM. Refer to Table 15 for the fields that CICS/DDM does
not return:

Table 15. CICS/DDM File and File Field Descriptions

Field Value

Creation date Zeros
Current number of records Zeros
Data space in bytes Zeros
File level identifier Zeros
File text description Zeros
Format level identifier Blanks
Last change date and time Zeros
Member creation date Zeros
Member expiration date *NONE
Member level identifier Zeros
Member size *NOMAX
Number of deleted records Zeros
Text description Blanks
Total deleted records Zeros
Total member size Zeros
Total records Zeros
Note: The values displayed do not represent actual data about the file. They act as default values for the information
that CICS/DDM does not return.

When the type of file is logical, the information displayed shows that unique keys are not required. In fact,
CICS/DDM does not know whether unique keys are required or not.

Sometimes, the iSeries user needs to know the type of VSAM data set being accessed. By using the
following information, which is displayed by the DSPFD command, it is possible for the iSeries user to
make this decision:

v If the type of file is logical, the VSAM data set is a VSAM path.

v If the type of file is physical and the access path is keyed, the VSAM data set is KSDS.

v In all other cases, the VSAM data set is either an RRDS or an ESDS. If the iSeries user must know
whether it is an RRDS or an ESDS, the CICS system programmer should be contacted.

Appendix E. iSeries Server-to-CICS Considerations with DDM 203

DSPPFM (Display Physical File Member)
The Display Physical File Member (DSPPFM) command can be used to access remote RRDS. It does not
work for other types of VSAM data sets.

OPNDBF (Open Database File)
The Open Database File (OPNDBF) command can open a remote VSAM data set. However, a server
message is created on the iSeries server if *ARRIVAL is used for the ACCPTH parameter and the remote
data set is a VSAM KSDS or a VSAM path.

OVRDBF (Override with Database File)
The Override with Database File (OVRDBF) command can override a local database file with a remote
VSAM data set. However, the following must be considered:

v A POSITION value of *RRN works when the remote VSAM data set is an RRDS. For all other types of
VSAM data sets, *RRN causes a server message on the iSeries server.

v A POSITION value of *KEYB or *KEYBE causes a server message on the iSeries server when the
remote file is a VSAM path.

v Unless the CICS system programmer replaces the CICS/DDM-supplied exclusive file lock program, the
RCDDMTLCK parameter must have a lock condition value of *SHRRD or *SHRUPD. All other lock
condition values result in a server message on the iSeries server.

v CICS/DDM does not return the actual expiration date of the file to OS/400 DDM. Instead, it returns a
special value that indicates the expiration date is not known. This is true even if the EXPCHK parameter
has a value of *YES.

RCVNETF (Receive Network File)
The Receive Network File (RCVNETF) command can access a VSAM data set defined to a remote CICS
system. However, the MBROPT parameter must have a value of *ADD.

Language Considerations for iSeries Server and CICS
iSeries application programmers using PL/I, ILE COBOL, ILE C, iSeries System/36-Compatible RPG II, or
ILE RPG languages should be aware of the information in the following sections:

PL/I See “PL/I Considerations”.

ILE COBOL Programming Language
See “ILE COBOL Considerations” on page 206.

ILE C Programming Language
See “ILE C Considerations” on page 208.

ILE RPG Programming Language
See “ILE RPG Considerations” on page 208.

PL/I Considerations
The following sections summarize the limitations that exist when using PL/I to access remote VSAM data
sets from an iSeries server. These limitations should be considered in addition to those already stated in
this manual.

PL/I Open File Requests
The OS/400 DDM user can access remote CICS files with PL/I programs. When opening the file with the
RECORD file attribute, the program must use the file attributes specified in Table 16 on page 205. By
noting the values that appear in this table, you can determine the difference between accessing an iSeries
database file and a remote VSAM data set.

Note: Remote files can also be opened with the PL/I STREAM file attribute. However, if the STREAM file
attribute is used to open a VSAM KSDS, a server message occurs. This happens because records
in a VSAM KSDS cannot be processed in arrival sequence.

204 OS/400 Distributed Data Management

Unless the CICS system has replaced the CICS/DDM exclusive file locking program, you cannot use the
EXCL and EXCLRD file locking options for the ENVIRONMENT parameter when opening a remote VSAM
data set.

Table 16. PL/I File Attributes

PL/I File Attributes

VSAM Data Set Organization

ESDS RRDS KSDS VSAM Path

SEQUENTIAL R O O O

DIRECT E O O O

SEQL KEYED E O O O

INPUT O O O O

OUTPUT O O O E

UPDATE O O E E

CONSECUTIVE R R E E

INDEXED – – R R

Where:

R Shows the attribute is required for accessing the VSAM data set.

O Shows the attribute is optional for accessing the VSAM data set.

E Shows the attribute is allowed by PL/I but the open fails when accessing the VSAM data set.

– Shows the option is valid for keyed files only.

PL/I Input/Output Requests
The PL/I programmer must be aware of the following when using the PL/I input/output requests:

Read Requests:

v A KEYSEARCH parameter value of BEFORE or EQLBFR is not supported by CICS/DDM when
accessing a VSAM path. However, these parameter values are supported when accessing a VSAM
KSDS.

v A POSITION parameter value of PREVIOUS and LAST is not supported when accessing a VSAM path.
However, these parameter values are supported when accessing a VSAM KSDS.

v Because the DIRECT or SEQUENTIAL KEYED attributes cannot be used to open a VSAM ESDS, it is
not possible to access records by relative record number or to have the relative record number returned
via the KEY and KEYTO parameters. See “PL/I Open File Requests” on page 204 for further
information.

v Because VSAM KSDS and VSAM alternate indexes are always defined as a single key field, the
NBRKEYFLDS parameter should not be used.

Write Requests:

v The KEYFROM parameter does not work when writing a record to a VSAM RRDS.

v The WRITE request does not work when writing a record to VSAM KSDS that already contains a record
with the same key value.

v Because the OUTPUT or UPDATE file attribute cannot be used to open a VSAM path, it is not possible
to write records to a VSAM path. Instead, the application program must write the record by using the
base data set of the VSAM path.

Rewrite Requests:

v The REWRITE does not work if rewriting a record of a VSAM KSDS when the key value of the record is
changed.

Appendix E. iSeries Server-to-CICS Considerations with DDM 205

v Because the UPDATE file attribute cannot be used to open a VSAM path, it is not possible to rewrite
records in a VSAM path. Instead, the application program must rewrite the record by using the base
data set of the VSAM path.

Delete Requests:

v The DELETE does not work when deleting the record of a VSAM ESDS.

v Because the UPDATE file attribute cannot be used to open a VSAM path, it is not possible to delete
records in a VSAM path. Instead, the application program must delete the records by using the base
data set of the VSAM path. However, if the base data set of the VSAM path is a VSAM ESDS, the
DELETE does not work.

ILE COBOL Considerations
The following sections summarize the limitations that exist when using ILE COBOL programming language
to access remote VSAM data sets from an iSeries server. Unless otherwise stated, these limitations apply
to both the System/36 and the iSeries server. These limitations are in addition to those already stated in
this manual.

ILE COBOL Select Clause
iSeries users can access remote CICS files with ILE COBOL programming language. However, the ILE
COBOL SELECT clause must use the file organizations and access methods specified in Table 17 on
page 206.

Table 17. ILE COBOL File Organizations and Access Methods

ILE COBOL
Programming

Language VSAM Data Set Organization

Program-Given
Access Methods ESDS RRDS KSDS VSAM Path

Program-Given
Organization

Sequential Sequential X X E E

Relative Sequential
Random
Dynamic

E
E
E

X
X
X

E
E
E

E
E
E

Indexed Sequential
Random
Dynamic

–
–
–

–
–
–

X
X
X

X
X
X

Where:

X Shows the access method is allowed.

E Shows that ILE COBOL programming language allows the access method but that the open fails when
accessing the VSAM data set. An iSeries message is created.

– Shows the option is never valid for nonkeyed files. An iSeries message occurs whenever indexed file
organization is selected for any nonkeyed file. This is true even when the file is a local file.

Notes:

1. When accessing a VSAM path, the WITH DUPLICATE phrase should be used.

2. When accessing a VSAM KSDS, the WITH DUPLICATE phrase should not be used.

ILE COBOL Statements
The following headings describe considerations you should be aware of when using ILE COBOL
statements to access remote VSAM data sets.

ILE COBOL OPEN Statement: When accessing remote CICS files, the ILE COBOL OPEN statement
must use the open modes that are specified in Table 18 on page 207.

206 OS/400 Distributed Data Management

Table 18. Using ILE COBOL Programming Language to Open a CICS File

ILE COBOL Open
Mode

VSAM Data Set Organization

ESDS RRDS KSDS VSAM Path

Input X X X X

Output E E E E

Input/Output X X X E

Extend X – – –

Where:

X Shows the open mode is allowed.

E Shows the open mode is allowed by ILE COBOL programming language but that the open fails when
accessing the VSAM data set. A message occurs on an iSeries server.

– Shows the open mode is not applicable.

ILE COBOL READ Statement:

v The PRIOR phrase and the LAST phrase are not supported by CICS/DDM when accessing a VSAM
path. It is supported when accessing a VSAM KSDS.

v Because the RELATIVE file organization can only be used to open a VSAM RRDS, it is not possible to
access records by relative record number or to have the relative record number returned from the
remote file unless the remote file is a VSAM RRDS.

ILE COBOL WRITE Statement:

v The WRITE statement does not work when the ILE COBOL program is running on an iSeries server
and the file was opened with a RELATIVE file organization.

v The WRITE statement does not work when writing a record to a VSAM KSDS and the data set already
contains a record with the same key value.

v Because the input/output and output open modes cannot be used to open a VSAM path, it is not
possible to write records to a VSAM path. Instead, the application program must write the record by
using the base data set of the VSAM path.

ILE COBOL REWRITE Statement:

v The REWRITE statement does not work when rewriting the record of a VSAM KSDS and the key value
of the record is changed.

v Because the input/output open mode cannot be used to open a VSAM path, it is not possible to rewrite
records in a VSAM path. Instead, the application program must rewrite the record by using the base
data set of the VSAM path.

ILE COBOL START Statement:

v The START statement does work if the open mode is INPUT.

ILE COBOL DELETE Statement:

v Because the sequential file organization must be used to open a VSAM ESDS, it is not possible to
delete records in a VSAM ESDS.

v Because the input/output open mode cannot be used to open a VSAM path, it is not possible to delete
records in a VSAM path. Instead, the application program must delete the record by using the base
data set of the VSAM path. However, if the base data set of the VSAM path is a VSAM ESDS, the
DELETE does not work.

