UNIX-Type APIs (V5R2)

Sockets APIs

Table of Contents

Sockets APIs

o System functions

o APIs

accept() (Wait for an incoming connection and tie that connection to the
application)

accept_and recv() (Wait for connection request and receive the first message that
was sent)

bind() (Set alocal address for the socket)

close() (Closefile descriptor)

connect() (Bind a destination to a socket or set a connection)
fentl() (Perform file control command)

fstat() (Get file information by descriptor)

getdomainname() (Retrieve domain name for the system)
gethostid() (Retrieve host ID for the system)

gethostname() (Retrieve host name for the system)
getpeername() (Retrieve destination address of a socket)
getsockname() (Retrieve local address of a socket)

getsockopt() (Allow an application to request information about a socket (timeout,
retransmission, buffer space))

divedescriptor() (Pass the access rights to a descriptor)
ioctl() (Perform file 1/O control request)

listen() (Prepare a socket for incoming connections)
QsoCreatel OCompletionPort() (Create 1/0 Completion Port)
QsoDestroyl OCompl etionPort() (Destroy I/0O Completion Port)
QsoPostlOCompletion() (Post 1/0 Compl etion Request)
QsoStartAccept() (Start Asynchronous Accept Operation)
QsoStartRecv() (Start Asynchronous Receive Operation)
QsoStartSend() (Start Asynchronous Send Operation)
QsoWaitForlOCompletion() (Wait for 1/0O Operation)
Rbind() (Establish remote bind)

o Using

read() (Read from Descriptor)

readv() (Read from Descriptor Using Multiple Buffers)

recv() (Receive data using a socket descriptor).

recvirom() (Receive data and remote address using a socket descriptor)

recvmsg() (Receive data and remote address using a socket descriptor and multiple
buffers (scatter read))

rexec() (Issue acommand on aremote host)

rexec r() (Issue acommand on aremote host)

rexec r ts64() (Issue acommand on aremote host)

rexec_tx64() (Issue a command on aremote host)

select() (Allow a single process to wait for connections on multiple sockets)
send() (Send data using a socket descriptor)

sendmsg() (Send data with a destination address using a socket descriptor and
multiple buffers (gather write))

sendto() (Send data with a destination address using a socket descriptor)
send file() (Send afile over a socket connection)

send file64() (Send afile over a socket connection)

setdomainname() (Set domain name for the system)

sethostid() (Set Host ID) isused to set ahost ID.

sethostname() (Set host name for the system)

setsockopt() (Allow an application to set characteristics of a socket (timeout,
retransmission, buffer space))

shutdown() (End Receiving and/or Sending of Data on Socket)

socket() (Create a socket) is used to create an end point for communications.
socketpair() (Create a pair of sockets)

takedescriptor() (Receive the access rights to a descriptor)

write() (Write to Descriptor)

writev() (Write to Descriptor Using Multiple Buffers)

XOPEN_SOURCE for UNIX 98 Compatibility

« Network functions

o dn_comp() (Compress an expanded domain name)
o dn_comp ts64() (Compress an expanded domain name)
o dn_expand() (Expand a compressed domain hame)

o dn find() (Search for a compressed domain name from alist of previously compressed
domain names)

o dn find ts64() (Search for a compressed domain name from alist of previously
compressed domain names)

o dn_skipname() (Skip over a compressed domain name)

[}

endhostent() (Close the nameserver database)

endhostent_r() (Close the nameserver database)

endnetent() (Close the network database)

endnetent_r() (Close the network database)

endprotoent() (Close the protocol database)

endprotoent_r() (Close the protocol database)

endservent() (Close the service database)

endservent_r() (Close the service database)

#freeaddrinfo() (Free Address Information)<

#ga_strerror() (Retrieve Address Information Runtime Error Message)#
#rgetaddrinfo() (Get Address | nformation)4%

gethostbyaddr() (Provide information about host given an Internet address)
gethostbyaddr_r() (Provide information about host given an Internet address)

gethostbyname() (Provide information about host given a host name)

gethostbyname r() (Provide information about host given a host name)

gethostent() (Get next host entry from the nameserver database)

gethostent _r() (Get next host entry from the nameserver database)

#getnameinfo() (Get Name Information for Socket Address)

getnetbyaddr() (Get information from the network database about a given internet address)

getnetbyaddr_r() (Get information from the network database about a given internet
address)

getnetbyname() (Get information from the network database about a given domain name)
getnetbyname r() (Get information from the network database about a given domain name)
getnetent() (Get network entry from the network database)

getnetent_r() (Get network entry from the network database)

getprotobyname() (Get information regarding a protocol given the protocol name)

getprotobyname r() (Get information regarding a protocol given the protocol name)

getprotobynumber() (Get information regarding a protocol given the protocol number)

getprotobynumber r() (Get information regarding a protocol given the protocol number)
getprotoent() (Get next protocol entry in the protocol data base)
getprotoent_r() (Get next protocol entry in the protocol data base)

getservbyname() (Get port number for a given service name)

getservbyname r() (Get port number for a given service name)
getservbyport() (Get service name given a port number)
getservbyport r() (Get service name given a port number)
getservent() (Get next service entry from the service database)

O

getservent r() (Get next service entry from the service database)
hstrerror() (Retrieve resolver error message)

htonl() (Convert along (4 byte) integer from local host byte order to the network byte
order)

htons() (Convert a short (2 byte) integer from local host byte order to the network byte
order)

inet_addr() (Trand ate the full address from dotted decimal format to a 32-bit Internet
address)

inet_Inaof() (Separate the local portion of an Internet address)

inet_makeaddr() (Formulate an Internet address that combines a network address with the
local address of a host)

inet_netof() (Separate the network portion of an Internet address)

inet_network() (Translate the network portion of the address from dotted decimal format to
a 32-bit Internet address)

inet_ntoa() (Translate from 32-hit Internet address to a dotted decimal format)
inet_ntoa r() (Translate from 32-bit Internet address to a dotted decimal format)
#inet_ntop() (Convert IPv4 and IPv6 Addresses Between Binary and Text Form)<&
#inet_pton() (Convert IPv4 and IPv6 Addresses Between Text and Binary Form)+<

ns addr() (Translate a network services address from human readable format to a 12-byte
hexadecimal address)

ns ntoa() (Trans ate a network services address from a 12-byte address to a human
readable format)

ns ntoa r() (Trandate a network services address from a 12-byte address to a human
readable format)

ntohl() (Convert along (4 byte) integer from network byte order to the local host byte
order)

ntohs() (Convert a short (2 byte) integer from network byte order to the local host byte
order)

res_close() (Close a socket and reset the _res structure)
res_findzonecut() (Find the enclosing zone and servers)
res_hostalias() (Retrieve the host aias)

res init() (Initialize _res structure for domain name server)

res_ mkquery() (Form adomain name query and place it in a buffer in memory)
res_nclose() (Close socket and reset res structure)

res ninit() (Initialize res structure)

res nisourserver() (Check server address)

res_ nmkquery() (Place domain query in buffer)

res nmkupdate() (Construct an update packet)

res_nguery() (Send domain query)

o res nquerydomain() (Send 2-string domain query)
o res nsearch() (Search for domain name)
o res nsend() (Send buffered domain query or update)
o res nsendsigned() (Send authenticated domain query or update)
o res nupdate() (Build and send dynamic updates)
o res _query() (Form adomain name query and send it to the domain name server)
o res search() (Search for adomain name from alist of domain names)
o res send() (Send the query formed in res_ mkquery to the domain name server)
o res xlate() (Trandate standard DNS packets between ASCII and EBCDIC)
o sethostent() (Open the nameserver database)
o sethostent r() (Open the nameserver database)
o setnetent() (Open the network database)
o setnetent r() (Open the network database)
o setprotoent() (Open the protocol database)
o setprotoent r() (Open the protocol database)
o setservent() (Open the service database)
o setservent r() (Open the service database)
getlong() (Get long byte quantities from a byte stream)
o _getshort() (Get short byte quantities from a byte stream)
o _putlong() (Put long byte quantities into a byte stream)
o _putshort() (Put short byte quantities into a byte stream)
« Debugging IP over SNA Configurations

Header Filesfor UNIX-Type Functions
Errno Values for UNIX-Type Functions

[}

Sockets APIs

The sockets APIs consist of functions, structures, and defined macros. The structures and defined macros
are shipped as header files.

An important part of interprocess communications is to locate and construct network addresses. Many of
the socket network APIs are inherently not threadsafe. Threadsafe APIs have been added to mirror the
function provided by the non-threadsafe APIs. All threadsafe APIs follow the UNIX convention of
appending R to the API name denoting threadsafe.

There are two categories of sockets functions:
« system functions

« network functions

For additiona information, see:
« Sockets Programming

o Debugging IP over SNA Configurations

Top | UNIX-Type APIs| APIs by category

Sockets System Functions

The system functions supported by the sockets APIs are:

accept() (Wait for an incoming connection and tie that connection to the application) is used to wait
for connection requests.

accept_and_recv() (Wait for connection request and receive the first message that was sent) is used

to wait for an incoming connection request, receive the first message from the peer, and return the
local and remote socket addresses associated with the connection.

bind() (Set alocal address for the socket) is used to associate alocal address with a socket.
close() (Close file descriptor) closes a descriptor, fildes.

connect() (Bind a destination to a socket or set a connection) is used to establish a connection on a
connection-oriented socket or establish the destination address on a connectionless socket.

fentl() (Perform file control command) performs various actions on open descriptors.

fstat() (Get file information by descriptor) gets status information about the file specified by the

open file descriptor file_descriptor and stores the information in the area of memory indicated by
the buf argument.

getdomainname() (Retrieve domain name for the system) is used to retrieve the name of the domain
from the system.

gethostid() (Retrieve host ID for the system) is used to retrieve ahost ID's 32-bit 1P address.
gethostname() (Retrieve host name for the system) is used to retrieve the name of the host from the
system.

getpeername() (Retrieve destination address of a socket) is used to retrieve the destination address
to which the socket is connected.

getsockname() (Retrieve local address of a socket) is used to retrieve the local address associated
with the socket.

getsockopt() (Allow an application to request information about a socket (timeout, retransmission,
buffer space)) is used to retrieve information about socket options.

givedescriptor() (Pass the access rights to a descriptor) is used to pass a descriptor from one OS/400
job to another OS/400 job.

ioctl() (Perform file 1/O control request) performs control functions (requests) on afile descriptor.

listen() (Prepare a socket for incoming connections) is used to indicate a willingness to accept
incoming connection requests. If alisten() is not done, incoming connections are silently discarded.

QsoCreatel OCompletionPort() (Create 1/0 Completion Port) is used to create acommon wait point
for a completed overlapped 1/0 operation.

QsoDestroyl OCompletionPort() (Destroy 1/0 Completion Port) is used to destroy an 1/0
completion port.

QsoPostl OCompletion() (Post I/O Completion Request) will post an Qso_Overlappedl O _t request
on a specifed I/0O completion port.

QsoStartAccept() (Start Asynchronous Accept Operation) is used to wait asynchronously for
connection requests.

QsoStartRecv() (Start Asynchronous Receive Operation) is used to initiate a asynchronous receive
operation.

QsoStartSend() (Start Asynchronous Send Operation) is used to initiate a asynchronous send

operation.
QsoWaitForlOCompletion() (Wait for 1/0O Operation) is used to wait for a completed overlapped
I/O operation.

Rbind() (Establish remote bind) used to request that a SOCK S server allow an inbound connection
request across afirewall.

read() (Read from Descriptor) reads nbyte bytes of input into the memory areaindicated by buf.

readv() (Read from Descriptor Using Multiple Buffers) is used to receive data from afile or socket
descriptor.

recv() (Receive data using a socket descriptor) is used to receive data through a socket.

recvfrom() (Receive data and remote address using a socket descriptor) is used to receive data
through a connected or unconnected socket.

recvmsg() (Receive data and remote address using a socket descriptor and multiple buffers (scatter
read)) is used to receive data or descriptors or both through a connected or unconnected socket.

rexec() (Issue acommand on aremote host) is used to open a connection to aremote host and send
auser 1D, password, and command to the remote host.

rexec r() (Issue acommand on aremote host) is used to open a connection to aremote host and
send auser 1D, password, and command to the remote host.

rexec r_ts64() (Issue a command on aremote host) is used to open a connection to a remote host
and send a user 1D, password, and command to the remote host.

rexec tx64() (Issue acommand on aremote host) is used to open a connection to a remote host and
send auser 1D, password, and command to the remote host.

select() (Allow asingle process to wait for connections on multiple sockets) is used to enable an
application to multiplex 1/0.

send() (Send data using a socket descriptor) is used to send data through a connected socket.

sendmsg() (Send data with a destination address using a socket descriptor and multiple buffers

(gather write)) is used to send data or descriptors or both through a connected or unconnected
socket.

sendto() (Send data with a destination address using a socket descriptor) is used to send data
through a connected or unconnected socket.

send file() (Send afile over a socket connection) is used to send the contents of an open file over
an existing socket connection.

send file64() (Send afile over asocket connection) is used to send the contents of an open file over
an existing socket connection.

setdomainname() (Set domain name for the system) is used to set the name of the domain.
sethostid() (Set Host ID) isused to set ahost ID.
sethostname() (Set host name for the system) is used to set the name of the host for a system.

setsockopt() (Allow an application to set characteristics of a socket (timeout, retransmission, buffer
space)) is used to set socket options.

shutdown() (End Receiving and/or Sending of Data on Socket) is used to disable reading, writing,
or reading and writing on a socket.

socket() (Create a socket) is used to create an end point for communications.

socketpair() (Create a pair of sockets) isused to create apair of unnamed, connected sockets in the
AF_UNIX or AF_UNIX_CCSID address family.

« takedescriptor() (Receive the access rights to a descriptor) is used to obtain a descriptor in one
0S/400 job which was passed from another OS/400 job by a givedescriptor().

o write() (Write to Descriptor) writes nbyte bytes from buf to the file or socket associated with
file_descriptor.

« writev() (Write to Descriptor Using Multiple Buffers) is used to write data to afile or socket
descriptor.

Note: These functions use header (include) files from the library QSY SINC, which is optionally installable.
Make sure QSY SINC isinstalled on your system before using any of the functions.

Top | UNIX-Type APIs | APIs by category

accept()--Wait for Connection Request and Make
Connection

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int accept(int socket descriptor,

struct sockaddr *address,
i nt *address_I| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

int accept(int socket_descriptor,

struct sockaddr *address,
sockl en_t *address_| engt h)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&«

The accept() function is used to wait for connection requests. accept() takes the first connection request on the queue of
pending connection requests and creates a new socket to service the connection request.

accept() is used with connection-oriented socket types, such as SOCK_STREAM.

#There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and syntax. The
other uses syntax and structures compatible with the UNIX 98 programming interface specifications. Y ou can select the
UNIX 98 compatible interface with the_XOPEN_SOURCE macro. %

Parameters

socket_descriptor
(Input) The descriptor of the socket on which to wait.

address

(Output) A pointer to a buffer of type struct sockaddr in which the address from which the connection request
was received is stored. The structure sockaddr is defined in <sys/socket.h>.

The BSD 4.3 structureis;

struct sockaddr {
u_short sa fanily;
char sa_dat a[14] ;

b
The BSD 4.4/UNIX 98 compatible structureis:

typedef uchar sa_famly_t;

struct sockaddr {

uint8 t sa_l en;
sa_famly_ t sa fanily;
char sa_dat a[14];

H

The BSD 4.4 sa_len field isthe length of the address. The sa_family field identifies the address family to which
the address belongs, and sa_data is the address whose format is dependent on the address family.

Note: See the usage notes about using different address families with sockaddr _storage.
&

address |ength

(Input/output) This parameter is avalue-result field. The caller passes a pointer to the length of the address
parameter. On return from the call, address_length contains the actual length of the address from which the
connection request was received.

Authorities

When the socket identified by the socket_descriptor isof type AF_INET and a connection indication request is received
over an APPC device, the thread must have adequate authority. The thread must have retrieve, insert, delete, and update
authority to the APPC device. When the thread does not have this level of authority, an errno of EACCES is returned.

Return Value

accept() returns an integer. Possible values are;

o -1 (unsuccessful)

« N (successful), where n is a socket descriptor.

Error Conditions

When accept() fails, errno can be set to one of the following:

[EACCESY Permission denied.

A connection indication request was received on the socket referenced by the
socket_descriptor parameter, but the process that issued the accept() did not have the
appropriate privileges required to handle the request. The connection indication request is reset
by the system.

[EBADF]

[ECONNABORTED)]

[EFAULT]

[EINTR]

[EINVAL]

[EIO]

[EMFILE]

[ENFILE]

[ENOBUFS]

[ENOTSOCK]

[EOPNOTSUPP]

[EUNATCH]

[EUNKNOWN]

[EWOULDBLOCK]

Descriptor not valid.

Connection ended abnormally.

An accept() was issued on a socket for which receives have been disallowed (dueto a
shutdown() call).

This also could be encountered if time elapsed since a successful Rbind() is greater than the
margin allowed by the associated SOCKS server.

Bad address.

System detected an address which was not valid while attempting to access the address or
address _|ength parameters.

Interrupted function call.

Parameter not valid.

This error code indicates one of the following:

« Theaddress length parameter is set to avalue that is less than zero, and the address
parameter is set to a value other than aNULL pointer.

« A listen() has not been issued against the socket referenced by the socket_descriptor
parameter.

I nput/output error.

Too many descriptions for this process.

Too many descriptionsin system.

There is not enough buffer space for the requested operation.

The specified descriptor does not reference a socket.

Operation not supported.

The socket_descriptor parameter references a socket that does not support the accept(). The
accept() is only valid on sockets that are connection-oriented (for example, type of
SOCK_STREAM).

The protocol required to support the specified address family is not available at thistime.

Unknown system state.

Operation would have caused the thread to be suspended.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFO872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFA081 E Unable to set return value or error code.

Usage Notes

1. If the address parameter is set to aNULL pointer or the address _length parameter points to an integer which has
avalue that is equal to zero, the address from which the connection regquest was received is not returned.

2. If the length of the address to be returned exceeds the length of the address parameter, the returned addressis
truncated.

3. Thefollowing are inherited by the descriptor returned by the accept() cal:
o All socket options with alevel of SOL_SOCKET.
o The statusflags:

= Blocking flag (set/reset either by theioctl() call with the FIONBIO request or by the fentl() call
with the F_SETFL command and the status flag set to O_NONBL OCK).

= Asynchronous flag (set/reset either by theioctl() call with the FIOASY NC request or by the
fentl() call with the F_ SETFL command and the status flag set to FASYNC).

o The process ID or process group ID that isto receive SIGIO or SIGURG signals (set/reset by either the
ioctl() call with the FIOSETOWN or the SIOCSPGRP request, or by the fentl() call with the
F_SETOWN command).

4. Closing a socket causes any queued but unaccepted connection requests to be reset.

5. #The structure sockaddr is a generic structure used for any address family but it is only 16 bytes long. The
actual address returned for some address families may be much larger. Y ou should declare storage for the address
with the structure sockaddr_storage. This structureis large enough and aligned for any protocol-specific
structure. It may then be cast as sockaddr structure for use on the APIs. The ss_family field of the
sockaddr_storage will always align with the family field of any protocol-specific structure. The BSD 4.3
structureis:

#define _SS MAXSI ZE 304

#define _SS ALI GNSI ZE (sizeof (char*))

#define _SS PAD1SI ZE (_SS ALI GNSI ZE - sizeof (sa family t))

#def i ne _SS PAD2SI ZE (_SS MAXSI ZE - (sizeof (sa_famly_t)+
_SS PAD1SI ZE + _SS ALI GNSI ZE))

struct sockaddr storage {
sa famly_t ss_famly;
char _ss_padl[_SS PAD1SI ZE];
char* _ss_align;
char _ss_pad?2[_SS_PAD2SI ZE] ;

s
The BSD 4.4/UNIX 98 compatible structureis:

#define _SS MAXSI ZE 304
#define _SS ALI GNSI ZE (sizeof (char*))
#define _SS PAD1SI ZE (_SS _ALIGNSI ZE - (sizeof (uint8_t) +
sizeof (sa_fanmily_ t)))
#define _SS PAD2SI ZE (_SS MAXSI ZE - (sizeof (uint8 t) + sizeof(sa famly t)+
_SS PAD1SI ZE + _SS ALI G\SI ZE))

struct sockaddr_storage {

ui nt 8_t ss_l en;
sa famly_t ss_famly;
char _ss_padl[_SS PAD1SI ZE];
char* _ss_align;
char _ss_pad?2[_SS PAD2SI ZE] ;
b
L4

6. If the socket is using an address family of AF_UNIX, the address (which is a path name) is returned in the default
coded character set identifier (CCSID) currently in effect for the job.

7. If the socket is using an address family of AF_UNIX_CCSID, the output structure sockaddr_unc defines the
format and coded character set identifier (CCSID) of the address (which is a path name).

8. If asuccessful Rhind() has been performed on the listening socket, then a new connection is not returned, but
rather an inbound connection occurs on the same listening socket. The descriptor number returned is different,
but it actually refers to the same connection referred to by the listening socket.

9. #When you develop in C-based languages and an application is compiled with the_ XOPEN_SOURCE macro
defined to the value 520 or greater, the accept() API is mapped to gqso_accept98(). 4%
Related Information

« # XOPEN_SOURCE--Using _XOPEN_SOURCE for the UNIX 98 compatible interface

o bind()--Set Local Address for Socket
« fentl()--Perform File Control Command
« ioctl()--Perform 1/O Control Request

« listen()--Invite Incoming Connections Requests

API Introduced: V3R1

Top | UNIX-Type APIs | APIs by category

accept_and_recv()--Wait for Connection Request and
Receive the First Message That Was Sent

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int accept_and recv(int |isten_socket descriptor,
i nt *accept _socket _descri ptor,
struct sockaddr *renote_address,
size_t *renpte_address_I ength,
struct sockaddr *|ocal _address,
size_t *local _address_| ength,
void *buffer,
size_ t buffer_ | ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

nt accept_and recv(int |isten_socket descriptor,
i nt *accept _socket _descri ptor,
struct sockaddr *renote_address,
sockl en_t *renote_address_I engt h,
struct sockaddr *|ocal _address,
socklen_t *local address_| ength,
void *buffer,
size_ t buffer | ength)

Service Program Name: QSOSRV 1
Default Public Authority: * USE

Threadsafe: Yes

&

The accept_and_recv() function is used to wait for an incoming connection request, receive the first message from the
peer, and return the local and remote socket addresses associated with the connection.

accept_and_recv() is used with connection-oriented sockets that have an address family of AF_INETE or AF_INET6 4
and a socket type of SOCK_STREAM.

The accept_and_recv() API is acombination of the accept(), getsockname(), and recv() socket APIs. Socket applications
that use these three APIs can obtain improved performance by using accept_and_recv().

#* There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and syntax. The
other uses syntax and structures compatible with the UNIX 98 programming interface specifications. Y ou can select the
UNIX 98 compatible interface with the _XOPEN_SOURCE macro. 4

Parameters

listen_socket descriptor

(Input) The descriptor of the socket on which to wait. This parameter specifies the socket that has issued a
successful call to listen().

accept_socket_descriptor

(Input/Output) A pointer to an integer that specifies the socket descriptor on which to accept the incoming
connection. This socket must not be bound or connected. The use of this parameter |ets the application reuse the
accepting socket.

If apointer to avalue of -1 is passed in for this parameter, a new descriptor in the process's descriptor table will
be alocated for incoming connection. The socket descriptor for a new connection will be returned to the
application by this parameter. It is recommended that a value of -1 be used on the first call to accept_and_recv().
See the Usage Notes for additional information.

remote_address

(Output) A pointer to abuffer of type struct sockaddr in which the address from which the connection request
was received is stored. The structure sockaddr is defined in <sys/socket.h>.

The BSD 4.3 structureis;

struct sockaddr {
u_short sa_fanily;
char sa_dat a[14] ;
};

The BSD 4.4/UNIX 98 compatible structureis:

typedef uchar sa famly t;

struct sockaddr {

uint8_t sa | en;
sa famly t sa fanily;
char sa_dat a[14] ;

b
The BSD 4.4 sa_len field isthe length of the address. 4% The sa_family field identifies the address family to
which the address belongs, and sa_data is the address whose format is dependent on the address family.
#* Note: See the usage notes about using different address families with sockaddr_stor age. &
remote_address length

(Input/Output) This parameter is avalue-result field. The caller passes a pointer to the length of the
remote_address parameter. On return from the call, remote_address_|length contains the actual length of the
address from which the connection request was received.

local_address

(Output) A pointer to a buffer of type struct sockaddr in which the local address over which the connection
reguest was received is stored. The structure sockaddr is defined in <sys/socket.h>.

The BSD 4.3 structureiis;

struct sockaddr {
u_short sa famly;
char sa_dat a[14];

b
The BSD 4.4/UNIX 98 compatible structureis:

t ypedef uchar sa_famly_ t;

struct sockaddr {

uint 8_t sa_ |l en;
sa famly t sa fanily;
char sa_dat a[14] ;

b

The BSD 4.4 sa_len field isthe length of the address. *& The sa_family field identifies the address family to
which the address belongs, and sa_data is the address whose format is dependent on the address family.

2 Note: See the usage notes about using different address families with sockaddr_storage. <
local_address length

(Input/Output) This parameter is avalue-result field. The caller passes a pointer to the length of the local_address
parameter. On return from the call, local_address length contains the actual length of the local address over
which the connection regquest was received.

buffer

(Output) The pointer to the buffer in which the data that isto be read is stored. If aNULL pointer is passed in for
this parameter, the receive operation is not performed and the accept_and_recv() function completes when the
incoming connection is received.

buffer_length
(Input) The length in bytes of the buffer pointed to by the buffer parameter.

Authorities

If IP over SNA is being used, * CHANGE authority to the APPC deviceis required.

Return Value

accept_and_recv() returns an integer. Possible values are:
e -1 (unsuccessful cal)

o n(successful call), where n isthe number of bytes received.

Error Conditions

When accept_and_recv() fails, errno can be set to one of the following:
[EACCES] Permission denied.

A connection indication request was received on the socket referenced by the

listen_socket descriptor parameter, but the process that issued the accept_and recv() call did
not have the appropriate privileges required to handle the request. The connection indication
request is reset by the system.

[EBADF]

[ECONNABORTED)]

[EFAULT]

[EINTR]

[EINVAL]

[EIO]

[EISCONN]

[EMFILE]

[ENFILE]

[ENOBUFS

[ENOTSOCK]

Descriptor not valid.

Either the listen_socket_descriptor or the descriptor pointed to by the accept_socket descriptor
parameter is not avalid socket descriptor.

Connection ended abnormally.

An accept_and recv() was issued on a socket for which receive operations have been
disallowed (due to a shutdown() call).

Bad address.

System detected an address that was not valid while attempting to access the
accept_socket_descriptor, remote_address, remote_address length, local_address,
local_address length, or buffer parameter.

Interrupted function call.

Parameter not valid.

This error code indicates one of the following:
« A listen() has not been issued against the socket referenced by the
listen_socket_descriptor parameter.

« The socket referenced by the accept_socket_descriptor parameter has been bound to a
local address.

« Theaccept socket descriptor does not have the same address family and socket type
asthelisten_socket descriptor.

« Theaccept socket descriptor parameter is set to avalue that islessthan -1.

I nput/output error.

A connection has already been established.

Too many descriptions for this process.

Too many descriptionsin system.

Thereis not enough buffer space for the requested operation.

The specified descriptor does not reference a socket.

Either the listen_socket_descriptor or the descriptor pointed to by the accept_socket descriptor
parameter is not avalid socket descriptor.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

o Thelisten_socket descriptor parameter references a socket that does not support the
accept_and recv() function. The accept_and recv() function is only valid on sockets
that have an address family of AF_INET#* or AF_INET6% and a socket type of
SOCK_STREAM.

« TheO_NONBLOCK option is set for the listen_socket_descriptor or the descriptor
pointed to by the accept_socket_descriptor parameter. Non-blocking is not supported
for accept_and_recv().

[EUNATCH] The protocol required to support the specified address family is not available at thistime.

[EUNKNOWN] Unknown system state.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAOQ81 E Unable to set return value or error code.

Usage Notes

1

The accept_and _recv() function is only valid on sockets that have an address family of AF_INET #* or
AF_INET6% and a socket type of SOCK_STREAM. If the listen_socket_descriptor does not have the correct
address family and socket type, -1 is returned and the errno value is set to EOPNOTSUPP.

Non-blocking mode is not supported for this function. If O_NONBLOCK is set on the listen_socket_descriptor
parameter or on the descriptor pointed to by the accept_socket descriptor parameter, -1 is returned and the errno
valueis set to EOPNOTSUPP.

If theremote_address parameter is set to aNULL pointer, the address from which the connection request was
received is not returned. If the length of the remote address to be returned exceeds the length that was specified
by the remote_address length parameter, the returned address will be truncated.

If the local_address parameter is set to aNULL pointer, the local address to which the socket is bound is not
returned. If the length of the local address to be returned exceeds the length that was specified by the
local_address_|length parameter, the returned address will be truncated.

If the buffer parameter is set to aNULL pointer or the buffer_length parameter is set to value of 0, the receive
operation is not performed and the accept_and_recv() function completes when the incoming connection is
received.

If apointer to avalue of -1 is passed in for the accept_socket descriptor parameter, the following attributes are
inherited by the socket descriptor that is returned by the accept_and_recw() call:

o All socket options with alevel of SOL_SOCKET.

o The statusflags:

= Asynchronous flag (set or reset either by theioctl() call with the FIOASY NC request or by the
fentl () call with the F_SETFL command and the status flag set to FASYNC).

o The process ID or process group ID that isto receive SIGIO or SIGURG signals (set or reset by either the
ioctl() call with the FIOSETOWN or the SIOCSPGRP request, or by the fentl() call with the
F_SETOWN command).

7. Theaccept_and recv() function allows an application to reuse an existing socket descriptor. If a socket
descriptor is specified for the accept_socket_descriptor parameter, it must not be bound or connected and it must
have the same address family and socket type as the listen_socket_descriptor. The socket descriptor that is passed
in for the accept_socket _descriptor parameter can be obtained by either calling socket() or by specifying the
SF_REUSE flag on the flags parameter of the send_file() function.

If an application specifies a pointer to an unbound and unconnected socket descriptor for the
accept_socket_descriptor parameter that is the same address family and socket type as the
listen_socket_descriptor, the accept_and_recv() function will try to use the accept_socket descriptor for the
incoming connection. If the accept_socket descriptor cannot be used for the incoming connection, the descriptor
for that socket will be closed and a new socket will be created for the incoming connection. The new socket may
have a different descriptor number associated with it. This means that the value that is returned by the
accept_socket_descriptor parameter may not be the same value that was specified by the application when the
accept_and_recv() function was called.

The ability to reuse an existing socket is not supported on all platforms. Therefore, it is recommended that a
pointer to avalue of -1 be passed in for the accept_socket descriptor parameter. If socket reuse is not supported
and the send_file() API is called with the flags parameter set to SF_ REUSE, the socket connection will be closed
and the socket descriptor will be set to -1 by the send_file() API. If socket reuse is supported, then the connection
will be closed and the socket descriptor will be reset so that it can be used again. Regardless of whether socket
reuse is supported or not, the application can pass its socket descriptor variable into the accept_and recv()
function as the accept_socket_descriptor parameter.

8. #The structure sockaddr is a generic structure used for any address family but it is only 16 bytes long. The
actual address returned for some address families may be much larger. Y ou should declare storage for the address
with the structure sockaddr_storage. This structureis large enough and aligned for any protocol-specific
structure. 1t may then be cast as sockaddr structure for use on the APIs. The ss_family field of the
sockaddr_storage will always align with the family field of any protocol-specific structure.

The BSD 4.3 structureis:

#define _SS MAXSI ZE 304

#define _SS ALI GNSI ZE (si zeof (char*))

#define _SS PAD1SI ZE (_SS_ALI GNSI ZE - sizeof(sa_famly_t))

#define _SS PAD2SI ZE (_SS MAXSI ZE - (sizeof (sa famly t)+
_SS PAD1SI ZE + _SS ALl GNSI ZE))

struct sockaddr_storage {
sa famly t ss _famly;

char _ss_padl[_SS PAD1SI ZE] ;
char* _ss_align;
char _ss_pad2[_SS PAD2SI ZE] ;

H
The BSD 4.4/UNIX 98 compatible structureis:

#def i ne _SS_MAXSI ZE 304

#define _SS ALI GNSI ZE (sizeof (char*))

#define _SS PAD1ISI ZE (_SS_ALIGNSI ZE - (sizeof (uint8_t) +
sizeof (sa_fanmily t)))

#def i ne _SS PAD2SI ZE (_SS MAXSI ZE - (sizeof (uint8 t) + sizeof(sa famly t)+
_SS PAD1SI ZE + _SS ALI GNSI ZE))

struct sockaddr storage {

uint8_t ss_len;
sa famly_t ss_famly;
char _ss_padl[_SS PAD1SI ZE] ;
char* _ss_align;
char _ss_pad2[_SS PAD2SI ZE] ;
s
L4

9. Totake full advantage of the performance improvement offered by the accept_and_recv() API, amultiple accept
server model needs to be used by the application. In this model the server will do a socket(), bind(), and listen()
ascurrently is done. The server will then give the listening socket to multiple jobs or threads. Each job or thread
will then call accept_and_recv() using the same listening socket. When a connection request comesin, only one
of the jobs or threads would wake up.

10. If asuccessful Rbind() has been performed on the listening socket, then a new connection is not returned, but
rather an inbound connection occurs on the same listening socket. The descriptor number returned is different,
but it actually refers to the same connection referred to by the listening socket.

11. #When you develop in C-based languages and an application is compiled with the_ X OPEN_SOURCE macro
defined to the value 520 or greater, the accept_and_recv() API is mapped to gso_accept_and_recv98().<

Related Information

o & XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface

« accept()--Wait for Connection Request and Make Connection

o getsockname()--Retrieve Local Address of Socket

« recv()--Receive Data

o send file()--Send a File over a Socket Connection

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

bind()--Set Local Address for Socket

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int bind(int socket descriptor,

struct sockaddr *|ocal _address,
i nt address_| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

int bind(int socket_descriptor,

const struct sockaddr *|ocal address,
sockl en_t address_| engt h)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&

The bind() function is used to associate alocal address with a socket.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

socket_descriptor
(Input) The descriptor of the socket that is to be bound.

local_address

(Input) A pointer to abuffer of type struct sockaddr that contains the local address to which the
socket is to be bound. The structure sockaddr is defined in <sys/socket.h>.

The BSD 4.3 structureis:

struct sockaddr {
u_short sa fanily;
char sa_dat a[14];
1

The BSD 4.4/UNIX 98 compatible structure is:

t ypedef uchar sa famly_t;

struct sockaddr {

uint8_t sa_|l en;
sa fanmily_ t sa famly;
char sa_dat a[14];

b

The BSD 4.4 sa_len field isthe length of the address. €% The sa_family field identifies the address
family to which the address belongs, and sa_data is the address whose format is dependent on the
address family.

address length
(Input) The length of the local_address.

Authorities

« When the address type of the socket identified by the socket_descriptor is AF_INET, the thread
must have retrieve, insert, delete, and update authority to the port specified by the local_address
field. When the thread does not have this level of authority, an errno of EACCES is returned.

« When the address type of the socket identified by the socket_descriptor isAF_INET and is
running IP over SNA, the thread must have retrieve, insert, delete, and update authority to the
APPC device. When the thread does not have this level of authority, an errno of EACCES s
returned.

Return Value

bind() returns an integer. Possible values are:
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When a bind() fails, errno can be set to one of the following:
[EACCEY Permission denied.

The process does not have the appropriate privilegesto bind local_address to
the socket pointed to by socket descriptor (for example, if socket_descriptor isa
socket with an address family of AF_INET, and the sockaddr_in structure
(pointed to by local_address) specified a port that was restricted for use).

[EADDRINUSE] Address already in use.

This error code indicates one of the following:

« Thesocket_descriptor points to a socket with an address family of
AF_INET, and the address specified in the sockaddr _in structure
(pointed to by local_address) has already been assigned to another
socket.

« #* The socket_descriptor pointsto a socket with an address family of
AF_INET®6, and the address specified in the sockaddr_in6 structure
(pointed to by local_address) has already been assigned to another
socket. 4%

« Thesocket_descriptor points to a socket with an address family of
AF_UNIX or AF_UNIX_CCSID, and the address specified in the
sockaddr_un or sockaddr_unc structure (pointed to by local_address)
has already been assigned to another socket.

[EADDRNOTAVAIL] Address not available. This error code indicates one of the following:

» Thesocket descriptor pointsto a socket with an address family of
AF_INET, and the IP address specified in the sockaddr_in structure
(pointed to by local_address) is not one defined by the local interfaces.

« % The socket_descriptor pointsto a socket with an address family of
AF_INET6, and the | P address specified in the sockaddr _in6 structure

(pointed to by local_address) is not one defined by the local interfaces.
L34

[EAFNOSUPPORT] Thetype of socket is hot supported in this protocol family.
The address family specified in the address structure pointed to by
local_address parameter cannot be used with the socket pointed to by the
socket_descriptor parameter.

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access
the local_address parameter.

[EINVAL] Parameter not valid. This error code indicates one of the following:

« Theaddress length parameter specifies alength that is negative or is
not valid for the address family.

« The socket referenced by socket_descriptor is not a socket of type
SOCK_RAW and is aready bound to an address.

« Thelocal address pointed to by the local _address parameter specified
an address that was not valid.

« Thesocket_descriptor pointsto a socket with an address family of
AF_UNIX_CCSID, and the CCSID specified in sunc_glg in the
sockaddr_unc structure (pointed to by local _address) cannot be
converted to the current default CCSID for integrated file system path
names.

« Thesocket descriptor points to asocket with an address family of
AF_UNIX_CCSID, and there was an incompl ete character or shift state
sequence at the end of sunc_path in the sockaddr_unc structure
(pointed to by local _address).

« Thesocket_descriptor points to asocket with an address family of
AF_UNIX_CCSID, and the sockaddr _unc structure (pointed to by
local_address) was not valid:

o Thesunc_format was not set to SO UNC _DEFAULT or
SO _UNC_USE QLG.

o Thesunc_zero was not initialized to zeros.

o Thesunc format field was set to SO UNC_USE QLG and the
sunc_glg structure was not valid:

= The path type was less than O or greater than 3.

= The path length was less than 0 or out of bounds. For
example, a single-byte path name was greater than 126
bytes or a double-byte path name was greater than 252
bytes.

= A reserved field was not initialized to zeros.

[EIQ] Input/output error.

[ELOOP] A loop exists in symbolic links encountered during pathname resol ution.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID address family.

[ENAMETOOLONG] File nametoo long.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID address family.

[ENOBUFY There is not enough buffer space for the requested operation.

[ENOENT] No such file or directory.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID address family.

[ENOSYY Function not implemented.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID or AF_UNIX_CCSID address family.

[ENOTDIR] Not adirectory.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID address family.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EUNKNOWN] Unknown system state.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.

Usage Notes

1. For socketsthat use an address family of AF_UNIX or AF_UNIX_CCSID, the following is
applicable:

o The process must have the following types of permission:
= Create permission to the directory in which the entry isto be created.

= Search permission aong all the components of the path.

Also, processes trying to establish a connection with the connect() must have write access
to the entry that is created.

o For AF_UNIX, the path name is assumed to be in the default coded character set identifier
(CCSID) currently in effect for the job. For AF_UNIX_CCSID, the path name is assumed
to bein the format and CCSID specified in the sockaddr _unc (pointed to by
local_address).

o When the socket is no longer needed, the caller should remove the file system entry that
was created by the bind() using the unlink() or QpOlunlink() system function.

2. For sockets that use an address family of AF_INET, the following is applicable:

o Theinternet address structure sockaddr_in requires a 2-byte port number and a 32-bit |P
address. Y ou can have the system automatically select a port number by setting the port
number to 0.

The BSD 4.3 structureis:

struct sockaddr_in {
short sin_famly;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

1
The BSD 4.4/UNIX 98 compatible structure is:

t ypedef wuchar sa famly_ t;

struct sockaddr _in {

uint8_ t sin_|len;
sa famly_t sin_famly;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

b

The BSD 4.4 sin_len field isthe length of the address. X The sin_family isthe address
family (always AF_INET for TCP and UDP), sin_port is the port number, and sin_addr is
the internet address. The sin_zero field is reserved and must be hex zeros.

o A wildcard addressis provided (INADDR_ANY defined in <netinet/in.h>) that allows an
application to receive messages directed to a specified port independent of the IP address
that was specified. If alocal |P address is specified, only datareceived on that |P addressis
made available. INADDR_ANY must be used to receive data from multiple local interface
definitions.

3. * For sockets that use an address family of AF_INETS, the following is applicable:

o Theinternet address structure sockaddr_in6 requires a 2-byte port number and a 128-hit IP
address. Y ou can have the system automatically select a port number by setting the port
number to 0.

The BSD 4.3 structureis:

t ypedef unsigned short sa famly_t;
t ypedef unsigned short in_port _t;

struct sockaddr_in6 {

sa family_t sin6_famly;
in_port _t si n6_port;
uint32_t si n6_f 1 ow nf o;
struct in6_addr sin6_addr;
uint32_t si n6_scope_i d;

3
The BSD 4.4/UNIX 98 compatible structure is:

t ypedef uchar sa famly_t;
t ypedef unsigned short in_port_t;

struct sockaddr _in6 {

uint 8 t sin6_|l en;

sa famly_t sin6_famly;
in_port _t si n6_port;
uint32_t sin6_fl ow nfo;
struct in6_addr sin6_addr;
uint32_t si n6_scope_i d;

b

The BSD 4.4 sin6_len field is the length of the address. The sin6_family is the address
family (AF_INET6 in this case), sin6_port is the port number, and sin6_addr is the internet
address. The sin6_flowinfo field contains two pieces of information: the traffic class and
the flow label. Note: Thisfield is currently not supported and should be set to zero for
upward compatibility. The sin6_scope id field identifies a set of interfaces as appropriate
for the scope of the address carried in the sin6_addr field. Note: Thisfield is currently not
supported and should be set to zero for upward compatibility.

o A wildcard addressis provided that allows an application to receive messages directed to a
specified port independent of the 1P address that was specified. Since the |Pv6 address type
isastructure (struct in6_addr), a symbolic constant can be used to initialize an I1Pv6
address variable, but cannot be used in an assignment. Therfore, the IPv6 wildcard address
is provided in two forms as defined in <netinet/in.h>. Thefirst version isaglobal variable
named in6addr_any. Thisversion is used similarly to the way applications use the
INADDR_ANY in IPv4 as defined above and must be used for structure assignment. The
other version is a symbolic constant named INGADDR_ANY _INIT. Thisversion may be
used toinitialize an in6_addr structure. If alocal |P addressis specified, only data received
on that IP address is made available. The wildcard address must be used to receive data
from multiple local interface definitions. 4

4. For sockets that use an address family of AF_TELEPHONY, the following is applicable:

o A telephony addresstel_addr consists of a 2-byte length followed by a tel ephone number

up to 40 digitslong.

o Thetelephony sockets address structure sockaddr _tel consists of the address family, the
telephony address, and areserved field.

& The BSD 4.3 structureis:

struct tel _addr {
unsi gned short t _len;
char t _addr[40];

b

struct sockaddr tel {
short stel famly;
struct tel addr stel addr;
char stel _zero[4];

b
Thereisno BSD 4.4/UNIX 98 compatible structure defined for telephony addresses.

The stel_family is the address family (always AF_TELEPHONY), the stel_addr isthe
telephone number length and the telephone number itself. The stel_zero field is reserved.

o A wildcard telephone number is provided (TELADDR_ANY defined in <nettel/tel.h>)
that allows an application to answer calls directed to any of the local numbers specified in
the connection list(s) associated with the device(s) that are being used by a socket.

5. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the bind() APl is mapped to
gso_hind98() .4

Related Information

o # XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« connect()--Establish Connection or Destination Address

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

close()--Close File or Socket Descriptor

Syntax

#i ncl ude <uni std. h>

int close(int fildes);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The close() function closes a descriptor, fildes. This frees the descriptor to be returned by future open()
calls and other calls that create descriptors.

When the last open descriptor for afileis closed, thefileitself is closed. If the link count of thefileis zero
at that time, the space occupied by the fileisfreed and the file becomes inaccessible.

close() unlocks (removes) al outstanding byte locks that ajob has on the associated file.

When all file descriptors associated with a pipe or FIFO special file are closed, any dataremaining in the
pipe or FIFO isdiscarded and internal storage used is returned to the system.

When fildes refers to a socket, close() closes the socket identified by the descriptor.

Parameters

fildes
(Input) The descriptor to be closed.

Authorities

No authorization is required. Authorization is verified during open(), creat(), or socket().

Return Value

close() returns an integer. Possible values are:
0 close() was successful.

-1 close() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If close() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY
Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.
The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operationsto file
permissions at the server are not reflected at the client until updates to datathat is stored locally by
the Network File System take place. (Severa options on the Add Mounted File System (ADDMFES)
command determine the time between refresh operations of local data.) Accessto aremote file may
also fail due to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EAGAIN]
Operation would have caused the process to be suspended.

[EBADF]
Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or aread or write
regquest was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The specified descriptor is
incorrect, or does not refer to an open file.
[EBADFID]

A file ID could not be assignhed when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.
[EBUSY]

Resource busy.

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EINTR]
Interrupted function call.

[EINVAL]
The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and
the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
[EIO]
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.
[EJRNDAMAGE]
Journal damaged.
A journa or al of the journa's attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value alowed. This error occurs during operations that were
attempting to send an entry to the journal.

[EJRNENTTOOLONG]
Entry too large to send.

The journa entry generated by this operation is too large to send to the journal.
[EJRNINACTIVE]

Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.
[EJRNRCVSPC]

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during
operations that were attempting to send an entry to the journal.

[ENEWJRN]
New journal is needed.
The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were
attempting to send an entry to the journal.

[ENEWJRNRCV]
New journal receiver is needed.
A new journal receiver must be attached to the journal before entries can be journaled. This error
occurs during operations that were attempting to send an entry to the journal .4
[ENOBUFS
There is not enough buffer space for the requested operation.

[ENOSPC]
No space available.
The requested operations required additional space on the device and there is no space left. This
could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOSYY
Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for any object or
any arguments.

The path name given refers to an object that does not support this function.
[ENOTAVAIL]
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG)
processing.

To recover from this error, wait until processing has completed for the independent ASP.
[ENOTSAFE]
Function is not allowed in ajob that is running with multiple threads.

[ESTALE]
File or abject handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted
at the server.

[EUNKNOWN]
Unknown system state.

The operation failed because of an unknown system state. See any messagesin the job log and
correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL]
Address not available.

[ECONNABORTED]
Connection ended abnormally.

[ECONNREFUSED]
The destination socket refused an attempted connect operation.

[ECONNRESET]
A connection with aremote socket was reset by that socket.

[EHOSTDOWN]
A remote host is not available.

[EHOSTUNREACH]
A route to the remote host is not available.

[ENETDOWN]
The network is not currently available.

[ENETRESET]
A socket is connected to a host that is no longer available.

[ENETUNREACH]
Cannot reach the destination network.

[ESTALE]
File or abject handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted
at the server.

[ETIMEDOUT]
A remote host did not respond within the timeout period.

[EUNATCH]
The protocol required to support the specified address family is not available at thistime.

Error Messages

The following messages may be sent from this function:
Message | D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPFO872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.
CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

» ZIndependent ASP QSYS.LIB &
= QOPT

2. When a socket descriptor is closed, the system tries to send any queued data associated with the
socket.

o For AF_NSor AF_INET sockets, depending on whether the SO_LINGER socket option is
set, queued data may be discarded.

Note: For these sockets, the default value for the SO_LINGER socket option has the option
flag set off (the system attempts to send any queued data with an infinite wait time).

o For AF_TELEPHONY sockets, depending on whether the SO_LINGER socket optionis
set, buffered data may be discarded.
Note: For these sockets, the default value for the SO_LINGER socket option has the option

flag set on with atime value of 1 second (the system will wait up to 1 second to send
buffered data before clearing the tel ephone connection).

3. A socket descriptor being shared among multiple processesis not closed until the process that
issued the close() isthe last process with access to the socket.

Related Information

o The<unistd.h> file (see Header Filesfor UNIX-Type Functions)
« creat()--Create or Rewrite File

o dup()--Duplicate Open File Descriptor

o dup2()--Duplicate Open File Descriptor to Another Descriptor
« fentl()--Perform File Control Command

« open()--Open File

« setsockopt()--Set Socket Options

« unlink()--Remove Link to File

Example

The following example uses close()

See Code disclaimer information for information pertaining to code examples.

#i ncl ude <stdio. h>
#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

mai n() {
int fdl, fd2;
char out[20]="Test string",
fn[]="test.file",
in[20];
short wite error;

menset (i n, 0x00, sizeof(in));
wite error = 0O;

if ((fdl = creat(fn,S_IRWKU)) == -1)
perror(“"creat() error");
else if ((fd2 = open(fn, O RDWR)) == -1)
perror("open() error");
el se {
if (wite(fdl, out, strlen(out)+l) == -1) {
perror("wite() error");
wite error = 1,

}
cl ose(fdl);
if ('wite_error) {
if (read(fd2, in, sizeof(in)) == -1)
perror("read() error");
else printf("string read fromfile was: "%'\n",

}
cl ose(fd2);

}
}

Output:

string read fromfile was: 'Test string

in);

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

connect()--Establish Connection or Destination
Address

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt connect (int socket descriptor,

struct sockaddr *destination_address,
i nt address_| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

i nt connect (int socket_descriptor,

const struct sockaddr *destination_address,
sockl en_t address_| engt h)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&«

The connect() function is used to establish a connection on a connection-oriented socket or establish the
destination address on a connectionless socket.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters

socket_descriptor
(Input) The descriptor of the socket that is to be connected.

destination_address

(Input) A pointer to abuffer of type struct sockaddr that contains the destination address to which
the socket is to be bound. The structure sockaddr is defined in <sys/socket.h>.

The BSD 4.3 structureis:

struct sockaddr {
u_short sa fanily;
char sa_dat a[14];
1

The BSD 4.4/UNIX 98 compatible structure is:

t ypedef uchar sa famly_t;

struct sockaddr {

uint8_t sa_|l en;
sa fanmily_ t sa famly;
char sa_dat a[14];

b

The BSD 4.4 sa_len field isthe length of the address. €% The sa_family field identifies the address
family to which the address belongs, and sa_data is the address whose format is dependent on the
address family.

address length
(Input) The length of the destination_address.

Authorities

When the address type of the socket identified by the socket_descriptor isAF_INET and isrunning IP
over SNA, the thread must have retrieve, insert, delete, and update authority to the APPC device. When the
thread does not have this level of authority, then an errno of EACCES is returned.

Return Value

connect() returns an integer. Possible values are:
o -1 (unsuccessful)
o 0 (successful)

Error Conditions

When a connect() fails, errno can be set to one of the following. For additional debugging information, see
Debugging IP over SNA Configurations.

[EACCEY Permission denied.

This error code indicates one of the following:

« The process does not have the appropriate privileges to connect to the
address pointed to by the destination_address parameter.

« The socket pointed to by socket_descriptor isusing a
connection-oriented transport service, and the destination_address
parameter specifies a TCP/IP limited broadcast address (internet address
of all ones).

[EADDRINUSE] Address already in use.

This error code indicates one of the following:

« Thesocket descriptor parameter points to a connection-oriented socket
that has been bound to alocal address that contained no wildcard values,
and the destination_address parameter specified an address that
matched the bound address.

« Thesocket_descriptor parameter points to a socket that has been bound
to alocal address that contained no wildcard values, and the
destination_address parameter (also containing no wildcard values)
specified an address that would have resulted in a connection with a
non-unigue association.

« For sockets with an address family of AF_TELEPHONY, the ISDN
cause codes 0 and 17 are mapped to this errno.

[EADDRNOTAVAIL] Address not available.

This error code indicates one of the following:

« Thesocket descriptor parameter points to a socket with an address
family of AF_INET?* or AF_INET64 and either a port was not
available or aroute to the address specified by the destination_address
parameter could not be found.

« For sockets with an address family of AF_TELEPHONY, the ISDN
cause codes 16, 19, 21, 27, 31, and 102 are mapped to this errno.
[EAFNOSUPPORT] Thetype of socket is not supported in this protocol family.

The address family specified in the address structure pointed to by
destination_address parameter cannot be used with the socket pointed to by the
socket_descriptor parameter.

For sockets with an address family of AF_ TELEPHONY , the ISDN cause codes
49, 50, and 57 are mapped to this errno.

[EALREADY]

[EBADF]

[ECONNREFUSED]

[EFAULT]

[EHOSTUNREACH]

[EINPROGRESS]

[EINTR]

[EINVAL]

Operation already in progress.

A previous connect() function had already been issued for the socket pointed to
by the socket_descriptor parameter, and has yet to be completed. This error code
is returned only on sockets that use a connection-oriented transport service.

Descriptor not valid.

The destination socket refused an attempted connect operation.

This error occurs when there is no application that is bound to the address
specified by the destination_address parameter.

For sockets with an address family of AF_TELEPHONY, the ISDN cause codes
1, 2, 3, 6, and 7 are mapped to this errno.

Bad address.

The system detected an address which was not valid while attempting to access
the destination_address parameter.

A route to the remote host is not available.

This error code is returned on sockets that use the AF_INET, #* AF_INET6%,
and AF_TELEPHONY address families.

For address family AF_TELEPHONY sockets, this error indicates that the
default connection list entry was not available or that the call failed with one of
the following ISDN cause codes. 18, 22, 26, 28, 29, or 30.

Operation in progress.

The socket_descriptor parameter points to a socket that is marked as
nonbl ocking and the connection could not be completed immediately. This error
code is returned only on sockets that use a connection-oriented transport service.

Interrupted function call.

Parameter not valid.

This error code indicates one of the following:

« Theaddress length parameter specifies alength that is negative or not
valid for the address family.

o The AF_INET# or AF_INET64 socket is of type SOCK_STREAM,
and a previous connect() has already completed unsuccessfully. Only
one connection attempt is allowed on a connection-oriented socket.

Note: For sockets that have an address family of AF_UNIX, or
AF_UNIX_CCdID, if aconnect() fails, a subsequent connect() is
alowed, even if the transport service being used is connection-oriented.

« connect() cannot be issued on the socket pointed to by the
socket_descriptor parameter because the socket isusing a
connection-oriented transport service (with an address family of
AF_INET* or AF_INET6%), and a shutdown() that disabled the

[EIO]

[EISCONN]

[ELOOP]

[ENAMETOOLONG]

sending of data was previously issued.

The destination address pointed to by the destination_address parameter
specified an address that was not valid.

The socket_descriptor points to a socket with an address family of
AF_UNIX_CCSID, and the CCSID specified in sunc_glg in the
sockaddr _unc structure (pointed to by local _address) cannot be
converted to the current default CCSID for integrated file system path
names.

The socket_descriptor points to a socket with an address family of
AF_UNIX_CCSID, and there was an incompl ete character or shift state
sequence at the end of sunc_path in the sockaddr_unc structure
(pointed to by local_address).

The socket_descriptor points to a socket with an address family of
AF_UNIX_CCSID, and the sockaddr_unc structure (pointed to by
local _address) was not valid:

o Thesunc_format was not set to SO UNC_DEFAULT or
SO _UNC_USE QLG.

o Thesunc_zero was hot initialized to zeros.

o Thesunc format field was set to SO UNC_USE QLG and the
sunc_glg structure was not valid:

= The path type was less than O or greater than 3.

= The path length was less than O or out of bounds. For
example, asingle byte path name was greater than 126
bytes or a double byte path name was greater than 252
bytes.

s A reserved field was not initialized to zeros.

Input/output error.

A connection has already been established.

Thiserror code is returned only on sockets that use a connection-oriented
transport service.

A loop exists in symbolic links encountered during pathname resolution.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID address family.

File name too long.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID address family.

[ENETDOWN]

[ENETUNREACH]

[ENOBUFS]

[ENOENT]

[ENOSYS

[ENOTDIR]

[ENOTSOCK]

[EOPNOTSUPP]

[EPROTOTYPE]

The network is not currently available.

For sockets with an address family of AF_TELEPHONY, the ISDN cause codes
81, 82, 83, 84, 85, 86, 88, 91, and 95 are mapped to this errno.

Cannot reach the destination network.

This error code indicates the following:

« For sockets that use the AF_INET* or AF_INET64 address families,
the address specified by the destination_address parameter requires the
use of arouter, and the socket option SO_DONTROUTE is currently set
on.

« For sockets with an address family of AF_TELEPHONY, the ISDN
cause code 127 is mapped to this errno.

There is not enough buffer space for the requested operation.

For sockets with an address family of AF_ TELEPHONY , the ISDN cause codes
34, 38, 41, 42, 43, 44, 47, 58, and 63 are mapped to this errno.

No such file or directory.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID address family.

Function not implemented.

This error code isonly returned on sockets that use the AF_UNIX ,
AF_UNIX_CCSID, AF_TELEPHONY address families.

For sockets with an address family of AF_ TELEPHONY , the ISDN cause codes
65, 66, 69, 70, and 79 are mapped to this errno.

Not a directory.

The specified descriptor does not reference a socket.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID address family.

Operation not supported.

connect() is not allowed on a passive socket (a socket for which alisten() has
been done).

For sockets with an address family of AF_TELEPHONY, the ISDN cause codes
49, 50, and 57 are mapped to this errno.

The socket type or protocols are not compatible.

This error code is only returned on sockets that use the AF_UNIX or
AF_UNIX_CCSID address family.

[ETIMEDOUT] A remote host did not respond within the timeout period.

This error code is returned when connection establishment times out. No
connection is established. A possible cause may be that the partner application is
bound to the address specified by the destination_address parameter, but the
partner application has not yet issued alisten().

[EUNKNOWN] Unknown system state.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

[EPROTQ] An underlying protocol error has occurred.

For sockets with an address family of AF_TELEPHONY, the ISDN cause codes
96, 97, 98, 99, 100, 101, and 111 are mapped to this errno.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.

Usage Notes

1. connect() establishes an end-to-end connection. It can only be issued once on sockets that have an
address family of AF_INET#* or AF_INET64 and are of type SOCK_STREAM. (If the connect()
fails to successfully establish the connection, you must close the socket and create a new socket if
you wish to try to establish a connection again.) For sockets of other address familiesthat are
connection-oriented, you may simply try the connect() again to the same or to a new address.
connect() can be issued on sockets of type SOCK_DGRAM and SOCK_RAW multiple times. Each
time connect() is issued, it changes the destination address from which packets may be received and
to which packets may be sent.

Note: Issuing connect() on sockets of type SOCK_DGRAM and SOCK_RAW is not recommended
because of dynamic route reassignment (picking a new route when aroute that was previously used
isno longer available). When this reassignment occurs, the next packet from the partner program
can be received from a different 1P address than the address your application specified on the
connect(). This results in the data being discarded.

2. When a connect() isissued successfully on sockets with an address family of AF_INET2* or
AF_INET6% and type of SOCK_DGRAM, errors relating to the unsuccessful delivery of outgoing
packets may be received as errno values. For example, assume an application has issued the
connect() for a destination_address at which no server is currently bound for the port specified in

destination_address, and the application sends several packets to that destination_address.
Eventually, one of the application output functions (for example, send()) will receive an error
[ECONNREFUSED]. If the application had not issued the connect(), this diagnostic information
would have been discarded.

. A connectionless transport socket for which a connect() has been issued can be disconnected by
either setting the destination_address parameter to NULL or setting the address _length parameter
to zero, and issuing another connect().

. For sockets that use a connection-oriented transport service and an address family of AF_INET 2
or AF_INET6% thereisanotion of adirected connect. A directed connect allows two socket
endpoints (socket A and socket B) to be connected without having a passive socket to accept an
incoming connection request. Theideais for both sockets to bind to addresses. Socket A then
issues a connect() specifying the address that socket B is bound to, and socket B issues a connect()
specifying the address that socket A is bound to. At this point sockets A and B are connected, and
datatransfer between the sockets can now take place.

. For sockets with an address family of AF_INET:2 or AF_INET64, the following is applicable:

o For sockets of type SOCK_STREAM or SOCK_DGRAM, alocal port number isimplicitly
assigned to the socket if the connect() is issued without previously issuing a bind().

. For sockets with an address family of AF_INET, the following is applicable:

o If the destination address has an IP address that is set to zero, the system selects an
appropriate destination |P address using the following algorithm:

= |If the socket is bound to an IP address of zero, aloopback addressisused. If a
loopback interface is not configured (or the associated interface is not active), the
address of the next available interface that is active is used. Otherwise, the
destination |P addressis not changed (and results in an error on the connect()).

= |f the socket is bound to a nonzero | P address, then the |P address that the socket is
bound to is used.

o |If the destination address has an internet | P address that is set to INADDR_BROADCAST
(hex OxFFFFFFFF), the system selects an appropriate destination | P address using the
following algorithm:

= |f the socket is bound to an |P address of zero and:

= |tisusing aconnectionless transport service, then the first active interface
found that supports broadcast frames is used by the networking software.

= |tisusing aconnection-oriented transport service, an error is returned
([EACCES]).

= |f the socket is bound to a nonzero I P address and is using a connectionless
transport service and:

= The address that the socket is bound to denotes an interface that supports
broadcast frames (for example, not aloopback address), then the limited

broadcast address of the | P address that the socket is bound to is used.

= The address that the socket is bound to is aloopback address, an error is
returned ([EINVALY]).

= |f the socket is bound to a nonzero IP address and it is using a connection-oriented
transport service, an error isreturned ((EACCES)).

7. For sockets with an address family of AF_UNIX or AF_UNIX_CCSID, the following is applicable:

o Thereisnoimplicit binding of an address to the socket. The socket is unnamed if the
connect() isissued without previously issuing a bind().

o The process must have write access to the destination address and search permission along
all the components of the path.

o For AF_UNIX, the path name is assumed to be in the default coded character set identifier
(CCSID) currently in effect for the job. For AF_UNIX_CCSID, the path name is assumed
to bein the format and coded character set identifier (CCSID) specified in the
sockaddr_unc (pointed to by local_address).

8. For sockets with an address family of AF_ TELEPHONY, the following is applicable:

o |If the connect() isissued without previously issuing a bind(), the socket isimplicitly bound
to alocal address of TELADDR_ANY.

o If the destination addressis specified as TELADDR_ANY,, the remote number contained in
the out connection list entry of the connection list associated with the socket's first device
will be used for the connect().

9. #*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the connect() API is mapped to

0so_connect98(). <

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« fentl()--Perform File Control Command

ioctl()--Perform 1/O Control Request

bind()--Set Local Address for Socket

accept()--Wait for Connection Reguest and M ake Connection

« sendto()--Send Data

o sendmsg()--Send Data or Descriptors or Both

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

fcntl()--Perform File Control Command

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

int fentl (int descriptor,
i nt command,

ce)
Service Program Name: QPOLLIB1

Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The fentl() function performs various actions on open descriptors, such as obtaining or changing the
attributes of afile or socket descriptor.

Parameters

descriptor

(Input) The descriptor on which the control command is to be performed, such as having its
attributes retrieved or changed.

command
(Input) The command that is to be performed on the descriptor.

(Input) A variable number of optiona parameters that is dependent on the command. Only some of
the commands use this parameter.

The fentl () commands that are supported are:

F DUPFD Duplicates the descriptor. A third int argument must be specified. fentl() returns the
lowest descriptor greater than or equal to this third argument that is not already
associated with an open file. This descriptor refers to the same object as descriptor and
shares any locks. If the original descriptor was opened in text mode, data conversion is
a so done on the duplicated descriptor. The FD_CLOEXEC flag that is associated with
the new descriptor is cleared.

F_GETFD Obtains the descriptor flags for descriptor. fentl() returns these flags as its result. For a
list of supported file descriptor flags, see Flags. Descriptor flags are associated with a
single descriptor and do not affect other descriptors that refer to the same object.

F_GETFL

F_GETLK

F_GETLK64

F_GETOWN

F_SETFD

F_SETFL

F_SETLK

F_SETLK64

F_SETLKW

Obtains the file status flags and file access mode flags for descriptor. fentl() returns
these flags asits result. For alist of supported file status and file access mode flags, see
ZrUsing the oflag Parameter in open().&

Obtains locking information for an object. Y ou must specify athird argument of type
struct flock *. See File Locking for details. fentl() returns O if it successfully obtains the
locking information. When you develop in C-based languages and the function is
compiled with the LARGE_FILES macro defined, F_ GETLK is mapped to the

F GETLK®64 symbol.

Obtains locking information for alarge file. Y ou must specify athird argument of type
struct flock64 *. See File Locking for details. fentl() returns O if it successfully obtains
the locking information. When you develop in C-based languages, it is necessary to
compile the function with the LARGE_FILE_API macro defined to use this symbol.

Returns the process ID or process group ID that is set to receive the SIGIO (1/Ois
possible on a descriptor) and SIGURG (urgent condition is present) signals. For more
information, see Signal APIs.

Sets the descriptor flags for descriptor. Y ou must specify athird int argument, which
gives the new file descriptor flag settings (see Flags). If any other bitsin the third
argument are set, fentl() fails with the [EINVAL] error. fentl() returns O if it
successfully setsthe flags. Descriptor flags are associated with a single descriptor and
do not affect other descriptors that refer to the same object.

Sets status flags for the descriptor. Y ou must specify athird int argument, giving the
new file status flag settings (see Flags). fentl() does not change the file access mode,
and file access bits in the third argument are ignored. All other oflag values that are
valid on the open() API are also ignored. If any other bitsin the third argument are set,
fentl() failswith the [EINVAL] error. fentl() returns O if it successfully sets the flags.

Sets or clears afile segment lock. Y ou must specify athird argument of type struct
flock *. See File Locking for details. fentl() returns O if it successfully clears the lock.
When you develop in C-based languages and the function is compiled with the
_LARGE_FILES macro defined, F_ SETLK ismapped to the F_SETLK64 symbol.

Sets or clears afile segment lock for alarge file. Y ou must specify athird argument of
type struct flock64 *. See File Locking for details. fentl() returns O if it successfully
clears the lock. When you develop in C-based languages, it is necessary to compile the
function withthe LARGE_FILE_API macro defined to use this symbol.

Sets or clears afile segment lock; however, if ashared or exclusive lock is blocked by
other locks, fentl() waits until the request can be satisfied. Y ou must specify athird
argument of type struct flock *. See File Locking for details. When you develop in
C-based languages and the function is compiled with the LARGE_FILES macro
defined, F_SETLKW is mapped to the F_SETLKW64 symbol.

F_SETLKW64

F_SETOWN

Flags

Sets or clears afile segment lock on alarge file; however, if ashared or exclusive lock
is blocked by other lacks, fentl() waits until the request can be satisfied. See File

Locking for details. Y ou must specify athird argument of type struct flock64 *. When

you develop in C-based languages, it is necessary to compile the function with the
_LARGE_FILE_API macro defined to use this symbol.

Sets the process ID or process group ID that isto receive the SIGIO and SIGURG
signals. For more information, see Signal APIs.

There are several types of flags associated with each open objecte. Flags for an object are represented by
symbols defined in the <fcntl.h header file. The following file status flags can be associated with an object:

FASYNC
FNDELAY

O_APPEND

O_DSYNC

O_NDELAY

O_NONBLOCK

#0_RSYNC

»0O_SYNC

The SIGIO signa is sent to the process when it is possible to do 1/0.

Thisflag is defined to be equivalent to O_NDELAY.

Append mode. If thisflag is 1, every write operation on the file begins at the end of
thefile.

Synchronous update - data only. If thisflag is 1, all file datais written to permanent
storage before the update operation returns. Update operations include, but are not
limited to, the following: ftruncate(), open() with O_TRUNC, and write().

Thisflag is defined to be equivalent to O_NONBLOCK.

Non-blocking mode. If thisflag is 1, read or write operations on the file will not cause
the thread to block. Thisfile status flag applies only to pipe, FIFO, and socket
descriptors.

Synchronous read. If thisflagis 1, read operations to the file will be performed
synchronously. Thisflag is used in combination with O_SYNC or O_DSYNC. When
O_RSYNC and O_SYNC are s¢t, all file data and file attributes are written to
permanent storage before the read operation returns. When O_RSYNC and
O_DSYNC are set, dl file datais written to permanent storage before the read
operation returns.4%

Synchronous update. If thisflag is 1, al file data and file attributes relative to the 1/O
operation are written to permanent storage before the update operation returns. Update
operations include, but are not limited to, the following: ftruncate(), open() with
O_TRUNC, and write().4%

The following file access mode flags can be associated with afile:

O_RDONLY Thefileisopened for reading only.
O_RDWR Thefileis opened for reading and writing.

O_WRONLY Thefileisopened for writing only.

A mask can be used to extract flags:

O_ACCMODE Extracts file access mode flags.

The following descriptor flags can be associated with a descriptor:

FD_CLOEXEC Controls descriptor inheritance during spawn() and spawnp() when simple inheritance
isbeing used, asfollows:

o Ifthe FD_CLOEXEC flag is zero, the descriptor isinherited by the child
processthat is created by the spawn() or spawnp()API.

Note: Descriptorsthat are created as a result of the opendir () API (to
implement open directory streams) are not inherited, regardless of the value of
the FD_CLOEXEC flag.

» If the FD_CLOEXEC flag is set, the descriptor is not inherited by the child
processthat is created by the spawn() or spawnp() API.

Refer to spawn()--Spawn Process and spawnp()--Spawn Process with Path for additional information about
FD_CLOEXEC.

File Locking

A local or remote job can use fentl() to lock out other local or remote jobs from a part of afile. By locking
out other jobs, the job can read or write to that part of the file without interference from others. File locking
can ensure data integrity when several jobs have afile accessed concurrently. For more information about
remote locking, see information about the network lock manager and the network status monitor in the

0S/400 Network File System Support@l book.

Two different structures are used to control locking operations:. struct flock and struct flock64 (both defined
in the <fcntl.h header file). Y ou can use struct flock64 with the F_ GETLK®64, F_SETLK®64, and
F_SETLKW64 commands to control locks on large files (files greater than 2GB minus 1 byte). The struct
flock structure has the following members:

short |_type

short | whence

off t | dtart
off t 1 len
pid t |_pid

Indicates the type of lock, asindicated by one of the following symbols (defined
in the <fcntl.h> header file):

F _RDLCK Indicatesaread lock; also called a shared lock. When ajob hasa
read lock, no other job can obtain write locks for that part of the
file. More than one job can have aread lock on the same part of a
file simultaneously. To establish aread lock, ajob must have the
file accessed for reading.

F WRLCK Indicates awrite lock; also called an exclusive lock. When ajob
has awrite lock, no other job can obtain aread lock or write lock
on the same part or an overlapping part of that file. A job cannot
put awrite lock on part of afileif another job already has aread
lock on an overlapping part of thefile. To establish awrite lock, a
job must have accessed the file for writing.

F UNLCK Unlocksalock that was set previoudly.

One of three symbols used in determining the part of the file that is affected by
thislock. These symbols are defined in the <unistd.h> header file and are the
same as symbols used by Iseek():

SEEK _CUR Thecurrent file offset in thefile.
SEEK_END The end of thefile.
SEEK SET The start of thefile.

Gives abyte offset used to identify the part of the file that is affected by thislock.
If |_start is negative, it is handled as an unsigned value. The part of the file
affected by the lock begins at this offset from the location given by |_whence. For
example, if |_whenceis SEEK_SET and |_start is 10, the locked part of the file
begins at an offset of 10 bytes from the beginning of the file.

Givesthe size of the locked part of thefile, in bytes. If the sizeis negative, itis
treated as an unsigned value. If |_lenis zero, the locked part of the file begins at
the position specified by |_whence and | _start, and extends to the end of thefile.
Together, |_whence, |_start, and | _len are used to describe the part of the file that
is affected by thislock.

Specifiesthe job ID of the job that holds the lock. Thisis an output field used
only with F_GETLK actions.

void *| reserved0 Reserved. Must be set to NULL.

void *| reservedl Reserved. Must be setto NULL.

When you develop in C-based languages and this function is compiled with LARGE_FILES defined, the
struct flock data type will be mapped to a struct flock64 data type. To use the struct flock64 data type
explicitly, it is necessary to compile the function with _LARGE_FILE_API defined.

The struct flock64 structure has the following members:

short |_type Indicates the type of lock, asindicated by one of the following symbols
(defined in the <fcntl.h header file):

F RDLCK Indicatesaread lock; also called a shared lock. When ajob
has aread lock, no other job can obtain write locks for that
part of the file. More than one job can have aread lock on the
same part of afile smultaneously. To establish aread lock, a
job must have the file accessed for reading.

F WRLCK Indicates awrite lock; also called an exclusive lock. When a
job has awrite lock, no other job can obtain aread lock or
write lock on the same part or an overlapping part of that file.
A job cannot put awrite lock on part of afile if another job
aready has aread lock on an overlapping part of thefile. To
establish awrite lock, ajob must have accessed the file for
writing.

