
Work Management APIs (V5R2)

Table of Contents

Work Management APIs

Work Management API Attribute Descriptions●

APIs

Change Current Job (QWCCCJOB)❍

Change Job (QWTCHGJB)❍

Change Pool Attributes (QUSCHGPA)❍

Change Pool Tuning Information (QWCCHGTN)❍

Change Subsystem Entry (QWDCSBSE)❍

Control Thread (QTHMCTLT)❍

Control Trace (QWTCTLTR)❍

Create Job Structures (QWTCTJBS)❍

Delete Job Structures (QWTDTJBS)❍

Dump Flight Recorder (QWTDMPFR)❍

Dump Lock Flight Recorder (QWTDMPLF)❍

List Active Subsystems (QWCLASBS)❍

List Job (QUSLJOB)❍

List Job Schedule Entries (QWCLSCDE)❍

List Object Locks (QWCLOBJL)❍

List Subsystem Entries (QWDLSBSE)❍

List Subsystem Job Queues (QWDLSJBQ)❍

Move Job (QSPMOVJB)❍

Open List of Activation Attributes (QWVOLACT)❍

Open List of Activation Group Attributes (QWVOLAGP)❍

Open List of Job Queues (QSPOLJBQ)❍

Open List of Jobs (QGYOLJOB)❍

Open List of Threads (QWCOLTHD)❍

Retrieve Call Stack (QWVRCSTK)❍

Retrieve Class Information (QWCRCLSI)❍

Retrieve Current Attributes (QWCRTVCA)❍

Retrieve Data Area (QWCRDTAA)❍

Retrieve IPL Attributes (QWCRIPLA)❍

●

Retrieve Job Description Information (QWDRJOBD)❍

Retrieve Job Information (QUSRJOBI)❍

Retrieve Job Locks (QWCRJBLK)❍

Retrieve Job Queue Information (QSPRJOBQ)❍

Retrieve Job Status (QWCRJBST)❍

Retrieve Lock Information (QWCRLCKI)❍

Retrieve Lock Request Information (QWCRLRQI)❍

Retrieve Lock Space Attributes (QTRXRLSA)❍

Retrieve Lock Space Locks (QTRXRLSL)❍

Retrieve Lock Space Record Locks (QTRXRLRL)❍

Retrieve Network Attributes (QWCRNETA)❍

Retrieve Profile Exit Programs (QWTRTVPX)❍

Retrieve Subsystem Information (QWDRSBSD)❍

Retrieve System Status (QWCRSSTS)❍

Retrieve System Values (QWCRSVAL)❍

Retrieve Thread Attribute (QWTRTVTA)❍

Set Lock Flight Recorder (QWTSETLF)❍

Set Profile Exit Programs (QWTSETPX)❍

Set Trace (QWTSETTR)❍

Exit Programs

Auxiliary Storage Lower Limit❍

Job Notification❍

Power Down System❍

Preattention Program❍

Presystem Request Program❍

Trace Job❍

●

Work Management APIs
The work management APIs perform functions that are used in a wide variety of applications. These APIs
retrieve and manipulate:

Jobs●

Subsystem storage pools●

Subsystem job queues●

Data areas●

Network attributes●

System status●

System values●

Flight recorders●

The work management APIs are:

Change Current Job (QWCCCJOB) changes information for the current job.●

Change Job (QWTCHGJB) changes some of the attributes of a job.●

Change Pool Attributes (QUSCHGPA) changes the size, activity level, and paging option of system
storage pools.

●

Change Pool Tuning Information (QWCCHGTN) changes information about tuning being
performed on the system for the different storage pools.

●

Change Subsystem Entry (QWDCSBSE) changes a subsystem entry in the specified subsystem
description.

●

Control Thread (QTHMCTLT) holds, releases, or ends the specified thread.●

Control Trace (QWTCTLTR) turns the trace function on and off.●

Create Job Structures (QWTCTJBS) creates the number of temporary job structures that are passed
on the call.

●

Delete Job Structures (QWTDTJBS) deletes the number of temporary job structures that are passed
on the call to the API.

●

Dump Flight Recorder (QWTDMPFR) dumps the contents of the flight recorders for jobs that have
them.

●

Dump Lock Flight Recorder (QWTDMPLF) dumps the contents of the lock flight recorder for the
device that is specified in the parameter that is passed to the program.

●

List Active Subsystems (QWCLASBS) retrieves a list of active subsystems.●

List Job (QUSLJOB) lists some or all jobs on the system.●

List Job Schedule Entries (QWCLSCDE) lists the entries in the job schedule QDFTJOBSCD.●

List Object Locks (QWCLOBJL) generates a list of locks for an object or database file member. An
object-level or member-level lock may be specified.

●

List Subsystem Entries (QWDLSBSE) lists some of the different entries in a subsystem description,
such as routing entries.

●

List Subsystem Job Queues (QWDLSJBQ) lists the job queues for a subsystem.●

Move Job (QSPMOVJB) moves jobs from one position to another position within the same job
queue or from one job queue to another job queue. Priority and status of the job are affected by the

●

user's priority level and the status of the target job.

Open List of Activation Attributes (QWVOLACT) generates a list of all the activation attributes
that are associated with an activation group in a given job.

●

Open List of Activation Group Attributes (QWVOLAGP) generates a list of all the activation
groups that are associated with a given job and their attributes.

●

Open List of Job Queues (QSPOLJBQ) generates a list of job queues on the system.●

Open List of Jobs (QGYOLJOB) generates a list of jobs on the system.●

Open List of Threads (QWCOLTHD) generates a list of active threads for the job specified in the
Job identification parameter.

●

Retrieve Call Stack (QWVRCSTK) returns the call stack information for the specified thread.●

Retrieve Class Information (QWCRCLSI) returns the attributes of a class object.●

Retrieve Current Attributes (QWCRTVCA) retrieves specific attributes for the current thread.●

Retrieve Data Area (QWCRDTAA) retrieves the contents of a data area.●

Retrieve IPL Attributes (QWCRIPLA) returns the settings of options that are used during the IPL.●

Retrieve Job Description Information (QWDRJOBD) retrieves information from a job description
object.

●

Retrieve Job Information (QUSRJOBI) retrieves information, such as job attributes and
performance data about a specific job.

●

Retrieve Job Locks (QWCRJBLK) generates a list of objects that have been locked by the job or
thread that is specified in the job identification information input parameter.

●

Retrieve Job Queue Information (QSPRJOBQ) retrieves information associated with a specified job
queue.

●

Retrieve Job Status (QWCRJBST) returns status and job identification information about the job
that is identified by the job identifier parameter.

●

Retrieve Lock Information (QWCRLCKI) generates a list of information about lock holders of
the item specified.

●

Retrieve Lock Request Information (QWCRLRQI) takes as input a lock request handle that was
returned in other APIs and returns information about the program that requested the lock.

●

Retrieve Lock Space Attributes (QTRXRLSA) returns information for the specified lock space.●

Retrieve Lock Space Locks (QTRXRLSL) generates a list of objects that have been locked or
that have lower level locks held by the specified lock space.

●

Retrieve Lock Space Record Locks (QTRXRLRL) lets you generate a list of record locks held by
the specified lock space.

●

Retrieve Network Attributes (QWCRNETA) retrieves network attributes.●

Retrieve Profile Exit Programs (QWTRTVPX) retrieves the profile exit flags that have been
designated to be called for the specified user ID. The API then places that information into a single
variable in the calling program.

●

Retrieve Subsystem Information (QWDRSBSD) retrieves information about a specific subsystem.●

Retrieve System Status (QWCRSSTS) retrieves a group of statistics that represent the current status
of the system.

●

Retrieve System Values (QWCRSVAL) retrieves system values.●

Retrieve Thread Attribute (QWTRTVTA) retrieves job and thread attributes that apply to the job
or thread specified in the Job/Thread identification information parameter.

●

Set Lock Flight Recorder (QWTSETLF) turns the lock flight recorder on and off.●

Set Profile Exit Programs (QWTSETPX) sets for the specified user ID the profile exit programs to
call.

●

Set Trace (QWTSETTR) starts the Trace Job (TRCJOB) command for the job passed on the job
and user name parameter at the earliest point while the job is starting.

●

Several of the work management APIs work with job and thread attributes. Those job and thread attributes
are discussed in Work Management API Attribute Descriptions.

The work management exit programs are:

Auxiliary Storage Lower Limit is called when the available storage in the system auxiliary storage
pool (ASP) goes below the lower limit.

●

Job Notification logs notification messages to data queues when an OS/400 job starts, ends, or is
placed on a job queue.

●

Power Down System is called when the Power Down System (PWRDWNSYS) or End System
(ENDSYS) command is used.

●

Preattention Program is called when the user presses the System Attention key.●

Presystem Request Program is called when the user presses the System Request key.●

Trace Job tailors the spooled file output from the Trace Job (TRCJOB) command.●

Top | APIs by category

Work Management API Attribute Descriptions
The purpose of this document is to provide one place that describes all the Job and Thread attributes that
are used in all the Work Management APIs. The list of attributes encompasses the following APIs:

Retrieve Job Information (QUSRJOBI)

List Job (QUSLJOB)

Retrieve Current Attribute (QWCRTVCA)

Open List of Jobs (QGYOLJOB)

Retrieve Thread Attribute (QWTRTVTA)

Open List of Threads (QWCOLTHD)

Attributes

The following are the list of attributes that have keys associated with them.

Key Type Description

0101 CHAR(4) Active job status

0102 CHAR(1) Allow multiple threads

0103 CHAR(4) Active job status for jobs ending

 0104 See APIs for details ASP group information

0201 CHAR(10) Break message handling

0301 CHAR(1) Cancel key

0302 BINARY(4) Coded character set ID

0303 CHAR(2) Country or region ID

0304 BINARY(4) Processing unit time used, if less than 2,147,483,647
milliseconds

0305 CHAR(10) Current user profile

0306 CHAR(1) Completion status

0307 BINARY(4) Current system pool identifier

0310 See APIs for details Current library

0311 CHAR(10) Character identifier control

0312 BINARY(8),
UNSIGNED

Processing unit time used - total for the job

0313 BINARY(8),
UNSIGNED

Processing unit time used for database - total for the job

0314 BINARY(4) Processing unit used - percent used during the elapsed time
(job)

0315 BINARY(8),
UNSIGNED

Processing unit used - time during the elapsed time (job)

0316 BINARY(4) Processing unit used for database - percent used during the
elapsed time (job)

0317 BINARY(8),
UNSIGNED

Processing unit used for database - time during the elapsed
time (job)

0318 CHAR(15) Client IP address - IPv4

0319 BINARY(8),
UNSIGNED

Processing unit time used - total for the thread

0320 BINARY(8),
UNSIGNED

Processing unit time used for database - total for the thread

0321 BINARY(4) Processing unit used - percent during the elapsed time
(thread)

0322 BINARY(8),
UNSIGNED

Processing unit used - time during the elapsed time (thread)

0323 BINARY(4) Processing unit used for database - percent used during the
elapsed time (thread)

0324 BINARY(8),
UNSIGNED

Processing unit used for database - time during the elapsed
time (thread)

 0326 CHAR(45) Client IP address - IPv4 or IPv6

0401 CHAR(13) Date and time job became active

0402 CHAR(13) Date and time job entered system

0403 CHAR(8) Date and time job is scheduled to run

0404 CHAR(8) Date and time job was put on this job queue

0405 CHAR(4) Date format

0406 CHAR(1) Date separator

0407 CHAR(1) DBCS-capable

0408 CHAR(10) DDM conversation handling

0409 BINARY(4) Default wait

0410 CHAR(13) Device recovery action

0411 CHAR(10) Device name

0412 BINARY(4) Default coded character set identifier

0413 CHAR(1) Decimal format

0414 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time (job)

0415 BINARY(8),
UNSIGNED

Disk I/O count - total for the job

0416 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time - asynchronous I/O
(job)

0417 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time - synchronous I/O
(job)

0418 CHAR(13) Date and time job ended

0419 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time (thread)

0420 BINARY(8),
UNSIGNED

Disk I/O count - total for the thread

0421 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time - asynchronous I/O
(thread)

0422 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time - synchronous I/O
(thread)

0501 BINARY(4) End severity

0502 CHAR(1) End status

0503 CHAR(1) Exit key

 0504 CHAR(10) Extended object attribute of entity thread is waiting on

0601 CHAR(10) Function name

0602 CHAR(1) Function type

0701 CHAR(1) Signed-on job

0702 CHAR(10) Group profile name

0703 CHAR(150) Group profile name - supplemental

0901 CHAR(10) Inquiry message reply

0902 CHAR(16) Internal job identifier

0903 CHAR(1) Initial thread

0904 BINARY(4) Interactive response time - total during the elapsed time

0905 BINARY(4) Interactive transactions - count during the elapsed time

1001 CHAR(15) Job accounting code

1002 CHAR(7) Job date

1003 CHAR(20) Job description name - qualified

1004 CHAR(20) Job queue name - qualified

1005 CHAR(2) Job queue priority

1006 CHAR(8) Job switches

1007 CHAR(10) Job message queue full action

1008 BINARY(4) Job message queue maximum size

1009 CHAR(26) Job name

1010 CHAR(1) Job type

1011 CHAR(1) Job subtype

1012 CHAR(10) Job user identity

1013 CHAR(1) Job user identity setting

1014 BINARY(4) Job end reason

1015 CHAR(1) Job log pending

1016 BINARY(4) Job type - enhanced

1201 CHAR(3) Language ID

1202 CHAR(1) Logging level

1203 CHAR(10) Logging of CL programs

1204 BINARY(4) Logging severity

1205 CHAR(10) Logging text

 1206 CHAR(10) Library of entity thread is waiting on

1301 CHAR(8) Mode name

1302 BINARY(4) Maximum processing unit time

1303 BINARY(4) Maximum temporary storage in kilobytes

1304 BINARY(4) Maximum threads

1305 BINARY(4) Maximum temporary storage in megabytes

1306 CHAR(10) Memory pool name

1307 CHAR(1) Message reply

1401 BINARY(4) Number of auxiliary I/O requests, if less than 2,147,483,647

1402 BINARY(4) Number of interactive transactions

1403 BINARY(4) Number of database lock waits

1404 BINARY(4) Number of internal machine lock waits

1405 BINARY(4) Number of nondatabase lock waits

1406 BINARY(8),
UNSIGNED

Number of auxiliary I/O requests

 1407 CHAR(30) Name of entity thread is waiting on

1501 CHAR(20) Output queue name - qualified

1502 CHAR(2) Output queue priority

 1503 CHAR(10) Object type of entity thread is waiting on

1601 CHAR(10) Print key format

1602 CHAR(30) Print text

1603 CHAR(10) Printer device name

1604 CHAR(10) Purge

1605 BINARY(4) Product return code

1606 BINARY(4) Program return code

1607 CHAR(8) Pending signal set

1608 BINARY(4) Process ID number

1609 BINARY(8),
UNSIGNED

Page fault count during the elapsed time (job)

1610 BINARY(8),
UNSIGNED

Page fault count during the elapsed time (thread)

1660 See APIs for details Product libraries

1801 BINARY(4) Response time total

1802 BINARY(4) Run priority (job)

1803 CHAR(80) Routing data

1804 BINARY(4) Run priority (thread)

1901 CHAR(20) Sort sequence table - qualified

1902 CHAR(10) Status message handling

1903 CHAR(10) Status of job on the job queue

1904 CHAR(26) Submitter's job name - qualified

1905 CHAR(20) Submitter's message queue name - qualified

1906 CHAR(20) Subsystem description name - qualified

1907 BINARY(4) System pool identifier

1908 CHAR(10) Special environment

1909 CHAR(8) Signal blocking mask

1910 BINARY(4) Signal status

1911 CHAR(30) Server type

1980 See APIs for details System library list

 1982 CHAR(10) Spooled file action

2001 CHAR(1) Time separator

2002 BINARY(4) Time slice

2003 CHAR(10) Time-slice end pool

2004 BINARY(4) Temporary storage used in kilobytes

2005 BINARY(4) Time spent on database lock waits

2006 BINARY(4) Time spent on internal machine lock waits

2007 BINARY(4) Time spent on nondatabase lock waits

2008 BINARY(4) Thread count

2009 BINARY(4) Temporary storage used in megabytes

2010 CHAR(4) Thread status

2011 CHAR(1) Thread type

2012 BINARY(4) Thread hold count

 2015 BINARY(4) Type of entity thread is waiting on

2101 CHAR(24) Unit of work ID

2102 BINARY(4) User return code

2110 See APIs for details User library list

2702 See APIs for details All portions of the library list for format RTVC0200

2703 See APIs for details All portions of the library list for format RTVT0200

Field Descriptions

The following section describes the fields returned in further detail. For details on the thread safety of a
particular attribute see the thread safety section in the API being used. The fields are listed in alphabetical
order.

Active job status. The active status of the initial thread of the job. Only one status is returned. The possible
values are:

no status A blank status field represents a job that is in transition or is not active.

BSCA Waiting in a pool activity level for the completion of an I/O operation to a binary
synchronous device.

BSCW Waiting for the completion of an I/O operation to a binary synchronous device.

CMNA Waiting in a pool activity level for the completion of an I/O operation to a communications
device.

CMNW Waiting for the completion of an I/O operation to a communications device.

CMTW Waiting for the completion of save-while-active checkpoint processing in another job.

CNDW Waiting on handle-based condition.

CPCW Jobs waiting for the completion of a CPI Communications call.

DEQA Waiting in the pool activity level for completion of a dequeue operation.

DEQW Waiting for completion of a dequeue operation. For example, QSYSARB and subsystem
monitors generally wait for work by waiting for a dequeue operation.

DKTA Waiting in a pool activity level for the completion of an I/O operation to a diskette unit.

DKTW Waiting for the completion of an I/O operation to a diskette unit.

DLYW The Delay Job (DLYJOB) command delays the job for a time interval to end, or for a specific
delay end time. The function field shows either the number of seconds the job is to delay
(999999), or the specific time when the job is to resume running.

DSC Disconnected from a work station display.

DSPA Waiting in a pool activity level for input from a work station display.

DSPW Waiting for input from a work station display.

END The job has been ended with the *IMMED option, or its delay time has ended with the
*CNTRLD option.

EOFA Waiting in the activity level to try a read operation again on a database file after the
end-of-file has been reached.

EOFW Waiting to try a read operation again on a database file after the end-of-file has been reached.

EOJ Ending for a reason other than running the End Job (ENDJOB) or End Subsystem (ENDSBS)
command, such as SIGNOFF, End Group Job (ENDGRPJOB), or an exception that is not
handled.

EVTW Waiting for an event. For example, QLUS and SCPF generally wait for work by waiting for
an event.

GRP Suspended by a Transfer Group Job (TFRGRPJOB) command.

HLD Held.

HLDT Held due to suspended thread.

ICFA Waiting in a pool activity level for the completion of an I/O operation to an intersystem
communications function file.

ICFW Waiting for the completion of an I/O operation to an intersystem communications function
file.

INEL Ineligible and not currently in the pool activity level.

JVAA Waiting in a pool activity level for a Java program operation to complete.

JVAW Waiting for a Java program operation to complete.

LCKW Waiting for a lock.

LSPA Waiting in a pool activity level for a lock space to be attached.

LSPW Waiting for a lock space to be attached.

MLTA Waiting in a pool activity level for the completion of an I/O operation to multiple files.

MLTW Waiting for the completion of an I/O operation to multiple files.

MSGW Waiting for a message from a message queue.

MTXW Waiting for a mutex. A mutex is a synchronization function that is used to allow multiple
jobs or threads to serialize their access to shared data.

MXDW Waiting for the completion of an I/O operation to a mixed device file.

OPTA Waiting in a pool activity level for the completion of an I/O operation to an optical device.

OPTW Waiting for the completion of an I/O operation to an optical device.

OSIW Jobs waiting for the completion of an OSI Communications Subsystem for OS/400 operation.

PRTA Waiting in a pool activity level for output to a printer to complete.

PRTW Waiting for output to a printer to be completed.

PSRW A prestart job waiting for a program start request.

RUN Currently running in the pool activity level.

SELW Waiting for a selection to complete.

SEMW Waiting for a semaphore. A semaphore is a synchronization function that is used to allow
multiple jobs or threads to serialize their access to shared data.

SIGS Stopped as the result of a signal

SIGW Waiting for a signal

SRQ The suspended half of a system request job pair.

SVFA Waiting in a pool activity level for completion of a save file operation.

SVFW Waiting for completion of a save file operation.

TAPA The job is waiting in a pool activity level for completion of an I/O operation to a tape device.

TAPW Waiting for completion of an I/O operation to a tape device.

THDW Waiting for another thread to complete an operation.

TIMA Waiting in a pool activity level for a time interval to end.

TIMW Waiting for a time interval to end.

Active job status for jobs ending. When the active job status field is END or EOJ, this field contains the
status of what the initial thread is doing currently. This field is blank if the job is not ending currently. See
the active job status field for the list of possible values. For example, the active job status would be EOJ,
but the job could be waiting on a lock that could keep the job from ending. The active job status for jobs
ending field would then be LCKW.

Allow multiple threads. Whether this job allows multiple user threads. This attribute does not prevent the
operating system from creating system threads in the job. Possible values are:

0 This job does not allow multiple user threads.

1 This job allows multiple user threads.

All portions of the library list for format RTVT0200. All portions of the library list will be returned.

ASP group information. The list of ASP group information for the current thread. This information does
not include the system ASP or the basic user ASPs.

Break message handling. How this job handles break messages. The possible values are:

*NORMAL The message queue status determines break message handling.

*HOLD The message queue holds break messages until a user or program requests them. The work
station user uses the Display Message (DSPMSG) command to display the messages; a
program must issue a Receive Message (RCVMSG) command to receive a message and
handle it.

*NOTIFY The system notifies the job's message queue when a message arrives. For interactive jobs,
the audible alarm sounds if there is one, and the message-waiting light comes on.

Cancel key. Whether the user pressed the cancel key.

0 The user did not press the cancel key.

1 The user did press the cancel key.

Note: The application or command that was called before this API determines how the key is set.

CCSID of current SQL statement. The CCSID of the current SQL statement string that is returned.

Character identifier control. The character identifier control for the job. This attribute controls the type of
CCSID conversion that occurs for display files, printer files, and panel groups. The *CHRIDCTL special
value must be specified on the CHRID command parameter on the create, change, or override command for
display files, printer files, and panel groups before this attribute will be used.

*DEVD The *DEVD special value performs the same function as on the CHRID command
parameter for display files, printer files, and panel groups.

*JOBCCSID The *JOBCCSID special value performs the same function as on the CHRID command
parameter for display files, printer files, and panel groups.

Client IP address - IPv4. The IPv4 address of the client for which this server is doing work. An address
is expressed in standard IPv4 dotted-decimal form www.xxx.yyy.zzz (for example, 130.99.128.1). This
field is not guaranteed to be an IP address. This field will be blank if the address is not explicitly set to a
value by the Change Job (QWTCHGJB) API. For additional usage information of the Client IP address, see
the Retrieve Thread Attribute (QWTRTVTA) API.

Client IP address - IPv4 or IPv6. The IPv4 or IPv6 address of the client for which the specified thread
of this server most recently communicated with over sockets. If this field is requested for a job, the value
from the initial thread of the job will be returned. If a sockets connection has not been established in the
initial thread, this field will be blank. An IPv4 address is expressed in standard dotted-decimal form
www.xxx.yyy.zzz (for example, 130.99.128.1). An IPv6 address always has at least one occurrence of a
colon (':') in the format. Some possible IPv6 address formats would be: ::x (for example, ::1) or
::w.xxx.y.zzz (for example, ::9.130.4.169). For further IPv6 examples and explanation, refer to the Usage
Notes section in the Convert IPv4 and IPv6 Addresses Between Text and Binary Form (inet_pton) API.
This field is implicitly set by the operating system.

Coded character set ID. The coded character set identifier used for this job.

Completion status. The completion status of the job.

blank The job has not completed.

0 The job completed normally.

1 The job completed abnormally.

Country or region ID. The country or region identifier associated with this job.

Current library. The name of the current library for the thread. If no current library exists, the current
library existence field is zero and this field has no entry in the list. If this field is requested for a job, the
value for the initial thread of the job will be returned.

Current library existence. The current library existence field:

0 No current library exists.

1 A current library exists.

Current number of pending signals. The number of signals that have been received for a signal monitor
but whose signal action has not been taken.

Current SQL statement. The SQL statement that is running currently or was last run in the job.

Current system pool identifier. The identifier of the system-related pool from which main storage is
currently being allocated for the job's initial thread. These identifiers are not the same as those specified in
the subsystem description, but are the same as the system pool identifiers shown on the system status
display. If a thread reaches its time-slice end, the pool the thread is running in can be switched based on the
job's time-slice end pool value. The current system pool identifier returned will be the actual pool in which
the initial thread of the job is running.

Current user profile. The user profile that the thread for which information is being retrieved is currently
running under. This name may differ from the user portion of the job name. If this field is requested for a
job, the value for the initial thread of the job will be returned.

Date and time job became active. When the job began to run on the system. This is blank if the job did
not become active. It is in the format CYYMMDDHHMMSS, where:

C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

Date and time job ended. When the job completed running on the system, in the CYYMMDDHHMMSS
format described for the date and time job became active field.

Date and time job entered system. When the job was placed on the system, in the CYYMMDDHHMMSS
format described for the date and time job became active field.

Date and time job is scheduled to run. Date and time the job is scheduled to become active. This field is
returned as hexadecimal zeros if the job is not a scheduled job. The format for this field is the system
time-stamp format.

Date and time job was put on this job queue. This is the date and time this job was put on this job queue.
It is in system timestamp format. This field will contain blanks if the job was not on a job queue.

Date format. The format that the date is presented in. The following values are possible:

*YMD Year, month, and day format

*MDY Month, day, and year format

*DMY Day, month, and year format

*JUL Julian format (year and day)

Date separator. The value used to separate days, months, and years when presenting a date. The following
values are possible:

'/' A slash (/) is used for the date separator.

'-' A dash (-) is used for the date separator.

'.' A period (.) is used for the date separator.

' ' A blank is used for the date separator.

',' A comma (,) is used for the date separator.

DBCS-capable. Whether the job is DBCS-capable.

0 The job is not DBCS-capable.

1 The job is DBCS-capable.

DDM conversation handling. Specifies whether connections using distributed data management (DDM)
protocols remain active when they are not being used. The connections include APPC conversations, active
TCP/IP connections or Opti-Connect connections. The DDM protocols are used in Distributed Relational
Database Architecture(TM) (DRDA(R)) applications, DDM applications, or DB2 Multisystem applications.
The following values are possible:

*KEEP The system keeps DDM connections active when there are no users, except for the following:

The routing step ends on the source system. The routing step ends when the job ends
or when the job is rerouted to another routing step.

●

The Reclaim Distributed Data Management Conversation (RCLDDMCNV) command
or the Reclaim Resources (RCLRSC) command runs.

●

A communications failure or an internal failure occurs.●

A DRDA connection to an application server not running on the system ends.●

*DROP The system ends a DDM connection when there are no users. Examples include when an
application closes a DDM file, or when a DRDA application runs a SQL DISCONNECT
statement.

Decimal format. The decimal format used for this job. The following values are possible:

blank Uses a period for a decimal point, a comma for a 3-digit grouping character, and zero-suppress to
the left of the decimal point.

J Uses a comma for a decimal point and a period for a 3-digit grouping character. The
zero-suppression character is in the second position (rather than the first) to the left of the
decimal notation. Balances with zero values to the left of the comma are written with one leading
zero (0,04). The J entry also overrides any edit codes that might suppress the leading zero.

I Uses a comma for a decimal point, a period for a 3-digit grouping character, and zero-suppress to
the left of the decimal point.

Default coded character set identifier. The default coded character set identifier used for this job. This
field contains zeros if the job is not an active job.

Default signal action. The action to be taken by a signal when the signal action specifies that the signal
should be handled using the default signal action. Possible values are as follows:

0 End the job

1 Cancel the request

2 Ignore the signal (discard)

3 Stop the job

4 Continue the job if stopped

5 Signal exception

Default wait. The default maximum time (in seconds) that a thread in the job waits for a system instruction,
such as a LOCK machine interface (MI) instruction, to acquire a resource. A value of -1 is returned if the
value is *NOMAX.

Device name. The name of the device as identified to the system. For an interactive job, the device where
the job started; for all other jobs types it will be blanks.

Device recovery action. The action taken for interactive jobs when an I/O error occurs for the job's
requesting program device. The possible values are:

*MSG Signals the I/O error message to the application and lets the application program
perform error recovery.

*DSCMSG Disconnects the job when an I/O error occurs. When the job reconnects, the system
sends an error message to the application program, indicating the job has
reconnected and that the work station device has recovered.

*DSCENDRQS Disconnects the job when an I/O error occurs. When the job reconnects, the system
sends the End Request (ENDRQS) command to return control to the previous
request level.

*ENDJOB Ends the job when an I/O error occurs. A message is sent to the job's log and to the
history log (QHST) indicating the job ended because of a device error.

*ENDJOBNOLIST Ends the job when an I/O error occurs. There is no job log produced for the job.
The system sends a message to the QHST log indicating the job ended because of a
device error.

Disk I/O count during the elapsed time (job). The number of disk I/O operations performed by the job
during the elapsed time. This is the sum of the asynchronous and synchronous disk I/O.

Disk I/O count during the elapsed time (thread). The number of disk I/O operations performed by the
specified thread during the elapsed time. This is the sum of the asynchronous and synchronous disk I/O.

Disk I/O count during the elapsed time - asynchronous I/O (job). The number of asynchronous
(physical) disk I/O operations performed by the job during the elapsed time. This value is the sum of the
asynchronous database and nondatabase reads and writes.

Disk I/O count during the elapsed time - asynchronous I/O (thread). The number of asynchronous
(physical) disk I/O operations performed by the specified thread during the elapsed time. This value is the
sum of the asynchronous database and nondatabase reads and writes.

Disk I/O count during the elapsed time - synchronous I/O (job). The number of synchronous (physical)
disk I/O operations performed by the job during the elapsed time. This value is the sum of the synchronous
database and nondatabase reads and writes.

Disk I/O count during the elapsed time - synchronous I/O (thread). The number of synchronous
(physical) disk I/O operations performed by the specified thread during the elapsed time. This value is the
sum of the synchronous database and nondatabase reads and writes.

Disk I/O count - total for the job. The total number of disk I/O operations performed by the job across all
routing steps. This is the sum of the asynchronous and synchronous disk I/O.

Disk I/O count - total for the thread. The total number of disk I/O operations performed by the specified
thread. This is the sum of the asynchronous and synchronous disk I/O.

Elapsed time. The time, in milliseconds, that has elapsed between the measurement start time and the
current system time. This value is 0 the first time this API is called by this job. The measurement start is set
the first time this API is called and when the reset status statistics is set to reset the elapsed time.

End severity. The message severity level of escape messages that can cause a batch job to end. The batch
job ends when a request in the batch input stream sends an escape message, whose severity is equal to or
greater than this value, to the request processing program.

End status. Whether the system issued a controlled cancelation. The possible values are:

1 The system, the subsystem in which the job is running, or the job itself is canceled.

0 The system, subsystem, or job is not cancelled.

blank The job is not running.

Exit key. Whether the user pressed the exit key.

0 The user did not press the exit key.

1 The user did press the exit key.

Note: The application or command that was called before this API determines how the key is set.

Extended object attribute of entity thread is waiting on. The extended attribute of the object, such as a
program or file type, that the thread is waiting on. Extended attributes further describe the object. For
example, an object type of *PGM may have a value of RPG(RPG program) or CLP(CL program), and an
object type of *FILE may have a value of PF(physical file), LF(logical file), DSPF(display file),
SAVF(save file), and so on. This field may blank if there is no extended attribute associated with the object
type, or the type of entity the thread is waiting on is not an OS/400 external object or an OS/400 external
object space location. If this field is requested for a job, the value for the initial thread of the job will be
returned.

Function name. Additional information (as described in the function type field) about the function the
initial thread is currently performing. This information is updated only when a command is processed.

Function type. Whether the initial thread is performing a high-level function and what the function type is.
The possible values are:

blank The system is not doing a logged function.

C A command is running interactively, or it is in a batch input stream, or it was requested from a
system menu. Commands in CL programs or REXX procedures are not logged.

D The initial thread of the job is processing a Delay Job (DLYJOB) command. The function name
contains the number of seconds the job is delayed (up to 999999 seconds), or the time when the
job is to resume processing (HH:MM:SS), depending on how you specified the command.

G The Transfer Group Job (TFRGRPJOB) command suspended the job. The function name field
contains the group job name for that job.

I The initial thread of the job is rebuilding an index (access path). The function name field
contains the name of the logical file whose index is rebuilt.

L The system logs history information in a database file. The function name field contains the
name of the log (QHST is the only log currently supported).

M The job is a multiple requester terminal (MRT) job if the job type is BATCH and the subtype is
MRT, or it is an interactive job attached to an MRT job if the job type is interactive. See job
type, subtype, or field for how to determine what type of job this is.

For MRT jobs, the function name field contains information in the following format:

CHAR(2): The number of requesters currently attached to the MRT job.●

CHAR(1): The field is reserved for a / (slash).●

CHAR(2): The maximum number (MRTMAX) of requesters.●

CHAR(1): Reserved.●

CHAR(3): The never-ending program (NEP) indicator. If an MRT is also an NEP, the
MRT stays active even if there are no requesters of the MRT. A value of NEP indicates a
never-ending program. A value of blanks indicates that it is not a never-ending program.

●

CHAR(1): Reserved.●

For interactive jobs attached to an MRT, the function name field contains the name of the MRT
procedure.

N The initial thread of the job is currently at a system menu. The function name field contains the
name of the menu.

O The job is a subsystem monitor that is performing input/output (I/O) operations to a work station.
The function name field contains the name of the work station device to which the subsystem is
performing an input/output operation.

P The initial thread of the job is running a program. The function name field contains the name of
the program.

R The initial thread of the job is running a procedure. The function name field contains the name of
the procedure.

* This does a special function. For this value, the function name field contains one of the following
values:

ADLACTJOB: Auxiliary storage is being allocated for the number of active jobs
specified in the QADLACTJ system value. This may indicate that the system value for
the initial number of active jobs is too low.

●

ADLTOTJOB: Auxiliary storage is being allocated for the number of jobs specified in
the QADLTOTJ system value.

●

CMDENT: The Command Entry display is being used.●

COMMIT: A commit operation is being performed.●

DIRSHD: Directory shadowing.●

DLTSPLF: The system is deleting a spooled file.●

DUMP: A dump is in process.●

JOBIDXRCY: A damaged job index is being recovered.●

JOBLOG: The system is producing a job log.●

PASSTHRU: The job is a pass-through job.●

RCLSPLSTG: Empty spooled database members are being deleted.●

ROLLBACK: A rollback operation is being performed.●

SPLCLNUP: Spool cleanup is in process.●

Group profile name. The name of the group profile that is associated with the initial thread. The user's
group authority is used if no specific authority is granted for the user. The value *NONE is returned if no
group profile name is found.

Group profile name - supplemental. The name of the group profile associated with the initial thread. The
user's group authority is used if no specific authority is granted for the user. Up to 15 supplemental group
profile names may be specified. Blanks are returned if no supplemental group profile names are found.

Initial thread. Whether this thread is the initial thread of this job.

0 This thread is not the initial thread.

1 This thread is the initial thread.

Inquiry message reply. How the job answers inquiry messages:

*RQD The job requires an answer for any inquiry messages that occur while this job is running.

*DFT The system uses the default message reply to answer any inquiry messages issued while
this job is running. The default reply is either defined in the message description or is the
default system reply.

*SYSRPYL The system reply list is checked to see if there is an entry for an inquiry message issued
while this job is running. If a match occurs, the system uses the reply value for that entry. If
no entry exists for that message, the system uses an inquiry message.

Interactive response time - total during the elapsed time. The total interactive response time for the
initial thread, in hundredth of seconds, for the job during the elapsed time. This value does not include the
time used by the machine, by the attached input/output (I/O) hardware, and by the transmission lines for
sending and receiving data. This field is 0 for noninteractive jobs.

Interactive transactions - count during the elapsed time. The number of user interactions, such as
pressing the Enter key or a function key, for the job during the elapsed time for the initial thread. This value
is returned for interactive jobs only.

Internal job identifier. A value input to other APIs to increase the speed of locating the job on the system.
Only APIs described in this manual use this identifier. The identifier is not valid following an initial
program load (IPL). If you attempt to use it after an IPL, an exception occurs.

Job accounting code. An identifier assigned to the job by the system to collect resource use information
for the job when job accounting is active.

Job date. This is the date to be used for the job. It is in the format CYYMMDD where C is the century, YY
is the year, MM is the month, and DD is the day. A 0 for the century flag indicates years 19xx and a 1
indicates years 20xx. This value is for jobs whose status is *JOBQ or *ACTIVE. For jobs with a status of
*OUTQ, the value for this field is blank.

*SYSVAL This job will use the system date.

Job description library name. The library containing the job description.

Job description name. A CHAR(10) representation of the set of job-related attributes used for one or more
jobs on the system. These attributes determine how the job is run on the system. Multiple jobs can also use
the same job description.

Job description name - qualified. A CHAR(20) representation of the set of job-related attributes used for
one or more jobs on the system. These attributes determine how the job is run on the system. Multiple jobs
can also use the same job description. The format of the qualified name is a 10-character simple object
name followed by a 10-character library name. The data is left-justified and padded with blanks on the
right.

Job end reason. The most recent action that caused the job to end. The possible values are:

0 Job not ending.

1 Job ending in normal manner.

2 Job ended while it was still on a job queue.

3 System ended abnormally.

4 Job ending normally after a controlled end was requested.

5 Job ending immediately.

6 Job ending abnormally.

7 Job ended due to the CPU limit being exceeded.

8 Job ended due to the storage limit being exceeded.

9 Job ended due to the message severity level being exceeded.

10 Job ended due to the disconnect time interval being exceeded.

11 Job ended due to the inactivity time interval being exceeded.

12 Job ended due to a device error.

13 Job ended due to a signal.

14 Job ended due to an unhandled error.

Job log pending. If the system fails while the job was active or the job ends abnormally, the job log may
not be written yet. This flag remains on until the job log has been written. The possible values are:

0 Job log is not pending.

1 Job log is pending and waiting to be written.

Job message queue full action. The action to take when the message queue is full. The values are:

*NOWRAP When the job message queue is full, do not wrap. This action causes the job to end.

*WRAP When the job message queue is full, wrap to the beginning and start filling again.

*PRTWRAP When the job message queue is full, wrap the message queue and print the messages that
are being overlaid because of the wrapping.

Job message queue maximum size. The maximum size (in megabytes) that the job message queue can
become. The range is 2 to 64.

Job name. The name of the job as identified to the system. For an interactive job, the system assigns the
job the name of the work station where the job started; for a batch job, you specify the name in the
command when you submit the job.

Job number. The system-generated job number.

Job queue library name. The name of the library where the job queue is located.

Job queue name. The CHAR(10) representation of the name of the job queue that the job is currently on,
or that the job was on if it is currently active. This value is for jobs whose status is *JOBQ or *ACTIVE.
For jobs with a status of *OUTQ, the value for this field is blank.

Job queue name - qualified. The CHAR(20) representation of the name of the job queue that the job is
currently on, or that the job was on if it is currently active. This value is for jobs whose status is *JOBQ or
*ACTIVE. For jobs with a status of *OUTQ, the value for this field is blank. The format of the qualified
name is a 10-character simple object name followed by a 10-character library name. The data is
left-justified and padded with blanks on the right.

Job queue priority. The scheduling priority of the job compared to other jobs on the same job queue. The
highest priority is 0 and the lowest is 9. This value is for jobs whose status is *JOBQ or *ACTIVE. For jobs
with a status of *OUTQ, the value for this field is blank.

Job status. The status of the jobs. The special values are:

*ACTIVE Active jobs. This includes group jobs, system request jobs, and disconnected jobs.

*JOBQ Jobs that are currently on job queues.

*OUTQ Jobs that have completed running but still have output on an output queue.

Job subtype. Additional information about the job type (if any exists). The possible values are:

blank The job has no special subtype or is not a valid job.

D The job is an immediate job.

E The job started with a procedure start request.

F The job is an AS/400(R) Advanced 36(R) machine server job.

J The job is a prestart job.

P The job is a print driver job.

T The job is a System/36 multiple requester terminal (MRT) job.

U Alternate spool user.

Job switches. The current setting of the job switches used by this job. This value is returned for all job
types.

Job type. The type of job. The possible values for this field are:

blank The job is not a valid job.

A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the SCPF system job.

Refer to Comparing Job Type and Subtype with the Work with Active Job Command for information about
how the job type field and the job subtype field equate to the type field in the Work with Active Job
(WRKACTJOB) command.

Job type - enhanced. The type of job. This field combines the job type and job subtype fields. The possible
values are:

0110 Autostart job

0210 Batch job

0220 Batch immediate job

0230 Batch - System/36 multiple requester terminal (MRT) job

0240 Batch - alternate spool user

0310 Communications job - procedure start request job

0910 Interactive job

0920 Interactive job - Part of group

0930 Interactive job - Part of system request pair

0940 Interactive job - Part of system request pair and part of a group

1610 Prestart job

1620 Prestart batch job

1630 Prestart communications job

1810 Reader job

1910 Subsystem job

1920 System job (all system jobs including SCPF)

2310 Writer job (including both spool writers and print drivers)

Job user identity. The user profile name by which the job is known to other jobs on the system. The job
user identity is used for authorization checks when other jobs on the system attempt to operate against the
job. For more detail on how the job user identity is set and used, refer to the Set Job User Identity
(QWTSJUID) API in the Security part. For jobs that are on a job queue or have completed running, the job
user identity is same as the user name from the qualified job name. This field will return blanks for these
jobs. A value of *N is returned if the job user identity is set, but the user profile to which it is set no longer
exists.

Job user identity setting. An indicator of the method by which the job user identity was set. Possible
values are as follows:

o The job is currently running single threaded and the job user identity is the name of the user profile
under which the job is currently running. This value is also returned for jobs that are on a job queue
or have completed running. This has the same meaning as a value of *DEFAULT on the Display Job
Status Attributes display.

1 The job user identity was explicitly set by an application using one of the Set Job User Identity APIs,
QWTSJUID or QwtSetJuid(). The job may be running either single threaded or multithreaded. This
has the same meaning as a value of *APPLICATION on the Display Job Status Attributes display.

2 The job is currently running multithreaded and the job user identity was implicitly set by the system
when the job became multithreaded. It was set to the name of the user profile that the job was
running under when it became multithreaded. This has the same meaning as a value of *SYSTEM on
the Display Job Status Attributes display.

Language ID. The language identifier associated with this job.

Length of current SQL statement. The length of the current SQL statement. Zero indicates that a current
SQL statement could not be returned. This can occur if an SQL statement has never been issued in the job,
if the job is ending, if the program or package that contained the SQL statement no longer exists, or if the
API is unable to access the SQL statement.

Library name. The name of the library object.

Library of entity thread is waiting on. The library name of the entity that the thread is waiting on. This
field may be blank if the type of entity the thread is waiting on is not an OS/400 external object, a member
object, an OS/400 external object space location, a lock space, or if there is no library associated with the

particular type of entity. If the type of entity the thread is waiting on is a member object, this field will
return the library name of the file that contains the member. If this field is requested for a job, the value for
the initial thread of the job will be returned.

Library text description. The text description of the library object. This field is blank if no text description
is specified.

Lock wait time - time during the elapsed time. The amount of time (in milliseconds) that the initial
thread has to wait to obtain database, nondatabase, and internal machine locks during the elapsed time.

Logging level. What type of information is logged. The possible values are:

0 No messages are logged.

1 All messages sent to the job's external message queue with a severity greater than or equal to the
message logging severity are logged. This includes the indication of job start, job end and job
completion status.

2 The following information is logged:

Level 1 information●

Request messages that result in a high-level message with a severity code greater than or
equal to the logging severity cause the request message and all associated messages to be
logged.

Note: A high-level message is one that is sent to the program message queue of the program
that receives the request message. For example, QCMD is an IBM-supplied request
processing program that receives request messages.

●

3 The following information is logged:

Level 1 and 2 information●

All request messages●

Commands run by a CL program are logged if it is allowed by the logging of CL programs
job attribute and the log attribute of the CL program.

●

4 The following information is logged:

All request messages and all messages with a severity greater than or equal to the message
logging severity, including trace messages.

●

Commands run by a CL program are logged if it is allowed by the logging of CL programs
job attribute and the log attribute of the CL program.

●

Logging of CL programs. Whether or not commands are logged for CL programs that are run. The
possible values are *YES and *NO.

Logging severity. The severity level that is used in conjunction with the logging level to determine which
error messages are logged in the job log. The values range from 00 through 99.

Logging text. The level of message text that is written in the job log when a message is logged according to
the logging level and logging severity. The possible values are:

*MSG Only the message text is written to the job log.

*SECLVL Both the message text and the message help (cause and recovery) of the error message are
written to the job log.

*NOLIST If the job ends normally, no job log is produced. If the job ends abnormally (the job end
code is 20 or higher), a job log is produced. The messages that appear in the job log contain
both the message text and the message help.

Maximum number of signals retained. The number of signals that are kept for a signal monitor when the
signal action is blocked.

Maximum processing unit time. The maximum processing unit time (in milliseconds) that the job can use.
If the job consists of multiple routing steps, this is the maximum processing unit time that the current
routing step can use. If the maximum time is exceeded, the job is ended. A value of -1 is returned for
*NOMAX. A zero is returned if the job is not active.

Maximum temporary storage in kilobytes. The maximum amount of auxiliary storage (in kilobytes) that
the job can use. If the job consists of multiple routing steps, this is the maximum temporary storage that the
routing step can use. This temporary storage is used for storage required by the program itself and by
implicitly created internal system objects used to support the routing step. (It does not include storage in the
QTEMP library.) If the maximum temporary storage is exceeded, the job is ended. This does not apply to
the use of permanent storage, which is controlled through the user profile. A value of -1 is returned for
*NOMAX.

Maximum temporary storage in megabytes. The maximum amount of auxiliary storage (in megabytes)
that the job can use. If the job consists of multiple routing steps, this is the maximum temporary storage that
the routing step can use. This temporary storage is used for storage required by the program itself and by
implicitly created internal system objects used to support the routing step. (It does not include storage in the
QTEMP library.) If the maximum temporary storage is exceeded, the job is ended. This does not apply to
the use of permanent storage, which is controlled through the user profile. A value of -1 is returned for
*NOMAX.

Maximum threads. The maximum number of threads that a job can run with at any time. If multiple
threads are initiated simultaneously, this value may be exceeded. If this maximum value is exceeded, the
excess threads will be allowed to run to their normal completion. Initiation of additional threads will be
inhibited until the maximum number of threads in the job drops below this maximum value. A value of -1
is returned for *NOMAX.

Note: Depending on the resources used by the threads and the resources available on the system, the
initiation of additional threads may be inhibited before this maximum value is reached.

Memory pool name. The name of the memory pool in which the job started running. The name may be a
number, in which case it is a private pool associated with a subsystem. The following special values may be
returned.

*MACHINE This job is running in the machine pool.

*BASE This job is running in the base system pool, which can be shared with
other subsystems.

*INTERACT This job is running in the shared pool used for interactive work.

*SPOOL This job is running in the shared pool for spooled writers.

*SHRPOOL1 - *SHRPOOL60 This job is running in the identified shared pool.

01 - 99 This job is running in the identified private pool. This value is
right-adjusted and padded with blanks.

Message reply. Whether the job is waiting for a reply to a specific message. The field applies only when
the active job status or active job status for job ending is MSGW. Possible values are:

0 The job currently is not in message wait status.

1 The job is waiting for a reply to a message.

2 The job is not waiting for a reply to a message.

Mode name. The mode name of the advanced program-to-program communications device that started the
job. Possible values are:

*BLANK The mode name is *BLANK.

blank The mode name is blanks.

Mode name The name of the mode.

Name of entity thread is waiting on. The name of the entity that the thread is waiting on. The format of
the name will vary based on the type of entity the thread is waiting on.

For an OS/400 external object, an internal system object, an OS/400 external object space location, or an
internal system object space location, the format of the name will be as follows(however, an OS/400
external object and an OS/400 external object space location will only return up to a ten character name):

Offset

Type FieldDec Hex

0 0 CHAR(30) Extended name

For a member object, the format of the name will be as follows:

Offset

Type FieldDec Hex

0 0 CHAR(10) File

10 A CHAR(10) Member

20 14 CHAR(10) Reserved

For a lock space object, the format of the name will be as follows:

Offset

Type FieldDec Hex

0 0 CHAR(20) Lock space ID

20 14 CHAR(10) Reserved

This field will be blank if the type of entity the thread is waiting on is unknown or the thread is not waiting.
This field will also be blank if the name is for an internal system object or an internal system object space
location and the user does not have *JOBCTL special authority. If this field is requested for a job, the value
for the initial thread of the job will be returned.

Number of auxiliary I/O requests. The number of auxiliary I/O requests performed by the job across all
routing steps. This includes both database and nondatabase paging. This is an unsigned BINARY(8) value.

Number of auxiliary I/O requests, if less than 2,147,483,647. The number of auxiliary I/O requests
performed by the job across all routing steps. This includes both database and nondatabase paging. If the
number of auxiliary I/O requests is greater than or equal to 2,147,483,647, a value of -1 is returned. Use the
Number of auxiliary I/O requests field to retrieve values that are greater than or equal to 2,147,483,647.

Number of bytes available. All of the available bytes for use in your application. Note: When you request
format JOBI0700 for the Retrieve Job Information (QUSRJOBI) API, the actual length depends on how
many libraries are in the library list.

Number of bytes returned. The number of bytes returned to the user. This may be some but not all of the
bytes available.

Number of database lock waits. The number of times that the initial thread had to wait to obtain a
database lock. (These performance attributes may be a cumulative job total in a future release.)

Number of interactive transactions. The count of operator interactions, such as pressing the Enter key or
a function key. This field is zero for jobs that have no interactions.

Number of internal machine lock waits. The number of times that the initial thread had to wait to obtain
an internal machine lock. (These performance attributes may be a cumulative job total in a future release.)

Number of libraries in SYSLIBL. The number of libraries in the system part of the library list of the
initial thread.

Number of libraries in USRLIBL. The number of libraries in the user library list of the initial thread.

Number of nondatabase lock waits. The number of times that the initial thread had to wait to obtain a
nondatabase lock. (These performance attributes may be a cumulative job total in a future release.)

Number of product libraries. The number of product libraries found in the library list of the initial thread.

Number of signal monitors. The number of signal monitors that are present for the job.

Number of SQL open cursors. The number of SQL cursors that are currently open for the job.

Object library for SQL cursor. The name of the library the object is in that contains the associated SQL
open cursor.

Object name for SQL cursor. The name of the object that contains the associated SQL open cursor.

Object type for SQL cursor. The type of object with which the SQL cursor is associated.

Object type of entity thread is waiting on. The object type of the entity the thread is waiting on. This
field may be blank if the type of entity that the thread is waiting on is not a defined OS/400 external object,
a member object, an internal system object, an OS/400 external object space location, or an internal system
object space location. For a list of all the available OS/400 object types, see the Control Language (CL)
topic in the iSeries Information Center. For a list of all internal object types, see the OS/400 Diagnostics
Aids book. If this field is requested for a job, the value for the initial thread of the job will be returned.

Offset to current SQL statement. The offset from the start of the format to the start of the current SQL
statement.

Offset to SQL open cursor data. The offset from the start of the format to the start of the SQL open cursor
data.

Offset to signal monitor data. The offset from the start of the format to the start of the signal monitor data.

Output queue library name. The name of the library containing the output queue.

Output queue name. The name of the default output queue that is used for spooled output produced by this
job. The default output queue is only for spooled printer files that specify *JOB for the output queue.

Output queue name - qualified. The qualified name of the default output queue that is used for spooled
output produced by this job and the name of the library that contains the output queue. The default output
queue is only for spooled printer files that specify *JOB for the output queue. The format of the qualified
name is a 10-character simple object name followed by a 10-character library name. The data is
left-justified and padded with blanks on the right.

Output queue priority. The output priority for spooled output files that this job produces. The highest
priority is 0, and the lowest is 9.

Page fault count during the elapsed time (job). The number of times an active program referenced an
address that is not in main storage for the current routing step of the specified job during the elapsed time.

Page fault count during the elapsed time (thread). The number of times an active program referenced an
address that is not in main storage for the specified thread during the elapsed time.

Page faults. The number of times an active program referenced an address that is not in main storage
during the current routing step of the specified job.

Pending signal set. A bit field that is used to determine the set of signals that have been received but not
acted upon by a signal monitor. The nth bit in the pending signal set represents the nth signal monitor
defined for the job. If a bit within the pending signal set has a value of 1, then a signal is present but has not
been acted upon yet.

Print key format. Whether border and header information is provided when the Print key is pressed.

*NONE The border and header information is not included with output from the Print key.

*PRTBDR The border information is included with output from the Print key.

*PRTHDR The header information is included with output from the Print key.

*PRTALL The border and header information is included with output from the Print key.

Print text. The line of text (if any) that is printed at the bottom of each page of printed output for the job.

Printer device name. The printer device used for printing output from this job.

Process ID number. A unique UNIX-style process ID number (PID) that is associated with the current
routing step of the job. A value of 1 indicates that the PID has not been set.

Processing unit time used for database - total for the job. The amount of processing unit time (in
milliseconds) that the job used for processing data base requests across all routing steps. This is an unsigned
BINARY(8) value.

Processing unit time used for database - total for the thread.The amount of processing unit time (in
milliseconds)that the specified thread used for processing database requests across all routing steps. This is
an unsigned BINARY(8) value.

Processing unit time used, if less than 2,147,483,647 milliseconds. The amount of processing unit time
(in milliseconds) that the job used. If the processing unit time used is greater than or equal to 2,147,483,647
milliseconds, a value of -1 is returned. Use the Processing unit time used - total for the job field to
retrieve values that are greater than or equal to 2,147,483,647.

Processing unit time used - total for the job. The amount of processing unit time (in milliseconds) that
the job used across all routing steps. This is an unsigned BINARY(8) value.

Processing unit time used - total for the thread.The amount of processing unit time (in milliseconds)
used by the specified thread. This is an unsigned BINARY(8) value.

Processing unit used for database - percent used during the elapsed time (job). The percentage of
processing unit used for database processing during the elapsed time by the specified job. For
multiple-processor systems, this is the average across processors.

Processing unit used for database - percent used during the elapsed time (thread). The percentage of
processing unit used for database processing during the elapsed time by the specified thread. For
multiple-processor systems, this is the average across processors.

Processing unit used for database - time during the elapsed time (job). The amount of processing unit
time (in milliseconds) used for database processing during the elapsed time by the specified job.

Processing unit used for database - time during the elapsed time (thread). The amount of processing
unit time (in milliseconds) used for database processing during the elapsed time by the specified thread.

Processing unit used - percent during the elapsed time (job). The percentage of processing time used
during the elapsed time. For multiple-processor systems, this is the average across processors.

Processing unit used - percent during the elapsed time (thread). The percentage of processing time used
during the elapsed time by the specified thread. For multiple-processor systems, this is the average across
processors.

Processing unit used - time during the elapsed time (job). The amount of processing unit time (in
milliseconds) used during the elapsed time by the specified job.

Processing unit used - time during the elapsed time (thread). The amount of processing unit time (in
milliseconds) used during the elapsed time by the specified thread.

Product libraries. The libraries that contain product information for the thread. If requesting this field for a
job, the information for the initial thread of the job will be returned. If this field is defined as a CHAR(11),
a blank will be in the last position of the name.

Product return code. The return code set by the compiler for Integrated Language Environment (ILE)
languages. Refer to the appropriate ILE-conforming language manual for possible values. This field is
scoped to the job and represents the most recent return code set by any thread within the job.

Program return code. If the job contains any RPG, COBOL, data file utility (DFU), or sort utility
programs, the completion status of the last program that has finished running is shown; otherwise, a value
of zero is shown.

Purge. Whether or not the job is eligible to be moved out of main storage and put into auxiliary storage at
the end of a time slice or when it is beginning a long wait (such as waiting for a work station user's
response). This attribute is ignored when more than one thread is active within the job. The possible values
are:

*YES The job is eligible to be moved out of main storage and put into auxiliary storage. A job with
multiple threads, however, is never purged from main storage.

*NO The job is not eligible to be moved out of main storage and put into auxiliary storage. When
main storage is needed, however, pages belonging to a thread in the job may be moved to
auxiliary storage. Then, when a thread in the job runs again, its pages are returned to main
storage as they are needed.

blank Not used for job types *JOBQ or *OUTQ, or for invalid jobs.

Relational Database name. The name used to uniquely identify a data source or relational database.

Reserved. An ignored field.

Response time total. The total amount of response time for the initial thread, in milliseconds. This value
does not include the time used by the machine, by the attached input/output (I/O) hardware, and by the
transmission lines for sending and receiving data. This field is zero for jobs that have no interactions. A
value of -1 is returned if the field is not large enough to hold the actual result.

Routing data. The routing data that is used to determine the routing entry that identifies the program to
start for the routing step.

Run priority (job). The priority at which the job is currently running, relative to other jobs on the system.
The run priority ranges from 0 (highest priority) to 99 (lowest priority).

Run priority (thread). The run priority for the thread relative to the priority of the other threads that are
running in the system. This is displayed as a number ranging from 0 (highest priority) to 99 (lowest
priority). The value may never be higher than the run priority for the job in which the thread is running.

Server mode for Structured Query Language. Whether or not Structured Query Language (SQL)
statements should run in a separate server job. The possible values are:

0 The SQL statements will not run in a separate server job.

1 The SQL statements will run in a separate server job. Each SQL connection will be allowed to run
with a different user profile and separate transaction scoping.

Server type. The type of server represented by the job. A value of blanks indicates that the job is not part
of a server.

Signal action. The action to be taken when a signal is received for a signal monitor. Possible values are as
follows:

-1 The signal associated with this signal monitor is not supported.

0 Handle the signal using the signal default action.

1 Ignore the signal (discard).

2 Handle the signal by running the signal catching function.

Signal blocking mask. A bit field that is used to represent the set of signals whose signal actions are to be
held for the initial thread of the job. The nth bit in the signal blocking mask represents the nth signal
monitor defined for the initial thread. If a bit within the signal blocking mask has a value of 1, then the
signal action is blocked and the signal is held.

Signal monitor data. The signal information for a given signal monitor for the job. This information
consists of the signal number, signal action, default signal action, maximum number of signals to be
retained, and the current number of signals pending.

Signal number. A numeric value assigned to the signal monitor. This value is used to locate the signal
monitor for the job when a signal is sent to the job.

Signal status. A numerical value used to determine if the job is enables to receive signals from another job
or the system.

0 The job is not enabled for signals. This job cannot receive signals from another job or system.

1 The job is enabled for signals. This job can receive signals from another job or system.

Signed-on job. Whether the job is a to be treated like a signed-on user on the system.

0 The job should be treated like a signed-on user.

1 The job should not be treated like a signed-on user.

Size of SQL open cursor data. The size of a single entry for a given SQL cursor for the job. This
information consists of the object name, object library, object type, SQL cursor name, and SQL statement
name.

Sort sequence library. The sort sequence library associated with this job.

Sort sequence table name. The sort sequence table associated with this job. Possible values are:

*HEX No sort sequence table is used. The hexadecimal values of the characters are used to
determine the sort sequence.

*LANGIDSHR The sort sequence table used can contain the same weight for multiple characters, and
it is the shared weight sort table associated with the language specified in the LANGID
parameter.

*LANGIDUNQ The sort sequence table used must contain a unique weight for each character in the
code page, and it is the unique weight sort table associated with the language specified
in the LANGID parameter.

Sort sequence table - qualified. The qualified name of the sort sequence table associated with this job.
The format of the qualified name is a 10-character sort sequence table name followed by a 10-character
library name. The data is left-justified and padded with blanks on the right. If the sort sequence table name
is a special value, the library name is blank.

Special environment. Whether the job is running in a particular environment. Possible values are:

*NONE The job is not running in any special environment.

*S36 The job is running in the System/36 environment.

blank This job is not currently active.

Spooled file action. Whether spooled files are accessed through job interfaces after the job has completed
is normal activity. The possible values are:

*KEEP The spooled files are kept with the job when the job completes its activity.

*DETACH The spooled files are detached from the job when the job completes its activity.

SQL cursor name. The name of the SQL cursor.

SQL open cursor data. The SQL cursor information for a given SQL cursor for the job. This information
consists of the object name, object library, object type, SQL cursor name, and SQL statement name.

SQL statement name. The name of the SQL statement that is associated with the SQL cursor.

Status message handling. Whether you want status messages displayed for this job. The possible values
are:

*NONE This job does not display status messages.

*NORMAL This job displays status messages.

Status of current SQL statement. The status of the current SQL statement. The possible values are:

0 The SQL statement returned is running currently.

1 The SQL statement returned has completed.

Status of job on the job queue. The status of this job on the job queue.

blank This job was not on a job queue.

SCD This job will run as scheduled.

HLD This job is being held on the job queue.

RLS This job is ready to be selected.

Submitter's job name. The job name of the submitter's job. If the job has no submitter, this field is blank.

Submitter's job name - qualified. The qualified job name of the submitter's job. The format of the
qualified job name is a 10-character simple job name, a 10-character user name, and a 6-character job
number. If the job has no submitter, this field is blank.

Submitter's job number. The job number of the submitter's job. If the job has no submitter, this field is
blank.

Submitter's message queue library name. The name of the library that contains the message queue. If the
job has no submitter, this field is blank.

Submitter's message queue name. The name of the message queue where the system sends a completion
message when a batch job ends. If the job has no submitter, this field is blank.

Submitter's message queue name - qualified. The qualified name of the message queue where the
system sends a completion message when a batch job ends and the name of the library that contains the
message queue. If the job has no submitter, this field is blank. The format of the qualified name is a
10-character simple object name followed by a 10-character library name. The data is left-justified and
padded with blanks on the right.

Submitter's user name. The user name of the submitter. If the job has no submitter, this field is blank.

Subsystem description library name. The library that contains the subsystem description. This value is
only for jobs whose status is *ACTIVE. For jobs with a status of *OUTQ or *JOBQ, the value for this field
is blank.

Subsystem description name. The name of the subsystem in which an active job is running. This value is
only for jobs whose status is *ACTIVE. For jobs with status of *OUTQ or *JOBQ, the value for this field
is blank.

Subsystem description name - qualified. The qualified name of the subsystem in which an active job is
running. The format of the qualified name is a 10-character simple object name followed by a 10-character
library name. This value is only for jobs whose status is *ACTIVE. For jobs with status of *OUTQ or
*JOBQ, the value for this field is blank.

System library list. The system portion of the library list of the thread. If requesting this field for a job, the
information for the initial thread of the job will be returned. If this field is defined as a CHAR(11), a blank

will be in the last position of the name.

System pool identifier. The identifier of the system-related pool from which the job's main storage is
allocated. These identifiers are not the same as those specified in the subsystem description, but are the
same as the system pool identifiers shown on the system status display. This is the pool that the threads in
the job start in. Also see the Current system pool identifier field for more information.

Temporary storage used in kilobytes. The amount of auxiliary storage (in kilobytes) that is currently
allocated to this job.

Note: This value will reach a maximum of 2 147 483 647 kilobytes. If the actual temporary storage used is
larger than that value, this field will return 2 147 483 647 kilobytes. It is recommended that the temporary
storage used in megabytes field be used to get over this limit.

Temporary storage used in megabytes. The amount of auxiliary storage (in megabytes) that is currently
allocated to this job. This is an unsigned BINARY(4) value.

Thread count. The count of the current number of active threads in the process at the time of the
materialization. An active thread may be either actively running, suspended, or waiting for a resource.

Thread hold count. The count of the number of times that the specified thread has been held using the
hold thread interface. If this field is requested for a job, the value for the initial thread of the job will be
returned.

Thread status. The current status of the thread. If this field is requested for a job, the value for the initial
thread of the job will be returned. The status of a thread may be one of the following values:

Blank The status of the thread is unknown.

CMTW The thread is waiting for the completion of save-while-active checkpoint processing in
another job. This wait is necessary to prevent a partial commitment control transaction from
being saved to the media.

CNDW The thread is waiting for a condition.

DEQA The thread is waiting for completion of a dequeue operation in the pool activity level.

DEQW The thread is waiting for completion of a dequeue operation. For example, a server may wait
for work by waiting for a dequeue operation

EVTW The thread is waiting for an event.

HLD The thread is in a job that is being held.

HLDT The thread is being held.

INEL The thread is ineligible and not currently in the pool activity level.

JVAA The thread is waiting for completion of a Java program operation in the pool activity level.

JVAW The thread is waiting for completion of a Java program operation.

LCKW The thread is waiting for a lock.

 LSPA The thread is waiting for a lock space to be attached while in a pool activity level.

LSPW The thread is waiting for a lock space to be attached.

MTXW The thread is in a mutex wait. A mutex is a synchronization function that is used to allow
multiple threads to serialize their access to shared data.

RUN The thread is currently running in the activity level.

SELW The thread is in a select wait. More information on the select() function is in the Sockets APIs
chapter in the System API Reference, SC41-5801.

SEMW The thread is waiting for a semaphore. A semaphore is a synchronization function that is used
to allow multiple jobs or threads to serialize their access to shared data.

SIGS The thread has been held by a signal.

SIGW The thread is waiting for a signal.

THDW The thread is waiting for another thread to complete an operation.

TIMA The thread is waiting, in the activity level, for a time interval to end.

TIMW The thread is waiting for a time interval to end.

Thread type. The thread type indicates how the thread was created. If this field is requested for a job, the
value for the initial thread of the job will be returned. The type of a thread may be one of the following
values:

0 The thread was created either as the initial thread of the job or explicitly by the application.

1 The thread was created by an operating system function.

Time separator. The value used to separate hours, minutes, and seconds when presenting a time. The
following values are possible:

':' A colon (:) is used for the time separator.

'.' A period (.) is used for the time separator.

' ' A blank is used for the time separator.

',' A comma (,) is used for the time separator.

Time slice. The maximum amount of processor time (in milliseconds) given to each thread in this job
before other threads in this job and in other jobs are given the opportunity to run. The time slice establishes
the amount of time needed by a thread in this job to accomplish a meaningful amount of processing. At the
end of the time slice, the thread might be put in an inactive state so that other threads can become active in
the storage pool. Values retrieved range from 8 through 9999999 (that is, 9 999 999 milliseconds or
9999.999 seconds). Although you can specify a value of less than 8, the system takes a minimum of 8
milliseconds to run a process.

Time-slice end pool. Whether you want a thread in an interactive job moved to another main storage pool
at the end of its time slice. The possible values are:

*NONE A thread in the job does not move to another main storage pool when it reaches the end of its
time slice.

*BASE A thread in the job moves to the base pool when it reaches the end of its time slice.

Time spent on database lock waits. The cumulative amount of time, in milliseconds, that the initial thread
has had to wait to obtain database locks. (These performance attributes may be a cumulative job total in a
future release.)

Time spent on internal machine lock waits. The cumulative amount of time, in milliseconds, that the
initial thread has had to wait to obtain internal machine locks. (These performance attributes may be a
cumulative job total in a future release.)

Time spent on nondatabase lock waits. The cumulative amount of time, in milliseconds, that the initial
thread has had to wait to obtain nondatabase locks. (These performance attributes may be a cumulative job
total in a future release.)

Type of entity thread is waiting on. The type of entity, such as an OS/400 external object, that the
thread is waiting on. If this field is requested for a job, the value for the initial thread of the job will be
returned. The type of entity may be one of the following values:

-1 Thread is not waiting

1 OS/400 external object

2 Member object

3 Internal system object

4 OS/400 external object space location

5 Internal system object space location

6 Lock space object

999 Unknown type

Unit of work ID. The unit of work ID is used to track jobs across multiple systems. If a job is not
associated with a source or target system using advanced program-to-program communications (APPC),
this information is not used. Every job on the system is assigned a unit of work ID. The unit-of-work
identifier is made up of:

Location name CHAR(8). The name of the source system that originated the APPC job.

Network ID CHAR(8). The network name associated with the unit of work.

Instance CHAR(6). The value that further identifies the source of the job. This is shown as
hexadecimal data.

Sequence number CHAR(2). A value that identifies a checkpoint within the application program.

User library list. The user portion of the library list for the thread. If requesting this field for a job, the
information for the initial thread of the job will be returned. If this field is defined as a CHAR(11), a blank
will be in the last position of the name.

User name. The user name of the job, which is the same as the name of the user profile under which the job
was started. It can come from several different sources depending on the type of job. This may be different
than the user profile under which the job is currently running. See the Current user profile field for more
information.

User return code. The user-defined return code set by ILE high-level language constructs. An example is
the program return code in the C language. This field is scoped to the job and represents the most recent
return code set by any thread within the job.

Comparing Job Type, Subtype, and Enhanced Job Type with the
Work with Active Job Command

The following table compares the job type, job subtype, and enhanced job type fields returned by the
QUSRJOBI API to the type field on the Work with Active Job (WRKACTJOB) command.

WRKACTJOB and QUSRJOBI API Comparison

Job Type Field Job Type Job Subtype
Enhanced

Job Type

ASJ (Autostart) A blank 0110

BCH (Batch) B blank 0210

BCI (Batch immediate) B D 0220

EVK (Started by a program start request) B E 0310

INT (Interactive) I blank 0910, 0920, 0930,
or 0940

M36 (AS/400 Advanced 36 machine server) B F blank

MRT (Multiple requester terminal) B T 0230

PJ (Prestart job) B J 1610, 1620, or 1630

PDJ (Print driver job) W P 2310

RDR (Reader) R blank 1810

SYS (System) S or X blank 1920

SBS (Subsystem monitor) M blank 1910

WTR (Writer) W blank 2310

blank (Alternative user subtype--not an active job) B U 240

Top | Work Management APIs | APIs by category

Change Current Job (QWCCCJOB) API

 Required Parameter Group:

1 Changed job information Input Char(*)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Change Current Job (QWCCCJOB) API lets you change information for the current job. The user can
change the Cancel or the Exit keys.

Required Parameter Group

Changed job information

INPUT; CHAR(*)

The information for the job that you want to change. The information must be in the following
format:

Number of variable length records

BINARY(4)

Total number of all of the variable length records.

Variable length records

The fields of the job to change and the data used for the change. For the specific format of
the variable length record, see Format for Variable Length Record.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format for Variable Length Record

The following table defines the format for the variable length records.

Offset

Type FieldDec Hex

0 0 BINARY(4) Key identifier

4 4 BINARY(4) Length of key data

8 8 CHAR(*) Key data

If the length of the data is longer than the key identifier's data length, the data will be truncated at the right.
No message will be issued.

If the length of the data is smaller than the key identifier's data length, the data will be padded with blanks
at the right. No message will be issued.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value for
that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Key data. The data used to change a specific field of the job.

Key identifier. The field of the job to change. Only specific fields of the job can be changed. See Key
Identifiers for the list of valid keys.

Length of key data. The length of the data used to change a specific field of the job.

Key Identifiers

The following table lists the valid keys for the key identifier area of the variable length record.

Key ID Type Field Description

1 CHAR(1) Exit key

2 CHAR(1) Cancel key

Key Identifier Descriptions

Exit key. Whether the Exit key is set as pressed for the job. It must have a value of 0 or 1.

0 The Exit key was not pressed.

1 The Exit key was pressed.

Note: The application or command that was called before this API determines how the key is set.