Appendix E. iSeries Server-to-CICS Considerations with DDM 207

ILE C Considerations
The following sections summarize considerations for using ILE C programming language to access remote
VSAM data sets from an iSeries server.

ILE C Open Considerations
Because ILE C programming language supports only sequential I/O, opens will fail if KSDS or VSAM
paths are opened.

Open Mode Considerations
Table 19 on page 208 shows the open mode considerations when using ILE C programming language.

Table 19. Using ILE C Programming Language to Open a CICS File

ILE C Open Mode

VSAM Data Set Organization

ESDS RRDS KSDS VSAM Path

r, rb X X X X

w, wb E E E E

w+, wb+, w+b, a+, ab+, a+b, r+, rb+, r+b, a, ab X X X E

a, ab X — — —

Where:

X Open mode is allowed.

E Open mode is allowed by ILE C programming language, but the open fails when accessing the VSAM data
set.

— Open mode is not applicable.

ILE RPG Considerations
The following sections summarize the limitations that exist when using iSeries System/36-Compatible RPG
II or ILE RPG programming language on an iSeries server to access remote VSAM data sets. These
limitations are in addition to those already stated in this manual.

File Description Specifications
iSeries users can access remote VSAM data sets with iSeries System/36-Compatible RPG II or ILE RPG
programming language. However, not all ILE RPG processing methods selected by the file description
specifications can access remote VSAM data sets. Refer to the following tables to determine which file
description specifications to use:

v Table 20 on page 209 for accessing VSAM ESDS

v Table 21 on page 209 for accessing VSAM RRDS

v Table 22 on page 210 for accessing VSAM KSDS

v Table 23 on page 210 for accessing VSAM paths

If a file description specification other than what appears in these tables is used, CICS/DDM rejects the
request for opening the file.

208 OS/400 Distributed Data Management

Table 20. ILE RPG Processing Methods for Remote VSAM ESDS

Type of Processing

Column Number

15 16 19 28 31 32 66

Consecutive I
I
I
I
U
U
U

P
S
T
D
P
S
D

F
F
F
F
F
F
F

Add Records Only O A

Table 21. ILE RPG Processing Methods for Remote VSAM RRDS

Type of Processing

Column Number

15 16 19 28 31 32 66

Consecutive I
I
I
U
U
U

P
S
D
P
S
D

F
F
F
F
F
F

Random by Chain
See note.
See note. I

I
U
U

C
C
C
C

F
F
F
F

R
R
R
R

A
A

Random by Addrout I
I
I
U
U
U

P
S
F
P
S
F

F
F
F
F
F
F

R
R
R
R

I
I
I
I

Consecutive and/or Random
See note.
See note.

I
I
U
U

F
F
F
F

F
F
F
F

A
A

Note: A K must be used in column 53 and RECNO must be in columns 54 through 59 to indicate relative record
number processing.

Appendix E. iSeries Server-to-CICS Considerations with DDM 209

Table 22. ILE RPG Processing Methods for VSAM KSDS

Type of Processing

Column Number

15 16 19 28 31 32 66

Sequential
By key, no add
By key, no add
By key, no add
By key, with add
By key, with add
By key, with add
By key, no add
By key, no add
By key, no add
By key, with add
By key, with add
By key, with add
By limits
By limits
By limits
By limits
By limits
By limits
By limits
By limits, adds
By limits, adds

I
I
I
I
I
I
U
U
U
U
U
U
I
I
I
U
U
U
U
I
I

P
S
D
P
S
D
P
S
D
P
S
D
P
S
F
D
P
D
F
F
F

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

L
L
L
L
L
L
L
L
L

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A
A
A
A
A
A
A
A

Random by Chain
No adds
With adds
No adds
With adds

I
I
U
U

C
C
C
C

F
F
F
F

R
R
R
R

I
I
I
I

A
A

Random by Addrout I
I
U
U

P
S
P
S

F
F
F
F

R
R
R
R

I
I
I
I

I
I
I
I

Sequential and/or Random
By key, no add
By key, with add
By key, no add
By key, no add

I
I
U
U

F
F
F
F

F
F
F
F

I
I
I
I

A
A

Add Records Only O I A

Table 23. Processing Methods for Remote VSAM Paths

Type of Processing

Column Number

15 16 19 28 31 32 66

Sequential
By key, no add
By key, no add
By key, no add
By limits
By limits
By limits
By limits

I
I
I
I
I
I
I

P
S
D
P
S
F
D

F
F
F
F
F
F
F

L
L
L
L

I
I
I
I
I
I
I

Random by Chain
No adds

I C F R I

210 OS/400 Distributed Data Management

Table 23. Processing Methods for Remote VSAM Paths (continued)

Type of Processing

Column Number

15 16 19 28 31 32 66

Random by Addrout I
I

P
S

F
F

R
R

I
I

I
I

Sequential and/or Random
By key, no add

I F F I

ILE RPG Input/Output Operations
Be aware of the following when accessing remote VSAM data sets:

v Records can be read or added by relative record number only when the remote VSAM data set is an
RRDS. Random processing by relative record number can be used only when processing a VSAM
RRDS.

v A request to delete a record in an ESDS does not work because ESDS is never delete-capable.

v The processing method cannot use the update or output specification in column 15 when the remote
VSAM data set is a VSAM path. Instead, all add, update, or delete record requests must be made via
the base data set of the VSAM path. However, if the base data set of the VSAM path is a VSAM ESDS,
the DELETE does not work.

v The READP operation code cannot be used to read the previous record in a VSAM path.

v Because VSAM KSDS does not allow duplicate keys, a request to add a record that duplicates the key
of an existing record in a KSDS does not work.

v When accessing a KSDS, an update request that changes the key value of the record does not work.

v For ILE RPG programming language, *HIVAL can be used to obtain the last record of a remote KSDS.
However, *HIVAL does not work when accessing a VSAM path.

Appendix E. iSeries Server-to-CICS Considerations with DDM 211

212 OS/400 Distributed Data Management

Appendix F. DDM Differences

This appendix describes the DDM differences between:

v iSeries server and System/36

v iSeries server and System/38

For additional information on the differences between the iSeries server and the System/38 see the

System/38 Environment Programming book.

iSeries server and System/36 DDM Differences
The following is a list of differences between the iSeries server and System/36:

v The network resource directory (NRD) procedures are not supported on the iSeries server.

– The System/36 NRD used one or more libraries containing DDM files on the iSeries server. One
System/36 NRD entry is equivalent to one DDM file on the iSeries server.

- Use the Work with DDM Files (WRKDDMF) command in place of the EDITNRD and DELNRD
procedures.

- Use the Display DDM Files (DSPDDMF) command in place of the LISTNRD procedure.

- Use the Restore Object (RSTOBJ) command in place of the RESTNRD procedure.

- Use the Save Object (SAVOBJ) command in place of the SAVNRD procedure.

See the System/36 Migration Planning book for additional information.

– If an NRD entry on the System/36 refers to a remote file, and a SAVE or RESTORE procedure is
requested, the System/36 saves or restores the data of the remote file. The iSeries Save Object
(SAVOBJ) or Restore Object (RSTOBJ) command saves or restores only the definition of the DDM
file, not the remote data.

– When using date-differentiated files on the System/36, the most current file is selected. When
running from a System/36 to an iSeries server, the NRD entry must specify a member name of
*LAST to access the last member of the database file, which is the file with the most recent date. If
no member name is specified, *FIRST is used.

v The remote label in the NRD on a System/36 source must be in the syntax required by the target
server. For further information on specific naming conventions, see “Specifying Target Server File
Names for DDM” on page 110.

v The number of records allocated for a file differs between the System/36 and the iSeries server. File
space allocation on the System/36 is in block units (2560 bytes) while on the iSeries server, file space
allocation is by number of records. For example, if a user asks for a sequential file capable of storing
ten 100-byte records, the System/36 allocates 1 block of file space (2560 bytes), and uses as much of
the file space as possible (2500 bytes), giving the user twenty-five 100-byte records.

The iSeries server allocates exactly 10 records. If the user took advantage of this allocation method on
the System/36, the file (nonextendable) created using DDM on the iSeries server might be too small.

v The DDM Change End-of-File (CHGEOF) command used on the System/36 is not supported on the
iSeries server.

v The iSeries server does not support writing over data on the Delete File (DLTF) command. If an iSeries
user accessing a System/36 wants to overwrite the data, an application program must be written on the
iSeries server, or the user must access the target System/36 and perform the delete operation with the
erase operation.

v A System/36 source server cannot create direct files on an iSeries target server that are
nondelete-capable. The iSeries server does not support files that are nondelete-capable for all file
organizations.

© Copyright IBM Corp. 1999, 2002 213

../../books/c4137350.pdf
../../books/c4141520.pdf

v The System/36 does not allow a record with hex FF in the first byte to be inserted into a delete-capable
file. The iSeries server allows this.

v When running System/36 applications to another System/36, the application waits indefinitely for the
resource to become available. When running System/36 applications to or from an iSeries server, these
applications may result in time-outs while waiting for a resource to become available.

v Direct files are extendable on the System/36 but not on the iSeries server. If a direct file is created on
the iSeries server as extendable, the file is allocated with three extents, but is never extended beyond
the initial size plus three extents.

v The System/36 relay function is not supported whenever one of the servers in the network along the
path from the source server to the target server is not a System/36. The iSeries server never supports
the relay function; advanced peer-to-peer networking (APPN) must be used.

v Key fields on the System/36 are considered to be strictly character fields. The System/36 does not
recognize a key field as being packed or zoned. Unexpected results may occur if source iSeries
application programs refer to packed fields within a System/36 file. Because of the way packed numbers
are stored and the fact that the System/36 does not recognize key fields as packed on relative keyed
operations, records may be returned in a different order than expected or no record may be found when
one is expected.

As an example, the ILE RPG SETLL statement may fail unexpectedly with record not found or may
select a record other than the record expected when using packed fields to a System/36 file. Only
character and unsigned numeric fields should be used as key fields.

iSeries server and System/38 DDM Differences
The following is a list of differences between the iSeries server and System/38:

v Three parameters are added to the Create DDM File (CRTDDMF) and Change DDM File (CHGDDMF)
commands. These parameters are the remote location name (RMTLOCNAME), local location name
(LCLLOCNAME), and the remote network ID (RMTNETID). DDM files can be created either in the
System/38 environment or on the iSeries server.

v The Submit Remote Command (SBMRMTCMD) command must be in the syntax of the target server,
even in the System/38 environment. For example, a System/38 submitting commands to an iSeries
server must use the syntax of the iSeries server.

v The remote file name must be in the syntax of the target server. For further information on specific
naming conventions, see “Specifying Target Server File Names for DDM” on page 110.

v The default value for the DDMACC parameter on the Change Network Attributes (CHGNETA) command
on the System/38 is *REJECT. The default value for the DDMACC parameter on the iSeries server is
*OBJAUT.

v On the System/38, files are created as FIFO (first in, first out) or LIFO (last in, first out). The default for
creating a file is FIFO on the System/38.