F UNLCK Unlocksalock that was set previoudly.

short |_whence One of three symbols used in determining the part of the file that is affected
by thislock. These symbols are defined in the <unistd.h> header file and are
the same as symbols used by Iseek():

SEEK _CUR Thecurrent file offset in thefile.
SEEK_END Theend of thefile.
SEEK SET The start of thefile.

char |_reserved2[4] Reservedfield

off64 t | _start Gives a byte offset used to identify the part of the file that is affected by this
lock. |_start is handled as a signed value. The part of the file affected by the
lock begins at this offset from the location given by |_whence. For example, if
|_whenceisSEEK_SET and |_start is 10, the locked part of the file begins at
an offset of 10 bytes from the beginning of thefile.

off64 t | _len Givesthe size of the locked part of thefile, in bytes. If the sizeis negative, the
part of the file affected is|_start + |_len through |_start - 1. If |_len is zero, the
locked part of the file begins at the position specified by |_whence and |_start,
and extends to the end of the file. Together, |_whence, |_start, and |_len are
used to describe the part of thefile that is affected by this|ock.

pid_t |_pid Specifiesthe job ID of the job that holds the lock. Thisis an output field used
only with F_GETLK actions.

char reserved3[4] Reserved field.
void *| reserved0 Reserved. Must be set to NULL.
void *| reservedl Reserved. Must be set to NULL.
Y ou can set locks by specifying F_ SETLK or F_SETLK64 as the command argument for fentl(). Such a

function call requires athird argument pointing to a struct flock structure (or struct flock64 in the case of
F _SETLK®64), asin this example:

struct flock lock it;

lock it.l _type = F_RDLCK;

lock it.l _whence = SEEK SET;

lock it.l _start = 0;

lock it.l _len = 100;

fentl (file _descriptor, F SETLK, & ock _it);

This example sets up aflock structure describing aread lock on the first 100 bytes of afile, and then calls
fentl() to establish the lock. Y ou can unlock thislock by setting |_typeto F_UNLCK and making the same
call. If an F_SETLK operation cannot set alock, it returnsimmediately with an error saying that the lock
cannot be set.

TheF_SETLKW and F_SETLKW®64 operations are similar to F_SETLK and F_SETLK64, except that
they wait until the lock can be set. For example, if you want to establish an exclusive lock and some other
job already has alock established on an overlapping part of the file, fentl() waits until the other process has
removed itslock.

F_SETLKW and F_SETLKW#64 operations can encounter deadlocks when job A iswaiting for job B to
unlock aregion and job B iswaiting for job A to unlock a different region. If the system detects that an
F_SETLKW or F_SETLKW®64 might cause a deadlock, fcntl() fails with errno set to [EDEADLK].

Withthe F_ SETLK®64, F_ SETLKW®64, and F_GETLK 64 operations, the maximum offset that can be
specified isthe largest value that can be held in an 8-byte, signed integer.

A job can determine locking information about afile by using F GETLK and F_ GETLK64 as the
command argument for fentl(). In this case, the call to fentl() should specify athird argument pointing to a
flock structure. The structure should describe the lock operation you want. When fentl() returns, the
structure indicated by the flock pointer is changed to show the first lock that would prevent the proposed
lock operation from taking place. The returned structure shows the type of lock that is set, the part of the
filethat islocked, and the job ID of the job that holds the lock. In the returned structure:

o | _whenceisaways SEEK_SET.
« |_start givesthe offset of the locked portion from the beginning of the file.
« |_lenisthe length of the locked portion.

If there are no locks that prevent the proposed lock operation, the returned structure has F_UNLCK in
|_type and is otherwise unchanged.

If fentl() attempts to operate on alarge file (one larger than 2GB minus 1 byte) withthe F_SETLK,

F GETLK, or FSETLKW commands, the API fails with [EOVERFLOW]. To work with large files,
compilewiththe LARGE_FILE_API macro defined (when you develop in C-based languages) and use
the F_ SETLK64, F GETLK®64, or FSETLKW64 commands. When you develop in C-based languages, it is
also possible to work with large files by compiling the source with the LARGE FILES macro label
defined. Note that the file must have been opened for large file access (either the open64() API was used or
the open() API was used with the O_LARGEFILE flag defined in the oflag parameter).

An application that usesthe F_ SETLK or F_SETLKW commands may try to lock or unlock afile that has
been extended beyond 2GB minus 1 byte by another application. If the value of |_len is set to 0 on the lock
or unlock reguest, the byte range held or released will go to the end of the file rather than ending at offset
2GB minus 2.

An application that usesthe F_SETLK or F_SETLKW commands also may try to lock or unlock afile that
has been extended beyond offset 2GB minus 2 with |_len NOT set to 0. If this application attempts to lock
or unlock the byte range up to offset 2GB minus2 and | _len is not 0, the unlock request will unlock the file
only up to offset 2GB minus 2 rather than to the end of the file.

A job can have severa locks on afile at the same time, but only one type of lock can be set on a given byte.

Therefore, if ajob puts anew lock on a part of afile that it had locked previously, the job has only one lock
on that part of the file. The type of the lock is the one specified in the most recent locking operation.

Locks can start and extend beyond the current end of afile, but cannot start or extend ahead of the
beginning of afile.

All of thelocks ajob has on afile are removed when the job closes any descriptor that refersto the locked
file.

All locks obtained using fentl() are advisory only. Jobs can use advisory locks to inform each other that
they want to protect parts of afile, but advisory locks do not prevent input and output on the locked parts. If
ajob has appropriate permissions on afile, it can perform whatever 1/0 it chooses, regardless of what
advisory locks are set. Therefore, advisory locking is only a convention, and it works only when all jobs
respect the convention.

Another type of lock, called a mandatory lock, can be set by aremote personal computer application.
Mandatory locks restrict 1/0 on the locked parts. A read fails when reading a part that is locked with a
mandatory write lock. A write fails when writing a part that is locked with a mandatory read or mandatory
write lock.

The maximum starting offset that can be specified by using the fnctl() API is 263 - 1, the largest number
that can be represented by a signed 8-byte integer. Mandatory locks set by a personal computer application
or by auser of the DosSetFilel ocks64() APl may lock a byte range that is greater than 263 - 1.

An application that usesthe F_SETLK64 or F_SETLKW®64 commands can lock the offset range that is
beyond 263 - 1 by locking offset 263 - 1. When offset 263 - 1 islocked, it implicitly locks to the end of the
file. The end of the fileis the largest number than can be represented by an 8-byte unsigned integer or 264 -
1. Thisimplicit lock may inhibit the personal computer application from setting mandatory locksin the
range not explicitly accessable by the fentl() API.

Any lock set using the fentl() API that locks offset 263 - 1 will have alength of 0.

An application that uses the F_ GETLK 64 may encounter a mandatory lock set by a personal computer
application, which locks arange of offsets greater than 263 - 1. Thislock conflict will have a starting offset
equal to or lessthan 263 - 1 and alength of O.

Authorities

No authorization is required.

Return Value

value fentl() was successful. The value returned depends on the command that was specified.

-1 fentl() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If fentl() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Accessto aremote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

[EAGAIN] Operation would have caused the process to be suspended.
The processtried to lock with F_SETLK, but the lock isin conflict with a previously
established lock.

[EBADF] Descriptor not valid.

A descriptor argument was out of range, referred to an object that was not open, or a
read or write request was made to an object that is not open for that operation.

A given descriptor or directory pointer is not valid for this operation. The specified
descriptor isincorrect, or does not refer to an open object.

[EBADFID] A file ID could not be assigned when linking an object to a directory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as
possible.

[EBADFUNC] Function parameter in the signal function is not set.

A given descriptor or directory pointer isnot valid for this operation. The specified
descriptor isincorrect, or does not refer to an open object.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at thistime.
[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.
[EDEADLK] Resource deadlock avoided.

An attempt was made to lock a system resource that would have resulted in a
deadlock situation. The lock was not obtained.

The function attempted was failed to prevent a deadlock.

[EFAULT]

[EINVAL]

[EIO]

[EMFILE]

[ENOLCK]

[ENOMEM]

[ENOSYS

[ENOTAVAIL]

[ENOTSAFE]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

Too many open files for this process.

An attempt was made to open more files than allowed by the value of OPEN_MAX.
The value of OPEN_MAX can be retrieved using the sysconf() function.

The process has more than OPEN_MAX descriptors aready open (see the sysconf()
function).

No locks available.

A system-imposed limit on the number of simultaneous file and record locks was
reached, and no more were available at that time.

Storage all ocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.
Function not implemented.

An attempt was made to use a function that is not available in thisimplementation for
any object or any arguments.

The path name given refers to an object that does not support this function.
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

Function is not allowed in ajob that is running with multiple threads.

[EOVERFLOW] Object istoo large to process.
The object's data size exceeds the limit allowed by this function.
One of the valuesto be returned cannot be represented correctly.
The command argument isF_GETLK, F_SETLK, or F_SETLKW and the offset of

any bytein the requested segment cannot be represented correctly in a variable of
type off_t (the offset is greater than 2GB minus 1 byte).

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could also indicate one of the
following errors:
[EADDRNOTAVAIL] Address not available.
[ECONNABORTED] Connection ended abnormally.
[ECONNREFUSED] The destination socket refused an attempted connect operation.
[ECONNRESET] A connection with aremote socket was reset by that socket.
[EHOSTDOWN] A remote host is not available.
[EHOSTUNREACH] A routeto the remote host is not available.
[ENETDOWN] The network is not currently available.
[ENETRESET] A socket is connected to a host that is no longer available.
[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

Error Messages

The following messages may be sent from this function:
Message I D Error Message Text
CPFAOD4 E File system error occurred. Error number & 1.
CPFAO081 E Unable to set return value or error code.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= QNTC

= QSYSLIB

= Z*Independent ASP QSYS.LIB 4
= QOPT

2. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

The following fentl() commands are not supported:
o F_GETLK
o F_SETLK
o F_SETLKW

Using any of these commands resultsin an [ENOSY §] error.
3. Network File System Differences

Reading and writing to afile with the Network File System relies on byte-range locking to
guarantee data integrity. To prevent datainconsistency, use the fentl() API to get and rel ease these

locks. For more information about remote locking, see information about the network lock manager
and the network status monitor in the OS/400 Network File System Support@ book.
4. QNetWare File System Differences

F GETLK and F_SETLKW are not supported. F RDLCK and F WRLCK are ignored. All locks
prevent reading and writing. Advisory locks are not supported. All locks are mandatory locks.
Locking afilethat is opened more than once in the same job with the same access mode is not
supported, and its result is undefined.

5. Thisfunction will fail with the[EOVERFLOW)] error if the command isF_GETLK, F_SETLK, or
F_SETLKW and the offset or the length exceeds offset 2 GB minus 2.

6. When you develop in C-based languages and an application is compiled with the L ARGE_FILES
macro defined, the struct flock data type will be mapped to a struct flock64 data type. To use the
struct flock64 data type explicitly, it is necessary to compile the function with the
_LARGE_FILE_API defined.

7. In several cases, similar function can be obtained by using ioctl().

Related Information

o The <syd/types.h> file (see Header Files for UNIX-Type Functions)
o The<unistd.h> file (see Header Files for UNIX-Type Functions)
« The<fcntl.h> file (see Header Files for UNIX-Type Functions)

« close()--Close File or Socket Descriptor

« dup()--Duplicate Open File Descriptor

o dup2()--Duplicate Open File Descriptor to Another Descriptor

« ioctl()--Perform /O Control Request

o Iseek()--Set File Read/Write Offset

« open()--Open File

« spawn()--Spawn Process

» spawnp()--Spawn Process with Path

« 0OS/400 Network File System Support@ book

Example

The following example uses fentl():

See Code disclaimer information for information pertaining to code examples.

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>

#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

int main()

int flags;

i nt append_fl ag;

i nt nonbl ock_fl ag;

i nt access_node;

int file descriptor; /* File Descriptor */
char *textl = "abcdefghij";

char *text2 = "0123456789";

char read buffer[25];

nmenset (read_buffer, "'\0', 25);

/* create a new file */

file descriptor = creat("testfile",S | RAKU);
wite(file descriptor, textl, 10);
close(fil e _descriptor);

/* open the file with read/wite access */
file _descriptor = open("testfile", O RDWR)
read(file_descriptor, read buffer, 24);
printf("first read is \"%\'\n",read_buffer);

/* reset file pointer to the beginning of the file */

| seek(file_descriptor, 0, SEEK SET);

/* set append flag to prevent overwriting existing text */
fentl (file_descriptor, F_SETFL, O APPEND);

wite(file descriptor, text2, 10);

| seek(file_descriptor, 0, SEEK SET);

read(file_descriptor, read buffer, 24);

printf("second read is \'%\'\n",read _buffer);

close(fil e _descriptor);
unlink("testfile");

return O;

}
Output:

first read is 'abcdefghij'
second read is 'abcdefghij0123456789'

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

fstat()--Get File Information by Descriptor

Syntax

#i ncl ude <sys/stat.h>

int fstat(int descriptor,
struct stat *buffer)

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The fstat() function gets status information about the object specified by the open descriptor descriptor and
stores the information in the area of memory indicated by the buffer argument. The status information is
returned in a stat structure, as defined in the <sys/stat.h> header file.

Parameters

descriptor
(Input) The descriptor for which information isto be retrieved.

buffer

(Output) A pointer to a buffer of type struct stat in which the information is returned. The structure
pointed to by the buffer parameter is described in stat()-- Get File Information.

The st_mode, st_dev, and st_blksize fields are the only fields set for socket descriptors. The
st mode field is set to avalue that indicates the descriptor is a socket descriptor, the st_dev fieldis
set to -1, and the st_blksize field is set to an optimal value determined by the system.

Authorities

No authorization is required.

Return Value

0 fstat() was successful. The information is returned in buffer.

-1 fstat() was not successful. The errno global variableis set to indicate the error.

Error Conditions

If fstat() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES]

[EAGAIN]

[EBADF]

[EBADFID]

[EBADFUNC]

[EBUSY]

[EDAMAGE]

Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Accessto aremote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

Operation would have caused the process to be suspended.

Descriptor not valid.

A descriptor argument was out of range, referred to afile that was not open, or aread
or write request was made to afile that is not open for that operation.

A given descriptor or directory pointer isnot valid for this operation. The specified
descriptor isincorrect, or does not refer to an open object.

A file ID could not be assigned when linking an object to adirectory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as
possible.

Function parameter in the signal function is not set.

A given descriptor or directory pointer is not valid for this operation. The specified
descriptor isincorrect, or does not refer to an open object.

Resource busy.
An attempt was made to use a system resource that is not available at thistime.
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid. [EFAULT] isreturned if this function is passed a pointer
parameter that is not valid.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.
This error code may be returned when the underlying object represented by the
descriptor is unable to fill the stat structure (for example, if the function was issued
against a socket descriptor that had its connection reset).

[EIQ] Input/output error.
A physical I/O error occurred.
A referenced object may be damaged.

[ENOBUFY There is not enough buffer space for the requested operation.

[ENOSYSRC] System resources not available to complete request.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) isnot available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

[ENOTSAFE] Function is not allowed in ajob that is running with multiple threads.

[EOVERFLOW] Object istoo large to process.
The object's data size exceeds the limit allowed by this function.

The specified file exists and its size is too large to be represented in the structure
pointed to by buffer (thefileislarger than 2GB minus 1 byte).

[EPERM] Operation not permitted.
Y ou must have appropriate privileges or be the owner of the object or other resource
to do the requested operation.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNATCH]

[EUNKNOWN]

The protocol required to support the specified address family is not available at this
time.
Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

If interaction with afile server isrequired to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET]

[EHOSTDOWN]

A connection with aremote socket was reset by that socket.

A remote host is not available.

[EHOSTUNREACH] A routeto the remote host is not available.

[ENETDOWN]

[ENETRESET]

The network is not currently available.

A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

Error Messages

The following messages may be sent from this function:

Message I D
CPFAOD4 E
CPFAOB1 E
CPF3CF2 E
CPE3418 E

Error Message Text

File system error occurred. Error number & 1.
Unable to set return value or error code.
Error(s) occurred during running of &1 API.

Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when both of the following conditions occur:
o Where multiple threads exist in the job.

o The object thisfunction is operating on resides in a file system that is not threadsafe. Only
the following file systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= ONTC

= QSYS.LIB

= ZIndependent ASP QSYS.LIB 4
= QOPT

2. Sockets-Specific Notes

o Thefield st mode can be inspected using the S ISSOCK macro (defined in <sys/stat.h>)
to determine if the descriptor is pointing to a socket descriptor.

o For socket descriptors, use the send buffer size (thisisthe value returned for st_blksize) for
the length parameter on your input and output functions. This can improve performance.

Note: IBM reserves the right to change the calculation of the optimal send size.
3. QOPT File System Differences

The vauefor st_atime will always be zero. The value for st_ctime will always be the creation date
and time of the file or directory.

The user, group, and other mode bits are always on for an object that exists on a volume not
formatted in Universal Disk Format (UDF).

fstat on /QOPT will always return 2,147,483,647 for size fields.
fstat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.
4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or thefile is unlinked or made unavail able by the server
for another client, your operation on an open descriptor will fail when the local Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values

may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

5. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See the Netware on iSeries topic for
more information.
6. Thisfunction will fail with the[EOVERFLOW] error if the specified file exists and its size istoo

large to be represented in the structure pointed to by buffer (thefileislarger than 2GB minus 1
byte).

7. When you develop in C-based languages and this function is compiled with _L ARGE_FILES
defined, it will be mapped to fstat64(). Note that the type of the buffer parameter, struct stat *, al'so
will be mapped to type struct stat64 *. See stat64() for more information on this structure.

Related Information

« The<sys/types.h> file (see Header Filesfor UNIX-Type Functions)
o The<sydstat.h> file (see Header Files for UNIX-Type Functions)

« fentl()--Perform File Control Command

« fstat64()--Get File Information by Descriptor (Large File Enabled)

o Istat()--Get File or Link Information

« open()--Open File

« socket()--Create Socket

« dtat()--Get File Information

« Stat64()--Get File Information (Large File Enabled))

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information:

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

mai n() {

<sys/types. h>
<sys/stat. h>

<fcntl. h>
<stdi 0. h>
<tinme. h>

char fn[]="tenp.file";

struct

stat info;

int file_descriptor;

if ((file_descriptor = creat(fn, S IWSR)) < 0)
perror(“"creat() error");

el se {

if (fstat(file_descriptor,

perror("fstat() error");
el se {
pups("fstap() returned:");

pri
pri
pri
pri
pri
pri

ntf("
ntf("
ntf("
ntf("
ntf("
ntf("

i node:
dev id:
node:
i nks:
ui d:

gi d:

&i nf 0)
%\ n", (int)
%\ n", (int)
%®98x\ n",
%\ n",
%\ n", (int)
%\ n", (int)

close(fil e _descriptor);

unlink(fn);

}
}

nf o.
nf o.
nf o.
nf o.
nf o.
nf o.

Output: Note that the output may vary from system to system.

fstat() returned:

i node:
dev id:
node:
i nks:
ui d:

gi d:

3057

1

03000080

1

137
500

st _ino);
st _dev);
st _node);
st_nlink);
st_uid);
st _gid);

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

getdomainname()--Retrieve Domain Name

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt getdomai nnane(char *nane,
int |ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The getdomainname() function is used to retrieve the name of the domain from the system.

Parameters

name
(Output) The name parameter can be one of the following:

o The pointer to a character array where the domain name is to be stored. The domain name
is NULL-terminated unless the length of the domain name exceeds the length of the name
parameter. In that case the domain name is truncated to the size of the name parameter.

o A NULL string when a sethostname() has not been previoudly issued since the last initial
program load.

length
(Input) The length of the name parameter. Maximum length of domain namesis 255.

Return Value

getdomainname() returns an integer. Possible values are:
o -1 (unsuccessful)

« 0O (successful)

Error Conditions

When getdomainname() fails, errno can be set to one of the following:

[EFAULT] Bad address.
The system detected an address which was not valid while attempting to access the
name parameter.

[EINVAL] Parameter not valid.

The length parameter specifies a negative value.

[EIQ] Input/output error.

[EUNKNOWN] Unknown system state.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.

Usage Notes

1. When a process issues a setdomainname(), the name of the domain can be accessed by any process
that issues a getdomai nname().

2. The name of the domain isreset to NULL when an initial program load is performed.

Note: The domain name returned by this function is NOT
related to the domain name of the domain name server that is
configured using the Configure TCP/IP (CFGTCP) menu.

3. Thedomain name is returned in the default coded character set identifier (CCSID) currently in
effect for the job.

Related Information

o setdomainname()--Set Domain Name

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

gethostid()--Retrieve Host ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt gethostid()

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The gethostid() function is used to retrieve ahost's ID.

Return Value

gethostid() returns an integer. Possible values are:
» Owhen asethostid() has not been issued previously since the last initial program load (1PL)

« N (successful), where n isthe number specified on aprevioudly issued sethostid() call

Usage Notes

1. When a process issues a sethostid(), the host_id can be accessed by any process that issues a
gethostid()

2. Thehost_idisreset to zero when aninitial program load is performed.

3. Thehost_idisasigned integer. Therefore, a-1 return value from the gethostid() may not indicate
an error, but rather that a previous sethostid() was issued that specified ahost_id of -1.

4. While many socket implementations refer to the host_id as the | P address of the machine, thisis not
necessarily the case. Many machines that support the TCP/IP protocol suite support multiple local
I P addresses. The value contained in host_id is not used by TCP in any manner.

Related Information

o Sethostid()--Set Host ID Address

o gethostname()--Retrieve Host Name

o sethostname()--Set Host Name

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

gethostname()--Retrieve Host Name

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt gethostname(char *nane,
int |ength)

Service Program Name: QSOSRV 1
Default Public Authority: * USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

i nt gethostnane(char *nane,
sockl en_t | ength)

Service Program Name: QSOSRV 1
Default Public Authority: * USE

Threadsafe: Yes

&

The gethostname() function is used to retrieve the name of the host from the system.

There are two versions of the API, as shown above. The base 05400 APl uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

name

(Output) The pointer to a character array where the host name is to be stored. The host nameis
NULL-terminated unless the length of the host name exceeds the length of the name parameter, in
which case the host name is truncated to the size of the name parameter.

length
(Input) The length of the name parameter.

Authorities

No authorization is required.

Return Value

gethostname() returns an integer. Possible values are:
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When gethostname() fails, errno can be set to one of the following:

[EFAULT] Bad address.
The system detected an address which was not valid while attempting to access the
name parameter.

[EINVAL] Parameter not valid.

The length parameter specifies a negative value.
[EIQ] Input/output error.
[EUNKNOWN] Unknown system state.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.

Usage Notes

1. Maximum length of host names is defined by { MAXHOSTNAMELEN} (defined in
<sys/param.h>).

2. When a process issues a sethostname(), the host name can be accessed by any process that issues a
gethostname().

3. Onaninitial program load, the host name is set to whatever was configured using ##the i Series
Navigator or 4% option 12 (Change TCP/IP domain information) on the Configure TCP/IP
(CFGTCP) menu. The local domain name is appended with the local host name and stored in
system-wide storage. This combined name is the host name that can be retrieved by gethostname().
If the local host name and local domain name are not set, the host nameis set to NULL.

4. The host nameisreturned in the default coded character set identifier (CCSID) currently in effect
for the job.

5. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the gethostname() API is mapped to
0so_gethostname98() .4

Related Information

o # XOPEN_SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interfaced

o sethostname()--Set Host Name

o gethostid()--Retrieve Host ID Address

o Sethostid()--Set Host ID Address

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

getpeername()--Retrieve Destination Address of
Socket

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt getpeernane(int socket descriptor,

struct sockaddr *desti nation_address,
i nt *address_I| ength)

Service Program Name: QSOSRV 1
Default Public Authority: * USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

i nt getpeernane(int socket_descriptor,

struct sockaddr *destination_address,
sockl en_t *address_| engt h)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&
The getpeername() function is used to retrieve the destination address to which the socket is connected.

% There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and syntax. The
other uses syntax and structures compatible with the UNIX 98 programming interface specifications. Y ou can select the
UNIX 98 compatible interface with the _XOPEN_SOURCE macro. %

Parameters

socket_descriptor
(Input) The descriptor of the socket for which the destination addressis to be retrieved.

destination_address

(Output) A pointer to a buffer of type struct sockaddr in which the destination address to which the socket
connectsis stored. The structure sockaddr is defined in <sys/socket.h>.

The BSD 4.3 structureiis;

struct sockaddr {
u_short sa_fanily;
char sa_dat a[14] ;
b

The BSD 4.4/UNIX 98 compatible structureis:

t ypedef uchar sa_famly_ t;

struct sockaddr {

uint8_t sa | en;
sa famly t sa fanily;
char sa_dat a[14] ;

H

The BSD 4.4 sa_len field isthe length of the address. 4% The sa_family field identifies the address family to
which the address belongs, and sa_data is the address whose format is dependent on the address family.

#* Note: See the usage notes about using different address families with sockaddr_storage.

L
address length

(I/0O) This parameter is avalue-result field. The caller passes a pointer to the length of the destination_address
parameter. On return from the call, the address length parameter contains the actual length of the destination
address.

Authorities

No authorization is required.

Return Value

getpeername() returns an integer. Possible values are:
« -1 (unsuccessful)

o 0 (successful)

Error Conditions

When getpeername() fails, errno can be set to one of the following:

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the
destination_address or address _length parameters.

[EINVAL] Parameter not valid.

The address_length parameter specifies a negative value.

[EIO]

[ENOBUFS

[ENOTCONN]

[ENOTSOCK]

[EUNKNOWN]

[EUNATCH]

Input/output error.

There is not enough buffer space for the requested operation.
Requested operation requires a connection.

The specified descriptor does not reference a socket.
Unknown system state.

The protocol required to support the specified address family is not available at thistime.

Error Messages

Message | D
CPE3418E
CPF9872 E
CPFAOBLE

Error Message Text
Possible APAR condition or hardware failure.
Program or service program &1 in library & 2 ended. Reason code & 3.

Unable to set return value or error code.

Usage Notes

1. getpeername() failsif issued against a socket for which a connect() has not been done.

2. For connection oriented sockets, getpeername() failsif both the write side and the read side have been closed
through the use of one or more previous shutdown() functions.

3. If thelength of the address to be returned exceeds the length of the destination_address parameter, the returned
addressis truncated.

4. ¥The structure sockaddr is a generic structure used for any address family but it is only 16 bytes long. The
actual address returned for some address families may be much larger. Y ou should declare storage for the address
with the structure sockaddr_storage. This structureis large enough and aligned for any protocol-specific
structure. 1t may then be cast as sockaddr structure for use on the APIs. The ss_family field of the
sockaddr_storage will always align with the family field of any protocol-specific structure.

The BSD 4.3 structure is:

#def i ne _SS MAXSI ZE 304

#define _SS ALI GNSI ZE (si zeof (char*))

#define _SS PAD1SI ZE (_SS_ALI GNSI ZE - sizeof(sa_famly_t))
#def i ne _SS PAD2SI ZE (_SS MAXSI ZE - (sizeof (sa_famly_t)+

_SS PADISI ZE + _SS ALI GNSI ZE))

struct sockaddr_storage {
sa_famly_t ss_famly;
char _ss_padl[_SS PAD1SI ZE];

char* _ss_align;
char _ss_pad2[_SS _PAD2SI ZE] ;
b

The BSD 4.4/UNIX 98 compatible structureis:

#define _SS MAXSI ZE 304
#define _SS ALI GNSI ZE (si zeof (char*))
#define _SS PAD1SI ZE (_SS ALIGNSI ZE - (sizeof (uint8_t) +
sizeof (sa_fanmly t)))
#define _SS PAD2SI ZE (_SS MAXSI ZE - (sizeof (uint8 t) + sizeof(sa famly t)+
_SS PAD1SI ZE + _SS ALI G\SI ZE))

struct sockaddr_storage {

uint8 t ss_len;
sa_famly_t ss_famly;
char _ss_padl[_SS PAD1SI ZE];
char* _ss_align;
char _ss_pad2[_SS PAD2SI ZE] ;
b
L

5. When used with an address family of AF_UNIX or AF_UNIX_CCSID, getpeername() always returns the same
path name that was specified on the bind() in the peer program. If the path name specified by the peer program
was not afully qualified path name, the output of getpeername() is meaningful only if your program knows what
current directory was in effect for the peer program when it issued the bind(). For AF_UNIX, the path nameis
returned in the default coded character set identifier (CCSID) currently in effect for the job. For
AF_UNIX_CCSID, the output structure sockaddr_unc defines the format and CCSID of the returned path name.

6. For sockets with an address family of AF_TELEPHONY, the following is applicable:
o For the active (connecting) end of a connection, getpeername() will return the number dialed.

o For the passive (accepting) end of a connection, getpeername() will return the number of the caller, if
available. Otherwise, it will return TELADDR_ANY.

7. #*When you develop in C-based languages and an application is compiled with the X OPEN_SOURCE macro
defined to the value 520 or greater, the getpeername() API is mapped to gso_getpeername9d8(). <&

Related Information

o & XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface

« accept()--Wait for Connection Request and Make Connection

o hind()--Set Local Address for Socket

« connect()--Establish Connection or Destination Address

o getsockname()--Retrieve Local Address of Socket

API Introduced: V3R1

Top | UNIX-Type APIs| APIs by category

getsockname()--Retrieve Local Address of Socket

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt getsocknane(int socket descriptor,

struct sockaddr *|ocal address,
i nt *address_I| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

i nt getsocknane(int socket descriptor,

struct sockaddr *|ocal _address,
sockl en_t *address_| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe; Yes

&
The getsockname() function is used to retrieve the local address associated with the socket.

% There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and syntax. The
other uses syntax and structures compatible with the UNIX 98 programming interface specifications. Y ou can select the
UNIX 98 compatible interface with the . XOPEN SOURCE macro. 4

Parameters

socket_descriptor
(Input) The descriptor of the socket for which the local addressis to be retrieved.

local_address

(Output) A pointer to abuffer of type struct sockaddr in which the local address of the socket is stored. The
structure sockaddr is defined in <sys/socket.h>.

The BSD 4.3 structureiis;

struct sockaddr {
u_short sa_fanily;
char sa_dat a[14] ;
b

The BSD 4.4/UNIX 98 compatible structureis:

typedef uchar sa_famly_t;

struct sockaddr {

uint8 t sa_l en;
sa famly t sa fanily;
char sa_dat a[14];

b

The BSD 4.4 sa_len field isthe length of the address. & The sa_family field identifies the address family to
which the address belongs, and sa_data is the address whose format is dependent on the address family.

Note: See the usage notes about using different address families with sockaddr_stor age. %
address |ength

(1/0) This parameter is avalue-result field. The caller passes a pointer to the length of the local_address
parameter. On return from the call, the address_length parameter contains the actual length of the local address.
Authorities

No authorization is required.

Return Value

getsockname() returns an integer. Possible values are:
« -1 (unsuccessful)

« 0 (successful)

Error Conditions

When getsockname() fails, errno can be set to one of the following:

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the local_address or
address_length parameters.

[EINVAL]

[EIO]

[ENOBUFS

[ENOTSOCK]

[EUNKNOWN]

[EUNATCH]

Parameter not valid. This error code indicates one of the following:
o Theaddress length parameter specifies a negative value.

« The socket specified by the socket_descriptor parameter is using a connection-oriented
transport service and either the write-side has been shut down (with a shutdown()) or the
connection has been reset.

Input/output error.

There is not enough buffer space for the requested operation.
The specified descriptor does not reference a socket.
Unknown system state.

The protocol required to support the specified address family is not available at thistime.

Error Messages

Message ID
CPE3418 E
CPFO872 E
CPFAO81 E

Error Message Text
Possible APAR condition or hardware failure.
Program or service program &1 in library & 2 ended. Reason code & 3.

Unable to set return value or error code.

Usage Notes

1. If thelength of the address to be returned exceeds the length of the local_address parameter, the returned address

will be truncated.

2. #The structure sockaddr is ageneric structure used for any address family but it is only 16 byteslong. The

actual address returned for some address families may be much larger. Y ou should declare storage for the address

with the structure sockaddr_storage. This structureis large enough and aligned for any protocol-specific
structure. It may then be cast as sockaddr structure for use on the APIs. The ss_family field of the
sockaddr_storage will always align with the family field of any protocol-specific structure.

The BSD 4.3 structureis:

#def i ne _SS_MAXSI ZE 304

#define _SS ALI GNSI ZE (sizeof (char*))

#define _SS PAD1SI ZE (_SS ALI GNSI ZE - sizeof (sa_famly_t))
#define _SS PAD2SI ZE (_SS_MAXSI ZE - (sizeof(sa_famly_t)+

SS_PADLSI ZE + _SS_ALI GNSI ZE))

struct sockaddr storage {
sa_famly_t ss_famly;

char _ss_padl[_SS PAD1SI ZE];

char* _ss_align;

char _ss_pad2[_SS PAD2SI ZE] ;
s

The BSD 4.4/UNIX 98 compatible structureis:

#defi ne _SS MAXSI ZE 304
#define _SS ALI GNSI ZE (si zeof (char*))
#define _SS PAD1SI ZE (_SS_ALI GNSI ZE - (sizeof (uint8_t) +
sizeof (sa_famly_t)))
#define _SS PAD2SI ZE (_SS_MAXSI ZE - (sizeof (uint8_t) + sizeof(sa_fanmly_t)+
_SS PAD1SI ZE + _SS _ALI GNSI ZE))

struct sockaddr storage {

uint 8 _t ss_|en;
sa famly t ss_famly;
char _ss_padl[_SS PAD1SI ZE];
char* _ss_align;
char _ss_pad2[_SS PAD2SI ZE] ;
3
L4

3. When used with an address family of AF_UNIX or AF_UNIX_CCSID, getsockname() always returns the same
path name that was specified on a bind(). If the path name that was specified is not afully qualified path name,
the output of getsockname() is meaningful only if your program knows what current directory was in effect at the
time of the bind(). For AF_UNIX, the path name is returned in the default coded character set identifier (CCSID)
currently in effect for the job. For AF_UNIX_CCSID, the output structure sockaddr_unc defines the format and
CCSID of the returned path name.

4. getsockname() produces different results, depending on the address family or type of the socket:
o For addressfamily of AF_INET:

= |f thetypeis SOCK_STREAM or SOCK_DGRAM, getsockname() will return O if issued before
the bind(). The socket address that is returned has the IP address and port number fields set to
Z€eros.

= If thetypeis SOCK_RAW, getsockname() returnsa-1 if issued before abind().
= |f thetypeis SOCK_STREAM, and an Rbind() has successfully completed, then the address
returned is the SOCKS server address. See Rbind() for more information.
o #For address family of AF_INET6:

= |f thetypeis SOCK_STREAM or SOCK_DGRAM, getsockname() will return O if issued before
the bind(). The socket address that is returned has the 1P address and port number fields set to
Zeros.

» If thetypeis SOCK_RAW, getsockname() returns a -1 if issued before a bind(). 4

o For address family of AF_UNIX or AF_UNIX_CCSID, getsockname() returns O if issued before a bind().
The addresslength is 0. Thisis always the case for sockets created by socketpair ().

5. For address family of AF_TELEPHONY :
o If issued before the bind(), getsockname() will return O.
o If issued after a successful bind(), getsockname() will return the bound address.

o If issued after a connection has been established, the address returned depends on which end of the
connection is being queried. For the active (connecting) end, getsockname() will return the bound
address. For the passive (accepting) end, getsockname() will return the called address, if available.
Otherwise, it will return the bound address.

6. #*When you develop in C-based languages and an application is compiled with the _X OPEN_SOURCE macro
defined to the value 520 or greater, the getsockname() API is mapped to qso_getsockname98() 4%

Related Information

« # XOPEN_SOURCE--Using _XOPEN_SOURCE for the UNIX 98 compatible interface

o hind()--Set Local Address for Socket

« connect()--Establish Connection or Destination Address

API Introduced: V3R1

Top | UNIX-Type APIs | APIs by category

getsockopt()--Retrieve Information about
Socket Options

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt getsockopt(int socket descriptor,
int |evel,
i nt option_nane,
char *option_val ue,
int *option_|length)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

i nt getsockopt (int socket_descriptor,
int |evel,
int option_nane,
voi d *option_val ue,
sockl en_t *option_| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&«

The getsockopt() function is used to retrieve information about socket options.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters

socket_descriptor
(Input) The descriptor of the socket for which information isto be retrieved.

level
(Input) Vaue indicating whether the request applies to the socket itself or to the underlying
protocol being used. Supported values are:
IPPROTO_IP Request appliesto IP protocol layer.
IPPROTO_TCP Request applies to TCP protocol layer.
SOL_SOCKET Request appliesto socket layer.
#PPROTO IPV6 Request appliesto IPv6 protocol layer.
IPPROTO_ICMPV6 Request appliesto ICMPV6 protocol layer. €
option_name

(Input) The option name for which information is to be retrieved. The following tables list the
options supported, and for which level the option applies. Assume that the option is supported for
all address families unless the option is described otherwise.

Note: Options directed to a specific protocol level are only supported by that protocol. An option
that isdirected to level SOL_SOCKET usually completes successfully. If the underlying protocol
does not provide support for the option, the socket library retrieves one of the following:

o The default value for the option.
o Thevalue previously set with a setsockopt().

This provides compatibility with Berkeley Softwar e Distributions implementations that aso
shield the application from protocols that do not support an option.

Socket Options That Apply totheIP Layer (IPPROTO_IP)

Option Description

IP_OPTIONS Determine what options are set in the |P header. Thisisonly
supported for sockets with an address family of AF_INET.

IP_TOS Get Type Of Service (TOS) and Precedence in the |P header. This
option is only supported for sockets with an address family of
AF_INET.

IP_TTL Get TimeTo Live (TTL) in the IP header. Thisoption is only

supported for sockets with an address family of AF_INET.

IP_ MULTICAST IF Get interface over which outgoing multicast datagrams will be sent.
An option_value parameter of typein_addr is used to retrieve the
local 1P address that is associated with the interface over which
outgoing multicast datagrams will be sent. This option is only
supported for sockets with an address family of AF_INET and type
of SOCK_DGRAM or SOCK_RAW.

IP MULTICAST TTL Get Time To Live (TTL) from the IP header for outgoing multicast
datagrams. An option_value parameter of type char is used into
which avalue between 0 and 255 isretrieved. This option is only
supported for sockets with an address family of AF_INET and type
of SOCK_DGRAM or SOCK_RAW.

IP_ DONTFRAG Return the current Don't fragment flag setting in the IP header. A

value of O indicatesthat it isreset. A value of 1 indicatesthat it is
set. This option is supported for sockets with an address family of
AF_INET and type of SOCK_DGRAM or SOCK_RAW only.

IP_MULTICAST _LOOP | Determine the multicast looping mode. A non-zero value indicates
that multicast datagrams sent by this system should also be
delivered to this system as long as it isamember of the multicast
group. If thisoption is not set, a copy of the datagram will not be
delivered to the sending host. An option_value parameter of type
char is used to retrieve the current setting. This option isonly
supported for sockets with an address family of AF_INET and type
of SOCK_DGRAM or SOCK_RAW.

IP_ RECVLCLIFADDR | Determineif the local interface that a datagram was received will
be returned. A value of 1 indicatesthefirst 4 bytes of the reserved
field of the sockaddr structure will contain the local interface. This
option is only supported for sockets with an address family of
AF_INET and type of SOCK_DGRAM.

Socket Options That Apply tothe TCP Layer (IPPROTO_TCP)

Option Description

TCP_NODELAY | Determineif TCPis buffering data. This option is only supported for
sockets with an address family of AF_INET#* or AF_INET6%and type
SOCK_STREAM.

TCP_MAXSEG Determine TCP maximum segment size. This option is only supported for
sockets with an address family of AF_INET2* or AF_INET64 and type
SOCK_STREAM.

Socket Options That Apply to the Socket Layer (SOL_SOCKET)

Option Description

SO _ACCEPTCONN

Reports whether socket listening is enabled. This option stores an int
value. Thisis aboolean option. <

SO_BROADCAST

Determine if messages can be sent to the broadcast address. This
option is only supported for sockets with an address family of
AF_INET and type SOCK_DGRAM or SOCK_RAW. The broadcast
address can be determined by issuing an ioctl() specifying the
SIOCGIFBRDADDR request.

SO DEBUG

Determineif low level-debugging is active.

SO_DONTROUTE

Determineif the normal routing mechanism is being bypassed. This
option is only supported by sockets with an address family of
AF_INET 2 or AF_INET64.

SO_ERROR

Return any pending errorsin the socket. The value returned
corresponds to the standard error codes defined in <errno.h>

SO_KEEPALIVE

Determineif the connection is being kept up by periodic
transmissions. This option is only supported for sockets with an
address family of AF_INET £ or AF_INET6 4 and type
SOCK_STREAM.

SO_LINGER

Determine whether the system attempts to deliver any buffered data
or if the system discards it when aclose() is issued.

For sockets that are using a connection-oriented transport service with
an address family of AF_INET 2+ or AF_INET6 4, the default is of f
(which means that the system attempts to send any queued data, with
an infinite wait-time).

For sockets that are using a connection-oriented transport service with
an address family of AF_TELEPHONY, the default ison with a
linger time of 1 second (which means that the system will wait up to
1 second to send buffered data before clearing the telephone
connection).

SO_OOBINLINE

Determine if out-of-band datais received inline with normal data.
This option is only supported for sockets with an address family of
AF_INET # or AF_INET6%.

SO_RCVBUF

Determine the size of the receive buffer.

SO_RCVLOWAT

Determine the size of the receive low-water mark. This option is only
supported for sockets with atype of SOCK_STREAM.

#SO_RCVTIMEO

Determine the receive timeout value. This option is not supported
unless_ XOPEN_SOURCE is defined to be 520 or greater. 44

SO_REUSEADDR

Determineif the local socket address can be reused. Thisoptionis
supported by sockets with an address family of AF_INET* or
AF_INET6% and atype of SOCK_STREAM or SOCK_DGRAM.

SO_SNDBUF

Determine the size of the send buffer.

SO _SNDLOWAT Determine the size of the send low-water mark. This option is not
supported.

#S0 SNDTIMEO Determine the send timeout value. This option is not supported unless
_XOPEN_SOURCE is defined to be 520 or greater. 4

SO _TYPE Determine the value for the socket type.

SO_USELOOPBACK | Determineif the loopback feature is being used. This option is not
supported.

#r Socket Options That Apply tothe IPv6 Layer (IPPROTO_IPV6)

Option Description

IPV6_UNICAST_HOPS Get the hop limit value that will be used for subsequent unicast
packets sent by this socket. An option_value parameter of type
int is used to retrieve the current setting. This option is only
supported for sockets with an address family of AF_INET6.

IPV6_MULTICAST_IF Get the interface over which outgoing multicast datagrams will
be sent. An option_value parameter of type unsigned int is used
to retrieve the interface index that is associated with the
interface over which outgoing multicast datagrams will be sent.
This option currently is not supported.

IPV6_MULTICAST_HOPS | Get the hop limit value that will be used for subsequent
multicast packets sent by this socket. An option_value
parameter of typeint is used to retrieve the current setting. This
option currently is not supported.

IPV6_MULTICAST_LOOP | Determine the multicast looping mode. A value of 1 (default),
indicates that multicast datagrams sent by this system should
also be delivered to this system aslong asit is a member of the
multicast group. If thisoption is 0, a copy of the datagram will
not be delivered to the sending host. An option_value parameter
of type unsigned int is used to retrieve the current setting. This
option is currently not supported.

IPV6_VG60ONLY Determine the AF_INET6 communication restrictions. A
non-zero value indicates that this AF_INET6 socket is restricted
to IPv6 communications only. This option stores an int value.
Thisis aboolean option. By default this option is turned off.
This option is only supported for sockets with an address family
of AF_INETS.

IPV6_CHECKSUM

Determine if the kernel will calculate and insert a checksum for
output and verify the received checksum on input, discarding
the packet if the checksum isin error for this socket. An
option_value parameter of typeint is used to retrieve the current
setting. If this option is-1 (the default), this socket optionis
disabled. A value of 0 or greater specifies an integer offset into
the user data of where the checksum islocated. This optionis
only supported for sockets with an address family of AF_INET6
and type of SOCK_RAW with a protocol other than
IPPROTO_ICMPV6. The checksum is automatically computed
for protocol IPPROTO_ICMPV6.

Socket Options That Apply tothe | CMPv6 Layer (IPPROTO_ICMPV6)

Option

Description

ICMP6_FILTER

Determine the current ICMPv6 Type Filtering. An option_value parameter
of type struct icmp6 _filter, defined in <netinet/icmp6.h> is used to
retrieve the current setting. The following macros, defined in
<netinet/icmp6.h> can be used after retrieval of the type filtering structure
to determine whether or not specific ICMPv6 message types will be passed
to the application or be blocked: ICMP6_FILTER WILLPASS and
ICMP6_FILTER_WILLBLOCK. Thisoption isonly supported for sockets
with an address family of AF_INET6 and type of SOCK_RAW with a
protocol of IPPROTO_ICMPV6.

&

option_value

(Output) A pointer to the option value. Integer flags/values are returned by getsockopt() for al the
socket options except for SO_LINGER , IP_OPTIONS, IP_MULTICAST _IF,
IP_MULTICAST _TTL, IP_ MULTICAST_LOOP, and # ICMP6_FILTER.

The following options should be considered as set if anonzero value for the option_value

parameter is returned:

O

O

O

O

[}

#*SO_ACCEPTCONN#%
SO_BROADCAST

SO _DEBUG

SO DONTROUTE
SO _KEEPALIVE

SO _OOBINLINE

SO _REUSEADDR
SO_USELOOPBACK
TCP_NODELAY

IP MULTICAST_LOOP
IP_ DONTFRAG
#1PV6_VBONLY

0 IPV6_MULTICAST _IF
5 IPV6_MULTICAST LOOP

For the SO_LINGER option, option_value is a pointer to where the structure linger is stored. The
structure linger is defined in <sys/socket.h>.

struct linger {
i nt | _onoff;
i nt | _linger;

}

Thel_onoff field determinesiif the linger option is set. A nonzero value indicates the linger option
isset and isusing thel_linger value. A zero value indicates that the option is not set. Thel_linger
field isthe time to wait before any buffered data to be sent is discarded. The following occur on a

close():
o For AF_INET2* and AF_INET6% sockets:

= If thel_onoff value is zero, the system attempts to send any buffered data with an
infinite wait-time.

= If thel onoff value is nonzero and the |_linger value is nonzero, the system
attempts to send any buffered datafor |_linger time. If |_linger time has elapsed
and the dataiis still not successfully sent, it is discarded. When datais discarded,
the remote program may receive a[ECONNRESET].

o For AF_INET sockets over SNA:

= If thel_onoff value is nonzero and the |_linger valueis zero, the system waits
indefinitely (no timer isimplemented). Otherwise, if the |_onoff value is nonzero
and the |_linger value is zero, the system discards any buffered data. When dataiis
discarded, the remote program may receive a[ECONNRESET].

o For AF_TELEPHONY sockets:

= If thel onoff valueis zero, the system will wait until all buffered datais sent or 1
second has elapsed, whichever occurs first, before clearing the telephone
connection (that is, hanging up).

= |f thel_onoff value is honzero, the system will wait until all buffered datais sent or
|_linger seconds have elapsed, whichever occurs first, before clearing the
telephone connection (that is, hanging up).

Note: An application must implement an application level confirmation. Guaranteed receipt of data
by the partner program is required. Setting SO_LINGER does not guarantee delivery.

For the SO_RCVTIME and SO_SNDTIME options, option_value is a pointer to where the
structure timeval is stored. The structure timeval is defined in <sys/time.h>.

struct tineval {

long tv_sec;
Il ong tv_usec;

}

&«

For the IP_OPTIONS option, option_value is a pointer to storage in which data representing the IP
options (as specified in RFC 791) is stored. getsockopt() returns the options in the following
format:

’ P address ’ I P options ’ ’ I P options

IP addressis a4-byte | P address, and I P options identifies the | P options that were set using
setsockopt(). If an IP option set using setsockopt() contained a source routing option (strict or
loose), thefirst IP address in the source routing option list is removed. The | P options are adjusted
accordingly. (For this adjustment, the length in the | P options portion is changed, and alignment is
kept by adding no-operation option). The buffer is returned in the same format. Thefirst 4 bytes are
the IP address that was removed, and thisis followed by the remaining IP options, if any. If the IP
options portion does not contain a source routing option, the first 4 bytes are set to zero.

For the IP_MULTICAST _IF option, option_value is a pointer to storage in which the structure
in_addr, defined in <netinet/in.h> as the following, will be stored:

struct in_addr {
ulong s_addr; /* IP address */

}

The s addr field that is returned will be the local 1P address that is associated with the interface
over which outgoing multicast datagrams are being sent.

Notes:

1. For sockets that use a connection-oriented transport service, | P options that are set using
setsockopt() are only used if they are set prior to a connect() being issued. After the
connection is established, any I P options that the user sets areignored.

2. If the IP options portion contains a source routing option, then the address in the source
routing option overrides the destination address. The destination address may have been
specified on an output operation (for example, on a sendto()) or on a connect().

3. If asocket has atype of SOCK_RAW and aprotocol of IPPROTO_RAW, any IP options
set using setsockopt() areignored (since the user must supply the IP header data on an
output operation as part of the data that is being transmitted).

4. The structure ip_opts (defined in <netinet/in.h>) can be used to receive | P options.

option_length

(1/0O) The length of the option_value. The option_length parameter must be initially set by the
caller. option_length is changed on return to indicate the actual amount of storage used.

Note: For option valuesthat are of type integer, the length of the option_value pointed to by the
option_length parameter must be set to avalue that is greater or equal to the size of an integer. If
the length is not set correctly, a correct option value is not received.

Authorities

No authorization is required.

Return Value

getsockopt() returns an integer. Possible values are:

o -1 (unsuccessful)

o 0 (successful)

Error Condition

When getsockopt() fails,

[EBADF]

[ECONNABORTED]

[EFAULT]

[EINVAL]

S

errno can be set to one of the following:

Descriptor not valid.

Connection ended abnormally.
This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

« Theretransmission limit has been reached for data that was being sent on
the socket.

« A protocol error was detected.

Bad address.

The system detected an address which was not valid while attempting to access
the option_value or option_length parameters.

Parameter not valid.

This error code indicates one of the following:

o Thelevel parameter specifiesaleve that is not supported. (except for
when the socket has an address family of AF_UNIX, in which case
[ENOPROTOORPT] isreturned).

« The option_name parameter specifies avalue that is not valid (except for
when the level is SOL_SOCKET , in which case [ENOPROTOOPT] is
returned).

« Theoption_length parameter points to an integer that has a negative
value.

[EIO]

[ENOBUFS

[ENOPROTOOPT]

[ENOTCONN]

[ENOTSOCK]

[EPERM]

[EUNKNOWN]

[EUNATCH]

Input/output error.

Thereis not enough buffer space for the requested operation.

The protocol does not support the specified option.

This error code indicates one of the following:

« The socket has an address family of AF_UNIX and the level parameter
specified isnot SOL_SOCKET .

o Thelevel parameter specifiesalevel of SOL_SOCKET and the
option_name parameter specifies avalue that is not valid.

Requested operation requires a connection.

Thiserror codeis only returned if the level parameter specifies alevel other than
SOL_SOCKET and the socket_descriptor parameter pointsto a socket that is
using a connection-oriented transport service that has had its connection broken.

The specified descriptor does not reference a socket.

Operation not permitted.

The executing user profile must have *1OSY SCFG specia authority to get
options when the level parameter specifies IPPROTO_IP and the option_value
parameter isIP_OPTIONS.

Unknown system state.

The protocol required to support the specified address family is not available at
thistime.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAO81 E Unable to set return value or error code.

Usage Notes

1. Socket options are defined in <sys/socket.h>, IP options are defined in <netinet/ip.h> and
<netinet/in.h>, TCP options are defined in <netinet/tcp.h>, I Pv6 and ICMPv6 options are
defined in <netinet/in.h> &

2. The user profile for arunning application must have the *|OSY SCFG specia authority to specify
the level parameter as IPPROTO_|IP and the option_value parameter as [P_OPTIONS.

3. When a TCP connection is closed for a socket using the AF_INET #* or AF_INET6 € address
families, the port associated with that connection is not made available until twice the Maximum
Segment Life (MSL) time in seconds has passed. The MSL timeis approximately 2 minutes. The
SO_REUSEADDR option alows abind() to succeed when requesting a port that is being held
during this time frame. This can be especially useful if a server is abruptly ended and restarted.

Notes:

1. For AF_INET # and AF_INET6, ¥4SOCK_STREAM sockets, this option does not allow
two servers to successfully issue a bind() requesting the same port number and local
address combination. For AF_INET 2 and AF_INET6, ¥SOCK_DGRAM sockets, the
SO_REUSEADDR option does allow multiple serversto successfully bind to the same
port. When broadcast or multicast datagrams are received for a given port, each server that
is bound to that port receives a copy of the datagram provided each server has enabled the
SO_REUSEADDR option.

2. This option does not affect unicast datagram delivery.

4. |ssuing a getsockopt() with the SO_ERROR option results in the resetting of the SO_ERROR
option to zero. Issuing another getsockopt() with the SO_ERROR option also returns a value of
zero, assuming no errors occur on the socket. Other functions, when issued, also reset the
SO_ERROR option to zero. These functions are:

o read(), readv(), recv(), recvmsg(), recviromy()
o connect() (only when using a connectionless transport service)
5. #When you develop in C-based languages and an application is compiled with the

_XOPEN_SOURCE macro defined to the value 520 or greater, the getsockopt() APl is mapped to
0so_getsockopt98(). &

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o setsockopt()--Set Socket Options

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

givedescriptor()--Pass Descriptor Access to
Another Job

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt givedescriptor(int descriptor,
char *target_j ob)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The givedescriptor () function is used to pass a descriptor from one OS/400 job to another OS/400 job.

Parameters

descriptor
(Input) The descriptor that is to be passed to the target job.

target_job

(Input) A pointer to the internal job identifier of the target job that is to receive the descriptor
referenced by the descriptor parameter.

Authorities

To give adescriptor, the source thread must be running under one of the following user profiles:
« A user profile that isthe same as the job user identity of the target job

o A user profilethat has all object (* ALLOBJ) special authority

Thejob user identity isthe name of the user profile by which ajob is known to other jobs. It is described

in more detail in the Work M anaqement@ book on the V5R1 Supplemental Manuals Web site.

Return Value

givedescriptor() returns an integer. Possible values are:
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When givedescriptor() fails, errno can be set to one of the following:
[EACCEY Permission denied.
The job does not have the appropriate privileges required to give the descriptor.

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the
target_job parameter.

[EINVAL] Parameter not valid.
This error code indicates one of the following:
« Thetarget job parameter pointsto datathat is not valid.
« Thetarget_job parameter refersto ajob that is not active.

[EIQ] Input/output error.

[EOPNOTSUPP] Operation not supported.

The underlying instance represented by the descriptor does not support passing
access rights.

[EUNKNOWN] Unknown system state.

Error Messages

Message | D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAO81 E Unable to set return value or error code.

Usage Notes

1. Theinformation to specify in the target_job parameter can be obtained in the actual target job by
using awork management API (for example, QUSRJOBI) to retrieve the internal job identifier.

It isthe responsibility of the application programmer to privately pass thisinformation from the
target job to the job that issues the givedescriptor (). One possible method that could be used to
exchange thisinformation is to use data queues.

2. Thetarget_job does not have to be waiting on atakedescriptor() for the givedescriptor() to
complete successfully.

3. If both the job in which the givedescriptor () isissued and the target_job end while a descriptor isin
transit, the descriptor is reclaimed by the system, and the resource that it representsis closed.

4. For files and directories, givedescriptor() is only supported for objectsin the root and QOpenSys

file systems.

Related Information

« takedescriptor()--Receive Socket Access from Another Job

sendmsg()--Send Data or Descriptors or Both

recvmsg()--Receive Data or Descriptors or Both

spawn()--Spawn Process

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

ioctl()--Perform 1/O Control Request

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ioctl.h>

int ioctl(int descriptor,
unsi gned | ong request,
)
Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

Theioctl() function performs control functions (requests) on a descriptor.

Parameters

descriptor

(Input) The descriptor on which the control request is to be performed.

request

(Input) The reguest that is to be performed on the descriptor.

(Input) A variable number of optional parameters that are dependent on the request.

Theioctl() requests that are supported are:

FIOASYNC

FIOCCSD

Set or clear the flag that allows the receipt of asynchronous 1/0 signals (SIGIO).

The third parameter represents a pointer to an integer flag. A nonzero value sets the socket to generate
SIGIO signals, while a zero value sets the socket to not generate SIGIO signals. Note that before the
SIGIO signals can be delivered, you must use either the FIOSETOWN or SIOCSPGRP ioctl() request, or
the F_SETOWN fcntl() command to set a process ID or a process group ID to indicate what process or
group of processes will receive the signal. Once conditioned to send SIGIO signals, a socket will generate
SIGIO signals whenever certain significant conditions change on the socket. For example, SIGIO will be
generated when normal data arrives on the socket, when out-of-band data arrives on the socket (in
addition to the SIGURG signal), when an error occurs on the socket, or when end-of-fileis received on
the socket. It is also generated when a connection request is received on the socket (if it is asocket on
which the listen() verb has been done). Also note that a socket can be set to generate the SIGIO signal by
using the fentl() command F_SETFL with aflag value specifying FASYNC.

Return the coded character set ID (CCSID) associated with the open instance represented by the
descriptor and the CCSID associated with the object. The third parameter represents a pointer to the
structure QpOIFIOCCSID, which is defined in <sys/ioctl.h>. Thisinformation may be necessary to
correctly manipulate data read from or written to a file opened in another process.

If the open instance represented by the descriptor isin binary mode (the open() did not specify the
O_TEXTDATA open flag), the open instance CCSID returned is equal to the object CCSID returned.

FIOGETOWN

FIONBIO

FIONREAD

FIOSETOWN

SOCADDRT

Get the process ID or process group ID that isto receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that will contain the process ID or the process
group ID to which the socket is currently sending asynchronous signals such as SIGURG. A process D is
returned as a positive integer, and a process group 1D is specified as a negative integer. A 0 value returned
indicates that no asynchronous signal's can be generated by the socket. A positive or a negative value
indicates that the socket has been set to generate SIGURG signals.

Set or clear the nonblocking 1/0 flag (O_NONBLOCK oflag). The third parameter represents a pointer to
an integer flag. A nonzero value sets the nonblocking /O flag for the descriptor; a zero value clears the
flag.

Return the number of bytes available to be read. The third parameter represents a pointer to an integer that
is set to the number of bytes available to be read.

Set the process ID or process group ID that isto receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that contains the process ID or the process
group ID to which the socket should send asynchronous signals such as SIGURG. A process D is
specified as a positive integer, and a process group ID is specified as a negative integer. Specifying a0
value resets the socket such that no asynchronous signals are delivered. Specifying aprocess D or a
process group |D requests that sockets begin sending the SIGURG signal to the specified ID when
out-of-band data arrives on the socket.

Add an entry to the interface routing table. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure rtentry, which is defined in <net/route.h>:

struct rtentry [
struct sockaddr rt_dst;
struct sockaddr rt_mask;
struct sockaddr rt_gateway;
int rt_ntu;
u_short rt_fIl ags;
u_short rt_refcnt;
u_char rt_protocol;
u_char rt_TGCS;
char rt_if[1FNAMSI Z] ;

I

The rt_dst, rt_mask, and rt_gateway fields are the route destination address, route address mask, and
gateway address, respectively. rt_mtu is the maximum transfer unit associated with the route. rt_flags
contains flags that give some information about aroute (for example, whether the route was created
dynamically, whether the route is usable, type of route, and so on). rt_refcnt indicates the number of
references that exist to the route entry. rt_protocol indicates how the route entry was generated (for
example, configuration, ICMP redirect, and so on). rt_tosis the type of service associated with the route.
rt_if isaNULL-terminated string that represents the interface | P address in dotted decimal format that is
associated with the route.
To add aroute, the following fields must be set:

o rt_dst

o rt_mask

« rt_gateway

e It _tos

« rt_protocol

« rt_mtu (Setting the rt_mtu value to zero essentially means use the MTU from the associated line
description used when the route is bound to an IFC.)

o rt_if (rt_if can be set to the dotted decimal equivalent of INADDR_ANY, whichis0.)

In addition, the rt_flags bit flags can be set to the following:

o RTF_NOREBIND_IFC_FAIL if no rebinding of the route is to occur when the interface
associated with the route fails.

o RTF_NOREBIND_IFC_ACTV if no rebinding is to occur when interfaces are activated or

S OCATMARK

SOCDELRT

SOCGIFADDR

S OCGIFBRDADDR

deactivated.

To delete aroute, the following fields must be set:
o rt_dst
o rt_mask
« rt_gateway
o rt_tos
« rt_protocol

All other fields are ignored when adding or removing an entry.
Return the value indicating whether socket's read pointer is currently at the out-of-band mark.

The third parameter represents a pointer to an integer flag. If the socket's read pointer is currently at the
out-of-band mark, the flag is set to a nonzero value. If it isnot, the flag is set to zero.

Delete an entry from the interface routing table. Valid for sockets with address family of AF_INET.
See SOCADDRT for more information on the third parameter.
Get the interface address. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifreq, defined in <net/if.h>:

struct ifreq {
char ifr_name[| FNAVSI ZE] ;
uni on {
struct sockaddr ifru_addr;
struct sockaddr ifru_mask;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_nu;
i nt infu_rbufsize;
char ifru_linenane[10];
char ifru_TGCS;
Yoifr_ifru;
b

ifr_name is the name of the interface for which information isto be retrieved. The OS/400
implementation requires thisfield to be set to a NULL-terminated string that represents the interface IP
addressin dotted decimal format. Depending on the request, one of the fieldsin the ifr_ifru union will be
set upon return from theioctl() cal. ifru_addr isthe local IP address of the interface. ifru_mask isthe
subnetwork mask associated with the interface. ifru_broadaddr is the broadcast address. ifru_flags
contains flags that give some information about an interface (for example, token-ring routing support,
whether interface is active, broadcast address, and so on). ifru_mtu is the maximum transfer unit
configured for the interface. ifru_rbufsize is the reassembly buffer size of the interface. ifru_linenameis
the line name associated with the interface. ifru_TOSis the type of service configured for the interface.

Get the interface broadcast address. Valid for sockets with address family of AF_INET.

See SOCGIFADDR for more information on the third parameter.

S OCGIFCONF Get the interface configuration list. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifconf, defined in <net/if.h>:

struct ifconf [
int ifc_len;
int ifc_configured;
int ifc_returned;
uni on {
caddr_t ifcu_buf;
struct ifreq *ifcu_req;
} ifc_ifcu;
1;
ifc_lenisavalue-result field. The caller passes the size of the buffer pointed to by ifcu_buf. On return,
ifc_len contains the amount of storage that was used in the buffer pointed to by ifcu_buf for the interface
entries. ifc_configured is the number of interface entriesin the interface list. ifc_returned is the number of
interface entries that were returned (this is dependent on the size of the buffer pointed to by ifcu_buf).
ifcu_buf isthe user buffer in which alist of interface entries will be stored. Each stored entry will be an
ifreq structure.

To get the interface configuration list, the following fields must be set:
« ifc_len
o ifcu_buf

See SIOCGIFADDR for more information on the list of ifreq structures returned. For this request, the
ifr_nameand ifru_addr fieldswill be set to avalue.

Note: Additional information about each individual interface can be obtained using these values and the
other interface-related requests.

S OCGIFFLAGS Get interface flags. Valid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

S OCGIFLIND Get the interface line description name. Valid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

SOCGIFMTU Get the interface network MTU. Valid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

SOCGIFNETMASK Get the mask for the network portion of the interface address. Valid for sockets with address family of
AF_INET.

See SOCGIFADDR for more information on the third parameter.

S OCGIFRBUFS Get the interface reassembly buffer size. Valid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

SOCGIFTOS Get the interface type-of-service (TOS). Vaid for sockets with address family of AF_INET.
See SOCGIFADDR for more information on the third parameter.

S OCGPGRP Get the process ID or process group ID that isto receive the SIGIO and SIGURG signals.

See FIOGETOWN for more information on the third parameter.

S OCGRTCONF Get the route configuration list. Valid for sockets with address family of AF_INET.

For the SIOCGRTCONF request, the third parameter represents a pointer to the structure rtconf, also
defined in <net/route.h>:

struct rtconf [
int rtc_len;
int rtc_configured;
int rtc_returned;
uni on {
caddr _t rtcu_buf;
struct rtentry *rtcu_req;
} rtc_rtcu;

1;

rtc_lenisavalue-result field. The caller passes the size of the buffer pointed to by rtcu_buf. On return,
rtc_len contains the amount of storage that was used in the buffer pointed to by rtcu_buf for the route
entries. rtc_configured is the number of route entriesin the route list. rtc_returned is the number of route
entries that were returned (thisis dependent on the size of the buffer pointed to by rtcu_buf). rtcu_buf is
the user buffer in which alist of route entries will be stored. Each stored entry will be an rtentry structure.

To get the route configuration list, the following fields must be set:
e rtc_len
o rtcu_buf

See SIOCADDRT for more information on the list of rtentry structures returned. For this request, al
fieldsin each rtentry structure will be set to avalue.

S OCSENDQ Return the number of bytes on the send queue that have not been acknowledged by the remote system.
Valid for sockets with address family of AF_INET #*or AF_INET64 and socket type of
SOCK_STREAM.

The third parameter represents a pointer to an integer that is set to the number of bytes yet to be
acknowledged as being received by the remote TCP transport driver.

Notes:

1. SIOCSENDQ isused after a series of blocking or non-blocking send operations to see if the sent
data has reached the transport layer on the remote system. Note that this does not not guarantee
the data has reached the remote application.

2. When SIOCSENDQ is used in a multithreaded application, the actions of other threads must be
considered by the application. SIOCSENDQ provides a result for a socket descriptor at the given
point in time when the ioctl()) request is received by the TCP transport layer. Blocking send
operations that have not completed, as well as non-blocking send operations in other threads
issued after the SIOCSENDQ ioctl(), are not reflected in the result obtained for the SIOCSENDQ
ioctl().

3. In asituation where the application has multiple threads sending data on the same socket
descriptor, the application should not assume that all data has been received by the remote side
when O isreturned if the application is not positive that all send operations in the other threads
were complete at the time the SIOCSENDQ ioctl() was issued. An application should issue the
SIOCSENDQ ioctl() only after it has completed all of the send operations. No value is added by
querying the machineto seeif it has sent all of the data when the application itself has not sent all
of the datain a given unit of work.

S OCSPGRP Set the process ID or process group ID that isto receive the SIGIO and SIGURG signals.

See FIOSETOWN for more information on the third parameter.

S OCSTELRSC Set telephony resources. Valid for sockets with address family of AF_TELEPHONY .

The third parameter represents a pointer to a TelResource structure, which is defined in <nettel/tel.h>.

struct Tel Resource { /* tel ephony resource structure */
i nt tr Count ; /* nunber of devices */
char trReserved[12]; /* reserved */
voi d* trResourceli st; /* pointer to array of system
poi nters */
1

trCountl is the number of devices that are to be associated with the socket, trReserved is areserved field,
and trResourcelList is a pointer to an array of space pointers. Each of these space pointersis the address of
adevice that will be associated with the socket.

Notes:

1. Thisrequest will associate one or more telephony (* TEL) network devices with a socket. Once
the association is made, it will last until the socket is closed.

2. Theuser isresponsible for resolving each device name to a system pointer.

3. Before the device can be associated with a socket, the following conditions must be met:
o The PPP line, network controller, and network device descriptions must exist.
o The PPP line must be associated with an ISDN network controller.

o The PPPline must be associated with a connection list and connection list entry (inbound
or outbound, as appropriate).

o Theline, controller, and device must be varied on.

4. Theuser must have at least operational authority for the devicesto be associated with the socket.
5. A device cannot be associated with more than one socket at atime.

6. If the SIOCSTELRSC request fails for any reason, none of the specified devices will be
associated the socket.

7. For more information about this request and the AF_TELEPHONY address family, please see
Socket address family.

Authorities

No authorization is required.

Return Value

ioctl() returns an integer. Possible values are:
« O(ioctl() was successful)
o -1 (ioctl() was not successful. The errno global variable is set to indicate the error.)

Error Conditions

If ioctl() is not successful, errno usualy indicates one of the following errors. Under some conditions, errno could indicate an error
other than those listed here.

[EACCES

[EAGAIN]

[EBADF]

[EBADFID]

[EBUSY|

[EDAMAGE]

[EFAULT]

H{EINTR]

[EINVAL]

[EIO]

[ENOBUFS

[ENOSPC]

Permission denied.

An attempt was made to access an object in away forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file permissions at the
server are not reflected at the client until updatesto datathat is stored locally by the Network File System take
place. (Several options on the Add Mounted File System (ADDMFS) command determine the time between
refresh operations of local data.) Accessto aremote file may also fail due to different mappings of user IDs
(UID) or group IDs (GID) on the local and remote systems.

Operation would have caused the process to be suspended.

Descriptor not valid.

A descriptor argument was out of range, referred to an object that was not open, or aread or write request was
made to an object that is not open for that operation.

A given descriptor or directory pointer is not valid for this operation. The specified descriptor isincorrect, or
does not refer to an open object.

A file 1D could not be assigned when linking an object to adirectory.

Thefile D tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The address used for an argument is not correct.

While attempting to access a parameter passed to this function, the system detected an address that is not valid.
Interrupted function call &

The value specified for an argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and the operation
specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL. Either the requested function is not supported, or the
optional parameter is not valid.

Input/output error.
A physical 1/0 error occurred.
A referenced object may be damaged.

There is not enough buffer space for the requested operation.

No space available.

The requested operations reguired additional space on the device and there is no space left. This could also be
caused by exceeding the user profile storage limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended object.

[ENOSYS]

[ENOTAVAIL]

[ENOTSAFE]

[EPERM]

[EPIPE]

[ERESTART]

[ESTALE]

[EUNATCH]

[EUNKNOWN]

Function not implemented.

An attempt was made to use a function that is not available in this implementation for any object or any
arguments.

The path name given refers to an object that does not support this function.

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP isin Vary Configuration (VRY CFG), or Reclaim Storage (RCLSTG) processing.
To recover from this error, wait until processing has completed for the independent ASP.

Function is not allowed in ajob that is running with multiple threads.

Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource to do the requested
operation.

Broken pipe.
A system call was interrupted and may be restarted. &

File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may have been deleted at the
server.

The protocol required to support the specified address family is not available at thistime.

Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and correct any
errors that are indicated, then retry the operation.

If interaction with afile server is required to access the object, errno could also indicate one of the following errors:
[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET]

[EHOSTDOWN]

A connection with aremote socket was reset by that socket.

A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN]

[ENETRESET]

The network is not currently available.

A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

Error Messages

The following messages may be sent from this function:
Message ID Error Message Text
CPFAOD4 E File system error occurred. Error number & 1.
CPFAO8LE Unable to set return value or error code.
CPF3CF2 E Error(s) occurred during running of &1 API.
CPE3418 E Possible APAR condition or hardware failure.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when al the following conditions are true:

o Where multiple threads exist in the job.

o The object on which this function is operating residesin afile system that is not threadsafe. Only the following file
systems are threadsafe for this function:

= Root

= QOpenSys

= User-defined

= QNTC

= QSYSLIB

» ZIndependent ASP QSYS.LIB
= QOPT

2. QDLSFile System Differences

QDL S does not support ioctl().
3. QOPT File System Differences

QOPT does not support ioctl().

4. A program must have the appropriate privilege *1OSY SCFG to issue any of the following requests: SSOCADDRT and
SIOCDELRT.

Related Information

« The <syglioctl.h> file (see Header Files for UNIX-Type Functions)

« The <sysltypes.h> file (see Header Files for UNIX-Type Functions)

« fentl()--Perform File Control Command

« Socket Programming

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

listen()--Invite Incoming Connections Requests

Syntax

#i ncl ude <sys/socket. h>

int listen(int socket descriptor,
i nt back_| og)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The listen() function is used to indicate a willingness to accept incoming connection requests. If alisten() is
not done, incoming connections are silently discarded.

Parameters

socket_descriptor
(Input) The descriptor of the socket that isto be prepared to receive incoming connection requests.

back_log
(Input) The maximum number of connection requests that can be queued before the system starts

rejecting incoming requests. The maximum number of connection requests that can be queued is
defined by { SOMAXCONN} (defined in <sys/socket.h>).
Authorities

No authorization is required.

Return Value

listen() returns an integer. Possible values are;
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When listen() fails, errno can be set to one of the following:

[EADDRNOTAVAIL]

[EBADF]

[EINVAL]

[EIO]

[ENOBUFS

[ENOTSOCK]

[EOPNOTSUPP]

[EUNKNOWN]

[EUNATCH]

Error Messages

Address not available.

The socket has an address family of AF_INET #*or AF_INET64, the socket
was not bound, and the system tried to bind the socket but could not because a
port was not available.

Descriptor not valid.

Parameter not valid.

This error code indicates one of the following:

« A connect() has been issued on the socket pointed to by the
socket_descriptor parameter.

o Thesocket descriptor parameter points to a socket with an address
family of AF_UNIX that has not been bound to an address.

Input/output error.

Thereis not enough buffer space for the requested operation.

The specified descriptor does not reference a socket.

Operation not supported.

The socket_descriptor parameter points to a socket that does not support listen().
listen() is only supported on sockets that are using a connection-oriented
protocol (socket type of SOCK_STREAM).

Unknown system state.

The protocol required to support the specified address family is not available at
thistime.

CPE3418 E Possible APAR condition or hardware failure.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

CPFAO081 E Unable to set return value or error code.

Usage Notes

1. If the socket is not bound to an address and the address family is:

o AF_INET, the system automatically selects an address INADDR_ANY and an available
port number) and binds it to the socket.

o & AF_INETS, the system automatically selects an address (in6addr_any and an available
port number) and binds it to the socket.&

o AF_UNIX, the listen() fails with [EINVAL].

o AF_TELEPHONY, the system will bind the socket to TELADDR_ANY, which indicates
that calls will be answered for any of the local telephone numbers for which the associated
devices have been configured.

2. listen() can beissued multiple times for a particular socket.

3. If the back_log parameter specifies avalue greater than the maximum { SOMAXCONN]} allowed,
the specified value will be ignored and SOMAXCONN will be used. 2 If the back_log parameter
specifies a negative value, the specified value will be ignored and zero will be used. 4

4. The optimal setting of the listen() back |og value is dependent on the following factors:

o Thedesign of the server--how the server processes connection requests. Does it handle
each connection request itself or doesiit pass the actual processing of the connection to a
child or worker job? In other words, how long does it take for the server to handle an
incoming connection until it can handle the next one? The shorter the time, the smaller the
back log value can be.

o The number and rate of connection requests the server can expect over a given period of
time will help determine the back log value. More connection requests coming in over a
shorter period of time requires alarger back log value.

o Thefollowing may determine how the server performs and thus how long it will take for an
accept request to be serviced:

= The system processor size
= How storage pools used by the server are allocated
= Machine performance

The faster the server performance, the smaller the back _log value can be.