Cancel key. Whether the Cancel key is set as pressed for the job. It must have a value of 0 or 1.

0 The Cancel key was not pressed.

1 The Cancel key was pressed.

Note: The application or command that was called before this API determines how the key is set.

Error Messages

Message ID Error Message Text

CPF1863 E Length of value not valid.

CPF1867 E Value &1 in list not valid.

CPF1868 E Value &1 for number of records not valid.

CPF2199 E &2 not valid for field &1.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Top | Work Management APIs | APIs by category

Change Job (QWTCHGJB) API

 Required Parameter Group:

1 Qualified job name Input Char(26)
2 Internal job identifier Input Char(16)
3 Format name Input Char(8)
4 Job change information Input Char(*)
5 Error code I/O Char(*)

 Optional Parameter Group:

6 Job or Thread identification information Input Char(*)
7 Format of job identification information Input Char(8)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Change Job (QWTCHGJB) API changes some of the attributes of a job or thread. The attributes
changed are determined by the job change information parameter.

The current value of most of the job attributes can be retrieved with the List Job (QUSLJOB) API, the Open
List of Jobs (QGYOLJOB) API, the Retrieve Current Attributes (QWCRTVCA) API, the Retrieve Job
Information (QUSRJOBI) API or the Retrieve Thread Attributes (QWTRTVTA) API.

If an error occurs, the error code will have a general failure error and the specific error will need to be
retrieved out of the job message queue of the job that issued this API call.

The QWTCHGJB API changes a list of attributes similar to the attributes changed with the Change Job
(CHGJOB) command.

Authorities and Locks

Job Authority

The API must be called from within the job that is being changed, or the caller of the API must be
running under a user profile that is the same as the job user identity of the job that is being changed.
Otherwise, the caller of the API must be running under a user profile that has job control
(*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management book on the V5R1 Supplemental Manuals
Web site.

Job control (*JOBCTL) special authority is needed for the following attributes to be changed:

Default wait time❍

Purge❍

Run priority❍

Time slice❍

Time slice end pool❍

Command Authority

*USE authority to the Change Accounting Code (CHGACGCDE) command is needed to change
the job accounting code attribute.

Object Authority

If changing the job queue, *READ authority is required for the object, and *EXECUTE authority is
required for the library. If changing the output queue, *READ authority is required for the object,
and *EXECUTE authority is required for the library. In addition, the caller must be authorized to
the output queue currently associated with the job that is being changed. If changing the sort
sequence table, *USE authority is required for the object, and *EXECUTE authority is required for
the library.

If using the JOBC0300 format to change attributes that are retrieved from the job description,
*USE authority is required for the job description and *EXECUTE authority is required for the
library. If changing the ASP group information, *USE authority is required for all ASP devices in
the ASP group. If changing the current library or the initial library list, *USE authority is required
for the libraries.

Required Parameter Group

Qualified job name

INPUT; CHAR(26)

The name of the job for which the attributes are to be changed. If this value is *INT, the internal
job identifier will be used. The qualified job name has three parts:

Job name CHAR(10). A specific job name or one of the following special values:

* The job or thread in which this program is running. The rest of
the qualified job name parameter must be blank. This special
value must be used when using the JOBC0200 or JOBC0300
format.

*INT The internal job identifier locates the job. The user name and
job number must be blank. This is only valid for the JOBC0100
format.

 *THREAD The job information is specified in the Job or thread
identification information parameter. This special value must be
used when using the JOBC0400 format. The user name, job
number, and internal job identifier must be blank when using
*THREAD. This is valid for the JOBC0400 format only.

User name CHAR(10). A specific user profile name, or blanks when the job name is a special
value.

Job number CHAR(6). A specific job number, or blanks when the job name is a special value.

Internal job identifier

INPUT; CHAR(16)

The internal identifier for the job. The QUSLJOB API creates this identifier. If you do not specify
*INT for the job name parameter, this parameter must be blanks. With this parameter, the system
can locate the job more quickly than with a fully qualified job name.

Format name

INPUT; CHAR(8)

The format of the list of job or thread attributes to be changed. You must use one of the
following format names:

JOBC0100 Basic change job list. To be used when changing the attributes of your job or the
attributes of another job. This format will not change any specific attributes of a
thread. This format will function the same way that the CHGJOB command
works.

JOBC0200 Basic change job list for changing the attributes of your own thread. The special
value of '*' must be used for the job name. See Field Descriptions for Valid
Keys for the scope of each of the valid key fields. If no scope is mentioned, the
attribute is scoped to the job.

Note: The scope of selected attributes may change over time. Currently there are
only a few attributes that are scoped to the thread. The attributes that are not
scoped to the thread will be updated at the job level. This will affect all threads
running under this job. As attributes become scoped to the thread, attributes
changed with this format will then be changed for the current thread and will not
affect other threads.

JOBC0300 Change select attributes to user profile values. This format is intended to be used
after a swap user profile. The special value of '*' must be used for the job name.
This format will be functionally similar to the Change Prestart Job (CHGPJ)
command. See Field Descriptions for Valid Keys for the scope of each of the
valid key fields. If no scope is mentioned, the attribute is scoped to the job.

Note: The attributes for a thread will be updated at the job level if the specific
attributes are not currently defined at the thread level. Selected attributes may be
moved to the thread level in a later release.

 JOBC0400 Change select attributes of a specific thread. The special value of '*THREAD'
must be used for the job name.

Job change information

INPUT; CHAR(*)

The information for the job that you want to change. The information must be in the following
format:

Number of variable length records

BINARY(4). The total number of all the variable length records. If this value is less than 1,

an error message is returned.

Variable length records.

The attributes of the job to change and the data used for the change. For the specific format
of the variable length record, see Formats for Variable Length Record.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group

Job or thread identification information

INPUT; CHAR(*)

The information that is used to identify the thread within a job for which specified attributes are to
be changed. See Format of job or thread identification information for details.

Format of job or thread identification information

INPUT; CHAR(8)

The format of the job or thread identification information. The possible format names are:

JIDF0100 See Format of job or thread identification information for details on the job
identification information.

JIDF0200 See Format of job or thread identification information for details on the job
identification information.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a
thread that is not the current thread than Format JIDF0100.

Formats for Variable Length Record

The following tables define the format for the variable length records.

JOBC0100, JOBC0200 and JOBC0400 Format: The layout of the JOBC0100, JOBC0200 and
JOBC0400 format is the same layout as the information returned with the List Job (QUSLJOB) API.

Offset

Type FieldDec Hex

These fields repeat, in
the order listed, for
each key requested.

BINARY(4) Length of attribute information

BINARY(4) Key

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

JOBC0300 Format: The JOBC0300 format is for changing attributes to values specified in either the
current user profile or the initial user profile.

Offset

Type FieldDec Hex

These fields repeat for
each key requested.

BINARY(4) Key

CHAR(10) Data

CHAR(2) Reserved

If the length of the data is longer than the key field's data length, the data will be truncated at the right. No
message will be issued.

If the length of the data is smaller than the key field's data length, the data will be padded with blanks at the
right. No message will be issued.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value for
that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions for JOBC0100, JOBC0200, JOBC0300 and
JOBC0400 Formats

Data. The data for the attribute that is to be changed. The data for the JOBC0100, JOBC0200, JOBC0300
and JOBC0400 formats is defined in the key list section.

Key. The key for the attribute to be changed. See Valid Keys for the list of valid keys.

Length of data. The length of the data for the key field.

Length of attribute information. The total length of input information for this attribute. This value is used
to increment to the next attribute in the list.

Reserved. An ignored field. This field must be blanks.

Type of data. The type of input data. This field is provided to maintain the same format layout that is used
in the List Job (QUSLJOB) API. This field will not cause any conversion to occur.

B The input data is in binary format.

C The input data is in character format.

Valid Keys

The following table contains a list of the valid keys for the JOBC0100 and JOBC0200 formats. See Field
Descriptions for Valid Keys for the descriptions of the valid key fields.

Key Type Description

0201 CHAR(10) Break message handling

0302 BINARY(4) Coded character set ID

0303 CHAR(8) Country or region ID

0311 CHAR(10) Character identifier control

0318 CHAR(15) Client IP address - IPv4 (job)

0405 CHAR(4) Date format

0406 CHAR(1) Date separator

0408 CHAR(5) DDM conversation handling

0409 BINARY(4) Default wait

0410 CHAR(13) Device recovery action

0413 CHAR(8) Decimal format

0901 CHAR(10) Inquiry message reply

1001 CHAR(15) Job accounting code

1002 CHAR(7) Job date

1004 CHAR(20) Job queue name - qualified

1005 CHAR(2) Job queue priority

1006 CHAR(8) Job switches

1007 CHAR(10) Job message queue full action

1201 CHAR(8) Language ID

1202 CHAR(1) Logging level

1203 CHAR(10) Logging of CL programs

1204 BINARY(4) Logging severity

1205 CHAR(7) Logging text

1501 CHAR(20) Output queue name - qualified

1502 CHAR(2) Output queue priority

1601 CHAR(10) Print key format

1602 CHAR(30) Print text

1603 CHAR(10) Printer device name

1604 CHAR(4) Purge

1802 BINARY(4) Run priority (job)

1804 BINARY(4) Run priority (thread)

1901 CHAR(20) Sort sequence table - qualified

1902 CHAR(10) Status message handling

1911 CHAR(30) Server type

1920 CHAR(10) Schedule date

1921 CHAR(8) Schedule time

1922 CHAR(1) Server mode for Structured Query Language

 1982 CHAR(10) Spooled file action

2001 CHAR(1) Time separator

2002 BINARY(4) Time slice

2003 CHAR(10) Time-slice end pool

The following table contains a list of the valid keys for the JOBC0300 format. See Field Descriptions for
Valid Keys for the descriptions of the valid key fields.

Key Type Description

0104 CHAR(10) ASP group information

0302 CHAR(10) Coded character set ID

0303 CHAR(10) Country or region ID

0310 CHAR(10) Current library

0311 CHAR(10) Character identifier control

0801 CHAR(10) Home directory

0910 CHAR(10) Initial library list

1001 CHAR(10) Job accounting code

1201 CHAR(10) Language ID

1210 CHAR(10) Locale

1501 CHAR(10) Output queue name

1502 CHAR(10) Output queue priority

1602 CHAR(10) Print text

1603 CHAR(10) Printer device name

1901 CHAR(10) Sort sequence table

1902 CHAR(10) Status message handling

2701 CHAR(10) All keys for JOBC0300 format

The following table contains a list of the valid keys for the JOBC0400 format. See Field Descriptions for
Valid Keys for the descriptions of the valid key fields.

Key Type Description

1804 BIN(4) Run priority (thread)

Field Descriptions for Valid Keys

All keys for JOBC0300 format. All the keys that are valid for the JOBC0300 format will be changed. The
list of keys is subject to change at a later time. If other attributes are added to this key in the future, no
change will be needed for them to take effect. If this key (2701) is specified, no other keys can be specified.

 Even though specifying this key is similar to specifying a list of all the keys that are valid for the
JOBC0300 format, the error handling is different. Errors encountered when changing some of the attributes

will not cause the change request to fail, although a diagnostic message may be sent. Errors with ASP group
information (key 0104), Current library (key 0310), and Initial library list (key 0910) are considered critical
and will stop the change request. In general, errors that would prevent a job from starting will cause the
change request to fail. If multiple threads are active, attributes that cannot be changed in a safe manner will
be ignored and a diagnostic message will be sent. See the Usage Notes for a list of attributes that can be
changed in a safe manner. The following keys will be changed by this key:

Key ID Key Name

 0104 ASP group information

0302 Coded character set ID

0303 Country or region ID

0310 Current library

0311 Character identifier control

0801 Home directory

0910 Initial library list

1001 Job accounting code

1201 Language ID

1210 Locale

1501 Output queue name

1502 Output queue priority

1602 Print text

1603 Printer device name

1901 Sort sequence table

1902 Status message handling

The attributes that can be set from the locale (coded character set ID and sort sequence table) based on the
locale job attributes field (that is retrieved out of the same user profile specified on the locale field) take
precedence over the values that are retrieved from the user profile.

This key is valid for the JOBC0300 format only. The possible values are:

*INLUSR The value for the attributes is retrieved for the user profile under which this thread was
initially running.

*CURUSR The value for the attributes is retrieved for the user profile under which this thread is
currently running

ASP group information. The name of the auxiliary storage pool (ASP) group that is associated with this
thread. The ASP group name is the name of the primary ASP device within the ASP group. The libraries in
the independent ASPs in the new ASP group plus the libraries in the system ASP (ASP number 1) and basic
user ASPs (ASP numbers 2-32) form the library name space and all libraries in the library list of this thread
are required to be in the new library name space. Therefore, when the ASP group is updated, the libraries in
the system part of the library list, the product libraries, the current library and the libraries in the user part of

the library list will also be updated.

The libraries currently in the system part of the library list that are found in the system ASP or any
configured basic user ASP are used as the new system part of the library list. The product libraries that are
found in the system ASP or any configured basic user ASP are used as the new product libraries. If the
current library is being changed (either with key 0310 or key 2701), the value specified will be used.
Otherwise, the library name in the current library entry of the library list is used as the new current library if
the library is found in the system ASP or any configured basic user ASP. If the library name in the current
entry is not found in the system ASP or any basic user ASP, the current library entry will be removed from
the library list. If the user part of the library list is being changed (either with key 0910 or key 2701), the
value specified will be used. Otherwise, the libraries currently in the user part of the library list that are
found in the system ASP or any configured basic user ASP are used as the new user part of the library list.

This key is valid for the JOBC0300 format only. The following values are possible:

*INLUSR The ASP group information specified in the job description of the user profile under which
this thread was initially running is used.

*CURUSR The ASP group information specified in the job description of the current user profile for
this thread is used.

Break message handling. How this job handles break messages. This key isvalid for the JOBC0100 and
JOBC0200 formats only . The possible values are:

*NORMAL The message queue status determines break message handling.

*HOLD The message queue holds break messages until a user or program requests them. The work
station user uses the Display Message (DSPMSG) command to display the messages; a
program must issue a Receive Message (RCVMSG) command to receive a message and
handle it.

*NOTIFY The system notifies the job's message queue when a message arrives. For interactive jobs,
the audible alarm sounds if there is one, and the message-waiting light comes on.

Character identifier control. The character identifier control for the job. This attribute controls the type of
CCSID conversion that occurs for display files, printer files, and panel groups. The *CHRIDCTL special
value must be specified on the CHRID command parameter on the create, change, or override command for
display files, printer files, and panel groups before this attribute will be used.

The possible values for the JOBC0100 and JOBC0200 formats are:

*DEVD The *DEVD special value performs the same function as on the CHRID command
parameter for display files, printer files, and panel groups.

*JOBCCSID The *JOBCCSID special value performs the same function as on the CHRID command
parameter for display files, printer files, and panel groups.

*SYSVAL The value in the QCHRIDCTL system value will be used.

*USRPRF The CHRIDCTL specified in the user profile under which this thread was initially
running will be used.

The possible values for the JOBC0300 format are:

*INLUSR The CHRIDCTL specified in the user profile under which this thread was initially running
is used.

*CURUSR The CHRIDCTL specified in the current user profile for this thread is used.

Client IP address - IPv4 (job). The IPv4 address of the client for which the thread of this server is
servicing currently. This key is valid for the JOBC0200 format only. A value of blanks indicates that the
thread is not currently servicing a client. A value of hexadecimal zeros is not allowed. An address is
expressed in standard dotted-decimal form www.xxx.yyy.zzz; for example, 130.99.128.1. This field is not
required to be an IP address. A change to this attribute in a secondary thread is possible, however, it is
essentially meaningless as only the attribute for the inital thread can be retrieved using the Retrieve Job
Information (QUSRJOBI) API. For further information on retrieving the Client IP address - IPv4 or IPv6
that has been implicity set by the operating system, see the Retrieve Thread Attribute (QWTRTVTA) API.

Coded character set ID. The coded character set identifier used for this job.

The possible values for the JOBC0100 and JOBC0200 formats are:

-1 The CCSID specified in the system value QCCSID is used.

-2 The CCSID specified in the user profile under which this thread was
initially running is used.

coded-character-set-identifier Specify the CCSID.

The possible values for the JOBC0300 format are:

*INLUSR The CCSID specified in the user profile under which this thread was initially running is
used.

*CURUSR The CCSID specified in the current user profile for this thread is used.

Country or region ID. The country or region identifier associated with this job.

The possible values for the JOBC0100 and JOBC0200 formats are:

*SYSVAL The system value QCNTRYID is used.

*USRPRF The country or region ID specified in the user profile under which this thread
was initially running is used.

country-or-region-ID Specify the country or region identifier to be used by the job.

The possible values for the JOBC0300 format are:

*INLUSR The country or region ID specified in the user profile under which this thread was initially
running is used.

*CURUSR The country or region ID specified in the current user profile for this thread is used.

Current library. The name of the current library that is associated with this thread. This key is valid for
the JOBC0300 format only. The following values are possible:

*INLUSR The current library specified in the user profile under which this thread was initially
running is used.

*CURUSR The current library specified in the current user profile for this thread is used.

Date format. The format that the date is presented in. This key is only valid for the JOBC0100 and
JOBC0200 formats. The following values are possible:

*SYS The system value, QDATFMT, is used.

*YMD The date format used is year, month, and day.

*MDY The date format used is month, day, and year.

*DMY The date format used is day, month, and year.

*JUL The date format used is Julian (year and day).

Date separator. The value used to separate days, months, and years when presenting a date. This key is
valid for the JOBC0100 and JOBC0200 formats only. The following values are possible:

S The system value, QDATSEP is used.

'/' A slash (/) is used for the date separator.

'-' A dash (-) is used for the date separator.

'.' A period (.) is used for the date separator.

' ' A blank is used for the date separator.

',' A comma (,) is used for the date separator.

DDM conversation handling. Specifies whether the connections using distributed data management
(DDM) protocols remain active when they are not being used. The connections include APPC
conversations, active TCP/IP connections or Opti-Connect connections. The DDM protocols are used in
Distributed Relational Database Architecture (DRDA) applications, DDM applications, or DB2
Multisystem applications. This key is only valid for the JOBC0100 and JOBC0200 formats. The following
values are possible:

*KEEP The system keeps DDM connections active when there are no users, except for the following:

The routing step ends on the source system. The routing step ends when the job ends
or when the job is rerouted to another routing step.

●

The Reclaim Distributed Data Management Conversation (RCLDDMCNV) command
or the Reclaim Resources (RCLRSC) command runs.

●

A communications failure or an internal failure.●

A DRDA connection to an application server not running on an iSeries server ends.●

*DROP The system ends a DDM connection when there are no users. Examples include when an
application closes a DDM file, or when a DRDA application runs an SQL DISCONNECT
statement.

Decimal format. The type of zero suppression and the decimal point character. This key is only valid for
the JOBC0100 and JOBC0200 formats. The following values are possible:

*SYSVAL The value in the system value, QDECFMT, is used as the decimal format for this job.

*BLANK Period for decimal, zero suppression.

J Comma for decimal, one leading zero.

I Comma for decimal, zero suppression.

Default wait. The default maximum time (in seconds) that a thread in the job waits for a system instruction,
such as a LOCK machine interface (MI) instruction, to acquire a resource. This default wait time is used
when a wait time is not otherwise specified for a given situation. Normally, this is the amount of time the
user is willing to wait for the system before the request is ended. If the job consists of multiple routing
steps, a change to this attribute during a routing step does not apply to subsequent routing steps. The valid
range is 1 through 9999999. A value of -1 specifies to change to no maximum wait time. This key is valid
for the JOBC0100 and JOBC0200 formats only.

Device recovery action. The action taken for interactive jobs when an I/O error occurs for the job's
requesting program device. This key is valid for the JOBC0100 and JOBC0200 formats only. The possible
values are:

*SYSVAL The value in the system value, QDEVRCYACN, is used as the device recovery
action for this job.

*MSG Signals the I/O error message to the application and lets the application program
perform error recovery.

*DSCMSG Disconnects the job when an I/O error occurs. When the job reconnects, the system
sends to the application program an error message, that indicates that the job has
reconnected and that the work station device has recovered.

*DSCENDRQS Disconnects the job when an I/O error occurs. When the job reconnects, the system
sends the End Request (ENDRQS) command to return control to the previous
request level.

*ENDJOB Ends the job when an I/O error occurs. The system sends to the job's log and to the
history log (QHST) a message that indicates that the job ended because of a device
error.

*ENDJOBNOLIST Ends the job when an I/O error occurs. There is no job log produced for the job.
The system sends to the QHST log a message that indicates that the job ended
because of a device error.

Home directory. The name of the home directory for the integrated file system that is associated with this
thread. If the home directory associated with this thread was retrieved from the same user profile that is
being specified by either *INLUSR or *CURUSR, then the home directory will not be changed for this
thread, even if that user profile's home directory has been changed. If you change the home directory, the
job's current working directory will not change. This key is valid for the JOBC0300 format only. The
following values are possible:

*INLUSR The home directory specified in the user profile under which this thread was initially
running is used.

*CURUSR The home directory specified in the current user profile for this thread is used.

Initial library list. The initial user part of the library list that is associated with this thread. This key is only
valid for the JOBC0300 format. The possible values are:

*INLUSR The initial library list specified in the job description of the user profile under which this
thread was initially running is used.

*CURUSR The initial library list specified in the job description of the user profile under which this
thread is currently running is used.

Inquiry message reply. How the job answers inquiry messages. This key is only valid for the JOBC0100
and JOBC0200 formats. The possible values are:

*RQD The job requires an answer for any inquiry messages that occur while this job is running.

*DFT The system uses the default message reply to answer any inquiry messages that are issued
while this job is running. The default reply is either defined in the message description or is
the default system reply.

*SYSRPYL The system reply list is checked to see if there is an entry for an inquiry message that was
issued while this job is running. If a match occurs, the system uses the reply value for that
entry. If no entry exists for that message, the system uses an inquiry message.

Job accounting code. An identifier assigned to the job by the system to collect resource use information
for the job when job accounting is active. The user who is changing this field must have authority to the
CHGACGCDE CL command. If the user does not have the proper authority, this field is ignored and
processing continues.

The possible values for the JOBC0100 and JOBC0200 formats are:

*BLANK The accounting code is changed to all blanks.

accounting-code Specify the 15-character accounting code used for the next accounting segment. The
accounting code may contain alphabetic or numeric characters.

The possible values for the JOBC0300 format are:

*INLUSR The accounting code specified in the job description of the user profile under which this
thread was initially running is used.

*CURUSR The accounting code specified in the job description of the user profile under which this
thread is currently running is used.

Job date. The date that is assigned to the job. It is in the format CYYMMDD where C is the century, YY is
the year, MM is the month, and DD is the day. A 0 for the century flag indicates years 19xx and a 1
indicates years 20xx. This value will only be changed for jobs whose status is *JOBQ or *ACTIVE. This
key is only valid for the JOBC0100 and JOBC0200 formats.

Job message queue full action. The action to take when the message queue is full. This key is only valid
for the JOBC0100 and JOBC0200 formats. The possible values are:

*SYSVAL The value specified for the QJOBMSGQFL system value is used.

*NOWRAP When the job message queue is full, do not wrap. This action causes the job to end.

*WRAP When the job message queue is full, wrap to the beginning and start filling again.

*PRTWRAP When the job message queue is full, wrap the message queue and print the messages that
are being overlaid because of the wrapping.

Job queue name - qualified. The qualified name of the job queue that the job is on currently. The format
of the qualified name is a 10-character simple object name followed by a 10-character library name. This
value is valid for jobs whose status is *JOBQ. For jobs with a status of *OUTQ or *ACTIVE, an error will
be signaled. This key is valid for the JOBC0100 and JOBC0200 formats only.

Job queue name CHAR(10). The specific name of the job queue the job is to be on.

Library name CHAR(10). The name of the library where the job queue is located. This value must
be left-justified and padded with blanks. The possible values are:

*LIBL All libraries in the job's library list are searched until the first match
is found.

*CURLIB The current library for the job is used to locate the job queue. If no
library is specified as the current library for the job, QGPL is used.

library-name Specify the name of the library where the job queue is placed.

Job queue priority. The scheduling priority of the job compared to other jobs on the same job queue. The
highest priority is 0 and the lowest is 9. This value is valid for jobs whose status is *JOBQ or *ACTIVE.
For jobs with a status of *OUTQ, an error will be signaled. This key is only valid for the JOBC0100 and
JOBC0200 formats.

Job switches. The current setting of the job switches that are used by this job. Specify any combination of
eight 0's, 1's, or X's to change the job switch settings. If a switch value is not being changed, enter an X in
the position that represents that switch. This key is only valid for the JOBC0100 and JOBC0200 formats.

Language ID. The language identifier that is associated with this job. The language identifier is used when
*LANGIDUNQ or *LANGIDSHR is specified on the sort sequence parameter. If the job CCSID is 65535,
this parameter is also used to determine the value of the job default CCSID.

The possible values for the JOBC0100 and JOBC0200 formats are:

*SYSVAL The system value QLANGID is used.

*USRPRF The language ID specified in the user profile under which this thread was initially
running is used.

language-ID Specify the language identifier to be used by the job.

The possible values for the JOBC0300 format are:

*INLUSR The language ID specified in the user profile under which this thread was initially running
is used.

*CURUSR The language ID specified in the user profile under which this thread is currently running is
used.

Locale. The path name of the locale that is assigned to the LANG environment variables. Several job
attributes can be set from the locale based on the values from the locale job attributes (locale job attributes
are retrieved from the same user profile as the locale). The attributes that can be changed are CCSID, date
format, date separator, sort sequence, time separator, and decimal format. This key is only valid for the
JOBC0300 format. The possible values are:

*INLUSR The locale specified in the user profile under which this thread was initially running will be
used.

*CURUSR The locale specified in the user profile under which this thread is currently running will be
used.

Logging level. What type of information is logged. This key is valid for the JOBC0100 and JOBC0200
formats only. The possible values are:

0 No messages are logged.

1 All messages sent to the job's external message queue with a severity greater than or equal to the
message logging severity are logged. This includes the indications of job start, job end, and job
completion status.

2 The following information is logged:

Logging level 1 information●

Request messages that result in a high-level message with a severity code greater than or
equal to the logging severity that caused the request message and all associated messages to
be logged.

Note: A high-level message is one that is sent to the program message queue of the program
that receives the request message. For example, QCMD is an IBM-supplied request
processing program that receives request messages.

●

3 The following information is logged:

Logging level 1 and 2 information●

All request messages●

Commands run by a CL program are logged if it is allowed by the logging of CL programs
job attribute and the log attribute of the CL program.

●

4 The following information is logged:

All request messages and all messages with a severity greater than or equal to the message
logging severity, including trace messages.

●

Commands run by a CL program are logged if it is allowed by the logging of CL programs
job attribute and the log attribute of the CL program.

●

Logging of CL programs. Whether or not commands are logged for CL programs that are run. The
possible values are *YES and *NO. This key is valid for the JOBC0100 and JOBC0200 formats only.

Logging severity. The severity level that is used in conjunction with the logging level to determine which
error messages are logged in the job log. The values range from 00 through 99. This key is valid for the
JOBC0100 and JOBC0200 formats only.

Logging text. The level of message text that is written in the job log when a message is logged according to
the logging level and logging severity. This key is valid for the JOBC0100 and JOBC0200 formats only.
The possible values are:

*MSG Only the message text is written to the job log.

*SECLVL Both the message text and the message help (cause and recovery) of the error message are
written to the job log.

*NOLIST If the job ends normally, no job log is produced. If the job ends abnormally (if the job end
code is 20 or higher), a job log is produced. The messages that appear in the job log contain
both the message text and the message help.

Output queue name. The name of the default output queue that is used for spooled output produced by this
job. The default output queue is only for spooled printer files that specify *JOB for the output queue. The
possible values for the JOBC0300 format are:

*INLUSR The output queue specified in the job description of the user profile under which this thread
was initially running is used.

*CURUSR The output queue specified in the job description of the user profile under which this thread
is currently running is used.

Output queue name - qualified. The qualified name of the default output queue that is used for spooled
output produced by this job. The default output queue is only for spooled printer files that specify *JOB for
the output queue. The format of the qualified name is a 10-character simple object name followed by a
10-character library name.

Output queue name.

CHAR(10). The specific name of the output queue that is used. If a special value is specified, it
must be the only value in the field.

The possible values for the JOBC0100 and JOBC0200 formats are:

*DEV The DEV parameter is determined by one of these printer file commands:
Create Printer File (CRTPRTF), Change Printer File (CHGPRTF), or
Override with Printer File (OVRPRTF).

*WRKSTN The default output queue that is used with this job is the output queue that
is assigned to the work station associated with the job at the time the job is
started.

*USRPRF The output queue name specified in the user profile under which this
thread was initially running is used.

output-queue-name The name and library of the default output queue that is used by the job.
Specify the library name last (left-adjusted and padded with blanks)
preceded by the output queue name.

Output queue library name.

CHAR(10). The name of the library that contains the output queue. The library name must follow
the output queue name. The possible values are:

*LIBL All libraries in the job's library list are searched until the first match is found.

*CURLIB The current library for the job is used to locate the name of the spooled output
queue. If no library is specified as the current library for the job, QGPL is used.

library-name Specify the name of the library where the spooled output queue is located.

Output queue priority. The output priority for spooled output files that this job produces. The highest
priority is 0, and the lowest is 9.

The possible CHAR(2) values for the JOBC0100 and JOBC0200 formats are:

output-priority A value, ranging from 1 through 9, for the priority of the job's output files. The output
priority specified cannot be higher than the priority specified in the user profile under
which the job is running.

The possible CHAR(10) values for the JOBC0300 format are:

*INLUSR The output priority specified in the job description of the user profile under which this
thread was initially running is used.

*CURUSR The output priority specified in the job description of the user profile under which this
thread is currently running is used.

Printer device name. The printer device used for printing output from this job.

The possible values for the JOBC0100 and JOBC0200 formats are:

*SYSVAL The value in the system value QPRTDEV is used as the printer device.

*WRKSTN The default printer device used with this job is the printer device assigned to the
work station that is associated with the job.

*USRPRF The printer device name specified in the user profile under which this thread was
initially running is used.

printer-device-name The name of the printer device that is used with this job.

The possible values for the JOBC0300 format are:

*INLUSR The printer device that is specified in the job description of the user profile under which
this thread was initially running is used.

*CURUSR The printer device specified in the job description of the user profile under which this
thread is currently running is used.

Print key format. Whether border and header information is provided when the Print key is pressed. This
key is only valid for the JOBC0100 and JOBC0200 formats. The possible values are:

*SYSVAL The value specified on the system value QPRTKEYFMT determines whether header or
border information is printed.

*NONE The border and header information is not included with output from the Print key.

*PRTBDR The border information is included with output from the Print key.

*PRTHDR The header information is included with output from the Print key.

*PRTALL The border and header information is included with output from the Print key.

Print text. The line of text (if any) that is printed at the bottom of each page of printed output for the job.
The possible values for the JOBC0100 and JOBC0200 formats are:

*SYSVAL The system value, QPRTTXT, is used.

*BLANK No text is printed on printed output.

print-text The character string that is printed at the bottom of each page. A maximum of 30 characters
can be entered.

The possible values for the JOBC0300 format are:

*INLUSR The print text specified in the job description of the user profile under which this thread
was initially running is used.

*CURUSR The print text specified in the job description of the user profile under which this thread is
currently running is used.

Purge. Whether or not the job is eligible to be moved out of main storage and put into auxiliary storage at
the end of a time slice or when entering a long wait (such as waiting for a work station user's response).
This attribute is ignored when more than one thread is active within the job. If the job consists of multiple
routing steps, a change to this attribute during a routing step does not apply to subsequent routing steps.
This key is valid for the JOBC0100 and JOBC0200 formats only. The possible values are:

*YES The job is eligible to be moved out of main storage and put into auxiliary storage. A job with
multiple threads, however, is never purged from main storage.

*NO The job is not eligible to be moved out of main storage and put into auxiliary storage. When
main storage is needed, however, pages belonging to a thread in this job may be moved to
auxiliary storage. Then, when a thread in this job runs again, its pages are returned to main
storage as they are needed.

Run priority (job). The priority at which the job or thread competes for the processing unit relative to
other jobs and threads that are active at the same time. The run priority ranges from 1 (highest priority) to
99 (lowest priority). This value represents the relative (not absolute) importance of the job or thread. For
example, a run priority of 25 is not twice as important as a run priority of 50. If the job consists of multiple
routing steps, a change to this attribute during a routing step does not apply to subsequent routing steps.
This key is valid for the JOBC0100 and JOBC0200 formats only. This key can be used to change the
current thread using the JOBC0200 format, but when changing a specific thread, the JOBC0400 format
should be used with the Run priority (thread) key.

The possible values for the JOBC0100 format are:

priority The run priority of the job is changed. The range of values is 1 (highest priority) to 99 (lowest
priority). The value may never be higher than the run priority for the job in which the thread is
running. If a priority higher than the job's is entered, an error is returned. Changing the run
priority of the job affects the run priorities of all threads within the job. For example, the job is
running at priority 10, thread A within the job is running at priority 10, and thread B within the
job is running at priority 15. The priority of the job is changed to 20. The priority of thread A
would then be adjusted to 20 and the priority of thread B would be adjusted to 25.

The possible values for the JOBC0200 format are:

-1 The run priority of the current thread will be set equal to the priority of the job. The thread
cannot have a lower priority than its corresponding job.

priority The run priority of the thread is changed. The range of values are the current job's run priority
(highest priority) to 99 (lowest priority). If a priority that is higher than the job's is entered, an
error is returned.

Run priority (thread). The run priority for the thread relative to the priority of the other threads that are
running in the system. The range of values are from 1 (highest priority) to 99 (lowest priority). The value
may never be higher than the run priority for the job in which the thread is running. If a priority higher than
the job's is entered, an error is returned. This key is valid for the JOBC0200 and JOBC0400 format only.

Schedule date. The date on which the submitted job becomes eligible to run.

If your system or your job is configured to use the Julian date format, *MONTHSTR and *MONTHEND
are calculated as if the system or job did not use the Julian date format. This key is only valid for the
JOBC0100 format. The possible values are:

*CURRENT The submitted job becomes eligible to run on the current date.

*MONTHSTR The submitted job becomes eligible to run on the first day of the month. If you specify
*MONTHSTR and if today is the first day of the month and the time you specify on the
schedule time parameter has not passed, the job becomes eligible to run today.
Otherwise, the job becomes eligible on the first day of the next month.

*MONTHEND The submitted job becomes eligible to run on the last day of the month. If you specify
*MONTHEND and if today is the last day of the month and the time you specify on the
schedule time parameter has not passed, the job becomes eligible to run today.
Otherwise, the job becomes eligible on the last day of the next month.

*MON The job becomes eligible to run on Monday.

*TUE The job becomes eligible to run on Tuesday.

*WED The job becomes eligible to run on Wednesday.

*THU The job becomes eligible to run on Thursday.

*FRI The job becomes eligible to run on Friday.

*SAT The job becomes eligible to run on Saturday.

*SUN The job becomes eligible to run on Sunday.

date Specify a date in the format CYYMMDD where C is the century, YY is the year, MM
is the month, and DD is the day. A 0 for the century flag indicates years 19xx and a 1
indicates years 20xx.

Schedule time. The time on the scheduled date at which the job becomes eligible to run. This key is valid
for the JOBC0100 format only.

Note: Although the time can be specified to the second, the load on the system may affect the exact time at
which the job becomes eligible to run.

The possible values are:

*CURRENT The job is submitted on the current time.

time The time you want the job to start. The time is specified in 24-hour format as follows:

Specify a string of 6 digits (HHMMSS) where HH equals hours, MM equals minutes, and
SS equals seconds. Valid values for HH range from 00 to 23. Valid values for MM and SS
range from 00 to 59.

Server mode for Structured Query Language. Whether or not Structured Query Language (SQL)
statements should run in a separate server job. This key is only valid for the JOBC0200 format. The
possible values are:

0 The SQL statements will not run in a separate server job.

1 The SQL statements will run in a separate server job. Each SQL connection will be allowed to run
with a different user profile and separate transaction scoping.

Server type. The type of server represented by the job. This key is valid for the JOBC0200 format only. A
value of blanks indicates that the job is not part of a server. A value of hexadecimal zeros is not allowed.
IBM servers start with QIBM.

Sort sequence table. The sort sequence table to be used for string comparisons for this job. The possible
values for the JOBC0300 format are:

*INLUSR The sort table specified in the user profile under which this thread was initially running is
used.

*CURUSR The sort table specified in the user profile under which this thread is currently running is
used.

Sort sequence table - qualified. The qualified name of the sort sequence table to be used for string
comparisons for this job. The format of the qualified name is a 10-character simple object name followed
by a 10-character library name. The sort sequence table consists of 2 parts:

Sort sequence table name

CHAR(10). The specific name of the sort sequence table. The possible values for the JOBC0100
and JOBC0200 formats are:

*SYSVAL The system value QSRTSEQ is used.

*USRPRF The sort sequence table specified in the user profile under which this thread
was initially running is used.

*HEX A sort sequence table is not used. The hexadecimal values of the characters are
used to determine the sort sequence.

*LANGIDUNQ A unique-weight sort table is used.

*LANGIDSHR A shared-weight sort table is used.

table-name The name of the sort sequence table to be used with this job. The table name
must be preceded by the library name, left-adjusted, and padded with blanks.

Sort sequence library

CHAR(10). The sort sequence table library that is associated with this job. The possible values are:

*LIBL All libraries in the job's library list are searched until the first match is found.

*CURLIB The current library for the job is searched. If no library is specified as the current
library for the job, the QGPL library is used.

library-name The name of the library to be searched. This must be specified after the sort
sequence table name and must be left-adjusted and padded with blanks.

Spooled file action. Whether spooled files can be accessed through job interfaces once a job has
completed its normal activity.

*KEEP Spooled files are kept with the job when the job completes its activity.

*DETACH Spooled files are detached from the job when the job completes its activity.

*SYSVAL The job will take the spooled file action specified by the QSPLFACN system value.

Status message handling. Whether you want status messages displayed for this job. The possible values
for the JOBC0100 and JOBC0200 formats are:

*SYSVAL The system value QSTSMSG is used.

*USRPRF The status message handling that is specified in the user profile under which this thread
was initially running is used.

*NONE This job does not display status messages.

*NORMAL This job displays status messages.

The possible values for the JOBC0300 format are:

*INLUSR Status messages are shown or not shown as specified in the user profile under which this
thread was initial running.

*CURUSR Status messages are shown or not shown as specified in the current user profile under
which this thread is running.

Time separator. The value used to separate hours, minutes, and seconds when presenting a time. This key
is only valid for the JOBC0100 and JOBC0200 formats. The possible values are:

S The time separator specified in the system value QTIMSEP is used.

':' A colon (:) is used for the time separator.

'.' A period (.) is used for the time separator.

' ' A blank is used for the time separator.

',' A comma (,) is used for the time separator.

Time slice. The maximum amount of processor time (in milliseconds) given to each thread in this job
before other threads (in this job or in other jobs) are given the opportunity to run. The time slice establishes
the amount of time that is needed by a thread in the job to accomplish a meaningful amount of processing.
At the end of the time slice, the thread might be put in an inactive state so that other threads can become
active in the storage pool. If the job consists of multiple routing steps, a change to this attribute during a
routing step does not apply to subsequent routing steps. Valid values range from 1 through 9999999 (that is,
9 999 999 milliseconds or 9999.999 seconds). Although you can specify a value of less than 8, the system
takes a minimum of 8 milliseconds to run a process. If you display a job's run attributes, the time slice value
is never less than 8. This key is valid for the JOBC0100 and JOBC0200 formats only.

Time-slice end pool. Whether you want interactive jobs moved to another main storage pool at the end of
the time slice. This key is only valid for the JOBC0100 and JOBC0200 formats. The possible values are:

*SYSVAL The value in the system value, QTSEPOOL, is used.

*NONE The job does not move to another main storage pool when it reaches the end of the time
slice.

*BASE The job moves to the base pool when it reaches the end of the time slice.

Format of job or thread identification information

Format JIDF0100 is the format of the information needed to identify the job and the thread for which the
thread's attributes will be changed. This format supports several special values that can help in identifying
the thread.

Format JIDF0200 is the format of the information needed to identify the thread for which the thread's
attributes will be changed. This format is to be used when referencing a specific thread for which you
already have the thread handle.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a thread that
is not the current thread than Format JIDF0100.

JIDF0100 Format.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job that this program is running in. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value that uniquely identifies a thread within a job. If a thread identifier is specified, a
thread indicator must also be specified. If the thread indicator is not 0, this field must contain hexadecimal
zeros.

Thread indicator. A value that is used to specify the thread within the job. If a thread indicator is
specified, a thread identifier must be specified also. The following values are supported:

0 Information from the thread identifier field should be used.

1 The thread that this program is running in currently should be used.

2 The initial thread of the identified job should be used.

Note: For all of the supported values, the combination of the internal job identifier, job name, job number,
and user name fields must also identify the job containing the thread.

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4),
UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job that this program is running in. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value that addresses a particular thread within a job. While the thread identifier uniquely
identifies the thread within the job, the thread handle can improve performance when referencing the
thread. A valid thread handle must be specified. The thread handle is returned on several other interfaces.

Thread identifier. A value which uniquely identifies a thread within a job. A valid thread identifier must
be specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Usage Notes

How to Determine the Format to Use

The JOBC0100 format is to be used to change an attribute that is scoped to the job. This format will change
the attribute for either the job that the request is issued from or for any other job that is on the system.

The JOBC0200 format is to be used to change an attribute for the thread that the request is being issued
from. This will change the attribute at the thread level for attributes that are scoped to the thread and will
change the attribute at the job level for attributes that are scoped to the job. For attributes that are scoped to
the thread, there may be multiple threads active when the change is requested. The change will only affect
the current thread. The other active threads will not be affected by the change. The attributes that are scoped
to the job may only be changed if there are no secondary threads active, so as to not affect other threads. If
a job attribute needs to be changed by a secondary thread or while secondary threads are active, the
JOBC0100 format should be used.

The JOBC0300 format may be used after a set user profile has been done with the Set Profile (QWTSETP)
API. This format will perform job-initialization type activities. When a job is started, information for
various attributes is retrieved from the user profile that the job is starting under. This format will perform a
similar function for either the user profile that the thread is currently running under or for the user profile
that the thread was initiated under. For attributes that are scoped to the thread, if this format is called with
multiple threads active, the change will only affect the current thread. Attributes that are scoped to the job
may only be changed if there are no secondary threads active.

The JOBC0400 format is to be used to change an attribute that is scoped to the thread. It allows changing
a thread other than the current thread as well as the current thread.

Considerations for Attribute Scope and Thread Safety

In the Attribute Scope and Thread Safety table, the Attribute column shows the key identifier and the text
description for the attribute.

The Scope column shows whether the attribute is scoped to the job or to the thread. Attributes changed with
this API may be scoped to the job or to the current thread. Some attributes that are scoped to the job could
be moved to the thread level in a future release. If that were to occur, this API would be updated to change
the thread attribute.

The Format columns indicate whether the attributes are considered to be threadsafe when being changed
for that format.

The following describes the terminology used in the Format columns:

Threadsafe In general threads terminology, indicates that an interface may be called safely
from either an initial thread or a secondary thread. For this particular API,
threadsafe indicates that an attribute can always be changed and can be
considered correct.

The API may be called from the initial or secondary thread to change the
attributes of the current job or a different job. The job whose attributes are being
changed may be either single threaded or multithreaded.

Note: When attributes that are marked threadsafe and are scoped to the job are
changed, the change will affect all threads that are running under that job.

Single threaded only In general threads terminology, indicates that an interface may be called safely
only while the job is running single threaded (that is, no secondary threads are
active). For this particular API, an attribute marked as single threaded only
indicates that the attribute can only be changed by that format when changing
one's own attribute and there are no other threads active. The change will not be
allowed if the target job is multithreaded.

No The attribute may not be changed safely. The change will not be allowed if
multiple threads are active in the job calling this API or in the target job.

Blank The attribute is not supported for this request.

Attribute Scope and Thread Safety

Attribute Scope JOBC0100 JOBC0200 JOBC0300
JOBC0400

0104: ASP group
information

Current thread Threadsafe

0201: Break message
handling

Job Threadsafe Single
threaded only

0302: Coded character
set ID

Job Threadsafe Single
threaded only

Single
threaded only

0303: Country or region
ID

Job Threadsafe Single
threaded only

Single
threaded only

0310: Current library Current thread Threadsafe

0311: Character
identifier control

Job Threadsafe Single
threaded only

Single
threaded only

 0318: Client IP
address - IPv4 (job)

Job Initial thread
only1

0405: Date format Job Threadsafe Single
threaded only

0406: Date separator Job Threadsafe Single
threaded only

0408: DDM
conversation

Job No No

0409: Default wait Job Threadsafe Single
threaded only

0410: Device recovery
action

Job Threadsafe Single
threaded only

0413: Decimal format Job Threadsafe Single
threaded only

0801: Home directory Current thread Threadsafe

0901: Inquiry message
reply

Job Threadsafe Single
threaded only

0910: Initial library list Current thread Threadsafe

1001: Job accounting
code

Job No No No

1002: Job date Job Threadsafe Single
threaded only

1004: Job queue name -
qualified

Job Threadsafe Single
threaded only

1005: Job queue priority Job Threadsafe Single
threaded only

1006: Job switches Job Threadsafe Single
threaded only

1007: Job message
queue full action

Job Threadsafe Single
threaded only

1201: Language ID Job Threadsafe Single
threaded only

Single
threaded only

1202: Logging level Job Threadsafe Single
threaded only

1203: Logging of CL
programs

Job Threadsafe Single
threaded only

1204: Logging severity Job Threadsafe Single
threaded only

1205: Logging text Job Threadsafe Single
threaded only

1210: Locale Job No

1501: Output queue
name

Job Single
threaded only

1501: Output queue
name - qualified

Job Threadsafe Single
threaded only

1502: Output queue
priority

Job Threadsafe Single
threaded only

Single
threaded only

1601: Print key format Job Threadsafe Single
threaded only

1602: Print text Job Threadsafe Single
threaded only

Single
threaded only

1603: Printer device
name

Job Threadsafe Single
threaded only

Single
threaded only

1604: Purge Job Threadsafe Single
threaded only

1802: Run priority (job) Job Threadsafe

1802: Run priority (job) Current thread Threadsafe

 1804: Run priority
(thread)

Thread Threadsafe

1901: Sort sequence
table

Job Single
threaded only

1901: Sort sequence
table - qualified

Job Threadsafe Single
threaded only

1902: Status message
handling

Job Threadsafe Single
threaded only

Single
threaded only

1911: Server type Job Single
threaded only

1920: Schedule date Job No

1921: Schedule time Job No

1922: Server mode for
Structured Query
Language

Job Single
threaded only

 1982: Spooled file
action

Job Threadsafe Single
threaded only

2001: Time separator Job Threadsafe Single
threaded only

2002: Time slice Job Threadsafe Single
threaded only

2003: Time-slice end
pool

Job Threadsafe Single
threaded only

2701: All keys for
JOBC0300 format

See the
specific keys
in this table

 See the
specific keys
in this table

 1 A change to this attribute in a secondary thread is possible; however, it is essentially
meaningless as only the attribute for the inital thread can be retrieved using the Retrieve Job
Information (QUSRJOBI) API. This key has no correlation to the attribute set by the system. For
further information on retrieving the Client IP address - IPv4 or IPv6 that has been implicity set
by the operating system, see the Retrieve Thread Attribute (QWTRTVTA) API.

Error Messages

Message ID Error Message Text

CPD0912 D Printer device &1 not found.

CPD1102 D Change to &1 only allowed for interactive jobs.

CPD1104 D Changing &1 to *WRKSTN only allowed for interactive jobs.

CPD1612 D Not able to allocate job description &1 in &2.

CPF1075 D Job description &1 in &2 is not found.

CPF1077 D Not authorized to job description &1 in library &2.

CPF1134 D Job &3/&2/&1 priority &4 exceeds priority limit &5.

CPF1135 D Job &3/&2/&1 output priority &4 exceeds priority limit &5.

CPF1144 D Job queue &1 in library &2 not found.

CPF1145 D Job queue &1 in library &2 not accessible.

CPF1146 D User &1 not authorized to job queue &2 in library &3.

CPF1156 D Job &3/&2/&1 job switch &4 not valid.

CPF1160 D Job priority not changed.

CPF1252 D Output queue &1 in library &2 not found.

CPF1253 D Output queue &1 in library &2 not accessible.

CPF1254 D User &1 not authorized to output queue &2 in library &3.

CPF1255 D Output queue library &2 not found.

CPF1264 E User profile for user name &1 not accessible.

CPF1317 E No response from subsystem for job &3/&2/&1.

CPF1321 E Job &1 user &2 job number &3 not found.

CPF1334 D BRKMSG(*NOTIFY) only valid for interactive jobs.

CPF1335 D Job queue not changed. Job &3/&2/&1 not batch job.

CPF1337 E &3/&2/&1 not authorized to change parameters.

CPF1339 D Job queue not changed. Job &3/&2/&1 not on job queue.

CPF1340 E Job control function not performed.

CPF1343 E Job &3/&2/&1 not valid job type for function.

CPF1344 E Not authorized to control job &3/&2/&1.

CPF1351 E Function check occurred in subsystem for job &3/&2/&1.

CPF1352 E Function not done. &3/&2/&1 in transition condition.

CPF1618 E Job description &1 in library &2 damaged.

CPF1635 D Requested change no longer allowed.

CPF1644 D Scheduled date and time not changed.

CPF1650 D Both scheduled date and time must be changed.

CPF1651 E Sort sequence table not accessed.

CPF180C E Function &1 not allowed.

CPF1846 D CHGJOB did not complete. System value not available.

CPF1854 E Value &1 for CCSID not valid.

CPF188F E Not authorized to change job accounting code.

CPF1893 E Errors occurred while changing job &3/&2/&1.

CPF1895 D Incorrect format specified with the internal job identifier.

CPF1896 D Incorrect job name specified.

CPF1897 D Data for key field &1 not valid.

CPF1898 D Key field &1 not valid.

CPF1899 D No other key allowed when specifying key &1.

CPF189A D Reserved field must be blanks.

CPF189B D Length field not valid.

CPF189C D &1 not valid for the data type field.

CPF189E D Key field &1 not valid with format &2.

CPF189F D Request not completed.

 CPF18BF E Thread & not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

 CPF3C36 E Number of parameters, &1, entered for this API was not valid.

 CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C88 E Number of variable length records &1 is not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

 CPFB8E9 E ASP group &1 not set for thread &2.

API introduced: V4R2

Top | Work Management APIs | APIs by category

Change Pool Attributes (QUSCHGPA) API

 Required Parameter Group:

1 System pool identifier Input Binary(4)
2 New pool size Input Binary(4)
3 New pool activity level Input Binary(4)

 Optional Parameter Group 1:

4 Message logging Input Char(1)
5 Error code I/O Char(*)

 Optional Parameter Group 2:

6 Paging option Input Char(10)

 Optional Parameter Group 3:
 Note: Group 3 is valid for shared pools only.

7 Priority Input Binary(4)
8 Minimum pool size % Input Binary(4)
9 Maximum pool size % Input Binary(4)
10 Minimum faults Input Binary(4)
11 Per-thread faults Input Binary(4)
12 Maximum faults Input Binary(4)

 Default Public Authority: *USE

 Threadsafe: No

The Change Pool Attributes (QUSCHGPA) API changes the size, activity level, and paging options of any
system storage pool. In addition, QUSCHGPA changes the tuning parameters for system storage pools that
are also shared pools. A system storage pool identifier is returned with the Materialize Resource
Management Data (MATRMD) machine interface (MI) or Retrieve System Status (QWCRSSTS) API.
(Note that system pool identifiers differ from subsystem pool identifiers.) Depending on whether the base
pool, shared pool, or private subsystem pool is to be changed, the QUSCHGPA API determines the
appropriate command to use and then issues that command. This is similar to the function provided on the
System Status display, where you can change the system storage pool size and paging options interactively.

You can use the QUSCHGPA API to tune storage pools without having to know which subsystem monitor
allocated the pool. In addition, you do not have to determine whether or not a pool is a shared storage pool,
unless parameter group 3 is specified. The Work with System Status (WRKSYSSTS), the Work with
Subsystems (WRKSBS), and the Work with Shared Pools (WRKSHRPOOL) commands provide similar
functions.

Authorities and Locks

Subsystem Description Authority

*OBJOPR, *OBJMGT, and *READ

Subsystem Description Library Authority

*EXECUTE

Required Parameter Group

System pool identifier

INPUT; BINARY(4)

This identifies which pool is to be changed. This number corresponds to the number returned on
option nine of the MATRMD MI instruction using the ILE C language. This also corresponds to
the identifier shown on the Work with System Status display. This parameter is a value ranging
from 1 through 64, where pool 1 is the machine pool, and pool 2 is the base pool.

New pool size

INPUT; BINARY(4)

The size of the pool in kilobytes, where one kilobyte is 1024 bytes. If you do not want the pool size
to be changed, you must specify a value of -1 for this parameter. The minimum value is 256
kilobytes.

Note: For compatibility with previous releases, a pool size of 32 through 255 kilobytes can be
specified. However, since the minimum pool size is 256 kilobytes, the pool will not be changed
when a size of 32 through 255 kilobytes is specified.

New pool activity level

INPUT; BINARY(4)

The activity level for the pool. If you do not want the activity level to be changed, you must specify
a value of -1 for this parameter. You cannot change the activity level of the machine pool.

Optional Parameter Group 1

Message logging

INPUT; CHAR(1)

Whether messages reporting that a change was made are written to the current job's job log and to
the QHST message log. This affects the logging of change-related messages only; it does not affect
the logging of error messages. Valid values are:

Y Log change messages.

N Do not log change messages.

If this parameter is omitted, Y is used and change messages are logged.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group 2

Paging option

INPUT; CHAR(10)

Whether the system should dynamically adjust the paging characteristics of the storage pool for
optimum performance. Valid values are:

*SAME The paging option for the storage pool is not changed.

*FIXED The system will not dynamically adjust the paging characteristics; system default
values are used.

*CALC The system will dynamically adjust the paging characteristics.

If this parameter is omitted, the paging option is not changed.

Optional Parameter Group 3

Note: Group 3 is valid for shared pools only.

Priority

INPUT; BINARY(4)

The priority of this pool relative to the priority of the other storage pools. Valid values are 1
through 14. The priority for the *MACHINE pool must be 1. This value is used by the system if the
performance adjustment (QPFRADJ) system value is set to 2 or 3. If this parameter is omitted, the
priority value is not changed. If you want the system to calculate the priority, you must specify -2
for this parameter. If you do not want this value to change, you may specify -1 for this parameter.

Minimum pool size %

INPUT; BINARY(4)

The minimum amount of storage to allocate to this storage pool (as a percentage of total main
storage), specified in hundredths. That is, a value of 1234 means 12.34 percent. This value cannot
be greater than the maximum pool size % parameter value. This value is used by the system if the
QPFRADJ system value is set to 2 or 3. If this parameter is omitted, the minimum size value is not
changed. If you want the system to calculate the minimum size, you must specify -2 for this
parameter. If you do not want this value to change, you may specify -1 for this parameter.

Maximum pool size %

INPUT; BINARY(4)

The maximum amount of storage to allocate to this storage pool (as a percentage of total main
storage), specified in hundredths. That is, a value of 1234 means 12.34 percent. This value cannot

be less than the minimum pool size % parameter value. This value is used by the system if the
QPFRADJ system value is set to 2 or 3. If this parameter is omitted, the maximum size value is not
changed. If you want the system to calculate the maximum size, you must specify -2 for this
parameter. If you do not want this value to change, you may specify -1 for this parameter.

Minimum faults

INPUT; BINARY(4)

The minimum faults-per-second guideline to use for this storage pool, specified in hundredths. That
is, a value of 1234 means 12.34. This value is used by the system if the QPFRADJ system value is
set to 2 or 3. If this parameter is omitted, the minimum faults value is not changed. If you want the
system to calculate minimum faults, you must specify -2 for this parameter. If you do not want this
value to change, you may specify -1 for this parameter.

Per-thread faults

INPUT; BINARY(4)

The faults per second for each active thread in this storage pool, specified in hundredths. That is, a
value of 1234 means 12.34. Each job is comprised of one or more threads. The system multiplies
this number by the number of active threads that it finds in the pool. This result is added to the
minimum faults parameter to calculate the faults-per-second guideline to use for this pool. This
value is used by the system if the QPFRADJ system value is set to 2 or 3. If this parameter is
omitted, the per-thread faults value is not changed. If you want the system to calculate per-thread
faults, you must specify -2 for this parameter. If you do not want this value to change, you may
specify -1 for this parameter.

Maximum faults

INPUT; BINARY(4)

The maximum faults-per-second guideline to use for this storage pool, specified in hundredths.
That is, a value of 1234 means 12.34. The sum of minimum faults and per-thread faults must be
less than the value of the maximum faults parameter. This value is used by the system if the
QPFRADJ system value is set to 2 or 3. If this parameter is omitted, the maximum faults value is
not changed. If you want the system to calculate maximum faults, you must specify -2 for this
parameter. If you do not want this value to change, you may specify -1 for this parameter.

The following table summarizes the values you can specify for the system pool identifier, the new pool
size, and the new pool activity level.

System Pool
Identifier New Pool Size New Pool Activity Level

1 (Machine pool) -1 or >= 256 -1

2 (Base pool) -1 or >= 256 1 -1 or 1 through 32 767

3 to 64 >= 256 1 1 through 32 767

1 For compatibility with previous releases, a pool size of 32 through 255 kilobytes
can be specified. Since the minimum pool size is 256 kilobytes, however, the pool
will not be changed when a size of 32 through 255 kilobytes is specified.

For pools 3 through 64, both size and pool activity level must be specified.

In some cases, pool size changes do not take effect immediately. For example, a save or restore operation
might be using some of the storage allocated to a pool, or the system might be using some of the storage

allocated to the base pool. The size is changed only when the storage being used is free again.

The base pool holds all unused main storage on the system that is not allocated to other shared or private
pools. As subsystems are started and allocate storage for their shared and private storage pools, that storage
comes from the base pool. The base pool (pool number 2) size is what is left after pool 1 and pools 3
through 64 are subtracted from the total main storage. The QBASPOOL system value is a minimum size,
and it is not the actual size of the base pool. At this minimum size, the system does not allow additional
storage requests. For this reason, you must calculate the storage requirements for all pools on the system,
including the base pool, and then run this API.

Error Messages

Message ID Error Message Text
CPF1001 E Wait time expired for system response.
CPF1076 E Specified value not allowed for system value &1.
CPF1078 E System value &1 not changed.
CPF113A E Sum of MINFAULT and JOBFAULT parameters exceeds MAXFAULT parameter.
CPF113B E Minimum size percentage exceeds maximum size percentage.
CPF113C E Parameter not valid for private pool.
CPF113E E Range of parameter &2 does not include &4.
CPF1165 E Specified parameter not allowed for *MACHINE pool.
CPF1619 E Subsystem description &1 in library &2 damaged.
CPF1691 E Active subsystem description may or may not have changed.
CPF1697 E Subsystem description &1 not changed.
CPF1879 E Paging option &1 not valid.
CPF1880 E Machine pool paging option cannot be changed.
CPF1881 E Changing private pool paging option not allowed.
CPF24B4 E Severe error while addressing parameter list.
CPF3CA0 E System pool &1 does not exist.
CPF3CA1 E Pool size &1 is not valid.
CPF3CA2 E Activity level &1 is not valid.
CPF3CA3 E Pool &1 is not in use.
CPF3CA4 E Changing machine pool activity level is not allowed.
CPF3CA5 E Both pool size and activity level are required.
CPF3CA6 E Message logging value &1 not valid.
CPF3CF1 E Error code parameter not valid.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF3C36 E Number of parameters, &1, entered for this API was not valid.
CPF3C90 E Literal value cannot be changed.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Example: Changing System Storage Pool Attributes

The following is an example of how to change system storage pool attributes using the QUSCHGPA API:

Pseudocode

 .
 .
 .
MATRMD (OPERAND1, OPERAND2);
DO /* Do loop for each pool in use */
 .
 . /* Calculate the desired pool size
 and activity level */
 .
END
DO /* Do loop for each pool in use */
CALL QUSCHGPA (POOLID, POOLSIZE, POOLACTLVL);
 /* Change pool attributes */
END
 .
 .
 .

API introduced: V1R3

Top | Work Management APIs | APIs by category

Change Pool Tuning Information (QWCCHGTN)
API

 Required Parameter Group:

1 System pool identifier Input Binary(4)
2 Change request Input Char(*)
3 Length of change request Input Binary(4)
4 Format name Input Char(8)
5 Error code I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Change Pool Tuning Information (QWCCHGTN) API changes information about tuning being
performed by the system for the different storage pools. The Materialize Resource Management Data
(MATRMD) machine interface (MI) instruction can be used to retrieve the current setting of the tuning
parameters.

Required Parameter Group

System pool identifier

INPUT; BINARY(4)

The pool is to be changed. This number corresponds to the number returned on option 9 of the
Materialize Resource Management Data (MATRMD) MI instruction. This also corresponds to the
identifier shown on the Work with System Status display. This parameter is a value ranging from 2
through 64, where pool 2 is the base pool.

Change request

INPUT; CHAR(*)

The variable containing the new tuning information. See TUNI0100 Format for the definition of the
fields for this parameter.

Length of change request

INPUT; BINARY(4)

The length of the change request list. This area must be as large as the format specified.

Format name

INPUT; CHAR(8)

The format of the information to be changed. The valid values are:

TUNI0100 Tuning information for a storage pool.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

TUNI0100 Format

The following table shows the information that must be specified in the change request parameter when
format TUNI0100 is specified. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(1) Type of tuning

1 1 CHAR(1) Change page handling

2 2 BINARY(4) Blocking factor for nondatabase objects

6 6 CHAR(1) Allow exchange operations (for class 1 objects
in pool)

7 7 CHAR(1) Type of transfer from main storage to auxiliary
storage (for class 1 objects in pool)

8 8 BINARY(4) Blocking factor for database (class 1) objects

12 C CHAR(1) Allow exchange operations (for class 2 objects
in pool)

13 D CHAR(1) Type of transfer from main storage to auxiliary
storage (for class 2 objects in pool)

14 E BINARY(4) Blocking factor for database (class 2) objects

18 12 CHAR(1) Allow exchange operations (for class 3 objects
in pool)

19 13 CHAR(1) Type of transfer from main storage to auxiliary
storage (for class 3 objects in pool)

20 14 BINARY(4) Blocking factor for database (class 3) objects

24 18 CHAR(1) Allow exchange operations (for class 4 objects
in pool)

25 19 CHAR(1) Type of transfer from main storage (for class 4
objects in pool) to auxiliary storage

26 1A BINARY(4) Blocking factor for database (class 4) objects

When tuning is requested (values 1, 2, or 3 for the type of tuning field), the system periodically categorizes
database objects into four different performance classes. The classes are:

Class 1 Object access appears to be random. A disk access is required for nearly each record that is
accessed.

Class 2 Locality of reference detected. Several records are being accessed per disk access.

Class 3 High locality of reference detected. The object is being processed in a sequential manner;
references are highly clustered and large portions of the object are resident in main storage.

Class 4 The class of a database object is adjusted if the object's size is small in comparison to the
available storage in the storage pool. This class adjustment involves adding 1 to the class
number; therefore, a class 3 database object (as defined above) would be treated as a class 4
if it were small in comparison to the available storage in the storage pool.

Reference information for determining an object's class is collected periodically. It is collected by storage
pool because an object's class varies over time and by storage pool.

Note: When a new system pool is created as a result of starting a subsystem, the type of tuning and change
page handling attributes for the new system pool are initialized based on the type of storage pool being
created. For shared storage pools, the type of tuning and change page handling attributes are set based on
the paging option defined for the shared storage pool. For private storage pools, the type of tuning attribute
is set to indicate no tuning should be done and the change page handling attribute is set to the system
default value.

Field Descriptions

Allow exchange operations. The exchange operation used to reduce the working set size. This is done by
overlaying data that is already in main storage with new data this is being brought into main storage. The
values for this field are:

0 Use the system default, which is 1 (allow exchange operations)

1 Allow exchange operations

2 Disable exchange operations

3 Disable exchange operations (The data that already exists in main storage should be a good candidate
to be replaced when additional storage is needed in the storage pool.)

The value specified for this field is ignored unless static tuning is specified for the type of tuning field.

Blocking factor for database objects. The amount of data that should be brought into main storage when a
request is made to read database objects from auxiliary storage. The values for this field are:

0 Use the system default, which is 4 (transfer data into main storage in 4KB blocks)

4 Transfer data into main storage in 4KB blocks

8 Transfer data into main storage in 8KB blocks

16 Transfer data into main storage in 16KB blocks

32 Transfer data into main storage in 32KB blocks

64 Transfer data into main storage in 64KB blocks

128 Transfer data into main storage in 128KB blocks

The system may need to issue multiple I/O operations to bring the data into main storage. The value
specified for the blocking factor for database objects field is ignored unless static tuning is specified for the
type of tuning field.

Blocking factor for nondatabase objects. The amount of data that should be brought into main storage
when a request is made to read nondatabase objects from auxiliary storage. The possible values for this

field are:

0 Use the system default, which is 4 (transfer data into main storage in 4KB blocks)

4 Transfer data into main storage in 4KB blocks

8 Transfer data into main storage in 8KB blocks

16 Transfer data into main storage in 16KB blocks

32 Transfer data into main storage in 32KB blocks

The system may need to issue multiple I/O operations to bring the data into main storage. The value
specified for the blocking factor for nondatabase objects is ignored unless static tuning is specified for the
type of tuning field.

Change page handling. The method the system uses to determine when to write changed pages to
auxiliary storage. The values for this field are:

0 Use the system default, which is 1 (Changed pages should be written to auxiliary storage when there
is a demand for pages in a storage pool.)

1 Changed pages should be written to auxiliary storage when there is a demand for pages in a storage
pool

2 In addition to writing changed pages on demand, periodically write changed pages to auxiliary
storage

Type of transfer from main storage to auxiliary storage. The method the system uses to process a
request to write an object to auxiliary storage. The values for this field are:

0 Use the system default, which is 1 (When objects are changed, write the changes to auxiliary storage.
Indicate that the portion of the object that was written to auxiliary storage should be a good candidate
to be replaced when additional storage is needed in the storage pool.)

1 When objects are changed, write the changes to auxiliary storage. Indicate that the portion of the
object that was written to auxiliary storage should be a good candidate to be replaced when
additional storage is needed in the storage pool.

2 When objects are changed, write the changes to auxiliary storage.

3 Do not immediately write the changes to auxiliary storage. Indicate that the portion of the object that
was changed should be a good candidate to be replaced when additional storage is needed in the
storage pool.

4 Do not immediately write the changes to auxiliary storage.

The value specified for this field is ignored unless static tuning is specified for the type of tuning field.

Type of tuning. The method used by the system to tune the storage pool. The values for this field are:

0 No tuning is being performed for this pool.

All values specified for the blocking factor, the allow exchange operations, and the type of transfer
from main storage to auxiliary storage fields are ignored. The system default values are used for all
these fields.

1 Static tuning is being performed for this pool. Static tuning implies that the values specified for
blocking factor, exchange operation, and transfers to auxiliary storage are not dynamically adjusted
by the system.

Values must be specified for the blocking factor, allow exchange operations, and type of transfer
from main storage to auxiliary storage for the storage pools.

2 Dynamic tuning of transfers into main storage is being performed. This indicates that the system is
dynamically adjusting the blocking factor and exchange operations.

Because the values for blocking factor and allow exchange operations are dynamically adjusted, the
values specified on the API are ignored. The value used for the transfer to auxiliary storage field is
set to ensure that requests to write data to auxiliary storage are processed immediately.

3 Dynamic tuning of transfers into main storage and to auxiliary storage is being performed. This
indicates that the system is dynamically adjusting the blocking factor, exchange operations, and
transfers to auxiliary storage.

Because the values for the blocking factor, allow exchange operations, and transfers to auxiliary
storage are dynamically adjusted, the values specified on the API are ignored.

Error Messages

Message ID Error Message Text

CPF1001 E Wait time expired for system response.

CPF1870 E Value &1 for type of tuning not valid.

CPF1871 E Value &1 for change page handling not valid.

CPF1872 E Value &1 for blocking factor not valid.

CPF1873 E Value &1 for exchange operation not valid.

CPF1874 E Value &1 for transfer to auxiliary storage not valid.

CPF1875 E Value &1 for change request length not valid.

CPF1876 E Value &1 for pool number not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Top | Work Management APIs | APIs by category

Change Subsystem Entry (QWDCSBSE) API

 Required Parameter Group:

1 Qualified subsystem name Input Char(20)
2 Change format name Input Char(8)
3 Subsystem entry identifier Input Char(*)
4 Change information Input Char(*)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Change Subsystem Entry (QWDCSBSE) API changes a subsystem entry in the specified subsystem
description.

Authorities and Locks

Job Description Authority

*USE

Job Description Library Authority

*EXECUTE

Subsystem Description Authority

*OBJMGT, *USE

Subsystem Description Library Authority

*EXECUTE

User Profile Authority

*USE

Required Parameter Group

Qualified subsystem name

INPUT; CHAR(20)

The subsystem description that contains the subsystem entry being changed. The first 10 characters
contain the subsystem description name, and the second 10 characters contain the library name.
You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The job's library list

Change format name

INPUT; CHAR(8)

The format of the subsystem entry to change. You can use the following format:

SBSE0500 Prestart job entry. For details, see SBSE0500 Format (Prestart Job Entry).

Subsystem entry identifier

INPUT; CHAR(*)

The subsystem entry that is to be changed. The identifier is specific to the entry type. For prestart
job entries, see SBSE0500 Format (Prestart Job Entry) for details.

Change information

INPUT; CHAR(*)

The information for the subsystem entry that you want to change. The information must be in the
following format:

Number of variable length records

BINARY(4)
The total number of all of the variable length records.

Variable length records

The attributes of the subsystem entry that are to be changed. Refer to Format for Variable
Length Record for more information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format for Variable Length Record

The following table shows the layout of the variable length record. For a detailed description of each field,
see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of variable length record

4 4 BINARY(4) Attribute key

8 8 BINARY(4) Length of data

12 C CHAR(*) Data

If the length of the data is longer than the key field's data length, the data is truncated at the right. No
message is issued.

If the length of the data is shorter than the key field's data length and the key contains binary data, an error
message is issued. If the key does not contain binary data, the field is padded with blanks.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value for
that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Attribute key. The attribute to be set. For prestart job entries, see SBSE0500 Format (Prestart Job Entry)
for details.

Data. The value to which a specific attribute is to be set.

Length of data. The length of the attribute value.

Length of variable length record. The length of the record including this field.

SBSE0500 Format (Prestart Job Entry)

This format changes a prestart job entry in the specified subsystem description. The associated subsystem
may be active when the prestart job entry is changed. Changes made to the entry when the subsystem is
active are reflected over time. Prestart jobs that are created after the API is issued use the new job-related
values.

Subsystem Entry Identifier for SBSE0500 Format

Qualified program name

CHAR(20)

The qualified name of the program that identifies the prestart job entry being changed. The first 10
characters contain the program name, and the second 10 characters contain the library name. You
can use these special values for the library name:

*CURLIB The job's current library

*LIBL The job's library list

Attribute Keys for SBSE0500 Format

The following table shows the valid attribute keys for the attribute key field of the variable length record.
For a detailed description of each field, see Field Descriptions of Attribute Keys for SBSE0500 Format.

