
Virtual Terminal APIs (V5R2)

Table of Contents

Virtual Terminal APIs●

Distributed 5250 Emulation Model●

iSeries Job Information●

iSeries Subsystem Information●

Data Queues●

Preparing to Use the Virtual Terminal APIs●

Creating Your Own Virtual Controllers and Devices●

Developing Client and Server Programs●

Virtual Terminal Run-Time Example●

APIs

Close Virtual Terminal Path (QTVCLOVT)❍

Open Virtual Terminal Path (QTVOPNVT)❍

Read from Virtual Terminal (QTVRDVT)❍

Send Request for OS/400 Function (QTVSNDRQ)❍

Write to Virtual Terminal (QTVWRTVT)❍

●

Virtual Terminal APIs
The virtual terminal APIs allow your iSeries application programs to interact with an iSeries server that is
performing work station input/output (I/O).

A virtual terminal is a device that does not have hardware associated with it. It forms a connection between
your application and iSeries applications, representing a physical work station (possibly on a remote system).
The OS/400 licensed program manages the virtual terminal, which directs work station I/O performed by an
iSeries application to the virtual terminal. The virtual terminal APIs allow another iSeries application, called a
server program, to work with the data associated with the virtual terminal.

In a distributed systems environment, the requesting program is called a client; the answering program is
called a server. The client and server programs may reside on the same system or may be distributed between
two different systems. The server program generally runs on behalf of (or in conjunction with) the client
program. Together, the server program and the client program allow a work station to be supported as if the
work station were connected locally.

You must specify a work station type when a virtual terminal device is opened. A server program can select
several different types of work stations. See the Open Virtual Terminal Path (QTVOPNVT) API for a list of
the types of work stations that are supported.

Select one of the following for more information:

Distributed 5250 Emulation Model●

iSeries Job Information●

iSeries Subsystem Information●

Data Queues●

Preparing to Use the Virtual Terminal APIs●

Creating Your Own Virtual Controllers and Devices●

Developing Client and Server Programs●

Virtual Terminal Run-Time Example●

The virtual terminal APIs are:

Close Virtual Terminal Path (QTVCLOVT) closes one or all open virtual terminal paths.●

Open Virtual Terminal Path (QTVOPNVT) opens a path to a virtual terminal.●

Read from Virtual Terminal (QTVRDVT) reads data from the virtual terminal into a data buffer.●

Send Request for OS/400 Function (QTVSNDRQ) sends a request to perform a particular function.●

Write to Virtual Terminal (QTVWRTVT) writes data to a virtual terminal from a data buffer.●

Top | APIs by category

Distributed 5250 Emulation Model
The Virtual Terminal Client/Server Model example shows a model for a distributed systems environment
between a work station and an iSeries. The client program resides on the work station, while the server
program resides on the iSeries. This model is similar to the way the iSeries supports an iSeries Access work
station function.

Virtual Terminal Client/Server Model Example

The client program running on the work station shown in the example does the following:

Accepts data from the server program and displays the data on the work station display●

Accepts data from the work station keyboard●

Converts the data from the format required by the work station display and keyboard to the format
required by the server program (5250 data stream)

●

Sends the data to the server program on the iSeries●

The link between the client program and server program uses DOS and OS/400 communications support. This
may be LU 6.2, TCP/IP, or some other communications protocol.

You can write a server application program in any iSeries-supported high-level language (HLL), such as the
ILE C programming language. The server program provides work station support for the system acting as the
server. The virtual terminal APIs allow a server program to read and write virtual terminal data. Virtual
terminal data is always in a 5250 data stream format. See the IBM 5494 Functions Reference book,
SC30-3533, for more information on 5250 data streams. This book can be viewed online through the IBM
Publications Center.

The virtual terminal APIs provide an interface between the server program and the virtual terminal supported
by the OS/400 licensed program. The virtual terminal represents the OS/400 link between the server program
and the iSeries application and is managed entirely by the OS/400 licensed program.

The iSeries application is a licensed program or a user-written application that performs a standard data
transfer to a work station. This application can be written in any iSeries-supported HLL.

Top | Virtual Terminal APIs | APIs by category

iSeries Job Information
Several iSeries jobs are involved when you use the virtual terminal APIs. The jobs can be classified into two
groups:

Server program jobs●

Application jobs●

Each group may consist of one or more jobs, depending on the way the server program is written and the way
the iSeries applications are being run.

The server program can be written to run in a single job or in more than one job, depending on the number of
work stations to be supported per job. For example, you can support each work station using a single job by
routing all requests from the work station client program to a particular server program job.

Top | Virtual Terminal APIs | APIs by category

iSeries Subsystem Information
A server program should run in the same subsystem that other server programs are running. For controlling
resource use, such as main storage, a separate subsystem for running all server programs is usually best. This is
also advantageous for allowing performance tuning, such as the number of page faults. Generally, iSeries
applications run in subsystem QBASE.

If the subsystem under which you want the server program to run was created with the system defaults, you
will not have to add a work station entry to the subsystem description. If you do need to add a work station
entry to the subsystem description, however, you can use the Add Work Station Entry (ADDWSE) command.

Before a work station is allowed to sign-on, it must be defined to a subsystem. In this case, the work station is
the virtual terminal device (QPADEVnnnn) automatically created by the OS/400 licensed program. The work
station name, work station type, or *ALL must be specified in the subsystem description. Use the Display
Subsystem Description (DSPSBSD) command to see the list of work station entries defined for a subsystem.
The following command can be used to add all work station types to a subsystem named QBASE:

ADDWSE SBSD(QBASE) WRKSTNTYPE(*ALL)

For more information on automatically creating virtual terminals, see Setting the Number of Automatically
Created Virtual Terminals.

Note: The ADDWSE command is valid only when the subsystem description is not active.