Also, to help you determine how much main storage is consumed by a connection request in the
listen() back _log, consider the following:

o Each connection request in the backlog consumes at least 1KB of storage.

o Each connection request can consume an additional storage amount equal to the size of

TCP receive buffer. Y ou can determine the TCP receive buffer size by looking at the
TCPRCVBUF parameter value on the Change TCP Attributes (CHGTCPA) CL command.
This storage amount will be consumed only if the remote peer (client) sends data after the
connection is established and put into the backlog.

5. For AF_TELEPHONY sockets, the back_|log value isignored.

6. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the listen() APl is mapped to
gso_listen98().4%

Related Information

o # XOPEN_ SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« accept()--Wait for Connection Request and Make Connection

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

QsoCreatelOCompletionPort()--Create 1/O
Completion Port

Syntax

#i ncl ude <gsoasync. h>
i nt BoCreat el OConpl eti onPort ()

Service Program Name: QSOSRV 3
Default Public Authority: *USE

Threadsafe: Yes

The QsoCreatel OCompletionPort is used to create a common wait point for a completed overlapped I/O
operation. The wait point is represented by the I/O completion port handle returned by the

QsoCreatel OCompl etionPort() function. This handleis specified on QsoStartRecv and QsoStartSend
functions to initiate overlapped I/O operations.

Authorities

No authorization is required.

Return Values

QsoCreatel OCompletionPort() returns an integer. Possible values are:
o -1 - Unsuccessful, errno is set to avalue defined below.

o N - Successful, where nisan I/O completion port handle that can be used in conjunction with
overlapped 1/0 functions QsoStartRecv(), QsoStartSend(), and QsoPostl OCompl etionPort().

Errno Conditions

When QsoCreatel OCompl etionPort() fails, errno can be set to one of the following:

[ENOBUFS] The limit of 256 I/O completion ports has been exceeded for this process.

[EUNKNOWN] Unknown system state.

Error Messages

Message I D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPFAO81 E Unable to set return value or error code.

Usage Notes

1. Thel/O completion port handle is a process scoped resource; therefore, you may not start an
overlapped 1/0 function on a socket in one process and check for its completion in another process.

2. The number of 1/0 completion ports that can be active for agiven processis 256.

Related Information

» QsoDestroylOCompletionPort()--Create 1/O Completion Port
QsoPostl OCompl etionPort()--Post Request on 1/0 Completion Port
QsoStartRecv--Start Asynchronous Recv Operation
QsoStartSend--Start Asynchronous Send Operation
QsoWaitForlOCompletion()--Wait for 1/0 Completion Operation

API Introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QsoDestroylOCompletionPort()--Destroy 1/O
Completion Port

Syntax

#i ncl ude <gsoasync. h>

i nt QsoDestroyl OConpl eti onPort
(int 1 QOConpletionPort)

Service Program Name: QSOSRV 3
Default Public Authority: *USE

Threadsafe: Y es

The QsoDestroyl OCompletionPort is used to destroy an 1/O completion port.

Parameters
int |OCompletionPort (Input)

The 1/O completion port to be destroyed. All threads sleeping with QsoWaitFor OCompletion() on
the 1/0O completion port being destroyed will be awakened with return value of -1 and errno value
of EDESTROYED.

Authorities

No authorization is required.

Return Values

QsoDestroyl OCompl etionPort() returns an integer. Possible values are:
o 0 - Successful destruction of the I/O completion port.
« -1- Thefunction has failed. Inspect the errno value to determine the cause of the failure.

Errno Conditions

When QsoDestroyl OCompletionPort fails, errno can be set to one of the following:

[EINVAL] The specified I/O completion port is not valid.

[EUNKOWN] Unknown system state.

Error Messages

Message I D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.

CPFAO81 E Unable to set return value or error code.

Usage Notes

1. There can be many overlapped 1/0 operations outstanding when an I/O completion port is
destroyed. The buffers that are associated with these overlapped 1/O operations are available for use
by the application as soon as QsoDestroyl OCompletionPort()returns successfully.

2. The state of the sockets that were used to issue the overlapped /O operations that are still
outstanding is not defined. That is, there is no way for the application to determine if an
outstanding QsoStartRecv() or QsoSartSend() has completed once the 1/O completion port has
been destroyed. For this reason, further attempts to read from those sockets will result in
ECONNABORTED and further attempts to write to these sockets will result in EPIPE. No further
input or output operations will be allowed on these sockets.

Related Information

o 0Os0Createl OCompl etionPort()--Create |/O Completion Port
o 0soPostlOCompletionPort()--Post Reguest on 1/O Completion Port

QsoStartRecv--Start Asynchronous Recv Operation
QsoStartSend--Start Asynchronous Send Operation
QsoWaitForl OCompletion()--Wait for I/O Completion Operation

API Introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QsoPostlOCompletion()--Post I/O Completion Request

Syntax

#i ncl ude <gsoasync. h>

int @oPost| OConpl etion
(int 1CConpletionPort, Qso_Overlappedl Ot * conmuni cati onsArea)

Service Program Name: QSOSRV 3
Default Public Authority: *USE
Threadsafe: Yes

The QsoPostlOCompletion function will post an Qso_OverlappedI O_t request on a specifed 1/0 completion port. This allows an
application to notify a completion port that some function or activity has occurred. The application defines what that function or
activity iswithin the Qso_Overlappedl O_t request.

Parameters

int IOCompletionPort (Input)
The I/0O completion port that should be posted.

Qso_Overlappedl O_t * communicationsArea (Input/Output)
A pointer to a structure that contains the following information:

descriptorHandle (Input) - The descriptor handle is application-specific and is never used by the system. Itis
intended to make it easier for the application to keep track of information regarding agiven
socket connection.

buffer (Input) - Supplied valueis preserved.
bufferLength (Input) - Supplied valueis preserved.
postFlag (Input) - Supplied valueis preserved.
fillBuffer (Input) - Supplied valueis preserved.
returnValue (Output) - Thisfield will be set to 0 if this operation completes successfully.
errnoValue (Output) - Thisfield will be set to 0 if this operation completes successfully.

operationCompleted (Output) - Thisfield is updated to QSOPOSTIOCOMPLETION.

o Not used.
secureDataTransferSze

bytesAvailable Not used.

operationWaitTime

postedDescriptor

reservedl

reserved?2

Authorities

No authorization is required.

Return Values

(Input) - A timeval structure which specifies atime to wait before posting this operation
asynchronously to the I/O completion port with errnoValue set to EAGAIN.

struct timeval {
long tv_sec; /* second */
long tv_usec; /* mcroseconds */
H
If thisfield is set to zero, the operation will be posted immediately.

If postedDescriptor is closed before the timer expires, the operation will be posted to the 1/0O
completion port with errnoValue set to ECL OSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the timeval
is not used and must be set to zero.

Thisfield isonly relevant if anon-zero timeval was specified in operationWaitTime. Thisisthe
socket descriptor to be associated with the timer. If this descriptor is closed before the timer
expires, the operation will be posted to the I/O completion port with errnoValue set to
ECLOSED.#

(Input) - Must be set to hex zeroes.

(Input) - Must be set to hex zeroes.

QsoPostlOCompl etion() returns an integer. Possible values are:
« -1-Thefunction did not complete because an error occurred. Inspect the errno value to determine the cause of the failure.
« 0- Thefunction has successfully posted the communications area to the I/O completion port.

o & 1- Thetimer has been started. When the timer expires the Qso_OverlappedlO_t communications structure will be
updated with the results and the I/O completion port will be posted. &

Errno Conditions

When QsoPostl OCompletion() fails, errno can be set to one of the following:

[EINVAL] The 1/O completion port or areserved field was specified that was not valid #* or operationWaitTime.tv_sec
was negative or operationWaitTime.tv_usec was not zero. &

[EDESTROYED] The I/O completion port has been destroyed.

[ENOBUFS There was not enough buffer space for the requested operation. Check the maximum allowed storage for the
executing user profile.

[ENOMEM] The 1/0 completion port is full and cannot accept any more messages at thistime.

Error Messages

Message ID Error Message Text

CPFA081 E Unable to set return value or error code.

CPE3418E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Related Information

o QsoCreatel OCompl etionPort()--Create /O Completion Port

o OsoDestroyl OCompl etionPort()--Destroy 1/0 Completion Port

o QOsoStartRecv--Start Asynchronous Recv Operation

o QOsoStartSend--Start Asynchronous Send Operation

o QOsoWaitForlOCompl etion()--Wait for I/O Completion Operation

API Introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QsoStartAccept()--Start asynchronous accept operation

Syntax

#i ncl ude <sys/socket. h>
#i ncl ude <gsoasync. h>

int QsoStartAccept (int socketDescriptor,int |OConpletionPort,
so_Overl appedl Ot * conmmuni cati onsArea)

Service Program Name: QSOSRV 3
Default Public Authority: *USE

Threadsafe: Yes

The QsoStar tAccept() function is used to wait asynchronously for connection requests. If connection requests are queued, then
QsoStartAccept() takes the first connection request on the queue and creates a new socket to service the connection request. If no
connection requests are queued, then an asynchronous QsoStartAccept() request is pended onto the socket and will be transition to the
specified I/0 completion port once a connection arrives. This API only supports sockets with an address family of AF_INET#* or
AF_INET6% and type SOCK_STREAM.

Parameters

socketDescriptor (Input)
The descriptor of the socket on which to wait.

int |OCompletionPort(Input)
The I/O completion port that should be posted when the operation completes.

Qso_Overlappedl O_t* communicationsArea (I nput/Output)
A pointer to a structure that contains the following information:

descriptorHandle (Input) - The descriptor handle is application specific and is never used by the system. This
field isintended to make it easier for the application to keep track of information regarding a
given socket connection.

buffer Not used.
buffer Length Not used.
postFlag (Input) - The postFlag indicatesif this operation should be posted to the I/O completion port

even if it completesimmediately.

o A Ovalueindicatesthat if the operation is already complete upon return to the
application, then do not post to the 1/0 completion port.

o A lvaueindicatesthat even if the operation completes immediately upon return to the
application, the result should still be posted to the 1/O completion port.

postFlagResult (Output) - Thisfield isvalid if QsoStartAccept() returns with 1 and postFlagwas set to 1. In
this scenario, postFlagResult set to 1 denotes the operation completed and has been posted to
the I/0 completion port specified. A value of 0 denotes the operation could not be completed
immediately, but will be handled asynchronously.

fil|Buffer Not used.

returnValue When QsoStartAccept() completes synchronously (function return value equals 0), then this
field identifies the socket descriptor associated with the accepted connection. When the accept
operation completes asynchronously, this field contains indication of success or failure.

errnoValue

operationCompleted

secureDataTransferSze

bytesAvailable

2

operationWaitTime

postedDescriptor
reservedl

reserved2

Authorities

No authorization is required.

Return Values

(Output) - When the operation completes asynchronously and returnValue is negative, this field
will contain an errno to indicate the error with which the operation eventually failed.

(Output) - If the operation is posted to the I/O completion port, this field is updated to indicate
that the operation was a QSOSTARTACCEPT.

Not used.

(Output) - Number of bytes available to be read from connection. Only valid if returnVaueis
>=0.

(Input) - A timeva structure which specifies the maximum time allowed for this operation to
complete asynchronousdly.

struct tineval {
long tv_sec; /* second */
long tv_usec; /* mcroseconds */

I

If this timer expires, the operation will be posted to the 1/O completion port with errnoValue set
to EAGAIN.

If thisfield is set to zero, the operation's asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation will be
posted to the 1/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the timeval
is not used and must be set to zero.

Not used - Must be set to zero. 4
(Output) - Must be set to hex zeroes.

(Input) - Must be set to hex zeroes.

QsoStartAccept() returns an integer. Possible values are:

« -1-Thefunction was not started because an error occurred. Inspect the errno to determine the cause of the failure.

« 0- Thefunction has aready completed. The Qso_Overlappedl O_t communications structure has been updated but nothing has or
will be posted to the I/0O completion port for this operation. Inspect the returnValue in the Qso_OverlappedI O_t communications
structure to obtain connection descriptor and bytesAvailable.

« 1- Thefunction has been started. When the function completes * (or times out if operationWaitTime was specified), € the
Qso_Overlappedl O_t communications structure will be updated with the results and the 1/0 completion port will be posted.

Errno Conditions

When QsoStartAccept() fails, errno can be set to one of the following:

[EFAULT] Bad address

[EINVAL] A 1/0 completion port or reserved field specified was not valid #* or postedDescriptor was not zero or
operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec was not zero, % or a Listen() has not
been issued against the socket referenced by the SocketDescriptor parameter.

[EACCES

[EBADF]

[ECONNABORTED]

[EIO]

[EMFILE]

[ENFILE]

[ENOBUFS|

[ENOTSOCK]

[EOPNOTSUPP]

[EUNATCH]

[EUNKNOWN]

Permission denied.

A connection indication request was received on the socket referenced by the socket_descriptor parameter, but
the process that issued the QsoStartAccept() did not have the appropriate privileges required to handle the
request. The connection indication request is reset by the system.

Descriptor not valid.

Connection ended abnormally.

An QsoStartAccept() was issued on a socket for which receives have been disallowed (due to a shutdown()
cal).

Input/output.

Too many descriptors for this process.

Too many descriptorsin system.

Thereis not enough buffer space for the requested operation.

The specified descriptor does not reference a socket.

Operation not supported.

The socket_descriptor parameter references a socket that does not support the QsoStartAccept(). The

QsoStartAccept() isonly valid on sockets with an address family of AF_INET % or AF_INET64 and type
SOCK_STREAM.

The socket_descriptor parameter references a socket that has undergone an Rbind(). The QsoStar tAccept()
operation is not valid on socketsin this state.

The protocol required to support the specified address family is not available at thistime.

Unknown system state.

Error Messages

Message | D Error Message Text

CPFAO081 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Itisnot recommended to intermix QsoStartAccept() and accept(). If this condition occurs, the order the requests will be serviced

is undefined.

2. Thefollowing are inherited by the descriptor returned by the accept() call:
o All socket options with alevel of SOL_SOCKET.
0 The statusflags:
= Blocking flag (set/reset either by theiocltl() call with the FIONBIO request or by the fentl() call with the

F_SETFL command and the status flag set to O_NONBL OCK).

= Asynchronous flag (set/reset either by theioctl() call with the FIOASY NC request or by the fentl() call with the
F_SETFL command and the status flag set to FASYNC).

o Theprocess D or process group ID that isto receive SIGIO or SIGURG signals (set/reset by either theioctl() call with
the FIOSETOWN or the SIOCSPGRP request, or by the fentl() call with the F_SETOWN command).

3. Closing a socket causes any queued but unaccepted connection requests to be reset.

Related Information

« accept()--Accept Connection

o QsoCreatel OCompl etionPort()--Create |/O Compl etion Port

« QsoDestroyl OCompletionPort()--Destroy 1/0O Completion Port

o QsoPostl OCompl etionPort()--Post Request on I/O Completion Port

o QsoStartSend--Start Asynchronous Send Operation

o QOsoWaitForl OCompletion()--Wait for 1/0 Compl etion Operation

« recv()--Receive Data

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QsoStartRecv()--Start Asynchronous Receive Operation

Syntax

#i ncl ude <gsoasync. h>

int soStartRecv (int

Default Public Authority: *USE

Threadsafe: Yes

so0_Overl appedl Ot * conmuni cati onsArea)

Service Program Name: QSOSRV 3

socket Descriptor,int | OConpl etionPort,

The QsoStartRecv function is used to initiate a asynchronous receive operation. The supplied buffer cannot be reused by the calling
application until the receive is complete or the 1/O completion port specified on the QsoStartRecv has been destroyed. This API only
supports sockets with an address family of AF_INET#* or AF_INET64% and type SOCK_STREAM.

Parameters

int socketDescriptor (Input)

The socket descriptor that should be used to receive datainto the specified buffer.

int I0CompletionPort (Input)

The I/O completion port that should be posted when the operation completes.

Qso_Overlappedl O_t * communicationsArea (Input/Output)
A pointer to a structure that contains the following information:

descriptorHandle

buffer
bufferLength

postFlag

postFlagResult

fil|Buffer

returnValue

(Input) - The descriptor handle is application specific and is never used by the system. This
field isintended to make it easier for the application to keep track of information regarding a
given socket connection.

(Input) - A pointer to a buffer into which data should be read.

(Input) - The length of the buffer into which data should be read. Also represents the amount of
data requested.

(Input) - The postFlag indicatesif this operation should be posted to the 1/O completion port
even if it completesimmediately.

o A Ovaueindicatesthat if the operation is aready complete upon return to the
application, then do not post to the 1/0 completion port.

o A lvaueindicatesthat even if the operation completes immediately upon return to the
application, the result should still be posted to the 1/O completion port.

(Output) - Thisfield isvalid if QsoStartRecv() returns with 1 and postFlag was set to 1. In this
scenario, postFlagResult set to 1 denotes the operation completed and been posted to the I/0
completion port specified. A value of 0 denotes the operation could not be completed
immediately, but will be handled asynchronously.

(Input) - ThefillBuffer flag indicates when this operation should complete. If the fillBuffer flag
is 0, then the operation will complete as soon as any datais available to be received. If the
fillBuffer flag is non-zero, this operation will not complete until enough data has been received
to fill the buffer, an end-of-file condition occurs on the socket, or an error occurs on a socket.

(Output) - When QsoStartRecv() completes synchronously (function return value equals 0),
then thisfield indicates the number of bytes that were actually received. When the recv
operation completes asynchronoudly, this field contains indication of success or failure. Zero
returned denotes end-of-file state.

errnoValue (Output) - When the operation completes asynchronously and returnValue is negative, this field
contains an errno to indicate the error with which the operation eventually failed.

operationCompleted (Output) - If the operation is posted to the I/O completion port, this field is updated to indicate
that the operation was a QsoStartRecv().

B Not used.
secureDataTransfer Sze
bytesAvailable Not used.
operationWaitTime (Input) - A timeval structure which specifies the maximum time allowed for this operation to
complete asynchronously.
struct tineval {
long tv_sec; /* second */
long tv_usec; [/* mcroseconds */
b
If thistimer expires, the operation will be posted to the I/O completion port with errnoValue set
to EAGAIN.

If thisfield is set to zero, the operation's asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation will be
posted to the I/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in thetimeval
is not used and must be set to zero.

postedDescriptor Not used - Must be set to zero. %
reservedl (Input) - Must be set to hex zeroes.
reserved2 (Input) - Must be set to hex zeroes.

Authorities

No authorization is required.

Return Values

QsoStartRecv() returns an integer. Possible values are:
« -1- The function was not started because an error occurred. Inspect the errno to determine the cause of the failure.

« 0- Thefunction has aready completed. The Qso_Overlappedl O_t communications structure has been updated but nothing has or
will be posted to the I/O completion port for this operation. Inspect the returnVaue in the Qso_OverlappedI O_t communications
structure to determine the number of bytes received.

« 1- Thefunction has been started. When the function completes #* (or times out if operationWaitTime was specified), 4 the
Qso_Overlappedl O_t communications structure will be updated with the results and the 1/0 completion port will be posted.

Errno Conditions

When QsoStartRecv() fails, errno can be set to one of the following:

[EINVAL] A buffer length or 1/O completion port or reserved field specified was not valid % or postedDescriptor was not zero or
operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec was not zero. &

[ETRUNC] Datawas truncated on an input, output, or update operation. Data has been lost.

Note: Therest of the errno values from recv() also apply to QsoStartRecv().

Error Messages

Message | D Error Message Text

CPFAQ81 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1

If QsoStartRecv() partialy fills a buffer and then encounters an EFAULT condition, the QsoStartRecv() will complete with the
ETRUNC error vaue to indicate that some data has been lost.

. A buffer that is given to QsoStartRecv() must not be used by the application again until either it is returned by

QsoWaitForlOCompletion() or is reclaimed by issuing a close() on the socket descriptor or issuing a

QsoDestroyl OCompletionPort() on the I/0O completion port. If abuffer is given to QsoStartRecv() to befilled, and it islater
detected during QsoStartRecv processing that the buffer has been freed, it may produce an unrecoverable condition on the socket
for which the QsoStartRecv() was issued. If this occurs, an ECONNABORTED error value will be returned.

. Itisnot recommended to intermix QsoStartRecv() and blocking 1/0 (that is, recv()) on the same socket. If this condition occurs,

then pending asynchronous send /O will be serviced first before the blocking /0.

. Socket option SO_RCVLOWAT is not supported by this API. Semantics similar to SO_RCVLOWAT can be obtained using the

fillBuffer field in the Qso_OverLappedI O _t structure.

Socket option SO_RCVTIMEQ is not supported by this API. Semantics similar to SO_RCVTIMEO can be obtained using the
operationWaitTime field in the Qso_OverLappedl O _t structure. &

Related Information

QsoCreatel OCompl etionPort()--Create |/O Completion Port

QsoDestroyl OCompl etionPort()--Create 1/O Compl etion Port

QsoPostl OCompl etionPort()--Post Reguest on 1/0O Completion Port

QsoStartSend--Start Asynchronous Send Operation

QsoWaitForlOCompl etion()--Wait for |/O Completion Operation

recv()--Receive Data

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

QsoStartSend()--Start Asynchronous Send Operation

Syntax

#i ncl ude <qgsoasync. h>

int QsoStartSend (int socketDescriptor, int |QConpletionPort,
so0_Overl appedl Ot * communi cati onsArea)

Service Program Name: QSOSRV 3
Default Public Authority: *USE

Threadsafe: Yes

The QsoStartSend function is used to initiate a asynchronous send operation. The supplied buffer cannot be reused by the calling application
until the send is complete or the I/0 completion port specified on the QsoStartSend has been destroyed. This API only supports sockets with
an address family of AF_INET #* or AF_INET6% and type SOCK_STREAM.

Parameters

int socketDescriptor (Input)
The socket descriptor on which the data should be sent.

int |OCompletionPort(Input)
The 1/0O completion port that should be posted when the operation completes.

Qso_Overlappedl O_t * communicationsArea (Input/Output)
A pointer to astructure that contains the following information:

descriptorHandle (Input) - The descriptor handleis application specific and is never used by the system. This
field isintended to make it easier for the application to keep track of information regarding a
given socket connection.

buffer (Input) - A pointer to a buffer of data that should be sent over the socket.
bufferLength (Input) - The length of the data to be sent.
postFlag (Input) - The postFlag indicatesif this operation should be posted to the I/O completion port

even if it completes immediately.

o A Ovaueindicates that if the operation is aready complete upon return to the
application, then do not post to the 1/O completion port.

o A lvaueindicatesthat even if the operation completesimmediately upon return to the
application, the result should still be posted to the I/0 completion port.

postFlagResult (Output) - Thisfield isvalid if QsoStartSend() returns with 1 and postFlag was set to 1. In this
scenario, postFlagResult set to 1 denotes the operation completed and been posted to the I/O
completion port specified. A value of 0 denotes the operation could not be completed
immediately, but will be handled asynchronously.

fillBuffer (Input) - Only used on QsoStartRecv(). Ignored on QsoStartSend().

returnValue (Output) - When QsoStartSend() completes synchronously (function return value equals 0),
then this field indicates the number of bytes that was actually sent. When the send operation
completes asynchronously, this filed contains indication of success or failure.

errnoValue (Output) - When the operation completes asynchronously and returnValue is negative, thisfield
will contain an errno to indicate the error with which the operation eventually failed.

operationCompleted (Output) - If the operation is posted to the 1/O completion port, thisfield is updated to indicate
that the operation was a QsoStartSend().

3 secureDataTransferSze Not used.

bytesAvailable Not used.
operationWaitTime (Input) - A timeval structure which specifies the maximum time allowed for this operation to
complete asynchronously.
struct tinmeval ({
long tv_sec; /* second */
long tv_usec; [/* mcroseconds */
i
If thistimer expires, the operation will be posted to the 1/O completion port with errnoValue set
to EAGAIN.

If thisfield is set to zero, the operation's asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation will be
posted to the 1/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTimeis 1 second. The microseconds field (tv_usec) in the timeval
isnot used and must be set to zero.

postedDescriptor Not used - Must be set to zero. #
reservedl (Input) - Must be set to hex zeroes.
reserved2 (Input) - Must be set to hex zeroes.

Authorities

No authorization is required.

Return Values

QsoStartSend() returns an integer. Possible values are:
« -1- Thefunction was not started because an error occurred. Inspect the errno to determine the cause of the failure.

« 0- Thefunction has already completed. The Qso_OverlappedI O_t communications structure has been updated but nothing has or
will be posted to the I/O completion port for this operation. Inspect the returnValue in the Qso_Overlappedl O_t communications
structure to determine the number of bytes sent.

« 1- Thefunction has been started. When the function completes * (or times out if operationWaitTime was specified), & the
Qso_OverlappedlO_t communications structure will be updated with the results and the 1/O completion port will be posted.

Errno Conditions

When QsoStartSend() fails, errno can be set to one of the following:

[EINVAL] A buffer length or I/O completion port or reserved field specified was not valid £ or postedDescriptor was not zero or
operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec was not zero. &

Note: The rest of the errno values from send() also apply to QsoStartSend().

Error Messages

Message ID Error Message Text
CPFA081 E Unable to set return value or error code.
CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Itisimportant for application programmers to keep in mind that since QsoStartSend() is asynchronous, care should be used to
control how many of these functions are outstanding. When a TCP socket becomes flow control blocked such that the
QsoStartSend() is not able to pass the data to the TCP socket immediately, the return value will be 1. Applications that send large
amounts of data should have the postFlag set to 0. This allows the application to use areturn value of 1 as an indication that the
socket has become flow control blocked. The application should then wait for the outstanding operation to complete before issuing
another QsoStartSend(). Thiswill ensure that the application does not exhaust system buffer resources.

2. A buffer that is given to QsoStartSend() must not be used by the application again until either it is returned by
QsoWaitForlOCompletion() or is reclaimed by issuing a close() on the socket descriptor or issuing a
QsoDestroyl OCompletionPort() on the I/O completion port. If a buffer is given to QsoStartSend() to be sent, and it is later detected
during QsoStartSend() processing that the buffer has been freed, it may produce an unrecoverable condition on the socket for which
the QsoStartSend() was issued. If this occurs, an ECONNABORTED error value will be returned.

3. Itisnot recommended to intermix QsoStartSend() and blocking 1/0 (that is, send()) on the same socket. If one does, then the
pending asynchronous send 1/0O will be serviced before blocking 1/0 once data can be sent.

4. % Socket option SO_SNDTIMEO is not supported by this API. Semantics similar to SO_SNDTIMEO can be obtained using the
operationWaitTime field in the Qso_Overl apped| O _t structure. 4

Related Information

o QsoCreatel OCompl etionPort()--Create 1/O Compl etion Port

o QsoDestroyl OCompletionPort()--Destroy 1/O Completion Port

o QsoPostl OCompl etionPort()--Post Request on I/O Completion Port

« OsoStartRecv--Start Asynchronous Recv Operation

o QsoWaitForl OCompletion()--Wait for 1/0O Completion Operation

« send()--Send Data

API Introduced: V5R1

Top | UNIX-Type APIs| APIs by category

QsoWaitForlOCompletion()--Wait for 1/O Operation

Syntax

#i ncl ude <gskssl.n>
#i ncl ude <gsoasync. h

i nt QsoWitForl OConpl etion (int |IQOConpletionPort,

o_Overl appedl Ot * conpl etionSt at us,
struct timeval * timeToWit)

Service Program Name: QSOSRV 3
Default Public Authority: * USE

Threadsafe; Yes

The QsoWaitForl OCompletion() is used to wait for a completed overlapped 1/0 operation. The wait point is represented
by the I/O completion port that was created using the QsoCreatel OCompletionPort() function.

Parameters

int IOCompletionPort
(Input) The 1/O completion port on which to wait.

Qso_Overlappedl O _t * completionStatus

(Input/Output) A pointer to agso_overlappedl O _t structure that will be updated with the status defined below. If
afield has no relevance to operationCompleted, then either anull or zero will be returned for that field.

descriptorHandle (Ouput) The descriptor handle that was supplied by the application when the operation
was started.

buffer (Ouput) A pointer to the buffer that was supplied when the operation was started. Null is
returned when operationCompleted is QSOSTARTACCEPT #* or
GSK SECURESOCSTARTINIT 4.

buffer Length (Ouput) The length of the buffer that was supplied when the operation was started. Zero
is returned when operationCompleted is QSOSTARTACCEPT % or
GSKSECURESOCSTARTINIT 4,

postFlag (Ouput) The value of the postFlag when the operation was started. Zero is returned when
operationCompleted is QSOSTARTACCEPT # or GSKSECURESOCSTARTINIT 4.

fill Buffer (Ouput) The value of the fillBuffer when the operation was started. Zero is returned when
operationCompleted is QSOSTARTACCEPT % or GSKSECURESOCSTARTINIT 4.

returnValue (Output)

0 Possible values if operationCompleted isAQSOPOSTIOCOMPLETION, 4
QSOSTARTRECV, QSOSTARTSEND, or QSOSTARTACCEPT:

-1 The operation failed and errnoValue field should be checked for
further explanation of the error.

>= 0 For both QSOSTARTRECV and QSOSTARTSEND, indicates the
number of bytes sent or received respectively. A return value of 0 on a
receive indicates an end-of-file condition. For QSOSTARTACCEPT,
thisfield isthe socket connection descriptor. #* For
QSOPOSTIOCOMPLETION, areturn value of 0 indicates the
operation was not timed (operationWaitTime was zero on input).
QSOPOSTIOCOMPLETION will not return > 0. 4

o Possible valuesif operationCompleted is GSKSECURESOCSTARTSEND or
GSKSECURESOCSTARTRECV:

GSK_OK Operation was successful. Field secureDataTransferSize indicates
the number of bytes sent or received respectively.

Failure

» Possible values common to GSK SECURESOCSTARTSEND and
GSKSECURESOCSTARTRECV:

[GSK_ASHA00 ERROR INVALID_POINTER] The buffer pointer
located in the
Qso_OverlLappedlO t
isnot valid.

[GSK_INTERNAL_ERROR] An unexpected error
occurred during SSL
processing.

[GK_ASHAO0_ERROR CLOSED] Secure session was
closed by athread
during SSL
processing.

[GSK_ERROR _10] An error occurred in
SSL processing;
check the errno value.

[GSK_ERROR _SOCKET_CLOSED] A close() was done on
the socket descriptor
for this secure
session.

= Vaues uniqueto GSKSECURESOCSTARTRECV:

[GSK_INVALID_HANDLE] The handle specified was not
valid.

[GSK_INVALID_STATE] The handle is not in the correct
state for this operation.

[GSK_ERROR BAD MESSAGE] SSL received a badly formatted
message.

[GSK_ERROR BAD_MAC] A bad message authentication
code was received.

o #Possible valuesif operationCompleted is GSKSECURESOCSTARTINIT:

[GK_OK] Operation was successful, a secure
session established.

[GSK_ERROR BAD_MESSAGE] SSL received a badly formatted
message.

[GSK_ERROR BAD MAC] A bad message authentication
code was received.

[GSK_KEYRING_OPEN_ERROR] Certificate store file could not be
opened.

[GSK_ERROR BAD_KEYFILE LABEL] The specified certificate store
label isnot valid.

[GSK_ERROR _BAD_V3 CIPHER] An SSLV3or TLSV1 cipher suite
was specified that is not valid.

[GSK_ERROR BAD V2 CIPHER] An SSLV?2 cipher suite was
specified that is not valid.

[GSK_ERROR_NO_CIPHERSY No ciphers available or no ciphers
were specified.

[GSK_ERROR NO_CERTIFICATE] No certificate is available for SSL
processing.

[GSK_ERROR BAD_CERTIFICATE] The certificate is bad.

[SSL_ERROR _NOT_TRUSTED_ROOT] Thecertificateisnot signed by a
trusted certificate authority.

[GSK_KEYFILE_CERT_EXPIRED] The validity time period of the
certificate has expired.

[GSK_ERROR BAD_ MESSAGE] A badly formatted message was
received.

[GK_ERROR_UNSUPPORTED] Operation is not supported by
SSL.

[GSK_ERROR BAD_PEER] The peer system is not recognized.

[GSK_ERROR_CLOSED] The SSL session ended.

[GK_ASHAOC0_ERROR TIMED_OUT] The value specified for the
handshake timeout expired before
the handshake completed.

[GSK_INSUFFICIENT_STORAGE] Unable to allocate storage for the
requested operation.

X

errnoValue

(Output) If operationCompleted is #QSOPOSTIOCOMPLETION, & QSOSTARTSEND,
QSOSTARTRECV or QSOSTARTACCEPT and returnVaueis negative, this field will contain an errno

value further defining the error. Thisis also true if operationCompleted is GSK SECURESOCSTARTSEND or
GSKSECURESOCSTARTRECYV and returnVaueis GSK_ERROR _|O.

Possible values are:
3 1f operationCompleted is QSOPOSTIOCOMPLETION:
[EAGAIN] The specified timer value expired.

[ECLOSED] The socket descriptor was closed before the timer expired.
&
If operationCompleted isQSOSTARTRECV or GSKSECURESOCSTARTRECV:

[EAGAIN] The operation did not complete in the specified time.
[EIQ] Input/output error.

[ECONNABORTED] Connection ended abnormally.
This error code indicates that the transport provider ended the connection abnormally
because of one of the following:

o Theretransmission limit has been reached for the data that was being sent on
the socket.

o A protocol error was detected.

[ECONNRESET] A connection with aremote socket was reset by that socket.

[ECLOSED] Connection was closed. Only valid for QSOSTARTRECV.

[EFAULT] Read buffer pointer not valid.

If operationCompleted is QSOSTARTSEND or GSKSECURESOCSTARTSEND:

[EAGAIN] The operation did not complete in the specified time.

[EIO] Input/output error.

[EPIPE] Broken pipe.

[ECLOSED] Connection was closed. Only valid for QSOSTARTSEND

[EFAULT] Send buffer pointer not valid.

If operationCompleted is QSOSTARTACCEPT:

[EAGAIN] The operation did not complete in the specified time.

[ECONNABORTED] Connection ended abnormally.

[ECLOSED] Listening socket closed.

[EIQ] I nput/output error.

[EMFILE] Too many descriptors for this process.

[ENFILE] Too many descriptorsin system.

[ENOBUFY Thereis not enough buffer space for the requested operation.
[EUNKNOWN] Unknown system state.<%

#1f operationCompleted is GSK SECURESOCSTARTINIT:

[ECONNABORTED] Connection ended abnormally.

[EDEADLK] Resource deadlock avoided.

[EINTR] Interrupted function call.

[EIQ] Input/output error.

[ETERM] Operation terminated.

[EUNATCH] The protocol required to support the specified address family is not available at &
thistime.

Any errno that can be returned by send() or recv() can be returned by this API if operationCompleted is
GSKSECURESOCSTARTINIT. See Sockets APIs for a description of the errno values they return.

If an errnoisreturned that isnot in thislist, see Errno Values for UNIX-Type Functions for a description of the
errno.

secureDataTransferSze (Output) Number of bytes received or sent if operationCompleted is
GSKSECURESOCSTARTRECV or GSKSECURESOCSTARTSEND
respectively and returnValue equals GSK_OK.

bytesAvailable (Output) Number of bytes available to be read from connection. This parameter is
valid only if operationCompleted is QSOSTARTACCEPT and returnVaueis>=
0.

ZroperationWaitTime (Ouput) The value of the operationWaitTime when the operation was started.

postedDescriptor (Ouput) Always set to negative one. Thisfield is only used on input for
QsoPostlOCompletion(). When the operation is retrieved with
QsoWaitForlOCompletion(), the descriptorHandle should be used to identify the
socket connection and not this field. 4

operationCompleted (Output) The operation that was started and has now compl eted.

= 1(QSOSTARTSEND)

= 2 (QSOSTARTRECV)

= 3 (QSOPOSTIOCOMPLETION)

= 4 (GSKSECURESOCSTARTSEND)

= 5(GSKSECURESOCSTARTRECV)

= 6 (QSOSTARTACCEPT)

= 7 (GSKSECURESOCSTARTINIT) €

struct timeval * timeT oWait
(Input) A pointer to atimeval structure that contains the time in seconds and microseconds for which the
QsoWaitForlOCompletion() call should block if there is no completion status to receive.

If this parameter is null, QsoWaitForl OCompletion() waitsindefinitely. If this value is specified, and O seconds
0 microseconds are specified, QsoWaitForlOCompletion() returns immediately.

Authorities

#» Authorization of *R (allow access to the object) to the certificate store file and its associated files is required.
Authorization of *X (alow use of the object) to each directory of the path name of the certificate store file and its
associated filesis required. &

Return Values

QsoWaitForlOCompletion returns an integer. Possible value are:

1 Completion of an overlapped I/O function has been returned.
-1 The QsoWaitForlOCompletion() function timed out or an error occurred. Errno value has been set.

0 If the QsoWaitForlOCompletion() function isissued with atimeToWait parameter that specifies 0 seconds 0
microseconds and there is no completion status to report, the function returnsimmediately with a return value of
Zexo.

Errno Conditions

When QsoWaitForl OCompletion fails, errno can be set to one of the following:

[ETIME] The function has blocked for the time period specified and has no completion status to report.

[EFAULT] Bad address. The system detected a bad address while attempting to access the compl etionStatus
or the timeToWait parameter.

[EDESTROYED] The /O completion port has been destroyed.
[EINVAL] The value of the I/0O completion port is not valid or the timeToWait parameter is not valid.
[EINTR] Interrupted function call.

[EUNKNOWN] Unknown system state.

Error Messages

Message I D Error Message Text

CPFAOB1E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

Usage Notes

1. Anerrno of EDESTROY ED indicates that the thread was waiting on the 1/O compl etion port at the time that it
was destroyed by another thread. When an 1/O completion port is destroyed, al buffersthat are associated with
outstanding overlapped 1/0 operations are immediately available for use by the application program.

2. The application should first check the return value of the QsoWaitForlOCompletion() call to determineif the
Qso_OverlappedI O _t structure specified by the completionStatus parameter has been updated. This structureis
updated ONLY if the return value of the QsoWaitForlOCompletion() cal is one (1).

Related Information

o OsoCreatel OCompletionPort()--Create /O Completion Port

o QsoDestroyl OCompl etionPort()--Create |/O Completion Port

o QsoPostl OCompl etionPort()--Post Request on I/O Completion Port

o OsoStartAccept()--Start asynchronous accept operation

o OsoStartRecv()--Start Asynchronous Recv Operation

o OsoStartSend()--Start Asynchronous Send Operation

e gsk secure soc startRecv()--Start Asynchronous Receive Operation on a Secure Session

e 0sk secure soc startSend()--Start Asynchronous Send Operation on a Secure Session

o 2gsk secure soc startlnit()--Start asynchronous operation to negotiate a secure session'

API Introduced: V5R1

Top | UNIX-Type APIs | APIs by category

Rbind()--Set Remote Address for Socket

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt Rbind(int socket descriptor,

struct sockaddr *local _address,
i nt address_| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

int Rbind(int socket_descriptor,

const struct sockaddr *|ocal address,
sockl en_t address_| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&

A program uses the Rbind() call to request that a SOCK S server allow an inbound connection request
across afirewall. This call should only be used by applications that require inbound connections across a
firewall, and should only be used for sockets with an address family of AF_|I NET. Note that for an Rbind()
call to succeed, a previous connect() call must have been issued for this thread, and must have resulted in an
outbound connection over the same SOCKS server. The Rbind() inbound connection will be from the same
| P address addressed by the original outbound connection. Caution must be exercised so that outbound and
inbound connections over the SOCKS server are paired. In other words, all Rbind() inbound connections
should immediately follow the outbound connection over the SOCK'S server, and no intervening
non-SOCK'S connections relating to this thread can be attempted before the Rbind() runs. For an overview
of using sockets and how to interact with a SOCK'S server, see the topic about OS/400 client SOCKS
support in the Sockets Programming in the i Series Information Center.

#r There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. &

Parameters

socket_descriptor
(Input) The descriptor of the socket that is to be bound.

local_address

(Input) A pointer to a buffer of type struct sockaddr that contains the local address to which the
socket is to be bound. The structure sockaddr is defined in <sys/socket.h>.

The BSD 4.3 structureis:

struct sockaddr {
u_short sa_famly;
char sa_dat a[14];
1

The BSD 4.4/UNIX 98 compatible structure is:

t ypedef uchar sa famly_ t;

struct sockaddr {

uint8_ t sa_| en;
sa_famly_t sa famly;
char sa_dat a[14];

b

The BSD 4.4 sa_len field isthe length of the address. €% The sa_family field identifies the address
family to which the address belongs, and sa_data is the address whose format is dependent on the
address family.

address length
(Input) The length of the local _address.

Authorities

» When the address type of the socket identified by the socket_descriptor is AF_INET, the thread
must have retrieve, insert, delete, and update authority to the port specified by the local_address
field. When the thread does not have this level of authority, an errno of EACCES is returned.

» When the address type of the socket identified by the socket_descriptor is AF_INET and is running
IP over SNA, the thread must have retrieve, insert, delete, and update authority to the APPC device.
When the thread does not have this level of authority, an errno of EACCES is returned.

Return Value

Rbind() returns an integer. Possible values are;
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When an Rbind() fails, errno can be set to one of the following:

[EADDRNOTAVAIL] Address not available. This error code indicates one of the following:
o The SOCKS server specified is not reachable.

o The SOCKS server has denied the requested inbound connection.

« The Socket can no longer be used for an inbound connection.

[EAFNOSUPPORT] Thetype of socket is not supported in this protocol family.

The address family specified in the address structure pointed to by the
local_address parameter cannot be used with the socket pointed to by the
socket_descriptor parameter.

[EBADF] Descriptor not valid.

[EFAULT] Bad address,

The system detected an address that was not valid while attempting to access the
local_address parameter.

[EINVAL] Parameter not valid. This error code indicates one of the following:

« Theaddress |length parameter specifies alength that is negative or is
not valid for the address family.

» The socket referenced by socket_descriptor is not a socket of type
SOCK_RAW and is aready bound to an address.

« Theloca address pointed to by the local_address parameter specified an
address that was not valid.

[EIQ] Input/output error.
[ENOBUFY There is not enough buffer space for the requested operation.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

[EUNKNOWN] Unknown system state.

Error Messages

Message I D Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAO081 E Unable to set return value or error code.

Usage Notes

1. If thiscall isissued for sockets with an address family other than AF_I NET, or if the thread has not
performed an outbound connection through a SOCKS server, then abind() call will be run instead.
In this case the documented errno and usage notes for bind() apply.

2. Thelocal IP address and port number specified for sockets with an address family of AF_| NET are
ignored if Rbind() resultsin an inbound connection over a SOCK S server. In this scenario the
socket islogically bound to the SOCK'S server |P address coupled with a port selected via SOCKS
server. If abind() is performed, then the socket is bound to the local 1P address and port number
specified.

3. The Rbind() function may be explicitly used, or optionally you can compile your application with
the __Rbind macro defined when you call the compiler. For example, if you are compiling with a
Create C Module (CRTCMOD) CL command, specify _ Rbind for the DEFINE keyword to cause
the __Rbind macro to be defined before the compilation starts. Now all bind() callsin the program
will become Rbind(). See <sys/socket.h> for a definition of the __Rbind macro.

4. #*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the Rbind() API is mapped to

gso_Rbind98(). 4

Related Information

o # XOPEN_ SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« accept()--Wait for Connection Reguest and M ake Connection

o bind()--Set Local Addressfor Socket

« connect()--Establish Connection or Destination Address

« getsockname()--Retrieve Loca Address of Socket

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

read()--Read from Descriptor

Syntax

#i ncl ude <uni std. h>

ssize t read(int file_descriptor,
void *buf, size t nbyte);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

From thefile or socket indicated by file_descriptor, the read() function reads nbyte bytes of input into the
memory areaindicated by buf. If nbyteis zero, read() returns a value of zero without attempting any other
action.

If file_descriptor refersto a"regular file" (a stream file that can support positioning the file offset) or any
other type of file on which the job can do an Iseek() operation, read() begins reading at the file offset
associated with file_descriptor. A successful read() changes the file offset by the number of bytes read.

If read() is successful and nbyte is greater than zero, the access time for the file is updated.
read() is not supported for directories.

If file_descriptor refersto a descriptor obtained using the open() function with O_TEXTDATA specified,
the datais read from the file assuming it isin textual form. The maximum number of bytes on a single read
that can be supported for text datais 2,147,483,408 (2GB - 240) bytes. The datais converted from the code
page of the file to the code page of the application, job, or system as follows:

« When reading from atrue stream file, any line-formatting characters (such as carriage return, tab,
and end-of-file) are just converted from one code page to another.

« When reading from record files that are being used as stream files, end-of-line characters are added
to the end of the datain each record.

There are some important considerations when the file is open for text conversion and the CCSIDsinvolved
are not gtrictly single-byte:

o Theread() will return the exact number of bytes requested. For some CCSIDs, this may mean that
partial characters are returned at the end of the user buffer. In this case, the remainder of the
character has been read from the file and internally buffered. The next consecutive read() will begin
with the remainder of the partial character. However, if an Iseek() is performed, the buffered data
will be discarded. See |seek()--Set File Read/Write Offset for more information.

« Because of the above consideration and because of the possible expansion or contraction of
converted data, applications using the O_CCSID flag should avoid assumptions about data size and
the current file offset. For example, afile might have a physical size of 100 bytes, but after an
application has read 100 bytes from the file, the current file offset may be 50. In order to read the
wholefile, the application might have to read 200 bytes or more, depending on the CCSIDs
involved.

If O_TEXTDATA was not specified on the open(), the datais read from the file without conversion. The
application is responsible for handling the data.

In the QSY S.LIB #*and independent ASP QSY S.LIB file systems, “&most end-of-file characters are
symbolic; that is, they are stored outside the member. When reading:

« If O_TEXTDATA is specified, both symbolic and nonsymbolic end-of-file characters can be seen.
o If O TEXTDATA isnot specified (binary mode), only nonsymbolic end-of-file characters can be
seen.

See the Usage Notes for write()--Write to Descriptor.

When file_descriptor refersto a socket, the read() function reads from the socket identified by the socket
descriptor.

When attempting to read from an empty pipe or FIFO:
« If nojob has the pipe or FIFO open for writing, read() return O to indicate end-of-file.

« |f some job has the pipe or FIFO open for writing and O_NONBLOCK was specified, read() will
fail and errno will be set to [EAGAIN].

« |f some job has the pipe or FIFO open for writing and O_NONBLOCK was not specified, read()
will block the calling thread until some data is written or until the pipe or FIFO is closed by all jobs
that had the pipe or FIFO open for writing.

Parameters

file descriptor

(Input) The descriptor to be read.
buf

(Output) A pointer to abuffer in which the bytes read are placed.
nbyte

(Input) The number of bytes to be read.

Authorities

No authorization is required.

Return Value

value

read() was successful. The value returned is the number of bytes actually read and placed in buf.
This number islessthan or equal to nbyte. It islessthan nbyte only if read() reached the end of the
file before reading the requested number of bytes. If read() isreading aregular file and encounters
apart of the file that has not been written (but before the end of the file), read() places bytes
containing zeros into buf in place of the unwritten bytes.

read() was not successful. The errno global variable is set to indicate the error. If the value of nbyte
is greater than SSIZE_MAX, read() setserrno to [EINVAL].

Error Conditions

If read() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES

[EAGAIN]

[EBADF]

[EBADFID]

[EBUSY]

[EDAMAGE]

Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Accessto aremote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

This may occur if file_descriptor refersto a socket and the socket isusing a
connection-oriented transport service, and a connect() was previously completed. The
thread, however, does not have the appropriate privileges to the objects that were
needed to establish a connection. For example, the connect() required the use of an
APPC device that the thread was not authorized to.

Operation would have caused the process to be suspended.

If file_descriptor refersto a pipe or FIFO that hasits O_NONBLOCK flag set, this
error occursif the read() would have blocked the calling thread.

Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or a
read or write request was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The
specified descriptor isincorrect, or does not refer to an open file. Or, thisread request
was made to afile that was only open for writing.

A file ID could not be assigned when linking an object to a directory.
Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as
possible.

Resource busy.
An attempt was made to use a system resource that is not available at thistime.
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT]

B{EINTR]

[EINVAL]

[EI0]

[ENOMEM]

[ENOTAVAIL]

[ENOTSAFE]

H{ENXIO]

[EOVERFLOW]

3 ERESTART]

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

Interrupted function call .4

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument valueis not valid, out of range, or NULL.

This may occur if file_descriptor refersto a socket that is using a connectionless
transport service, is not a socket of type SOCK_RAW, and is not bound to an address.

Thefileresidesin afile system that does not support large files, and the starting
offset of the file exceeds 2GB minus 2 bytes.

Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

Storage alocation request failed.

A function needed to allocate storage, but no storage is available.
There is not enough memory to perform the requested function.
Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

Function is not allowed in ajob that is running with multiple threads.

No such device or address.#

Object istoo large to process.
The object's data size exceeds the limit allowed by this function.

Thefileisaregular file, nbyte is greater than 0, the starting offset is before the
end-of-file, and the starting offset is greater than or equal to 2GB minus 2 bytes.

A system call was interrupted and may be restarted. <

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

When the descriptor refers to a socket, errno could indicate one of the following errors:
[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

« Theretransmission limit has been reached for data that was being sent on
the socket.

« A protocol error was detected.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.
[EINTR] Interrupted function call.
[ENOTCONN] Requested operation requires a connection.

Thiserror code is returned only on sockets that use a connection-oriented
transport service.

[ETIMEDOUT] A remote host did not respond within the timeout period.

A non-blocking connect() was previously completed that resulted in the
connection timing out. No connection is established. This error code is returned
only on sockets that use a connection-oriented transport service.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

[EWOULDBLOCK] Operation would have caused the process to be suspended.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED]

[ECONNRESET]

[EHOSTDOWN]

[EHOSTUNREACH]

[ENETDOWN]

[ENETRESET]

[ENETUNREACH]

[ESTALE]

[ETIMEDOUT]

[EUNATCH]

Error Messages

The destination socket refused an attempted connect operation.

A connection with aremote socket was reset by that socket.

A remote host is not available.

A route to the remote host is not available.

The network is not currently available.

A socket is connected to a host that is no longer available.

Cannot reach the destination network.

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

A remote host did not respond within the timeout period.

The protocol required to support the specified address family is not available at
thistime.

The following messages may be sent from this function:

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAQ81 E Unable to set return value or error code.

CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYS.LIB

» ZIndependent ASP QSYS.LIB 4
= QOPT

2. QSYS.LIB #and Independent ASP QSY S.LIB “File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is
operation is a save file and multiple threads exist in the job.

This function will fail with error code [EIO] if the file specified is a save file and the file does not
contain complete save file data.

The file access time for a database member is updated using the normal rules that apply to database
files. At most, the access time is updated once per day.

If you previously used the integrated file system interface to manipul ate a member that contains an
end-of-file character, you should avoid using other interfaces (such as the Source Entry Utility or
database reads and writes) to manipulate the member. If you use other interfaces after using the
integrated file system interface, the end-of-file information will be lost.

3. QOPT File System Differences
Thefile accesstime is not updated on aread() operation.

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being read are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due
to conditions at the server. Once afile is open, subsequent requests to perform operations on the
file can fail because file attributes are checked at the server on each request. If permissions on the
file are made more restrictive at the server or thefile is unlinked or made unavailable by the server
for another client, your operation on an open file descriptor will fail when thelocal Network File
System receives these updates. The local Network File System also impacts operations that retrieve
file attributes. Recent changes at the server may not be available at your client yet, and old values
may be returned from operations. (Several options on the Add Mounted File System (ADDMFS)
command determine the time between refresh operations of local data.)

Reading and writing to files with the Network File System relies on byte-range locking to
guarantee data integrity. To prevent data inconsistency, use the fentl() API to get and release these
locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If alarger buffer is passed, the error EINVAL will
be received.

6. For sockets that use a connection-oriented transport service (for example, sockets with atype of
SOCK_STREAM), areturn value of zero indicates one of the following:

o The partner program has issued a close() for the socket.

o The partner program has issued a shutdown() to disable writing to the socket.

o The connection is broken and the error was returned on a previously issued socket function.
o A shutdown() to disable reading was previously done on the socket.

7. Thefollowing appliesto sockets that use a connectionless transport service (for example, a socket
with atype of SOCK_DGRAM).

o If aconnect() has been issued previously, then data can be received only from the address
specified in the previous connect().

o The address from which dataisreceived is discarded, since the read() has no address
parameter.

o The entire message must be read in asingle read operation. If the size of the message is too
large to fit in the user supplied buffer, the remaining bytes of the message are discarded.

0 A returned value of zero indicates one of the following:
= The partner program has sent aNULL message (a datagram with no user data).
= A shutdown() to disable reading was previously done on the socket.
= The buffer length specified was zero.

8. For file systemsthat do not support large files, read() will return [EINVAL] if the starting offset
exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do
support largefiles, read() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2
bytes and the file was not opened for large file access.

9. Using this function successfully on the £*/dev/null or /dev/zero “character special fileresultsin a
return value of zero. In addition, the access time for the file is updated.

Related Information

» The<limits.h> file (see Header Filesfor UNIX-Type Functions)
» The<unistd.h> file (see Header Filesfor UNIX-Type Functions)
« creat()--Create or Rewrite File

o dup()--Duplicate Open File Descriptor

o dup2()--Duplicate Open File Descriptor to Another Descriptor

« fentl()--Perform File Control Command

« ioctl()--Perform 1/0O Control Request

o Iseek()--Set File Read/Write Offset

» open()--Open File

o #*pread()--Read from Descriptor with Offset %%

o #*pread64()--Read from Descriptor with Offset (large file enabled) <%
o Zpwrite()--Write to Descriptor with Offset <X

o Zrpwrite64()--Write to Descriptor with Offset (large file enabled) €
« readv()--Read from Descriptor Using Multiple Buffers

o recv()--Receive Data

o recvfrom()--Receive Data

« recvmsg()--Receive Data or Descriptors or Both

o write()--Write to Descriptor

« writev()--Write to Descriptor Using Multiple Buffers

Example
The following example opens afile and reads input:

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>

mai n() {
int ret, file_descriptor, rc;
char buf[]="Test text";

if ((file_descriptor = creat("test.output”, S IWSR))!= 0)
perror("creat() error");
el se {
if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))
perror("wite() error");
if (close(file _descriptor)!= 0)
perror("close() error");
}

if ((file_descriptor = open("test.output”, O RDONLY)) < 0)
perror("open() error");
el se {
ret = read(file_descriptor, buf, sizeof(buf)-1));
buf[ret] = 0x00;
printf("block read: \n<%>\", buf);
if (close(file _descriptor)!= 0)
perror("close() error");

if (unlink("test.output")!= 0)
perror("unlink() error");

Output:

bl ock read:
<Test text>

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

readv()--Read from Descriptor Using Multiple
Buffers

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ ui o. h>

int readv(int descriptor,
struct iovec *io_vector[],
i nt vector_| ength)

Threadsafe: Conditional; see Usage Notes.

The readv() function is used to receive data from afile or socket descriptor. readv() provides away for data
to be stored in several different buffers (scatter/gather 1/0).

See read()--Read from Descriptor for more information related to reading from a descriptor.

Parameters

descriptor
(Input) The descriptor to be read. The descriptor refersto afile or a socket.

io_vector(]

(I/0) The pointer to an array of type struct iovec. struct iovec contains a sequence of pointers to
buffersin which the datato be read is stored. The structure pointed to by theio_vector parameter is
defined in <sys/uio.h>.

struct iovec {
voi d *j ov_base;
size_t i ov_len;

}

iov_baseandiov_len arethe only fieldsin iovec used by sockets. iov_base contains the pointer to a
buffer and iov_len contains the buffer length. The rest of the fields are reserved.

vector_length
(Input) The number of entriesinio_vector.

Authorities

No authorization is required.

Return Value

readv() returns an integer. Possible values are:
o -1 (unsuccessful)
N (successful), where nisthe number of bytes read.

Error Conditions

If readv() is not successful, errno usualy indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCES

[EAGAIN]

[EBADF]

[EBADFID]

[EBUSY]

Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations
to file permissions at the server are not reflected at the client until updates to data that
is stored locally by the Network File System take place. (Several options on the Add
Mounted File System (ADDMFS) command determine the time between refresh
operations of local data.) Accessto aremote file may also fail due to different
mappings of user IDs (UID) or group IDs (GID) on the local and remote systems.

This may occur if file_descriptor refersto a socket and the socket isusing a
connection-oriented transport service, and a connect() was previously completed. The
thread, however, does not have the appropriate privileges to the objects that were
needed to establish a connection. For example, the connect() required the use of an
APPC device that the thread was not authorized to.

Operation would have caused the process to be suspended.

Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or a
read or write request was made to afile that is not open for that operation.

A given file descriptor or directory pointer isnot valid for this operation. The
specified descriptor isincorrect, or does not refer to an open file. Or, thisreadv
request was made to afile that was only open for writing.

A file ID could not be assigned when linking an object to a directory.
Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCL STG) command as soon as
possible.

Resource busy.

An attempt was made to use a system resource that is not available at thistime.

[EDAMAGE] A damaged object was encountered.
A referenced object is damaged. The object cannot be used.
[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not
valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

Z[EINTR] Interrupted function call .4

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on
an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

This may occur if file_descriptor refersto a socket that is using a connectionless
transport service, is not a socket of type SOCK _RAW and is not bound to an address.

Thefileresidesin afile system that does not support large files, and the starting
offset of the file exceeds 2 GB minus 2 bytes.

[EIO] Input/output error.
A physical I/O error occurred.
A referenced object may be damaged.
[ENOMEM] Storage allocation request failed.
A function needed to allocate storage, but no storage is available.
Thereis not enough memory to perform the requested function.
[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) isnot available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the independent
ASP.

[ENOTSAFE] Function is not alowed in ajob that is running with multiple threads.

[EOVERFLOW] Object istoo large to process.
The object's data size exceeds the limit allowed by this function.

Thefileisaregular file, nbyteis greater than 0O, the starting offset is before the
end-of-file and is greater than or equal to 2GB minus 2 bytes.

#[ERESTART] A system call was interrupted and may be restarted. &

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have
been deleted at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errorsthat are indicated, then retry the operation.

When the descriptor refersto a socket, errno could indicate one of the following errors:
[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

« Theretransmission limit has been reached for data that was being sent on
the socket.

« A protocol error was detected.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.
[EINTR] Interrupted function call.
[ENOTCONN] Requested operation requires a connection.

Thiserror code is returned only on sockets that use a connection-oriented
transport service.

[ETIMEDOUT] A remote host did not respond within the timeout period.

A non-blocking connect() was previously completed that resulted in the
connection timing out. No connection is established. This error code is returned
only on sockets that use a connection-oriented transport service.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

[EWOULDBLOCK] Operation would have caused the process to be suspended.

If interaction with afile server isrequired to access the object, errno could indicate one of the following
errors:

[EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED]

[ECONNRESET]

[EHOSTDOWN]

[EHOSTUNREACH]

[ENETDOWN]

[ENETRESET]

[ENETUNREACH]

[ESTALE]

[ETIMEDOUT]

[EUNATCH]

Error Messages

The destination socket refused an attempted connect operation.

A connection with aremote socket was reset by that socket.

A remote host is not available.

A route to the remote host is not available.

The network is not currently available.

A socket is connected to a host that is no longer available.

Cannot reach the destination network.

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

A remote host did not respond within the timeout period.

The protocol required to support the specified address family is not available at
thistime.

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

CPFAO081 E Unable to set return value or error code.

CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:

o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys

» User-defined

= ONTC

= QSYS.LIB

» ZIndependent ASP QSYS.LIB 4
= QOPT

2. Theio_vector[] parameter is an array of struct iovec structures. When areadv() isissued, the
system processes the array elements one at atime, starting with io_vector[Q]. For each element,
iov_len bytes of received data are placed in storage pointed to by iov_base. Datais placed in
storage until all buffers are full, or until there is no more datato receive. Only the storage pointed
to by iov_base is updated. No change is made to theiov_len fields. To determine the end of the
data, the application program must use the following:

o The function return value (the total number of bytes received).
o Thelengths of the buffers pointed to by iov_base.

3. For sockets that use a connection-oriented transport service (for example, sockets with atype of
SOCK_STREAM), areturned value of zero indicates one of the following:

The partner program hasissued a close() for the socket.

The partner program has issued a shutdown() to disable writing to the socket.

o The connection is broken and the error was returned on a previously issued socket function.
A shutdown() to disable reading was previously done on the socket.

O

(]

[}

4. The following applies to sockets that use a connectionless transport service (for example, a socket
with atype of SOCK_DGRAM):

o If aconnect() has been issued previoudly, then data can be received only from the address
specified in the previous connect().

o The address from which datais received is discarded, because the readv() has no address
parameter.

o The entire message must be read in asingle read operation. If the size of the messageistoo
large to fit in the user-supplied buffers, the remaining bytes of the message are discarded.

o A returned value of zero indicates one of the following:
= The partner program has sent aNULL message (a datagram with no user data).
= A shutdown() to disable reading was previously done on the socket.

= The buffer length specified by the application was zero.

5. For thefile systems that do not support large files, readv() will return [EINVAL] if the starting
offset exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that
do support large files, readv() will return [EOVERFLOW] if the starting offset exceeds 2GB minus
2 bytes and file was not opened for large file access.

6. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If alarger buffer is passed, the error EINVAL will
be received.

7. QOPT File System Differences

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being read are ignored.

8. Using this function successfully on the /dev/null Zror /dev/zero “character special fileresultsin a
return value of 0. In addition, the access time for the file is updated.

Related Information

o The<limits.h> file (see Header Files for UNIX-Type Functions)
o The<unistd.h> file (see Header Files for UNIX-Type Functions)
« creat()--Create or Rewrite File

« dup()--Duplicate Open File Descriptor

« dup2()--Duplicate Open File Descriptor to Another Descriptor

« fentl()--Perform File Control Command
« ioctl()--Perform I/O Control Request

o Iseek()--Set File Read/Write Offset

« open()--Open File

« read()--Read from Descriptor

« recv()--Receive Data

o recvfrom()--Receive Data

« recvmsg()--Receive Data or Descriptors or Both

o write()--Write to Descriptor

« writev()--Write to Descriptor Using Multiple Buffers

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

recv()--Receive Data

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int recv(int socket descriptor,
char *buffer,

int buffer_I|ength,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

ssize_t recv(int socket _descriptor,
void *buffer,

size_t buffer_Ilength,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&

The recv() function is used to receive data through a socket.

There are two versions of the API, as shown above. The base 05400 APl uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. &

Parameters

socket_descriptor
(Input) The socket descriptor that isto be read from.

buffer
(Input) The pointer to the buffer in which the data that isto be read is stored.

buffer_length
(Input) The length of the buffer.

flags

(Input) A flag value that controls the reception of the data. The flags value is either zero, or is
obtained by performing an OR operation on one or more of the following constants:

MSG_0O0B Receive out-of-band data. Valid only for sockets with an address family of
AF_INET # or AF_INET6 4 and type SOCK_STREAM.

MSG_PEEK Obtain a copy of the message without removing the message from the
socket.

AMSG_WAITALL Wait for afull request or an error.<X

Authorities

No authorization is required.

Return Value

recv() returns an integer. Possible values are:
o -1 (unsuccessful)

« N (successful), where n isthe number of bytes received.

Error Conditions

When recv() fails, errno can be set to one of the following:
[EACCEY Permission denied.

The socket pointed to by the socket_descriptor parameter isusing a
connection-oriented transport service, and a connect() was previously completed.
The process, however, does not have the appropriate privileges to the objects that
were needed to establish a connection. For example, the connect() required the
use of an APPC device that the process was not authorized to.

[EBADF]

[ECONNABORTED)]

[ECONNREFUSED]

[ECONNRESET]

[EFAULT]

[EINTR]

[EINVAL]

[EIO]

[ENOBUFS

[ENOTCONN]

[ENOTSOCK]

Descriptor not valid.

Connection ended abnormally.

This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

« Theretransmission limit has been reached for data that was being sent on
the socket.

« A protocol error was detected.

The destination socket refused an attempted connect operation.

A connection with a remote socket was reset by that socket.

Bad address.

The system detected an address which was not valid while attempting to access
the buffer parameter.

Interrupted function call.

Parameter not valid.
This error code indicates one of the following:

« Thebuffer_length parameter specifies a negative value.

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but no OOB data was available to be received.

« Theflags parameter specifies a value that includes the MSG_OOB flag,
and the socket option SO_OOBINLINE has been set.

« Thesocket_descriptor parameter points to a socket that isusing a
connectionless transport service, is not a socket of type SOCK_RAW,
and is not bound to an address.

Input/output error.

Thereis not enough buffer space for the requested operation.

Requested operation requires a connection.

Thiserror code is returned only on sockets that use a connection-oriented
transport service.

The specified descriptor does not reference a socket.

[EOPNOTSUPP]

[ETIMEDOUT]

[EUNATCH]

[EUNKNOWN]

[EWOULDBLOCK]

Operation not supported.

This error code indicates one of the following:

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but the socket_descriptor parameter points to a connectionless socket.

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but the socket_descriptor parameter points to a socket that does not have
an address family of AF_INET#* or AF_INET6 4.

A remote host did not respond within the timeout period.

A nonblocking connect() call was previously done that resulted in the connection
establishment timing out. No connection is established. This error codeis
returned only on sockets that use a connection-oriented transport service.

The protocol required to support the specified address family is not available at
thistime.

Unknown system state.

Operation would have caused the thread to be suspended.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAO081 E Unable to set return value or error code.

Usage Notes

1. For sockets that use a connection-oriented transport service (for example, sockets with a type of
SOCK_STREAM), areturned value of zero indicates one of the following:

o The partner program has issued a close() for the socket.

o The partner program has issued a shutdown() to disable writing to the socket.

o The connection is broken and the error was returned on a previously issued socket function.

o A shutdown() to disable reading was previously done on the socket.

2. Thefollowing applies to sockets that use a connectionless transport service (for example, a socket
with atype of SOCK_DGRAM):

o If aconnect() has been issued previoudy, then data can be received only from the address
specified in the previous connect().

o The address from which dataisreceived is discarded, since the recv() has no address
parameter.

o The entire message must be read in asingle read operation. If the size of the message is too
large to fit in the user supplied buffer, the remaining bytes of the message are discarded.

o A returned value of zero indicates one of the following:
= The partner program has sent aNULL message (a datagram with no user data),

= A shutdown() to disable reading was previously done on the socket.

= The buffer length specified was zero.

3. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the recv() APl is mapped to
gso_recvog(). <

Related Information

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

fentl()--Perform File Control Command

ioctl()--Perform 1/O Control Request

recvfrom()--Receive Data

recvmsg()--Receive Data or Descriptors or Both

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

recvirom()--Receive Data

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int recvfron(int socket_descriptor,
char *buffer,
int buffer_|ength,
int flags,
struct sockaddr *from address,
i nt *address_| engt h)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

=

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

ssize_t recvfron(int socket_descriptor,
voi d *buffer,
size_t buffer_|ength,
int flags,
struct sockaddr *from address,
sockl en_t *address_| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&

The recvfrom() function is used to receive data through a connected or unconnected socket.

2 There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and syntax. The other uses
syntax and structures compatible with the UNIX 98 programming interface specifications. Y ou can select the UNIX 98
compatible interface with the _XOPEN_SOURCE macro. 4

Parameters

socket_descriptor
(Input) The socket descriptor that isto be read from.

buffer
(Input) The pointer to the buffer in which the datathat is to be read is stored.

buffer_length
(Input) The length of the buffer.

int flags

(Input) A flag value that controls the reception of the data. The flags valueis either zero, or is obtained by performing an
OR operation on one or more of the following constants:

MSG_00B Receive out-of-band data. Valid only for sockets with an address family of AF_INET#* or
AF_INET6% and type SOCK_STREAM.

MSG_PEEK Obtain a copy of the message without removing the message from the socket.
BMSG_WAITALL Wait for afull request or an error. 4

from_address
(Output) A pointer to a buffer of type struct sockaddr that contains the address from which the message was received.

The structure sockaddr is defined in <sys/socket.h>.

The BSD 4.3 structureis:

struct sockaddr {
u_short sa_famly;
char sa_dat a[14];
b

The BSD 4.4/UNIX 98 compatible structureis:

t ypedef uchar sa_famly_t;

struct sockaddr {

uint8_t sa_| en;
sa_famly_ t sa_fanmily;
char sa_dat a[14] ;

b

The BSD 4.4 sa_len field is the length of the address. € The sa_family field identifies the address family to which the
address belongs, and sa_data is the address whose format is dependent on the address family.

% Note: See the usage notes about using different address families with sockaddr _storage.
&

address_length

(Input/output) This parameter is avalue-result field. The caller passes a pointer to the length of the from_address
parameter. On return from the call, address_length will contain the actua length of the address.

Authorities

An errno of EACCES s returned when the socket pointed to by the socket_descriptor field is address family AF_INET and a
nonblocking connect was attempted previously and was not successful. The nonblocking connect was not successful because the
thread did not have authority to the associated APPC device. The thread performing the nonblocking connect must have retrieve,
insert, delete, and update authority to the APPC device.

Return Value

recvirom() returns an integer. Possible values are:
o -1 (unsuccessful)
« n(successful), where n isthe number of bytes received.

Error Conditions

When recvfrom() fails, errno can be set to one of the following:
[EACCEY Permission denied.
The socket pointed to by the socket_descriptor parameter is using a connection-oriented transport
service, and a connect() was previously completed. The process, however, does not have the

appropriate privileges to the objects that were needed to establish a connection. For example, the
connect() required the use of an APPC device that the process was not authorized to.

[EBADF] Descriptor not valid.

[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection abnormally because of one of
the following:

« Theretransmission limit has been reached for data that was being sent on the socket.
« A protocol error was detected.

[ECONNREFUSED] The destination socket refused an attempted connect operation.
[ECONNRESET] A connection with aremote socket was reset by that socket.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the buffer,
from_address, or address_length parameter.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.
This error code indicates one of the following:

« The buffer_length parameter specifies a negative value.

« Theflags parameter specifies avalue that includes the MSG_OOB flag, but no OOB data was
available to be received.

« Theflags parameter specifies avalue that includes the MSG_OOB flag, and the socket option
SO_OOBINLINE has been set.

« Thesocket_descriptor parameter points to a socket that is using a connectionless transport
service, is not a socket of type SOCK_RAW, and is not bound to an address.

[EIO] Input/output error.

[ENOBUFY Thereis not enough buffer space for the requested operation.

[ENOTCONN]

[ENOTSOCK]

[EOPNOTSUPP]

[ETIMEDOUT]

[EUNATCH]

[EUNKNOWN]

[EWOULDBLOCK]

Requested operation requires a connection.
Thiserror codeis returned only on sockets that use a connection-oriented transport service.

The specified descriptor does not reference a socket.

Operation not supported.

This error code indicates one of the following:

« The flags parameter specifies a value that includes the MSG_OOB flag, but the
socket_descriptor parameter points to a connectionless socket.

« The flags parameter specifies a value that includes the MSG_OOB flag, but the
socket_descriptor parameter points to a socket that does not have an address family of
AF_INET# or AF_INET64,

A remote host did not respond within the timeout period.

A non-blocking connect() was previously issued that resulted in the connection establishment timing
out. No connection is established. This error code is returned only on sockets that use a
connection-oriented transport service.

The protocol required to support the specified address family is not available at thistime.

Unknown system state.

Operation would have caused the thread to be suspended.

Error Messages

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAOQ81 E Unable to set return value or error code.

Usage Notes

1. For sockets that use a connection-oriented transport service (for example, sockets with atype of SOCK_STREAM), a
returned value of zero indicates one of the following:

o The partner program has issued a close() for the socket.

o The partner program has issued a shutdown() to disable writing to the socket.

o The connection is broken and the error was returned on a previously issued socket function.

o A shutdown() to disable reading was previously done on the socket.

2. If the socket is using a connection-oriented transport service, the from_address and address_|length parameters are

ignored.

3. Thefollowing applies to sockets that use a connectionless transport service (for example, a socket with atype of
SOCK_DGRAM):

o If aconnect() has been issued previously, then data can be received only from the address specified in the
previous connect().

o If the from_address parameter is set to NULL or address_length specifies avalue of zero, the address from which
datais received is discarded by the system.

o If thelength of the address to be returned exceeds the length of the from_address parameter, the returned address
is truncated.

o #The structure sockaddr is a generic structure used for any address family but it is only 16 bytes long. The
actual address returned for some address families may be much larger. Y ou should declare storage for the address
with the structure sockaddr _storage. This structure is large enough and aligned for any protocol-specific
structure. It may then be cast as sockaddr structure for use on the APIs. The ss family field of the
sockaddr_storage will always align with the family field of any protocol-specific structure.