Key Type Field

1 CHAR(10) User profile name

2 CHAR(1) Start jobs

3 BINARY(4) Initial number of jobs

4 BINARY(4) Threshold

5 BINARY(4) Additional number of jobs

6 BINARY(4) Maximum number of jobs

7 CHAR(10) Job name

8 CHAR(20) Job description name

9 BINARY(4) Maximum number of uses

10 CHAR(1) Wait for job

11 BINARY(4) Pool identifier

12 CHAR(20) Class 1 name

13 BINARY(4) Class 1 number of jobs

14 CHAR(20) Class 2 name

15 BINARY(4) Class 2 number of jobs

Field Descriptions of Attribute Keys for SBSE0500 Format

Additional number of jobs. The additional number of prestart jobs that are started when the number of
prestart jobs drops below the threshold value. The value of this parameter must be less than the value of the
maximum number of jobs. Valid values range from 0-999.

Class 1 name. The name of a class under which the prestart jobs run. Two classes can be specified for a
prestart job entry, class 1 name and class 2 name. Each class defines the number of jobs that run under that
class. See class 1 number of jobs and class 2 number of jobs.

Jobs start under the first class specified until the number of jobs specified for the first class is reached. After
the allowed number of jobs specified for the first class is reached, jobs are started under the second class.

The possible values are:

*SBSD The class that has the same name as the subsystem description specified in the
qualified subsystem name is used for prestart jobs.

Qualified class name The name of the class used for prestart jobs. The first 10 characters contain the
class name, and the second 10 characters contain the library name. You can use
these special values for the library name:

*CURLIB The job's current library

*LIBL The job's library list

If the class does not exist when the entry is added, a library qualifier must be
specified because the qualified class name is retained in the subsystem
description.

Class 1 number of jobs. The maximum number of jobs to run that use the first class. If you specified the
maximum number of jobs key to be changed, the value for the number of jobs specified for this key might
need to be changed. If -3 or -4 is specified, the system recalculates the value for the number of jobs to use
the specified class. The possible values are:

-3 *CALC: The system calculates how many prestart jobs use this class. If only one class
is specified and -3 is specified, all of the jobs use that class. If two classes are specified
and -3 is specified for both, the first class is the value of the maximum number of jobs
divided by two, and the second class is the value of the maximum number of jobs
minus the value calculated for the first class. If a specific number of jobs is specified
for either class and -3 is specified for the other class, the system calculates the
difference between maximum number of jobs and the specific number of jobs for the -3
designation.

-4 *MAXJOBS: All prestart jobs use the specified class.

number of jobs The number of jobs that use this class. The sum of the values specified for class 1 and
class 2 number of jobs must equal the value of the maximum number of jobs. If you
specify one of the class number of job keys, you may also need to specify the
maximum number of jobs keys.

Class 2 name. The name of a class under which the prestart jobs run. Two classes can be specified for a
prestart job entry, class 1 name and class 2 name. Each class defines the number of jobs that run under that
class. See class 1 number of jobs and class 2 number of jobs.

Jobs start under the first class specified until the number of jobs specified for the first class is reached. After
the allowed number of jobs specified for the first class is reached, jobs are started under the second class.

The possible values are:

*NONE This value indicates that only one class is used.

*SBSD The class that has the same name as the subsystem description specified in the
qualified subsystem name is used for prestart jobs.

Qualified class name The name of the class being used for prestart jobs. The first 10 characters contain
the class name, and the second 10 characters contain the library name. You can
use these special values for the library name:

*CURLIB The job's current library

*LIBL The job's library list

If the class does not exist when the entry is added, a library qualifier must be
specified because the qualified class name is retained in the subsystem
description.

Class 2 number of jobs. The maximum number of jobs that use the second class. The possible values are:

-3 *CALC: The system calculates how many prestart jobs use this class. If only one class
is specified and -3 is specified, all of the jobs use that class. If two classes are specified
and -3 is specified for both, the first class is the value of the maximum number of jobs
divided by two, and the second class is the value of the maximum number of jobs
minus the value calculated for the first class. If a specific number of jobs is specified
for either class and -3 is specified for the other class, the system calculates the
difference between the maximum number of jobs and the specific number of jobs for
the -3 designation.

-4 *MAXJOBS: All prestart jobs use the specified class.

number of jobs The number of jobs that use this class. The sum of the values specified for class 1 and
class 2 number of jobs must equal the value of the maximum number of jobs. If you
specify one of the class number of job keys, you may also need to specify the
maximum number of jobs keys.

Initial number of jobs. The initial number of prestart jobs that are started when the subsystem specified in
the qualfified subsystem name is started. The value of this key must be less than or equal to the value of the
maximum number of jobs. The value of this key must be greater than or equal to the value of the threshold.
Valid values range from 1-9999.

Job description name. The name of the job description being used for the prestart job. If the job
description does not exist when the entry is changed, a library qualifier must be specified because the
qualified job description name is retained in the subsystem description.

*USRPRF The job description name specified in the user profile for the prestart
job entry is used.

*SBSD The job description that has the same name as the subsystem
description for this prestart job entry is used.

Qualified job description name The name of the job description being used for this prestart job. The
first 10 characters contain the job description name, and the second 10
characters contain the library name. You can use these special values
for the library name:

*CURLIB The job's current library

*LIBL The job's library list

Job name. The name of the prestart job that is started.

*PGM The job name is the same name as the qualified program name specified in the subsystem
entry identifier.

job-name The name of the prestart job.

Maximum number of jobs. The maximum number of prestart jobs that can be active at the same time for
this prestart job entry. The value of this key must be greater than or equal to the value of the initial number
of jobs. The value of this key must be greater than the value of the additional number of jobs. If the value
specified for this key is changed, the value specified for one or both of the class number of job keys might
also need to be changed. The possible values follow:

-1 *NOMAX: There is no maximum number of jobs that can be active at the same time.

maximum-jobs The maximum number of prestart jobs that can be active at the same time. Valid values
range from 1-9999.

Maximum number of uses. The maximum number of that can be handled by each prestart job before the
subsystem ends the job in a controlled manner. Jobs are ended in a controlled manner by issuing an
ENDJOB command with a value of *CNTRLD on the OPTION parameter.

-1 *NOMAX: There is no maximum number of that a prestart job can handle before it is
ended. If -1 is specified, the prestart jobs may end abnormally because the job has
exceeded the allowed maximum job log size, the maximum number of spooled files,
the maximum processor unit time, or the maximum temporary storage space required.

maximum-uses The maximum number of that a prestart job can handle before it is ended. Valid values
range from 1 through 1000.

Pool identifier. The subsystem pool identifier under which the prestart jobs are run. Valid values range
from 1 through 10.

Start jobs. Whether prestart jobs are started when the subsystem is started. The possible values are:

0 The prestart jobs are not started at the time the subsystem is started. The Start Prestart Jobs (STRPJ)
command must be used to start these prestart jobs.

1 The prestart jobs are started when the subsystem is started.

Threshold. The number at which additional prestart jobs are started. When the pool of available prestart
jobs (jobs available to service is reduced below this number, more jobs (specified by the additional number
of jobs value) are started and added to the available pool. The value of this key must be less than or equal to
the value of the initial number of jobs. Valid values range from 1-9999.

User profile name. The user profile under which the prestart job is initiated. In addition, the current user
profile of the prestart job is set to this user whenever the job waits for a request to handle.

Note: When a prestart job is given a request to handle, the current user profile of the job is updated. Refer

to the Work Management book on the V5R1 Supplemental Manuals Web site for information on how
this profile is determined. This change in current user profile is for authority checking only. None of the
other attributes of the user profile, such as the current library (CURLIB) or the initial program to call
(INLPGM), are given to the prestart job.

Wait for job. Whether program start requests wait for a prestart job to become available or are rejected if a
prestart job is not immediately available when the program start request is received. Refer to the manual for
the communications type being used to determine the timing considerations for program start requests. The
possible values follow:

0 Program start requests are rejected if a prestart job is not immediately available when the program
start request is received.

1 Program start requests wait until a prestart job is available, or a prestart job is started to service the
request.

Error Messages

Message ID Error Message Text

CPF1619 E Subsystem description &1 in library &2 damaged.

CPF1697 E Subsystem description &1 not changed.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C81 E Value for key &1 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R3

Top | Work Management APIs | APIs by category

Control Thread (QTHMCTLT) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Job or thread identification information Input Char(*)
5 Format of job or thread identification information Input Char(8)
6 Action Input Binary(4)
7 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Control Thread (QTHMCTLT) API holds, releases, or ends the specified thread.

End thread cannot be specified for the initial thread of a job. Hold thread or release thread cannot be
specified for the initial thread of a system job.

Authorities and Locks

Job Authority

If the action to be taken is hold thread or release thread, the caller of the API must be running under
a user profile that is the same as the job user identity of the job containing the thread for which the
specified action is to be taken. Otherwise, the caller of the API must be running under a user profile
that has job control (*JOBCTL) special authority, or be authorized to the Thread Control function
of Operating System/400 through iSeries Navigator's Application Administration support.

If the action to be taken is end thread, the caller of the API must be running under a user profile that
has service (*SERVICE) special authority or be authorized to the Thread Control function of
Operating System/400 through iSeries Navigator's Application Administration support.

The Change Function Usage Information (QSYCHFUI) API, with a function ID of
QIBM_SERVICE_THREAD, can be used to change the list of users that are allowed to end, hold,
or release a thread.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management book on the V5R1 Supplemental Manuals
Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The format name is:

CTLT0100 See CTLT0100 Format for details on the information returned.

Job or thread identification information

INPUT; CHAR(*)

The information that is used to identify the thread within a job for which an action is to be taken.
See Format of job or thread identification information for details.

Format of job or thread identification information

INPUT; CHAR(8)

The format of the job or thread identification information. The possible format names are:

JIDF0100 See JIDF0100 Format for details on the job identification information.

JIDF0200 See JIDF0200 Format for details on the job identification information.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a
thread that is not the current thread than Format JIDF0100.

Action

INPUT; BINARY(4)

The action to be taken against the thread. The following actions are supported:

1 Hold thread

2 Release thread

3 End thread

The end thread, hold thread, and release thread actions are asynchronous operations. A portion of

the action is done by the current thread, and the remainder of the action is done by the target thread.
When control is returned to the current thread, the action may not have been performed in its
entirety. Since some processing must be performed in the target thread, the action could be delayed
for some period of time if higher priority threads in this or other jobs prevent the target thread from
running.

End thread cannot be specified for the initial thread of a job. Hold thread or release thread cannot
be specified for the initial thread of a system job.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

CTLT0100 Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 UNSIGNED
BINARY(4)

Hold count

Field Descriptions for CTLT0100 Format

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Hold count. The number of times the thread has been held prior to performing the action. The hold count is
the count of fully processed hold operations currently in effect for the thread. The count is incremented by
one for every hold operation that is processed for the thread. It is decremented by one for every release
operation. If the count is greater than 0, the thread was already held. Hold and release operations that have
not completed are not reflected in the count.

Format of job or thread identification information

The format of the information needed to identify the thread for which the specified action will be taken.

JIDF0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions for JIDF0100 Format

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value that uniquely identifies a thread within a job. If the thread indicator is not 0,
this field must contain hexadecimal zeros.

Thread indicator. A value that is used to specify the thread within the job for which the action is to be
taken. The following values are supported:

0 Action should be taken for the thread specified in the thread identifier field.

1 Action should be taken for the thread that this program is running in currently. The combination of
the internal job identifier, job name, job number, and user name fields also must identify the job
containing the current thread.

2 Action should be taken for the initial thread of the identified job.

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C UNSIGNED
BINARY(4)

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions for JIDF0200 Format

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value that is used to address a particular thread within a job. While the thread identifier
uniquely identifies the thread within the job, the thread handle can imporve performance when referencing
the thread. A valid thread handle must be specified. The thread handle is returned on several other
interfaces.

Thread identifier. A value that uniquely identifies a thread within a job. A valid thread identifier must be
specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Error Messages

Message ID Error Message Text

CPF1071 E No authority to job &3/&2/&1.

CPF136A E Job &3/&2/&1 not active.

CPF18BF E Thread &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB431 E Ending the initial thread is not allowed.

CPFB438 E Holding the initial thread of a system job is not allowed.

CPFB439 E Releasing the initial thread of a system job is not allowed.

API introduced: V5R2

Top | Work Management APIs | APIs by category

Control Trace (QWTCTLTR) API

 Required Parameter:

1 Control value Input Char(10)

 Optional Parameter:

2 Error code I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Control Trace (QWTCTLTR) API turns the early trace function on and off. The value of *ON is
passed to the program to turn the early tracing on, and *OFF is passed to turn the early tracing off.

When the early trace function is turned on, the jobs that are set up by the Set Trace (QWTSETTR) API
begin tracing as soon as they are started. The tracing is stopped by turning it off with the Control Trace
(QWTCTLTR) API. When *OFF or *RESET is passed to the program, this causes the trace information for
the jobs to dump to spooled files.

The information set up by this API remains in effect during an initial program load (IPL).

This API should be used only when recommended by your IBM service representative.

Required Parameter

Control value

INPUT; CHAR(10)

The value passed to turn the early trace function on or off. The valid values are:

*ON Turns early tracing on.

*OFF Turns early tracing off and stops any trace activity started by this API.

*RESET Turns early tracing off, stops any trace activity started by this API, and clears the
space that contains the information that was set up by the QWTSETTR API.

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message ID Error Message Text

CPF119D E Value &1 specified for parameter not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Top | Work Management APIs | APIs by category

Create Job Structures (QWTCTJBS) API

 Required Parameter Group:

1 Current number of temporary job structures
available

Output Binary(4)

2 Current number of permanent job structures
available

Output Binary(4)

3 Number of temporary job structures to create Input Binary(4)
4 Error Code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Create Job Structures (QWTCTJBS) API creates the number of temporary job structures that are
passed on the call. The current number of temporary and permanent job structures available are returned.

Authorities and Locks

Job Authority

*JOBCTL

Required Parameter Group

Current number of temporary job structures available

OUTPUT; BINARY(4)

The number of temporary job structures that currently exist on the system that are not in use. This
number also includes any temporary job structures that are to be created on this call to the API.

Current number of permanent job structures available

OUTPUT; BINARY(4)

The number of permanent job structures that currently exist on the system that are not in use.

Number of temporary job structures to create

INPUT; BINARY(4)

The number of additional temporary job structures that the user would like to have created. The
valid range is 0-32000. If a number outside that range is passed, an error will be signaled. The
following special value can be passed:

0 No additional temporary job structures are created. The current number of temporary and
permanent job structures are returned.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPE3002 E A range error occurred.

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C20 E Error found by program &1.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R1

Top | Work Management APIs | APIs by category

Delete Job Structures (QWTDTJBS) API

 Required Parameter Group:

1 Number of temporary job structures
to delete

Input Binary(4)

2 Error code I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Delete Job Structures (QWTDTJBS) API deletes the number of temporary job structures that are
passed on the call. The Create Job Structures (QWTCTJBS) API can be used to create temporary job
structures and retrieve the current number available.

Authorities and Locks

Job Authority

*JOBCTL

Required Parameter Group

Number of temporary job structures to delete

INPUT; BINARY(4)

The number of temporary job structures that the user would like to have deleted. The valid range is
1 through 32000. If a number outside that range is passed, an error will be signaled. If there are
fewer temporary job structures available than the number requested to be deleted, all available job
structures will be deleted and no error is signaled.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPE3002 E A range error occurred.

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C20 E Error found by program &1.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R4

Top | Work Management APIs | APIs by category

Dump Flight Recorder (QWTDMPFR) API

 Default Public Authority: *USE

 Threadsafe: No

The Dump Flight Recorder (QWTDMPFR) API dumps the contents of flight recorders for jobs that have
them. A flight recorder is an object that stores trace information to record a history of what has happened
in system programs. The flight recorder contains only information that helps to identify the flow of system
programs and status information.

The following types of jobs have flight recorders:

Subsystem monitors●

System jobs●

The QWTDMPFR API has no parameters.

You can use the QWTDMPFR API to collect information for your IBM service representative. This API
dumps the contents of job flight recorders to a spooled file. You can then collect the files and submit them
to your IBM service representative for debugging.

API introduced: V2R2

Top | Work Management APIs | APIs by category

Dump Lock Flight Recorder (QWTDMPLF) API

 Required Parameter Group:

1 Device name Input Char(10)

 Optional Parameter Group:

2 Error code I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Dump Lock Flight Recorder (QWTDMPLF) API dumps the following information into spooled files:

The contents of the lock flight recorder for the device specified in the parameter passed to the
program

●

QSYSARB job log●

QLUS job log●

Job logs of the active jobs that have used the device as indicated in the lock flight recorder data●

The history log (QHST)●

Device description of the device●

Controller description of the controller to which the device is attached●

Line description of the line to which the controller is attached●

A Work with Object Locks (WRKOBJLCK) listing for the device●

A Work with Configuration Status (WRKCFGSTS) listing for the controller●

The subsystem description of active subsystems that have touched the device●

Associated internal system objects●

You can use the QWTDMPLF API to collect information for your IBM service representative.

Required Parameter

Device name

INPUT; CHAR(10)

The name of the device for which flight recorder information will be dumped.

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message ID Error Message Text

CPF119C E Value &1 specified for parameter is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

Top | Work Management APIs | APIs by category

List Active Subsystems (QWCLASBS) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The List Active Subsystems (QWCLASBS) API retrieves a list of active subsystems. QWCLASBS
replaces any existing data. It does not add the new list to an existing one. To retrieve more information
about active subsystems, see Retrieve Subsystem Information (QWDRSBSD) API.

Authorities and Locks

User Space Authority

*CHANGE

Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that receives the list, and the library in which it is located. The first 10 characters
contain the user space name. The second 10 characters contain the library name. You can use these
special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Format name

INPUT; CHAR(8)

The format to use for the list of active subsystems. You can use this format name:

SBSL0100 Basic subsystem list. See Format of the Generated List.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the Generated List

The list of active subsystems that the QWCLASBS API returns into the user space consists of:

A user area●

A generic header●

An input parameter section●

A list data section●

The user area and generic header are described in User Space Format for List APIs. The remaining items
are described in the following sections. For detailed descriptions of the fields in the tables, see Field
Descriptions.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library specified

20 14 CHAR(8) Format name specified

SBSL0100 Format

This section is repeated for each active subsystem.

Offset

Type FieldDec Hex

0 0 CHAR(10) Subsystem description name

10 A CHAR(10) Subsystem description library name

Field Descriptions

Format name specified. The format name as specified in the call to the API.

Subsystem description library name. The name of the library in which the active subsystem description
resides.

Subsystem description name. The name of the active subsystem about which information is being
returned.

User space library specified. The library name or special value specified in the call to this API.

User space name. The name of the user space that receives the list.

Error Messages

Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

 CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

Top | Work Management APIs | APIs by category

List Job (QUSLJOB) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Qualified job name Input Char(26)
4 Status Input Char(10)

 Optional Parameter Group 1:

5 Error Code I/O Char(*)

 Optional Parameter Group 2:

6 Job type Input Char(1)
7 Number of fields to return Input Binary(4)
8 Key of fields to return Input Array(*) of Binary(4)

 Optional Parameter Group 4:

9 Continuation handle Input Char(48)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The List Job (QUSLJOB) API generates a list of all or some jobs on the system. The generated list replaces
any existing list in the user space.

The QUSLJOB API produces a list similar to the list produced by the Work with User Job (WRKUSRJOB)
command.

Authorities and Locks

User Space Authority

*CHANGE

Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Job Authority

If format JOBL0200 is specified, then for each job for which information is retrieved, the caller of
the API must be running under a user profile that is the same as the job user identity of the job for
which the information is being retrieved. Otherwise, the caller of the API must be running under a
user profile that has job control (*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management book on the V5R1 Supplemental Manuals
Web site.

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that is to receive the generated list, and the library in which it is located. The first 10
characters contain the user space name, and the second 10 characters contain the library name. You
can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Format name

INPUT; CHAR(8)

The format of the job list to be returned. If format JOBL0200 is specified, the fields that were
selected by the caller will be returned for each job in the list. This format is slower than the
JOBL0100 format. The performance will vary depending on the number of fields selected.

You must use one of the following format names:

JOBL0100 Basic job list.

JOBL0200 Basic job list with keyed return fields.

For more information, see Format of the Generated List.

Qualified job name

INPUT; CHAR(26)

The name of the job to be included in the list. The qualified job name has three parts:

Job name CHAR(10). A specific job name, a generic name, or one of the following special
values:

* Only the job that this program is running in. The rest of the
qualified job name parameter must be blank.

*CURRENT All jobs with the current job's name.

*ALL All jobs. The rest of the job name parameter must be specified.

User name CHAR(10). A specific user profile name, a generic name, or one of the following
special values:

*CURRENT Jobs with the current job's user profile.

*ALL Jobs with the specified job name, regardless of the user name.
The rest of the job name parameter must be specified.

Job number CHAR(6). A specific job number or the following special value:

*ALL Jobs with the specified job name and user name, regardless of the job
number. The rest of the job name parameter must be specified.

Status

INPUT; CHAR(10)

The status of the jobs to be included in the list. The special values supported are:

*ACTIVE Active jobs. This includes group jobs, system request jobs, and disconnected jobs.

*JOBQ Jobs currently on job queues.

*OUTQ Jobs that have completed running but still have output on an output queue.

*ALL All jobs, regardless of status.

Optional Parameter Group 1

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group 2

Job type

INPUT; CHAR(1)

The type of job to be listed. Refer to Comparing Job Type and Subtype with the Work with Active
Job Command in the Retrieve Job Information (QUSRJOBI) API for information about how the job
type field and the job subtype field equate to the type field in the Work with Active Job
(WRKACTJOB) command.

The possible values for this parameter are:

* This value lists all job types.

A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the start-control-program-function (SCPF) system job.

Number of fields to return

INPUT; BINARY(4)

The number of fields to return in the JOBL0200 format. This parameter is only used for the
JOBL0200 format. If JOBL0100 is specified for the format name, the value must be zero.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

The list of the fields to be returned in the JOBL0200 format. For a list of the valid fields, see Valid
Keys. This parameter is used for the JOBL0200 format only. If JOBL0100 is specified for the
format name, the value must be zero.

Optional Parameter Group 3

Continuation handle

INPUT; CHAR(48)

The value returned to the user in the header section when a partial list is returned. The possible
values are:

blank This starts at the beginning of the list. This value is used if this parameter is omitted.

value The entries after this value matching the job name specified are returned in the list. For
more information on using this value to process a partial list, see Partial List
Considerations.

Format of the Generated List

The job list consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section●

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections. For detailed descriptions of the fields in the list returned,
see Field Descriptions.

When you retrieve list entry information from a user space, you should use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name specified

10 A CHAR(10) User name specified

20 14 CHAR(6) Job number specified

26 1A CHAR(10) Status

36 24 CHAR(10) User space specified

46 2E CHAR(10) User space library specified

56 38 CHAR(8) Format name specified

64 40 CHAR(1) Job type specified

65 41 CHAR(3) Reserved

68 44 BINARY(4) Number of fields to return specified

72 48 ARRAY(*) of
BINARY(4)

Key of fields to return specified

* * CHAR(48) Continuation handle

Header Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name used

10 A CHAR(10) User name used

20 14 CHAR(6) Job number used

26 1A CHAR(48) Continuation handle

JOBL0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name used

10 A CHAR(10) User name used

20 14 CHAR(6) Job number used

26 1A CHAR(16) Internal job identifier

42 2A CHAR(10) Status

52 34 CHAR(1) Job type

53 35 CHAR(1) Job subtype

54 36 CHAR(2) Reserved

JOBL0200 Format

Offset

Type FieldDec Hex

0 0 CHAR(56) Everything in JOBL0100 format

56 38 CHAR(1) Job information status

57 39 CHAR(3) Reserved

60 3C BINARY(4) Number of fields returned

These fields
repeat, in the
order listed, for
each key
selected.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Data. The data returned for the key field.

Format name specified. The format name as specified in the call to the API.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.
Only APIs described in this topic use this identifier. The identifier is not valid following an initial program
load (IPL). If you attempt to use it after an IPL, an exception occurs.

Job information status. Whether the information was available for the job. The possible values are:

blank The information was available.

A The user was not authorized to the job.

L The information was not available because the job was not accessible.

Job name specified. The name of the job as specified in the call to the API.

Job name used. The name of the job as identified to the system. For an interactive job, the system assigns
the job the name of the work station where the job started; for a batch job, you specify the name in the
command when you submit the job.

Job number specified. The job number as specified in the call to the API.

Job number used. The system-assigned job number.

Job subtype. Additional information about the job type (if any exists). Refer to Comparing Job Type and
Subtype with the Work with Active Job Command in the Retrieve Job Information (QUSRJOBI) API for
information about how the job type field and the job subtype field equate to the type field in the Work with
Active Job (WRKACTJOB) command. The possible values are:

blank The job has no special subtype.

D The job is a batch immediate job.

E The job started with a procedure start request.

F The job is an AS/400 Advanced 36 machine server job.

J The job is a prestart job.

P The job is a print driver job.

T The job is a System/36 multiple requester terminal (MRT) job.

U The job is an alternate spool user.

Job type. The type of job. Refer to Comparing Job Type and Subtype with the Work with Active Job
Command in the Retrieve Job Information (QUSRJOBI) API for information about how the job type field
and the job subtype field equate to the type field in the Work with Active Job (WRKACTJOB) command.
The possible values for this field are:

A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the SCPF system job.

Job type specified. The job type as specified in the call to the API.

Key field. The field returned. See Valid Keys for the list of valid keys.

Key of fields to return specified. The key of fields to return as specified in the call to the API.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of information returned for this field. This value is
used to increment to the next field in the list.

Number of fields returned. The number of fields returned to the application.

Number of fields to return specified. The number of fields to return as specified in the call to the API.

Reserved. An ignored field.

Status. The status of the job. The valid values are:

*ACTIVE The job has started, and it can use system resources (processing unit, main storage, and so
on). This does not guarantee that the job is currently running, however. For example, an
active job may be in one of the following states where it is not in a position to use system
resources:

The Hold Job (HLDJOB) command holds the job; the Release the (RLSJOB)
command allows the job to run again.

●

The Transfer Group Job (TFRGRPJOB) or Transfer Secondary Job (TFRSECJOB)
command suspends the job. When control returns to the job, the job can run again.

●

The job is disconnected using the Disconnect Job (DSCJOB) command. When the
interactive user signs back on, thereby connecting back into the job, the job can run
again.

●

The job is waiting for any reason. For example, when the job receives the reply for
an inquiry message, the job can start running again.

●

*JOBQ The job is currently on a job queue. The job possibly was previously active and was placed
back on the job queue because of the Transfer Job (TFRJOB) or Transfer Batch Job
(TFRBCHJOB) command, or the job was never active because it was just submitted.

*OUTQ The job has completed running and has spooled output that has not yet printed.

Type of data. The type of data returned.

C The data is returned in character format.

B The data is returned in binary format.

User name specified. The user name as specified in the call to the API.

User name used. The user profile under which the job is run. The user name is the same as the user profile
name and can come from several different sources depending on the type of job.

User space library specified. The name of the library containing the user space as specified in the call to
the API.

User space specified. The name of the user space as specified in the call to the API.

Valid Keys

The following table contains a list of the valid keys. The descriptions of all the valid key attributes are
described in Work Management API Attribute Descriptions (WMAttrDesc).

Key Type Description

0101 CHAR(4) Active job status

0102 CHAR(1) Allow multiple threads

0103 CHAR(4) Active job status for jobs ending

0201 CHAR(10) Break message handling

0301 CHAR(1) Cancel key

0302 BINARY(4) Coded character set ID

0303 CHAR(2) Country or region ID

0304 BINARY(4) Processing unit time used, if less than 2,147,483,647
milliseconds

0305 CHAR(10) Current user profile

0306 CHAR(1) Completion status

0307 BINARY(4) Current system pool identifier

0311 CHAR(10) Character identifier control

0312 BINARY(8), UNSIGNED Processing unit time used - total for the job

0313 BINARY(8), UNSIGNED Processing unit time used for database - total for the job

0401 CHAR(13) Date and time job became active

0402 CHAR(13) Date and time job entered system

0403 CHAR(8) Date and time job is scheduled to run

0404 CHAR(8) Date and time job was put on this job queue

0405 CHAR(4) Date format

0406 CHAR(1) Date separator

0407 CHAR(1) DBCS-capable

0408 CHAR(10) DDM conversation handling

0409 BINARY(4) Default wait

0410 CHAR(13) Device recovery action

0411 CHAR(10) Device name

0412 BINARY(4) Default coded character set identifier

0413 CHAR(1) Decimal format

0418 CHAR(13) Date and time job ended

0501 BINARY(4) End severity

0502 CHAR(1) End status

0503 CHAR(1) Exit key

0601 CHAR(10) Function name

0602 CHAR(1) Function type

0701 CHAR(1) Signed-on job

0702 CHAR(10) Group profile name

0703 CHAR(150) Group profile name - supplemental

0901 CHAR(10) Inquiry message reply

1001 CHAR(15) Job accounting code

1002 CHAR(7) Job date

1003 CHAR(20) Job description name - qualified

1004 CHAR(20) Job queue name - qualified

1005 CHAR(2) Job queue priority

1006 CHAR(8) Job switches

1007 CHAR(10) Job message queue full action

1008 BINARY(4) Job message queue maximum size

1012 CHAR(10) Job user identity

1013 CHAR(1) Job user identity setting

1014 BINARY(4) Job end reason

1015 CHAR(1) Job log pending

1016 BINARY(4) Job type - enhanced

1201 CHAR(3) Language ID

1202 CHAR(1) Logging level

1203 CHAR(10) Logging of CL programs

1204 BINARY(4) Logging severity

1205 CHAR(10) Logging text

1301 CHAR(8) Mode name

1302 BINARY(4) Maximum processing unit time

1303 BINARY(4) Maximum temporary storage in kilobytes

1304 BINARY(4) Maximum threads

1305 BINARY(4) Maximum temporary storage in megabytes

1306 CHAR(10) Memory pool name

1307 CHAR(1) Message reply

1401 BINARY(4) Number of auxiliary I/O requests, if less than 2,147,483,647

1402 BINARY(4) Number of interactive transactions

1403 BINARY(4) Number of database lock waits

1404 BINARY(4) Number of internal machine lock waits

1405 BINARY(4) Number of nondatabase lock waits

1406 BINARY(8), UNSIGNED Number of auxiliary I/O requests

1501 CHAR(20) Output queue name - qualified

1502 CHAR(2) Output queue priority

1601 CHAR(10) Print key format

1602 CHAR(30) Print text

1603 CHAR(10) Printer device name

1604 CHAR(10) Purge

1605 BINARY(4) Product return code

1606 BINARY(4) Program return code

1607 CHAR(8) Pending signal set

1608 BINARY(4) Process ID number

1801 BINARY(4) Response time total

1802 BINARY(4) Run priority (job)

1803 CHAR(80) Routing data

1901 CHAR(20) Sort sequence table - qualified

1902 CHAR(10) Status message handling

1903 CHAR(10) Status of job on the job queue

1904 CHAR(26) Submitter's job name - qualified

1905 CHAR(20) Submitter's message queue name - qualified

1906 CHAR(20) Subsystem description name - qualified

1907 BINARY(4) System pool identifier

1908 CHAR(10) Special environment

1909 CHAR(8) Signal blocking mask

1910 BINARY(4) Signal status

1911 CHAR(30) Server type

 1982 CHAR(10) Spooled file action

2001 CHAR(1) Time separator

2002 BINARY(4) Time slice

2003 CHAR(10) Time-slice end pool

2004 BINARY(4) Temporary storage used in kilobytes

2005 CHAR(3) Time spent on database lock waits

2006 CHAR(3) Time spent on internal machine lock waits

2007 CHAR(3) Time spent on nondatabase lock waits

2008 BINARY(4) Thread count

2009 BINARY(4) Temporary storage used in megabytes

2101 CHAR(24) Unit of work ID

2102 BINARY(4) User return code

Usage Notes

The conditions under which this API is threadsafe are the same as those described in the Usage Notes for
the Retrieve Job Information (QUSRJOBI) API.

Error Messages

Message ID Error Message Text

CPF1865 E Value &1 for job type not valid.

CPF1866 E Value &1 for number of fields to return not valid.

CPF1867 E Value &1 in list not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CB1 E Value &1 for job status is not valid.

CPF3CB2 E Value specified for job parameter is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

Top | Work Management APIs | APIs by category

List Job Schedule Entries (QWCLSCDE) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Job schedule entry name Input Char(10)
4 Continuation handle Input Char(16)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The List Job Schedule Entries (QWCLSCDE) API lists the entries in the job schedule, QDFTJOBSCD. A
subset of the list can be created by using the job schedule entry name parameter. The generated list replaces
any existing list in the user space.

The QWCLSCDE API produces a list similar to the list produced by the Work with Job Schedule Entries
(WRKJOBSCDE) command.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Job Schedule Entry Authority

*USE if using format SCDL0100; *JOBCTL or the adder of the entry if using format SCDL0200

Job Schedule Authority

*USE

Job Schedule Library Authority

*EXECUTE

Job Schedule Lock

*SHRRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that is to receive the created list. The first 10 characters contain the user space
name, and the second 10 characters contain the name of the library where the user space is located.
You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Format name

INPUT; CHAR(8)

The content and format of the information returned for each member. The possible format names
are:

SCDL0100 Basic job schedule entries list.

SCDL0200 Detailed job schedule entries list. This format requires more processing than the
SCDL0100 format.

For more information, see SCDL0100 Format or SCDL0200 Format.

Job schedule entry name

INPUT; CHAR(10)

The job schedule entry about which to retrieve information. This can be used to create a subset of
job schedule entries by using the following values:

*ALL All of the job schedule entries are returned in the list.

generic* All of the job schedule entries beginning with the generic value are returned in the
list.

name The job schedule entries with the given name are returned in the list.

Continuation handle

INPUT; CHAR(16)

The value returned to the user in the header section when a partial list is returned. The possible
values are:

blank This will start at the beginning of the list.

value The entries after this value matching the job schedule entry name specified will be
returned in the list. For more information on using this value to process a partial list, see
Partial list considerations.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of the Generated Lists

The file member list consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section:

SCDL0100 format❍

SCDL0200 format❍

●

For details about the user area and generic header, see User space format for list APIs. For details about the
remaining items, see the following sections. For detailed descriptions of the fields in the list returned, see
Field Descriptions.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name

20 14 CHAR(8) Format name

28 1C CHAR(10) Job schedule entry name

44 2C CHAR(16) Continuation handle

Header Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Job schedule entry name used

10 A CHAR(16) Continuation handle

SCDL0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(1) Information status

1 1 CHAR(10) Job name

11 B CHAR(10) Entry number

21 15 CHAR(10) Scheduled date

31 1F CHAR(70) Scheduled days

101 65 CHAR(6) Scheduled time

107 6B CHAR(10) Frequency

117 75 ARRAY(5) of
CHAR(10)

Relative day of the month

167 A7 CHAR(10) Recovery action

177 B1 CHAR(10) Next submission date

187 BB CHAR(10) Status

197 C5 CHAR(10) Job queue name

207 CF CHAR(10) Job queue library name

217 D9 CHAR(10) User profile of entry adder

227 E3 CHAR(10) Last submission date

237 ED CHAR(6) Last submission time

243 F3 CHAR(50) Text

293 125 CHAR(23) Reserved

SCDL0200 Format

Offset

Type FieldDec Hex

0 0 Returns everything from format SCDL0100

316 13C CHAR(10) Job queue status

326 146 ARRAY(20) of
CHAR(10)

Dates omitted

526 20E CHAR(10) Job description name

536 218 CHAR(10) Job description library name

546 222 CHAR(10) User profile for submitted job

556 22C CHAR(10) Message queue name

566 236 CHAR(10) Message queue library name

576 240 CHAR(10) Save entry

586 24A CHAR(10) Last submission job name

596 254 CHAR(10) Last submission user name

606 25E CHAR(6) Last submission job number

612 26E CHAR(10) Last attempted submission date

622 26E CHAR(6) Last attempted submission time

628 274 CHAR(10) Status of last attempted submission

638 27E CHAR(2) Reserved

640 280 BINARY(4) Length of command string

644 284 CHAR(512) Command

Field Descriptions

Command. A command that runs in the submitted batch job if the routing program used when this batch
job is started is the IBM-supplied default routing program QCMD. Because this command is used for the
request data, this parameter takes the place of any value specified for the RQSDTA parameter in the job
description.

Continuation handle. The value used to process a partial list. This value is put in the header section when
a partial list is returned. For more information on processing a partial list, see Partial list considerations.

Dates omitted. Specifies up to 20 dates when the job should not be submitted. The dates will be in the
format CYYMMDD, where C is the century, YY is the year, MM is the month, and DD is the day. A 0 for
the century flag indicates years 19xx and a 1 indicates years 20xx. If no omit dates are specified, this field
contains hexadecimal zeros.

Entry number. The entry number assigned to the job schedule entry. The entry number can range from
000001 through 999999.

Format name. The content and format of the information returned for each job schedule entry.

Frequency. How often the job schedule entry is to be submitted to run. Valid values are:

*ONCE The job schedule entry does not repeat.

*WEEKLY The job schedule entry is submitted on the same day of each week at the scheduled time.

*MONTHLY The job schedule entry is submitted on the same day of each month at the scheduled time.

Information status. Whether or not the entry information could be successfully retrieved.

blank No errors occurred. All information is returned for this entry.

A Insufficient authority to entry. Only the SCDL0100 information is returned for this entry. The
rest of the entry is blank.

L The entry is locked. Only the SCDL0100 information is returned for this entry. The rest of the
entry is blank.

Job description name. The name of the job description used for the job schedule entry.

*USRPRF The job description in the user profile under which the job runs is used as the job
description of the job schedule entry.

job description name The name of the job description used for the job schedule entry.

Job description library name. The name of the library in which the job description is located.

Job name. The job name associated with the job schedule entry.

Job queue library name. The name of the library in which the specified job queue resides.

Job queue name. The name of the job queue where the job should be placed when it is submitted. Valid
values are:

*JOBD The job is placed in the job queue named in the specified job description.

job queue name The name of the job queue where the job is placed when it is submitted.

Job queue status. The current status of the job queue. Valid values are:

blank The job queue name specified *JOBD, the job queue could not be found, or the job queue is
damaged.

HLD The job queue is held. The job queue is not allocated to a subsystem.

RLS The job queue is released. The job queue is not allocated to a subsystem.

HLD/SBS The job queue is held. The job queue is allocated to a subsystem.

RLS/SBS The job queue is released. The job queue is allocated to a subsystem.

LOCKED The job queue is locked, and the status could not be obtained.

Job schedule entry name used. The job name used to identify the job schedule entry.

Last attempted submission date. The date on which a job could have been last submitted. The value is
returned in the format CYYMMDD, where C is the century, YY is the year, MM is the month, and DD is
the day. A 0 for the century flag indicates years 19xx and a 1 indicates years 20xx. If no submission has
been attempted, this field contains hexadecimal zeros.

Last attempted submission time. The time at which a job could have been last submitted from this entry.
The value is returned in the format HHMMSS, where HH is hours, MM is minutes, and SS is seconds. If no
submission has been attempted, this field contains hexadecimal zeros.

Last submission date. The date on which a job was last submitted from this entry. The value is returned in
the format CYYMMDD, where C is the century, YY is the year, MM is the month, and DD is the day. A 0
for the century flag indicates years 19xx and a 1 indicates years 20xx. If there has been no previous
submission, this field contains hexadecimal zeros.

Last submission job name. The job name of the last job that was submitted from this entry. If there has
been no previous submission, this field contains blanks.

Last submission job number. The job number of the last job that was submitted from this entry. If there
has been no previous submission, this field contains blanks.

Last submission time. The time at which a job was last submitted from this entry. The value is returned in
the format HHMMSS, where HH is hours, MM is minutes, and SS is seconds. If there has been no previous
submission, this field contains hexadecimal zeros.

Last submission user name. The user name of the last job that was submitted from this entry. If there has

been no previous submission, this field contains blanks.

Length of command string. The length of the command string specified in the command field.

Message queue name. The name of the message queue, if any, to which a completion message is sent
when the job is submitted. A completion message is sent when the submitted job has completed running,
and error messages are sent if the Submit Job (SBMJOB) command fails for some reason. Valid values are:

*USRPRF A completion message is sent to the message queue specified in the user profile
associated with the job schedule entry.

*NONE Messages are not sent to a user-specified message queue. In this case, completion
messages are not sent, but error messages are sent to the QSYSOPR message
queue.

message queue name The name of the message queue where the messages are sent.

Message queue library name. The library in which the message queue is located.

Next submission date. The next date that a job from this entry is scheduled to be submitted. The next
submission date is returned in the format CYYMMDD, where C is the century, YY is the year, MM is the
month, and DD is the day. A 0 for the century flag indicates years 19xx and a 1 indicates years 20xx. If this
entry has a status of SAV, this field contains hexadecimal zeros.

Recovery action. The action that will happen if the job cannot be submitted at the designated time because
the system is powered down or the system is in the restricted state. The action specified by this parameter
then occurs when the system is IPLed or when the system comes out of the restricted state. This parameter
does not pertain to the situation where a job was held (by the user) when the designated time elapsed and
then released (by the user) at a later time. Also, the recovery action does not pertain to timer events that
elapse as a result of changes to the QTIME system value. Valid values are:

*SBMRLS Submit the job in the released state (RLS).

*SBMHLD Submit the job in the held state (HLD).

*NOSBM No job is submitted.

Relative day of the month. The relative day of the month the job should be submitted to run. A total of
five values can be returned. If no relative day of the month was specified, this area contains blanks. Valid
values are:

1-5 The job should be submitted on the specified day of the week every first, second, third, fourth,
or fifth week of the month.

*LAST The job should be submitted on the last specified day of the week each month.

Reserved. An ignored field.

Save entry. Whether or not an entry that has FRQ(*ONCE) specified should be kept in the job schedule
after the job has been submitted.

*NO This entry will not be kept after the job is submitted.

*YES This entry will be kept after the job is submitted.

Scheduled date. The date that the job will be submitted. Valid values are:

*CURRENT The current date will be used.

*MONTHSTR The first day of the month will be used.

*MONTHEND The last day of the month will be used.

*NONE A scheduled date was not specified.

date An actual date in the format CYYMMDD, where C is the century, YY is the year, MM
is the month, and DD is the day. A 0 for the century flag indicates years 19xx and a 1
indicates years 20xx.

Scheduled days. The day of the week that the job will be submitted. A total of seven values can be
returned. Valid values are:

*ALL The job will be submitted every day. This cannot be specified with any other values.

*NONE A scheduled day is not specified. This cannot be specified with any other values.

*MON The job will be submitted on Monday.

*TUE The job will be submitted on Tuesday.

*WED The job will be submitted on Wednesday.

*THU The job will be submitted on Thursday.

*FRI The job will be submitted on Friday.

*SAT The job will be submitted on Saturday.

*SUN The job will be submitted on Sunday.

Scheduled time. The time (on the scheduled date) when the job will be submitted to run. This value is
returned in the format HHMMSS, where HH is the hours, MM is the minutes, and SS is the seconds.

Status. The status of the job schedule entry. Valid values are:

SCD The entry is scheduled.

HLD The entry is held.

SAV The entry is saved.

Status of last attempted submission. The action that occurred the last time the system could have
submitted a job from this entry. Valid values are:

0 Job not previously submitted.

1 Job successfully submitted.

2 Last job submission failed. Check the message queue for details.

3 Job not submitted due to held status.

4 Job submitted after scheduled time as specified by recovery action.

5 Job not submitted as specified by recovery action.

Text. Text that briefly describes the job schedule entry. If no text was specified, this field contains blanks.

User profile for submitted job. The user profile under which the job will be submitted. Valid values are:

*JOBD The user profile named in the specified job description is used for the job.

user name The name of the user profile that is used for the job.

User profile of entry adder. The user profile that created this entry.

User space library name. The library name or special value specified in the call to this API.

User space name. The name of the user space that receives the list.

Error Messages

Message ID Error Message Text

CPF1629 E Not authorized to job schedule &1.

CPF1632 E Job schedule entry &3 number &4 damaged.

CPF1637 E Job schedule &1 in library &2 in use.

CPF1640 E Job schedule &1 in library &2 does not exist.

CPF1641 E Job schedule &1 in library &2 damaged.

CPF1643 E Job schedule entry name not valid.

CPF3CF1 E Error code parameter not valid.

 CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF811A E User space &4 in &9 damaged.

CPF812C E Job schedule &4 in &9 damaged.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

Top | Work Management APIs | APIs by category

List Object Locks (QWCLOBJL) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 Format name Input Char(8)
3 Qualified object name Input Char(20)
4 Object type Input Char(10)
5 Member name Input Char(10)
6 Error code I/O Char(*)

 Optional Parameter Group 1:

7 Path name Input Char(*)
8 Path name length Input Binary(4)

 Optional Parameter Group 2:

9 Qualified object ASP name Input Char(10)

 Default Public Authority: *USE

 Threadsafe: No

The List Object Locks (QWCLOBJL) API generates a list of lock information about a specific object or
database file member and places the list into the specified user space. An object level or member level lock
may be specified. If it is a database file, you will get a lock on the member (if requested); otherwise, the
lock is on the object. This API provides information similar to that provided by the Work with Object Lock
(WRKOBJLCK) command.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

ASP device

*EXECUTE

Object library

*EXECUTE

A user with *JOBCTL special authority is not required to have *EXECUTE authority to either the auxiliary
storage pool (ASP) device or the library containing the object.

If a path name is specified, *X authority is required for directories in the path reqardless of any special
authorities the user may have.

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The name of the existing user space that is to receive the created list. The first 10 characters contain
the user space name, and the second 10 characters contain the name of the library where the user
space is located. You can use these special values for the library name:

*CURLIB The current library is used to locate the user space. If there is no current library,
QGPL (general purpose library) is used.

*LIBL The library list is used to locate the user space.

Format name

INPUT; CHAR(8)

The name of the format used to list object locks. You can specify this format:

OBJL0100 The content and format of the lock information being returned. For more
information, see OBJL0100 Format.

Qualified object name

INPUT; CHAR(20)

The name of the object whose locks are to be placed in the list. The first 10 characters contain the
object name, and the second 10 characters contain the name of the library where the object is
located.

If you want to use a path name instead of a qualified object name, use this special value for the
object name:

*OBJPATH Use the optional parameters, path name and path name length, to specify the
object name. When this special value is specified, the member name field must be
the special value *NONE and the Object type field must be blanks.

You can use these special values for the library name:

*CURLIB The current library is used to locate the object. If there is no current library, QGPL
(general purpose library) is used.

*LIBL The library list is used to locate the object.

Object type

INPUT; CHAR(10)

The object type of operating system object for which the list of locks is returned. Specify the

predefined value that identifies the object type. See the CL Programming book for more
information on allowed object types. If a path name has been specified, then this field must contain
blanks.

Member name

INPUT; CHAR(10)

This parameter is valid only when a database file has been specified in the qualified object name
parameter. For other than database files, use *NONE. Possible values are a specific name or a
special value:

*NONE No member locks are retrieved, but file level locks are retrieved. If the qualified object
name is not a database file, use this value. If a path name is being specified for the
object name, use this value.

*FIRST The member locks for the first member in the named file are retrieved.

*ALL Member locks for all the members in the file are retrieved.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group 1

Path name

INPUT; CHAR(*)

The path name of the object whose locks are to be placed in the list. Both absolute and relative path
names are allowed. The patterns ? and * are not allowed. The home directory of the user is not
resolved, thus a tilde (~) in the first character position is not treated as the home directory. This
parameter is assumed to be represented in the coded character set identifier (CCSID) currently in
effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented in
the default CCSID of the job. The path name delimiter must be a slash (/). If a symbolic link is
specified, the link is not followed.

Path name length

INPUT; BINARY(4)

The length of the path name, in bytes.

Optional Parameter Group 2

Qualified object ASP name

INPUT; CHAR(10)

The name of the ASP device where the object's library is located. This parameter must be * if the
library portion of the qualified object name is *CURLIB or *LIBL. It also must be * if the qualified
object name is *OBJPATH. If the object is a library and either an ASP device name or *SYSBAS
is specified, the library portion of the qualified object name must be QSYS. The following special
values may be specified:

* The ASPs that are currently part of the thread's library name space will be searched
to locate the object.

*SYSBAS The system ASP and all basic ASPs will be searched to locate the object.

Format of the Generated List

The file member list consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section●

For details about the user area and generic header, see User Space Format for List APIs. For details about
the remaining items, see the following sections. For detailed descriptions of the fields in the list returned,
see Field Descriptions.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Object name specified

38 26 CHAR(10) Object library name specified

48 30 CHAR(10) Object type specified

58 3A CHAR(10) Member name specified

68 44 BINARY(4) Offset to path name specified

72 48 BINARY(4) Length of path name specified

 76 4C CHAR(10) Object library ASP name specified

 CHAR(*) Path name specified

Header Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library name used

20 14 CHAR(10) Object name used

30 1E CHAR(10) Object library name used

40 28 CHAR(10) Object type returned

50 32 CHAR(10) Extended object attribute returned

60 3C CHAR(10) Shared file name

70 46 CHAR(10) Shared file library name

80 50 BINARY(4) Offset to path name used

84 54 BINARY(4) Length of path name used

 88 58 CHAR(10) Object ASP name used

98 62 CHAR(10) Object library ASP name used

 CHAR(*) Path name used

OBJL0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) Job user name

20 14 CHAR(6) Job number

26 1A CHAR(10) Lock state

36 24 BINARY(4) Lock status

40 28 BINARY(4) Lock type

44 2C CHAR(10) Member name

54 36 CHAR(1) Share

55 37 CHAR(1) Lock scope

56 38 CHAR(8) Thread identifier

Field Descriptions

Extended object attribute returned. The extended attribute of the object for which the list of locks is
returned, such as a program or a file type. Extended attributes further describe the object. For example, an
object type of *FILE may have an extended object attribute of PHY (physical file), LGL (logical file), DSP
(display file), SAV (save file), and so forth.

Format name specified. The name of the format used to list object locks.

Job name. The simple job name of the job that issued the lock request. The following special values also
may be returned:

MACHINE The lock is held by an internal machine process. If this value is returned, the job number
and job user name will be blank.

*LCKSPC The lock is attached to a lock space. If this value is returned, the job number and job user
name will be blank.

*N The job name cannot be determined.

Job number. The system-assigned job number of the job that issued the lock request. The following
special value also may be returned:

*N The job number cannot be determined.

Job user name. The user name under which the job that issued the lock request is run. The user name is the
same as the user profile name and can come from several different sources depending on the type of job.

The following special value also may be returned:

*N The job user name cannot be determined.

Length of path name specified. The length, in bytes, of the path name of the object that is specified on the
call to the API.

Length of path name used. The length, in bytes, of the path name of the object for which the locks are
placed in the list.

Lock scope. The scope of the lock. The possible values are:

0 Job scope

1 Thread scope

2 Lock space scope

Lock state. The lock condition for the lock request. The possible values are:

*NONE No lock exists.

*SHRRD Lock shared for read.

*SHRUPD Lock shared for update.

*SHRNUP Lock shared no update.

*EXCLRD Lock exclusive allow read.

*EXCL Lock exclusive no read.

Lock status. The status of the lock. The lock may be a single request or part of a multiple lock request for
which some other object specified in the request has been identified as unavailable. The possible values are:

1 The lock is currently held by the job or thread.

2 The job or thread is waiting for the lock (synchronous).

3 The job or thread has a lock request outstanding for the object (asynchronous).

Lock type. The lock type to be processed. The possible values are:

1 Lock on the object

2 Lock on the member control block

3 Lock on the access path used to access a member's data

4 Lock on the actual data within the member

Member name. The name of the file member for which the lock was requested. This field is blank if not
applicable to object type.

Member name specified. The member name of a database file specified on the call to the API.

Object ASP name used. The name of the ASP device that contains the object for which the locks are
placed in the list. The following special value also may be returned:

*SYSBAS The object is located in the system ASP or a basic user ASP.

Object library ASP name specified. The name of the ASP device that contains the object specified on the
call to the API. The following special values may also be returned:

* The ASPs that are currently part of the thread's library name space will be searched to locate
the object.

*SYSBAS The object is located in the system ASP or a basic user ASP.

Object library ASP name used. The name of the ASP device that contains the library of the object for
which locks are placed in the list. The following special value may also be returned:

*SYSBAS The library is located in the system ASP or a basic user ASP.

Object library name specified. The name of the library that contains the object specified on the call to the
API. This field is blank if a path name was specified as the object name.

Object library name used. The name of the library that contains the object whose locks are placed in the
list. This field is blank if a path name was specified as the object name.

Object name specified. The name of the object specified on the call to the API. This field will contain the
special value *OBJPATH if a path name is specified.

Object name used. The name of the object for which the locks are placed in the list. This field will contain
the special value *OBJPATH if a path name is specified.

Object type returned. The type of object for which locks are retrieved. This field will contain blanks if a
path name is specified.

Object type specified. The type of object for which the list of locks are requested. This field will contain
blanks if a path name is specified.

Offset to path name specified. The offset to the path name of the object that is specified on the call to the
API.

Offset to path name used. The offset to the path name of the object for which the locks are placed in the
list.

Path name specified. The path name of the object that is specified on the call to the API.

Path name used. The actual path name of the object for which the locks are placed in the list.

Share. Whether shared file member locks are associated with the file member.

0 The file is not shared, the file is a physical file, or the field is not applicable to object type.

1 The file is shared.

Shared file library name. The name of the library that contains the shared file. This field is blank if not
applicable to object type or if there is no shared file. When this field has a value, it applies to all entries in
the list.

Shared file name. The name of one shared file whose members are locked. This field is blank if not
applicable to object type or if there is no shared file. When this field has a value, it applies to all entries in
the list.

Thread identifier. The identifier of the thread that is holding a thread-scoped lock or waiting for a lock.
For locks that do not have a lock scope of thread scope, the hexadecimal value 00000000 is returned.

User space library name specified. The name of the library that contains the user space specified in the
call to the API.

User space library name used. The name of the library that contains the user space into which the
generated list is put.

User space name specified. The name of the user space specified in the call to the API.

User space name used. The user space used to return the list of object locks.

Error Messages

Message ID Error Message Text

CPFA0AB E Object name not a directory.

CPFA0A3 E Path name resolution causes looping.

CPFA0A7 E Path name too long.

CPFA0A9 E Object not found.

CPFA09C E Not authorized to object.

CPF0935 E Cannot use member name for object type &2.

CPF0951 E QSYS only valid library for object type &2.

CPF18A0 D Object type field not valid.

CPF18A1 D Member name is not valid.

CPF18A2 D Path name parameters not specified.

CPF24B4 E Severe error while addressing parameter list.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

 CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C1B E Object identifier not valid for lock type &1.

CPF3C1C E Lock type &1 not valid for file attribute &2.

CPF3C21 E Format name &1 is not valid.

CPF3C31 E Object type &1 is not valid.

 CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

 CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

Top | Work Management APIs | APIs by category

List Subsystem Entries (QWDLSBSE) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 List format Input Char(8)
3 Qualified subsystem name Input Char(20)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The List Subsystem Entries (QWDLSBSE) API lists some of the different entries in a subsystem
description. See the format information for the types of entries available. QWDLSBSE replaces any data
that already exists in the user space.

Other subsystem information is available through the following APIs:

QWDRSBSD Retrieve Subsystem Information

QWDLSJBQ List Job Queue Entries

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Subsystem Description Authority

*USE

Subsystem Description Library Authority

*EXECUTE

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that receives the list, and the library in which it is located. The first 10 characters
contain the user space name, and the second 10 characters contain the library name. You can use
these special values for the library name:

*CURLIB The job's current library

*LIBL The job's library list

List format

INPUT; CHAR(8)

The format of subsystem entries to list. You can use one of the following format names:

SBSE0100 Routing entry list. For details, see SBSE0100 Format.

SBSE0200 Communications entry list. For details, see SBSE0200 Format.

SBSE0300 Remote locations entry list. For details, see SBSE0300 Format.

SBSE0400 Autostart job entry list. For details, see SBSE0400 Format.

SBSE0500 Prestart job entry list. For details, see SBSE0500 Format.

SBSE0600 Workstation name entry list. For details, see SBSE0600 Format.

SBSE0700 Workstation type entry list. For details, see SBSE0700 Format.

Qualified subsystem name

INPUT; CHAR(20)

The subsystem description about which to retrieve information, and the library in which the
subsystem description is located. The first 10 characters contain the subsystem description name,
and the second 10 characters contain the library name. You can use these special values for the
library name:

*CURLIB The job's current library

*LIBL The job's library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of the Generated List

The list of entries that the QWDLSBSE API returns into the user space consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section●

The user area and generic header are described in User Space Format for List APIs. The remaining items
are described in the following sections. For detailed descriptions of the fields in the tables, see Field
Descriptions.

When you retrieve list entry information from a user space, you must use the entry size returned in the
generic header. The size of each entry may be padded at the end. If you do not use the entry size, the result
may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Subsystem name specified

38 26 CHAR(10) Subsystem library name specified

Header Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Subsystem name used

10 A CHAR(10) Subsystem library name used

SBSE0100 Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Routing entry sequence number

4 4 CHAR(10) Routing entry program name

14 E CHAR(10) Routing entry program library name

24 18 CHAR(10) Routing entry class name

34 22 CHAR(10) Routing entry class library name

44 2C BINARY(4) Maximum active routing steps

48 30 BINARY(4) Routing entry pool identifier

52 34 BINARY(4) Compare start position

56 38 CHAR(80) Compare value

SBSE0200 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Device

10 A CHAR(8) Mode

18 12 CHAR(10) Communication entry job description name

28 1C CHAR(10) Communication entry job description library
name

38 26 CHAR(10) Default user

48 30 BINARY(4) Maximum active jobs

SBSE0300 Format

Offset

Type FieldDec Hex

0 0 CHAR(8) Remote location

8 8 CHAR(8) Mode

16 10 CHAR(10) Remote location entry job description name

26 1A CHAR(10) Remote location entry job description library
name

36 24 CHAR(10) Default user

38 26 CHAR(2) Reserved

48 30 BINARY(4) Maximum active jobs

SBSE0400 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Autostart job name

10 A CHAR(10) Autostart job description name

20 14 CHAR(10) Autostart job description library name

SBSE0500 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Prestart job program name

10 A CHAR(10) Prestart job program library name

20 14 CHAR(10) User profile name

30 1E CHAR(1) Start jobs

31 1F CHAR(1) Wait for job

32 20 BINARY(4) Initial number of jobs

36 24 BINARY(4) Threshold

40 28 BINARY(4) Additional number of jobs

44 2C BINARY(4) Maximum number of jobs

48 30 BINARY(4) Maximum number of uses

52 34 BINARY(4) Pool identifier

56 38 CHAR(10) Prestart job name

66 42 CHAR(10) Prestart job description name

76 4C CHAR(10) Prestart job description library name

86 56 CHAR(2) Reserved

88 58 CHAR(10) First class name

98 62 CHAR(10) First class library name

108 6C BINARY(4) Number of jobs to use first class

112 70 CHAR(10) Second class name

122 7A CHAR(10) Second class library name

132 84 BINARY(4) Number of jobs to use second class

SBSE0600 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Workstation name

10 A CHAR(10) Job description name for workstation

20 14 CHAR(10) Job description library name for workstation

30 1E CHAR(10) Control job (allocation)

40 28 BINARY(4) Maximum active jobs

SBSE0700 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Workstation type

10 A CHAR(10) Job description name for type

20 14 CHAR(10) Job description library name for type

30 1E CHAR(10) Control job (allocation)

40 28 BINARY(4) Maximum active jobs

Field Descriptions

Additional number of jobs. The additional number of prestart jobs that are started when the number of
prestart jobs drops below the value specified for the threshold parameter.

Autostart job description library name. The name of the library in which the job description for the
autostart job entry resides.

Autostart job description name. The name of the job description for the autostart job entry about which
information is being returned.

Autostart job name. The simple name of the job that is automatically started when the associated
subsystem is started.

Communication entry job description library name. The name of the library in which the
communications entry job description resides.

Communication entry job description name. The name of the job description used when a job is started
as a result of receiving a program start request and processed through this communications entry. Possible
special values follow:

*USRPRF The job description name that is specified in the user profile of the user that made the
program start request is used for jobs that are processed through this communications entry.

Compare start position. The starting position for the routing data comparison. The comparison between
the compare value and the routing data begins with this position in the routing data character string, and the
last character position compared must be less than or equal to the length of the routing data used in the
comparison.

Compare value. A value that is compared with the routing data to determine whether this is the routing
entry that is used for starting a routing step. The special value *ANY means that any routing data is
considered a match.

Control job (allocation). How the workstations that are associated with this job entry are allocated.
Possible special values follow:

*SIGNON The workstations are allocated when the subsystem is started if the workstation is not
already in use (signed on) in another subsystem. A sign-on prompt is displayed at each
workstation that is associated with this work entry. If a workstation becomes allocated to a
different subsystem, interactive jobs that are associated with the workstation are allowed to
enter this subsystem through the Transfer Job (TFRJOB) command.

*ENTER The workstations that are associated with this work entry are not allocated when the
subsystem is started. However, the interactive jobs that are associated with the workstations
are allowed to enter this subsystem through the Transfer Job (TFRJOB) command.

Default user. The name of the default user profile used for evoke requests that enter the subsystem through
this entry and contain no security information. Possible special values follow:

*NONE No user profile is specified as the default.

*SYS All user program start requests are treated the same as *NONE. For program start requests that
are sent by system functions, the request runs under a predetermined user profile if a user
profile is not specified on the program start request.

Device. The name of the device description or the type of the device being used with this communications
entry. Possible special values follow:

*ALL All communications device types are used with this communications entry.

*APPC All advanced program-to-program communications devices can be used with this
communications entry.

*ASYNC All asynchronous communications devices can be used with this communications entry.

*BSCEL All bisynchronous equivalency link communications devices can be used with this
communications entry.

*FINANCE All finance communications devices can be used with this communications entry.

*INTRA All intrasystem communications devices can be used with this communications entry.

*RETAIL All retail communications devices can be used with this communications entry.

*SNUF All SNA upline facility communications devices can be used with this communications
entry.

First class library name. The name of the library in which the first class resides.

First class name. The name of one of the two classes that the prestart jobs run under. Jobs start by using
the first class that is specified until the number of jobs specified for the first class is reached. After the
number of jobs that are specified for the first class is reached, then jobs are started by using the second
class.

Format name specified. The format name as specified in the call to the API.

Initial number of jobs. The initial number of prestart jobs that are started when the subsystem is started.

Job description library name for type. The name of the library in which the job description for this
workstation type resides.

Job description library name for workstation. The name of the library in which the job description for
this workstation name resides.

Job description name for type. The name of the job description that is used for jobs started through this
type of workstation entry. The possible special value follows:

*USRPRF The job description named in the user profile of the user that signs on at this type of
workstation is used for jobs started through this entry.

Job description name for workstation. The name of the job description that is used for jobs started
through this workstation name entry. The possible special value follows:

*USRPRF The job description named in the user profile of the user that signs on at this workstation is
used for jobs started through this entry.

Maximum active jobs. The maximum number of jobs that can be active at the same time through this
entry. If the entry specifies *NOMAX, indicating that there is no maximum, this number is -1.

Maximum active routing steps. The maximum number of routing steps (jobs) that can be active at the
same time through this routing entry. If the routing entry specifies *NOMAX, indicating that there is no
maximum, this number is -1.

Maximum number of jobs. The maximum number of prestart jobs that can be active at the same time for
this prestart job entry. If the entry specifies *NOMAX, which indicates that there is no maximum, this
number is -1.

Maximum number of uses. The maximum number of requests that can be handled by each prestart job in
the pool before the job is ended. If the entry specifies *NOMAX, which indicates that there is no
maximum, this number is -1.

Mode. The mode name of the communications device. The possible special value follows:

*ANY Any available modes defined to the communications device are allocated to the subsystem. If the
communications device does not have defined modes associated with it, the communications
device itself is allocated to the subsystem.

Number of jobs to use first class. The maximum number of jobs to run by using the first class. Possible
special values follow:

-3 The system calculates how many prestart jobs use this class.

If only one class is specified and -3 is specified, all of the jobs use that class.

If two classes are specified and -3 is specified for both, the first class is the value of the maximum
number of jobs field divided by two, and the second class is the value of the maximum number of
jobs field minus the value that is calculated for the first class.

If a specific number of jobs is specified for either class and -3 is specified for the other class, the
system calculates the difference between maximum number of jobs and the specific number of jobs
for the -3 designation.

-4 All of the prestart jobs use the specified class.

Number of jobs to use second class. The maximum number of jobs to run by using the second class.
Possible special values follow:

-3 The system calculates how many prestart jobs use this class.

If only one class is specified and -3 is specified, all of the jobs use that class.

If two classes are specified and -3 is specified for both, the first class is the value of the maximum
number of jobs field divided by two. The second class is the value of the maximum number of jobs
field minus the value that is calculated for the first class.

If a specific number of jobs is specified for either class and -3 is specified for the other class, the
system calculates the difference between maximum number of jobs and the specific number of jobs
for the -3 designation.

-4 All of the prestart jobs use the specified class.

Pool identifier. The name of the subsystem pool identifier in which the prestart jobs will run.

Prestart job description library name. The name of the library in which the job description for the
prestart job entry resides.

Prestart job description name. The name of the job description that is used for the prestart job entry. The
possible special value follows:

*USRPRF The job description that has the same name as the user profile that is used.

Prestart job name. The name of the prestart job.

Prestart job program library name. The name of the library in which the prestart job program resides.

Prestart job program name. The program name that is used to match an incoming request with an
available prestart job.

Remote location. The name of the remote location for this entry.

Remote location entry job description library name. The name of the library in which the job
description resides.

Remote location entry job description name. The name of the job description used when a job is started
as a result of receiving a program start request and processed through this remote location entry. Possible
special values follow:

*USRPRF The job description name that is specified in the user profile of the user that made the
program start request is used for jobs that are processed through this remote location entry.

Reserved. An ignored field.

Routing entry class library name. The name of the library in which the routing entry class resides.

Routing entry class name. The name of the class that is used when a routing step is started through this
routing entry.

Routing entry pool identifier. The pool identifier of the storage pool in which the routing entry program is
run.

Routing entry program library name. The name of the library in which the routing entry program
resides.

Routing entry program name. The name of the program that is started when a routing step is started

through this routing entry in the subsystem description. If *RTGDTA is returned, the program name is
taken from the routing data that was supplied and matched against this entry. The qualified program name
will be taken from the routing data in this case, where the program name is specified in positions 37
through 46 and the library name is taken from positions 47 through 56.

Routing entry sequence number. The sequence number of the routing entry.

Second class library name. The name of the library in which the second class resides.

Second class name. One of the two classes that the prestart jobs run under. Jobs start by using the first
class that is specified until the number of jobs specified for the first class is reached. After the number of
jobs that are specified for the first class is reached, then jobs are started using the second class. The possible
special value follows:

*NONE Only one class is used.

Start jobs. Whether the prestart jobs are started at the time the subsystem is started. Possible special values
follow:

1 The prestart jobs are started at the time the subsystem is started.

0 The prestart jobs are not started at the time the subsystem is started. The Start Prestart Jobs (STRPJ)
command is used to start these prestart jobs.

Subsystem library name specified. The name or special value specified in the call to this API for the
library in which the subsystem description resides.

Subsystem library name used. The name of the library in which the subsystem description resides.

Subsystem name specified. The name of the subsystem specified in the call to this API.

Subsystem name used. The name of the subsystem about which information is being returned.

Threshold. The number at which additional prestart jobs are started. When the pool of available jobs (jobs
available to service a program start request) is reduced below this number, more jobs (specified on the
additional number of jobs field) are started and added to the available pool. This number is checked after a
prestart job is attached to a procedure start request.

User profile name. The name of the user profile under which the prestart job runs.

User space library name specified. The name specified for the library that contains the user space to
receive the generated list.

User space name specified. The name specified for the user space that is to receive the generated list.

Wait for job. Whether requests wait for a prestart job to become available or are rejected if a prestart job is
not immediately available when the request is received. Possible special values follow:

1 Requests wait until there is an available prestart job, or until a prestart job is started, to handle the
request.

0 Requests are rejected if a prestart job is not immediately available when the request is received.

Workstation name. The name of the workstation that is used by the subsystem. A generic workstation
entry like DSP* is allowed.

Workstation type. The display device type. (See the TYPE keyword in the Communications Configuration

 book on the V5R1 Supplemental Manuals Web site.

Possible special values follow:

*ALL All workstation devices. This includes devices with 5250, ASCII, and 327x device types.

*ASCII ASCII display station.

*NONASCII All workstation devices that use a 5250 data stream. This includes the 327x device types.

*CONS System console display. This entry overrides a device type entry that specifies the same
device type as the device being used as the console.

Error Messages

Message ID Error Message Text

CPF1605 E Cannot allocate subsystem description &1.

CPF1606 E Error during allocation of subsystem &1.

CPF1607 E Previous request pending for subsystem &1.

CPF1608 E Subsystem description &1 not found.

CPF1619 E Subsystem description &1 in library &2 damaged.

CPF1835 E Not authorized to subsystem description.

CPF3CF1 E Error code parameter not valid.

 CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF811A E User space &4 in &9 damaged.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R7

Top | Work Management APIs | APIs by category

List Subsystem Job Queues (QWDLSJBQ) API

 Required Parameter Group:

1 Qualified user space name Input Char(20)
2 List format Input Char(8)
3 Qualified subsystem name Input Char(20)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The List Subsystem Job Queues (QWDLSJBQ) API lists the job queues for a subsystem. It also gives the
job queue allocation status, indicating whether the specified subsystem is active and has allocated this job
queue or not. QWDLSJBQ replaces any data that already exists in the user space.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Subsystem Description Authority

*USE

Subsystem Description Library Authority

*EXECUTE

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

The user space that receives the list, and the library in which it is located. The first 10 characters
contain the user space name, and the second 10 characters contain the library name. You can use
these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

List format

INPUT; CHAR(8)

The format to use for the list of job queues. You can use the following format name:

SJQL0100 Basic job queue list. For details, see Format of the Generated List.

Qualified subsystem name

INPUT; CHAR(20)

The subsystem about which to retrieve information, and the library in which the subsystem
description is located. The first 10 characters contain the subsystem name, and the second 10
characters contain the library name. You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the Generated List

The list of job queues that the QWDLSJBQ API returns into the user space consists of:

A user area●

A generic header●

An input parameter section●

A header section●

A list data section●

The user area and generic header are described in User Space Format for List APIs. For detailed
descriptions of the fields in the tables, see Field Descriptions.

Input Parameter Section

Offset

Type FieldDec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Subsystem name

38 26 CHAR(10) Subsystem library name specified

Header Section

Offset

Type FieldDec Hex

0 0 CHAR(10) Subsystem name used

10 A CHAR(10) Subsystem library name used

SJQL0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job queue name

10 A CHAR(10) Job queue library name

20 14 BINARY(4) Sequence number

24 18 CHAR(10) Allocation indicator

34 22 CHAR(2) Reserved

36 24 BINARY(4) Maximum active

40 28 BINARY(4) Maximum by priority 1

44 2C BINARY(4) Maximum by priority 2

48 30 BINARY(4) Maximum by priority 3

52 34 BINARY(4) Maximum by priority 4

56 38 BINARY(4) Maximum by priority 5

60 3C BINARY(4) Maximum by priority 6

64 40 BINARY(4) Maximum by priority 7

68 44 BINARY(4) Maximum by priority 8

72 48 BINARY(4) Maximum by priority 9

Field Descriptions

Allocation indicator. A value indicating whether or not the job queue is allocated to the specified
subsystem. Valid values are:

*NO The subsystem has not allocated this job queue. Either this subsystem is inactive, or another
subsystem has allocated the job queue.

