
UNIX-Type APIs (V5R2)

Secure Sockets APIs

Table of Contents

Secure Sockets APIs

OS/400 Global Secure Toolkit (GSKit) APIs

gsk_attribute_get_buffer() (Get character information about a secure session or an SSL
environment)

❍

gsk_attribute_get_cert_info() (Get information about a local or partner certificate)❍

gsk_attribute_get_enum() (Get enumerated information for a secure session or an SSL
environment)

❍

gsk_attribute_get_numeric_value() (Get numeric information about a secure session or an
SSL environment)

❍

gsk_attribute_set_buffer() (Set character information for a secure session or an SSL
environment)

❍

gsk_attribute_set_enum() (Set enumerated information for a secure session or an SSL
environment)

❍

gsk_attribute_set_numeric_value() (Set numeric information for a secure session or an SSL
environment)

❍

gsk_environment_close() (Close an SSL environment)❍

gsk_environment_init() (Initialize an SSL environment)❍

gsk_environment_open() (Get a handle for an SSL environment)❍

gsk_secure_soc_close() (Close a secure session)❍

gsk_secure_soc_init() (Negotiate a secure session)❍

gsk_secure_soc_misc() (Perform miscellaneous functions for a secure session)❍

gsk_secure_soc_open() (Get a handle for a secure session)❍

gsk_secure_soc_read() (Receive data on a secure session)❍

gsk_secure_soc_startInit() (Start asynchronous operation to negotiate a secure session)❍

gsk_secure_soc_startRecv() (Start asynchronous receive operation on a secure session)❍

gsk_secure_soc_startSend() (Start asynchronous send operation on a secure session)❍

gsk_secure_soc_write() (Send data on a secure session)❍

gsk_strerror() (Retrieve GSKit runtime error message)❍

●

OS/400 SSL_ APIs

QlgSSL_Init() (Initialize the current job for SSL (using NLS-enabled path name))❍

SSL_Create() (Enable SSL support for the specified socket descriptor)❍

●

SSL_Destroy() (End SSL support for the specified SSL session)❍

SSL_Handshake() (Initiate the SSL handshake protocol)❍

SSL_Init() (Initialize the current job for SSL)❍

SSL_Init_Application() (Establish the SSL security information)❍

SSL_Perror() (Print SSL error message)❍

SSL_Read() (Receive data from an SSL-enabled socket descriptor)❍

SSL_Strerror() (Retrieve SSL runtime error message)❍

SSL_Write() (Write data to an SSL-enabled socket descriptor)❍

Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

Secure sockets APIs
Secure sockets consists of the following APIs:

OS/400 Global Secure Toolkit (GSKit) APIs●

OS/400 SSL_ APIs●

The OS/400 Global Secure Toolkit (GSKit) and OS/400 SSL_ application programming interfaces (APIs)
are a set of functions that, when used with the OS/400 sockets APIs, are designed to enable and facilitate
secure communications between processes on a network. The GSK Secure Toolkit (GSKit) APIs are the
preferred set of APIs to be used to securely enable an application using Secure Sockets Layer/Transport
Layer Security (SSL/TLS). The SSL_ APIs also can be used to enable an application to use the SSL/TLS
Protocol.

SSL provides communications privacy over an open communications network (that is, the Internet). The
protocol allows client/server applications to communicate to prevent eavesdropping, tampering, and
message forgery. The SSL protocol connection security has three basic properties:

The connection is private. Encryption using secret keys is used to encrypt and decrypt the data. The
secret keys are generated on a per SSL session basis using an SSL handshake protocol. An SSL
handshake is a series of protocol packets sent in a particular sequence, which use asymmetric
cryptography to establish an SSL session. Symmetric cryptography is used for application data
encryption and decryption.

●

The peer's identity can be authenticated using asymmetric, or public key cryptography.●

The connection is reliable. Message transport includes a message integrity check using a keyed
Message Authentication Code (MAC). Secure hash functions are used for MAC computations.

●

When creating ILE programs or service programs that use the OS/400 GSKit or SSL_ APIs, you do not
need to explicitly bind to the secure sockets service program QSYS/QSOSSLSR because it is part of the
system binding directory.

The GSKit and SSL_ API documentation describes the GSKit and SSL_ APIs only. This documentation
does not include any information about how to configure or obtain any of the cryptographic objects, such as
a key ring file or certificate, that are required to fully enable an application for SSL. Some cryptographic
objects, such as certificate store files, are required parameters for GSKit and SSL_ APIs. Information on
how to configure the cryptographic objects required for the OS/400 secure socket APIs, or how to configure
a secure web server, which also uses the secure socket APIs, can be found using the following references:

HTTP Server: Documentation●

Secure Sockets Layer (SSL) under the Security topic. Plan for enabling SSL discusses what you
must install and configure before using secure sockets.

●

Cryptographic Hardware topic.●

For background information on GSKit and SSL_ APIs, see:

Secure Sockets in the Sockets programming topic.●

Top | UNIX-Type APIs | APIs by category

OS/400 Global Secure Toolkit (GSKit) APIs
OS/400 GSkit APIs, when used in addition to the existing OS/400 Sockets APIs, provide the functions
required for applications to establish secure communications. An application using GSKit for secure
communications basically is a client/server application written using sockets.

The Global Secure Toolkit (GSKit) APIs are:

gsk_attribute_get_buffer() (Get character information about a secure session or an SSL
environment) is used to obtain specific character string information about a secure session or an
SSL environment.

●

gsk_attribute_get_cert_info() (Get information about a local or partner certificate) is used to obtain
specific information about either the server or client certificate for a secure session or an SSL
environment.

●

gsk_attribute_get_enum() (Get enumerated information for a secure session or an SSL
environment) is used to obtain values for specific enumerated data for a secure session or an SSL
environment.

●

gsk_attribute_get_numeric_value() (Get numeric information about a secure session or an SSL
environment) is used to obtain specific numeric information about a secure session or an SSL
environment.

●

gsk_attribute_set_buffer() (Set character information for a secure session or an SSL environment)
is used to set a specified buffer attribute to a value inside the specified secure session or SSL
environment.

●

gsk_attribute_set_enum() (Set enumerated information for a secure session or an SSL environment)
is used to set a specified enumerated type attribute to an enumerated value in the secure session or
SSL environment.

●

gsk_attribute_set_numeric_value() (Set numeric information for a secure session or an SSL
environment) is used to set specific numeric information for a secure session or an SSL
environment.

●

gsk_environment_close() (Close an SSL environment) is used to close the SSL environment and
release all storage associated with the environment.

●

gsk_environment_init() (Initialize an SSL environment) is used to initialize the SSL environment
after any required attributes are set.

●

gsk_environment_open() (Get a handle for an SSL environment) is used to get storage for the SSL
environment.

●

gsk_secure_soc_close() (Close a secure session) is used to close a secure session and free all the
associated resources for that secure session.

●

gsk_secure_soc_init() (Negotiate a secure session) is used to negotiate a secure session, using the
attributes set for the SSL environment and the secure session.

●

gsk_secure_soc_misc() (Perform miscellaneous functions for a secure session) is used to perform
miscellaneous functions for a secure session.

●

gsk_secure_soc_open() (Get a handle for a secure session) is used to get storage for a secure
session, set default values for attributes, and return a handle that must be saved and used on secure
session-related function calls.

●

gsk_secure_soc_read() (Receive data on a secure session) is used by a program to receive data from
a secure session.

●

gsk_secure_soc_startInit() (Start asynchronous operation to negotiate a secure session) initiates●

an asynchronous negotiation of a secure session, using the attributes set for the SSL environment
and the secure session.

gsk_secure_soc_startRecv() (Start asynchronous receive operation on a secure session) is used to
initiate an asynchronous receive operation on a secure session.

●

gsk_secure_soc_startSend() (Start asynchronous send operation on a secure session) is used to
initiate an asynchronous send operation on a secure session.

●

gsk_secure_soc_write() (Send data on a secure session) is used by a program to write data on a
secure session.

●

gsk_strerror() (Retrieve GSKit runtime error message) is used to retrieve an error message and
associated text string that describes a return value that was returned from calling a GSKit API.

●

Note: These functions use header (include) files from the library QSYSINC, which is optionally installable.
Make sure QSYSINC is installed on your system before using any of the functions. See Header Files for
UNIX-Type Functions for the file and member name of each header file.

See the following examples in the Socket programming topic for more information:

Example: GSKit secure server with asynchronous data receive●

Example: GSKit secure server with asynchronous handshake●

Example: Establish a secure client with GSKit APIs●

Top | UNIX-Type APIs | APIs by category

gsk_attribute_get_buffer()--Get character
information about a secure session or an SSL
environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_get_buffer(gsk_handle my_gsk_handle,
 GSK_BUF_ID bufID,
 const char **buffer,
 int *bufSize);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_get_buffer() function is used to obtain specific character string information about a
secure session or an SSL environment. It can be used to obtain values such as certificate store file,
certificate store password, application ID, and ciphers.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

The handle for the secure session (my_session_handle)❍

The handle for the SSL environment (my_env_handle)❍

bufID (Input)

The following values can be used to retrieve information about the secure session or the SSL
environment that is either defaulted or explicitly set:

GSK_KEYRING_FILE (201) - buffer points to the name of the certificate store file being
used for the SSL environment.

❍

GSK_KEYRING_PW (202) - buffer points to the password for the certificate store file
being used for the SSL environment.

❍

GSK_KEYRING_LABEL (203) - buffer points to the certificate label associated with the
certificate in the certificate store identified by GSK_KEYRING_FILE to be used for the
secure session or SSL environment.

❍

GSK_OS400_APPLICATION_ID (6999) - buffer points to the application identifier
being used for the SSL environment.

❍

GSK_V2_CIPHER_SPECS (205) - buffer points to the list of available SSL Version 2
ciphers to be used for the secure session or the SSL environment. See the usage notes in
gsk_attribute_set_buffer() API for the format of the ciphers.

❍

GSK_V3_CIPHER_SPECS (206) - buffer points to the list of available SSL Version 3 or
TLS Version 1 ciphers to be used for the secure session or the SSL environment. See the
usage notes in gsk_attribute_set_buffer() API for the format of the ciphers.

❍

GSK_CONNECT_SEC_TYPE (208) - buffer points to a string containing "SSLV2,"
"SSLV3," or "TLSV1," depending on what was actually negotiated for use by the secure
session.

❍

GSK_CONNECT_CIPHER_SPEC (207) - buffer points to a one- or two-character string
describing the cipher specification negotiated for use by the secure session. See the usage
notes in gsk_attribute_set_buffer() API for the format of the ciphers.

❍

buffer (Output)

The address of the location to place the pointer that will point to the buffer containing the requested
information. The storage for this information was allocated by the system from user heap storage
and will be freed by the gsk_secure_soc_close() API or the gsk_environment_close() API.

The data in the buffer is assumed to be represented in the CCSID (coded character set identifier)
currently in effect for the job. If the CCSID of the job is 65535, this buffer is assumed to be
represented in the default CCSID of the job.

bufSize (Output)

The address of the location to store the length of the requested information pointed to by buffer.

Authorities

No authorization is required.

Return Value

gsk_attribute_get_buffer()

returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_get_buffer() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The specified bufID was not valid.

[GSK_INVALID_HANDLE]

The specified handle was not valid.

[GSK_AS400_ERROR_INVALID_POINTER]

The buffer or bufSize pointer is not valid.

[GSK_ERROR_UNSUPPORTED]

The bufID currently is not supported.

[GSK_ERROR_IO]

An error occurred in SSL processing. Check the errno value.

Error Conditions

When the gsk_attribute_get_buffer() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR] Interrupted function call.
[EDEADLK] Resource deadlock avoided.
[ETERM] Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a
description of the errno.

Usage Notes

The following GSK_BUF_ID values may be retrieved from the SSL environment after
gsk_environment_open().

GSK_KEYRING_FILE❍

GSK_KEYRING_PW❍

GSK_KEYRING_LABEL❍

GSK_OS400_APPLICATION_ID❍

GSK_V2_CIPHER_SPECS❍

GSK_V3_CIPHER_SPECS❍

1.

The following GSK_BUF_ID values may be retrieved from the secure session after
gsk_secure_soc_open().

GSK_KEYRING_LABEL❍

GSK_V2_CIPHER_SPECS❍

GSK_V3_CIPHER_SPECS❍

GSK_CONNECT_SEC_TYPE❍

GSK_CONNECT_CIPHER_SPEC❍

2.

The following GSK_BUF_ID values are defaulted after gsk_secure_soc_open() and will be set for
the secure session after gsk_secure_soc_init() or gsk_secure_soc_misc().

GSK_CONNECT_SEC_TYPE❍

GSK_CONNECT_CIPHER_SPEC❍

3.

You can reference the buffer pointer as long as the handle for the secure session or the SSL
environment is still open.

4.

Related Information

gsk_attribute_set_buffer()--Set character information for a secure session or an SSL environment●

gsk_attribute_get_enum()--Get enumerated information about a secure session or a SSL
environment.

●

gsk_attribute_get_numeric_value()--Get numeric information about a secure session or a SSL
environment

●

gsk_attribute_get_cert_info()--Get information about a local or partner certificate●

gsk_environment_close()--Close the SSL environment●

gsk_environment_init()--Initialize an SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_secure_soc_close()--Close a secure session●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_attribute_get_cert_info()--Get information
about a local or partner certificate

 Syntax

 #include <gskssl.h>

 int gsk_attribute_get_cert_info(gsk_handle my_gsk_handle,
 GSK_CERT_ID certID,
 const gsk_cert_data_elem **certDataElem,
 int *certDataElemCount);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_get_cert_info() function is used to obtain specific information about either the server or client
certificate for a secure session or an SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

The handle for the secure session. (my_session_handle)❍

The handle for the SSL environment. (my_env_handle)❍

certID (Input)

Indicates one of the following:

GSK_LOCAL_CERT_INFO (701) - Retrieve certificate data information for the local
certificate that may be sent to the remote connection. This can be retrieved using the SSL
environment handle or the secure session handle.

❍

GSK_PARTNER_CERT_INFO (700) - Retrieve certificate data information for the partner
certificate that may have been received during the SSL handshake. This can only be retrieved
using the secure session handle.

❍

certDataElem (Output)

The address of a pointer to the certificate information returned from this function call. On output,
certDataElem will contain the pointer to the information. The storage for this information was allocated
by the system from user heap storage and will be freed by the gsk_secure_soc_close() API or the
gsk_environment_close() API.

certDataElemCount (Output)

A pointer to an integer that will contain the number of certificate data elements returned from this
function call.

Authorities

No authorization is required.

Return Value

gsk_attribute_get_cert_info() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_get_cert_info() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The specified certID was not valid.

[GSK_INVALID_HANDLE]

The handle passed in to this function was not valid.

[GSK_INVALID_STATE]

One of the following occurred:

A SSL environment handle was specified with a certID of GSK_LOCAL_CERT_INFO before a
gsk_environment_init() has been issued.

❍

A secure session handle was specified before a gsk_secure_soc_init() has been issued.❍

[GSK_AS400_ERROR_INVALID_POINTER]

The certDataElem or certDataElemCount pointer is not valid.

[GSK_INSUFFICIENT_STORAGE]

Not able to allocate storage for the requested operation.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_get_cert_info() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a description of
the errno.

Usage Notes

After gsk_attribute_get_cert_info() returns with a GSK_OK return value, certDataElem points to an
array of structures of type gsk_cert_data_elem. The following structure is the gsk_cert_data_elem
structure:

typedef struct gsk_cert_data_elem_t
{
 GSK_CERT_DATA_ID cert_data_id;
 char *cert_data_p;
 int cert_data_l;

} gsk_cert_data_elem;

Each element consists of the following fields:

cert_data_id is the identifier for each element of the certificate. The following are the valid
identifiers:

CERT_BODY_DER (600)■

CERT_BODY_BASE64 (601)■

CERT_SERIAL_NUMBER (602)■

CERT_COMMON_NAME (610)■

CERT_LOCALITY (611)■

CERT_STATE_OR_PROVINCE (612)■

CERT_COUNTRY (613)■

CERT_ORG (614)■

CERT_ORG_UNIT (615)■

CERT_DN_PRINTABLE (616)■

CERT_DN_DER (617)■

CERT_POSTAL_CODE (618)■

CERT_EMAIL (619)■

CERT_ISSUER_COMMON_NAME (650)■

CERT_ISSUER_LOCALITY (651)■

CERT_ISSUER_STATE_OR_PROVINCE (652)■

CERT_ISSUER_COUNTRY (653)■

CERT_ISSUER_ORG (654)■

CERT_ISSUER_ORG_UNIT (655)■

CERT_ISSUER_DN_PRINTABLE (656)■

CERT_ISSUER_DN_DER (657)■

CERT_ISSUER_POSTAL_CODE (658)■

❍

1.

CERT_ISSUER_EMAIL (659)■

cert_data_p points to the specific certificate data.❍

cert_data_l contains the length of the data element.❍

Many fields are character strings and are terminated with a trailing null. The length does not include the
null.

2.

Other fields (CERT_BODY_DER, CERT_DN_DER, and so on) may have imbedded nulls and therefore
must use the integer length for processing.

3.

Not all certificates contain all fields, so the number of fields returned depends on the certificate being
processed. This open-ended approach means new fields can be added from time to time without
disrupting existing usage.

4.

All certificate data is returned in ASCII CCSID 850.5.

You can reference the certDataElem pointers as long as the handle for the secure session or SSL
environment is open.

6.