When running System/38 applications that are dependent on duplicate keys being FIFO or LIFO to an
iSeries server, you should specify either FIFO or LIFO when creating your iSeries files because there is
no default for iSeries files. This means the iSeries server looks for an available index path to share,
which could be either FIFO or LIFO.

v Keyed files containing fields other than character (zoned or packed) created via DDM on a remote
System/38 may result in the fields defined as character fields. This may produce unexpected results
when such a file is processed using relative keyed operations. Because the file is created with fields
that are not packed, records may be returned in a different order than expected or no record may be
found when one is expected.

As an example, the ILE RPG SETLL statement may fail unexpectedly with record not found or may
select a record other than the record expected when using packed fields to a System/38 file. Only
character and unsigned numeric fields should be used as key fields for files that are created via DDM
on the remote System/38.

214 OS/400 Distributed Data Management

v To support adding a record by the relative record number operation, an ILE RPG program is required for
DDM to do a READ CHAIN(RRN) operation followed by a WRITE operation. The file must be opened
for read and update authorities, and the user must have read and update data authorities to the file.

Format selector programs on adding a record by the relative record number operation are only
supported on the iSeries server. Incompatibilities may arise for those users who have a format selector
program for a logical file if they do direct file processing.

Appendix F. DDM Differences 215

216 OS/400 Distributed Data Management

Bibliography

The manuals and topics in the iSeries Information
Center listed in this bibliography are suggested for
finding more information about subjects in this
publication. Not all of these manuals are referred
to in this guide. You may need to use one or more
of the following IBM iSeries manuals and topics
while using this guide.

Communications:

v The APPC, APPN, and HPR topic in the iSeries
Information Center provides the application
programmer with information about the
advanced peer-to-peer networking (APPN)
support provided by the iSeries server. This
topic provides information for configuring an
APPN network and presents considerations to
apply when using APPN. The topic provides the
application programmer with information about
the advanced program-to-program
communications (APPC) support provided by
the iSeries server. This is a guide for
programming and defining the communications
environment for APPC communications.

v SNA Distribution Services provides the
system operator or administrator with
information about configuring a network for
Systems Network Architecture distribution
services (SNADS) and the Virtual
Machine/Multiple Virtual Storage (VM/MVS)
bridge.

v ICF Programming provides the application
programmer with information needed to write
application programs that use AS/400
communications and the OS/400 intersystem
communications function (OS/400-ICF).

v Communications Management provides
the system operator with communications work
management information, error handling
information, communications status information,
and communications performance information.

v Communications Configuration provides
the application programmer with information on
configuring line, controller, and device
descriptions to communicate within a network.
Additional configuration considerations are
discussed.

v Remote Work Station Support provides
the system administrator or end user with
concepts, examples, and information on
preparation and configuration for using the
display station pass-through function. This
guide also contains information about using
3270 remote attachment, the Distributed Host
Command Facility (DHCF) network, and the
X.21 short hold mode (SHM) network.

v OptiConnect for OS/400 provides
information about installing, using, and
managing communications using OptiConnect.

Languages:

v RPG/400 User’s Guide

v System/36-Compatible COBOL User’s Guide
and Reference (SC09-1815)

v System/36-Compatible RPG II User’s Guide

and Reference

v System/38-Compatible COBOL User’s Guide

and Reference

Planning and Installation:

v System/36 Migration Planning

Programming:

v ILE Concepts describes, for the
application programmer, the concepts and
terminology of the Integrated Language
Environment of the OS/400 system. It includes
an overview of the ILE model; concepts of
program creation, run-time, and debugging;
discussion of storage and condition
management, and descriptions of calls and
APIs.

v The CL topic in the Programming category of
the iSeries Information Center provides the
application programmer with a description of the
iSeries server control language (CL) and its
commands.

v The Application programming interfaces (APIs)
topic in the Programming category of the
iSeries Information Center provides information
on how to create, use, and delete objects that
help manage system performance, use spooling

© Copyright IBM Corp. 1999, 2002 217

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

../rzahj/rzahjovr.htm
../../books/c4154101.pdf
../../books/c4154420.pdf
../../books/c4154062.pdf
../../books/c4154010.pdf
../../books/c4154020.pdf
../../books/c4154143.pdf
../../books/c0918160.pdf
../../books/c0918180.pdf
../../books/c0918180.pdf
../../books/c0918140.pdf
../../books/c0918140.pdf
../../books/c4141520.pdf
../../books/c4156066.pdf
../rbam6/rbam6clmain.htm
../apis/api.htm

efficiently, and maintain database files
efficiently. This topic also includes information
on creating and maintaining the programs for
system objects and retrieving OS/400
information by working with objects, database
files, jobs, and spooling.

v System/38 Environment Programming
provides the application programmer with the
information needed to migrate from a
System/38, convert to an iSeries server, and
coexist in a network.

Distributed Data Management (DDM)
Architecture:

v Distributed Data Management Architecture:
General Information, GC21-9527

v Distributed Data Management Architecture:
Implementation Planner’s Guide, GC21-9528

v Distributed Data Management Architecture:
Implementation Programmer’s Guide,
SC21-9529

v Distributed Data Management Architecture:
Reference, SC21-9526

218 OS/400 Distributed Data Management

|
|
|
|
|
|

|
|
|
|
|

../../books/c4137350.pdf

Index

Special Characters
*OBJAUT value

DDMACC parameter 51
*REJECT value

DDMACC parameter 51
*SAME value

DDMACC (DDM Request Access) parameter 51
%INCLUDE statement 30

A
access intent 115
access method 115, 170
accessing

activation groups 18
BASIC considerations 30
CL command considerations 31
example 112
file access considerations 109
ILE C considerations 31
ILE COBOL considerations 28
ILE RPG considerations 27
iSeries target restrictions 43
iSeries-to-iSeries 112
multiple application programs 18
multiple files 21, 36, 152
multiple iSeries files 152
multiple source program 18
PL/I considerations 30
processing multiple requests 22
single source program 18
System/36 files 113, 153
utility considerations 32

ACCMTH parameter
Create DDM File (CRTDDMF) command 202

activation group
Integrated Language Environment (ILE) 15

Add Communications Entry (ADDCMNE) command 50
ADDCMNE (Add Communications Entry) command 50
adding

communications entry 50
ADDROUT file 28
advanced peer-to-peer networking (APPN)

configuring 41
description 10
usage 42

advanced printer function utility 32
advanced program-to-program communications (APPC)

CHGJOB command 86
ALCOBJ (Allocate Object) command 85, 202
Allocate Object (ALCOBJ) command 85, 117, 202
allocating

file
example 112

object 85, 202
ALLOW attribute 155
Alternate Index File (ALTINDF) model 169

alternatives to DDM 120
APPC (advanced program-to-program communications)

CHGJOB command 86
application program

forms of coding 143
inquiry example 144
logical file example 147
Order Entry (ORDERENT) 146
program considerations 36
program examples 143
programs, using overrides 144
Query/38 considerations 35
transferring a program 150

APPN (advanced peer-to-peer networking)
configuring 41
description 10
usage 42

AS/400 system
access methods 170
accessing files

multiple 152
remote 112

blocked record processing 116
compatibility 3
considerations 32, 43
data file utility (DFU) 32
Data file utility (DFU) 35
deleted records 116, 138
differences

to System/36 137, 213
to System/38 214

files
access considerations 109
types supported 109

join logical files 43, 44
multiformat logical file 43, 109
overview of DDM functions 4
problem analysis 135
programming considerations 201
restrictions 20
source

considerations 12, 43
restrictions 43
System/36 138

source and target in same job 152
target

considerations 16, 43, 137
file names 111
restrictions 43
System/36 138

user profiles 51
utilities 32
variable-length records 116

AUT (Authority) parameter 49
auto report program

creating 27

© Copyright IBM Corp. 1999, 2002 219

B
BASIC

commands 30
considerations 23
LISTFMT 30
LISTFMTP 30
restrictions 24, 30
source file requirements 23, 30
SRCFILE parameter 30
SRCMBR parameter 30
starting 30

BASIC program
creating 30

batch
processing 130
queries 33

Begin Commitment Control (BGNCMTCTL)
command 26

blocked record processing 116

C
CCSID (Coded Character Set Identifer)

overview 120
CDRA (Character Data Representation

Architecture) 120
Change Current Directory (CHGCD) command 173
Change Current Directory (CHGCD) DDM

command 16
Change DDM File (CHGDDMF) command 71
Change Distributed Data Management File (CHGDDMF)

command 71
Change End of File (CHGEOF) command 43, 173
Change File Attribute (CHGFAT) command 174
Change File Attribute (CHGFAT) DDM command 16
Change Job (CHGJOB) command 86, 119
Change Logical File (CHGLF) command 86
Change Network Attributes (CHGNETA) command 42,

47, 51
Change Physical File (CHGPF) command 86
Change Source Physical File (CHGSRCPF)

command 87
changing

distributed data management (DDM) file 71
job 86, 119
logical file 86
network attribute 42, 47, 51
physical file 86
source physical file 87

Character Data Representation Architecture
(CDRA) 120

CHGDDMF (Change Distributed Data Management File)
command 71

CHGJOB (Change Job) command 86, 119
CHGLF (Change Logical File) command 86
CHGNETA (Change Network Attributes) command 42,

47, 51
CHGPF (Change Physical File) command 86
CHGSRCPF (Change Source Physical File)

command 87

CICS (Customer Information Control System) 201
CL (control language)

considerations 23
restrictions 25, 31
source file commands 103
source file requirements 23, 31
SRCFILE parameter 31
SRCMBR parameter 31

Clear File (CLRFIL) command 138, 174
Clear Physical File Member (CLRPFM) command 44,

87, 202
clearing

physical file member 44, 87, 202
Client Access

copy command function 37
file transfer function 37
overview 36

Close Directory (CLSDRC) command 174
Close Directory (CLSDRC) DDM command 16
Close Document (CLOSE) command 174
Close Document (CLOSE) DDM command 16
CLRPFM (Clear Physical File Member) command 44,

87, 202
COBOL program

creating 28
code point 159
Coded Character Set Identifier (CCSID)

overview 120
command

file-related chart 155
object-oriented 155
summary matrix chart 155
syntax verifying 76

COMMAND function 62
command, CL 30

Add Communications Entry (ADDCMNE) 50
ADDCMNE (Add Communications Entry) 50
ALCOBJ (Allocate Object) 85, 117, 202
Allocate Object (ALCOBJ) 85, 202
BGNCMTCTL (Begin Commitment Control) 26
Change Distributed Data Management File