*YES The subsystem is active and has allocated this job queue.

Format name specified. The format name as specified in the call to the API.

Job queue library name. The name of the library in which the specified job queue resides.

Job queue name. The name of a job queue specified in a subsystem description job queue entry.

Maximum active. The maximum number of jobs that can be active at the same time through this job queue
entry.

Maximum by priority 1 through 9. The maximum number of jobs that can be active at the same time for
each priority level (1 through 9). A -1 in this field indicates that the value is *NOMAX.

Reserved. An ignored field.

Sequence number. The job queue entry sequence number. The subsystem uses this number to determine
the order in which job queues are processed. Jobs from the queue with the lowest sequence number are
processed first.

Subsystem library name specified. The name or special value specified in the call to this API for the
library in which the subsystem description resides.

Subsystem library name used. The name of the library in which the subsystem description resides.

Subsystem name. The name of the subsystem about which information is being returned.

Subsystem name used. The name of the subsystem about which information is being returned.

User space library name specified. The library name or special value specified in the call to this API.

User space name. The name of the user space that receives the list.

Error Messages

Message ID Error Message Text
CPF1605 E Cannot allocate subsystem description &1.
CPF1606 E Error during allocation of subsystem &1.
CPF1607 E Previous request pending for subsystem &1.
CPF1608 E Subsystem description &1 not found.
CPF1619 E Subsystem description &1 in library &2 damaged.
CPF1835 E Not authorized to subsystem description.
CPF3CF1 E Error code parameter not valid.

 CPF3CF2 E Error(s) occurred during running of &1 API.
CPF3C21 E Format name &1 is not valid.
CPF3C90 E Literal value cannot be changed.
CPF811A E User space &4 in &9 damaged.
CPF8122 E &8 damage on library &4.
CPF9801 E Object &2 in library &3 not found.
CPF9802 E Not authorized to object &2 in &3.
CPF9803 E Cannot allocate object &2 in library &3.
CPF9807 E One or more libraries in library list deleted.
CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.
CPF9820 E Not authorized to use library &1.
CPF9830 E Cannot assign library &1.
CPF9838 E User profile storage limit exceeded.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

Top | Work Management APIs | APIs by category

Move Job (QSPMOVJB) API

 Required Parameter Group:

1 Function information Input Char(*)
2 Length of function information Input Binary(4)
3 Function information format Input Char(8)
4 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Move Job (QSPMOVJB) API performs one of two functions. They are to:

Move one job at a time to the top of a job queue●

Move a job after another job●

The jobs are identified by the internal job identifier or by the qualified job name. See How to Specify Job
Identifying Fields for the valid combinations of identifying jobs.

As a result of using this API, a job could:

Change job queues

The job changes job queues when it is moved to the top of another job queue.

The job being moved resides on the job queue of the target job.

●

Change priority

The job priority is changed to the requester's highest schedule priority if the job is moved to the top
of a job queue.

 Requester's priority = 2

 Job Priority
 New priority = 2 when moved here-------------->
 A 3
 B 5

The job priority will be changed to the priority of the target job if the requester's highest schedule
priority is equal to or less than the target job.

 Requester's priority = 2

 Job Priority

 C 3
 New priority = 3 when moved here------------->
 D 5

●

The job priority is changed to the requester's highest schedule priority if:

The requester's priority is greater than the target job and❍

The requester's priority is greater or equal to the jobs it is moving ahead of.❍

 Requester's priority = 4

 Job Priority

 C 3
 New priority = 4 when moved here------------->
 D 5

 Requester's priority = 4

 Job Priority

 E 3
 New priority = 4 when moved here------------->
 F 4

 The owner of the job moving must also be
 the owner of job F.

Be held

A job in ready status is held when it is moved after a job that is held.

●

Be released

A job in held status is released when it is moved to the top of a job queue.

A job in held status is released when it is moved after a job that is released.

●

Restrictions for Movement of Jobs

The Move Job API has restrictions that determine whether a job can be moved.

Scheduled jobs cannot be referenced as the source job or the target job.●

The job to be moved must exist, be a batch job, and be on a job queue.●

The job queue must exist.●

If a job is held with hold spooled files specified, and the job is to be moved to the top of a queue,
no spooled file must exist for the job.

●

Authorities and Locks

Job Authorities: The requester is authorized to the job if one or more of the following conditions are met.

The requester is the owner of the job to be moved.●

The requester has *JOBCTL authority.●

Job Queue Authority

Authority to the target job queue and target job queue library

*USE

Job queue lock on which the source job resides

*EXCLRD

Job queue lock on which the target job resides

*EXCLRD

User Profile Highest Schedule Priority

The requester must have a priority limit of at least x-1 (x being the priority of the job that will
follow after this job).

●

If the requester has equal priority to a job that it is moving ahead of, the requester must own all of
the jobs it is moving ahead of at that priority level or have *JOBCTL authority.

●

Required Parameter Group

Function information

INPUT; CHAR(*)

The information that is associated with the job or jobs to be moved and the job queue to which the
jobs are to be moved. See the Format of the Function Information for the format of this parameter.

Length of function information

INPUT; BINARY(4)

The length of the function information in the function information parameter. The length depends
on the function format. Each format has a different (but fixed) length as shown in the specific
format tables. The minimum length for format MJOB0100 is 62 bytes; the minimum length for
format MJOB0200 is 84 bytes.

Function information format

INPUT; CHAR(8)

The format of the function information that is being provided. The information is provided in the
function information parameter. They are:

MJOB0100 Format for the function of *NEXT, which is moving one job at a time to the top of
a job queue.

MJOB0200 Format for the function of *AFTER, which is moving a job after another job.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of the Function Information

MJOB0100 Format: The following table shows the information for the MJOB0100 format. For more
details about the fields in the following tables see, Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Source job name

10 A CHAR(10) Source job user name

20 14 CHAR(6) Source job number

26 18 CHAR(16) Source internal job identifier

42 2A CHAR(10) Target job queue name

52 34 CHAR(10) Target job queue library name

MJOB0200 Format: The following table shows the information for the MJOB0200 format. For more
details about the fields in the following tables see, Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Source job name

10 A CHAR(10) Source job user name

20 14 CHAR(6) Source job number

26 18 CHAR(16) Source internal job identifier

42 2A CHAR(10) Target job name

52 34 CHAR(10) Target job user name

62 3E CHAR(6) Target job number

68 44 CHAR(16) Target internal job identifier

Field Descriptions

Source internal job identifier. The internal identifier for the job to be moved. The identifier is not valid
following an initial program load (IPL). If you attempt to use it after an IPL, an exception occurs. This field
must be blank when a source job name is given. Use one of the following APIs to make the identifier
available:

List Job (QUSLJOB) API

Retrieve Job Information (QUSRJOBI) API

There may be a performance advantage when identifying the source job by its internal identifier.

Source job name. The name of the job to be moved. The possible values are:

*INT The job to be moved is identified by the internal job identifier.

Name The name of the job to be moved.

Source job number. The number of the job to be moved. It can optionally be blank when a source job
name or a source job user name or both are specified. This field must be blank when the source job name is
specified as *INT.

Source job user name. The user name of the job to be moved. It can optionally be blank when a source job
name is specified. This field must be blank when the source job name is specified as *INT.

Target internal job identifier. The internal identifier for the job after which the source job is to be moved.
The identifier is not valid following an initial program load (IPL). If you attempt to use it after an IPL, an
exception occurs. This field must be blank when a target job name is given. Use one of the following APIs
to make the identifier available:

List Job (QUSLJOB) API

Retrieve Job Information (QUSRJOBI) API

There may be a performance advantage when identifying the target job by its internal identifier.

Target job name. The name of the job after which the source job is to be moved. The possible values are:

*INT The target job is identified by the internal job identifier.

Name The name of the job after which the source job is to be moved.

Target job number. The number of the target job. It can optionally be blank when a target job name or
target job user name or both are specified. This field must be blank when the target job name is specified as
*INT.

Target job queue library name. The name of the library that contains the job queue. This must be
specified when a target job queue name is given. The possible values are:

*LIBL The library list is used to locate the job queue.

*CURLIB The current library is used to locate the job queue. If no library is specified as the current
library for the job, QGPL is used.

Name The library name.

Blanks No library name is given when the job queue name is *SAME.

Target job queue name. The name of the job queue to which the job is to move. The possible values are:

*SAME The job will move to the top of the job queue on which it currently resides.

Name The name of the job queue to which the job is to move to the top of.

Target job user name. The user name of the target job. It can optionally be blank when a target job name
is specified. This field must be blank when the target job name is specified as *INT.

How to Specify Job Identifying Fields

This table illustrates the valid combinations of values for format MJOB0100.

Qualified Job Name Internal Job
Identifier Job QueueJob Name User Name Job Number

Name Name Number Blanks Name

Name Name Blanks Blanks Name

Name Blanks Number Blanks Name

Name Blanks Blanks Blanks Name

*INT Blanks Blanks Internal job
identifier

Name

This table illustrates the valid combinations of values for format MJOB0200.

The qualified job name can use the same combinations of the qualified job name specified in format
MJOB0100.

Source
Qualified Job Name

Source
Internal Job Identifier

Target
Qualified Job Name

Target
Internal Job Identifier

Qualified job name Blanks Qualified job name Blanks

Qualified job name Blanks *INT Internal Job identifier

*INT Internal Job identifier Qualified job name Blanks

*INT Internal Job identifier *INT Internal job identifier

Error Messages

Message ID Error Message Text
CPF24B4 E Severe error while addressing parameter list.
CPF33C1 E Job &3/&2/&1 not on job queue. Job not moved.
CPF3CF1 E Error code parameter not valid.
CPF3C1D E Length specified in parameter &1 not valid.
CPF3C21 E Format name &1 is not valid.
CPF3C42 E User name or job number is not blank.
CPF3C43 E Internal job identifier is not valid.
CPF3C52 E Internal job identifier no longer valid.
CPF3C53 E Job &3/&2/&1 not found.
CPF3C58 E Job name specified is not valid.
CPF3C90 E Literal value cannot be changed.
CPF33BA E Job queue &1 in library &2 is not valid.
CPF33B3 E Not authorized to job queue &1.
CPF33B4 E Not authorized to job &3/&2/&1. Job not moved.
CPF33B5 E Job &3/&2/&1 is not available for moving.
CPF33B6 E Job &3/&2/&1 held by HLDJOB command. Job not moved.

CPF33B7 E Job &3/&2/&1 specified more than once. Job not moved.
CPF33B8 E Priority required to move job &3/&2/&1 exceeds limit of user &9.
CPF33B9 E Priority required to move job &3/&2/&1 exceeds limit of user &9.
CPF3330 E Necessary resource not available.
CPF3343 E Duplicate job names found.
CPF8121 E &8 damage on job queue &4 in library &9.
CPF8122 E &8 damage on library &4.
CPF9801 E Object &2 in library &3 not found.
CPF9810 E Library &1 not found.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

Top | Work Management APIs | APIs by category

Open List of Activation Attributes
(QWVOLACT) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 List information Output Char(80)
4 Number of records to return Input Binary(4)
5 Format name Input Char(8)
6 Activation group number Input Binary(4)
7 Qualified job name Input Char(26)
8 Internal job identifier Input Char(16)
9 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Open List of Activation Attributes (QWVOLACT) API generates a list of all the activation attributes
that are associated with an activation group in a given job. The QWVOLACT API places the list into a
receiver variable. You can access additional records by using the Get List Entries (QGYGTLE) API. On
successful completion of the QWVOLACT API, a handle is returned in the list information parameter. You
may use this handle on subsequent calls to the following APIs:

Get List Entries (QGYGTLE)

Find Entry Number in List (QGYFNDE)

Close List (QGYCLST)

The records returned by QWVOLACT include an information status field that describes the completeness
and validity of the information. Be sure to check the information status field before using any other
information returned.

Authorities and Locks

Job Authority

*JOBCTL if the job for which activation group attributes are being retrieved has a user profile
different from that of the job that calls the QWVOLACT API.

For additional information on these authorities, see the iSeries Security Reference book.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is used to return the activation attributes that you requested.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

List information

OUTPUT; CHAR(80)

Information about the list of activation attributes that were opened. For a description of the layout
of this parameter, see .

Number of records to return

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable.

Format name

INPUT; CHAR(8)

The format of the information to be returned in the receiver variable. You must use the following
format name:

RACT0100 This format is described in RACT0100 Format.

Activation group number

INPUT; BINARY(4)

The number of the activation group that will be used to locate the activations whose attributes are
to be returned. You can use this special value for the activation group number:

-1 The activation attributes for all activation groups are returned.

Qualified job name

INPUT; CHAR(26)

The job name, the job user profile, and the job number of the job for which you want to return
activation attributes.

CHAR 1-10 The job name

CHAR 11-20 The user profile

CHAR 21-26 The job number

You can use these special values for the qualified job name:

* The job in which this program is running. The rest of the qualified job name parameter
must be blank.

*INT The internal job identifier locates the job. The rest of the qualified job name parameter
must be blank.

Internal job identifier

INPUT; CHAR(16)

The internal name for the job. The List Job (QUSLJOB) API creates this identifier. If you do not
specify *INT for the qualified job name parameter, this parameter must contain blanks.

If your application already has this information available from the QUSLJOB API, the
QWVOLACT API can locate the job more quickly with this information than with a job name.
However, if you call QUSLJOB solely to obtain this parameter for use by QWVOLACT, you
would get poorer performance than by using a job name in calling QWVOLACT.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RACT0100 Format

The following table shows the information returned in each record in the receiver variable for the
RACT0100 format. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Activation group name

10 A CHAR(6) Reserved

16 10 BINARY(4) Activation group number

20 14 BINARY(4) Reserved

24 18 BINARY(4) Activation number

28 1C BINARY(4) Static storage size

32 20 CHAR(10) Program name

42 2A CHAR(10) Program library

52 34 CHAR(1) Program type

53 35 CHAR(11) Reserved

Field Descriptions

Activation number. The activation number of the activation listed. This is an internal number that
uniquely identifies the activation within the job.

Activation group name. The name of the activation group that contains the attributes listed. Possible
values follow:

*DFTACTGRP The activation group is one of the default activation groups.

*UNNAMED The activation group does not have a name.

Activation group number. The activation group number of the activation group listed. This is an internal
number that uniquely identifies the activation group within the job.

Program library. The name of the library that contains the program that this activation is for. Possible
values follow:

*N The program no longer exists in the system.

Program name. The name of the program that this activation is for. Possible values follow:

*N The program no longer exists in the system.

Program type. The type of call that this activation is for. Possible values follow:

0 The type was a program or *PGM.

1 The type was a service program or *SRVPGM.

Reserved. An ignored field.

Static storage size. The total amount of static storage allocated to the activation in bytes.

Error Messages

Message ID Error Message Text

CPF0941 E Job &3/&2/&1 no longer in system.

CPF1071 E No authority to job &3/&2/&1.

CPF136A E Job &3/&2/&1 not active.

CPF136B E Job &3/&2/&1 in use.

CPF136C E Value &1 for activation group number not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

API introduced: V4R2

Top | Work Management APIs | APIs by category

Open List of Activation Group Attributes
(QWVOLAGP) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 List information Output Char(80)
4 Number of records to return Input Binary(4)
5 Format name Input Char(8)
6 Qualified job name Input Char(26)
7 Internal job identifier Input Char(16)
8 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Open List of Activation Group Attributes (QWVOLAGP) API generates a list of all the activation
groups that are associated with a given job and their attributes. The QWVOLAGP API places the list into a
receiver variable. You can access additional records by using the Get List Entries (QGYGTLE) API. On
successful completion of the QWVOLAGP API, a handle is returned in the list information parameter. You
may use this handle on subsequent calls to the following APIs:

Get List Entries (QGYGTLE)

Find Entry Number in List (QGYFNDE)

Close List (QGYCLST)

The records returned by the QWVOLAGP API include an information status field that describes the
completeness and validity of the information. Be sure to check the information status field before using any
other information returned.

Authorities and Locks

Job Authority

*JOBCTL if the job for which activation group attributes are being retrieved has a user
profile different from that of the job that calls the QWVOLAGP API.

❍

For additional information on these authorities, see the iSeries Security Reference book.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is used to return the activation group attributes that was requested.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

List information

OUTPUT; CHAR(80)

Information about the list of activation group attributes that were opened. For a description of the
layout of this parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable.

Format name

INPUT; CHAR(8)

The format of the information to be returned in the receiver variable. You must use the following
format name:

RAGA0100 This format is described in RAGA0100 Format.

Qualified job name

INPUT; CHAR(26)

The job name, the job user profile, and the job number of the job for which you want to return
activation group attributes.

CHAR 1-10 The job name

CHAR 11-20 The user profile

CHAR 21-26 The job number

You can use these special values for the qualified job name:

* The job in which this program is running. The rest of the qualified job name parameter
must be blank.

*INT The internal job identifier locates the job. The rest of the qualified job name parameter
must be blank.

Internal job identifier

INPUT; CHAR(16)

The internal name for the job. The List Job (QUSLJOB) API creates this identifier. If you do not
specify *INT for the qualified job name parameter, this parameter must contain blanks.

If your application already has this information available from the List Job (QUSLJOB) API, the
QWVOLAGP API can locate the job more quickly with this information than with a job name.
However, if you call QUSLJOB solely to obtain this parameter for use by QWVOLAGP, you
would get poorer performance than by using a job name in calling QWVOLAGP.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RAGA0100 Format

The following table shows the information returned in the list data section of the receiver variable for the
RAGA0100 format. For a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Activation group name

10 A CHAR(6) Reserved

16 10 BINARY(4) Activation group number

20 14 BINARY(4) Number of activations

24 18 BINARY(4) Number of heaps

28 1C BINARY(4) Static storage size

32 20 BINARY(4) Heap storage size

36 24 CHAR(10) Root program name

46 2E CHAR(10) Root program library

56 38 CHAR(1) Root program type

57 39 CHAR(1) Activation group state

58 3A CHAR(1) Shared activation group indication

59 3B CHAR(1) In-use indicator

60 3C CHAR(4) Reserved

Field Descriptions

Activation group name. The name of the activation group that contains the attributes listed. Possible
values follow:

*DFTACTGRP The activation group is one of the default activation groups.

*UNNAMED The activation group does not have a name.

Activation group number. The activation group number of the activation group listed. This is an internal
number that uniquely identifies the activation group within the job.

Activation group state. The state of the activation group. Possible values follow:

0 The activation group is in user state.

1 The activation group is in system state.

Heap storage size. The total amount of heap storage that is allocated to the activation group in bytes.

In-use indicator. Whether the activation group is eligible to be reclaimed. An activation group can be
reclaimed by the Reclaim Activation Group (RCLACTGRP) command. Possible values follow:

0 The activation group is not in use and is eligible to be reclaimed.

1 The activation group is in use and cannot be reclaimed.

Note: It is not recommended to reclaim eligible activation groups if you are not familiar with that activation
group. Other activation groups may have references to the activation group that you are reclaiming. For
example, a program of one activation group could be bound to a service program that belongs to another
activation group. If you reclaim the service program's activation group and then call the program, you will
get a destroyed object error when the service program is referred to.

Number of activations. The total number of program activations in this activation group.

Number of heaps. The total number of heaps that are allocated by this activation group.

Reserved. An ignored field.

Root program library. The name of the library that contains the program that caused this activation group
to be created. The possible value follows:

*N The program no longer exists in the system.

Note: When the activation group is the default activation group, there is no root program. Blanks are
returned in this case.

Root program name. The name of the program that caused this activation group to be created. The
possible value follows:

*N The program no longer exists in the system.

Note: When the activation group is the default activation group, there is no root program. Blanks are
returned in this case.

Root program type. The type of program that caused this activation group to be created. Possible values
follow:

N The program no longer exists in the system.

0 The type is a program or *PGM.

1 The type is a service program or *SRVPGM.

2 The type is a Java program.

Note: When the activation group is the default activation group, there is no root program. A blank is
returned in this case.

Shared activation group indication. Whether the activation group is shared or not. A shared activation
group is an activation group that belongs to more than one job at the same time. Possible values follow:

0 The activation group is not shared with other jobs.

1 The activation group is shared with other jobs.

Static storage size. The total amount of static storage allocated to the activation group in bytes.

Error Messages

Message ID Error Message Text

CPF0941 E Job &3/&2/&1 no longer in system.

CPF1071 E No authority to job &3/&2/&1.

CPF136A E Job &3/&2/&1 not active.

CPF136B E Job &3/&2/&1 in use.

CPF136C E Value &1 for activation group number not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

API introduced: V4R2

Top | Work Management APIs | APIs by category

Open List of Job Queues (QSPOLJBQ) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver variable Input Char(8)
4 List information Output Char(80)
5 Filter information Input Char(*)
6 Sort information Input Char(*)
7 Number of records to return Input Binary(4)
8 Error Code I/O Char(*)

 Default Public Authority: *USE Threadsafe: Yes

The Open List of Job Queues (QSPOLJBQ) API generates a list of job queues on the system. The list can
include all job queues on the system, all job queues for a specified library list, the allocated job queues for a
specified active subsystem, or the defined job queues for a specified active subsystem (this would include
both the allocated job queues and the job queues the subsystem could not allocate), or all the allocated job
queues for all the active subsystems. The filtered list can then be sorted depending on the value of the sort
parameter. When requesting job queue information for all job queues on the system or for a specific job
queue within a library, if the signed-on user is not authorized to the library of the job queue, information for
that job queue in not returned by this API. When requesting the job queue information for job queues
defined to an active subsystem, all job queue information will be returned with out regard to the users
authority to the subsystem. Upon successful completion of this API, a handle is returned in the list
information parameter. You may use this handle on subsequent calls to the following APIs:

Get List Entries (QGYGTLE)

Find List Entry (QGYFNDE)

Close List (QGYCLST)

Performance Impacts

Sorting on one or more values of job queue name, job queue library name, job queue status, subsystem
name, subsystem library name, number of jobs on job queue, sequence number, maximum active, current
active or description takes more processing power and time.

Authorities and Locks

Job Queue Library Authority

*EXECUTE

Job Queue Lock

This API gets an *EXCLRD lock on the job queue.

Subsystem Description Lock

This API gets an *EXCLRD lock on the subsystem description.

This API does not check the caller's authority to the subsystem description or subsystem description library
when retrieving the subsystem description information.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable used to return the job queue information.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

Format of receiver variable

INPUT; CHAR(8)

The format of the job queue information being returned. You can specify the following:

OJBQ0100 Contains the basic information about the job queue. For more information about the
OJBQ0100 format, see Format of Receiver Variable.

List information

OUTPUT; CHAR(80)

Information about the list created by this program. For a description of the layout of this parameter,
see Format of open list information.

Filter information

INPUT; CHAR(*)

The information in this parameter is used for filtering the list of job queue information. For more
information about the filter information, see Filter Information.

Sort information

INPUT; CHAR(*)

Information on what fields within the record of information to sort. See Format of Sort Information
for a description of the layout of this parameter. Note that when sorting is requested, the entire list
has to be built and sorted before any records can be returned.

Number of records to return

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable.

If -1 is specified for this parameter, the entire list is built synchronously.

If 0 is specified for this parameter, the entire list is built asynchronously in a server job.

If a positive number of records to return is specified, at least that many records are built
synchronously and the remainder are built asynchronously in a server job.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Filter Information

The following table shows the format of the filter information parameter. For detailed descriptions of the
fields in the table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Length of filter information

4 4 CHAR(10) Job queue name

14 E CHAR(10) Job queue library name

24 18 CHAR(10) Active subsystem name

34 22 CHAR(*) Reserved

Format of Sort Information

For more details about the fields in the following table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of keys to sort on

Offsets vary.
These fields
repeat for each
sort key field.

BINARY(4) Sort key field starting position

BINARY(4) Sort key field length

BINARY(2) Sort key field data type

CHAR(1) Sort order

CHAR(1) Reserved

Note: If the last three fields (sort key field data type, sort order, and the reserved field) are not used, then
they must be set to hexadecimal zeros. This causes all the data to be treated as character data, and it is
sorted in ascending order.

Field Descriptions

Active subsystem name. The active subsystem name whose job queue information is to be returned. A
simple active subsystem name or one of the following special values may be specified.

simple name A simple name of an active subsystem. The job queue name field must be set to special
value *ALLOCATED or *DEFINED.

*ALL All allocated job queues for all active subsystems on the system are returned. The Job
queue name field must be set to the special value *ALLOCATED.

blanks The active subsystem name field is ignored. Only the job queue name field is used.

If the active subsystem field is used, the job queue name field must be set to the correct special value and
the job queue library name field must be set to blanks.

Job queue name. The job queue about which to retrieve information. A simple job queue name, a generic
job queue name, or a special value may be specified.

The following values require the active subsystem name field to be blank.

simple name A simple name of a job queue.

generic name A generic name for job queues.

*ALL All job queues are returned.

When the active subsystem name field is set to a simple subsystem name, then one of the following special
values must be used:

*ALLOCATED Only the job queues that have been allocated by the active subsystem are returned.

*DEFINED The job queues that are defined to the active subsystem. This includes the job queues
that have been allocated by the subsystem.

When the active subsystem name field is set to *ALL, the following special value must be used:

*ALLOCATED Only the job queues that have been allocated by the active subsystem name are
returned.

Job queue library name. The library in which the job queue is located. A specific library name or a
special value may be specified.

The following values apply only when the job queue name field is set to a simple job queue name, a generic
job queue name, or the special value *ALL.

simple name A simple name of a library.

*ALL All libraries on the system are searched.

*ALLUSR All user defined libraries to which the user is authorized are searched.

*CURLIB The job's current library is searched.

*LIBL The library list for the job is searched.

*USRLIBL The libraries in the user portion of the job's library list are searched.

When the job queue name field is set to *ALLOCATED or *DEFINED the the job queue library field must
be blanks.

Length of filter information. The length of the filter information. An error message is returned if the
length of filter information is not set correctly.

Number of keys to sort on. The number of fields within the record structure on which to sort. If 0 is
specified, the list is not sorted.

Reserved. Must be set to hexadecimal zeros.

Sort key field data type. Data type of field to sort. See the Sort (QLGSORT) API for information on the
list of data types available.

Sort key field length. The length of the field on which to sort.

Sort key field starting position. Within the record of information, the starting position of the field on
which to sort.

Sort order. Whether the list should be sorted in ascending or descending order according to the key. See
the Sort (QLGSORT) API for information on the sort order special values.

Format of Receiver Variable

The following tables describe the order and format of the data returned in the receiver variable.

OJBQ0100 Format

For more details about the fields in the following table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job queue name

10 A CHAR(10) Job queue library name

20 14 CHAR(1) Job queue status

21 15 CHAR(10) Subsystem name

31 15 CHAR(10) Subsystem library name

41 29 CHAR(3) Reserved

44 2C BINARY(4) Number of jobs on job queue

48 30 BINARY(4) Sequence number

52 34 BINARY(4) Maximum active

56 38 BINARY(4) Current active

60 3C CHAR(50) Description

Field Descriptions

Current active. The number of jobs currently running in the active subsystem from this job queue. This
field is -1 if the job queue is not allocated, is damaged, does not exist, or the job queue has not been
allocated by the subsystem that was specified in the active subsystem field in the filter parameter.

Description. The text description for this job queue. This field will be blank if the job queue is defined to
an active subsystem, but has not been created or the job queue is damaged.

Job queue library name. The name of the library in which the job queue is located.

Job queue name. The name of the job queue.

Job queue status. The current status of the job queue. The possible values are:

0 The job queue is currently held. No jobs can become active from this job queue.

1 The job queue is released. Jobs can become active from this queue.

2 The job queue is damaged.

3 The job queue is defined to the active subsystem, but has not been created. No jobs can become
active from this job queue until it is created.

Maximum active. The maximum number of jobs that can be active in the subsystem from this job queue at
one time. A -1 in this field indicates that the value is *NOMAX. This field is -2 if the job queue has not
been defined to an active subsystem or the job queue is damaged.

Number of jobs on job queue. The total number of jobs currently waiting to run on this job queue. This
field ise -1 if the job queue is defined to the active subsystem, but has not been created or the job queue is
damaged.

Reserved. A reserved field.

Sequence number. The job queue entry sequence number. The subsystem uses this number to determine
the order in which the job queues are processed. Jobs from the job queue with the lowest sequence number
in the job queue are selected first. This field is -1 if the job queue has not been defined to an active
subsystem or the job queue is damaged.

Subsystem name. The name of the subsystem to which this job queue is allocated. If the job queue has
been allocated by a different subsystem than was specified in the filter parameter, the subsystem name will
identify the subsystem to which the job queue is allocated. This field is blank if the job queue is not
allocated, is damaged, or does not exist.

Subsystem library name. The library in which the subsystem description resides. This field will be blank
if the job queue is not allocated, damaged or does not exist.

Error Messages

Message ID Error Message Text

CPF1054 E No subsystem &1 active.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9804 E Object &2 in library &3 damaged.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9871 E Error occurred while processing.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0024 E &1 is not valid for number of keys to sort on.

GUI0025 E &1 is not valid for sort key field starting position.

GUI0026 E &1 is not valid for sort key field length.

GUI0027 E &1 is not valid for number of records to return.

GUI0119 E Reserved field in sort information not valid.

GUI0120 E Order field in sort information not valid.

GUI0150 E Subsystem key must be specified.

GUI0152 E &1 is not valid for length of filter information.

API introduced: V5R1

Top | Work Management APIs | APIs by category

Open List of Jobs (QGYOLJOB) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Receiver variable definition information Output Char(*)
5 Length of receiver variable definition

information
Input Binary(4)

6 List Information Output Char(80)
7 Number of records to return Input Binary(4)
8 Sort information Input Char(*)
9 Job selection information Input Char(*)
10 Size of job selection information Input Binary(4)
11 Number of fields to return Input Binary(4)
12 Key of fields to be returned Input Array(*) of Binary(4)
13 Error Code I/O Char(*)

 Optional Parameter Group 1:

14 Job selection format name Input Char(8)

 Optional Parameter Group 2:

15 Reset status statistics Input Char(1)
16 General return data Output Char(*)
17 Length of general return data Input Binary(4)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Open List of Jobs (QGYOLJOB) API generates a list of jobs on the system. The list is based on
specified selection criteria. The filtered list may then be sorted depending on the value of the sort
parameter. Upon successful completion of this API, a handle is returned in the list information parameter.
You may use this handle on subsequent calls to the following APIs:

Get List Entries (QGYGTLE)

Find List Entry (QGYFNDE)

Close List (QGYCLST)

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is used to return the job information.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. This must be large enough to hold at least one record of
information.

Format name

INPUT; CHAR(8)

The format of the job list to be returned. If format OLJB0200 is specified, the fields that are
selected by the caller are returned for each job in the list. This format is slower than the OLJB0100
format. The performance varies depending on the number of fields selected.

The possible format names follow:

OLJB0100 Basic job list.

OLJB0200 Basic job list with keyed return fields.

OLJB0300 Active job list with keyed return fields.

See Format of Receiver Variable for more information.

Receiver variable definition information

OUTPUT; CHAR(*)

The variable that is used to return the description of how the keyed portion of the list is returned in
the receiver variable. This variable is not filled in if the OLJB0100 format is used. See Format of
Receiver Variable Definition Information for a description of the layout of this parameter.

Length of receiver variable definition information

INPUT; BINARY(4)

The length of the receiver variable definition information. This must be large enough to hold the
information for all key fields that are specified in the key of fields to be returned parameter.

List Information

OUTPUT; CHAR(80)

Information about the list that is created by this program. For a description of the layout of this
parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable after filtering and sorting have
been done.

Sort information

INPUT; CHAR(*)

Information on what fields within the record of information to sort. See Format of Sort Information
for a description of the layout of this parameter.

Job selection information

INPUT; CHAR(*)

Information that is used for selecting which jobs to include in the list. See Format of Job Selection
Information for a description on the layout of this parameter.

Size of job selection information

INPUT; BINARY(4)

The size, in bytes, of the job selection information parameter. The minimum value required for this
parameter is 60 (or 108 with selection format OLJS0200).

Number of fields to return

INPUT; BINARY(4)

The number of fields to return. If this parameter is 0, the key of fields to be returned parameter is
not used, the receiver variable definition information parameter is not modified, and the length of
receiver variable definition information must be 0. This field must be set to 0 when the format is set
to OLJB0100.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

The list of the fields to be returned. For a list of the valid key fields, see Valid Keys. For a list of
valid key fields allowed on the OLJB0300 format, see List of keys supported for format
OLJB0300.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group 1

Job selection format name

INPUT; CHAR(8)

The format of the job selection information input. If this parameter is not specified, the OLJS0100
format is used. The possible format names follow:

OLJS0100 Basic selection information.

OLJS0200 Additional selection information.

See the Format of Job Selection Information for more information.

Optional Parameter Group 2

Optional Parameter Group 2 applies only when the format is OLJB0300.

Reset status statistics

INPUT; CHAR(1)

The elapsed time and all the key fields that are based on the elapsed time are reset to zero. If a
format other than OLJB0300 is specified, this field needs to be zero. The default value for this field
is zero. The following special values may be specified:

0 The elapsed time and the key fields based on the elapsed time are not reset.

1 The elapsed time and the key fields based on the elapsed time are reset back to zero.

General return data

OUTPUT; CHAR(*)

General output information that applies to the OLJB0300 format. See General return data for a
description of the data returned. This field is used only if the Length of general return data is
greater than 8.

Length of general return data

INPUT; BINARY(4)

The length of the general output information. The general output information field must be a
minimum of 8 bytes or 0 when the format is not OLJB0300. The default value for this field is 0.

Format of Receiver Variable

The following tables describe the order and format of the data that is returned in the receiver variable.

OLJB0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name used

10 A CHAR(10) User name used

20 14 CHAR(6) Job number used

26 1A CHAR(16) Internal job identifier

42 2A CHAR(10) Status

52 34 CHAR(1) Job type

53 35 CHAR(1) Job subtype

54 36 CHAR(2) Reserved

OLJB0200 Format

Offset

Type FieldDec Hex

0 0 CHAR(56) Everything in OLJB0100 format

56 38 CHAR(1) Job information status

57 39 CHAR(3) Reserved

This information
repeats for each
key selected.

CHAR(*) or
BINARY(4)

Data

OLJB0300 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name used

10 A CHAR(10) User name used

20 14 CHAR(6) Job number used

26 1A CHAR(4) Active job status

30 1E CHAR(1) Job type

31 1F CHAR(1) Job subtype

32 20 BINARY(4) Total length of data returned

36 24 CHAR(4) Reserved

This information
repeats for each
key selected.

CHAR(*) or
BINARY(4)

Data

Field Descriptions

Active job status. The active status of the initial thread of the job. For the list of possible values, see the
active job status field under Field Descriptions.

Data. The data returned for the key field.

Internal job identifier. A value that is sent to other APIs to speed the process of locating the job on the
system. Only APIs that are described in this topic use this identifier. The identifier is not valid following an
initial program load (IPL). If you attempt to use it after an IPL, an exception occurs.

Job information status. Whether the information was available for the job. The possible values follow:

blank The information was available.

L The information was not available because the job was not accessible.

Job name used. The name of the job as identified to the system. For an interactive job, the system assigns
the job the name of the workstation where the job started. For a batch job, you specify the name in the
command when you submit the job.

Job number used. The system-assigned job number.

Job subtype. Additional information about the job type (if any exists). Refer to Comparing Job Type and
Subtype with the Work with Active Job Command in the Retrieve Job Information (QUSRJOBI) API for
information about how the job type field and the job subtype field equate to the type field in the Work with
Active Job (WRKACTJOB) command. The possible values follow:

blank The job has no special subtype.

D The job is a batch immediate job.

E The job started with a procedure start request.

F The job is an iSeries Advanced 36 machine server job.

J The job is a prestart job.

P The job is a print driver job.

T The job is a System/36 multiple requester terminal (MRT) job.

U The job is an alternate spool user.

Job type. The type of job. Refer to Comparing Job Type and Subtype with the Work with Active Job
Command in the Retrieve Job Information (QUSRJOBI) API for information about how the job type field
and the job subtype field equate to the type field in the Work with Active Job (WRKACTJOB) command.
The possible values for this field follow:

A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the start-control program-function (SCPF) system job.

 blank The job has no type. A possible reason is the job was not found.

Reserved. An ignored field.

Status. The status of the job. The valid values follow:

*ACTIVE The job has started, and it can use system resources (processing unit, main storage, and so
on). This value does not guarantee that the job is currently running, however. For example,
an active job may be in one of the following states where it is not in a position to use system
resources:

The Hold Job (HLDJOB) command holds the job; the Release Job (RLSJOB)
command allows the job to run again.

●

The Transfer Group Job (TFRGRPJOB) or Transfer Secondary Job (TFRSECJOB)
command suspends the job. When control returns to the job, the job can run again.

●

The job is disconnected using the Disconnect Job (DSCJOB) command. When the
interactive user signs back on, thereby connecting back into the job, the job can run
again.

●

The job is waiting for any reason. For example, when a job receives a reply to an
inquiry message, the job can start running again.

●

*JOBQ The job is currently on a job queue. The job may have been previously active and was placed
back on the job queue because of the Transfer Job (TFRJOB) or Transfer Batch Job
(TFRBCHJOB) command, or the job was never active because it was just submitted.

*OUTQ The job has completed running and has spooled output that has not yet printed.

 blank The job has no status. A possible reason is the job was not found.

Total length of data returned. The length of the data portion of the returned data. This includes the sum of
all the keyed data for the job.

User name used. The user profile under which the job is run. The user name is the same as the user profile
name and can come from several different sources depending on the type of job.

Format of Receiver Variable Definition Information

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of fields returned

These fields
repeat, in the
order listed, for
each key
selected.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

BINARY(4) Displacement to data

Field Descriptions

Displacement to data. The displacement from the beginning of the job record to the value for this key.

Key field. The field returned. See Valid Keys in the List Job (QUSLJOB) API for the list of valid keys
supported for the OLJB0200 format. See List of keys supported for format OLJB0300 for the list of valid

keys supported for the OLJB0300 format.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of definition information returned for this field.
This value is used to increment to the next field in the list.

Number of fields returned. The number of fields in each record that is returned to the application.

Reserved. An ignored field.

Type of data. The type of data that is returned.

C The data is returned in character format.

B The data is returned in binary format.

Format of Sort Information

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of keys to sort on

Offsets vary.
These fields
repeat for each
sort key field.

BINARY(4) Sort key field starting position

BINARY(4) Sort key field length

BINARY(2) Sort key field data type

CHAR(1) Sort order

CHAR(1) Reserved

Field Descriptions

Number of keys to sort on. The number of fields within the record structure to sort on. If 0 is specified, the
list is not sorted.

The following special value is supported for format OLJB0200 only. Also, the job selection information
must be set to return only the jobs that are waiting to run from a single job queue.

-1 The list of jobs that are waiting to run on the specified job queue are returned in the order they will
be selected off the job queue to become active. When this special value is used, the job queue
priority (1005), data and time job was put on this job queue (0404), and the date and time job is
scheduled to run (0403) keys must be included in the list of key fields to return.

The following special value is supported for format OLJB0300 only.

-2 The list of active jobs is returned grouped by subsystem, with each subsystem monitor job followed
by the jobs that are running in that subsystem. The jobs are sorted alphabetically by subsystem
name, and then by job name within the subsystem. This sort order is similar to the way the jobs are
displayed on the Work with Active Jobs (WRKACTJOB SEQ(*SBS)) display. When this special
value is used, the subsystem description name (1906) key must be included in the list of key fields
to return.

Reserved. Reserved field. This field must be set to hexadecimal or binary zero.

Sort key field data type. Data type of field to sort. Refer to the Sort (QLGSORT) API for information on
the list of data types available.

Sort key field length. The length of the field to sort on.

Sort key field starting position. Within the record of information, the starting position of the field to sort
on. A value of 1 represents the first position within the record.

Sort order. Whether the list should be sorted in ascending or descending order according to the key.

1 Sort in ascending order.

2 Sort in descending order.

Format of Job Selection Information

The organization of the job selection information parameter is shown below. A description of the fields in
the parameter follows the table.

OLJS0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 0A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(1) Job type

27 1B CHAR(1) Reserved (ignored)

28 1C BINARY(4) Offset to primary job status array

32 20 BINARY(4) Number of primary job status entries

36 24 BINARY(4) Offset to active job status array

40 28 BINARY(4) Number of active job status entries

44 2C BINARY(4) Offset to jobs on job queue status array

48 30 BINARY(4) Number of jobs on job queue status entries

52 34 BINARY(4) Offset to job queue names array

56 38 BINARY(4) Number of job queue names entries

The offsets to
these fields are
specified in the
previous offset
variables.

ARRAY(*) of
CHAR(10)

Primary job status

ARRAY(*) of
CHAR(4)

Active job status

ARRAY(*) of
CHAR(10)

Jobs on job queue status

ARRAY(*) of
CHAR(20)

Job queue names

OLJS0200 Format

Offset

Type FieldDec Hex

0 0 CHAR(60) Everything in fixed portion of OLJS0100 format

60 3C BINARY(4) Offset to current user profile array

64 40 BINARY(4) Number of current user profile entries

68 44 BINARY(4) Offset to server type array

72 48 BINARY(4) Number of server type entries

76 4C BINARY(4) Offset to the active subsystem array

80 50 BINARY(4) Number of active subsystem entries

84 54 BINARY(4) Offset to the memory pool array

88 58 BINARY(4) Number of memory pool entries

92 5C BINARY(4) Offset to the job type - enhanced array

96 60 BINARY(4) Number of job type - enhanced entries

 100 64 BINARY(4) Offset to the qualified job name array

104 68 BINARY(4) Number of qualified job name entries

The offsets to
these fields are
specified in the
previous offset
variables.

ARRAY(*) Arrays from OLJS0100 format

ARRAY(*) of
CHAR(10)

Current user profile

ARRAY(*) of
CHAR(30)

Server type

ARRAY(*) of
CHAR(10)

Active subsystem

ARRAY(*) of
BINARY(4)

Memory pool

ARRAY(*) of
BINARY(4)

Job type - enhanced

 ARRAY(*)
of CHAR(26)

Qualified job name

Field Descriptions

Active job status. The active status of the initial threads of the jobs to be included in the list. The possible
values are the same as those described for the Retrieve Job Information (QUSRJOBI) API in the Usage
Notes for that API. (For compatibility with previous releases, the CLDW status can be specified in the
active job status array. The CLDW status is not returned, however, for any jobs.)

Active subsystem. The active subsystem under which the job is currently running.

Current user profile. The user profile under which the initial thread of the job is currently running. This
name may differ from the user portion of the job name. The current user profile is blank for jobs that are not
active.

Job name. A specific job name, a generic name, or one of the following special values:

* Only the job in which this program is running. The user name and job name fields must be
blank.

*CURRENT All jobs with the current job's name.

*ALL All jobs. The user name and job type fields must be specified.

 blank This field must be blank when using the Qualified job name array.

Job number. A specific job number or one of the following special values:

*ALL Jobs with the specified job name and user name, regardless of the job number. The job name
and user name fields must be specified.

 blank This field must be blank when using the Qualified job name array.

Job queue names. The job queue names. Jobs on these job queues are included in the list. The first 10
characters contain the job queue name, and the last 10 characters contain the library name.

Jobs on job queue status. The status of the jobs on the job queue to be included in the list. The possible
values follow:

SCD This job will run as scheduled.

HLD This job is being held on the job queue.

RLS This job is ready to be selected.

Job type. The type of job to be listed. The possible values follow:

* This value lists all job types.

A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the SCPF system job.

Job type - enhanced. The type of job to be listed. This field combines the Job type and Job Subtype fields.
The possible values are:

0110 Autostart job.

0200 All the batch job types.

0210 Batch job.

0220 Batch immediate job.

0230 Batch - System/36 multiple requester terminal (MRT) job.

0240 Batch - Alternate spool user

0310 Communications job - procedure start request job.

0900 All interactive type jobs.

0910 Interactive job.

0920 Interactive job - Part of group.

0930 Interactive job - Part of system request pair.

0940 Interactive job - Part of system request pair and part of a group.

1600 All prestart jobs.

1610 Prestart job.

1620 Prestart batch job.

1630 Prestart communications job.

1810 Reader job.

1910 Subsystem job.

1920 System job.

2310 Writer job.

Memory pool. The identifier of the system memory pool in which the job started running. The identifier is
a number in the range of 1 - 64.

Number of active job status entries. The number of entries that are specified for the active job status
array. If this value is 0, no filtering is done on active job status. The offset to active job status array and the
active job status array fields are not used. If the value is not 0, the primary job status array must include an
array entry of *ACTIVE or the number of primary job status array entries should be specified as 0 to
indicate that no filtering is done on the primary job status.

Number of active subsystem entries. The number of entries that are specified for the active subsystem

array. If this value is 0, no filtering is done on active subsystems, and the offset to the active subsystem
array and the active subsystem array fields are not used. This value must be 0 when format OLJB0100 or
OLJB0200 is specified.

Number of current user profile entries. The number of entries that are specified for the current user
profile array. If this value is 0, no filtering is done on the current user profile, and the offset to current user
profile array and the current user profile array fields are not used.

Number of job queue names entries. The number of entries that is specified for the job queue names
array. If this value is 0, no filtering is done on the job queue names. The offset to job queue names array
and the job queue names array fields are not used. If this value is not 0, the primary job status array must
include an array entry of *JOBQ or the number of primary job status array entries should be specified as 0
to indicate that no filtering is done on the primary job status. This value must be 0 when format OLJB0300
is specified.

Number of jobs on job queue status entries. The number of entries that are specified for the jobs on job
queue status array. If this value is 0, no filtering is done on the jobs on job queue status array. The offset to
jobs on job queue status array and the jobs on job queue status array fields are not used. If this value is not
0, the primary job status array must include an array entry of *JOBQ or the number of primary job status
array entries should be specified as 0 to indicate that no filtering is done on the primary job status. This
value must be 0 when format OLJB0300 is specified.

Number of job type - enhanced entries. The number of entries that are specified for the job type -
enhanced array. If this value is 0, no filtering is done on the job type - enhanced array. The offset to job
type - enhanced array and the job type - enhanced array fields are not used.

Number of memory pool entries. The number of entries that are specified for the memory pool name
array. If this value is 0, no filtering is done on memory pool, and the offset to the memory pool name array
and the memory pool name array fields are not used. This value must be 0 when format OLJB0100 or
OLJB0200 is specified.

Number of primary job status entries. The number of entries that are specified for the primary job status
array. If 0 is specified, no filtering is done on the primary job status, and the offset to primary job status
array and the primary job status array fields are not used. This value must be 0 when format OLJB0300 is
specified.

Number of qualified job name entries. The number of entries that are specified for the qualified job
name array. If 0 is specified, no filtering is done on the qualified job name, and the offset to qualified job
name array and the qualified job name array fields are not used. This value must be 0 when format
OLJB0300 is specified. This value must be 0 when anything other than blanks are specified in the job
name, user name, or job number fields. The same number of jobs will be returned in the list of returned
jobs. For jobs that are not found, the Status, Job type, and Job subtype fields will be set to blanks and the
Job information status field will be set to 'L'.

Number of server type entries. The number of entries that is specified for the server type array. If this
value is 0, no filtering is done on the server type. Also, the offset to server type array and the server type
array fields are not used.

Offset to active job status array. The offset in characters (bytes) from the beginning of the job selection
information structure to the beginning of the active job status array.

Offset to active subsystem array. The offset in characters (bytes) from the beginning of the job selection
information structure to the beginning of the active subsystem array.

Offset to current user profile array. The offset in characters (bytes) from the beginning of the job
selection information structure to the beginning of the current user profile array.

Offset to job queue names array. The offset in characters (bytes) from the beginning of the job selection
information structure to the beginning of the job queue names array.

Offset to jobs on job queue status array. The offset in characters (bytes) from the beginning of the job
selection information structure to the beginning of the jobs on job queue status array.

Offset to job type - enhanced array. The offset in characters (bytes) from the beginning of the job
selection information structure to the beginning of the job type - enhanced array.

Offset to memory pool array. The offset in characters (bytes) from the beginning of the job selection
information structure to the beginning of the memory pool name array.

Offset to primary job status array. The offset in characters (bytes) from the beginning of the job selection
information structure to the beginning of the primary job status array.

Offset to qualified job name array. The offset in characters (bytes) from the beginning of the job
selection information structure to the beginning of the qualified job name array.

Offset to server type array. The offset in characters (bytes) from the beginning of the job selection
information structure to the beginning of the server type array.

Primary job status. The primary status of the jobs to be included in the list. The possible special values
follow:

*ACTIVE Active jobs. This includes group jobs, system request jobs, and disconnected jobs.

*JOBQ Jobs that are currently on job queues.

*OUTQ Jobs that have completed running but still have output on an output queue.

Qualified job name. The qualfied job name. The first 10 characters are the job name. The second 10
characters are the user name of the job. The last 6 characters are the job number.

Reserved (ignored). An ignored field.

Reserved (must be 0). Reserved field. This field must be set to zero.

Server type. The type of server represented by the job. Servers provided by IBM start with QIBM. A
server type, a generic value, or one of the following special values can be specified:

*ALL All jobs with a server type.

*BLANK All jobs without a server type.

User name. A specific user profile name, a generic name, or one of the following special values:

*CURRENT Jobs that use the current job's user profile.

*ALL Jobs that use the specified job name, regardless of the user name. The job name and job
number fields must be specified.

 blank This field must be blank when using the Qualified job name array.

General Return Data

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(8),
UNSIGNED

Elapsed time

16 10 CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Elapsed time. The time, in milliseconds, that has elapsed between the measurement start time and the
current system time. This value is 0 the first time this API is called by this job. The measurement start is set
the first time this API is called and when the Reset status statistics is set to reset the elapsed time.

Reserved. An ignored field.

List of keys supported for format OLJB0200

The list of possible keys is the same as that described for the List Job (QUSLJOB) API.

List of keys supported for format OLJB0300

Key Type Description

103 CHAR(4) Active job status for jobs ending

305 CHAR(10) Current user profile

312 BINARY(8),
UNSIGNED

Processing unit time used - total for the job

313 BINARY(8),
UNSIGNED

Processing unit time used for database - total for
the job

314 BINARY(4) Processing unit used - percent used during the
elapsed time (job)

315 BINARY(8),
UNSIGNED

Processing unit used - time during the elapsed
time (job)

316 BINARY(4) Processing unit used for database - percent used
during the elapsed time (job)

317 BINARY(8),
UNSIGNED

Processing unit used for database - time during
the elapsed time (job)

402 CHAR(13) Date and time job entered system

414 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time (job)

415 BINARY(8),
UNSIGNED

Disk I/O count - total for the job

416 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time -
asynchronous I/O (job)

417 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time -
synchronous I/O (job)

502 CHAR(1) End status

601 CHAR(10) Function name

602 CHAR(1) Function type

904 BINARY(4) Interactive response time - total during the
elapsed time

905 BINARY(4) Interactive transactions - count during the
elapsed time

1012 CHAR(10) Job user identity

1014 BINARY(4) Job end reason

1015 CHAR(1) Job log pending

1016 BINARY(4) Job type - enhanced

1306 CHAR(10) Memory pool name

1307 CHAR(1) Message reply

1609 BINARY(8),
UNSIGNED

Page fault count during the elapsed time (job)

1802 BINARY(4) Run priority (job)

1906 CHAR(20) Subsystem description name - qualified

1911 CHAR(30) Server type

1982 CHAR(10) Spooled file action

2008 BINARY(4) Thread count

Field Descriptions

The field descriptions are in Work Management API Attribute Descriptions (WMAttrDesc).

Usage Notes

The conditions under which this API is threadsafe are the same as those described in the Usage Notes for
the Retrieve Job Information (QUSRJOBI) API.

Error Messages

Message ID Error Message Text

CPF1865 E Value &1 for job type not valid.

CPF1866 E Value &1 for number of fields to return not valid.

CPF1867 E Value &1 in list not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C39 E Value for reserved field not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CB1 E Value &1 for job status is not valid.

CPF3CB2 E Value specified for job parameter is not valid.

CPF3CF1 E Error code parameter not valid.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0024 E &1 is not valid for number of keys to sort on.

GUI0025 E &1 is not valid for sort key field starting position.

GUI0026 E &1 is not valid for sort key field length.

GUI0027 E &1 is not valid for number of records to return.

GUI0049 E Key 1903 for status of jobs on job queues is not specified.

GUI0052 E &1 is not valid for active status.

GUI0119 E Reserved field in sort information not valid.

GUI0120 E Order field in sort information not valid.

GUI0121 E Printer name cannot be specified when format LSPL0100 is requested.

GUI0122 E Number of primary job status entries not valid.

GUI0123 E Active status key must be specified.

GUI0124 E Primary status array must include *ACTIVE.

GUI0125 E Status of job on job queue key must be specified.

GUI0126 E Primary status array must include *JOBQ.

GUI0127 E Number of job queue names not valid.

GUI0128 E Job queue name key must be specified.

GUI0129 E Number of active job status entries not valid.

GUI0130 E Number of jobs on job queue status entries not valid.

GUI0131 E &2 is not valid for length of job selection criteria.

GUI0132 E &2 is not valid for length of receiver variable definition information.

GUI0133 E Format OLJB0200 must be specified.

GUI0134 E &2 not valid for length of job selection information.

GUI0137 E Current user key must be specified.

GUI0138 E Server type key must be specified.

GUI0139 E Number of current users not valid.

GUI0140 E Number of server types not valid.

 GUI0142 E Format OLJB0300 valid for active jobs only.

GUI0143 E Number of memory pool names not valid.

GUI0144 E Number of active subsystem names not valid.

GUI0145 E All optional parameters must be specified.

GUI0146 E Filter information not correct for format OLJB0200.

GUI0147 E Required keys not specified.

GUI0148 E Number of job type enhanced values not valid.

GUI0149 E &1 is not valid for number of keys to sort on.

GUI0150 E Subsystem key must be specified.

GUI0151 E Job type enhanced key must be specified.

API introduced: V4R1

Top | Work Management APIs | APIs by category

Open List of Threads (QWCOLTHD) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Receiver variable definition information Output Char(*)
5 Length of receiver variable definition

information
Input Binary(4)

6 Job identification information Input Char(*)
7 Format of job identification information Input Char(8)
8 List Information Output Char(80)
9 Number of records to return Input Binary(4)
10 Sort information Input Char(*)
11 Number of fields to return Input Binary(4)
12 Key of fields to be returned Input Array(*) of Binary(4)
13 Reset status statistics Input Char(1)
14 General return data Output Char(*)
15 Length of general return data Input Binary(4)
16 Error Code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes.

The Open List of Threads (QWCOLTHD) API generates a list of active threads for the job specified in the
Job identification parameter. The list may be sorted depending on the value of the sort parameter. Upon
successful completion of this API, a handle is returned in the list information parameter. You may use this
handle on subsequent calls to the following APIs:

Get List Entries (QGYGTLE)

Find List Entry (QGYFNDE)

Close List (QGYCLST)

Authorities and Locks

Job Authority

This API must be called from within the job for which the information is being retrieved or the
caller of the API must be running under a user profile that is the same as the job user identity of the
job for which the information is being retrieved or the caller of the API must be running under a
user profile that has job control (*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management book on the V5R1 Supplemental Manuals

Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is used to return the list of active thread information.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

Format name

INPUT; CHAR(8)

The format of the thread list to be returned. The performance varies depending on the number of
fields selected. The possible format names follow:

OLTH0100 List of active threads with keyed return fields.

See Format of Receiver Variable for more information.

Receiver variable definition information

OUTPUT; CHAR(*)

The variable that is used to return the description of how the keyed portion of the list is returned in
the receiver variable. See Format of Receiver Variable Definition Information for a description of
the layout of this parameter.

Length of receiver variable definition information

INPUT; BINARY(4)

The length of the receiver variable definition information. This must be large enough to hold the
information for all key fields that are specified in the key of fields to be returned parameter.

Job identification information

INPUT; CHAR(*)

The information that is used to identify the job for which the list of threads is to be returned. See
Format of job identification information for details.

Format of job identification information

INPUT; CHAR(8)

The format of the job identification information. The possible format name is:

JIDF0100 See Format of job identification information for details on the job identification
information.

List Information

OUTPUT; CHAR(80)

Information about the list that is created by this program. For a description of the layout of this
parameter, see Format of open list information.

Number of records to return

INPUT; BINARY(4)

The number of records in the list to put into the receiver variable after sorting has been done.

Sort information

INPUT; CHAR(*)

Information on what fields within the record of information to sort. See Format of Sort Information
for a description of the layout of this parameter.

Number of fields to return

INPUT; BINARY(4)

The number of fields to return. If this parameter is 0, the key of fields to be returned parameter is
not used, the receiver variable definition information parameter is not modified, and the length of
receiver variable definition information must be 0.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

The list of the fields to be returned. For a list of the valid key fields, see Valid Keys.

Reset status statistics

INPUT; CHAR(1)

The elapsed time and all the key fields that are based on the elapsed time are reset to zero. The
following special values may be specified:

0 The elapsed time and the key fields based on the elapsed time are not reset.

1 The elapsed time and the key fields based on the elapsed time are reset back to zero.

General return data

OUTPUT; CHAR(*)

General output information that applies to the list of threads returned. See General return data for a
description of the data returned.

Length of general return data

INPUT; BINARY(4)

The length of the general output information. The general output information field must be a
minimum of 8 bytes.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Receiver Variable

The following tables describe the order and format of the data that is returned in the receiver variable.

OLTH0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(8) Thread identifier

8 8 BINARY(4),
UNSIGNED

Thread handle

12 C BINARY(4) Total length of data returned

16 F CHAR(*) Reserved

This information
repeats for each
key selected.

CHAR(*) or
BINARY(4)

Data

Field Descriptions

Data. The data returned for the key field.

Reserved. An ignored field.

Thread handle. A value that is used to address a particular thread within a job. A valid thread handle must
be specified. The thread handle is returned on several other interfaces.

Thread identifier. A value that is used to uniquely identify a thread within a job. A valid thread identifier
must be specified.

Total length of data returned. The length of the data portion of the returned data. This includes the sum of
all the keyed data for the list of threads.

Format of Receiver Variable Definition Information

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of fields returned

These fields
repeat, in the
order listed, for
each key
selected.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

BINARY(4) Displacement to data

Field Descriptions

Displacement to data. The displacement from the beginning of the thread record in the receiver variable to
the value for this key.

Key field. The field returned. See List of keys supported for format OLTH0100 for the list of valid keys
supported for the OLTH0100 format.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of definition information returned for this field.
This value is used to increment to the next field in the list.

Number of fields returned. The number of fields in each record that is returned to the application.

Reserved. An ignored field.

Type of data. The type of data that is returned.

C The data is returned in character format.

B The data is returned in binary format.

Format of Sort Information

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of keys to sort on

Offsets vary.
These fields
repeat for each
sort key field.

BINARY(4) Sort key field starting position

BINARY(4) Sort key field length

BINARY(2) Sort key field data type

CHAR(1) Sort order

CHAR(1) Reserved

Field Descriptions

Number of keys to sort on. The number of fields within the record structure on which to sort. If 0 is
specified, the list is not sorted.

Reserved. Reserved field. This field must be set to hexadecimal or binary zero.

Sort key field data type. Data type of field to sort. Refer to the Sort (QLGSORT) API for information on
the list of data types available.

Sort key field length. The length of the field on which to sort.

Sort key field starting position. Within the record of information, the starting position of the field to sort
on. A value of 1 represents the first position within the record.

Sort order. Whether the list should be sorted in ascending or descending order according to the key.

1 Sort in ascending order.

2 Sort in descending order.

Format of job identification information

The format of the information needed to identify the job for which the list of threads will be returned.

JIDF0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job that this program is running in. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hex zeros.

Thread identifier. An unused field on this API. This field must contain hex zeros.

Thread indicator. An unused field on this API. This field must contain hex zeros.

User name. A specific user profile name, or blanks when the job name specified is a special value.

General Return Data

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(8),
UNSIGNED

Elapsed time

16 10 CHAR(10) Job name used

26 1A CHAR(10) User name used

36 24 CHAR(6) Job number used

42 2A CHAR(16) Internal job identifier

58 3A CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Elapsed time. The time, in milliseconds, that has elapsed between the measurement start time and the
current system time. This value is 0 the first time this API is called by this job. The measurement start is set
the first time this API is called and when the Reset status statistics is set to reset the elapsed time.

Internal job identifier. A value that is sent to other APIs to speed the process of locating the job on the
system. The identifier is not valid following an initial program load (IPL). If you attempt to use it after an
IPL, an exception occurs.

Job name used. The name of the job as identified to the system. For an interactive job, the system assigns
the job the name of the workstation where the job started. For a batch job, you specify the name in the
command when you submit the job.

Job number used. The system-assigned job number.

Reserved. An ignored field.

User name used. The user profile under which the job is started. The user name is the same as the user
profile name and can come from several different sources depending on the type of job.

List of keys supported for format OLTH0100

Key Type Description

305 CHAR(10) Current user profile

319 BINARY(8),
UNSIGNED

Processing unit time used - total for the thread

320 BINARY(8),
UNSIGNED

Processing unit time used for database - total for the
thread

321 BINARY(4) Processing unit used - percent during the elapsed
time (thread)

322 BINARY(8),
UNSIGNED

Processing unit used - time during the elapsed time
(thread)

323 BINARY(4) Processing unit used for database - percent used
during the elapsed time (thread)

324 BINARY(8),
UNSIGNED

Processing unit time used for data base - time during
the elapsed time (thread)

419 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time (thread)

420 BINARY(8),
UNSIGNED

Disk I/O count - total for the thread

421 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time -
asynchronous I/O (thread)

422 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time -
synchronous I/O (thread)

1610 BINARY(8),
UNSIGNED

Page fault count during the elapsed time (thread)

1804 BINARY(4) Run priority (thread)

2010 CHAR(4) Thread status

2011 CHAR(1) Thread type

When the length of the data returned for a key is not a multiple of 4 bytes, the length of the field
information returned is adjusted so that the next key begins on a 4-byte boundary. This adjustment should
be considered when calculating the starting position of a key field to sort on.

Field Descriptions

The field descriptions are in Work Management API Attribute Descriptions (WMAttrDesc).

Error Messages

Message ID Error Message Text

CPF136A E Job &3/&2/&1 not active.

CPF1866 E Value &1 for number of fields to return not valid.

CPF1867 E Value &1 in list not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9F81 E API &1 requires too much information to be collected prior to sorting.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0024 E &1 is not valid for number of keys to sort on.

GUI0025 E &1 is not valid for sort key field starting position.

GUI0026 E &1 is not valid for sort key field length.

GUI0027 E &1 is not valid for number of records to return.

GUI0119 E Reserved field in sort information not valid.

GUI0120 E Order field in sort information not valid.

GUI0132 E &2 is not valid for length of receiver variable definition information.

GUI0149 E &1 is not valid for number of keys to sort on.

API introduced: V5R2

Top | Work Management APIs | APIs by category

Retrieve Call Stack (QWVRCSTK) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Job identification information Input Char(*)
5 Format of job identification information Input Char(8)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Call Stack (QWVRCSTK) API returns the call stack information for the specified thread. The
first call stack entry returned corresponds to the most recent call in the thread.

Authorities and Locks

Job Authority

The API must be called within the thread for which the call stack is being retrieved, or the caller of
the API must be running under a user profile that is the same as the job user identity of the job
containing the thread for which the call stack is being retrieved. Otherwise, the caller of the API
must be running under a user profile that has job control (*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management book on the V5R1 Supplemental Manuals
Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold. For example, this may mean that the
value in the number of call stack entries returned field doesn't match the value in the number of call
stack entries for thread field.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The possible format name is:

CSTK0100 See Format CSTK0100 for details on the call stack information returned.

Job identification information

INPUT; CHAR(*)

The information that is used to identify the thread within a job for which call stack information is to
be returned. See Format of job identification information for details.

Format of job identification information

INPUT; CHAR(8)

The format of the job identification information. The possible format names are:

JIDF0100 See Format of job identification information for details on the job identification
information.

 JIDF0200 See Format of job identification information for details on the job identification
information.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a
thread that is not the current thread than Format JIDF0100.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format CSTK0100

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of call stack entries for thread

12 C BINARY(4) Offset to call stack entry information

16 10 BINARY(4) Number of call stack entries returned

20 14 CHAR(8) Returned thread identifier

28 1C CHAR(1) Information status

29 1D CHAR(*) Reserved

These fields
repeat, in the
order listed, for
the number of
call stack entries.

BINARY(4) Length of this call stack entry

BINARY(4) Displacement to statement identifiers

BINARY(4) Number of statement identifiers

BINARY(4) Displacement to the procedure name

BINARY(4) Length of procedure name

BINARY(4) Request level

CHAR(10) Program name

CHAR(10) Program library name

BINARY(4) MI instruction number

CHAR(10) Module name

CHAR(10) Module library name

CHAR(1) Control boundary

CHAR(3) Reserved

BINARY(4),
UNSIGNED

Activation group number

CHAR(10) Activation group name

 CHAR(2) Reserved

CHAR(10) Program ASP name

CHAR(10) Program library ASP name

BINARY(4) Program ASP number

BINARY(4) Program library ASP number

CHAR(*) Reserved

ARRAY(*) of
CHAR(10)

Statement identifiers

CHAR(*) Procedure name

Field Descriptions

Activation group name. The name of the activation group within which the program or procedure is
running. Possible special values are:

*DFTACTGRP The activation group does not have a specific name. The activation group is one of the
default activation groups for the system.

*NEW The activation group does not have a specific name. The activation group was created
when the program was called.

Activation group number. The number of the activation group within which the program or procedure is
running. This is an internal number that uniquely identifies the activation group within the job.

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Control boundary. Whether a control boundary is active for a particular program or procedure. Possible
values are:

0 No control boundary is active.

1 A control boundary is active.

Displacement to procedure name. The displacement in bytes from the beginning of the call stack entry to
the procedure name. This field is zero if the program at this call stack entry is not an ILE program.

Displacement to statement identifiers. The displacement in bytes from the beginning of the call stack
entry to the array of statement identifiers. This field is zero if the number of statement identifiers is zero.

Information status. Whether the call stack entry information could be successfully retrieved.

blank No errors occurred. All information is returned in each entry.

I The information in each entry is not complete. The request level, control boundary, activation
group number and activation group name fields could not be retrieved. The request level and
activation group number are zero and the control boundary and activation group name are blank
in each entry.

N The call stack entry information could not be retrieved. No entries are returned.

Length of procedure name. The length of the procedure name. This field is zero if the program at this call
stack entry is not an ILE program.

Length of this call stack entry. The length of this call stack entry.

MI instruction number. The current machine instruction number in the program. This field is not
meaningful for integrated language environment (ILE) procedures. A zero is returned for ILE procedures.

Module library name. The name of the library in which the module is located. The following special
values may be returned:

*N The module library name is unavailable. Either the program has been destroyed or the library
containing the program is locked.

blanks The program at this call stack entry is not an ILE program.

Module name. The module containing the integrated language environment (ILE) procedure. The
following special values may be returned:

*N The module name is unavailable. Either the program has been destroyed or the library
containing the program is locked.

blanks The program at this call stack entry is not an ILE program.

Number of call stack entries for thread. The number of call stack entries that are associated with this
thread. A zero is returned if the call stack could not be retrieved.

Number of call stack entries returned. The number of call stack entries returned in the receiver variable.

Number of statement identifiers. The number of statement identifiers returned. This field is zero if the
program or procedure was not created with debugging tables.

Offset to call stack entry information. The offset in bytes from the beginning of the receiver variable to

the first call stack entry.

Procedure name. The name of the procedure at this level of the call stack.

Program ASP name. The name of the auxiliary storage pool (ASP) device in which the program is
located. The following special values also may be returned:

*SYSBAS The program is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Program ASP number. The numeric identifier of the ASP containing the program. The following values
may be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP device cannot be determined.

Program library ASP name. The name of the ASP in which the program library is located. The following
special values also may be returned:

*SYSBAS The program library is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Program library ASP number. The numeric identifier of the ASP containing the program library. The
following values may be returned:

1 The library is located in the system ASP or in a basic user ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP device cannot be determined.

Program library name. The name of the library in which the program is located. The following special
values may be returned:

*N The program library name is unavailable. The library containing the program has been
destroyed or is locked.

 blanks The program is not located in a library.

Program name. The name of the program at this level of the call stack. This can be any type of program
object, including objects of type *PGM and *SRVPGM. The following special value may be returned:

*N The program is unavailable. Either the program has been destroyed or the library containing the
program is locked.

Request level. The level of the request-processing program or procedure. A zero is returned if the program
or procedure has not received a request message.

Reserved. An unused field.

Returned thread identifier. A value which uniquely identifies the thread within the job.

Statement identifiers. The high-level language statement identifier. If this field contains the character
representation of a number, the number is right-adjusted in the field and padded on the left with zeros (for
example, '0000000246'). If the call stack entry is for an integrated language environment (ILE) procedure,
more than one statement identifier may exist because of the compilers used for ILE languages.

Format of job identification information

The format of the information needed to identify the thread for which call stack information will be
returned.

JIDF0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value which uniquely identifies a thread within a job. If the thread indicator is not 0,
this field must contain hex zeros.

Thread indicator. A value which is used to specify the thread within the job for which information is to be
retrieved. The following values are supported:

0 Specifies that information should be retrieved for the thread specified in the thread identifier field.

1 Specifies that information should be retrieved for the thread that this program is currently running in.
The combination of the internal job identifier, job name, job number, and user name fields must also
identify the job containing the current thread.

2 Specifies that information should be retrieved for the initial thread of the identified job.

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4),
UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value which addresses a particular thread within a job. While the thread identifier
uniquely identifies the thread within the job, the thread handle can improve performance when referencing
the thread. A valid thread handle must be specified. The thread handle is returned on several other
interfaces.

Thread identifier. A value which uniquely identifies a thread within a job. A valid thread identifier must

be specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Error Messages

Message ID Error Message Text

CPF136A E Job &3/&2/&1 not active.

CPF18BF E Thread &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid

CPF3C3C E Value for parameter &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

Top | Work Management APIs | APIs by category

Retrieve Class Information (QWCRCLSI) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of class information Input Char(8)
4 Qualified class name Input Char(20)
5 Error Code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Class Information (QWCRCLSI) API returns the attributes of a class object. A class contains
the job run attributes for jobs that use this class. This API provides support similar to the Display Class
(DSPCLS) command.

Authorities and Locks

Class

*USE

Class Library

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of class information

INPUT; CHAR(8)

The format of the class information being returned. The format names that can be used are as
follows:

CLSI0100 This format returns all of the class information. See Format CLSI0100 for details.

Qualified class name

INPUT; CHAR(20)

The class name whose attributes are to be retrieved. The first 10 characters contain the class name,
and the second 10 characters contain the library name. You can use these special values for the
library name:

*CURLIB The job's current library

*LIBL The job's library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format CLSI0100

The following information is returned by this API when format CLSI0100 is used:

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Class name

18 12 CHAR(10) Class library name

28 1C BINARY(4) Run priority

32 20 BINARY(4) Time slice

36 24 BINARY(4) Eligible for purge

40 28 BINARY(4) Default wait time

44 2C BINARY(4) Maximum CPU time

48 30 BINARY(4) Maximum temporary storage in kilobytes

52 34 BINARY(4) Maximum number of threads

56 38 CHAR(50) Text

106 6A CHAR(2) Reserved

108 6C BINARY(4) Maximum temporary storage in megabytes

Field Description

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Class library name. The name of the library in which the class resides.