Related Information

gsk_attribute_get_buffer()--Get character information about a secure session or a SSL environment●

gsk_attribute_get_enum()--Get enumerated information about a secure session or an SSL environment.●

gsk_attribute_get_numeric_value()--Get numeric information about a secure session or an SSL
environment

●

gsk_environment_close()--Close the SSL environment●

gsk_environment_init()--Initialize an SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_secure_soc_close()--Close a secure session●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_attribute_get_enum()--Get enumerated
information about a secure session or an SSL
environment>

 Syntax

 #include <gskssl.h>

 int gsk_attribute_get_enum(gsk_handle my_gsk_handle,
 GSK_ENUM_ID enumID,
 GSK_ENUM_VALUE *enumValue);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_get_enum() function is used to obtain values for specific enumerated data for a secure
session or an SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

The handle for the secure session. (my_session_handle)❍

The handle for the SSL environment. (my_env_handle)❍

enumID (Input)

The following values can be used to retrieve information about the secure session or SSL
environment that is either defaulted or explicitly set:

GSK_PROTOCOL_SSLV2 (403) - Whether the SSL Version 2 protocol is enabled or
disabled for this secure session or SSL environment. The enumValue returned will be one
of the following values:

GSK_PROTOCOL_SSLV2_ON (510) - SSL Version 2 ciphers are enabled.■

GSK_PROTOCOL_SSLV2_OFF (511) - SSL Version 2 ciphers are disabled.■

❍

GSK_PROTOCOL_SSLV3 (404) - Whether the SSL Version 3 protocol is enabled or
disabled for this secure session or SSL environment. The enumValue returned will be one
of the following values:

GSK_PROTOCOL_SSLV3_ON (512) - SSL Version 3 ciphers are enabled.■

❍

GSK_PROTOCOL_SSLV3_OFF (513) - SSL Version 3 ciphers are disabled.■

GSK_PROTOCOL_TLSV1 (407) - Whether the TLS Version 1 protocol is enabled or
disabled for this secure session or SSL environment. The enumValue returned will be one
of the following values:

GSK_PROTOCOL_TLSV1_ON (518) - TLS Version 1 ciphers are enabled.■

GSK_PROTOCOL_TLSV1_OFF (519) - TLS Version 1 ciphers are disabled.■

❍

GSK_SESSION_TYPE (402) - Type of handshake to be used for this secure session or
SSL environment. enumValue returned will be one of the following values:

GSK_CLIENT_SESSION (507) - Secure sessions act as clients.■

GSK_SERVER_SESSION (508) - Secure sessions act as a server with no client
authentication. The client certificate is not requested.

■

GSK_SERVER_SESSION_WITH_CL_AUTH (509) - Secure sessions act as a
server that requests the client to send a certificate. The value for
GSK_CLIENT_AUTH_TYPE will determine what happens if the client
certificate is not valid or not provided.

■

❍

GSK_CLIENT_AUTH_TYPE (401) - Type of client authentication to use for this
session. enumValue must specify one of the following:

GSK_CLIENT_AUTH_FULL (503) - All received certificates are validated. If a
certificate that is not valid is received, the secure session does not start, and an
error code is returned from gsk_secure_soc_init().

If no certificate is sent by the client, the start of the secure session is successful.
Applications can detect this situation by checking the
GSK_CERTIFICATE_VALIDATION_CODE enumId via
gsk_attribute_get_numeric value(). A numValue of
GSK_ERROR_NO_CERTIFICATE will indicate no certificate was sent by client.
In this case, the application is responsible for the authentication of the client.

■

GSK_CLIENT_AUTH_PASSTHRU (505) - All received certificates are
validated. If validation is successful or validation fails because the certificate is
self-signed, expired, or does not have a trusted root, the secure session will start.
For the other validation failure cases the secure session does not start, and an error
code is returned from gsk_secure_soc_init(). Applications can detect the situation
where the secure session started but validation failed by checking the
GSK_CERTIFICATE_VALIDATION_CODE enumId via
gsk_attribute_get_numeric value(). The numValue will indicate the certificate
validation return code for client's certificate. In this situation, the application is
responsible for the authentication of the client.

If no certificate is sent by the client, the start of the secure session is successful.
Applications can detect this situation by checking the
GSK_CERTIFICATE_VALIDATION_CODE enumId as well. A numValue of
GSK_ERROR_NO_CERTIFICATE will indicate no certificate was sent by client.
In this case, the application is also responsible for the authentication of the client.

■

GSK_OS400_CLIENT_AUTH_REQUIRED (6995) - All received certificates
are validated. If a certificate that is not valid is received, the secure session does

■

❍

not start, and an error code is returned from gsk_secure_soc_init(). If no certificate
is sent by the client, the secure session does not start, and an error code of
GSK_ERROR_NO_CERTIFICATE is returned from gsk_secure_soc_init().

GSK_PROTOCOL_USED (405) - Which protocol was used for this secure session. The
enumValue returned will be one of the following values:

GSK_PROTOCOL_USED_SSLV2 (514) - The protocol used for this secure
session is SSL Version 2.

■

GSK_PROTOCOL_USED_SSLV3 (515) - The protocol used for this secure
session is SSL Version 3.

■

GSK_PROTOCOL_USED_TLSV1 (520) - The protocol used for this secure
session is TLS Version 1.

■

❍

GSK_SID_FIRST (406) - Whether a full handshake or abbreviated handshake occurred
for this secure session. The enumValue returned will be one of the following values:

GSK_SID_IS_FIRST (516) - A full handshake occurred for this secure session.■

GSK_SID_NOT_FIRST (517) - An abbreviated handshake occurred for this
secure session.

■

❍

enumValue (Output)

Specifies a pointer to an integer in which to place the value of the requested information.

Authorities

No authorization is required.

Return Value

gsk_attribute_get_enum() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_get_enum() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The specified enumID was not valid.

[GSK_INVALID_HANDLE]

The specified handle was not valid.

[GSK_AS400_ERROR_INVALID_POINTER]

The enumValue pointer is not valid.

[GSK_ERROR_UNSUPPORTED]

The enumID is currently not supported.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_get_enum() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a
description of the errno.

Usage Notes

The following GSK_ENUM_ID values may be retrieved from the SSL environment after
gsk_environment_open().

GSK_PROTOCOL_SSLV2❍

GSK_PROTOCOL_SSLV3❍

GSK_PROTOCOL_TLSV1❍

GSK_SESSION_TYPE❍

GSK_CLIENT_AUTH_TYPE❍

1.

The following GSK_ENUM_ID values may be retrieved from the secure session after
gsk_secure_soc_open().

GSK_PROTOCOL_SSLV2❍

GSK_PROTOCOL_SSLV3❍

GSK_PROTOCOL_TLSV1❍

GSK_PROTOCOL_USED❍

GSK_SESSION_TYPE❍

GSK_CLIENT_AUTH_TYPE❍

GSK_SID_FIRST❍

2.

The following GSK_ENUM_ID values are defaulted after gsk_secure_soc_open() and will be set
for the secure session after gsk_secure_soc_init() or gsk_secure_soc_misc().

GSK_PROTOCOL_USED❍

3.

GSK_SID_FIRST❍

Related Information

gsk_attribute_get_buffer()--Get character information about a secure session or an SSL
environment

●

gsk_attribute_get_numeric_value()--Get numeric information about a secure session or an SSL
environment

●

gsk_attribute_get_cert_info()--Get information about a local or partner certificate●

gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment●

gsk_environment_close()--Close the SSL environment●

gsk_environment_init()--Initialize an SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_secure_soc_close()--Close a secure session●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_attribute_get_numeric_value()--Get
numeric information about a secure session or
an SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_get_numeric_value(gsk_handle my_gsk_handle,
 GSK_NUM_ID numID,
 int *numValue);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_get_numeric_value() function is used to obtain specific numeric information about a
secure session or an SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

The handle for the secure session. (my_session_handle)❍

The handle for the SSL environment. (my_env_handle)❍

numID (Input)

The following values can be used to retrieve information about the secure session or the SSL
environment that is either defaulted or explicitly set:

GSK_FD (300) - numValue is a socket descriptor to be used for this secure session.❍

GSK_V2_SESSION_TIMEOUT (301) - SSL Version 2 session time-out for the
environment. numValue must be in the range 0-100 seconds.

❍

GSK_V3_SESSION_TIMEOUT (302) - SSL Version 3 and TLS version 1 session
time-out for the environment. numValue must be in the range 0-86400 seconds.

❍

GSK_CERTIFICATE_VALIDATION_CODE (6996) - The certificate validation return
code for the local or peer certificate.

❍

GSK_HANDSHAKE_TIMEOUT (6998) - SSL handshake time-out for the secure
session or the SSL environment.

❍

numValue (Output)

A pointer to an integer containing the value of the requested information.

Authorities

No authorization is required.

Return Value

gsk_attribute_get_numeric_value() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_get_numeric_value() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The specified numID was not valid.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_AS400_ERROR_INVALID_POINTER]

The numValue pointer is not valid.

[GSK_ERROR_UNSUPPORTED]

The numID is currently not supported.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_get_numeric_value() API fails with return code [GSK_ERROR_IO], errno can
be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a
description of the errno.

,p>

Usage Notes

The following GSK_NUM_ID values may be retrieved from the SSL environment after
gsk_environment_open():

GSK_V2_SESSION_TIMEOUT❍

GSK_V3_SESSION_TIMEOUT❍

GSK_HANDSHAKE_TIMEOUT❍

1.

The following GSK_NUM_ID value may be retrieved from the SSL environment after
gsk_environment_init().

GSK_CERTIFICATE_VALIDATION_CODE - Will return the certificate validation
return code for the local certificate.

❍

2.

The following GSK_NUM_ID value may be retrieved from each individual secure session after
gsk_secure_soc_init().

GSK_CERTIFICATE_VALIDATION_CODE - Will return the certificate validation
return code for the peer's certificate.

❍

3.

The following GSK_NUM_ID values may be retrieved from each individual secure session after
gsk_secure_soc_open().

GSK_FD❍

GSK_HANDSHAKE_TIMEOUT❍

4.

The following GSK_NUM_ID values are currently not supported in the OS/400 implementation:

GSK_V2_SIDCACHE_SIZE❍

GSK_V3_SIDCACHE_SIZE❍

GSK_LDAP_SERVER_PORT❍

5.

Related Information

gsk_attribute_get_buffer()--Get character information about a secure session or an SSL
environment

●

gsk_attribute_get_enum()--Get enumerated information about a secure session or an SSL
environment.

●

gsk_attribute_get_cert_info()--Get information about a local or partner certificate●

gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL
environment

●

gsk_environment_init()--Initialize an SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_attribute_set_buffer()--Set character
information for a secure session or an SSL
environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_set_buffer(gsk_handle my_gsk_handle,
 GSK_BUF_ID bufID,
 const char *buffer,
 int bufSize);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_set_buffer() function is used to set a specified buffer attribute to a value inside the
specified secure session or SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

The handle for the secure session. (my_session_handle)❍

The handle for the SSL environment. (my_env_handle)❍

bufID (Input)

Indicates one of the following operations:

GSK_KEYRING_FILE (201) - buffer points to the name of the certificate store file to be
used for the secure session or SSL environment. Authority to the certificate store file will
be checked on the gsk_environment_init() API or the gsk_secure_soc_init() API.

❍

GSK_KEYRING_PW (202) - buffer points to the password for the certificate store file to
be used for the secure session or SSL environment.

❍

GSK_KEYRING_LABEL (203) - buffer points to the certificate label associated with the
certificate in the certificate store to be used for the secure session or SSL environment.

❍

GSK_OS400_APPLICATION_ID (6999) - buffer points to the application identifier to be❍

used for the SSL environment.

GSK_V2_CIPHER_SPECS (205) - buffer points to the list of SSL Version 2 ciphers to be
used for the secure session or the SSL environment.

❍

GSK_V3_CIPHER_SPECS (206) - buffer points to the list of SSL Version 3/TLS
Version 1 ciphers to be used for the secure session or the SSL environment.

❍

buffer (Input)

A pointer to the information to be used for the secure session or the SSL environment.

The data in the buffer is assumed to be represented in the CCSID (coded character set identifier)
currently in effect for the job. If the CCSID of the job is 65535, this buffer is assumed to be
represented in the default CCSID of the job.

bufSize (Input)

The length of the buffer information. If bufSize is specified as 0, the length of bufSize will be
calculated.

Authorities

No authorization is required.

Return Value

gsk_attribute_set_buffer() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_set_buffer() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The bufID value is not a valid identifier.

[GSK_ATTRIBUTE_INVALID_LENGTH]

The bufSize specified or the length of buffer is not valid.

[GSK_INVALID_HANDLE]

my_gsk_handle is not a valid handle that was received from issuing gsk_environment_open() or
gsk_secure_soc_open().

[GSK_AS400_ERROR_INVALID_POINTER]

The buffer pointer is not valid.

[GSK_INVALID_STATE]

One of the following occurred:

bufID cannot be set for a SSL environment after a gsk_environment_init() has been❍

issued.

bufID cannot be set for a secure session after a gsk_secure_soc_init() has been issued.❍

[GSK_ERROR_UNSUPPORTED]

The bufID value is currently not supported.

[GSK_INSUFFICIENT_STORAGE]

Not able to allocate storage for the requested operation.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_set_buffer() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a
description of the errno.

Usage Notes

The following GSK_BUF_ID values may be set in the SSL environment after
gsk_environment_open() and before gsk_environment_init(). They are used as defaults for
subsequent secure sessions:

GSK_KEYRING_FILE❍

GSK_KEYRING_PW❍

GSK_KEYRING_LABEL❍

GSK_OS400_APPLICATION_ID❍

GSK_V2_CIPHER_SPECS❍

GSK_V3_CIPHER_SPECS❍

1.

The following GSK_BUF_ID values may be set for each individual secure session after
gsk_secure_soc_open() and before gsk_secure_soc_init(). These values will override values set in
the SSL environment:

2.

GSK_KEYRING_LABEL❍

GSK_V2_CIPHER_SPECS❍

GSK_V3_CIPHER_SPECS❍

The following GSK_V3_CIPHER_SPECS values are the SSL Version 3 ciphers and the TLS
Version 1 ciphers supported:

 01 = NULL MD5
 02 = NULL SHA
 03 = RC4 MD5 EXPORT
 04 = RC4 MD5 US
 05 = RC4 SHA US
 06 = RC2 MD5 EXPORT
 09 = DES SHA EXPORT
 0A = Triple DES SHA US
 2F = AES SHA US
 NULL = Default cipher specs are used (may change in future)
 For AC3 = '04050A090306'
 For AC2 = '090306'

3.

The following GSK_V2_CIPHER_SPECS values are the SSL Version 2 ciphers supported:

 1 = RC4 US
 2 = RC4 EXPORT
 3 = RC2 US
 4 = RC2 EXPORT
 6 = DES 56-bit
 7 = Triple DES US
 NULL = Default cipher specs are used (may change in future)
 For AC3 = '136724'
 For AC2 = '624'

4.

The following GSK_BUF_ID values currently are not supported in the OS/400 implementation:

GSK_KEYRING_STASH_FILE❍

GSK_LDAP_SERVER❍

GSK_LDAP_USER❍

GSK_LDAP_USER_PW❍

5.

The following are the possible scenerios for the use of GSK_KEYRING_LABEL:

GSK_KEYRING_LABEL can be set after gsk_environment_open() and before
gsk_environment_init() to indicate which certificate in the GSK_KEYRING_FILE to
use for the secure environment.

❍

GSK_KEYRING_LABEL can be set after gsk_secure_soc_open() and before
gsk_secure_soc_init() to indicate which certificate in the GSK_KEYRING_FILE to use
for the secure session.

❍

If GSK_KEYRING_LABEL is not set, the default certificate label in the❍

6.

GSK_KEYRING_FILE is used for the SSL environment.

If GSK_OS400_APPLICATION_ID is set, the GSK_KEYRING_FILE, the
GSK_KEYRING_LABEL, and the GSK_KEYRING_PASSWORD values are ignored.

7.

Related Information

gsk_attribute_get_buffer()--Get character information about a secure session or an SSL
environment

●

gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment.●

gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL
environment

●

gsk_environment_init()--Initialize an SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_attribute_set_enum()--Set enumerated
information for a secure session or an SSL
environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_set_enum(gsk_handle my_gsk_handle,
 GSK_ENUM_ID enumID,
 GSK_ENUM_VALUE enumValue);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_set_enum() function is used to set a specified enumerated type attribute to an
enumerated value in the secure session or SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

The handle for the secure session. (my_session_handle)❍

The handle for the SSL environment. (my_env_handle)❍

enumID (Input)

Indicates one of the following operations:

GSK_PROTOCOL_SSLV2 (403) - Enables or disables the SSL Version 2 protocol.
enumValue must specifiy one of the following:

GSK_PROTOCOL_SSLV2_ON (510) - Enable SSL Version 2 ciphers.■

GSK_PROTOCOL_SSLV2_OFF (511) - Disable SSL Version 2 ciphers.■

❍

GSK_PROTOCOL_SSLV3 (404) - Enables or disables the SSL Version 3 protocol.
enumValue must specifiy one of the following:

GSK_PROTOCOL_SSLV3_ON (512) - Enable SSL Version 3 ciphers.■

GSK_PROTOCOL_SSLV3_OFF (513) - Disable SSL Version 3 ciphers.■

❍

GSK_PROTOCOL_TLSV1 (407) - Enables or disables the TLS Version 1 protocol.
enumValue must specifiy one of the following:

GSK_PROTOCOL_TLSV1_ON (518) - Enable TLS Version 1 ciphers.■

GSK_PROTOCOL_TLSV1_OFF (519) - Disable TLS Version 1 ciphers.■

❍

GSK_SESSION_TYPE (402) - Type of handshake to be used for this secure session or
SSL environment. enumValue must specifiy one of the following operations:

GSK_CLIENT_SESSION (507) - Secure sessions act as clients.■

GSK_SERVER_SESSION (508) - Secure sessions act as a server with no client
authentication. The client is not asked for a certificate.

■

GSK_SERVER_SESSION_WITH_CL_AUTH (509) - Secure sessions act as a
server that requests the client to send a certificate. The value for
GSK_CLIENT_AUTH_TYPE will determine what happens if the client
certificate is not valid or not provided.

■

❍

GSK_CLIENT_AUTH_TYPE (401) - Type of client authentication to use for this
session. enumValue must specify one of the following:

GSK_CLIENT_AUTH_FULL (503) - All received certificates are validated. If
an invalid certificate is received, the secure session does not start, and an error
code is returned from gsk_secure_soc_init().

If no certificate is sent by the client, the start of the secure session is successful.
Applications can detect this situation by checking the
GSK_CERTIFICATE_VALIDATION_CODE enumId through
gsk_attribute_get_numeric value(). A numValue of
GSK_ERROR_NO_CERTIFICATE will indicate no certificate was sent by client.
In this case, the application is responsible for the authentication of the client.

■

GSK_CLIENT_AUTH_PASSTHRU (505) - All received certificates are
validated. If validation is successful or validation fails because the certificate is
self-signed, expired, or does not have a trusted root, the secure session will start.
For the other validation failure cases the secure session does not start, and an error
code is returned from gsk_secure_soc_init(). Applications can detect the situation
where the secure session started but validation failed by checking the
GSK_CERTIFICATE_VALIDATION_CODE enumId via
gsk_attribute_get_numeric value(). The numValue will indicate the certificate
validation return code for client's certificate. In this situation, the application is
responsible for the authentication of the client.

If no certificate is sent by the client, the start of the secure session is successful.
Applications can detect this situation by checking the
GSK_CERTIFICATE_VALIDATION_CODE enumId as well. A numValue of
GSK_ERROR_NO_CERTIFICATE will indicate no certificate was sent by client.
In this case, the application is also responsible for the authentication of the client.