Top | Virtual Terminal APIs | APIs by category

Data Queues
The OS/400 licensed program uses data queues to send data to the server program. The server program also
uses data queues for interprocess communications with other iSeries applications and API calls.

The data queue must exist before your application uses the virtual terminal APIs to open a path to a virtual
terminal. See the Control Language (CL) information for details about creating and deleting data queues. See
the Open Virtual Terminal Path (QTVOPNVT) API for information on how a server program specifies the
name of the data queue to be used.

The OS/400 licensed program communicates special events to the server program using the data queue. The
iSeries provides the information about the special events using a data queue entry.

The following events result in data queue entries being sent:

The virtual terminal receives data from an iSeries application●

OS/400 closes the virtual terminal (This occurs when an iSeries application's job is canceled.)●

The following table shows the structure of OS/400 data queue entries that are sent to the data queue when an
application uses the virtual terminal APIs. All data queue entries have the same format.

Format for OS/400 Data Queue Entries

Name Type Description

Entry Type CHAR(10) Always set by OS/400 to *VRTTRM.

Entry ID CHAR(2) Entry ID associated with entry. Valid values for the 2 characters in this
parameter are:

The OS/400 operating system is closing (terminating) the session
with the virtual terminal. The server program should perform a
close to indicate that the server program is done using the virtual
terminal.

1.

An iSeries application has sent data to the virtual terminal. See
Read from Virtual Terminal (QTVRDVT) API for information on
how to read the data.

Note: All other values are reserved by the system.

2.

VTHandle CHAR(16) The virtual terminal handle associated with the virtual terminal
communications path previously opened by calling the Open Virtual
Terminal Path (QTVOPNVT) API. See Open Virtual Terminal Path
(QTVOPNVT) API for additional details.

CHAR(52) Reserved

Key CHAR(*) Key value specified when the virtual terminal communications path was
opened. See Open Virtual Terminal Path (QTVOPNVT) API for
additional details on specifying the key value. The key value can be used
for retrieving data queues by key.

Top | Virtual Terminal APIs | APIs by category

Preparing to Use the Virtual Terminal APIs
The following steps are required to prepare your iSeries to run an application using the virtual terminal APIs:

Set the number of automatically created virtual terminals using the Automatic virtual device
configuration indicator (QAUTOVRT) system value

1.

Set the Limit security officer device access (QLMTSECOFR) system value2.

Create user profiles using the Create User Profile (CRTUSRPRF) command3.

Step 1: Setting the Number of Automatically Created Virtual
Terminals

The OS/400 licensed program uses virtual terminals to allow a server program to interact with its client by
sending and receiving data with iSeries applications. The OS/400 operating system will automatically select
(and create if necessary) these virtual terminals for you.

The QAUTOVRT system value specifies the maximum number of terminals that will be automatically
configured by the system. When you set the QAUTOVRT system value, the OS/400 licensed program
automatically configures the required virtual controllers and terminals. Controllers coordinate and control the
operation of one or more input/output terminals (such as work stations) and synchronize the operation of such
terminals with the operation of the entire system. Use the Change System Value (CHGSYSVAL) command to
change the value of the QAUTOVRT system value. For example, entering the following command string
changes the number of virtual terminals that can be allocated on a system to 50:

CHGSYSVAL SYSVAL(QAUTOVRT) VALUE(50)

To determine and set the maximum number of users you want signed on to the iSeries system at any time, do
the following:

Set the QAUTOVRT system value to *NOMAX, the maximum value allowed.●

Have your users use the iSeries system until you decide that the number of virtual terminals created is
sufficient for normal system operation.

●

Use the Work with Configuration Status (WRKCFGSTS) command to determine the number of work
stations configured.

●

Change the QAUTOVRT system value from *NOMAX to the number of virtual terminals you require
for normal operation.

●

If you have never allowed virtual terminals to be configured automatically on your system, the QAUTOVRT
system value is 0. As a result, you cannot use the virtual terminal APIs because the OS/400 licensed program
is not able to create more work stations than the number specified. If you change the QAUTOVRT system
value to 10, the next virtual terminal path opened causes the OS/400 licensed program to create a virtual
terminal. This virtual terminal is created because the number of virtual terminals on the controller (0) is less
than the number specified in the QAUTOVRT system value (10). Even if you change the specified number to
0 again, the next virtual terminal opened may succeed if a virtual terminal exists that is not being used.

If a virtual terminal does not exist or is in use, the OS/400 licensed program does not create a new virtual
terminal because the number of virtual terminals currently existing is greater than or equal to the specified
QAUTOVRT system value. When the number of virtual terminals that currently exist is greater than or equal
to the QAUTOVRT system value, the message CPF8940, "Cannot automatically select virtual device", is sent
to the system operator message queue (QSYSOPR). You must either try again when a virtual terminal
description becomes available or increase the QAUTOVRT system value.

The OS/400 operating system uses the following conventions for naming virtual controllers and work stations:

Virtual controllers named QPACTLnn are used for auto-created virtual terminal descriptions.●

Virtual controllers named QVIRCDnnnn are used for named virtual terminal descriptions.●

Virtual terminal descriptions named QPADEVxxxx are auto-created devices.●

Named virtual terminal devices may be requested using the virtual terminal APIs. An example of a
named virtual terminal device would be NEWYORK001.

●

Consider the following when you allow the OS/400 licensed program to automatically configure work stations:

The OS/400 licensed program does not delete virtual terminals, even when the number of work
stations attached to virtual controllers exceeds the limit set by QAUTOVRT.

If you want the extra work stations deleted, you must manually delete them.