(CHGDDMF) 71
Change Job (CHGJOB) 86, 119
Change Logical File (CHGLF) 86
Change Network Attributes (CHGNETA) 42, 47, 51
Change Physical File (CHGPF) 86
Change Source Physical File (CHGSRCPF) 87
CHGDDMF (Change Distributed Data Management

File) 71
CHGJOB (Change Job) 86, 119
CHGLF (Change Logical File) 86
CHGNETA (Change Network Attributes) 42, 47, 51
CHGPF (Change Physical File) 86
CHGSRCPF (Change Source Physical File) 87
Clear Physical File Member (CLRPFM) 44, 87, 202
CLRPFM (Clear Physical File Member) 44, 87, 202
considerations 83
Copy File (CPYF) 87, 202
Copy from PC Document (CPYFRMPCD) 36, 37
Copy from Query File (CPYFRMQRYF) 87
Copy Source File (CPYSRCF) 87

220 OS/400 Distributed Data Management

command, CL (continued)
Copy to PC Document (CPYTOPCD) 36, 37
CPYF (Copy File) 87, 202
CPYFRMPCD (Copy from PC Document) 36, 37
CPYFRMPCD (Copy From PC Document) 36, 37
CPYFRMQRYF (Copy from Query File) 87
CPYSRCF (Copy Source File) 87
CPYTOPCD (Copy to PC Document) 36, 37
CPYTOPCD (Copy To PC Document) 36, 37
Create Auto Report Program (CRTRPTPGM) 27
Create COBOL Program (CRTCBLPGM) 28
Create Data Area (CRTDTAARA) 89
Create Data Queue (CRTDTAQ) 90
Create Distributed Data Management File

(CRTDDMF) 71, 202
Create ILE C/400 Program (CRTCPGM) 31
Create ILE RPG/400 Program (CRTRPGPGM) 27
Create Logical File (CRTLF) 91
Create Physical File (CRTPF) 92
Create PL/I Language Program (CRTPLIPGM) 30
Create Source Physical File (CRTSRCPF) 93
CRTCBLPGM (Create COBOL Program) 28
CRTCPGM (Create ILE C/400 Program) 31
CRTDDMF (Create Distributed Data Management

File) 71, 202
CRTDTAARA (Create Data Area) 89
CRTDTAQ (Create Data Queue) 90
CRTLF (Create Logical File) 91
CRTPF (Create Physical File) 92
CRTPLIPGM (Create PL/I Language Program) 30
CRTRPGPGM (Create ILE RPG/400 Program) 27
CRTRPTPGM (Create Auto Report Program) 27
CRTSRCPF (Create Source Physical File) 93
DDM-related, chart 155
DDM-specific 71, 72, 73, 77
Deallocate Object (DLCOBJ) 94, 203
Delete File (DLTF) 94
Delete Override (DLTOVR) 74
descriptions 71
Display Distributed Data Management File

(DSPDDMF) 72
Display File Description (DSPFD) 94, 203
Display File Field Description (DSPFFD) 95, 203
Display Physical File Member (DSPPFM) 204
DLCOBJ (Deallocate Object) 94, 117, 203
DLTF (Delete File) 94
DLTOVR (Delete Override) 74
DSPDDMF (Display Distributed Data Management

File) 72
DSPFD (Display File Description) 94, 203
DSPFFD (Display File Field Description) 95, 203
DSPPFM (Display Physical File Member) 204
End Job (ENDJOB) 129
End Request (ENDRQS) 129
ENDJOB (End Job) 129
ENDRQS (End Request) 129
file-related commands, chart 155
FMTDTA (Format Data) 36
Format Data (FMTDTA) 36
Grant Object Authority (GRTOBJAUT) 49
GRTOBJAUT (Grant Object Authority) 49

command, CL (continued)
Move Object (MOVOBJ) 4
MOVOBJ (Move Object) 4
Open Database File (OPNDBF) 24, 204
Open Query File (OPNQRYF) 35, 95
OPNDBF (Open Database File) 24, 204
OPNQRYF (Open Query File) 35, 95
Override with Database File (OVRDBF) 96, 204
Override with Message File (OVRMSGF) 74
OVRDBF (Override with Database File) 96, 204
OVRMSGF (Override with Message File) 74
parameter considerations 98
RCLDDMCNV (Reclaim Distributed Data

Management Conversations) 72, 119
RCLRSC (Reclaim Resources) 96, 119
RCVF (Receive File) 24
RCVMSG (Receive Message) 69
RCVNETF (Receive Network File) 204
Receive File (RCVF) 24
Receive Message (RCVMSG) 69
Receive Network File (RCVNETF) 204
Reclaim Distributed Data Management

Conversations (RCLDDMCNV) 72, 119
Reclaim Resources (RCLRSC) 96, 119
Rename Object (RNMOBJ) 4, 97
Revoke Object Authority (RVKOBJAUT) 49
RNMOBJ (Rename Object) 4, 97
RVKOBJAUT (Revoke Object Authority) 49
SBMNETJOB (Submit Network Job) 117, 120
SBMRMTCMD (Submit Remote Command) 73, 151
Start BASIC (STRBAS) 30
STRBAS (Start BASIC) 30
Submit Network Job (SBMNETJOB) 117, 120
Submit Remote Command (SBMRMTCMD) 73, 151
user profile authority 107
Work with Distributed Data Management Files

(WRKDDMF) 4, 77
Work with Job (WRKJOB) 97, 117, 119
Work with Object Locks (WRKOBJLCK) 97, 117
WRKDDMF (Work with Distributed Data

Management Files) 4, 77
WRKJOB (Work with Job) 97, 117, 119
WRKOBJLCK (Work with Object Locks) 97, 117

command, DDM
CHGCD (Change Current Directory) 16, 173
CHGEOF (Change End of File) 43, 173
CHGFAT (Change File Attribute) 16, 174
CLOSE (Close Document) 16, 174
CLRFIL (Clear File) 138, 174
CLSDRC (Close Directory) 16, 174
CPYFIL (Copy File) 175
CRTAIF (Create Alternate Index File) 175
CRTDIRF (Create Direct File) 29, 175
CRTDRC (Create Directory) 16, 176
CRTKEYF (Create Keyed File) 176
CRTSEQF (Create Sequential File) 177
CRTSTRF (Create Stream File) 16, 178
DCLFIL (Declare File) 178
DELDCL (Delete Declared Name) 179
DELDRC (Delete Directory) 16, 179
DELFIL (Delete File) 16, 179

Index 221

command, DDM (continued)
DELREC (Delete Record) 180
EXCSAT (Exchange Server Attributes) 180
FILAL (File Attribute List) 180
FRCBFF (Force Buffer) 16, 181
GETDRCEN (Get Directory Entry) 16, 181
GETREC (Get Record at Cursor) 182
GETSTR (Get Data Stream) 16
GETSTR (Get Substream) 182
INSRECEF (Insert at EOF) 182
INSRECKY (Insert Record by Key Value) 183
INSRECNB (Insert Record at Number) 183
LCKFIL (Lock File) 184
LCKSTR (Lock Data Stream) 16, 43
LCKSTR (Lock Substream) 184
LODRECF (Load Record File) 184
LODSTRF (Load Stream File) 16, 185
LSTFAT (List File Attributes) 16, 185
MODREC (Modify Record with Update Intent) 185
OPEN (Open Document) 16, 186
OPNDRC (Open Directory) 16, 186
PUTSTR (Put Data Stream) 16
PUTSTR (Put Substream) 186
QRYCD (Query Current Directory) 16, 186
QRYSPC (Query Space Available) 16, 187
RNMDRC (Rename Directory) 16, 187
RNMFIL (Rename File) 16, 187
SBMSYSCMD (Submit server Command) 187
SETBOF (Set Cursor to Beginning of File) 187
SETEOF (Set Cursor to End of File) 188
SETFRS (Set Cursor to First Record) 188
SETKEY (Set Cursor by Key) 188
SETKEYFR (Set Cursor to First Record in Key

Sequence) 189
SETKEYLM (Set Key Limits) 189
SETKEYLS (Set Cursor to Last Record in Key

Sequence) 190
SETKEYNX (Set Cursor to Next Record in Key

Sequence) 190
SETKEYPR (Set Cursor to Previous Record in Key

Sequence) 191
SETLST (Set Cursor to Last Record) 191
SETMNS (Set Cursor Minus) 192
SETNBR (Set Cursor to Record Number) 193
SETNXT (Set Cursor to Next Number) 193
SETNXTKE (Set Cursor to Next Record in Key

Sequence with a Key Equal to Value
Specified) 194

SETPLS (Set Cursor Plus) 194
SETPRV (Set Cursor to Previous Record) 195
SETUPDKY (Set Update Intent by Key Value) 196
SETUPDNB (Set Update Intent by Record

Number) 196
ULDRECF (Unload Record File) 197
ULDSTRF (Unload Stream File) 16, 197
UNLFIL (Unlock File) 198
UNLIMPLK (Unlock Implicit Record Lock) 198
UNLSTR (Unlock Data Stream) 16, 198

command, DDM-related
CL command considerations

ALCOBJ (Allocate Object) 85

command, DDM-related (continued)
CL command considerations (continued)

CHGJOB (Change Job) 86
CHGLF (Change Logical File) 86
CHGPF (Change Physical File) 86
CHGSRCPF (Change Source Physical File) 87
CLRPFM (Clear Physical File Member) 87
CPYF (Copy File) 87
CPYFRMQRYF (Copy from Query File) 87
CPYSRCF (Copy Source File) 87
CRTDTAARA (Create Data Area) 89
CRTDTAQ (Create Data Queue) 90
CRTLF (Create Logical File) 91
CRTPF (Create Physical File) 92
CRTSRCPF (Create Source Physical File) 93
DLCOBJ (Deallocate Object) 94
DLTF (Delete File) 94
DSPFD (Display File Description) 94
DSPFFD (Display File Field Description) 95
OVRDBF (Override with Database File) 96
RCLRSC (Reclaim Resources) 96
RNMOBJ (Rename Object) 97
WRKJOB (Work with Job) 97
WRKOBJLCK (Work with Object Locks) 97

CL command list
introduction 99
member-related 102
not supporting DDM 103
object-oriented commands 100
source file 103
target iSeries-required 101