■

GSK_OS400_CLIENT_AUTH_REQUIRED (6995) - All received certificates
are validated. If a certificate that is not valid is received, the secure session does
not start, and an error code is returned from gsk_secure_soc_init(). If no certificate
is sent by the client, the secure session does not start, and an error code of
GSK_ERROR_NO_CERTIFICATE is returned from gsk_secure_soc_init().

■

❍

enumValue (Input)

An enumerated type appropiate to the enumID.

Authorities

No authorization is required.

Return Value

gsk_attribute_set_enum() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_set_enum() was successful.

[GSK_ATTRIBUTE_INVALID_ENUMERATION]

The enumeration specified for the enumValue was not valid.

[GSK_ATTRIBUTE_INVALID_ID]

The enumID specified was not valid.

[GSK_INVALID_STATE]

One of the following occurred:

The enumID cannot be set after a gsk_environment_init() has been issued.❍

The enumID cannot be set after a gsk_secure_soc_init() has been issued.❍

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_ERROR_UNSUPPORTED]

The enumID is currently not supported.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_set_enum() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a
description of the errno.

Usage Notes

The following GSK_ENUM_ID values may be set in the SSL environment after
gsk_environment_open() and before gsk_environment_init(). They are used as defaults for
subsequent secure sessions:

GSK_PROTOCOL_SSLV2❍

GSK_PROTOCOL_SSLV3❍

GSK_PROTOCOL_TLSV1❍

GSK_SESSION_TYPE❍

GSK_CLIENT_AUTH_TYPE❍

1.

The following GSK_ENUM_ID values may be set for each individual secure session after
gsk_secure_soc_open() and before gsk_secure_soc_init(). These values will override values set in
the SSL environment:

GSK_PROTOCOL_SSLV2❍

GSK_PROTOCOL_SSLV3❍

GSK_PROTOCOL_TLSV1❍

GSK_SESSION_TYPE❍

GSK_CLIENT_AUTH_TYPE❍

2.

Related Information

gsk_attribute_get_enum()--Get enumerated information about a secure session or an SSL
environment.

●

gsk_attribute_set_buffer()--Set character string information for a secure session or an SSL
environment.

●

gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL
environment

●

gsk_environment_init()--Initialize an SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_attribute_set_numeric_value()--Set
numeric information for a secure session or an
SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_set_numeric_value(gsk_handle my_gsk_handle,
 GSK_NUM_ID numID,
 int numValue);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_set_numeric_value() function is used to set specific numeric information for a secure
session or an SSL environment.

Parameters

my_gsk_handle (Input)

One of the following handles:

The handle for the secure session. (my_session_handle)❍

The handle for the SSL environment. (my_env_handle)❍

numID (Input)

One of the following operations:

GSK_FD (300) - numValue is a socket descriptor to be used for this secure session.❍

GSK_V2_SESSION_TIMEOUT (301) - numValue is the SSL Version 2 session time-out
for the SSL environment. numValue must be in the range 0-100 seconds.

❍

GSK_V3_SESSION_TIMEOUT (302) - numValue is the SSL Version 3 and TLS
Version 1 session time-out for the SSL environment. numValue must be in the range
0-86400 seconds (24 hours).

❍

GSK_HANDSHAKE_TIMEOUT (6998) - numValue is the SSL handshake time-out for
the secure session or the SSL environment. numValue must be in seconds. A numValue of
0 is the default which means to wait forever.

❍

numValue (Input)

An integer value to be updated for the specified numID.

Authorities

No authorization is required.

Return Value

gsk_attribute_set_numeric_value() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_set_numeric_value() was successful.

[GSK_INVALID_STATE]

One of the following occurred:

numID cannot be set in the SSL environment after a gsk_environment_init() has been
issued.

❍

numID cannot be set for a secure session after a gsk_secure_soc_init() has been issued.❍

[GSK_ATTRIBUTE_INVALID_ID]

The numID specified was not valid.

[GSK_ATTRIBUTE_INVALID_NUMERIC_VALUE]

The numValue specified was not valid.

[GSK_INVALID_HANDLE]

A handle was specified that was not valid.

[GSK_ERROR_UNSUPPORTED]

The numID is currently not supported.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_set_numeric_value() API fails with return code [GSK_ERROR_IO], errno can
be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a
description of the errno.

Usage Notes

The following GSK_NUM_ID values may be set in the SSL environment after
gsk_environment_open() and before gsk_environment_init(). They are used as defaults for
subsequent secure sessions:

GSK_V2_SESSION_TIMEOUT❍

GSK_V3_SESSION_TIMEOUT❍

GSK_HANDSHAKE_TIMEOUT❍

1.

The following GSK_NUM_ID values may be set for each individual secure session after
gsk_secure_soc_open() and before gsk_secure_soc_init(). These values will override values set in
the SSL environment:

GSK_FD❍

GSK_HANDSHAKE_TIMEOUT❍

2.

The following GSK_NUM_ID values are currently not supported in the OS/400 implementation:

GSK_V2_SIDCACHE_SIZE❍

GSK_V3_SIDCACHE_SIZE❍

GSK_LDAP_SERVER_PORT❍

3.

The GSK_FD value is a socket descriptor that must have an address family of AF_INET or
AF_INET6 and a socket type of SOCK_STREAM.

4.

Related Information

gsk_attribute_get_numeric_value()--Get numeric information about a secure session or an SSL
environment

●

gsk_attribute_set_buffer()--Set character string information for a secure session or an SSL
environment.

●

gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment.●

gsk_environment_init()--Initialize an SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_environment_close()--Close an SSL
environment

 Syntax

 #include <gskssl.h>

 int gsk_environment_close(gsk_handle *my_env_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_environment_close() function is used to close the SSL environment and release all storage
associated with the environment.

Parameters

my_env_handle (Input)

A pointer to the handle for the SSL environment to be closed.

Authorities

No authorization is required.

Return Value

gsk_environment_close() returns an integer. Possible values are:

[GSK_OK]

gsk_environment_close() was successful.

[GSK_CLOSE_FAILED]

An error occurred during close processing.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_AS400_ERROR_INVALID_POINTER]

my_env_handle pointer is not valid.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_environment_close() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a
description of the errno.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

You should close all secure sessions using the SSL environment prior to doing the
gsk_environment_close().

1.

If gsk_environment_close() is issued prior to all secure sessions being closed, the active secure
sessions will continue to work. The resources for the SSL environment will not be freed up until
after the last secure session closes. No new secure sessions will be allowed to start using the closed
SSL environment.

2.

Related Information

gsk_environment_init()--Initialize an SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_secure_soc_close()--Close a secure session●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_environment_init()--Initialize an SSL
environment

 Syntax

 #include <gskssl.h>

 int gsk_environment_init(gsk_handle my_env_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_environment_init() function is used to initialize the SSL environment after any required attributes
are set. The certificate store file is opened and other operations such as accessing information in the
registration facility are performed to set up this environment. After this function call is issued, SSL is ready
to process secure session requests.

Parameters

my_env_handle (Input)

The handle identifying the SSL environment that will be initialized.

Authorities

Authorization of *R (allow access to the object) to the certificate store file and its associated files is
required. Authorization of *X (allow use of the object) to each directory of the path name of the certificate
store file and its associated files is required.

Return Value

gsk_environment_init() returns an integer. Possible values are:

[GSK_OK]

gsk_environment_init() was successful.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_INVALID_STATE]

A gsk_environment_init() has already been issued with this handle.

[GSK_KEYRING_OPEN_ERROR]

Certificate store file could not be opened.

[GSK_AS400_ERROR_NO_ACCESS]

No permission to access the certificate store file.

[GSK_ERROR_BAD_V3_CIPHER]

An SSLV3 or TLSV1 cipher suite was specified that is not valid.

[GSK_ERROR_BAD_V2_CIPHER]

An SSLV2 cipher suite was specified that is not valid.

[GSK_ERROR_BAD_CERTIFICATE]

The certificate is bad.

[GSK_ERROR_NO_PRIVATE_KEY]

There is no private key associated with the certificate.

[GSK_AS400_ERROR_PASSWORD_EXPIRED]

The validity time period of the certificate store file password has expired.

[GSK_ERROR_BAD_KEYFILE_LABEL]

The specified certificate store's certificate label is not valid or does not exist.

[GSK_ERROR_BAD_KEYFILE_PASSWORD]

The specified certificate store password is not valid.

[GSK_NO_KEYFILE_PASSWORD]

No certificate store password was specified.

[GSK_AS400_ERROR_NOT_REGISTERED]

The application identifier has not been registered.

[GSK_AS400_ERROR_INVALID_POINTER]

my_env_handle pointer is not valid.

[GSK_ERROR_BAD_KEY_LEN_FOR_EXPORT]

The certificate was created with a key length that cannot be exported.

[GSK_INSUFFICIENT_STORAGE]

Not able to allocate storage for the requested operation.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

An error occurred in SSL processing, check errno value.

Error Conditions

When the gsk_environment_init() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a
description of the errno.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

If gsk_environment_init() fails, gsk_environment_close() must be issued to clean up resources.1.

Multiple SSL environment handles may be opened in a process with different attributes set for each
SSL environment.

2.

The status of the local certificate can be determined by checking the
GSK_CERTIFICATE_VALIDATION_CODE enumId using gsk_attribute_get_numeric_value().
The numValue will indicate the certificate validation return code for the certificate used on this
gsk_environment_init().

3.

Related Information

gsk_attribute_set_buffer()--Set character information for a secure session or an SSL environment.●

gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment.●

gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL
environment

●

gsk_environment_close()--Close the SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_environment_open()--Get a handle for an
SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_environment_open(gsk_handle *my_env_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_environment_open() function is used to get storage for the SSL environment. This function call
must be issued before any other gsk function calls are issued. This call returns an SSL environment handle
that must be saved and used on subsequent gsk calls.

Parameters

my_env_handle (Output)

A pointer to the SSL environment handle to be used for subsequent gsk function calls.

Authorities

No authorization is required.

Return Value

gsk_environment_open() returns an integer. Possible values are:

[GSK_OK]

gsk_environment_open() was successful.

[GSK_API_NOT_AVAILABLE]

One of the following software products is not installed:

Digital Certificate Manager (DCM), 57xx-SS1 - OS400 Option 341.

Cryptographic Access Provider, 57xx-ACy

(where xx is equal to the current OS/400 product ID and y is equal to one of the current
available level of Cryptographic Access Provider licensed program products.)

2.

[GSK_INSUFFICIENT_STORAGE]

Not able to allocate storage for the requested operation.

[GSK_INTERNAL_ERROR]

An internal error occured during system processing.

[GSK_AS400_ERROR_INVALID_POINTER]

The my_env_handle pointer is not valid.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

After gsk_environment_open() returns with a GSK_OK return value, attributes for the SSL
environment have been set and can be retrieved using any of the get function calls. The following is
a list of the defaulted values:

GSK_V2_SESSION_TIMEOUT set to 100 seconds.❍

GSK_V3_SESSION_TIMEOUT set to 86400 seconds (24 hours).❍

GSK_HANDSHAKE_TIMEOUT set to 0 (wait forever).❍

GSK_SESSION_TYPE set to GSK_CLIENT_SESSION.❍

GSK_KEYRING_LABEL set to use the default certificate from the certificate store file.❍

GSK_PROTOCOL_TLSV1 set to GSK_PROTOCOL_TLSV1_ON.❍

GSK_PROTOCOL_SSLV3 set to GSK_PROTOCOL_SSLV3_ON.❍

GSK_PROTOCOL_SSLV2 set to GSK_PROTOCOL_SSLV2_ON.❍

GSK_V2_CIPHER_SPECS set to the default SSL Version 2 cipher suite list based on the
product installed.

❍

GSK_V3_CIPHER_SPECS set to the default SSL Version 3 cipher suite list based on the
product installed.

❍

1.

The default cipher suite list associated with the installed Cryptographic Access Provider, 57xx-AC3
(US) product in preference order is as follows:

GSK_V3_CIPHER_SPECS set to SSL Version 3 or TLS Version 1 default
"2F04050A090306."

❍

2.

GSK_V2_CIPHER_SPECS set to "137624."

See the usage notes in gsk_attribute_set_buffer() API for the format of the ciphers.

❍

The default cipher suite list associated with the installed Cryptographic Access Provider, 57xx-AC2
(International) product in preference order is as follows:

GSK_V3_CIPHER_SPECS set to SSL Version 3 or TLS Version 1 default "090306."❍

GSK_V2_CIPHER_SPECS set to "624."

See the usage notes in gsk_attribute_set_buffer() API for the format of the ciphers.

❍

3.

Related Information

gsk_attribute_set_buffer()--Set character information for an secure session or a SSL environment●

gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment●

gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL
environment

●

gsk_environment_close()--Close the SSL environment●

gsk_environment_init()--Initialize an SSL environment●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_close()--Close a secure
session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_close(gsk_handle *my_session_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_close() function is used to close a secure session and free all the associated resources
for that secure session.

Parameters

my_session_handle (Input)

A pointer to the handle for the secure session to be closed. This handle originated from a call to
gsk_secure_soc_open().

Authorities

No authorization is required.

Return Value

gsk_secure_soc_close() returns an integer. Possible values are:

[GSK_OK]

gsk_secure_soc_close() was successful.

[GSK_CLOSE_FAILED]

An error occurred during close processing.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_secure_soc_close() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, look in Errno Values for UNIX-Type Functions for a
description of the errno.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

You must do a gsk_secure_soc_close() if a prior gsk_secure_soc_open() was successful.1.

Related Information

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_init()--Negotiate a secure
session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_init(gsk_handle my_session_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_init() function is used to negotiate a secure session, using the attributes set for the
SSL environment and the secure session. This API does the SSL handshake to the remote peer; upon
successful completion, you have a secure session established.

Parameters

my_session_handle (Input)

The handle for this secure session that was obtained through the gsk_secure_soc_open() API call.

Authorities

Authorization of *R (allow access to the object) to the certificate store file and its associated files is
required. Authorization of *X (allow use of the object) to each directory of the path name of the certificate
store file and its associated files is required.

Return Value

gsk_secure_soc_init() returns an integer. Possible values are:

[GSK_OK]

gsk_secure_soc_init() was successful.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_KEYRING_OPEN_ERROR]

Certificate store file could not be opened.

[GSK_ERROR_BAD_KEYFILE_LABEL]

The specified certificate store label is not valid.

[GSK_ERROR_BAD_V3_CIPHER]

An SSLV3 or TLSV1 cipher suite was specified that is not valid.

[GSK_ERROR_BAD_V2_CIPHER]

An SSLV2 cipher suite was specified that is not valid.

[GSK_ERROR_NO_CIPHERS]

No ciphers available or no ciphers were specified.

[GSK_ERROR_NO_CERTIFICATE]

No certificate is available for SSL processing.

[GSK_ERROR_BAD_CERTIFICATE]

The certificate is bad.

[SSL_ERROR_NOT_TRUSTED_ROOT]

The certificate is not signed by a trusted certificate authority.

[GSK_KEYFILE_CERT_EXPIRED]

The validity time period of the certificate has expired.

[GSK_ERROR_BAD_MESSAGE]

A badly formatted message was received.

[GSK_ERROR_UNSUPPORTED]

Operation is not supported by SSL.

[GSK_ERROR_BAD_PEER]

The peer system is not recognized.

[GSK_ERROR_CLOSED]

The SSL session ended.

[GSK_AS400_ERROR_NO_INITIALIZE]

A successful gsk_environment_init() was not previously called with this handle.

[GSK_AS400_ERROR_TIMED_OUT]

The value specified for the handshake timeout expired before the handshake completed.

[GSK_AS400_ERROR_NOT_TCP]

The socket descriptor type is not SOCK_STREAM or the address family is not AF_INET or
AF_INET6 .

[GSK_AS400_ERROR_ALREADY_SECURE]

The socket descriptor is already in use by another secure session.

[GSK_INSUFFICIENT_STORAGE]

Unable to allocate storage for the requested operation.

[GSK_AS400_ERROR_INVALID_POINTER]

The my_session_handle pointer is not valid.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

An error occurred in SSL processing, check errno value.

Error Conditions

When the gsk_secure_soc_init() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EIO]

Input/output error.

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Any errno that can be returned by send() or recv() can be returned by this API. See Sockets APIs for a
description of the errno values they return.

If an errno is returned that is not in this list, see Errno Values for UNIX-Type Functions for a description of
the errno.

Usage Notes

The gsk_secure_soc_init() function is valid only on sockets that have an address family of
AF_INET or AF_INET6 and a socket type of SOCK_STREAM.

1.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

gsk_attribute_set_buffer()--Set character information for a secure session or an SSL environment.●

gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment.●

gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL
environment

●

gsk_secure_soc_close()--Close a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_secure_soc_read()--Receive data on a secure session●

●

gsk_secure_soc_startInit()--Start asynchronous operation to negotiate a secure session●

●

gsk_secure_soc_write()--Send data on a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_misc()--Perform
miscellaneous functions for a secure session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_misc(gsk_handle my_session_handle,
 GSK_MISC_ID miscID);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_misc() function is used to perform miscellaneous functions for a secure session.

Parameters

my_session_handle (Input)

The handle for the secure session obtained from gsk_secure_soc_open() and after performing a
gsk_secure_soc_init().

miscID (Input)

One of the following operations:

GSK_RESET_CIPHER (100) - Performs another SSL handshake for the SSL session
identified by the my_session_handle parameter. If an SSL session's cache entry is still valid
and both end points of the SSL session allow using a cache entry, an abbreviated SSL
handshake may be performed. If the SSL cache entry for this session has expired or if the
SSL session's cache entry has been reset with the GSK_RESET_SESSION function, or if
one end point of the SSL session does not allow using the SSL session cache entry, then a
full SSL handshake will be performed.

❍

GSK_RESET_SESSION (101) - Removes this set of SSL session attributes from the SSL
session cache. Any new SSL session handshake requests to the peer end point will not use
this set of attributes. In most cases, as result of this operation, a full SSL handshake will be
performed for the next SSL handshake request between both end points.

❍

Authorities

No authorization is required.

Return Value

gsk_secure_soc_misc() returns an integer. Possible values are:

[GSK_OK]

gsk_secure_soc_misc() was successful.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_INVALID_STATE]

A gsk_secure_soc_init() has not been issued with this handle.

[GSK_ERROR_NOT_SSLV3]

SSLV3 or TLSV1 is required for this function.

[GSK_MISC_INVALID_ID]

The value specified for miscID is not valid.

[GSK_AS400_ERROR_INVALID_POINTER]

The my_session_handle pointer is not valid.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

An error occurred in SSL processing; check the errno value.

[GSK_KEYRING_OPEN_ERROR]

Certificate store file could not be opened.

[GSK_ERROR_BAD_KEYFILE_LABEL]

The specified certificate store label is not valid.