●

The OS/400 licensed program allows a maximum of 254 virtual terminals on the QPACTL01
controller before it creates QPACTL02. This value is usually adequate. If you delete work stations to
enforce a smaller value for the QAUTOVRT limit, begin by deleting the work stations from the
controller with the highest numeric value in its name (where nn in the QPACTLnn name is largest).

Note: Changing this system value affects other iSeries products and programs requiring automatic
configuration. This includes TCP/IP TELNET, 5250 display station pass-through, and any other
programs using the virtual terminal APIs.

●

Step 2: Setting the Limit Security Officer (QLMTSECOFR) Value

The Limit security officer device access (QLMTSECOFR) system value, limits the devices the security officer
can sign on to. The security officer controls all of the security authorizations provided by the iSeries system. If
the QLMTSECOFR value is greater than zero, the security officer must be authorized to use the virtual device
descriptions. When this value equals 0, however, the system does not limit the devices the security officer can
use to sign on the system.

When the system security level (QSECURITY) system value is set to 30, a security officer with all object
authority (*ALLOBJ) must be authorized to use the work stations. For example, for each display station that a
security officer wants to sign on to (local, remote, or virtual), the user must authorize the security officer using
the following Grant Object Authority (GRTOBJAUT) command:

GRTOBJAUT OBJ(display-name) OBJTYPE(*DEVD) AUT(*CHANGE) USER(QSECOFR)

This procedure is very important because using the virtual terminal APIs automatically configures virtual
terminals (devices). Automatic configuration is a function that names and creates the descriptions of network
devices and controllers attached to a line. If the QLMTSECOFR value is set to 0, all virtual terminals
automatically configured when you use the virtual terminal APIs can be used by the security officer. If you set
the QLMTSECOFR value to 1, your security officer is not able to use the virtual terminals unless you
specifically grant object authority to the security officer for that virtual terminal. The automatic configuration
support can delete and re-create the virtual terminal. If this occurs, authority must be granted to the security
officer each time the virtual terminal is created.

Security Considerations

The number of sign-on attempts allowed increases if virtual terminals are automatically configured. The
number of sign-on attempts is equal to the number of system sign-on attempts allowed multiplied by the
number of virtual terminals that can be created. The number of system sign-on attempts allowed is defined by
the QMAXSIGN system value. The number of virtual terminals that can be created is defined by the

QAUTOVRT system value.

Step 3: Creating User Profiles

You should create one or more user profiles on the iSeries system for users of the virtual terminal supported by
the client and server programs. The default user profile is *SYS. The following example shows a sample user
profile:

CRTUSRPRF USRPRF(CLERK1) PASSWORD(unique-password)
 JOBD(CLERKLIB/CLERKL1)
 TEXT('User profile for one group of clerks')

Top | Virtual Terminal APIs | APIs by category

Creating Your Own Virtual Controllers and
Devices
You can create your own virtual controllers and devices (terminals); however, you must use the same naming
conventions as the automatic controller and device creation support. You may want to create the virtual
terminal descriptions to control the number of sign-on attempts possible by not allowing automatic
configuration of virtual terminals (which allows additional sign-on attempts to occur). See Security
Considerations for additional information.

If you do not want to use automatically created descriptions, do the following:

Use the Create Controller Description (Virtual Work Station) (CRTCTLVWS) command to create a
controller description for a virtual terminal.

CRTCTLVWS CTLD(QPACTL01)
 TEXT('Virtual Controller for virtual terminals')

Note: You must use the OS/400 naming convention, QPACTLnn, for naming virtual controllers,
where nn is a decimal number starting at 01.

●

Use the Create Device Description (Display) (CRTDEVDSP) command to create a virtual terminal as
follows:

CRTDEVDSP DEVD(QPADEV0001) DEVCLS(*VRT)
 TYPE(5251) MODEL(11) CTL(QPACTL01)
 TEXT('24 X 80 Monochrome
 Display for Server Program')

●

The OS/400 licensed program automatically varies on the controller and terminal that you have
created. You must use the OS/400 naming convention, QPADEVxxxx, for naming virtual device
descriptions, where xxxx are alphanumeric characters from 0000 to ZZZZ.

●

After creating the descriptions, you must authorize the server program to use them. Use the Grant Object
Authority (GRTOBJAUT) command to authorize the user profile used by the server program to the
descriptions. This can be done using the following commands:

GRTOBJAUT OBJ(QPACTL01) OBJTYPE(*CTLD)
 AUT(*CHANGE) USER(user-ID)

GRTOBJAUT OBJ(QPADEV0001) OBJTYPE(*DEVD)
 AUT(*CHANGE) USER(user-ID)

You may want to prevent virtual terminals from being created automatically. To do this, set the QAUTOVRT
system value to 0 as follows:

CHGSYSVAL SYSVAL(QAUTOVRT) VALUE(0)

See Setting the Number of Automatically Created Virtual Terminals for additional information.

Note: Changing this system value affects other iSeries products and programs requiring automatic
configuration. This includes TELNET, 5250 display station pass-through, and any other programs using the
virtual terminal APIs.

Top | Virtual Terminal APIs | APIs by category

Developing Client and Server Programs
When developing client and server programs using the virtual terminal APIs, you need to take the following
items into consideration:

The client program should be able to:

Interrupt the server program❍

Check the server program's status❍

Discard data from the iSeries application❍

●

The user should be able to configure a time-out to be used by the client program while waiting for
screens from the server program.

●

Pressing the Print key on the work station should create a file to be printed at either the work station or
the iSeries printer.

●

Virtual Terminal APIs | APIs by category

Virtual Terminal Run-Time Example
To help understand how virtual terminal APIs are used, the following example shows how the OS/400
operating system, server program, client program, and work station device (display and keyboard) interact
when processing a system request.

This example starts with the server program waiting for a response from the client program, which is waiting
for data from the user (keyboard).

System request processing starts when you press the appropriate System Request key on the work
station keyboard.