CL command summary chart 155
CL commands 71
CL parameters 98

commitment control 26
communications

APPC
configuring 41

APPN
description 10
usage 42

requirements 41
support, example 143

communications entry
adding 50

concepts
advanced 12
basic

example 9
example in APPN network 10
overview 4

control language (CL)
considerations 23
restrictions 25, 31
source file commands 103
source file requirements 23, 31
SRCFILE parameter 31
SRCMBR parameter 31

conversation length
within source job 135

Copy File (CPYF) command 87, 202

222 OS/400 Distributed Data Management

Copy File (CPYFIL) DDM command 175
Copy from PC Document (CPYFRMPCD)

command 36, 37
Copy from Query File (CPYFRMQRYF) command 87
Copy Source File (CPYSRCF) command 87
COPY statement 28
Copy to PC Document (CPYTOPCD) command 36, 37
copying

file
Copy File (CPYF) command 87
example 152
server-to-CICS considerations 202

file, example 112
from PC document 36, 37
from query file 87
source file 87
to PC document 36, 37

CPYF (Copy File) command 87, 202
CPYFIL (Copy File) DDM command 175
CPYFRMPCD (Copy from PC Document)

command 36, 37
CPYFRMQRYF (Copy from Query File) command 87
CPYSRCF (Copy Source File) command 87
CPYTOPCD (Copy to PC Document) command 36, 37
Create Alternate Index File (CRTAIF) command 175
Create Auto Report Program (CRTRPTPGM)

command 27
Create BASIC Program (CRTBASPGM) command 30
Create COBOL Program (CRTCBLPGM) command 28
Create Data Area (CRTDTAARA) command 89
Create Data Queue (CRTDTAQ) command 90
Create DDM File (CRTDDMF) command 71, 202
create DDM file, example 112
Create DFU Application (CRTDFUAPP) command 32
Create Direct File (CRTDIRF) command 29, 175
Create Directory (CRTDRC) command 176
Create Directory (CRTDRC) DDM command 16
Create Distributed Data Management File (CRTDDMF)

command 71, 202
Create ILE C/400 Program (CRTCPGM) command 31
Create ILE RPG/400 Program (CRTRPGPGM)

command 27
Create Keyed File (CRTKEYF) command 176
Create Logical File (CRTLF) command 91
Create Physical File (CRTPF) command 92
Create PL/I Language Program (CRTPLIPGM)

command 30
Create Query Application (CRTQRYAPP) command 35
Create Query Definition (CRTQRYDEF) command 35
Create Sequential File (CRTSEQF) command 177
Create Source Physical File (CRTSRCPF)

command 93
Create Stream File (CRTSTRF) command 178
Create Stream File (CRTSTRF) DDM command 16
creating

auto report program 27
BASIC program 30
COBOL program 28
data area 89
data queue 90
distributed data management file 71, 202

creating (continued)
ILE C program 31
ILE RPG program 27
logical file 91
physical file 92
PL/I language program 30
source physical file 93

CRTBASPGM (Create BASIC Program) command 30
CRTCBLPGM (Create COBOL Program) command 28
CRTCPGM (Create ILE C/400 Program) command 31
CRTDDMF (Create Distributed Data Management File)

command 71, 202
CRTDTAARA (Create Data Area) command 89
CRTDTAQ (Create Data Queue) command 90
CRTLF (Create Logical File) command 91
CRTPF (Create Physical File) command 92
CRTPLIPGM (Create PL/I Language Program)

command 30
CRTRPGPGM (Create ILE RPG/400 Program)

command 27
CRTRPTPGM (Create Auto Report Program)

command 27
CRTSRCPF (Create Source Physical File)

command 93
Customer Information Control System (CICS)

considerations 201

D
data

formatting 36
data area

creating 89
data authority 63, 115
data description specifications (DDS) 104
data file utility (DFU) 32, 35
data queue

creating 90
data translation

CCSID 120
database file

opening 24, 204
overriding with 96, 204

database management 1
DDM (distributed data management)

definition 1
preparation 41
usage 41

DDM access method 170
DDM architecture

code point attributes, chart 159
compatibility 3
extensions to

performance considerations 135
recompile considerations 42
System/38 16

member not supported 44
restrictions 43
types 109

DDM conversation
changing DDMCNV value 119

Index 223

DDM conversation (continued)
concepts 12
controlling 118
DDMCNV default value 118
DDMCNV value 19
displaying DDMCNV value 119
failure 118
reclaiming 119
SBMRMTCMD command 76

DDM differences between servers 213
DDM differences between systems 137
DDM file

access considerations 109
BASIC considerations 30
CL command considerations 31
create file, example 112
ILE C considerations 31
ILE COBOL considerations 28
ILE RPG considerations 27
introduction 7
locking considerations 85, 94
models

DDM models 169
performance considerations 130
PL/I considerations 30
requirements 42
using commitment control 26
values 4

DDM introduction 1
DDM job 18
DDM operating considerations 109
DDM performance considerations 130
DDM security requirements 42
DDM source considerations

actions dependent on type of target 16
characteristics 18
commands affecting objects 155
ILE C programming limitations 208
ILE COBOL programming limitations 206
ILE RPG programming limitations 208
iSeries server 12, 44, 138
jobs 18
overview 2
personal computer 141
PL/I programming limitations 204
remote files 22
server-related CL commands 155
System/36 as source 137

DDM target considerations
characteristics 18
commands affecting objects 155
dependent source system actions 16
DLCOBJ command 94
iSeries file names 111
iSeries server 44, 138, 141
iSeries Server 16
jobs 18
non-System/38 44
object-related security 51
overview 2
parameter list 62

DDM target considerations (continued)
problem analysis 135
remote files 22
security 42, 50
server-related CL commands 155
specifying file names 110
System/36 138
user exit program 62
user profile authority 107
user profiles 51
user-related target security 50

DDM-related CL command summary chart 155
DDM-related DDS keyword 105
DDM-specific CL command

CHGDDMF (Change Distributed Data Management
File) 71

DSPDDMF (Display Distributed Data Management
File) 72

RCLDDMCNV (Reclaim Distributed Data
Management Conversations) 72

SBMRMTCMD (Submit Remote Command) 73
WRKDDMF (Work with Distributed Data

Management Files) 77
DDM, parts of

DDM file 7
introduction 5
source DDM (SDDM) 6
target DDM (TDDM) 6

DDMACC parameter
considerations 98
object-related security 47
values 51

DDMCNV parameter
changing values 119
considerations 98
displaying values 119

DDS (data description specifications) 104
DDS keyword 105
Deallocate Object (DLCOBJ) command 94, 117, 203
deallocating

object 94, 203
Declare File (DCLFIL) command 178
Delete Declared Name (DELDCL) command 179
Delete Directory (DELDRC) command 179
Delete Directory (DELDRC) DDM command 16
Delete File (DELFIL) DDM command 16, 179
Delete File (DLTF) command 94
Delete Override (DLTOVR) command 74
Delete Record (DELREC) command 180
delete-capable files, System/36 137
deleting

override 74
DELFIL (Delete File) DDM command 16, 179
Design Query Application (DSNQRYAPP)

command 35
DEV parameter 89, 90
Device Name (DEV) command 4
DFU (data file utility) 32, 35
differences

between iSeries server and System/36 213
between iSeries server and System/38 214

224 OS/400 Distributed Data Management

differences (continued)
remote file processing 113, 115, 137

direct file (DIRFIL)
creating, System/36 138
ILE COBOL support 29
model 170
on System/36 137

Directory File (DIRECTORY) 170
Display DDM File (DSPDDMF) command 72
Display Distributed Data Management File (DSPDDMF)

command 72
Display File Description (DSPFD) command 94, 203
Display File Field Description (DSPFFD) command 95,

203
Display Physical File Member (DSPPFM)

command 204
display station pass-through 119, 151
displaying

distributed data management file 72
file description

with DSPFD command 113
with DSPFD command, example 94, 203

file field description 95, 203
files, example 112
physical file member 204

distributed data management (DDM)
definition 1
preparation 41
usage 41

distributed data management (DDM) file
changing 71
working with 4

distributed data management conversations
reclaiming 72, 119

distributed data management file
creating 71, 202
displaying 72
working with 77

Distributed Relational Database Architecture
(DRDA) 32

DLCOBJ (Deallocate Object) command 94, 203
DLTF (Delete File) command 94
DLTOVR (Delete Override) command 74
DRDA (Distributed Relational Database

Architecture) 32
DSPDDMF (Display Distributed Data Management File)

command 72
DSPFD (Display File Description) command 94, 203
DSPFFD (Display File Field Description) command 95,

203
DSPPFM (Display Physical File Member)

command 204

E
End Job (ENDJOB) command 129
End Request (ENDRQS) command 129
End TCP/IP Server CL command 123
ending

job 129
request 129

ENDJOB (End Job) command 129
ENDRQS (End Request) command 129
error message

handling 76
Exchange Server Attributes (EXCSAT) command 180
Execute BASIC Procedure (EXCBASPRC)

command 30
extended file 109

F
file

accessing multiple iSeries files 152
accessing System/36 files 113, 153
ADDROUT file 28
allocating, example 112
Alternate Index File (ALTINDF) 169
copying 87, 202
deleting 94
extended 109
extension support 139
Keyed File (KEYFIL) 170
non-iSeries types 109
nonkeyed physical 109
performing management functions 117
receiving 24
sharing 22
supported 109

File Attribute List (FILAL) command 180
file description

displaying 94, 203
file field description

displaying 95, 203
FILE parameter 31, 91
file processing

difference between remote and local 130
file-related commands, chart 155
FMS (folder management services) 2
FMTDTA (Format Data) command 36
folder management services (FMS) 2
Force Buffer (FRCBFF) DDM command 16, 181
Format Data (FMTDTA) command 36
formatting

data 36
FRCBFF (Force Buffer) DDM command 16, 181
FROMFILE parameter 37, 87
functions overview 4

G
GENLVL (Generation Severity Level) parameter 91,

92, 93
Get Data Stream (GETSTR) DDM command 16
Get Directory Entry (GETDRCEN) command 181
Get Directory Entry (GETDRCEN) DDM command 16
Get Record at Cursor (GETREC) command 182
Get Substream (GETSTR) command 182
Grant Object Authority (GRTOBJAUT) command 49
granting

object authority 49
GRTOBJAUT (Grant Object Authority) command 49

Index 225

H
hierarchical file system (HFS) 38
high-level language (HLL)

BASIC 30
CL 31
compiling programs 42
ILE C programming language 31
ILE COBOL programming language 28
ILE RPG programming language 27
PL/I 30
programming language considerations 23

history log, displaying 129
HLL (high-level language)

BASIC 30
CL 31
compiling programs 42
ILE C programming language 31
ILE COBOL programming language 28
ILE RPG programming language 27
PL/I 30
programming language considerations 23

I
I/O operation

all languages 23
BASIC 30
ILE C programming language 31
ILE COBOL programming language 28
parameter list 62
PL/I 30