The BSD 4.3 structureis:

#defi ne _SS MAXSI ZE 304

#define _SS ALI GNSI ZE (si zeof (char*))

#def i ne _SS PAD1SI ZE (_SS ALI GNSI ZE - sizeof (sa_fanmily_t))

#define _SS PAD2SI ZE (_SS MAXSI ZE - (sizeof(sa_famly_t)+
_SS PADISI ZE + _SS ALl GNSI ZE))

struct sockaddr_storage {
sa_famly_t ss_famly;

char _ss_padl[_SS_PAD1SI ZE] ;
char* _ss_align;
char _ss_pad2[_SS_PAD2SI ZE] ;

b
The BSD 4.4/UNIX 98 compatible structureis:

#defi ne _SS MAXSI ZE 304
#define _SS ALI GNSI ZE (si zeof (char*))
#define _SS PAD1SIZE (_SS ALI GNSI ZE - (sizeof (uint8_t) +
sizeof (sa_famly_t)))
#define _SS PAD2SI ZE (_SS _MAXSI ZE - (sizeof (uint8_t) + sizeof(sa_famly_t)+
_SS PADISI ZE + _SS ALI GNSI ZE))

struct sockaddr_storage {

uint8_t ss_len;
sa_famly_t ss_famly;
char _ss_padl[_SS_PAD1SI ZE] ;
char* _ss_align;
char _Ss_pad2[_SS_PAD2SI ZE] ;
b
&

o If the socket is using an address family of AF_UNIX, the address (which is a path name) is returned in the default
coded character set identifier (CCSID) currently in effect for the job.

o If the socket is using an address family of AF_UNIX_CCSID, the output structure sockaddr_unc defines the
format and coded character set identifier (CCSID) of the address (which is a path name).

o The entire message must be read in a single read operation. If the size of the message istoo large to fit in the user
supplied buffer, the remaining bytes of the message are discarded.

o A returned value of zero indicates one of the following:
= The partner program has sent a NULL message (a datagram with no user data).

= A shutdown() to disable reading was previously done on the socket.

= The buffer length specified was zero.

4. ®When you develop in C-based languages and an application is compiled with the X OPEN_SOURCE macro defined to
the value 520 or greater, the recvirom() API is mapped to gso_recvirom98().%

Related Information

o & XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interfaced

« fentl()--Perform File Control Command

« ioctl()--Perform /O Control Request

« recv()--Receive Data

« recvmsg()--Receive Data or Descriptors or Both

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

recvmsg()--Receive Data or Descriptors or Both

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int recvinsg(int socket descriptor,

struct nsghdr *message_structure,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

ssize_t recvneg(int socket _descriptor,

struct nsghdr *nmessage_structure,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&

The recvmsg() function is used to receive data or descriptors or both through a connected or unconnected
socket.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. &

Parameters

socket_descriptor
(Input) The socket descriptor that isto be read from.

message_structure
(1/O) The pointer to the message structure that contains the following:
o The address from which the message was received

o Thevector array in which the data received is stored

o #The ancillary data/access rights list in which the received descriptors are stored
The structure pointed to by the message _structure parameter is defined in <sys/socket.h>.

The BSD 4.3 structureis:

struct nmsghdr {

caddr t nMsg_nane;

i nt nmsg_nanel en;
struct iovec *msg_i ov;

i nt neg_i ovl en;

caddr _t nmsg_accri ghts;

i nt nmsg_accri ghtsl en;

1
The BSD 4.4/UNIX 98 compatible structure is:

struct nsghdr {

voi d *nNBQg_nhane;

sockl en_t nsg_nanel en;
struct iovec *nsg_iov;

i nt neg_i ovl en;

voi d *nsg_control ;
sockl en_t nmsg_controllen;
i nt nmsg_fl ags;

b
&

The msg_name and msg_namelen fields contain the address and address length to which the
message is sent. For further information on the structure of socket addresses, see Sockets

Programming in the i Series Information Center. If the msg_name field is set to aNULL pointer, the
address information is not returned.

The msg_iov and msg_iovlien fields are for scatter/gather 1/0.

The BSD 4.3 structure uses the msg_accrights and msg_accrightsien fields to pass descriptors.
The msg_accrightsfield isalist of zero or more descriptors, and msg_accrightslen isthe total
length (in bytes) of the descriptor list.

The BSD 4.4/UNIX 98 compatible structure uses the msg_control and msg_controllen fields to
pass descriptors. The msg_control field is a pointer to ancillary data (of length msg_controllen)
with the form:

struct cmeghdr {
socklen_t cnsg_| en;
i nt cnsg_| evel ;
i nt cnsg_type;

s

The cmsg_len field isthe total length including this header. cmsg_level is the originating protocol.
cmsg_lenisthe protocol-specific type. To pass descriptors, cmsg_level is set to SOL_SOCKET and
cmsg_typeisset to SCM_RIGHTS. The rest of the buffer isalist of zero or more descriptors.

Macros are provided for navigating these structures.

o CMSG_DATA(cmsg) If the argument is a pointer to a cmsghdr structure, this macro returns
an unsigned character pointer to the data array associated with the cmsghdr structure.

o CMSG_NXTHDR(mhdr,cmsg) If the first argument is a pointer to a msghdr structure and
the second argument is a pointer to a cmsghdr structure in the ancillary data, pointed to by
the msg_control field of that msghdr structure, this macro returns a pointer to the next
cmsghdr structure, or anull pointer if this structure is the last cmsghdr in the ancillary data.

o CMSG_FIRSTHDR(mhdr) If the argument is a pointer to a msghdr structure, this macro
returns a pointer to the first cmsghdr structure in the ancillary data associated with this
msghdr structure, or anull pointer if thereis no ancillary data associated with the msghdr
structure.

The BSD 4.4/UNIX 98 compatible structure has the msg_flags for message level flags including:

o MSG_TRUNC Message data was truncated

o MSG_CTRUNC Ancillary data was truncated.

o MSG_EOR End of record (if supported by the protocol).

o MSG_OOB Out-of-band data.

&
flags
(Input) A flag value that controls the reception of the data. The flags value is either zero, or is
obtained by performing an OR operation on one or more of the following constants:
MSG_00B Receive out-of-band data. Valid only for sockets with an address family of
AF_INET2 or AF_INET64 and type SOCK_STREAM.
MSG_PEEK Obtain a copy of the message without removing the message from the
socket.
AMSG_WAITALL Wait for afull request or an error.<X
Authorities

« Anerrno of EACCES s returned when the socket pointed to by the socket descriptor field is

address family AF_INET and a nonblocking connect was attempted previously and was not
successful. The nonblocking connect was not successful because the thread did not have authority
to the associated APPC device. The thread performing the nonblocking connect must have retrieve,
insert, delete, and update authority to the APPC device.

« If thisthread is receiving socket descriptors, it must have * ALLOBJ special authority or must be
running under the same user profile as the thread that sent the descriptors using sendmsg. If both of
these conditions are not true, the descriptors are reclaimed by the machine and an errno of
EACCES sreturned.

Return Value

recvmsg() returns an integer. Possible values are:
o -1 (unsuccessful)

« N (successful), where n isthe number of bytes received.

Error Conditions

When recvmsg() fails, errno can be set to one of the following:
[EACCEY Permission denied.

The socket pointed to by the socket_descriptor parameter isusing a
connection-oriented transport service, and a connect() was previously completed.
The process, however, does not have the appropriate privileges to the objects that
were needed to establish a connection. For example, the connect() required the
use of an APPC device that the process was not authorized to.

If the msg_accrights and msg_accrightslen fields #* (or the BSD 4.4/UNIX 98
compatible fields msg_control and msg_controllen) <% were specified, this error
indicates that this job does not have the appropriate privileges required to receive
the descriptor. When this occurs, the descriptor is reclaimed by the system and
the resource that it represented is closed.

[EBADF] Descriptor not valid.

[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

« Theretransmission limit has been reached for data that was being sent on
the socket.

« A protocol error was detected.

[ECONNREFUSED] The destination socket refused an attempted connect operation.
[ECONNRESET] A connection with aremote socket was reset by that socket.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access
the message_structure parameter or afield within the structure pointed to by the
message_structure parameter.

[EINTR]

[EINVAL]

[EIO]

[EMFILE]

[EMSGSIZE]

[ENOBUFS

[ENOTCONN]

[ENOTSOCK]

Interrupted function call.

Parameter not valid.

This error code indicates one of the following:

The msg_iovien field or theiov_len field in aiovec structure specifiesa
negative vaue.

The flags parameter specifies avalue that includesthe MSG_OOB flag,
but no OOB data was available to be received.

The flags parameter specifies avalue that includesthe MSG_OOB flag,
and the socket option SO_OOBINLINE has been set.

The socket_descriptor parameter points to a socket that isusing a
connectionless transport service, is not a socket of type SOCK_RAW,
and is not bound to an address.

The msg_accrightslen field &+ (or the BSD 4.4/UNIX 98 compatible
field msg_controllen) € in the msghdr structure specifies a negative
value# or is not large enough to hold at least one descriptor when
msg_accrights #* (or the BSD 4.4/UNIX 98 compatible fields
msg_control) 4% was specified. €

Input/output error.

Too many descriptions for this process.

Message size out of range.

The msg_iovien field specifies avalue that is greater than [MSG_MAXIOVLEN]
(defined in <sys/socket.h>).

Thereis not enough buffer space for the requested operation.

Requested operation requires a connection.

This error code is returned only on sockets that use a connection-oriented
transport service.

The specified descriptor does not reference a socket.

[EOPNOTSUPP]

[ETIMEDOUT]

[EUNATCH]

[EUNKNOWN]

[EWOULDBLOCK]

Operation not supported.

This error code indicates one of the following:

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but the socket_descriptor parameter points to a connectionless socket.

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but the socket_descriptor parameter points to a socket that does not have
an address family of AF_INET#* or AF_INET64.

A remote host did not respond within the timeout period.

A non-blocking connect() was previously issued that resulted in the connection
establishment timing out. No connection is established. This error codeis
returned only on sockets that use a connection-oriented transport service.

The protocol required to support the specified address family is not available at
thistime.

Unknown system state.

Operation would have caused the thread to be suspended.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAO081 E Unable to set return value or error code.

Usage Notes

1. Thefollowing applies to sockets that use a connection-oriented transport service (for example,
sockets with atype of SOCK_STREAM),

o Themsg_name and msg_namelen fields in the structure pointed to by the
message_structure parameter are ignored.

o A returned value of zero indicates one of the following:

= The partner program has issued a close() for the socket.

= The partner program has issued a shutdown() to disable writing to the socket.

= The connection is broken and the error was returned on a previously issued socket
function.

= A shutdown() to disable reading was previously done on the socket.

2. Thefollowing applies to sockets that use a connectionless transport service (for example, a socket
with atype of SOCK_DGRAM):

o If aconnect() has been issued previoudly, then data can be received only from the address
specified in the previous connect().

o If themsg_namefield isset to NULL or msg_namelen field specifies avalue of zero, the
address from which datais received is discarded.

o If the length of the address to be returned exceeds the length specified by the msg_namelen
field, the returned address is truncated.

o If the socket isusing an address family of AF_UNIX, the address (which is a path name) is
returned in the default coded character set identifier (CCSID) currently in effect for the job.

o If the socket isusing an address family of AF_UNIX_CCSID, the output structure
sockaddr_unc defines the format and coded character set identifier (CCSID) of the address
(which is a path name).

o The entire message must be read in asingle read operation. If the size of the message is too
large to fit in the user supplied buffer, the remaining bytes of the message are discarded.

o A returned value of zero indicates one of the following:
= The partner program has sent aNULL message (a datagram with no user data).

= A shutdown() to disable reading was previously done on the socket.

= The buffer length specified was zero.

3. The passing of descriptorsis only supported over sockets that have an address family of AF_UNIX
or AF_UNIX_CCSID. The msg_accrightslen and the msg_accrights fields * (or the BSD
4.4/UNIX 98 compatible fields msg_control and msg_controllen) < are ignored if the socket has
any other address family. The value of msg_accrightsien #* (or the BSD 4.4/UNIX 98 compatible
field msg_controllen) € should be checked to determine if a descriptor has been returned. When
you use sendmsg() and recvmsg() to pass descriptors, the target job must be running with either of
the following:

o The same user profile as the source job (in essence, passing the descriptor to yourself)
o *ALLOBJspecia authority

If the target job closes the receiving end of the UNIX domain socket while a descriptor isin transit,
the descriptor is reclaimed by the system, and the resource that it represented is closed. For files
and directories, the ability to pass descriptors using sendmsg() and recvmsg() is only supported for
objectsin the root and QOpenSysfile systems.

Note: The recvmsg() API will not block unless a data buffer is specified.

4. recvmsg() accepts a pointer to an array of iovec structuresin the msghdr structure. The msg_iovien
field is used to determine the number of elementsin the array (the number of iovec structures
specified). When recvmsg() isissued, the system processes the array elements one at atime,
starting with the first structure. For each element of the array (for each structure), iov_len bytes of
received data are placed in storage pointed to by iov_base. Datais placed in storage until all buffers
arefull, or until there is no more datato receive. Only the memory pointed to by iov_baseis
updated. No change is made to theiov_len fields. To determine the end of the data, the application
program must use the following:

o The function return value (the total number of bytes received).

o Thelengths of the buffers pointed to by iov_base.

5. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the recvmsg() APl is mapped to
gso_recvmsg98() 4%

Related Information

« For additional information and sample programs on how to use sendmsg() and recvmsg() to pass
descriptors between system jobs, see Sockets Programming in the i Series Information Center.

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

o fentl()--Perform File Control Command

o ioctl()--Perform I/O Control Request

« givedescriptor()--Pass Descriptor Access to Another Job

« recv()--Receive Data

« recvfrom()--Receive Data

o takedescriptor()--Receive Socket Access from Another Job

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

rexec()--Issue a Command on a Remote Host

Syntax

#i ncl ude <ar pal/rexec. h>

i nt rexec(char **host,
int port,
char *user,
char *password,
char *conmand,
int *errorDescriptor);

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The rexec() function is used to open a connection to aremote host and send a user 1D, password, and
command to the remote host. The remote host verifies that the user ID and password are valid. The
command isissued after the user ID and password are validated.

Parameters

host (Input)
A pointer to a character string that identifies the name of aremote host.

port (Input)

The well-known Internet port to use for the connection. A pointer to the structure containing the
necessary port can be obtained by issuing the following call:

get servbynane("exec", "tcp");
The port returned by getservbyname() is the port on which the remote host is listening for incoming
rexec() connections.
user (Input)
A character string that identifies avalid user on the remote host.

password (Input)

A character string that identifies the password for the user on the remote host. Specify a value of
NULL if password security is not active on the remote host.

command (Input)
A character string that identifies the command to be issued on the remote host.

errorDescriptor (Input/Output)
One of the following values:

non-NULL A second connection is set up and that a descriptor for it is placed in the
errorDescriptor parameter. This connection provides standard error results of the
remote command. Thisinformation al so includes remote authorization failure if
rexec() is unsuccessful.

NULL The standard error results of the remote command are the same as the standard
output return value.

Return Value

rexec() returns an integer. Possible values are:
Non-negative

(successful) A socket to the remote command is returned and can be used to receive results of
running the command on the remote host.

o If errorDescriptor is non-NULL, standard error results of running the command on the
remote host can be received by using the errorDescriptor.

o |If errorDescriptor is NULL, standard error results of running the command on the remote
host can be received with the standard output results by using the return value from rexec().

[-1]
(unsuccessful) Refer to errno for a description of the failure.

o If errnois 0 and errorDescriptor isNULL, the host does not exist or remote authorization
failed.

o If errnois 0 and errorDescriptor is-1, the host does not exist.
o If errnois 0 and errorDescriptor is non-negative, remote authorization failed.

Authorities

No authorization is required.

Error Conditions

When the rexec() API fails, errno can be set to one of following:

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error occurs when the rexec server on the remote system is not active.

[ECONNRESET]

[EFAULT]

[EHOSTUNREACH]
[EINTR]

[EINVAL]
[EMFILE]

[ENFILE]

[EPIPE]

[ETIMEDOUT]

[EUNATCH]

[EUNKNOWN]

Usage Notes

A connection with aremote socket was reset by that socket.

Bad address.

System detected an address which was not valid while attempting to access the
address parameters.

A route to the remote host is not available.

Interrupted function call.

Parameter not valid.

Too many descriptors for this process.

Too many descriptorsin system.

Broken pipe.

A remote host did not respond within the timeout period.

This error code is returned when connection establishment times out. No

connection is established. A possible cause may be that the partner application is
bound, but the partner application has not yet issued alisten().

The protocol required to support address family AF_INET, is not available at
thistime.

Unknown system state.

« The password does not get encrypted while sent to the rexec server.

« Any results of the command received by the caller of rexec() are not converted from CCSID 819.
Conversion from ASCII ccsid 819 to the CCSID of the process or thread is the caler's

responsibility.

« If aremote authorization failure occurs, the return value will be -1 and if errorDescriptor is
non-null a message indicating the authorization failure can be received with the socket descriptor
from errorDescriptor.

« Any socket descriptor returned to the caller of rexec() must be explicitly closed by the caller.

o The user, password, and command will be translated from the job ccsid to ASCII ccsid 819 to be

sent to the remote host.
« Issuing rexec() to aremote host that is configured to set up a SOCK Sified connection is not
supported.

Related Information

o rexec r()--Issue a Command on a Remote Host

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rexec() is used:

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <qtgi conv. h>
#i ncl ude <arpa/rexec. h>
#i ncl ude <errno. h>

#defi ne Buf Len 256
voi d main()

int sd = -1, rc;

int responseLen = BufLen;

int outbytesleft = BuflLen;

int bytesRead, saveBytesRead;
struct servent serv_ent;

struct servent data serv_ent dat a;
char i nbuf[BufLen];

char out buf [Buf Len] ;

char *inbufPtr = (char *)inbuf;
char *outbufPtr = (char *)outbuf;
iconv_t cd;

Q qCode_T t oCode
Q qCode T fromCode
char *host;

char renoteHost[256] = "renpt eHost";
char user[32] = "userNane";

char password[32] = "nyPassword";
char cnd[256] = "conmandToRun";

int *errordesc = NULL;

{0,0,0,0,0,0}; /* Convert to job CCSID */
{819,0,0,1,0,0}; /* ASCI| CCSID */

/* Must zero this out before call or results will be unpredictable. */
nmenset (&serv_ent _data. serve_control bl k, 0x00, sizeof(struct
netdb_control bl ock));

/* retrieve the rexec server port nunber */
rc = getservbynane_r("exec", "tcp", &serv_ent, &serv_ent data);
if (rc <0)

printf("getservbynanme r() failed with errno = %\ n", errno);

host = renot eHost ;
errno = O;

/* |Issue the rexec APl */
sd = rexec(&host, serv_ent.s port, user, password, cnd, errordesc);

if (sd == -1) /* check if rexec() failed */
{
if (errno)
printf("rexec() failed with errno = %\ n", errno);
el se
printf("Either the host does not exist or renpte authentication
failed.\n");
}

el se /* rexec() was successful */

byt esRead = recv(sd, inbuf, responseLen, 0);
if (bytesRead > 0)

saveByt esRead = byt esRead,;
i nbuf [bytesRead-1] = 0; /* Null termnate */
/* translate fromASCI| to EBCDIC */
cd = Qql convOpen(& oCode, &f rontCode);
i conv(cd,
(unsi gned char **)&i nbuf Ptr,
(unsi gned int *) &byt esRead,
(unsi gned char **)&out buf Ptr,
(unsigned int *)&outbytesleft);
i conv_cl ose(cd);
outbuf Ptr -= saveBytesRead; /* Reset the buffer pointers */
printf("%\n", outbufPtr);

}
else if (bytesRead == 0)

printf("The renote host closed the connection.\n");
el se

printf("recv() failed with errno = %d\n", errno);

if (sd!=-1)
close(sd); [/* close the connection. */
return;

}

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

rexec_r()--Issue a Command on a Remote Host

Syntax

#i ncl ude <ar pal/rexec. h>

int rexec_r(char **host,
int port,
char *user,
char *password,
char *command,
int *errorDescriptor,
struct hostent data *host Ent Dat a) ;

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Therexec _r() function is used to open a connection to aremote host and send auser 1D, password, and
command to the remote host. The remote host verifies that the user ID and password are valid. The
command will be issued after the user ID and password are validated.

Parameters

host (Input)
A pointer to a character string that identifies the name of aremote host.

port (Input)

The well-known Internet port to use for the connection. A pointer to the structure that contains the
necessary port can be obtained by issuing the following call:

struct servent servEnt;

struct servent data servEnt Dat a;

nenset (&ser vEnt Dat a. serve_control bl k, 0x00, sizeof(struct
netdb_control bl ock));

get servbynane_r("exec", "tcp", &servEnt, &servEntData);

The port returned by getservbyname r() isthe port that the remote host is listening on for incoming
rexec_r() connections.

user (Input)
A character string that identifies avalid user on the remote host.

password (Input)

A character string that identifies the password for the user on the remote host. Specify a value of
NULL if password security is not active on the remote host.

command (Input)
A character string that identifies the command to be issued on the remote host.

errorDescriptor (Input/Output)
One of the following values:

non-NULL A second connection is set up, and adescriptor for it isplaced in the
errorDescriptor parameter. This connection provides standard error results of the
remote command. Thisinformation will aso include remote authorization failure if
rexec() is unsuccessful.

NULL The standard error results of the remote command is the same as the standard
output return value.

hostEntData (Input/Output)

A pointer to the hostent_data structure, which is used to pass and preserve results between function
calls. rexec_r() performs a gethostbyname r() and each thread needs its own host data. The field
host_control_block in the hostent_data structure must be initialized to hexadecimal zeros before its
initial use. If compatibility with other platformsis required, then the entire hostent_data structure
must be initialized to hexadecimal zeros before itsinitial use. The hostent_data structure is defined
in <netdb.h>>.

Return Value

rexec_r() returns an integer. Possible values are:
Non-negative

(successful) A socket to the remote command is returned and can be used to receive results of
running the command on the remote host.

o If errorDescriptor is non-NULL, standard error results of running the command on the
remote host can be received by using the errorDescriptor.

o |If errorDescriptor is NULL, standard error results of running the command on the remote
host can be received along with the standard output results by using the return value from
rexec r().

[-1]
(unsuccessful) Refer to errno for a description of the failure.

o If errnois 0 and errorDescriptor isNULL, the host does not exist or remote authorization
failed.

o If errnois 0 and errorDescriptor is-1, the host does not exist.
o If errnois 0 and errorDescriptor is Non-negative, remote authorization failed.

Authorities

No authorization is required.

Error Conditions

When therexec_r() API fails, errno can be set to one of following:

[ECONNABORTED]

[ECONNREFUSED]

[ECONNRESET]

[EFAULT]

[EHOSTUNREACH]

[EINTR]

[EINVAL]

[EMFILE]

[ENFILE]

[EPIPE]

[ETIMEDOUT]

[EUNATCH]

[EUNKNOWN]

Connection ended abnormally.

The destination socket refused an attempted connect operation.
This error occurs when the rexec server on the remote system is not active.

A connection with aremote socket was reset by that socket.

Bad address.

System detected an address which was not valid while attempting to access the
address parameters.

A route to the remote host is not available.

Interrupted function call.

Parameter not valid.

This error code occurs when the hostEntData structure has not been initialized to
hexadecimal zeros. For corrective action, see the description for structure
hostent_data.

Too many descriptors for this process.

Too many descriptorsin system.

Broken pipe.

A remote host did not respond within the timeout period.

This error code is returned when connection establishment times out. No
connection is established. A possible cause may be that the partner application is
bound, but the partner application has not yet issued alisten().

The protocol required to support address family AF_INET, is not available at
thistime.

Unknown system state.

Usage Notes
« The password does not get encrypted while sent to the rexec server.

« Any results of the command received by the caller of rexec_r() are not converted from CCSID 819.
Conversion from ASCII ccsid 819 to the CCSID of the process or thread isthe caller's
responsibility.

« If aremote authorization failure occurs, the return value will be -1 and if errorDescriptor is
non-null a message indicating the authorization failure can be received with the socket descriptor
from errorDescriptor.

« Any socket descriptor returned to the caller of rexec_r() must be explicitly closed by the caller.

o The user, password, and command will be translated from the job ccsid to ASCII ccsid 819 to be
sent to the remote host.

« Issuing rexec_r() to aremote host that is configured to set up a SOCK Sified connection is not

supported.

Related Information

o rexec()--1ssue a Command on a Remote Host

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rexec r() is used:

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <qtgi conv. h>
#i ncl ude <arpa/rexec. h>
#i ncl ude <errno. h>

#defi ne Buf Len 256

voi d main()
{
int sd = -1, rc;
int responseLen = BufLen;
int outbytesleft = BuflLen;
int bytesRead, saveBytesRead;

struct hostent _data host_ent dat a;
struct servent serv_ent;

struct servent _data serv_ent _data;
char inbuf[BufLen];

char out buf[Buf Len];

char *inbufPtr = (char *)inbuf;
char *outbufPtr = (char *)outbuf;
i conv_t cd;

Q gCode T t oCode
Q gCode T fronCode
char *host;

char renoteHost[256] = "renoteHost";
char user[32] = "user Nanme";

char password[32] = "nmyPassword";
char cnd[256] = "commandToRun";

int *errordesc = NULL;

{0,0,0,0,0,0}; /* Convert to job CCSID */
{819,0,0,1,0,0}; /* ASCII CCsSID */

/* Must zero this out before call or results will be unpredictable. */
menset (&serv_ent _data. serve_control bl k, 0x00, sizeof(struct
net db_control bl ock));

/* retrieve the rexec server port nunber */
rc = getservbynane_r("exec", "tcp", &serv_ent, &serv_ent _data);
if (rc <0)

printf("getservbyname r() failed with errno = %\ n", errno);

/* must zero this out before call or results will be unpredictable. */
menset ((voi d *)&ost _ent _data. host _control bl k, 0x00, sizeof(struct
net db_control bl ock));
host = renot eHost ;
errno = O;

/* issue the rexec_r api */
sd = rexec_r(&host, serv_ent.s port, user, password, cnd, errordesc,
&host _ent data);

if (sd == -1) /* check if rexec_r() failed */
if (errno)
printf("rexec r() failed with errno = %\ n", errno);
el se

printf("Either the host does not exist or renpte authentication
failed.\n");

else /* rexec_r() was successful */

{
byt esRead = recv(sd, inbuf, responseLen, 0);
if (bytesRead > 0)
{

saveByt esRead = byt esRead;
i nbuf [bytesRead-1] = 0; /* Null termnate */
/* translate fromASCI| to EBCDIC */
cd = Q gl convOpen(& oCode, &frontCode);
i conv(cd,
(unsi gned char **) & nbufPtr,
(unsi gned int *) &byt esRead,
(unsi gned char **)&out buf Ptr,
(unsigned int *)&outbytesleft);

i conv_cl ose(cd);
outbuf Ptr -= saveBytesRead; /* Reset the buffer pointers */
printf("%\n", outbufPtr);

}
else if (bytesRead == 0)

printf("The renote host closed the connection.\n");
el se

printf("recv() failed with errno = %d\n", errno);

if (sd!=-1)
close(sd); [/* close the connection. */
return;

}

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

rexec_r_ts64()--Issue a Command on a Remote
Host

Syntax

#i ncl ude <ar pal/rexec. h>

int rexec_r_ts64(char * _ptr64 * _ ptr64 host,

int port,

char * _ ptr64 user,

char * _ ptr64 password,

char * _ ptr64 conmand,

int * _ ptr64 errorDescriptor,

struct hostent _data * _ ptr64host Ent Data);

Service Program Name: QSOSRVTS
Default Public Authority: *USE

Threadsafe: Yes

Therexec r_ts64() function is used to open a connection to aremote host and send a user |D, password,
and command to the remote host. The remote host verifies that the user ID and password are valid. The
command is issued after the user ID and password are validated. rexec r_ts64() differsfromrexec r() in
that rexec_r_ts64() accepts 8-byte teraspace pointers.

For adiscussion of the parameters, authorities required, return values, and other related information, see
rexec r()--Issue a Command on a Remote Host.

Usage Notes

All of the usage notes for rexec_r()--1ssue a Command on a Remote Host apply to rexec_r_ts64().

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

rexec_ts64()--Issue a Command on a Remote
Host

Syntax

#i ncl ude <ar pal/rexec. h>

int rexec_ts64(char * _ptr64 * _ ptr64 host,
int port,
char * _ ptr64 user,
char * _ ptr64 password,
char * _ ptr64 comand,
int * ptr64 errorDescriptor);

Service Program Name: QSOSRVTS
Default Public Authority: *USE

Threadsafe: Y es

Therexec ts64() function is used to open a connection to aremote host and send a user ID, password, and
command to the remote host. The remote host verifies that the user ID and password are valid. The
command is issued after the user ID and password are validated. rexec_ts64() differs from rexec() in that
rexec ts64() accepts 8-byte teraspace pointers.

For adiscussion of the parameters, authorities required, return values, and other related information, see
rexec()--1ssue a Command on a Remote Host.

Usage Notes

All of the usage notes for rexec()--1ssue a Command on a Remote Host apply to rexec_ts64().

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

select()--Wait for Events on Multiple Sockets

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/tine. h>

int select(int nax_descriptor,
fd set *read_set,
fd set *wite_set,

fd set *exception_set,
struct tineval *wait_tine)

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The select() function is used to enable an application to multiplex 1/0. By using select(), an application with
multiple interactive 1/0O sources avoids blocking on one 1/O stream while the other stream is ready. Thus,
for example, an application that receives inputs from two distinct communication endpoints (using sockets)
can use select() to sleep until input is available from either of the sources. When input is available, the
application wakes up and receives an indication as to which descriptor is ready for reading.

The application identifies descriptors to be checked for read, write, and exception status and specifies a
timeout value. If any of the specified descriptorsis ready for the specified event (read, write, or exception),
select() returns, indicating which descriptors are ready. Otherwise, the process waits until one of the
specified events occur or the wait times out.

Parameters

max_descriptor

(Input) Descriptors are numbered starting at zero, so the max_descriptor parameter must specify a
value that is one greater than the largest descriptor number that isto be tested.

read_set

(1/O) A pointer to a set of descriptors that should be checked to seeif they are ready for reading.
This parameter is avalue-result field. Each descriptor to be tested should be added to the set by
issuing a FD_SET() macro. If no descriptor isto be tested for reading, read_set should be NULL
(or point to an empty set). On return from the call, only those descriptors that are ready to be read
areinthe set. FD_ISSET() should be used to test for membership of a descriptor in the set.

write set

(1/0) A pointer to a set of descriptors that should be checked to seeif they are ready for writing.
This parameter is avalue-result field. Each descriptor to be tested should be added to the set by
issuing aFD_SET() macro. If no descriptor is to be tested for writing, write_set should be NULL
(or point to an empty set). On return from the call, only those descriptors that are ready to be

written arein the set. FD_ISSET () should be used to test for membership of a descriptor in the set.

exception_set

(I/O) A pointer to a set of descriptors that should be checked for pending exception events. This
parameter isavalue-result field. Each descriptor to be tested should be added to the set by issuing a
FD_SET() macro. If no descriptor is to be tested for exceptions, exception_set should be NULL (or
point to an empty set). On return from the call, only those descriptors that have an exception event
areinthe set. FD_ISSET() should be used to test for membership of a descriptor in the set.

wait_time

(Input) A pointer to a structure which specifies the maximum time to wait for at least one of the
selection criteriato be met. A time to wait of O is alowed; this returns immediately with the current
status of the sockets. The parameter may be specified even if NO descriptors are specified (select()
isbeing used as atimer). If wait_timeis NULL, select() blocks indefinitely. The structure pointed
to by the wait_time parameter is defined in <sys/time.h>.

Return Value

select() returns an integer. Possible values are:
o -1 (unsuccessful)

« O (if thetime limit expires)

« N (total number of descriptorsin all setsthat met selection criteria)

Note: Thetimeval structure (pointed to by wait_time) is unchanged.

Error Conditions

When select() fails, errno can be set to one of the following:

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the
read set, write_set, exception_set, or wait_time parameter.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

« The max_descriptor parameter specifies a negative value or avalue greater
than [FD_SETSIZE].

« Thewait_time parameter specifies atime value which was not valid.

[EIQ] Input/output error.

[EUNKNOWN] Unknown system state.

Error Messages

CPE3418E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872E Program or service program &1 inlibrary & 2 ended. Reason code & 3.
CPFAOB1 E Unableto set return value or error code.

CPFAOD4 E File system error occurred.

Usage Notes

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root
QOpenSys
User-defined
ONTC

= QSYSLIB
= QOPT

2. An application program must include the header file <sys/types.h> to use select(). The header file
contains the type and macro definitions needed to use select(). The maximum number of
descriptors that can be selected is defined by FD_SETSIZE. The following macros can be used to

mani pul ate descriptor sets:
o FD_ZERO(fd_set *p) removes all descriptors from the set specified by p.

o FD_CLR(int n, fd_set *p) removes descriptor n from the set specified by p.
o FD_SET(int n, fd_set *p) adds descriptor n to the set specified by p.

o FD_ISSET(int n, fd_set *p) returns anonzero value if descriptor nisreturned in the set
specified by p; otherwise, a zero value is returned.

Note: Values of typefd_set should only be manipulated by the macros supplied in the
<systypes.h> header file.

3. A descriptor can be returned in the set specified by read_set to indicate one of the following:
o An error event exists on the descriptor.

o A connection request is pending on a socket descriptor. This technique can be used to wait
for connections on multiple socket descriptors. When alistening socket is returned in the
set specified by read_set, an application can then issue an accept() call to accept the
connection.

o No data can be read from the underlying instance represented by the descriptor. For
example, a socket descriptor for which a shutdown() call has been done to disable the
reception of data.

4. A descriptor can be returned in the set specified by write_set to indicate one of the following:

o Completion of anon-blocking connect() call on a socket descriptor. This allows an
application to set a socket descriptor to nonblocking (with fentl() or ioctl()), issue a
connect() and receive [EINPROGRESS], and then use select() to verify that the connection
has completed.

o No data can be written to the underlying instance represented by the descriptor (for
example, a socket descriptor for which a shutdown() has been done to disable the sending
of data).

o When awrite() can be successfully issued without blocking (or, for nonblocking, so it does
not return [EWOULDBLOCK]).

5. A socket descriptor is returned in the set specified by exception_set to indicate that out-of-band
data has arrived at the socket. Thisis only supported for connection-oriented sockets with an
address family of AF_INET* or AF_INET64.

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

send()--Send Data

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int send(int socket descriptor,
char *buffer,

int buffer_length,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

ssize_t send(int socket _descriptor,
const void *buffer,

size_t buffer_Ilength,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&
The send() function is used to send data through a connected socket.

There are two versions of the API, as shown above. The base 05400 APl uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. &

Parameters

socket_descriptor
(Input) The socket descriptor that isto be written to.

buffer
(Input) The pointer to the buffer in which the data that is to be written is stored.

buffer_length
(Input) The length of the buffer.

flags
(Input) A flag value that controls the transmission of the data. The flags value is either zero, or is
obtained by performing an OR operation on the following constants:
AMSG_EOR Terminate arecord, if supported by the protocol .4
MSG_00B Send data as out-of-band data. Valid only for sockets with an address
family of AF_INET?* or AF_INET64 and type SOCK_STREAM.
MSG_DONTROUTE Bypassrouting. Valid only for sockets with address family of AF_INET.
It isignored for other address families.
Authorities

No authorization is required.

Return Value

send() returns an integer. Possible values are:
o -1 (unsuccessful)

o N (successful), where nisthe number of bytes sent.

Error Conditions

When send() fails, errno can be set to one of the following:

[EACCES

[EBADF]

[ECONNREFUSED]

[EDESTADDRREQ]

[EFAULT]

[EHOSTDOWN]

[EHOSTUNREACH]

[EINTR]

[EINVAL]

[EIO]

[EMSGSIZE]

Permission denied.

This error code indicates one of the following:

«» Destination address specified a broadcast address and the socket option
SO_BROADCAST was not set (with a setsockopt()).

« The process does not have the appropriate privileges to the destination
address. This error code can only be returned on a socket with atype of
SOCK_DGRAM and an address family of AF_INET.

Descriptor not valid.

The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless
transport service.

Operation requires destination address.

A destination address has not been associated with the socket pointed to by the
socket_descriptor parameter. This error code can only be returned on sockets that
use a connectionless transport service.

Bad address.

The system detected an address which was not valid while attempting to access
the buffer parameter.

A remote host is not available,

This error code can only be returned on sockets that use a connectionless
transport service.

A route to the remote host is not available.

This error code can only be returned on sockets that use a connectionless
transport service.

Interrupted function call.

Parameter not valid.
The buffer_length parameter specifies a negative value.

Input/output error.

Message size out of range.

The data to be sent could not be sent atomically because the size specified by
buffer_length istoo large.

[ENETDOWN]

[ENETUNREACH]

[ENOBUFS]

[ENOTCONN]

[ENOTSOCK]

[EOPNOTSUPP]

[EPIPE]

[EUNATCH]

[EUNKNOWN]

[EWOULDBLOCK]

The network is not currently available.

This error code can only be returned on sockets that use a connectionless
transport service.

Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless
transport service.

There is not enough buffer space for the requested operation.

Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented
transport service.

The specified descriptor does not reference a socket.

Operation not supported.

This error code indicates one of the following:
« Theflags parameter specifies avalue that includesthe MSG_OOB flag,
but the socket_descriptor parameter points to a connectionless socket.

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but the socket_descriptor parameter points to a socket that does not have
an address family of AF_INETE* or AF_INET6,

Broken pipe.

The protocol required to support the specified address family is not available at
thistime.

Unknown system state.

Operation would have caused the thread to be suspended.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.

CPFAO081 E Unable to set return value or error code.

Usage Notes

1. send() only works with sockets on which a connect() has been issued, since it does not alow the
caller to specify adestination address.

2. To broadcast on an AF_INET socket, the socket option SO BROADCAST must be set (with a
setsockopt()).

3. When using a connection-oriented transport service, al errors except [EUNATCH] and
[EUNKNOWN] are mapped to [EPIPE] on an output operation when either of the following
ocCurs:

o A connection that isin progressis unsuccessful.
o An established connection is broken.
To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation

(for example, read()).

4. #*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the send() APl is mapped to
gso_send98().4%

Related Information

XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o fentl()--Perform File Control Command

« ioctl()--Perform I/O Control Request

« sendto()--Send Data

« sendmsg()--Send Data or Descriptors or Both

o write()--Write to Descriptor

o writev()--Write to Descriptor Using Multiple Buffers

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

sendmsg()--Send Data or Descriptors or Both

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt sendnsg(int socket descriptor,

struct nsghdr *message_structure,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: * USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

ssize_t sendnsg(int socket _descriptor,

const struct msghdr *message_structure,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: * USE

Threadsafe: Yes

&

The sendmsg() function is used to send data or descriptors or both through a connected or unconnected
socket.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. &

Parameters

socket_descriptor
(Input) The socket descriptor that isto be written to.

message_structure
(1/O) The pointer to the message structure that contains the following:
o The address to which the message isto be sent

o Thevector array in which the data to be sent is stored

o #The ancillary data/access rights list in which the sent descriptors are stored.
The structure pointed to by the message _structure parameter is defined in <sys/socket.h>.

The BSD 4.3 structureis:

struct nmsghdr {

caddr t nMsg_nane;

i nt nmsg_nanel en;
struct iovec *msg_i ov;

i nt neg_i ovl en;

caddr _t nmsg_accri ghts;

i nt nmsg_accri ghtsl en;

1
The BSD 4.4/UNIX 98 compatible structure is:

struct nsghdr {

voi d *nNBQg_nhane;

sockl en_t nsg_nanel en;
struct iovec *nsg_iov;

i nt neg_i ovl en;

voi d *nsg_control ;
sockl en_t nmsg_controllen;
i nt nmsg_fl ags;

b
&

The msg_name and msg_namelen fields contain the address and address length to which the
message is sent. For further information on the structure of socket addresses, see Sockets

Programming in the i Series Information Center. If the msg_name field is set to aNULL pointer, the
address information is not returned.

The msg_iov and msg_iovlien fields are for scatter/gather 1/0.

The BSD 4.3 structure uses the msg_accrights and msg_accrightsien fields to pass descriptors.
The msg_accrightsfield isalist of zero or more descriptors, and msg_accrightslen isthe total
length (in bytes) of the descriptor list.

The BSD 4.4/UNIX 98 compatible structure uses the msg_control and msg_controllen fields to
pass descriptors. The msg_control field is a pointer to ancillary data (of length msg_controllen)
with the form:

struct cmeghdr {
socklen_t cnsg_| en;
i nt cnsg_| evel ;
i nt cnsg_type;
b

The cmsg_len field isthe total length including this header. cmsg_level is the originating protocol.
cmsg_lenisthe protocol-specific type. To pass descriptors, cmsg_level is set to SOL_SOCKET and
cmsg_typeisset to SCM_RIGHTS. The rest of the buffer isalist of zero or more descriptors.

Macros are provided for navigating these structures.

o CMSG_DATA(cmsg) If the argument is a pointer to a cmsghdr structure, this macro returns
an unsigned character pointer to the data array associated with the cmsghdr structure.

o CMSG_NXTHDR(mhdr,cmsg) If the first argument is a pointer to a msghdr structure and
the second argument is a pointer to a cmsghdr structure in the ancillary data, pointed to by
the msg_control field of that msghdr structure, this macro returns a pointer to the next
cmsghdr structure, or anull pointer if this structure is the last cmsghdr in the ancillary data.

o CMSG_FIRSTHDR(mhdr) If the argument is a pointer to a msghdr structure, this macro
returns a pointer to the first cmsghdr structure in the ancillary data associated with this
msghdr structure, or anull pointer if thereis no ancillary data associated with the msghdr
structure.

The BSD 4.4/UNIX 98 msg_flags field isignored for sendmsg(). €

flags
(Input) A flag value that controls the transmission of the data. The flags value is either zero, or is
obtained by performing an OR operation on one or more of the following constants:
#MSG_EOR Terminate arecord, if supported by the protocol .4
MSG_0OOB Send data as out-of-band data. Valid only for sockets with an address
family of AF_INETA* or AF_INET6% and type SOCK_STREAM.
MSG_DONTROUTE Bypassrouting. Valid only for sockets with address family of AF_INET.
It isignored for other address families.
Authorities

When the address family of the socket identified by the socket_descriptor isAF_INET and isrunning IP
over SNA, the thread must have retrieve, insert, delete, and update authority to the APPC device. When the
thread does not have this level of authority, an errno of EACCES is returned.

Return Value

sendmsg() returns an integer. Possible values are:
o -1 (unsuccessful)

« N (successful), where n isthe number of bytes sent.

Error Conditions

When sendmsg() fails, errno can be set to one of the following:

[EACCES

[EADDRNOTAVAIL]

[EBADF]

[ECONNREFUSED]

[EDESTADDRREQ]

[EFAULT]

[EHOSTDOWN]

[EHOSTUNREACH)]

[EINTR]

Permission denied.
The process does not have the appropriate privileges to the destination address.

Address not available.

A socket with an address family of AF_INET 2+ or AF_INET6% isusing a
connectionless transport service, the socket was not bound. The system tried to
bind the socket but could not because a port was not available.

Descriptor not valid.

The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless
transport service.

Operation requires destination address.

A destination address has not been associated with the socket pointed to by the
socket_descriptor parameter and a destination address was not set in the msghdr
structure (pointed to by the message structure parameter). This error code can
only be returned on sockets that use a connectionless transport service.

Bad address.

The system detected an address which was not valid while attempting to access
the message_structure parameter or afield within the structure pointed to by the
message_structure parameter.

A remote host is not available.

This error code can only be returned on sockets that use a connectionless
transport service.

A route to the remote host is not available.

This error code can only be returned on sockets that use a connectionless
transport service.

Interrupted function call.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

« Themsg_iovlen field or theiov_len field in aiovec structure specifiesa
negative value. The fields are contained in the msghdr structure (pointed
to by the message_structure parameter).

« Themsg_namelen field in the msghdr structure (pointed to by the
message_structure parameter) specifies alength that is not valid for the
address family.

« Themsg_accrightslen field * (or the BSD 4.4/UNIX 98 compatible
field msg_controllen) < in the msghdr structure (pointed to by the
message_structure parameter) specifies a negative value # or is not
large enough to hold at least one descriptor when msg_accrights #* (or
the BSD 4.4/UNIX 98 compatible field msg_control) 4 was specified.
L4

« Thesocket descriptor pointsto asocket with an address family of
AF_UNIX_CCSID, and the CCSID specified in sunc_glg in the
sockaddr _unc structure (pointed to by local _address) cannot be
converted to the current default CCSID for integrated file system path
names.

« Thesocket_descriptor points to asocket with an address family of
AF_UNIX_CCSID, and there was an incompl ete character or shift state
sequence at the end of sunc_path in the sockaddr_unc structure
(pointed to by local _address).

« Thesocket_descriptor points to asocket with an address family of
AF_UNIX_CCSID, and the sockaddr _unc structure (pointed to by
local_address) was not valid:

o Thesunc_format was not set to SO UNC _DEFAULT or
SO _UNC_USE QLG.

o Thesunc_zero was nhot initialized to zeros.
o Thesunc _format field was set to SO UNC_USE QLG and the
sunc_glg structure was not valid:

= The path type was less than O or greater than 3.

= The path length was less than 0 or out of bounds. For
example, a single-byte path name was greater than 126
bytes or a double-byte path name was greater than 252
bytes.

s A reserved field was not initialized to zeros.

[EIO] Input/output error.

[EISCONN]

[ELOOP]

[EMSGSIZE]

[ENAMETOOLONG]

[ENETDOWN]

[ENETUNREACH]

[ENOBUFS]
[ENOENT]

[ENOSYS

[ENOTCONN]

[ENOTDIR]

A connection has already been established.

A destination address was set, but the socket pointed to by the socket_descriptor
parameter already has a destination address associated with it.

A loop existsin symbolic links encountered during pathname resolution.

Thiserror code refers to the destination address, and can only be returned by
sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

Message size out of range.

This error code indicates one of the following:

« Thedatato be sent could not be sent atomically because the total size of
the data to be sent istoo large.

« Themsg_iovlen field in the msghdr structure (pointed to by the
message_structure parameter) specifies avalue that is greater than
[MSG_MAXIOVLEN] (defined in <sys/socket.h>).

File name too long.

This error code refers to the destination address, and can only be returned by
sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

The network is not currently available.

Thiserror code can only be returned on sockets that use a connectionless
transport service.

Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless
transport service.

There is not enough buffer space for the requested operation.
No such file or directory.

This error code refers to the destination address, and can only be returned by
sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

Function not implemented.

This error code refers to the destination address, and can only be returned by
sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented
transport service.

Not a directory.

This error code refers to the destination address, and can only be returned by
sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but the socket_descriptor parameter points to a connectionless socket.

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but the socket_descriptor parameter points to a socket that does not have
an address family of AF_INET2 or AF_INET64.

« Themsg_accrights and msg_accrightslen # (or the BSD 4.4/UNIX 98
compatible fields msg_control and msg_controllen) < were specified
and the underlying instance represented by the descriptor does not
support the passing of access rights.

[EPIPE] Broken pipe.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFO872 E Program or service program & 1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.

Usage Notes

1. The passing of descriptorsis only supported over sockets that have an address family of AF_UNIX
or AF_UNIX_CCSID. The msg_accrightslen and the msg_accrights fields # (or the BSD
4.4/UNIX 98 compatible fields msg_control and msg_controllen) 4 are ignored if the socket has
any other address family. When you use sendmsg() and recvmsg() to pass descriptors, the target job
must be running with either of the following:

o The same user profile as the source job (in essence, passing the descriptor to yourself)
o *ALLOBJ specia authority

If the target job closes the receiving end of the UNIX domain socket while a descriptor isin transit,
the descriptor is reclaimed by the system, and the resource that it represented is closed. For files
and directories, the ability to pass descriptors using sendmsg() and recvmsg() is only supported for
objectsin the root and QOpenSysfile systems.

. sendmsg() is an atomic operation in that it produces one packet of data each time the call isissued
on a connectionless socket. For example, a sendmsg() to a datagram socket will result in asingle
datagram.

. A destination address cannot be specified if the socket pointed to by the socket descriptor
parameter already has a destination address associated with it. To not specify an address, users
must set the msg_name field to NULL or set the msg_namelen field to zero. (Not specifying an
address by setting the msg_namelen field to zero isan IBM extension.)

Note: The msg_name and msg_namelen fields are ignored if the socket isusing a
connection-oriented transport service.

. If the socket is using a connectionless transport device, the socket is not bound to an address, and
the socket type is SOCK_DGRAM, the system automatically selects an address INADDR_ANY 2
or in6addr_any<% and an available port number) and binds it to the socket before sending the data.

. To broadcast on an AF_INET socket, the socket option SO BROADCAST must be set (with a
setsockopt()).

. When using a connection-oriented transport service, al errors except [EUNATCH] and
[EUNKNOWN] are mapped to [EPIPE] on an output operation when either of the following
ocCurs:

o A connection that isin progressis unsuccessful.

o An established connection is broken.

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation
(for example, read()).

. If the socket is using an address family of AF_UNIX, the destination address (which is a path
name) is assumed to be in the default coded character set identifier (CCSID) currently in effect for
the job. For AF_UNIX_CCSID, the destination address is assumed to be in the format and coded
character set identifier (CCSID) specified in the sockaddr_unc.

. For AF_INET sockets over SNA, type SOCK_DGRAM, if adatagram can not be delivered, no
errors are returned. (As an example, a datagram might not be delivered if there is no datagram
application at the remote host listening at the requested port.)

. #*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the sendmsg() APl is mapped to
gso_sendmsg98() .44

Related Information

« For additional information and sample programs on how to use sendmsg() and recvmsg() to pass
descriptors between i Series jobs, see Socket Programming in the i Series Information Center.

o # XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o fentl()--Perform File Control Command

o ioctl()--Perform I/O Control Request

« givedescriptor()--Pass Descriptor Access to Another Job

« send()--Send Data

o sendto()--Send Data

o takedescriptor()--Receive Socket Access from Another Job

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

sendto()--Send Data

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int sendto(int socket_ descriptor,
char *buffer,
int buffer_Ilength,
int flags,
struct sockaddr *destination_address,
i nt address_| ength)

Service Program Name: QSOSRV 1
Default Public Authority: * USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

ssize_t sendto(int socket descriptor,
const void *buffer,
size_t buffer_Ilength,
int flags,
const struct sockaddr *destination_address,
sockl en_t address_| engt h)

Service Program Name: QSOSRV 1
Default Public Authority: * USE

Threadsafe: Yes

&

The sendto() function is used to send data through a connected or unconnected socket.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. &

Parameters

socket_descriptor
(Input) The socket descriptor that is to be written to.

buffer
(Input) The painter to the buffer in which the data that isto be written is stored.

buffer_length
(Input) The length of the buffer.

flags

(Input) A flag value that controls the transmission of the data. The flags value is either zero, or is
obtained by performing an OR operation on one or more of the following constants:

#MSG_EOR Terminate arecord, if supported by the protocol .4

MSG_0OO0OB Send data as out-of-band data. VValid only for sockets with an address
family of AF_INETA* or AF_INET6% and type SOCK_STREAM.

MSG_DONTROUTE Bypassrouting. Valid only for sockets with address family of AF_INET.
It isignored for other address families.

destination_address

(Input) A pointer to a buffer of type struct sockaddr that contains the destination address to which
the dataisto be sent. The structure sockaddr is defined in <sys/socket.h>.

#* The BSD 4.3 structureis:

struct sockaddr {
u_short sa fanly;
char sa_dat a[14];
1

The BSD 4.4/UNIX 98 compatible structure is:

t ypedef wuchar sa famly_t;

struct sockaddr {

uint8 t sa_len;
sa famly_t sa_ famly;
char sa_dat a[14];

i

The BSD 4.4 sa_len field isthe length of the address. € The sa_family field identifies the address
family to which the address belongs, and sa_data is the address whose format is dependent on the
address family.

address_|length

(Input) The length of the destination_address.

Authorities

When the address family of the socket identified by the socket_descriptor is AF_INET and is running |P
over SNA, the thread must have retrieve, insert, delete, and update authority to the APPC device. When the
thread does not have this level of authority, an errno of EACCES is returned.

Return Value

sendto() returns an integer. Possible values are:
o -1 (unsuccessful)

N (successful), where nisthe number of bytes sent.

Error Conditions

When sendto() fails, errno can be set to one of the following:
[EACCEY Permission denied.
The process does not have the appropriate privileges to the destination address.
[EADDRNOTAVAIL] Address not available.

A socket with an address family of AF_INET 2+ or AF_INET6%, isusing a
connectionless transport service, and the socket was not bound. The system tried
to bind the socket but could not because a port was not available.

[EBADF] Descriptor not valid.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless
transport service.

[EDESTADDRREQ] Operation requires destination address.

A destination address has not been associated with the socket pointed to by the
socket_descriptor parameter and a destination address was not passed in as an
argument on the sendto(). This error code can only be returned on sockets that
use a connectionless transport service.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access
the buffer or destination_address parameter.

[EHOSTDOWN]

[EHOSTUNREACH]

[EINTR]

[EINVAL]

A remote host is not available.

This error code can only be returned on sockets that use a connectionless
transport service.

A route to the remote host is not available.

Thiserror code can only be returned on sockets that use a connectionless
transport service.

Interrupted function call.

Parameter not valid.

This error code indicates one of the following:
« The buffer_length parameter specifies a negative value.

« The socket is using a connectionless transport service and the
address_length parameter specifies alength that is not valid for the
address family.

« Thesocket_descriptor points to a socket with an address family of
AF_UNIX_CCSID, and the CCSID specified in sunc_glg in the
sockaddr _unc structure (pointed to by local _address) cannot be
converted to the current default CCSID for integrated file system path
names.

« Thesocket_descriptor points to asocket with an address family of
AF_UNIX_CCSID, and there was an incompl ete character or shift state
sequence at the end of sunc_path in the sockaddr_unc structure
(pointed to by local_address).

» The socket_descriptor pointsto a socket with an address family of
AF_UNIX_CCSID, and the sockaddr _unc structure (pointed to by
local_address) was not valid:

o Thesunc _format was not set to SO UNC_DEFAULT or
SO _UNC_USE QLG.

o Thesunc_zero was not initialized to zeros.

o Thesunc format field was set to SO UNC_USE QLG and the
sunc_glg structure was not valid:

= The path type was less than O or greater than 3.

= The path length was less than O or out of bounds. For
example, a single-byte path name was greater than 126
bytes or a double-byte path name was greater than 252
bytes.

= A reserved field was not initialized to zeros.

[EIQ] Input/output error.

[EISCONN] A connection has already been established.

A destination address was set, but the socket pointed to by the socket_descriptor
parameter already has a destination address associated with it.

[ELOOP] A loop existsin symbolic links encountered during pathname resolution.

This error code refers to the destination address, and can only be returned on
sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[EMSGS ZE] Message size out of range.

The data to be sent could not be sent atomically because the total size of the data
to be sent istoo large.

[ENAMETOOLONG] File nametoo long.

This error code refers to the destination address, and can only be returned on
sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENETDOWN] The network is not currently available.

Thiserror code can only be returned on sockets that use a connectionless
transport service.

[ENETUNREACH] Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless
transport service.

[ENOBUFY There is not enough buffer space for the requested operation.

[ENOENT] No such file or directory.

This error code refers to the destination address, and can only be returned on
sockets that usethe AF_UNIX or AF_UNIX_CCSID address family.

[ENOSYY Function not implemented.

This error code refers to the destination address, and can only be returned on
sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENOTCONN] Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented
transport service.

[ENOTDIR] Not a directory.

This error code refers to the destination address, and can only be returned on
sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but the socket_descriptor parameter points to a connectionless socket.

« Theflags parameter specifies a value that includes the MSG_OOB flag,
but the socket_descriptor parameter points to a socket that does not have
an address family of AF_INET#* or AF_INET64.

[EPIPE] Broken pipe.

[EPROTOTYPE] The socket type or protocols are not compatible.

Thiserror code is only returned on sockets that use the AF_UNIX or the
AF_UNIX_CCSID address family.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.
[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.

Usage Notes

1. A destination address cannot be specified if the socket pointed to by the socket _descriptor
parameter already has a destination address associated with it. To not specify an address, users
must set the destination_address field to NULL or set the address _|ength field to zero. (Not
specifying an address by setting the address length field to zero isan IBM extension.)

Note: The destination_address and address |ength fields are ignored if the socket isusing a
connection-oriented transport service.

2. If the socket is using a connectionless transport device, the socket is not bound to an address, and

the socket type is SOCK_DGRAM, the system automatically selects an address INADDR_ANY 2
or in6addr_any+% and an available port number) and binds it to the socket before sending the data.

3. To broadcast on an AF_INET socket, the socket option SO BROADCAST must be set (with a
setsockopt()).

4. When using a connection-oriented transport service, al errors except [EUNATCH] and
[EUNKNOWN] are mapped to [EPIPE] on an output operation when either of the following
occurs:

o A connection that isin progressis unsuccessful.
o An established connection is broken.

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation
(for example, read()).

5. If the socket is using an address family of AF_UNIX, the destination address (which is a path
name) is assumed to be in the default coded character set identifier (CCSID) currently in effect for
thejob. For AF_UNIX_CCSID, the destination address is assumed to be in the format and coded
character set identifier (CCSID) specified in the sockaddr_unc.

6. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the sendto() API is mapped to
gso_sendto98(). 4

Related Information

o # XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« fentl()--Perform File Control Command

o ioctl()--Perform I/O Control Request

« send()--Send Data

« sendmsg()--Send Data or Descriptors or Both

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

send_file()--Send a File over a Socket
Connection

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int send file(int *socket descriptor,

struct sf_parms *sf_struct,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The send_file() function is used to send the contents of an open file over an existing socket connection.
The send_file() APl isacombination of the IFS read() and the sockets send() and close() APIs. Socket

applications that transmit a file over a socket connection can, under certain circumstances, obtain improved
performance by using send_file().

Parameters

socket_descriptor
(Input/Output) A pointer to the socket descriptor that is to be written to.

sf struct

(Input/Output) A pointer to the send_file structure that contains the following:
o The header buffer and length

o Thefile descriptor, the offset into the file, the file size, and number of bytesto send from
thefile

o Thetrailer buffer and length

o The number of bytes of datathat were sent

The structure pointed to by the sf_struct parameter is defined in <sys/socket.h>.

struct sf_parns

{

voi d *header _dat a;

flags

si ze t header | engt h;

i nt file descriptor;
size t file_size;
of f _t file offset;

ssize t file_bytes;

voi d *trail er_data;
size_ t trailer_length;

size t byt es_sent;
}

header data
(Input/Output) A pointer to a buffer that contains data to be sent before the file datais sent.

header _length
(Input/Output) The length in bytes of header_data.

file_descriptor

(Input) The file descriptor for afile that has been opened for read access. Thisisthe
descriptor for the file that contains the data to be transmitted. Thisfield isignored if the
file_bytesfieldisset to 0.

file_size
(Output) The sizein bytes of the file associated with file_descriptor.

file offset

(Input/Output) The byte offset into the file from which to start sending data. Specify a
value of 0 to start sending data from the start of thefile. If anegative valueis passed in,
send_file() API will return with -1 and the errno will be set to EINVAL.

file_bytes

(Input/Output) The number of bytes from the file to be transmitted. Set the file_bytesfield
to -1 to transmit al of the data from thefile_offset position in the file to the end of the file.
If thefile bytesfield is set to O, no data from the file will be transmitted.

trailer_data
(Input/Output) A pointer to a buffer that contains data to be sent after the file datais sent.

trailer_length
(Input/Output) The length in bytes of trailer_data.

bytes sent
(Output) The number of bytes that have been successfully sent.

(Input) A flag value that controls what is done with the socket connection after the data has been

transmitted. The flags value is either zero or it is one of the following constants:

S CLOSE After the header_data, file data, and trailer_data have been successfully sent, the
connection and the socket descriptor are closed. The descriptor that is pointed to
by the socket_descriptor parameter is set to -1 before the send_file() API returnsto
the application.

S REUSE After the header_data, file data, and trailer_data have been successfully sent, the
connection is closed. If socket reuse is supported, the descriptor that is pointed to
by the socket_descriptor parameter isreset. If socket reuse is not supported, the
descriptor that is pointed to by the socket_descriptor parameter is closed and set to
-1.

Authorities

No authorization is required.

Return Value

send_file() returns an integer. Possible values are:
o -1 (unsuccessful call) Check errno for additional information
o 0 (successful call) All of the data has been successfully sent
« 1 (interrupted call) The command was interrupted while sending data

Error Conditions

When send_file() fails, errno can be set to one of the following:
[EACCEY Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions. A thread does not have access to the specified file, directory,
component, or path.

If you are accessing a remote file through the Network File System, update
operationsto file permissions at the server are not reflected at the client until updates
to datathat is stored locally by the Network File System takes place. (Several
options on the Add Mounted File System (ADDMFS) command determine the time
between refresh operations of local data.) Accessto aremote file may also fail due
to different mappings of user IDs (UID) or group IDs (GID) on the local and remote
systems.

[EBADF] Descriptor not valid.

This error code indicates one of the following:
» The descriptor pointed to by the socket_descriptor parameter isnot avalid
socket descriptor.

« Thefile_descriptor parameter isnot valid for this operation. The specified
descriptor isincorrect, does not refer to an open file, or refersto afile that
was only open for writing.

[ECONVERT] Conversion error.

[EFAULT] Bad address.

The system detected an address that was not valid while attempting to access the
socket_descriptor or one of the fieldsin the send_file structure.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

This error code indicates one of the following:
« A NULL pointer was specified for the sf_struct parameter

« Thefile offset parameter specified a negative value.
« Thefile offset parameter specified avalue that was greater than the file size.

« Thefile_bytes parameter would have resulted in aread operation beyond the
end of thefile.

» Theflags parameter specified avalue that was not valid.

[EIO] Input/output error.

[ENOBUFY There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

[ENOTSAFE] Function is not allowed in ajob that is running with multiple threads.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP]

[EOVERFLOW]

[EPIPE]

[EUNATCH]

[EUNKNOWN]

Operation not supported.

The socket_descriptor parameter references a socket that does not support the
send_file() function. The send_file() function is only valid on sockets that have an
address family of AF_INET, # AF_INET6,4€ AF_UNIX, or AF_UNIX_CCSID and
a socket type of SOCK_STREAM.

Object istoo large to process.

This error code indicates one of the following:

« Thesize of thefile associated with file_descriptor parameter is greater than
2 GB minus 1 byte.

« Thetotal number of bytesto be sent, header_length + file_bytes +
trailer_length, is greater than 4 GB minus 1, the largest value that can be
stored in the bytes _sent output field.

Broken pipe.

The protocol required to support the specified address family is not available at this
time.

Unknown system state.

Error Messages

Message I D
CPE3418 E
CPF3CF2E
CPF9872 E
CPFAOB1 E
CPFAOD4 E

Error Message Text

Possible APAR condition or hardware failure.

Error(s) occurred during running of &1 API.

Program or service program &1 in library & 2 ended. Reason code & 3.
Unable to set return value or error code.

File system error occurred.

Usage Notes

1. Thesend_file() function is only valid on sockets that have an address family of AF_INET, 2
AF_INET6,4 AF_UNIX, or AF_UNIX_CCSID and a socket type of SOCK_STREAM. If the
descriptor pointed to by the socket descriptor parameter does not have the correct address family
and socket type, -1 is returned and the errno value is set to EOPNOTSUPP.

2. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o Theobject on which thisfunction is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root
QOpenSys
User-defined
ONTC
QSYS.LIB
QOPT

3. Thefile offset parameter is used to specify abase zero location in the file referenced by the
file_descriptor parameter. If the file_bytes parameter is set to avalue of 1 and the file_offset
parameter is set to avalue of O, thefirst byte from the file is sent. If the file_offset parameter is set
to avalue of 1, the second byte from thefileis sent.

4. An application that usesthe send file() APl may specify the O_ SHARE_RDONLY or the
O_SHARE_NONE option on the open() call when the file represented by file descriptor isfirst
opened. These options prevent other jobs or threads on the system from updating the file whileitis
being transmitted.

5. If the O_TEXTDATA option was specified on the open() call when the file represented by
file_descriptor was first opened, the datais sent from the file assuming it isin textual form. The
datais converted from the code page of the file to the code page of the application, job, or system

as follows:

o When reading from atrue stream file, any line-formatting characters (such as carriage
return, tab, and end-of-file) are just converted from one code page to another.

o When reading from record files that are being used as stream files, end-of-line characters
are added to the end of the datain each record.

If O_TEXTDATA was not specified on the open() call, the data is sent from the file without

conversion.

Regardless of whether or not O TEXTDATA was specified on the open() call, the header _data
and trailer_data are not translated. It is the application's responsibility to trans ate the header _data
and trailer_data to the correct code page before calling send file(). The send_file() function will
not transl ate the data buffers pointed to by the header_data and trailer _data parameters prior to

sending them.

Note: The ability to do code-page trandation is an OS/400 specific extension to the send file()
API. The overhead to trand ate the file will have an effect on the performance of the send_file()

APL.

6. The send_fileg() function attemptsto write header _length from the buffer pointed to by
header_data, followed by file_bytes from the file associated with file_descriptor, followed by
trailer_length from the buffer pointed to by trailer_data, over the connection associated with
socket_descriptor. Asthe datais sent, the API will update the variablesin the sf_parms structure so
that if the send_file() API isinterrupted by asignal, the application ssmply needs to reissue the
send_file() call using the same parameters.

Note: The value that is passed in for the flags parameter isignored if the send_file() APl is
interrupted by asignal.

7. When you develop in C-based languages and this function is compiled with _LARGE_FILES
defined, it will be mapped to send_file64(). Note that the type of the sf_struct parameter, struct
sf_parms*, also will be mapped to type struct sf_parmst4 *.

Related Information

accept_and _recv()--Wait for Connection Request and Receive the First Message That Was Sent

close()--Close File or Socket Descriptor

open()--Open File

send()--Send Data

API introduced: V4R3

Top | UNIX-Type APIs| APIs by category

send_file64()--Send a File over a Socket
Connection

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int send file64(int *socket descriptor,

struct sf_parms64 *sf _struct,
int flags)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The send_file64() function is used to send the contents of an open file over an existing socket connection.

The send_file64() APl isacombination of the IFS read() and the sockets send() and close() APIs. Socket
applications that transmit a file over a socket connection can, under certain circumstances, obtain improved
performance by using send_file64().

send_file64() is enabled for largefiles. It is capable of operating on files larger than 2 GB minus 1 byte. For
additional information on the parameters, authorities required, return values, error conditions, error
messages, and other usage notes, see send_file()--Send a File over a Socket Connection.

Parameters

socket_descriptor
(Input/Output) A pointer to the socket descriptor that isto be written to.

sf struct
(Input/Output) A pointer to the send_file64 structure that contains the following:

o The header buffer and length.

o Thefile descriptor, the offset into thefile, the file size, and the number of bytes to send
from thefile.

o Thetrailer buffer and length.

o The number of bytes of datathat were sent.

The structure pointed to by the sf_struct parameter is defined in <sys/socket.h>.

struct sf_parnms64

{
voi d *header _dat a;
size t header | engt h;
i nt file descriptor;
unsi gned | ong | ong file_size;
| ong | ong file offset;
| ong | ong file bytes;
voi d *trailer_data;
si ze t trailer_length;
unsi gned | ong | ong byt es_sent;

}

flags

(Input) A flag value that controls what is done with the socket connection after the data has been
transmitted.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden.
To use the send_file64() API, you must compile the source with the LARGE_FILE APl macro
defined.

2. All of the Usage Notes for send_file() apply to send_file64(). See Usage Notes in the send_filg()
API.

API introduced: V4R4

Top | UNIX-Type APIs| APIs by category

setdomainname()--Set Domain Name

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt setdomai nnane(char *nane,
int |ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The setdomainname() function is used to set the name of the domain.

Parameters

name
(Input) The pointer to a character array where the domain name is stored.

length
(Input) The length of the name parameter. The length can be from 0 to 255 bytes.

Return Value

setdomainname() returns an integer. Possible values are:
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When setdomainname() fails, errno can be set to one of the following:

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the

name parameter.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

» Thelength parameter specifies a negative value or avalue that is greater than
the allowed maximum length.

« The domain name pointed to by the name parameter contains characters that
do not belong to the invariant character set.

[EIQ] Input/output error.
[EPERM] Operation not permitted.
The process does not have the appropriate privileges to use setdomainname().

[EUNKNOWN] Unknown system state.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFO872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.

Usage Notes
1. A process must have the* | OSYSCFG special authority to use setdomainname().

2. The name of the domain is set to NULL when the pointer to the domain nhame (pointed to by the
name parameter) is set to NULL.

3. setdomainname() only allows domain names that are made up of invariant characters. In addition,
the domain name is assumed to be in the default coded character set identifier (CCSID) currently in
effect for the job.

Note: For exceptions to the invariant character set for some CCSIDs, see globalization topic.

Related Information

« getdomainname()--Retrieve Domain Name

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

sethostid()--Set Host ID

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int sethostid(int host _id)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sethostid() function is used to set ahost ID.

Parameters

host_id
(Input) The 32-bit host_id

Return Value

sethostid() returns an integer. Possible values are:
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When sethostid() fails, errno can be set to one of the following:

[EIQ] Input/output error.

[EPERM] Operation not permitted.

The process does not have the appropriate privileges to use sethostid().
[EUNKNOWN] Unknown system state.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.

Usage Notes
1. A process must have the * | OSYSCFG specia authority to use the sethostid().

2. When a process issues a sethostid(), the host_id can be accessed by ANY process that issues a
gethostid().

3. While many socket implementations refer to the host_id as the | P address of the machine, thisis not
necessarily the case. Many machines that support the TCP/IP protocol suite support multiple local
I P addresses. The value contained in host_id is not used by TCP in any manner.

4. Thehost_id isreset to zero when an initial program load is performed.
5. Thehost_idisasigned integer. Therefore, a user should be careful to not confuse areturn value of

-1 from a gethostid() with an error return value. gethostid() never returns an error.

Related Information

gethostid()--Retrieve Host ID Address

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

sethostname()--Set Host Name

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt sethostname(char *nane,
int |ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sethostname() function is used to set the name of the host for a system.

Parameters

name
(Input) The pointer to a character array where the host name is stored.

length
(Input) The length of the name parameter.

Return Value

sethostname() returns an integer. Possible values are:
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When sethostname() fails, errno can be set to one of the following:
[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the
name parameter.

[EINVAL]

[EPERM]

[EIO]

[EUNKNOWN]

Parameter not valid.

This error code indicates one of the following:

» Thelength parameter specifies a negative value or avalue that is greater than
the allowed maximum length.

« The host name pointed to by the name parameter contains characters that are
not invariant.

Operation not permitted.
The process does not have the appropriate privileges to use sethostname().

Input/output error.

Unknown system state.

Error Messages

Message | D
CPE3418E
CPF9872 E
CPFAOB1 E

Error Message Text
Possible APAR condition or hardware failure.
Program or service program &1 in library & 2 ended. Reason code & 3.

Unable to set return value or error code.

Usage Notes

1. A process must have the* | OSYSCFG special authority to use the sethostname().

2. Maximum length of host namesis defined by [MAXHOSTNAMELEN] (defined in
<sygparam.h>).

3. The host name can be set in the following two ways (and users should be aware of the implications
of the way they choose):

o By using option 12 (Change local domain and host names) on the Configure TCP/IP
(CFGTCP) menu. When option 12 is used to change the local domain name or local host
name, the system appends the local domain name to the local host name and stores the
value for access by sethostname() and gethostname().

By using the sethostname() function. When sethostname() is used to set the host name, the

TCP/IP configuration file is not affected. Only the field that is accessed by sethostname()
and gethostname() is changed.

4. The name of the host is set to NULL when the pointer to the host name (pointed to by the name
parameter) is set to NULL.

5. The host name is assumed to be in the default coded character set identifier (CCSID) currently in
effect for the job. In addition, the host name must adhere to the following conventions.

O

The first character must be either an English alphabetic character or a numeric character.

The last character must be either an English alphabetic character, a numeric character, or a
period (.).

Blanks are not allowed (trailing blanks are removed).
The special characters period(.), underscore(), and minus(-) are allowed.

Parts of the name separated by periods (.) cannot exceed 63 charactersin length.

Note: Each part of the name separated by periods must begin and end with an English
aphanumeric character.

Internet address names (in the form nnn.nnn.nnn.nnn (where nnn is a decimal number)) are
not allowed.

Names must be from 1 to 255 charactersin length.

Related Information

gethostname()--Retrieve Host Name

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

setsockopt()--Set Socket Options

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt setsockopt(int socket descriptor,
int |evel,
i nt option_nane,
char *option_val ue,
i nt option_I|ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

i nt setsockopt(int socket_descriptor,
int |evel,
int option_nane,
const void *option_val ue,
sockl en_t option_| ength)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&
The setsockopt() function is used to set socket options.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. &

Parameters

socket_descriptor

(Input) The descriptor of the socket for which options are to be set.

level

(Input) Whether the request applies to the socket itself or the underlying protocol being used.

Supported values are:
IPPROTO_IP
IPPROTO_TCP
SOL_SOCKET
#|PPROTO_IPV6

Request applies to IP protocol layer.
Request appliesto TCP protocol layer.
Request applies to socket layer.
Request applies to |Pv6 protocol layer.

IPPROTO_ICMPV6 Request appliesto ICMPV6 protocol layer. <

option_name

(Input) The name of the option to be set. The following tables list the options supported for each
level. Assume that the option is supported for al address families unless the option is described

otherwise.

Note: Options directed to a specific protocol level are only supported by that protocol. An option
that is directed to the SOL_SOCKET level aways completes successfully. This provides
compatibility with Berkeley Softwar e Distributions implementations that also shield the
application from protocols that do not support an option.

Socket Options That Apply tothe P Layer (IPPROTO_IP)

Option Description

IP_OPTIONS Set |P header options. Thisis only supported for sockets with an
address family of AF_INET.

IP_ TOS Set Type Of Service (TOS) and Precedence in the IP header. This
option is only supported for sockets with an address family of
AF_INET.

IP_ TTL Set TimeTo Live (TTL) inthe IP header. Thisoption isonly

supported for sockets with an address family AF_INET.

IP MULTICAST _IF

Set interface over which outgoing multicast datagrams should be
sent. An option_value parameter of typein_addr is used to
specify the local |P address that is associated with the interface
over which outgoing multicast datagrams should be sent. An
address of INADDR_ANY removes the previous selection. This
option is only supported for sockets with an address family of
AF_INET and type of SOCK_DGRAM or SOCK_RAW.