1.

The client program informs the server program that the System Request key has been pressed. The
protocol used in this case is unique to the particular implementation of these two programs.

2.

The server program calls the Write to Virtual Terminal (QTVWRTVT) API for a write request. The
flag for the System Request key must be set for this write request. No data is sent to the virtual
terminal at this time.

3.

The OS/400 licensed program creates a data queue entry for informing the server program that data is
available to be read.

4.

The server program removes the entry from the data queue by calling the Receive Data Queue
(QRCVDTAQ) API and then calls the Read from Virtual Terminal (QTVRDVT) API for a read
request. The Cancel Invite operation code is returned. No data is received from the virtual terminal at
this time.

To prevent the client program from sending anymore data (screens), the server program informs the
client program that it is no longer receiving data from the client program.

The server program calls the QTVWRTVT API for a write request. The Operation Code parameter is
set to Cancel Invite. No data is sent to the virtual terminal at this time.

5.

The OS/400 licensed program creates a data queue entry for informing the server program that data is
available to be read.

6.

The server program removes the entry from the data queue by calling the QRCVDTAQ API and then
calls the QTVRDVT API for a read request. A Save Screen operation code is returned. No data is
received from the virtual terminal at this time.

The server program gets the current screen. This may require requesting the current screen from the
client program.

The server program calls the QTVWRTVT API for a write request, sending the current screen to the
virtual terminal. The Operation Code parameter must be set to Save Screen.

7.

The OS/400 licensed program creates a data queue entry for informing the server program that data is
available to be read.

8.

The server program removes the entry from the data queue by calling the QRCVDTAQ API and then
calls the QTVRDVT API for a read request. A Put/Get operation code is returned. The data read will
be the actual System Request menu.

The server program sends this data to the client program and waits for a response.

9.

The client program updates the display with the System Request menu and waits for a response from10.

the user. The resulting response is sent to the server program.

The response is received from the client program, and the server program calls the QTVWRTVT API
for a write request, sending the response to the virtual terminal.

Note: What happens at this point depends on the response to the System Request menu. Additional
data may be received from and sent to the virtual terminal. After the response is processed, the
following steps occur.

11.

The OS/400 licensed program creates a data queue entry for informing the server program that data is
available to be read.

12.

The server program removes the entry from the data queue by calling the QRCVDTAQ API and then
performs a call to the QTVRDVT API for a read request. A Put operation code is returned. The data
read is the saved (current) screen that was previously written by the server program to the virtual
terminal.

The server program sends the saved screen to the client program but does not wait for a response.

13.

The client program updates the work station display with the saved screen.14.

The OS/400 licensed program creates a data queue entry for informing the server program that data is
available to be read.

15.

The server program removes the entry from the data queue by calling the QRCVDTAQ API. An Invite
operation code is returned. Note that no data is received from the virtual terminal at this time.

16.

The client program is once again waiting for user data, and the server program is waiting for data from
the client program.

17.

Top | Virtual Terminal APIs | APIs by category

Close Virtual Terminal Path (QTVCLOVT) API

 Required Parameter Group:

1 Virtual terminal handle Input Char(16)
2 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Close Virtual Terminal Path (QTVCLOVT) API closes one or all open virtual terminal paths. To close all
open virtual terminal paths, the handle must be set to zero.

Authorities and Locks

None.

Required Parameter Group

Virtual terminal handle

INPUT; CHAR(16)

The reference code for the open virtual terminal path, created with the Open Virtual Terminal Path
(QTVOPNVT) API. If this parameter is set to zero, all open virtual terminal paths are closed.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF87F2 E Virtual terminal handle &1 not valid.

CPF87F7 E Parameter value &1 not valid.

CPF87F8 E Unexpected internal system error occurred in program &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

Top | Virtual Terminal APIs | APIs by category

Open Virtual Terminal Path (QTVOPNVT) API

 Required Parameter Group:

1 Virtual terminal handle Output Char(16)
2 Keyboard language type Input Char(3)
3 Character set Input Binary(4)
4 Code page Input Binary(4)
5 Work station type Input Binary(4)
6 Qualified data queue name Input Char(20)
7 Key value Input Char(*)
8 Length of key value Input Binary(4)
9 Error code I/O Char(*)

 Optional Parameter Group: 1

10 Open operation information Input Char(10)

 Optional Parameter Group: 2

11 Session initiation information Input Char(*)

 Optional Parameter Group: 3

12 Open feedback information I/O Char(*)
13 Length of open feedback information Input Binary(4)

 Default Public Authority: *USE

 Threadsafe: No

The Open Virtual Terminal Path (QTVOPNVT) API opens a path to a virtual terminal, allowing a server
program to interact with an iSeries application. The virtual terminal path remains open until it is explicitly
closed or the job is ended.

When you call the QTVOPNVT API, the operating system selects or automatically configures a virtual
terminal for you and indicates that the device is logically turned on. The operating system sends a message to
the specified data queue to signal the server program that data is available.

Authorities and Locks

Library Authority

*USE

User Queue Authority

*CHANGE

User Queue Lock

*EXCLRD

Required Parameter Group

Virtual terminal handle

OUTPUT; CHAR(16)

A reference code created by the iSeries operating system to identify this open virtual terminal path in
later calls to other virtual terminal APIs.

Keyboard language type

INPUT; CHAR(3)

The keyboard language type for the virtual terminal. To use the system value, specify blanks for this
parameter. For a list of other valid values, see the Create Device Description (CRTDEVDSP)
command in the Control Language (CL) information. For details about supported languages, see the
Globalization topic.

Character set

INPUT; BINARY(4)

The graphic character set for the virtual terminal. Valid values are a specific graphic character set
number and these special values:

0 The graphic character set system value is used.

-1 The keyboard language type is used to select the appropriate character set.