Class name. The name of the class about which information is returned.

Default wait time. The default maximum time (in seconds) that a thread in a job waits for a system
instruction, such as the LOCK machine interface (MI) instruction, to acquire a resource. This default wait
time is used when a wait time is not otherwise specified for a given situation. Normally, this would be the
amount of time the user would be willing to wait for the system before the request is ended. A value of -1 is
returned for *NOMAX, which indicates there is no maximum wait time.

Eligible for purge. Whether or not the job is eligible to be moved out of main storage and put into
auxiliary storage at the end of a time slice or when beginning a long wait (such as waiting for a work station
user's response). This attribute is ignored when more than one thread is active within the job. The possible
values are:

0 The job is not eligible to be moved out of main storage and put into auxiliary storage. When main
storage is needed, however, pages belonging to a thread in this job may be moved to auxiliary
storage. Then, when a thread in the job runs again, its pages are returned to main storage as they are
needed.

1 The job is eligible to be moved out of main storage and put into auxiliary storage. A job with
multiple threads, however, is never purged from main storage.

Maximum CPU time. The maximum processing unit time (in milliseconds) that the job can use. If the job
consists of multiple routing steps, this is the maximum processing unit time that the routing step can use. If
the maximum time is exceeded, the job is ended. A value of -1 is returned for *NOMAX, which indicates
there is no limit on the processing unit time.

Maximum number of threads. The maximum number of threads that a job using this class can run with at
any time. If multiple threads are initiated simultaneously, this value may be exceeded. If this maximum
value is exceeded, the excess threads will be allowed to run to their normal completion. Initiation of
additional threads will be inhibited until the maximum number of threads in the job drops below this
maximum value. A value of -1 is returned for *NOMAX, which indicates there is no maximum number of
threads. Depending on the resources used by the threads and the resources available on the system, the
initiation of additional threads may be inhibited before the maximum is reached.

Maximum temporary storage in kilobytes. The maximum amount of auxiliary storage (in kilobytes) that
the job can use. If the job consists of multiple routing steps, this is the maximum temporary storage that the
routing step can use. This temporary storage is used for storage that is required by the programs running in
the job and by internal system objects created while the programs are running. (It does not include storage
in the QTEMP library.) If the maximum temporary storage is exceeded, the job is ended. This does not
apply to the use of permanent storage, which is controlled through the user profile. A value of -1 is returned
for *NOMAX, which indicates the system maximum is used.

Maximum temporary storage in megabytes. The maximum amount of auxiliary storage (in megabytes)
that the job can use. If the job consists of multiple routing steps, this is the maximum temporary storage that
the routing step can use. This temporary storage is used for storage that is required by the programs running
in the job and by internal system objects created while the programs are running. (It does not include
storage in the QTEMP library.) If the maximum temporary storage is exceeded, the job is ended. This does
not apply to the use of permanent storage, which is controlled through the user profile. A value of -1 is

returned for *NOMAX, which indicates the system maximum is used.

Reserved. This field is ignored.

Run priority. A value that represents the priority at which the job competes for the processing unit relative
to other jobs that are active at the same time. The run priority ranges from 0 (highest priority) to 99 (lowest
priority). This value is the highest run priority allowed for any thread within the job. Individual threads may
have a lower priority.

Text. The text description of the class.

Time slice. The maximum amount of processor time, in milliseconds, given to each thread in a job before
other threads in the job or other jobs are given the opportunity to run. The time slice establishes the amount
of time needed by a thread in the job to accomplish a meaningful amount of processing. At the end of the
time slice, the thread might be put in an inactive state so that other threads can become active in the storage
pool.

Error Messages

Message ID Error Message Text

CPF1029 E No authority to library &1.

CPF1039 E Class library &1 not found.

CPF1065 E Class &1 in library &2 not found.

CPF1067 E Cannot allocate library &1.

CPF1068 E Cannot allocate class &1 in library &2.

CPF1098 E No authority to class &1 in library &2.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R3

Top | Work Management APIs | APIs by category

Retrieve Current Attributes (QWCRTVCA) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Number of attributes to return Input Binary(4)
5 Key of attributes to be returned Input Array(*) of Binary(4)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Valid Key Attributes.

The Retrieve Current Attributes (QWCRTVCA) API retrieves job and thread attributes that apply to the
thread in which this API is called. If a thread attribute exists, it is retrieved. If a thread attribute does not
exist, the job attribute for the job in which this thread is running is retrieved.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is used to return the thread attributes.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable.

Format name

INPUT; CHAR(8)

The format of the attribute list to return. The possible format names follow:

 RTVC0100 Basic retrieve format

RTVC0200 Library list information

RTVC0300 ASP group information

See RTVC0100 Format, RTVC0200 Format, and RTVC0300 Format for more information.

Number of attributes to return

INPUT; BINARY(4)

The number of attributes to return in the specified format.

Key of attributes to be returned

INPUT; ARRAY(*) of BINARY(4)

The list of the attributes to be returned in the specified format. For a list of the valid key attributes,
see Valid Key Attributes.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

RTVC0100 Format

The following table describes the order and format of the data that is returned in the receiver variable for
format RTVC0100. See Valid Key Attributes for threadsafe information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of attributes returned

These fields
repeat, in the
order listed, for
each key
requested.

BINARY(4) Length of attribute information returned

BINARY(4) Key

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Data. The data returned for the key field.

Key. The attribute returned. See Valid Key Attributes for the list of valid keys.

Length of attribute information returned. The total length of information returned for this attribute. This
value is used to increment to the next entry in the list.

Length of data. The length of the data returned for the field.

Number of attributes returned. The number of attributes returned to the application.

Reserved. An ignored field.

Type of data. The type of output data. This field is provided to maintain the same format layout that is
used in the Change Job (QWTCHGJB) API.

C The output data is in character format.

B The output data is in binary format.

RTVC0200 Format

The RTVC0200 format returns library list information. Retrieval of the library list information is
threadsafe. The format returns the actual length instead of the total length because all libraries may not
exist.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 BINARY(4) Number of libraries in SYSLIBL

12 C BINARY(4) Number of product libraries

16 10 BINARY(4) Current library existence

20 14 BINARY(4) Number of libraries in USRLIBL

See
note

See
note

Array(*) of
CHAR(11)

Library list (for each library in the list)

Note: The decimal and hexadecimal offsets depend on the number of libraries you
have in the various parts of your library lists and on keys requested. The data is
left-justified and padded with blanks on the right. The array is sequential. See the

CL Programming book for the total number of libraries that can be returned to
you.

Field Descriptions

Current library existence. Whether the current library exists or not. This value will be zero if the current
library was not requested.

0 No current library exists.

1 A current library exists.

Number of bytes available. All of the available bytes for use in your application.

The actual length depends on how many libraries are in the library list.

Number of bytes returned. The number of bytes returned to the user. This may be some but not all of the
bytes available.

Number of libraries in SYSLIBL. The number of libraries in the system part of the thread's library list.
This value will be zero if system libraries were not requested.

Number of libraries in USRLIBL. The number of libraries in the thread's user library list. This value will
be zero if user libraries were not requested.

Number of product libraries. The number of product libraries found in the thread's library list. This value
will be zero if product libraries were not requested.

Library list (for each library in the list). The list of all libraries requested. A blank is in the last position
of each name. The number of libraries in the list will depend on the keys requested and the actual number
of libraries in each portion of the library list. The order of the library list is:

System library list●

Product libraries●

Current library●

User library list●

RTVC0300 Format

The RTVC0300 format returns auxiliary storage pool (ASP) group information. Retrieval of the ASP group
information is threadsafe.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 BINARY(4) Offset to ASP group information

12 C BINARY(4) Number of entries in ASP group information

16 10 BINARY(4) Length of one ASP group information entry

See
note

See
note

Array(*) of
CHAR(*)

ASP group information entry (See Format of
ASP Group Information Entry for more
information.)

Note: This field repeats for each ASP group information entry. For additional
information, see the Control Language (CL) information for the Set ASP Group
(SETASPGRP) command.

Field Descriptions

ASP group information entry. The auxiliary storage pool (ASP) group information requested. This does
not include the system ASP or the basic user ASP.

Length of one ASP group information entry. The length of one ASP group information entry.

Number of ASP group information entries The number of ASP group information entries being returned.

Number of bytes available. The number of available bytes for use by your application.

Number of bytes returned. The number of bytes returned to the user. This may be some but not all of the
bytes available.

Offset to ASP group information The offset in characters (bytes) from the beginning of the receiver to the
first ASP group information entry.

Format of ASP Group Information Entry

The ASP group information entry describes the data that is returned for each ASP group of the RTVC0300
format.

Offset

Type FieldDec Hex

These fields repeat for
each entry returned in
the list.

CHAR(10) ASP group name

CHAR(*) Reserved

Field Descriptions

ASP group name The name of the ASP group. This is the name of the primary ASP device in an ASP
group.

Valid Key Attributes

The following table contains a list of the valid keys for format RTVC0100. In addition, the table indicates
whether the attributes are threadsafe. See Key Field Descriptions for the descriptions of the valid key
attributes.

Key Type Description
Threadsafe
(See Note)

0102 CHAR(1) Allow multiple threads Yes

0201 CHAR(10) Break message handling Yes

0301 CHAR(1) Cancel key Yes

0302 BINARY(4) Coded character set ID Yes

0303 CHAR(2) Country or region ID Yes

0305 CHAR(10) Current user profile Yes

0307 BINARY(4) Current system pool identifier Yes

0311 CHAR(10) Character identifier control Yes

0401 CHAR(13) Date and time job became active Yes

0402 CHAR(13) Date and time job entered system Yes

0403 CHAR(8) Date and time job was scheduled to run Yes

0405 CHAR(4) Date format Yes

0406 CHAR(1) Date separator Yes

0407 CHAR(1) DBCS-capable Yes

0408 CHAR(10) DDM conversation handling Yes

0409 BINARY(4) Default wait Yes

0410 CHAR(13) Device recovery action Yes

0412 BINARY(4) Default coded character set identifier Yes

0413 CHAR(1) Decimal format Yes

0501 BINARY(4) End severity Yes

0502 CHAR(1) End status Yes

0503 CHAR(1) Exit key Yes

0702 CHAR(10) Group profile name Yes

0703 CHAR(150) Group profile name - supplemental Yes

0901 CHAR(10) Inquiry message reply Yes

0902 CHAR(16) Internal job ID Yes

0903 CHAR(1) Initial thread Yes

1001 CHAR(15) Job accounting code Yes

1002 CHAR(7) Job date Yes

1004 CHAR(20) Job queue name - qualified Yes

1005 CHAR(2) Job queue priority Yes

1006 CHAR(8) Job switches Yes

1007 CHAR(10) Job message queue full action Yes

1008 BINARY(4) Job message queue maximum size Yes

1009 CHAR(26) Job name Yes

1010 CHAR(1) Job type Yes

1011 CHAR(1) Job subtype Yes

1201 CHAR(3) Language ID Yes

1202 CHAR(1) Logging level Yes

1203 CHAR(10) Logging of CL programs Yes

1204 BINARY(4) Logging severity Yes

1205 CHAR(10) Logging text Yes

1304 BINARY(4) Maximum threads Yes

1501 CHAR(20) Output queue name - qualified Yes

1502 CHAR(2) Output queue priority Yes

1601 CHAR(10) Print key format Yes

1602 CHAR(30) Print text Yes

1603 CHAR(10) Printer device name Yes

1604 CHAR(10) Purge Yes

1802 BINARY(4) Run priority Yes

1901 CHAR(20) Sort sequence table - qualified Yes

1902 CHAR(10) Status message handling Yes

1904 CHAR(26) Submitter's job name - qualified Yes

1905 CHAR(20) Submitter's message queue name - qualified Yes

1907 BINARY(4) System pool identifier Yes

 1982 CHAR(10) Spooled file action Yes

2001 CHAR(1) Time separator Yes

2002 BINARY(4) Time slice Yes

2003 CHAR(10) Time-slice end pool Yes

2008 BINARY(4) Thread count Yes

Note:If this value is blank, the attribute is not threadsafe.

The following table contains a list of the valid keys for format RTVC0200. In addition, the table indicates
whether the attributes are threadsafe. See Key Field Descriptions for the descriptions of the valid key
attributes.

Key Type Description
Threadsafe
(See Note)

0310 CHAR(11) Current library Yes

1660 Array(*) of CHAR(11) Product libraries Yes

1980 Array(*) of CHAR(11) System library list Yes

2110 Array(*) of CHAR(11) User library list Yes

2702 Array(*) of CHAR(11) All portions of the library list for format
RTVC0200

Yes

Note: If this value is blank, the attribute is not threadsafe.

The following table contains a list of the valid keys for format RTVC0300. In addition, the table indicates
whether the attributes are threadsafe. See Key Field Descriptions for the descriptions of the valid key
attributes.

Key Type Description
Threadsafe
(See Note)

0104 CHAR(*) ASP group information Yes

Key Field Descriptions

Most field descriptions for this API are in Work Management API Attribute Descriptions (WMAttrDesc),
except the following:

All portions of the library list for format RTVC0200. All portions of the library list will be returned.

Current system pool identifier. The identifier of the system-related pool from which this thread's main
storage currently is being allocated. These identifiers are not the same as those specified in the subsystem
description, but are the same as the system pool identifiers shown on the system status display. If a thread
reaches the end of its time slice, the pool this thread is running in can be switched based on the job's
time-slice end pool value. The current system pool identifier returned by this API will be the actual pool in
which the thread currently is running.

Run priority. The priority at which this thread currently is running, relative to other threads on the
system. The run priority ranges from 0 (highest priority) to 99 (lowest priority). The value may never be
higher than the run priority for the job in which this thread is running. Since this API is intended for
retrieving the current value of an attribute, the run priority of the thread is returned, even though the 1802
key represents the run priority of the job on other interfaces. To obtain the run priority of the job, use the

1802 key on the Retrieve Thread Attributes (QWTRTVTA) API.

Error Messages

Message ID Error Message Text
CPF1866 E Value &1 for number of fields to return not valid.
CPF1867 E Value &1 in list not valid.
CPF3C1D E Length specified in parameter &1 not valid.
CPF3C21 E Format name &1 is not valid.
CPF3C36 E Number of parameters, &1, entered for this API was not valid.
CPF3C90 E Literal value cannot be changed.
CPF3CF1 E Error code parameter not valid.

 CPF3CF2 E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

Top | Work Management APIs | APIs by category

Retrieve Data Area (QWCRDTAA) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Qualified data area name Input Char(20)
4 Starting position Input Binary(4)
5 Length of data Input Binary(4)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes

The Retrieve Data Area (QWCRDTAA) API allows you to retrieve the contents of a data area. Distributed
data management (DDM) data areas are supported by this API. In other words, this API can retrieve a data
area value from a data area that exists on a remote OS/400.

Authorities and Locks

Library Authority

*EXECUTE

Data Area Authority

*USE

Data Area Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold. For the format, see Format of Data
Returned.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable described in Format of Data Returned. If the length is larger
than the size of the receiver variable, the results may not be predictable. The minimum length is 8

bytes.

Qualified data area name

INPUT; CHAR(20)

The first 10 characters contain the data area name, and the second 10 characters contain the name
of the library where the data area is located.

When one of the special values is specified, the library name must be blank. The special values for
the data area are:

*LDA Local data area

*GDA Group data area

*PDA Program initialization parameter data area

The special values supported for the library name are:

*LIBL The library list.

*CURLIB The job's current library.

Starting position

INPUT; BINARY(4)

The first byte of the data area to be retrieved. A value of 1 will identify the first character in the
data area. The maximum value allowed for the starting position is 2000. A value of -1 will return
all the characters in the data area.

Length of data

INPUT; BINARY(4)

The length of the data area substring to be retrieved. The length of data parameter must be greater
than 0. If the length of data parameter is greater than the size of the data area, the receiver variable
is padded with blanks.

The length of data parameter added to the starting position minus one must be between the
substring starting position and the data area end; otherwise, CPF1089 (Substring specified for data
area not valid) is issued. If you have a small data area and only want the fixed portion of the data
returned, you must code -1 for the starting position.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Data Returned

The receiver variable holds the information returned for the data area. The following table shows the format
of the receiver variable.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(10) Type of value returned

18 12 CHAR(10) Library name

28 1C BINARY(4) Length of value returned

32 20 BINARY(4) Number of decimal positions

36 24 CHAR(*) Value

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space is
provided.

Bytes returned. The length of all data actually returned. If the data is truncated because the receiver
variable was not sufficiently large to hold all of the data available, this value will be less than the bytes
available.

Length of value returned. The length of the value that was returned.

Library name. The name of the library where the data area was found. This field will be blank if one of the
special values was specified for the first ten characters of the qualified data area name.

Number of decimal positions. The number of decimal positions.

Type of value returned. The following values may be returned.

*CHAR A character data area.

*DEC A decimal data area. The value returned will be a packed decimal value.

*LGL A logical data area.

Value. The contents of the data area.

Usage Notes

This API is threadsafe, except in the following situations:

The retrieval of DDM data areas in a job that allows multiple threads is not threadsafe.●

The retrieval of DDM data areas will not be allowed when more than one thread is active in a job.●

Error Messages

Message ID Error Message Text

CPF101A E Operation on DDM data area &1 in &2 failed.

CPF1015 E Data area &1 in &2 not found.

CPF1016 E No authority to data area &1 in &2.

CPF1021 E Library &1 not found for data area &2.

CPF1022 E No authority to library &1 data area &2.

CPF1046 E DTAARA(*GDA) not valid because job not group job.

CPF1063 E Cannot allocate data area &1 in library &2.

CPF1067 E Cannot allocate library &1.

CPF1072 E DTAARA(*PDA) not valid because job not prestart job.

CPF1088 E Starting position outside of data area.

CPF1089 E Substring specified for data area not valid.

CPF180B E Function &1 not allowed.

CPF1863 E Length of value not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

 CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Top | Work Management APIs | APIs by category

Retrieve IPL Attributes (QWCRIPLA) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of IPL attributes Input Char(8)
4 Error Code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve IPL Attributes (QWCRIPLA) API returns the settings of attributes that are used during the
IPL. This API provides support similar to the Display IPL Attributes (DSPIPLA) command.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of IPL attributes

INPUT CHAR(8)
The format of the IPL attributes being returned. The format names that can be used are as follows:

IPLA0100 This format returns all of the IPL attributes. See format IPLA0100 for details.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format IPLA0100

The following information is returned by this API when format IPLA0100 is used:

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(1) Restart type

9 9 CHAR(1) Keylock position

10 A CHAR(1) Hardware diagnostics

11 B CHAR(1) Compress job tables

12 C CHAR(1) Check job tables

13 D CHAR(1) Rebuild product directory

14 E CHAR(1) Mail Server Framework recovery

15 F CHAR(1) Clear job queues

16 10 CHAR(1) Clear output queues

17 11 CHAR(1) Clear incomplete job logs

18 12 CHAR(1) Start print writers

19 13 CHAR(1) Start system to restricted state

20 14 CHAR(1) Display status

21 15 CHAR(1) Start TCP/IP

Field Description

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Check job tables. When to perform particular damage checks on the job tables.

0 The job table checks are performed during abnormal IPLs only.

1 The job table checks are performed during all IPLs.

2 The job table checks are performed synchronously during all IPLs.

Clear incomplete job logs. Whether or not to delete the job logs for jobs that were active at the time of the
last system power down. This value is reset to 0 after each IPL.

0 The job logs are produced after the IPL.

1 The job logs are deleted during the IPL.

Clear job queues. Whether or not to clear the jobs from all job queues. This value is reset to 0 after each
IPL.

0 The job queues are not cleared.

1 The job queues are cleared during the IPL.

Clear output queues. Whether or not to clear all output queues. If you clear the output queues, all spooled
output is removed from the system. This value is reset to 0 after each IPL.

0 The output queues are not cleared.

1 The output queues are cleared during the IPL.

Compress job tables. When the job tables should be compressed to remove excess unused entries.

0 The job tables are compressed during abnormal IPLs only.

1 The job tables are compressed during all IPLs.

2 The job tables are not compressed during any IPL.

3 The job tables are compressed during normal IPLs only.

Display status. When the status of OS/400 IPL steps is displayed on the console during IPL. Status is not
displayed during install IPLs or when the console is not powered on.

0 Status is displayed during attended OS/400 IPLs and abnormal OS/400 IPLs.

1 Status is not displayed during OS/400 IPLs.

2 Status is displayed during attended OS/400 IPLs.

3 Status is displayed during abnormal OS/400 IPLs.

4 Status is displayed during all OS/400 IPLs, except as noted above.

Hardware diagnostics. Whether or not certain hardware diagnostics should be performed during the IPL.

0 All hardware diagnostics are run.

1 The minimum set of hardware diagnostics is run.

Keylock position. The keylock position.

0 The keylock position is set to auto.

1 The keylock position is set to manual.

2 The keylock position is set to normal.

3 The keylock position is set to secure.

Mail Server Framework recovery. Whether or not Mail Server Framework recovery should be done

during IPL. The possible values are:

0 Mail Server Framework recovery is not done during IPL. Recovery is done when Mail Server
Framework starts.

1 Mail Server Framework recovery is done during abnormal IPLs.

Rebuild product directory. When the product directory information is rebuilt.

0 The product directory information is rebuilt during abnormal IPLs only.

1 The product directory information is rebuilt during all IPLs.

2 The product directory information is not rebuilt during IPL.

3 The product directory information is rebuilt during normal IPLs only.

Restart type. The type of restart operation to perform when the Power Down System (PWRDWNSYS)
command is used with RESTART(*YES).

0 All portions of the system, including the hardware, are restarted.

1 The operating system is restarted. The hardware is restarted only if you apply a PTF that requires a
hardware restart. This value can reduce the time required to restart the system.

Start print writers. Whether or not print writers should be started at the time of the IPL. This value is reset
to 1 after each IPL.

0 The print writers are not started at IPL time.

1 The print writers are started at IPL time.

Start system to restricted state. Whether or not the system should be started in the restricted state. If the
system is started in the restricted state, only the system console is active. This value is reset to 0 after each
IPL.

0 The system is not started in the restricted state.

1 The system is started in the restricted state.

Start TCP/IP. Whether the STRTCP command is submitted automatically at the completion of IPL and
when the controlling subsystem is restarted from the restricted state. The STRTCP command is not
submitted during install IPLs or when the system is starting to the restricted state. See the STRTCP
command help for more information.

0 The system does not automatically submit the STRTCP command at the completion of IPL.

1 The system automatically submits the STRTCP command at the completion of IPL.

Error Messages

Message ID Error Message Text
CPF24B4 E Severe error while addressing parameter list.
CPF3CF1 E Error code parameter not valid.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPF3C19 E Error occurred with receiver variable specified.
CPF3C21 E Format name &1 is not valid.
CPF3C24 E Length of the receiver variable is not valid.
CPF3C90 E Literal value cannot be changed.
CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

Top | Work Management APIs | APIs by category

Retrieve Job Description Information
(QWDRJOBD) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified job description name Input Char(20)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Job Description Information (QWDRJOBD) API retrieves information from a job description
object and places it into a single variable in the calling program. The amount of information returned
depends on the size of the variable. The information returned is the same information returned by the
Display Job Description (DSPJOBD) command.

Authorities and Locks

Job Description Object Authority

*USE

Library Authority

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information requested. You can specify the size of this area to be
smaller than the format requested if you specify the length of receiver variable parameter correctly.
As a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If this value is larger than the actual size of the receiver
variable, the result may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The format of the job description information to be returned. You can use this format:

JOBD0100 Basic job description information. For details, see JOBD0100 Format.

Qualified job description name

INPUT; CHAR(20)

The name of the job description whose contents are to be retrieved. The first 10 characters contain
the name of the job description, and the second 10 characters contain the name of the library where
the job description is located. You can use these special values for the library name:

*CURLIB The job's current library

*LIBL The library list

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

JOBD0100 Format

The following table describes the information that is returned in the receiver variable for the JOBD0100
format. For detailed descriptions of the fields, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job description name

18 12 CHAR(10) Job description library name

28 1C CHAR(10) User name

38 26 CHAR(8) Job date

46 2E CHAR(8) Job switches

54 36 CHAR(10) Job queue name

64 40 CHAR(10) Job queue library name

74 4A CHAR(2) Job queue priority

76 4C CHAR(10) Hold on job queue

86 56 CHAR(10) Output queue name

96 60 CHAR(10) Output queue library name

106 6A CHAR(2) Output queue priority

108 6C CHAR(10) Printer device name

118 76 CHAR(30) Print text

148 94 BINARY(4) Syntax check severity

152 98 BINARY(4) End severity

156 9C BINARY(4) Message logging severity

160 A0 CHAR(1) Message logging level

161 A1 CHAR(10) Message logging text

171 AB CHAR(10) Logging of CL programs

181 B5 CHAR(10) Inquiry message reply

191 BF CHAR(13) Device recovery action

204 CC CHAR(10) Time-slice end pool

214 D6 CHAR(15) Accounting code

229 E5 CHAR(80) Routing data

309 135 CHAR(50) Text description

359 167 CHAR(1) Reserved

360 168 BINARY(4) Offset to initial library list

364 16C BINARY(4) Number of libraries in initial library list

368 170 BINARY(4) Offset to request data

372 174 BINARY(4) Length of request data

376 178 BINARY(4) Job message queue maximum size

380 17C CHAR(10) Job message queue full action

390 186 CHAR(10) CYMD job date

400 190 CHAR(10) Allow multiple threads

 410 19A CHAR(10) Spooled file action

420 1A4 BINARY(4) Offset to initial ASP group information

424 1A8 BINARY(4) Number of initial ASP group information entries

428 1AC BINARY(4) Length of one initial ASP group information
entry

432 1B0 CHAR(*) Reserved

* * ARRAY (*) of
CHAR(11)

Initial library list

* * CHAR(*) Request data

Array(*) of
CHAR(*)

Initial ASP group information entry

Format of Initial ASP Group Information Entry

The initial auxiliary storage pool (ASP) group information entry describes the data that is returned for each
group in the job description's initial ASP group.

Offset

Type FieldDec Hex

The fields repeat for each
entry returned in the initial
ASP group information.

CHAR(10) ASP group name

CHAR(*) Reserved

Field Descriptions

Accounting code. An identifier assigned to jobs that use this job description. This code is used to collect
system resource use information. If the special value *USRPRF is specified, the accounting code used for
jobs using this job description is obtained from the job's user profile.

Allow multiple threads. Whether or not the job is allowed to run with multiple user threads. This attribute
does not prevent the operating system from creating system threads in the job. The possible values are
*YES and *NO. This attribute is not allowed to be changed once a job starts. This attribute applies to
autostart jobs, prestart jobs, batch jobs submitted from job schedule entries, and jobs started by using the
Submit Job (SBMJOB) and Batch Job (BCHJOB) commands. This attribute is ignored when starting all
other types of jobs. This attribute should be set to *YES only in job descriptions that are used exclusively
with functions that create multiple user threads.

ASP group name. The name of the ASP group. This is the name of the primary ASP device in an ASP
group or the name of an ASP device description. This specifies the initial ASP group setting for jobs using
this job description.

Bytes available. The length of all data available to return. All available data is returned if enough space is
provided.

Bytes returned. The length of all data actually returned. If the data is truncated because the receiver
variable was not sufficiently large to hold all of the data available, this value will be less than the bytes
available.

CYMD job date. The date that will be assigned to jobs using this job description when they are started.
The possible values are:

*SYSVAL The value in the QDATE system value is used at the time the job is started.

job-date The date to be used at the time the job is started. The format of the field returned in
CYYMMDD where C is the century, YY is the year, MM is the month, and DD is the day. A
0 for the century indicates years 19xx and a 1 indicates years 20xx. The field is padded on
the right with blanks.

Device recovery action. The action to take when an I/O error occurs for the interactive job's requesting
program device. The possible values are:

*SYSVAL The value in the system value QDEVRCYACN at the time the job is started is used
as the device recovery action for this job description.

*MSG Signals the I/O error message to the application and lets the application program
perform error recovery.

*DSCMSG Disconnects the job when an I/O error occurs. When the job reconnects, the system
sends a message to the application program, indicating the job has reconnected and
that the workstation device has recovered.

*DSCENDRQS Disconnects the job when an I/O error occurs. When the job reconnects, the system
sends the End Request (ENDRQS) command to return control to the previous
request level.

*ENDJOB Ends the job when an I/O error occurs. A message is sent to the job's log and to the
history log (QHST). This message indicates that the job ended because of a device
error.

*ENDJOBNOLIST Ends the job when an I/O error occurs. There is no job log produced for the job.
The system sends a message to the history log (QHST). This message indicates that
the job ended because of a device error.

End severity. The message severity level of escape messages that can cause a batch job to end. The batch
job ends when a request in the batch input stream sends an escape message, whose severity is equal to or
greater than this value, to the request processing program. The possible values are from 0 through 99.

Hold on job queue. Whether jobs using this job description are put on the job queue in the hold condition.
The possible values are *YES and *NO.

Initial ASP group information. The list of initial ASP groups for jobs that use this job description. This
does not include the system ASP or basic user ASPs.

Initial library list. The initial library list that is used for jobs that use this job description. Only the libraries
in the user portion of the library list are included.

Note: The data is an array of 11-byte entries, each entry consisting of a 10-byte library name that is
left-justified with a blank pad at the end. The 11-byte entries can be easily used in CL commands. The
number of libraries in the initial library list tells how many entries are contained in the array.

Inquiry message reply. How inquiry messages are answered for jobs that use this job description.

*RQD The job requires an answer for any inquiry messages that occur while the job is running.

*DFT The system uses the default message reply to answer any inquiry messages issued while the
job is running. The default reply is either defined in the message description or is the
default system reply.

*SYSRPYL The system reply list is checked to see if there is an entry for an inquiry message issued
while the job is running. If a match occurs, the system uses the reply value for that entry. If
no entry exists for that message, the system uses an inquiry message.

Job date. The date that will be assigned to jobs using this job description when they are started. The
possible values are:

*SYSVAL The value in the QDATE system value is used at the time the job is started.

job-date The date to be used at the time the job is started. This date is in the format specified for the
DATFMT job attribute.

Job description library name. The name of the library in which the job description resides.

Job description name. The name of the job description about which information is being returned.

Job message queue maximum size. The maximum size (in megabytes) of the job message queue. The
possible values are:

0 The maximum size set by system value QJOBMSGMX at the time the job is started.

2-64 The maximum size of the job message queue in megabytes.

Job message queue full action. The action taken when the job message queue becomes full. The possible
values are:

*SYSVAL The value is specified by the system value QJOBMSGQFL.

*NOWRAP When the message queue becomes full, do not wrap. This action will cause the job to end.

*WRAP When the message queue becomes full, wrap to the beginning and start filling again.

*PRTWRAP When the message queue becomes full, wrap the job queue and print the messages that are
being overlaid.

Job queue library name. The library of the job queue into which batch jobs using this job description are
placed.

Job queue name. The name of the job queue into which batch jobs using this job description are placed.

Job queue priority. The scheduling priority of each job that uses this job description. The highest priority
is 1 and the lowest priority is 9.

Job switches. The initial settings for a group of eight job switches used by jobs that use this job
description. These switches can be set or tested in a program and used to control a program's flow. The
possible values are '0' (off) and '1' (on).

Length of one initial ASP group information entry. The length of one initial ASP group information
entry. Zero indicates that jobs using this job description do not have an initial ASP group.

Length of request data. The length of all available request data, in bytes. If the receiver variable was not
sufficiently large to hold all of the request data available, the amount of request data actually returned may
be less than this value.

Logging of CL programs. Whether or not commands are logged for CL programs that are run. The
possible values are *YES and *NO.

Message logging level. The type of information logged. Possible types are:

0 No messages are logged.

1 All messages sent to the job's external message queue with a severity greater than or equal to the
message logging severity are logged. This includes the indication of job start, job end and job
completion status.

2 The following information is logged:

Level 1 information.●

Request messages that result in a high-level message with a severity code greater than or
equal to the logging severity cause the request message and all associated messages to be
logged.

Note: A high-level message is one that is sent to the program message queue of the program
that receives the request message. For example, QCMD is an IBM-supplied request
processing program that receives request messages.

●

3 The following information is logged:

Level 1 and 2 information.●

All request messages.●

Commands run by a CL program are logged if it is allowed by the logging of CL programs
job attribute and the log attribute of the CL program.

●

4 The following information is logged:

All request messages and all messages with a severity greater than or equal to the message
logging severity, including trace messages.

●

Commands run by a CL program are logged if it is allowed by the logging of CL programs
job attribute and the log attribute of the CL program.

●

Message logging severity. The severity level that is used in conjunction with the logging level to determine
which error messages are logged in the job log. The possible values are from 0 through 99.

Message logging text. The level of message text that is written in the job log when a message is logged
according to the logging level and logging severity. The possible values are:

*MSG Only the message text is written to the job log.

*SECLVL Both the message text and the message help (cause and recovery) of the error message are
written to the job log.

*NOLIST If the job ends normally, no job log is produced. If the job ends abnormally (if the job end
code is 20 or higher), a job log is produced. The messages that appear in the job log contain
both the message text and the message help.

Number of initial ASP group information entries. The number of entries in the job description's initial
ASP group information. Zero indicates that jobs using this job description do not have an initial ASP group.

Number of libraries in initial library list. The number of libraries in the user portion of the initial library
list.

Offset to initial ASP group information. The offset in characters (bytes) from the beginning of the
structure to the first ASP group information entry. Zero indicates that jobs using this job description do not
have an initial ASP group.

Offset to initial library list. The offset from the beginning of the structure to the start of the initial library
list.

Offset to request data. The offset from the beginning of the structure to the start of the request data.

Output queue library name. The name of the library in which the output queue resides.

Output queue name. The name of the default output queue that is used for spooled output produced by
jobs that use this job description.

*USRPRF The output queue name for jobs using this job description is obtained from the user
profile of the job at the time the job is started.

*DEV The output queue with the same name as the printer device for this job description
is used.

*WRKSTN The output queue name is obtained from the device description from which this job
is started.

output-queue-name The name of the output queue for this job description.

Output queue priority. The output priority for spooled files that are produced by jobs using this job
description. The highest priority is 1, and the lowest priority is 9.

Print text. The line of text (if any) that is printed at the bottom of each page of printed output for jobs using
this job description. If the special value *SYSVAL is specified, the value in the system value QPRTTXT is
used for jobs using this job description.

Printer device name. The name of the printer device or the source for the name of the printer device that is
used for all spooled files created by jobs that use this job description.

*USRPRF The printer device name is obtained from the user profile of the job at the time the
job is started.

*SYSVAL The value in the system value QPRTDEV at the time the job is started is used as
the printer device name.

*WRKSTN The printer device name is obtained from the work station where the job was
started.

printer-device-name The name of the printer device that is used with this job description.

Request data. The request data that is placed as the last entry in the job's message queue for jobs that use
this job description. The possible values are:

*NONE No request data is placed in the job's message queue.

*RTGDTA The data specified in the routing data parameter is placed as the last entry in the job's
message queue.

request-data The request data to use for jobs that use this job description.

Reserved. An ignored field.

Routing data. The routing data that is used with this job description to start jobs. The possible values are:

QCMDI The default routing data QCMDI is used by the IBM-supplied interactive subsystem to
route the job to the IBM-supplied control language processor QCMD in the QSYS
library.

*RQSDTA Up to the first 80 characters of the request data specified in the request data field are used
as the routing data for the job.

routing-data The routing data to use for jobs that use this job description.

Spooled file action. Specifies whether spooled files can be accessed through job interfaces once a job has
completed its normal activity.

*KEEP Spooled files are kept with the job when the job completes itsactivity.

*DETACH Spooled files are detached from the job when the job completes its activity.

*SYSVAL The jobs using this job description will take the spooled file action specified by the
QSPLFACN system value.

Syntax check severity. Whether requests placed on the job's message queue are checked for syntax as CL
commands, and the message severity that causes a syntax error to end processing of a job. The possible
values are:

-1 The request data is not checked for syntax as CL commands. This is equivalent to *NOCHK.

0-99 Specifies the lowest message severity that causes a running job to end. The request data is
checked for syntax as CL commands, and, if a syntax error occurs that is greater than or equal to
the error message severity specified here, the running of the job that contains the erroneous
command is suppressed.

Text description. The user text, if any, used to briefly describe the job description.

Time-slice end pool. Whether interactive jobs using this job description should be moved to another main
storage pool when they reach time-slice end. The possible values are:

*SYSVAL The system value is used.

*NONE The job is not moved when it reaches time-slice end.

*BASE The job is moved to the base pool when it reaches time-slice end.

User name. The name of the user profile associated with this job description. If *RQD is specified, a user
name is required to use the job description.

Error Messages

Message ID Error Message Text

CPF1618 E Job description &1 in library &2 damaged.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

Top | Work Management APIs | APIs by category

Retrieve Job Information (QUSRJOBI) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified job name Input Char(26)

5 Internal job identifier Input Char(16)

 Optional Parameter Group 1:

6 Error code I/O Char(*)

 Optional Parameter Group 2:

7 Reset performance statistics Input Char(1)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Retrieve Job Information (QUSRJOBI) API retrieves specific information about a job.

Authorities and Locks

The following authority restrictions apply only when the API is called for format names JOBI0700,
JOBI0750, JOBI0800, JOBI0900. All other format names have no authority restrictions.

Job Authority

When calling this API for format names JOBI0700, JOBI0750, JOBI0800, and JOBI0900, the API
must be called from within the job for which the information is being retrieved or the caller of the
API must be running under a user profile that is the same as the job user identity of the job for
which the information is being retrieved or the caller of the API must be running under a user
profile that has job control (*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management book on the V5R1 Supplemental Manuals
Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information requested. You can specify the size of this area to be
smaller than the format requested as long as you specify the length parameter correctly. As a result,
the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. If the length is larger than the size of the receiver variable, the
results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The format of the job information to be returned. The format names supported are:

JOBI0100 Basic performance information

JOBI0150 Additional performance information

JOBI0200 WRKACTJOB information

JOBI0300 Job queue and output queue information

JOBI0400 Job attribute information

JOBI0500 Message logging information

JOBI0600 Active job information

JOBI0700 Library list information

JOBI0750 Extended library list information

JOBI0800 Active job signal information

JOBI0900 Active job SQL information

JOBI1000 Elapsed performance statistics

Refer to Selecting a Job Information Format for details of each of the formats.

Qualified job name

INPUT; CHAR(26)

The name of the job for which information is to be returned. The qualified job name has three parts:

Job name CHAR(10). A specific job name or one of the following special values:

* The job that this program is running in. The rest of the qualified job
name parameter must be blank.

*INT The internal job identifier locates the job. The user name and job
number must be blank.

User name CHAR(10). A specific user profile name, or blanks when the job name is a special
value or *INT.

Job number CHAR(6). A specific job number, or blanks when the job name specified is a
special value or *INT.

Internal job identifier

INPUT; CHAR(16)

The internal identifier for the job. The List Job API, QUSLJOB, creates this identifier. If you do
not specify *INT for the job name parameter, this parameter must contain blanks. With this
parameter, the system can locate the job more quickly than with a job name.

Optional Parameter 1

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter 2

Reset performance statistics

INPUT; CHAR(1)

The elapsed time and all fields that are part of the JOBI1000 format, which are based on the
elapsed time, will be reset to zero. This field must be zero if other formats are specified. The
default value for this field is zero. The following special values may be specified:

0 The performance statistics will not be reset. The elapsed time will be incremented and the
fields in the JOBI1000 format will be recalculated based on the elapsed time interval.

1 The elapsed time and the fields in the JOBI1000 format will be reset to zero.

Selecting a Job Information Format

All formats may be called against multithreaded jobs; that is, single threaded Job A may retrieve job
information about multithreaded Job B. Refer to Considerations for Attribute Scope and Thread Safety for
thread safety information when calling these formats from within a multithreaded job.

The following section presents some of the performance characteristics of the different formats (primarily
JOBI0100, JOBI0150, and JOBI0200). When formats return some of the same information, the
performance effects are discussed. When a format contains information not available in other formats,
performance is not discussed.

JOBI0100 This format returns basic performance information about a job. It is faster than the
JOBI0150 format and the JOBI0200 format (which also contain performance information).
The reason that this format is faster is that it does not touch as many objects, causing less
paging when retrieving information about the job.

JOBI0150 This format returns additional performance information, and is slower than the JOBI0100
format. It is similar to the JOBI0200 format, but is faster than that format because there is
less paging involved in retrieving the information.

JOBI0200 This format returns information equivalent to that found on the Work with Active Jobs
(WRKACTJOB) command.

JOBI0300 This format returns job queue and output queue information for a job, as well as information
about the submitter's job if the job is a submitted batch job.

JOBI0400 This format primarily returns job attribute types of information, but has other types of
information as well.

JOBI0500 This format returns message logging information.

JOBI0600 This format returns information about active jobs only. It is intended to supplement the
JOBI0400 format. It retrieves information from several additional objects associated with
the job, and therefore, it causes additional paging.

JOBI0700 This format returns library list information for an active job.

JOBI0750 This format returns library list information for an active job plus additional information
about each library returned.

JOBI0800 This format returns signal information for an active job.

JOBI0900 This format returns SQL information for an active job.

JOBI1000 This format returns elapsed performance statistics. Performance values returned are based
on an elapsed time (returned as part of this format).

Each format returns information that is only valid for the status of certain jobs. For example, the JOBI0200
format only returns information for active jobs. Because the job status can change between the time the list
is generated and the time the Retrieve Job Information API is called, you must design your application to
handle this.

When requesting information about a job that has an unknown or incorrect job status for the format
requested, the API returns the current status of the job and sets the remainder of the fields for that format to
zeros and blanks. When requesting information about a job that is not valid, the API returns the job's status
as blanks and sets the remainder of the fields for that format to zeros and blanks. Therefore, you should
check the returned status of the job before processing the data. Each format description specifies each
status for which the API returns complete information.

JOBI0100 Format

The JOBI0100 format information is valid for active jobs and jobs on queues. For jobs on queues, this
format returns zeros or blanks for the attributes. If the Change Job (CHGJOB) command was run against a
job on a *JOBQ, the attributes returned are the attributes specified on the CHGJOB command. If the job
status changes to *OUTQ, the status field returned is *OUTQ and the API returns no information other than
the number of bytes returned, the number of bytes available, the qualified job name, the job type, the job

subtype, and the internal job identifier.

The JOBI0100 format returns the following job information. For details about the fields listed, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) Run priority (job)

68 44 BINARY(4) Time slice

72 48 BINARY(4) Default wait

76 4C CHAR(10) Purge

JOBI0150 Format

The JOBI0150 format is valid for active jobs only. If the job status changes to *OUTQ or *JOBQ, the
status field is set appropriately, and no information other than the number of bytes returned, the number of
bytes available, the qualified job name, the job type, the job subtype, and the internal job identifier is
returned.

The JOBI0150 format returns the following job information. For details about the fields listed, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 Returns everything from format JOBI0100

86 56 CHAR(10) Time-slice end pool

96 60 BINARY(4) Processing unit time used, if less than
2,147,483,647 milliseconds

100 64 BINARY(4) System pool identifier

104 68 BINARY(4) Maximum processing unit time

108 6C BINARY(4) Temporary storage used in kilobytes

112 70 BINARY(4) Maximum temporary storage in kilobytes

116 74 BINARY(4) Thread count

120 78 BINARY(4) Maximum threads

124 7C BINARY(4) Temporary storage used in megabytes

128 80 BINARY(4) Maximum temporary storage in megabytes

132 84 CHAR(4) Reserved

136 88 BINARY(8),
UNSIGNED

Processing unit time used - total for the job

JOBI0200 Format

The JOBI0200 format is only valid for active jobs and is similar to the information supported by the Work
with Active Jobs (WRKACTJOB) command. If the job status has changed to *OUTQ or *JOBQ, the status
field is set appropriately, and no information other than the number of bytes returned, the number of bytes
available, the qualified job name, the job type, the job subtype, and the internal job identifier is returned.

The JOBI0200 format returns the following job information. For details about the fields listed, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(10) Subsystem description name

72 48 BINARY(4) Run priority (job)

76 4C BINARY(4) System pool identifier

80 50 BINARY(4) Processing unit time used, if less than
2,147,483,647 milliseconds

84 54 BINARY(4) Number of auxiliary I/O requests, if less than
2,147,483,647

88 58 BINARY(4) Number of interactive transactions

92 5C BINARY(4) Response time total

96 60 CHAR(1) Function type

97 61 CHAR(10) Function name

107 6B CHAR(4) Active job status

111 6F BINARY(4) Number of database lock waits

115 73 BINARY(4) Number of internal machine lock waits

119 77 BINARY(4) Number of nondatabase lock waits

124 7C BINARY(4) Time spent on database lock waits

127 7F BINARY(4) Time spent on internal machine lock waits

131 83 BINARY(4) Time spent on nondatabase lock waits

135 87 CHAR(1) Reserved

136 88 BINARY(4) Current system pool identifier

140 8C BINARY(4) Thread count

144 90 BINARY(8),
UNSIGNED

Processing unit time used - total for the job

152 98 BINARY(8),
UNSIGNED

Number of auxiliary I/O requests

160 A0 BINARY(8),
UNSIGNED

Processing unit time used for database - total for
the job

168 A8 BINARY(8),
UNSIGNED

Page faults

176 B0 CHAR(4) Active job status for jobs ending

180 B4 CHAR(10) Memory pool name

190 BE CHAR(1) Message reply

JOBI0300 Format

This format returns job queue and output queue information for a job, as well as information about the
submitter's job. This information is valid for any job status. The JOBI0300 format returns the following job
information. For details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(10) Job queue name

72 48 CHAR(10) Job queue library name

82 52 CHAR(2) Job queue priority

84 54 CHAR(10) Output queue name

94 5E CHAR(10) Output queue library name

104 68 CHAR(2) Output queue priority

106 6A CHAR(10) Printer device name

116 74 CHAR(10) Submitter's job name

126 7E CHAR(10) Submitter's user name

136 88 CHAR(6) Submitter's job number

142 8E CHAR(10) Submitter's message queue name

152 98 CHAR(10) Submitter's message queue library name

162 A2 CHAR(10) Status of job on the job queue

172 AC CHAR(8) Date and time job was put on this job queue

180 B4 CHAR(7) Job date

JOBI0400 Format

This format primarily returns job attribute types of information, but has other types of information as well.
This format is valid for any job status. The JOBI0400 format returns the following job information. For
details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(13) Date and time job entered system

75 4B CHAR(13) Date and time job became active

88 58 CHAR(15) Job accounting code

103 67 CHAR(10) Job description name

113 71 CHAR(10) Job description library name

123 7B CHAR(24) Unit of work ID

147 93 CHAR(8) Mode name

155 9B CHAR(10) Inquiry message reply

165 A5 CHAR(10) Logging of CL programs

175 AF CHAR(10) Break message handling

185 B9 CHAR(10) Status message handling

195 C3 CHAR(13) Device recovery action

208 D0 CHAR(10) DDM conversation handling

218 DA CHAR(1) Date separator

219 DB CHAR(4) Date format

223 DF CHAR(30) Print text

253 FD CHAR(10) Submitter's job name

263 107 CHAR(10) Submitter's user name

273 111 CHAR(6) Submitter's job number

279 117 CHAR(10) Submitter's message queue name

289 121 CHAR(10) Submitter's message queue library name

299 12B CHAR(1) Time separator

300 12C BINARY(4) Coded character set ID

304 130 CHAR(8) Date and time job is scheduled to run

312 138 CHAR(10) Print key format

322 142 CHAR(10) Sort sequence table name

332 14C CHAR(10) Sort sequence library

342 156 CHAR(3) Language ID

345 159 CHAR(2) Country or region ID

347 15B CHAR(1) Completion status

348 15C CHAR(1) Signed-on job

349 15D CHAR(8) Job switches

357 165 CHAR(10) Job message queue full action

367 16F CHAR(1) Reserved

368 170 BINARY(4) Job message queue maximum size

372 174 BINARY(4) Default coded character set identifier

376 178 CHAR(80) Routing data

456 1C8 CHAR(1) Decimal format

457 1C9 CHAR(10) Character identifier control

467 1D3 CHAR(30) Server type

497 1F1 CHAR(1) Allow multiple threads

498 1F2 CHAR(1) Job log pending

499 1F3 CHAR(1) Reserved

500 1F4 BINARY(4) Job end reason

504 1F8 BINARY(4) Job type - enhanced

508 1FC CHAR(13) Date and time job ended

 521 209 CHAR(1) Reserved

522 20A CHAR(10) Spooled file action

532 214 BINARY(4) Offset to ASP group information

536 218 BINARY(4) Number of entries in ASP group information

540 21C BINARY(4) Length of one ASP group information entry

This field repeats
for each ASP
group
information
entry.

CHAR(*) ASP group information entry (See Format of
ASP Group Information Entry for more
information.)

Format of ASP Group Information Entry

The ASP group information entry describes the data that is returned for each ASP group in the ASP group
information of the JOBI0400 format. For details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

The fields repeat for
each ASP group.

CHAR(10) ASP group name

CHAR(*) Reserved

JOBI0500 Format

This format returns message logging information. This format is valid for any job status. The JOBI0500
format returns the following job information. For details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) End severity

68 44 BINARY(4) Logging severity

72 48 CHAR(1) Logging level

73 49 CHAR(10) Logging text

JOBI0600 Format

The JOBI0600 format returns information about active jobs. If the job status changes to *JOBQ or *OUTQ,
the status field is set appropriately, and no information other than the number of bytes returned, the number
of bytes available, the qualified job name, the job type, the job subtype, and the internal job identifier is
returned.

The JOBI0600 format returns the following job information. For details about the fields listed, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(8) Job switches

70 46 CHAR(1) End status

71 47 CHAR(10) Subsystem description name

81 51 CHAR(10) Subsystem description library name

91 5B CHAR(10) Current user profile

101 65 CHAR(1) DBCS-capable

102 66 CHAR(1) Exit key

103 67 CHAR(1) Cancel key

104 68 BINARY(4) Product return code

108 6C BINARY(4) User return code

112 70 BINARY(4) Program return code

116 74 CHAR(10) Special environment

126 7E CHAR(10) Device name

136 88 CHAR(10) Group profile name

146 92 ARRAY(15) of
CHAR(10)

Group profile name - supplemental

296 128 CHAR(10) Job user identity

306 132 CHAR(1) Job user identity setting

307 133 CHAR(15) Client IP address - IPv4

JOBI0700 Format

The JOBI0700 format returns library list information for active jobs only. The format returns the actual
length instead of the total length because all libraries may not exist. The JOBI0700 format returns the
following job information. For details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) Number of libraries in SYSLIBL

68 44 BINARY(4) Number of product libraries

72 48 BINARY(4) Current library existence

76 4C BINARY(4) Number of libraries in USRLIBL

See
note

See
note

Array(*) of
CHAR(11)

System library list

See
note

See
note

Array(*) of
CHAR(11)

Product libraries

See
note

See
note

Array(*) of
CHAR(11)

Current library

See
note

See
note

Array(*) of
CHAR(11)

User library list

Note: The decimal and hexadecimal offsets depend on the number of libraries you
have in the various parts of your library lists. The data is left-justified with a blank
pad at the end. The array is sequential. It is an array or data structure. See the
Control Language information for the total number of libraries that can be returned
to you.

JOBI0750 Format

The JOBI0750 format returns library list information for active jobs only along with additional information
about each library. The JOBI0750 format returns the following library information for the active job. For
details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) Offset to libraries in system library list

68 44 BINARY(4) Number of libraries in system library list

72 48 BINARY(4) Offset to product libraries

76 4C BINARY(4) Number of product libraries

80 50 BINARY(4) Offset to current library

84 54 BINARY(4) Number of current libraries

88 58 BINARY(4) Offset to libraries in user library list

92 5C BINARY(4) Number of libraries in user library list

96 60 BINARY(4) Length of one library array entry

See
note

See
note

Array(*) of
CHAR(*)

System library list (See Library array entry for
format of library array entry.)

See
note

See
note

Array(*) of
CHAR(*)

Product libraries (See Library array entry for
format of library array entry.)

See
note

See
note

Array(*) of
CHAR(*)

Current library (See Library array entry for
format of library array entry.)

See
note

See
note

Array(*) of
CHAR(*)

User library list (See Library array entry for
format of library array entry.)

Note: The decimal and hexadecimal offsets depend on the number of libraries you
have in the various parts of your library lists. The data is left-justified with a blank
pad at the end. The array is sequential. It is an array or data structure. See CL

Programming book for the total number of libraries that can be returned.

Library array entry

The library array entry describes the data that is returned for each library entry in the array of libraries on
the JOBI0750 format. The name of the library as well as some extended information about the library is
returned with this format. For details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

The fields repeat for
each library object
returned in the array.

CHAR(10) Library name

CHAR(50) Library text description

 BINARY(4) Library ASP number

CHAR(10) Library ASP name

CHAR(*) Reserved

JOBI0800 Format

The JOBI0800 format is only valid for active jobs. If the job status has changed to *OUTQ or *JOBQ, the
status field is set appropriately, and no information other than the number of bytes returned, the number of
bytes available, the qualified job name, and the internal job identifier is returned. If the signal status is 0,
not enabled for signals, this format returns zeros or blanks for the attributes.

The JOBI0800 format returns the following job information. For details about the fields listed, see Field

Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) Signal status

68 44 CHAR(8) Signal blocking mask

76 4C CHAR(8) Pending signal set

84 54 BINARY(4) Offset to signal monitor data

88 58 BINARY(4) Number of signal monitors

92 5C BINARY(4) Process ID number

96 60 Array(*) of
CHAR(32)

Signal monitor data (for each signal monitor)

These fields
repeat for each
signal monitor.

BINARY(4) Signal number

BINARY(4) Signal action

BINARY(4) Default signal action

BINARY(4) Maximum number of signals retained

BINARY(4) Current number of pending signals

CHAR(12) Reserved

JOBI0900 Format

The JOBI0900 format is only valid for active jobs. If the job status has changed to *OUTQ or *JOBQ, the
status field is set appropriately, and no information other than the number of bytes returned, the number of
bytes available, the qualified job name, and the internal job identifier is returned. If the number of SQL
open cursors is 0 and no SQL statements have ever been issued in the job, this format returns zeros or
blanks for the attributes.

Note: Synchronization is not performed when you change or retrieve SQL data. If you try to retrieve SQL
data for your own job and your job is not running multithreaded, then the retrieved data should be correct.
If, however, you are retrieving SQL data for your own job and your job is running multithreaded or if you
are retrieving data for a different job, the SQL data may not be correct because the SQL data is being
changed at the same time that you are retrieving it.

The JOBI0900 format returns the following job information. For details about the fields listed, see Field
Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(1) Server mode for Structured Query Language

63 3F CHAR(1) Reserved

64 40 BINARY(4) Offset to SQL open cursor data

68 44 BINARY(4) Size of SQL open cursor data

72 48 BINARY(4) Number of SQL open cursors

76 4C BINARY(4) Offset to current SQL statement

80 50 BINARY(4) Length of current SQL statement

84 54 BINARY(4) Status of current SQL statement

88 58 BINARY(4) CCSID of current SQL statement

 92 5C CHAR(18) Relational Database name

 * * Array(*) of
CHAR(80)

SQL open cursor data

These fields
repeat for each
SQL open cursor

CHAR(10) Object name for SQL cursor

CHAR(10) Object library for SQL cursor

CHAR(10) Object type for SQL cursor

CHAR(18) SQL cursor name

CHAR(18) SQL statement name

See note CHAR(*) Current SQL statement

Note: The decimal and hexadecimal offsets depend on the number of SQL open
cursors returned in the array. The maximum length of an SQL statement is 32765
bytes.

JOBI1000 Format

The JOBI1000 format is valid for active jobs only. This format returns performance statistics for the active
job based on an elapsed time interval. The first call of this format for the specified job returns zeros for
each attribute returned. Upon consecutive calls for the specified job, the values returned for each attribute
are calculated based on the time that has elapsed since the last call. The amount of time that has elapsed is
returned as part of this format. If the job status has changed to *OUTQ or *JOBQ, the status field is set
appropriately, and no information other than the number of bytes returned, the number of bytes available,
qualified job name, job type, and the job subtype is returned.

For details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(8),
UNSIGNED

Elapsed time

72 48 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time (job)

80 50 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time -
asynchronous I/O (job)

88 58 BINARY(8),
UNSIGNED

Disk I/O count during the elapsed time -
synchronous I/O (job)

96 60 BINARY(4) Interactive response time - total during the
elapsed time

100 64 BINARY(4) Interactive transactions - count during the
elapsed time

104 68 BINARY(4) Processing unit used - percent used during the
elapsed time (job)

108 6C BINARY(4) Processing unit used for database - percent used
during the elapsed time (job)

112 70 BINARY(8),
UNSIGNED

Processing unit used - time during the elapsed
time (job)

120 78 BINARY(8),
UNSIGNED

Processing unit used for database - time during
the elapsed time (job)

128 80 BINARY(8),
UNSIGNED

Lock wait time - time during the elapsed time

136 88 BINARY(8),
UNSIGNED

Page fault count during the elapsed time (job)

Field Descriptions

Most field descriptions for this API are in Work Management API Attribute Descriptions (WMAttrDesc).
Those field descriptions not found in the Work Management API Attribute Descriptions are listed below.

All fields are scoped to the job unless specifically noted. See Considerations for Attribute Scope and

Thread Safety for complete details.

ASP group information entry. Specifies information about an auxiliary storage pool (ASP) group.

ASP group name. The name of the auxiliary storage pool (ASP) group. This is the name of the primary
ASP in an ASP group or the name of an ASP device description. The following special values may also be
returned:

*N The name of the ASP group cannot be determined.

Length of one ASP group information entry. The length of an ASP group information entry. Zero
indicates that an ASP group is not being used. Zero is also returned if the job status has changed to *OUTQ.

Length of one library array entry. The length of one entry in a library list array.

Library ASP name. The name of the ASP device that contains the library. The following special values
may also be returned:

*SYSBAS The library is located in the system ASP or in a basic user ASP.

*N The name of the ASP device cannot be determined.

Library ASP number. The numeric identifier of the ASP containing the library. The following values may
be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Library name. The name of the library object.

Library text description. The text description of the library object. This field is blank if no text description
is specified.

Number of current libraries. The number of current libraries in the library list of the initial thread.

Number of entries in ASP group information. The number of entries in the ASP group information. Zero
indicates that an ASP group is not being used. Zero is also returned if the job status has changed to *OUTQ.

Number of libraries in system library list. The number of libraries in the system part of the library list of
the initial thread.

Number of libraries in user library list. The number of libraries in the user library list of the initial
thread.

Number of product libraries. The number of product libraries in the library list of the initial thread.

Offset to ASP group information. The offset from the start of the format to the start of the ASP group
information. Zero indicates that an ASP group is not being used. Zero is also returned if the job status has
changed to *OUTQ.

Offset to current library. The offset from the start of the format to the start of the current library.

Offset to libraries in system library list. The offset from the start of the format to the start of the system
library list.

Offset to libraries in user library list. The offset from the start of the format to the start of the user library
list.

Offset to product libraries. The offset from the start of the format to the start of the product libraries.

Comparing Job Type and Subtype with the Work with Active Job
Command

The following table compares the job type and job subtype fields returned by the QUSRJOBI API to the
type field on the Work with Active Job (WRKACTJOB) command.

WRKACTJOB and QUSRJOBI API Comparison

Job Type Field Job Type Job Subtype

ASJ (Autostart) A blank

BCH (Batch) B blank

BCI (Batch immediate) B D

EVK (Started by a program start request) B E

INT (Interactive) I blank

M36 (AS/400 Advanced 36 machine server) B F

MRT (Multiple requester terminal) B T

PJ (Prestart job) B J

PDJ (Print driver job) W P

RDR (Reader) R blank

SYS (System) S or X blank

SBS (Subsystem monitor) M blank

WTR (Writer) W blank

blank (Alternative user subtype--not an active
job)

B U

Usage Notes

Considerations for Attribute Scope and Thread Safety: This API is primarily intended for retrieving job
attributes, but it also retrieves some attributes for the initial thread.

The Scope column of Attribute Scope and Thread Safety table that follows shows whether the attribute is
scoped to the job or to the thread. If any attributes currently scoped to the job are moved to the thread level
in the future, then this API will be changed to retrieve the value for the initial thread. This API cannot be
used to retrieve attributes for a secondary thread.

The Threadsafe column of this table indicates whether the attributes are considered to be threadsafe, as well

as indicating whether they are safe under other conditions.

Yes: For this particular API, Yes indicates that an attribute can always be retrieved and can be considered
correct, which includes thread safety. The API may be called from an initial or secondary thread to retrieve
the attributes of the current job or a different job. The job whose attributes are being retrieved may be either
single threaded or multithreaded.

Conditional; reason 1, same job: An attribute marked with this value can be safely retrieved from either
an initial thread or a secondary thread, but can only be considered to be completely correct when retrieving
one's own attribute. When retrieving the attribute from another job, the value retrieved may not be
completely correct if the other job is changing the attribute while it is being retrieved.

Conditional; reason 2, initial thread: An attribute marked with this value can only be considered to be
completely correct when retrieving one's own attribute and you are running in the initial thread. When
retrieving the attribute from another job, you may be running in either an initial thread or a secondary
thread, but in either case the value retrieved may not be completely correct if the other job is changing the
attribute while it is being retrieved.

Conditional; reason 3, single threaded: An attribute marked with this value can only be considered to be
completely correct when retrieving one's own attribute and you are running single threaded. When
retrieving the attribute from another job, you may be running in either an initial thread or a secondary
thread, but in either case the value retrieved may not be completely correct if the other job is changing the
attribute while it is being retrieved.

Conditional; reason 4, active job: An attribute marked with this value can only be considered to be
completely correct when retrieving the attribute of an active job. The API may be called from an initial or
secondary thread to retrieve the attributes of the current job or a different job. The job whose attributes are
being retrieved may be either single threaded or multithreaded. However, if the job whose attribute is being
retrieved is on a job queue, the value retrieved may not be completely correct if the attribute is being
changed while it is being retrieved.

Conditional; reason 5, not during prestart receive: An attribute marked with this value can be
considered to be correct with the following exception. The value may not be completely correct if the
attribute is being retrieved for a prestart job while the prestart job is receiving a new request. The API may
be called from an initial or secondary thread to retrieve the attributes of the current job or a different job.
The job whose attributes are being retrieved may be either single threaded or multithreaded.

No: An attribute marked with this value is not threadsafe, nor is it safe for retrieval when running single
threaded. The value retrieved may not be completely correct if the value is being changed while it is being
retrieved.

Attribute Scope and Thread Safety

Attribute Scope Threadsafe

Active job status Initial thread No

Active job status for jobs ending Initial thread No

Allow multiple threads Initial thread Yes

 ASP group information entry Initial thread Yes

Break message handling Job Yes

Cancel key Job Yes

CCSID of current SQL statement Job No

Character identifier control Job Yes

 Client IP address - IPv4 Initial thread Conditional; reason
2

Coded character set ID Job Yes

Completion status Job Yes

Country or region ID Job Yes

Current library existence Initial thread Yes

Current library Initial thread Yes

Current number of pending signals Job Yes

Current system pool identifier Initial thread Yes

Current user profile Initial thread Conditional; reason
2

Date and time job became active Job Yes

Date and time job ended Job Yes

Date and time job entered system Job Yes

Date and time job is scheduled to run Job Yes

Date and time the job was put on this job
queue

Job No

Date format Job Yes

Date separator Job Yes

DBCS-capable Job Yes

DDM conversation handling Job Yes

Decimal format Job Yes

Default coded character set identifier Job Yes

Default signal action Job Yes

Default wait Job Yes

Device name Job Yes

Device recovery action Job Yes

Disk I/O count during the elapsed time -
asynchronous I/O (job)

Job Yes

Disk I/O count during the elapsed time -
synchronous I/O (job)

Job Yes

Disk I/O count during the elapsed time
(job)

Job Yes

Elapsed time Job Yes

End severity Job Yes

End status Job Yes

Exit key Job Yes

Function name Initial thread No

Function type Initial thread No

Group profile name Initial thread Conditional; reason
2

Group profile name - supplemental Initial thread Conditional; reason
2

Inquiry message reply Job Yes

Interactive response time - total during
the elapsed time

Job Yes

Interactive transactions - count during
the elapsed time

Job Yes

Internal job identifier Job Yes

Job accounting code Job Conditional; reason
1

Job date Job Yes

Job description library name Job Yes

Job description name Job Yes

Job end reason Job Yes

Job log pending Job Yes

Job message queue full action Job Yes

Job message queue maximum size Job Yes

Job name Job Yes

Job number Job Yes

Job queue library name Job Conditional; reason
3

Job queue name Job Conditional; reason
3

Job queue priority Job Yes

Job status Job Yes

Job subtype Job Yes

Job switches Job Conditional; reason
4

Job type Job Yes

Job type - enhanced Job Yes

Job user identity Job Yes

Job user identity setting Job Yes

Language ID Job Yes

Length of current SQL statement Job No

Lock wait time - time during the elapsed
time

Job Yes

Logging level Job Yes

Logging of CL programs Job Yes

Logging severity Job Yes

Logging text Job Yes

Maximum number of signals retained Job Yes

Maximum processing unit time Routing step Yes

Maximum temporary storage in
kilobytes

Routing step Yes

Maximum temporary storage in
megabytes

Routing step Yes

Maximum threads Job Yes

Memory pool name Job Yes

Message reply Job Yes

Mode name Job Yes

Number of auxiliary I/O requests Job Yes

Number of auxiliary I/O requests, if less
than 2,147,483,647

Job Yes

Number of database lock waits Initial thread Yes

Number of interactive transactions Initial thread Yes

Number of internal machine lock waits Initial thread Yes

Number of libraries in SYSLIBL Initial thread Yes

Number of libraries in USRLIBL Initial thread Yes

Number of nondatabase lock waits Initial thread Yes

Number of product libraries Initial thread Yes

Number of signal monitors Job Yes

Number of SQL open cursors Job No

Object library for SQL cursor Job No

Object name for SQL cursor Job No

Object type for SQL cursor Job No

Offset to current SQL statement Job No

Offset to SQL open cursor data Job No

Offset to signal monitor data Job Yes

Output queue library name Job Conditional; reason
3

Output queue name Job Conditional; reason
3

Output queue priority Job Yes

Page fault count during the elapsed time
(job)

Job Yes

Pending signal set Job Yes

Process ID number Job Yes

Print key format Job Yes

Print text Job Conditional; reason
3

Printer device name Job Conditional; reason
3

Processing unit time used - total for the
job

Job Yes

Processing unit time used for database -
total for the job

Job Yes

Processing unit time used, if less than
2,147,483,647 milliseconds

Job Yes

Processing unit used - percent used
during the elapsed time (job)

Job Yes

Processing unit used - time during the
elapsed time (job)

Job Yes

Processing unit used for database -
percent used during the elapsed time
(job)

Job Yes

Processing unit used for database - time
during the elapsed time (job)

Job Yes

Product libraries Initial thread Yes

Product return code Job Yes

Program return code Job No

Purge Job Yes

 Relational Database name Job No

Response time total Initial thread Yes

Run priority (job) Job Yes

Server mode for Structured Query
Language

Job No

Server type Job Conditional; reason
3

Signal action Job Yes

Signal blocking mask Initial thread Yes

Signal monitor data Job Yes

Signal number Job Yes

Signal status Job Yes

Signed-on job Job Yes

Size of SQL open cursor data Job No

Sort sequence Job Conditional; reason
3

Sort sequence library Job Conditional; reason
3

Special environment Job Yes

 Spooled file action Job Yes

SQL cursor name Job No

SQL open cursor data Job No

SQL statement name Job No

Status message handling Job Yes

Status of current SQL statement Job No

Status of job on the job queue Job Yes

Submitter's job name Job Yes

Submitter's job number Job Yes

Submitter's message queue library name Job Yes

Submitter's message queue name Job Yes

Submitter's user name Job Yes

Subsystem description library name Job Yes

Subsystem description name Job Yes

System library list Initial thread Yes

System pool identifier Job Yes

Temporary storage used in kilobytes Job Yes

Temporary storage used in megabytes Job Yes

Thread count Job Yes

Time separator Job Yes

Time slice Job Conditional; reason
4

Time-slice end pool Job Yes

Time spent on database lock waits Initial thread Yes

Time spent on internal machine lock
waits

Initial thread Yes

Time spent on nondatabase lock waits Initial thread Yes

Unit of work ID Job Conditional; reason
5

User library list Initial thread Yes

User name Job Yes

User return code Job Yes

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C54 E Job &3/&2/&1 currently not available.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

Top | Work Management APIs | APIs by category

Retrieve Job Locks (QWCRJBLK) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Job or thread identification information Input Char(*)
5 Format of job or thread identification

information
Input Char(8)

6 Error code I/O Char(*)

 Optional Parameter Group:

7 Lock filters Input Char(*)
8 Format of lock filters Input Char(8)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Job Locks (QWCRJBLK) API generates a list of objects that have been locked or have
lower level locks by the job or thread that is specified in the job or thread identification information input
parameter.

Authorities and Locks

Job Authority

The API must be called from within the job for which the information is being retrieved, or the
caller of the API must be running under a user profile that is the same as the job user identity of the
job for which the information is being retrieved. Otherwise, the caller of the API must be running
under a user profile that has job control (*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is described

in more detail in the Work Management book on the V5R1 Supplemental Manuals Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a

result, the API returns only the data that the area can hold. For example, this may mean that the
number of locked object entries available in the receiver variable doesn't match the value in the
number of locked object entries returned.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of the receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of the
receiver variable specified is larger then the allocated size of the receiver variable specified in the
user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The possible format names are:

JBLK0100 Object level lock format. See JBLK0100 Format for details on the list of objects
that this job or thread has locked.

 JBLK0200 All object lock format. See JBLK0200 Format for details on the list of objects
and members that this job or thread has locked.

Job or thread identification information

INPUT; CHAR(*)

The information that is used to identify the job or thread for which the job lock information is to be
returned. See Format of job or thread identification information for details.

Format of job or thread identification information

INPUT; CHAR(8)

The format of the job or thread identification information. The possible format names are:

JIDF0100 This format is used to retrieve the locks that a job and threads are holding or
waiting to hold. See JIDF0100 Format for details on the job or thread
identification information.

 JIDF0200 This format is used to retrieve the locks that a specific thread is holding or
waiting to hold. See JIDF0200 Format for details on the job or thread
identification information.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group

Lock filters

INPUT;CHAR(*)

Filters used for the lock information that is returned. See the Lock filter format for further
information.

Format of lock filters

INPUT; CHAR(8)

The format of the lock filters used on the returned data. The possible format name is:

JBFL0100 Lock filter format. See JBFL0100 Format for details on the filters contained in this
format.

JBLK0100 Format

This format is used to return only OS/400 external objects that are locked.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of locked object entries available

12 C BINARY(4) Offset to list of locked objects

16 10 BINARY(4) Number of locked object entries returned

20 14 BINARY(4) Length of locked object entry

24 18 * Reserved

These fields
repeat, in the
order listed.

CHAR(10) Object name

CHAR(10) Object library name

CHAR(10) Object type

CHAR(10) Extended object attributes

CHAR(10) Lock state

CHAR(2) Reserved

BINARY(4) Lock status

BINARY(4) Member locks

BINARY(4) Lock count

CHAR(1) Lock scope

CHAR(3) Reserved

CHAR(8) Thread identifier

 BINARY(4)
UNSIGNED

Thread handle

CHAR(20) Lock space identifier

CHAR(10) Object ASP name

CHAR(10) Object library ASP name

BINARY(4) Object ASP number

BINARY(4) Object library ASP number

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete entries are returned.