[GSK_ERROR_BAD_V3_CIPHER]

An SSLV3 or TLSV1 cipher suite was specified that is not valid.

[GSK_ERROR_BAD_V2_CIPHER]

An SSLV2 cipher suite was specified that is not valid.

[GSK_ERROR_NO_CIPHERS]

No ciphers available or no ciphers were specified.

[GSK_ERROR_NO_CERTIFICATE]

No certificate is available for SSL processing.

[GSK_ERROR_BAD_CERTIFICATE]

The certificate is bad.

[SSL_ERROR_NOT_TRUSTED_ROOT]

The certificate is not signed by a trusted certificate authority.

[GSK_KEYFILE_CERT_EXPIRED]

The validity time period of the certificate has expired.

[GSK_ERROR_BAD_MESSAGE]

A badly formatted message was received.

[GSK_ERROR_UNSUPPORTED]

Operation is not supported by SSL.

[GSK_ERROR_BAD_PEER]

The peer system is not recognized.

[GSK_ERROR_CLOSED]

The SSL session ended.

[GSK_AS400_ERROR_NO_INITIALIZE]

A successful gsk_environment_init() was not previously called with this handle.

[GSK_AS400_ERROR_TIMED_OUT]

The value specified for the handshake timeout expired before the handshake completed.

[GSK_AS400_ERROR_NOT_TCP]

The socket descriptor type is not SOCK_STREAM or the address family is not AF_INET or
AF_INET6 .

[GSK_AS400_ERROR_ALREADY_SECURE]

The socket descriptor is already in use by another secure session.

[GSK_INSUFFICIENT_STORAGE]

Unable to allocate storage for the requested operation.

Error Conditions

When the gsk_secure_soc_misc() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

[EIO]

Input/output error.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Usage Notes

An SSL session's attributes that are negotiated as part of an SSL handshake may be cached by each
end point involved in the SSL session and then reused as part of an abbreviated SSL handshake
when allowed by both end points.

1.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

gsk_secure_soc_close()--Close a secure session●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_open()--Get a handle for a
secure session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_open(gsk_handle my_env_handle,
 gsk_handle *my_session_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_open() function is used to get storage for a secure session, set default values for
attributes, and return a handle that must be saved and used on secure session-related function calls.

Parameters

my_env_handle (Input)

The handle for the SSL environment obtained from gsk_environment_open().

my_session_handle (Output)

Pointer to the secure session handle.

Authorities

No authorization is required.

Return Value

gsk_secure_soc_open() returns an integer. Possible values are:

[GSK_OK]

gsk_secure_soc_open() was successful.

[GSK_INVALID_HANDLE]

The environment handle specified was not valid.

[GSK_INSUFFICIENT_STORAGE]

Not able to allocate storage for the requested operation.

[GSK_AS400_ERROR_INVALID_POINTER]

The my_env_handle pointer is not valid.

[GSK_INTERNAL_ERROR]

An internal error occured during system processing.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_secure_soc_open() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

If an errno is returned that is not in this list, see Errno Values for UNIX-Type Functions for a description of
the errno.

Usage Notes

After gsk_secure_soc_open() returns with a GSK_OK return value, attributes from the SSL
environment will be used as the defaults for the subsequent gsk_secure_soc_init(). The defaults
can be changed using the gsk_attribute_set_buffer(), gsk_attribute_set_enum(), or
gsk_attribute_set_numeric_value() APIs after calling gsk_secure_soc_open() and before calling
gsk_secure_soc_init().

1.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

gsk_attribute_set_buffer()--Set character string information for a secure session or a SSL
environment.

●

gsk_attribute_set_enum()--Set enumerated information for a secure session or a SSL environment.●

gsk_attribute_set_numeric_value()--Set numeric information for a secure session or a SSL
environment

●

gsk_environment_open()--Get a handle for a SSL environment●

gsk_secure_soc_close()--Close a secure session●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_read()--Receive data on a
secure session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_read(gsk_handle my_session_handle,
 char *readBuffer,
 int readBufSize,
 int *amtRead);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_read() function is used by a program to receive data from a secure session.

Parameters

my_session_handle (Input)

The handle, returned from gsk_secure_soc_open() and used on the gsk_secure_soc_init() API call
that initialized the secure session over which data is to be read.

readBuffer (Output)

The pointer to the user-supplied buffer in which the data is to be stored.

readBufSize (Input)

The number of bytes to be read.

amtRead (Output)

The number of bytes that were read as a result of this API call.

Authorities

No authorization is required.

Return Value

gsk_secure_soc_read() returns an integer. Possible values are:

[GSK_OK]

gsk_secure_soc_read() was successful.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_INVALID_STATE]

The handle is not in the correct state for this operation.

[GSK_INVALID_BUFFER_SIZE]

The readBufSize is less than 1.

[GSK_WOULD_BLOCK]

Operation would have caused the process to be suspended.

[GSK_ERROR_BAD_MESSAGE]

SSL received a badly formatted message.

[GSK_ERROR_BAD_MAC]

A bad message authentication code was received.

[GSK_AS400_ERROR_CLOSED]

The secure session was closed by another thread before the read completed.

[GSK_AS400_ERROR_INVALID_POINTER]

The readBuffer or amtRead pointer is not valid.

[GSK_ERROR_SOCKET_CLOSED]

A close() was done on the socket descriptor for this secure session.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

An error occurred in SSL processing; check the errno value.

Error Conditions

When the gsk_secure_soc_read() API fails with return code [GSK_ERROR_IO], errno can be set to:

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EIO]

Input/output error.

[ENOTCONN]

Requested operation requires a connection.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Any errno that can be returned by recv() can be returned by this API. See Sockets APIs for a description of
the errno values it can return.

If an errno is returned that is not in this list, see Errno Values for UNIX-Type Functions for a description of
the errno.

Usage Notes

The maximum length of data typically returned will not exceed 16 KB. This is because SSL is a
record level protocol and the largest record allowed is 32 KB minus the necessary SSL record
headers.

1.

It is strongly suggested that you do not mix the gsk_secure_soc_read() API with any of the sockets
read functions. SSL and socket reads and writes can be mixed, but they must be performed in
matched sets. If a client application writes 100 bytes of data using one or more of the socket send()
calls, then the server application must read exactly 100 bytes of data using one or more of the
socket recv() calls. This is also true for gsk_secure_soc_read() API.

2.

Since SSL is a record-oriented protocol, SSL must receive an entire record before it can be
decrypted and any data returned to the application. Thus, a select() may indicate that data is
available to be read, but a subsequent gsk_secure_soc_read() may hang waiting for the remainder
of the SSL record to be received when using blocking I/O.

3.

A FIONREAD ioctl() cannot be used to determine the amount of data available for reading by
using gsk_secure_soc_read().

4.

SSL will ignore the out-of-band (OOB) data indicator. OOB will not affect the SSL application.
OOB will just be data to the SSL protocol.

5.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

gsk_secure_soc_close()--Close a secure session●

gsk_secure_soc_init()--Negotiate a a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_secure_soc_write()--Send data on a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_startInit()--Start
asynchronous operation to negotiate a secure
session

 Syntax

 #include <gskssl.h>
 #include <qsoasync.h>

 int gsk_secure_soc_startInit(gsk_handle my_session_handle,
 int IOCompletionPort,
 Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_startInit() function is used to initiate an asynchronous negotiation of a secure session,
using the attributes set for the SSL environment and the secure session. This API starts the SSL handshake to
the remote peer and upon successful completion of QsoWaitForIOCompletion() a secure session is
established.

Parameters

my_session_handle (Input)

The handle returned from gsk_secure_soc_open() that will be used to negotiate the secure session.

int IOCompletionPort (Input)

The I/O completion port that should be posted when the operation completes.

Qso_OverlappedIO_t * communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

descriptorHandle

(Input) - The descriptor handle is application specific and is never used by the system. This
field is intended to make it easier for the application to keep track of information regarding a
given socket connection.

buffer

Not used.

bufferLength

Not used.

postFlag

Not used.

postFlagResult

Not used.

fillBuffer

Not used.

returnValue

(Output) - When the negotiate operation completes asynchronously, this field contains
indication of success or failure.

errnoValue

(Output) - When the negotiate operation completes asynchronously and returnValue is
GSK_ERROR_IO, this field will contain an errno further defining the failure.

operationCompleted

(Output) - If the operation is posted to the I/O completion port, this field is updated to
indicate that the operation was a GSKSECURESOCSTARTINIT.

secureDataTransferSize

Not used.

bytesAvailable

Not used.

operationWaitTime

Not used.

postedDescriptor

Not used - Must be set to zero.

reserved1

(Output) - Must be set to hexadecimal zeroes.

reserved2

(Input) - Must be set to hexadecimal zeroes.

Authorities

Authorization of *R (allow access to the object) to the certificate store file and its associated files is required.
Authorization of *X (allow use of the object) to each directory of the path name of the certificate store file
and its associated files is required.

Return Values

gsk_secure_soc_startInit() returns an integer. Possible values are:

GSK_OS400_ASYNCHRONOUS_SOC_INIT - The function has been started. When the function
completes, the Qso_OverlappedIO_t communications structure will be updated with the results and
the I/O completion port will be posted.

●

If the function fails, possible values are:●

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_OS400_ERROR_NO_INITIALIZE]

A successful gsk_environment_init() was not previously called with this handle.

[GSK_OS400_ERROR_NOT_TCP]

The socket descriptor type is not SOCK_STREAM or the address family is not AF_INET
or AF_INET6 .

[GSK_OS400_ERROR_ALREADY_SECURE]

The socket descriptor is already in use by another secure session.

[GSK_OS400_ERROR_INVALID_POINTER]

The my_session_handle pointer is not valid.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_OS400_ERROR_INVALID_OVERLAPPEDIO_T]

The Qso_OverLappedIO_t specified was not valid.

[GSK_OS400_ERROR_INVALID_IOCOMPLETIONPORT]

The I/O completion port specified was not valid.

[GSK_OS400_ERROR_BAD_SOCKET_DESCRIPTOR]

The socket descriptor specified within the gsk_handle was not valid.

[GSK_ERROR_IO]

An error occured in SSL processing; check the errno value.

Error Conditions

When gsk_secure_soc_startInit() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EIO]

Input/output error.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

If an errno is returned that is not in this list, see Errno Values for UNIX-Type Functions for a description of
the errno.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

The gsk_secure_soc_startInit() function is valid only on sockets that have an address family of
AF_INET or AF_INET6 and a socket type of SOCK_STREAM.

1.

The current implemention of the SSL Protocol does not allow gsk_secure_soc_startInit() to
complete synchronously. Use gsk_secure_soc_init() if the synchronous behaviour is needed.

2.

Related Information

gsk_secure_soc_close()--Close a Secure Session●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_secure_soc_read()--Receive data on a secure session●

gsk_secure_soc_write()--Send data on a secure session●

gsk_secure_soc_startRecv--Start Asynchronous Recv Operation on a secure session●

gsk_secure_soc_startSend--Start Asynchronous Send Operation on a secure session●

QsoCreateIOCompletionPort()--Create I/O Completion Port●

QsoDestroyIOCompletionPort()--Destroy I/O Completion Port●

QsoPostIOCompletionPort()--Post Request on I/O Completion Port●

QsoWaitForIOCompletion()--Wait for I/O Completion Operation●

●

API Introduced: V5R2

Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_startRecv()--Start asynchronous
receive operation on a secure session

 Syntax

 #include <gskssl.h>
 #include <qsoasync.h>

 int gsk_secure_soc_startRecv (gsk_handle my_session_handle,
 int IOCompletionPort,
 Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_startRecv() function is used to initiate an asynchronous receive operation on a secure session.
The supplied receive buffer cannot be reused by the calling application until the receive is complete or the I/O
completion port specified on the gsk_secure_soc_startRecv() has been destroyed. This API supports sockets with an
address family of AF_INET or AF_INET6 and type SOCK_STREAM only.

Parameters

my_session_handle (Input)

The handle, returned from gsk_secure_soc_open() and used on the gsk_secure_soc_init() API call that
initialized the secure session over which data is to be read.

int IOCompletionPort (Input)

The I/O completion port that should be posted when the operation completes.

Qso_OverlappedIO_t * communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

descriptorHandle

(Input) - The descriptor handle is application specific and is never used by the system. This field is
intended to make it easier for the application to keep track of information regarding a given socket
connection.

buffer

(Input) - A pointer to a buffer into which data should be read.

bufferLength

(Input) - The length of the buffer into which data should be read. Also represents the amount of data
requested.

postFlag

(Input) - The postFlag indicates if this operation should be posted to the I/O completion port even if it
completes immediately.

A 0 value indicates that if the operation is already complete upon return to the application,■

then do not post to the I/O completion port.

A 1 value indicates that even if the operation completes immediately upon return to the
application, the result should still be posted to the I/O completion port.

■

postFlagResult

(Output) - This field is valid if gsk_secure_soc_startRecv() returns with 1 and postFlag was set to 1.
In this scenario, postFlagResult set to 1 denotes the operation completed and been posted to the I/O
completion port specified. A value of 0 denotes the operation could not be completed immediately,
but will be handled asynchronously.

fillBuffer

(Input) - The fillBuffer flag indicates when this operation should complete. If the fillBuffer flag is 0,
then the operation will complete as soon as any data is available to be received. If the fillBuffer flag
is non-zero, this operation will not complete until enough data has been received to fill the buffer, an
end-of-file condition occurs on the socket, or an error occurs on a socket.

returnValue

(Output) - IF gsk_secure_soc_startRecv() completes synchronously (function return value equals
GSK_OK), then this field is set to GSK_OK and field secure data transfer size indicates number of
bytes received.

errnoValue

(Output) - When the operation has completed asynchronously and returnValue is GSK_ERROR_IO,
this field will contain an errno further defining the failure.

operationCompleted

(Output) - If the operation is posted to the I/O completion port, this field is updated to indicate that
the operation was a GSKSECURESOCSTARTRECV.

secureDataTransferSize

(Output) - Number of bytes received when gsk_secure_soc_startRecv() completes synchronously
(return value equals GSK_OK).

bytesAvailable

Not used.

operationWaitTime

(Input) - A timeval structure which specifies the maximum time allowed for this operation to
complete asynchronously.

 struct timeval {
 long tv_sec; /* second */
 long tv_usec; /* microseconds */
 };

If this timer expires, the operation will be posted to the I/O completion port with errnoValue set to
EAGAIN.

If this field is set to zero, the operation's asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation will be posted
to the I/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the timeval is not
used and must be set to zero.

postedDescriptor

Not used - Must be set to zero.

reserved1

(Output) - Must be set to hexadecimal zeroes.

reserved2

(Input) - Must be set to hexadecimal zeroes.

Authorities

No authorization is required.

Return Values

gsk_secure_soc_startRecv() returns an integer. Possible values are:

GSK_OK - The function has completed synchronously. The Qso_OverlappedIO_t communications structure
has been updated but nothing has nor will be posted to the I/O completion port for this operation. Inspect field
secureDataTransferSize in the Qso_OverlappedIO_t communications structure to determine the number of
bytes received.

●

GSK_AS400_ASYNCHRONOUS_RECV - The function has been started. When the function completes
(or times out if operationWaitTime was specified), the Qso_OverlappedIO_t communications structure
will be updated with the results and the I/O completion port will be posted.

●

If the function fails, possible values are:

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_INVALID_STATE]

The handle is not in the correct state for this operation.

[GSK_INVALID_BUFFER SIZE]

The bufferLength field located in the Qso_OverLappedIO_t communications area is less than 1.

[GSK_ERROR_BAD_MESSAGE]

SSL received a badly formatted message.

[GSK_ERROR_BAD_MAC]

A bad message authentization code was received.

[GSK_ AS400_ERROR_INVALID_POINTER]

The buffer pointer located in Qso_OverLappedIO_t communications area is not valid.

[GSK_ERROR_SOCKET_CLOSED]

A close() was done on the socket descriptor for this secure session.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_AS400_ERROR_INVALID_ OVERLAPPEDIO_T]

The Qso_OverLappedIO_t specified was not valid.

[GSK_AS400_ERROR_INVALID_ IOCOMPLETIONPORT]

The I/O completion port specified was not valid.

[GSK_AS400_ERROR_BAD_SOCKET_DESCRIPTOR]

The socket descriptor specified within the gsk_handle was not valid.

[GSK_ERROR_IO]

●

An error occured in SSL processing; check the errno value.

Error Conditions

When gsk_secure_soc_startRecv() API fails with return code [GSK_ERROR_IO], errno can be set to:

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EINVAL]

The field operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec was not zero or
postedDescriptor was not zero.

[EIO]

Input/output error.

[ENOTCONN]

Requested operation requires a connection.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

If an errno is returned that is not in this list, see Errno Values for UNIX-Type Functions for a description of the
errno.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

A buffer that is given to gsk_secure_soc_startRecv() must not be used by the application again until either it
is returned by QsoWaitForIOCompletion() or is reclaimed by issuing a close() on the socket descriptor or
issuing a QsoDestroyIOCompletionPort() on the I/O completion port. If a buffer is given to
gsk_secure_soc_startRecv() to be filled, and it is later detected during gsk_secure_soc_startRecv()
processing that the buffer has been freed, it may produce an unrecoverable condition on the socket for which
the gsk_secure_soc_startRecv() was issued. If this occurs, an ECONNABORTED error value will be
returned.

1.

It is not recommended to intermix gsk_secure_soc_startRecv() and blocking I/O (ie, recv() or
gsk_secure_soc_read()) on the same socket. If this condition occurs, then pending asynchronous recv I/O will
be serviced first before the blocking I/O.

2.

The maximum length of data typically returned will not exceed 16 KB. This is due to the fact that SSL is a
record level protocol and the largest record allowed is 32 KB minus the necessary SSL record headers.

3.

Socket option SO_RCVLOWAT is not supported by this API. Semantics similar to SO_RCVLOWAT can be4.

obtained using the fillBuffer field in the Qso_OverLappedIO_t structure.

 Socket option SO_RCVTIMEO is not supported by this API. Semantics similar to SO_RCVTIMEO can be
obtained using the operationWaitTime field in the Qso_OverLappedIO_t structure.

5.

It is strongly suggested that you do not mix the gsk_secure_soc_read() nor gsk_secure_soc_startRecv()
APIs with any of the sockets read functions. However, SSL and socket reads and writes can be mixed, but
they must be performed in matched sets. If a client application writes 100 bytes of data using one or more of
the socket send() calls, then the server application must read exactly 100 bytes of data using one or more of
the socket recv() calls. This is also true for gsk_secure_soc_read() and gsk_secure_soc_startRecv() APIs.

6.

A FIONREAD ioctl() cannot be used to determine the amount of data available for reading by using
gsk_secure_soc_startRecv().

7.