ILE (Integrated Language Environment) 15
ILE C program

creating 31
ILE C programming language

programming considerations 23
programming limitations 208
PRTFILE parameter 31
restrictions 25, 31
source file requirements 23, 31
SRCFILE parameter 31
SRCMBR parameter 31

ILE COBOL programming language
CL commands 28
COPY statement 28
direct file 29
extending System/36 files 139
logical file 28
OPEN statement 29
OUTPUT parameter 29
programming considerations 23, 28
programming limitations 206
PRTFILE parameter 28
restrictions 24, 28, 116
SORT/MERGE operation 28
source file requirements 23
SRCFILE parameter 28
SRCMBR parameter 28

ILE RPG program
creating 27

ILE RPG programming language
/COPY statement 27
ADDROUT file 28
CL commands 27
considerations 23, 27
extending System/36 files 139
key field updates 116
OUTFILE parameter 27
OUTMBR parameter 27
programming limitations 208
PRTFILE parameter 27
restrictions 24, 27
source file requirements 23, 27
SRCFILE parameter 27
SRCMBR parameter 27

INFILE parameter 36
initializing

files, System/36 138
INQMSGRPY parameter 76
inquiry application

example 144
Insert at EOF (INSRECEF) command 182
Insert Record at Number (INSRECNB) command 183
Insert Record by Key Value (INSRECKY)

command 183
Integrated Language Environment (ILE)

activation groups 15
interactive

processing 130
queries 33

introduction
DDM 1

J
job

changing 86, 119
ending 129
working with 97, 117, 119

join logical file 43, 44

K
key field update 116
keyed access file 109
Keyed File (KEYFIL) model 170
keyword

DDM-related DDS 105
keyword, DDS 105

L
language considerations

BASIC 30
CL 31
ILE C programming language 31
ILE COBOL programming language 28
ILE RPG programming language 27
PL/I 30
programming languages, general 23
remote CICS files 201

226 OS/400 Distributed Data Management

LCLLOCNAME parameter 89, 90
limitations

all languages 23
BASIC 30
CL 31
ILE C programming language 31
ILE COBOL programming language 28
ILE RPG programming language 27
PL/I 30
security 42

List File Attributes (LSTFAT) command 185
List File Attributes (LSTFAT) DDM command 16
Listener program 122
Load Record File (LODRECF) command 184
Load Stream File (LODSTRF) command 185
Load Stream File (LODSTRF) DDM command 16
location-specific file name 112
Lock Data Stream (LCKSTR) command 43
Lock Data Stream (LCKSTR) DDM command 16
Lock File (LCKFIL) command 184
Lock Substream (LCKSTR) command 184
locking

files and members 117
LOCPWD (Location Password) parameter 47
logical file

application program examples 147
changing 86
creating 91
join logical files 43, 44
multiformat logical file 109
multiformat logical files 43
System/36 140
types 109

M
member access

considerations 114
example 114

message
receiving 69

message file
overriding with 74

MODE parameter 89, 90
Modify Record with Update Intent (MODREC)

command 185
Move Object (MOVOBJ) command 4
moving

object 4
MOVOBJ (Move Object) command 4
multiformat logical file 43, 109

N
national language support 120
network attribute

changing 42, 47, 51
network file

receiving 204
network job

submitting 117, 120

network resource directory entry 4
networking

configuring APPC 41
configuring APPN 41
description of APPN 10
usage of APPN 42

nondirect sequential file action 109

O
object

allocating 85, 202
authority 47
deallocating 94, 203
distribution 120, 134, 151
moving 4
renaming 4, 97

object authority
granting 49
revoking 49

object lock
working with 97, 117

object-oriented command 155
object-related security 47
ODP (open data path) 12
OfficeVision 36, 130
open data path (ODP) 12
Open Database File (OPNDBF) command 24, 204
Open Directory (OPNDRC) command 186
Open Directory (OPNDRC) DDM command 16
Open Document (OPEN) command 186
Open Document (OPEN) DDM command 16
Open Query File (OPNQRYF) command 95

utility considerations 35
OPEN statement

languages used 24
OUTPUT parameter 29

opening
database file 24, 204
query file 35, 95

operation
input/output

all languages 23
BASIC 30
ILE C programming language 31
ILE COBOL programming language 28
PL/I 30

OPNDBF (Open Database File) command 24, 204
OPNQRYF (Open Query File) command 95

utility considerations 35
OPTION parameter 91, 92, 93
Order Entry (ORDERENT) application 146
OUTFILE parameter

ILE RPG programming language 27
sort utility 36

OUTMBR (Output Member) parameter
ILE RPG programming language 27

OUTPUT (Output) parameter
ILE COBOL programming language 29

override
deleting 74

Index 227

override considerations
System/36 140

Override with Database File (OVRDBF) command 96,
204

Override with Message File (OVRMSGF) command 74
overriding

files, example 112
overriding with

database file 96, 204
message file 74

OVRDBF (Override with Database File) command 96,
204

OVRMSGF (Override with Message File) command 74

P
parameter considerations 98
parameter list

description 62, 63
example 66

parts of DDM
DDM file 7
introduction 5
source DDM (SDDM) 6
target DDM (TDDM) 6

pass-through method, program transfer 151
pass-through, display station 119, 151
PC document

copying from 36, 37
copying to 36, 37

performance considerations
DDM 130
displaying files 119
object distribution 120, 134
OfficeVision 130
operations delay 45, 130
system 16
WAITFILE parameter 43

personal computer
as source system 141
generic name 43

physical file
changing 86
creating 92

physical file member
clearing 44, 87, 202
displaying 204

PL/I
%INCLUDE statement 30
considerations 23
extending System/36 files 139
programming limitations 204
restrictions 24, 30
source file requirements 23, 30
SRCFILE parameter 30
SRCMBR parameter 30

PL/I language program
creating 30

prestart jobs, using 124
problem analysis

remote system 135

processing
batch 33, 130
interactive 33, 130

program start request 6, 12
program transfer

pass-through method 151
SBMRMTCMD command 151

PRTFILE parameter
ILE C programming language 31
ILE COBOL programming language 28
ILE RPG programming language 27

Put Data Stream (PUTSTR) DDM command 16
Put Substream (PUTSTR) command 186

Q
QCNTEDDM value on routing entry 130
Query Current Directory (QRYCD) command 186
Query Current Directory (QRYCD) DDM command 16
query file

copying from 87
opening 35, 95

Query Space Available (QRYSPC) command 187
Query Space Available (QRYSPC) DDM command 16
Query Utility (Query/38) 32

Query/38 32

R
RCLDDMCNV (Reclaim Distributed Data Management

Conversations) command 72, 119
RCLRSC (Reclaim Resources) command 96, 119
RCVF (Receive File) command 24
RCVMSG (Receive Message) command 69
RCVNETF (Receive Network File) command 204
Receive File (RCVF) command 24
Receive Message (RCVMSG) command 69
Receive Network File (RCVNETF) command 204
receiving

file 24
message 69
network file 204

Reclaim Distributed Data Management Conversations
(RCLDDMCNV) command 72, 119

Reclaim Resources (RCLRSC) command 96, 119
reclaiming

distributed data management conversations 72, 119
resources 96, 119

recompiling programs, restrictions 42
record file 1
record processing 116
recursion level

definition 74
override considerations 140

relative record number 115
remote command

submitting 73, 151
Remote Location Name (RMTLOCNAME) command 4
remote system

accessing multiple files 36
DDM requirements 110

228 OS/400 Distributed Data Management

remote system (continued)
file processing 1, 36, 130
file processing differences 113, 115, 137
file sharing 22
iSeries system 112
location-specific file names 112
problem analysis 135
processing files 130

Rename Directory (RNMDRC) command 187
Rename Directory (RNMDRC) DDM command 16
Rename File (RNMFIL) command 187
Rename File (RNMFIL) DDM command 16
Rename Object (RNMOBJ) command 4, 97
renaming

object 4, 97
request

ending 129
resource

reclaiming 96, 119
Retrieve DFU Source (RTVDFUSRC) command 32
Revoke Object Authority (RVKOBJAUT) command 49
revoking

object authority 49
RMTDTAARA parameter 89
RMTDTAQ parameter 90
RMTLOCNAME parameter 89, 90
RMTNETID parameter 89, 90
RNMOBJ (Rename Object) command 4, 97
ROLLBACK operation 27
routing entry

controlling DDM job priority 130
QCNTEDDM value on CMPVAL parameter 130

RVKOBJAUT (Revoke Object Authority) command 49

S
SBMNETJOB (Submit Network Job) command 117,

120
SBMRMTCMD (Submit Remote Command)

command 73, 151
screen design aid (SDA) 32
SDA (screen design aid) 32
SDDM (source DDM)

actions dependent on type of target 16
characteristics 18
commands affecting objects 155
ILE C programming limitations 208
ILE COBOL programming limitations 206
ILE RPG programming limitations 208
iSeries server 12, 44, 138
jobs 18
overview 2
personal computer 141
PL/I programming limitations 204
remote files 22
server-related CL commands 155
System/36 as source 137

SECURELOC (Secure Location) parameter 47
security

access intents 115
checking 47

security (continued)
data authority 63
elements of 47
introduction 47
object authorities 47
object-related 50
parameter list 62
requirements 42
source system 49
system-related 47
user exit program 62, 63
user profile authority 107
user-related 50

SELECT statement 29
sequential access file 109
sequential file 137, 139
Sequential File (SEQFIL) model 170
sequential processing, System/36 139
Set Cursor by Key (SETKEY) command 188
Set Cursor Minus (SETMNS) command 192
Set Cursor Plus (SETPLS) command 194
Set Cursor to Beginning of File (SETBOF)

command 187
Set Cursor to End of File (SETEOF) command 188
Set Cursor to First Record (SETFRS) command 188
Set Cursor to First Record in Key Sequence

(SETKEYFR) command 189
Set Cursor to Last Record (SETLST) command 191
Set Cursor to Last Record in Key Sequence

(SETKEYLS) command 190
Set Cursor to Next Number (SETNXT) command 193
Set Cursor to Next Record in Key Sequence

(SETKEYNX) command 190
Set Cursor to Next Record in Key Sequence with a Key

Equal to Value Specified (SETNXTKE) command 194
Set Cursor to Previous Record (SETPRV)

command 195
Set Cursor to Previous Record in Key Sequence

(SETKEYPR) command 191
Set Cursor to Record Number (SETNBR)

command 193
Set Key Limits (SETKEYLM) command 189
Set Update Intent by Key Value (SETUPDKY)

command 196
Set Update Intent by Record Number (SETUPDNB)

command 196
SEU (source entry utility) 32
SHARE parameter 22
sharing file 22
SNA distribution services (SNADS)

object distribution 120
SNADS (SNA distribution services)

object distribution 120
sort utility 36
SORT/MERGE operation 28
source DDM (SDDM)

actions dependent on type of target 16
characteristics 18
commands affecting objects 155
ILE C programming limitations 208
ILE COBOL programming limitations 206