IP_MULTICAST_TTL

Set Time To Live (TTL) in the IP header for outgoing multicast
datagrams. An option_value parameter of type char is used to set
this value between 0 and 255. This option is only supported for
sockets with an address family of AF_INET and type of
SOCK_DGRAM or SOCK_RAW.

IP_MULTICAST_LOOP

Specify that a copy of an outgoing multicast datagram should be
delivered to the sending host as long as it is a member of the
multicast group. If this option is not set, a copy of the datagram
will not be delivered to the sending host. An option_value
parameter of type char is used to control loopback being on or
off. This option is only supported for sockets with an address
family of AF_INET and type of SOCK_DGRAM or
SOCK_RAW.

IP_ ADD_MEMBERSHIP

Joins amulticast group as specified in the option_value
parameter of type struct ip_mreg. A maximum of

IP_ MAX_MEMBERSHIPS groups may be joined per socket.
This option is only supported for sockets with an address family
of AF_INET and type of SOCK_DGRAM or SOCK_RAW.

IP_DROP_MEMBERSHIP

Leaves amulticast group as specified in the option_value
parameter of type struct ip_mreq. This option is only supported
for sockets with an address family of AF_INET and type of
SOCK_DGRAM or SOCK_RAW.

IP_RECVLCLIFADDR

Indicates if the local interface that a datagram to be received
should be returned. A value of 1 indicates the first 4 bytes of the
reserved field of the sockaddr structure will contain the local
interface. This option isonly supported for sockets with an
address family of AF_INET and type of SOCK_DGRAM.

IP_DONTFRAG

Set or reset the don't fragment flag in the IP header. This option
is supported for sockets with an address family of AF_INET and
type of SOCK_DGRAM or SOCK_RAW only.

Socket Options That Apply tothe TCP Layer (IPPROTO_TCP)

Option Description

TCP_NODELAY | Indicatesif TCPisto buffer data. Thisoption isonly supported for sockets
with an address family of AF_INET#* or AF_INET6% and type of
SOCK_STREAM.

Socket Options That Apply to the Socket Layer (SOL_SOCKET)

Option Description

SO_BROADCAST

Enable the socket for issuing messages to a broadcast address. This
option is only supported for sockets with an address family of
AF_INET and type SOCK_DGRAM or SOCK_RAW. The broadcast
address to be used may be determined by issuing anioctl() with the
SIOCGIFBRDADDR request.

SO_DEBUG

Indicates if low level-debugging is active.

SO_DONTROUTE

Bypass normal routing mechanisms. This option is only supported by
sockets with an address family of AF_INET* or AF_INET64.

SO_KEEPALIVE

K eep the connection up by sending periodic transmissions. This
option is only supported for sockets of an address family of AF_INET
2 or AF_INET64 and type SOCK_STREAM.

SO _LINGER

Indicates if the system attempts delivery of any buffered data or if the
system discards it when a close() is issued.

For sockets that are using a connection-oriented transport service with
an address family of AF_INET#* or AF_INET6%, the default is off
(which means that the system attempts to send any queued data, with
an infinite wait-time).

For sockets that are using a connection-oriented transport service with
an address family of AF_TELEPHONY, the default is on with alinger
time of 1 second (which means that the system will wait up to 1
second to send buffered data before clearing the telephone
connection).

SO_OOBINLINE

Indicates whether out-of-band data is received inline with normal
data. This option is only supported for sockets with an address family
of AF_INET# or AF_INET6%.

SO _RCVBUF

Set the size of the receive buffer.

SO_RCVLOWAT

Set the size of the receive low-water mark. The default sizeis 1. This
option is only supported for sockets with atype of SOCK_STREAM.

2SO0 _RCVTIMEO

Set the receive timeout value. This option is not supported unless
_XOPEN_SOURCE is defined to be 520 or greater. 4

SO_REUSEADDR

Indicates if the local socket address can be reused. Thisoption is
supported by sockets with an address family of AF_INETZ* or
AF_INET64% and atype of SOCK_STREAM or SOCK_DGRAM.

SO_SNDBUF

Set the size of the send buffer.

SO SNDLOWAT

Set the size of the send low-water mark. This option is not supported.

2SO0 _SNDTIMEO

Set the send timeout value. This option is not supported unless
_XOPEN_SOURCE is defined to be 520 or greater. 4

SO_USELOOPBACK

Indicates if the loopback feature is being used. This option is not
supported.

#» Socket Options That Apply tothe IPv6 Layer (IPPROTO_IPV6)

Option

Description

IPV6_UNICAST _HOPS

Set the hop limit value that will be used for subsequent unicast
packets sent by this socket. An option_value parameter of type
int isused to set this value between 0 and 255. Thisoptionis
supported for sockets with an address family of AF_INET6
only.

IPV6_MULTICAST_IF

Set the interface over which outgoing multicast datagrams will
be sent. An option_value parameter of type unsigned int is used
to set the interface index that is associated with the interface
over which outgoing multicast datagrams will be sent. This
option currently is not supported.

IPV6_MULTICAST_HOPS

Set the hop limit value that will be used for subsequent multicast
packets sent by this socket. An option_value parameter of type
int is used to set this value between 0 and 255. If

IPV6_ MULTICAST HOPSis ot s&t, the default is 1. This
option currently is not supported.

IPV6_MULTICAST_LOOP

Set the multicast looping mode. A value of 1 (default), indicates
that multicast datagrams sent by this system should also be
delivered to this system aslong asit isa member of the
multicast group. If thisoption is 0, a copy of the datagram will
not be delivered to the sending host. An option_value parameter
of type unsigned int is used to set this value. This option
currently is not supported.

IPV6_JOIN_GROUP

Joins amulticast group as specified in the option_value
parameter of type struct ipv6_mreg. A maximum of
IP_MAX_MEMBERSHIPS groups may be joined per socket.
This option currently is not supported.

IPV6_LEAVE_GROUP

Leaves amulticast group as specified in the option_value
parameter of type struct ipv6_mreq. This option currently is not
supported.

IPV6_V6ONLY

Set the AF_INET6 communication restrictions. A non-zero
value indicates that this AF_INET6 socket is restricted to |Pv6
communications only. This option stores an int value. Thisisa
boolean option. By default this option is turned off. This option
is supported for sockets with an address family of AF_INET6
only.

IPV6_CHECKSUM Set if the kernel will calculate and insert a checksum for output
and verify the received checksum on input, discarding the
packet if the checksum isin error for this socket. An
option_value parameter of typeint is used to set thisvalue. If
this option is-1 (the default), this socket option is disabled. A
value of 0 or greater specifies an integer offset into the user data
of where the checksum islocated. This must be an even integer
value. This option is only supported for sockets with an address
family of AF_INET6 and type of SOCK_RAW with a protocol
other than IPPROTO_ICMPV6. The checksum is automatically
computed for protocol IPPROTO_ICMPV6.

Socket Options That Apply tothe | CMPv6 Layer (IPPROTO_ICMPV6)

Option Description

ICMP6_FILTER | Set the ICMPv6 Type Filtering. An option_value parameter of type struct
icmp6_filter, defined in <netinet/icmp6.h> is used to set thisvaue. The
following macros, defined in <netinet/icmp6.h> can be used to update the
type filtering structure to specify whether or not specific ICMPv6 message
types will be passed to the application or be blocked:
ICMP6_FILTER_SETPASS, ICMP6_FILTER_SETBLOCK,
ICMP6_FILTER_SETPASSALL, and ICMP6_FILTER_SETBLOCKALL.
The default isto pass al ICMPv6 message types to the application. This
option isonly supported for sockets with an address family of AF_INET6
and type of SOCK_RAW with a protocol of IPPROTO_ICMPV6.

&

option_value

(Input) A pointer to the option value. Integer flags/values are required by setsockopt() for al the
socket options except SO_LINGER, IP_OPTIONS, IP_ MULTICAST _IF, IP MULTICAST TTL,
IP_MULTICAST_LOOP, IP ADD_MEMBERSHIP, IP DROP_MEMBERSHIP,
#IPV6_JOIN_GROUP, IPV6_LEAVE_GROUP, ICMP6_FILTER.

Note: For theIP_TOSand IP_TTL options, only the rightmost octet (least significant octet) of the
integer value is used.
The following options can be set by specifying a nonzero value for the option_value parameter:
o SO _BROADCAST
o SO_DEBUG
o SO_DONTROUTE
o SO_KEEPALIVE
o SO_OOBINLINE
o SO_REUSEADDR
o TCP_NODELAY
o IP_MULTICAST_LOOP
o IP_DONTFRAG

0 3IPV6_VEONLY
0 IPV6_MULTICAST _LOOP%

For the SO_LINGER option, option_value is a pointer to the structure struct linger, defined in
<sys/socket.h>.

struct linger [
i nt | _onoff;
i nt | _I'inger;

1;

The|_onoff field determinesiif the linger option is set. A nonzero value indicates the linger option
isset andisusing thel_linger value. A zero value indicates that the option is not set. Thel_linger
field isthe time to wait before any buffered data to be sent is discarded. The following occur on a

close():
o For AF_INETA* and AF_INET6% sockets:

= If thel_onoff value is zero, the system attempts to send any buffered data with an
infinite wait-time.

= If thel_onoff value is honzero and the |_linger value is nonzero, the system
attempts to send any buffered datafor |_linger time. If |_linger time has elapsed
and the dataiis still not successfully sent, it is discarded. When datais discarded,
the remote program may receive a[ECONNRESET].

o For AF_INET sockets over SNA:

= If thel_onoff value is nonzero and the |_linger valueis zero, the system waits
indefinitely (no timer isimplemented). Otherwise, if the |_onoff value is nonzero
and the |_linger valueis zero, the system discards any buffered data. When datais
discarded, the remote program may receive a[ECONNRESET].

o For AF_TELEPHONY sockets:

= If thel onoff valueis zero, the system will wait until all buffered datais sent or 1
second has elapsed, whichever occurs first, before clearing the telephone
connection (that is, hanging up).

= |f thel_onoff value is nonzero, the system will wait until all buffered datais sent or
|_linger seconds have elapsed, whichever occurs first, before clearing the
telephone connection (that is, hanging up).

Note: An application must implement an application level confirmation. Guaranteed receipt of data
by the partner program is required. Setting SO_LINGER does not guarantee delivery.

For the SO_RCVTIME and SO_SNDTIME options, option_value is a pointer to where the
structure timeval is stored. The structure timeval is defined in <sys/time.h>.

struct tineval {
long tv_sec;
long tv_usec;

b

&

For the IP_OPTIONS option, option_value is a pointer to a character string representing the IP
options as specified in RFC 791. The character string varies depending on which options are
selected. Each option is made up of a single byte representing the option code, and may be
followed by alength field (1 byte) and data for the option. The IP options that can be set are:

o End of option list. Used if options do not end at end of header.
o No operation (used to align octets in alist of options).
o Security and handling restrictions.

o Loose source routing. Used to route a datagram along a path of specified | P addresses.
Multiple network hops are allowed between any two | P addresses on the path.

o Record route. Used to trace aroute.

o Stream identifier. Used to carry a SATNET stream identifier. This option has been
deprecated by RFC 1122 and will result in an error of [EINVAL] if used.

o Strict source routing. Used to route datagram along a path of specified | P addresses. No
additional network hops are allowed between any two | P addresses in the path.

o Internet timestamp. Used to record timestamps along the route.

For the IP_MULTICAST _IF option, option_valueis a pointer to the structurein_addr, defined in
<netinet/in.h> as:

struct in_addr [
u long s_addr;
/* | P address */
1;

The s _addr field specifies the local 1P address that is associated with the interface over which
outgoing multicast datagrams should be sent.

For the IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP options, option_valueisa
pointer to the structure ip_mreq, defined in <netinet/in.h> as:

struct ip_nreq |
struct in_addr inr_nultiaddr;
/* 1P multicast address of group */
struct in_addr inr_interface;
/* local IP address of interface */

l;

Theimr_multiaddr field is used to specify the multicast group to join or leave. Theinr_interface
field is used to specify the local |P address that is associated with the interface to which this request
applies. If INADDR_ANY is specified for the local interface, the default multicast interface will be
selected.

Note: Reception of IP multicast datagrams may require configuration changes to the line
description to enable the adapter to receive packets with a multicast destination address. On
Ethernet, for example, the Ethernet group address that is associated with the | P group address must
be specified by the GRPADR parameter on the line description. To determine the Ethernet group
address for a particular 1P group address, the low-order 23 bits of the | P address are placed into the
low-order 23 bits of the Ethernet group address 01.00.5E.XX.XX.XX.

Notes:
1. For sockets that use a connection-oriented transport service, |P options that are set using

setsockopt() are only used if they are set prior to a connect() being issued. After the
connection is established, any | P options that the user sets areignored.

2. If the IP options portion contains a source routing option, then the address in the source
routing option overrides the destination address. The destination address may have been
specified on an output operation (for example, on a sendto()) or on a connect().

3. If asocket has atype of SOCK_RAW and aprotocol of IPPROTO_RAW, any IP options
set using setsockopt() areignored (since the user must supply the IP header data on an
output operation as part of the datathat is being transmitted).

option_length
(Input) The length of the option_value.

Authorities

No authorization is required.

Return Value

setsockopt() returns an integer. Possible values are:
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When setsockopt() fails, errno can be set to one of the following:

[EADDRINUSE] Address aready in use.
This error code indicates that the socket_descriptor parameter specified for the
IP_ ADD_MEMBERSHIP operation is already a member of the specified
multicast group.

[EADDRNOTAVAIL] Address not available.
For the IP_ADD_MEMBERSHIP or IP_ DROP_MEMBERSHIP operations, this
error code indicates that an incorrect address was specified for either the
imr_multiaddr or imr_interface parameter value.

[EBADF] Descriptor not valid.

[ECONNABORTED]

[EFAULT]

[EINVAL]

[EIO]

[ENOBUFS

[ENOPROTOOPT]

[ENOTCONN]

Connection ended abnormally.

This error code indicates that the transport provider ended the connection
abnormally because of one of the following:

« Theretransmission limit has been reached for data that was being sent
on the socket.

« A protocol error was detected.

Bad address.

The system detected an address which was not valid while attempting to access
the option_value parameter.

Parameter not valid.
This error code indicates one of the following:

o Thelevel parameter specifies aleve that is not supported.

« Theoption_name parameter specifies avaue that is not valid (except
for when thelevel is SOL_SOCKET , in which case [ENOPROTOOPT]
is returned).

» The option_value parameter specifies avalue that is not valid.
« The option_length parameter specifies a negative or zero value.

« An attempt was made to set a socket option that was read-only.

Input/output error.

Thereis not enough buffer space for the requested operation.

The protocol does not support the specified option.

This error code indicates one of the following:

« The socket has an address family of AF_UNIX and the level parameter
specified isnot SOL_SOCKET .

o Thelevel parameter specifiesalevel of SOL_SOCKET and the
option_name parameter specifies avauethat is not valid.

Requested operation requires a connection.

This error code isonly returned if the level parameter specifies alevel other than
SOL_SOCKET and the socket_descriptor parameter points to a socket that is
using a connection-oriented transport service that has had its connection broken.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EPERM] Operation not permitted.

The executing user profile must have *|OSY SCFG special authority to set
options when the level parameter specifies IPPROTO_IP and the option_value
parameter isIP_OPTIONS.

[ETOOMANYREFS The operation would have exceeded the maximum number of references allowed
for this socket.

[EUNATCH] The protocol required to support the specified address family is not available at
thistime.
[EUNKNOWN] Unknown system state.

Error Messages

CPE3418E Possible APAR condition or hardware failure.
CPF9872E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO81 E Unableto set return value or error code.

Usage Notes

1. Socket options are defined in <sys/socket.h>, |P options are defined in <netinet/ip.h> and
<netinet/in.h>, TCP options are defined in <netinet/tcp.h>, 2 Pv6 and ICMPV6 options are
defined in <netinet/in.h>.&

2. The user profile for an application that is running must have * |OSY SCFG special authority to set
options when the level parameter specifies IPPROTO_IP and the option_value parameter is
IP_OPTIONS.

3. Thefollowing comments appliesto the SO_SNDBUF option value:

o For AF_INETA* and AF_INET6 %%sockets over TCP of type SOCK_STREAM, the
maximum value the SO_SNDBUF option can be set to is 8 megabytes. Anything greater
resultsin an error of [ENOBUFS]. If the SO_SNDBUF option value is set to a positive
value that isless than 512 bytes, the system automatically uses 512 bytes as the
SO_SNDBUF size.

o For AF_INET#* and AF_INET6 4 sockets over UDP of type SOCK_DGRAM, the
maximum value the SO_SNDBUF option can be set to is 65535 bytes less the IP and UDP
header sizes. Anything greater resultsin an error of [EINVAL].

4,

10.

For AF_INET sockets over SNA of type SOCK_STREAM, SO_RCVBUF should be set before
connection is established. After connection is established, any changes are ignored. Also, only the
client can affect the receive buffer size. The server cannot affect it.

For AF_INET sockets over SNA of type SOCK_DGRAM, both SO_SNDBUF and SO_RCVBUF
areignored and have no effect on processing.

When a TCP connection is closed for a socket using the AF_INET #* or AF_INET6 4% address
family, the port associated with that connection is not made available until twice the Maximum
Segment Life (MSL) time in seconds has passed. The MSL time is approximately 2 minutes. The
SO _REUSEADDR option alows abind() to succeed when requesting a port that is being held
during this time frame. This can be especially useful if a server is abruptly ended and restarted.

Notes:

o For AF_INET2* and AF_INET6, €SOCK_STREAM sockets, this option does not allow
two servers to successfully issue a bind() requesting the same port number and local
address combination. For AF_INET:#* and AF_INET6, ¥4SOCK_DGRAM sockets, the
SO _REUSEADDR option does allow multiple serversto successfully bind to the same
port. When broadcast or multicast datagrams are received for a given port, each server that
is bound to that port receives a copy of the datagram provided each server has enabled the
SO _REUSEADDR option.

o This option does not affect unicast datagram delivery.

. Thefollowing SOL_SOCKET options are not supported by AF_INET sockets over SNA.

setsockopt() appears to succeed, but has no effect on the function of AF_INET sockets over SNA.
o SO_BROADCAST
o SO_DONTROUTE
o SO_KEEPALIVE
o SO_LINGER

. Theoption IP_DONTFRAG is not valid for multicast group destinations.

. Only thefollowing SOL_SOCKET options are supported by AF_TELEPHONY sockets. For the

others, setsockopt() appears to succeed, but has no effect on the function of the AF_TELEPHONY
sockets.

o SO_RCVBUF
o SO_SNDBUF
o SO_LINGER

“When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the setsockopt() APl is mapped to
0so0_setsockopt98(). &

Related Information

o # XOPEN_ SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interfaces

« getsockopt()--Retrieve |nformation about Socket Options

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

shutdown()--End Receiving and/or Sending of
Data on Socket

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt shutdown(int socket descriptor,
i nt how)

Service Program Name: QSOSRV 1
Default Public Authority: * USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

i nt shutdown(int socket_descriptor,
i nt how)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&
The shutdown() function is used to disable reading, writing, or reading and writing on a socket.

There are two versions of the API, as shown above. The base 05400 APl uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters

socket_descriptor
(Input) The descriptor of the socket to be shut down.

how
(Input) The data flow path to be disabled:

#SHUT _RD oré% 0 No more data can be received.
BSHUT WRor 1 No more data can be sent.

#SHUT _RDWR or 2 No more data can be sent or received.

Authorities

No authorization is required.

Return Value

shutdown() returns an integer. Possible values are:
o -1 (unsuccessful)

o 0 (successful)

Error Conditions

When shutdown() fails, errno can be set to one of the following:

[EBADF] Descriptor not valid.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

« The socket pointed to by the socket_descriptor parameter isusing a
connection-oriented transport service. Also, the transport serviceisin a state
in which sends and receives are disallowed (for example, connection has been
reset by peer).

« The how parameter specifies avalue that is not valid.

[ENOTSOCK] The specified descriptor does not reference a socket.
[EIQ] Input/output error.
[EUNATCH] The protocol required to support the specified address family is not available at this

time.

Note: Thiserrno isnot returned if the how parameter is 0.

[EUNKNOWN] Unknown system state.

Error Messages

Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.

CPFAO81 E Unable to set return value or error code.

Usage Notes

1

I ssuing a shutdown() with a how parameter of 0 causes any new data received for the socket to be
discarded. Any input functions for this socket complete with a 0, meaning that end-of-file has been
reached. On aBSD implementation, if the socket is being shared across multiple processes, any
blocking input operations are deblocked by this action. However, the OS/400 sockets
implementation of shutdown() does not cause these blocked functions to be deblocked.

Issuing a shutdown() with a how parameter of 1 resultsin all output functions being failed with an
error of [EPI PE] . The process issuing the output operation will receive a synchronous SI GPI PE
signal. This also sends anormal close sequence to the partner program. Receive operations issued
by the partner program receive areturn value of 0 once all previous data has been received. On a
BSD implementation, if the socket is being shared across multiple processes or threads, any
blocking output functions are deblocked with areturn value of -1 and an error code of [EPI PE] .
However, the OS/400 sockets implementation of shutdown() does not cause these blocked
functions to be deblocked.

. Issuing a shutdown() with a how parameter of 2 resultsin the actionslisted for a how parameter of

0 being performed first, followed by the actions listed for a how parameter of 1.

. Issuing a shutdown() on socket connected through a SOCKS server is not supported.

. #*When you develop in C-based languages and an application is compiled with the

_XOPEN_SOURCE macro defined to the value 520 or greater, the shutdown() APl is mapped to
gso_shutdown98() 4%

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o close()--Close File or Socket Descriptor

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

socket()--Create Socket

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int socket(int address famly,

int type,
i nt protocol)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The socket() function is used to create an end point for communications. The end point is represented by the
socket descriptor returned by the socket() function.

Parameters

address_family
(Input) The address family to be used with the socket. Supported values are:

AF_INET For interprocess communications between processes on the same system or
different systemsin the Internet domain using the Internet Protocol (1Pv4).

AAF_INET6 For interprocess communications between processes on the same system or
different systemsin the Internet domain using the Internet Protocol (IPv6
or IPv4).&

AF_NS For interprocess communications between processes on the same system or
different systemsin the domain defined by the Novell or Xerox protocol
definitions.

Note: The AF_NS address family is no longer supported as of V5R2. 4%

AF_UNIX For interprocess communications between processes on the same system in
the UNIX domain.

AF_UNIX_CCSID For interprocess communications between processes on the same systemin
the UNIX domain using the Qlg_Path_Name T structure.

AF _TELEPHONY For interprocess communications between processes on the same system in
the telephony domain.

Note: The OS/400 implementation supports communication over ISDN
telephone networks only.

type

(Input) The type of communications desired. Supported values are:

SOCK_DGRAM
SOCK_SEQPACKET

SOCK_STREAM
SOCK_RAW

protocol

Indicates a datagram socket is desired.

Indicates a full-duplex sequenced packet socket is desired. Each input
and output operation consists of exactly one record.

Indicates a full-duplex stream socket is desired.

Indicates communication is directly to the network protocols. A process
must have the appropriate privilege * ALLOBJ to use this type of
socket. Used by users who want to access the |lower-level protocols
directly.

(Input) The protocol to be used on the socket. Supported values are:

IPPROTO_IP
IPPROTO_TCP
IPPROTO_UDP
IPPROTO_RAW
IPPROTO_ICMP

| PPROTO_ICMPV6

TELPROTO_TEL

Indicates that the default protocol for the type selected is to be used.
For example, IPPROTO_TCP is chosen for the protocol if the type was
set to SOCK_STREAM and the address family is AF_INET.

Equivalent to specifying the value zero (0).
Indicates that the TCP protocol isto be used.
Indicates that the UDP protocol isto be used.
Indicates that communicationsis to the IP layer.

Indicates that the Internet Control Message Protocol (ICMP) isto be
used.

Indicates that the Internet Control Message Protocol (ICMPv6) isto be
used.<¥

Equivalent to specifying the value zero (0).

Note: When the typeis SOCK_RAW, the protocol can be set to some predefined protocol number from
0-255. See Usage Notes for further details.

Authorities

When the SOCKET being created is of type SOCK_RAW, the thread must have * ALL OBJ special
authority. When the thread does not have this authority, the EACCES is returned for errno.

Return Value

socket() returns an integer. Possible values are:

o -1 (unsuccessful)

« n(successful), where nis a socket descriptor.

Error Conditions

When socket() fails, errno can be set to one of the following:

[EACCEY Permission denied.
Process does not have the appropriate privileges to create the socket with the
specified type or protocol.

[EAFNOSUPPORT] The type of socket is not supported in this protocol family.

[EIO] I nput/output error.

[EMFILE] Too many descriptions for this process.

[ENFILE] Too many descriptionsin system.

[ENOBUFSY Thereis not enough buffer space for the requested operation.

#[EPROTOTYPE] The socket type or protocols are not compatible. <&

[EPROTONOSUPPORT] No protocol of the specified type and domain exists.

[ESOCKTNOSUPPORT] The specified socket typeis not supported.

[EUNATCH] The protocol required to support the specified address family is not available
at thistime.

[EUNKNOWN] Unknown system stete.

Error Messages
Message | D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO8L E Unable to set return value or error code.

Usage Notes

1. The socket address families and types supported by sockets are defined in <sys/socket.h>. The
protocols are defined in <netinet/in.h> (Internet protocals).

2. The AF_UNIX and AF_UNIX_CCSID address family supports a protocol of O for both
SOCK_STREAM and SOCK_DGRAM.

3. # The AF_NS address family is no longer supported as of V5R2. 44

4. ¥The following tables list the combinations of types and protocols that are supported for AF_INET
and the combinations of types and protocols that are supported for AF_INET6.4%

Supported Combinations of Types and Protocolsfor AF_INET

Socket Type | Protocol

STREAM IPPROTO_TCP (see Usage note 5)

DGRAM IPPROTO_UDP

RAW IPPROTO_RAW, IPPROTO_ICMP, protocol _number, (see Usage note 6)

Z»Supported Combinations of Types and Protocols for AF_INET6

Socket Type | Protocol

STREAM IPPROTO_TCP

DGRAM IPPROTO_UDP

RAW IPPROTO_RAW, IPPROTO_ICMPV6, protocol _number, (see Usage note 6)4%

5. The ALWANYNET (Allow ANYNET support) network attribute allows a customer to select
whether a SNA transport can be used for AF_INET socket applications.

The system administrator can see the current status of the ALWANYNET attribute and can change
that status. (This can be done by using the Display Network Attributes (DSPNETA) and Change
Network Attributes (CHGNETA) commands, respectively.)

If the status is changed, the change takes effect immediately. Also, the state of the ALWANYNET
stays the same across IPLs. For example, if the current statusis* Y ES and the system administrator
changes the value to *NO, the use of AF_INET over atransport other than TCP/IP is deactivated. If
asystem IPL is performed after this point, the use of AF_INET over a SNA transport remains
deactivated after the system IPL.

If AF_INET sockets will only be used over a TCP/IP transport, the ALWANYNET status should
be set to *NO to improve CPU utilization.

Note: If you are also using APPC over TCP/IP ALWANYNET status needs to be set to *YES.

6. When the socket typeis SOCK_RAW, you can specify any protocol number between 0-255. Two
exceptions are the IPPROTO_TCP and IPPROTO_UDP protocols, which cannot be specified on a
socket type of SOCK_RAW (if you issue socket(), you get an error with an error code of
[EPROTONOSUPPORT]). Each raw socket is associated with one | P protocol number, and
receives all datafor that protocol. For example, if two processes create araw socket with the same
protocol number, and datais received for the protocol, then both processes get copies of the data.

Protocol numbers 0 (IPPROTO_IP) and 255 (IPPROTO_RAW) have some unique characteristics.
If aprotocol number of zero is specified, then IP sends all data received from all the protocol
numbers (except IPPROTO_TCP and IPPROTO_UDP protocols). If a protocol number of 255 is
specified, auser must ensure that the | P header data is included in the data sent out on an output
operation.

Related Information

« socketpair()--Create a Pair of Sockets

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

socketpair()--Create a Pair of Sockets

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int socketpair(int address famly,
int type,

i nt protocol,
i nt *socket vector)

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <sys/socket. h>

i nt socketpair(int address_famly,
int type,

int protocol,
i nt socket _vector[2])

Service Program Name: QSOSRV 1
Default Public Authority: *USE

Threadsafe: Yes

&

The socketpair () function is used to create a pair of unnamed, connected socketsin the AF_UNIX or
AF_UNIX_CCSID address family.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. &

Parameters

address family
(Input) The address family to be used with the sockets. Supported values are:

AF_UNIX or AF_UNIX_CCSID For interprocess communications between processes on the
same system in the UNIX domain.

type
(Input) The type of communications desired. Supported values are:
SOCK_DGRAM Indicates a datagram socket is desired.
SOCK_STREAM Indicates afull-duplex stream socket is desired.
protocol
(Input) The protocol to be used on the sockets. Supported val ues are:
0 Indicates the default protocol for the type selected is to be used.
Authorities

No authorization is required.

Return Value

socketpair () returns an integer. Possible values are:
o -1 (unsuccessful)
o 0 (successful)

Error Conditions

When socketpair() fails, errno can be set to one of the following:

[EAFNOSUPPORT] The type of socket is not supported in this protocol family.

[EFAULT] Bad address.

[EINVAL] Parameter not valid.

[EIQ] Input/output error.

[EMFILE] Too many descriptions for this process.

[ENFILE] Too many descriptionsin system.

[ENOBUFY There is not enough buffer space for the requested operation.
[EOPNOTSUPP] Operation not supported.

[EPROTONOSUPPORT] No protocol of the specified type and domain exists.
[ESOCKTNOSUPPORT] The specified socket typeis not supported.

[EUNKNOWN] Unknown system state.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFAO081 E Unable to set return value or error code.

Usage Notes

1. The socket address families and types supported by sockets are defined in <sys/socket.h>.

2. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the socketpair() APl is mapped to
0so_socketpair98(). &

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« socket()--Create Socket

API Introduced: V3R1

Top | UNIX-Type APIs| APIs by category

takedescriptor()--Receive Socket Access from
Another Job

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt takedescriptor(char *source_job)
Service Program Name: QSOSRV 1

Default Public Authority: * USE

Threadsafe: Yes

The takedescriptor () function is used to obtain a descriptor in one OS/400 job which was passed from
another OS/400 job by a givedescriptor ().

Parameters
source_job

(Input) A pointer to the internal job identifier that identifies the source job from which to receive a
passed descriptor.

Return Value

takedescriptor() returns an integer. Possible values are:
o -1 (unsuccessful)

« N (successful), where nisadescriptor.

Error Conditions

When takedescriptor () fails, errno can be set to one of the following:
[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the
source_job parameter.

[EINVAL] Parameter not valid.

The source_job parameter points to datathat is not valid.

[EMFILE] Too many descriptions for this process.

[EIO]

Input/output error.

[EUNKNOWN] Unknown system state.

Error Messages

Message I D Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code & 3.

CPFAO81 E Unable to set return value or error code.

Usage Notes

1

This function can only obtain a descriptor if the sender of the descriptor referenced the job that this
takedescriptor() isissued in by explicitly specifying this job'sidentification on the target_job
parameter of the givedescriptor().

If the source_job parameter isa NULL pointer, then adescriptor can be received from any job
which issues a givedescriptor () that references the job in which takedescriptor() is issued.

If no descriptor is available to be received, the takedescriptor() is blocked.

. If both the job in which the givedescriptor() isissued and the job specified by the target_job

parameter end while adescriptor isin transit, the descriptor is reclaimed by the system, and the
resource that it representsis closed.

The information to specify in the target_job parameter of the givedescriptor() and in the source_job
parameter of the takedescriptor() can be obtained in the actual target job by using awork
management API (for example, QUSRJOBI) to retrieve the internal job identifier.

For files and directories, takedescriptor() isonly supported for objectsin the root and QOpenSys
file systems.

Related Information

« (Qivedescriptor()--Pass Descriptor Access to Another Job

o sendmsg()--Send Data or Descriptors or Both

« recvmsg()--Receive Data or Descriptors or Both

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

write()--Write to Descriptor

Syntax

#i ncl ude <uni std. h>

ssize t wite
(int file_descriptor, const void *buf, size_t nbyte);

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The write() function writes nbyte bytes from buf to the file or socket associated with file_descriptor. nbyte
should not be greater than INT_MAX (defined in the <limits.h> header file). If nbyteis zero, write() simply
returns a value of zero without attempting any other action.

If file_descriptor refersto a"regular file" (astream file that can support positioning the file offset) or any other
type of file on which the job can do an Iseek () operation, write() begins writing at the file offset associated with
file_descriptor, unless O_APPEND is set for the file (see below). A successful write() increments the file offset
by the number of byteswritten. If the incremented file offset is greater than the previous length of the file, the
length of thefileis set to the new file offset.

If O_APPEND (defined in the <fcntl.h> header file) is set for the file, write() sets the file offset to the end of
the file before writing the output.

If there is not enough room to write the requested number of bytes (for example, because there is not enough
room on the disk), the write() function writes as many bytes as the remaining space can hold.

If write() is successful and nbyte is greater than zero, the change and modification times for the file are updated.

If file_descriptor refersto adescriptor obtained using the open() function with O_TEXTDATA specified, the
datais written to the file assuming it is in textual form. The maximum number of bytes on a single write that
can be supported for text datais 2,147,483,408 (2GB - 240) bytes. The datais converted from the code page of
the application, job, or system to the code page of thefile as follows:

« When writing to atrue stream file, any line-formatting characters (such as carriage return, tab, and
end-of-file) are just converted from one code page to another.

« When writing to arecord file that is being used as a stream file:

o End-of-line characters are removed.

o Records are padded with blanks (for a source physical file member) or nulls (for a data physical
file member).

o Tab characters are replaced by the appropriate number of blanks to the next tab position.

There are some important considerations if O_CCSID was specified on the open().

« Thewrite() will attempt to convert all of the data in the user's buffer. Successfully converted data will
be written. Unconverted datais usually assumed to be a partial character. Partial characters will be
buffered internally and data from the next consecutive write will be appended to the buffered data. If
incorrect data is provided on a consecutive write, the write may fail with the [ECONVERT] error.

If an Iseek() is performed, the fileis closed, or the current job is ended, the buffered data will be
discarded. Discarded datawill not be written to the file. See Iseek()--Set File Read/Write Offset for

more information.

Because of the above consideration and because of the possible expansion or contraction of converted
data, applications using the O_CCSID flag should avoid assumptions about data size and the current file
offset. For example, the user may supply abuffer to 100 bytes, but after an application has written the
buffer to anew file, the file size may be 50, 200, or something else, depending on the CCSIDs involved.

If O_TEXTDATA was not specified on the open(), the datais written to the file without conversion. The
application is responsible for handling the data.

When file_descriptor refersto a socket, the write() function writes to the socket identified by the socket
descriptor.

Note: When the write completes successfully, the S_ISUID (set-user-ID) and S_ISGID (set-group-1D) bits of
the file mode will be cleared. If the write is unsuccessful, the bits are undefined.>

Write requests to a pipe or FIFO are handled the same as aregular file, with the following exceptions:

The S_ISUID and S_ISGID file mode bits will not be cleared.

Thereis no file offset associated with a pipe or FIFO. Each write request will append to the end of the
pipe or FIFO.

Write requests of [PIPE_BUF] bytes or less will not be interleaved with data from other threads
performing writes on the same pipe or FIFO. Writes of greater than [PIPE_BUF] bytes may have data
interleaved on arbitrary boundaries with writes by other threads, whether or not the O©_NONBLOCK
flag of thefile status flags is set.

If the O_NONBLOCK flag was not specified and the pipe or FIFO isfull, the write request will block
the calling thread until the requested amount of datain nbyte iswritten.

If the O_NONBLOCK flag was specified, then the following pertain to various write requests:
o Thewrite() function will not block the calling thread.

o A writereguest for [PIPE_BUF] or fewer bytes will have the following effect:

If there is sufficient space available in the pipe or FIFO, write() will transfer all the data and
return the number of bytes requested. If thereis not sufficient space in the pipe or FIFO, write()
will transfer no data, return -1, and set errno to [EAGAIN].

o A write request for more than [PIPE_BUF] bytes will cause one of the following:

= When at least one byte can be written, write() will transfer what it can and return the
number of bytes written.

= When no data can be written, write() will transfer no data, return -1, and set errno to
[EAGAIN].

Parameters

file_descriptor
(Input) The descriptor of the file to which the data is to be written.

buf
(Input) A pointer to a buffer containing the data to be written.

nbyte
(Input) The size in bytes of the datato be written.

Authorities

No authorization is required.

Return Value

value write() was successful. The value returned is the number of bytes actually written. This number is
less than or equal to nbyte.

-1 write() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If write() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EACCES Permission denied.

An attempt was made to access an object in away forbidden by its object access
permissions.

The thread does not have access to the specified file, directory, component, or
path.

If you are accessing a remote file through the Network File System, update
operations to file permissions at the server are not reflected at the client until
updates to data that is stored locally by the Network File System take place.
(Severa options on the Add Mounted File System (ADDMFS) command
determine the time between refresh operations of local data.) Accessto aremote
file may also fail due to different mappings of user IDs (UID) or group IDs (GID)
on the local and remote systems.

If writing to a socket, this error code indicates one of the following:

« The destination address specified is a broadcast address and the socket
option SO_BROADCAST was not set (with a setsockopt()).

[EAGAIN]

[EBADF]

[EBADFID]

[EBUSY|

[EDAMAGE]

[EFAULT]

[EFBIG]

S{EINTR]

« The process does not have the appropriate privileges to the destination
address. This error code can only be returned on a socket with an address
family of AF_INET and atype of SOCK_DGRAM.

Operation would have caused the process to be suspended.

If file_descriptor refersto a pipe or FIFO that hasits O_NONBLOCK flag set, this
error occurs if the write() would have blocked the calling thread.

Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not open, or
aread or write request was made to afile that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The
specified descriptor isincorrect, or does not refer to an open file. Or thiswrite()
request was made to afile that was only open for reading.

A file 1D could not be assigned when linking an object to adirectory.
ThefileID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon
aspossible.

Resource busy.

An attempt was made to use a system resource that is not available at thistime.
A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is
not valid.

While attempting to access a parameter passed to this function, the system
detected an address that is not valid.

Object istoo large.

The size of the object would exceed the system allowed maximum size & or the
process soft file size limit. <

Thefileisaregular file, nbyte is greater than 0, and the starting offset is greater
than or equal to 2 GB minus 2 bytes.

Interrupted function call .4

[EINVAL]

[EIO]

»{EJRNDAMAGE]

[EJRNENTTOOLONG]

[EJRNINACTIVE]

[EJRNRCVSPC]

[ENEWJRN]

[ENEWJRNRCV]

[ENOMEM]

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted
on an object and the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

Thefile system that the file resides in does not support large files, and the starting
offset exceeds 2GB minus 2 bytes.

Input/output error.

A physical 1/0 error occurred.

A referenced object may be damaged.
Journal damaged.

A journal or al of the journal's attached journal receivers are damaged, or the
journa sequence number has exceeded the maximum value allowed. This error
occurs during operations that were attempting to send an entry to the journal.

Entry too large to send.
Thejournal entry generated by this operation is too large to send to the journal.
Journa inactive.

Thejournaling state for the journal is*INACTIVE. This error occurs during
operations that were attempting to send an entry to the journal.

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage
limit has been exceeded for the system, the object, the user profile, or the group
profile. This error occurs during operations that were attempting to send an entry
to the journal.

New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete
successfully. This error occurs during operations that were attempting to start or
end journaling, or were attempting to send an entry to the journal.

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be
journaed. This error occurs during operations that were attempting to send an
entry to the journal. €

Storage allocation request failed.
A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC]

[ENOTAVAIL]

[ENOTSAFE]

S{ENXIO]

[ERESTART]

[ETRUNC]

[ESTALE]

[EUNKNOWN]

No space available.

The reguested operations required additional space on the device and thereis no
space left. This could also be caused by exceeding the user profile storage limit
when creating or transferring ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.
Independent Auxiliary Storage Pool (ASP) is not available.

Theindependent ASPisin Vary Configuration (VRY CFG), or Reclaim Storage
(RCLSTG) processing.

To recover from this error, wait until processing has completed for the
independent ASP.

Function is not allowed in ajob that is running with multiple threads.
No such device or address.

A system call was interrupted and may be restarted. <

Data was truncated on an input, output, or update operation.

File or object handle rejected by server.

If you are accessing aremote file through the Network File System, the file may
have been deleted at the server.

Unknown system state.

The operation failed because of an unknown system state. See any messages in the
job log and correct any errors that are indicated, thenretry the operation.

When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNREFUSED]

[EDESTADDRREQ]

[EHOSTDOWN]

The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless transport
service.

Operation requires destination address.

A destination address has not been associated with the socket pointed to by the fildes
parameter. This error code can only be returned on sockets that use a connectionless
transport service.

A remote host is not available.

This error code can only be returned on sockets that use a connectionless transport
service.

[EHOSTUNREACH)]

[EINTR]

[EMSGSIZE]

[ENETDOWN]

[ENETUNREACH]

[ENOBUFY

[ENOTCONN]

[EPIPE]

[EUNATCH]

[EWOULDBLOCK]

A route to the remote host is not available.

This error code can only be returned on sockets that use a connectionless transport
service.

Interrupted function call.

Message size out of range.

The data to be sent could not be sent atomically because the size specified by nbyteis
too large.

The network is not currently available.

This error code can only be returned on sockets that use a connectionless transport
service.

Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless transport
service.

Thereis not enough buffer space for the requested operation.

Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented
transport service.

Broken pipe.

The protocol required to support the specified address family is not available at this
time.

Operation would have caused the thread to be suspended.

If interaction with afile server is required to access the abject, errno could indicate one of the following errors:

[EADDRNOTAVAIL]

[ECONNABORTED]

[ECONNREFUSED]

[ECONNRESET]

[EHOSTDOWN]

[EHOSTUNREACH)]

Address not available.

Connection ended abnormally.

The destination socket refused an attempted connect operation.

A connection with a remote socket was reset by that socket.

A remote host is not available.

A route to the remote host is not available.

[ENETDOWN] The network is not currently available.

[ENETRESET] A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ESTALE] File or object handle rejected by server.
If you are accessing aremote file through the Network File System, the file may
have been deleted at the server.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at this
time.>

Error Messages

The following messages may be sent from this function:
Message ID Error Message Text
CPE3418 E Possible APAR condition or hardware failure.
CPF3CF2E Error(s) occurred during running of &1 API.
CPF9872 E Program or service program &1 in library & 2 ended. Reason code & 3.
CPFA081 E Unable to set return value or error code.

CPFAOD4 E File system error occurred. Error number & 1.

Usage Notes
1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o The object on which thisfunction is operating residesin afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

= Root

= QOpenSys
» User-defined

= ONTC
= QSYSLIB

= % Independent ASP QSYS.LIB &
= QOPT

2. QSYS.LIB # and independent ASP QSY S.LIB 4% File System Differences

This function will fail with error code [ENOTSAFE] if the object on which thisfunction is operating is
asave file and multiple threads exist in the job.

If the file specified is a save file, only complete records will be written into the save file. A write()
reguest that does not provide enough data to completely fill a save file record will cause the partia
record's data to be saved by the file system. The saved partial record will then be combined with
additional data on subsequent write()'s until a complete record may be written into the savefile. If the
savefileis closed prior to a saved partial record being written into the save file, then the saved partial
record is discarded, and the data in that partial record will need to be written again by the application.

A successful write() updates the change, modification, and access times for a database member using
the normal rules that apply to database files. At most, the access time is updated once per day.

Y ou should be careful when writing end-of-file characters in the QSY S.LIB #* and independent ASP
QSYS.LIB file systems. These file systems 4% end-of -file characters are symbolic; that is, they are
stored outside the file member. However, some situations can result in actual, nonsymbolic end-of-file
characters being written to a member. These nonsymbolic end-of-file characters could cause some tools
or utilitiesto fail. For example:

o If you previously wrote an end-of-file character as the last character of a member, do not
continue to write data after that end-of-file character. Continuing to write data will cause a
nonsymbolic end-of-file to be written. As aresult, acompile of the member could fail.

o If you previously wrote an end-of-file character as the last character of a member, do not write
other end-of-file characters preceding it in the file. Thiswill cause a nonsymbolic end-of-file to
be written. As aresult, acompile of the member could fail.

o If you previously used the integrated file system interface to manipulate a member that contains
an end-of-file character, avoid using other interfaces (such as the Source Entry Utility or
database reads and writes) to manipul ate the member. If you use other interfaces after using the
integrated file system interface, the end-of-file information will be lost.

3. QOPT File System Differences
The change and modification times of the file are updated when the file is closed.

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the range
being written are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to
conditions at the server. Once afile is open, subsequent requests to perform operations on the file can
fail because file attributes are checked at the server on each request. If permissions on the file are made
more restrictive at the server or the file is unlinked or made unavailable by the server for another client,
your operation on an open file descriptor will fail when the local Network File System receives these
updates. The local Network File System also impacts operations that retrieve file attributes. Recent
changes at the server may not be available at your client yet, and old values may be returned from

operations (several options on the Add Mounted File System (ADDMFS) command determine the time
between refresh operations of local data).

Reading and writing to files with the Network File System relies on byte-range locking to guarantee
dataintegrity. To prevent datainconsistency, use the fentl() AP to get and rel ease these locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If alarger buffer is passed, the error EINVAL will be
received.

6. Sockets Usage Notes

1. write() only works with sockets on which a connect() has been issued, since it does not alow
the caller to specify a destination address.

2. Tobroadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a
setsockopt()).

3. When using a connection-oriented transport service, all errors except [EUNATCH] and
[EUNKNOWN] are mapped to [EPIPE] on an output operation when either of the following
OCCUrS:

= A connection that isin progressis unsuccessful.
= An established connection is broken.

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input
operation (for example, read()).

7. For thefile systemsthat do not support large files, write() will return [EINVAL] if the starting offset
exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do support
large files, write() will return [EFBIG] if the starting offset exceeds 2GB minus 2 bytes and the file was
not opened for large file access.

8. Using this function successfully on the & /dev/null or /dev/zero % character special fileresultsin a
return value of the total number of bytes requested to be written. No data is written to the character
specid file. In addition, the change and modification times for the file are updated.

9. A If the write exceeds the process soft file size limit, signal SIFXFSZ isissued. 4

Related Information

« The<fentl.h> file (see Header Filesfor UNIX-Type Functions)

e The<unistd.h> file (see Header Files for UNIX-Type Functions)

« creat()--Create or Rewrite File
 dup()--Duplicate Open File Descriptor

o dup2()--Duplicate Open File Descriptor to Another Descriptor

« fentl()--Perform File Control Command

« ioctl()--Perform I/O Control Request

o |Iseek()--Set File Read/Write Offset

« open()--Open File

« 2 pread()--Read from Descriptor with Offset

« pread64()--Read from Descriptor with Offset (large file enabled)
« pwrite()--Write to Descriptor with Offset

« pwrite64()--Write to Descriptor with Offset (large file enabled) 4
« read()--Read from Descriptor

« readv()--Read from Descriptor Using Multiple Buffers

« send()--Send Data

« sendmsg()--Send Data or Descriptors or Both

« sendto()--Send Data

« writev()--Write to Descriptor Using Multiple Buffers

Example

See Code disclaimer information for information pertaining to code examples.

The following example writes a specific number of bytesto afile:

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#def i ne nega_string_| en 1000000

mai n() {
char *nega_string;
int file_descriptor;
int ret;
char fn[]="wite.file";

if ((nmega_string = (char*) malloc(nmega_string_ |len)) == NULL)
perror("malloc() error");

else if ((file_descriptor = creat(fn, S IWSR)) < 0)
perror("creat() error");

el se {
menset (nega_string, '0', mega_string_len);
if ((ret = wite(file_descriptor, nega_string, nega_string_len)) == -1)

perror("wite() error");
else printf("wite() wote % bytes\n", ret);
if (close(file_descriptor)!= 0)
perror("close() error");
if (unlink(fn)!= 0)
perror("unlink() error");
}

}
Output:

wite() wote 1000000 bytes

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

writev()--Write to Descriptor Using Multiple
Buffers

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/ ui o. h>

int witev(int descriptor,

struct iovec *io_vector[],
i nt vector_| ength)

Service Program Name: QPOLLIB1
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The writev() function is used to write data to afile or socket descriptor. writev() provides away for the data
that is going to be written to be stored in several different buffers (scatter/gather 1/0).

Note: When the write completes successfully, the S 1SUID (set-user-ID) and S_1SGID (set-group-1D) bits
of thefile mode will be cleared. If the write is unsuccessful, the bits are undefined.

See write()--Write to Descriptor for more information related to writing to a descriptor.

Parameters

descriptor

(Input) The descriptor to which the dataisto be written. The descriptor refersto either afileor a
socket.

io_vector(]

(Input) The pointer to an array of type struct iovec. struct iovec contains a sequence of pointersto
buffers in which the datato be written is stored. The structure pointed to by theio_vector parameter
isdefined in <sys/uio.h>.

struct iovec {
voi d *| ov_base;
size_t iov_len;

}

iov_base and iov_len are the only fields in iovec used by sockets. iov_base contains the pointer to a
buffer and iov_len contains the buffer length. The rest of the fields are reserved.
vector_length

(Input) The number of entriesin io_vector.

Authorities

No authorization is required.

Return Value

writev() returns an integer. Possible values are:
o -1 (unsuccessful)
N (successful), where nisthe number of bytes written.

Error Conditions

If writev() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EACCEY Permission denied.

An attempt was made to access an object in away forbidden by its object
access permissions.

The thread does not have access to the specified file, directory, component, or
path.

If you are accessing a remote file through the Network File System, update
operationsto file permissions at the server are not reflected at the client until
updates to datathat is stored locally by the Network File System take place.
(Severa options on the Add Mounted File System (ADDMFS) command
determine the time between refresh operations of local data.) Accessto a
remote file may also fail due to different mappings of user IDs (UID) or group
IDs (GID) on the local and remote systems.

If writing to a socket, this error code indicates one of the following:

« The destination address specified is a broadcast address and the socket
option SO_BROADCAST was not set (with a setsockopt()).

« The process does not have the appropriate privileges to the destination
address. This error code can only be returned on a socket with an
address family of AF_INET and atype of SOCK_DGRAM.

[EAGAIN] Operation would have caused the process to be suspended.

[EBADF]

[EBADFID]

[EBUSY]

[EDAMAGE]

[EFAULT]

[EFBIG]

S[EINTR]

[EINVAL]

Descriptor not valid.

A file descriptor argument was out of range, referred to afile that was not
open, or aread or write request was made to afile that is not open for that
operation.

A given file descriptor or directory pointer isnot valid for this operation. The
specified descriptor isincorrect, or does not refer to an open file. Or this
writev() request was made to afile that was only open for reading.

A file ID could not be assigned when linking an object to a directory.
Thefile ID tableis missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as
soon as possible.

Resource busy.

An attempt was made to use a system resource that is not available at this
time.

A damaged object was encountered.
A referenced object is damaged. The object cannot be used.
The address used for an argument is not correct.

In attempting to use an argument in acall, the system detected an address that
isnot valid.

While attempting to access a parameter passed to this function, the system
detected an address that is not valid.

Object istoo large.

The size of the object would exceed the system allowed maximum size ##or
the process soft file size limit. 4%

Thefileisaregular file, nbyteis greater than 0, and the starting offset is
greater than or equal to 2GB minus 2 bytes.

Interrupted function call .4

The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was
attempted on an object and the operation specified is not supported for that
type of object.

An argument value is not valid, out of range, or NULL.

Thefileresidesin afile system that does not support large files, and the
starting offset exceeds 2GB minus 2 bytes.

[EIO]

[EJRNDAMAGE]

[EJRNENTTOOLONG]

[EJRNINACTIVE]

[EJRNRCVSPC]

[ENEWJIRN]

[ENEWJRNRCV]

[ENOMEM]

[ENOSPC]

Input/output error.

A physical /O error occurred.

A referenced object may be damaged.
Journal damaged.

A journal or all of the journal's attached journal receivers are damaged, or the
journal sequence number has exceeded the maximum value allowed. This
error occurs during operations that were attempting to send an entry to the
journal.

Entry too large to send.

Thejournal entry generated by this operation istoo large to send to the
journal.

Journal inactive.

The journaling state for the journal is*INACTIVE. This error occurs during
operations that were attempting to send an entry to the journal.

Journal space or system storage error.

The attached journal receiver does not have space for the entry because the
storage limit has been exceeded for the system, the object, the user profile, or
the group profile. This error occurs during operations that were attempting to
send an entry to the journal.

New journal is needed.

The journal was not completely created, or an attempt to delete it did not
complete successfully. This error occurs during operations that were
attempting to start or end journaling, or were attempting to send an entry to
the journal.

New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be
journaled. This error occurs during operations that were attempting to send an
entry to the journal 4%

Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

No space available.

The requested operations required additional space on the device and thereis
no space left. This could also be caused by exceeding the user profile storage

limit when creating or transferring ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

[ENOTSAFE]

3 ERESTART]

[ESTALE]

[ETRUNC]

[EUNKNOWN]

Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASPisin Vary Configuration (VRY CFG), or Reclaim
Storage (RCLSTG) processing.

To recover from this error, wait until processing has completed for the
independent ASP.

Function is not alowed in ajob that is running with multiple threads.

A system call was interrupted and may be restarted. <%

File or object handle rejected by server.

If you are accessing aremote file through the Network File System, thefile
may have been deleted at the server.

Data was truncated on an input, output, or update operation.

Unknown system state.

The operation failed because of an unknown system state. See any messages
in the job log and correct any errors that are indicated, then retry the operation.

When the descriptor refersto a socket, errno could indicate one of the following errors:

[ECONNREFUSED]

[EDESTADDRREQ]

[EHOSTDOWN]

[EHOSTUNREACH]

[EINTR]

[EMSGSIZE]

The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless
transport service.

Operation requires destination address.

A destination address has not been associated with the socket pointed to by the
fildes parameter. This error code can only be returned on sockets that use a
connectionless transport service.

A remote host is not available,

This error code can only be returned on sockets that use a connectionless
transport service.

A route to the remote host is not available.

This error code can only be returned on sockets that use a connectionless
transport service.

Interrupted function call.

Message size out of range.

The data to be sent could not be sent atomically because the size specified by
nbyte istoo large.

[ENETDOWN]

[ENETUNREACH]

[ENOBUFS]

[ENOTCONN]

[EPIPE]

[EUNATCH]

[EWOULDBLOCK]

The network is not currently available.

This error code can only be returned on sockets that use a connectionless
transport service.

Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless
transport service.

There is not enough buffer space for the requested operation.

Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented
transport service.

Broken pipe.

The protocol required to support the specified address family is not available at
thistime.

Operation would have caused the thread to be suspended.

If interaction with afile server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

[ECONNABORTED)]

[ECONNREFUSED]

[ECONNRESET]

[EHOSTDOWN]

[EHOSTUNREACH]

[ENETDOWN]

[ENETRESET]

[ENETUNREACH]

Address not available.

Connection ended abnormally.

The destination socket refused an attempted connect operation.

A connection with aremote socket was reset by that socket.

A remote host is not available.

A route to the remote host is not available.

The network is not currently available.

A socket is connected to a host that is no longer available.

Cannot reach the destination network.

[ESTALE]

[ETIMEDOUT]

[EUNATCH]

File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may
have been deleted at the server.

A remote host did not respond within the timeout period.

The protocol required to support the specified address family is not available at
thistime.

Error Messages

M essage | D
CPE3418 E
CPF3CF2 E
CPF9872 E
CPFA081 E

CPFAOD4 E

Usage N

Error Message Text

Possible APAR condition or hardware failure.

Error(s) occurred during running of &1 API.

Program or service program &1 in library & 2 ended. Reason code & 3.

Unable to set return value or error code.

otes

File system error occurred. Error number & 1.

1. Thisfunction will fail with error code [ENOTSAFE] when all the following conditions are true:
o Where multiple threads exist in the job.

o The object on which this function is operating resides in afile system that is not threadsafe.
Only the following file systems are threadsafe for this function:

Root

QOpenSys

User-defined

QNTC

QSYSLIB

#*Independent ASP QSYS.LIB 4
QOPT

2. writev() only works with sockets on which a connect() has been issued, since the call does not
alow the caller to specify adestination address.

3. writev() is an atomic operation on sockets of type SOCK_DGRAM and SOCK_RAW in that it

produces one packet of data every timeit isissued. For example, awritev() to a datagram socket
resultsin a single datagram.

4. Tobroadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a
setsockopt()).

5. When using a connection-oriented transport service, al errors except [EUNATCH] and
[EUNKNOWN] are mapped to [EPIPE] on an output operation when either of the following
OCCurs:

o A connection that isin progressis unsuccessful.

o An established connection is broken.
To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation
(for example, read()).

6. For thefile systems that do not support large files, writev() will return [EINVAL] if the starting
offset exceeds 2GB minus 2 bytes, regardliess of how the file was opened. For the file systems that
do support large files, writev() will return [EFBIG] if the starting offset exceeds 2GB minus 2
bytes and the file was not opened for large file access.

7. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If alarger buffer is passed, the error EINVAL will
be received.

8. QOPT File System Differences
When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the
range being written are ignored.

9. Using this function successfully on the dev/null #+or /dev/zero #character special fileresultsin a
return value of the total number of bytes requested to be written. No data is written to the character
special file. In addition, the change and madification times for the file are updated.

10. #*f the write exceeds the process soft file size limit, signal SIFXFSZ isissued. 4

Related Information

» The<fcntl.h> file (see Header Files for UNIX-Type Functions)

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

o creat()--Create or Rewrite File

« dup()--Duplicate Open File Descriptor

« dup2()--Duplicate Open File Descriptor to Another Descriptor

« fentl()--Perform File Control Command

o ioctl()--Perform I/O Control Request

o |seek()--Set File Read/Write Offset

« open()--Open File

« read()--Read from Descriptor

« readv()--Read from Descriptor Using Multiple Buffers

« send()--Send Data

o sendmsg()--Send Data or Descriptors or Both

« sendto()--Send Data

o write()--Write to Descriptor

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

2

Using XOPEN_SOURCE for UNIX 98 Compatibility

There are two versions of most sockets APIs. The base OS/400 API uses BSD 4.3 structures and syntax. The other uses syntax and structures compatible with
BSD 4.4 and the UNIX 98 programming interface specifications. Y ou can select the UNIX 98 compatible interface by defining the_ XOPEN_SOURCE macro
to avalue of 520 or greater.

When you develop in C-based languages and an application is compiled with the _X OPEN_SOURCE macro defined to the value 520 or greater, some sockets
APIs are mapped to internal names, as shown in the following table:

Mapped name Internal name
accept() gso_accept98()
accept_and_recv() gso_accept_and_recv98()
bind() gso_hind98()
connect() gso_connect98()
endhostent() gso_endhostent98()
endnetent() gso_endnetent98()
endprotoent() gso_endprotoent98()
endservent() qso_endservent98()
getaddrinfo() gso_getaddrinfo98()

gethostbyaddr_r() gso_gethostbyaddr_r98()

|
|
|
|
|
|
|
|
|
|
gethostbyaddr() | gso_gethostbyaddrog()
|
|
|
|
|
|
|
|
|
|

gethostname() gso_gethostname98()
gethostname_r() gso_gethostname_r98()
gethostbyname() gso_gethostbyname98()
gethostent() (so_gethostent98()
getnameinfo() gso_getnameinfo98()
getnetbyaddr() gso_getnetbyaddro8()
getnetbyname() (so_getnetbyname98()
getnetent() (so_getnetent98()
getpeername() gso_getpeername98()

getprotobyname() | gso_getprotobyname98()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| getprotobynumber() | dso_getprotobynumber98()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

getprotoent() | gso_getprotoent98()
getsockname() | gso_getsockname98()
getsockopt() | gso_getsockoptos()
getservbyname() | (so_getservbyname98()
getservbyport() | (s0_getservbyport98()
getservent) | gso_getservent98()
inet_addr() | gso_inet_addr98()
inet_Inaof() | gso_inet_Inaof98()
inet_makeaddr() | gso_inet_makeaddro8()
inet_netof() | gso_inet_netof9s()
inet_network() | gso_inet_network98()
listen() | gso_listen98()
Rbind() | gso_Rbind98()
recv() | so_recv9s()
recvfromog() | so_recvfromos()
recvmsg() | gso_recvmsg98()
send() | (s0_send9s()
sendmsg() | gso_sendmsg98()
sendito() | s0_sendto98()
sethostent() | gso_sethostent98()
|

setnetent() (so_setnetent98()

| setprotoent) | gso_setprotoent98()
| satservent() | gso_setprotoent98()
| setsockopt() | gso_setsockopt98()
| shutdown() | so_shutdown9s()
| socket() | s0_socket98()

| socketpair) | gso_socketpair98()

Application not using C-based languages can use the internal names if necessary.

Using _XOPEN_SOURCE also changes some of the structures used by sockets to match BSD 4.4/UNIX 98 standards. The differences are summarized in the

following table:

BSD 4.3 structure

BSD 4.4/UNI X 98 compatible structure

typedef int socklen_t;

typedef unsigned short sa famly_t;

struct sockaddr {
u_short sa famly;
char sa_dat a[14] ;
b

struct sockaddr_un {
short sun_fam ly;

char sun_pat h[126] ;
H

struct sockaddr_in {

short sin_famly;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

struct sockaddr_in6 {
sa_famly_t sin6_famly;
in_port_t sin6_port;
uint32_t sin6_fl ow nfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_i d;

}s

typedef int socklen_t;
typedef uchar sa famly_t;

struct sockaddr {

struct msghdr {

caddr _t nmsg_nane;

int nmsg_nanel en;
struct iovec *nsg_iov;

int nmsg_i ovl en;

caddr _t nmsg_accri ghts;
int nmsg_accri ghtsl en;

ui nt8_t sa_l en;
sa_famly_t sa_famly;
char sa_dat a[14] ;
b
struct sockaddr_un {
ui nt 8_t sun_| en;
sa_famly_t sun_famly;
char sun_pat h[126] ;
b
struct sockaddr_in {
ui nt8_t sin_len;
sa_famly_t sin_famly;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];
b
struct sockaddr_in6 {
uint8_t sin6_l en;
sa_famly_t sin6_famly;
in_port_t sin6_port;
ui nt32_t sin6_fl ow nfo;
struct in6_addr sin6_addr;
uint32_t sin6_scope_i d;
b
struct msghdr {
voi d *msg_nane;
sockl en_t msg_nanel en;
struct iovec *nsg_iov;
i nt msg_i ovl en;
voi d *msg_control ;
sockl en_t msg_controll en;
int msg_f | ags;

(no equival ent)

struct cnsghdr {
sockl en_t cnsg_| en;

i nt
i nt

cnsg_l evel ;
cmeg_type;

#defi ne _SS MAXSI ZE 304

#define _SS ALIGNSI ZE (si zeof (char*))

#define _SS PADL1SI ZE (_SS ALI GNSI ZE - (sizeof (uint8_t) +
si zeof (sa_famly_t)))

#define _SS PAD2SI ZE (_SS_MAXSI ZE - (sizeof (uint8_t) +
si zeof (sa_famly_t) +
_SS PAD1SI ZE + _SS_ALI GNSI ZE))

#def i ne _SS_MAXSI ZE 304
#define _SS ALI GNSI ZE (si zeof (char*))
#def i ne _SS_PADLSI ZE (_SS_ALI GNSI ZE -
si zeof (sa_famly_t))
#def i ne _SS_PAD2S| ZE (_SS_MAXSI ZE -
(sizeof (sa_famly_t) +
_SS _PAD1SI ZE +

_SS_ALI G\SI ZE)) struct sockaddr_storage {

struct sockaddr_storage { uint8_t ss_len;

sa_famly_t ss_famly;

char _ss_padl[_SS_PADLSI ZE] ; sa_famly_t ss famly;

char* _ss_align; gﬂg:* _z:_g??;L'_SS_PADlSI 28l
—>5— —>>— ; char “ss_pad2[_SS | :
, char ss_pad2[_SS_PAD2SI| ZE] h dor ss PAD2S| 7
}
typedef int in_addr_t;
(no equival ent) typedef unsigned short in_port_t;

Usage Notes

1. Thestruct sockaddr length field (sa_len and the address family specific equivalents: sun_len, sin_len, and sin6_len) isonly provided for BSD 4.4
compatibility. It is not necessary to use thisfield even when using BSD 4.4/UNIX 98 compatibility. Thefield isignored on input addresses (like the
local_address parameter on hind()) and will be properly set on output addresses (like the address parameter on accept()).

2. The AF_TELEPHONY address sockaddr_tel and the AF_UNIX_CCSID address sockaddr_unc have not been updated with alength field equivalent to
sa_len. If you use sa_len to set alength on these addresses, it will be ignored on input addresses and set to zero on output addresses.

3. The structure sockaddr _storage is used to declare storage for any address family address. This structure is large enough and aigned for any
protocol-specific structure. It may then be cast as sockaddr structure for use on the APIs. The ss_family field of the sockaddr _storage will always align
with the family field of any protocol-specific structure.

Note: The storage alocated is larger than 255 bytes so it's size should not be used for sa_len. The actual protocol-specific structure size should be used
instead.

Top | UNIX-Type APIs | APIs by category
&

Sockets Network Functions

The network functions and the Berkeley Resolver routines supported by the sockets APIs are:

dn_comp() (Compress an expanded domain name) is used to compress an expanded domain name.
dn_comp ts64() (Compress an expanded domain name) is used to compress an expanded domain
name.

dn_expand() (Expand a compressed domain name.) is used to expand a compressed domain name.
dn_find() (Search for a compressed domain name from alist of previously compressed domain
names) is used to search for an expanded domain namein alist of compressed domain names.

dn_find ts64() (Search for a compressed domain name from alist of previously compressed

domain names) is used to search for an expanded domain namein alist of compressed domain
names.

dn_skipname() (Skip over acompressed domain name.) is used to skip over a compressed domain
name in a DNS packet.

endhostent() (Close the nameserver database) is used to close the host database file.
endhostent_r() (Close the nameserver database) is used to close the host database file.
endnetent() (Close the network database) is used to close the network database file.

endnetent r() (Close the network database) is used to close the network database file.
endprotoent() (Close the protocol database) is used to close the protocols database file.
endprotoent r() (Close the protocol database) is used to close the protocol database file.
endservent() (Close the service database) is used to close the services database file.
endservent_r() (Close the service database) is used to close the service database file.
#freeaddrinfo() (Free Address Information) frees one or more addrinfo structures returned by
getaddrinfo(), along with any additional storage associated with those structures. <%

#»gai_strerror() (Retrieve Address | nformation Runtime Error Message) retrieves atext string that
describes areturn value received from calling the getaddrinfo() or getnameinfo() API 4%
#rgetaddrinfo() (Get Address Information) translates the name of a service location or a service

name and returns a set of socket addresses and associated information to be used in creating a
socket with which to address the specified service. &

gethostbyaddr() (Provide information about host given an Internet address) is used to retrieve
information about a host.

gethostbyaddr_r() (Provide information about host given an Internet address) is used to retrieve
information about a host.

gethostbyname() (Provide information about host given a host name) is used to retrieve information
about a host.

gethostbyname r() (Provide information about host given a host name) is used to retrieve
information about a host.

gethostent() (Get next host entry from the nameserver database) is used to retrieve information
from the host databasefile.

gethostent_r() (Get next host entry from the nameserver database) is used to retrieve information
from the host databasefile.

“rgetnameinfo() (Get Name Information for Socket Address) translates a socket address to a node
name and service location.<%

getnetbyaddr() (Get information from the network database about a given internet address) is used
to retrieve information about a network.

getnetbyaddr r() (Get information from the network database about a given internet address) is
used to retrieve information about a network.

getnetbyname() (Get information from the network database about a given domain name) is used to
retrieve information about a network.

getnetbyname r() (Get information from the network database about a given domain name) is used
to retrieve information about a network.

getnetent() (Get network entry from the network database) is used to retrieve network information
from the network database file.

getnetent_r() (Get network entry from the network database) is used to retrieve network
information from the network database file.

getprotobyname() (Get information regarding a protocol given the protocol name) is used to
retrieve information about a protocol.

getprotobyname r() (Get information regarding a protocol given the protocol name) is used to
retrieve information about a protocol.

getprotobynumber() (Get information regarding a protocol given the protocol humber) is used to
retrieve information about a protocol.

getprotobynumber r() (Get information regarding a protocol given the protocol number) is used to
retrieve information about a protocol.

getprotoent() (Get next protocol entry in the protocol data base) is used to retrieve protocol
information from the protocol database file.

getprotoent r() (Get next protocol entry in the protocol data base) is used to retrieve protocol
information from the protocol database file.

getservbyname() (Get port number for a given service name.) is used to retrieve information about
services (the protocol being used by the service and the port number assigned for the service).
getservbyname r() (Get port number for a given service name.) is used to retrieve information
about services: the protocol being used by the service and the port number assigned for the service.
getservbyport() (Get service name given a port number) is used to retrieve information about a
service assigned to a port number.

getservbyport r() (Get service name given a port number) is used to retrieve information about a
service assigned to a port number.

getservent() (Get next service entry from the service database) is used to retrieve information about
services (the protocol being used by the service and the port number assigned for the service).
getservent r() (Get next service entry from the service database) is used to retrieve information
about services: the protocol being used by the service and the port number assigned for the service.
hstrerror() (Retrieve resolver error message.) is used to retrieve the text string that describes a
resolver h_errno value.

htonl() (Convert along (4 byte) integer from local host byte order to the network byte order) is used
to convert along (4-byte) integer from the local host byte order to standard network byte order.

htons() (Convert a short (2 byte) integer from local host byte order to the network byte order) is
used to convert a short (2-byte) integer from the local host byte order to standard network byte

order.

inet_addr() (Trand ate the full address from dotted decimal format to a 32-bit Internet address) is
used to trandate an Internet address from dotted decimal format to a 32-bit |P address.

inet_Inaof() (Separate the local portion of an Internet address.) is used to extract the local host
portion of an IP address.

inet_makeaddr() (Formulate an Internet address that combines a network address with the local
address of ahost.) is used to generate a 32-bit 1P address from the 32-bit network |P address and
the local address of the host.

inet_netof() (Separate the network portion of an Internet address.) is used to extract the network
portion of an | P address.

inet_network() (Trandate the network portion of the address from dotted decimal format to a 32-bit
Internet address) is used to trandate an Internet address from dotted decimal format to a 32-bit
network 1P address, in which the host part of the IP addressis set to zeros.

inet_ntoa() (Translate from 32-bit Internet address to a dotted decimal format) is used to translate
an Internet address from a 32-bit 1P address to dotted decimal format.

inet_ntoa r() (Translate from 32-bit Internet address to a dotted decimal format) is used to translate
an Internet address from a 32-bit 1P address to dotted decimal format.

#*inet_ntop() (Convert IPv4 and IPv6 Addresses Between Binary and Text Form) converts a
numeric address into atext string suitable for presentation.<X

#*inet_pton() (Convert IPv4 and IPv6 Addresses Between Text and Binary Form) converts an
addressin its standard text presentation form into its numeric binary form. <

ns_addr() (Trandlate a network services address from human readable format to a 12-byte
hexadecimal address) is used to translate a network services address from human readable format to
a 12-byte hexadecimal address.

ns_ntoa() (Transate a network services address from a 12-byte address to a human readable
format) is used to trandate a network services address from a 12-byte address to a human readable
format.

ns ntoa r() (Translate a network services address from a 12-byte address to a human readable
format) is used to trandate a network services address from a 12-byte address to a human readable
format.

ntohl() (Convert along (4 byte) integer from network byte order to the local host byte order) is used
to convert along (4-byte) integer from the standard network byte order to the local host byte order.
ntohs() (Convert a short (2 byte) integer from network byte order to the local host byte order) is
used to convert a short (2-byte) integer from the standard network byte order to the local host byte
order.

res close() (Close a socket and reset the _res structure.) is used to reset the _res structure to the
beginning defaults and close a socket that is opened as aresult of the RES_STAY OPEN flag.

res findzonecut() (Find the enclosing zone and servers) queries name servers until it finds the
enclosing zone and its master name servers for the specified domain name.

res_hostalias() (Retrieve the host alias) looks up the specified name in the host aliases file specified
by the environment variable HOSTALIASES.

res init() (Initialize _res structure for domain name server.) is used to initialize the _res structure
for name resolution.

res mkquery() (Form adomain name query and placeit in abuffer in memory.) is used to make
standard query messages (DNS packets) for name servers.

res _nclose() (Close socket and reset res structure) is used to reset the _res structure to the beginning
defaults and close a socket that is opened as aresult of the RES STAY OPEN flag.

res ninit() (Initialize res structure) is used to initialize the _res structure for name resolution.
res_nisourserver() (Check server address) looks up the specified server addressin the ns_addr_list[]
of the specified res structure.

res_nmkquery() (Place domain query in buffer) is used to make standard query messages (DNS
packets) for name servers.

res_nmkupdate() (Construct an update packet) builds a dynamic update packet from the linked list
of update records.

res_nquery() (Send domain query) is used to interface to the server query mechanism.

res_nguerydomain() (Send 2-string domain query) is used to interface to the server query
mechanism.

res_nsearch() (Search for domain name) is used to make a query message and wait for a response.

res nsend() (Send buffered domain query or update) is used to send a query or update message to a
name server and retrieve aresponse.

res_nsendsigned() (Send authenticated domain query or update) is similar to res_nsend() but it uses

the specified key to create atransaction signature (TSIG) to sign the query or update packet and to
authenticate the response.

res_nupdate() (Build and send dynamic updates) separates the linked list of update records into
groups so that all records in agroup will belong to a single zone on the nameserver.

res_query() (Form a domain name query and send it to the domain name server.) is used to
interface to the server query mechanism.

res search() (Search for adomain name from alist of domain names) is used to make a query
message and wait for a response.

res_send() (Send the query formed in res_mkquery to the domain name server.) is used to send a
query or update message to a name server and retrieve aresponse.

res xlate() (Trandate standard DNS packets between ASCII and EBCDIC) is used to trandate a
standard DNS packet between ASCII and EBCDIC.

sethostent() (Open the nameserver database) is used to prepare for sequential accessto the host
database file. sethostent() opens the file and repositions the file marker to the beginning of thefile.
sethostent_r() (Open the nameserver database) is used in preparation for sequential accessto the
host database file.

setnetent() (Open the network database) is used to prepare for sequential access to the network
database file.

setnetent r() (Open the network database) is used in preparation for sequential accessto the
network database file.

setprotoent() (Open the protocol database) is used to prepare for sequential access to the protocol
database file.

setprotoent _r() (Open the protocol database) is used in preparation for sequential access to the
protocol databasefile.

setservent() (Open the service database) is used to prepare for sequential access to the service
databasefile.

setservent_r() (Open the service database) is used in preparation for sequential access to the service
database file.

getlong() (Get long byte quantities from a byte stream) is used to retrieve an unsigned long byte
quantity.

getshort() (Get short byte quantities from a byte stream.) is used to retrieve an unsigned short byte
quantity.

putlong() (Put long byte quantities into a byte stream.) is used to put an unsigned long byte
quantity into a byte stream.

putshort() (Put short byte quantities into a byte stream.) is used to put an unsigned short byte
quantity into a byte stream.