For details about the graphic character sets you can specify, see the Globalization topic.

Note: The graphic character set system value is obtained from the default graphic character set and
code page (QCHRID) system value.

Code page

INPUT; BINARY(4)

The code page for the virtual terminal. For details about the code pages you can specify, see the
Globalization topic. If you specified 0 or -1 for the character set parameter, you do not have to specify
this parameter. When you use 0 for the character set parameter, the system value is used for this
parameter. When you use -1 for the character set parameter, the code page value is derived from the
keyboard language type parameter.

Note: The code page system value is obtained from the default graphic character set and code page
(QCHRID) system value.

Work station type

INPUT; BINARY(4)

The type of work station to use. Valid values are 1 through 15. See Supported Work Station Types and
Models for an explanation of the values.

Other work station types and models are supported. You can specify these by determining their
equivalents in Workstation Types and Models.

If a virtual terminal description does not yet exist for the work station type specified, the operating
system attempts to configure the work station automatically. Automatic configuration is controlled by
the Automatic virtual device configuration (QAUTOVRT) system value, which specifies the number
of virtual terminals that the operating system can configure automatically. See for more information on
the QAUTOVRT value.

Qualified data queue name

INPUT; CHAR(20)

The name and library of the data queue used by your application program to receive data from the
operating system asynchronously. The first 10 bytes are for the data queue name; the second 10 bytes
are for the library name. Allowable special values are:

*CURLIB The jobs current library

*LIBL The library list

Key value

INPUT; CHAR(*)

The key value to use for the iSeries data queue.

Length of key value

INPUT; BINARY(4)

The length of the key value. Valid values are 0 through 256. If you specify 0, no key is used for data
queue entries.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Optional Parameter Group 1

Open operation information

INPUT; CHAR(10)

Information about the open operation. The characters and their meanings are:

1 Whether the PC text-assist function is supported. Valid values are:

Blank The PC text-assist function is supported.

0 The PC text-assist function is supported.

1 The PC text-assist function is not supported. The adapted word processing
function is used automatically.

2-10 Reserved. These characters must be blank.

Optional Parameter Group 2

Session initiation information

INPUT; CHAR(*)

Information about the initiation of the virtual terminal session. The information must be in the
following format:

Number of variable length records

The total number of all of the variable length records.

Variable length records

The attributes of the session initiation that are to be performed or changed. For the specific
format of the variable length record, see Format for Variable Length Record.

Optional Parameter Group 3

Open feedback information

I/O; CHAR(*)

A pointer to information about the device assigned to this virtual terminal session or the reason code
when an automatic sign-on request fails. The layout of this information is described in Format for
Open Feedback Information.

Length of open feedback information

INPUT; BINARY(4)

The size of the open feedback output area being supplied by the caller. The Open Feedback
Information returned will be restricted such that it always returns a total number of bytes equal to or
less than this parameter.

Format for Variable Length Record

The following table defines the format for the variable length records.

Offset

Type FieldDec Hex

0 0 BINARY(4) Key

4 4 BINARY(4) Length of data

8 8 CHAR(*) Data

If the length of the data is longer than the key fields data length, the data will be truncated at the right. No
message will be issued.

If the length of the data is smaller than the key field s data length, the data will be padded with blanks at the

right. No message will be issued.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value for
that key is used.

Field Descriptions

Data. The data used to control the session initiation.

Key. An attribute of the session initiation. See Keys for the list of valid keys.

Length of data. The length of the data used to control the initiation.

Keys

The following table shows the valid keys for the key field area of the variable length record.

Key Type Field

1 CHAR(10) User profile

2 CHAR(10) User password

3 CHAR(10) Initial program

4 CHAR(10) Initial menu

5 CHAR(10) Current library

6 CHAR(10) Virtual device name

7 CHAR(20) Network address

8 CHAR(*) Automatic sign-on (see Automatic Sign-on Key)

Field Descriptions

Automatic sign-on. The values needed to have a user automatically signed on once a terminal session has
been established. If key 8 is not specified, automatic sign-on will not occur for this virtual terminal session;
keys 3, 4, and 5 will be ignored. The automatic sign-on must be used in place of key 1 and 2 whenever the
system value QPWDLVL is set to 3 or 4. When the system value QPWDLVL is set to 1 or 2, either keys 1 and
2 or key 8 may be used for automatic sign-on.

Current library. The current library to be used when using automatic sign-on. The special value *USRPRF
can be used to indicate that the current library found in the user profile specified with key 1 should be used. If
key 5 is not specified, *USRPRF is the default. This value is support for both key 1 and key 8.

Initial menu. The initial menu to be used when using automatic sign-on. The special value *USRPRF can be
used to indicate that the initial menu found in the user profile specified with key 1 should be used. This value
is supported for both key 1 and key 8. If key 4 is not specified, *USRPRF is the default.

Initial program. The initial program to be used when using automatic sign-on. The special value *USRPRF
can be used to indicate that the initial program found in the user profile specified with key 1 should be used. If
key 3 is not specified, *USRPRF is the default. This value is supported for both key 1 and key 8.

Network address. An address that is uniquely assigned to each terminal session and is used in all
communications with the session. This address is associated with the virtual terminal device by the applicaion
and can be accessed by any other application using the Retrieve Device Description (QDCRDEVD) API.
The following format defines the layout of the network address based on the network protocol:

Size of network address

CHAR(1) The number of bytes of network address actually used. All 20 bytes allocated for the
network address may not actually be used.

1.

Family or protocol

CHAR(1) The family or protocol that is being used (currently, only IP is supported). The family
or protocol defines the layout used for the remainder of the network address.

Internet Protocol (IP) value is X'02.'

2.

Internet Protocol (IP)

CHAR(2) TCP port number

CHAR(4) Internet address

3.

