
UNIX-Type APIs (V5R2)

Simple Network Management Protocol (SNMP) APIs

Table of Contents

Simple Network Management Protocol (SNMP) APIs

SNMP Subagent APIs

connectSNMP() (Establish connection with SNMP agent)❍

debugDPI() (Set DPI packet trace)❍

disconnectSNMP() (End connection with SNMP agent)❍

DPI_PACKET_LEN() (Get length of DPI packet)❍

fDPIparse() (Free storage from DPI packet parse)❍

fDPIset() (Free storage from DPI set packet)❍

mkDPIAreYouThere() (Make a DPI AreYouThere packet)❍

mkDPIclose() (Make a DPI close packet)❍

mkDPIopen() (Make a DPI open packet)❍

mkDPIregister() (Make a DPI register packet)❍

mkDPIresponse() (Make a DPI response packet)❍

mkDPIset() (Make a DPI set packet)❍

mkDPItrap() (Make a DPI trap packet)❍

mkDPIunregister() (Make a DPI unregister packet)❍

pDPIpacket() (Parse a DPI packet)❍

receiveDPIpacket() (Receive a DPI packet from the SNMP agent)❍

sendDPIpacket() (Send a DPI packet to the SNMP agent)❍

waitDPIpacket() (Wait for a DPI packet)❍

●

SNMP Manager APIs

APIs

snmpGet() (Retrieve MIB objects)■

snmpGetnext() (Retrieve next MIB object)■

snmpSet() (Set MIB objects)■

❍

Using SNMP Manager APIs--Example❍

SNMP Trap Support❍

●

Header Files for UNIX-Type Functions
Errno Values for UNIX-Type Functions

Simple Network Management Protocol (SNMP)
APIs
The Simple Network Management Protocol (SNMP) APIs include the:

SNMP Subagent APIs●

SNMP Manager APIs●

Before using the SNMP APIs, read the Simple Network Management Protocol (SNMP) Support book .
It describes how to configure the iSeries to use SNMP and discusses SNMP agents, subagents, managers,
and management information base (MIBs). The book also discusses "Using the SNMP Subagent DPI API."

You can get more information about SNMP and Distributed Protocol Interface (DPI) from Requests for
Comment (RFC) on the Internet. A file called ways_to_get_rfcs has details about obtaining RFCs. To
receive these details send an E-MAIL message as follows:

To: rfc-info@ISI.EDU
Subject: gettingrfcs
help: ways_to_get_rfcs

DPI is described in RFC 1592, "Simple Network Management Protocol Distributed Protocol Interface,"
Version 2.0.

Top | UNIX-Type APIs | APIs by category

Simple Network Management Protocol (SNMP)
Subagent APIs
The SNMP Subagent APIs are:

connectSNMP() (Establish connection with SNMP agent) establishes a logical connection between
the SNMP subagent and the local (the same iSeries) SNMP agent.

●

debugDPI() (Set DPI packet trace) sets the level of the Distributed Protocol Interface (DPI) packet
trace.

●

disconnectSNMP() (End connection with SNMP agent) ends the logical connection between the
SNMP subagent and the iSeries SNMP agent.

●

DPI_PACKET_LEN() (Get length of DPI packet) returns the length (number of bytes) of a
Distributed Protocol Interface (DPI) packet.

●

fDPIparse() (Free storage from DPI packet parse) frees storage that was previously allocated by a
call to pDPIpacket() to store the DPI packet.

●

fDPIset() (Free storage from DPI set packet) frees storage that was previously allocated for
snmp_dpi_set_packet structures.

●

mkDPIAreYouThere() (Make a DPI AreYouThere packet) makes a DPI AreYouThere packet and
returns a pointer to the packet.

●

mkDPIclose() (Make a DPI close packet) makes a DPI close packet and returns a pointer to the
packet.

●

mkDPIopen() (Make a DPI open packet) makes a Distributed Protocol Interface (DPI) open packet
and returns a pointer to the packet.