1 1BM addition to the Berkeley Resolver Routines

Note: These functions use header (include) files from the library QSY SINC, which is optionally installable.
Make sure QSY SINC isinstalled on your system before using any of the functions.

Top | UNIX-Type APIs| APIs by category

dn_comp()--Compress Domain Name

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

i nt dn_conmp(unsi gned char *expanded_donai n_nane,
unsi gned char *conpressed_domai n_nane,
int answer_buffer_ | ength,

unsi gned char **domai n_nane_poi nters,
unsi gned char **| ast_donai n_nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The dn_comp() function is used to compress an expanded domain name.

Parameters

expanded_domain_name
(Input) The pointer to the expanded domain name.

compressed_domain_name
(Output) The pointer to where the compressed domain name will be stored.

answer_buffer_length
(Input) The size of the compressed _domain_name buffer.

domain_name_pointers

(Input) The pointer to an array of pointers to previously compressed domain names in the current
message.

last_domain_name
(Input) The pointer to the end of the array specified by domain_name_pointers.

Return Value

dn_comp() returns an integer. Possible values are:
o -1 (unsuccessful)

N (successful), where nis the size of the compressed domain name.

dn_comp() compresses the domain name pointed to by expanded _domain_name. The result is
placed in compressed_domain_name.

Error Conditions

When the dn_comp() function fails, it does not set specific errno or h_errno values. An error occurs under
the following conditions:

o NULL pointer(s) passed to the function.

« Invalid pointer(s) passed to the function.

« compressed_domain_name too small for the compressed domain name.

Usage Notes

1. domain_name_pointerg[0] points to the beginning of the DNS packet. The list of pointers ends with
aNULL pointer. After domain_name_pointerg 0] isinitialized to the beginning of the packet and
domain_name pointerg[1] isinitialized to NULL, dn_comp() updates the list each time it is called.

2. dn_comp() callsdn_find() to attempt to locate the different parts of the domain name being
compressed.

3. dn_comp() expects EBCDIC data asinput. The output from dn_comp() isaso EBCDIC.

Related Information

o dn expand()--Expand Domain Name

o dn find()--Search for Compressed Domain Name

o dn_skipname()--Skip over Compressed Domain Name

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

dn_comp_ts64()--Compress Domain Name

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

int dn_conp_ts64(unsigned char * _ ptr64 expanded_domai n_nane,
unsi gned char * _ ptr64 conpressed _domai n_nane,
int answer_buffer_ | ength,

unsigned char * _ptr64 * _ ptr64 domai n_nane_poi nters,
unsigned char * ptr64 * ptr64 | ast_domai n_nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The dn_comp_ts64() function is used to compress an expanded domain name. dn_comp_ts64() differs from
dn_comp() in that dn_comp_ts64() accepts 8-byte teraspace pointers.

For adiscussion of the parameters, authorities required, return values, and other related information, see
dn_comp()--Compress Domain Name.

Usage Notes

All of the usage notes for dn_comp()--Compress Domain Name apply to dn_comp_ts64().

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

dn_expand()--Expand Domain Name

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

i nt dn_expand(unsi gned char *message_poi nter,
unsi gned char *end_of nessage,
unsi gned char *conpressed_donai n_nane,

unsi gned char *expanded_domai n_nane,
int answer_buffer | ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The dn_expand() function is used to expand a compressed domain name.

Parameters

message_pointer
(Input) The pointer to the beginning of a DNS packet.

end_of _message
(Input) The pointer to the end of the DNS packet.

compressed_domain_name
(Input) The pointer to the compressed domain name within the DNS packet.

expanded_domain_name
(Output) The pointer to the expanded domain name.

answer_buffer_length
(Input) The size of the expanded_domain_name buffer.

Return Value

dn_expand() returns an integer. Possible values are:
o -1 (unsuccessful)

 n(successful), where nis the size of the compressed domain name.

The dn_expand() routine expands the domain name pointed to by compressed_domain_name. The
result is placed in expanded_domain_name.
Error Conditions
When the dn_expand() function fails, it does not set specific errno or h_errno values. An error occurs under
the following conditions:
o NULL pointer(s) passed to the function.
« Invalid pointer(s) passed to the function.

« expanded_domain_name too small for the expanded domain name.

« end_of message reached before the domain name could be expanded.

Usage Notes

1. The compressed domain name size is returned rather than the expanded domain name size because
it isused to parse through the DNS packet.

2. dn_expand() uses end_of _message to insure that it doesn't run past the end of the DNS packet.

3. dn_expand() expects EBCDIC data as input. The output from dn_expand() is also EBCDIC.

Related Information

o dn comp()--Compress Domain Name

o dn find()--Search for Compressed Domain Name

o dn skipname()--Skip over Compressed Domain Name

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

dn_find()--Search for Compressed Domain
Name

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

int dn_find(unsigned char *expanded_donai n_nane,
unsi gned char *message_poi nter,

unsi gned char **domai n_nane_poi nters,
unsi gned char **| ast_donai n_nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The dn_find() function is used to search for an expanded domain name in alist of compressed domain
names.

Parameters

expanded_domain_name
(Input) The pointer to the expanded domain name.

message pointer_name

(Input) A pointer to the DNS packet that contains the compressed names pointed to by the elements
of domain_name_pointers.

domain_name_pointers
(Input) The pointer to an array of pointers to previously compressed names in the current message.

last_domain_name
(Input) The pointer to the end of the array of domain_name_pointers.

Return Value

dn_find() returns an integer. Possible values are:
o -1 (unsuccessful)

» N (successful), where nis an offset into the message_pointer where domain name was found.

Error Conditions

When the dn_find() function fails, it does not set specific errno or h_errno values. An error occurs under
the following conditions:

o NULL pointer(s) passed to the function.

« Invalid pointer(s) passed to the function.

» Expanded domain name not found in the DNS packet.

Usage Notes

1. dn_find() locates an expanded name in an array of previously compressed names.
2. Usually dn_find() is called from dn_comp() but can be called directly.

3. dn_find() expects EBCDIC data as input.

Related Information

o dn expand()--Expand Domain Name

o dn comp()--Compress Domain Name

o dn skipname()--Skip over Compressed Domain Name

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

dn_find_ts64()--Search for Compressed
Domain Name

Syntax

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<sys/types. h>
<netinet/in.h>
<ar pal/ naneser . h>
<resol v. h>

int dn_find ts64(unsigned

unsi gned char
unsi gned char
unsi gned char

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

char * _ ptr64 expanded_domai n_nane,

* ptr64 nmessage_pointer,

* ptr6d4 * _ ptr64 donmmi n_nane_pointers,
* ptr6d4 * _ ptr64 | ast_domai n_nane)

The dn_find() function is used to search for an expanded domain name in alist of compressed domain
names. dn_find_ts64() differsfrom dn_find() in that dn_find_ts64() accepts 8-byte teraspace pointers.

For adiscussion of the parameters, authorities required, return values, and other related information, see
dn_find()--Search for Compressed Domain Name.

Usage Notes

All of the usage notes for dn_comp()--Compress Domain Name apply to dn_find_ts64().

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

dn_skipname()--Skip over Compressed Domain
Name

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

i nt dn_ski pnane(unsi gned char *conpressed_domai n_nane,
unsi gned char *end_of nessage)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The dn_skipname() function is used to skip over a compressed domain name in a DNS packet.

Parameters

compressed_domain_name
(Input) A pointer to a compressed domain name.

end_of _message
(Input) The pointer to the end of the message string.

Return Value

dn_skipname() returns an integer. Possible values are:
o -1 (unsuccessful)

« N (successful), where nisthe size of compressed domain_name.

Error Conditions

When the dn_skipname() function fails, it does not set specific errno or h_errno values. An error occurs
under the following conditions:

o NULL pointer(s) passed to the function.

« Invalid pointer(s) passed to the function.

« end_of message reached before the end of the compressed domain name.

Usage Notes

1. dn_skipname() skips over a compressed domain name in a DNS packet and returns the size of
compressed_domain_name.

2. dn_skipname() expects EBCDIC data as input.

Related Information

o dn expand()--Expand Domain Name

o dn find()--Search for Compressed Domain Name

o dn comp()--Compress Domain Name

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

endhostent()--Close Host Database

Syntax

#i ncl ude <net db. h>

voi d endhostent ()

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The endhostent() function is used to close the host database file. The file is opened by those functions that
retrieve information about a host (for example, gethostent()).
Authorities

No authorization is required.

Usage Notes

1. A When the_ XOPEN_SOURCE macro defined to the value 520 or greater, the host file is always
closed. When the XOPEN_SOURCE macro is not so defined, the € host fileis not closed if a
sethostent() with a nonzero parameter value was previously compl eted.

2. ?Z_'J;The i Series Navigator or the <% following CL commands can be used to access the host database
ile:
o ADDTCPHTE (Add TCP/IP Host Table Entry)
o RMVTCPHTE (Remove TCP/IP Host Table Entry)
o CHGTCPHTE (Change TCP/IP Host Table Entry)
o RNMTCPHTE (Rename TCP/IP Host Table Entry)
0 MRGTCPHT (Merge TCP/IP Host Tables)

3. Do not use the endhostent() function in a multithreaded environment. See the multithread
aternative endhostent_r() function.

4. ¥*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the endhostent() API is mapped to
gso_endhostent98() 4%

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

gethostent()--Get Next Entry from Host Database

gethostbyname()--Get Host Information for Host Name

gethostbyaddr()--Get Host Information for | P Address

o sethostent()--Open Host Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

endhostent_r()--Close Host Database

Syntax

#i ncl ude <net db. h>

voi d endhostent _r(struct hostent data
*hostent _data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The endhostent_r() function is used to close the host database file. The file is opened by those functions
that retrieve information about a host (for example, gethostent_r()).

Parameters

struct hostent_data*hostent_data_struct_addr (input)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results
between function calls. Thefield host_control _blk in the hostent_data structure must be initialized
with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis required, then
the entire hostent_data structure must be initialized to hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The endhostent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct hostent_datadenoted by hostent_data struct_addr is defined in <netdb.h>.

Error Conditions

When the endhostent_r() function fails, errno can be set to:

[EINVAL] The hostent_data structure was not properly initialized to hexadecimal zeros beforeinitial
use. For corrective action, see the description for structure hostent_data.

Usage Notes

1. # When the_ XOPEN_SOURCE macro defined to the value 520 or greater, the host file is always
closed. When the XOPEN_SOURCE macro is not so defined, the 4 host file will not be closed if
asethostent_r() call with anonzero parameter value was previously done.

2. #TheiSeries Navigator or the 4% following CL commands can be used to access the host database
file:

o ADDTCPHTE (Add TCP/IP Host Table Entry)

o RMVTCPHTE (Remove TCP/IP Host Table Entry)
o CHGTCPHTE (Change TCP/IP Host Table Entry)
o RNMTCPHTE (Rename TCP/IP Host Table Entry)
o MRGTCPHT (Merge TCP/IP Host Tables)

3. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the endhostent_r() APl is mapped
to gso_endhostent_r98().%

Related Information

o & XOPEN_ SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

o gethostbyaddr r()--Get Host Information for |P Address

« gethostbyname r()--Get Host Information for Host Name

« gethostent r()--Get Next Entry from Host Database

o sethostent r()--Open Host Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

endnetent()--Close Network Database

Syntax

#i ncl ude <net db. h>

voi d endnetent ()

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The endnetent() function is used to close the network database file. The file is opened by those functions
that retrieve information about a network (for example, getnetent()).
Usage Notes

1. 2 When the _XOPEN_SOURCE macro defined to the value 520 or greater, the network fileis
always closed. When the XOPEN_SOURCE macro is not so defined, the <% network fileis not
closed if a setnetent() with a nonzero parameter value was previously completed.

2. ®TheiSeries Navigator or the € following CL commands can be used to access the network
database file:
o WRKNETTBLE (Work with Network Table Entries)
o ADDNETTBLE (Add Network Table Entry)
o RMVNETTBLE (Remove Network Table Entry)
3. Do nat use the endnetent() function in a multithreaded environment. See the multithread alternative

endnetent_r() function.

4. ¥*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the endnetent() API is mapped to
gso_endnetent98().4%

Authorities

No authorization is required.

Related Information

o #* XOPEN_ SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« getnetent()--Get Next Entry from Network Database

« Setnetent()--Open Network Database

« getnetbyaddr()--Get Network Information for |P Address

« getnetbyname()--Get Network Information for Domain Name

API introduced:V4R2

Top | UNIX-Type APIs| APIs by category

endnetent_r()--Close Network Database

Syntax

#i ncl ude <netdb. h>
int endnetent r(struct netent data
*net ent _dat a_struct addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The endnetent_r() function is used to close the network database file. The file is opened by those functions
that retrieve information about a network (for example, getnetent_r()).

Parameters

struct netent_data*netent_data_struct_addr (input)
Specifies the pointer to the netent_data structure, which is used to pass and preserve results
between function calls. The field net_control_blk in the netent_data structure must be initialized

with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis required, then
the entire netent_data structure must be initialized with hexadecimal zeros beforeinitial use.

Authorities

No authorization is required.

Return Value

The endnetent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)

o 0 (successful call)

The struct netent_datadenoted by netent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the endnetent_r() function fails, errno can be set to:

[EINVAL] The netent_data structure was not properly initialized to hexadecimal zeros before initial
use. For corrective action, see the description for structure netent_data.

Usage Notes

1. # When the XOPEN_SOURCE macro defined to the value 520 or greater, the network fileis
always closed. When the XOPEN_SOURCE macro is not so defined, the <% network file will not
be closed if a setnetent_r() call with anonzero parameter value was previously done.

2. #TheiSeries Navigator or the 4% following CL commands can be used to access the network
database file:

o WRKNETTBLE (Work with Network Table Entries)
o ADDNETTBLE (Add Network Table Entry)
o RMVNETTBLE (Remove Network Table Entry)

3. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the endnetent_r() APl is mapped to
gso_endnetent_r98().<X

Related Information

o #* XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o getnetent r()--Get Next Entry from Network Database

o getnetbyaddr r()--Get Network Information for |P Address

« getnetbyname r()--Get Network Information for Domain Name

« setnetent r()--Open Network Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

endprotoent()--Close Protocol Database

Syntax

#i ncl ude <net db. h>

voi d endpr ot oent ()

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The endprotoent() function is used to close the protocols database file. The file is opened by those functions
that retrieve information about a protocol (for example, getprotoent()).

Authorities

No authorization is required.

Usage Notes

1. A When the_XOPEN_SOURCE macro defined to the value 520 or greater, the protocols fileis
always closed. When the XOPEN_SOURCE macro is not so defined, the <€ protocols file is not
closed if asetprotoent() with anonzero parameter value was previously completed.

2. ZTheiSeries Navigator or the % following CL commands can be used to access the protocol
databasefile:
o WRKPCLTBLE (Work with Protocol Table Entries)
o ADDPCLTBLE (Add Protocol Table Entry)
o RMVPCLTBLE (Remove Protocol Table Entry)
3. Do nat use the endprotoent() function in a multithreaded environment. See the multithread

alternative endprotoent_r() function.

4. #*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the endprotoent() API is mapped to
gso_endprotoent98() 4%

Related Information

o #* XOPEN_ SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« getprotoent()--Get Next Entry from Protocol Database

« setprotoent()--Open Protocol Database

« getprotobyname()--Get Protocol Information for Protocol Name

« getprotobynumber()--Get Protocol |nformation for Protocol Number

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

endprotoent_r()--Close Protocol Database

Syntax

#i ncl ude <netdb. h>
i nt endprotoent r(struct protoent_data
*protoent _data_struct_addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The endprotoent_r() function is used to close the protocol database file. The file is opened by those
functions that retrieve information about a protocol (for example, getprotoent_r()).

Parameters

struct protoent_data * protoent_data struct_addr (input)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results
between function calls. The field proto_control_blk must be initialized with hexadecimal zeros
beforeitsinitial use. If compatibility with other platformsis required, then the entire protoent_data
structure must be initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The endprotoent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct protoent_data denoted by protoent_data struct_addr is defined in <netdb.h>.

Error Conditions

When the endprotoent_r() function fails, errno can be set to:

[EINVAL] The protoent_data structure was not properly initialized with hexadecimal zeros before
initial use. For corrective action, see the description for structure protoent_data.

Usage Notes

1. 2 When the _XOPEN_SOURCE macro defined to the value 520 or greater, the protocolsfileis
always closed. When the XOPEN_SOURCE macro is not so defined, the <% protocols file will not
be closed if a setprotoent_r() call with a non-zero parameter value was previously done.

2. ®TheiSeries Navigator or the € following CL commands can be used to access the protocol
database file:

o WRKPCLTBLE (Work with Protocol Table Entries)
o ADDPCLTBLE (Add Protocol Table Entry)
o RMVPCLTBLE (Remove Protocol Table Entry)

3. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the endprotoent_r() API is mapped
to gso_endprotoent_r98().&

Related Information

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

o getprotobynumber r()--Get Protocol

« Qgetprotobyname r()--Get Protocol |nformation for Protocol Name

« getprotoent r()--Get Next Entry from Protocol Database

« setprotoent r()--Open Protocol Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

endservent()--Close Service Database

Syntax

#i ncl ude <net db. h>

voi d endservent ()

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The endservent() function is used to close the services database file. The file is opened by those functions
that retrieve information about services (for example, getservent()).

Authorities

No authorization is required.

Usage Notes

1. A When the_XOPEN_SOURCE macro defined to the value 520 or greater, the services fileis
always closed. When the . XOPEN_SOURCE macro is not so defined, the 4 servicesfileis not
closed if asetservent() with a nonzero parameter value was previously compl eted.

2. ZTheiSeries Navigator or the 4 following CL commands can be used to access the services
databasefile:
o WRKSRVTBLE (Work with Service Table Entries)
o ADDSRVTBLE (Add Service Table Entry)
o RMVSRVTBLE (Remove Service Table Entry)
3. Do not use the endservent() function in a multithreaded environment. See the multithread

alternative endservent_r() function.

4. #*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the endservent() API is mapped to
gso_endservent98() 4%

Related Information

o #* XOPEN_ SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o getservent()--Get Next Entry from Service Database

o Setservent()--Open Service Database

o getservbyname()--Get Port Number for Service Name

o getservbyport()--Get Service Name for Port Number

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

endservent_r()--Close Service Database

Syntax

#i ncl ude <netdb. h>
i nt endservent _r(struct servent data
*servent data_struct_addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The endservent_r() function is used to close the service database file. The file is opened by those functions
that retrieve information about services (for example, getservent_r()).

Parameters

struct servent_data * servent_data_struct_addr (input)

Specifies the pointer to the servent_data structure, which is used to pass and preserve results
between function calls. The field serve _control _blk in the servent_data structure must be initialized
with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis required, then
the entire servent_data structure must initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The endservent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct servent_datadenoted by servent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the endservent_r() function fails, errno can be set to:

[EINVAL] The servent_data structure was not properly initialized with hexadecimal zeros before initial
use. For corrective action, see the description for structure servent_data.

Usage Notes

1. 2 When the _XOPEN_SOURCE macro defined to the value 520 or greater, the servicesfileis
always closed. When the XOPEN_SOURCE macro is not so defined, the 4% services file will not
be closed if asetservent_r() call with anon-zero parameter value was previously done.

2. #TheiSeries Navigator or the 4 following CL commands can be used to access the services
database file:

o WRKSRVTBLE (Work with Service Table Entries)
o ADDSRVTBLE (Add Service Table Entry)
o RMVSRVTBLE (Remove Service Table Entry)

3. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the endservent_r() APl is mapped
to gqso_endservent_r98().«%

Related Information

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

o getservbyname r()--Get Port Number for Service Name

o getservbyport r()--Get Service Name for Port Number

o getservent r()--Get Next Entry from Service Database

o Setservent r()--Open Service Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

sfreeaddrinfo()--Free Address Information

Syntax

#i nclude <sys/socket.h>
#i ncl ude <netdb. h>

void freeaddrinfo(struct addrinfo *ai);

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The freeaddrinfo() function frees one or more addrinfo structures returned by getaddrinfo(), along with any additional

storage associated with those structures. If the ai_next field of the structureis not null, the entire list of structuresis
freed.

Parameters

ai
(Input) The pointer to a struct addrinfo that was returned by getaddrinfo().

The structure struct addrinfo is defined in <netdb.h>.

struct addrinfo {

i nt ai _flags; /* Al _PASSI VE, Al _CANONNAME, Al _NUMERI CHOST,
*/
i nt ai _famly; [* PF_xxx */
i nt ai _socktype; [/* SOCK xxx */
i nt ai _protocol; /* 0 or IPPROTO xxx for IPv4 and | Pv6 */
socklen_t ai _addrlen; /* length of ai_addr */
char *ai _canonnane; /* canoni cal nane for nodenane */
struct sockaddr *ai_addr; /* binary address */
struct addrinfo *ai_next; /* next structure in linked list */
b
Authorities

No authorization is required.

Usage Notes

1. Thefreeaddrinfo() API supportsthe freeing of arbitrary sublists of an addrinfo list originally returned by
getaddrinfo().

Related Information

o getaddrinfo()--Get Address Information

&«

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

»gal_strerror()--Retrieve Address Information
Runtime Error Message

Syntax

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

char *gai _strerror(int ecode);

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Thegai_strerror() function retrieves atext string that describes a return value received from calling the
getaddrinfo() or getnameinfo() API.

Parameters

ecode
(Input) The return value received from getaddrinfo() or getnameinfo().

Authorities

No authorization is required.

Return Value

gai_strerror() returns a pointer to the return value text.

Usage Notes

1. gai_strerror() returns a pointer to the string. The null-terminated string is stored in the CCSID of
thejob. If the job is 65535 and the string is something other than EBCDIC single byte or EBCDIC
mixed, the text is converted to the default job CCSID.

2. If an ecode is specified for which there is no corresponding description, an Unknown Error string is
returned.

3. The null-terminated string addressed by the pointer returned is overlayed by subsequent invocations
of thegai_strerror() API from within the same thread.

Related Information

o getaddrinfo()--Get Address Information

« getnameinfo()--Get Name Information for Socket Address

&«

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

sgetaddrinfo()--Get Address Information

Syntax

#i nclude <sys/socket.h>
#i ncl ude <netdb. h>

i nt

Service Program Name: QSOSRV 2
Default Public Authority: * USE

Threadsafe: Yes

get addri nfo(const char *nodenane, const char *servnane,
const struct addrinfo *hints,
struct addrinfo **res);

The getaddrinfo() function translates the name of a service location (for example, a host name) and/or a service name
and returns a set of socket addresses and associated information to be used in creating a socket with which to address
the specified service.

Parameters

The nodename and servname parameters are either null pointers or pointers to null-terminated strings. One or both of
these two parameters must be a non-null pointer.

The format of avalid name depends on the protocol family or families. If a specific family is not given and the name
could be interpreted as valid within multiple supported families, the implementation will attempt to resolve the name
in al supported families and, in the absence of errors, one or more results shall be returned.

nodename

(Input) The pointer to the null-terminated character string that contains the descriptive name or address string
for which the address information isto be retrieved. If the servname parameter is null, anodename must be
specified and the requested network-level address will be returned. If the nodename parameter is null, a
servname must be specified and the requested service location will be assumed to be local to the caller. If the
specified address family isAF_INET, AF_INET6, or AF_UNSPEC, valid descriptive names include host
names. If the specified address family isAF_INET, AF_INET6, or AF_UNSPEC, the permissable address
string formats for the nodename parameter are specified as defined in inet_pton().

servname

hints

(Input) The pointer to the null-terminated character string that contains the descriptive name or numeric
representation suitable for use with the address family or families for which the requested service information
isto be retrieved. If nodename is not null, the requested service location is named by hodename; otherwise,
the requested service location islocal to the caler. If the specified address family is AF_INET, AF_INET®6, or
AF_UNSPEC, the service can be specified as a string specifying a decimal port number.

(Input) The pointer to a struct addrinfo. If the parameter hintsis not null, it refers to a structure containing
input values that may direct the operation by providing options and by limiting the returned information to a
specific socket type, address family and/or protocol. In this hints structure every member other than ai_flags,
ai_family, ai_socktype and ai_protocol must be zero or anull pointer. If hintsisanull pointer, the behavior
will be asif it referred to a structure containing the value zero for the ai_flags, ai_socktype and ai_protocol

fields, and AF_UNSPEC for theai_family field.

The structure struct addrinfo is defined in <netdb.h>.

struct addrinfo {

i nt ai _flags; /* Al _PASSI VE, Al _CANONNAME, Al _NUMERI CHOST,
*/

i nt ai _famly; [* PF_xxx */

i nt ai _socktype; [/* SOCK xxx */

i nt ai _protocol; /* 0 or IPPROTO xxx for IPv4 and | Pv6 */

socklen_t ai_addrlen; /* length of ai_addr */

char *ai _canonnane; /* canoni cal nane for nodenane */

struct sockaddr *ai_addr; /* binary address */

struct addrinfo *ai_next; /* next structure in linked list */

s

A value of AF_UNSPEC for ai_family means that the caller will accept any protocol family. A value of zero
for ai_socktype means that the caller will accept any socket type. A value of zero for ai_protocol means that
the caller will accept any protocol.

If the caller handles only IPv4 and not I Pv6, then the ai_family member of the hints structure should be set to
PF_INET when getaddrinfo() is called.

If the caller handles only TCP and not UDP, for example, then the ai_protocol member of the hints structure
should be set to IPPROTO_TCP when getaddrinfo() is called.

Theai_flagsfield to which hints parameter points must have the value zero or be the bitwise OR of one or
more of the values Al_PASSIVE, AI_CANONNAME, Al_NUMERICHOST, Al_NUMERICSERV,
Al_VAMAPPED, Al_ALL, and AI_ADDRCONFIG.

The Al_PASSIVE flag in the ai_flags member of the hints structure specifies how to fill in the P address
portion of the socket address structure. If the Al_PASSIVE flag is specified, then the returned address
information will be suitable for use in binding a socket for accepting incoming connections for the specified
service (that is, acal to bind()). In this case, if the nodename parameter is null, then the 1P address portion of
the socket address structure will be set to INADDR_ANY for an IPv4 address or INGADDR_ANY _INIT for
an |Pv6 address. If the Al_PASSIVE bit is not set, the returned address information will be suitable for a call
to connect() (for a connection-oriented protocol) or for acall to connect(), sendto() or sendmsg() (for a
connectionless protocol). In this case, if the nodename parameter is null, then the | P address portion of the
socket address structure will be set to the loopback address. Thisflag isignored if the nodename parameter is
not null.

If the flag AI_CANONNAME is specified and the nodename parameter is not null, the function attempts to
determine the canonical name corresponding to nodename (for example, if nodenameis an dias or shorthand
notation for a complete name).

If the flag AI_NUMERICHOST is specified then a non-null nodename string must be a numeric host address
string. Otherwise an error of [EAI_NONAME] is returned. This flag prevents any type of name resolution
service (for example, the DNS) from being called.

If the flag AIl_NUMERICSERY is specified then a non-null servname string must be a numeric port string.
Otherwise an error [EAI_NONAME] isreturned. This flag prevents any type of name resolution service (for
example, NIS+) from being called.

If the Al_VAMAPPED flag is specified along with an ai_family of AF_INET®6, then the caller will accept
IPv4-mapped 1Pv6 addresses. That is, if no AAAA records are found then a query is made for A records and
any found are returned as IPv4-mapped | Pv6 addresses (ai_addrlen will be 28). The Al_VAMAPPED flag is
ignored unless ai_family equals AF_INETS6.

The Al_ALL flag isused in conjunction with the Al_V4AMAPPED flag, and is only used with an ai_family of
AF_INET6. When Al_ALL islogicaly or'd with Al_V4MAPPED flag then the caller will accept al
addresses. |Pv6 and |Pv4-mapped IPv6. A query isfirst made for AAAA records and if successful, the IPv6
addresses are returned. Another query isthen made for A records and any found are returned as | Pv4-mapped

IPv6 addresses (ai_addrlen will be 28). Thisflag isignored unlessai_family equals AF_INETS6.

If the AI_ADDRCONFIG flag is specified then aquery for AAAA records will occur only if the node has at
|east one |Pv6 source address configured and a query for A records will occur only if the node has at least one
IPv4 source address configured. The loopback addressis not considered for this case as valid as a configured
source address.

The ai_socktype field to which argument hints points specifies the socket type for the service. If a specific
socket type is not given (for example, avalue of zero) and the service name could be interpreted as valid with
multiple supported socket types, the implementation will attempt to resolve the service name for al supported
socket types and, all successful results will be returned. A non-zero socket type value will limit the returned
information to values with the specified socket type.

res

(Output) The pointer to alinked list of addrinfo structures, each of which specifies a socket address and
information for usein creating a socket with which to use that socket address. The list will include at least one
addrinfo structure. The ai_next field of each structure contains a pointer to the next structure on the list, or a
null pointer if it isthelast structure on the list. Each structure on the list includes values for use with a call to
the socket() function, and a socket address for use with the connect() function or, if the Al_PASSIVE flag was
specified, for use with the bind() function. Thefields ai_family, ai_socktype, and ai_protocol are usable asthe
arguments to the socket() function to create a socket suitable for use with the returned address. The fields
ai_addr and ai_addrlen are usable as the arguments to the connect() or bind() functions with such a socket,
according to the Al_PASSIVE flag.

If nodenameis not null, and if requested by the AI_CANONNAME flag, the ai_canonname field of the first
returned addrinfo structure points to a null-terminated string containing the canonical name corresponding to
the input nodename; if the canonical name is not available, then ai_canonname refers to the argument
nodename or a string with the same contents. The contents of the ai_flags field of the returned structuresis
undefined.

All fields in socket address structures returned by getaddrinfo() that are not filled in through an explicit
argument (for example, siné_flowinfo and sin_zero) will be set to zero.

Note: This makesit easier to compare socket address structures.

Authorities

Authorization of *R (allow access to the object) to the host aliases file specified by the HOSTALIASES environment
variable.

You also need * X authority to each directory in the path of the host aliasesfile.

Return Value

getaddrinfo() returns an integer. Possible values are:
o 0O (successful)

« hon-zero (unsuccessful)

Error Conditions

When getaddrinfo() fails, the error return value can be set to one of the following:

[EAI_AGAIN]
[EAI_BADFLAGS
[EAI_FAIL]
[EAI_FAMILY]
[EAI_MEMORY]

[EAI_NONAME]

[EAl_SERVICE]
[EAl_SOCKTYPE]

[EAl_SYSTEM]

Usage Notes

The name could not be resolved at this time. Future attempts may succeed.

The flags parameter had an invalid value.

A non-recoverable error occurred when attempting to resolve the name.

The address family was not recognized.

There was a memory alocation failure when trying to allocate storage for the return value.

The name does not resolve for the supplied parameters. Neither nodename nor servname
were passed. At least one of these must be passed.

The service passed was not recognized for the specified socket type.

The intended socket type was not recognized.

A system error occurred; the error code can be found in errno

1. The freeaddrinfo() APl must be used to free the addrinfo structures returned by getaddrinfo().

2. Thega_strerror() APl may be used to retrieve an error message associated with one of the error return values
described above.

3. A job hasacoded character set identifier (CCSID) and adefault CCSID. The default CCSID isthe same asthe
job CCSID unless the job CCSID specifies 65535, which requests that no database tranglation be performed.
In this case, the default CCSID is set by the system based on the language ID in effect for the job.

If the address information is retrieved from the domain name server, sockets converts the address information
specified by the nodename and servname parameters from the default (CCSID) to ASCII before
communicating with the domain name server. If the address information is retrieved from the host database
file, no conversion is done on the node and service names specified by the nodename and servname
parameters unless the CCSID of the job is something other than 65535.

In addition, the canonical names for nodename returned in the addrinfo structures will be returned in the
default CCSID of thejob if they are obtained from the domain name server. For conversion to occur for the
canonical names returned in the addrinfo structures when they are obtained from the host database file, you
must use ajob CCSID of something other than 65535.

4. The host database file currently only supports IPv4 addresses.

5. When you develop in C-based languages and an application is compiled with the XOPEN_SOURCE macro
defined to the value 520 or greater, the getaddrinfo() API is mapped to getaddrinfo98().

Related Information

o _XOPEN_ SOURCE--Using _XOPEN_SOURCE for the UNIX 98 compatible interface

o hind()--Set alLoca Addressfor the Socket

o connect()--Establish Connection or Destination Address

o freeaddrinfo()--Free Address Information

o ga_strerror()--Retrieve Address [nformation Runtime Error M essage

o gethostbyname()--Get Host Information for Host Name

« getnameinfo()--Get Name Information for Socket Address

o getservbyname()--Get Port Number for Service Name

o getservbyport()--Get Service Name for Port Number

« inet pton()--Convert IPv4 and |Pv6 Addresses Between Text and Binary Form

o sendto()--Send Data

o sendmsg()--Send Data or Descriptors or Both

« socket()--Create a Socket

&

API introduced: V5R2

Top | UNIX-Type APIs | APIs by category

gethostbyaddr()--Get Host Information for IP
Address

BSD 4.3 Syntax

#i ncl ude <netdb. h>
struct hostent *gethostbyaddr(char *host address,

i nt address_| ength,
i nt address_type)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <net db. h>

struct hostent *gethostbyaddr(const void *host address,

sockl en_t address_| ength,
i nt address_type)

Service Program Name: QSOSRV 2
Default Public Authority: * USE

Threadsafe: No; see Usage Notes.

L4
The gethostbyaddr() function is used to retrieve information about a host.

#* There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

host_address

(Input) The pointer to a structure of type in_addr that contains the address of the host for which
information is to be retrieved.

address_|length
(Input) The length of the host_address.

address _type

(Input) The domain type of the host address. AF_| NET isthe only value for this parameter that is
supported.

Authorities

No authorization is required.

Return Value

gethostbyaddr () returns a pointer. Possible values are:
o NULL (unsuccessful)

« p (successful), where pis apointer to struct hostent, defined in <netdb.h>.

struct hostent {
char *h_nane;
char **h_aliases;
i nt h_addrt ype;
i nt h_| engt h;
char **h _addr _|ist;

1
#define h_addr h_addr _|ist][O0]

h_name points to the character string that contains the name of the host. h_aliasesis a pointer to a
NULL-terminated list of pointers, each of which pointsto a character string that represents an alternative
name for the host. h_addrtype contains the address type of the host (for example, AF_| NET). h_length
contains the address length. h_addr_list isapointer to a NULL-terminated list of pointers, each of which
points to a network address for the host, in network byte order. Note that the array of address pointers
points to structures of typein_addr defined in <netinet/in.h>.

Error Conditions

When gethostbyaddr () fails, h_errno (defined in <netdb.h>) can be set to one of the following:

[HOST_NOT_FOUND] The host name specified by the host_address parameter was not found.

[NO_DATA] The host nameis avalid name, but there is no corresponding | P address.
[NO_RECOVERY] An unrecoverable error has occurred.

[TRY_AGAIN] The local server did not receive aresponse from an authoritative server. An
attempt at a later time may succeed.

Usage Notes

1. #TheiSeries Navigator or the € following CL commands can be used to access the host database
file:

o ADDTCPHTE (Add TCP/IP Host Table Entry)

o RMVTCPHTE (Remove TCP/IP Host Table Entry)
0 CHGTCPHTE (Change TCP/IP Host Table Entry)
o RNMTCPHTE (Rename TCP/IP Host Table Entry)

1 MRGTCPHT (Merge TCP/IP Host Tables)

2. The pointer returned by gethostbyaddr() points to static storage that is overwritten on subsequent
calls to the gethostbyaddr (), gethostbyname(), or gethostent() functions.

3. There are two sources from which host information can be obtained: the domain name server, and
the host database file. The path taken depends on whether an IP addressis configured for a name
server using #*the i Series Navigator or 4 option 12, Change TCP/IP domain information, on the
Configure TCP/IP (CFGTCP) menu.

Note: A person with a UNIX background would expect thisinformation to exist in afile known as
letc/resolv.conf. If the IP addressis found (indicating that the local network is adomain network),
the gethostbyaddr () function attempts to query the domain name server for information about a
host. If the query fails, the information is obtained from the host database file. If the name server IP
addressis not found (indicating that local network isaflat network), the host database file is used
to obtain the host information.

4. When host information is retrieved from the host database file, the opened fileisonly closed if a
sethostent() with a nonzero parameter value was not previously done.

5. If asethostent() with a nonzero parameter value was previously done, gethostbyaddr(), when
obtaining host information from the domain name server, communicates with the domain name
server over a connection-oriented transport service (for example, TCP). Otherwise, gethostbyaddr()
uses a connectionless transport service (for example, UDP).

6. If the host information is obtained from the domain name server, the information is returned in the

default coded character set identifier (CCSID) currently in effect for the job. (The default CCSID is
the same as the job CCSID unless 65535 is requested, in which case the default CCSID is set based
on the language ID of the job. See globalization for more information.) If the host information is
retrieved from the host database file, the default CCSID of the job is not used. To request
trandlation of the host information when it is retrieved from the host database file, you must use a
job CCSID of something other than 65535.

7. Addressfamilies are defined in <sys/socket.h>, and thein_addr structureisdefined in
<netinet/in.h>.

8. Do not use the gethostbyaddr() function in a multithreaded environment. See the multithread
aternative gethostbyaddr_r() function.

9. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the gethostbyaddr () API is mapped
to gso_gethostbyaddr98() .44

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« hstrerror()--Retrieve Resolver Error Message

o res hostalias()--Retrieve the host dias

« gethostbyname()--Get Host |nformation for Host Name

« gethostent()--Get Next Entry from Host Database

o sethostent()--Open Host Database

« endhostent()--Close Host Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

gethostbyaddr_r()--Get Host Information for IP
Address

BSD 4.3 Syntax

#i ncl ude <netdb. h>

i nt gethostbyaddr _r(char *host address,
i nt address_| ength,
i nt address_type,

struct hostent *hostent struct_addr,
struct hostent _data *hostent data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#define XOPEN _SOURCE 520
#i ncl ude <net db. h>

i nt gethostbyaddr _r(const void *host_address,
sockl en_t address_| engt h,
i nt address_type,

struct hostent *hostent struct addr,
struct hostent_data *hostent _data_struct_addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

&«

The gethostbyaddr_r() function is used to retrieve information about a host.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters

host_address (input)

Specifies the pointer to a structure of type in_addr that contains the address of the host for which
information is to be retrieved.

address_length (input)
Specifies the length of the host_address.

address_type (input)

Specifies the domain type of the host address. Currently, AF_| NET isthe only value for this
parameter that is supported.

hostent_struct_addr (input/output)

Specifies the pointer to a hostent structure where the results will be placed. All results must be
referenced through this structure.

hostent_data_struct_addr (input/output)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results
between function calls. Thefield host_control _blk in the hostent_data structure must be initialized
with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis required, then
the entire hostent_data structure must initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The gethostbyaddr_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct hostent denoted by hostent_struct_addr and struct hostent_datadenoted by
hostent_data_struct_addr are both defined in <netdb.h>. The structure struct hostentis defined
as.

struct hostent |
char *h_nane;
char **h_al i ases;
i nt h_addrtype;
i nt h_| ength;
char **h _addr _|ist;

1
#define h_addr h_addr _|ist[O0]

h_name points to the character string that contains the name of the host. h_aliasesis a pointer to a
NULL-terminated list of pointers, each of which pointsto a character string that represents an
aternative name for the host. h_addrtype contains the address type of the host (for example,

AF_| NET). h_length contains the size of an address in octets (for example, the size of an Internet
addressis 4 octets). h_addr_list is apointer to aNULL-terminated list of pointers, each of which
points to a network address (in network byte order) for the host.

Error Conditions

When the gethostbyaddr_r() function fails, h_errno (defined in <netdb.h>) can be set to:

[HOST_NOT_FOUND] The host name specified by the host_address parameter was not found.

[NO_DATA] The host nameis avalid name, but there is no corresponding | P address.
[NO_RECOVERY] An unrecoverable error has occurred.
[TRY_AGAIN] Thelocal server did not receive aresponse from an authoritative server. An

attempt at a later time may succeed.

When the gethostbyaddr_r() function fails, errno can be set to:

[EINVAL] The hostent_data structure was not properly initialized with hexadecimal zeros before initial
use. For corrective action, see the description for structure hostent_data.

Usage Notes

1. #TheiSeries Navigator or the < following CL commands can be used to access the host database
file:

o ADDTCPHTE (Add TCP/IP Host Table Entry)

o RMVTCPHTE (Remove TCP/IP Host Table Entry)
o CHGTCPHTE (Change TCP/IP Host Table Entry)
o RNMTCPHTE (Rename TCP/IP Host Table Entry)
o MRGTCPHT (Merge TCP/IP Host Tables)

2. There are two sources from which host information can be obtained: the domain name server and
the host database file. The path taken depends on whether an IP addressis configured for a name
server using #*the i Series Navigator or 4 option 12, Change TCP/IP domain information, on the
CFGTCP menu.

Note: A person with a UNIX background would expect thisinformation to exist in afile known as
letc/resolv.conf. If the IP address is found (indicating that the local network is adomain network),
the gethostbyaddr_r() function will attempt to query the domain name server for information about
ahost. If the query fails, the information will be obtained from the host database file. If the name

server |P addressis not found (indicating that local network is aflat network), the host database file
is used to obtain the host information.

3. When the host information is obtained from the host database file, the file is opened and the host
information isretrieved (if it exists) from thefile. The fileisthen closed only if a sethostent_r() call
with anon-zero parameter value was not previously done.

4. If asethostent_r() call with anon-zero parameter value was previously done, the gethostbyaddr_r()
routine, when obtaining host information from the domain name server, will communicate with the
domain name server over a connection-oriented transport service (for example, TCP). Otherwise,
gethostbyaddr_r() will use a connectionless transport service (for example, UDP).

5. If the host information is obtained from the domain name server, the information is returned in the
default coded character set identifier (CCSID) currently in effect for the job. (The default CCSID is
the same as the job CCSID unless 65535 is requested, in which case the default CCSID is set based
on the language ID of the job. See the globalization topic for more information.) If the host
information is retrieved from the host database file the default CCSID of the job is not used. To
request translation of the host information when it is retrieved from the host database file, you must
use ajob CCSID of something other than 65535.

6. Addressfamilies are defined in <sys/socket.h>, and thein_addr structureisdefined in
<netinet/in.h>.

7. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the gethostbyaddr_r() APl is
mapped to gso_gethostbyaddr r98() 4%

Related Information

o # XOPEN_ SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« hstrerror()--Retrieve Resolver Error Message

o res hostalias()--Retrieve the host alias

« gethostbyname r()--Get Host Information for Host Name

« gethostent r()--Get Next Entry from Host Database

o endhostent r()--Close Host Database

o sethostent r()--Open Host Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

gethostbyname()--Get Host Information for
Host Name

BSD 4.3 Syntax

#i ncl ude <netdb. h>

struct hostent *gethostbyname(char *host _nhane)

Service Program Name: QSOSRV 2
Default Public Authority: * USE

Threadsafe: No; see Usage Notes.

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN _SOURCE 520
#i ncl ude <net db. h>

struct hostent *gethostbynanme(const char *host nane)

Service Program Name: QSOSRV 2
Default Public Authority: * USE

Threadsafe: No; see Usage Notes.

&

The gethostbyname() function is used to retrieve information about a host.

#* There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

host_name

(Input) The pointer to the character string that contains the name of the host for which information
isto beretrieved.

Authorities

Authorization of *R (allow access to the object) to the host aliases file specified by the HOSTALIASES
environment variable.

You also need * X authority to each directory in the path of the host aliasesfile.

Return Value

gethostbyname() returns a pointer. Possible values are:
o NULL (unsuccessful)

o P (successful), where p isapointer to struct hostent.

The structure struct hostent is defined in <netdb.h>.

struct hostent {
char *h_nane;
char **h_aliases;
i nt h_addrt ype;
i nt h_| engt h;
char **h _addr _|ist;
1
#define h_addr h_addr _|ist][O0]
h_name points to the character string that contains the name of the host. h_aliasesis a pointer to a
NULL-terminated list of pointers, each of which pointsto a character string that represents an alternative
name for the host. h_addrtype contains the address type of the host (for example, AF_I NET). h_length
contains the address length. h_addr_list isapointer to a NULL-terminated list of pointers, each of which

points to a network address for the host, in network byte order. Note that the array of address pointers
points to structures of typein_addr defined in <netinet/in.h>.

Error Conditions

When gethostbyname() fails, h_errno (defined in <netdb.h>) can be set to one of the following:

[HOST _NOT _FOUND] The host name specified by the host_name parameter was not found.

[NO_DATA] The host nameis avalid name, but there is no corresponding | P address.
[NO_RECOVERY] An unrecoverable error has occurred.
[TRY_AGAIN] Thelocal server did not receive aresponse from an authoritative server. An

attempt at alater time may succeed.

When the gethostbyname() function fails, errno can be set to:

[EACCEY Permission denied. The process does not have the appropriate privileges to the host aliases
file specified by the HOSTALIASES environment variable.

Usage Notes

1. 2TheiSeries Navigator or the € following CL commands can be used to access the host database
file

o ADDTCPHTE (Add TCP/IP Host Table Entry)

0 RMVTCPHTE (Remove TCP/IP Host Table Entry)
0 CHGTCPHTE (Change TCP/IP Host Table Entry)
o RNMTCPHTE (Rename TCP/IP Host Table Entry)

1 MRGTCPHT (Merge TCP/IP Host Tables)

2. The pointer returned by gethostbyname() points to static storage that is overwritten on subsequent
calls to the gethostbyname(), gethostbyaddr(), or gethostent() functions.

3. There are two sources from which host information can be obtained: the domain name server, and
the host database file. The path taken depends on whether an IP addressis configured for a name
server using A*the i Series Navigator or & option 12, Change TCP/IP domain information, on the
Configure TCP/IP (CFGTCP) menu.

Note: A person with a UNIX background would expect this information to exist in afile known as
/etc/resolv.conf.

If the IP addressis found (indicating that the local network is a domain network), the
gethostbyaddr () function attempts to query the domain name server for information about a host. If
the query fails, the information is obtained from the host database file. If the name server IP
addressis not found (indicating that local network is aflat network), the host database file is used
to obtain the address.

4. If the host_name parameter does specify a domain qualified name, the gethostbyaddr () function
appends a domain name to the specified host name, if possible. The domain name that is appended
is configured using #*the i Series Navigator or & CFGTCP menu option 12, Change TCP/IP domain
information.

5. When the host information is obtained from the host database file, the file is opened and the host
information isretrieved (if it exists) from the file. Thefileisthen closed only if a sethostent() with
anonzero parameter value was not previously done.

6. If asethostent() with a nonzero parameter value was previously done, the gethostbyname() routine,
when obtaining host information from the domain name server, communicates with the domain
name server over a connection-oriented transport service (for example, TCP). Otherwise,
gethostbyname() uses a connectionless transport service (for example, UDP).

7. A job has acoded character set identifier (CCSID) and adefault CCSID. The default CCSID isthe
same as the job CCSID unless the job CCSID specifies 65535, which requests that no database
tranglation be performed. In this case, the default CCSID is set by the system based on the language
ID in effect for the job.

If the host information is retrieved from the domain name server, sockets converts the host name
specified by the host_name parameter from the default (CCSID) to ASCII before communicating
with the domain name server. If the host information is retrieved from the host database file, no
conversion is done on the host name specified by the host_name parameter unless the CCSID of the
job is something other than 65535. In addition, the host names returned in the hostent structure will
be returned in the default CCSID of the job if they are obtained from the domain name server. For
tranglation to occur for the host names returned in the hostent structure when they are obtained
from the host database file, you must use ajob CCSID of something other than 65535.

8. Addressfamilies are defined in <sys/socket.h>, and thein_addr structureisdefinedin
<netinet/in.h>.

9. Do not use the gethostbyname() function in a multithreaded environment. See the multithread
aternative gethostbyname r() function.

10. gethostbyname() will resolve local host aliases to a domain name which are then resolved with a
query using DNS. Seeres hostalias() for more information on aliases.

11. #*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the gethostbyname() API is mapped
to gso_gethostbyname98() 4%

Related Information

o #* XOPEN_ SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« hstrerror()--Retrieve Resolver Error Message

o res hostalias()--Retrieve the host alias

« gethostbyaddr()--Get Host Information for | P Address

« gethostent()--Get Next Entry from Host Database

o sethostent()--Open Host Database

o endhostent()--Close Host Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

gethostbyname_r()--Get Host Information for
Host Name

BSD 4.3 Syntax

#i ncl ude <netdb. h>
i nt gethostbynanme_r(char *host _nane,

struct hostent *hostent struct_addr,
struct hostent _data *hostent _data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#define XOPEN _SOURCE 520
#i ncl ude <net db. h>

i nt gethostbynanme_r(const char *host_nane,

struct hostent *hostent_struct_addr,
struct hostent _data *hostent_data_struct_addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

&«

The gethostbyname r() function is used to retrieve information about a host.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters

host_name (input)

Specifies the pointer to the character string that contains the name of the host for which information
isto beretrieved.

hostent_struct_addr (input/output)

Specifies the pointer to a hostent structure where the results will be placed. All results must be
referenced through this structure.

hostent_data_struct_addr (input/output)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results
between function cals. Thefield host_control _blk in the hostent_data structure must be initialized
with hexadecimal zeros before itsinitial use. If compatibility with other platformsis required, then
the entire hostent_data structure must be initialized with hexadecimal zeros before initial use.

Authorities:

Authorization of *R (allow access to the object) to the host aliases file specified by the HOSTALIASES
environment variable.

Y ou also need * X authority to each directory in the path of the host aliases file.

Return Value

The gethostbyname_r() function returns an integer. Possible values are;
o -1 (unsuccessful call)
» 0O (successful call)

The struct hostent denoted by hostent_struct_addr and struct hostent_datadenoted by
hostent_data_struct_addr are both defined in <netdb.h>. The structure struct hostentis defined as:

struct hostent |
char *h_nane;
char **h aliases;
i nt h_addrt ype;
i nt h_I engt h;
char **h_addr _|i st;

1
#define h_addr h_addr _list][O0]

h_name points to the character string that contains the name of the host. h_aliasesis apointer to a
NULL-terminated list of pointers, each of which points to a character string that represents an alternative
name for the host. h_addrtype contains the address type of the host (for example, AF_I NET). h_length
contains the size of an addressin octets (for example, the size of an Internet addressis 4 octets). h_addr_list
isapointer to aNULL-terminated list of pointers, each of which points to a network address (in network
byte order) for the host.

Error Conditions

When the gethostbyname r() function fails, h_errno (defined in <netdb.h>) can be set to:

[HOST_NOT_FOUND] The host name specified by the host_name parameter was not found.

[NO_DATA] The host nameis avalid name, but there is no corresponding | P address.
[NO_RECOVERY] An unrecoverable error has occurred.
[TRY_AGAIN] Thelocal server did not receive aresponse from an authoritative server. An

attempt at a later time may succeed.

When the gethostbyname _r() function fails, errno can be set to:

[EACCEY Permission denied. The process does not have the appropriate privileges to the host aliases
file specified by the HOSTALIASES environment variable.

[EINVAL] The hostent_data structure was not initialized with hexadecimal zeros beforeinitial use.
For corrective action, see the description for structure hostent_data.

Usage Notes

1. 2TheiSeries Navigator or the € following CL commands can be used to access the host database
file

o ADDTCPHTE (Add TCP/IP Host Table Entry)

o RMVTCPHTE (Remove TCP/IP Host Table Entry)
5 CHGTCPHTE (Change TCP/IP Host Table Entry)
1 RNMTCPHTE (Rename TCP/IP Host Table Entry)
1 MRGTCPHT (Merge TCP/IP Host Tables)

2. There are two sources from which host information can be obtained: the domain name server and
the host database file. The path taken depends on whether an IP addressis configured for a name
server using Zrthe i Series Navigator or <X option 12, Change TCP/IP domain information, on the
CFGTCP menu.

Note: A person with a UNIX background would expect thisinformation to exist in afile known as
letc/resolv.conf. If the IP address is found (indicating that the local network is a domain network),
the gethostbyaddr_r() function will attempt to query the domain name server for information about
ahost. If the query fails, the information will be obtained from the host database file. If the name
server IP address is not found (indicating that local network is aflat network), the host database file

is used to obtain the address.

3. If the host_name parameter does specify a domain qualified name, the gethostbyaddr_r() function
will append a domain name to the specified host name, if possible. The domain name that will be
appended is configured using #*the i Series Navigator or € CFGTCP menu option 12, Change
TCP/IP domain information.

4. When the host information is obtained from the host database file, the file is opened and the host
information isretrieved (if it exists) from the file. Thefileisthen closed only if a sethostent_r() call
with anon-zero parameter value was not previously done.

5. If asethostent_r() call with anon-zero parameter value was previously done, the
gethostbyname _r() routine, when obtaining host information from the domain name server, will
communicate with the domain name server over a connection-oriented transport service (for
example, TCP). Otherwise, gethostbyname r() will use a connectionless transport service (for
example, UDP).

6. A job has acoded character set identifier (CCSID) and adefault CCSID. The default CCSID isthe
same as the job CCSID unless the job CCSID specifies 65535, which requests that no database
tranglation be performed. In this case, the default CCSID is set by the system based on the language
ID in effect for the job.

If the host information is retrieved from the domain name server, sockets converts the host name
specified by the host_name parameter to ASCII before communicating with the domain name
server. If the host information isretrieved from the host database file, no conversion is done on the
host name specified by the host_name parameter unless the CCSID of the job is something other
than 65535. In addition, host names returned in the hostent will be returned in the default CCSID of
thejob if they are obtained from the domain name server. For translation to occur for the host
names returned in the hostent structure when they are obtained from the host database file, you
must use ajob CCSID of something other than 65535.

7. Addressfamilies are defined in <sys/socket.h>, and thein_addr structureisdefined in
<netinet/in.h>.

8. gethostbyname r() will resolve local host aliases to a domain name which are then resolved with a
query using DNS. Seeres _hostalias() for more information on aliases.

9. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the gethostbyname r() API is
mapped to gso_gethostbyname ro8().<&

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« hstrerror()--Retrieve Resolver Error Message

o res hostalias()--Retrieve the host alias

o endhostent r()--Close Host Database

o gethostbyaddr r()--Get Host Information for |P Address

o gethostent r()--Get Next Entry from Host Database

o Sethostent r()--Open Host Database

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

gethostent()--Get Next Entry from Host
Database

Syntax
#i ncl ude <net db. h>

struct hostent *gethostent()

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The gethostent() function is used to retrieve information from the host database file. When gethostent() is
first called, thefileis opened, and the first entry is returned. Each subsequent call to gethostent() resultsin
the next entry in the file being returned. To close the file, use endhostent().

Authorities

No authorization is required.

Return Value

gethostent() returns a pointer. Possible values are:
o NULL (unsuccessful or end-of-file)

« P (successful), where p is apointer to struct hostent.

The structure struct hostent is defined in <netdb.h>.

struct hostent {
char *h_nane;
char **h_aliases;
i nt h_addrtype;
i nt h_| engt h;
char **h_addr _|ist;

1
#define h_addr h_addr _|ist][O0]
h_name points to the character string that contains the name of the host. h_aliases is a pointer to a

NULL-terminated list of pointers, each of which pointsto a character string that represents an alternative
name for the host. h_addrtype contains the address type of the host (for example, AF_I NET). h_length

contains the address length. h_addr_list isapointer to a NULL-terminated list of pointers, each of which
points to a network address for the host, in network byte order. Note that the array of address pointers
points to structures of typein_addr defined in <netinet/in.h>.
Usage Notes
1. ﬁThe iSeries Navigator or the 4 following CL commands can be used to access the host database
ile:
o ADDTCPHTE (Add TCP/IP Host Table Entry)
o RMVTCPHTE (Remove TCP/IP Host Table Entry)
0 CHGTCPHTE (Change TCP/IP Host Table Entry)
0 RNMTCPHTE (Rename TCP/IP Host Table Entry)
o MRGTCPHT (Merge TCP/IP Host Tables)
2. The pointer returned by gethostent() points to static storage that is overwritten on subsequent calls

to the gethostent(), gethostbyaddr (), or gethostbyname() functions.

3. A coded character set identifier (CCSID) of 65535 requests that no database trandation be
performed. For trang ation to occur for the host names in the hostent structure, the job CCSID must
be something other than 65535.

4. Do not use the gethostent() function in a multithreaded environment. See the multithread aternative
gethostent_r() function.

5. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the gethostent() APl is mapped to
gso_gethostent98(). 4

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o gethostbyaddr()--Get Host Information for |P Address

o gethostbyname()--Get Host |nformation for Host Name

« endhostent()--Close Host Database

o sethostent()--Open Host Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

gethostent_r()--Get Next Entry from Host
Database

Syntax

#i ncl ude <netdb. h>
int gethostent r(struct hostent
*host ent _struct_addr,
struct hostent data
*hostent _data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The gethostent_r() function is used to retrieve information from the host database file. When the
gethostent_r() isfirst called, the file is opened, and the first entry is returned. Each subsequent call of
gethostent_r() resultsin the next entry in the file being returned. To close the file, use endhostent_r().

Parameters

struct hostent *hostent_struct_addr (input/output)

Specifies the pointer to a hostent structure where the results will be placed. All results must be
referenced through this structure.

struct hostent_data *hhostent_data_struct_addr (input/output)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results
between function calls. The field host_control_blk in the hostent_data structure must be initialized
with hexadecimal zeros before itsinitial use. If compatibility with other platformsis required, then
the entire hostent_data structure must be initialized to hexadecimal zeros beforeinitial use.

Authorities

No authorization is required.

Return Value

The gethostent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
» 0O (successful call)

The struct hostent denoted by hostent_struct_addr and struct hostent_datadenoted by
hostent_data_struct_addr are both defined in <netdb.h>. The structure struct hostentis defined as:

struct hostent |
char *h_nane;
char **h aliases;
i nt h_addrt ype;
i nt h_I engt h;
char **h_addr _|i st;

1
#define h_addr h_addr _list][O0]

h_name points to the character string that contains the name of the host. h_aliasesis apointer to a
NULL-terminated list of pointers, each of which points to a character string that represents an alternative
name for the host. h_addrtype contains the address type of the host (for example, AF_I NET). h_length
contains the size of an addressin octets (for example, the size of an Internet addressis 4 octets). h_addr_list
isapointer to aNULL-terminated list of pointers, each of which points to a network address (in network
byte order) for the host.

Error Conditions

When the gethostent_r() function fails, errno can be set to:

[EINVAL] The hostent_data structure was not properly initialized to hexadecimal zeros beforeinitial
use. For corrective action, see the description for structure hostent_data.

Usage Notes

1. 2TheiSeries Navigator or the € following CL commands can be used to access the host database
file

o ADDTCPHTE (Add TCP/IP Host Table Entry)

o RMVTCPHTE (Remove TCP/IP Host Table Entry)
o CHGTCPHTE (Change TCF/IP Host Table Entry)
o RNMTCPHTE (Rename TCP/IP Host Table Entry)
o MRGTCPHT (Merge TCP/IP Host Tables)

2. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation
be performed. For trandation to occur for the host names returned in the hostent structure, the job
CCSID must be something other than 65535.

Related Information

gethostbyaddr r()--Get Host Information for |P Address

gethostbyname r()--Get Host [nformation for Host Name

endhostent r()--Close Host Database

sethostent r()--Open Host Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

»getnameinfo()--Get Name Information for
Socket Address

Syntax

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

i nt getnanei nfo(const struct sockaddr *sa, socklen_t sal en,
char *nodenane, sockl en_t nodenanel en,

char *servnane, socklen_t servnanel en,
int flags);

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The getnameinfo() function trand ates a socket address to a node name and service location, all of which
are defined as with getaddrinfo().

Parameters

sa
(Input) The pointer to a socket address structure to be translated.

salen
(Input) The length of the socket address structure pointed to by sa.

nodename

(Output) If the nodename parameter is non-NULL and the nodenamelen parameter is nonzero, then
the nodename parameter must point to a buffer able to contain up to nodenamelen characters that
will receive the node name as a null-terminated string. If the nodename parameter is NULL or the
nodenamelen parameter is zero, the node name will not be returned. If the node's name cannot be
|ocated, the numeric form of the nodes address is returned instead of its name.

nodenamelen
(Input) The length of the buffer pointed to by nodename

servhname

(Output) If the servname parameter is non-NULL and the servnamelen parameter is nonzero, then
the servname parameter must point to a buffer able to contain up to servnamelen characters that
will receive the service name as a null-terminated string. If the servname parameter isSNULL or the
servnamelen parameter is zero, the service name will not be returned. If the service name cannot be

located, the numeric form of the service address (for example, its port number) is returned instead
of its name.

servnamelen
(Input) The length of the buffer pointed to by servname

flags

(Input) A flag that changes the default actions of the function. By default the fully-qualified domain
name (FQDN) for the host is returned, unless one of the following is true:

o If theflag bit NI_NOFQDN is set, only the nodename portion of the FQDN is returned for
local hosts.

o If theflag bit NI_NUMERICHOST is set, the numeric form of the host's addressis
returned instead of its name, under all circumstances.

o If theflag bit NI_NAMEREQD is set, an error isreturned if the host's name cannot be
located.

o If theflag bit NI_NUMERICSERY is set, the numeric form of the service addressis
returned (for example, its port number) instead of its name, under all circumstances.

o If theflag bit NI_DGRAM is set, thisindicates that the service is a datagram service
(SOCK_DGRAM). The default behavior is to assume that the service is a stream service
(SOCK_STREAM).

Authorities

No authorization required.

Return Value

getnameinfo() returns an integer. Possible values are:
o 0 (successful)

« hon-zero (unsuccessful)

On successful completion, function gethameinfo() returns the node and service names, if requested, in the
buffers provided. The returned names are always null-terminated strings, and may be truncated if the actual
values are longer than can be stored in the buffers provided. If the returned values are to be used as part of
any further name resolution (for example, passed to getaddrinfo(), callers must either provide bufferslarge

enough to store any result possible on the system or must check for truncation and handle that case
appropriately.

Error Conditions

When getnameinfo() fails, the error return value can be set to one of the following:

[EAI_AGAIN] The name could not be resolved at this time. Future attempts may succeed.
[EAI_BADFLAGS Theflags parameter had an invalid value.
[EAI_FAIL] A non-recoverable error occurred.

[EAI_FAMILY] The address family was not recognized or the address length was invalid for the
specified family.

[EAI_MEMORY] There was amemory alocation failure.

[EAI_NONAME] The name does not resolve for the supplied parameters. NI_NAMEREQD is set
and the host's name cannot be located, or both nodename and servname were null.

[EAI_SYSTEM] A system error occurred; the error code can be found in errno

Usage Notes

1. The nodename and servname parameters cannot both be NULL.

2. Thega_strerror() APl may be used to retrieve an error message associated with one of the error
return values described above.

3. If the node and service information is obtained from the domain name server, the information is
returned in the default coded character set identifier (CCSID) currently in effect for the job. (The
default CCSID isthe same asthe job CCSID unless 65535 is requested, in which case the default
CCSID is set based on the language 1D of the job. See Globalization for more information.) If the
node and service information is retrieved from the host database file, the default CCSID of the job
isnot used. To request conversion of the host information when it is retrieved from the host
database file, you must use ajob CCSID of something other than 65535.

4. When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the gethnameinfo() APl is mapped to
getnameinfo98().

Related Information

XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface

o getaddrinfo()--Get Address Information

o ga_strerror()--Retrieve Address Information Runtime Error M essage

« gethostbyaddr()--Get Host Information for | P Address

o getservbyport()--Get Service Name for Port Number

o inet ntop()--Convert IPv4 and |Pv6 Addresses Between Binary and Text Form

A

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

getnetbyaddr()--Get Network Information for IP
Address

BSD 4.3 Syntax

#i ncl ude <netdb. h>

struct netent *getnetbyaddr(long network _address,
i nt address_type)

Service Program Name: QSOSRV 2
Default Public Authority: * USE

Threadsafe: No; see Usage Notes.

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <net db. h>

struct netent *getnetbyaddr(uint32_t network_address,
i nt address_type)

Service Program Name: QSOSRV 2
Default Public Authority: * USE

Threadsafe: No; see Usage Notes.

&

The getnetbyaddr () function is used to retrieve information about a network. The information isretrieved
from the network databasefile.

#* There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

network_address
(Input) The 32-bit network | P address for which information isto be retrieved.

address type
(Input) An integer that indicates the type of network_address.

Authorities

No authorization is required.

Return Value

getnetbyaddr () returns a pointer. Possible values are:
o NULL (unsuccessful)

o P (successful), where p isa pointer to struct netent.

The structure struct netent is defined in <netdb.h>.

struct netent {

char *n_nane;
char **n_al i ases;
i nt n_addrtype;

unsi gned | ong n_net;

1
n_name points to the character string that contains the name of the network. n_aliasesis a pointer to a
NULL-terminated array of alternate names for the network. n_addrtype contains the address type of the
network. n_net is the 32-bit network address (an |P address with host part set to zero).

Usage Notes

1. 2TheiSeries Navigator or the € following CL commands can be used to access the network
database file:

o WRKNETTBLE (Work with Network Table Entries)
o ADDNETTBLE (Add Network Table Entry)

o RMVNETTBLE (Remove Network Table Entry)

2. The pointer returned by getnetbyaddr () points to static storage that is overwritten on subsequent
callsto the getnetbyaddr (), getnetbyname(), or getnetent() functions.

3. When the network information is obtained from the network database file, the file is opened and the
network information isretrieved (if it exists) from the file. Thefileisthen closed only if a
setnetent() with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation
be performed. For trandlation to occur for the network names returned in the netent structure, the
job CCSID must be something other than 65535.

5. Do not use the getnetbyaddr () function in a multithreaded environment. See the multithread
alternative getnetbyaddr_r() function.

6. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the getnetbyaddr () API is mapped
to qso_getnetbyaddr98().<%

Related Information

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

« getnetbyname()--Get Network Information for Domain Name

« getnetent()--Get Next Entry from Network Database

« Setnetent()--Open Network Database

« endnetent()--Close Network Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getnetbyaddr_r()--Get Network Information for
IP Address

Syntax

#i ncl ude <netdb. h>
i nt getnetbyaddr r(long network_address,
i nt address_type,
struct netent *netent_struct_addr,

struct netent_data
*net ent _data_struct_addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

A program uses the getnetbyaddr_r() function to retrieve information about a network. The information is
retrieved from the network database file.

Parameters

long networ k_address (input)
Specifies the 32-bit network | P address for which information is to be retrieved.

int address type (input)
Specifies an integer that indicates the type of network address.

struct netent *netent_struct_addr (input/output)

Specifies the pointer to a netent structure where the results will be placed. All results must be
referenced through this structure.

struct netent_data*netent_data_struct_addr (input/output)

Specifies the pointer to the netent_data structure, which is used to pass and preserve results
between function calls. The field net_control_blk in the netent_data structure must be initialized
with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsisrequired, then
the entire netent_data structure must be initialized with hexadecimal zeros beforeinitial use.

Authorities

No authorization is required.

Return Value

The getnetbyaddr_r() function returns ainteger. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct netent denoted by netent_struct_addr and struct netent_datadenoted by
netent_data_struct_addr are both defined in <netdb.h>. The structure struct netentis defined as:

struct netent [

char *n_nane;
char **n_al i ases;
i nt n_addrtype;

unsi gned | ong n_net;

l;

n_name pointsto the character string that contains the name of the network. n_aliasesis a pointer to a
NULL-terminated list of pointers, each of which pointsto a character string that represents an alternative
name for the network. n_addrtype contains the address type of the network (that is, AF_INET). n_net isthe
32-bit network address (that is, an IP address in network byte order with host part set to zero).

Error Conditions

When the getnetbyaddr_r() function fails, errno can be set to:

[EINVAL] The netent_data structure was not properly initialized to hexadecimal zeros before initial
use. For corrective action, see the description for structure netent_data.

Usage Notes

1. #TheiSeries Navigator or the € following CL commands can be used to access the network
database file:

o WRKNETTBLE (Work with Network Table Entries)
o ADDNETTBLE (Add Network Table Entry)
o RMVNETTBLE (Remove Network Table Entry)

2. When the network information is obtained from the network database file, the file is opened and the
network information is retrieved (if it exists) from thefile. Thefileisthen closed only if a
setnetent_r() call with a non-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database trandation
be performed. For translation to occur for the network names returned in the netent structure, the
job CCSID must be something other than 65535.

Related Information

getnetent r()--Get Next Entry from Network Database

getnetbyname r()--Get Network Information for Domain Name

setnetent r()--Open Network Database

endnetent r()--Close Network Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getnetbyname()--Get Network Information for
Domain Name

BSD 4.3 Syntax

#i ncl ude <netdb. h>

struct netent *getnetbynanme(char *network_nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN _SOURCE 520
#i ncl ude <net db. h>

struct netent *getnetbynanme(const char *network _nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

&

The getnetbyname() function is used to retrieve information about a network. The information isretrieved
from the network databasefile.

#* There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

network _name

(Input) The pointer to the character string that contains the name of the network for which
information is to be retrieved.

Authorities

No authorization is required.

Return Value

getnetbyname() returns a pointer. Possible values are:
o NULL (unsuccessful)

P (successful), where pisapointer to struct netent.

The structure struct netent is defined in <netdb.h>.

struct netent {

char *n_nane;
char **n_al i ases;
i nt n_addrtype;
unsi gned | ong n_net;

b

n_name points to the character string that contains the name of the network. n_aliasesis a pointer to a
NULL-terminated array of alternate names for the network. n_addrtype contains the address type of the
network. n_net is the 32-bit network address (an |P address with host part set to zero).

Usage Notes

1. #TheiSeries Navigator or the € following CL commands can be used to access the network
database file:

o WRKNETTBLE (Work with Network Table Entries)
o ADDNETTBLE (Add Network Table Entry)

o RMVNETTBLE (Remove Network Table Entry)

2. The pointer returned by getnetbyname() points to static storage that is overwritten on subsequent
calls to the getnetbyname(), getnetbyaddr (), or getnetent() functions.

3. When the network information is obtained from the network database file, the file is opened and the
network information is retrieved (if it exists) from the file. The fileisthen closed only if a
setnetent() with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation
be performed. For trandation to occur for the network name specified by the network _name
parameter, and for the network names returned in the netent structure, the job CCSID must be
something other than 65535.

5. Do not use the getnetbyname() function in a multithreaded environment. See the multithread
aternative getnetbyname r() function.

6. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the getnetbyname() API is mapped
to gso_getnetbyname98(). &

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« getnetbyaddr()--Get Network Information for |P Address

« getnetent()--Get Next Entry from Network Database

o setnetent()--Open Network Database

« endnetent()--Close Network Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getnetbyname_r()--Get Network Information for
Domain Name

Syntax

#i ncl ude <netdb. h>
i nt getnetbynanme_r(char *network _nane,
struct netent *netent_struct_addr,
struct netent_data
*net ent _data_struct_addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The getnetbyname _r() function is used to retrieve information about a network. The information is retrieved
from the network database file.

Parameters

char *network_name (input/output)

Specifies the pointer to the character string that contains the name of the network for which
information is to be retrieved.

struct netent *netent_struct_addr (input/output)

Specifies the pointer to a netent structure where the results will be placed. All results must be
referenced through this structure.

struct netent_data*netent_data_struct_addr (input/output)

Specifies the pointer to the netent_data structure, which is used to pass and preserve results
between function calls. Thefield net_control_blk in the netent_data structure must be initialized
with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis required, then
the entire netent_data structure must initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The getnetbyname_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
» 0O (successful call)

The struct netent denoted by netent_struct_addr and struct netent_datadenoted by
netent_data struct_addr are both defined in <netdb.h>. The structure struct netentis defined as:

struct netent [

char *n_name;
char **n_aliases;
i nt n_addrtype;

unsi gned | ong n_net;

l;

n_name points to the character string that contains the name of the network. n_aliasesis a pointer to a
NULL-terminated list of pointers, each of which points to a character string that represents an alternative
name for the network. n_addrtype contains the address type of the network (that is, AF_INET). n_netisthe
32-bit network address (that is, an |P address in network byte order with host part set to zero).

Error Conditions

When the getnetbyname_r() function fails, errno can be set to:

[EINVAL] The netent_data structure was not properly initialized to hexadecimal zeros before initial
use. For corrective action, see the description for structure netent_data.