User password. The user password specified for initiating this virtual terminal session in conjunction with the
specified profile. If the user profile is *CURRENT, you can use the special value *NONE for the user
password. If you specify a user profile other than *CURRENT or blank and do not specify a user password, an
error message is returned. This value works in association with key 1 (but not with key 8). This key is
supported only when system value QPWDLVL is set to 1 or 2.

User profile. The user profile specified for initiating this virtual terminal session. You can use the special
value *CURRENT for the user profile. If the user profile is *CURRENT, you can use the special value
*NONE for the password. This value is used in association with key 2 (but not with key 8). If key 1 is not
specified, automatic sign-on will not occur for this virtual terminal session; keys 2, 3, 4, and 5 will be ignored.
This key is supported only when system value QPWDLVL is set to 1 or 2.

Virtual device name. The specific virtual device to be associated with the terminal session.

The device is created by the system, if it does not exist, when the QAUTOVRT system value allows for this.

If no value is supplied by the caller, the virtual terminal API defaults to using the virtual device selection
methods.

The device description name must be a valid *VRT and must adhere to standard iSeries naming conventions.

Automatic Sign-on Key

The following table defines the format for the automatic sign-on key.

Offset

Type FieldDec Hex

0 0 BINARY(4) Sign-on length

4 4 BINARY(4) Passphrase CCSID

8 8 BINARY(4) Passphrase offset

12 C BINARY(4) Passphrase length

16 F CHAR(8) Client seed

24 18 CHAR(8) Server seed

32 20 CHAR(10) Bypass user profile

42 2A CHAR(2) Reserved

44 2C CHAR(*) Passphrase

Field Descriptions

Bypass user profile. The user profile to be automatically signed on. This profile is not interchangeable with
the user profile from key 1. If key 8 is used, then the profile must be part of the automatic sign-on information.

Client seed. A randomly-generated seed that was used to encrypt the password or passphrase using the
encryption level (either DES-7 or SHA-1) on the system. If a zero-length seed is provided, it is assumed that a
clear-text unencrypted password or passphrase is being provided.

Passphrase CCSID. The CCSID of the password or passphrase being provided for automatic sign-on.

Passphrase offset. The offset in this structure of the actual password or passphrase being provided for
automatic sign-on.

Passphrase length. The number of bytes in the password or passphrase being provided.

Passphrase. The password or passphrase associated with the user profile to be automatically signed on. This
field can range from 1 to 128 bytes. If your system is pre-V5R1, or has system value QPWDLVL set to 0 or 1,
then the maximum size of this field is 10 bytes.

Reserved. Reserved for future use.

Server seed. A randomly-generated seed that was used to encrypt the password or passphrase using the
encryption level (either DES-7 or SHA-1) on the system. If a zero-length seed is provided, it is assumed that a
clear-text unencrypted password or passphrase is being provided.

Sign-on length. The total number of bytes of the automatic sign-on data provided.

Format for Open Feedback Information

The following table defines the format for the open feedback information.

Offset

Type FieldDec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 BINARY(4) Reason code (see Automatic Sign-on Reason
Codes)

12 C CHAR(10) Device name

22 16 CHAR(4) Reserved

Automatic Sign-on Reason Codes

The following table shows the reason codes that may be returned for automatic sign-on failure.

Reason
Code Failure Description

1 System error (unknown error)

2 User profile unknown

3 User profile disabled

4 Password or passphrase not valid

5 Password or passphrase is expired

6 Pre-V2R2 password

8 Next password or passphrase that is not valid will revoke user profile

Field Descriptions

Device Name. The device name that has actually been assigned to this terminal session.

Number of bytes available. The total number of bytes of feedback information available for return.

Number of bytes returned. The total number of bytes of feedback information actually returned to the caller.
This space is provided by the caller.

Reason code. Reason an automatic sign-on request has failed. For possible reason code values, see Automatic
Sign-on Reason Codes.

Reserved. Reserved for future use.

Supported Work Station Types and Models

The following table details the values you can specify for the QTVOPNVT APIs work station type parameter.

Workstation Types and Models

Value

Work Station
Type and
Model

Equivalent
Type and
Model Description

1 5251-11 24 x 80 monochrome display.

2 5291-1 5291-2 24 x 80 monochrome display.

3 5292-2 24 x 80 color graphics display. This type is also emulated by a
graphics work station feature.

4 5555-B01 5555-E01 24 x 80 monochrome double-byte character set (DBCS)
display. This type is emulated by a monochrome work station
feature that supports a DBCS display.

5 3196-A1 3196-A2
3196-B1
3196-B2
3476-EA

24 x 80 monochrome display. This type is emulated by a
monochrome work station feature. This is what the ASCII
devices emulate.

6 3179-2 3197-C1
3197-C2
3476-EC
5292-1

24 x 80 color display. This type is emulated by a color work
station feature.

7 3180-2 3197-D1
3197-D2
3197-W1
3197-W2

27 x 132 monochrome display.

8 3477-FC 27 x 132 wide-screen color display.

9 3477-FG 3477-FA
3477-FD
3477-FE
3477-FW

27 x 132 wide-screen monochrome display.

10 5555-C01 5555-F01 24 x 80 color double-byte character set (DBCS) display. This
type is emulated by a color work station feature that supports a
DBCS display.

11 5555-G01 24 x 80 double-byte character set (DBCS) monochrome
graphics display. This type is emulated by a monochrome work
station feature that supports a DBCS display.

12 5555-G02 24 x 80 color double-byte character set (DBCS) graphics
display. This type is emulated by a color graphics work station
feature that supports a DBCS display.

13 3486-BA 24 x 80 monochrome display.

14 3487-HA 3487-HG
3487-HW

24 x 80 or 27 x 132 monochrome display.