SSL will ignore the out of band (OOB) data indicator. OOB will not affect the SSL application. OOB will
only be data to the SSL protocol.

8.

Related Information

gsk_secure_soc_close()--Close a Secure Session●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

●

gsk_secure_soc_startInit()--Start asynchronous operation to negotiate a secure session●

●

gsk_secure_soc_startSend()--Start Asynchronous Send Operation on a Secure Session●

gsk_secure_soc_write()--Send data on a secure session●

QsoCreateIOCompletionPort()--Create I/O Completion Port●

QsoDestroyIOCompletionPort()--Destroy I/O Completion Port●

QsoPostIOCompletionPort()--Post Request on I/O Completion Port●

QsoStartRecv--Start Asynchronous Recv Operation●

QsoStartSend--Start Asynchronous Send Operation●

QsoWaitForIOCompletion()--Wait for I/O Completion Operation●

recv()--Receive Data●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_startSend()--Start
asynchronous send operation on a secure
session

 Syntax

 #include <gskssl.h>
 #include <qsoasync.h>

 int gsk_secure_soc_startSend (gsk_handle my_session_handle,
 int IOCompletionPort,
 Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_startSend() function is used to initiate an asynchronous send operation on a secure
session. The supplied send buffer cannot be reused by the calling application until the send is complete or the
I/O completion port specified on the gsk_secure_soc_startSend() has been destroyed. This API supports
sockets with an address family of AF_INET or AF_INET6 and type SOCK_STREAM only.

Parameters

my_session_handle (Input)

The handle, returned from gsk_secure_soc_open() and used on the gsk_secure_soc_init() API call that
initialized the secure session over which data is to be written.

int IOCompletionPort (Input)

The I/O completion port that should be posted when the operation completes.

Qso_OverlappedIO_t * communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

descriptorHandle

(Input) - The descriptor handle is application-specific and is never used by the system. This
field is intended to make it easier for the application to keep track of information regarding a
given socket connection.

buffer

(Input) - A pointer to a buffer of data that should be sent over the socket.

bufferLength

(Input) - The length of the data to be sent.

postFlag

(Input) - The postFlag indicates if this operation should be posted to the I/O completion port
even if it completes immediately.

A value of 0 indicates that if the operation is already complete upon return to the
application, then do not post to the I/O completion port.

■

A value of 1 indicates that even if the operation completes immediately upon return to
the application, the result should still be posted to the I/O completion port.

■

postFlagResult

(Output) - This field is valid if gsk_secure_soc_startSend() returns with 1 and postFlag was set
to 1. In this scenario, postFlagResult set to 1 denotes the operation completed and been posted
to the I/O completion port specified. A value of 0 denotes the operation could not be completed
immediately, but will be handled asynchronously.

fillBuffer

(Input) - Only used on gsk_secure_soc_startRecv() or QsoStartRecv(). Ignored on
gsk_secure_soc_startSend().

returnValue

(Output) - If gsk_secure_soc_startSend() completes synchronously (return value equals
GSK_OK), then this field is set to GSK_OK and field secureDataTransferSize indicates
number of bytes sent.

errnoValue

(Output) - When the operation has completed asynchronously and returnValue is
GSK_ERROR_IO, this field will contain an errno further defining the failure.

operationCompleted

(Output) - If the operation is posted to the I/O completion port, this field is updated to indicate
that the operation was a GSKSECURESOCSTARTSEND.

secureDataTransferSize

(Ouput) - Number of bytes sent when gsk_secure_soc_startSend() completes synchronously
(function return value equals GSK_OK).

bytesAvailable

Not used.

operationWaitTime

(Input) - A timeval structure which specifies the maximum time allowed for this operation to
complete asynchronously.

 struct timeval {
 long tv_sec; /* second */
 long tv_usec; /* microseconds */
 };

If this timer expires, the operation will be posted to the I/O completion port with errnoValue set

to EAGAIN.

If this field is set to zero, the operation's asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation will be
posted to the I/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the timeval
is not used and must be set to zero.

postedDescriptor

Not used - Must be set to zero.

reserved1

(Input) - Must be set to hex zeroes.

reserved2

(Input) - Must be set to hex zeroes.

Authorities

No authorization is required.

Return Values

gsk_secure_soc_startSend() returns an integer. Possible values are:

GSK_OK- The function has completed synchronously. The Qso_OverlappedIO_t communications
structure has been updated but nothing has nor will be posted to the I/O completion port for this
operation. Inspect field secureDataTransferSize in the Qso_OverlappedIO_t communications structure
to determine the number of bytes sent.

●

GSK_AS400_ASYNCHRONOUS_SEND - The function has been started. When the function
completes (or times out if operationWaitTime was specified), the Qso_OverlappedIO_t
communications structure will be updated with the results and the I/O completion port will be posted.

●

If the function fails, possible values are:

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_INVALID_STATE]

The handle is not in the correct state for this operation.

[GSK_INVALID_BUFFER SIZE]

The bufferLength field located in the Qso_OverLappedIO_t communications area is less than
1.

[GSK_ERROR_SOCKET_CLOSED]

●

A close() was done on the socket descriptor for this secure session.

[GSK_ AS400_ERROR_INVALID_POINTER]

The buffer pointer located in Qso_OverlappedIO_t communications area is not valid.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_AS400_ERROR_INVALID_ OVERLAPPEDIO_T]

The Qso_OverLappedIO_t specified was not valid.

[GSK_AS400_ERROR_INVALID_ IOCOMPLETIONPORT]

The I/O completion port specified was not valid.

[GSK_AS400_ERROR_BAD_SOCKET_DESCRIPTOR]

The socket descriptor specified within the gsk_handle was not valid.

GSK_ERROR_IO]

An error occured in SSL processing; check the errno value.

Error Conditions

When gsk_secure_soc_startSend() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINVAL]

The field operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec was not zero or
postedDescriptor was not zero.

[EIO]

Input/output error.

[ENOTCONN]

Requested operation requires a connection.

[ENOTSOCK]

The specified descriptor does not reference a socket.

[EPIPE]

Broken pipe.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

If an errno is returned that is not in this list, see Errno Values for UNIX-Type Functions for a description of the
errno.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

Since gsk_secure_soc_startSend() is asynchronous, care should be used to control how many of these
functions are outstanding. When a TCP socket becomes flow control blocked such that the
gsk_secure_soc_startSend() is not able to pass the data to the TCP socket immediately, the return
value will be GSK_AS400_ASYNCHRONOUS_SEND. Applications that send large amounts of data
should have the postFlag set to 0. This allows the application to use a return value of
GSK_AS400_ASYNCHRONOUS_SEND as an indication that the socket has become flow control
blocked. The application should then wait for the outstanding operation to complete before issuing
another gsk_secure_soc_startSend(). This will ensure that the application does not exhaust system
buffer resources.

1.

A buffer that is given to gsk_secure_soc_startSend() must not be used by the application again until
either it is returned by QsoWaitForIOCompletion() or is reclaimed by issuing a close() on the socket
descriptor or issuing a QsoDestroyIOCompletionPort() on the I/O completion port. If a buffer is given
to gsk_secure_soc_startSend() to be sent, and it is later detected during gsk_secure_soc_startSend()
processing that the buffer has been freed, it may produce an unrecoverable condition on the socket for
which the gsk_secure_soc_startSend() was issued. If this occurs, an ECONNABORTED error value
will be returned.

2.

There is no maximum length of data that can be written.3.

It is not recommended to intermix gsk_secure_soc_startSend() and blocking I/O (ie, send() or
gsk_secure_soc_send()) on the same socket. If one does, then pending asynchronous send I/O will be
serviced before blocking I/O once data can be sent.

4.

It is strongly suggested that you do not mix the gsk_secure_soc_write() nor
gsk_secure_soc_startSend() APIs with any of the sockets write functions. However, SSL and socket
reads and writes can be mixed, but they must be performed in matched sets. If a client application
writes 100 bytes of data using one or more of the socket send() calls, then the server application must
read exactly 100 bytes of data using one or more of the socket recv() calls. This is also true for
gsk_secure_soc_write() and gsk_secure_soc_startSend()APIs.

5.

 Socket option SO_SNDTIMEO is not supported by this API. Semantics similar to SO_SNDTIMEO
can be obtained using the operationWaitTime field in the Qso_OverLappedIO_t structure.

6.

Related Information

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_secure_soc_read()--Receive data on a secure session●

●

gsk_secure_soc_startInit()--Start asynchronous operation to negotiate a secure session●

●

gsk_secure_soc_startRecv()--Start Asynchronous Receive Operation on a Secure Session●

QsoPostIOCompletionPort()--Post Request on I/O Completion Port●

QsoCreateIOCompletionPort()--Create I/O Completion Port●

QsoDestroyIOCompletionPort()--Destroy I/O Completion Port●

QsoStartRecv--Start Asynchronous Recv Operation●

QsoStartSend--Start Asynchronous Send Operation●

QsoWaitForIOCompletion()--Wait for I/O Completion Operation●

send()--Send Data●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_write()--Send data on a secure
session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_write(gsk_handle my_session_handle,
 char *writeBuffer,
 int writeBufSize,
 int *amtWritten);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_write() function is used by a program to write data on a secure session.

Parameters

my_session_handle (Input)

The handle, returned from gsk_secure_soc_open() and used on the gsk_secure_soc_init() API call
that initialized the secure session over which data is to be written.

writeBuffer (Input)

The pointer to the user-supplied buffer from which the data is to be written.

writeBufSize (Input)

The number of bytes to be written.

amtWritten (Output)

The number of bytes written as a result of this API call.

Authorities

No authorization is required.

Return Value

gsk_secure_soc_write() returns an integer. Possible values are:

[GSK_OK]

gsk_secure_soc_write() was successful.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_INVALID_STATE]

The handle is not in the correct state for this operation.

[GSK_INVALID_BUFFER_SIZE]

The readBufSize is less than 1.

[GSK_WOULD_BLOCK]

Operation would have caused the process to be suspended.

[GSK_ERROR_SOCKET_CLOSED]

A close() was done on the socket descriptor for this secure session.

[GSK_AS400_ERROR_CLOSED]

The secure session was closed by another thread before the write completed.

[GSK_AS400_ERROR_INVALID_POINTER]

The writeBuffer or amtWritten pointer is not valid.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

An error occurred in SSL processing; check the errno value.

Error Conditions

When the gsk_secure_soc_write() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EIO]

Input/output error.

[ENOTCONN]

Requested operation requires a connection.

[ENOTSOCK]

The specified descriptor does not reference a socket.

[EPIPE]

Broken pipe.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Any errno that can be returned by send() can be returned by this API. See Sockets APIs for a description of
the errno values it can return.

Usage Notes

There is no maximum length of the data that can be written.1.

It is strongly suggested that you do not mix the gsk_secure_soc_write() API with any of the
sockets write functions. SSL and socket reads and writes can be mixed, but they must be performed
in matched sets. If a client application writes 100 bytes of data using one or more of the socket
send() calls, then the server application must read exactly 100 bytes of data using one or more of
the socket recv() calls. This is also true for gsk_secure_soc_write() API.

2.

The amtWritten value is set to zero when return value is not GSK_OK.3.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_secure_soc_read()--Receive data on a secure session●

gsk_strerror()--Retrieve GSK runtime error message●

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

gsk_strerror()--Retrieve GSKit runtime error
message

 Syntax

 #include <gskssl.h>

 const char *gsk_strerror(int gsk_return_value);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_strerror() function is used to retrieve an error message and associated text string that describes a
return value that was returned from calling a GSKit API.

Parameters

gsk_return_value (Input)

The return value received from a GSKit API.

Authorities

No authorization is required.

Return Value

gsk_strerror() returns a pointer to the return value text.

Usage Notes

gsk_strerror() returns a pointer to the string. The null-terminated string is stored in the CCSID of
the job.

1.

If a gsk_return_value is specified for which there is no corresponding description, an Unknown
Error string is returned.

2.

Related Information

gsk_attribute_get_buffer()--Get character information about a secure session or an SSL
environment.

●

gsk_attribute_get_cert_info()--Get information about a local or partner certificate.●

gsk_attribute_get_enum()--Get enumerated information about a secure session or an SSL
environment.

●

gsk_attribute_get_numeric_value()--Get numeric information about a secure session or an SSL
environment.

●

gsk_attribute_set_buffer()--Set character information for a secure session or an SSL environment.●

gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment.●

gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL
environment

●

gsk_environment_close()--Close the SSL environment●

gsk_environment_init()--Initialize a SSL environment●

gsk_environment_open()--Get a handle for an SSL environment●

gsk_secure_soc_close()--Close a secure session●

gsk_secure_soc_init()--Negotiate a secure session●

gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session●

gsk_secure_soc_open()--Get a handle for a secure session●

gsk_secure_soc_read()--Receive data on a secure session●

gsk_secure_soc_write()--Send data on a secure session●

Example

The following example shows how gsk_strerror() is used:

#include <stdio.h>
#include <sys/types.h>

#include <gskssl.h>

void main()
{
 int rc = GSK_OK;
 gsk_handle env_handle = NULL;

 rc = gsk_environment_open(&env_handle);
 if (rc != GSK_OK)
 {
 printf("gsk_environment_open() failed with rc = %d %s\n",
 rc,gsk_strerror(rc));
 break;
 }

 ...

}

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

OS/400 Secure Sockets Layer (SSL_) APIs
OS/400 SSL_ APIs, when used in addition to the existing OS/400 Sockets APIs, provide the functions
required for applications to establish secure communications. An application using SSL for secure
communications is basically a client/server application written using sockets.

The SSL_ APIs are:

QlgSSL_Init() (Initialize the current job for SSL (using NLS-enabled path name)) is used to
establish the SSL security information to be used for all SSL sessions for the current job.

●

SSL_Create() (Enable SSL support for the specified socket descriptor) is used by a program to
enable SSL support for the specified socket descriptor.

●

SSL_Destroy() (End SSL support for the specified SSL session) is used by a program to end SSL
support for the specified SSL session.

●

SSL_Handshake() (Initiate the SSL handshake protocol) is used by a program to initiate the SSL
handshake protocol. Both the client and the server program must call the SSL_Handshake verb in
order to initiate the handshake processing.

●

SSL_Init() (Initialize the current job for SSL) is used to establish the SSL security information to
be used for all SSL sessions for the current job.

●

SSL_Init_Application() (Establish the SSL security information) is used to establish the SSL
security information to be used for all SSL sessions for the current job based on the specified
application identifier.

●

SSL_Perror() (Print SSL error message) prints an error message to stderr.●

SSL_Read() (Receive data from an SSL-enabled socket descriptor) is used by a program to receive
data from an SSL-enabled socket descriptor.

●

SSL_Strerror() (Retrieve SSL runtime error message) is used to retrieve an error message and
associated text string which describes an SSL return value.

●

SSL_Write() (Write data to an SSL-enabled socket descriptor) is used by a program to write data to
an SSL-enabled socket descriptor.

●

Note: These functions use header (include) files from the library QSYSINC, which is optionally installable.
Make sure QSYSINC is installed on your system before using any of the functions. See Header Files for
UNIX-Type Functions for the file and member name of each header file.

See the following examples for more information:

Example: Establish secure server with SSL APIs●

Example: Establish secure client with SSL APIs●

Top | UNIX-Type APIs | APIs by category

QlgSSL_Init()--Initialize the Current Job for SSL
(using NLS-enabled path name)

 Syntax

 #include <ssl.h>

 int QlgSSL_Init(QlgSSLInit* init)

 Service Program Name: *SRVPGM

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgSSL_Init() function is used to establish the SSL security information to be used for all SSL sessions for the
current job. The QlgSSL_Init() API establishes a certificate and private key for use by the handshake protocol
processing when acting as a server. The QlgSSL_Init() API establishes a certificate for use by the handshake
protocol processing when acting as a client that is connected to a server performing client authentication.

Parameters

QlgSSLInit * init (input)

The pointer to a QlgSSLInit structure. QlgSSLInit is a typedef for a buffer of type struct QlgSSLInitStr. In
<ssl.h>, struct QlgSSLInitStr is defined as the following:

struct QlgSSLInitStr { /* QlgSSLInitStr */

 Qlg_Path_Name* keyringFileName; /* Key ring file name */
 char* keyringPassword; /* Key ring file password */
 unsigned short int* cipherSuiteList; /* List of cipher suites */
 unsigned int cipherSuiteListLen; /* number of entries in
 the cipher suites list */
};

The fields within the QlgSSLInit structure as pointed to by init are defined as follows:

Qlg_Path_Name_T *keyringFileName (input)

A pointer to a structure defining the path to the key ring file. This structure defines the coded
character set identifier (CCSID) and the path to the key ring file to be used for this job's SSL
processing. The path must be a fully qualified integrated file system file name.

char *keyringPassword (input)

A pointer to the password for the key ring file named in the keyringFileName field.

If this parameter's value is equal to NULL, then the QlgSSL_Init() support will attempt to extract a
password from a key-ring password file.

This parameter is assumed to be represented in the same CCSID (coded character set identifier) as
the keyringFileName.

unsigned short int* cipherSuiteList (input)

A pointer to the cipher specification list to be used during the SSL handshake protocol for this job.
This list is a string of concatenated cipher specification values. A cipher specification value is an
unsigned short integer. Any value provided will override any values provided by a previous
QlgSSL_Init() API or the system default cipher specification list if the previous QlgSSL_Init() API
did not provide a cipher specification list. A value of NULL for this parameter indicates one of the
following:

Use the cipher specification list provided by a previous QlgSSL_Init() API■

Use the system default cipher specification list if a previous QlgSSL_Init() API was not
done

■

The caller specifies the preferred order of the cipher specifications. The cipher specification values
are defined in ssl.h as the following:

 SSL_RSA_WITH_NULL_MD5 0x0001
 SSL_RSA_WITH_NULL_SHA 0x0002
 SSL_RSA_EXPORT_WITH_RC4_40_MD5 0x0003
 SSL_RSA_WITH_RC4_128_MD5 0x0004
 SSL_RSA_WITH_RC4_128_SHA 0x0005
 SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 0x0006
 SSL_RSA_EXPORT_WITH_DES40_CBC_SHA 0x0008
 SSL_RSA_WITH_DES_CBC_SHA 0x0009
 SSL_RSA_WITH_3DES_EDE_CBC_SHA 0x000A
 SSL_RSA_WITH_RC2_CBC_128_MD5 0xFF01
 SSL_RSA_WITH_DES_CBC_MD5 0xFF02
 SSL_RSA_WITH_3DES_EDE_CBC_MD5 0xFF03

Notes:

The SSL_RSA_EXPORT_WITH_DES40_CBC_SHA cipher is not supported by OS/400.1.