Usage Notes

1. 2TheiSeries Navigator or the € following CL commands can be used to access the network
database file:

o WRKNETTBLE (Work with Network Table Entries)
o ADDNETTBLE (Add Network Table Entry)
o RMVNETTBLE (Remove Network Table Entry)

2. When the network information is obtained from the network database file, the file is opened and the
network information is retrieved (if it exists) from the file. The fileisthen closed only if a
setnetent_r() call with a non-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database tranglation
be performed. For translation to occur for the network name specified by the network_name
parameter, and for the network names returned in the netent structure, the job CCSID must be
something other than 65535.

Related Information

getnetent r()--Get Next Entry from Network Database

getnetbyaddr r()--Get Network Information for |P Address

setnetent r()--Open Network Database

endnetent_r()--Close Network Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getnetent()--Get Next Entry from Network
Database

Syntax
#i ncl ude <net db. h>

struct netent *getnetent()

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The getnetent() function is used to retrieve network information from the network database file. When
getnetent() isfirst called, thefileis opened, and the first entry is returned. Each subsequent call to
getnetent() resultsin the next entry in the file being returned. To close the file, use endnetent().

Authorities

No authorization is required.

Return Value

getnetent() returns a pointer. Possible values are:
o NULL (unsuccessful or end-of-file)

« P (successful), where p is a pointer to struct netent.

The structure struct netent is defined in <netdb.h>.

struct netent {

char *n_nane;
char **n_al i ases;
i nt n_addrtype;

unsi gned | ong n_net;

}

n_name points to the character string that contains the name of the network. n_aliasesis a pointer to a
NULL-terminated array of alternate names for the network. n_addrtype contains the address type of the
network. n_net is the 32-bit network address (an 1P address with host part set to zero).

Usage Notes
1. &TheiSeries Navigator or the € following CL commands can be used to access the network
database file:
o WRKNETTBLE (Work with Network Table Entries)
1 ADDNETTBLE (Add Network Table Entry)

o RMVNETTBLE (Remove Network Table Entry)

2. The pointer returned by getnetent() points to static storage that is overwritten on subsequent calls to
the getnetent(), getnetbyaddr (), or getnetbyname() functions.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database tranglation
be performed. For trandlation to occur for the network names returned in the netent structure, the
job CCSID must be something other than 65535.

4. Do not use the getnetent() function in a multithreaded environment. See the multithread alternative
getnetent_r() function.

5. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the getnetent() APl is mapped to
0so_getnetent98(). &

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« getnetbyaddr()--Get Network |nformation for |P Address

« getnetbyname()--Get Network Information for Domain Name

« endnetent()--Close Network Database

o setnetent()--Open Network Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getnetent_r()--Get Next Entry from Network
Database

Syntax

#i ncl ude <netdb. h>
int getnetent _r(struct netent *netent_struct_addr,
struct netent _data
*net ent _data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The getnetent_r() function is used to retrieve network information from the network database file. When the
getnetent_r() isfirst called, thefile is opened, and the first entry is returned. Each subsequent call of
getnetent_r() resultsin the next entry in the file being returned. To close the file, use endnetent_r().

Parameters

struct netent * netent_struct_addr (input/output)

Specifies the pointer to a netent structure where the results will be placed. All results must be
referenced through this structure.

struct netent_data * netent_data_struct_addr (input/output)

Specifies the pointer to the netent_data structure, which is used to pass and preserve results
between function calls. The field net_control_blk in the netent_data structure must beinitialized
with hexadecimal zeros before itsinitial use. If compatibility with other platformsis required, then
the entire netent_data structure must initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The getnetent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
0O (successful call)

The struct netent, denoted by netent_struct_addr and struct netent_datadenoted by
netent_data_struct_addr are both defined in <netdb.h>. The structure struct netentis defined as:

struct netent [

char *n_nane;
char **n_al i ases;
i nt n_addrtype;

unsi gned | ong n_net;
1;
n_name points to the character string that contains the name of the network. n_aliasesisa pointer to a
NULL-terminated list of pointers, each of which pointsto a character string that represents an alternative

name for the network. n_addrtype contains the address type of the network (that is, AF_INET). n_net isthe
32-bit network address (that is, an IP address in network byte order with host part set to zero).

Error Conditions

When the getnetent_r() function fails, errno can be set to:

[EINVAL] The netent_data structure was not properly initialized to hexadecimal zeros before initial
use. For corrective action, see the description for structure netent_data.

Usage Notes

1. #TheiSeries Navigator or the € following CL commands can be used to access the network
database file:

o WRKNETTBLE (Work with Network Table Entries)
o ADDNETTBLE (Add Network Table Entry)
o RMVNETTBLE (Remove Network Table Entry)

2. A coded character set identifier (CCSID) of 65535 for the job requests that no database trandlation
be performed. For translation to occur for the network names returned in the netent structure, the
job CCSID must be something other than 65535.

Related Information

« getnetbyaddr r()--Get Network Information for |P Address

« getnetbyname r()--Get Network Information for Domain Name

o Setnetent r()--Open Network Database

« endnetent r()--Close Network Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getprotobyname()--Get Protocol Information for
Protocol Name

BSD 4.3 Syntax

#i ncl ude <netdb. h>

struct protoent *getprotobynane(char *protocol nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN _SOURCE 520
#i ncl ude <net db. h>

struct protoent *getprotobynanme(const char *protocol nane)

Service Program Name: QSOSRV 2
Default Public Authority:* USE

Threadsafe: No; see Usage Notes.

&

The getprotobyname() function is used to retrieve information about a protocol. The information is
retrieved from the protocol database file.

#* There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

protocol_name

(Input) The pointer to the character string that contains the name of the protocol for which
information is to be retrieved.

Authorities

No authorization is required.

Return Value

getprotobyname() returns a pointer. Possible values are;
o NULL (unsuccessful)

P (successful), where p isapointer to struct protoent

The structure struct protoent is defined in <netdb.h>.

struct protoent {

char *p_nane;
char **p_al i ases;
i nt p_pr ot o;

}

p_name pointsto the character string that contains the name of the protocol. p_aliasesis a pointer to a
NULL-terminated array of alternate names for the protocol. p_proto is the protocol number.

Usage Notes

1. ATheiSeries Navigator or the € following CL commands can be used to access the protocol

database file;

o WRKPCLTBLE (Work with Protocol Table Entries)

o ADDPCLTBLE (Add Protocol Table Entry)

o RMVPCLTBLE (Remove Protocol Table Entry)

2. The pointer returned by getprotobyname() points to static storage that is overwritten on subsequent
callsto the getprotobyname(), getprotobynumber (), or getprotoent() functions.

3. When the protocol information is obtained from the protocol database file, the file is opened and
the protocol information is retrieved (if it exists) from the file. The fileisthen closed only if a
setprotoent() with anonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation
be performed. For trandation to occur for the protocol name specified by the protocol _name
parameter, and for the protocol names returned in the protoent structure, the job CCSID must be

something other than 65535.

5. Do not use the getprotobyname() function in a multithreaded environment. See the multithread
aternative getprotobyname_r() function.

6. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the getprotobyname() API is
mapped to gso_getprotobyname98() 4%

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« getprotobynumber()--Get Protocol |nformation for Protocol Number

« getprotoent()--Get Next Entry from Protocol Database

o setprotoent()--Open Protocol Database

« endprotoent()--Close Protocol Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getprotobyname_r()--Get Protocol Information
for Protocol Name

Syntax

#i ncl ude <netdb. h>
i nt getprotobynanme_r(char *protocol nane,
struct protoent
*protoent _struct _addr,
struct protoent_data
*protoent data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The getprotobyname r() function is used to retrieve information about a protocol. The information is
retrieved from the protocol database file.

Parameters

char *protocol_name (input)

Specifies the pointer to the character string that contains the name of the protocol for which
information is to be retrieved.

struct protoent * protoent_struct_addr (input/output)

Specifies the pointer to a protoent structure where the results will be placed. All results must be
referenced through this structure.

struct protoent_data* protoent_data struct_addr (input/output)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results
between function calls. The field proto_control_blk in the protoent_data structure must be
initialized with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis
required, then the entire protoent_data structure must be initialized with hexadecimal zeros before
initial use.

Authorities

No authorization is required.

Return Value

The getprotobyname _r() returns an integer. Possible values are:
o -1 (unsuccessful call)
» 0O (successful call)

The struct protoent denoted by protoent_struct_addr and struct protoent_data denoted by
protoent_data_struct_addr are both defined in <netdb.h>. The structure struct protoentis defined as:

struct protoent [

char *p_nane;
char **p_aliases;
i nt p_pr ot o;

1;

p_name points to the character string that contains the name of the protocol. p_aliasesis a pointer to a
NULL-terminated list of pointers, each of which points to a character string that represents an alternative
name for the protocol. p_proto is the protocol number.

Error Conditions

When the getprotobyname_r() function fails, errno can be set to:

[EINVAL] The protoent_data structure was not properly initialized with hexadecimal zeros before
initial use. For corrective action, see the description for structure protoent_data.

Usage Notes

1. &TheiSeries Navigator or the € following CL commands can be used to access the protocol
database file:

o WRKPCLTBLE (Work with Protocol Table Entries)
o ADDPCLTBLE (Add Protocol Table Entry)
o RMVPCLTBLE (Remove Protocol Table Entry)

2. When the protocol information is obtained from the protocol database file, the fileis opened and
the protocol information is retrieved (if it exists) from the file. The fileisthen closed only if a
setprotoent_r() call with anon-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database tranglation
be performed. For trandation to occur for the protocol name specified by the protocol_name
parameter, and for the protocol names returned in the protoent structure, the job CCSID must be
something other than 65535.

Related Information

getprotobynumber r()--Get Protocol

getprotoent r()--Get Next Entry from Protocol Database

setprotoent r()--Open Protocol Database

endprotoent r()--Close Protocol Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getprotobynumber()--Get Protocol Information
for Protocol Number

Syntax

#i ncl ude <net db. h>

struct protoent
*get prot obynunber (i nt protocol nunber)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The getprotobynumber () function is used to retrieve information about a protocol. The information is
retrieved from the protocol database file.

Parameters

protocol_number
(Input) The protocol number for which information is to be retrieved.

Authorities

No authorization is required.

Return Value

getprotobynumber () returns a pointer. Possible values are:
o NULL (unsuccessful)

P (successful), where p is apointer to struct protoent.

The structure struct protoent is defined in <netdb.h>.

struct protoent {

char *p_nane,;
char **p_al i ases;
i nt p_pr ot o;

}

p_name points to the character string that contains the name of the protocol. p_aliasesis a pointer to a
NULL-terminated array of alternate names for the protocol. p_proto is the protocol number.

Usage Notes

1. 2TheiSeries Navigator or the € following CL commands can be used to access the protocol
database file:

o WRKPCLTBLE (Work with Protocol Table Entries)
o ADDPCLTBLE (Add Protocol Table Entry)

o RMVPCLTBLE (Remove Protocol Table Entry)

2. The pointer returned by getprotobynumber () pointsto static storage that is overwritten on
subsequent calls to the getprotobynumber (), getprotobyname(), or getprotoent() functions.

3. When the protocol information is obtained from the protocol database file, the file is opened and
the protocol information is retrieved (if it exists) from the file. The fileisthen closed only if a
setprotoent() with anonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation
be performed. For trandation to occur for the protocol names returned in the protoent structure, the
job CCSID must be something other than 65535.

5. Do not use the getprotobynumber() function in a multithreaded environment. See the multithread
aternative getprotobynumber () function.

6. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the getprotobynumber() APl is
mapped to gso_getprotobynumber98(). <&

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« getprotobyname()--Get Protocol Information for Protocol Name

« getprotoent()--Get Next Entry from Protocol Database

o setprotoent()--Open Protocol Database

« endprotoent()--Close Protocol Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getprotobynumber_r()--Get Protocol
Information for Protocol Number

Syntax

#i ncl ude <netdb. h>
i nt getprotobynunber r(int protocol nunber,
struct protoent
*protoent _struct _addr,

struct protoent_data
*protoent _data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The getprotobynumber_r() function is used to retrieve information about a protocol. The information is
retrieved from the protocol database file.

Parameters

int protocol_number (input)
Specifies the protocol number for which information is to be retrieved.

struct protoent *protoent_struct_addr (input/output)

Specifies the pointer to a protoent structure where the results will be placed. All results must be
referenced through this structure.

struct protoent_data* protoent_data struct_addr (input/output)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results
between function calls. The field proto_control_blk in the protoent_data structures must be
initialized with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis
required, then the entire protoent_data structure must be initialized with hexadecimal zeros before
initial use.

Authorities

No authorization is required.

Return Value

The getprotobynumber_r() function returns an integer. Possible values are;
o -1 (unsuccessful call)
» 0O (successful call)

The struct protoent denoted by protoent_struct_addr and struct protoent_data denoted by
protoent_data_struct_addr are both defined in <netdb.h>. The structure struct protoentis defined as:

struct protoent [

char *p_nane;
char **p_aliases;
i nt p_pr ot o;

1;

p_name points to the character string that contains the name of the protocol. p_aliasesis a pointer to a
NULL-terminated list of pointers, each of which points to a character string that represents an alternative
name for the protocol. p_proto is the protocol number.

Error Conditions

When the getprotobynumber_r() function fails, errno can be set to:

[EINVAL] The protoent_data structure was not properly initialized with hexadecimal zeros before
initial use. For corrective action, see the description for structure protoent_data.

Usage Notes

1. &TheiSeries Navigator or the € following CL commands can be used to access the protocol
database file:

o WRKPCLTBLE (Work with Protocol Table Entries)
o ADDPCLTBLE (Add Protocol Table Entry)
o RMVPCLTBLE (Remove Protocol Table Entry)

2. When the protocol information is obtained from the protocol database file, the fileis opened and
the protocol information is retrieved (if it exists) from the file. The fileisthen closed only if a
setprotoent_r() call with anon-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database tranglation
be performed. For trandation to occur for the protocol names returned in the protoent structure, the
job CCSID must be something other than 65535.

Related Information

getprotobyname r()--Get Protocol Information for Protocol Name

getprotoent r()--Get Next Entry from Protocol Database

setprotoent r()--Open Protocol Database

endprotoent r()--Close Protocol Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getprotoent()--Get Next Entry from Protocol
Database

Syntax

#i ncl ude <net db. h>

struct protoent *getprotoent()

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The getprotoent() function is used to retrieve protocol information from the protocol database file. When
getprotoent() isfirst called, the file is opened, and thefirst entry is returned. Each subsequent call to
getprotoent() resultsin the next entry in the file being returned. To close the file, use endprotoent().

Authorities

No authorization is required.

Return Value

getprotoent() returns a pointer. Possible values are:
o NULL (unsuccessful or end-of-file)

« P (successful), where p is apointer to struct protoent.

The structure struct protoent isdefined in <netdb.h>.

struct protoent {

char *p_nane;
char **p_al i ases;
i nt p_proto;

b

p_name pointsto the character string that contains the name of the protocol. p_aliasesis a pointer to a
NULL-terminated array of alternate names for the protocol. p_proto is the protocol number.

Usage Notes

1. #TheiSeries Navigator or the < following CL commands can be used to access the protocol
database file:

o WRKPCLTBLE (Work with Protocol Table Entries)
o ADDPCLTBLE (Add Protocol Table Entry)

o RMVPCLTBLE (Remove Protocol Table Entry)

2. The pointer returned by getprotoent() points to static storage that is overwritten on subsequent calls
to the getprotoent(), getprotobynumber (), or getprotobyname() functions.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database tranglation
be performed. For trandation to occur for the protocol names returned in the protoent structure, the
job CCSID must be something other than 65535.

4. Do not use the getprotoent() function in a multithreaded environment. See the multithread
aternative getprotoent_r() function.

5. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the getprotoent() APl is mapped to
0so_getprotoent98(). <&

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« getprotobyname()--Get Protocol Information for Protocol Name

« getprotobynumber()--Get Protocol |nformation for Protocol Number

« endprotoent()--Close Protocol Database

o setprotoent()--Open Protocol Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getprotoent_r()--Get Next Entry from Protocol
Database

Syntax

#i ncl ude <netdb. h>
int getprotoent r(struct protoent
*protoent _struct _addr,
struct protoent_data
*protoent _data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The getprotoent_r() function is used to retrieve protocol information from the protocol database file. When
the getprotoent_r() isfirst called, thefileis opened, and the first entry is returned. Each subsequent call of
getprotoent_r() results in the next entry in the file being returned. To close the file, use endprotoent_r().

Parameters

struct protoent * protoent_address (input/output)

Specifies the pointer to a protoent structure where the results will be placed. All results must be
referenced through this structure.

struct protoent_data * protoent_data_struct_addr (input/output)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results
between function calls. The field proto_control_blk in the protoent_data structure must be
initialized with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis
required, then the entire protoent_data structure must be initialized with hexadecimal zeros before
initial use.

Authorities

No authorization is required.

Return Value

The getprotoent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)

o 0 (successful call)

The struct protoent denoted by protoent_struct_addr and struct protoent_data denoted by
protoent_data_struct_addr are both defined in <netdb.h>. The structure struct protoentis defined as:

struct protoent [

char *p_nane;
char **p_al i ases;
i nt p_pr ot o;

1;

p_name pointsto the character string that contains the name of the protocol. p_aliasesis a pointer to a
NULL-terminated list of pointers, each of which pointsto a character string that represents an alternative
name for the protocol. p_proto is the protocol number.

Error Conditions

When the getprotoent_r() function fails, errno can be set to:

[EINVAL] The protoent_data structure was not properly initialized with hexadecimal zeros before
initial use. For corrective action, see the description for structure protoent_data.

Usage Notes

1. 2TheiSeries Navigator or the € following CL commands can be used to access the protocol
database file:

o WRKPCLTBLE (Work with Protocol Table Entries)
o ADDPCLTBLE (Add Protocol Table Entry)
o RMVPCLTBLE (Remove Protocol Table Entry)

2. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation
be performed. For trandation to occur for the protocol names returned in the protoent structure, the
job CCSID must be something other than 65535.

Related Information

« getprotobynumber r()--Get Protocol

« getprotobyname r()--Get Protocol Information for Protocol Name

o setprotoent r()--Open Protocol Database

« endprotoent r()--Close Protocol Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getservbyname()--Get Port Number for Service
Name

BSD 4.3 Syntax

#i ncl ude <netdb. h>

struct servent *getservbynanme(char *service_nane,
char *protocol nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <net db. h>

struct servent *getservbyname(const char *service_nane,
const char *protocol nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

&

The getservbyname() function is used to retrieve information about services (the protocol being used by the
service and the port number assigned for the service). The information is retrieved from the service
databasefile.

#* There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

service_name
(Input) The painter to the character string that contains the name of the service for which
information isto be retrieved (for example, telnet).

protocol_name
(Input) The pointer to the character string that contains the name of the protocol that further
qualifies the search criteria. For example, if the service_name istelnet, and the protocol_nameis

tcp, then the call will return the telnet server that uses the TCP protocol. If this parameter is set to
NULL, then the first telnet server is returned, regardless of the protocol used.

Authorities

No authorization is required.

Return Value

getservbyname() returns a pointer. Possible values are:
o NULL (unsuccessful)

o P (successful), where p isapointer to struct servent.

The structure struct servent isdefined in <netdb.h>.

struct servent {

char *s nane;
char **s aliases;
i nt s_port;

char *s proto

b

S_name points to the character string that contains the name of the service. s_aliasesis apointer to a
NULL-terminated array of alternate names for the service. s_port is the port number assigned to the service.
s _proto isthe protocol being used by the service.

Usage Notes
1. 2TheiSeries Navigator or the % following CL commands can be used to access the services
database file:
o WRKSRVTBLE (Work with Service Table Entries)

o ADDSRVTBLE (Add Service Table Entry)

o RMVSRVTBLE (Remove Service Table Entry)

2. The pointer returned by getservbyname() points to static storage that is overwritten on subsequent
calls to the getservbyname(), getservbyname(), or getservent() functions.

3. When the service information is obtained from the service database file, the file is opened and the
service information isretrieved (if it exists) from thefile. Thefileisthen closed only if a
setservent() with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation
be performed. For translation to occur for the service name and the protocol name, specified by the
service_name and protocol _name parameters, respectively, and for the service names returned in
the servent structure, the job CCSID must be something other than 65535.

5. Do not use the getservbyname() function in a multithreaded environment. See the multithread
aternative getservbyname r() function.

6. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the getservbyname() API is mapped
to qso_getservbyname98() 4%

Related Information

o # XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o getservbyport()--Get Service Name for Port Number

o getservent()--Get Next Entry from Service Database

o setservent()--Open Service Database

« endservent()--Close Service Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getservbyname r()--Get Port Number for
Service Name

Syntax

#i ncl ude <netdb. h>
i nt getservbynane r(char *service_nane,
char *protocol nane,
struct servent
*servent _struct_addr,
struct servent _data
*servent data_struct_addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The getservbyname r() function is used to retrieve information about services: the protocol being used by
the service and the port number assigned for the service. The information is retrieved from the service
database file.

Parameters

char *service_name (input)

Specifies the pointer to the character string that contains the name of the service for which
information isto be retrieved (for example, telnet).

char *protocol_name (input)

Specifies the pointer to the character string that contains the name of the protocol that further
qualifies the search search criteria. For example, if the service_name istelnet, and the
protocol_name is tcp, then the call will return the telnet server that uses the TCP protocal. If this
parameter is set to NULL, then the first telnet server is returned, regardless of the protocol used.

struct servent *servent_struct_addr (input/output)

Specifies the pointer to a servent structure where the results will be placed. All results must be
referenced through this structure.

struct servent_data*servent_data_struct_addr (input/output)

Specifies the pointer to the servent_data structure, which is used to pass and preserve results
between function calls. The field serve _control_blk in the servent_data structure must be initialized
with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis required, then
the entire servent_data structure must be initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The getservbyname_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct servent denoted by servent_struct_addr and struct servent_datadenoted by
servent_data struct_addr are both defined in <netdb.h>. The structure struct serventis defined as:

struct servent |

char *s nane;
char **s aliases;
i nt s_port;

char *s proto

l;

S_name points to the character string that contains the name of the service. s_aliasesis apointer to a
NULL-terminated list of pointers, each of which pointsto a character string that represents an alternative
name for the service. s_port is the port number assigned to the service. s_proto is a pointer to a character
string that contains the name of the protocol being used by the service.

Error Conditions

When the getservbyname _r() function fails, errno can be set to:

[EINVAL] The servent_data structure was not properly initialized with hexadecimal zeros before initial
use. For corrective action, see the description for structure servent_data.

Usage Notes

1. ATheiSeries Navigator or the € following CL commands can be used to access the services
database file:

o WRKSRVTBLE (Work with Service Table Entries)
o ADDSRVTBLE (Add Service Table Entry)
o RMVSRVTBLE (Remove Service Table Entry)

2. When the service information is obtained from the service database file, the file is opened and the
serviceinformation isretrieved (if it exists) from the file. Thefile isthen closed only if a
setservent_r() call with anon-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database trandation
be performed. For translation to occur for the following, the job CCSID must be something other
than 65535:

o The service name and the protocol name, specified by the service_name and

protocol _name parameters, respectively
o The service names returned in the servent structure

Related Information

« getservbyport r()--Get Service Name for Port Number

o getservent r()--Get Next Entry from Service Database

o setservent r()--Open Service Database

o endservent r()--Close Service Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getservbyport()--Get Service Name for Port
Number

BSD 4.3 Syntax

#i ncl ude <netdb. h>

struct servent *getservbyport(int port_nunber,
char *protocol nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN_SOURCE 520
#i ncl ude <net db. h>

struct servent *getservbyport(int port_nunber,
const char *protocol nane)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

&

The getservbyport() function is used to retrieve information about a service assigned to a port number. The
information is retrieved from the service database file.

#* There are two versions of the API, as shown above. The base 0S/400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

port_number
(Input) The port number for which service information isto be retrieved.

protocol_name
(Input) The pointer to the character string that contains the name of the protocol that further
qualifies the search criteria. For example, if the port_number is 10, and the protocol_nameistcp,

then the call will return the server that uses the TCP protocol on port number 10. If this parameter
isset to NULL, then the first server isreturned, regardless of the protocol used.

Authorities

No authorization is required.

Return Value

getservbyport() returns a pointer. Possible values are:
o NULL (unsuccessful)

o P (successful), where p isapointer to struct servent.

The structure struct servent isdefined in <netdb.h>.

struct servent {

char *s nane;
char **s aliases;
i nt s_port;

char *s proto

1
S_name points to the character string that contains the name of the service. s_aliasesis apointer to a
NULL-terminated array of alternate names for the service. s _port is the port number assigned to the service.
s _proto isthe protocol being used by the service.

Usage Notes

1. 2TheiSeries Navigator or the € following CL commands can be used to access the services
database file:

o WRKSRVTBLE (Work with Service Table Entries)
o ADDSRVTBLE (Add Service Table Entry)

o RMVSRVTBLE (Remove Service Table Entry)

2. The pointer returned by getservbyport() points to static storage that is overwritten on subsequent
callsto the getservbyport(), getservbyname(), or getservent() functions.

3. When the service information is obtained from the service database file, the file is opened and the
service information isretrieved (if it exists) from thefile. Thefileisthen closed only if a
setservent() with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation
be performed. For translation to occur for the protocol name specified by the protocol_name
parameter, or for the service names returned in the servent structure, the job CCSID must be
something other than 65535.

5. Do not use the getservbyport() function in a multithreaded environment. See the multithread
alternative getservbyport_r() function.

6. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the getservbyport() APl is mapped
to (so_getservbyport98().4%

Related Information

o # XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o getservbyname()--Get Port Number for Service Name

o getservent()--Get Next Entry from Service Database

o setservent()--Open Service Database

« endservent()--Close Service Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getservbyport_r()--Get Service Name for Port
Number

Syntax

#i ncl ude <netdb. h>
i nt getservbyport r(int port_nunber,
char *protocol nane,
struct servent *servent_struct_addr,

struct servent _data
*servent data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The getservbyport_r() function is used to retrieve information about a service assigned to a port number.
The information is retrieved from the service databasefile.

Parameters

int port_number (input)
Specifies the port number for which service information isto be retrieved.

char *protocol_name (input)

Specifies the pointer to the character string that contains the name of the protocol that further
qualifies the search criteria. For example, if the port_number is 10, and the protocol _nameistcp,
then the call will return the server that uses the TCP protocol on port number 10. If this parameter
isset to NULL, then the first server isreturned, regardless of the protocol used.

struct servent *servent_struct_addr (input/output)

Specifies the pointer to a servent structure where the results will be placed. All results must be
referenced through this structure.

struct servent_data * servent_data_struct_addr (input/output)

Specifies the pointer to the servent_data structure, which is used to pass and preserve results
between function calls. The field serve _control_blk in the servent_data structure must be initialized
with hexadecimal zeros beforeitsinitia use. If compatibility with other platformsis required then
the entire servent_data structure must be initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The getservbyport_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct servent denoted by servent_struct_addr and struct servent_datadenoted by
servent_data struct_addr are both defined in <netdb.h>. The structure struct serventis defined as:

struct servent |

char *s nane;
char **s aliases;
i nt s_port;

char *s proto

l;

S_name points to the character string that contains the name of the service. s_aliasesis apointer to a
NULL-terminated list of pointers, each of which pointsto a character string that represents an alternative
name for the service. s_port is the port number assigned to the service. s_proto is a pointer to a character
string that contains the name of the protocol being used by the service.

Error Conditions

When the getservbyport_r() function fails, errno can be set to:

[EINVAL] The servent_data structure was not properly initialized with hexadecimal zeros before initial
use. For corrective action see the description for structure servent_data.

Usage Notes

1. ATheiSeries Navigator or the € following CL commands can be used to access the services
database file:

o WRKSRVTBLE (Work with Service Table Entries)
o ADDSRVTBLE (Add Service Table Entry)
o RMVSRVTBLE (Remove Service Table Entry)

2. When the service information is obtained from the service database file, the file is opened and the
serviceinformation isretrieved (if it exists) from the file. Thefile isthen closed only if a
setservent_r() call with anon-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database trandation
be performed. For translation to occur for the protocol name specified by the protocol _name
parameter, or for the service names returned in the servent structure, the job CCSID must be
something other than 65535.

Related Information

o getservbyname r()--Get Port Number for Service Name

o getservent r()--Get Next Entry from Service Database

o setservent r()--Open Service Database

o endservent r()--Close Service Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getservent()--Get Next Entry from Service
Database

Syntax

#i ncl ude <net db. h>

struct servent *getservent()

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The getservent() function is used to retrieve information about services (the protocol being used by the
service and the port number assigned for the service). The information is retrieved from the services
database file. When getservent() isfirst called, thefileis opened, and the first entry isreturned. Each

subsequent call to getservent() results in the next entry in the file being returned. To close the file, use
endservent().

Authorities

No authorization is required.

Return Value

getservent() returns a pointer. Possible values are:
o NULL (unsuccessful or end-of-file)

« P (successful), where p is apointer to struct servent.

struct servent {

char *s nane;
char **s al i ases;
i nt s_port;

char *s proto

1
S_name points to the character string that contains the name of the service. s_aliasesis a pointer to
aNULL-terminated array of alternate names for the service. s_port is the port number assigned to
the service. s_proto isthe protocol being used by the service.

The structure struct servent is defined in <netdb.h>.

Usage Notes
1. 2TheiSeries Navigator or the € following CL commands can be used to access the services
database file:
o WRKSRVTBLE (Work with Service Table Entries)
o ADDSRVTBLE (Add Service Table Entry)
o RMVSRVTBLE (Remove Service Table Entry)
2. The pointer returned by getservent() points to static storage that is overwritten on subsequent calls

to the getservent(), getservbyname(), or getservbyport() functions.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database tranglation
be performed. For trandlation to occur for the service names returned in the servent structure, the
job CCSID must be something other than 65535.

4. Do not use the getservent() function in a multithreaded environment. See the multithread aternative
getservent_r() function.

5. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the getservent() APl is mapped to
gso_getservent98(). &

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« getservbyname()--Get Port Number for Service Name

« getservbyport()--Get Service Name for Port Number

« endservent()--Close Service Database

o setservent()--Open Service Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

getservent_r()--Get Next Entry from Service
Database

Syntax

#i ncl ude <netdb. h>
int getservent r(struct servent *servent_struct_addr,
struct servent data
*servent data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The getservent_r() function is used to retrieve information about services: the protocol being used by the
service and the port number assigned for the service. The information is retrieved from the services
database file. When the getservent_r() isfirst caled, the file is opened, and the first entry is returned. Each
subsequent call of getservent r() resultsin the next entry in the file being returned. To close the file, use
endservent_r().

Parameters

struct servent *servent_struct_addr (input/output)

Specifies the pointer to a servent structure where the results will be placed. All results must be
referenced through this structure.

struct servent_data * servent_data_struct_addr (input/output)
Specifies the pointer to the servent_data structure, which is used to pass and preserve results
between function calls. The field serve_control_blk in the servent_data structure must be initialized

with hexadecimal zeros before itsinitial use. If compatibility with other platformsis required, then
the entire servent_data structure must be initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The getservent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)

o 0 (successful call)

The struct servent denoted by servent_struct_addr and struct servent_datadenoted by
servent_data struct_addr are both defined in <netdb.h>. The structure struct serventis defined as:

struct servent [

char *sS _nane;
char **s aliases;
i nt S_port;

char *s _proto

l;

S_name points to the character string that contains the name of the service. s_aliasesis a pointer to a
NULL-terminated list of pointers, each of which pointsto a character string that represents an alternative
name for the service. s_port is the port number assigned to the service. s_proto is a pointer to a character
string that contains the name of the protocol being used by the service.

Error Conditions

When the getservent_r() function fails, errno can be set to:

[El NVAL] The servent_data structure was not properly initialized with hexadecimal zeros before
initial use. For corrective action, see the description for structure servent_data.

Usage Notes

#TheiSeries Navigator or the £ following CL commands can be used to access the services database file:
« WRKSRVTBLE (Work with Service Table Entries)
« ADDSRVTBLE (Add Service Table Entry)
« RMVSRVTBLE (Remove Service Table Entry)

A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the service names returned in the servent structure, the job CCSID
must be something other than 65535.

Related Information

o getservbyname r()--Get Port Number for Service Name

« getservbyport r()--Get Service Name for Port Number

o Setservent r()--Open Service Database

o endservent r()--Close Service Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

hstrerror()--Retrieve Resolver Error Message

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

char* hstrerror(int h_error_val ue);

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The hstrerror() function is used to retrieve the text string that describes aresolver h_errno value.

Parameters

h_error_value (Input)
The h_errno received from aresolver API.

Return Value

The hstrerror () API returns a pointer to the error text.

Authorities:

No authorization is required.

Error Conditions

None

Usage Notes

1. If theh _error_valueisout of range or not found, "Unknown resolver error” will be returned.

Related Information

« res findzonecut()--Find the Enclosing Zone and Servers

o res hostalias()--Retrieve the host dias

o res ninit()--Initialize res Structure

o res nclose()--Close Socket and Reset res Structure

o res nmkquery()--Place Domain Query in Buffer

o res nmkupdate()--Construct an Update Packet

o res nquery()--Send Domain Query

o res nsearch()--Search for Domain Name

o res nsend()--Send Buffered Domain Query

« res nsendsigned()--Send Authenticated Domain Query

o res nupdate()--Build and Send Dynamic Updates

o res xlate()--Translate DNS Packets

Example

Seeres ninit() for an example of how hstrerror() is used.

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

htonl()--Convert Long Integer to Network Byte
Order

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in.h>

unsi gned | ong htonl (unsi gned | ong host | ong)

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN SOURCE 520
#i ncl ude <netinet/in.h>

uint32_t htonl (uint32_t host _| ong)

Threadsafe: Yes

&«

The htonl() function is used to convert along (4-byte) integer from the local host byte order to standard
network byte order.

There are two versions of the API, as shown above. The base 05400 APl uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters
host_long

(Input) The 4-byte integer in local host byte order that isto be converted to standard network byte
order.

Authorities

No authorization is required.

Return Value

htonl() returns an integer. Possible values are:
« n(wherenisthe 4-byteinteger in standard network byte order)

Usage Notes

1. OntheiSeries server, the value returned to the caller is the same as the value that was passed to
htonl(), since the local host byte order does not differ from the standard network byte order.

Related Information

o #* XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

ntohl ()--Convert Long Integer to Host Byte Order

htons()--Convert Short Integer to Network Byte Order

ntohs()--Convert Short Integer to Host Byte Order

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

htons()--Convert Short Integer to Network Byte
Order

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in.h>

unsi gned short htons(unsigned short host _short)

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN SOURCE 520
#i ncl ude <netinet/in.h>

uint1l6_t htons(uintl1l6_t host_short)

Threadsafe: Yes

&«

The htons() function is used to convert a short (2-byte) integer from the local host byte order to standard
network byte order.

There are two versions of the API, as shown above. The base 05400 APl uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters
host_short

(Input) The 2-byte integer in local host byte order that isto be converted to standard network byte
order.

Authorities

No authorization is required.

Return Value

htons() returns an integer. Possible values are:
« n(wherenisthe 2-byteinteger in standard network byte order)

Usage Notes

1. OntheiSeries server, the value returned to the caller will be the same as the value that was passed
to htons(), since the local host byte order does not differ from the standard network byte order.

Related Information

o #* XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

ntohs()--Convert Short Integer to Host Byte Order

htonl()--Convert Long Integer to Network Byte Order

ntohl()--Convert Long Integer to Host Byte Order

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Inet_addr()--Translate Full Address to 32-bit IP
Address

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpa/inet. h>

unsi gned | ong inet_addr(char *address_string)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <arpalinet.h>

i n_addr _t inet_addr(const char *address_string)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

&«

Theinet_addr() function is used to translate an Internet address from dotted decimal format to a 32-bit IP
address.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters

address string
(Input) The Internet address in dotted decimal format that is to be converted to a 32-bit | P address.

Authorities

No authorization is required.

Return Value

inet_addr() returns an integer. Possible values are:
o -1 (unsuccessful)
« n(wherenisthe 32-bit |P address)

Theinet_addr() subroutine returns an error value of -1 for strings that are not valid.

Note: An Internet address with adot notation value of 255.255.255.255 or its equivalent in a different base
format causesthe inet_addr() subroutine to return an unsigned long value of 4294967295. Thisvalueis
identical to the unsigned representation of the error value. Otherwise, the inet_addr() subroutine considers
255.255.255.255 avalid Internet address.

Error Conditions

When inet_addr() fails, errno can be set to one of the following:
[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the
address_string parameter.

[EINVAL] Parameter not valid.

Usage Notes

1. Notation of the dotted decimal address string can be in one of seven formats:
o Format1-ab.cd
o Format 2 - ab.c.
o Format 3-ab.c
o Format 4 - ab.
o Format5-ab
o Format 6 - a

o Format7-a

Where a component of the dotted decimal format can be decimal (for example, 7.3), octal (for
example, 07.3) or hexadecimal (for example, 0xb.3).

The rulesfor converting a dotted decimal string are as follows:
o For format 1, each component is interpreted as one byte of the internet address.

o For format 2, each component is interpreted as one byte of the internet address, and the
rightmost byteis set to zero.

o For format 3, each component is interpreted as one byte of the internet address, except for
component ¢, which isinterpreted as the rightmost two bytes of the internet address.

o For format 4, each component is interpreted as one byte of the internet address, and the
rightmost two bytes are set to zero.

o For format 5, each component is interpreted as one byte of the internet address, except for
component b, which isinterpreted as the rightmost three bytes of the internet address.

o For format 6, component aisinterpreted as one byte of the internet address, and the
rightmost three bytes are set to zero.

o For format 7, component ais returned as the internet address.

2. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the inet_addr() APl is mapped to
gso_inet_addro8().&

Related Information

o # XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

API Introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Inet_Inaof()--Separate Local Portion of IP
Address

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpa/inet. h>

int inet_|naof(struct in_addr internet_address)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <arpalinet.h>

in_addr _t inet_Inaof(struct in_addr internet_address)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

&
Theinet_Inaof() function is used to extract the local host portion of an IP address.

There are two versions of the API, as shown above. The base 05400 APl uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters

internet_address
(Input) The 32-bit I P address from which the local host portion of the address is to be extracted.

Authorities

No authorization is required.

Return Value

inet_Inaof() returns an integer. Possible values are:
o n(wherenisthelocal host address)

Usage Notes

1. Z*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the inet_Inaof() APl is mapped to
gso_inet_Inaof98().4%

Related Information

o #* XOPEN_ SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o inet makeaddr()--Combine Network Portion and Host Portion to Make | P Address

o inet netof()--Separate Network Portion of 1P Address

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Inet_makeaddr()--Combine Network Portion
and Host Portion to Make IP Address

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpa/inet. h>

struct in_addr inet_nakeaddr(int network_address,
i nt host _address)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <arpalinet.h>

struct in_addr inet_nakeaddr(in_addr_t network_address,
i n_addr _t host_address)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

&«

The inet_makeaddr() function is used to generate a 32-bit | P address from the 32-bit network 1P address
and the local address of the host.

There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters

network_address
(Input) The 32-bit network | P address.

host_address
(Input) Theloca host address.

Authorities

No authorization is required.

Return Value

inet_makeaddr () returns an integer. Possible values are:
o n(wherenisthe 32-bit IP address)

#When you develop in C-based languages and an application is compiled with the XOPEN_SOURCE
macro defined to the value 520 or greater, the inet._makeaddress() APl is mapped to
gso_inet_makeaddress98(). <

Related Information

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

Top | UNIX-Type APIs| APIs by category

Inet_netof()--Separate Network Portion of IP
Address

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpa/inet. h>

int inet_netof(struct in_addr internet_address)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <arpalinet.h>

in_addr_t inet_netof(struct in_addr internet_address)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

&«

Theinet_netof() function is used to extract the network portion of an | P address.

% There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters

internet_address
(Input) The 32-bit I P address from which the network portion of the addressisto be extracted.

Authorities

No authorization is required.

Return Value

inet_netof() returns an integer. Possible values are:
» n(wherenisthe network IP address)

Usage Notes

1. Z*When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the inet_netof() APl is mapped to
gso_inet_netof98().«%

Related Information

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

o inet Inaof()--Separate Loca Portion of IP Address

o inet makeaddr()--Combine Network Portion and Host Portion to Make | P Address

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Inet_network()--Translate Network Portion of
Address to 32-bit IP Address

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpa/inet. h>

unsi gned | ong inet_network(char *address_string)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#def i ne _XOPEN_SOURCE 520
#i ncl ude <arpalinet.h>

i n_addr _t inet_network(const char *address_string)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

&«

Theinet_network() function is used to trand ate an Internet address from dotted decimal format to a 32-bit
network |P address, in which the host part of the IP addressiis set to zeros.

% There are two versions of the API, as shown above. The base 05400 API uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_ XOPEN SOURCE macro. 4

Parameters
address string

(Input) The Internet address in dotted decimal format that is to be converted to a 32-bit network P
address.

Authorities

No authorization is required.

Return Value

inet_network() returns an integer. Possible values are:
o -1 (unsuccessful)

» n(wherenisthe 32-bit network I P address)

Error Conditions

When inet_network() fails, errno can be set to one of the following:
[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the
address_string parameter.

[EINVAL] Parameter not valid.
#When you develop in C-based languages and an application is compiled with the XOPEN_SOURCE
macro defined to the value 520 or greater, the inet_network() API is mapped to gso_inet_network98().<&

Related Information

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Inet_ntoa()--Translate IP Address to Dotted
Decimal Format

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpal/inet. h>

char *inet_ntoa(struct in_addr internet_address)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

Theinet_ntoa() function is used to trandate an Internet address from a 32-bit I P address to dotted decimal
format.

Parameters

internet_address
(Input) The 32-bit IP address that is to be converted to dotted decimal format.

Return Value

inet_ntoa() returns one of the following values:
o NULL (unsuccessful)

« s(where sisthe pointer to the Internet address in dotted decimal format)

Usage Notes

1. The pointer returned by inet_ntoa() points to static storage that is overridden on subsequent
inet_ntoa() functions.

2. Do not use theinet_ntoa() function in a multithreaded environment. See the multithread aternative
inet_ntoa r function.

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Inet_ntoa r()--Translate IP Address to Dotted
Decimal Format

Syntax

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

i nt

Service Program Name: Name QSOSRV 2
Default Public Authority: *USE

Threadsafe: Y es

<sys/types. h>
<sys/ socket . h>
<netinet/in.h>
<arpalinet. h>

inet_ntoa_r(struct in_addr internet_address,
char *out put buffer,
int output_buffer | ength)

Theinet_ntoa r() function is used to tranglate an Internet address from a 32-bit |P address to dotted

decimal format.

Parameters

struct in_addr internet_address (input)
The 32-bit IP address that is to be converted to dotted decimal format.

char * output_buffer (input/output)
The pointer to the buffer that contains the dotted decimal format.

int output_buffer_length (input)
The length of the output buffer (length should be at least 16).

Return Value

Theinet_ntoa r() function returns:
o -1 (unsuccessful call)
o 0 (successful call)

Error Conditions

When theinet_ntoa r() function fails, errno can be set to:
[EINVAL] Parameter isnot valid.

This error code indicates one of the following:
« Theoutput_buffer_length length isless than 16.

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category

»inet_ntop()--Convert IPv4 and IPv6 Addresses
Between Binary and Text Form

Syntax

#i ncl ude <sys/socket. h>
#i ncl ude <arpal/inet.h>

const char *inet_ntop(int af, const void *src,
char *dst, socklen_t size);

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theinet_ntop() function converts a numeric address into atext string suitable for presentation.

Parameters

af

(Input) Specifiesthe family of the address to be converted. Currently the AF_INET and AF_INET6
address families are supported.

src
(Input) The pointer to a buffer that contains the numeric form of an IPv4 addressiif the af parameter
isAF_INET, or the numeric form of an IPv6 addressif the af parameter isAF_INET®6.

dst
(Output) The pointer to aa buffer into which the function stores the resulting null-terminated text
string.

Size

(Input) The size of the buffer pointed at by dst. The calling application must ensure that the buffer
referred to by dst islarge enough to hold the resulting text string. For 1Pv4 addresses, the buffer
must be at least 16 bytes. For |Pv6 addresses, the buffer must be at least 46 bytes. In order to allow
applications to easily declare buffers of the proper size to store IPv4 and 1Pv6 addressesin string
form, the following two constants are defined in <netinet/in.h>:

#defi ne | NET_ADDRSTRLEN 16
#define | NET6_ADDRSTRLEN 46

Authorities

No authorization is required.

Return Value

inet_ntop() returns a pointer. Possible values are:
o NULL (unsuccessful)
o non-NULL (successful)

If successful, inet_ntop() returns a pointer to the buffer containing the text string.

Error Conditions

When inet_ntop() fails, errno will be set to one of the following:

[EAFNOSUPPORT] The address family is not supported.

[ENOSPC] The size of the result buffer isinadequate.
[EINVAL] Parameter is not valid.
[EFAULT] The system detected an address which was not valid while attempting to access

the src or dst parameter.

Usage Notes

1. Theresulting string will be in the standard 1Pv4 dotted-decimal format for |Pv4 or one of the
preferred forms for |Pv6. See the Usage Notes for inet_pton() for a more detailed description.

2. A job has acoded character set identifier (CCSID). The job CCSID will be used to convert the
characters stored at dst (to allow the hexadecimal values to be shown in lower case).

Related Information

o inet ntoa()--Trandate |P Address to Dotted Decimal Format

o inet pton()--Convert |Pv4 and |Pv6 Addresses Between Text and Binary Form

A

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

»inet_pton()--Convert IPv4 and IPv6 Addresses
Between Text and Binary Form

Syntax

#i ncl ude <sys/socket. h>
#i ncl ude <arpal/inet.h>

int inet_pton(int af, const char *src, void *dst);

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Y es

Theinet_pton() function converts an addressin its standard text presentation form into its numeric binary
form.

Parameters

af

(Input) Specifies the family of the address to be converted. Currently the AF_INET and AF_INET6
address families are supported.

sSrc

(Input) The pointer to the null-terminated character string that contains the text presentation form of
an |Pv4 address if the af parameter is AF_INET, or the text presentation form of an IPv6 address if
the af parameter is AF_INET6. See usage notes for the supported formats.

dst
(Output) The pointer to a buffer into which the function stores the numeric address. The calling

application must ensure that the buffer referred to by dst is large enough to hold the numeric
address (4 bytesfor AF_INET or 16 bytesfor AF_INET®6).

Authorities

No authorization is required.

Return Value

inet_pton() returns an integer. Possible values are:
o 1 (successful)

0O (unsuccessful--input is not avalid |Pv4 dotted-decimal string or avalid |Pv6 address string)

-1 (unsuccessful--see errno)

If successful, the buffer pointed at by dst will be updated with the numeric address.

Error Conditions

When inet_pton() failswith a-1, errno will be set to:

[EAFNOSUPPORT] The address family is not supported.
[EINVAL] Parameter is not valid.

[EFAULT] The system detected an address which was not valid while attempting to access
the src or dst parameter.

Usage Notes

1. If the af parameter of inet_pton() is AF_INET, the src string must be in the standard |1Pv4
dotted-decimal form:

ddd.ddd.ddd.ddd

where ddd isaoneto three digit decimal number between 0 and 255 (see the inet_addr()

definition). The inet_pton function does not accept other formats (such as the octal numbers,
hexadecimal numbers, and fewer than four numbers that inet_addr() accepts).

2. If the af parameter of inet_pton is AF_INETS6, the src string must be in one of the following
standard 1Pv6 text forms:

1. The preferred form is x:x:x:X:X:x:X:X, where the 'x's are the hexadecimal values of the
eight 16-bit pieces of the address. Leading zerosin individual fields can be omitted, but
there must be at least one valuein every field.

2. A string of contiguous zero fields in the preferred form can be shown as™"::". The"::" can
only appear once in an address. Unspecified addresses (0:0:0:0:0:0:0:0) may be
represented simply as"::".

3. A third form that is sometimes more convenient when dealing with a mixed environment of
IPv4 and IPv6 nodesis x:x:x:x:x:x:d.d.d.d, where the "x"s are the hexadecimal values of

the six high-order 16-bit pieces of the address, and the "d"s are the decimal values of the
four low-order 8-bit pieces of the address (standard | Pv4 representation).

3. A job has acoded character set identifier (CCSID). The job CCSID will be used to convert the
charactersfound at src (to allow the hexadecimal values to be entered in lower case).

Related Information

o inet addr()--Translate Full Addressto 32-bit |P Address

o inet ntop()--Convert |Pv4 and | Pv6 Addresses Between Binary and Text Form

&

API introduced: V5R2

Top | UNIX-Type APIs| APIs by category

ns_addr()--Translate Network Services Address
to 12-byte Address

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netns/ns. h>

struct ns_addr ns_addr(char *address_string)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The ns_addr() function is used to translate a network services address from human readable format to a
12-byte hexadecimal address.

Parameters

char *address _string
(Input) The network services address in human readable format.

Return Value

The ns_addr() function returns an ns_addr structure.

Usage Notes

Notation of the human readable address string can be in many forms. The following notation rules apply to
all the format examples shown here.

1. There are three fields to the address string: the network field denoted by bytes nl through n4, the
host field denoted by bytes h1 through h6, and the port number field denoted by bytes p1 and p2.
These three fields can be separated by a period (.), acolon (:), or a (#). Once one of these three
separator charactersis encountered, the rest of the fields (the host field and the port number field)
may be byte separated by a period or a colon. The network field cannot use byte separators because
itisthefirst field and afield separator has not been encountered. Also, you may not use the same
character as afield separator and a byte separator.

2. Each field may be specified as either decimal, hexadecimal, or octal. Octal is specified by a
preceding zero (for example, 011 is decimal value 9). Hexadecimal can be specified in the
following ways:

o Specifying Oxnn.

o Specifying OXnn.

o Specifying xnn.

o Specifying Xnn.

o Specifying an H character at the end of the field.

o Using abyte separator (only allowed for the host field or port number) in the field that
contains the byte.

o Using any of the characters ab,c,d,ef,A,B,C,D,E,Fin any bytein thefield.

The following are valid formats:
» Format 1 - nN1n2n3n4:h1.h2.h3.h4.h5.h6:pl.p2
o Format 2 - n1n2n3n4.h1:h2:h3:h4:h5:h6.p1:p2
o Format 3 - n1ln2n3n4#h1.h2.h3.h4.h5.n6#pl.p2
o Format 4 - n1n2n3n4#h1:h2:h3:h4:h5:h6#pl:p2
Although they can have byte separators, the host and port fields do not need to be byte separated. Also, not

al bytes need be specified for agiven field. If not all bytes are specified, the specified bytes are
right-justified in the field.

Note: If the host field is not byte separated, the number must not be larger than what can be contained in a
4-byteinteger. That is, to use nonzero values for bytes hl and h2, you must byte separate the host field.
The following formats are also valid:

« Format 5 - n1n2n3n4:h1h2h3h4h5h6:p1p2

o Format 6 - nl:h1.h2.h3.h4.h5.h6:plp2

o Format 7 - n1:h1h2h3h4h5h6:pl.p2

Not al fields need be specified. The following formats are also valid:
o Format 8-nl
o Format 9-nl:hl
o Format 10 - n1::p1
o Format 11-::pl
As afurther example, the following are just some of the ways that a network number of 71 decimal, a host
number of 8374930 decimal, and a port number of 9341 can be specified.
o 71:8374930:9341
« 71:00.00.00.7f.ca.92:9341
o 71:7f.ca.92:9341
o 0x47:7fca92:247d
o 47H:7f.ca92:9341
o 47H.7fca92.247d

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

ns_ntoa()--Translate Network Services Address
from 12-byte Address/h2>

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netns/ns. h>

char *ns_ntoa
(struct ns_addr network_servi ces_address)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The ns_ntoa() function is used to transate a network services address from a 12-byte address to a human
readable format.

Parameters

struct ns_addr network_services_address
(Input) The 12-byte network services address that is to be converted to human readable format.

Return Value

The ns_ntoa() function returns:
o NULL (unsuccessful call)

« s(where sisthe pointer to the network services address in human readable format)

Usage Notes

1. The network services address consists of three fields, the network field, the host field, and the port
number field. ns_ntoa() returns these fields as a single character string with the fields separated by
the period (.) character. The character string is always terminated with aNULL character.

2. Thefields are aways returned in hexadecimal notation. ns_ntoa() inserts an H character at the end
of each field that does not contain an a,b,c,d,e,f,A,B,C,D,E or F character, in order to make it
obvious that the notation is in hexadecimal.

3. Not al fields need be returned. For example, if the host field and the port number field of the
network services address both contain hexadecimal zeros, ns_ntoa() returns a character string that
only contains the network field.

4. The pointer returned by ns_ntoa() pointsto static storage that is overridden on subsequent callsto
ns_ntoa().

5. Do not use the ns_ntoa() function in a multithread environment. See the multithread alternative

ns_ntoa r() function.

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category

ns_ntoa r() -- Translate Network Services
Address from 12-byte Address

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netns/ns. h>

int ns_ntoa_r(struct ns_addr
net wor k_servi ces_addr ess,

char *out put buffer,
int output_buffer | ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Thens_ntoa r() function is used to trandate a network services address from a 12-byte address to a human
readable format.

Parameters

struct ns_addr networ k_services_address (input)
Specifies the 12-byte network services address that isto be converted to human readable format.

char * output_buffer (input/output)
Specifies the pointer to the converted string.

int output_buffer_length (input)
Specifies the length of the output buffer (length should at least 35).

Return Value

The ns_ntoa r() function returns:
o -1 (unsuccessful call)
o 0 (successful call)

Error Conditions

When the ns_ntoa_r() function fails, errno can be set to:
[EINVAL] Parameter isnot valid.

This error code indicates one of the following:
« Theoutput_buffer _length length isless than 35.

Usage Notes

1. The network services address consists of three fields, the network field, the host field, and the port
number field. ns_ntoa_r() will return these fields as a single character string with the fields
separated by the period (.) character. The character string is aways terminated with aNULL
character.

2. Thefields are aways returned in hexadecimal notation. ns_ntoa_r() will insert an 'H' character at
the end of each field that does not contain an a,b,c,d,e,f,A,B,C,D,E or F character, in order to make
it obvious that the notation is in hexadecimal.

3. Not al fields need be returned. For example, if the host field and the port number field of the
network services address both contain hexadecimal zeros, the ns_ntoa_r() routine will return a
character string that only contains the network field.

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

ntohl()--Convert Long Integer to Host Byte
Order

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in.h>

unsi gned | ong ntohl (unsi gned | ong network_I| ong)

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN SOURCE 520
#i ncl ude <netinet/in.h>

uint32_t ntohl (uint32_t network_|long)

Threadsafe: Yes

&«

The ntohl () function is used to convert along (4-byte) integer from the standard network byte order to the
local host byte order.

There are two versions of the API, as shown above. The base 05400 APl uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters

network_long
(Input) The 4-byte integer in standard network byte order that isto be converted to local host byte
order.

Authorities

No authorization is required.

Return Value

ntohl() returns an integer. Possible values are:
« n(wherenisthe 4-byteinteger in local host byte order)

Usage Notes

On the i Series server, the value returned to the caller is the same as the value that was passed to ntohl (),
since the standard network byte order does not differ from the local host byte order.

Related Information

o #* XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

htonl ()--Convert Long Integer to Network Byte Order

htons()--Convert Short Integer to Network Byte Order

ntohs()--Convert Short Integer to Host Byte Order

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

ntohs()--Convert Short Integer to Host Byte
Order

BSD 4.3 Syntax

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in.h>

unsi gned short ntohs(unsigned short network _short)

Threadsafe: Yes

b

UNIX 98 Compatible Syntax

#defi ne _XOPEN SOURCE 520
#i ncl ude <netinet/in.h>

uint16_t ntohs(uintl16_t network_short)

Threadsafe: Yes

&«

The ntohs() function is used to convert a short (2-byte) integer from the standard network byte order to the
local host byte order.

There are two versions of the API, as shown above. The base 05400 APl uses BSD 4.3 structures and
syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface
specifications. Y ou can select the UNIX 98 compatible interface with the_XOPEN_SOURCE macro. &

Parameters
network_short

(Input) The 2-byte integer in standard network byte order that isto be converted to local host byte
order.

Authorities

No authorization is required.

Return Value

ntohs() returns an integer. Possible values are:
« n(wherenisthe 2-byteinteger in local host byte order)

Usage Notes

On the i Series server, the value returned to the caller isthe same as the value that was passed to ntohs(),
since the standard network byte order does not differ from the local host byte order.

Related Information

o #* XOPEN SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

htons()--Convert Short Integer to Network Byte Order

htonl()--Convert Long Integer to Network Byte Order

ntohl()--Convert Long Integer to Host Byte Order

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

res_close()--Close Socket and Reset res
Structure

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

void res_cl ose(voi d)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres close() function is used to reset the _res structure to the beginning defaults and close a socket that
isopened as aresult of the RES STAY OPEN flag.

Authorities:

No authorization is required.

Return Value

None

Usage Notes

1. If res_send() was previously called with RES_STAY OPEN set in the options field of the _res
structure, res_close() closes the socket that was left open. res_close() does not attempt the close if
there was no socket |eft open.

2. res_close() setsthe _res structure to default values.
o Theretransfield isset to 5.
o Theretryfiedissetto 4.

o The options field has the RES RECURSE, RES DEFDNAMES, and RES DNSSRCH
bits set.

o Thenscount field is set to 1.
o All other fieldsin the res structure are cleared.

o Inathread-enabled environment _res structure is shared among all threads within a
process.

Related Information

o res nclose()--Close Socket and Reset res Structure

o res hostalias()--Retrieve the host dias

o res init()--Initialize res Structure

o res mkquery()--Place Domain Query in Buffer

o res guery()--Send Domain Query

o res search()--Search for Domain Name

o res send()--Send Buffered Domain Query

o res xlate()--Translate DNS Packets

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

res_findzonecut()--Find the Enclosing Zone
and Servers

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

int res_findzonecut (state* res,
const char *donai n_nane,
ns_cl ass cl ass,
int options,
char *zone_nane,
size_t zone_size,
struct in_addr *addresses,
i nt num addr esses)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres findzonecut() queries name servers until it finds the enclosing zone and its master name servers for
the specified domain name.

Parameters

res
(Input) The pointer to the state structure.

domain_name
(Input) The pointer to the domain name whose enclosing zoneis desired.

class

(Input) The class of domain_name.
options

(Input) Processing options, may be RES EXHAUSTIVE.
zone_name

(Output) The pointer to the enclosing zone name found.

zonesize
(Input) The size of the zone_name buffer.

addresses
(Output) The name server addresses found for the enclosing zone.

num_addr esses
(Input) The maximum number of addresses to be returned.

Authorities

No authorization is required.

Return Value

res findzonecut() returns an integer. Possible values are:
e <0- (unsuccessful).

« =0-zone_nameisnow valid, but addresses wasn't changed.

« >0-zone nameisnow valid, and the return value is number of addresses found.

Error Conditions

When the res_findzonecut() function fails, res_findzonecut() can set errno to one of the following:
[ECONVERT] Either the input packet could not be trandated to ASCII or the answer received

could not be translated to the coded character set identifier (CCSID) currently in
effect for the job.

[EDESTADDRREQ] No zone could be found for the domain.

[EFAULT] The system detected a pointer that was invalid while attempting to access an
input pointer.
[EINVAL] One of the following reasons:

« Aninvalid length or NULL pointer was passed to res_findzonecut() or
» Theresappearsto beinitialized but the reserved field is not set to zeros.

Note: No attempt is madeto initialize the res structure if it was initialized
previous to theres_findzonecut() being issued.

[EMSGS ZE] Aninvalid message length was returned on an answer.

[EPROTOTYPE] The answer to a query had the wrong domain name.

Note: There are numerous other values that errno can be set to by the resolver and sockets functions that
res_findzonecut() cals. Refer to other functions for the other values.

Usage Notes

1. res findzonecut() callsres mkqguery() and res_send() to query the specified server for the zone
information.

2. res findzonecut() callsres ninit() if the res structure has not been initialized.

3. res findzonecut() assumes that the data passed to it is EBCDIC and is in the default coded character
set identifier (CCSID) currently in effect for the job. It tranglates the data from the default CCSID
currently in effect for the job to ASCII (CCSID 819) before the data is sent out to a name server.
The response that it receives from the name server isreturned in the default CCSID currently in
effect for the job.

Related Information

e [ES

nclose()--Close Socket and Reset res Structure

e €S

hostalias()--Retrieve the host alias

ninit()--Initialize res Structure

nmkguery()--Place Domain Query in Buffer

nmkupdate()--Construct an Update Packet

nguery()--Send Domain Query

nsearch()--Search for Domain Name

nsend()--Send Buffered Domain Query

nsendsigned()--Send Authenticated Domain Query

nupdate()--Build and Send Dynamic Updates

xlate()--Translate DN S Packets

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_hostalias()--Retrieve the host alias

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

const char * res_hostalias(const state* res,
const char* nane,

char* destinati on,
size_t destination_|length)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres_hostalias() 1ooks up the specified name in the host aliases file specified by the environment
variable HOSTALIASES

A user may create a host aliases file. This file maps user defined aliases to host names, unlike the OS/400
host table (or a DNS) which maps host names to ip addresses. Also, it requires no specia authorities for a
user to define an dlias. It's simply a shorthand for a server which can be easily changed and controlled by
users. No i Series server default aliasfileis created.

The format is simply an alias followed by blank(s) followed by a domain name. For example, mypc may be
an alias for m999.mydomain.ibm.com and myaix may be an aias for m111.mydomain.ibm.com:

mypc m999.mydomain.ibm.com.
myaix m111.mydomain.ibm.com

Other functions, like res_nsearch() or gethostbyname r() will resolve an aliaslike "mypc" to the full
domain name "m999.mydomain.ibm.com." before querying the DNS or OS/400 host table.

Note:An alias may not contain periods.

Parameters

res
(Input) The painter to the state structure.

name
(Input) The pointer to the host name.

destination
(Output) The pointer to the destination buffer. This pointer will be the return value if the call
succeeds.

destination_length
(Input) The length of the destination buffer.

Authorities

Authorization of *R (allow access to the object) to the host aliases file specified by the HOSTALIASES
environment variable.

You also need * X authority to each directory in the path of the host aiasesfile.

Return Value

(NULL) No diasfound or an error occurred.

(destination) A pointer to the destination buffer updated with the alias found.

Error Conditions

When the res_hostalias() function fails, errno can be set to one of the following:

[EACCEY Permission denied. The process does not have the appropriate privileges to the host aiases
file specified by the HOSTALIASES environment variable.

[EFAULT] The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL] One of the following reasons:

« Theresappears to have been previoudly initialized but the reserved field is not set
to zeros or an input pointer was NULL.

« Analiaswasfound that contains a period.

Usage Notes
1. If the RES NOALIASES option is set, no processing is done and a NULL will be returned.

2. If the res structure has not been initialized, res_ninit() will be called.

Related Information

e [ES

findzonecut()--Find the Enclosing Zone and Servers

e €S

init()--Initialize res Structure

nclose()--Close Socket and Reset res Structure

nmkguery()--Place Domain Query in Buffer

nguery()--Send Domain Query

nsearch()--Search for Domain Name

nsend()--Send Buffered Domain Query

xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

res_init()--Initialize _res Structure

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

void res_init(void)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres _init() function is used to initialize the _res structure for name resolution. Two bits are set in the
structure to indicate that it has been initialized. (These arethe RES _INIT and RES XINIT bitsin the
optionsfield of the _res structure.) Also, the default domain name and other components of the domain to
search are put into the _res structure.

The _resstructure is defined in <resolv.h>.

struct state {

i nt retrans;
i nt retry;

| ong opti ons;
i nt nscount ;

struct sockaddr in nsaddr _|ist[MAXNS];
u_short id;

char def dname[MAXDNAME] ;

char reservedO[1] ;

char reservedl[13];

char *dnsr ch[MAXDNSRCH+1] ;

/* Extended state structure begins here.*/

struct {
struct in_addr addr;
ui nt mask;
} sort _|ist[MAXRESOLVSORT] ;
i nt res_h_errno;
i nt ext ended_error;

unsi gned ndot s: 4;
unsi gned nsort: 4;

char state_data[27];
i nt i nternal _use[4];
char reserved| 444] ;

b

#define nsaddr nsaddr _|ist[O0]

extern struct state _res;
retrans

Timeinterval in seconds between retries. The default is received from QUSRSY SIQATOCTCPIP
which is configured with the Change TCP/IP Domain (CHGTCPDMN) command

retry

Number of times to retransmit. The default is received from QUSRSY SIQATOCTCPIP which is
configured with the Change TCP/IP Domain (CHGTCPDMN) command

options
Contains flag bits to indicate the different resolver options. The default is RES DEFAULT

nscount

Number of name servers. res_ninit() sets the number of name servers to the number found in the
database file. The maximum is 3

nsaddr_list
Contains the address(es) of the name server(s)

id
Current packet ID. Theid isinitialized to a random number

defdname
Default domain name or the search list

dnsrch
Contains the components of the search list. By default it points to components of defdname which
contains the local domain or the configured search list. However a program may allocate separate
storage for a customized search list and set the elements of dnsrch to point to it. Each component
pointed to by an element of dnsrch must be NULL terminated.

sort_list
List of address/mask pairs that will be used to sort the results of a gethostbyname() or
gethostbyname _r() operation

res h_errno
Holdsthelast h_errno or errno set by the resolver for this context

ndots
Number of dotsin a name that will trigger an absolute query instead of using the dnsrch

nsort

Number of elementsin the sort_list array

state_data
Used internally by the resolver

reservedO,reservedl and reserved

Fields are that set to zeros by res_ninit() or res init(). If the res structure is manually initialized by
aprogram, it also must set these structures to zeros.

nsaddr
Defined for backward compatibility

options
The vaue for the optionsis constructed by performing an OR operation on the following values:

RES INIT Indicates that the r es structure has been initialized.

RES AAONLY Requests the answer be authoritative and not from a name server's
cache.

RES USEVC Tells the resolver to use TCP instead of UDP.

RES IGNTC Tells the resolver to ignore truncation.

RES RECURSE Specifies that recursion is desired.

RES DEFNAMES Appends the default domain name to single label queries.

RES STAYOPEN Causes the TCP connection to remain open (used with RES_USEV C).

RES DNSRCH Searches using dnsrch.

RES INSECURE1 Disablestype 1 security. Type 1 security rejects responses that didn't

come from one of the configured DNS servers.

RES INSECURE2 Disablestype 2 security. Type 2 security checks the question section
of the reply to ensure it matches the original query sent.

RES NOALIASES Tells the resolver to ignore the HOSTALIASES environment
variable.
RES ROTATE Tells the resolver to rotate through the list of DNS servers

(nsaddr_list).

RES NOCHECKNAME Tellsthe resolver not to check host namesin replies for disallowed
characters such as underscore (_), non-ASCII, or control characters.

RES KEEPTSG Stops the resolver from stripping TSIG records on replies.

RES NOCACHE Do not look in the resolver answer cache. Query the name server. The
answer may still be locally cached.

The following four values are 0S/400 specific.

RES XINIT Indicates that the extended portion of the res structure has been
initialized.
RES CP850 Use ASCII code page 850 and not ASCII code page 819.

RES RETRYTCP Retry with a TCP connection if the UDP connection fails for any reason.

RES NSADDRONLY Only usethelist of addressesin nsaddr. There may be a separate
SOCKS DNS configured that would normally be used.

RES DEFAULT Thisisthe default. Causes an OR operation on the RES RECURSE,
RES DEFNAMES, RES DNSRCH values.

Authorities:

No authorization is required.

Return Value

None.

Error Conditions

res init() can set errno to the following:

[EINVAL] _res appears to have been previoudly initialized but the reserved field is not set to
Zeros.

[EUNKNOWN] res init() was unable to retrieve the DNS server configuration.

Usage Notes

1. If no entry was configured with Change TCP/IP Domain (CHGTCPDMN), then res init() doesthe
following:

o Cdls gethostname() to get the default domain name. The default domain name in this case
is the host name minus the first component of the name. For example, if the host nameis
ABC.RCHLAND.IBM.COM, the default nameis RCHLAND.IBM.COM.

o Cals getservbyname() to get the port number.

0 Uses hard-coded defaults for retrans, retry and ndots (5, 4 and 1 respectively).

2. The default initialization values can be overridden with enviroment variables. Note: The name of
the environment variable must be uppercased. The string value may be mixed case. Japanese
systems using CCSID 290 should use uppercase characters and numbers only in both environment
variables names and values.

o LOCALDOMAIN

The configured search list (struct state.defdname and struct state.dnsrch) can be overridden
by setting the environment variable LOCALDOMAIN to a space-separated list of up to 6
search domains with atotal of 256 characters (including spaces). If asearchlist is
specified, the default local domain is not used on queries.

o RES OPTIONS alows certain internal resolver variables to be modified. The environment
variable can be set to one or more of the following space-separated options:

= NDOTS:n sets athreshold for the number of dots which must appear in a name
given to res_query() before an initial absolute query will be made. The default for
nis 1", meaning that if there are any dotsin a name, the name will betried first as
an absolute name before any search list elements are appended to it.

= TIMEOUT:n sets the amount of time (in seconds) the resolver will wait for a
response from a remote name server before giving up and retrying the query.

= ATTEMPTS:n sets the number of queries the resolver will send to agiven
nameserver before giving up and trying the next listed nameserver.

» ROTATE setsRES ROTATE in_res.options, which causes round robin selection
of nameservers from among those listed. This has the effect of spreading the query
load among all listed servers, rather than having all clientstry the first listed server
first every time.

= NO-CHECK-NAMES sets RES NOCHECKNAME in _res.options, which
disables the modern BIND checking of incoming host names and mail names for
invalid characters such as underscore (_), non-ASCI|, or control characters.

1 QIBM_BIND_RESOLVER FLAGS

The RES_DEFAULT options (struct state.options) and system configured values (Change
TCP/IP Domain - CHGTCPDMN) can be overridden by setting the environment variable
QIBM_BIND_RESOLVER_FLAGS to a space separated list of resolver option flags. The
state.options structure will be initialized normally, using RES DEFAULT, OPTIONS
environment values and CHGTCPDMN configured values. Then this environment varible
will be used to override those defaults. The flags named in this environment variable may
be prepended with a'+', - or 'NOT _' to set ('+) or reset (*-','NOT_") the value. For example,

3.

5.

to turn on RES_ NOCHECKNAME and turn off RES ROTATE:
ADDENVVAR ENVVAR(QIBM_BIND_RESOLVER_FLAGS)
VALUE('RES_ NOCHECKNAME NOT_RES ROTATE)

or

ADDENVVAR ENVVAR(QIBM_BIND_RESOLVER_FLAGS)
VALUE('+RES_NOCHECKNAME -RES ROTATE)

1 QIBM_BIND_ RESOLVER SORTLIST

A sort list (struct state.sort_list) can be configured by setting the environment variable
QIBM_BIND_RESOLVER_SORTLIST to a space-separated list of up to 10 ip
addresses/mask pairsin dotted decimal format (9.5.9.0/255.255.255.0)

Note: Environment variables are only checked after a successful call to res init() or res_ninit(). So
if the structure has been manually initialized, environment variables are ignored. Also note that the
structureis only initialized once so later changes to the environment variables will be ignored.

res init() iscaled by res_send(), res_mkquery(), res_search(), and res_query() if they detect the
_resstructure has not been initialized (RES_INIT option). res_init() can also be called directly to
change the defaults and hence, change the behavior of one of the above routines. For example, if
you want to use TCP rather than attempt UDP first, simply call res_init() directly. Then before the
call tores send(), set the RES _USEVC bit in the options flag. Other thingsin the _res structure,
like the number of retries or time interval between retries, can be changed in alike manner.

If the server protocol configured with Change TCP/IP Domain (CHGTCPDMN) is set to TCP, then
res init() setsthe RES USEVC hit in the optionsfield of the _res structure.

In athread-enabled environment the _res structure is shared among all threads within a process.

Related Information

hstrerror()--Retrieve Resolver Error Message

res ninit()--Initialize res Structure

res hostalias()--Retrieve the host dlias

res close()--Close Socket and Reset res Structure

res mkguery()--Place Domain Query in Buffer

res query()--Send Domain Query

res search()--Search for Domain Name

res send()--Send Buffered Domain Query

res xlate()--Transate DNS Packets

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

res_mkquery()--Place Domain Query in Buffer

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

int res_nkquery(int operation,
char *domai n_nane,
int class,
int type,
char *search_dat a,
int search_data_ | ength,
struct rrec *reserved,
char *query buffer,
int query buffer_length)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres_mkqguery() function is used to make standard query messages (DNS packets) for name servers.

Parameters

operation

(Input) The query operation desired. This gets put into OPCODE in the header of the packet.
Common values are listed below (see <arpa/nameser.h> for al possible values):

ns_o_query or QUERY Standard query request. (Thisvalueis almost always used.)

domain_name
(Input) The painter to the name of the domain.

class

(Input) The class of data being looked for. Common values are listed below (see <arpa/nameser.h>
for al possible values):

ns c inor C_IN Specifiesthe ARPA Internet.

ns ¢ any or C_ ANY Thisisthe wildcard match.

type
(Input) The type of request being made. Common values are listed below (see <arpa/nameser.h>
for al possible values):

nstaorT A Host address.
#ns t_aaaa |Pv6 address. 4%
ns t nsor T_NS Authoritative server.

ns t cnameor T CNAME Canonical name.

ns t soaor T_SOA Start of authority zone.
ns t wksor T_WKS Well-known service.
ns t ptror T_PTR Domain name pointer.

ns t _hinfoor T_HINFO Host information.

ns t mxor T_MX Mail routing information.

ns t txtor T_TXT Text strings.

ns t any or T_ANY Wildcard match.
search_data

(Input) A buffer containing the data for inverse queries. It isNULL for types other than IQUERY .

search_data length
(Input) The length of search_data. It isNULL for types other than IQUERY .

reserved
(Input) A reserved and currently unused parameter. It is always a NULL pointer (defined for
compatibility).

query_buffer
(Output) A pointer to a user-supplied location containing the query message.

query_buffer_length
(Input) The length of query_buffer.

Authorities:

No authorization is required.