Extended object attributes. The extended attributes of an object. Extended attributes further describe the
object. For example, an object type of *PGM may have a value of RPG (RPG program) or CLP (CL
program). This field will be blank if there is no extended attribute associated with the object type.

Length of locked object entry. The length of each locked object entry.

Lock count. The number of identical locks on this entity.

Lock scope. The scope of the lock. The lock may be a job scope lock, a thread scope lock, or a lock space
scope lock. Lower level locks are returned and can occur when a member of a file is locked, but the file
itself is not locked. The possible values are:

Blank The object is not locked, but there are locks on lower level objects.

0 Job scope.

1 Thread scope.

 2 Lock space scope.

Lock space identifier. When the lock scope field indicates a lock space scope lock, this field contains the
identifier of the lock space for which the lock is being waited on. Otherwise, this field is blank.

Lock state. The lock condition for the lock request. Lower level locks are returned and can occur when a
member of a file is locked but the file itself is not locked. The possible values are:

 Blank The object is not locked but there are locks on lower level objects.

*SHRRD Lock shared for read.

*SHRUPD Lock shared for update.

*SHRNUP Lock shared, no update.

*EXCLRD Lock exclusive, read allowed.

*EXCL Lock exclusive, no read allowed.

Lock status. The status of the lock request. Lower level locks are returned and can occur when a member
of a file is locked but the file itself is not locked. Possible values are:

 0 The object is not locked but there are locks on lower level objects.

1 The lock on this object currently is held by the job or thread.

2 The job or thread is waiting to get the lock on this object (synchronous).

3 The job or thread has a lock request outstanding for this object (asynchronous). The lock may be a
single request or part of a multiple lock request for which some other object specified in the
request has been identified as unavailable.

Member locks. The number of member locks for a database file. If the object is not a database file, 0 is
returned.

Number of locked object entries available. The number of locked object entries that are held by this job
and specified threads.

Number of locked object entries returned. The number of locked object entries that are returned.

Object ASP name. The name of the auxiliary storage pool (ASP) containing the object that is locked.

The following special values also may be returned:

*SYSBAS The object is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object ASP number. The numeric identifier of the ASP containing the locked object. The following
values may be returned:

1 The object is located in the system ASP.

2-32 The object is located in a basic user ASP.

33-255 The object is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library ASP name. The name of the ASP containing the library of the locked object.

The following specials value also may be returned:

*SYSBAS The object's library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object library ASP number. The numeric identifier of the ASP containing the library of the locked
object. The following values may be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library name. The name of the library containing the locked object.

The following special value also may be returned:

*N The name of the library cannot be determined.

Object name. The name of the object that is locked.

The following special value also may be returned:

*N The name of the object cannot be determined.

Object type. The object type. For a list of all the available external OS/400 object types, see the Control
Language (CL) topic.

Offset to list of locked objects. The offset in bytes from the beginning of the receiver variable to the first
entry.

Reserved. An unused field.

Thread handle. A value that addresses a particular thread within a job holding a thread scope lock or the
thread waiting for a lock; otherwise, this is zero. While the thread identifier uniquely identifies the thread
within the job, the thread handle can improve performance when referencing the thread.

Thread identifier. A value that uniquely identifies a thread within a job holding a thread scope lock or the
thread waiting for a lock; otherwise, hexadecimal zeros are returned.

JBLK0200 Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of locked object entries available

12 C BINARY(4) Offset to list of locked objects

16 10 BINARY(4) Number of locked object entries returned

20 14 BINARY(4) Length of locked object entry

24 18 * Reserved

These fields
repeat, in the
order listed.

BINARY(4) Type of entity

CHAR(30) Extended object name

CHAR(10) Object library name

CHAR(10) Object ASP name

CHAR(10) Object library ASP name

BINARY(4) Object ASP number

BINARY(4) Object library ASP number

CHAR(10) Object type

CHAR(10) Extended object attributes

CHAR(10) Member name

CHAR(1) Member lock type

CHAR(3) Reserved

CHAR(10) Lock state

BINARY(4) Lock status

BINARY(4) Member locks

BINARY(4) Lock count

CHAR(1) Lock scope

CHAR(3) Reserved

BINARY(8)
UNSIGNED

Space location lock offset

CHAR(8) Thread identifier

BINARY(4)
UNSIGNED

Thread handle

CHAR(20) Lock space identifier

CHAR(64) Object lock handle

CHAR(64) Lock request handle

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete entries are returned.

Extended object attributes. The extended attributes of an object. Extended attributes further describe the
object. For example, an object type of *PGM may have a value of RPG (RPG program) or CLP (CL
program). This field will be blank if there is no extended attribute associated with the object type.

Extended object name. The name of the object that is locked. This field will be blank if the name is for an
internal system object or an internal system object space location, and the user does not have *JOBCTL
special authority. If the lock is on a database member then the object name will be the name of the file that
owns the member. If the member lock type is member or access path, then the file that owns the member
may be either a physical file or a logical file. If the member lock type is data, then the file that owns the
member will be a physical file. If the lock is on a lock space then the name will be the lock space id for that
lock space.

The following special value also may be returned:

*N The name of the object cannot be determined.

Length of locked object entry. The length of each locked object entry.

Lock count. The number of identical locks on this entity.

Lock request handle. A handle to lock request information. Using the Retrieve Lock Request Information
(QWCRLRQI) API and passing in this handle you can retrieve additional information about the program
that requested this lock. A value of hexadecimal zero is returned when additional information cannot be
retrieved. This value is a temporary value that can expire. See the QWCRLRQI API for additional
information.

Lock scope. The scope of the lock. The lock may be a job scope lock, a thread scope lock, or a lock space
scope lock. Lower level locks are returned and can occur when a member of a file is locked but the file
itself is not locked. The possible values are:

Blank The object is not locked but there are locks on lower level objects.

0 Job scope.

1 Thread scope.

2 Lock space scope.

Lock space identifier. When the lock scope field indicates a lock space scope lock, this field will contain
the identifier of the lock space for which the lock is being waited on. Otherwise, this field is blank.

Lock state. The lock condition for the lock request. Lower level locks are returned and can occur when a
member of a file is locked but the file itself is not locked. Possible other values are:

Blank The object is not locked, but there are locks on lower level objects.

*SHRRD Lock shared for read.

*SHRUPD Lock shared for update.

*SHRNUP Lock shared, no update.

*EXCLRD Lock exclusive, read allowed.

*EXCL Lock exclusive, no read allowed.

Lock status. The status of the lock request. Possible values are:

0 The object is not locked but there are locks on lower level objects.

1 The lock on this object currently is held by the job or thread.

2 The job or thread is waiting to get the lock on this object (synchronous).

3 The job or thread has a lock request outstanding for this object (asynchronous). The lock may be a
single request or part of a multiple lock request for which some other object specified in the request
has been identified as unavailable.

Member locks. The number of member locks for a database file. If the object is not a database file, 0 is
returned.

Member lock type. If the lock is on a member then this field indicates the type of member lock, otherwise
it will be blank. Possible values are:

Blank The object type is not a member

0 The lock is a member lock

1 The lock is a data lock.

2 The lock is an access path lock.

Member name. The name of the member that has a lock held or waiting on it. If the type of entity is not a
member object then this field is blank. The following special value also can be returned:

*N The name of the object cannot be determined.

Number of locked object entries available. The number of locked object entries that are held by this job
and specified threads.

Number of locked object entries returned. The number of locked object entries that are returned.

Object ASP name. The name of the Auxiliary Storage Pool (ASP) that contains the object that is locked.

The following special values also may be returned:

*SYSBAS The object is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object ASP number. The numeric identifier of the ASP containing the locked object. The following
values may be returned:

1 The object is located in the system ASP.

2-32 The object is located in a basic user ASP.

33-255 The object is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library ASP name. The name of the ASP containing the library of the locked object.

The following specials value also may be returned:

*SYSBAS The object's library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object library ASP number. The numeric identifier of the ASP containing the library of the locked
object. The following values may be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library name. The name of the library containing the locked object. This field will be blank if the
type of entity is an internal system object or is an internal system object space location.

The following special value also may be returned:

*N The name of the library cannot be determined.

Object lock handle. An identifier that can be input to Retrieve Lock Information (QWCRLCKI) API to
find additional information about other holders of locks on this object. Hexadecimal zeros are returned
when additional information cannot be retrieved. The object lock handle is a temporary value that can
expire. See the QWCRLCKI API for additional information.

Object type. The object type. For a list of all the available external OS/400 object types, see the Control
Language (CL) topic. For a list of all internal system object types, see the OS/400 Diagnostic Aids. Note if
the lock is on a database member the object type will be *FILE.

Offset to list of locked objects. The offset in bytes from the beginning of the receiver variable to the first
entry.

Reserved. An unused field.

Space location lock offset. A value in bytes to the location in the space that is locked. For objects that are
not space location locks this value will be zero.

Thread handle. A value which addresses a particular thread within a job holding a thread scope lock or the
thread waiting for a lock, otherwise this is zero. While the thread identifier uniquely identifies the thread
within the job, the thread handle can improve performance when referencing the thread.

Thread identifier. A value which uniquely identifies a thread within a job holding a thread scope lock or
the thread waiting for a lock; otherwise, hexadecimal zeros are returned.

Type of entity. This is a value that will identify the type of entity for which the lock information is
returned.

The following values may be returned:

1 OS/400 external object

2 Member object

3 Internal system object

4 OS/400 external object space location

5 Internal system object space location

6 Lock space object

999 Unknown type

Lock filter format

The format of the lock filter used on the returned lock information.

JBFL0100 Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Filter size

4 4 BINARY(4) Filter lock state

8 8 BINARY(4) Filter lock scope

12 C BINARY(4) Filter lock status

16 10 CHAR(1) Include OS/400 external objects flag

17 11 CHAR(1) Include member objects flag

18 12 CHAR(1) Include internal system objects flag

19 13 CHAR(1) Include OS/400 external object space locations
flag

20 14 CHAR(1) Include internal system object space locations
flag

21 15 CHAR(1) Include lock space objects flag

22 16 CHAR(1) Include unknown entities flag

23 17 CHAR(10) Filter object name

33 21 CHAR(10) Filter object library name

43 2B CHAR(10) Filter object library ASP name

Field Descriptions

Filter lock scope: This value is used to filter information that is returned so that it contains only
information about locks that have a certain lock scope.

0 Do not filter on lock scope

1 Return only the job scope locks

2 Return only the thread scope locks

3 Return only the lock space scope locks

Default Do not filter on lock scope.

Filter lock state: This value is used to filter information that is returned so that it contains only information
about locks that have a certain lock state.

0 Do not filter on lock state

1 Return only the shared locks

2 Return only the exclusive locks

Default Do not filter on lock state.

Filter lock status: This value is used to filter information that is returned so that it contains only
information about locks that have a certain lock status.

0 Do not filter on lock status

1 Return only locks with a status of held

2 Return only locks with a status of waiting

3 Return only locks with a status of requested.

Default Do not filter on lock status.

Filter object library ASP name: The name of the library's Auxiliary Storage Pool (ASP) to be filtered on.
Special value of *SYSBAS can be specified. A blank field will cause no filtering to be done on this field.
The default is not to filter on this field.

Filter object library name: This is the library name to be filtered on. A blank field will cause no filtering
to be done on this field. The default is not to filter on this field.

Filter object name: Only locks on the specified object will be returned. In the case of database files, locks
on members of the file may also be returned. A blank field will cause no filtering to be done on this field.
The default is not to filter on this field.

Filter size: The size of the filter information passed. Valid values are:

4 No filtering will be performed. The default values will be used for each filter.

53 All filters will be required

Include internal system objects flag: A value of 1 in this field allows internal system object locks to be
returned. A value of 0 will cause these values to be excluded from the return data. Note this field is only
valid for the JBLK0200 format. The default is to exclude internal system objects.

Include internal system object space locations flag: A value of 1 in this field allows internal system
object space location locks to be returned A value of 0 will cause these values to be excluded from the
return data. Note this field is only valid for the JBLK0200 format. The default is to exclude internal system
object space locations.

Include lock space objects flag: A value of 1 in this field will allow lock space objects locks to be
returned. A value of 0 will cause these values to be excluded from the return data. Note this field is only
valid for the JBLK0200 format. The default is to include lock space objects.

Include member objects flag: A value of 1 in this field will allow member objects locks to be returned. A
value of 0 will cause these values to be excluded from the return data. Note this field is only valid for the
JBLK0200 format. The default is to include member objects.

Include OS/400 external objects flag: A value of 1 in this field will allow OS/400 external object locks to
be returned. A value of 0 will cause these objects to be excluded from the return data. Note this field is only
valid for the JBLK0200 format. The default is to include OS/400 external objects.

Include OS/400 external object space locations flag: A value of 1 in this field will allow OS/400 external
space locations locks to be returned. A value of 0 will cause these values to be excluded from the return
data. Note this field is only valid for the JBLK0200 format. The default is exclude OS/400 external object
space locations.

Include Unknown types flag: A value of 1 in this field allows locks that are of an unknown entity type to
be returned. A value of 0 causes these values to be excluded from the return data. This field is valid for the
JBLK0200 format only. The default is exclude unknown types.

Format of job or thread identification information

The format of the information needed to identify the job or thread whose locked object information is
returned.

JIDF0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with the job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value that uniquely identifies a thread within a job. A valid thread identifier must be
specified.

Thread indicator. The value that is used to specify the thread within the job for which information is to be
retrieved. The following values are supported:

0 Information should be retrieved for the thread specified in the thread identifier field.

1 Information should be retrieved for the thread in which this program is running currently.

2 Information should be retrieved for the initial thread of the identified job.

3 Information should be retrieved for the job and its associated threads.

Note: For all supported values, the combination of the internal job identifier, job name, job number, and
user name fields must identify the job containing the thread or threads.

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format.

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4),
UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. An unused field on this API. This field must contain hex zeros.

Thread identifier. A value that uniquely identifies a thread within a job. A valid thread identifier must be
specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Error Messages

Message ID Error Message Text

CPF136A E Job &3/&2/&1 not active.

CPF18BF E Thread &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

API introduced: V5R1

Top | Work Management APIs | APIs by category

Retrieve Job Queue Information (QSPRJOBQ)
API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified job queue name Input Char(20)
5 Error Code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Job Queue Information (QSPRJOBQ) API retrieves information associated with a specified
job queue.

Authorities and Locks

Job Queue Library Authority

The caller needs *EXECUTE authority to the job queue library.

Job Queue Authority

The caller needs one of the following:

*READ authority to the job queue.❍

Job control special authority (*JOBCTL) if the job queue is operator controlled
(OPRCTL(*YES)).

❍

Spool control special authority (*SPLCTL).❍

Job Queue Lock

This API gets an *EXCLRD lock on the job queue.

Subsystem Description Lock

This API gets an *EXCLRD lock on the subsystem description.

This API does not check the caller's authority to the subsystem description or subsystem description library
when retrieving the subsystem description information.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information requested.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided by the receiver variable parameter. The amount of data
returned is truncated if it is too small. A length of less than 8 is not valid.

Format name

INPUT; CHAR(8)

The content and format of the queue information being returned. The valid format names are:

JOBQ0100 Basic job queue information. See JOBQ0100 Format to view the information
returned for this format.

JOBQ0200 Detailed job queue information. See JOBQ0200 Format to view the information
returned for this format.

Qualified job queue name

INPUT; CHAR(20)

The name of the job queue for which information is returned. The first 10 characters contain the
queue name, and the second 10 characters contain the name of the library in which the queue
resides.

The following special values are supported for the library name:

*LIBL The library list used to locate the job queue.

*CURLIB The current library for the job is used to locate the job queue.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

JOBQ0100 Format

The following table shows the information returned for the JOBQ0100 format. For more details about the
fields in the following table, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job queue name

18 12 CHAR(10) Job queue library name

28 1C CHAR(10) Operator controlled

38 26 CHAR(10) Authority to check

48 30 BINARY(4) Number of jobs

52 34 CHAR(10) Job queue status

62 3E CHAR(10) Subsystem name

72 48 CHAR(50) Text description

122 7A CHAR(10) Subsystem library name

132 84 BINARY(4) Sequence number

136 88 BINARY(4) Maximum active

140 8C BINARY(4) Current active

JOBQ0200 Format

The following table shows the information returned for the JOBQ0200 format. For more details about the
fields in the following table see, Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job queue name

18 12 CHAR(10) Job queue library name

28 1C CHAR(10) Operator controlled

38 26 CHAR(10) Authority to check

48 30 BINARY(4) Number of jobs

52 34 CHAR(10) Job queue status

62 3E CHAR(10) Subsystem name

72 48 CHAR(10) Subsystem library name

82 52 CHAR(50) Text description

132 84 BINARY(4) Sequence Number

136 88 BINARY(4) Maximum active

140 8C BINARY(4) Current active

144 90 BINARY(4) Maximum active jobs with priority 1

148 94 BINARY(4) Maximum active jobs with priority 2

152 98 BINARY(4) Maximum active jobs with priority 3

156 9C BINARY(4) Maximum active jobs with priority 4

160 A0 BINARY(4) Maximum active jobs with priority 5

164 A4 BINARY(4) Maximum active jobs with priority 6

168 A8 BINARY(4) Maximum active jobs with priority 7

172 AC BINARY(4) Maximum active jobs with priority 8

176 B0 BINARY(4) Maximum active jobs with priority 9

180 B4 BINARY(4) Active jobs with priority 0

184 B8 BINARY(4) Active jobs with priority 1

188 BC BINARY(4) Active jobs with priority 2

192 C0 BINARY(4) Active jobs with priority 3

196 C4 BINARY(4) Active jobs with priority 4

200 C8 BINARY(4) Active jobs with priority 5

204 CC BINARY(4) Active jobs with priority 6

208 D0 BINARY(4) Active jobs with priority 7

212 D4 BINARY(4) Active jobs with priority 8

216 D8 BINARY(4) Active jobs with priority 9

220 DC BINARY(4) Released jobs on queue with priority 0

224 E0 BINARY(4) Released jobs on queue with priority 1

228 E4 BINARY(4) Released jobs on queue with priority 2

232 E8 BINARY(4) Released jobs on queue with priority 3

236 EC BINARY(4) Released jobs on queue with priority 4

240 F0 BINARY(4) Released jobs on queue with priority 5

244 F4 BINARY(4) Released jobs on queue with priority 6

248 F8 BINARY(4) Released jobs on queue with priority 7

252 FC BINARY(4) Released jobs on queue with priority 8

256 100 BINARY(4) Released jobs on queue with priority 9

260 104 BINARY(4) Scheduled jobs on queue with priority 0

264 108 BINARY(4) Scheduled jobs on queue with priority 1

268 10C BINARY(4) Scheduled jobs on queue with priority 2

272 110 BINARY(4) Scheduled jobs on queue with priority 3

276 114 BINARY(4) Scheduled jobs on queue with priority 4

280 118 BINARY(4) Scheduled jobs on queue with priority 5

284 11C BINARY(4) Scheduled jobs on queue with priority 6

288 120 BINARY(4) Scheduled jobs on queue with priority 7

292 124 BINARY(4) Scheduled jobs on queue with priority 8

296 128 BINARY(4) Scheduled jobs on queue with priority 9

300 12C BINARY(4) Held jobs on queue with priority 0

304 130 BINARY(4) Held jobs on queue with priority 1

308 134 BINARY(4) Held jobs on queue with priority 2

312 138 BINARY(4) Held jobs on queue with priority 3

316 13C BINARY(4) Held jobs on queue with priority 4

320 140 BINARY(4) Held jobs on queue with priority 5

324 144 BINARY(4) Held jobs on queue with priority 6

328 148 BINARY(4) Held jobs on queue with priority 7

332 14C BINARY(4) Held jobs on queue with priority 8

336 150 BINARY(4) Held jobs on queue with priority 9

Field Descriptions

Active jobs with priority 0 through 9. The number of jobs that are active for each priority level (0 through
9). If the subsystem name and subsystem library name are blank, then this field is 0.

Authority to check. Whether the user must be the owner of the queue in order to control the queue by
holding or releasing the queue. The possible values are:

*OWNER Only the owner of the job queue can control the queue.

*DTAAUT Any user with *READ, *ADD, or *DELETE authority to the job queue can control the
queue.

Bytes available. Total format data length.

Bytes returned. Length of the data returned.

Job queue library name. The name of the library that contains the job queue.

Job queue name. The name of the job queue.

Job queue status. The status of the job queue. The status may be one of the following values:

RELEASED The queue is released.

HELD The queue is held.

Maximum active. The maximum number of jobs that can be active at the same time through this job queue
entry. A -1 in this field indicates that the value is *NOMAX.

Maximum active jobs with priority 1 through 9. The maximum number of jobs that can be active at the
same time for each priority level (1 through 9). A -1 in this field indicates that the value is *NOMAX. If the
subsystem name and subsystem library name are blank, then this field is 0.

Number of jobs. The number of jobs in the queue.

Operator controlled. Whether a user who has job control authority is allowed to control this job queue and
manage the jobs on the queue.

*YES Users with job control authority can control the queue and manage the jobs on the queue.

*NO This queue and its jobs cannot be controlled by users with job control authority unless they also
have other special authority.

Released jobs on queue with priority 0 through 9. The number of jobs currently sitting on the job queue
in *RELEASED status for each priority level (0 through 9).

Scheduled jobs on queue with priority 0 through 9. The number of jobs currently sitting on the job
queue in *SCHEDULED status for each priority level (0 through 9).

Sequence number. The job queue entry sequence number. The subsystem uses this number to determine
the order in which job queues are processed. Jobs from the queue with the lowest sequence number are
processed first.

Subsystem name. The name of the subsystem that can receive jobs from this job queue. If there is no
name, then this queue is not associated with an active subsystem, and no job can be processed.

Subsystem library name. The library in which the subsystem description resides. If there is no name, then
this queue is not associated with with an active subsystem and no job can be processed.

Text description. Text that briefly describes the job queue.

*BLANK There is no text description of the job queue.

Error Messages

Message ID Error Message Text

CPF1608 E Subsystem description &1 not found.

CPF2207 E Not authorized to use object &1 in library &3 type *&2.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3307 E Job queue &1 in &2 not found.

CPF3330 E Necessary resource not available.

CPF8121 E &8 damage on job queue &4 in library &9.

CPF8122 E &8 damage on library &4.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

Top | Work Management APIs | APIs by category

Retrieve Job Status (QWCRJBST) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Job identifier Input Char(*)
4 Format of job identifier Input Char(8)
5 Error Code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Job Status (QWCRJBST) API returns status and job identification information about the job
that is identified by the job identifier parameter. The QWCRJBST API retrieves this information faster than
other APIs. It should be considered for use in performance critical applications where the returned
information is required.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Job identifier

INPUT CHAR(*)

The identifier of the job for which the information is to be retrieved. The job can be identified in
one of three ways: job number only, internal job number, or fully qualified job name. The next
parameter specifies which format of job identifier is being used.

Format of job identifier

INPUT CHAR(8)

The format of the job identifier being provided. The format names that can be used are as follows:

JOBS0100 The job identifier is a 6-character job number. It is possible that more than one job
may have the same job number. This API returns the requested information for only
the first job that has the specified job number. No indication is returned to show if
more than one job has the same job number.

JOBS0200 The job identifier is a 16-character internal job number. The internal job number is
obtained through the List Job (QUSLJOB) API or as output to this API.

JOBS0300 The job identifier is a 26-character fully qualified job name.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of Returned Information

The information returned from this API has the following format:

Offset

Type FieldDec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 CHAR(10) Job status

18 12 CHAR(16) Internal job identifier

34 22 CHAR(26) Fully qualified job name

Field Description

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Fully qualified job name. The fully qualified job name consisting of three parts. The first 10 characters
contain the job name. The next 10 characters contain the user name. The last 6 characters contain the job
number.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.
Only APIs described in this book use this identifier. The identifier is not valid following an initial program
load (IPL). If you attempt to use it after an IPL, an exception occurs.

Job status. Possible values that can be returned for job status are as follows:

*ACTIVE The job has started, and it can use system resources (processing unit, main storage, and so
on). This does not guarantee that the job is currently running, however. For example, an
active job may be in one of the following states where it cannot use system resources:

The Hold Job (HLDJOB) command holds the job; the Release Job (RLSJOB)
command allows the job to run again.

●

The Transfer Group Job (TFRGRPJOB) command or the Transfer Secondary Job
(TFRSECJOB) command suspends the job. When control returns to the job, the job
can run again.

●

The job is disconnected using the Disconnect Job (DSCJOB) command. When the
interactive user signs back on, thereby connecting back into the job, the job can run
again.

●

The job is waiting for any reason. For example, with an inquiry message, the job can
start running again when it receives the reply.

●

*JOBQ The job currently is on a job queue. The job may have been previously active and was placed
back on the job queue because of the Transfer Job (TFRJOB) command or the Transfer
Batch Job (TFRBCHJOB) command, or the job was never active because it was just
submitted.

*OUTQ The job has completed running and has spooled output that has not yet printed.

*ERROR Either a job with the specified job identifier does not exist, or an error was encountered
while attempting to determine its status.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C54 E Job &3/&2/&1 currently not available.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

Top | Work Management APIs | APIs by category

Retrieve Lock Information (QWCRLCKI) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Object identification Input Char(*)
5 Object identification format Input Char(8)
6 Number of key fields to be returned Input Binary(4)
7 Key of fields to be returned Input Array(*) of Binary(4)
8 Filters Input Char(*)
9 Filter format Input Char(8)
10 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Information (QWCRLCKI) API generates a list of information about lock holders of the
item specified.

Authorities and Locks

Object Library Authority

*EXECUTE

Object Library ASP Device Authority

*EXECUTE

Note: If the user does not have *EXECUTE authority to the object's library and *EXECUTE authority to
the object library's ASP device, the user must have *JOBCTL authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold. For example, this may mean that the
number of lock information entries returned in the receiver variable doesn't match the value in the
number of lock information entries available.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of the receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of the
receiver variable specified is larger then the allocated size of the receiver variable specified in the
user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The name of the format used to retrieve lock information. You can specify this format:

LCKI0100 Lock Information Format. See LCKI0100 Format for more information.

Object identification

INPUT; CHAR(*)

The information that is used to identify the entity that may be locked. See Format of Object
Identification for more information.

Object identification format

INPUT; CHAR(8)

The format of the entity identification information. Possible format names are:

LOBJ0100 Object name. See LOBJ0100 Format for more information on this format.

LOBJ0200 Object lock handle. See LOBJ0200 Format for more information on this format.

Number of key fields to be returned

INPUT; BINARY(4)

The number of key fields to be returned in the LCKI0100 format. If the lock holder type returned is
a lock space then the values returned in the key fields will be blank or zero.

Key of fields to be returned.

INPUT; ARRAY(*) of BINARY(4)

The list of fields returned in the LCKI0100 format. For a list of valid fields, see Valid Keys.

Filters

INPUT;CHAR(*)

Filters used for the lock information that is returned. See the Filter Format for further information.

Filter format

INPUT; CHAR(8)

The format of the lock filter used on the returned data. The possible format name is:

LKFL0100 See LKFL0100 Format for details on the filters contained in this format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Object Identification

The formats for the object identification are specified.

LOBJ0100 Format

An external object is specified in this format. See the field descriptions for restrictions that may exist.

Offset

Type FieldDec Hex

0 0 BINARY(4) Object identification size

4 4 CHAR(10) Object name specified

14 E CHAR(10) Object library name specified

24 18 CHAR(10) Object library ASP name specified

34 22 CHAR(10) Object type specified

44 2C CHAR(10) Member name

54 36 CHAR(2) Reserved

56 38 BINARY(4) Record lock indicator

60 3C UNSIGNED
BINARY(4)

Relative record number

Field Descriptions

Member name. Lock information is retrieved on the specified member of a database file. This is valid only
when a database file has been specified for object parameters. For other than database files, use *NONE.
Special values used are:

*NONE No member locks are retrieved, but file level locks are retrieved. If the qualified object name
is not a database file, use this value.

Object identification size. The amount of data provided for the LOBJ0100 format. This field must be set
to 64.

Object library ASP name specified. The name of the auxiliary storage pool (ASP) device that contains the
object's library. This parameter must be * if the library portion of the qualified object name is *CURLIB or
*LIBL. Special values used are:

* The current thread's library name space will be searched.

*SYSBAS The system ASP and defined basic user ASPs will be searched.

Object library name specified. The name of the library where the object is located. You can use these
special values for the library name:

*CURLIB The current library is used to locate the object. If there is no current library, QGPL (general
purpose library) is used.

*LIBL The library list is used to locate the object.

Object name specified. The name of the external OS/400 object whose lock information entries are to be
placed in the list.

Object type specified. The type of OS/400 object. For a list of all the available external OS/400 object
types, see the Control Language (CL) topic.

Record lock indicator. The indicator that controls the retrieval of record locks that may exist if the object
specified is a file and member. If the object specified is not a database file and member or the special value
of *ALL is specified for member, then the value 0 must be used for this field. One of the following values
are required for this field.

0 No record lock information is retrieved.

1 The record lock information in the specified file and member will be returned.

Relative record number. The record number in the specified database file and member for which lock
information is to be returned. If the object specified is not a database file and member, the value 0 must be
used for this field. The following special value is allowed:

0 Record lock information for all records in the member should be returned.

Reserved. This field must be set to hexadecimal zeros.

LOBJ0200 Format

This format is used to find locks where a handle was passed that has been returned in a previous lock call to
the Retrieve Job Locks (QWCRJBLK) API. This call must have been made in the same thread for the
handle to be valid. The following fields are used if LOBJ0200 input format is specified.

Offset

Type FieldDec Hex

0 0 BINARY(4) Object handle size

4 4 CHAR(64) Object lock handle

Field Descriptions

Object lock handle. A value that identifies the object that is stored from a previous API call. The handle is
a temporary value. A storage limitation will allow a thread to create up to 1 million valid handles. Once the
storage limit has been reached the oldest handle information will be overwritten. This can cause a handle to
no longer be valid.

Object identification size. The amount of data provided for the LOBJ0200 format. This field must be set
to 68.

Filter Format

The format of the lock filter used on the returned lock information.

LKFL0100 Format

Offset

Type FieldDec Hex

0 0 BINARY(4) Filter size

4 4 BINARY(4) Filter lock state

8 8 BINARY(4) Filter lock scope

12 C BINARY(4) Filter lock status

16 10 CHAR(1) Filter lock holder type

17 11 CHAR(1) Filter member lock type

Field Descriptions

Filter lock holder type. Filters information that is returned so it contains only information about a type of
lock holder.

0 Do not filter on holder type.

1 Return only locks with a holder type of job or thread.

2 Return only locks with a holder type of lock space.

Default Do not filter on holder type.

Filter lock scope. Filters information that is returned so it contains only information about locks that have a
certain lock scope.

0 Do not filter on lock scope.

1 Return only the job scope locks.

2 Return only the thread scope locks.

3 Return only the lock space scope locks.

Default Do not filter on lock scope.

Filter lock state. Filters information that is returned so it contains only information about locks that have a
certain lock state.

0 Do not filter on lock state.

1 Return only the shared locks.

2 Return only the exclusive locks.

Default Do not filter on lock state.

Filter lock status. Filters information that is returned so it contains only information about locks that have
a certain lock status.

0 Do not filter on lock status.

1 Return only locks with a status of held.

2 Return only locks with a status of waiting.

3 Return only locks with a status of requested.

Default Do not filter on lock status.

Filter member lock type. Filters information that is returned so it contains only information about locks
that have a certain member lock type.

0 Do not filter on member lock type.

1 Return only locks with member lock type of member.

2 Return only locks with member lock type of data.

3 Return only locks with member lock type of access path.

Default Do not filter on member lock type.

Filter size. The size of the filter information passed. Valid values are:

4 No filtering will be performed.

18 All filters will be required.

Lock Information Format

The formats for the lock information.

LCKI0100 Format

Header Section

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Type of entity

12 C CHAR(30) Extended object name returned

42 2A CHAR(10) Object library name returned

52 34 CHAR(10) Object ASP name returned

62 3E CHAR(10) Object library ASP name returned

72 48 BINARY(4) Object ASP number returned

76 4C BINARY(4) Object library ASP number returned

80 50 CHAR(10) Object type returned

90 5A CHAR(10) Extended object attribute returned

100 64 BINARY(4) Number of lock information entries available

104 68 BINARY(4) Offset to list of lock information entries

108 6C BINARY(4) Number of lock information entries returned

112 70 BINARY(4) Length of lock information entry

Lock Information Entry Format

Offset

Type FieldDec Hex

These fields repeat,
in the order listed.

CHAR(10) Lock state

CHAR(2) Reserved

BINARY(4) Lock status

CHAR(1) Lock scope

CHAR(3) Reserved

CHAR(20) Lock space identifier

CHAR(64) Lock request handle

BINARY(4) Lock count

CHAR(10) Member name returned

CHAR(1) Member lock type

CHAR(1) Reserved

BINARY(4) Relative record number

BINARY(4) Displacement from lock information to
holder identification

BINARY(4) Displacement from lock information to
key information

BINARY(4) Number of keys returned

BINARY(4) Holder type

CHAR(*) Holder identification

Key information format

Offset

Type FieldDec Hex

These fields repeat,
in the order listed, for

each key selected.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete lock information entries are
returned.

Data. The data returned for the key field.

Displacement from lock information to holder identification. The byte displacement from the start of
the current lock information entry to the holder identification.

Displacement from lock information to key information. The byte displacement from the start of the
current lock information entry to the key information requested.

Extended object attribute returned. The extended attribute of the object for which the list of locks is
returned, such as a program or a file type. Extended attributes further describe the object. For example, an
object type of *FILE may have an extended object attribute of PHY (physical file), LGL (logical file), DSP
(display file), SAV (save file), and so forth.

Extended object name returned. The name of the object for which the lock information entries are placed
in the list. This field will be blank if the name is for an internal system object or an internal system object
space location, and the user does not have *JOBCTL special authority.

Holder identification. This field contains information about the lock holder. This can be either a qualified
job name as described in Job Format specifier or a lock space identifier as described in Lock Space Format
specifier.

Holder type. This value is set to indicate what type of holder is holding or is waiting to hold a lock on the
specified object.

0 The lock holder is a job or thread. See the Job Format for more information.

1 The lock holder is a lock space. See the Lock Space Format for more information.

Key field. The field returned. See Valid Keys for the list of valid keys.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of information returned for this field. This value is
used to increment to the next field in the list.

Length of lock information entry. The length of a lock information entry. This value is used to increment
to the next entry.

Lock count. The number of identical locks.

Lock request handle. This value is used to identify a handle to lock request process information. Using the
Retrieve Lock Request Information (QWCRLRQI) API and passing in this handle you can retrieve
additional information about the program that requested this lock. See QWCRLRQI API for additional
information

Lock scope. The scope of the lock. The possible values are:

0 Job scope

1 Thread scope

2 Lock space scope

Lock space identifier. This field contains a value only when the lock scope value is lock space scope and
the lock is being waited on by a thread. This field will then contain the lock space ID value for which the
lock is being waited on.

Lock state. The lock condition for the lock request. The possible values are:

*SHRRD Lock shared for read.

*SHRUPD Lock shared for update.

*SHRNUP Lock shared no update.

*EXCLRD Lock exclusive allow read.

*EXCL Lock exclusive no read.

*RECRD Lock is a record shared read lock

*RECUP Lock is a record exclusive update lock.

*RECINT Lock is a record shared internal lock

Lock status. The status of the lock. The lock may be a single request or part of a multiple lock request for
which some other object specified in the request has been identified as unavailable. The possible values are:

1 The lock is currently held by the job or thread.

2 The job or thread is waiting for the lock (synchronous).

3 The job or thread has a lock request outstanding for the object (asynchronous).

Member lock type. If the lock is on a member then this field indicates the type of member lock, otherwise
it will be blank. The possible values are:

Blank The object type is not a member

1 Lock on the member control block

2 Lock on the actual data within the member

3 Lock on the access path used to access a member's data

Member name returned. The name of the member that lock information is being returned for. Blanks will
be returned if the object is not a member of a database file.

Number of keys returned. The number of keys that were returned.

Number of lock information entries available. The number of lock information entries that were found.

Number of lock information entries returned. The number of lock information entries that are returned.

Object ASP name returned. The name of the ASP in which the object is located. The following special
values may also be returned:

*SYSBAS The object is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Object ASP number returned. The numeric identifier of the ASP containing the locked object. The
following values may be returned:

1 The object is located in the system ASP.

2-32 The object is located in a basic user ASP.

33-255 The object is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library ASP name returned. The name of the ASP in which the object's library is located. The
following special values may also be returned:

*SYSBAS The library is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Object library ASP number returned. The numeric identifier of the ASP device containing the object's
library. The following special values may also be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library name returned. The name of the library that contains the object whose lock information
entries are placed in the list.

Object type returned. The type of object for which locks are retrieved. For a list of all the available
external OS/400 object types, see the Control Language (CL) topic. For a list of all internal system object
types, see the OS/400 Diagnostic Aids.

Offset to list of lock information entries. The offset in bytes from the beginning of the receiver variable to
the first entry.

Relative record number. The relative record number for which record lock information is being returned.
If this is not a record lock then this value will be zero.

Reserved. An unused field.

Type of data. The type of data returned.

C The data is returned in character format.

B The data is returned in binary format.

Type of entity. This is a value that will identify the type of entity for which the lock information is
returned. The following values may be returned:

1 OS/400 external object

2 Member object

3 OS/400 external object space location

4 Internal system object

5 Internal system object space location

Valid Keys

The following table contains a list of valid keys.

See Field Descriptions in the Work Management API Attributes Descriptions for the descriptions of the
valid key fields. All fields are scoped to the job unless specifically noted. See Considerations for Attribute
Scope and Thread Safety in the Work Management API Attributes Descriptions for complete information.

Note: If the holder type is a lock space holder then character fields will contain blanks and the binary fields
will be zero.

Key Type Description

0101 CHAR(4) Active job status

0103 CHAR(4) Active job status for jobs ending

0502 CHAR(1) End status

0601 CHAR(10) Function name

0602 CHAR(1) Function type

0902 CHAR(16) Internal job identifier

1014 BINARY(4) Job end reason

1307 CHAR(1) Message reply

2010 CHAR(4) Thread status

Holder ID

This field contains an identifier for the job or lock space that is holding or waiting to hold a lock on the
specified object or space location.

Job Format

For a job, the returned data in this field will be in this format.

Offset

Type FieldDec Hex

0 0 BINARY(4) Holder identification size

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(8) Thread identifier

42 2A CHAR(2) Reserved

44 2C UNSIGNED
BINARY(4)

Thread handle

Field Descriptions

Holder identification size. The size of the holder identification.

Job name. The simple job name of the job that issued the lock request. If the job name is MACHINE and
the job user name entry is blank, the lock is held by an internal machine process.

Job number. The system assigned job number of the job that issued the lock request. This value will be
blank if the job name is MACHINE and the user name entry is blank.

Thread handle. A value which addresses a particular thread within a job holding a thread scope lock or the
thread waiting for a lock, otherwise this is zero. While the thread identifier uniquely identifies the thread
within the job, the thread handle can improve performance when referencing the thread.

Thread identifier. A value which uniquely identifies a thread within a job holding a thread scope lock or

the thread waiting for a lock, otherwise this is zero.

Reserved. This field will be blank.

User name. The user name under which the job that issued the lock request is started. If the job name is
MACHINE and the lock is held by an internal machine process then this field will be blank.

Lock Space Format

For a lock space the returned data in this field will be in this format.

Offset

Type FieldDec Hex

0 0 BINARY(4) Holder identification size

4 4 CHAR(20) Holder lock space identifier

Field Descriptions

Holder identification size. The size of the holder identification.

Holder lock space identifier. The identifier of the lock space that holds a lock.

Reserved. A blank field.

Error Messages

Message ID Error Message Text

CPF0951 E QSYS only valid library for object type &2.

CPF18C2 E Value for handle has expired.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF2 E Error(s) occurred while running API &1.

CPF9801 E Object &1 type &3 not found in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

Top | Work Management APIs | APIs by category

Retrieve Lock Request Information
(QWCRLRQI) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of lock request information Input Char(8)
4 Lock request handle Input Char(64)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Request Information (QWCRLRQI) API takes as input a lock request handle that was
returned in other APIs and returns information about the program that requested the lock. This API must be
called from the same thread that called the API that returned the lock request handle.

The handle is a temporary value. A storage limitation will allow a thread to create up to 1 million valid
handles. Once the storage limit has been reached the oldest handle information will be overwritten. This can
cause a handle to no longer be valid.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of the receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of the
receiver variable specified is larger then the allocated size of the receiver variable specified in the
user program, the results are not predictable. The minimum length is 8 bytes.

Format of lock request information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The possible format names are:

LRQI0100 Lock request information. See Format LRQI0100 for details.

Lock request handle

INPUT; CHAR(64)

This contains the handle that will be used to locate the lock request information. This value is
created by a previous call to another lock API. The previous lock API call must have been made by
the current thread. This value is a temporary value and may become invalid.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format LRQI0100

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to statement identifiers

12 C BINARY(4) Number of statement identifiers available

16 10 BINARY(4) Number of statement identifiers returned

20 14 BINARY(4) Offset to procedure name

24 18 BINARY(4) Length of procedure name

28 1C CHAR(10) Program name

38 26 CHAR(10) Program library name

48 30 CHAR(10) Program ASP name

58 3A CHAR(10) Program library ASP name

68 44 BINARY(4) Program ASP number

72 48 BINARY(4) Program library ASP number

76 4C BINARY(4) MI instruction number

80 50 CHAR(10) Module name

90 5A CHAR(10) Module library name

* * ARRAY OF
CHAR(10)

Statement identifiers

* * CHAR(*) Procedure name

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete fields are returned.

Length of procedure name. The length of the procedure name in bytes. This field is zero if the program is
not an ILE program.

MI instruction number. The current machine instruction number in the program. This field is not
meaningful for integrated language environment (ILE) procedures. A zero is returned for ILE procedures.

Module library name. The name of the library in which the module is located. The following special
values may be returned:

*N The module library name is unavailable. Either the program has been destroyed or the library
containing the program is locked.

blanks The program is not an ILE program.

Module name. The module containing the integrated language environment (ILE) procedure. The
following special values may be returned:

*N The module name is unavailable. Either the program has been destroyed or the library
containing the program is locked.

blanks The program is not an ILE program.

Number of statement identifiers available. The number of statement identifiers available. This field is
zero if the program or procedure was not created with debugging tables.

Number of statement identifiers returned. The actual number of statement identifiers returned.

Offset to procedure name. The offset in bytes from the beginning of the receiver variable to the procedure
name. This value will be zero if the program is not an ILE program.

Offset to statement identifiers. The offset in bytes from the beginning of the receiver variable to the
statement identifiers. This value will be zero if no statement identifiers are returned.

Procedure name. The name of the procedure.

Program ASP name. The name of the auxiliary storage pool (ASP) device in which the program is
located. The following special values may also be returned:

*SYSBAS The program is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Program ASP number. The numeric identifier of the ASP containing the program. The following values
may be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP device cannot be determined.

Program library ASP name. The name of the ASP in which the program library is located. The following
special values may also be returned:

*SYSBAS The program library is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Program library ASP number. The numeric identifier of the ASP containing the program library. The
following values may be returned:

1 The library is located in the system ASP or in a basic user ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP device cannot be determined.

Program library name. The name of the library in which the program is located. The following special
value may be returned:

*N The program library name is unavailable. The library containing the program has been destroyed or
is locked.

Program name. The name of the program. This can be any type of program object, including objects of
type *PGM and *SRVPGM. The following special value may be returned:

*N The program is unavailable. Either the program has been destroyed or the library containing the
program is locked.

Statement identifiers. The high-level language statement identifier. If this field contains the character
representation of a number, the number is right-adjusted in the field and padded on the left with zeros (for
example, '0000000246'). If the lock is for an integrated language environment (ILE) procedure, more than
one statement identifier may exist because of the compilers used for ILE languages.

Error Messages

Message ID Error Message Text

CPF18C2 E Object lock handle or lock request handle not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error occured during running of &1 API.

API introduced: V5R2

Top | Work Management APIs | APIs by category

Retrieve Lock Space Attributes (QTRXRLSA)
API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Lock space identifier Input Char(20)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Space Attributes (QTRXRLSA) API returns information for the specified lock space. A
lock space is an internal object that is used by other objects to hold object and record locks.

Authorities and Locks

Job authority

The caller of the API must be running under a user profile that has job control (*JOBCTL) special
authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the lock space attributes. The size of this variable is specified in the
length of receiver variable parameter.

See Format of receiver information for details on the format of the receiver information.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The format name is:

RLSA0100 Lock space attributes. See RLSA0100 Format for details.

Lock space identifier

INPUT; CHAR(20)

The identifier of the lock space for which attributes are to be returned.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of receiver information

The format of the information returned in the receiver variable.

RLSA0100 Format

The following information is returned for the RLSA0100 format. For detailed descriptions of the fields in
the table, see Field Descriptions for RLSA0100 Format.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Lock space type

12 C BINARY(4) Lock space state

16 10 BINARY(8) Lock wait time

24 18 BINARY(8) Active state timer

32 20 BINARY(4) Number of threads with lock space attached

36 24 BINARY(4) Maximum number of threads with lock space
attached

40 28 CHAR(8) Reserved

48 30 CHAR(30) Lock space name

78 4E CHAR(10) Lock space library name

88 58 CHAR(10) Lock space ASP name

98 62 CHAR(10) Lock space library ASP name

108 6C BINARY(4) Lock space ASP number

112 70 BINARY(4) Lock space library ASP number

Field Descriptions for RLSA0100 Format

Active state timer. The maximum amount of time, in seconds, that a lock space can remain in the active
state before it is switched to the disabled state. The following special value may be returned:

0 The active state timer is disabled for the lock space.

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Lock space ASP name. The name of the auxiliary storage pool (ASP) that contains the lock space. The
following special values also may be returned:

*SYSBAS The lock space is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Lock space ASP number. The numeric identifier of the ASP containing the lock space. The following
values may be returned:

1 The lock space is located in the system ASP.

2-32 The lock space is located in a basic user ASP.

33-255 The lock space is located in an independent ASP.

-1 The ASP number cannot be determined.

Lock space library ASP name. The name of the auxiliary storage pool (ASP) that contains the library. The
following special values also may be returned:

*SYSBAS The library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Lock space library ASP number. The numeric identifier of the ASP containing the library. The following
values may be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Lock space library name. The name of the library that contains the lock space.

Lock space name. The name of the lock space.

Lock space state. The current state of the lock space. The lock space state is used to determine whether
object and record locks can be obtained or held by the lock space. The possible values are:

0 Inactive. The lock space cannot hold object or record locks.

1 Active. The lock space can hold object or record locks.

2 Disabled. The lock space can hold object or record locks, but new object or record locks cannot be
obtained.

Lock space type. The type of object that is using the lock space to hold object and record locks. The
possible values are:

1 Lock space used for UDB-managed commitment definitions.

2 Lock space used for externally managed commitment definitions with job scoped locks.

3 Lock space used for externally managed commitment definitions with lock space scoped locks.

-1 The lock space type cannot be determined.

Lock wait time. The maximum anount of time, in seconds, that a thread is allowed to wait for an object or
record lock that is to be held by the lock space. The following special values may be returned:

0 The lock wait time for the lock space is ignored. The lock wait time specified on the lock request is
used.

-1 The lock wait is indefinite.

-2 The lock request will return immediately if the lock cannot be obtained.

Maximum number of threads with lock space attached. The maximum number of threads to which the
lock space can be attached concurrently. The following special value may be returned:

-1 There is no limit to the number of threads to which the lock space can be attached.

Number of threads with lock space attached. The number of threads to which the lock space is currently
attached.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFBDD1 E Lock space &1 not found.

CPFBDD2 E No authority to lock space &1.

API introduced: V5R2

Top | Work Management APIs | APIs by category

Retrieve Lock Space Locks (QTRXRLSL) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Lock space identifier Input Char(20)
5 Lock filters Input Char(*)
6 Format of lock filters Input Char(8)
7 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Space Locks (QTRXRLSL) API generates a list of objects that have been locked or that
have lower level locks held by the specified lock space. Locks that are being waited for on behalf of a lock
space are not returned. Use the Retrieve Job Locks (QWCRJBLK) or Retrieve Lock Information
(QWCRLCKI) API to retrieve locks that are being waited for by a thread on behalf of a lock space.

Authorities and Locks

Job Authority

The caller of the API must be running under a user profile that has job control (*JOBCTL) special
authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold. For example, this may mean that the
number of locked object entries available in the receiver variable do not match the value in the
number of locked object entries returned.

See Format of Receiver Information for details on the format of the receiver information.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of the receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of the
receiver variable specified is larger then the allocated size of the receiver variable specified in the

user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The format name is:

RLSL0100 The object and member lock format. See RLSL0100 Format for details on the list
of objects and members that this lock space has locked.

Lock space identifier

INPUT; CHAR(20)

The identifier of the lock space for which record locks are to be returned.

Lock filters

INPUT;CHAR(*)

Filters used for the lock information that is returned. See Format of lock filters for further
information.

Format of lock filters

INPUT; CHAR(8)

The format of the lock filters used on the returned data. The format name is:

RLSF0100 Lock filter format. See RLSF0100 Format for details on the filters contained in this
format.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of receiver information

The format of the information returned in the receiver variable.

RLSL0100 Format

This format is used to return objects and members that are locked. For detailed descriptions of the fields in
the table, see Field Descriptions for RLSL0100 Format.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of locked object entries available

16 10 BINARY(4) Offset to list of locked objects

12 C BINARY(4) Number of locked object entries returned

20 14 BINARY(4) Length of locked object entry

Each locked object returned will have the following structure.

Offset

Type FieldDec Hex

0 0 BINARY(4) Type of entity

4 4 CHAR(30) Extended object name

34 22 CHAR(10) Object library name

44 2C CHAR(10) Object ASP name

54 36 CHAR(10) Object library ASP name

64 40 BINARY(4) Object ASP number

68 44 BINARY(4) Object library ASP number

72 48 CHAR(10) Object type

82 52 CHAR(10) Extended object attributes

92 5C CHAR(10) Member name

102 66 CHAR(1) Member lock type

103 67 CHAR(3) Reserved

106 6A CHAR(10) Lock state

116 74 BINARY(4) Lock status

120 78 BINARY(4) Member locks

124 7C BINARY(4) Lock count

128 80 CHAR(64) Object lock handle

192 C0 CHAR(64) Lock request handle

Field Descriptions for RLSL0100 Format

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete entries are returned.

Extended object attributes. The extended attributes of an object. Extended attributes further describe the
object. For example, an object type of *PGM may have a value of RPG (RPG program) or CLP (CL
program). This field will be blank if there is no extended attribute associated with the object type.

Extended object name. The name of the object that is locked. If the lock is on a database member, the
object name is the name of the file that owns the member to which the lock applies. If the member lock type
is member or access path, the file that owns the member may be either a physical file or a logical file. If the
member lock type is data, the file that owns the member is a physical file. The following special value also

may be returned:

*N The name of the object cannot be determined.

Length of locked object entry. The length of each locked object entry.

Lock count. The number of identical locks on this entity.

Lock request handle. A handle to lock request information. Using the Retrieve Lock Request Information
(QWCRLRQI) API and passing in this handle, you can retrieve additional information about the program
that requested this lock. A value of hexadecimal zero is returned when additional information cannot be
retrieved. This value is a temporary value that can expire. See the Retrieve Lock Request Information
(QWCRLRQI) API for additional information.

Lock state. The lock condition for the lock request. Lower level locks are returned and can occur when a
member of a file is locked, but the file itself is not locked. Possible other values are:

Blank The object is not locked, but there are locks on lower level objects.

*SHRRD Lock shared for read.

*SHRUPD Lock shared for update.

*SHRNUP Lock shared, no update.

*EXCLRD Lock exclusive, read allowed.

*EXCL Lock exclusive, no read allowed.

Lock status. The status of the lock request. Possible values are:

0 The object is not locked, but there are locks on lower level objects.

1 The lock on this object currently is held by the lock space.

Member locks. The number of member locks for a database file. If the object is not a database file, 0 is
returned.

Member lock type. If the lock is on a member, this field indicates the type of member lock; otherwise, it is
blank. Possible values are:

Blank The object type is not a member.

0 The lock is a member lock.

1 The lock is a data lock.

2 The lock is an access path lock.

Member name. The name of the member that has a lock held or waiting on it. If the type of entity is not a
member object, this field is blank. The following special value also may be returned:

*N The name of the object cannot be determined.

Number of locked object entries available. The number of locked object entries that are held by this lock
space.

Number of locked object entries returned. The number of locked object entries that are returned.

Object ASP name. The name of the auxiliary sptorage pool (ASP) that contains the object that is locked.
The following special values also may be returned:

*SYSBAS The object is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object ASP number. The numeric identifier of the ASP containing the locked object. The following
values may be returned:

1 The object is located in the system ASP.

2-32 The object is located in a basic user ASP.

33-255 The object is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library ASP name. The name of the ASP containing the library of the locked object. The following
specials value also may be returned:

*SYSBAS The object's library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object library ASP number. The numeric identifier of the ASP containing the library of the locked
object. The following values may be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library name. The name of the library containing the locked object. This field will be blank if the
type of entity is an internal system object or is an internal system object space location. The following
special value also may be returned:

*N The name of the library cannot be determined.

Object lock handle. An identifier that can be input to Retrieve Lock Information (QWCRLCKI) API to
find additional information about other holders of locks on this object. A value of hexadecimal zero is
returned when additional information cannot be retrieved. The object lock handle is a temporary value that
can expire. See the QWCRLCKI API for additional information.

Object type. The object type. For a list of all the available external OS/400 object types, see the Control
Language (CL) topic.

Offset to list of locked objects. The offset in bytes from the beginning of the receiver variable to the first
entry.

Reserved. An unused field.

Type of entity. A value that identifies the type of entity for which the lock information is returned. The
following values may be returned:

1 OS/400 external object

2 Member object

3 Internal system object

Format of lock filters

The format of the lock filters used on the returned lock information.

RLSF0100 Format

The following information is to be specified for the RLSF0100 format. For detailed descriptions of the
fields in the table, see Field Descriptions for RLSF0100 Format.

Offset

Type FieldDec Hex

0 0 BINARY(4) Filter size

4 4 BINARY(4) Filter lock state

8 8 CHAR(1) Include OS/400 external objects flag

9 9 CHAR(1) Include member objects flag

10 A CHAR(1) Include internal system objects flag

11 B CHAR(1) Include lock space objects flag

12 C CHAR(1) Include unknown entities flag

13 D CHAR(1) Reserved

14 E CHAR(10) Filter object name

24 18 CHAR(10) Filter object library name

34 22 CHAR(10) Filter object library ASP name

Field Descriptions for RLSF0100 Format

Filter lock state. Filters information that is returned so that it only contains information about locks that
have a certain lock state. The default is do not filter on lock state value.

0 Do not filter on lock state value.

1 Return only the shared locks.

2 Return only the exclusive locks.

Filter object library ASP name. The name of the library's auxiliary storage pool (ASP) on which to filter.
A special value of *SYSBAS can be specified. A blank field will cause no filtering to be done on this field.
The default is to not filter on this field.

Filter object library name. This is the library name on which to filter. A blank field will cause no filtering
to be done on this field. The default is to not filter on this field.

Filter object name. Only locks on the specified object are returned. In the case of database files, members
of the file also may be returned. A blank field will cause no filtering to be done on this field. The default is
to not filter on this field.

Filter size. The size of the filter information passed. Valid values are:

4 No filtering will be performed. The default values will be used for each filter.

44 All filters will be required.

Include internal system objects flag. A value of 1 in this field allows internal system object locks to be
returned. A value of 0 causes these values to be excluded from the return data. The default is to exclude
internal system objects.

Include lock space objects flag. A value of 1 in this field allows lock space objects locks to be returned. A
value of 0 causes these values to be excluded from the return data. The default is to include lock space
objects.

Include member objects flag. A value of 1 in this field allows member objects locks to be returned. A
value of 0 causes these values to be excluded from the return data. The default is to include member
objects.

Include OS/400 external objects flag. A value of 1 in this field allows OS/400 external object locks to be
returned. A value of 0 causes these objects to be excluded from the return data. The default is to include
OS/400 external objects.

Include unknown types flag. A value of 1 in this field allows locks that are of an unknown entity type to
be returned. A value of 0 causes these values to be excluded from the return data. The default is to exclude
unknown types.

Reserved. An unused field.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFBDD1 E Lock space &1 not found.

CPFBDD2 E No authority to lock space &1.

API introduced: V5R2

Top | Work Management APIs | APIs by category

Retrieve Lock Space Record Locks
(QTRXRLRL) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Lock space identifier Input Char(20)
5 Lock filters Input Char(*)
6 Format of lock filters Input Char(8)
7 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Space Record Locks (QTRXRLRL) API lets you generate a list of record locks held by
the specified lock space. Record locks that are being waited for on behalf of a lock space are not returned.
Use the Retrieve Job Record Locks (QDBRJBRL) or Retrieve Lock Information (QWCRLCKI) API to
retrieve record locks that are being waited for by a thread on behalf of a lock space.

Lock information is returned for local physical files only. The Retrieve Lock Space Record Locks API
places the list in the specified receiver variable.

Authorities and Locks

Job authority

The caller of the API must be running under a user profile that has job control (*JOBCTL) special
authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the list of record locks. The size of this variable is specified in the
length of receiver variable parameter.

See Format of receiver information for details on the format of the receiver information.

Length of receiver variable

INPUT; BINARY(4)

The number of bytes that are provided in the Receiver variable parameter. At least 16 bytes must be

provided. If the size of the receiver variable provided is less than the length of the list that is
available, the list will be truncated; this can be determined by examining the first two fields in the
receiver variable, the number of record locks returned, and the number of record locks available. If
the receiver variable length specified is greater than the actual receiver variable, the results are
unpredictable.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The format name is:

RLRL0100 Record lock list. See RLRL0100 Format for details.

Lock space identifier

INPUT; CHAR(20)

The identifier of the lock space for which record locks are to be returned.

Lock filters

INPUT;CHAR(*)

Filters used for the lock information that is returned. See Format of lock filters for further
information.

Format of lock filters

INPUT; CHAR(8)

The format of the lock filters used on the returned data. The possible format name is:

RLRF0100 Lock filter format. See RLRF0100 Format for details.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of receiver information

The format of the information returned in the receiver variable.

RLRL0100 Format

The following information is returned for the RLRL0100 format. For detailed descriptions of the fields in
the table, see Field Descriptions for RLRL0100 Format.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of record locks available

12 C BINARY(4) Number of record locks returned

16 10 BINARY(4) Offset to list of record locks

20 14 BINARY(4) Size of information for each record lock
returned

Each record lock returned will have the following structure.

Offset

Type FieldDec Hex

0 0 CHAR(10) Database file name

10 A CHAR(10) Database file library name

20 14 CHAR(10) Database member name

30 1E CHAR(1) Reserved

31 1F CHAR(1) Lock state

32 20 UNSIGNED
BINARY(4)

Relative record number

36 24 CHAR(10) Database file ASP name

46 2E CHAR(10) Database file library ASP name

56 38 BINARY(4) Database file ASP number

60 3C BINARY(4) Database file library ASP number

Field Descriptions for RLRL0100 Format

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete entries are returned.

Database file library ASP name. The name of the auxiliary storage pool (ASP) that contains the library.
The following special values also may be returned:

*SYSBAS The library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Database file library ASP number. The numeric identifier of the ASP containing the library. The
following values may be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Database file library name. The name of the library that contains the file.

Database file name. The name of the file.

Database member name. The name of the member.

Database file ASP name. The name of the auxiliary storage pool (ASP) that contains the file. The
following special values also may be returned:

*SYSBAS The file is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Database file ASP number. The numeric identifier of the ASP containing the file. The following values
may be returned:

1 The file is located in the system ASP.

2-32 The file is located in a basic user ASP.

33-255 The file is located in an independent ASP.

-1 The ASP number cannot be determined.

Lock state. The state of the lock. The possible values are:

0 Shared Read.

1 Exclusive Update.

2 Shared Internal.

Number of record locks available. The number of record lock structures that are available to be returned.
If this field is the same as the number of record locks returned field, all the record lock information has
been returned.

Number of record locks returned. The number of record lock structures that were returned to the caller of
the API. If enough space is provided in the receiver variable, all record locks are returned. If there is more
record lock information than can fit in the space provided, the number of record locks returned is less than
the number of record locks available.

Offset to list of record locks. The byte offset from the beginning of the receiver variable to the first record
lock information structure.

Relative record number. The relative record number for which record lock information is being returned.

Reserved. An unused field.

Size of information for each lock returned. The number of bytes of each of the returned lock information
structures. In future releases, the amount of information returned for each lock may be expanded, so this
value should be used to move from one lock structure to another.

Format of lock filters

The format of the lock filters used on the returned lock information.

RLRF0100 Format

The following information is to be specified for the RLRF0100 format. For detailed descriptions of the
fields in the table, see Field Descriptions for RLFL100 Format.

Offset

Type FieldDec Hex

0 0 BINARY(4) Filter size

4 4 BINARY(4) Filter lock state

8 8 CHAR(10) Filter file name

18 12 CHAR(10) Filter file member name

28 1C CHAR(10) Filter file library name

38 26 CHAR(10) Filter file library ASP name

Field Descriptions for RLRF0100 Format

Filter lock state. Filters information that is returned so that it contains only information about locks that
have a certain lock state. The default is do not filter on lock state value.

0 Do not filter on lock state value

1 Return only the shared locks

2 Return only the exclusive locks

Filter file library ASP name. The name of the library's auxiliary storage pool (ASP) on which to filter. A
special value of *SYSBAS can be specified. A blank field will cause no filtering to be done on this field.
The default is to not filter on this field.

Filter file library name. The library name on which to filter. A blank field will cause no filtering to be
done on this field. The default is to not filter on this field.

Filter file member name. The member name on which to filter. A blank field will cause no filtering to be
done on this field. The default is to not filter on this field.

Filter file name. The file name on which to filter. A blank field will cause no filtering to be done on this
field. The default is to not filter on this field.

Filter size. The size of the filter information passed. Valid values are:

4 No filtering will be performed. The default values will be used for each filter.

48 All filters will be required.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFBDD1 E Lock space &1 not found.

CPFBDD2 E No authority to lock space &1.

API introduced: V5R2

Top | Work Management APIs | APIs by category

Retrieve Network Attributes (QWCRNETA) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Number of network attributes to retrieve Input Binary(4)
4 Network attribute names Input Array(*) of Char(10)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Network Attributes (QWCRNETA) API lets you retrieve network attributes.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information requested. For the format, see Format of Data
Returned.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable described in Format of Data Returned. If the length is larger
than the size of the receiver variable, the results may not be predictable. The minimum length is 28
bytes.

Number of network attributes to retrieve

INPUT; BINARY(4)

The total number of network attributes to be retrieved.

Network attribute names

INPUT: ARRAY(*) of CHAR(10)

The names of the network attributes to be retrieved. This can be a list of network attribute names
where each name is 10 characters.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error code
parameter.

Format of Data Returned

The receiver variable holds the information returned about each network attribute.

The receiver variable has three logical parts:

The first field specifies the number of network attributes returned.1.

The next fields give the offsets to the network attributes returned. There is one offset field for each
network attribute returned.

2.

Next are the network attribute information tables for the network attributes returned. There is one
network attribute information table for each network attribute.

3.

The following table shows the format of the receiver variable. The offset fields are repeated until the offsets
for all the network attributes returned are listed; the network attribute information table for each network
attribute is repeated in the same way. For a detailed description of each field, see the Field Descriptions.

The format of the receiver variable is:

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of network attributes returned

4 4 ARRAY(*) of
BINARY(4)

Offset to network attribute information table

* * CHAR(*) Network attribute information table

Note: Each network attribute in the table is represented by the standard network
attribute information table described in Network Attribute Information Table.

To determine the length of the receiver variable, the following calculation should be done. For each
network attribute to be returned, get the length of the data returned for the network attribute and add 24.
After adding the values for each network attribute, add 4. This calculation takes into account the data
alignment that needs to be done; therefore, this value is a worst-case estimate.

Network Attribute Information Table

The following table shows the format of the network attribute information table.

Offset

Type FieldDec Hex

0 0 CHAR(10) Network attribute

10 A CHAR(1) Type of data

11 B CHAR(1) Information status

12 C BINARY(4) Length of data

16 10 CHAR(*) Data

Field Descriptions

Data. The data returned for the network attribute.

Information status. Whether the information was available for the network attribute.

blank The information was available.

L The information was not available because the network attribute was locked.

Length of data. The length of the data returned for the network attribute. If this value is 0, the network
attribute was not available.

Network attribute. The network attribute to be retrieved. See Valid Network Attributes for the list of valid
network attributes.

Number of network attributes returned. The number of network attributes returned to the application.

Offset to network attribute information table. The offset from the beginning of the structure to the start
of the network attribute information.

Type of data. The type of data returned.

blank The data was not available.

C The data is returned in character format.

B The data is returned in binary format.

Valid Network Attributes

For a detailed description of each field, see the Network Attribute Field Descriptions.

Network attribute Type Description

ALRBCKFP CHAR(16) Alert backup focal point

ALRCTLD CHAR(10) Alert controller

ALRDFTFP CHAR(10) Alert focal point

ALRFTR CHAR(20) Alert filter

ALRHLDCNT BINARY(4) Alert hold count

ALRLOGSTS CHAR(7) Alert logging status

ALRPRIFP CHAR(10) Alert primary focal point

ALRRQSFP CHAR(16) Alert focal point to request

ALRSTS CHAR(10) Alert status

ALWADDCLU CHAR(10) Allow add to cluster

ALWANYNET CHAR(10) Allow AnyNet support

ALWHPRTWR CHAR(10) Allow HPR tower support

ALWVRTAPPN CHAR(10) Allow virtual APPN support

VRTAUTODEV BINARY(4) Autocreate APPC device limit

DDMACC CHAR(20) DDM request access

DFTCNNLST CHAR(10) Default ISDN connection list

DFTMODE CHAR(8) Default mode

DFTNETTYPE CHAR(10) ISDN network type

DTACPR BINARY(4) Data compression

DTACPRINM BINARY(4) Intermediate data compression

HPRPTHTMR CHAR(40) HPR path switch timers

JOBACN CHAR(10) Job action

LCLCPNAME CHAR(8) Local control point

LCLLOCNAME CHAR(8) Local location

LCLNETID CHAR(8) Local network ID

MAXINTSSN BINARY(4) Maximum sessions

MAXHOP BINARY(4) Maximum hop count

MDMCNTRYID CHAR(2) Modem country or region ID

MSGQ CHAR(20) Message queue

NETSERVER CHAR(85) Server network ID

NODETYPE CHAR(8) APPN node type

NWSDOMAIN CHAR(8) Network server domain

OUTQ CHAR(20) Output queue

PNDSYSNAME CHAR(8) Pending system name

PCSACC CHAR(20) Client Access

RAR BINARY(4) Addition resistance

SYSNAME CHAR(8) Current system name

Network Attribute Field Descriptions

Addition resistance. The Advanced Peer-to-Peer Networking (APPN) function routes addition resistance
for an APPN node type of *NETNODE or *BEXNODE.

Alert backup focal point. Identifies the system that provides alert focal point services if the local system is
unavailable and ALRPRIFP is *YES. The backup focal point is only used by systems in the primary sphere
of control. The first eight characters are the control point name and the last eight characters are the network
ID. *NONE means no backup focal point is defined.

Alert controller. The name of the controller to be used for alerts in a system service control point -
physical unit (SSCP-PU) session. This controller is ignored if the system has a focal point (in which case
the node is in another system's sphere of control). *NONE means no alert controller is defined.

Alert filter. The name of the filter object that is used by the alert manager when processing alerts. *NONE
means no alert filter is being used. The first ten characters are the filter name and the last ten characters are
the library name.

Alert focal point. Whether or not the system is an alert default focal point.

*NO The system is not an alert default focal point.

*YES The system is defined to be an alert default focal point and provides focal point services to all
nodes in the network that are not being serviced by another focal point.

Alert focal point to request. Specifies the name of the system that is requested to provide focal point
services. If a focal point is already defined for the entry point, it is taken away when the new focal point is
requested. *NONE means no focal point is requested.

Alert hold count. The maximum number of alerts to be created before the alerts are sent over the System
Service Control Point - Physical Unit (SSCP-PU) session. Alerts are held by the system until this number of
alerts have been created. If the Alert Controller (ALRCTLD) network attribute is being used to send alerts
(SSCP-PU session), alerts will be sent automatically regardless of the ALRHLDCNT network attribute
when a switched connection is made for other reasons.

Alert logging status. Specifies which alerts are to be logged:

*LOCAL Only locally created alerts are logged.

*RCV Only Alerts received from other nodes are logged.

*ALL Both locally created alerts and incoming alerts are logged.

*NONE No alerts are logged.

Alert primary focal point. Whether or not the system is an alert primary focal point.

*NO The system is not an alert primary focal point.

*YES The system is defined to be an alert primary focal point and provides focal point services to all
nodes in the network that are explicitly defined in the sphere of control.

Alert status. Alert status controls the creation of local alerts. The following is a list of values and their
meanings:

*ON Alerts are created by a system for all changeable conditions except unattended
conditions.

*UNATTEND Alerts are created by the system for all alert conditions including those which have the
alert indicator in the message description set to *UNATTEND.

*OFF Alerts are not created by the system.

Allow add to cluster. Whether this system will allow another system to add it as a node in a cluster. The
following is a list of values and their meanings:

*NONE No other system can add this system as a node in a cluster.

*ANY Any other system can add this system as a node in a cluster.

*RQSAUT Any other system can add this system as a node in a cluster only after the cluster add
request has been authenticated.

Allow AnyNet(R) support. The AnyNet support value is used for the UNIX-type APIs that use the
AF_INET address family. The following is a list of values and their meanings:

*NO The system does not allow AF_INET support to be used over an SNA connection.

*YES The system allows AF_INET (AnyNet) support to be used over an SNA connection.

Allow HPR tower support. The HPR transport tower support value is used for APPN session traffic. The
following is a list of values and their meanings:

*NO The system does not allow HPR transport tower support to be used with APPN session traffic.

*YES The system allows HPR transport tower support to be used with APPN session traffic.

Allow virtual APPN support. The virtual APPN support value is used to specify whether or not APPC
sessions and devices are allowed to use virtual APPN controllers.

*NO The system does not allow APPC sessions or devices to use virtual APPN controllers. If sessions
are using HPR transport tower support, they will use virtual APPN controllers regardless of this
setting.

*YES The system does allow APPC sessions or devices to use virtual APPN controllers.

Autocreate APPC device limit. The specification for the APPC device limit used for autocreation of
devices on virtual APPN controllers.

APPN node type. The Advanced Peer-to-Peer Networking (APPN) node type can have the following
values:

*ENDNODE The node does not provide network services to other nodes, but may participate in the
APPN network by using the services of an attached network server, or may operate in a
peer environment similar to migration end nodes.

*NETNODE The node provides intermediate routing, route selection services, and distributed
directory services for local users and to end nodes and migration end nodes that it is
serving.

*BEXNODE The node performs as a branch extender node. The node performs as an end node in the
backbone APPN network, and performs as a network node server to end nodes within its
local domain.