Index 229

source DDM (SDDM) (continued)
ILE RPG programming limitations 208
iSeries server 12, 44, 138
jobs 18
overview 2
personal computer 141
PL/I programming limitations 204
remote files 22
server-related CL commands 155
System/36 as source 137

source entry utility (SEU) 32
source file

copying 87
source file member 23
source file requirements

Create Physical File (CRTPF) command 23
DDM file 109
ILE C programming language 23, 31

source physical file
changing 87
creating 93

source system security 49
SRCFILE parameter

all languages 23
BASIC 30
CL 31
data file utility (DFU) 32
ILE C programming language 31
ILE COBOL programming language 28
ILE RPG programming language 27
languages, all 23
PL/I 30
sort utility 36

SRCMBR parameter
all languages 23
BASIC 30
CL 31
ILE C programming language 31
ILE COBOL programming language 28
ILE RPG programming language 27
languages, all 23
PL/I 30
sort utility 36

Start BASIC (STRBAS) command 30
Start TCP/IP Server CL command 123
starting

BASIC 30
STRBAS (Start BASIC) command 30
stream file 16
Stream File (STRFIL) model 170
Submit Network Job (SBMNETJOB) command 117,

120
Submit Remote Command (SBMRMTCMD)

command 73, 151
Submit server Command (SBMSYSCMD)

command 187
submitting

network job 117, 120
remote command 73, 151

supported 109
system compatibility 3

SYSTEM parameter 94, 95
system-related security 47
System/36

deleted records 116, 138
differences to iSeries server 213
file

accessing 153
creating direct 138
delete-capable 137
direct 137
extensions 139
indexed 138, 139
sequential 137
types, description 137

iSeries as source 138
iSeries as target 138
override considerations 140
source and target considerations 137
System/36 and iSeries differences 137

System/38
compatible database tools 32
data file utility (DFU) 32
differences to iSeries server 214
extensions 135
Query Utility considerations 34
restrictions 23
SORT/MERGE operation 28

T
target DDM (TDDM)

characteristics 18
commands affecting objects 155
dependent source system actions 16
DLCOBJ command 94
iSeries file names 111
iSeries server 44, 138, 141
iSeries Server 16
jobs 18
non-AS/400 system

considerations 44, 105
file names 112
restrictions 44

non-System/38 44
object-related security 51
overview 2
parameter list 62
problem analysis 135
remote files 22
security 42, 50
server-related CL commands 155
specifying file names 110
System/36 138

considerations 137
override considerations 140

user exit program 62
user profile authority 107
user profiles 51
user-related target security 50

target system 1
TCP/IP Communication Support Concepts 122

230 OS/400 Distributed Data Management

TCP/IP communications, establishing 122
TDDM (target DDM)

DLCOBJ command 94
iSeries file names 111
iSeries server 138, 141
object-related security 51
parameter list 62
problem analysis 135
security 50
specifying file names 110
System/36 138

considerations 137
override considerations 140

user exit program 62
user profile authority 107
user profiles 51
user-related target security 50

terminology 121
transferring

program 151
TYPE parameter 89, 90

U
Unload Record File (ULDRECF) command 197
Unload Stream File (ULDSTRF) command 197
Unload Stream File (ULDSTRF) DDM command 16
Unlock Data Stream (UNLSTR) command 198
Unlock Data Stream (UNLSTR) DDM command 16
Unlock File (UNLFIL) command 198
Unlock Implicit Record Lock (UNLIMPLK)

command 198
user exit program

description 51
example 65

user profile 42, 50
user profile authority 107
user-related security 47
utility

advanced printer function 32
considerations 32
data file 32
sort 36

V
variable-length records 116

W
WAITFILE (maximum file wait time) parameter 43, 130
Work with Distributed Data Management Files

(WRKDDMF) command 4, 77
Work with Job (WRKJOB) command 97, 117, 119
Work with Object Locks (WRKOBJLCK) command 97,

117
working with

distributed data management (DDM) files 4, 77
job 97, 117, 119
object locks 97, 117

WRKDDMF (Work with Distributed Data Management
Files) command 4, 77

WRKJOB (Work with Job) command 97, 117, 119
WRKOBJLCK (Work with Object Locks) command 97,

117

Index 231

232 OS/400 Distributed Data Management

����

Printed in U.S.A.

	Contents
	About Distributed Data Management
	Who should read the Distributed Data Management book
	Code disclaimer information

	Chapter 1. Introduction to OS/400 DDM
	System Compatibility
	Overview of DDM Functions
	Basic OS/400 DDM Concepts
	Parts of DDM
	Parts of DDM: Source DDM (SDDM)
	Parts of DDM: Target DDM (TDDM)
	Parts of DDM: DDM File
	Create a DDM File using SNA
	Create a DDM file using TCP/IP
	Create a DDM file using RDB directory entry information
	Example: Use the basic concepts of DDM in an APPC network
	Example: Use the basic concepts of DDM in an APPN network

	Additional OS/400 DDM Concepts
	iSeries server as the source server for DDM
	Integrated Language Environment (ILE) and DDM
	Source Server Actions Dependent on Type of Target Server

	iSeries Server as the Target Server for DDM
	DDM-Related Jobs and DDM Conversations

	Examples of Accessing Multiple Remote Files with DDM
	Example of Accessing Files on Multiple Servers with DDM
	Example of Processing Multiple Requests for Remote Files with DDM

	Chapter 2. Language, Utility, and Application Considerations for DDM
	Programming Language Considerations for DDM
	DDM Considerations for All Languages
	HLL Program Input and Output Operations with DDM

	Commitment Control Support for DDM
	Using DDM Files with Commitment Control

	ILE RPG Considerations for DDM
	ILE COBOL Considerations for DDM
	Direct File Support with ILE COBOL

	BASIC Considerations for DDM
	PL/I Considerations for DDM
	CL Command Considerations for DDM
	ILE C Considerations for DDM

	Utility Considerations for DDM
	System/38-Compatible Database Tools
	System/38-Compatible Data File Utility (DFU/38)
	System/38-Compatible Query Utility (Query/38)
	Non-iSeries or Non-System/38 Query/38 Example
	Query/38 Output Considerations for DDM
	Query/38 Command Considerations for DDM
	Query/38 Optimization for DDM
	Existing Query/38 Application Considerations for DDM

	Data File Utility for iSeries server
	OS/400 Database Query
	Multiple Remote Files

	Sort Utility

	Application Programs Considerations for DDM
	OfficeVision
	iSeries Access
	iSeries Access Transfer Function Considerations
	iSeries Access Copy Command Considerations

	Hierarchical File System API Support for DDM

	Chapter 3. Preparing to Use DDM
	Communications Requirements for DDM in an APPC network
	Configuring a communications network in a TCP/IP network
	Security Requirements for DDM
	DDM File Requirements
	Program Modification Requirements for DDM
	DDM Architecture-Related Restrictions
	iSeries Source and Target Restrictions and Considerations for DDM
	Non-iSeries Target Restrictions and Considerations for DDM

	Chapter 4. Security Considerations for DDM
	Elements of DDM Security in an APPC network
	APPN configuration lists
	Conversation level security

	DDM source system security in an APPC network
	DDM target system security in an APPC network
	User-Related Elements of Target Security
	Target Jobs and User Profiles

	Object-Related Levels of Target Security
	DDM Network Attribute (DDMACC Parameter)

	Elements of DDM Security using TCP/IP
	Connection security protocols for DDM
	Secure Sockets Layer (SSL) for DDM
	Required programs
	iSeries server requirements
	PC requirements (for PCs using iSeries Access and DDM

	Internet Protocol Security Protocol (IPSec) for DDM
	Ports and port restrictions for DDM
	Source system security in a TCP/IP network
	Kerberos Source Configuration
	Define DRDA service names for non-iSeries remote servers

	Target system security in a TCP/IP network

	DDM server access control exit program for additional security
	User Exit Program Requirement
	User Exit Program Parameter List for DDM
	User Exit Program Example for DDM
	Parameter List Example for DDM
	DRDA Server Access Control Exit Programs With Example
	User Exit Program Considerations for DDM

	Chapter 5. CL Command Descriptions and DDS Considerations for DDM
	DDM-Specific CL Commands
	CHGDDMF (Change DDM File) Command
	Example: CHGDDMF Command

	CRTDDMF (Create DDM File) Command
	Examples: CRTDDMF Command
	Additional Considerations for using advanced program-to-program communications (APPC) with DDM

	DSPDDMF (Display DDM Files) Command
	RCLDDMCNV (Reclaim DDM Conversations) Command
	SBMRMTCMD (Submit Remote Command) Command
	iSeries and System/38 Target Systems on the SBMRMTCMD Command
	Restrictions for the SBMRMTCMD Command
	Examples: SBMRMTCMD Command
	Additional Considerations: SBMRMTCMD Command

	WRKDDMF (Work with DDM Files) Command

	DDM-Related CL Command Considerations
	File Management Handling of DDM Files
	ALCOBJ (Allocate Object) Command
	Member Names and iSeries Target Servers on the ALCOBJ Command
	Locking Multiple DDM Files with the ALCOBJ Command
	ALCOBJ Command Completion Time with DDM

	CHGJOB (Change Job) Command
	CHGLF (Change Logical File) Command
	CHGPF (Change Physical File) Command
	CHGSRCPF (Change Source Physical File) Command
	CLRPFM (Clear Physical File Member) Command
	Copy Commands with DDM
	CRTDTAARA (Create Data Area) Command
	CRTDTAQ (Create Data Queue) Command
	CRTLF (Create Logical File) Command
	CRTPF (Create Physical File) Command
	CRTSRCPF (Create Source Physical File) Command
	DLCOBJ (Deallocate Object) Command
	Member Names and iSeries Target Servers on the DLCOBJ Command
	Unlocking Multiple DDM Files on the DLCOBJ Command

	DLTF (Delete File) Command
	DSPFD (Display File Description) Command
	DSPFFD (Display File Field Description) Command
	OPNQRYF (Open Query File) Command
	OVRDBF (Override with Database File) Command
	RCLRSC (Reclaim Resources) Command
	RNMOBJ (Rename Object) Command
	WRKJOB (Work with Job) Command
	WRKOBJLCK (Work with Object Lock) Command

	DDM-Related CL Parameter Considerations
	DDMACC Parameter Considerations
	DDMCNV Parameter Considerations
	OUTFILE Parameter Considerations for DDM