The list of cipher specifications will be different between the Cryptographic Access
Provider 40-Bit (5769AC1), Cryptographic Access Provider 56-Bit (5769AC2),
Cryptographic Access Provider 128-Bit (5769AC3) licensed products. If one of the
cryptographic products is installed and an application attempts to use a cipher specification
that is not allowed only for that cryptographic product, they will receive an EINVAL errno.

2.

The default cipher suite list for the Internet Connection Secure Server (US) 5769AC3
product in preference order is as follows:

SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_DES_CBC_MD5
SSL_RSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_MD5
SSL_RSA_WITH_RC2_CBC_128_MD5
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

3.

The default cipher suite list for the Internet Connection Secure Server (US) 5769AC2
product in preference order is as follows:

SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_DES_CBC_MD5
SSL_RSA_EXPORT_WITH_RC4_40_MD5

4.

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

The default cipher suite list for the Internet Connection Secure Server (International)
5769AC1 product in preference order is as follows:

SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

5.

unsigned int cipherSuiteListLen (input)

The number of cipher suite entries specified in the list pointed to by the cipherSuiteList parameter.

Authorities

Authorization of *R (allow access to the object) to the key ring file and its associated files is required.

Return Value

The QlgSSL_Init() API returns an integer. Possible values are:

[0]

Successful return

[SSL_ERROR_BAD_CIPHER_SUITE]

A cipher suite that is not valid was specified.

[SSL_ERROR_IO]

An error occurred in SSL processing; check the errno value.

[SSL_ERROR_KEYPASSWORD_EXPIRED]

The specified key ring password has expired.

[SSL_ERROR_NO_KEYRING]

No key ring file was specified.

[SSL_ERROR_SSL_NOT_AVAILABLE]

SSL is not available for use.

[SSL_ERROR_UNKNOWN]

An unknown or unexpected error occurred during SSL processing.

Error Conditions

When the QlgSSL_Init() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EINVAL]

Parameter not valid.

This error code indicates that the Qlg_Path_Name_T structure was not valid:

The path type was less than 0 or greater than 3.❍

A reserved field was not initialized to zeros.❍

[ECONVERT]

Conversion error.

This error code indicates one of the following:

The CCSID specified in the keyringFileName cannot be converted to the current default CCSID
for integrated file system path names.

❍

There was an incomplete character or shift state sequence at the end of the keyringFileName path
or keyringPassword.

❍

[EACCES]

Permission denied.

This error code indicates one of the following:

The keyringFileName field contains a file name to which the user is not authorized.❍

The keyringPassword value is not valid for the specified keyringFileName.❍

[EBADF]

Descriptor not valid.

This error code indicates one of the following:

The keyringFileName value does not specify a valid key ring file name.❍

[EFAULT]

Bad address.

The system detected an address that was not valid while attempting to access the init parameter or one of
the address fields in the init parameter.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

Unknown system state.

Error Messages

CPE3418 E

Possible APAR condition or hardware failure.

CPF9872 E

Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E

Unable to set return value or error code.

Usage Notes

A successful SSL_Init(), QlgSSL_Init (using NLS-enabled path name), or SSL_Init_Application() API must
be used to enable a job for SSL processing before attempting to use any other SSL API.

1.

If multiple SSL_Init_Application(), QlgSSL_Init (using NLS-enabled path name), or SSL_Init() APIs are
performed in a job, then only the values associated with the last SSL_Init_Application(), QlgSSL_Init (using
NLS-enabled path name), or SSL_Init() performed are used.

2.

If the keyringPassword parameter pointer value is equal to NULL, then QlgSSL_Init will attempt to extract
the password value from the key-ring password file associated with the keyringFileName parameter's value.
The existence of the associated key-ring password file is based on a configuration selection made during the
creation of the key ring file.

3.

Related Information

SSL_Create()--Enable SSL Support for the Specified Socket Descriptor●

SSL_Destroy()--End SSL Support for the Specified SSL Session●

SSL_Handshake()--Initiate the SSL Handshake Protocol●

SSL_Init()--Initialize the Current Job for SSL●

SSL_Init_Application()--Initialize the Current Job for SSL Processing Based on the Application Identifier●

SSL_Read()--Receive Data from an SSL-Enabled SocketDescriptor●

SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor●

API introduced: V5R1

Top | Secure Sockets Layer (SSL) APIs | APIs by category

SSL_Create()--Enable SSL Support for the
Specified Socket Descriptor

 Syntax

 #include <ssl.h>

 SSLHandle* SSL_Create(int socket_descriptor,
 int flags)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Create() function is used by a program to enable SSL support for the specified socket descriptor.

Parameters

int socket_descriptor (input)

The descriptor of the socket to be used for the SSL session. The socket descriptor must have been
created (using the socket() API) with a type of SOCK_STREAM and an address family of
AF_INET or AF_INET6 .

int flags (input)

A flag value that controls the use of SSL for the session. The flags value is either zero, or is
obtained by the ORing of the following constant:

SSL_ENCRYPT (1<<0)

Encrypt the connection.

SSL_DONT_ENCRYPT (0)

Do not encrypt the connection.

Authorities

No authorization is required.

Return Value

The SSL_Create() API returns a pointer to an SSLHandle. A value of NULL is returned when
SSL_Create() fails. An SSLHandle is a typedef for a buffer of type struct SSLHandleStr. In <ssl.h>, struct
SSLHandleStr is defined as the following:

struct SSLHandleStr { /* SSLHandleStr */
 int fd; /* Socket descriptor */
 int createFlags; /* SSL_Create flags value */
 unsigned protocol; /* SSL protocol version */
 unsigned timeout; /* Timeout value in seconds */
 unsigned char cipherKind[3]; /* Current 2.0 cipher suite*/
 unsigned short int cipherSuite; /* Current 3.0 cipher suite */
 unsigned short int* cipherSuiteList; /* List of cipher suites */
 unsigned int cipherSuiteListLen; /* Number of entries in
 the cipher suites list */
 unsigned char* peerCert; /* Peer certificate */
 unsigned peerCertLen; /* Peer certificate length */
 int peerCertValidateRc; /* Return code from
 validation of certficate */
 int (*exitPgm)(struct SSLHandleStr* sslh);
 /* Authentication exit
 program called when a
 certificate is received
 during SSL handshake */
};

Note: A full explanation of each of the members of the above structure are defined in the SSL_Handshake()
API description.

The SSLHandle structure returned will be initialized to hexadecimal zeros with the exception of the fd
field, which will be initialized to the socket_descriptor input parameter and the createFlags field, which
will be initialized to the flags input parameter.

Error Conditions

When the SSL_Create() API fails, errno can be set to:

[EALREADY] Operation already in progress.

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

The socket_descriptor type is not SOCK_STREAM or address family is not
AF_INET or AF_INET6 .

●

One of the parameters passed is not valid or is NULL.●

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EPIPE] Broken pipe.

[EUNATCH] The protocol required to support the specified address family is not available at this
time.

[EUNKNOWN] Unknown system state.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

The SSL_Create() function is only valid on sockets that have an address family of AF_INET or
AF_INET6 and a socket type of SOCK_STREAM. If the descriptor pointed to by the
socket_descriptor parameter does not have the correct address family and socket type,
[SSL_ERROR_IO] is returned and the errno value is set to EINVAL.

1.

If the flags parameter specifies a value that does not include the SSL_ENCRYPT flag, then the SSL
protocol will not be used for the connection. Not using the SSL protocol has the following effects:

The SSL_Handshake() API will simply return successful without performing any function.❍

The SSL_Read() API will simply call the sockets read() API with the same set of input
parameters.

❍

The SSL_Write() API will simply call the sockets write() API with the same set of input
parameters.

❍

2.

Any use of givedescriptor() and takedescriptor() APIs must be performed prior to issuing an
SSL_Create().

3.

Related Information

SSL_Destroy()--End SSL Support for the Specified SSL Session●

SSL_Handshake()--Initiate the SSL Handshake Protocol●

SSL_Init()--Initialize the Current Job for SSL●

SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor●

SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor●

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

SSL_Destroy()--End SSL Support for the Specified
SSL Session

 Syntax

 #include <ssl.h>

 int SSL_Destroy(SSLHandle* handle)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Destroy() function is used by a program to end SSL support for the specified SSL session. The SSL
session to be ended is identified by the handle parameter.

Parameters

SSLHandle* handle (input)

The pointer to an SSLHandle for an active SSL session, which is being ended. An SSLHandle is a
typedef for a buffer of type struct SSLHandleStr. In <ssl.h>, struct SSLHandleStr is defined as the
following:

struct SSLHandleStr { /* SSLHandleStr */
 int fd; /* Socket descriptor */
 int createFlags; /* SSL_Create flags value */
 unsigned protocol; /* SSL protocol version */
 unsigned timeout; /* Timeout value in seconds */
 unsigned char cipherKind[3]; /* Current 2.0 cipher suite*/
 unsigned short int cipherSuite; /* Current 3.0 cipher suite */
 unsigned short int* cipherSuiteList; /* List of cipher suites */
 unsigned int cipherSuiteListLen; /* Number of entries in
 the cipher suites list */
 unsigned char* peerCert; /* Peer certificate */
 unsigned peerCertLen; /* Peer certificate length */
 int peerCertValidateRc; /* Return code from
 validation of certficate */
 int (*exitPgm)(struct SSLHandleStr* sslh);
 /* Authentication exit
 program called when a
 certificate is received
 during SSL handshake */
};

Authorities

No authorization is required.

Return Value

The SSL_Destroy() API returns an integer. Possible values are:

[0] Successful return

[SSL_ERROR_IO] An error occurred in SSL processing; check the errno value.

Error Conditions

When the SSL_Destroy() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address that was not valid while attempting to access the handle
parameter or a field within the structure pointed to by the handle parameter.

[EIO] Input/output error.

[EINVAL] Parameter not valid. This error code indicates one of the following:

The socket_descriptor type is not SOCK_STREAM or address family is not
AF_INET or AF_INET6 .

●

One of the parameters passed is not valid or is NULL.●

[ENOTCONN] Requested operation requires a connection.

This error code indicates that the socket_descriptor has not had SSL support enabled. This
usually means that an SSL_Create() has not been completed for this socket_descriptor.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EPIPE] Broken pipe.

[ETIMEDOUT] A remote host did not respond within the timeout period.

This error code indicates that the SSL_Destroy() was unable to successfully complete the
removal of SSL support on this socket_descriptor.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

[EUNKNOWN] Unknown system state.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

All storage referenced from any field within the structure pointed to by the handle parameter and the
storage pointed to by the handle parameter itself will be freed upon a successful return.

1.

Unpredictable results will occur if you attempt to use an SSL_Destroy() while sending or receiving data
on the peer system.

2.

If an SSL_Destroy() is not done, then the storage referenced by the handle parameter will not be freed
until the job ends.

Note: A job end might cause a Licensed Internal Code log entry or error log entry if the handle parameter
storage is not freed before the job ended.

3.

If an SSL_Destroy() is not done, the storage referenced by the handle parameter will not be freed. This
will result in a memory leak. A memory leak is the loss of a piece of system memory because it is not
allocated to any process on the system.

4.

Related Information

SSL_Create()--Enable SSL Support for the Specified Socket Descriptor●

SSL_Handshake()--Initiate the SSL Handshake Protocol●

SSL_Init()--Initialize the Current Job for SSL●

SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor●

SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor●

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

SSL_Handshake()--Initiate the SSL Handshake
Protocol

 Syntax

 #include <ssl.h>

 int SSL_Handshake(SSLHandle* handle,
 int how)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Handshake() function is used by a program to initiate the SSL handshake protocol. Both the client and the server
program must call the SSL_Handshake verb in order to initiate the handshake processing.

Parameters

SSLHandle* handle (input/output)

The pointer to an SSLHandle for an SSL session. An SSLHandle is a typedef for a buffer of type struct
SSLHandleStr. In <ssl.h>, struct SSLHandleStr is defined as the following:

struct SSLHandleStr { /* SSLHandleStr
*/
 int fd; /* Socket descriptor
*/
 int createFlags; /* SSL_Create flags value
*/
 unsigned protocol; /* SSL protocol version
*/
 unsigned timeout; /* Timeout value in seconds
*/
 unsigned char cipherKind[3]; /* Current 2.0 cipher suite
*/
 unsigned short int cipherSuite; /* Current 3.0 cipher suite
*/
 unsigned short int* cipherSuiteList; /* List of cipher suites
*/
 unsigned int cipherSuiteListLen; /* Number of entries in
 the cipher suites list
*/
 unsigned char* peerCert; /* Peer certificate
*/
 unsigned peerCertLen; /* Peer certificate length
*/
 int peerCertValidateRc; /* Return code from
 validation of certficate
*/
 int (*exitPgm)(struct SSLHandleStr* sslh);
 /* Authentication exit
 program called when a
 certificate is received

 during SSL handshake
*/
};

The fields within the SSLHandle structure as pointed to by handle are defined as follows:

int fd (input) The socket descriptor of the connection for which the SSL handshake protocol is to be
performed. This field was initialized by a prior SSL_Create() API.

int createFlags (input) Whether or not the SSL protocol is to be used. If the field specifies a value that does not
include the SSL_ENCRYPT flag, then this function will return success without performing
the SSL handshake protocol. This field was initialized by a prior SSL_Create() API.

unsigned int protocol
(input/output)

The type of SSL handshake protocol to be performed. The protocol(s) that are acceptable as
the handshake protocol for this job. The following values may be specified for protocol and
are defined in ssl.h.

SSL_VERSION_CURRENT 0 (TLS with SSL Version 3.0 and SSL
 Version 2.0 compatibility)
SSL_VERSION_2 2 (SSL Version 2.0 only)
SSL_VERSION_3 3 (SSL Version 3.0 only)
TLS_VERSION_1 4 (TLS Version 1 only)
TLSV1_SSLV3 5 (TLS Version 1 with SSL
 Version 3.0 compatibility)

Upon return, this field will be set to reflect the protocol version actually negotiated. If the
createFlags field specifies a value that does not include the SSL_ENCRYPT flag, then this
field will be unchanged from its input value.

unsigned timeout (input) The approximate number of seconds to wait for the SSL handshake protocol to complete. A
value of 0 indicates to wait forever for the handshake to complete.

unsigned char
cipherKind[3] (output)

The cipher kind (which is the SSL Version 2.0 cipher suite) negotiated by the handshake.

unsigned short int
cipherSuite (output)

The cipher suite type negotiated by the handshake.

unsigned short int*
cipherSuiteList (input)

A pointer to a cipher specification list that is to be used during the handshake negotiation for
this SSL session. This list is a string of concatenated cipher specification values. Each cipher
specification is an unsigned short integer value. Any value provided will override, for this
SSL session, the default cipher specification list provided by a previous SSL_Init() API or
SSL_Init_Application() API . The valid cipher suites allowed are defined in ssl.h. A value
of NULL indicates one of the following:

Use the cipher specification list provided by a previous SSL_Init() API or
SSL_Init_Application() API

●

Use the system default cipher specification list if the previous SSL_Init() API or
SSL_Init_Application() API did not provide a cipher specification list

●

unsigned int
cipherSuiteListLen
(input)

The number of cipher suite entries specified in the list pointed to by the cipherSuiteList
field.

unsigned char* peerCert
(output)

The pointer to the certificate received from the peer system. For a client, this is a pointer to
the server's certificate. For a server with client authentication enabled, this is a pointer to the
client's certificate. For a server without client authentication this pointer value remains
unchanged.

unsigned peerCertLen
(output)

The length of the certificate pointed to by the peerCert field.

int
(*exitPgm)(SSLHandle*
sslh) (input)

A pointer to a user supplied function that is called whenever a certificate is received during
handshake processing. The exitPgm will be passed the pointer to the handle, which could
include the peer's certificate. The exitPgm returns a nonzero value if the peer's certificate is
accepted. The return of a zero value by the exitPgm will cause the handshake processing to
fail. Users of this function do not need to provide an exit program. The pointer should be a
NULL value if there is not a user-supplied exit program. The exit program should be written
in a threadsafe manner.

int how (input) The type of SSL handshake to be performed:

0 Perform the handshake as a client.

1 Perform the handshake as a server.

2 Perform the handshake as a server with client authentication.

3 Perform the handshake as a server with optional client authentication.

Authorities

Authorization of *R (allow access to the object) to the key ring file and its associated files is required.

Return Value

The SSL_Handshake() API returns an integer. Possible values are:

Value Description

[0] Successful return

[SSL_ERROR_BAD_CERTIFICATE] The certificate is bad.

[SSL_ERROR_BAD_CERT_SIG] The certificate's signature is not valid.

[SSL_ERROR_BAD_CERTIFICATE] The certificate is bad.

[SSL_ERROR_BAD_CIPHER_SUITE] A cipher suite that is not valid was specified.

[SSL_ERROR_BAD_MAC] A bad message authentication code was received.

[SSL_ERROR_BAD_MALLOC] Unable to allocate storage required for SSL processing.

[SSL_ERROR_BAD_MESSAGE] SSL received a badly formatted message.

[SSL_ERROR_BAD_PEER] The peer system is not recognized.

[SSL_ERROR_BAD_STATE] SSL detected a bad state in the SSL session.

[SSL_ERROR_CERTIFICATE_REJECTED] The certificate is not valid or was rejected by the exit
program.

[SSL_ERROR_CERT_EXPIRED] The validity time period of the certificate is expired.

[SSL_ERROR_CLOSED] The SSL session ended.

[SSL_ERROR_IO] An error occurred in SSL processing; check the errno
value.

[SSL_ERROR_NO_CERTIFICATE] No certificate is available for SSL processing.

[SSL_ERROR_NO_CIPHERS] No ciphers available or specified.

[SSL_ERROR_NO_INIT] SSL_Init() was not previously called for this job.

[SSL_ERROR_NOT_TRUSTED_ROOT] The certificate is not signed by a trusted certificate
authority.

[SSL_ERROR_PERMISSION_DENIED] Permission was denied to access object.

[SSL_ERROR_SELF_SIGNED] The certificate is self-signed.

[SSL_ERROR_SSL_NOT_AVAILABLE] SSL is not available for use.

[SSL_ERROR_UNKNOWN] An unknown or unexpected error occurred during SSL
processing.

[SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE] OS/400 does not support the certificate's type.

[SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE] OS/400 does not support the certificate's type.

Error Conditions

When the SSL_Handshake() API fails with a return code of [SSL_ERROR_IO], errno can be set to:

[EACCES] Permission denied.

[EBADF] Descriptor not valid.

[EBUSY] Resource busy.

[EDEADLK] Resource deadlock avoided.

[EFAULT] Bad address.

The system detected an address that was not valid while attempting to access the handle parameter or
one of the address fields in the handle parameter.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

The socket_descriptor type is not SOCK_STREAM or address family is not AF_INET or
AF_INET6 .