Return Value

res_mkquery() returns an integer. Possible values are:
o -1 (unsuccessful)

N (successful), where nisthe size of the query.

Error Conditions

When theres_mkquery() function fails, errno can be set to one of the following:

[EFAULT] The system detected a pointer that was invalid while attempting to access an input
pointer.

[EINVAL] The _res appearsto be initialized but the reserved field is not set to zeros.

[EMSGSZE] The message buffer was too small. The query was larger than the value of
query_buffer_length

Usage Notes

1. res_mkquery() creates a standard query message (DNS packet). It fillsin the header fields,
compresses the domain name into the question section, and fillsin the other question fields. This
query messageis placed in query_buffer.

2. res_mkquery() callsres_init() if the _res structure has not been initialized.
3. res_mkquery() expects EBCDIC data as input. The output from res_mkquery() isaso EBCDIC.

4. In athread-enabled environment, the _res structure is shared among al threads within a process.

Related Information

« res nmkquery()--Place Domain Query in Buffer

o res hostalias()--Retrieve the host dias

o res init()--Initialize res Structure

o res close()--Close Socket and Reset res Structure

o res query()--Send Domain Query

o res search()--Search for Domain Name

o res send()--Send Buffered Domain Query

o res xlate()--Translate DNS Packets

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

res_nclose()--Close Socket and Reset res
Structure

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

void res_ncl ose(state* res)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres nclose() functionis similar to res_close() but it uses a user-declared res pointer instead of the
shared res.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, and related information, seeres _close()--Close Socket

and Reset res Structure.

Parameters

res
(Input) The painter to the state structure.

Related Information

o res close()--Close Socket and Reset res Structure

« res findzonecut()--Find the Enclosing Zone and Servers

o res hostalias()--Retrieve the host dias

o res ninit()--Initialize res Structure

o res nmkquery()--Place Domain Query in Buffer

o res nquery()--Send Domain Query

o res nsearch()--Search for Domain Name

o res nsend()--Send Buffered Domain Query

o res xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_ninit()--Initialize res Structure

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <ar pa/ naneser. h>
#i ncl ude <resolv. h>

int res_ninit(state* res)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres ninit() function issimilar to res_init() but it uses a user-declared res pointer instead of the shared _res.

For adescription of this function and more information on the parameters, authorities required, return values,
error conditions, error messages, usage notes, and related information, seeres _init()--Initialize _res Structure.

Parameters
res
(Input/Output) The pointer to the state structure.

The RES _INIT and RES _XINIT options flags must be initialized to zero before the first call to any resolver API
or the res structure will not be properly initialized. For example:

state res;
res.options & ~ (RES_INIT | RES XINIT);
int n=res_ninit(&es);

Return Value

res ninit() returns an integer. Possible values are:
e -1 (unsuccessful)
o 0 (successful)

Error Conditions

When the res ninit() function fails, errno can be set to one of the following:
[EFAULT] The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL] Theres appearsto have been previoudly initialized but the reserved field is not set to zeros.

Related Information

o hstrerror()--Retrieve Resolver Error Message

o res init()--Initialize res Structure

o res findzonecut()--Find the Enclosing Zone and Servers

o res hostalias()--Retrieve the host alias

o res nclose()--Close Socket and Reset res Structure

o res nmkquery()--Place Domain Query in Buffer

o res nquery()--Send Domain Query

o res nsearch()--Search for Domain Name

o res nsend()--Send Buffered Domain Query

o res xlate()--Trandlate DNS Packets

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how res_ninit() is used and how initialization defaults can be changed after
initialization:

#i ncl ude <stdio. h>

#i ncl ude <errno. h>

#i ncl ude <netinet/in.h>
#i ncl ude <ar pa/ naneser. h>
#i ncl ude <resolv. h>

#i ncl ude <net db. h>

/* Declare update records - a zone record, a pre-requisite record, and
an update record */
ns_updrec update_records[] =
{
{
{ NULL, NULL},
{NULL, &updat e_records[1]},
ns_s zn, /* a zone record */
"nmydomai n.i bmcom ",
ns _c_in,
ns_t _soa,

0,
NULL,
0,
0,
NULL,
NULL,
0

A

{ NULL, NULL},

{&updat e_records[0], &updat e_records[2]},
ns_s_pr, /* pre-req record */
"nmypc. nydomai n.i bm com ",

ns_c_in,

ns_t_a,

0,

NULL,

0,

ns_r_nxdonai n, /* record nust not exist */
NULL,

NULL,

0

{NULL, NULL},
{&updat e_r ecords[1], NULL},
ns_s_ud, /* update record */
"mypc. mydomai n.i bm com ",
ns_c_in,
ns_t_a,
10,
(unsi gned char *)"10.10.10. 10",
11,
ns_uop_add, /* to be added */
NULL,
NULL,
0
}
1

voi d mai n()
struct state res;
int result;
unsi gned char update_buffer[2048];
int buffer _length = sizeof update buffer;
unsi gned char answer buffer[2048];
/* Turn off the init flags so that the structure will be initialized
*/
res.options & ~ (RES_INIT | RES XINIT);
result = res _ninit(&res);

/* Put processing here to check the result and handle errors
*/

/* W choose to use TCP and not UDP, so set the appropriate option now

that the res variable has been initialized.
*/
res.options | = RES _USEVC

/* Send a query for mypc. nydomai n.ibm com address records
*/
result = res_nquerydonmai n(& es, "nypc", "nydomain.ibmcom", ns_c_in,
ns_t_a,
updat e_buffer, buffer_length);

/* Sampl e error handling and printing errors
*/
if (result == -1)

{
printf("\nquery domain failed. result = %l \nerrno: %: % \nh_errno:
%l: %",
result,
errno, strerror(errno),
h_errno, hstrerror(h_errno));
return;

/* The output on a failure will be:

query domain failed. result = -1
errno: 0: There is no error.
h_errno: 5: Unknown host

*/

/* Build an update buffer (packet to be sent) fromthe update records
*/
result = res_nnkupdate(&res, update records, update_ buffer

buf fer | ength);

/* Put processing here to check the result and handle errors
*/
}

{
char zone_nane[NS_MAXDNAME] ;

size_t zone_nane_size = sizeof zone_nane;
struct sockaddr _in s_address;

struct in_addr addresses[1];

i nt nunber_addresses = 1,

/* Find the DNS server that is authoritative for the domain
that we want to update
*/
result = res_findzonecut (& es, "nypc.nmydomain.ibmcon, ns c_in, O,
zone_name, zone_nane_si ze,
addr esses, nunber addresses);

/* Put processing here to check the result and handle errors
*/

/* Check if the DNS server found is one of our regul ar

DNS addr esses
*/

s_address. si n_addr = addresses[0];
s_address.sin_famly = res.nsaddr _list[0].sin_famly;
s_address.sin_port = res.nsaddr_list[0].sin_port;
menset (s_address. sin_zero, 0x00, 8);

result = res_nisourserver(&es, &s_address);

/* Put processing here to check the result and handle errors
*/

/* Set the DNS address found with res findzonecut into the res
structure. We will send the (TSI G signed) update to that DNS.

*/
res.nscount = 1,
res.nsaddr_list[0] = s_address;
}
{ .
ns_tsig_key ny_key = {
"my-1ong- key", /* This key must exist on the DNS */
NS _TSI G ALG HVAC _MD5,
(unsi gned char*) "abcdef ghij kl mopqgr st uvwx",
24
1
/* Send a TSI G signed update to the DNS
*/
result = res_nsendsi gned(& es, update_buffer, result,
&ny_key,
answer buffer, sizeof answer buffer);
/* Put processing here to check the result and handle errors
*/
}

/* The res_findzonecut (), res_nnkupdate(), and res_nsendsigned() could
be replaced with one call to res_nupdate() using update records[1]
to skip the zone record::

result = res_nupdate(&res, &update records[1l], &my_ key);

* [
return;

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_nisourserver()--Check Server Address

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

int res_nisourserver(state* res,
const struct sockaddr _in server)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres_nisourserver() looks up the specified server addressin the ns_addr_list[] of the specified res
structure.

Parameters

res
(Input) The pointer to the state structure.

server
(Input) The server address to check.

Authorities:

No authorization is required.

Return Value

(0) Server not found in ns_addr_list[].
(>0) Server found in ns_addr_list[].

(<0) Error.

Error Conditions

When the res_nisourserver() function returns an error, errno will be set to one of the following:
[EFAULT] The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL] One of the following reasons:
o A NULL pointer was passed to res_nisourserver() or
» Theresappearsto beinitialized but the reserved field is not set to zeros.

Related Information

« res findzonecut()--Find the Enclosing Zone and Servers

o res init()--Initialize res Structure

o res nclose()--Close Socket and Reset res Structure

« res nmkquery()--Place Domain Query in Buffer

o res nquery()--Send Domain Query

o res nsearch()--Search for Domain Name

o res nsend()--Send Buffered Domain Query

o res xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

res_nmkquery()--Place Domain Query in Buffer

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

int res_nnkquery(state* res,
int operation,
const char *donai n_nane,
int class,
int type,
const unsi gned char *search_data,
int search_data_ | ength,
const unsigned char *reserved,
unsi gned char *query_buffer
int query buffer _length)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres_nmkquery() function issimilar to res_mkquery() but it uses a user-declared r es pointer instead of
the shared res.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, and related information, see res mkquery()--Place
Domain Query in Buffer.

Parameters

res
(Input/Output) The pointer to the state structure.

Related Information

o res mkquery()--Place Domain Query in Buffer

« res findzonecut()--Find the Enclosing Zone and Servers

o res hostalias()--Retrieve the host dias

o res ninit()--Initialize res Structure

o res nclose()--Close Socket and Reset res Structure

o res nquery()--Send Domain Query

o res nsearch()--Search for Domain Name

o res nsend()--Send Buffered Domain Query

o res xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_nmkupdate()--Construct an Update Packet

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

i nt res_nnkupdat e(st at e* res,
ns_updrec *update_record,

unsi gned char *buffer,
i nt buffer_I|ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The res_nmkupdate() function builds a dynamic update packet from the linked list of update records.

Parameters

res
(Input) The pointer to the state structure.

update record
(Input) The pointer to the linked list of update records. See res nupdate() for more information.

buffer
(Input) The pointer to the buffer to be filled in with the update packet.

buffer_length
(Input) The length of the buffer.

Authorities

No authorization is required.

Return Value

res_nmkupdate() returns an integer. Possible values are:
« n(successful), where nisthe actual size of the resulting update packet.

o -1 (unsuccessful) An error occurred parsing aword or number in the rdata portion of the update
records.

o -2 (unsuccessful) The buffer was too small

» -3 (unsuccessful) The zone section is not the first section in the linked list, or the section order has a
problem. The section order isns_s zn, ns_s pr and ns_s _ud.

o -4 (unsuccessful) A number overflow occurred.

« -5 (unsuccessful) Unknown operation or no records found.

Error Conditions

When the res_nmkupdate() function fails, res_nmkupdate() can set errno to one of the following:

[ECONVERT] Either the input packet could not be translated to ASCII or the answer received could
not be translated to the coded character set identifier (CCSID) currently in effect for the

job.

[EFAULT] The system detected a pointer that was invalid while attempting to access an input
pointer.

[EINVAL] One of the following reasons:

« Aninvalid length or NULL pointer was passed to res_nmkupdate() or
» Theresappearsto beinitialized but the reserved field is not set to zeros.

Note: No attempt is madeto initialize the res structure if it was initialized previous to
theres_nmkupdate() being issued.

[EMSGSZE] The message buffer wastoo small. The return value was -2.

Usage Notes

1. res_nmkupdate() callsres ninit() if the res structure has not been initialized.

2. res_nmkupdate() assumes that the data passed to it is EBCDIC and is in the default coded character
set identifier (CCSID) currently in effect for the job. It trandates the data from the default CCSID
currently in effect for the job to ASCII (CCSID 819) before the data is sent out to a name server.
The response that it receives from the name server is returned in the default CCSID currently in
effect for the job.

Related Information

res nclose()--Close Socket and Reset res Structure

« res findzonecut()--Find the Enclosing Zone and Servers

o res hostalias()--Retrieve the host alias

o res ninit()--Initialize res Structure

« res nmkquery()--Place Domain Query in Buffer

o res nquery()--Send Domain Query

o res nsearch()--Search for Domain Name

o res nsend()--Send Buffered Domain Query

« res nsendsigned()--Send Authenticated Domain Query

o res nupdate()--Build and Send Dynamic Updates

o res xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_nquery()--Send Domain Query

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

int res_nquery(state* res,
const char *donai n_nane,
int class,
int type,
unsi gned char *answer _buffer,
int answer_buffer | ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres _nquery() function issimilar to res_query() but it uses a user-declared res pointer instead of the
shared res.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, and related information, seeres_query()--Send

Domain Query.

Parameters

res
(Input/Output) The pointer to the state structure.

Related Information

o res guery()--Send Domain Query

« res findzonecut()--Find the Enclosing Zone and Servers

o res hostalias()--Retrieve the host dias

o res ninit()--Initialize res Structure

o res nmkquery()--Place Domain Query in Buffer

o res nclose()--Close Socket and Reset res Structure

o res nsearch()--Search for Domain Name

o res nsend()--Send Buffered Domain Query

o res xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_nquerydomain()--Send 2 String Domain
Query

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

voi d res_nhqguerydomai n(state* res,
const char *stringl,
const char *string2,
int class,
int type,
unsi gned char *answer _buffer,
int answer_buffer_| ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres nquerydomain() concatenates stringl + string2 into a new domain_name parameter and calls
res_nquery(). For more information on domain_name, the remaining parameters, authorities required,
return values, and related information, see res nquery()--Send Domain Query.

Parameters

stringl
(Input) The pointer to the first string. In practice thisis generally a host name.

string2
(Input) The pointer to the first string. In practice thisis generally a zone name.

Related Information

o res nquery()--Send Domain Query

Example

Seeres ninit() for an example of how hstrerror() is used.

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_nsearch()--Search for Domain Name

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

int res _nsearch(state* res,
const char *donai n_nane,
int class,
int type,
unsi gned char *answer _buffer,
int answer_buffer | ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres nsearch() function is similar to res_search() but it uses a user-declared r es pointer instead of the
shared res.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, and related information, see res search()--Search for
Domain Name.

Parameters

res
(Input/Output) The pointer to the state structure.

Related Information

o res search()--Search for Domain Name

o res findzonecut()--Find the Enclosing Zone and Servers

o res hostalias()--Retrieve the host dias

o res ninit()--Initialize res Structure

o res nmkquery()--Place Domain Query in Buffer

o res nquery()--Send Domain Query

o res nclose()--Close Socket and Reset res Structure

o res nsend()--Send Buffered Domain Query

o res xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs | APIs by category

res_nsend()--Send Buffered Domain Query or
Update

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

int res_nsend(state* res,
const unsigned char *query_ buffer,
int query_buffer | ength,

unsi gned char *answer _buffer,
int answer_ buffer_ I ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres nsend() function issimilar to res_send() but it uses a user-declared res pointer instead of the
shared res.

For a description of this function and more information on the parameters, authorities required, return
values, error conditions, error messages, usage notes, and related information, see res _send()--Send
Buffered Domain Query.

Parameters

res
(Input/Output) The pointer to the state structure.

Related Information

o res send()--Send Buffered Domain Query

« res findzonecut()--Find the Enclosing Zone and Servers

o res hostalias()--Retrieve the host dias

o res ninit()--Initialize res Structure

« res nmkquery()--Place Domain Query in Buffer

o res nquery()--Send Domain Query

o res nsearch()--Search for Domain Name

o res nclose()--Close Socket and Reset res Structure

o res xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_nsendsigned()--Send Authenticated
Domain Query or Update

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

i nt res_nsendsi gned(state* res,
const unsigned char *query_buffer,
int query_buffer _|ength,
ns_tsig key * key,
unsi gned char *answer _buffer,
int answer_buffer_ I ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres nsendsigned() function issimilar to res_nsend() but it uses the specified key to create atransaction
signature (TSIG) to sign the query or update packet and to authenticate the response.

Parameters

res
(Input) The pointer to the state structure.

query_buffer
(Input) The painter to the query or update message.

query_buffer_length
(Input) The length of query_buffer.

key
(Input) The pointer to the key to use for authentication. This key must exist on the name server.

answer_buffer
(Output) The pointer to where the response is stored.

answer_buffer_length

(Input) The size of the answer_buffer.

Authorities

No authorization is required.

Return Value

res_nsendsigned() returns an integer. Possible values are:

» N (successful), where nisthe actual size of the answer returned.

o -1 (unsuccessful)

« -ns_r_badkey (unsuccessful) The key wasinvalid or the signing failed.

« NS TSIG_ ERROR _NO_SPACE (unsuccessful) The message buffer was too small to add the

TSIG.

Error Conditions

When the res_nsendsigned() function fails, res_nsendsigned() can set errno to one of the following:

[ECONNREFUSED]

[ECONVERT]

[EFAULT]

[EINVAL]

[EMSGSIZE]

Not able to connect to a server.

Either the input packet could not be translated to ASCII or the answer received
could not be trand ated to the coded character set identifier (CCSID) currently in
effect for thejob.

The system detected a pointer that was invalid while attempting to access an
input pointer.

One of the following reasons:
« Aninvalid length or NULL pointer was passed to res_nsendsigned() or
« Theresappearsto beinitialized but the reserved field is not set to zeros.

Note: No attempt is made to initialize the res structure if it wasinitialized
previous to the res_nsendsigned() being issued.

The message buffer was too small to add the TSIG. The return value was
NS TSIG_ ERROR_NO_SPACE.

[ENOTTY] The message or reply couldn't be verified. See extended _error intheres

structure:
NS TSG_ERROR_FORMERR The message is malformed
NS TSG ERROR NO TG The message does not contain aTSIG

record

NS TSG_ERROR ID_MISMATCH TheTSIG original ID field does not
match the message ID.

(-ns_r_badkey) Verification failed dueto an invalid
key.

(-ns_r_badsig) Verification failed dueto an invalid
signature.

(-ns_r_badtime) Verification failed dueto an invalid
timestamp.

ns_r_badkey Verification succeeded but the message

had an error (rcode) of ns_r_badkey.

ns r_badsig Verification succeeded but the message
had an error (rcode) of ns r_badsig.

ns r_badtime Verification succeeded but the message
had an error (rcode) of ns_r_badtime.

[ETIMEDOUT] A timeout received from a connected server.

When the res_nsearch() function fails, h_errno (defined in <netdb.h>) can also be set to one of the
following:

HOST _NOT_FOUND Either the input packet could not be translated to ASCII or the answer received
could not be translated to the coded character set identifier (CCSID) currently in
effect for the job.

NO_RECOVERY Aninvalid length or NULL pointer was passed to res_nsendsigned() or theres
could not be initialized properly.

Note: No attempt is made to initialize the res structure if it wasinitialized
previous to the res_nsendsigned() being issued.

Note: There are numerous other values that errno can be set to by the sockets functions that
res_nsendsigned() cals. The above values are the only values that res_nsendsigned() can specifically set.
Refer to other sockets functions for the other values. errno is always set in an error condition, but h_errno
is not necessarily set.

After receiving an error reply packet, res_nsendsigned() will set the extended_error field in the state
structure to the last reply return code from the DNS server. See <arpa/nameser.h> for all possible values of
ns_rcode.

Usage Notes

1

res_nsendsigned() sends the query or update to the local name server and handles all timeouts and
retries. The response packet is stored in answer_buffer.

res_nsendsigned() callsres_ninit() if the res structure has not been initialized.

res_nsendsigned() uses the UDP protocol, except for the following casesin which it uses TCP to
send the packet.

o If theRES USEVC or RES_STAY OPEN bits are set in the optionsfield of theres
structure.

o If the configuration from Change TCP/IP Domain (CHGTCPDMN) specifies that the
server protocol is TCP.

o If thetruncation bit is set in the packet header on the response from a UDP packet, and
RES IGNTC isnot set in the res structure.

res_nsendsigned() does not perform iterative queries and expects the name server to handle
recursion.

res_nsendsigned() assumes that the data passed to it is EBCDIC and isin the default coded
character set identifier (CCSID) currently in effect for the job. It trandlates the data from the default
CCSID currently in effect for the job to ASCII (CCSID 819) before the datais sent out to a name
server. The response that it receives from the name server isreturned in the default CCSID
currently in effect for the job.

res_nsendsigned() will not use the local cache. It will always send the packet to the server.

When using TSIG, it isimportant that the QUTCOFFSET system value is set correctly for the local
time zone. The resolver system and name server timestamps must be within 5 minutes of each other
(adjusted by the UTC offset) or the authentication will fail with ns_r_badtime.

Related Information

hstrerror()--Retrieve Resolver Error M essage

res nclose()--Close Socket and Reset res Structure

res findzonecut()--Find the Enclosing Zone and Servers

res hostalias()--Retrieve the host dias

res ninit()--Initialize res Structure

res nmkauery()--Place Domain Query in Buffer

o res nmkupdate()--Construct an Update Packet

o res nquery()--Send Domain Query

o res nsearch()--Search for Domain Name

o res nsend()--Send Buffered Domain Query

o res nupdate()--Build and Send Dynamic Updates

o res xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_nupdate()--Build and Send Dynamic
Updates

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

i nt res_nupdat e(state* res,

ns_updrec *update_record
ns_tsig key *key)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres nupdate() function separates the linked list of update records into groups so that al recordsin a
group will belong to asingle zone on the nameserver. It creates a dynamic update packet for each zone and
sends it to the nameservers for that zone.

Parameters

res
(Input) The pointer to the state structure.

update record
(Input) The pointer to the linked list of update records.

key

(Input) The pointer to the key to use for authentication. If it isNULL, no authentication will be
done.

The ns_updrec structure is defined in <ar pa/nameser .h>.

struct ns_updrec {
struct {
struct ns_updrec *prev, *next;
} r_link, r_glink;

ns_sect r_section;
char * r _dnane;
ns_cl ass r_cl ass;
ns_type r_type;

ui nt 32 r ttl;

unsi gned char * r _data;

ui nt 32 r_size;
i nt 32 r_opcode;
/* The following fields are ignored by the resolver routines */
struct databuf * r_dp;
struct databuf * r _del dp;
ui nt 32 r_zone;

b

typedef struct ns_updrec ns_updrec;
r_linkand r_glink

Doubly linked lists of ns_updrec records. res_nupdate() usesr_link asitslist of records to process
and ignoresr_glink. res_nmkupdate() usesr_glink asitslist of records to process and ignores
r_link.

r_section
Seethe ns_sect enumsin <ar pa/nameser .h> for allowed values.

r_dnamer_classr_type, r_ttl,r_data, andr_size
Identify the resource record to the DNS

r_opcode
Type of update operation. VValid operations are ns_uop_delete or ns_uop_add

These fields are ignored by the resolver: r_dp, r_deldp, r_zone.

Authorities

No authorization is required.

Return Value

res_nupdate() returns an integer. Possible values are:
« N (successful), where n isthe number of zones updated.

e -1 (unsuccessful)

Error Conditions

When the res_nupdate() function fails, res_nupdate() can set errno to one of the following:

[ECONVERT] Either the input packet could not be translated to ASCII or the answer received could
not be translated to the coded character set identifier (CCSID) currently in effect for the
job.

[EFAULT] The system detected a pointer that was invalid while attempting to access an input

pointer.

[EINVAL] One of the following reasons:

« Aninvalid length or NULL pointer was passed to res_nupdate() or
« Theresappearsto beinitialized but the reserved field is not set to zeros.

Note: No attempt is made to initialize the res structure if it was initialized
previous to the res_nupdate() being issued.

Note: res _nupdate() callsres findzonecut(), res_ nmkupdate() and res_nsend() or res_nsendsigned() so
errnos from those routines may also be set.

Usage Notes

1

res_nupdate() callsres_ninit() if the res structure has not been initialized.

. res_nupdate() callsres_findzonecut() to find the zone and name server to be updated for each input

record and sorts the records by zone. Then it makes a zone record for each zone and prepends it to
the update records. It callsres_nmkupdate() to make the update packet and then calls either
res_nsend() or res_nsendsigned() to send the packet. Note that since res_nupdate() prepends a new
zone record, the input records must only contain pre-requisite and update records, not zone records.

. res_nupdate() assumes that the data passed to it is EBCDIC and isin the default coded character set

identifier (CCSID) currently in effect for the job. It tranglates the data from the default CCSID
currently in effect for the job to ASCII (CCSID 819) before the datais sent out to a name server.
The response that it receives from the name server is returned in the default CCSID currently in
effect for the job.

res_nupdate() will not use the local cache. It will always send the packet to the server.

When using TSIG, it isimportant that the QUTCOFFSET system value is set correctly for the local
time zone. The resolver system and name server timestamps must be within 5 minutes of each other
(adjusted by the UTC offset) or the authentication will fail with ns_r_badtime.

Related Information

res nclose()--Close Socket and Reset res Structure

« res findzonecut()--Find the Enclosing Zone and Servers

o res hostalias()--Retrieve the host alias

o res ninit()--Initialize res Structure

o res nmkquery()--Place Domain Query in Buffer

o res nmkupdate()--Construct an Update Packet

o res nquery()--Send Domain Query

o res nsearch()--Search for Domain Name

« res nsend()--Send Buffered Domain Query

o res nsendsigned()--Send Authenticated Domain Query

o res xlate()--Translate DNS Packets

API introduced: V5R1

Top | UNIX-Type APIs| APIs by category

res_query()--Send Domain Query

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

int res_query(char *domai n_nane,
int class,
int type,

char *answer buffer,
int answer_buffer | ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres_query() function is used to interface to the server query mechanism.

Parameters

domain_name
(Input) The pointer to the domain name.

class

(Input) The class of data being looked for. Seeres_mkquery() or <arpa/nameser.h> for possible
values.

type
(Input) The type of request being made. See res mkquery() or <arpa/nameser.h> for possible
values.

answer_buffer
(Output) The pointer to an address where the response is stored.

answer_buffer_length
(Input) The size of the answer area.

Authorities

No authorization is required.

Return Value

res_query() returns an integer. Possible values are:
o -1 (unsuccessful)

« n(successful), where n isthe actual size of the answer returned.

Error Conditions

When theres_query() function fails, errno can be set to one of the following:
[EFAULT] The system detected a pointer that was invalid while attempting to access an input pointer.
[EINVAL] The resappearsto beinitialized but the reserved field is not set to zeros.

When theres_query() function fails, h_errno (defined in <netdb.h>) can be set to one of the following:

[HOST_NOT _FOUND] The domain name specified by the domain_name parameter was not found.
The return code in the response packet was NXDOMAIN.

[TRY_AGAIN] Either the name server is not running or the name server returned SERVFAIL
in the response packet.
[NO_RECOVERY] An unrecoverable error has occurred. Either the domain name could not be

compressed because it was invalid or the name server returned FORMERR,
NOTIMP, or REFUSED.

[NO_DATA] The domain name exists but there is no data of the requested type.

Usage Notes

1. res_query() makes aquery packet by calling res_mkquery(), sends the query by calling res_send(),
and makes preliminary checks on the reply. The reply message is left in answer_buffer.

2. res _query() callsres init() if the res structure has not been initialized.
3. res_query() expects EBCDIC data as input. The output from res_query() isalso EBCDIC.

4. In athread-enabled environment, the _res structure is shared among al threads within a process.

Related Information

hstrerror()--Retrieve Resolver Error Message

o res nquery()--Send Domain Query

o res hostalias()--Retrieve the host alias

o res init()--Initialize res Structure

o res mkquery()--Place Domain Query in Buffer

o res close()--Close Socket and Reset res Structure

o res search()--Search for Domain Name

o res send()--Send Buffered Domain Query

o res xlate()--Translate DNS Packets

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

res_search()--Search for Domain Name

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

int res_search(char *domai n_nane,
int class,
int type,
char *answer _buffer,
int answer_ buffer | ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres_search() function is used to make a query message and wait for a response.

Parameters

domain_name
(Input) The pointer to the domain name.

class

(Input) The class of data being looked for. Seeres_mkquery() or <arpa/nameser.h> for possible
values.

type
(Input) The type of request being made. See res mkquery() or <arpa/nameser.h> for possible
values.

answer_buffer
(Output) The pointer to an address where the response is stored.

answer_buffer_length
(Input) The size of the answer area.

Return Value

res_search() returns an integer. Possible values are:
o -1 (unsuccessful)

» N (successful), where nisthe actual size of the answer returned.

Authorities:

Authorization of *R (allow access to the object) to the host aliases file specified by the HOSTALIASES
environment variable.

You also need * X authority to each directory in the path of the host aiasesfile.

Error Conditions

When the res_search() function fails, errno can be set to one of the following:

[EACCES Permission denied. The process does not have the appropriate privileges to the host aliases
file specified by the HOSTALIASES environment variable.

[EFAULT] The system detected a pointer that was invalid while attempting to access an input pointer.
[EINVAL] The _resappearsto beinitialized but the reserved field is not set to zeros.

When the res_search() function fails, h_errno (defined in <netdb.h>) can be set to one of the following:

[HOST_NOT_FOUND] (Set by the call tores_query()) The domain name specified by the
domain_name parameter was not found. The return code in the response
packet was NXDOMAIN.

[TRY_AGAIN] Either the name server is not running or the name server returned SERVFAIL
in the response packet.
[NO_RECOVERY] (Set by the call tores_query()) An unrecoverable error has occurred. Either

the domain name could not be compressed because it was invalid or the name
server returned FORMERR, NOTIMP, or REFUSED.

[NO_DATA] (Set by the call to res_query()) The domain name exists but there is no data of
the requested type.

Usage Notes

1. Theres search() function implements the default and search rules controlled by the
RES DEFNAMES and RES DNSRCH options. res_search() takes the domain name received in
domain_name, and makesit fully qualified (if it is not already). res_search() also callsres query(),
passing it the different domain namesto look up, until a successful response is received.

2. res_search() calsres init() if the _resstructure has not been initialized.

3. res_search() expects EBCDIC data asinput. The output from res_search() isalso EBCDIC.
4. In athread-enabled environment, the _res structure is shared among al threads within a process.

5. res_search() will resolve local host aliases to a domain name which are then resolved with a query
using DNS. Seeres_hostalias() for more information on aliases.

Related Information

o hstrerror()--Retrieve Resolver Error Message

o res nsearch()--Search for Domain Name

o res hostalias()--Retrieve the host dlias

o res init()--Initialize res Structure

o res mkquery()--Place Domain Query in Buffer

o res gquery()--Send Domain Query

o res close()--Close Socket and Reset res Structure

o res send()--Send Buffered Domain Query

o res xlate()--Translate DNS Packets

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

res_send()--Send Buffered Domain Query or
Update

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpal/ naneser. h>
#i ncl ude <resolv. h>

int res_send(char *query_buffer,
int query_buffer _|ength,

char *answer _buffer,
int answer_buffer_ I ength)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres send() function is used to send a query or update message to a name server and retrieve aresponse.

Parameters

query_buffer
(Input) The pointer to the query or update message.

query_buffer_length
(Input) The length of query_buffer.

answer_buffer
(Output) The pointer to where the response is stored.

answer_buffer_length
(Input) The size of the answer_buffer.

Authorities:

No authorization is required.

Return Value

res send() returns an integer. Possible values are:
o -1 (unsuccessful)

» N (successful), where nisthe actual size of the answer returned.

Error Conditions

When theres_send() function fails, res_send() can set errno to one of the following:

[ECONNREFUSED]
[ECONVERT]

[EINVAL]

[ESRCH]
[ETIMEDOUT]

Not able to connect to a server.

Either the input packet could not be translated to ASCI| or the answer received
could not be translated to the coded character set identifier (CCSID) currently in
effect for the job.
One of the following reasons:

« Aninvalid length or NULL pointer was passed to res_send() or

o The _rescould not beinitialized properly or

« The _resappearsto beinitialized but the reserved field is not set to

zZeros.

Note: No attempt is made to initialize the _res structureif it wasinitialized
previous to theres_send() being issued.

No DNS servers were specified in nsaddr.

A timeout received from a connected server.

When theres_send() function fails, h_errno (defined in <netdb.h>) can also be set to one of the following:

HOST_NOT_FOUND Either the input packet could not be translated to ASCI| or the answer received

NO_RECOVERY

could not be translated to the coded character set identifier (CCSID) currently in
effect for the job.

Aninvalid length or NULL pointer was passed to res_send() or the _rescould
not be initialized properly.

Note: No attempt is madeto initialize the _res structureif it was initialized
previousto theres send() being issued.

Note: There are numerous other values that errno can be set to by the sockets functions that res_send()
calls. The above values are the only values that res_send() can specifically set. Refer to other sockets
functions for the other values. errno is always set in an error condition, but h_errno is not necessarily set.

After receiving an error reply packet, res_send() will set the extended_error field in the state structure to
the last reply return code from the DNS server. See <arpa/nameser.h> for all possible values of ns_rcode.

Usage Notes

1. res_send() sends the query or update to the local name server and handles all timeouts and retries.
The response packet is stored in answer_buffer.

2. res _send() calsres init() if the _res structure has not been initialized.

3. res_send() usesthe UDP protocol, except for the following casesin which it uses TCP to send the
packet.

o If theRES USEVC or RES_STAY OPEN bits are set in the options field of the _res
structure.

o If the configuration from Change TCP/IP Domain (CHGTCPDMN) specifies that the
server protocol is TCP.

o If thetruncation bit is set in the packet header on the response from a UDP packet, and
RES IGNTC isnot setinthe resstructure.

4. res_send() does not perform interactive queries and expects the name server to handle recursion.

5. res_send() assumes that the data passed to it iSEBCDIC and isin the default coded character set
identifier (CCSID) currently in effect for the job. It translates the data from the default CCSID
currently in effect for the job to ASCII (CCSID 819) before the data is sent out to a name server.
The response that it receives from the name server isreturned in the default CCSID currently in
effect for the job.

6. UnlessRES NOCACHE was specified, res_send() checks the cached data for the answer to the
query (but not for updates). If the answer isfound and the time to live has not expired, it is returned
to the calling program in answer_buffer and no attempt is made to send it on the network. If the
timeto live has expired, the entry is deleted from the cache, and the query is sent on the network. If
the answer is not found in the cache, res_send() also sends the query on the network. When an
answer is received from the network, it is placed in cacheif it is an authoritative answer and is not
theresult of an inverse query. RES_NOCACHE does not stop answers from being cached.
Authoritative negative replies, indicating the data does not exist, will also be cached.

7. In athread-enabled environment, the _res structure is shared among all threads within a process.

Related Information

hstrerror()--Retrieve Resolver Error Message

o res nsend()--Send Buffered Domain Query

o res hostalias()--Retrieve the host alias

o res init()--Initialize res Structure

o res mkquery()--Place Domain Query in Buffer

o res guery()--Send Domain Query

o res search()--Search for Domain Name

o res close()--Close Socket and Reset res Structure

o res xlate()--Translate DNS Packets

API introduced: V3R1

Top | UNIX-Type APIs | APIs by category

res_xlate()--Translate DNS Packets

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

int res xlate(int input_ccsid,
char *input packet,
int input_|ength,
int output_ccsid,
char *out put packet,
int output_length)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

Theres xlate() function is used to translate a standard DNS packet between ASCII and EBCDIC.

Parameters

input_ccsid
(Input) The CCSID value of the input packet to be translated.

input_packet
(Input) The pointer to where the standard DNS packet to be trandated resides.

input_length
(Input) The length of input_packet.

output_ccsid
(Input) The CCSID value for the output packet.

output_packet
(Output) The pointer to where the translated DNS packet will be stored.

output_length
(Input) The length of output_packet.

Authorities

No authorization is required.

Return Value

res xlate() returns an integer. Possible values are:
o 1 (successful)

o 0 (unsuccessful - trandlation error)

« -1 (unsuccessful - errors other than translation)

Error Conditions

When the res xlate() function fails, it does not set specific errno or h_errno values. An error occurs under
the following conditions:

o NULL pointer(s) passed to the function.
« Invalid pointer(s) passed to the function.
« Invalid lengths passed to the function.

« Aninvalid packet format encountered.

Usage Notes

1. res xlate() parses through input_packet, determining which fields need translation. The packet is
copied into output_packet asit is parsed, trandating the fields as needed from input_ccsid to
output_ccsid. If abad format is encountered or a user-supplied length istoo small, res xlate()
returnsa-1.

2. If thereisan error in the trandation of input_packet from input_ccsid to output_ccsid, res_xlate()
returns avalue of 0 to the caller.

3. res_xlate() expects avalue of 819 (ASCII) for either the input or output coded character set
identifier (CCSID). If trandlation from an EBCDIC CCSID isto occur, the output CCSID needs to
be set to 819. input_packet is then translated to ASCII, and the result is placed in output_packet I
tranglation to an EBCDIC CCSID isto occur, the input CCSID needs to be set to 819. input_packet
isthen trandated from ASCII to the EBCDIC CCSID specified in output_ccsid, and theresult is
placed in output_packet.

res xlate() returns unsuccessfully with avalue of -1 if CCSID 819 is not used for either
input_ccsid or output_ccsid. Also, if both input_ccsid and output_ccsid values are 819, res_xlate()
returns a-1.

4. In athread-enabled environment, the _resis shared among all threads within a process.

Related Information

« hstrerror()--Retrieve Resolver Error Message

e €S

hostalias()--Retrieve the host alias

e [ES

init()--Initialize res Structure

mkauery()--Place Domain Query in Buffer

query()--Send Domain Query

search()--Search for Domain Name

send()--Send Buffered Domain Query

e €S

close()--Close Socket and Reset res Structure

e [ES

findzonecut()--Find the Enclosing Zone and Servers

e [ES

hostalias()--Retrieve the host alias

ninit()--lnitialize res Structure

nclose()--Close Socket and Reset res Structure

nmkguery()--Place Domain Query in Buffer

nmkupdate()--Construct an Update Packet

nguery()--Send Domain Query

nsearch()--Search for Domain Name

nsend()--Send Buffered Domain Query

nsendsigned()--Send Authenticated Domain Query

nupdate()--Build and Send Dynamic Updates

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

sethostent()--Open Host Database

Syntax

#i ncl ude <net db. h>

voi d set hostent(int stay_open)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The sethostent() function is used to prepare for sequential access to the host database file. sethostent()
opens the file and repositions the file marker to the beginning of the file. In addition, sethostent() affects
what type of transport service (connectionless versus connection-oriented) is to be used when
gethostbyname() and gethostbyaddr () need to retrieve host information from the domain name server.

Parameters

int stay_open

(Input) Specifies whether to leave the database file open after each call to gethostbyname() and
gethostbyaddr(). A nonzero value results in the database file being left open. Also, a nonzero value
resultsin the use of a connection-oriented transport service (for example, TCP) being used by
gethostbyname() and gethostbyaddr() when host information isto be obtained from the domain
name server.

Authorities

No authorization is required.

Error Conditions

When sethostent() fails, h_errno (defined in <netdb.h>) can be set to one of the following:

NO_RECOVERY An unrecoverable error has occurred.

Usage Notes

1. &TheiSeries Navigator or the € following CL commands can be used to access the host database
file

o ADDTCPHTE (Add TCP/IP Host Table Entry

o RMVTCPHTE (Remove TCP/IP Host Table Entry)
o CHGTCPHTE (Change TCP/IP Host Table Entry)
o RNMTCPHTE (Rename TCP/IP Host Table Entry)
o MRGTCPHT (Merge TCP/IP Host Tables)

2. Do not use the sethostent() function in a multithreaded environment. See the multithread alternative
sethostent_r() function.

3. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the sethostent() APl is mapped to
gso_sethostent98(). 4%

Related Information

o #* XOPEN_ SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

o gethostbyaddr()--Get Host Information for |P Address

« gethostbyname()--Get Host |nformation for Host Name

o endhostent()--Close Host Database

« gethostent()--Get Next Entry from Host Database

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

sethostent_r()--Open Host Database

Syntax

#i ncl ude <net db. h>

int sethostent r(int stay_open,
struct hostent _data *hostent data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The sethostent_r() function is used in preparation for sequential access to the host database file. The
sethostent_r() function opens the file and repositions the file marker to the beginning of the file. In addition,
this call affects what type of transport service (connectionless versus connection-oriented) that is to be used
when gethostbyname r() and gethostbyaddr _r() need to retrieve host information from the domain name
server.

Parameters

int stay_open (input)

Specifies whether to |eave the database file open after each call to gethostbyname r() and
gethostbyaddr_r(). A non-zero value will result in the database file being left open. Also, a
non-zero value will result in the use of a connection-oriented transport service (for example, TCP)
being used by gethostbyname r() and gethostbyaddr_r() when host information is to be obtained
from the domain name server.

struct hostent_data*hostent_data_struct_addr (input/output)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results
between function cals. Thefield host_control _blk in the hostent_data structure must be initialized
with hexadecimal zeros before itsinitial use. If compatibility with other platformsis required, then
the entire hostent_data structure must be initialized to hexadecimal zeros beforeinitial use.

Authorities

No authorization is required.

Return Value

The sethostent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
» 0O (successful call)

The struct hostent_datadenoted by hostent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the sethostent_r() function fails, h_errno (defined in <netdb.h>) can be set to:

[NO_RECOVERY] An unrecoverable error has occurred.

When the sethostent_r() function fails, errno can be set to:

[EINVAL] The hostent_data structure was not properly initialized to hexadecimal zeros beforeinitial
use. For corrective action, see the description for structure hostent_data.

Usage Notes

#TheiSeries Navigator or the € following CL commands can be used to access the host database file:
« ADDTCPHTE (Add TCP/IP Host Table Entry)
« RMVTCPHTE (Remove TCP/IP Host Table Entry)
« CHGTCPHTE (Change TCP/IP Host Table Entry)
o RNMTCPHTE (Rename TCP/IP Host Table Entry)
« MRGTCPHT (Merge TCP/IP Host Tables)

Related Information

o gethostbyaddr r()--Get Host Information for |P Address

« gethostbyname r()--Get Host Information for Host Name

o endhostent r()--Close Host Database

o gethostent r()--Get Next Entry from Host Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

setnetent()--Open Network Database

Syntax

#i ncl ude <net db. h>

voi d setnetent(int stay_open)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The setnetent() function is used to prepare for sequential access to the network database file. setnetent()
opens the file and repositions the file marker to the beginning of the file.

Parameters
stay _open

(Input) A value that indicates whether to leave the database file open after each getnetbyname() and
getnetbyaddr (). A nonzero value will result in the database file being left open.

Authorities

No authorization is required.

Usage Notes

1. #TheiSeries Navigator or the € following CL commands can be used to access the network
database file:

o WRKNETTBLE (Work with Network Table Entries)
o ADDNETTBLE (Add Network Table Entry)
o RMVNETTBLE (Remove Network Table Entry)

2. Do not use the setnetent() function in a multithreaded environment. See the multithread alternative
setnetent_r() function.

3. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the setnetent() APl is mapped to
gso_setnetent98(). 4

Related Information

o #* XOPEN_SOURCE--Using XOPEN_SOURCE for the UNIX 98 compatible interface®

« getnetbyaddr()--Get Network Information for |P Address

« getnetbyname()--Get Network Information for Domain Name

« getnetent()--Get Next Entry from Network Database

« endnetent()--Close Network Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

setnetent_r()--Open Network Database

Syntax

#i ncl ude <netdb. h>
int setnetent r(int stay_open,

struct netent _data
*net ent _data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The setnetent_r() function is used in preparation for sequential access to the network database file. The
setnetent_r() function opens the file and repositions the file marker to the beginning of the file.

Parameters

int stay_open (input)

Specifies whether to |eave the database file open after each call to getnetbyname_r() and
getnetbyaddr_r(). A non-zero value will result in the database file being left open.

struct netent_data*netent_data_struct_addr (input/output)

Specifies the pointer to the netent_data structure, which is used to pass and preserve results
between function calls. The field net_control_blk in the netent_data structure must be initialized
with hexadecimal zeros before itsinitial use. If compatibility with other platformsis required, then
the entire netent_data structure must be initialized with hexadecimal zeros beforeinitial use.

Authorities

No authorization is required.

Return Value

The setnetent_r() function returns a pointer. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct netent_datadenoted by netent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the setnetent_r() function fails, errno can be set to:

[EINVAL] The netent_data structure was not properly initialized to hexadecimal zeros before initial
use. For corrective action see the description for structure netent_data.

Usage Notes

#TheiSeries Navigator or the 4 following CL commands can be used to access the network database file:
« WRKNETTBLE (Work with Network Table Entries)
« ADDNETTBLE (Add Network Table Entry)
« RMVNETTBLE (Remove Network Table Entry)

Related Information

« getnetent r()--Get Next Entry from Network Database

« getnetbyaddr r()--Get Network Information for |P Address

« getnetbyname r()--Get Network Information for Domain Name

o endnetent r()--Close Network Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

setprotoent()--Open Protocol Database

Syntax

#i ncl ude <net db. h>

voi d setprotoent(int stay open)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The setprotoent() function is used to prepare for sequential access to the protocol database file.
setprotoent() opens the file and repositions the file marker to the beginning of thefile.
Parameters
stay_open
(Input) A value that indicates whether to leave the database file open after each getprotobynumber ()
and getprotobyname(). A nonzero value results in the database file being left open.
Authorities

No authorization is required.

Usage Notes

1. ATheiSeries Navigator or the < following CL commands can be used to access the protocol
databasefile:

o WRKPCLTBLE (Work with Protocol Table Entries)
o ADDPCLTBLE (Add Protocol Table Entry)
o RMVPCLTBLE (Remove Protocol Table Entry)

2. Do not use the setprotoent() function in a multithreaded environment. See the multithread
alternative setprotoent_r() function.

3. #When you develop in C-based languages and an application is compiled with the
_XOPEN_SOURCE macro defined to the value 520 or greater, the setprotoent() API is mapped to

gso_setprotoent98(). <X

Related Information

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

« getprotobyname()--Get Protocol Information for Protocol Name

« getprotobynumber()--Get Protocol Information for Protocol Number

« getprotoent()--Get Next Entry from Protocol Database

« endprotoent()--Close Protocol Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

setprotoent_r()--Open Protocol Database

Syntax

#i ncl ude <net db. h>

int setprotoent r(int stay_ open,
struct protoent _data *protoent_data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The setprotoent_r() function is used in preparation for sequential access to the protocol databasefile. The
setprotoent_r() function opens the file and repositions the file marker to the beginning of thefile.

Parameters

int stay_open (input)

Specifies whether to |eave the database file open after each call to getprotobynumber_r() and
getprotobyname r(). A non-zero value will result in the database file being |eft open.

struct protoent_data * protoent_data_struct_addr (input/output)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results
between function calls. Thefield proto_control_blk in the protoent_data structure must be
initialized with hexadecimal zeros beforeitsinitial use. If compatibility with other platformsis
required, then the entire protoent_data structure must be initialized with hexadecimal zeros before
initial use.

Authorities

No authorization is required.

Return Value

The setprotoent_r() returns an integer. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct protoent_data denoted by protoent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the setprotoent_r() function fails, errno can be set to:

[EINVAL] The protoent_data structure was not properly initialized with hexadecimal zeros before
initial use. For corrective action, see the description for structure protoent_data.

Usage Notes

#TheiSeries Navigator or the € following CL commands can be used to access the protocol database file:
« WRKPCLTBLE (Work with Protocol Table Entries)
« ADDPCLTBLE (Add Protocol Table Entry)
 RMVPCLTBLE (Remove Protocol Table Entry)

Related Information

getprotobynumber r()--Get Protocol

getprotobyname r()--Get Protocol Information for Protocol Name

endprotoent r()--Close Protocol Database

getprotoent r()--Get Next Entry from Protocol Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

setservent()--Open Service Database

Syntax

#i ncl ude <net db. h>

voi d setservent(int stay_open)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: No; see Usage Notes.

The setservent() function is used to prepare for sequential access to the service database file. setservent()
opens the file and repositions the file marker to the beginning of the file.

Parameters

stay_open

(Input) A value that indicates whether to leave the database file open after each getservbyname()
and getservbyport(). A nonzero value results in the database file being left open.

Authorities

No authorization is required.

Usage Notes

1. #TheiSeries Navigator or the € following CL commands can be used to access the services
database file:

o WRKSRVTBLE (Work with Service Table Entries)
o ADDSRVTBLE (Add Service Table Entry)

o RMVSRVTBLE (Remove Service Table Entry)

2. Do not use the setservent() function in a multithreaded environment. See the multithread alternative
setservent_r() function.

3. #When you develop in C-based languages and an application is compiled with the

_XOPEN_SOURCE macro defined to the value 520 or greater, the setservent() APl is mapped to
gso_setservent98(). <&

Related Information

o & XOPEN SOURCE--Using_XOPEN_SOURCE for the UNIX 98 compatible interface

o getservbyname()--Get Port Number for Service Name

o Qgetservbyport()--Get Service Name for Port Number

o getservent()--Get Next Entry from Service Database

« endservent()--Close Service Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

setservent_r()--Open Service Database

Syntax

#i ncl ude <net db. h>

int setservent r(int stay_open,
struct servent _data *servent _data_struct _addr)

Service Program Name: QSOSRV 2
Default Public Authority: *USE

Threadsafe: Yes

The setservent_r() function is used in preparation for sequential access to the service database file. The
setservent_r() function opens the file and repositions the file marker to the beginning of the file.

Parameters

int stay_open (input)

Specifies whether to |eave the database file open after each call to getservbyname r() and
getservbyport_r(). A non-zero value will result in the database file being | eft open.

struct servent_data * servent_data_struct_addr (input/output)

Specifies the pointer to the servent_data structure, which is used to pass and preserve results
between function calls. The field serve _control_blk in the servent_data structure must be initialized
with hexadecimal zeros before itsinitial use. If compatibility with other platformsis required, then
the entire servent_data structure must be initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The setservent_r() function returns an integer. Possible values are:
o -1 (unsuccessful call)
o 0 (successful call)

The struct servent_datadenoted by servent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the setservent_r() function fails, errno can be set to:

[EINVAL] The servent_data structure was not properly initialized to hexadecimal zeros beforeinitial
use. For corrective action, see the description for structure servent_data.

Usage Notes

#TheiSeries Navigator or the 4 following CL commands can be used to access the services database file:
« WRKSRVTBLE (Work with Service Table Entries)
« ADDSRVTBLE (Add Service Table Entry)
« RMVSRVTBLE (Remove Service Table Entry)

Related Information

getservbyname r()--Get Port Number for Service Name

getservbyport r()--Get Service Name for Port Number

endservent r()--Close Service Database

getservent r()--Get Next Entry from Service Database

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category

_getlong()--Get Long Byte Quantities

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

unsi gned | ong
_getlong(unsi gned char *nessage_poi nter)

Threadsafe: Yes

The _getlong() function is used to retrieve an unsigned long byte quantity.

Parameters

message_pointer
(Input) The pointer where the long integer isto be received from.

Return Value

_getlong() returns a 32-bit integer from where message _pointer is pointing.

Usage Notes

1. DNS packets have fields that are unsigned long integers (for example, TTL and serial number).
_getlong() picks these unsigned long integers out of a DNS packet and returns them.

Related Information

o _getshort()--Get Short Byte Quantities

« putlong()--Put Long Byte Quantities

o putshort()--Put Short Byte Quantities

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

_getshort()--Get Short Byte Quantities

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

unsi gned short
_getshort (unsigned char *nessage_pointer)

Threadsafe: Yes

The _getshort() function is used to retrieve an unsigned short byte quantity.

Parameters

message_pointer
(Input) The pointer where the short integer is to be received from.

Return Value

_getshort() returns a 16-bit integer from where message_pointer is pointing.

Usage Notes

1. DNS packets have fields that are unsigned short integers (for example, type, class, and data length).
_getshort() picks these unsigned short integers out of a DNS packet and returns them.

Related Information

o Qetlong()--Get Long Byte Quantities

« putlong()--Put Long Byte Quantities

o _putshort()--Put Short Byte Quantities

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

_putlong()--Put Long Byte Quantities

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

void _putlong(unsigned | ong |ong integer,
unsi gned char *nessage_poi nter)

Threadsafe: Yes

The _putlong() function is used to put an unsigned long byte quantity into a byte stream.

Parameters

long_int
(Input) The 32-bit integer to be put into the byte stream.

unsigned char *message pointer
(Input) The pointer to where the long_integer isto be put.

Return Value

_putlong() puts a 32-bit integer into message pointer.

Usage Notes

DNS packets have fields that are unsigned long integers (for example, TTL and serial number). _putlong()
isgenerally used to put these fields into a DNS packet.

Related Information

o _Qetlong()--Get Long Byte Quantities

o _Qetshort()--Get Short Byte Quantities

o _putshort()--Put Short Byte Quantities

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

_putshort()--Put Short Byte Quantities

Syntax

#i ncl ude <sys/types. h>

#i ncl ude <netinet/in.h>
#i ncl ude <arpa/ nanmeser. h>
#i ncl ude <resolv. h>

void _putshort(unsigned short short _integer,
unsi gned char *nessage_pointer)

Threadsafe: Yes

The _putshort() function is used to put an unsigned short byte quantity into a byte stream.

Parameters

unsigned short short_int
(Input) The 16-bit integer to be put into the byte stream.

unsigned char *message _pointer
(Input) The pointer to where the short_integer isto be put.

Return Value

_putshort() puts a 16-bit integer into message _pointer.

Usage Notes

DNS packets have fields that are unsigned short integers (for example, type, class, and data length).
_putshort() is generally used to put these fields into a DNS packet.

Related Information

« getlong()--Get Long Byte Quantities

o _Qetshort()--Get Short Byte Quantities

« putlong()--Put Long Byte Quantities

API introduced: V3R1

Top | UNIX-Type APIs| APIs by category

Debugging IP over SNA Configurations

Two commands can be helpful in debugging IP over SNA configurations:

o The Start Mode (STRMOD) CL command can help you determine if your SNA configuration is
correct. Asinput to the STRMOD command, you need the remote location name. Y ou can
determine the remote location name from the destination | P address by using the Convert | P over
SNA Interface (CVTIPSIFC) command. The message you receive when STRMOD completestells
you whether it was successful.

o The TCP/IP FTP command can help you determine if your AnyNet configuration is correct. If you
get the User prompt, the AnyNet configuration is correct.

Note: When FTP fails, it does not give a detailed reason for the failure. To get a detailed reason,
you should run a sockets program that reports the value for errno when the failure occurs.

Figure 1-21. Common | P over SNA Configuration Errors

|SocketsError (valueof errno) |Possible Causes

EHOSTUNREACH 1. Missing ADDIPSLOC command on client system.
2. Missing ADDIPSIFC command on client system.

3. Type of service points to a non-existent mode description on
client system.

4. ADDIPSLOC command on client system resulted in a
location name that is not found.

5. ADDIPSLOC command on client system resulted in a
location name that is on a non-APPC device description.

EADDRNOTAVAIL 1. AnyNet not active on client system (ALWANYNET attribute
set to *NO), but TCPis started.

2. Mode could not be added to device on client system.

EUNATCH 1. AnyNet not active on client system (ALWANYNET attribute
set to *NO), and TCPis not started.

ECONNREFUSED 1. AnyNet not active on client system (ALWANYNET attribute
set to *NO).

2. listen() not active on server system.

ECONNABORTED 1.

Lineerror

Device/controller/line varied off on client or server system
whilein use.

User not authorized to APPC device description object on
server system.

ETIMEDOUT 1

ADDIPSLOC command on client system pointsto alocation
name that does not exist or is on a system that is not
responding in the APPN network.

Messages (especially inquiry messages) on message queue
QSY SOPR are waiting for areply.

EACCES 1.

User not authorized to port on client system.

User not authorized to APPC device description object on
client system.

Top | UNIX-Type APIs| APIs by category

Header Files for UNIX-Type Functions

Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

« Macro definitions
« Datatype definitions
« Structure definitions
« Function prototypes
The header files are provided in the QSY SINC library, which is optionally installable. Make sure

QSY SINC ison your system before compiling programs that use these header files. For information on
installing the QSY SINC library, see Data structures and the QSY SINC Library.

The table below shows the file and member name in the QSY SINC library for each header file used by the
UNIX-type APIsin this publication.

Nameof Filein

Name of Header File QSYSINC Name of M ember
| arpalinet.h | ARPA | INET
| apanameserh | ARPA | NAMESER
| bse.h | H | BSE
| bsedos.h | H | BSEDOS
| bseerr.h | H | BSEERR
| dirent.h | H | DIRENT
| errno.h | H | ERRNO
| fentl.h | H | FCNTL
| grp.h | H | GRP
| Zinttypes.h | H | INTTYPES®
| limits.h | H | LIMITS
| #mman.h | H | MMAN
| netdbh.h | H | NETDB
| Pnetinet/icmpé.h | NETINET | ICMP6&
| net/if.h | NET | IF
| netinet/in.h | NETINET | IN
| netinet/ip_icmp.h | NETINET | IP_ICMP
| netinet/ip.h | NETINET | IP
| Pnetinet/ipph | NETINET | IP6
| netinet/tcp.h | NETINET | TCP
| netinet/udp.h | NETINET | UDP
| netns/idp.h | NETNS | IDP
| netns/ipx.h | NETNS | IPX
| netngns.h | NETNS | NS
| netns/sp.h | NETNS | SP
| net/route.h | NET | ROUTE
| nettel/tel.h | NETTEL | TEL

| 0s2.h | H | 02

| 0s2def h | H | OS2DEF

| pwd.h | H | PWD

| Qigh | H | QLG

| qpOlflop.h | H | QPOLFLOP
| Zqpoljrnl.h | H | QPOLJRNL
| #qpOiror.h | H | QPOLROR%
[Qpoistdih | H [QPOLSTDI
[opOwpidh | H [QPOWPID
| qpOzdipc.h | H | QPOZDIPC

| gpO0zipc.h | H | QPOZIPC

| gpOzolip.h | H | QPOZOLIP

| gpOzolsm.h | H | QPOZOLSM
| gpOzripc.h | H | QPOZRIPC

| gpOztrc.h | H | QPOZTRC

| qpOztrml.h | H | QPOZTRML
[gpozi170h | H | QPOZ1170
| Pgsoasynch | H | QSOASYNCX
[anxapih | H [QTNXAAPI
| gtnxadtp.h | H | QTNXADTP
| qgtomeapi.h | H | QTOMEAPI
| qgtossapi.h | H | QTOSSAPI

| resolv.h | H | RESOLVE

| semaphore.h | H | SEMAPHORE
| signal.h | H | SIGNAL

| spawn.h | H | SPAWN

| ss.h | H | SSL

| syslerrno.h | H | ERRNO

[sysioctih | SYS | IOCTL

| syslipc.h | SYS | IPC

| sys/layout.h | H | LAYOUT

| sys/limits.h | H | LIMITS

| sys/msg.h | SYS | MSG

| sys/param.h | SYS | PARAM

| Psysresourceh | SYS | RESOURCE#
| sys/sem.h | SYS | SEM

[syesimph | SYS | SETIMP

| sys/shm.h | SYS | SHM

[sys/signah | SYS | SIGNAL

[syssocketh | SYS [SOCKET

| sys/stat.h | SYs | STAT

[gesavfsh | SYS [STATVFS

| sys/time.h | SYS | TIME

| sysitypes.h | SYS | TYPES

| sys/uio.h | SYS | ulo

| sys/un.h | SYS | UN

| syswait.h | SYs | WAIT

| Zulimith | H | ULIMIT
| unistd.h | H | UNISTD
| utime.h | H | UTIME

You can display a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(5)

« Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FI LE(QSYSI NC/ SYS) MBR(STAT)

Y ou can print a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(6)

« Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROVFI LE(QSYSI NC/ SYS) TOFI LE(* PRI NT) FROMVBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs| APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

IName |Value | Text

EDOM 3001 A domain error occurred in a math
function.

|ERANGE |3002 |A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

|[ENOTOPEN 13004 |Fileis not open.

|[ENOTREAD |3005 |Fileis not opened for read operations.

|EIO 13006 |Input/output error.

|ENODEV 13007 INo such device.

ERECIO ’3008 Cannot get single character for files
opened for record 1/0.

|[ENOTWRITE 13009 |Fileis not opened for write operations.

|ESTDIN 13010 | The stdin stream cannot be opened.

|ESTDOUT 13011 | The stdout stream cannot be opened.

|ESTDERR 13012 | The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

|EBADNAME 13014 | The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

|EBADPOS 13017 | The position specifier is not correct.

ENOPOS 3018 Thereis no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 ngﬁ current record position istoo long for
tell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 _Functi on parameter in the signal function
is not set.

|ENOENT 13025 INo such path or directory.

|[ENOREC 13026 |Record is not found.

|EPERM 13027 |The operation is not permitted.

|EBADDATA 13028 |Message datais not valid.

|EBUSY 13029 |Resource busy.

|EBADOPT 13040 |Option specified is not valid.

|[ENOTUPD 13041 |Fileis not opened for update operations.

|[ENOTDLT |3042 |Fileis not opened for delete operations.

EPAD 3043 The number of characterswritten is
shorter than the expected record length.
EBADKEYLN 3044 A length that was not valid was specified
for the key.
EPUTANDGET 3080 A read operation should not immediately
follow awrite operation.
EGETANDPUT 3081 A write operation should not immediately
follow aread operation.
|EIOERROR 3101 |A nonrecoverable 1/O error occurred.
|EIORECERR 3102 |A recoverable /O error occurred.
|EACCES 3401 |Permission denied.
|ENOTDIR 3403 INot adirectory.
|ENOSPC 3404 INo spaceis available.
|EXDEV 3405 |Improper link.
EAGAIN 3406 Operation would have caused the process
to be suspended.
EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.
|EINTR 3407 |Interrupted function call.
EFAULT 3408 The address used for an argument was not
correct.
|ETIME 3409 |Operation timed out.
|ENXIO 3415 INo such device or address.
EAPAR 3418 Possible APAR condition or hardware
failure.
|ERECURSE 13419 |Recursive attempt rejected.
|EADDRINUSE 3420 |Address already in use.
|[EADDRNOTAVAIL 3421 |Address is not available.
EAFNOSUPPORT 3422 The type of socket isnot supported in this
protocol family.
|EALREADY 3423 |Operation is already in progress.
|[ECONNABORTED 3424 |Connection ended abnormally.
ECONNREFUSED 3425 A remote host refused an attempted
connect operation.
ECONNRESET 3426 A connection with a remote socket was
reset by that socket.
|EDESTADDRREQ |3427 |Operation requires destination address.
|EHOSTDOWN 3428 |A remote host is not available.
|[EHOSTUNREACH 3429 |A route to the remote host is not available.
|EINPROGRESS 3430 |Operation in progress.
|EISCONN 3431 |A connection has already been established.
|EMSGSIZE 3432 |Message size is out of range.
|[ENETDOWN 3433 |The network currently is not available.
ENETRESET A socket is connected to a host that is no

=

longer available.

|[ENETUNREACH 3435 |Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
regquested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

|[ENOTSUP 3440 |Operation is not supported.
|EOPNOTSUPP 3440 |Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT (3442 No protocol of the specified type and
domain exists.

EPROTOTY PE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

|ESHUTDOWN 3445 |Cannot send data after a shutdown.
|ESOCKTNOSUPPORT |3446 | The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
thistime.

|EBADF 3450 |Descriptor is not valid.

|EMFILE 3452 |Too many open files for this process.
|ENFILE 3453 |Too many open filesin the system.
|EPIPE 3455 |Broken pipe.

|ECANCEL 3456 |Operation cancelled.

|EEXIST 3457 |File exists.

|EDEADLK 3459 |Resource deadlock avoided.
|[ENOMEM 3460 | Storage all ocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

|ETERM 3464 |Operation was terminated.
|ENOENT1 3465 INo such file or directory.

ENOEQFLOG 3466 Object is aready linked to a dead
directory.

|[EEMPTYDIR 3467 |Directory is empty.

EMLINK 3468 Maximum link count for afile was
exceeded.

|ESPIPE 3469 | Seek request is not supported for object.

|ENOSYS 3470 |Function not implemented.

|EISDIR 3471 |Specified target is adirectory.

|EROFS 3472 |Read-only file system.

|[EUNKNOWN 3474 |Unknown system state.

|EITERBAD 3475 |Iterator is not valid.

|EITERSTE 3476 |Iterator isin wrong state for operation.

|EHRICLSBAD |3477 |HRI classisnot valid.

|EHRICLBAD 3478 IHRI subclass is not valid.

|EHRITYPBAD |3479 |HRI typeisnot valid.

|ENOTAPPL 3480 |Data requested is not applicable.

|EHRIREQTYP 3481 IHRI request type s not valid.

|[EHRINAMEBAD 3482 IHRI resource name is not valid.

|EDAMAGE 3484 |A damaged object was encountered.

|ELOOP 3485 |A loop exists in the symbolic links.

IENAMETOOLONG 3486 |A path name is too long.

|ENOLCK 3487 INo locks are available.

|[ENOTEMPTY 3488 |Directory is not empty.

|ENOSY SRSC 3489 |System resources are not available.

|[ECONVERT 13490 |Conversion error.

|E2BIG 3491 |Argument list istoo long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

|ETYPE 3493 |Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

|ESOFTDAMAGE 3497 |Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

|EOFFLINE 13499 |Object is suspended.

|EROOBJ 13500 |Object is aread-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDS 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 | Duplicate extended attribute record.

ELOCKED 3506 Areabeing read from or writtentois

locked.

EFBIG 3507 |Object too large.

EIDRM 3509 The semaphore, shared memory, or
message gqueue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of

the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

|EFILECVT 3511 |File ID conversion of adirectory failed.

EBADFID 3512 A file 1D could not be assigned when
linking an object to a directory.

|ESTALE 3513 |File handle was rejected by server.

|ESRCH 3515 INo such process.

|IENOTSIGINIT 3516 |Process is not enabled for signals.

|ECHILD 3517 INo child process.

|EBADH 13520 IHandleis not valid.

ETOOMANY REFS 3523 The operation would have exceeded the

maximum number of references allowed
for a descriptor.

|ENOTSAFE 3524 |Function is not allowed.

|[EOVERFLOW 3525 |Object istoo large to process.

|EIRNDAMAGE 3526 \Journal is damaged.

|EJRNI NACTIVE |3527 |Journa| isinactive.

|EJRNRCVSPC 3528 |Journal space or system storage error.

|EIRNRMT 3529 |Journal is remote.

|ENEWJRNRCV 3530 INew journal receiver is needed.

|ENEWJRN 3531 INew journal is needed.

|EJOURNALED 3532 |Object already journaled.

|[EJRNENTTOOLONG 3533 |Entry istoo large to send.

|EDATALINK 3534 |Object is adatalink object.

|[ENOTAVAIL 3535 |IASPisnot available.

|ENOTTY 3536 |10 control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

|ETXTBSY 3543 | Text file busy.

|[EASPGRPNOTSET 3544 |ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs| APIs by category

	Sockets APIs (V5R2)
	Table of Contents
	Sockets APIs
	Sockets System Functions
	APIs
	accept()--Wait for Connection Request and Make Connection
	accept_and_recv()--Wait for Connection Request and Receive the First Message That Was Sent
	bind()--Set Local Address for Socket
	close()--Close File or Socket Descriptor
	connect()--Establish Connection or Destination Address
	fcntl()--Perform File Control Command
	fstat()--Get File Information by Descriptor
	getdomainname()--Retrieve Domain Name
	gethostid()--Retrieve Host ID
	gethostname()--Retrieve Host Name
	getpeername()--Retrieve Destination Address of Socket
	getsockname()--Retrieve Local Address of Socket
	getsockopt()--Retrieve Information about Socket Options
	givedescriptor()--Pass Descriptor Access to Another Job
	ioctl()--Perform I/O Control Request
	listen()--Invite Incoming Connections Requests
	QsoCreateIOCompletionPort()--Create I/O Completion Port
	QsoDestroyIOCompletionPort()--Destroy I/O Completion Port
	QsoPostIOCompletion()--Post I/O Completion Request
	QsoStartAccept()--Start asynchronous accept operation
	QsoStartRecv()--Start Asynchronous Receive Operation
	QsoStartSend()--Start Asynchronous Send Operation
	QsoWaitForIOCompletion()--Wait for I/O Operation
	Rbind()--Set Remote Address for Socket
	read()--Read from Descriptor
	readv()--Read from Descriptor Using Multiple Buffers
	recv()--Receive Data
	recvfrom()--Receive Data
	recvmsg()--Receive Data or Descriptors or Both
	rexec()--Issue a Command on a Remote Host
	rexec_r()--Issue a Command on a Remote Host
	rexec_r_ts64()--Issue a Command on a Remote Host
	rexec_ts64()--Issue a Command on a Remote Host
	select()--Wait for Events on Multiple Sockets
	send()--Send Data
	sendmsg()--Send Data or Descriptors or Both
	sendto()--Send Data
	send_file()--Send a File over a Socket Connection
	send_file64()--Send a File over a Socket Connection
	setdomainname()--Set Domain Name
	sethostid()--Set Host ID
	sethostname()--Set Host Name
	setsockopt()--Set Socket Options
	shutdown()--End Receiving and/or Sending of Data on Socket
	socket()--Create Socket
	socketpair()--Create a Pair of Sockets
	takedescriptor()--Receive Socket Access from Another Job
	write()--Write to Descriptor
	writev()--Write to Descriptor Using Multiple Buffers

	Using _XOPEN_SOURCE for UNIX 98 Compatibility

	Sockets Network Functions
	dn_comp()--Compress Domain Name
	dn_comp_ts64()--Compress Domain Name
	dn_expand()--Expand Domain Name
	dn_find()--Search for Compressed Domain Name
	dn_find_ts64()--Search for Compressed Domain Name
	dn_skipname()--Skip over Compressed Domain Name
	endhostent()--Close Host Database
	endhostent_r()--Close Host Database
	endnetent()--Close Network Database
	endnetent_r()--Close Network Database
	endprotoent()--Close Protocol Database
	endprotoent_r()--Close Protocol Database
	endservent()--Close Service Database
	endservent_r()--Close Service Database
	freeaddrinfo--Free Address Information API
	gai_strerror--Retrieve Address Information Runtime Error Message API
	getaddrinfo--Get Address Information API
	gethostbyaddr()--Get Host Information for IP Address
	gethostbyaddr_r()--Get Host Information for IP Address
	gethostbyname()--Get Host Information for Host Name
	gethostbyname_r()--Get Host Information for Host Name
	gethostent()--Get Next Entry from Host Database
	gethostent_r()--Get Next Entry from Host Database
	getnameinfo--Get Name Information for Socket Address API
	getnetbyaddr()--Get Network Information for IP Address
	getnetbyaddr_r()--Get Network Information for IP Address
	getnetbyname()--Get Network Information for Domain Name
	getnetbyname_r()--Get Network Information for Domain Name
	getnetent()--Get Next Entry from Network Database
	getnetent_r()--Get Next Entry from Network Database
	getprotobyname()--Get Protocol Information for Protocol Name
	getprotobyname_r()--Get Protocol Information for Protocol Name
	getprotobynumber()--Get Protocol Information for Protocol Number
	getprotobynumber_r()--Get Protocol
	getprotoent()--Get Next Entry from Protocol Database
	getprotoent_r()--Get Next Entry from Protocol Database
	getservbyname()--Get Port Number for Service Name
	getservbyname_r()--Get Port Number for Service Name
	getservbyport()--Get Service Name for Port Number
	getservbyport_r()--Get Service Name for Port Number
	getservent()--Get Next Entry from Service Database
	getservent_r()--Get Next Entry from Service Database
	hstrerror--Retrieve Resolver Error Message API
	htonl()--Convert Long Integer to Network Byte Order
	htons()--Convert Short Integer to Network Byte Order
	inet_addr()--Translate Full Address to 32-bit IP Address
	inet_lnaof()--Separate Local Portion of IP Address
	inet_makeaddr()--Combine Network Portion and Host Portion to Make IP Address
	inet_netof()--Separate Network Portion of IP Address
	inet_network()--Translate Network Portion of Address to 32-bit IP Address
	inet_ntoa()--Translate IP Address to Dotted Decimal Format
	inet_ntoa_r()--Translate IP Address to Dotted Decimal Format
	inet_ntop--Convert IPv4 and IPv6 Addresses Between Binary and Text Form API
	inet_pton--Convert IPv4 and IPv6 Addresses Between Text and Binary Form API
	ns_addr()--Translate Network Services Address to 12-byte Address
	ns_ntoa()--Translate Network Services Address from 12-byte Address
	ns_ntoa_r() -- Translate Network Services
	ntohl()--Convert Long Integer to Host Byte Order
	ntohs()--Convert Short Integer to Host Byte Order
	res_close()--Close Socket and Reset _res Structure
	res_findzonecut()--Find the Enclosing Zone and Servers
	res_hostalias()--Retrieve the host alias
	res_init()--Initialize _res Structure
	res_mkquery()--Place Domain Query in Buffer
	res_nclose()--Close Socket and Reset res Structure
	res_ninit()--Initialize res Structure
	res_nisourserver()--Check Server Address
	res_nmkquery()--Place Domain Query in Buffer
	res_nmkupdate()--Construct an Update Packet
	res_nquery()--Send Domain Query
	res_nquerydomain()--Send 2 String Domain Query
	res_nsearch()--Search for Domain Name
	res_nsend()--Send Buffered Domain Query
	res_nsendsigned()--Send Authenticated Domain Query
	res_nupdate()--Build and Send Dynamic Updates
	res_query()--Send Domain Query
	res_search()--Search for Domain Name
	res_send()--Send Buffered Domain Query
	res_xlate()--Translate DNS Packets
	sethostent()--Open Host Database
	sethostent_r()--Open Host Database
	setnetent()--Open Network Database
	setnetent_r()--Open Network Database
	setprotoent()--Open Protocol Database
	setprotoent_r()--Open Protocol Database
	setservent()--Open Service Database
	setservent_r()--Open Service Database
	_getlong()--Get Long Byte Quantities
	_getshort()--Get Short Byte Quantities
	_putlong()--Put Long Byte Quantities
	_putshort()--Put Short Byte Quantities

	Debugging IP over SNA Configurations

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