	DDM-Related CL Command Lists
	Object-Oriented Commands with DDM
	Target iSeries-Required File Management Commands
	Member-Related Commands with DDM
	Commands Not Supporting DDM
	Source File Commands

	Data Description Specifications (DDS) Considerations for DDM
	iSeries Target Considerations for DDM
	Non-iSeries Target Considerations for DDM
	DDM-Related DDS Keywords and Information

	DDM User Profile Authority

	Chapter 6. Operating Considerations for DDM
	File Access Considerations for DDM
	Types of Files Supported by OS/400 DDM
	Existence of DDM File and Remote File
	Specifying Target Server File Names for DDM
	Target iSeries File Names for DDM
	Target Non-iSeries File Names for DDM
	Using Location-Specific File Names for Commonly Named Files for DDM

	Examples of Accessing iSeries DDM Remote Files (iSeries-to-iSeries)
	Example of Accessing System/36 DDM Remote Files (iSeries-to-System/36)

	Member Access Considerations for DDM
	Examples of Accessing DDM Remote Members (iSeries server Only)
	Example of a DDM File That Opens a Specific Member

	Access Method Considerations for DDM
	Access Intents
	Key Field Updates
	Deleted Records
	Blocked Record Processing
	Variable-Length Records

	Other DDM-Related Functions Involving Remote Files
	Performing File Management Functions on Remote Servers
	Locking Files and Members for DDM
	Allocate Object (ALCOBJ) and Deallocate Object (DLCOBJ) Commands
	Work with Job (WRKJOB) and Work with Object Locks

	Controlling DDM Conversations
	Displaying DDMCNV Values (WRKJOB Command)
	Changing DDMCNV Values (CHGJOB Command)
	Reclaiming DDM Resources (RCLRSC and RCLDDMCNV Commands)

	Displaying DDM Remote File Information
	Displaying DDM Remote File Records
	Coded Character Set Identifier (CCSID) with DDM
	Using Object Distribution
	Using Object Distribution with DDM

	Manage the TCP/IP server
	DDM Terminology
	TCP/IP communication support concepts for DDM
	Establish a DRDA or DDM connection over TCP/IP
	DDM listener program
	Start TCP/IP Server (STRTCPSVR) CL Command
	End TCP/IP Server (ENDTCPSVR) CL Command
	Start DDM listener in iSeries Navigator

	DDM server jobs
	Subsystem Descriptions and Prestart Job Entries with DDM
	DDM prestart jobs

	Configure the DDM server job subsystem
	Identifying server jobs
	iSeries Job Names
	Displaying Server Jobs
	Display the history log

	Cancel Distributed Data Management work
	End Job (ENDJOB) command
	End Request (ENDRQS) Command

	Performance Considerations for DDM
	Batch File Processing with DDM
	Interactive File Processing with DDM
	DDM Conversation Length Considerations

	DDM Problem Analysis on the Remote Server
	Handling connection request failures for TCP/IP
	DDM Server Is Not Started or the Port ID Is Not Valid
	DDM Connection Authorization Failure
	DDM Server Not Available
	Not Enough Prestart Jobs at Server

	System/36 Source and Target Considerations for DDM
	DDM-Related Differences between iSeries and System/36 Files
	System/36 Source to iSeries Target Considerations for DDM
	iSeries Source to System/36 Target Considerations for DDM
	Override Considerations to System/36 for DDM

	Personal Computer Source to iSeries Target Considerations for DDM

	Appendix A. Examples of Coding DDM-Related Tasks
	Communications Setup for DDM Examples and Tasks
	DDM Example 1: Simple Inquiry Application
	DDM Example 2: ORDERENT Application
	DDM Example 2: Central Server ORDERENT Files
	DDM Example 2: Description of ORDERENT Program
	DDM Example 2: Remote Servers ORDERENT Files
	DDM Example 2: Transferring a Program to a Target Server
	DDM Example 2: Pass-Through Method
	DDM Example 2: SBMRMTCMD Command Method

	DDM Example 2: Copying a File

	DDM Example 3: Accessing Multiple iSeries Files
	DDM Example 4: Accessing a File on System/36

	Appendix B. DDM-Related CL Command Summary Charts
	Appendix C. DDM Architecture Code Point Attributes
	Appendix D. DDM Commands and Parameters
	Subsets of DDM Architecture Supported by OS/400 DDM
	Supported DDM File Models
	Alternate Index File (ALTINDF)
	Direct File (DIRFIL)
	Directory File (DIRECTORY)
	Keyed File (KEYFIL)
	Sequential File (SEQFIL)
	Stream File (STRFIL)

	Supported DDM Access Methods

	DDM Commands and Objects
	DDM Command Parameters
	CHGCD (Change Current Directory) Level 2.0
	CHGEOF (Change End of File) Level 2.0 and Level 3.0
	CHGFAT (Change File Attribute) Level 2.0
	CLOSE (Close File) Level 1.0 and Level 2.0
	CLRFIL (Clear File) Level 1.0 and Level 2.0
	CLSDRC (Close Directory) Level 2.0
	CPYFIL (Copy File) Level 2.0
	CRTAIF (Create Alternate Index File) Level 1.0 and Level 2.0
	CRTDIRF (Create Direct File) Level 1.0 and Level 2.0
	CRTDRC (Create Directory) Level 2.0
	CRTKEYF (Create Keyed File) Level 1.0 and Level 2.0
	CRTSEQF (Create Sequential File) Level 1.0 and Level 2.0
	CRTSTRF (Create Stream File) Level 2.0
	DCLFIL (Declare File) Level 1.0 and Level 2.0
	DELDCL (Delete Declared Name) Level 1.0
	DELDRC (Delete Directory) Level 2.0
	DELFIL (Delete File) Level 1.0 and Level 2.0
	DELREC (Delete Record) Level 1.0
	EXCSAT (Exchange Server Attributes) Level 1.0 and Level 2.0
	Reply Objects

	FILAL and FILATTRL (File Attribute List) Level 1.0, Level 2.0, and Level 3.0
	FRCBFF (Force Buffer) Level 2.0
	GETDRCEN (Get Directory Entries) Level 2.0
	Reply Objects

	GETREC (Get Record at Cursor) Level 1.0
	Reply Objects

	GETSTR (Get Substream) Level 2.0 and Level 3.0
	INSRECEF (Insert at EOF) Level 1.0
	Command Objects
	Reply Objects

	INSRECKY (Insert Record by Key Value) Level 1.0
	Command Objects
	Reply Objects

	INSRECNB (Insert Record at Number) Level 1.0
	Command Objects
	Reply Objects

	LCKFIL (Lock File) Level 1.0 and Level 2.0
	LCKSTR (Lock Substream) Level 2.0 and Level 3.0
	LODRECF (Load Record File) Level 1.0 and Level 2.0
	Command Objects

	LODSTRF (Load Stream File) Level 2.0
	Command Objects

	LSTFAT (List File Attributes) Level 1.0, Level 2.0, and Level 3.0
	Reply Objects

	MODREC (Modify Record with Update Intent) Level 1.0
	Command Objects

	OPEN (Open File) Level 1.0 and Level 2.0
	OPNDRC (Open Directory) Level 2.0
	PUTSTR (Put Substream) Level 2.0 and Level 3.0
	Command Objects

	QRYCD (Query Current Directory) Level 2.0
	Reply Objects

	QRYSPC (Query Space) Level 2.0
	Reply Objects

	RNMDRC (Rename Directory) Level 2.0
	RNMFIL (Rename File) Level 1.0 and Level 2.0
	SBMSYSCMD (Submit server Command) Level 4.0
	SETBOF (Set Cursor to Beginning of File) Level 1.0
	SETEOF (Set Cursor to End of File) Level 1.0
	SETFRS (Set Cursor to First Record) Level 1.0
	Reply Objects

	SETKEY (Set Cursor by Key) Level 1.0
	Reply Objects

	SETKEYFR (Set Cursor to First Record in Key Sequence) Level 1.0
	Reply Objects

	SETKEYLM (Set Key Limits) Level 1.0
	SETKEYLS (Set Cursor to Last Record in Key Sequence) Level 1.0
	Reply Objects

	SETKEYNX (Set Cursor to Next Record in Key Sequence) Level 1.0
	Reply Objects

	SETKEYPR (Set Cursor to Previous Record in Key Sequence) Level 1.0
	Reply Objects

	SETLST (Set Cursor to Last Record) Level 1.0
	Reply Objects

	SETMNS (Set Cursor Minus) Level 1.0
	Reply Objects

	SETNBR (Set Cursor to Record Number) Level 1.0
	Reply Objects

	SETNXT (Set Cursor to Next Number) Level 1.0
	Reply Objects

	SETNXTKE (Set Cursor to Next Record in Key Sequence with a Key Equal to Value Specified) Level 1.0
	Reply Objects

	SETPLS (Set Cursor Plus) Level 1.0
	Reply Objects

	SETPRV (Set Cursor to Previous Record) Level 1.0
	Reply Objects

	SETUPDKY (Set Update Intent by Key Value) Level 1.0
	Reply Objects

	SETUPDNB (Set Update Intent by Record Number) Level 1.0
	Reply Objects

	ULDRECF (Unload Record File) Level 1.0
	Reply Objects

	ULDSTRF (Unload Stream File) Level 2.0
	Reply Objects

	UNLFIL (Unlock File) Level 1.0 and Level 2.0
	UNLIMPLK (Unlock Implicit Record Lock) Level 1.0
	UNLSTR (Unlock Substreams) Level 2.0 and Level 3.0

	User Profile Authority

	Appendix E. iSeries Server-to-CICS Considerations with DDM
	iSeries Languages, Utilities, and Licensed Programs
	CRTDDMF (Create DDM File) Considerations
	iSeries CL Considerations
	ALCOBJ (Allocate Object)
	CLRPFM (Clear Physical File Member)
	CPYF (Copy File)
	CPYTODKT, CPYFRMDKT, CPYTOTAP, CPYFRMTAP and CPYSPLF Commands
	DLCOBJ (Deallocate Object)
	DSPFD and DSPFFD Commands
	DSPPFM (Display Physical File Member)
	OPNDBF (Open Database File)
	OVRDBF (Override with Database File)
	RCVNETF (Receive Network File)

	Language Considerations for iSeries Server and CICS
	PL/I Considerations
	PL/I Open File Requests
	PL/I Input/Output Requests

	ILE COBOL Considerations
	ILE COBOL Select Clause
	ILE COBOL Statements

	ILE C Considerations
	ILE C Open Considerations
	Open Mode Considerations

	ILE RPG Considerations
	File Description Specifications
	ILE RPG Input/Output Operations

	Appendix F. DDM Differences
	iSeries server and System/36 DDM Differences
	iSeries server and System/38 DDM Differences

	Bibliography
	Index