Client Access. The way in which the system processes Client Access requests from other systems.

*REJECT The system rejects every request from Client Access.

*OBJAUT Normal object authorizations are checked for the Client Access request. For example,
authorization to retrieve data from a database file for a transfer function request is
checked.

*REGFAC The system uses the system's registration facility to determine which exit program (if
any) to run. If no exit program is defined for an exit point and this value is specified,
*OBJAUT is used.

program library The name of a user-written validation program that is called each time a Client Access
application request comes from a personal computer. The program is passed two
parameters: the first describes the PC request (the name of the application and type
request); the second is used by the program to indicate to the Client Access
application whether or not this PC request should be handled. The first 10 characters
are the program name, and the last 10 characters are the library name.

Current system name. The current system name that appears on displays.

Data compression. Whether data compression is used when the system is an SNA end node (the node
containing either a primary or secondary LU). This field is used by mode descriptions that specify
*NETATR for data compression. The following values are valid:

0 Data compression is not allowed on the session.

-1 Data compression is requested on the session by the local system. However, the request can
be refused or changed to a lower compression level by the remote system. Data compression
is allowed on the session if requested by the remote system.

-2 Data compression is allowed on the session by the local system if requested by a remote
system. The local system does not request that compression be used.

-3 Data compression is required on the session. If the remote system does not change the levels
of compression to the local system's exact requested levels, the session is not established.
The data compression levels that the local system requires are the specified levels.

line speed If either the receiving or sending link has a line speed equal to or less than this specified line
speed, this value indicates the need for compression by requesting that the remote systems
compress the session data. Otherwise, this value does not indicate to the remote systems that
there is a need to compress the data. Possible values range from 1 through 2 147 483 647
bits per second.

If data compression is requested by the remote system, the data compression levels used by the session are
the lower of the requested levels and the configured levels (INDTACPR and OUTDTACPR).

DDM request access. The system processes distributed data management (DDM) and Distributed
Relational Database Architecture (DRDA) requests from other systems as follows:

*REJECT The system does not allow DDM or DRDA requests from remote systems. This
system can still use DDM or DRDA, however, to access files or SQL tables on remote
systems.

*OBJAUT All requests are allowed and controlled by the object authorization on the system.

program library The name of a user-written validation program that is called each time a DDM request
is made from a remote system. This program indicates to DDM whether the request
should proceed or be ended. System security still applies. The first ten characters are
the program name and the last ten characters are the library name.

Default ISDN connection list. The name of the default integrated services digital network (ISDN)
connection list object.

Default mode. The default mode name for the system.

HPR path switch timers. The settings for the amount of time, in minutes, to allow for a path switch
attempt of a Rapid Transport Protocol (RTP) connection. Four positional values exist to specify the time
allowed based on the type of session traffic. Each positional timer will consist of 10 characters within the
40-character field. A description of each element within the field is given below:

Network priority timer (characters 1-10)

The first element is the network priority timer, which specifies the amount of time in minutes to
allow for a path switch attempt of an RTP connection that has network transmission priority or
*NONE.

High priority timer (characters 11-20)

The second element is the high priority timer, which specifies the amount of time in minutes to
allow for a path switch attempt of an RTP connection that has high transmission priority or
*NONE.

Medium priority timer (characters 21-30)

The third element is the medium priority timer, which specifies the amount of time in minutes to
allow for a path switch attempt of an RTP connection that has medium transmission priority or
*NONE.

Low priority timer (characters 31-40)

The fourth element is the low priority timer, which specifies the amount of time in minutes to allow
for a path switch attempt of an RTP connection that has low transmission priority or *NONE.

Intermediate data compression. The level of data compression to request when the iSeries server is an
SNA intermediate node. The following are valid values:

0 Does not indicate to the remote systems that there is a need to compress the data.

-1 Indicates the need for compression by requesting that the remote systems compress the
session data.

line speed If either the receiving or sending link has a line speed equal to or less than this specified line
speed, this value indicates the need for compression by requesting that the remote systems
compress the session data. Otherwise, this value does not indicate to the remote systems that
there is a need to compress the data. Possible values range from 1 through 2 147 483 647
bits per second.

ISDN network type. The type of integrated services digital network (ISDN) to which the system is
attached. Possible values follow:

*ATT This value is used when attaching to an ISDN that uses an AT&T interface.

*DBP1TR6 This value is used when attaching to an ISDN controlled by Germany's Post Telephone
and Telegraph Administration (PPT). (Deutsche Bundespost 1TR6).

*ETSI This value is used when attaching to the ISDN that uses a European interface (ETSI,
also known as EuroISDN standard).

*JAPAN This value is used when attaching to an ISDN that uses a Japanese interface.

*NISDN This value is used when attaching to an ISDN that uses a North American interface.

*NORTEL This value is used when attaching to an ISDN that uses the Northern Telecom
interface.

*NORTHAMT1 This value is used when attaching to a channelized North American T1 interface.

Job action. The action that is taken for any input stream received through the SNA distribution services
(SNADS) network by the system.

*REJECT The input stream is rejected by the system. This action allows users to secure their system
from input streams received through the network.

*FILE The input stream is filed in the queue of network files received for the user to whom it was
sent. That user may then look at the input stream, end it, receive it, or submit it to a job
queue.

*SEARCH The table of network job entries is searched to determine the action to be taken for the input
stream.

Local control point. The local control point name for the system.

Local location. The default local location name for the system.

Local network ID. The local network ID assigned to the system.

Maximum hop count. The maximum number of times in an SNA distribution services (SNADS) network
that a distribution queue entry originating at this node may be received and routed on the path to its final
destination. If this number is exceeded, the distribution queue entry is ended. When the distribution queue
entry is ended, a feedback status is sent back to the sender if it was requested.

Maximum sessions. The maximum number of advanced program-to-program communications (APPC)
intermediate sessions for an Advanced Peer-to-Peer Networking (APPN) node type of *NETNODE or
*BEXNODE.

Message queue. The name of the message queue to which messages received through the SNA distribution
services (SNADS) network are sent for:

Users who have no message queue specified in their user profile●

Users whose message queue is not available●

The first 10 characters are the message queue name, and the last 10 characters are the library name.

Modem country or region ID. The country or region identifier associated with a modem.

This defines the country or region-specific default characteristics for modems that are internal to OS/400
I/O adapters. This value must be configured correctly to ensure proper operation and, in some countries or
regions, meet legal requirements. The adapter will fail the vary on of the line if the modem country or
region ID is not set.

Network server domain. The LAN server domain to which all Integrated Netfinity(R) Servers (also known
as file server I/O processor and FSIOP) on the system belong.

Output queue. The name of the output queue to which spooled files received through the SNA distribution
services (SNADS) network are sent for users whose output queue is not available. The first 10 characters
are the output queue name, and the last 10 characters are the library name.

Pending system name. The pending system name (if a change is pending). This will contain blanks if no
change is pending.

Server network ID. The network node server of an Advanced Peer-to-Peer Networking (APPN) network
(up to a maximum of five) for an APPN node type of *ENDNODE. The list is not used for an APPN node
type of *NETNODE or *BEXNODE.

Error Messages

Message ID Error Message Text

CPF1860 E Value &1 in list not valid.

CPF1861 E Length of the receiver variable not valid.

CPF1862 E Number of values to retrieve not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Top | Work Management APIs | APIs by category

Retrieve Profile Exit Programs (QWTRTVPX)
API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 User ID Input Char(10)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Profile Exit Programs (QWTRTVPX) API retrieves the profile exit flags, based on the format,
that have been designated to be called for the specified user ID. The QWTRTVPX API then places that
information into a single variable in the calling program. The amount of information placed in the variable
depends on the size of the variable.

Authorities and Locks

User ID Authority

*READ

Required Parameter Group

Receiver variable

OUTPUT CHAR(*)

The receiver variable that receives the information requested. You can specify the size of the area
to be smaller than the format requested as long as you specify the length parameter correctly. As a
result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

The format of the profile exit program information to be returned. You can use this format:

ATTN0100 Preattention information. For details, see ATTN0100 Format.

SREQ0100 Presystem request information. For details, see SREQ0100 Format.

User ID

INPUT; CHAR(10)

The user ID being retrieved. Valid values are as follows:

*CURRENT The user ID of the job that is currently running.

User ID name The 10-character name that is entered.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

ATTN0100 Format

The following table describes the information that is returned in the receiver variable for the ATTN0100
format. For detailed descriptions of the fields, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Entries returned

4 4 BINARY(4) Entries available

 ARRAY (*) of
BINARY(4)

Array of entries

Field Descriptions

Array of entries An array of entries where the first entry corresponds to exit program number one for the
exit point QIBM_QWT_PREATTNPGMS and format ATTN0100 in the registration facility. The second
entry in the array corresponds to exit program number 2 and so on. The possible returned values are as
follows:

0 No, do not call this exit program.

1 Yes, call this exit program.

Entries available The number of possible entries being returned. All available data is returned if enough
space is provided.

Entries returned The actual number of entries that is being returned. If the data is truncated because the
receiver variable is not large enough to hold all of the data available, this value is less than the entries
available.

SREQ0100 Format

The following table describes the information that is returned in the receiver variable for the SREQ0100
format. For detailed descriptions of the fields, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Entries returned

4 4 BINARY(4) Entries available

 ARRAY (*) of
BINARY(4)

Array of entries

Field Descriptions

Array of entries An array of entries where the first entry corresponds to exit program number one for the
exit point QIBM_QWT_SYSREQPGMS and format SREQ0100 in the registration facility. The second
entry in the array corresponds to exit program number 2 and so on. The possible returned values are as
follows:

0 No, do not call this exit program.

1 Yes, call this exit program.

Entries available The number of possible entries being returned. All available data is returned if enough
space is provided.

Entries returned The actual number of entries that is being returned. If the data is truncated because the
receiver variable is not large enough to hold all of the data available, this value is less than the entries
available.

Error Messages

Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

Top | Work Management APIs | APIs by category

Retrieve Subsystem Information (QWDRSBSD)
API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Qualified subsystem name Input Char(*)
5 Error code I/O Char(*)

 Optional Parameter:

6 Number of qualified subsystem
libraries

Input Binary(4)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Subsystem Information (QWDRSBSD) API retrieves information about one or more specific
subsystems or all active subsystems.

Authorities and Locks

Subsystem Description Authority

*USE

Library Authority

*EXECUTE

Subsystem Description Lock

*EXCLRD

The subsystem description authority and library authority are not required when *ACTIVE is specified for
the qualified subsystem name parameter.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable to receive the subsystem information. This area must be large enough to accommodate
the information specified.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable. The length must be at least 8 bytes. If the variable is not long
enough to hold the subsystem information, the data is truncated.

Format name

INPUT; CHAR(8)

The format of the subsystem information. You can use this format:

SBSI0100 Basic subsystem information. For details, see SBSI0100 Format.

SBSI0200 Multiple subsystems information. For details, see SBSI0200 Format. This format
name must be specified if *ACTIVE is specified in the first 10 characters of the
qualified subsystem name or if the number of qualified subsystem names parameter
is greater than 1.

Qualified subsystem name

INPUT; ARRAY(*) of CHAR(20)

An array of CHAR(20) values giving the names of the subsystems about which to retrieve
information and the library in which the subsystem description is located. The number of qualified
subsystem names parameter specifies how many elements are in this array.

The first 10 characters contain the subsystem name. You can use the following special value for the
subsystem name:

*ACTIVE Return information about all active subsystems. If *ACTIVE is specified for the first
10 characters:

SBSI0200 must be specified for the format name parameter.❍

the value in the second 10 characters must be blank.❍

The second 10 characters contain the library name. You can use one of these special values for the
library name:

*CURLIB The job's current library

*LIBL The library list

If *ACTIVE is specified in the first 10 characters, the value in the second 10 characters must be
blank.

If information for a subsystem description is requested more than once in the array, the receiver
variable will not contain duplicate information for that subsystem description.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter

Number of qualified subsystem names

INPUT; BINARY(4)

The number of names specified in the qualified subsystem name parameter. If this parameter is not
specified, the number of names specified defaults to 1. If this parameter is specified, the number
specified must be in the range 1 to 65535. If a number greater than 1 is specified, SBSI0200 must
be specified for the format name parameter.

SBSI0100 Format

The following table shows the information returned in the receiving variable for the SBSI0100 format. For
a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Subsystem description name

18 12 CHAR(10) Subsystem description library name

28 1C CHAR(10) Subsystem status

38 26 CHAR(10) Sign-on device file name

48 30 CHAR(10) Sign-on device file library name

58 3A CHAR(10) Secondary language library name

68 44 BINARY(4) Maximum active jobs

72 48 BINARY(4) Currently active jobs

76 4C BINARY(4) Number of storage pools defined

Offsets vary.
These five fields
repeat, in the
order listed, for
each pool
defined for the
subsystem.

BINARY(4) Pool ID

CHAR(10) Pool name

CHAR(6) Reserved

BINARY(4) Pool size

BINARY(4) Pool activity level

SBSI0200 Format

The following table shows the information returned in the receiving variable for the SBSI0200 format. For
a detailed description of each field, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to first subsystem entry

12 C BINARY(4) Number of subsystem entries returned

16 10 BINARY(4) Size of a subsystem entry

20 14 CHAR(*) Reserved

Offsets vary.
These fields
repeat, in the
order listed, for
each subsystem.

CHAR(10) Subsystem description name

CHAR(10) Subsystem description library name

CHAR(12) Subsystem extended status

BINARY(4) Maximum active jobs

BINARY(4) Currently active jobs

CHAR(10) Subsystem monitor job name

CHAR(10) Subsystem monitor job user

CHAR(6) Subsystem monitor job number

CHAR(50) Subsystem description text

CHAR(*) Reserved

Field Descriptions

Bytes available. The total length of all data available.

Bytes returned. The length of the data actually returned. The number of bytes returned is always less than
or equal to both the number of bytes available and the receiving variable length.

Currently active jobs. The number of jobs currently active in the subsystem. This number includes held
jobs but excludes jobs that are disconnected or suspended because of a transfer secondary job or a transfer
group job. If the subsystem status is *INACTIVE, this number is 0.

Maximum active jobs. The maximum number of jobs that can run or use resources in the subsystem at one
time. If the subsystem description specifies *NOMAX, indicating that there is no maximum, this number is
-1.

Number of subsystem entries returned. The number of subsystems for which entries are returned. This
number determines how many times the entire set of fields describing a subsystem is repeated.

Number of storage pools defined. The number of storage pools defined for the subsystem. The maximum
number of storage pools for a subsystem is currently 10. This number determines how many times the pool
ID, pool name, pool size, pool activity level, and reserved fields are repeated. Those five fields are repeated
as a group for each pool defined for the subsystem.

Offset to first subsystem entry. The number of bytes from the first byte of the receiver variable to the
information for the first subsystem.

Pool activity level. The maximum number of jobs that can be active in the pool at one time. If the pool
name indicates a system-defined pool, the number returned is 0.

Pool ID. The pool ID for the subsystem pool.

Pool name. The name of the subsystem pool. If the pool is user-defined, the value of this field is
*USERPOOL. If the pool is system-defined, the value is one of these names:

*BASE The system base pool, which can be shared with other subsystems. The
QBASPOOL system value defines the base pool's minimum size. The
base pool contains all main storage not allocated to other pools. The
QBASACTLVL system value defines its activity level.

*INTERACT The shared pool used for interactive work.

*NOSTG No storage size or activity level is assigned to this storage pool.

*SHRPOOL1-*SHRPOOL60 Shared pools.

*SPOOL The shared pool for spooling writers.

The Change Shared Storage Pool (CHGSHRPOOL) command specifies the size and activity level of shared
pools.

Pool size. If the pool name is *USERPOOL, the amount of storage, in kilobytes, that the pool attempts to
allocate. If the pool has any other name, the value of this field is 0.

Reserved. An ignored field.

Secondary language library name. The name of the subsystem's secondary language library.

Sign-on device file library name. The name of the library in which the sign-on device file resides.

Size of a subsystem entry. The number of bytes in the entry for a subsystem.

Subsystem description library name. The name of the library in which the subsystem description resides.

Subsystem description name. The name of the subsystem about which information is being returned.

Subsystem description text. The text description of the subsystem description. The field is blank if there is
no text description.

Subsystem extended status. Possible values that can be returned for subsystem extended status are:

*ACTIVE The subsystem is running.

*ENDING An ENDSBS command has been issued for the subsystem or an ENDSYS command
has been issued, but the subsystem is still running.

*INACTIVE The subsystem is not running.

*RESTRICTED An ENDSBS command for the controlling subsystem, an ENDSYS *ALL command,
or an ENDSYS command has placed the controlling subsystem in a restricted
condition.

*STARTING A STRSBS command has been issued for the subsystem, but it is still in the process of
being started.

Subsystem monitor job name. The name for the subsystem monitor job as identified to the system. The
field is blank if the subsystem extended status field is *INACTIVE.

Subsystem monitor job number. The system-assigned number for the subsystem monitor job. The field is
blank if the subsystem extended status field is *INACTIVE.

Subsystem monitor job user. The name of the user profile under which the subsystem monitor job is
running. The field is blank if the subsystem extended status field is *INACTIVE.

Subsystem status. Possible values that can be returned for subsystem status are:

*ACTIVE The subsystem is running.

*INACTIVE The subsystem is not running.

Error Messages

Message ID Error Message Text

CPF1605 E Cannot allocate subsystem description &1.

CPF1606 E Error during allocation of subsystem &1.

CPF1607 E Previous request pending for subsystem &1.

CPF1608 E Subsystem description &1 not found.

CPF1619 E Subsystem description &1 in library &2 damaged.

CPF1835 E Not authorized to subsystem description.

CPF187A E List of active subsystems not available.

CPF1877 E Incorrect format specified.

CPF1878 E Library name not valid for subsystem &1.

CPF3CF1 E Error code parameter not valid.

 CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF8122 E &8 damage on library &4.

CPF9807 E One or more libraries in library list deleted.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

Top | Work Management APIs | APIs by category

Retrieve System Status (QWCRSSTS) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format name Input Char(8)
4 Reset status statistics Input Char(10)
5 Error Code I/O Char(*)

 Optional Parameter Group:

6 Pool selection information Input Char(*)
7 Size of pool selection information Input Binary(4)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve System Status (QWCRSSTS) API allows you to retrieve a group of statistics that represents
the current status of the system.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that will receive the system status information being retrieved. For the format, see
Format of Data Returned.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable described in Format of Data Returned. If the length is larger
than the size of the receiver variable, the results may not be predictable. The minimum length is 8
bytes.

Format name

INPUT; CHAR(8)

The format of the information to be returned. You must use one of the following format names:

SSTS0100 Basic system status information about the signed-on users and batch jobs in the
system. The information returned in this format is similar to the basic display of the
Display System Status (DSPSYSSTS) command.

SSTS0200 System status information. The information returned in this format is similar to the
disk information of the intermediate or advanced display of the DSPSYSSTS
command.

SSTS0300 System status information. The information returned in this format is similar to the
pool information of the intermediate or advanced display of the DSPSYSSTS
command.

SSTS0400 Pool status information. The information returned in this format is the SSTS0300
format information and additional pool information. The pool selection information
parameter must be used when this format is used.

SSTS0500 Pool subsystem information. The information returned in this format is a list of
active subsystems using a pool. The pool selection information parameter must be
used to select one system pool when this format is used.

For more information about these formats, see Format of Data Returned.

Reset status statistics

INPUT; CHAR(10)

Whether the status statistics and elapsed time are reset to zero, as if this were the first call to the
API. The statistics will be reset before new information is gathered. This parameter will also reset
the status statistics on the DSPSYSSTS and Work with System Status (WRKSYSSTS) commands.
This parameter is ignored for format SSTS0100 and format SSTS0500.

*YES Statistics will be reset to zero.

*NO Statistics will not be reset to zero.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Optional Parameter Group

Pool selection information

INPUT; CHAR(*)

Information that is used for selecting which pools to include in the list. This parameter only applies
to the SSTS0400 and SSTS0500 formats. See Format of Pool Selection Information for a
description on the layout of this parameter. If this optional parameter is specified, the Size of pool
selection information parameter must also be specified.

Size of pool selection information

INPUT; BINARY(4)

The size, in bytes, of the pool selection information parameter. If the value of this parameter is 0,
the pool selection information is not used. The valid values for this parameter are 0, 20, or 24. If
this parameter is not specified, the Size of pool selection information is defaulted to 0.

Format of Data Returned

The receiver variable holds the system status information returned.

SSTS0100 Format

The following table shows the information returned for the SSTS0100 format. For a detailed description of
each field see Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

24 18 BINARY(4) Users currently signed on

28 1C BINARY(4) Users temporarily signed off (disconnected)

32 20 BINARY(4) Users suspended by system request

36 24 BINARY(4) Users suspended by group jobs

40 28 BINARY(4) Users signed off with printer output waiting to
print

44 2C BINARY(4) Batch jobs waiting for messages

48 30 BINARY(4) Batch jobs running

52 34 BINARY(4) Batch jobs held while running

56 38 BINARY(4) Batch jobs ending

60 3C BINARY(4) Batch jobs waiting to run or already scheduled

64 40 BINARY(4) Batch jobs held on a job queue

68 44 BINARY(4) Batch jobs on a held job queue

72 48 BINARY(4) Batch jobs on an unassigned job queue

76 4C BINARY(4) Batch jobs ended with printer output waiting to
print

SSTS0200 Format

The following table shows the information returned for the SSTS0200 format. For a detailed description of
each field, see the Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

24 18 CHAR(6) Elapsed time

30 1E CHAR(1) Restricted state flag

31 1F CHAR(1) Reserved

32 20 BINARY(4) % processing unit used

36 24 BINARY(4) Jobs in system

40 28 BINARY(4) % permanent addresses

44 2C BINARY(4) % temporary addresses

48 30 BINARY(4) System ASP

52 34 BINARY(4) % system ASP used

56 38 BINARY(4) Total auxiliary storage

60 3C BINARY(4) Current unprotected storage used

64 40 BINARY(4) Maximum unprotected storage used

68 44 BINARY(4) % DB capability

72 48 BINARY(4) Main storage size

 76 4C BINARY(4) Number of partitions

80 50 BINARY(4) Partition identifier

84 54 BINARY(4) Reserved

88 58 BINARY(4) Current processing capacity

92 5C CHAR(1) Processor sharing attribute

93 5D CHAR(3) Reserved

96 60 BINARY(4) Number of processors

100 64 BINARY(4) Active jobs in system

104 68 BINARY(4) Active threads in system

108 6C BINARY(4) Maximum jobs in system

112 70 BINARY(4) % temporary 256MB segments used

116 74 BINARY(4) % temporary 4GB segments used

120 78 BINARY(4) % permanent 256MB segments used

124 7C BINARY(4) % permanent 4GB segments used

128 80 BINARY(4) % current interactive performance

SSTS0300 Format

The following table shows the information returned for the SSTS0300 format. For a detailed description of
each field, see the Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

24 18 CHAR(6) Elapsed time

30 1E CHAR(2) Reserved

32 20 BINARY(4) Number of pools

36 24 BINARY(4) Offset to pool information

40 28 BINARY(4) Length of pool information entry

44 2C CHAR(*) Reserved

Offsets vary.
These fields
repeat, in the
order listed, for
each pool
allocated by the
system.

BINARY(4) System pool

BINARY(4) Pool size

BINARY(4) Reserved size

BINARY(4) Maximum active threads

BINARY(4) Database faults

BINARY(4) Database pages

BINARY(4) Nondatabase faults

BINARY(4) Nondatabase pages

BINARY(4) Active to wait

BINARY(4) Wait to ineligible

BINARY(4) Active to ineligible

CHAR(10) Pool name

CHAR(10) Subsystem name

CHAR(10) Subsystem library name

CHAR(10) Paging option

SSTS0400 Format

The following table shows the information returned for the SSTS0400 format. For a detailed description of
each field, see the Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

24 18 CHAR(6) Elapsed time

30 1E CHAR(2) Reserved

32 20 BINARY(4) Main storage size

36 24 BINARY(4) Minimum machine pool size

40 28 BINARY(4) Minimum base pool size

44 2C BINARY(4) Number of pools

48 30 BINARY(4) Offset to pool information

52 34 BINARY(4) Length of pool information entry

56 38 CHAR(*) Reserved

Note: The following fields repeat, in the order listed, for the number of pools
returned.

 BINARY(4) System pool

 BINARY(4) Pool size

 BINARY(4) Reserved size

 BINARY(4) Maximum active threads

 BINARY(4) Database faults

 BINARY(4) Database pages

 BINARY(4) Nondatabase faults

 BINARY(4) Nondatabase pages

 BINARY(4) Active to wait

 BINARY(4) Wait to ineligible

 BINARY(4) Active to ineligible

 CHAR(10) Pool name

 CHAR(10) Subsystem name

 CHAR(10) Subsystem library name

 CHAR(10) Paging option

 BINARY(4) Defined size

 BINARY(4) Current threads

 BINARY(4) Current ineligible threads

 BINARY(4) Tuning priority

 BINARY(4) Tuning minimum pool size %

 BINARY(4) Tuning maximum pool size %

 BINARY(4) Tuning minimum faults

 BINARY(4) Tuning per-thread faults

 BINARY(4) Tuning maximum faults

 CHAR(50) Description

 CHAR(1) Status

 CHAR(*) Reserved

SSTS0500 Format

The following table shows the information returned for the SSTS0500 format. For a detailed description of
each field, see the Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

24 18 BINARY(4) System pool

28 1C BINARY(4) Number of subsystems available

32 20 BINARY(4) Number of subsystems returned

36 24 BINARY(4) Offset to subsystem information

40 28 BINARY(4) Length of subsystem information entry

44 32 CHAR(10) Pool name

54 36 CHAR(*) Reserved

Note: The following fields repeat, in the order listed, for the number of subsystems
returned.

 CHAR(10) Subsystem name

 CHAR(10) Subsystem library name

 CHAR(*) Reserved

Field Descriptions

% current interactive performance. The percentage of interactive performance assigned to this logical
partition. This value is a percentage of the total interactive performance available to the entire physical
system. For example, a value of 41 in binary would be 41 percent.

% DB capability. The percentage of processor database capability (in tenths) that was used during the
elapsed time. Database capability is the maximum CPU utilization available for database processing on this
server. -1 is returned if this server does not report the amount of CPU used for database processing. For
example, a value of 411 in binary would be 41.1 percent.

% permanent addresses. The percentage (in thousandths) of the maximum possible addresses for
permanent objects that have been used. For example, a value of 41123 in binary would be 41.123 percent.

% permanent 256MB segments used. The percentage (in thousandths) of the maximum possible
permanent 256MB segments that have been used. For example, a value of 41123 in binary would be 41.123
percent.

% permanent 4GB segments used. The percentage (in thousandths) of the maximum possible permanent
4GB segements that have been used. For example, a value of 41123 in binary would be 41.123 percent.

% processing unit used. The average (in tenths) of the elapsed time during which the processing units
were in use. For example, a value of 411 in binary would be 41.1 percent.

% system ASP used. The percentage (in ten thousandths) of the system storage pool currently in use. For
example, a value of 41123 in binary would be 4.1123 percent.

% temporary addresses. The percentage (in thousandths) of the maximum possible addresses for
temporary objects that have been used. For example, a value of 41123 in binary would be 41.123 percent.

% temporary 256MB segments used. The percentage (in thousandths) of the maximum possible
temporary 256MB segments that have been used. For example, a value of 41123 in binary would be 41.123
percent.

% temporary 4GB segments used. The percentage (in thousandths) of the maximum possible temporary
4GB segments that have been used. For example, a value of 41123 in binary would be 41.123 percent.

Active jobs in system. The number of jobs active in the system (jobs that have been started, but have not
yet ended), including both user and system jobs.

Active threads in system. The number of initial and secondary threads in the system (threads that have
been started, but have not yet ended), including both user and system threads.

Active to ineligible. The rate (in tenths), in transitions per minute, of transitions of threads from an active
condition to an ineligible condition. For example, a value of 123 in binary would be 12.3 transitions per
minute.

Active to wait. The rate (in tenths), in transitions per minute, of transitions of threads from an active
condition to a waiting condition. For example, a value of 123 in binary would be 12.3 transitions per
minute.

Batch jobs ended with printer output waiting to print. The number of completed batch jobs that
produced printer output that is waiting to print.

Batch jobs ending. The number of batch jobs that are in the process of ending due to one of the following
conditions:

The job finishes processing normally.●

The job ends before its normal completion point and is being removed from the system.●

Batch jobs held on a job queue. The number of batch jobs that were submitted, but were held before they
could begin running.

Batch jobs held while running. The number of batch jobs that had started running, but are now held.

Batch jobs on a held job queue. The number of batch jobs on job queues that have been assigned to a
subsystem, but are being held.

Batch jobs on an unassigned job queue. The number of batch jobs on job queues that have not been
assigned to a subsystem.

Batch jobs running. The number of batch jobs currently running on the system.

Batch jobs waiting for messages. The number of batch jobs waiting for a reply to a message before they
can continue to run.

Batch jobs waiting to run or already scheduled. The number of batch jobs on the system that are
currently waiting to run, including those that were submitted to run at a future date and time. Jobs on the
job schedule that have not been submitted are not included.

Bytes available. The length of all data available to return. All available data is returned if enough space is
provided.

Bytes returned. The length of the data actually returned. The number of bytes returned is always less than
or equal to both the number of bytes available and the receiving variable length.

Current date and time. The date and time when the status was gathered. This is in system timestamp
format.

Current ineligible threads. The number of ineligible threads in the pool's activity level.

Current processing capacity. The amount (in hundredths) of current processing capacity of the
partition. For a partition sharing physical processors, this attribute represents the share of the physical
processors in the pool it is executing. For example, a value of 233 means that the partition's current
processing capacity is equivalent to 2.33 physical processors. If the current number of processors in the
partition is four, each virtual processor has 0.58 the computing capacity of a physical processor in the
physical machine. For a partition using dedicated processors, the value represents the number of virtual
processors that are currently active in the partition. For example, a partition using four dedicated processors
will return a value of 400 for the current processing capacity.

Current threads. The number of threads currently using the pool's activity level.

Current unprotected storage used. The current amount of storage in use for temporary objects. This value
is in millions (M) of bytes.

Database faults. The rate (in tenths), shown in page faults per second, of database page faults against pages
containing either database data or access paths. A page fault is a program notification that occurs when a
page that is marked as not in main storage is referred to by an active program. An access path is the means
by which the system provides a logical organization to the data in a database file. For example, a value of
123 in binary would be 12.3 page faults per second.

Database pages. The rate (in tenths), in pages per second, at which database pages are brought into the
storage pool. A page is a 4096-byte block of information that is transferable between auxiliary storage and
main storage. For example, a value of 123 in binary would be 12.3 pages per second.

Defined size. The size of the pool, in kilobytes, as defined in the shared pool, subsystem description, or
system value QMCHPOOL. -1 will be returned for pools without a defined size.

Description. The description of the shared pool. This field is blank for private pools defined in subsystem
descriptions.

Elapsed time. The time that has elapsed between the measurement start time and the current system time.
This value is in the format HHMMSS where HH is the hour, MM is the minute, and SS is the second.

Jobs in system. The total number of user jobs and system jobs that are currently in the system. The total
includes:

All jobs on job queues waiting to be processed.●

All jobs currently active (being processed).●

All jobs that have completed running but still have output on output queues to be produced.●

Length of pool information entry. The length of the information returned for each pool. If the receiver
variable was not sufficiently large to hold all of the pool information, the amount of pool information
returned may be less than this value.

Length of subsystem information entry. The length of the information returned for each subsystem. If the
receiver variable was not sufficiently large to hold all of the information, the amount of information
returned may be less than this value.

Main storage size. The amount of main storage, in kilobytes, in the system. On a partitioned system, the

main storage size can change while the system is active.

Maximum active threads. The maximum number of threads that can be active in the pool at any one time.

Maximum jobs in system. The maximum number of jobs that are allowed on the system. When the
number of jobs reaches this maximum, you can no longer submit or start more jobs on the system. The total
includes:

All jobs on job queues waiting to be processed.●

All jobs currently active (being processed).●

All jobs that have completed running but still have output on output queues to be produced.●

Maximum unprotected storage used. The largest amount of storage for temporary objects used at any one
time since the last IPL. This value is in millions (M) of bytes.

Minimum base pool size. The minimum size, in kilobytes, for the base pool. This value is the
QBASPOOL system value.

Minimum machine pool size. The minimum size, in kilobytes, for the machine pool. This value is the
minimum size required by the machine for the machine pool.

Nondatabase faults. The rate (in tenths), in page faults per second, of nondatabase page faults against
pages other than those designated as database pages. For example, a value of 123 in binary would be 12.3
page faults per second.

Nondatabase pages. The rate (in tenths), in pages per second, at which nondatabase pages are brought into
the storage pool. For example, a value of 123 in binary would be 12.3 pages per second.

Number of partitions. The number of partitions on the system. This includes partitions that are currently
powered on (running) and partitions that are powered off.

Number of pools. The number of pools allocated when the information was gathered. This number may be
larger than the number of pools information is returned for if the receiver variable is not large enough.

Number of processors. The number of processors that are currently active in this partition.

Number of subsystems available. The number of subsystems using the pool.

Number of subsystems returned. The number of subsystems returned in the receiver variable.

Offset to pool information. The offset from the beginning of the structure to the start of the pool
information.

Offset to subsystem information. The offset from the beginning of the structure to the start of the
subsystem information.

Paging option. Whether the system will dynamically adjust the paging characteristics of the storage pool
for optimum performance. The following special values may be returned.

*FIXED The system does not dynamically adjust the paging characteristics.

*CALC The system dynamically adjusts the paging characteristics.

USRDFN The system does not dynamically adjust the paging characteristics for the storage pool but
uses values that have been defined through an API.

Partition identifier. The identifier for the current partition in which the API is running.

Pool name. The name of this storage pool. The name may be a number, in which case it is a private pool
associated with a subsystem. The following special values may be returned.

*MACHINE The specified pool definition is defined to be the machine pool.

*BASE The specified pool definition is defined to be the base system pool,
which can be shared with other subsystems.

*INTERACT The specified pool definition is defined to be the shared pool used for
interactive work.

*SPOOL The specified pool definition is defined to be the shared pool used for
spooled writers.

*SHRPOOL1- *SHRPOOL60 The specified pool definition is defined to be a shared pool.

Pool size. The amount of main storage, in kilobytes, in the pool.

Processor sharing attribute. This attribute indicates whether this partition is sharing processors on the
current IPL of this partition. If the value indicates the partition does not share physical processors, then this
partition uses only dedicated processors. If the value indicates the partition shares physical processors, then
this partition uses physical processors from a shared pool of physical processors. The following values are
returned:

0 Partition does not share processors

1 Partition shares processors

Reserved. An ignored field.

Reserved size. The amount of storage, in kilobytes, in the pool reserved for system use (for example, for
save/restore operations). The system calculates this amount by using storage pool sizes and activity levels.

Restricted state flag. Whether the system is in restricted state. The following values are returned:

0 System is not in restricted state.

1 System is in restricted state.

Status.The status of the pool:

0 Active

1 Inactive

Subsystem library name. The library containing the subsystem description. This field will be blank for
shared pools (formats SSTS0300 and SSTS0400).

Subsystem name. The subsystem with which this storage pool is associated. This field will be blank for
shared pools (formats SSTS0300 and SSTS0400).

System ASP. The storage capacity of the system auxiliary storage pool (ASP1). This value is in millions
(M) of bytes.

System name. The name of the system where the statistics were collected.

System pool. The system-related pool identifier for each of the system storage pools that currently has

main storage allocated to it.

Total auxiliary storage. The total auxiliary storage (in millions of bytes) on the system.

Tuning maximum faults. The maximum page faults per second (in hundredths) to use as a guideline for
the shared storage pool. For example, a value of 1234 would be 12.34 page faults per second. This field is 0
for private pools defined in subsystem descriptions.

Tuning maximum pool size %. The maximum amount of storage to allocate to the shared storage pool (as
a percentage of total main storage). The value returned is in hundredths. For example, a value of 1234
would be 12.34 percent. This field is 0 for private pools defined in subsystem descriptions.

Tuning minimum faults. The minimum page faults per second (in hundredths) to use as a guideline for the
shared storage pool. For example, a value of 1234 would be 12.34 page faults per second. This field is 0 for
private pools defined in subsystem descriptions.

Tuning minimum pool size %. The minimum amount of storage to allocate to the shared storage pool (as
a percentage of total main storage). The value returned is in hundredths. For example, a value of 1234
would be 12.34 percent. This field is 0 for private pools defined in subsystem descriptions.

Tuning per-thread faults. The page faults per second (in hundredths) for each active thread to use as a
guideline for the shared storage pool. For example, a value of 1234 would be 12.34 page faults per second.
This field is 0 for private pools defined in subsystem descriptions.

Tuning priority. The priority of the shared storage pool used by the system when making automatic
performance adjustments. This field is 0 for private pools defined in subsystem descriptions.

Users currently signed on. The number of users currently signed on the system. System request jobs and
group jobs are not included in this number.

Users signed off with printer output waiting to print. The number of sessions that have ended with
printer output files waiting to print.

Users suspended by group jobs. The number of user jobs that have been temporarily suspended by group
jobs so that another job may be run.

Users suspended by system request. The number of user jobs that have been temporarily suspended by
system request jobs so that another job may be run.

Users temporarily signed off (disconnected). The number of jobs that have been disconnected due to
either the selection of option 80 (Temporary sign-off) or the entry of the Disconnect Job (DSCJOB)
command.

Wait to ineligible. The rate (in tenths), in transitions per minute, of transitions of threads from a waiting
condition to an ineligible condition. For example, a value of 123 in binary would be 12.3 transitions per
minute.

Format of Pool Selection Information

Offset

Type FieldDec Hex

0 0 CHAR(10) Type of pool

10 A CHAR(10) Shared pool name

20 14 BINARY(4) System pool identifier

Selection Field Descriptions

Shared pool name.This is used to select a shared pool when type of pool is *SHARED. The possible
values are:

*ALL All shared pools are returned.

*MACHINE The machine pool is returned.

*BASE The base pool is returned.

*INTERACT The shared pool used for interactive work is returned.

*SPOOL The shared pool used for spool writers is returned.

*SHRPOOL1-60 The specified shared pool is returned.

When *ALL is specified the pools are returned in the order *MACHINE, *BASE, *INTERACT, *SPOOL,
and *SHRPOOL1-60. This field must be blank when *SYSTEM is specified for type of pool.

System pool identifier.This is used to select an active system pool when type of pool is *SYSTEM. The
possible values are:

-1 All active pools are returned.

1 - 64 The specified active pool is returned. If the pool is not active, CPF186B is sent.

When -1 is specified only the active pools are returned in system pool identifier order. This field must be 0
when *SHARED is specified for type of pool.

Type of pool.The type of pools to include in the list. The possible special values follow:

*SHARED The shared pools identified by the shared pool name field in the selection information. The
other selection fields are not used. The selection information size must be a minimum of 20.

*SYSTEM The system pools identified by the system pool identifier field in the selection information.
The other selection fields are not used. The selection information size must be a minimum
of 24.

The pool selection information parameter only applies to the SSTS0400 and SSTS0500
formats. When other formats are used, the size of pool selection information parameter
must be 0 or not specified.

Error Messages

Message ID Error Message Text

CPF1E99 E Unexpected error occurred.

CPF186A E Selection information not allowed with format &1.

CPF186B E Pool &1 not active.

CPF186C E Selection information required with format &1.

CPF1869 E Value &1 for reset status statistics not valid.

CPF187A E List of active subsystems not available.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Top | Work Management APIs | APIs by category

Retrieve System Values (QWCRSVAL) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Number of system values to retrieve Input Binary(4)
4 System value names Input Array(*) of Char(10)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve System Values (QWCRSVAL) API lets you retrieve system values.

Authorities and Locks

Job Authority

No special authority is required to use this API.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is to receive the information requested. For the format, see Format of Data
Returned.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable described in the Format of Data Returned. If the length is larger
than the size of the receiver variable, the results may not be predictable. The minimum length is 28
bytes.

Number of system values to retrieve

INPUT; BINARY(4)

The total number of system values to retrieve.

System value names

INPUT; ARRAY(*) of CHAR(10)

The names of the system values to be retrieved. This can be a list of system value names where
each name is 10 characters.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format of Data Returned

The receiver variable holds the information returned about each system value.

The receiver variable has three logical parts:

The first field specifies the number of system values returned.1.

The next fields give the offsets to the system values returned. There is one offset field for each
system value returned.

2.

Next are the system value information tables for the system values returned. There is one system
value information table for each system value.

3.

The following table shows the format of the receiver variable. The offset fields are repeated until the offsets
for all the system values returned are listed; the system value information table for each system value is
repeated in the same way. For a detailed description of each field, see the Field Descriptions.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of system values returned

4 4 ARRAY(*) of
BINARY(4)

Offset to system value information table

* * CHAR(*) System value information table. This field is
repeated for each system value returned.

Note: Each system value in the table is represented by the standard system value
information table described in System Value Information Table.

To determine the length of the receiver variable, the following calculation should be done. For each system
value to be returned, get the length of the data returned for the system value and add 24. After adding the
lengths for each system value, add 4. This calculation takes into account the data alignment that needs to be
done; therefore, this value is a worst-case estimate.

System Value Information Table

The following table shows the format of the system value information table.

Offset

Type FieldDec Hex

0 0 CHAR(10) System value

10 A CHAR(1) Type of data

11 B CHAR(1) Information status

12 C BINARY(4) Length of data

16 10 CHAR(*) Data

Field Descriptions

Data. The data returned for the system value.

Information status. Whether the information was available for the system value.

blank The information was available.

L The information was not available because the system value was locked.

Offset to system values information table. The offset from the beginning of the structure to the start of
the system value information.

Length of data. The length of the data returned for the system value. If the information was not available,
the length will be zero.

System value. The system value to be retrieved. See Valid System Values for the list of valid system
values.

Number of system values returned. The number of system values returned to the application.

Type of data. The type of data returned.

C The data is returned in character format.

B The data is returned in binary format.

blank The data is not available.

Valid System Values

For a detailed description of each field, see System Value Field Descriptions.

System value Type Description

QABNORMSW CHAR(1) Previous end of system indicator

QACGLVL ARRAY(8) of CHAR(10) Accounting level

QACTJOB BINARY(4) Active jobs

QADLACTJ BINARY(4) Additional active jobs

QADLSPLA BINARY(4) Additional storage

QADLTOTJ BINARY(4) Additional total jobs

QALWOBJRST ARRAY(15) of CHAR(10) Allow object restore options

QALWUSRDMN ARRAY(50) of CHAR(10) Allow user domain

QASTLVL CHAR(10) Assistance level

QATNPGM CHAR(20) Attention program

QAUDCTL ARRAY(5) of CHAR(10) Auditing control

QAUDENDACN CHAR(10) Auditing end action

QAUDFRCLVL BINARY(4) Auditing force level

QAUDLVL ARRAY(16) of CHAR(10) Auditing level

QAUTOCFG CHAR(1) Automatic configuration indicator

QAUTORMT CHAR(1) Automatic configuration for remote
controllers

QAUTOSPRPT CHAR(1) Automatic system disabled reporting

QAUTOVRT BINARY(4) Automatic configuration for virtual
devices

QBASACTLVL BINARY(4) Base activity level

QBASPOOL BINARY(4) Base pool minimum size

QBOOKPATH ARRAY(5) of CHAR(63) Book and bookshelf search path

QCCSID BINARY(4) Coded character set identifier

QCENTURY CHAR(1) Century indicator

QCFGMSGQ CHAR(20) Configuration message queue

QCHRID CHAR(20) Character set and code page

QCHRIDCTL CHAR(10) Character identifier control

QCMNARB CHAR(10) Communication arbiters

QCMNRCYLMT CHAR(20) Communications recovery limit

QCNTRYID CHAR(2) Country or region identifier

QCONSOLE CHAR(10) Console name

QCRTAUT CHAR(10) Create authority

QCRTOBJAUD CHAR(10) Create object auditing

QCTLSBSD CHAR(20) Controlling subsystem

QCURSYM CHAR(1) Currency symbol

QDATE CHAR(7) System date

QDATFMT CHAR(3) Date format

QDATSEP CHAR(1) Date separator

QDAY CHAR(3) Day

QDAYOFWEEK CHAR(4) Day of the week

 QDBFSTCCOL CHAR(10) Database file statistics collection

QDBRCVYWT CHAR(1) Database recovery wait

QDECFMT CHAR(1) Decimal format

QDEVNAMING CHAR(10) Device naming convention

QDEVRCYACN CHAR(20) Device recovery action

QDSCJOBITV CHAR(10) Disconnect job interval

QDSPSGNINF CHAR(1) Sign-on information

QDYNPTYADJ CHAR(1) Dynamic priority adjustment

QDYNPTYSCD CHAR(1) Dynamic priority scheduler

QFRCCVNRST CHAR(1) Force conversion on restore

QHOUR CHAR(2) Hour

QHSTLOGSIZ BINARY(4) History log size

QIGC CHAR(1) DBCS installed

QIGCCDEFNT CHAR(20) Double-byte coded font name

QIGCFNTSIZ BINARY(4) Double-byte coded font point size

QINACTITV CHAR(10) Inactive job time-out

QINACTMSGQ CHAR(20) Inactive message queue

QIPLDATTIM CHAR(13) Automatic IPL date and time

QIPLSTS CHAR(1) IPL status

QIPLTYPE CHAR(1) IPL type

QJOBMSGQFL CHAR(10) Job message queue full

QJOBMSGQMX BINARY(4) Job message queue maximum size

QJOBMSGQSZ BINARY(4) Job message queue initial size

QJOBMSGQTL BINARY(4) Maximum job message queue initial size

QJOBSPLA BINARY(4) Initial spooling size

QKBDBUF CHAR(10) Keyboard buffer

QKBDTYPE CHAR(3) Keyboard type

QLANGID CHAR(3) Language identifier

QLEAPADJ BINARY(4) Leap year adjustment

QLIBLCKLVL CHAR(1) Library locking level

QLMTDEVSSN CHAR(1) Limit device session

QLMTSECOFR CHAR(1) Limit security officer

QLOCALE CHAR(2080) Locale path name

QMAXACTLVL BINARY(4) Maximum activity level

QMAXJOB BINARY(4) Maximum number of jobs

QMAXSGNACN CHAR(1) Maximum sign-on action

QMAXSIGN CHAR(6) Maximum not valid sign-on

QMAXSPLF BINARY(4) Maximum spooled files per job

QMCHPOOL BINARY(4) Machine pool size

QMINUTE CHAR(2) Minute

QMLTTHDACN CHAR(1) Multithreaded job action

QMODEL CHAR(4) System model

QMONTH CHAR(2) Month

QPASTHRSVR CHAR(10) Pass-through servers

QPFRADJ CHAR(1) Performance adjustment

QPRBFTR CHAR(20) Problem filter

QPRBHLDITV BINARY(4) Problem hold interval

QPRCMLTTSK CHAR(1) Processor multitasking

QPRCFEAT CHAR(4) Processor feature code

QPRTDEV CHAR(10) Printer device

QPRTKEYFMT CHAR(10) Print key format

QPRTTXT CHAR(30) Print text

QPWDEXPITV CHAR(6) Days password valid

QPWDLMTAJC CHAR(1) Limit adjacent digits

QPWDLMTCHR CHAR(10) Limit characters

QPWDLMTREP CHAR(1) Limit repeat characters

QPWDLVL BINARY(4) Password level

QPWDMAXLEN BINARY(4) Maximum password length

QPWDMINLEN BINARY(4) Minimum password length

QPWDPOSDIF CHAR(1) Limit character positions

QPWDRQDDGT CHAR(1) Required password digits

QPWDRQDDIF CHAR(1) Duplicate password

QPWDVLDPGM CHAR(20) Password validation program

QPWRDWNLMT BINARY(4) Power down limit

QPWRRSTIPL CHAR(1) Power restore IPL

QQRYDEGREE CHAR(10) Parallel processing degree

QQRYTIMLMT CHAR(10) Query processing time limit

QRCLSPLSTG CHAR(10) Reclaim spool storage

QRETSVRSEC CHAR(1) Retain server security data

QRMTIPL CHAR(1) Remote IPL

QRMTSRVATR CHAR(1) Remote service attribute

QRMTSIGN CHAR(20) Remote sign-on

QSCPFCONS CHAR(1) IPL action with console problem

QSECOND CHAR(2) Second

QSECURITY CHAR(2) Security level

QSETJOBATR ARRAY(16) of CHAR(10) Set job attributes from locale

QSFWERRLOG CHAR(10) Software error log

QSHRMEMCTL CHAR(1) Shared memory control

QSPCENV CHAR(10) Special environment

 QSPLFACN CHAR(10) Spooled file action

QSRLNBR CHAR(8) Serial number

QSRTSEQ CHAR(20) Sort sequence table

QSRVDMP CHAR(10) Service dump

QSTGLOWACN CHAR(10) Auxiliary storage lower limit action

QSTGLOWLMT BINARY(4) Auxiliary storage lower limit

QSTRPRTWTR CHAR(1) Start printer writer

QSTRUPPGM CHAR(20) Startup program name

QSTSMSG CHAR(10) Status messages

QSVRAUTITV BINARY(4) Server authentication interval

QSYSLIBL ARRAY(15) of CHAR(10) System library list

QTIME CHAR(9) System time

QTIMSEP CHAR(1) Time separator

QTOTJOB BINARY(4) Total jobs

QTSEPOOL CHAR(10) Time-slice end pool

QUPSDLYTIM CHAR(20) UPS delay time

QUPSMSGQ CHAR(20) UPS message queue

QUSEADPAUT CHAR(10) Use adopted authority

QUSRLIBL ARRAY(25) of CHAR(10) User library list

QUTCOFFSET CHAR(5) Coordinated universal time offset

QVFYOBJRST CHAR(1) Verify object on restore

QYEAR CHAR(2) Year

System Value Field Descriptions

Accounting level. QACGLVL is the accounting level. The possible values are:

*NONE No accounting information is written to a journal.

*JOB Job resource use is written to a journal.

*PRINT The resources used for spooled and nonspooled print files are written to a journal.

Active jobs. QACTJOB is the initial number of active jobs for which auxiliary storage is to be allocated
during IPL.

Additional active jobs. QADLACTJ specifies the additional number of active jobs for which auxiliary
storage is to be allocated when the initial number of active jobs (the system value QACTJOB) is reached.

Additional storage. QADLSPLA specifies the additional storage to add to the spooling control block.

Additional total jobs. QADLTOTJ specifies the additional number of jobs for which auxiliary storage is to
be allocated when the initial number of jobs (the system value QTOTJOB) is reached.

Allow object restore options. QALWOBJRST specifies a list of security options that are used when
restoring objects to the system.

 *ALL Allow all objects to be restored regardless of whether or not they have
security-sensitive attributes or validation errors.

*NONE Does not allow objects with security-sensitve attributes to be restored.

*ALWSYSSTT Allow programs, service programs, and modules with the system-state and
inherit-state attribute to be restored.

*ALWPGMADP Allow programs and service programs with the adopt attribute to be restored.

*ALWPTF Allow system-state and inherit-state programs, service programs, modules that adopt
authority, objects that have the S_ISUID(set-user-ID) attribute enabled, and objects
that have the S-ISGID(set-group-ID) attribute enabled to be restored to the system
during PTF install.

*ALWSETUID Allow restore of files that have the S_ISUID (set-user-ID) attribute enabled.

*ALWSETGID Allow restore of files that have the S_ISGID (set-group-ID) attribute enabled.

*ALWVLDERR Allow objects with validation errors to be restored.

Allow user domain. QALWUSRDMN is the allow user domain system value. It specifies a list of library
names that can contain user domain objects.

*ALL All libraries and integrated file system directories on the system can contain user
domain objects.

*DIR Any SOM object in a directory in the integrated file system can contain user domain
objects. *DIR does not apply to the QSYS and QDLS file systems. *DIR is mutually
exclusive with *ALL.

Library names A list of library names that can contain user domain objects.

Assistance level. QASTLVL is the assistance level system value. The value specifies the level of assistance
available to users of the system.

*BASIC Operational Assistant level of system displays is available.

*INTERMED Intermediate level of system displays is available.

*ADVANCED Advanced level of system displays is available.

Attention program. QATNPGM is the attention program system value. The first 10 characters contain the
program name and the last 10 characters contain the library name. The following special values are
allowed:

*ASSIST The Operational Assistant main menu appears when the Attention key is pressed.

*NONE No attention program is called when the Attention key is pressed.

Auditing control. The QAUDCTL system value is the on/off switch for object- and user-level auditing.
The values allowed are:

*NONE No auditing of objects and no auditing of user actions will be done on the system. In
addition, no auditing that is controlled by the QAUDLVL system value will be done.

*OBJAUD Objects that have been selected by the Change Object Auditing (CHGOBJAUD) command
will be audited.

*AUDLVL Changes controlled by the QAUDLVL system value and the AUDLVL parameter on the
Change User Auditing (CHGUSRAUD) command will be audited.

Auditing end action. The QAUDENDACN system value indicates the action to be taken if auditing data
cannot be written to the security auditing journal. These are the allowable values for the QAUDENDACN
system value:

*NOTIFY The action that caused the audit to be attempted will continue after notification of
failure to send the journal entry to the security auditing journal is sent to the
QSYSOPR and QSYSMSG message queues.

*PWRDWNSYS The system ends with a system reference code (SRC) if sending of the audit data to the
security audit journal fails. The system will then be brought up in a restricted state on
the following IPL.

Auditing force level. The QAUDFRCLVL system value indicates to the system the number of auditing
journal entries written to the security auditing journal before the auditing data is written to auxiliary
storage. The following values are allowed:

0 The system will write the journal entries to auxiliary storage only when the system determines
the journal entries should be written based on internal system processing.

1-100 The system will write the journal entries to auxiliary storage when this number of journal entries
has been written to the security auditing journal.

Auditing level. QAUDLVL is the security auditing level. This system value specifies the level of security
auditing that should occur on the system. The values allowed are:

*AUTFAIL Authorization failures are audited.

*CREATE The creation of objects is audited.

*DELETE All object deletions are audited.

*JOBDTA Actions by an audited user that affect a job will be audited.

*NONE No auditing occurs on the system.

*OBJMGT Function of generic objects is audited.

*OFCSRV Auditing of OfficeVision licensed program.

*PGMADP Program adoption.

*PGMFAIL Integrity violations (for example, blocked instruction, validation value failure, and
domain violation) are audited.

*PRTDTA Printing of spool files or direct printing.

*SAVRST Save and restore information is audited.

*SECURITY All security-related functions are audited.

*SERVICE Use of the system service tools by a user will be audited.

*SPLFDTA Spool file auditing.

*SYSMGT Use of system management functions by an audited user will be audited.

Automatic configuration for remote controllers. QAUTORMT allows the configuration of remote
controllers. The possible values are:

0 Automatic configuration is off.

1 Automatic configuration is on.

Automatic system disabled reporting. The QAUTOSPRPT system value controls the automatic problem
reporting ability. The value allows the system to automatically report a problem. The possible values are:

0 Automatic system disabled reporting is off.

1 Automatic system disabled reporting is on.

Automatic IPL date and time. QIPLDATTIM is the system value for the date and time to automatically
do an IPL of the system. It specifies a date and time when an automatic IPL should occur. The special value
*NONE indicates that no timed automatic IPL is desired. The format of the field returned is
CYYMMDDHHMMSS, where C is the century, YY is the year, MM is the month, DD is the day, HH is
the hour, MM is the minute, and SS is the second. A 0 for the century flag indicates years 19xx, and a 1
indicates years 20xx.

Automatic configuration for virtual device. QAUTOVRT is the system value for automatic configuration
of virtual devices. This is the number of virtual devices that the user wants to have automatically
configured. The possible values are:

0-32500 The number of virtual devices that the user wants to have automatically configured.

32767 There is no maximum number of virtual devices that the user wants to have automatically
configured.

-1 The program registered for the Virtual Device Selection (QIBM_QPA_DEVSEL) exit point is
called when a virtual device description needs to be selected or automatically created by the
system. If the program registered for the exit point does not exist or if it returns with an error,
the system will handle the situation as if the QAUTOVRT system value is set to 0.

Automatic configuration indicator. The QAUTOCFG system value automatically configures devices.
The value specifies whether devices that are added to the system are configured automatically.

0 Automatic configuration is off.

1 Automatic configuration is on.

Auxiliary storage lower limit. QSTGLOWLMT is the percentage (in 10 thousandths) of the system
auxiliary storage pool that remains available when the critical storage lower limit is reached. For example, a
value of 50000 in binary would be 5.0000.

Auxiliary storage lower limit action. QSTGLOWACN is the action taken when the auxiliary storage
lower limit (QSTGLOWLMT system value) is reached. The possible actions are:

*MSG Message CPI099C is sent to the QSYSMSG and the QSYSOPR message queues.
(This message is also sent for each of the following actions.)

*CRITMSG Message CPI099B is sent to the user who is specified by the Critical messages to user
service attribute. Service attributes can be changed by using the Change Service
Attributes (CHGSRVA) command.

*REGFAC A job is submitted to run any exit programs that are registered for the
QIBM_QWC_QSTGLOWACN exit point.

*ENDSYS The system is ended and left in the restricted state.

*PWRDWNSYS The system is powered down immediately and restarted.

Base activity level. QBASACTLVL is the base-storage-pool activity level. This value indicates how many
system and user jobs can compete at the same time for storage in the base storage pool.

Base pool minimum size. QBASPOOL is the minimum size of the base storage pool. The base pool
contains all main storage not allocated by other pools. QBASPOOL is specified in kilobytes.

Book and bookshelf search path. QBOOKPATH specifies which directories should be searched for
books.

Century indicator. QCENTURY specifies the century value for the system date. The possible values are:

0 Indicates years 19xx.

1 Indicates years 20xx.

Character identifier control. QCHRIDCTL specifies the character identifier control for the job. This
attribute controls the type of CCSID conversion that occurs for display files, printer files, and panel groups.
The *CHRIDCTL special value must be specified on the CHRID command parameter on the create,
change, or override command for display files, printer files, and panel groups before this attribute will be
used. The possible values are:

*DEVD The *DEVD special value performs the same function as on the CHRID command
parameter for display files, printer files, and panel groups.

*JOBCCSID The *JOBCCSID special value performs the same function as on the CHRID command
parameter for display files, printer files, and panel groups.

Character set and code page. QCHRID is the default character set and code page. The QCHRID system
value is retrieved as a single character value; the first 10 characters contain the character set identifier
right-justified. For example, the value 101 would be retrieved as 0000000101. The last 10 characters
contain the code page identifier right-justified. For example, the value 37 would be retrieved as
0000000037.

Coded character set identifier. QCCSID is the system value for coded character set identifiers.

Communication arbiters. QCMNARB specifies the number of communication arbiter jobs. The possible
values are:

*CALC The operating system calculates the number of communication arbiter jobs.

0-99 The number of communication arbiter jobs.

Communications recovery limit. QCMNRCYLMT is the system value for communications recovery
limits. The QCMNRCYLMT system value is retrieved as a 20-character value; the first 10 characters
contain the count limit right-justified. For example, the value 7 would be retrieved as 0000000007. The last
10 characters contain the time interval right-justified. For example, the value 117 would be retrieved as
0000000117.

Configuration message queue. QCFGMSGQ is the configuration message queue system value. This
message queue can be used to receive messages associated with configuration objects, such as lines and
controllers. The first 10 characters contain the message queue name and the last 10 characters contain the
library name.

Console name. QCONSOLE is the console name. This value specifies the name of the display device that
is the console.

Controlling subsystem. QCTLSBSD is the controlling subsystem description. The controlling subsystem
is the first subsystem to start after an IPL. The value of QCTLSBSD is a 20-character list of up to two
10-character values in which the first is the subsystem description name and the second is the library name.

Coordinated universal time offset. QUTCOFFSET is the system value indicating the difference in hours
and minutes between Universal Time Coordinated (UTC), also known as Greenwich mean time, and the
current system (local) time.

Country or region identifier. QCNTRYID is the system value for the country or region identifier. This
value specifies the country or region identifier to be used as the default on the system.

Create authority. QCRTAUT is the create authority system value. This value allows the default public
authority for the create (CRTxxx) commands to be set system-wide. The values allowed are:

*CHANGE Allows you to change the contents of an object.

*ALL Allows you to read, change, delete, and manage the security of an object.

*USE Allows you to create an object, to display the contents of an object, or to refer to the
contents of an attached object when a command being requested must access attached
objects and their contents.

*EXCLUDE Allows no access to an object.

Create object auditing. The QCRTOBJAUD system value indicates the default auditing value for new
objects created into a library on the system. These are the allowable values for the QCRTOBJAUD system
value.

*NONE No auditing entries are sent for this object when it is used or changed.

*USRPRF Auditing entries are sent for this object when it is used or changed by a user who is
currently being audited. If the user who uses or changes this object is not being audited, no
auditing entries are sent. To audit a user, you must use the Change User Auditing
(CHGUSRAUD) command to change the user profile to that user profile.

*CHANGE Auditing entries are sent for this object when it is changed.

*ALL Auditing entries are sent for this object when it is used or changed.

Currency symbol. QCURSYM is the system value for the currency symbol. QCURSYM can be any
character except blank, hyphen (-), ampersand (&), asterisk (*), or zero (0).

Database file statistics collection. QDBFSTCCOL is the system value that specifies the type of statistic
collection requests that will be allowed to be processed in the background by the database statistics system
job, QDBFSTCCOL. Statistic collections which are requested by either a user or automatically by the
database manager to be processed in the foreground are not affected by this system value. The values for
QDBFSTCCOL can be:

*NONE No database file statistics collections are allowed to be processed by the database statistics
system job.

*USER Only user requested database file statistics collections are allowed to be processed by the
database statistics system job.

*SYSTEM Only automatically generated statistic collections requested by the database manager are
allowed to be processed by the database statistics system job.

*ALL All user requested database statistics collections and statistic collections automatically
requested by the database manager are allowed to be processed by the database statistics
system job.

Database recovery wait. QDBRCVYWT is the database recovery wait indicator. QDBRCVYWT can be:

0 Does not wait for database recovery to complete before completing the IPL.

1 Waits for database recovery to complete before completing the IPL.

Date format. QDATFMT is the system date format. This system value can be YMD, MDY, DMY, or JUL
(Julian format), where Y equals year, M equals month, and D equals day.

Date separator. QDATSEP is the character separator for dates. QDATSEP can be slash (/), hyphen (-),
period (.), comma (,), or blank.

Day. QDAY is the system value for the day of the month or year (if the date format is Julian). For Julian
dates only, QDAY is a 3-character value (001 through 366).

Day of the week. QDAYOFWEEK specifies the day of the week. This value may not be set correctly if
your system is not using the Gregorian calendar. The possible values are:

*SUN Sunday

*MON Monday

*TUE Tuesday

*WED Wednesday

*THU Thursday

*FRI Friday

*SAT Saturday

Days password valid. QPWDEXPITV is the system value for the password expiration interval. It controls
the number of days that passwords are valid by keeping track of the number of days since you changed your
password or created a user profile. The possible values are:

*NOMAX A password can be used an unlimited number of days.

1-366 The number of days before the password cannot be used.

DBCS installed. QIGC is the DBCS version indicator. This value specifies if the DBCS version of the
system is installed. QIGC can be:

0 A DBCS version is not installed.

1 A DBCS version is installed.

Decimal format. QDECFMT is the decimal format. QDECFMT must be one of the following characters:

blank Uses a period for a decimal point, a comma for a 3-digit grouping character, and zero-suppress to
the left of the decimal point.

J Uses a comma for a decimal point and a period for a 3-digit grouping character. The
zero-suppression character is in the second position (rather than the first) to the left of the
decimal notation. Balances with zero values to the left of the comma are written with one leading
zero (0,04). The J entry also overrides any edit codes that might suppress the leading zero.

I Uses a comma for a decimal point, a period for a 3-digit grouping character, and zero-suppress to
the left of the decimal point.

Device naming convention. QDEVNAMING is the device naming convention. This value specifies what
naming convention is used when the system automatically creates device descriptions. QDEVNAMING
must be one of the following values:

*NORMAL Naming conventions should follow iSeries standards.

*S36 Naming conventions should follow System/36 standards.

*DEVADR Device names are derived from the device address.

Device recovery action. QDEVRCYACN specifies what action to take when an I/O error occurs for an
interactive job's work station. The values for QDEVRCYACN are:

*MSG Signals the I/O error message to the user's application program.

*DSCENDRQS Disconnects the job. When signing on again, a cancel request function is performed
to return control of the job back to the last request level.

*DSCMSG Disconnects the job. When signing on again, an error message is sent to the user's
application.

*ENDJOB Ends the job. A job log is produced for the job.

*ENDJOBNOLIST Ends the job. A job log is not produced for the job.

Disconnect job interval. QDSCJOBITV indicates the length of time, in minutes, an interactive job can be
disconnected before it is ended. The values for QDSCJOBITV are:

5-1440 The range of the disconnect interval.

*NONE There is no disconnect interval.

Double-byte coded font name. QIGCCDEFNT is the system value for the double-byte coded font name.
QIGCCDEFNT is a 20-character list of up to two values in which the first 10 characters contain the coded
font name and the last 10 characters contain the library name. *NONE means no coded font is identified to
the system.

Double-byte coded font point size. QIGCFNTSIZ is the system value for the double-byte coded font point
size. The values for QIGCFNTSIZ are:

0 There is no defined double-byte coded font point size.

1-9999 The double-byte coded font point size in tenths. For example, a value of 9999 in binary would
be 999.9.

Duplicate password. QPWDRQDDIF controls duplicate passwords. The possible values are:

0 A password can be the same as any previously used password (except the immediately preceding
password).

1 A password must be different from the previous 32 passwords.

2 A password must be different from the previous 24 passwords.

3 A password must be different from the previous 18 passwords.

4 A password must be different from the previous 12 passwords.

5 A password must be different from the previous 10 passwords.

6 A password must be different from the previous 8 passwords.

7 A password must be different from the previous 6 passwords.

8 A password must be different from the previous 4 passwords.

Dynamic priority adjustment. The QDYNPTYADJ system value controls the dynamic priority

adjustment. Possible values are as follows:

0 Dynamic priority adjustment is off.

1 Dynamic priority adjustment is on.

Dynamic priority scheduler. The QDYNPTYSCD system value controls the dynamic priority scheduler
algorithm. The value allows the use of the dynamic priority scheduler. Possible values are as follows:

0 Dynamic priority scheduler is off.

1 Dynamic priority scheduler is on.

Force conversion on restore. QFRCCVNRST is the system value that allows you to specify whether or
not to convert the following object types during a restore: program (*PGM), service program (*SRVPGM),
SQL package (*SQLPKG), and module (*MODULE). The possible values for QFRCCVNRST are as
follows:

0 Do not convert anything.

1 Objects with validation errors will be converted.

2 Objects requiring conversion to be used on the current version of the operating system and objects
with validation errors will be converted.

3 Objects suspected of having been tampered with, objects containing validation errors, and objects
requiring conversion to be used by the current version of the operating system will be converted.

4 Objects that contain sufficient creation data to be converted and do not have valid digital signatures
will be converted.

5 Objects that contain sufficient creation data will be converted.

6 All objects that do not have valid digital signatures will be converted.

7 All objects will be converted.

Any object that should be converted but cannot be converted will not be restored.

History log size. QHSTLOGSIZ is the maximum number of records for each version of the history log.

Hour. QHOUR is the system value for the hour of the day. Hours are based on a 24-hour clock. Its value
can range from 00 through 23.

Inactive job time-out. QINACTITV specifies the inactive job time-out interval in minutes. It specifies
when the system takes action on inactive interactive jobs. QINACTITV must be one of the following
values:

*NONE The system does not check for inactive interactive jobs.

5-300 The number of minutes a job can be inactive before action is taken.

Inactive message queue. QINACTMSGQ is the system value for the inactive message queue.
QINACTMSGQ is a 20-character list of up to two 10-character values where the first is the message queue
name and the second is the library name. The following special values are allowed.

*DSCJOB The interactive job is disconnected, as is any secondary or group job associated with it.

*ENDJOB The interactive job is ended, along with any secondary job and any group job associated
with it.

Initial spooling size. QJOBSPLA specifies the initial size of the spooling control block for a job.

IPL action with console problem. QSCPFCONS is the IPL action with a console problem indicator. This
value specifies whether the IPL is to continue unattended or ends when the console is not operational when
performing an attended IPL. QSCPFCONS can be:

0 End system.

1 Continue the IPL unattended.

IPL status. QIPLSTS is the IPL status indicator. This value indicates what form of IPL has occurred.

0 Operator panel IPL.

1 Automatic IPL after power restored.

2 Restart IPL.

3 Time-of-day IPL.

4 Remote IPL.

IPL type. QIPLTYPE indicates the type of IPL to perform. This value specifies the type of IPL performed
when the system is powered on manually with the key in the normal position. QIPLTYPE can be:

0 Unattended.

1 Attended with dedicated service tools.

2 Attended with console in debug mode.

Job message queue full. QJOBMSGQFL specifies if the job message queue should be allowed to wrap.

*NOWRAP When the job message queue is full, do not wrap. This action causes the job to end.

*WRAP When the job message queue is full, wrap to the beginning and start filling again.

*PRTWRAP When the job message queue is full, wrap the message queue and print the messages that
are being overlaid because of the wrapping.

Job message queue initial size. QJOBMSGQSZ specifies the initial size of the job message queue.
QJOBMSGQSZ is numeric and is specified in kilobytes.

Job message queue maximum size. QJOBMSGQMX specifies the maximum size of the job message
queue. QJOBMSGQMX is numeric and is specified in megabytes.

Keyboard buffer. QKBDBUF specifies whether the type-ahead feature and Attention key buffering option
should be used.

*TYPEAHEAD The type-ahead feature is turned on, and the Attention key buffering option is turned
off.

*NO The type-ahead feature and the Attention key buffering option are turned off.

*YES The type-ahead feature and the Attention key buffering option are turned on.

Keyboard type. QKBDTYPE specifies the language character set for the keyboard.

Language identifier. QLANGID is the system value for the language identifier. This system value
specifies the language identifier to be used as the default for the system.

Leap year adjustment. QLEAPADJ is the system value for leap year adjustment. It is used to adjust the
system calendar algorithm for the leap year in different calendar systems.

Library locking level. The QLIBLCKLVL system value controls whether libraries in a job's library search
list are locked by that job. The *SHRRD locks prevent other jobs from deleting or renaming the libraries.
System jobs, subsystem monitor jobs, and secondary threads do not lock libraries in their library search list.
A change to this system value takes effect for all jobs that become active after the change. The shipped
value is 1. The possible values are as follows:

0 Libraries in a user job's library search list are not locked.

1 Libraries in a user job's library search list are locked by that job.

Limit adjacent digits. QPWDLMTAJC limits adjacent digits in a password. It specifies whether adjacent
digits are allowed in passwords. The possible values are:

0 Adjacent digits are allowed in passwords.

1 Adjacent digits are not allowed in passwords.

Limit character positions. Limit password character positions. This system value controls the position of
characters in a new password. This prevents the user from specifying the same character in a password
corresponding to the same position in the previous password.

A change to this system value takes effect the next time a password is changed. The shipped value is 0.

0 The same characters can be used in a position corresponding to the same position in the previous
password.

1 The same character cannot be used in a position corresponding to the same position in the previous
password.

Limit characters. QPWDLMTCHR limits the use of certain characters in a password. The possible values
are:

*NONE There are no restricted characters.

restricted-characters Up to 10 restricted characters can be specified. Valid characters are A through Z,
0 through 9, and special characters such as number sign (#), dollar ($),
underscore (--), or at sign (@).