15 3487-HC 24 x 80 or 27 x 132 color display.

Usage Notes

All 5250 work stations, except 5555 Model B01, can operate as 5251 Model 11 work stations.1.

Selecting double-byte character set (DBCS) work stations requires the iSeries primary language to be
one of the DBCS national language versions (NLVs).

2.

Error Messages

Message ID Error Message Text

CPF1842 E Cannot access system value &1.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C81 E Value for key &1 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C84 E Key &1 required with value specified for key &2.

CPF3C86 E Required key &1 not specified.

CPF3C88 E Number of variable length records &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF87D7 E Cannot automatically select virtual device.

CPF87FA E Character identifier not valid.

CPF87FB E Cannot exceed maximum number of active Virtual Terminal sessions.

CPF87F0 E Virtual terminal type value &1 not valid.

CPF87F1 E Queue key length &1 not valid.

CPF87F2 E Virtual terminal handle &1 not valid.

CPF87F7 E Parameter value &1 not valid.

CPF87F8 E Unexpected internal system error occurred in program &1.

CPF87F9 E Keyboard language type &1 not valid.

CPF9E18 E Attempt made to exceed usage limit for product &1. User not added.

CPF9E71 E Grace period expired. Requesting user not added.

CPF9E73 E Expiration date &4 was reached.

CPF9E78 E The license key for product &1, license term &2, feature &3 is no longer valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

Top | Virtual Terminal APIs | APIs by category

Read from Virtual Terminal (QTVRDVT) API

 Required Parameter Group:

1 Virtual terminal handle Input Char(16)
2 Read information Output Char(10)
3 Data buffer Output Char(*)
4 Number of bytes to read Input Binary(4)
5 Data received Output Binary(4)
6 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Read from Virtual Terminal (QTVRDVT) API reads data from the virtual terminal into the server
program's data buffer. Your application should read data only if it has received an asynchronous notification
message on the data queue, or if the more data flag was set on a previous read operation. The data received is
in 5250 data stream format.

Only one full-screen display of data can be received at a time. If the data buffer is too small, partial displays
are received and the more data flag for the QTVRDVT API's read information parameter is set to 1.

Before working with 5250 data streams, be sure to see the IBM 5494 Functions Reference book, SC30-3533.
This book can be viewed online through the IBM Publications Center.

Authorities and Locks

None.

Required Parameter Group

Virtual terminal handle

INPUT; CHAR(16)

The reference code for the open virtual terminal path, created by the operating system with the Open
Virtual Terminal Path (QTVOPNVT) API.

Read information

OUTPUT; CHAR(10)

Information about the read operation. The characters and their meanings are:

1 The operation code, which gives the server program additional information about OS/400
status and what is expected of the server program. Valid values for this parameter are:

1 Invite

2 Output only

3 Put/get

4 Save display

5 Restore display

6 Read immediate

8 Read display

A Cancel invite

B Turn on message light

C Turn off message light

For detailed descriptions of these codes, see Read Operation Codes.

2 More data flag. Valid values for this parameter are:

0 There is no more data.

1 More data is available. Issue the read operation again to receive the additional data.
This flag is set if the buffer specified on input is not large enough to hold all of the
data received from the virtual terminal.

3 Key flag. Valid character values for this parameter are:

0 The Enter key was pressed.

1 The System Request key was pressed.

4-10 Reserved. These characters must be blank.

Data buffer

OUTPUT; CHAR(*)

The server program's buffer for receiving data from the virtual terminal. The data is a 5250 data
stream.

The QTVRDVT API does not lock the data buffer. Thus, other applications should not use the buffer
while the API is using it.

The data buffer should be large enough to hold the largest display of data expected. If it is not large
enough for all the data to fit, the more data flag of the read information parameter is set to 1.
Additional read requests must be performed, until all the remaining data is received and the more data
flag is set back to 0.

Number of bytes to read

INPUT; BINARY(4)

The number of bytes to read from the data buffer. This number must be smaller than or equal to the
size of the data buffer.

Data received

OUTPUT; BINARY(4)

The amount of data received from the virtual terminal in bytes. If no data is received from the virtual
terminal, 0 is returned. Some read operations do not return any data.

For graphic work stations, a maximum of 24 576 (24KB) bytes of data can be returned.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Read Operation Codes

The following table describes the operation codes that can be returned on a read request.

Read Operation Codes

Value Response Name Description

1 Invite The operating system and the application are ready to receive data. The
server program is expected to follow this with a write operation when data
becomes available from the client program.

2 Output only This read request returned some data. The server program should send the
data to the client program. However, the operating system is not ready to
receive data from the server program. The server program should not
request any data from the client program yet. This response usually occurs
because an application is performing several put operations to the virtual
terminal device. After the last put operation by the application, a put/get
operation code is usually returned on the read operation.

3 Put/get Data is returned from this read request and should be sent by the server
program to the client program. The operating system is ready to receive
data from the server program. The server program should wait for data
from the client program.

4 Save display The operating system expects the server program to obtain the data from
the current display and write the data to the virtual terminal. The operating
system saves the display for later use, such as returning the display to the
server program. The server program must indicate a save-display response
on the write operation and send the saved display as data (that is, the saved
display must be in the data buffer).

5 Restore display The data returned is a previously saved display. The server program
should send the data to the client program.

6 Read immediate No data is returned from this read request. The operating system expects
the server program to write data to the virtual terminal. Only data from
input fields should be written.

8 Read display No data is returned from this read request. The operating system expects
the server program to write data to the virtual terminal. The current display
should be written.

A Cancel invite No data is returned from this read request. The operating system expects
the server program to signal the client program to cancel the outstanding
invite operation. When it is canceled, the server program must perform a
write operation to the virtual terminal and indicate a cancel invite
response. Because the response has no data associated with it, the number
of bytes to write must be set to 0 for the write operation.