●

One of the parameters passed is not valid or is NULL.●

The protocol field contains a value that is not valid.●

[EALREADY] Operation already in progress.

An SSL_Handshake() API has already been previously successfully completed.

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

This error code indicates one of the following:

The socket_descriptor is not for a socket that is in a connected state.●

The socket_descriptor has not had SSL support enabled.●

[ENOTSOCK] The specified descriptor does not reference a socket.

[EPIPE] Broken pipe.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

[EUNKNOWN] Unknown system state.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

The SSL_Handshake() function is only valid on sockets that have an address family of AF_INET or AF_INET6
 and a socket type of SOCK_STREAM. If the descriptor pointed to by the handle structure parameter does not

have the correct address family and socket type, [SSL_ERROR_IO] is returned and the errno value is set to
EINVAL.

1.

The SSL_Handshake() function can be called only one time per SSL session. If a secondary call of
SSL_Handshake() occurs within the same established SSL session, then it will fail and the errno will be set to
[EINVAL].

2.

A successful SSL_Init() or or SSL_Init_Application() API and a successful SSL_Create() API must be called prior
to an SSL_Handshake() API. The SSL_Init() API or SSL_Init_Application() API is used to establish a certificate
and private key for either of the following:

A successful handshake as a server❍

A successful handshake as a client when connected to a server performing client authentication❍

3.

The SSL_Create() API is used to enable SSL support for the specified socket descriptor.4.

Related Information

SSL_Create()--Enable SSL Support for the Specified Socket Descriptor●

SSL_Destroy()--End SSL Support for the Specified SSL Session●

SSL_Init()--Initialize the Current Job for SSL●

SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor●

SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor●

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

SSL_Init()--Initialize the Current Job for SSL

 Syntax

 #include <ssl.h>

 int SSL_Init(SSLInit* init)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Init() function is used to establish the SSL security information to be used for all SSL sessions for the
current job. The SSL_Init() API establishes the certificate and the associated public and private key information for
use by the SSL handshake protocol processing when acting as a server or when acting as a client. The certificate and
key information is needed by an application that is acting as a client in the situations where the client is connecting to
a server which has enabled and requires client authentication.

Parameters

SSLInit * init (input)

The pointer to an SSLInit structure. SSLInit is a typedef for a buffer of type struct SSLInitStr. In <ssl.h>,
struct SSLInitStr is defined as the following:

struct SSLInitStr { /* SSLInitStr */

 char* keyringFileName; /* Key ring file name */
 char* keyringPassword; /* Key ring file password */
 unsigned short int* cipherSuiteList; /* List of cipher suites */
 unsigned int cipherSuiteListLen; /* number of entries in
 the cipher suites list */
};

The fields within the SSLInit structure as pointed to by init are defined as follows:

char *keyringFileName (input)

A pointer to a null-terminated character string, identifying the path to the key database file to be used for this
job's SSL processing. The path must be a fully qualified integrated file system file name.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently in effect
for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented in the default
CCSID of the job.

See QlgSSL_Init()--Initialize the Current Job for SSL (using NLS-enabled path name) for a description of
supplying the keyringFileName in any CCSID.

char *keyringPassword (input)

A pointer to a null-terminated character string, identifying the password for the key database file named in the

keyringFileName field.

If this parameter's value is equal to NULL, then the SSL_Init() support will attempt to extract the key
database password that has been securely stored on the system.

This parameter is assumed to be represented in the CCSID (coded character set identifier) currently in effect
for the job. If the CCSID of the job is 65535, this parameter is assumed to be represented in the default
CCSID of the job.

unsigned short int* cipherSuiteList (input)

A pointer to the cipher specification list to be used during the SSL handshake protocol for this job. This list is
a string of concatenated cipher specification values. A cipher specification value is an unsigned short integer.
Any value provided will override any values provided by a previous SSL_Init() API or
SSL_Init_Application() API or the system default cipher specification list if the previous SSL_Init() API or
SSL_Init_Application() API did not provide a cipher specification list. A value of NULL for this parameter
indicates one of the following:

Use the cipher specification list provided by a previous SSL_Init() API or SSL_Init_Application() API❍

Use the system default cipher specification list if a previous SSL_Init() API or SSL_Init_Application()
API was not done

❍

The caller specifies the preferred order of the cipher specifications. The cipher specification values, shown
here not in preferred or strength order, are defined in ssl.h as the following:

 TLS_RSA_WITH_NULL_MD5 0x0001
 TLS_RSA_WITH_NULL_SHA 0x0002
 TLS_RSA_EXPORT_WITH_RC4_40_MD5 0x0003
 TLS_RSA_WITH_RC4_128_MD5 0x0004
 TLS_RSA_WITH_RC4_128_SHA 0x0005
 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 0x0006
 TLS_RSA_WITH_DES_CBC_SHA 0x0009
 TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x000A
 TLS_RSA_WITH_AES_128_CBC_SHA 0x002F
 TLS_RSA_WITH_RC2_CBC_128_MD5 0xFF01
 TLS_RSA_WITH_DES_CBC_MD5 0xFF02
 TLS_RSA_WITH_3DES_EDE_CBC_MD5 0xFF03

Notes:

The SSL_RSA_EXPORT_WITH_DES40_CBC_SHA cipher is not supported by OS/400.1.

The list of cipher specifications will be different between the Cryptographic Access Provider 56-Bit
(5722AC2), Cryptographic Access Provider 128-Bit (5722AC3) licensed products. If one of the
cryptographic products is installed and an application attempts to use a cipher specification that is not
allowed only for that cryptographic product, they will receive an EINVAL errno.

2.

The default cipher suite list for the Internet Connection Secure Server (US) 5722AC3 product in
preference order is as follows:

TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

3.

The default cipher suite list for the Internet Connection Secure Server (US) 5722AC2 product in4.

preference order is as follows:

TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

unsigned int cipherSuiteListLen (input)

The number of cipher suite entries specified in the list pointed to by the cipherSuiteList parameter.

Authorities

Authorization of *R (allow access to the object) to the key database file and its associated files is required.

Return Value

The SSL_Init() API returns an integer. Possible values are:

Value Description

[0] Successful return

[SSL_ERROR_BAD_CIPHER_SUITE] A cipher suite that is not valid was specified.

[SSL_ERROR_IO] An error occurred in SSL processing; check the errno value.

[SSL_ERROR_KEYPASSWORD_EXPIRED] The specified key ring password has expired.

[SSL_ERROR_NO_KEYRING] No key ring file was specified.

[SSL_ERROR_SSL_NOT_AVAILABLE] SSL is not available for use.

[SSL_ERROR_UNKNOWN] An unknown or unexpected error occurred during SSL processing.

Error Conditions

When the SSL_Init() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EINVAL] Parameter not valid.

[EACCES] Permission denied.

This error code indicates one of the following:

The keyringFileName field contains a file name to which the user is not authorized.●

The keyringPassword value is not valid for the specified keyringFileName.●

[EBADF] Descriptor not valid.

This error code indicates one of the following:

The keyringFileName value does not specify a valid key ring file name.●

[EFAULT] Bad address.

The system detected an address that was not valid while attempting to access the init parameter
or one of the address fields in the init parameter.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

[EUNKNOWN] Unknown system state.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

A successful SSL_Init(), QlgSSL_Init (using NLS-enabled path name), or an SSL_Init_Application() API
must be used to enable a job for SSL processing before attempting to use any other SSL API.

1.

If multiple SSL_Init_Application (), QlgSSL_Init, or SSL_Init() APIs are performed in a job, then only the
values associated with the last SSL_Init_Application(), QlgSSL_Init, or or SSL_Init() performed are used.

2.

If the keyringPassword parameter pointer value is equal to NULL, then SSL_Init() will attempt to extract the
password value as stored on the system with the keyringFileName parameter's value. The existence of the
securely stored key database password is based on a configuration selection made during the creation of the
key database file.

3.

Related Information

QlgSSL_Init()--Initialize the Current Job for SSL (using NLS-enabled path name)●

SSL_Create()--Enable SSL Support for the Specified Socket Descriptor●

SSL_Destroy()--End SSL Support for the Specified SSL Session●

SSL_Handshake()--Initiate the SSL Handshake Protocol●

SSL_Init_Application()--Initialize the Current Job for SSL Processing Based on the Application Identifier●

SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor●

SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor●

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

SSL_Init_Application()--Initialize the Current Job for
SSL Processing Based on the Application Identifier

 Syntax

 #include <ssl.h>

 int SSL_Init_Application(SSLInitApp*
 init_app)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Init_Application() function is used to establish the SSL security information to be used for all SSL sessions for
the current job based on the specified application identifier. The SSL_Init_Application() API uses the application
identifier to determine and then establish the certificate and the associated public and private key information for use by
the SSL handshake protocol processing when acting as a server or when acting as a client. The certificate and key
information is needed by an application that is acting as a client in the situaitons where the client is connecting to a server
which has enabled and requires client authentication.

Parameters

SSLInitApp * init_app (input)

The pointer to an SSLInitApp value. SSLInitApp is a typedef for a buffer of type struct SSLInitAppStr. In
<ssl.h>, struct SSLInitAppStr is defined as the following:

struct SSLInitAppStr { /* SSLInitAppStr */
 char* applicationID; /* application id value */
 unsigned int applicationIDLen; /* length of application id */
 char* localCertificate; /* local certificate */
 unsigned int localCertificateLen; /* ength of local certificate */
 unsigned short int* cipherSuiteList; /* List of cipher suites */
 unsigned int cipherSuiteListLen; /* number of entries in
 the cipher suites list */

 unsigned int sessionType; /* the type of application as
 registered */
 unsigned int reserved1; /* reserved - must be 0 */
 unsigned int protocol; /* SSL protocol version */
 unsigned int timeout; /* cache timeout (seconds) */
 char reserved[12]; /* reserved - must be NULL (0s)*/

};

The fields within the SSLInitApp structure as pointed to by init_app are defined as follows:

char *applicationID (input)

A pointer to a null terminated character string identifying the application identifier value that was used to register

the application using the Register Application for Certificate Use, (OPM, QSYRGAP; ILE,
QsyRegisterAppForCertUse) API. See the Register Application for Certificate Use API for information on the
format and values allowed for the application identifier.

char *applicationIDLen (input)

The number of characters in the application identifier string as specified by the applicationID parameter.

char *localCertificate (input)

On input, the localCertificate pointer must be set to point to storage that has been allocated by the calling
application that will be used on output to contain the application's registered local certificate. If a certificate is not
to be returned then set this pointer's value to NULL and the localCertificateLen value to zero (0). The storage
should be large enough to accomodate the size of the certificate. Most certificates are less than 2K in length. On
output, the localCertificate pointer will not be changed, though the storage it points to will contain the registered
application's certificate. The certificate will be the one registered for that application by the Register Application
for Certificate Use (OPM, QSYRGAP; ILE, QsyRegisterAppForCertUse) API. See the Register Application for
Certificate Use API for information on the format and values allowed for the application identifier.

unsigned intlocalCertificateLen (input)

On input, this value must equal the number of characters available in the storage pointed to by the
localCertificate pointer. Set this value to 0 if you do not want a certificate returned by this API. On output, this
value is equal to the length of the certificate. If the certificate will not fit into the storage provided, then this value
will be set to the length required to contain the certificate.

unsigned short int* cipherSuiteList (input)

A pointer to the cipher specification list to be used during the SSL handshake protocol for this job. This list is a
string of concatenated cipher specification values. A cipher specification value is an unsigned short integer. Any
value provided will override any values provided by a previous SSL_Init_Application() API or SSL_Init() API or
the system default cipher specification list if the previous SSL_Init_Application() API or SSL_Init() API did not
provide a cipher specification list. A value of NULL for this parameter indicates one of the following:

Use the cipher specification list provided by a previous SSL_Init_Application() API or SSL_Init() API❍

Use the system default cipher specification list if a previous SSL_Init_Application() API or SSL_Init()
API was not done

❍

The caller specifies the preferred order of the cipher specifications. The cipher specification values, shown here
not in preferred or strength order, are defined in ssl.h as the following:

 TLS_RSA_WITH_NULL_MD5 0x0001
 TLS_RSA_WITH_NULL_SHA 0x0002
 TLS_RSA_EXPORT_WITH_RC4_40_MD5 0x0003
 TLS_RSA_WITH_RC4_128_MD5 0x0004
 TLS_RSA_WITH_RC4_128_SHA 0x0005
 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 0x0006

 TLS_RSA_WITH_DES_CBC_SHA 0x0009
 TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x000A
 TLS_RSA_WITH_AES_128_CBC_SHA 0x002F

 TLS_RSA_WITH_RC2_CBC_128_MD5 0xFF01
 TLS_RSA_WITH_DES_CBC_MD5 0xFF02
 TLS_RSA_WITH_3DES_EDE_CBC_MD5 0xFF03

Notes:

The SSL_RSA_EXPORT_WITH_DES40_CBC_SHA cipher is not supported by OS/400.1.

The list of cipher specifications will be different between the Cryptographic Access Provider 56-Bit
(5722AC2), Cryptographic Access Provider 128-Bit (5722AC3) licensed products. If one of the
cryptographic products is installed and an application attempts to use a cipher specification that is not
allowed only for that cryptographic product, they will receive an EINVAL errno.

2.

The default cipher suite list for the Internet Connection Secure Server (US) 5722AC3 product in
preference order is as follows:

TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

3.

The default cipher suite list for the Internet Connection Secure Server (US) 5722AC2 product in
preference order is as follows:

TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

4.

unsigned int cipherSuiteListLen (input)

The number of cipher suite entries specified in the list pointed to by the cipherSuiteList parameter.

unsigned int sessionType (output)

The type registered for the application. The following values are returned in sessionType and are defined in ssl.h.

 SSL_REGISTERED_AS_CLIENT 0
 SSL_REGISTERED_AS_SERVER 1
 SSL_REGISTERED_AS_SERVER_WITH_CLIENT_AUTH 2
 SSL_REGISTERED_AS_SERVER_WITH_OPTIONAL_CLIENT_AUTH 3
 SSL_REGISTERED_AS_NOT_SPECIFIED 99

unsigned int reserved1 (input)

This reserved field must be set to 0.

unsigned int protocol (input)

The protocol(s) that are acceptable as the handshake protocol for this job. The following values may be specified
for protocol and are defined in ssl.h.

 SSL_VERSION_CURRENT 0 (TLS with SSL Version 3.0 and SSL
 Version 2.0 compatibility)

 SSL_VERSION_2 2 (SSL Version 2.0 only)
 SSL_VERSION_3 3 (SSL Version 3.0 only)
 TLS_VERSION_1 4 (TLS Version 1 only)
 TLSV1_SSLV3 5 (TLS Version 1 with SSL
 Version 3.0 compatibility)

unsigned int timeout (input)

The time period (in seconds) for which TLS Version 1.0 and SSL Version 3.0 session parameters are cached for
use with abbreviated SSL handshakes. The valid range for timeout is from 1 to 86,400 seconds (24 hours). Not
specifying a value (0) will default to the maximum timeout, and specifying a value of 0xffffffff will disable
caching. The following values are defined in ssl.h.

 SSL_TIMEOUT_DEFAULT 0 (Use default timeout, 24 hours)
 SSL_TIMEOUT_MAX 86400 (Use maximum timeout, 24 hours)
 SSL_TIMEOUT_DISABLE 0xffffffff (Disable caching of session parameters
 for abbreviated handshakes)

char reserved[12] (input)

This reserved field must be set to NULL (0s).

Authorities

Authorization of *R (allow access to the object) to the key database file and its associated files is required. The certificate
is stored in a key database file.

Return Value

The SSL_Init_Application() API returns an integer. Possible values are:

Value Description

[0] Successful return

[SSL_ERROR_BAD_CIPHER_SUITE] A cipher suite that is not valid was specified.

[SSL_ERROR_CERT_EXPIRED] The validity time period of the certificate is expired.

[SSL_ERROR_KEYPASSWORD_EXPIRED] The specified key ring password has expired.

[SSL_ERROR_NOT_REGISTERED] The application identifier is not registered with the certificate registry
facility.

[SSL_ERROR_NOT_TRUSTED_ROOT] The certificate is not signed by a trusted certificate authority.

[SSL_ERROR_NO_CERTIFICATE] No certificate is available for SSL processing.

[SSL_ERROR_IO] An error occurred in SSL processing; check the errno value.

[SSL_ERROR_SSL_NOT_AVAILABLE] SSL is not available for use.

[SSL_ERROR_UNKNOWN] An unknown or unexpected error occurred during SSL processing.

Error Conditions

When the SSL_Init_Application() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EINVAL] Parameter not valid.

[EACCES] Permission denied.

This error code indicates one of the following:

The applicationID field contains a registered application identifier to which the user is not
authorized.

●

The user profile, which the application is operating under, is not authorized to the key
database file or its associated files.

●

[EFAULT] Bad address.

The system detected an address that was not valid while attempting to access the init_app parameter
or one of the address fields in the init_app parameter.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

[EUNKNOWN] Unknown system state.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

Before the SSL_Init_Application() API can be used, the user must have registered the application using the
Register Application for Certificate Use (OPM, QSYRGAP; ILE, QsyRegisterAppForCertUse) API. The
Register Application For Certificate Use API registers an application with the registry facility, allowing an
application to be associated with a specific certificate. The Register Application for Certificate Use is described
in the System Programming Interface Reference. If the applicaiton is not registered with the registry facility, then
an error of SSL_ERROR_NOT_REGISTERED will be returned by SSL_Init_Application().

1.

A successful SSL_Init(), SSL_Init (using NLS-enabled path name), or an SSL_Init_Application() API must be
used to enable a job for SSL processing before attempting to use any other SSL API.

2.

If multiple SSL_Init_Application(), SSL_Init (using NLS-enabled path name), or multiple SSL_Init() APIs are
performed in a job, then only the values associated with the last SSL_Init_Application(), SSL_Init (using
NLS-enabled path name), or SSL_Init() performed are used.

3.

If the SSL_Init_Application() API or SSL_Init() API are both performed in the same job, then only the values
associated with the last API performed are used.

4.

The reserved fields in the SSLInitApp structure must be set to NULLs (0s) before using this API.5.

Related Information

QlgSSL_Init()--Initialize the Current Job for SSL (using NLS-enabled path name)●

SSL_Create()--Enable SSL Support for the Specified Socket Descriptor●

SSL_Destroy()--End SSL Support for the Specified SSL Session●

SSL_Init()--Initialize the Current Job for SSL●

SSL_Handshake()--Initiate the SSL Handshake Protocol●

SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor●

SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor●

API introduced: V4R4

Top | UNIX-Type APIs | APIs by category

SSL_Perror()--Print SSL Error Message

 Syntax

 #include <ssl.h>

 void SSL_Perror(int sslreturnvalue,
 const char* string);

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Perror() function prints an error message to stderr. If string is not NULL and does not point to a
null character, the string pointed to by string is printed to the standard error stream. If a string is printed, it
is followed by a colon and a space. Regardless of if string was printed or not, the message associated with
the sslreturnvalue is printed followed by a new-line character. Also, the message associated with the
thread's errno is printed followed by a new-line character.