Note: This system value is ignored if the system is operating at QPWDLVL (password level) 2 or 3.

Limit device session. QLMTDEVSSN is the system value for limiting device sessions. It controls whether
a user can sign-on at more than one work station.

0 A user can sign-on at more than one device.

1 A user cannot sign-on at more than one device.

Limit repeat characters. QPWDLMTREP limits the use of repeating characters in a password. The
possible values are:

0 Characters can be used more than once.

1 Characters cannot be used more than once.

2 Characters can be used more than once but cannot be repeated consecutively.

Limit security officer. QLMTSECOFR is the system value for limiting QSECOFR device access. It
controls whether users with *ALLOBJ or *SERVICE special authority need explicit authority to specific
work stations. The possible values are:

0 A user with *ALLOBJ or *SERVICE special authority can sign-on any device.

1 A user with *ALLOBJ or *SERVICE special authority can sign-on only at a device to which they
have explicit authority.

Locale path name. The QLOCALE system value specifies the locale object that is to be used. The possible
values include a valid path name or one of the following special values:

*NONE No locale object is specified.

*C A predefined locale object is to be used.

*POSIX A predefined locale object is to be used.

The locale name is returned in UCS-2 in the following format:

BINARY(4) CCSID of the returned locale path name

CHAR(2) Country or region ID

CHAR(3) Language ID

CHAR(3) Reserved field

BINARY(4) Flag byte

BINARY(4) Number of bytes in the locale path name

CHAR(2) Locale delimiter

CHAR(10) Reserved field

CHAR(2048) Locale path name

Note: If the locale name is either the special value *C or *POSIX, a length of 1 is returned. If *NONE is
specified, a length of 0 is returned. These values are returned in the default CCSID of the job.

Machine pool size. QMCHPOOL is the size of the machine storage pool. The machine storage pool
contains shared machine and OS/400 licensed programs. QMCHPOOL is specified in kilobytes.

Maximum activity level. QMAXACTLVL is the maximum activity level of the system. This is the number
of jobs that can compete at the same time for main storage and processor resources.

Maximum number of jobs. QMAXJOB specifies the maximum number of jobs allowed on the system.

Maximum password length. QPWDMAXLEN specifies the maximum length of a password. It controls
the maximum number of characters in a password. The possible values are:

1-128 The maximum number of characters that can be specified for a password. If the system is
operating at QPWDLVL (password level) 0 or 1, the valid range is 1-10. If the system is
operating at QPWDLVL 2 or 3, the valid range is 1-128.

Maximum job message queue initial size. QJOBMSGQTL is the maximum initial size of the job message
queue. QJOBMSGQTL is numeric and is specified in kilobytes.

Maximum not valid sign-on. QMAXSIGN specifies the maximum number of incorrect sign-on attempts
allowed. The possible values are:

1-25 The maximum number of sign-on attempts allowed.

*NOMAX There is no maximum number of sign-on attempts.

Maximum sign-on action. QMAXSGNACN specifies the maximum sign-on attempts action or how the
system reacts when the maximum number of consecutive incorrect sign-on attempts (the system value
QMAXSIGN) is reached. The possible values are:

1 Varies off the device if limit is reached.

2 Disables the user profile if limit is reached.

3 Varies off the device and disables the user profile if the limit is reached.

Maximum spooled files per job. QMAXSPLF specifies the maximum number of spooled files that can be
created per job. A job can have more than the maximum number of spooled files specified by this system
value if the spooled files existed before the system value was set to a lower number.

Minimum password length. QPWDMINLEN specifies the minimum length of a password. It controls the
minimum number of characters in a password. The possible values are:

1-128 The minimum number of characters that can be specified for a password. If the system is
operating at QPWDLVL (password level) 0 or 1, the valid range is 1-10. If the system is
operating at QPWDLVL 2 or 3, the valid range is 1-128.

Minimum problem retention. QPRBHLDITV allows you to specify the minimum number of days a
problem is kept in the problem log. The range for this system value is 0 through 999 days.

Minute. QMINUTE is the system value for the minute of the hour. Its value can range from 00 through 59.

Month. QMONTH is the system value for the month of the year. It will be blank if the date format
specified in system value QDATFMT is Julian (JUL). Its value can range from 1 through 12.

Multithreaded job action. QMLTTHDACN is the system value for multithreaded job action. This value
controls the action to be taken when a function that may not be threadsafe is called in a multithreaded job.
The possible values are:

1 Perform the function that is not threadsafe without sending a message.

2 Perform the function that is not threadsafe and send an informational message.

3 Do not perform the function that is not threadsafe.

Parallel processing degree. QQRYDEGREE specifies the parallel processing option, which will also
determine the types of parallel processing allowed. There are two types of parallel processing: input/output
(I/O) parallel processing and symmetric multiprocessing (SMP). With I/O parallel processing, the database
manager can use multiple tasks for each query to do the I/O processing. The central processing unit (CPU)
processing will still be done serially. With SMP the CPU and I/O processing is assigned to tasks that run
the query in parallel. Actual CPU parallelism requires a system with multiple processors. SMP parallelism
can only be used if the system feature DB2 Symmetric Multiprocessing for OS/400 is installed.

*NONE No parallel processing is allowed for database query processing.

*IO Any number of tasks may be used when the database query optimizer chooses to use I/O
parallel processing for queries. SMP parallel processing is not allowed.

*OPTIMIZE The query optimizer can choose to use any number of tasks for either I/O or SMP parallel
processing to process the query. Use of parallel processing and the number of tasks used
is determined with respect to the following:

The number of processors available in the system●

This job's share of the amount of active memory available in the pool in which
the job is run

●

Whether the expected elapsed time for the query is limited by CPU processing or
I/O resources

●

*MAX The query optimizer can choose to use either I/O or SMP parallel processing to process
the query. The choices made by the query optimizer will be similar to those made for the
value *OPTIMIZE except the optimizer will assume that all active memory in the pool
can be used to process the query.

Pass-through servers. QPASTHRSVR specifies the number of target display-station pass-through server
jobs that are available to process iSeries display-station pass-through, iSeries Access work station function
(WSF), and other 5250 emulation programs on programmable workstations. The possible values are:

*CALC The operating system calculates the number of server jobs.

0-100 The number of server jobs.

Password level. QPWDLVL specifies the level of password support on the system. The possible values
are:

0 User profile passwords with a length of 1-10 characters are supported.

1 User profile passwords with a length of 1-10 characters are supported. iSeries NetServer passwords
for Windows 95/98/ME clients will be removed from the system.

2 User profile passwords with a length of 1-128 characters are supported.

3 User profile passwords with a length of 1-128 characters are supported. iSeries NetServer passwords
for Windows 95/98/ME clients will be removed from the system.

Note: If this system value has been changed since the last IPL, this value is not the password level the
system is currently using. This value will be in effect after the next IPL.

Password validation program. QPWDVLDPGM provides the ability for a user-written program to do
additional validation on passwords. The possible values are:

*NONE A validation program is not used.

*REGFAC The password validation program name will be retrieved from the registration
facility.

program-specification The first 10 characters contain the name of the validation program and the last
10 characters contain the library name where the validation program is located.
This option can only be used if the system is operating at QPWDLVL
(password level) 0 or 1.

Password validation program. QPWDVLDPGM provides the ability for a user-written program to do
additional validation on passwords. The first 10 characters contain the name of the program and the last 10
characters contain the library name. *NONE means a validation program is not used.

Performance adjustment. QPFRADJ indicates whether the system should adjust values during IPL and
dynamically for system pool sizes and activity levels.

0 No performance adjustment.

1 Performance adjustment at IPL.

2 Performance adjustment at IPL and dynamically.

3 Dynamic performance adjustment.

Position characters. QPWDPOSDIF controls the position of characters in a new password. This prevents
the user from specifying the same character in a password corresponding to the same position in the
previous password. The possible values are:

0 The same characters can be used in a position corresponding to the same position in the previous
password.

1 The same characters cannot be used in a position corresponding to the same position in the previous
password.

Power down limit. QPWRDWNLMT is the maximum amount of time an immediate power down can take
before processing is ended (abnormal end).

Power restore IPL. QPWRRSTIPL specifies whether the system should automatically do an IPL when
utility power is restored after a power failure. The possible values are:

0 Automatic IPL is not allowed.

1 Automatic IPL is allowed.

Previous end of system indicator. QABNORMSW is the previous end of system indicator. The possible
values are:

0 Previous end of system was normal.

1 Previous end of system was abnormal.

Print key format. QPRTKEYFMT specifies whether border and header information is provided when the
Print key is pressed. The possible values are:

*NONE The border and header information is not included with output from the Print key.

*PRTBDR The border information is included with output from the Print key.

*PRTHDR The header information is included with output from the Print key.

*PRTALL The border and header information is included with output from the Print key.

Print text. QPRTTXT is the print text. This system value is used to print up to 30 characters of text on the
bottom of listings and separator pages.

Printer device. QPRTDEV is the default printer device description. This value specifies the default printer
for the system.

Problem filter. QPRBFTR specifies the name of the filter object that the service activity manager uses
when processing problems. QPRBFTR is a 20-character list of up to two 10-character values in which the
first value is the problem filter name and the second is the library name. *NONE means no problem filter is
in use.

Problem hold interval. QPRBHLDITV allows you to specify the minimum number of days a problem is
kept in the problem log. After this time interval, the problem can be deleted using the Delete Problem
(DLTPRB) command. The time interval starts as soon as it is put into the log.

Processor feature. QPRCFEAT is the processor feature. It is the processor feature-code level of the
system.

Processor multitasking. The QPRCMLTTSK system value controls processor multitasking. Possible
values are as follows:

0 Processor multitasking is off.

1 Processor multitasking is on.

Query processing time limit. QQRYTIMLMT specifies a limit that is compared to the estimated number
of elapsed seconds that a query requires to run in order to determine if a database query is allowed to start.

*NOMAX There is no maximum number of estimated elapsed seconds.

0-2147352578 The number of seconds that is compared to the estimated number of elapsed seconds
required to run a query. If the estimated elapsed seconds is greater than this value, the
query is not started.

Reclaim spool storage. QRCLSPLSTG is reclaim spool storage system value. It allows for the automatic
removal of empty spool database members. The values allowed are:

*NOMAX The maximum retention interval.

*NONE No retention interval.

1-366 Number of days empty spool database members are kept for new spooled file use.

Remote service attribute. The QRMTSRVATR system value controls the remote service problem analysis
ability. The value allows the system to be analyzed from a remote system. The values for QRMTSRVATR
are as follows:

0 Remote service attribute is off.

1 Remote service attribute is on.

Remote IPL. QRMTIPL is the remote power on and IPL indicator. This value specifies if remote power on
and IPL can be started over a telephone line. The possible values are:

0 Remote power on and IPL are not allowed.

1 Remote power on and IPL are allowed.

Remote sign-on. QRMTSIGN specifies how the system handles remote sign-on requests. The user can
specify a program and library to decide which remote sessions will be allowed and which user profiles can
be automatically signed on from which locations. The first 10 characters contain the program name, and the
last 10 characters contain the library name. QRMTSIGN can have the following values:

*FRCSIGNON All remote sign-on sessions are required to go through normal sign-on processing.

*SAMEPRF When the source and target user profile names are the same, the sign-on may be
bypassed for remote sign-on attempts.

*VERIFY After verifying that the user has access to the system, the system allows the user to
bypass the sign-on.

*REJECT No remote sign-on is allowed.

Required password digits. QPWDRQDDGT specifies whether a digit is required in a new password. The
possible values are:

0 A numeric digit is not required in new passwords.

1 A numeric digit is required in new passwords.

Retain server security data. QRETSVRSEC specifies whether security-related information for
IBM-provided client/server applications is retained. The possible values are:

0 Do not retain the security-related information.

1 Retain the security-related information.

Second. QSECOND is the system value for the second of the minute. Its value can range from 00 through
59.

Security level. QSECURITY is the system security level indicator. The possible values are:

10 The system does not require a password to sign-on. The user has access to all system resources.

20 The system requires a password to sign-on. The user has access to all system resources.

30 The system requires a password to sign-on, and users must have authority to access objects and
system resources.

40 The system requires a password to sign-on, and users must have authority to access objects and
system resources. Programs that try to access objects through interfaces that are not supported will
fail.

50 The system requires a password to sign-on, and users must have authority to access objects and
system resources. Security and integrity of the QTEMP library and user domain (*USRxxx) objects
are enforced. (Use system value QALWUSRDMN to change which libraries allow *USRxxx
objects.) Programs fail if they try to pass unsupported parameter values to supported interfaces or if
they try to access objects through interfaces that are not supported.

Note: If this system value has been changed since the last IPL, this value is not the security level the system
is currently using. This value will be in effect after the next IPL.

Serial number. QSRLNBR is the system serial number. An example of a serial number is 1001003.

Server authentication interval. QSVRAUTITV is the system value for the server authentication interval.
The server authentication interval specifies the time interval of the server authentication in minutes. The
following values are allowed:

1-108000 The authentication of the token expires at the end of the interval specified.

Service dump. QSRVDMP specifies whether service dumps for unmonitored escape messages are created.
The values that are allowed are:

*DMPALLJOB Service dumps will be created for all jobs.

*DMPSYSJOB Service dumps will be created for only system jobs, not user jobs.

*DMPUSRJOB Service dumps are created for only user jobs, not system jobs. System jobs include the
system arbiter, subsystem monitors, LU services process, spool readers and writers,
and the start-control-program-function (SCPF) job.

*NONE Do not request dumps in any jobs.

Set job attributes from locale. The QSETJOBATR system value specifies the job attributes that are to be
set from the job's locale. The possible values for QSETJOBATR are as follows:

*NONE No attributes are set, or use any combination of the following:

*CCSID Coded character set identifier

*DATFMT Date format

*DATSEP Date separator

*DECFMT Decimal format

*SRTSEQ Sort sequence

*TIMSEP Time separator

Shared memory control. QSHRMEMCTL specifies whether or not users are allowed to use shared
memory or mapped memory that has write capability. The allowed values are:

0 Users are not allowed to use shared memory or mapped memory that has write capability.

1 Users are allowed to use shared memory or mapped memory that has write capability.

Sign-on information. QDSPSGNINF is the system value for displaying sign-on information. The possible
values are:

0 The sign-on information is not displayed.

1 The sign-on information is displayed.

Software error log. QSFWERRLOG specifies whether software errors should be logged by the system.
The allowed values are:

*LOG Software errors are logged.

*NOLOG No logging occurs.

Sort sequence table. QSRTSEQ is the name of the table used for the sort sequence. The first 10 characters
contain the name of the table, and the last 10 characters contain the library name. The values for QSRTSEQ
are:

*HEX No sort sequence table is used. The hexadecimal values of the characters are
used to determine the sort sequence.

*LANGIDSHR The sort sequence table used can contain the same weight for multiple
characters. The shared weight sort table associated with the language
specified in the LANGID parameter is used.

*LANGIDUNQ The sort sequence table used must contain a unique weight for each character
in the code page, and it is the unique weight sort table associated with the
language specified in the LANGID parameter.

sort sequence table name The name and library of the sort sequence table to be used.

Special environment. QSPCENV specifies the system environment used as the default for all users. The
possible values are:

*NONE You enter the iSeries environment when you sign-on.

*S36 You enter the System/36 environment when you sign-on.

Spooled file action. QSPLFACN specifies whether spooled files can be accessed through job interfaces
once a job has completed its normal activity.

*KEEP Spooled files are kept with the job when the job completes its activity.

*DETACH Spooled files are detached from the job when the job completes its activity.

Start printer writer. QSTRPRTWTR specifies whether printer writers are started at IPL. QSTRPRTWTR
can be:

0 Do not start printer writers.

1 Start printer writers.

Startup program name. QSTRUPPGM is the startup program. This value specifies the name of the
program called from an autostart job when the controlling subsystem is started. The first 10 characters
contain the program name, and the last 10 characters contain the library name. *NONE means the autostart
job ends normally without calling a program.

Status messages. QSTSMSG specifies whether or not the status messages are displayed. The values

allowed are:

*NORMAL Status messages are displayed.

*NONE Status messages are not displayed.

System date. QDATE is the system date. QDATE is composed of the following system values:
QCENTURY, QYEAR, QMONTH, and QDAY. The format of the field returned is CYYMMDD where C
is the century, YY is the year, MM is the month, and DD is the day. A 0 for the century flag indicates years
19xx, and a 1 indicates years 20xx.

System library list. QSYSLIBL is the system part of the library list. The list can contain as many as 15
names.

System model. QMODEL is the system model number. It is the number or letters used to identify the
model of the system.

System time. QTIME is the system value for the time of day. QTIME is composed of the following system
values: QHOUR, QMINUTE, and QSECOND. QTIME has the format HHMMSSXXX, where HH equals
hours, MM equals minutes, SS equals seconds, and XXX equals milliseconds.

Time separator. QTIMSEP is the character separator for time. QTIMSEP must be one of the following
values: colon (:), period (.), comma (,), or blank.

Time-slice end pool. QTSEPOOL is the time-slice end pool. This value specifies whether interactive jobs
should be moved to another main storage pool when they reach time-slice end. The values allowed are:

*NONE Jobs are not moved to the base storage pool when time-slice end is reached.

*BASE Jobs are moved to the base pool when time-slice end is reached.

Total jobs. QTOTJOB specifies the initial number of jobs for which auxiliary storage is allocated during
IPL.

UPS delay time. The uninterruptible-power-supply (UPS) delay time specifies the amount of time that
elapses before the system automatically powers down following a power failure. When a change in power
activates the UPS, messages are sent to the UPS message queue (the system value QUPSMSGQ). This
system value is meaningful only if your system has a battery power unit or has an uninterruptible power
supply attached.

A change to this system value takes effect the next time there is a power failure. The shipped value is
*CALC. The allowed values are:

*BASIC Powers only the PRC, IOP cards, and Load Source direct-access storage device. The
appropriate wait time, in seconds, is calculated. (This should be used only if you have the
battery power unit or an uninterruptible power supply without every rack being connected.)

Note: All other values indicate that all racks have an uninterruptible power supply.

*CALC Calculates the appropriate wait time. In a secondary partition, the calculated wait time,
rather than *CALC, is returned.

*NOMAX Starts no action.

0 Automatically powers down the system.

1-99999 Powers down the system after the specified number of seconds.

The QUPSDLYTIM system value is in the form of a two-item list. The first item is the value the user
specified on the CHGSYSVAL command. The second item is the delay time, which is either what the user
specified, or, if *CALC or *BASIC is specified, the calculated delay time.

UPS message queue. The QUPSMSGQ system value is the message queue that is to receive
uninterruptible-power-supply messages. QUPSMSGQ is a 20-character list of up to two values in which the
first 10 characters contain the message queue name, and the last 10 characters contain the library name.

Use adopted authority. QUSEADPAUT specifies an authorization list that is used to control who can
create, change, and update programs and service programs with the use adopted authority (USEADPAUT)
attribute of *YES. The possible values are:

*NONE All users can create, change, and update programs and service programs that
use adopted authority.

authorization list name The name of an authorization list that a user must have at least *USE authority
to in order to create, change, and update programs and service programs that
use adopted authority. Authority to the authorization list cannot come from
adopted authority.

User library list. QUSRLIBL is the default for the user part of the library list. The list can contain as many
as 25 names.

Verify object on restore. QVFYOBJRST is the system value for verify object on restore. This value is
used to specify the policy to be used for object signature verification during a restore operation. This value
applies to objects of types: *CMD, *PGM, *SRVPGM, *SQLPKG and *MODULE. It also applies to
*STMF objects which contain Java programs. The possible values are:

1 Do not verify signatures on restore. Restore all objects regardless of their signature.

2 Verify signatures on restore. Restore unsigned commands and user-state objects. Restore signed
commands and user-state objects, even if the signatures are not valid. Restore inherit-state and
system-state objects only if they have valid signatures.

3 Verify signatures on restore. Restore unsigned commands and user-state objects. Restore signed
commands and user-state objects only if the signatures are valid. Restore inherit-state and
system-state objects only if they have valid signatures.

4 Verify signatures on restore. Do not restore unsigned commands and user-state objects. Restore
signed commands and user-state objects, even if the signatures are not valid. Restore inherit-state and
system-state objects only if they have valid signatures.

5 Verify signatures on restore. Do not restore unsigned commands and user-state objects. Restore
signed user-state objects only if the signatures are valid. Restore inherit-state and system-state
objects only if they have valid signatures.

Year. QYEAR is the system value that specifies the last 2 digits for the year. Its value can range from 0
through 99.

Error Messages

Message ID Error Message Text

CPF1860 E Value &1 in list not valid.

CPF1861 E Length of the receiver variable not valid.

CPF1862 E Number of values to retrieve not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Top | Work Management APIs | APIs by category

Retrieve Thread Attribute (QWTRTVTA) API

 Required Parameter Group:

1 Receiver variable Output Char(*)
2 Length of receiver variable Input Binary(4)
3 Format of receiver information Input Char(8)
4 Job or thread identification information Input Char(*)
5 Format of job identification information Input Char(8)
6 Number of fields to return Input Binary(4)
7 Key of fields to return Input Array(*) of

Binary(4)
8 Reset performance statistics Input Char(1)
9 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The Retrieve Thread Attribute (QWTRTVTA) API retrieves job and thread attributes that apply to the job
or thread specified in the job or thread identification information parameter.

Authorities and Locks

The following authority restrictions apply only when the API is called for format name RTVT0200. All
other format names have no authority restrictions.

Job Authority

When calling this API for format name RTVT0200, one of the following conditions must be met:

The API must be called from within the job for which the information is being retrieved.❍

The caller of the API must be running under a user profile that is the same as the job user
identity of the job for which the information is being retrieved. The job user identity is the
name of the user profile by which a job is known to other jobs. It is described in more

detail in the Work Management book on the V5R1 Supplemental Manuals Web site.

❍

The caller of the API must be running under a user profile that has job control (*JOBCTL)
special authority.

❍

The caller of the API must be authorized to the Thread Control function of Operating
System/400 through iSeries Navigator's Application Administration support. The Change
Function Usage Information (QSYCHFUI) API, with a function ID of
QIBM_SERVICE_THREAD, can be used to change the list of users that are allowed to
retrieve information about a thread.

❍

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

The variable that is used to return the attribute information for the specified thread.

Length of receiver variable

INPUT; BINARY(4)

The length of the receiver variable provided. The length of receiver variable parameter may be
specified up to the size of the receiver variable specified in the user program. If the length of
receiver variable parameter specified is larger than the allocated size of the receiver variable
specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

The format of the information returned in the receiver variable. The possible format name is:

RTVT0100 See Format RTVT0100 for details on the job or thread attribute information
returned.

RTVT0200 Library list information. See Format RTVT0200 for details on the library
information returned for the thread.

RTVT0300 Elapsed performance statistics. See Format RTVT0300 for details on the
performance statistics returned for the specified thread.

Job or thread identification information

INPUT; CHAR(*)

The information that is used to identify the job or thread within a job for which attribute
information is to be returned. See Format of job or thread identification information for details.

Format of job or thread identification information

INPUT; CHAR(8)

The format of the job or thread identification information. The possible format names are:

JIDF0100 See Format of job or thread identification information for details on the job
identification information.

JIDF0200 See Format of job or thread identification information for details on the job
identification information.

Note: If the thread handle is available, Format JIDF0200 provides a faster method
of accessing a thread that is not the current thread than Format JIDF0100.

Number of fields to return

INPUT; BINARY(4)

The number of fields to return in the specified format.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

The list of fields to be returned in the specified format. For a list of valid fields, see Valid Keys.

Reset status statistics

INPUT; CHAR(1)

The elapsed time and all the key fields that are based on the elapsed time are reset to zero. If a
format other than RTVT0300 is specified, this field needs to be zero. The following special values
may be specified:

0 The elapsed time and the key fields based on the elapsed time are not reset.

1 The elapsed time and the key fields based on the elapsed time are reset back to zero.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Format RTVT0100

The RTVT0100 format returns job or thread attribute information for the specified thread. For the list of
keys that are valid for job attributes and thread attributes, see Keys for RTVT0100.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(2) Reserved

36 24 BINARY(4),
UNSIGNED

Returned thread handle

40 28 CHAR(8) Returned thread identifier

48 30 CHAR(10) Job status

58 3A CHAR(2) Reserved

60 3C BINARY(4) Offset to key fields

64 40 BINARY(4) Number of fields returned

68 44 CHAR(*) Reserved

These fields
repeat, in the
order listed, for

BINARY(4) Length of field information returned

BINARY(4) Key field

the number of
key field
returned.

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Data. The data returned for the key field.

Job name. The name of the job as identified to the system. For an interactive job, the system assigns the
job the name of the work station where the job started; for a batch job, you specify the name in the
command when you submit the job.

Job number. The system-assigned job number.

Job status. The status of the job. The valid values are:

*ACTIVE The job has started, and it can use system resources (processing unit, main storage, and so
on). This does not guarantee that the job is currently running, however. For example, an
active job may be in one of the following states where it is not in a position to use system
resources:

The Hold Job (HLDJOB) command holds the job; the Release the (RLSJOB)
command allows the job to run again.

●

The Transfer Group Job (TFRGRPJOB) or Transfer Secondary Job (TFRSECJOB)
command suspends the job. When control returns to the job, the job can run again.

●

The job is disconnected using the Disconnect Job (DSCJOB) command. When the
interactive user signs back on, thereby connecting back into the job, the job can run
again.

●

The job is waiting for any reason. For example, when the job receives the reply for
an inquiry message, the job can start running again.

●

*JOBQ The job is currently on a job queue. The job possibly was previously active and was placed
back on the job queue because of the Transfer Job (TFRJOB) or Transfer Batch Job
(TFRBCHJOB) command, or the job was never active because it was just submitted.

*OUTQ The job has completed running and has spooled output that has not yet printed.

Key field. The field returned. See Valid Keys for the list of valid keys.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of information returned for this field. This value is
used to increment to the next field in the list.

Number of fields returned. The number of fields returned to the application.

Offset to key fields. The offset in characters (bytes) from the beginning of the receiver to the key fields
array entry.

Reserved. An ignored field.

Returned thread handle. A value which addresses a particular thread within the job. While the thread
identifier uniquely identifies the thread within the job, the thread handle can improve performance when
referencing the thread. This field will be 0 when called to return attributes for a job.

Returned thread identifier. A value which uniquely identifies the thread within the job. This field will be
0 when called to return attributes for a job.

Type of data. The type of data returned.

C The data is returned in character format.

B The data is returned in binary format.

User name. The user profile under which the job is started. The user name is the same as the user profile
name and can come from several different sources depending on the type of job.

RTVT0200 Format

The RTVT0200 format returns library list information for the specified thread. The special value of -1 for
the thread indicator field (part of the JIDF0100 format) may not be used. For the list of keys that are valid
for this format, see Keys for RTVT0200.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(2) Reserved

36 24 BINARY(4),
UNSIGNED

Returned thread handle

40 28 CHAR(8) Returned thread identifier

48 30 BINARY(4) Offset to libraries in system library list

52 34 BINARY(4) Number of system libraries

56 38 BINARY(4) Offset to libraries in product library list

60 3C BINARY(4) Number of product libraries

64 40 BINARY(4) Offset to current library

68 44 BINARY(4) Number of current libraries

72 48 BINARY(4) Offset to libraries in user library list

76 4C BINARY(4) Number of user libraries

80 50 BINARY(4) Length of one library array entry

84 54 BINARY(4) Offset to ASP group information

88 58 BINARY(4) Number of ASP group information entries

92 5C BINARY(4) Length of one ASP group information entry

See note Array(*) of
CHAR(*)

System library list (See Library array entry for
format of library array entry.)

Array(*) of
CHAR(*)

Product libraries (See Library array entry for
format of library array entry.)

Array(*) of
CHAR(*)

Current library (See Library array entry for
format of library array entry.)

Array(*) of
CHAR(*)

User library list (See Library array entry for
format of library array entry.)

Array(*) of
CHAR(*)

ASP group information entry (See ASP Group
Information Entry for format of ASP group
information entry.)

Note: The decimal and hexadecimal offsets depend on the number of libraries you
have in the various parts of your library lists and on keys requested. The data is
left-justified and padded with blanks on the right. The array is sequential. See the

CL Programming book for the total number of libraries that can be returned to
you.

Library array entry

The library array entry describes the data that is returned for each library entry in the array of libraries. The
name of the library as well as some extended information about the library is returned with this format.

For details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

The fields repeat for
each library object
returned in the array.

CHAR(10) Library name

CHAR(50) Library text description

BINARY(4) Library ASP number

CHAR(10) Library ASP name.

CHAR(*) Reserved

ASP Group Information Entry

The ASP group information entry describes the data that is returned for each ASP group. The name of the
ASP group is returned with this format. For details about the fields listed, see Field Descriptions.

Offset

Type FieldDec Hex

These fields repeat for
each ASP group
returned.

CHAR(10) ASP group name

CHAR(*) Reserved

Field Descriptions

ASP group information. The list of Auxiliary Storage Pool (ASP) group information for the current
thread. This information does not include the system ASP or the basic user ASPs.

ASP group name. The name of an ASP group being used by the thread. This is the name of the primary
ASP device in an ASP group.

Bytes available. All of the available bytes for use in your application.The actual length depends on how
many libraries are in the library list.

Bytes returned. The number of bytes returned to the user. This may be some but not all of the bytes
available.

Current library. The name of the current library for the specified thread. If no current library exists, the
number of current libraries field is zero and this field has no entry in the list.

Job name. The name of the job as identified to the system. For an interactive job, the system assigns the
job the name of the work station where the job started; for a batch job, you specify the name in the
command when you submit the job.

Job number. The system-assigned job number.

Length of one ASP group information entry. The length of an entry in the ASP group information. Zero
indicates that ASP group information is not being returned.

Length of one library array entry. The length of an entry in one of the library list entries.

Library ASP name. The name of the ASP in which the library is located. The following special values
may also be returned:

*SYSBAS The library is located in the system ASP or a basic ASP.

*N The name of the ASP cannot be determined.

Library ASP number. The numeric identifier of the ASP device containing the object's library. The
following values may be returned:

1 The library is located in the system ASP.

2-32 The library is located in a basic ASP.

33-255 The library is located in an independent ASP.

-1 The ASP device cannot be determined.

Library name. The name of the library object.

Library text description. The text description of the library object. This field is blank if no text description
is specified.

Number of ASP group information entries. The number of elements in entries in the ASP group
information. Zero indicates that ASP group information is not being returned.

Number of current libraries. The number of libraries in the current part of the library list of the specified
thread.

Number of product libraries. The number of product libraries found in the library list of the specified
thread.

Number of system libraries. The number of libraries in the system part of the thread's library list. This
value will be zero if system libraries were not requested.

Number of user libraries. The number of libraries in the thread's user library list. This value will be zero if
user libraries were not requested.

Offset to ASP group information. The offset in characters (bytes) from the beginning of the receiver to
the first ASP group information entry. Zero indicates that ASP group information is not being returned.

Offset to current library. The offset in characters (bytes) from the beginning of the receiver to the current
library array entry.

Offset to libraries in product library list. The offset in characters (bytes) from the beginning of the
receiver to the first product library array entry.

Offset to libraries in system library list. The offset in characters (bytes) from the beginning of the
receiver to the first system library array entry.

Offset to libraries in user library list. The offset in characters (bytes) from the beginning of the receiver
to the first user library array entry.

Product libraries. The libraries that contain product information for the specified thread. If no product
libraries exist, the number of product libraries field is zero and this field has no entry in the list.

Reserved. An ignored field.

Returned thread handle. A value which addresses a particular thread within the job. While the thread
identifier uniquely identifies the thread within the job, the thread handle can improve performance when
referencing the thread.

Returned thread identifier. A value which uniquely identifies the thread within the job.

System library list. The system portion of the library list of the specified thread.

User library list. The user portion of the library list for the specified thread.

User name. The user profile under which the job is started. The user name is the same as the user profile
name and can come from several different sources depending on the type of job.

Format RTVT0300

The RTVT0300 format returns performance statistics information, calculated over an elapsed time, for the
specified thread. The special value of -1 for the thread indicator field (part of the JIDF0100 format) may not
be used. For the list of keys that are valid for this format, see Keys for RTVT0300.

Offset

Type FieldDec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(2) Reserved

36 24 BINARY(4),
UNSIGNED

Returned thread handle

40 28 CHAR(8) Returned thread identifier

48 30 BINARY(8),
UNSIGNED

Elapsed time

56 38 BINARY(4) Offset to key fields

60 3C BINARY(4) Number of fields returned

64 40 CHAR(*) Reserved

These fields
repeat, in the
order listed, for
the number of
key field
returned.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if
enough space is provided.

Bytes returned. The number of bytes of data returned.

Data. The data returned for the key field.

Elapsed time. The time, in milliseconds, that has elapsed between the measurement start time and the
current system time. This value is 0 the first time this API is called by this job. The measurement start is set
the first time this API is called and when the reset status statistics is set to reset the elapsed time.

Job name. The name of the job as identified to the system. For an interactive job, the system assigns the
job the name of the work station where the job started; for a batch job, you specify the name in the
command when you submit the job.

Job number. The system-assigned job number.

Key field. The field returned. See Valid Keys for the list of valid keys.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of information returned for this field. This value is

used to increment to the next field in the list.

Number of fields returned. The number of fields returned to the application.

Reserved. An ignored field.

Returned thread handle. A value which addresses a particular thread within the job. While the thread
identifier uniquely identifies the thread within the job, the thread handle can improve performance when
referencing the thread.

Returned thread identifier. A value which uniquely identifies the thread within the job.

Type of data. The type of data returned.

C The data is returned in character format.

B The data is returned in binary format.

User name. The user profile under which the job is started. The user name is the same as the user profile
name and can come from several different sources depending on the type of job.

Format of job or thread identification information

Format JIDF0100 is the format of the information needed to identify the job or the thread for which the job
or thread's attributes will be returned. This format is to be used for returning job or thread information. This
format supports several special values that can help in identifying the thread.

Format JIDF0200 is the format of the information needed to identify the thread for which the thread's
attributes will be returned. This format is to be used when referencing a specific thread that you already
have the identification information for.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a thread that
is not the current thread than Format JIDF0100.

JIDF0100 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value that uniquely identifies a thread within a job. If a thread identifier is specified, a
thread indicator must also be specified. If the thread indicator is not 0, this field must contain hexadecimal
zeros.

Thread indicator. A value that is used to specify the thread within the job for which information is to be
retrieved. If a thread indicator is specified, a thread identifier must also be specified. The following values
are supported:

-1 Information should be retrieved for the job. The value for the fields requested will be retrieved from
the job. If the value requested only resides in a thread, the value for the initial thread will be
returned. For example, the Current user field only resides in the thread and the initial thread value
will be returned. The returned thread identifier and the returned thread handle will be returned as
hexadecimal zeros.

0 Information should be retrieved for the thread specified in the thread identifier field. If the value
requested only resides in a job, the value for the job containing the thread will be returned.

1 Information should be retrieved for the thread that this program is currently running in. If the value
requested only resides in a job, the value for the job containing the thread will be returned.

2 Information should be retrieved for the initial thread of the identified job. If the value requested only
resides in a job, the value for the job containing the thread will be returned.

Note: For all of the supported values, the combination of the internal job identifier, job name, job number
and user name fields must also identify the job containing the thread.

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format

Offset

Type FieldDec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4),
UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this
identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks. With
this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

* The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value that addresses a particular thread within a job. While the thread identifier uniquely
identifies the thread within the job, the thread handle can improve performance when referencing the
thread. A valid thread handle must be specified. The thread handle is returned on several other interfaces.

Thread identifier. A value which uniquely identifies a thread within a job. A valid thread identifier must
be specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Valid Keys

The following tables indicate the valid keys for the formats specified.

Keys for RTVT0100

The following table contains a list of the valid keys for format RTVT0100. See Key Field Descriptions for
the descriptions of the valid key attributes. This table contains the keys that are valid for job attributes and
thread attributes.

The Scope column defines the location of the attribute. The attribute is either scoped to the job or to the
thread. If a job scoped attribute is requested for a thread, the value from the job containing the thread will
be returned. If a thread scoped attribute is requested for a job, the value from the initial thread will be
returned.

Key Type Description Scope

0101 CHAR(4) Active job status Job

0102 CHAR(1) Allow multiple threads Job

0103 CHAR(4) Active job status for jobs ending Job

0104 CHAR(*) ASP group information Thread

0201 CHAR(10) Break message handling Job

0302 BINARY(4) Coded character set ID Job

0303 CHAR(2) Country or region ID Job

0305 CHAR(10) Current user profile Thread

0311 CHAR(10) Character identifier control Job

0312 BINARY(8), UNSIGNED Processing unit time used - total for the job Job

0313 BINARY(8), UNSIGNED Processing unit time used for database - total for
the job

Job

0319 BINARY(8), UNSIGNED Processing unit time used - total for the thread Thread

0320 BINARY(8), UNSIGNED Processing unit time used for database - total for
the thread

Thread

0326 CHAR(45) Client IP address - IPv4 or IPv6 Thread

0401 CHAR(13) Date and time job became active Job

0402 CHAR(13) Date and time job entered system Job

0403 CHAR(8) Date and time job is scheduled to run Job

0404 CHAR(8) Date and time job was put on this job queue Job

0405 CHAR(4) Date format Job

0406 CHAR(1) Date separator Job

0407 CHAR(1) DBCS-capable Job

0408 CHAR(10) DDM conversation handling Job

0409 BINARY(4) Default wait Job

0410 CHAR(13) Device recovery action Job

0412 BINARY(4) Default coded character set identifier Job

0413 CHAR(1) Decimal format Job

0415 BINARY(8), UNSIGNED Disk I/O count - total for the job Job

0418 CHAR(13) Date and time job ended Job

0420 BINARY(8), UNSIGNED Disk I/O count - total for the thread Thread

0501 BINARY(4) End severity Job

0502 CHAR(1) End status Job

0504 CHAR(10) Extended object attribute of entity thread is waiting
on

Thread

0601 CHAR(10) Function name Job

0602 CHAR(1) Function type Job

0702 CHAR(10) Group profile name Thread

0703 CHAR(150) Group profile name - supplemental Thread

0901 CHAR(10) Inquiry message reply Job

1001 CHAR(15) Job accounting code Job

1002 CHAR(7) Job date Job

1003 CHAR(20) Job description name - qualified Job

1004 CHAR(20) Job queue name - qualified Job

1005 CHAR(2) Job queue priority Job

1006 CHAR(8) Job switches Job

1007 CHAR(10) Job message queue full action Job

1008 BINARY(4) Job message queue maximum size Job

1010 CHAR(1) Job type Job

1011 CHAR(1) Job subtype Job

1012 CHAR(10) Job user identity Job

1013 CHAR(1) Job user identity setting Job

1014 BINARY(4) Job end reason Job

1015 CHAR(1) Job log pending Job

1016 BINARY(4) Job type - enhanced Job

1201 CHAR(3) Language ID Job

1202 CHAR(1) Logging level Job

1203 CHAR(10) Logging of CL programs Job

1204 BINARY(4) Logging severity Job

1205 CHAR(10) Logging text Job

1206 CHAR(10) Library of entity thread is waiting on Thread

1302 BINARY(4) Maximum processing unit time Job

1304 BINARY(4) Maximum threads Job

1305 BINARY(4) Maximum temporary storage in megabytes Job

1306 CHAR(10) Memory pool name Job

1307 CHAR(1) Message reply Job

1407 CHAR(30) Name of entity thread is waiting on Thread

1501 CHAR(20) Output queue name - qualified Job

1502 CHAR(2) Output queue priority Job

1503 CHAR(10) Object type of entity thread is waiting on Thread

1601 CHAR(10) Print key format Job

1602 CHAR(30) Print text Job

1603 CHAR(10) Printer device name Job

1802 BINARY(4) Run priority (job) Job

1804 BINARY(4) Run priority (thread) Thread

1901 CHAR(20) Sort sequence table - qualified Job

1902 CHAR(10) Status message handling Job

1903 CHAR(10) Status of job on the job queue Job

1904 CHAR(26) Submitter's job name - qualified Job

1906 CHAR(20) Subsystem description name - qualified Job

1908 CHAR(10) Special environment Job

1911 CHAR(30) Server type Job

1982 CHAR(10) Spooled file action Job

2001 CHAR(1) Time separator Job

2002 BINARY(4) Time slice Job

2008 BINARY(4) Thread count Job

2009 BINARY(4) Temporary storage used in megabytes Job

2010 CHAR(4) Thread status Thread

2011 CHAR(1) Thread type Thread

2012 BINARY(4) Thread hold count Thread

2015 BINARY(4) Type of entity thread is waiting on Thread

Format of ASP Group Information

The ASP group information describes the data that is returned for key 104 from the RTVT0100 format.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of entries in ASP group information

4 4 BINARY(4) Length of one ASP group information entry

This field repeats
for each ASP
group
information
entry.

CHAR(*) ASP group information entry (See Format of
ASP Group Information Entry for more
information.)

Format of ASP Group Information Entry

The ASP group information entry describes the data that is returned for each ASP group. The name of the
ASP group is returned with this format.

Offset

Type FieldDec Hex

These fields repeat for
each ASP group
returned.

CHAR(10) ASP group name

CHAR(*) Reserved

Keys for RTVT0200

The following table contains a list of the valid keys for format RTVT0200. See Key Field Descriptions for
the descriptions of the valid key attributes.

All the library keys are scoped to the thread. See Library array entry for format of library array entry. These
keys are valid only when retrieving the library list of a specific thread. The special value of -1 for the thread
indicator field (part of the JIDF0100 format) may not be used. The job or thread identification format must
specify a specific valid thread.

Key Type Description

0104 CHAR(*) ASP group information (thread)

0310 CHAR(*) Current library

1660 Array(*) of CHAR(*) Product libraries

1980 Array(*) of CHAR(*) System library list

2110 Array(*) of CHAR(*) User library list

2703 Array(*) of CHAR(*) All portions of the library list for format
RTVT0200

Keys for RTVT0300

The following table contains a list of the valid keys for format RTVT0300. See Key Field Descriptions for
the descriptions of the valid key attributes. All keys specified in this table are scoped to the thread. The
special value of -1 for the thread indicator field (part of the JIDF0100 format) may not be used. The job or
thread identification format must specify a specific valid thread.

Key Type Description

0321 BINARY(4) Processing unit used - percent during the
elapsed time (thread).

0322 BINARY(8), UNSIGNED Processing unit used - time during the
elapsed time (thread).

0323 BINARY(4) Processing unit used for database - percent
used during the elapsed time (thread).

0324 BINARY(8), UNSIGNED Processing unit used for database - time
during the elapsed time (thread) .

0419 BINARY(8), UNSIGNED Disk I/O count during the elapsed time
(thread).

0421 BINARY(8), UNSIGNED Disk I/O count during the elapsed time -
asynchronous I/O (thread).

0422 BINARY(8), UNSIGNED Disk I/O count during the elapsed time -
synchronous I/O (thread).

1610 BINARY(8), UNSIGNED Page fault count during the elapsed time
(thread).

Key Field descriptions

The descriptions of all the valid key attributes are described in Work Management API Attribute
Descriptions (WMAttrDesc).

Usage Notes

The conditions under which this API is threadsafe are as follows:

Retrieving the attributes from a job - see Retrieve Job Information (QUSRJOBI) API for details on
thread safety.

●

Retrieving the attribute for a specific thread - this is thread safe.●

Error Messages

Message ID Error Message Text

CPF136A E Job &3/&2/&1 not active.

CPF1866 E Value &1 for number of fields to return not valid.

CPF1867 E Value &1 in list not valid.

CPF18BF E Thread &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C54 E Job &3/&2/&1 currently not available.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

API introduced: V5R2

Top | Work Management APIs | APIs by category

Set Lock Flight Recorder (QWTSETLF) API

 Required Parameter:

1 Set value Input Char(4)

 Optional Parameter:

2 Error code I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Set Lock Flight Recorder (QWTSETLF) API turns the lock flight recorder on and off. The value of
*ON is passed to the program to turn the lock flight recorder on, and *OFF is passed to turn the lock flight
recorder off.

When the lock flight recorder is turned on, the system will begin logging successful lock operations on
devices in the lock flight recorder for the device being locked.

This API should be used only when recommended by your IBM service representative.

Required Parameter

Set value

INPUT; CHAR(4)

The value passed to turn the lock flight recorder on or off. The valid values are:

*ON Turn flight recorder on.

*OFF Turn flight recorder off.

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message ID Error Message Text

CPF119B E Value &1 specified for parameter is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

Top | Work Management APIs | APIs by category

Set Profile Exit Programs (QWTSETPX) API

 Required Parameter Group:

1 Number of entries Input Binary(4)
2 Exit program flags Input Array(*) of Binary(4)
3 Format Input Char(8)
4 User ID Input Char(10)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Set Profile Exit Programs (QWTSETPX) API sets for the specified user ID the profile exit programs to
call based on the format value. The value ATTN0100 sets the exit flags for attention key processing. The
value SREQ0100 sets the flags for system request processing. For the specified user ID, each of the eight
exit program flags may be set to the following:

0 No, do not call this exit program.

1 Yes, call this exit program.

-1 Same, do not change the value.

If all the values are set to 0 (No), no new actions are taken during the attention key processing or system
request processing.

Each exit program flag that is set to 1 (Yes) by this API corresponds to the exit program number of the exit
programs that are registered in the registration facility for the QIBM_QWT_PREATTNPGMS exit point or
the QIBM_QWT_SYSREQPGMS exit point.

When attention key processing is activated by a job that is running under the specified user ID, only the exit
programs that have a 1 (Yes) for that exit program flag are called.

When system request key processing is activated by a job that is running under the specified user ID, only
the exit programs that have a 1 (Yes) for that exit program flag are called.

Authorities and Locks

User ID Authority

*CHANGE

Required Parameter Group

Number of entries

INPUT; BINARY(4)

The number of exit program flags that are being passed in. The maximum number of flags is 8, and
the minimum number of flags is 1.

Exit program flags

INPUT; ARRAY(*) of BINARY(4)

An array of a number of elements. The number of array elements must match the number of entries.
The valid values for the array elements are as follows:

0 No, do not call this exit program.

1 Yes, call this exit program.

-1 Do not change the value.

The first element of the array corresponds to exit program number one for the exit point that is in
the registration facility. The second array element corresponds to exit program number two and so
on.

Format

INPUT; CHAR(8)

The format that is to be updated. Valid values are as follows:

ATTN0100 The preattention program processing flags are to be updated.

SREQ0100 The presystem request program processing flags are to be updated.

User ID

INPUT; CHAR(10)

The user ID name being updated. Valid values are as follows:

*CURRENT The user ID of the job that is currently running is used.

User ID name The 10-character name that is entered is used.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF1666 E Number of entries not in valid range.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

Top | Work Management APIs | APIs by category

Set Trace (QWTSETTR) API

 Required Parameter Group:

1 Job name Input Char(10)
2 User name Input Char(10)

 Optional Parameter:

3 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Set Trace (QWTSETTR) API starts a Trace Job (TRCJOB) command for the job passed on the
parameter at the earliest point while the job is starting. This allows tracing of jobs early in the life of a job
to help debug problems that could not have been done earlier because a user could not enter the command
until the job was actually started.

The QWTSETTR API sets up the information about the job so that when that job is started a trace will
begin.

The QWTSETTR API can be called multiple times to set up traces for multiple jobs. When the tracing is
finished, the Control Trace (QWTCTLTR) API should be called using the *RESET value for the control
value parameter to clear out all the job names. The Control Trace (QWTCTLTR) API must be called to turn
on this trace activity.

The information set up by the QWTSETTR API will be in effect during an initial program load (IPL).

The information set up by the QWTSETTR API does not work for active jobs, but only for jobs that have
not started yet.

If a job ends while the trace activity is running for that job, the trace information will be dumped to a
spooled file.

The Trace Job (TRCJOB) command is issued in the job as if a user had typed in the command; therefore,
the user (user name parameter) must have authorization to the TRCJOB command for this to work properly.

This API should be used only when recommended by an IBM service representative for collecting
information for problems that occur early in job initiation.

Authorities and Locks

The user (user name parameter) must have authorization to the TRCJOB command for this to work
properly.

Required Parameter Group

Job Name

INPUT; CHAR(10)

The name of the job that will be traced.

User Name

INPUT; CHAR(10)

The name of the user that will be traced.

Optional Parameter

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the
application.

Error Messages

Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Top | Work Management APIs | APIs by category

Auxiliary Storage Lower Limit Exit Program

 Required Parameter: None

 Exit Point Name: QIBM_QWC_QSTGLOWACN

 Exit Point Format Name: STGL0100

The Auxiliary Storage Lower Limit exit program is called when the available storage in the system
auxiliary storage pool (ASP) goes below the lower limit. The exit program is called only if the
QSTGLOWACN system value is set to *REGFAC. The lower limit is specified by the QSTGLOWLMT
system value.

When the storage lower limit is reached, the operating system submits a job that calls the user-written exit
program through the registration facility. There are no input or output parameters.

This exit point supports any number of exit programs. (For information about adding an exit program to an
exit point, see the Registration Facility APIs.)

If available storage in the system ASP is still below the auxiliary storage lower limit after the exit program
has completed, another job is submitted to call the exit program after half an hour. (Changing the
QSTGLOWACN and QSTGLOWLMT system values can cause the exit program to run again during this
time.) Otherwise, the exit program will be called when available storage goes below the limit again.

The job is submitted to run in the QSYSWRK subsystem (using the QSYSJOBD job description) under the
QPGMR user profile. No other action is taken if the job does not run.

Notes:

The Auxiliary Storage Lower Limit exit point ignores any return codes or error messages that are
sent from the exit programs.

1.

It is recommended that the Auxiliary Storage Lower Limit exit program exist in a library in the
system ASP or in a basic user ASP. It will not be found if it exists in a library in an independent
ASP.

2.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM are needed to add exit programs to the registration facility.

Required Parameter

None.

Exit program introduced: V4R2

Top | Work Management APIs | APIs by category

Job Notification Exit Point

 Required Parameter: None

QSYSINC Member Name: EJOBNTFY

 Exit Point Name: QIBM_QWT_JOBNOTIFY

 Exit Point Format Name: NTFY0100

The Job Notification exit point can be used to log notification messages to data queues when OS/400 jobs
go through the following transitions:

A job is placed on a job queue.●

A job starts.●

A job ends.●

The QIBM_QWT_JOBNOTIFY exit point registers a data queue and library, rather than an exit program
and library. The program data that is associated with the data queue must contain the notification type,
subsystem description, and subsystem description library.

The information will be retrieved from the registration facility when the subsystem starts, so the data
queues must be registered before starting the subsystem. Any queues added to the registration facility after
a subsystem is started will not be retrieved until the next time the subsystem starts.

While multiple subsystems can use the same data queue, each subsystem is limited to using a maximum of
eight data queues. If more than eight data queues are registered for a subsystem, the specific data queues
that will be selected are undefined.

If a job is submitted to a job queue that is not allocated by an active subsystem, a job queue notification
message will be sent to a default data queue of QSYSDTAQ in library QSYS.

Use the Create Data Queue (CRTDTAQ) command to create any data queues to be used by this function,
including the QSYSDTAQ mentioned previously. See Data Queue Attributes for additional information
about the attributes of the data queues.

For the format of the job start and job end notification messages, see Format of Job Start and Job End
Notification Messages. For the format of the job queue notification messages, see Format of Job Queue
Notification Messages.

Authorities and Locks

None.

Required Parameter

None.

Program Data

When you register the data queue, the following is required for the program data.

Offset

Type FieldDec Hex

0 0 CHAR(4) Notification type

4 4 CHAR(10) Subsystem description

14 E CHAR(10) Subsystem description library

Field Descriptions

Notification type. The type of notifications that are to be sent to the data queue. The following values are
supported:

0001 Job start notifications are sent to this data queue.

0002 Job end notifications are sent to this data queue.

0003 Job start and job end notifications are sent to this data queue.

0004 Job queue notifications are sent to this data queue.

0005 Job start and job queue notifications are sent to this data queue.

0006 Job end and job queue notifications are sent to this data queue.

0007 Job start, job end, and job queue notifications are sent to this data queue.

Subsystem description. The name of the subsystem description for which this data queue is to be used.
The following special value is supported:

*ANY The data queue is used for all subsystems. When this value is specified, the subsystem
description library is ignored.

Subsystem description library. The name of the library that contains the subsystem description. The
following special value is supported:

*ANY The data queue is used for any subsystems that match the subsystem description name,
regardless of the library.

Data Queue Attributes

The following table lists several data queue attributes and the required values for the data queues that are
used by this exit point.

Attribute Value

Maximum entry length 74 or greater

Sequence *KEYED

Key length 4

As shown in the previous table, the data queue entries are received by key. The following keys are used
with these data queues:

0001 Data queue message is a job start notification message.

0002 Data queue message is a job end notification message.

0004 Data queue message is a job queue notification message.

Format of Job Start and Job End Notification Messages

For more information about this format, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Message identifier

10 A CHAR(2) Message format

12 C CHAR(16) Internal job identifier

28 1C CHAR(26) Qualified job name

54 36 CHAR(20) Reserved

Format of Job Queue Notification Messages

For more information about this format, see Field Descriptions.

Offset

Type FieldDec Hex

0 0 CHAR(10) Message identifier

10 A CHAR(2) Message format

12 C CHAR(16) Internal job identifier

28 1C CHAR(26) Qualified job name

54 36 CHAR(20) Qualified job queue name

Field Descriptions

Internal job identifier. An input value to other APIs to increase the speed of locating the job on the
system. Only OS/400 APIs use this identifier. The identifier is not valid following an initial program load
(IPL). If you attempt to use it after an IPL, an exception occurs.

Message format. The format of the data in the job notification message. This field is always set to 01 for
job start and job end notification messages, and is always set to 02 for job queue notification messages.

Message identifier. The type of message that is represented by this data queue entry. This field is always
set to *JOBNOTIFY.

Qualified job name. The name of the job that is associated with this notification message. The format of
the qualified job name is a 10-character simple job name, a 10-character user name, and a 6-character job
number. Each portion of the qualified job name is left-justified and padded with blanks on the right.

Qualified job queue name. The name of the job queue that the job was placed on, and the name of the
library that contains the job queue. The format of the qualified name is a 10-character simple object name
followed by a 10-character library name. Each portion of the qualified job queue name is left-justified and
padded with blanks on the right.

Reserved. An ignored field.

Usage Notes

The notification messages may not be logged to the data queue if a DDM data queue is specified
for this exit point.

1.

It is recommended that the data queue exist in a library in the system auxiliary storage pool
(ASP) or in a basic user ASP. It will not be found if it exists in a library in an independent ASP.

2.

Exit program introduced: V3R7

Top | Work Management APIs | APIs by category

Power Down System Exit Program

 Required Parameter: None

 Exit Point Name: QIBM_QWC_PWRDWNSYS

 Exit Point Format Name: PWRD0100

The Power Down System exit program is called when the Power Down System (PWRDWNSYS) or End
System (ENDSYS) command is used.

When a user issues the PWRDWNSYS or ENDSYS command, the operating system calls the user-written
exit program through the registration facility. The user-written exit program is not called if the system is
already in restricted state, if the system is currently on auxiliary power, if the system is ending because the
storage lower limit is reached with an action of *ENDSYS or *PWRDWNSYS, or if the system is a
secondary partition and is powering down because the primary partition is powering down. There are no
input or output parameters.

This exit point supports one exit program. (For information about adding an exit program to an exit point,
see the Registration Facility APIs.)

Notes:

The Power Down System exit point ignores any return codes or error messages that are sent from
the exit program.

1.

It is recommended that the Power Down System exit program exist in a library in the system
auxiliary storage pool (ASP) or in a basic user ASP. It might not be found if it exists in a library in
an independent ASP.

2.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add exit programs to the registration facility.

Required Parameter

None.

Exit program introduced: V4R2

Top | Work Management APIs | APIs by category

Preattention Program Exit Program

 Required Parameter: None

 Exit Point Name: QIBM_QWT_PREATTNPGMS

 Exit Point Format Name: ATTN0100

The Preattention Program exit program is called when the user presses the System Attention key.

When a user presses the System Attention key, the operating system calls the user-written exit program
through the registration facility. There are no input or output parameters. After the exit programs from the
registration facility are called, the system attention program is called.

This exit point supports eight exit programs. (For information about adding an exit program to an exit point,
see the Registration Facility APIs.)

Before any of the exit programs in the registration facility are called, the user profile for each user intending
to use this function will need to be updated. The Set Profile Exit Program (QWTSETPX) API will need to
be called. This API will set for the requested user profile which of the eight allowed exit programs to call.
The user can have none or all eight possible exit programs called. No exit programs will be called until the
QWTSETPX API is called to set the values in the user profile. To display which exit programs will be
called for a particular user, the Retrieve Profile Exit Program (QWTRTVPX) API can be called. (For more
information about both of these APIs, see the Work Management APIs.)

Notes:

The Preattention Program exit point ignores any return codes or error messages that are sent from
the exit programs.

1.

It is recommended that the Preattention Program exit program exist in a library in the system
auxiliary storage pool (ASP) or in a basic user ASP. It might not be found if it exists in a library in
an independent ASP.

2.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add exit programs to the registration facility.

Required Parameter

None.

Exit program introduced: V3R7

Top | Work Management APIs | APIs by category

Presystem Request Program Exit Program

 Required Parameter:

1 System Request menu display flag I/O Binary(4)

 Optional Parameter:

2 System Request user option data I/O CHAR(128)

 Exit Point Name: QIBM_QWT_SYSREQPGMS

 Exit Point Format Name: SREQ0100

The Presystem Request Program exit program is called when the user presses the System Request key.

When a user presses the System Request key, the operating system calls the user-written exit program
through the registration facility. There are two parameters used for input and output. After the exit
programs from the registration facility are called, the System Request menu is called based on the value that
is returned in the System Request menu display flag. This is the first parameter. The second parameter
contains the data the user entered on the System Request user option line. When the user presses the the
System Request key an input line is displayed at the bottom of the screen. This allows the user to enter one
of the option numbers and relevant parameter data for any of the options for the Systems Request menu. All
data keyed into the input line, including option numbers, will be passed to the exit programs. This data will
be passed and received from each of the exit programs called. This allows one program to modify the data
and pass it to the next program called. This data will be passed to the user exit program in the CCSID of the
job. The data that the last Presystem Request program returns will the data that is passed to the System
Request menu. Normal error checking will be performed on the data at that time.

This exit point supports eight exit programs. (For information about adding an exit program to an exit point,
see the Registration Facility APIs.)

Before any of the exit programs in the registration facility are called, the user profile for each user intending
to use this function needs to be updated. The Set Profile Exit Program (QWTSETPX) API needs to be
called. This API will set for the requested user profile which of the eight allowed exit programs to call. The
user can have from zero to all eight possible exit programs called. No exit programs will be called until the
QWTSETPX API is called to set the values in the user profile. To display which exit programs will be
called for a particular user, the Retrieve Profile Exit Program (QWTRTVPX) API can be called. (For more
information about both of these APIs, see the Work Management APIs.)

Notes:

It is recommended that a command line is not displayed from a presystem request exit program.
There may be functions that do not work as expected when issued from this type of command line.

1.

The Presystem Request exit point ignores any error messages that are sent from the exit programs.
If multiple exit program are registered, all programs will be called regardless of errors that may
occur.

2.

The user-registered exit program will be called with only the first parameter unless the Pass user
option data flag in the Program data section is turned on. If this flag is turned on, the user exit
program will be called with both of the parameters.

3.

It is recommended that the Presystem Request exit program exist in a library in the system auxiliary
storage pool (ASP) or in a basic user ASP. It might not be found if it exists in a library in an
independent ASP.

4.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM to add exit programs to the registration facility.

Required Parameter Group

System Request menu display flag

I/O; BINARY(4)

Whether to display the System Request menu after the exit programs from the registration facility
have been called. The default value of 1 means that the menu will be displayed. Any other value
will mean not to display the menu. This value will be passed to all the exit programs. The value
returned from the last program called is the value that will be used to determine if the menu should
be displayed.

Optional Parameter Group

System Request user option data

I/O; CHAR(128)

The user-entered data from the System Request user option field. The default is all blanks.

Program Data

When you register the exit program, the following is required to enable passing of the System Request
option data for the program data field.

Offset

Type FieldDec Hex

0 0 CHAR(1) Pass user option data flag

Field Descriptions

Pass user option data flag. This flag determines how many parameters need to be passed on the call to the
user exit program. If the flag is set to a 1, then both of the parameters will be passed on the call to the exit
program. If the flag is any other value, only the first parameter will be passed.

Exit program introduced: V3R7

Top | Work Management APIs | APIs by category

Exit Program for Trace Job

 Required Parameter Group:

1 Trace record Input Char(*)

 QSYSINC Member Name: EPDTRCJB

The Trace Job (TRCJOB) command prints trace records. If specified, the TRCJOB command calls a
user-written program before printing the trace record. TRCJOB passes the trace record to the user-written
program. If the user-written program changes the first two characters of the trace record to blanks or binary
zeros, TRCJOB will not print the record.

See the online help for more information on the TRCJOB command.

Required Parameter

Trace record

INPUT; CHAR(*)

The format of the trace record depends on the trace record type.

Format of Trace Record

Offset

Type FieldDec Hex

0 0 CHAR(1) Trace record type

1 1 CHAR(*) Trace record data

Field Descriptions

Trace record type. This identifies the type of trace record:

X'00' Program flow

X'01' Data

X'02' Suspend

X'03' Resume

Trace record data. The format of the trace record data depends on the type of trace record.

Format of Program Flow Trace Record

Offset

Type FieldDec Hex

0 0 CHAR(1) Program flow type

1 1 CHAR(8) Time stamp

9 9 CHAR(10) Program name

19 13 CHAR(10) Program library name

29 1D BINARY(2) Call stack counter

31 1F BINARY(2) Number of deleted records

33 21 CHAR(2) New instruction number

35 23 CHAR(2) Old instruction number

37 25 CHAR(4) CPU time used

41 29 BINARY(4) Number of database pages read

45 2D BINARY(4) Number of nondatabase pages read

49 31 BINARY(4) Number of pages written

53 35 BINARY(2) Number of transfers to wait state

55 37 CHAR(10) ILE module name

65 41 CHAR(10) ILE module library name

75 4B CHAR(256) Procedure name

331 14B BINARY(4) Offset to long procedure name

335 14F BINARY(4) Length of long procedure name

* * CHAR(*) Long procedure name

Field Descriptions

Call stack counter. The location in the call stack where the program received control.

CPU time used. The CPU time the program used.

ILE module library name. The name of the library containing the ILE module that received control.

ILE module name. The name of the ILE module that received control.

Length of long procedure name. The length of the name of the procedure that received control.

Long procedure name. The name of the procedure that received control. This field is filled regardless of
the procedure name length.

New instruction number. The machine interface instruction number where the program received control.

Number of database pages read. The number of database pages that were read into main storage.

Number of deleted records. The number of successive records the exit program deleted.

Number of nondatabase pages read. The number of pages not associated with database that were read
into main storage.

Number of pages written. The number of pages written from main storage to auxiliary storage.

Number of transfers to wait state. The number of transitions transferred to ineligible wait state.

Offset to long procedure name. The offset to the field that holds the procedure name

Old instruction number. The machine interface instruction number from which the program released
control.

Procedure name. The name of the procedure that received control. This field is filled only if the procedure
name is less than or equal to 256 bytes in length.

Program flow type. How the program received control:

X'01' Another program called this program.

X'02' Another program transferred control to this program.

X'03' An event occurred, and this program is the event handler.

X'04' An exception occurred, and this program is the exception handler.

X'05' An exception occurred, and this is the internal or branch point exception handler.

X'06' An internal exception handler returned to this program.

X'07' This is a call to the exit program.

X'08' This program called another program, and the other program returned control to this program.

X'09' This program ended because it resignaled an exception.

X'0A' An external exception handler returned to this program.

X'0B' The end phase of the process is ended, ending this program.

X'0C' An exception occurred for which no handler was specified.

X'0E' A recursion level lower than this one was ended, causing this recursion level to end.

X'0F' The call was canceled.

Program library name. The name of the library containing the program that received control.

Program name. The name of the program that received control.

Reserved. An ignored field.

Time stamp. The time when the event occurred.

Format of Data Trace Record

The data source field of the data trace record can be used to identify the correct format. There are four data
trace record formats:

Data management●

Message handler●

Command analyzer●

Other●

Format of Data Management Data Trace Record

Offset

Type FieldDec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

9 9 CHAR(10) Internal file name

19 13 CHAR(10) Actual file name

29 1D CHAR(10) Actual file library name

39 27 CHAR(10) Device description name

49 31 CHAR(10) Program device name

Field Descriptions

Actual file library name. The name of the library the actual file is in. This will be *N if the file is an inline
data file.

Actual file name. The name of the file that was used. This name will be different from the internal file
name if the internal file was overridden.

Data source. Shows which function the data is from:

X'01' Open file

X'02' Close file

X'0B' Acquire device

X'0C' Release device

Device description name. For a device file, this is the device description name of the first device in the
file. For a database file, this is the name of the member. For an inline data file, this is *N.

Internal file name. The name of the file in the program.

Program device name. The program device name of the device in the device file.

Time stamp. The time when the event occurred.

Format of Message Handler Data Trace Record

Offset

Type FieldDec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

9 9 CHAR(1) Trace record type

10 A CHAR(7) Message identifier

17 11 CHAR(1) Message type

18 12 BINARY(2) Message severity

20 14 CHAR(10) Message queue name

30 1E BINARY(2) Call stack number

32 20 CHAR(256) Procedure name

288 120 CHAR(10) ILE module name

298 12A CHAR(10) ILE module library name

308 134 CHAR(1) Message queue type

309 135 CHAR(2) Reserved

311 137 BINARY(4) Offset to long procedure name

315 13B BINARY(4) Length of long procedure name

* * CHAR(*) Long procedure name

Field Descriptions

Call stack number. The location in the call stack that the message handling function was called.

Data source. The function the data is from:

X'03' Send message

X'04' Reply to message

X'05' Default exception handler

X'06' Send status message

ILE module library name. The name of the library that contains the ILE module that sent or received the
message.

ILE module name. The name of the ILE module that sent or received the message.

Length of procedure name. The length of the name of the procedure that sent or received the message.

Long procedure name. The name of the procedure that sent or received the message. This field is filled

regardless of the procedure name length.

Message identifier. The identifier of the message that was handled.

Message queue name. The name of the message queue the message was sent to or received from.

Message queue type. The type of message queue the message was sent to:

Q The message was sent to a standard message queue.

blank The message was sent to a nonstandard message queue.

Message severity. The severity of the message as defined in the message description.

Message type. The type of message that was handled:

X'01' Completion

X'02' Diagnostic

X'03' Scope

X'04' Informational

X'05' Inquiry

X'06' Sender's copy

X'07' Reply

X'08' Request

X'09' Control

X'0A' Command

X'0B' Status

X'0C' Reserved

Offset to long procedure name. The offset to the field that holds the procedure name.

Procedure name. The name of the procedure that sent or received the message. This field is filled only if
the procedure name is less than or equal to 256 bytes in length.

Reserved. An ignored field.

Time stamp. The time when the event occurred.

Trace record type. The message handler program that traced the data:

X'03' SNDMSG

X'04' Default exception handler

X'05' Send status message

X'06' Reply to SNGMSG

Format of Command Analyzer Data Trace Record

Offset

Type FieldDec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

9 9 CHAR(10) Command name

19 13 CHAR(10) Command library name

29 1D CHAR(10) Command processing program name

39 27 CHAR(10) Command processing program library name

Field Descriptions

Command name. The name of the command that was called.

Command library name. The name of the library containing the command that was called.

Command processing program library name. The name of the library the command processing program
is in.

Command processing program name. The name of the command processing program.

Data source. The function the data is from:

X'07' Command processor

X'08' Call program

X'0A' Control language compiler

Time stamp. The time when the event occurred.

Format of Other Data Trace Record

Not all data trace records are formatted for a specific function.

Offset

Type FieldDec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

9 9 CHAR(300) Data

Field Descriptions

Data. The data that is being traced.

Data source. The function the data is from.

Time stamp. The time when the event occurred.

Format of Suspend Trace Record

Offset

Type FieldDec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

Field Descriptions

Data source. The function that was suspended.

Time stamp. The time when the event occurred.

Format of Resume Trace Record

Offset

Type FieldDec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

Field Descriptions

Data source. The function was that resumed.

Time stamp. The time when the event occurred.

Exit program introduced: V3R1

Top | Work Management APIs | APIs by category

	Work Management APIs (V5R2)
	Table of Contents
	Work Management APIs
	Work Management API Attribute Descriptions (WMAttrDesc)
	APIs
	Change Current Job (QWCCCJOB) API
	Change Job (QWTCHGJB) API
	Change Pool Attributes (QUSCHGPA) API
	Change Pool Tuning Information (QWCCHGTN) API
	Change Subsystem Entry (QWDCSBSE) API
	Control Thread (QTHMCTLT) API
	Control Trace (QWTCTLTR) API
	Create Job Structures (QWTCTJBS) API
	Delete Job Structures (QWTDTJBS) API
	Dump Flight Recorder (QWTDMPFR) API
	Dump Lock Flight Recorder (QWTDMPLF) API
	List Active Subsystems (QWCLASBS) API
	List Job (QUSLJOB) API
	List Job Schedule Entries (QWCLSCDE) API
	List Object Locks (QWCLOBJL) API
	List Subsystem Entries (QWDLSBSE) API
	List Subsystem Job Queues (QWDLSJBQ) API
	Move Job (QSPMOVJB) API
	Open List of Activation Attributes (QWVOLACT) API
	Open List of Activation Group Attributes (QWVOLAGP) API
	Open List of Job Queues (QSPOLJBQ) API
	Open List of Jobs (QGYOLJOB) API
	Open List of Threads (QWCOLTHD) API
	Retrieve Call Stack (QWVRCSTK) API
	Retrieve Class Information (QWCRCLSI) API
	Retrieve Current Attributes (QWCRTVCA) API
	Retrieve Data Area (QWCRDTAA) API
	Retrieve IPL Attributes (QWCRIPLA) API
	Retrieve Job Description Information (QWDRJOBD) API
	Retrieve Job Information (QUSRJOBI) API
	Retrieve Job Locks (QWCRJBLK) API
	Retrieve Job Queue Information (QSPRJOBQ) API
	Retrieve Job Status (QWCRJBST) API
	Retrieve Lock Information (QWCRLCKI) API
	Retrieve Lock Request Information (QWCRLRQI) API
	Retrieve Lock Space Attributes (QTRXRLSA) API
	Retrieve Lock Space Locks (QTRXRLSL) API
	Retrieve Lock Space Record Locks (QTRXRLRL) API
	Retrieve Network Attributes (QWCRNETA) API
	Retrieve Profile Exit Programs (QWTRTVPX) API
	Retrieve Subsystem Information (QWDRSBSD) API
	Retrieve System Status (QWCRSSTS) API
	Retrieve System Values (QWCRSVAL) API
	Retrieve thread attribute (QWTRTVTA) API
	Set Lock Flight Recorder (QWTSETLF) API
	Set Profile Exit Programs (QWTSETPX) API
	Set Trace (QWTSETTR) API

	Exit programs
	Auxiliary Storage Lower Limit Exit Program
	Job Notification Exit Point
	Power Down System Exit Program
	Preattention Program Exit Program
	Presystem Request Program Exit Program
	Exit Program for Trace Job