B Turn on message
light

No data is returned from this read request. A message has been received,
and the user should be notified. The server program should signal the
client program to turn on a display message indicator light or some other
indicator.

C Turn off message
light

No data is returned from this read request. The display message light or
some other indicator should be set off.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF87F2 E Virtual terminal handle &1 not valid.

CPF87F3 E Data buffer length &1 not valid.

CPF87F7 E Parameter value &1 not valid.

CPF87F8 E Unexpected internal system error occurred in program &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

Top | Virtual Terminal APIs | APIs by category

Send Request for OS/400 Function (QTVSNDRQ)
API

 Required Parameter Group:

1 Virtual terminal handle Input Char(16)
2 Request Input Binary(4)
3 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Send Request for OS/400 Function (QTVSNDRQ) API sends a request to the operating system to perform
a particular function.

Authorities and Locks

None.

Required Parameter Group

Virtual terminal handle

INPUT; CHAR(16)

The reference code for the open virtual terminal path, created with the Open Virtual Terminal Path
(QTVOPNVT) API.

Request

INPUT; BINARY(4)

The request to be processed by the operating system. Valid binary values are:

1 Cancel Previous Request: Allows the server program to cancel the previous OS/400 request.
This is similar to selecting option 2 on the iSeries System Request menu.

2 Send Break Message: Causes the operating system to issue a break message to the virtual
terminal. You can use this to determine whether the virtual terminal is still active.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF87F2 E Virtual terminal handle &1 not valid.

CPF87F6 E Request value &1 not valid.

CPF87F7 E Parameter value &1 not valid.

CPF87F8 E Unexpected internal system error occurred in program &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

Top | Virtual Terminal APIs | APIs by category

Write to Virtual Terminal (QTVWRTVT) API

 Required Parameter Group:

1 Virtual terminal handle Input Char(16)
2 Write information Input Char(10)
3 Data buffer Input Input
4 Number of bytes to write Input Binary(4)
5 Error code I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: No

The Write to Virtual Terminal (QTVWRTVT) API writes data from a server program's data buffer to a virtual
terminal. You can send one display to the virtual terminal during each write operation. You cannot send partial
or multiple displays.

Authorities and Locks

None.

Required Parameter Group

Virtual terminal handle

INPUT; CHAR(16)

The reference code for the open virtual terminal path, created with the Open Virtual Terminal Path
(QTVOPNVT) API.

Write information

INPUT; CHAR(10)

Information about the write operation. The information given in each character is as follows:

1 Key flag. Valid values are:

0 The Enter key was pressed.

1 The System Request key was pressed. The next read operation returns the iSeries
System Request menu.

2 The Attention key was pressed. In this case, the number of bytes to write must be 0.

3 The Test Request key was pressed.

4 The Help-in-Error key was pressed.

2 Operation code. This parameter describes the type of write operation to perform. Valid
values and their meanings are:

blank Put/get

2 Output only

3 Put/get

4 Save display

A Cancel invite

For detailed descriptions of these codes, see Write Operation Codes.

3 Data stream output error. The negative response code, for example X'10030101', is sent as
data in the data buffer.

blank 5250 data in data buffer

0 5250 data in data buffer

1 Data stream error; SNA response code data is in the data buffer.

4-10 Reserved. These characters must be blank.

Data buffer

INPUT; CHAR(*)

The server program's buffer containing the data to send to the virtual terminal.

The QTVWRTVT API does not lock the data buffer. Thus, other applications should not use the buffer
while the API is using it.

Number of bytes to write

INPUT; BINARY(4)

The number of bytes to write. This number must be smaller than or equal to the size of the data buffer.
Valid range of numbers is 0 through 24KB. This parameter must be 0 if character 1 of the write
information parameter is 2.

Some write operations do not write data.

Error code

I/O; CHAR(*)

The structure in which to return error information. For the format of the structure, see Error Code
Parameter.

Write Operation Codes

The following table describes the operation codes that can be used for the write information parameter.

Write Operation Codes

Value Name Description

blank Put/get Data is being sent to the virtual terminal. The virtual terminal server program is
ready for input.

2 Output only This write operation is in response to a read request that returned an output-only
read operation code.

3 Put/get See the description above.

4 Save display This write operation is in response to a read request that returned a save display
read operation code. No data is associated with this write operation; thus, the
data buffer length must be set to 0.

A Cancel invite This write operation is in response to a read request that returned a cancel invite
read operation code. No data is associated with this write operation; thus, the
data buffer length must be set to 0.

Error Messages

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF87D4 E Data sent exceeded the corresponding I/O request.

CPF87F2 E Virtual terminal handle &1 not valid.

CPF87F3 E Data buffer length &1 not valid.

CPF87F4 E Key flag &1 not valid.

CPF87F5 E Operation code response &1 not valid.

CPF87F7 E Parameter value &1 not valid.

CPF87F8 E Unexpected internal system error occurred in program &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

Top | Virtual Terminal APIs | APIs by category

	Virtual Terminal APIs (V5R2)
	Table of Contents
	Virtual Terminal APIs
	Distributed 5250 Emulation Model
	iSeries Job Information
	iSeries Subsystem Information
	Data Queues
	Preparing to Use the Virtual Terminal APIs
	Creating Your Own Virtual Controllers and Devices
	Developing Client and Server Programs
	Virtual Terminal Run-Time Example
	APIs
	Close Virtual Terminal Path (QTVCLOVT) API
	Open Virtual Terminal Path (QTVOPNVT) API
	Read from Virtual Terminal (QTVRDVT) API
	Send Request for OS/400 Function (QTVSNDRQ) API
	Write to Virtual Terminal (QTVWRTVT) API