Parameters

int sslreturnvalue (Input)

The Return Value received from a SSL API.

char* string (Input)

The string to be printed prior to the message associated with the sslreturnvalue. If no preceding
message is desired, NULL must be entered.

Authorities

No authorization is required.

Return Value

There is no return value.

Error Conditions

This API calls the Retrieve SSL Runtime Error Message (SSL_Strerror) API in order to perform its task. It
inherits all error conditions from this function. If the sslreturnvalue is unrecognized or if unable to retrieve
the message corresponding to sslreturnvalue, then an Unknown error message will be printed following
the string. Also, the message associated with the value found in the thread's errno is printed. Note: the
value of errno may be updated by SSL_Perror() in some error conditions.

Error Messages

See Error Conditions.

Related Information

SSL_Strerror()--Retrieve SSL Runtime Error Message●

SSL_Create()--Enable SSL Support for the Specified Socket Descriptor●

SSL_Destroy()--End SSL Support for the Specified SSL Session●

SSL_Handshake()--Initiate the SSL Handshake Protocol●

SSL_Init()--Initialize the Current Job for SSL●

SSL_Init_Application()--Initialize the Current Job for SSL Processing Based on the Application
Identifier

●

SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor●

SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor●

Example

The following example shows how SSL_Perror() is used:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <ssl.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>

/* bufferLen is 250 bytes */
#define bufferLen 250

void main()
{
 int bufferLen, on = 1, rc = 0, sd, sd2, addrlen = 0;
 char buffer[bufferLen];

 SSLInit sslinit;
 SSLHandle* sslh;

 struct sockaddr_in addr;

 unsigned short int cipher[3] = {
 SSL_RSA_WITH_RC4_128_MD5,
 SSL_RSA_WITH_RC4_128_SHA,
 SSL_RSA_EXPORT_WITH_RC4_40_MD5
 };

 /***/
 /* memset sslinit structure to hex zeros and */
 /* fill in values for the sslinit structure */

 /***/
 memset((char *)&SSL_Init, 0x00, sizeof(sslinit));
 sslinit.keyringFileName = "/keyringfile.kyr";
 sslinit.keyringPassword = NULL;
 sslinit.cipherSuiteList = &cipher[0];
 sslinit.cipherSuiteListLen = 3;

 /***/
 /* initialize SSL security call SSL_Init */
 /***/
 if ((rc = SSL_Init(&sslinit)) != 0)
 {
 SSL_Perror(rc, "Could not initialize SSL");
 }

 ...

}

API introduced: V5R1

Top | Secure Sockets Layer (SSL) APIs | APIs by category

SSL_Read()--Receive Data from an SSL-Enabled
Socket Descriptor

 Syntax

 #include <ssl.h>

 int SSL_Read(SSLHandle *handle,
 void *buffer,
 int buffer_length)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Read() function is used by a program to receive data from an SSL-enabled socket descriptor.

Parameters

SSLHandle* handle (input)

The pointer to an SSLHandle for an SSL session. An SSLHandle is a typedef for a buffer of type struct
SSLHandleStr. In <ssl.h>, struct SSLHandleStr is defined as the following:

struct SSLHandleStr { /* SSLHandleStr */
 int fd; /* Socket descriptor */
 int createFlags; /* SSL_Create flags value */
 unsigned protocol; /* SSL protocol version */
 unsigned timeout; /* Timeout value in seconds */
 unsigned char cipherKind[3]; /* Current 2.0 cipher suite*/
 unsigned short int cipherSuite; /* Current 3.0 cipher suite */
 unsigned short int* cipherSuiteList; /* List of cipher suites */
 unsigned int cipherSuiteListLen; /* Number of entries in
 the cipher suites list */
 unsigned char* peerCert; /* Peer certificate */
 unsigned peerCertLen; /* Peer certificate length */
 int peerCertValidateRc; /* Return code from
 validation of certficate */
 int (*exitPgm)(struct SSLHandleStr* sslh);
 /* Authentication exit
 program called when a
 certificate is received
 during SSL handshake */
};

void *buffer (input)

A pointer to the user-supplied buffer in which the data that is received on the SSL session is to be stored.

int buffer_length (input)

The length of the buffer.

Authorities

No authorization is required.

Return Value

The SSL_Read() API returns an integer. Possible values are:

Value Description

[n] Successful, where n is the number of bytes read.

[SSL_ERROR_BAD_MESSAGE] SSL received a badly formatted message.

[SSL_ERROR_BAD_MAC] A bad message authentication code was received.

[SSL_ERROR_BAD_MALLOC] Unable to allocate storage required for SSL
processing.

[SSL_ERROR_BAD_STATE] SSL detected a bad state in the SSL session.

[SSL_ERROR_CLOSED] The SSL session ended.

[SSL_ERROR_IO] An error occurred in SSL processing; check the errno
value.

[SSL_ERROR_PERMISSION_DENIED] Permission was denied to access object.

[SSL_ERROR_UNKNOWN] An unknown or unexpected error occurred during
SSL processing.

[SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE] OS/400 does not support the certificate's type.

Error Conditions

When the SSL_Read() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EBADF] Descriptor not valid.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EFAULT] Bad address.

One of the following conditions occurred:

The system detected an address that was not valid while attempting to access the
buffer parameter.

●

The system detected an address that was not valid while attempting to access the
handle parameter or one of the address fields in the handle parameter.

●

[EINVAL] Parameter not valid.

This error code indicates one of the following:

The socket_descriptor type is not SOCK_STREAM or address family is not
AF_INET or AF_INET6 .

●

One of the parameters passed is not valid or is NULL.●

The buffer_length parameter specifies a negative value.●

[EIO] Input/output error.

[ENOTCONN] Requested operation requires a connection.

This error code indicates one of the following:

The socket_descriptor is not for a socket that is in a connected state.●

The socket_descriptor has not had SSL support enabled. This usually means that an
SSL_Create() has not been completed for this socket_descriptor.

●

[ENOTSOCK] The specified descriptor does not reference a socket.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

The SSL_Read() function is only valid on sockets that have an address family of AF_INET or AF_INET6
 and a socket type of SOCK_STREAM. If the descriptor pointed to by the handle structure parameter does

not have the correct address family and socket type, [SSL_ERROR_IO] is returned and the errno value is set
to EINVAL.

1.

The maximum length of data returned will not exceed 32 KB. This is due to the fact that SSL is a record level
protocol and the largest record allowed is 32 KB minus the necessary SSL record headers.

2.

If the createFlags field in the SSLHandle specifies a value that does not include the SSL_ENCRYPT flag,
this function will simply call the sockets read() function.

3.

Unpredictable results will occur when attempting to mix invocations to SSL_Read() and any of the sockets
read functions (recv(), read(), readv(), and so forth). It is strongly suggested that you do not mix the
SSL_Read() API with any of the sockets read functions.

4.

Since SSL is a record-oriented protocol, SSL must receive an entire record before it can be decrypted and any
data returned to the application. Thus, a select() may indicate that data is available to be read, but a
subsequent SSL_Read() may hang waiting for the remainder of the SSL record to be received when using
blocking I/O.

5.

A FIONREAD ioctl() cannot be used to determine the amount of data available for reading by using
SSL_Read().

6.

SSL will ignore the out of band (OOB) data indicator. OOB will not affect the SSL application. OOB will
just be data to the SSL protocol.

7.

For an SSL enabled socket, which must use a connection-oriented transport service (that is, TCP), a returned
value of zero indicates one of the following:

The partner program has issued a close() for the socket.❍

The partner program has issued a shutdown() to disable writing to the socket.❍

The connection is broken and the error was returned on a previously issued socket function.❍

A shutdown() to disable reading was previously done on the socket.❍

8.

If an SSL_Read() is run on a socket that is set to non-blocking mode, and there is no data waiting to be read
on the SSL enabled socket, the return value will be equal to -10 and the errno will be set to
EWOULDBLOCK.

9.

Related Information

SSL_Create()--Enable SSL Support for the Specified Socket Descriptor●

SSL_Destroy()--End SSL Support for the Specified SSL Session●

SSL_Handshake()--Initiate the SSL Handshake Protocol●

SSL_Init()--Initialize the Current Job for SSL●

SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor●

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

SSL_Strerror()--Retrieve SSL Runtime Error
Message

 Syntax

 #include <ssl.h>

 char* SSL_Strerror(int sslreturnvalue,
 SSLErrorMsg* serrmsgp);

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Strerror() function is used to retrieve an error message and associated text string which describes
an SSL return value.

Parameters

int sslreturnvalue (Input)

The Return Value received from a SSL API.

SSLErrorMsg* serrmsgp (Input)

The pointer to a SSLErrorMsg structure. If no SSLErrorMsg is provided, NULL must be entered.
SSLErrorMsg is a typedef for a buffer of type struct SSLErrorMsgStr. In <ssl.h>, struct
SSLErrorMsg is defined as the following:

struct SSLErrorMsgStr { /* SSLErrorMsgStr */
 char messageID[7]; /* Message identifier */
 char messageFile[20]; /* Qualified message file name */
};

The fields within the SSLErrorMsg structure as pointed to by serrmsgp are defined as follows:

char messageID[7] (output)

The message identifier which defines the message associated with the input sslreturnvalue.

char messageFile[20] (output)

The fully qualified message file name where the message associated with the messageID is
stored. The first 10 characters specify the file name, and the second 10 characters specify
the library.

Authorities

No authorization is required.

Return Value

The SSL_Strerror() API returns a pointer to the string. The null-terminated string is stored in the CCSID of
the job. If the serrmsgp is provided, the SSLErrorMsg struct will be updated to reflect the message
information corresponding to the string returned.

Error Conditions

If the sslreturnvalue is unrecognized, then an Unknown error message will be stored at the location
pointed to by the return value. Other error conditions will be handled as described under Error Messages.

Error Messages

This API calls the Retrieve Message (QMHRTVM) API in order to perform its task. It inherits all error
conditions from this function. If errors are encountered while using the Retrieve Message API, they will be
reflected in the SSLErrorMsg fields (if provided) and any associated message replacement text will be
stored at the location pointed to by the return value.

Related Information

SSL_Perror()--Print SSL Error Message●

SSL_Create()--Enable SSL Support for the Specified Socket Descriptor●

SSL_Destroy()--End SSL Support for the Specified SSL Session●

SSL_Handshake()--Initiate the SSL Handshake Protocol●

SSL_Init()--Initialize the Current Job for SSL●

SSL_Init_Application()--Initialize the Current Job for SSL Processing Based on the Application
Identifier

●

SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor●

SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor●

Example

The following example shows how SSL_Strerror() is used:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <ssl.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>

/* bufferLen is 250 bytes */

#define bufferLen 250

void main()
{
 int bufferLen, on = 1, rc = 0, sd, sd2, addrlen = 0;
 char buffer[bufferLen];

 SSLInit sslinit;
 SSLHandle* sslh;

 struct sockaddr_in addr;

 unsigned short int cipher[3] = {
 SSL_RSA_WITH_RC4_128_MD5,
 SSL_RSA_WITH_RC4_128_SHA,
 SSL_RSA_EXPORT_WITH_RC4_40_MD5
 };

 /***/
 /* memset sslinit structure to hex zeros and */
 /* fill in values for the sslinit structure */
 /***/
 memset((char *)&SSL_Init, 0x00, sizeof(sslinit));
 sslinit.keyringFileName = "/keyringfile.kyr";
 sslinit.keyringPassword = NULL;
 sslinit.cipherSuiteList = &cipher[0];
 sslinit.cipherSuiteListLen = 3;

 /***/
 /* initialize SSL security call SSL_Init */
 /***/
 if ((rc = SSL_Init(&sslinit)) != 0)
 {
 printf("SSL_Init() failed with rc = %d %s \n"
 "and errno = %d %s \n",rc,SSL_Strerror(rc, NULL),
 errno,strerror(errno));
 }

 ...

}

API introduced: V5R1

Top | Secure Sockets Layer (SSL) APIs | APIs by category

SSL_Write()--Write Data to an SSL-Enabled Socket
Descriptor

 Syntax

 #include <ssl.h>

 int SSL_Write(SSLHandle *handle,
 void *buffer,
 int buffer_length)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Write() function is used by a program to write data to an SSL-enabled socket descriptor.

Parameters

SSLHandle* handle (input)

The pointer to an SSLHandle for an SSL session. An SSLHandle is a typedef for a buffer of type struct
SSLHandleStr. In <ssl.h>, struct SSLHandleStr is defined as the following:

struct SSLHandleStr { /* SSLHandleStr */
 int fd; /* Socket descriptor */
 int createFlags; /* SSL_Create flags value */
 unsigned protocol; /* SSL protocol version */
 unsigned timeout; /* Timeout value in seconds */
 unsigned char cipherKind[3]; /* Current 2.0 cipher suite*/
 unsigned short int cipherSuite; /* Current 3.0 cipher suite */
 unsigned short int* cipherSuiteList; /* List of cipher suites */
 unsigned int cipherSuiteListLen; /* Number of entries in
 the cipher suites list */
 unsigned char* peerCert; /* Peer certificate */
 unsigned peerCertLen; /* Peer certificate length */
 int peerCertValidateRc; /* Return code from
 validation of certficate */
 int (*exitPgm)(struct SSLHandleStr* sslh);
 /* Authentication exit
 program called when a
 certificate is received
 during SSL handshake */
};

void *buffer (input)

A pointer to the user-supplied buffer in which the data to be written is stored.

int buffer_length (input)

The length of the buffer.

Authorities

No authorization is required.

Return Value

SSL_Write() returns an integer. Possible values are:

Value Description

[n] Successful, where n is the number of bytes written.

[SSL_ERROR_BAD_STATE] SSL detected a bad state in the SSL session.

[SSL_ERROR_CLOSED] The SSL session ended.

[SSL_ERROR_IO] An error occurred in SSL processing; check the errno value.

[SSL_ERROR_UNKNOWN] An unknown or unexpected error occurred during SSL processing.

Error Conditions

When the SSL_Write() API fails with return code [SSL_ERROR_IO], errno can be set to to one of the following:

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

One of the following conditions occurred:

The system detected an address that was not valid while attempting to access the
buffer parameter.

●

The system detected an address that was not valid while attempting to access the
handle parameter or one of the address fields in the handle parameter.

●

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

The socket_descriptor type is not SOCK_STREAM or address family is not
AF_INET or AF_INET6 .

●

One of the parameters passed is not valid or is NULL.●

The buffer_length parameter specifies a negative value.●

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

This error code indicates one of the following:

The socket_descriptor is not for a socket that is in a connected state.●

The socket_descriptor has not had SSL support enabled. This usually means that an
SSL_Create() has not been completed for this socket_descriptor.

●

[ENOTSOCK] The specified descriptor does not reference a socket.

[EPIPE] Broken pipe.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

The SSL_Write() function is only valid on sockets that have an address family of AF_INET or AF_INET6
 and a socket type of SOCK_STREAM. If the descriptor pointed to by the handle structure parameter does

not have the correct address family and socket type, [SSL_ERROR_IO] is returned and the errno value is set
to EINVAL.

1.

There is no maximum length of the data that can be written. However, SSL will segment the data into
multiple SSL record buffers if it will not fit in one SSL record buffer. The maximum SSL record size is 32
KB minus the necessary SSL record headers.

2.

If the createFlags field in the SSLHandle specifies a value that does not include the SSL_ENCRYPT flag,
then this function will simply call the sockets write() function.

3.

Unpredictable results will occur when attempting to mix calls to SSL_Write() and any of the sockets write
functions (send(), write(), writev(), and so forth). It is strongly suggested that you do not mix the SSL_Write()
API with any of the sockets write functions.

4.

Related Information

SSL_Create()--Enable SSL Support for the Specified Socket Descriptor●

SSL_Destroy()--End SSL Support for the Specified SSL Session●

SSL_Handshake()--Initiate the SSL Handshake Protocol●

SSL_Init()--Initialize the Current Job for SSL●

SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor●

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	Secure Sockets APIs (V5R2)
	Table of Contents
	Secure Sockets APIs
	OS/400 Global Secure Toolkit (GSKit) APIs
	gsk_attribute_get_buffer()--Get character information about a secure session or an SSL environment
	gsk_attribute_get_cert_info()--Get information about a local or partner certificate
	gsk_attribute_get_enum()--Get enumerated information about a secure session or an SSL environment
	gsk_attribute_get_numeric_value()--Get numeric information about a secure session or an SSL environment
	gsk_attribute_set_buffer()--Set character information for a secure session or an SSL environment
	gsk_attribute_set_enum()--Set enumerated information for a secure session or an SSL environment
	gsk_attribute_set_numeric_value()--Set numeric information for a secure session or an SSL environment
	gsk_environment_close()--Close an SSL environment
	gsk_environment_init()--Initialize an SSL environment
	gsk_environment_open()--Get a handle for an SSL environment
	gsk_secure_soc_close()--Close a secure session
	gsk_secure_soc_init()--Negotiate a secure session
	gsk_secure_soc_misc()--Perform miscellaneous functions for a secure session
	gsk_secure_soc_open()--Get a handle for a secure session
	gsk_secure_soc_read()--Receive data on a secure session
	gsk_secure_soc_startInit()--Start asynchronous operation to negotiate a secure session
	gsk_secure_soc_startRecv()--Start asynchronous receive operation on a secure session
	gsk_secure_soc_startSend()--Start asynchronous send operation on a secure session
	gsk_secure_soc_write()--Send data on a secure session
	gsk_strerror()--Retrieve GSKit runtime error message

	OS/400 Secure Sockets Layer (SSL_) APIs
	QlgSSL_Init()--Initialize the Current Job for SSL (using NLS-enabled path name)
	SSL_Create()--Enable SSL Support for the Specified Socket Descriptor
	SSL_Destroy()--End SSL Support for the Specified SSL Session
	SSL_Handshake()--Initiate the SSL Handshake Protocol
	SSL_Init()--Initialize the Current Job for SSL
	SSL_Init_Application()--Initialize the Current Job for SSL Processing Based on the Application Identifier
	SSL_Perror()--Print SSL Error Message API
	SSL_Read()--Receive Data from an SSL-Enabled Socket Descriptor
	SSL_Strerror--Retrieve SSL Runtime Error Message API
	SSL_Write()--Write Data to an SSL-Enabled Socket Descriptor

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