●

mkDPIregister() (Make a DPI register packet) makes a Distributed Protocol Interface (DPI) register
packet and returns a pointer to the packet.

●

mkDPIresponse() (Make a DPI response packet) makes a DPI response packet and returns a pointer
to the packet.

●

mkDPIset() (Make a DPI set packet) makes a DPI set structure and adds it to a chained list of set
structures if previous calls have been made.

●

mkDPItrap() (Make a DPI trap packet) makes a DPI trap packet and returns a pointer to the packet.●

mkDPIunregister() (Make a DPI unregister packet) makes a DPI unregister packet and returns a
pointer to the packet.

●

pDPIpacket() (Parse a DPI packet) parses a serialized Distributed Protocol Interface (DPI) packet
to make it available for processing by the subagent.

●

receiveDPIpacket() (Receive a DPI packet from the SNMP agent) obtains a copy of a DPI packet
sent by the SNMP agent to the subagent, and returns the DPI packet to the caller.

●

sendDPIpacket() (Send a DPI packet to the SNMP agent) sends a copy of a Distributed Protocol
Interface (DPI) packet to the SNMP agent (on the same system as the subagent).

●

waitDPIpacket() (Wait for a DPI packet) waits for a message on the data queue with which the
subagent has previously connected (see connectSNMP()--Establish Connection with SNMP Agent).

●

Note: These functions use header (include) files from the library QSYSINC, which is optionally installable.
Make sure QSYSINC is installed on your system before using any of the functions. All of the SNMP
subagent APIs use header file qtossapi.h. You can see this source in source file H, member name
QTOSSAPI, in the QSYSINC library.

The Simple Network Management Protocol (SNMP) subagent APIs can be used to dynamically extend the
management information base (MIB) that the system SNMP agent is aware of. The MIB is extended,
without any change to the SNMP agent itself, while the iSeries is running. Dynamically added MIB
subtrees (as defined and supported by a program known as a subagent) provide this capability. You may
now extend the remote and automated system management capabilities of the iSeries within the SNMP
framework. So, for example, you could define an SNMP MIB group for your RPG and SQL application,
and then use SNMP protocol data units (PDUs), such as get and set, to determine status information or to
make changes in control variables.

The term Distributed Protocol Interface (DPI) packet is used throughout this information. The DPI is an
extension to SNMP agents that permit users to dynamically add, delete, or replace management variables in
the local MIB without requiring recompilation of the SNMP agent.

The diagram below shows typical DPI API call sequences that are used to accomplish the SNMP subagent
functions that are listed.

(A) Subagent initiation

(B) Subagent registration (loop for multiple subtrees)

(C) Normal processing loop for a subagent, starting with a wait for a (get, getnext, set...) packet from
the SNMP agent (other may be an unregister or close packet)

(D) A common call sequence that might be consolidated

(E) Subagent initiated trap

(F) Subagent termination

A loop around mkDPIset() represents building a packet with multiple varbinds.

DPI API Call Sequences--Example

Top | UNIX-Type APIs | APIs by category

connectSNMP()--Establish Connection with
SNMP Agent

 Syntax

 #include <qtossapi.h>

 int connectSNMP(
 char *queue_name,
 char *lib_name,
 long int timeout);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The connectSNMP() function establishes a logical connection between the SNMP subagent and the local
(the same iSeries server) SNMP agent. The data queue named by the queue_name parameter is used by the
SNMP agent as the target data queue in a call to the Send Data Queue (QSNDDTAQ) API when it sends a
message to the subagent. Only a single connection is allowed per data queue and library, hence a subagent
may have only a single data queue. (Of course, a subagent may have multiple registrations. See
mkDPIregister()--Make a DPI Register Packet.)

Authorities

So that the subagent can receive messages from the SNMP agent, the following conditions must be met:

The library and data queue whose names are passed as a parameter in the connectSNMP() call
must exist prior to the call.

●

The SNMP agent job must have write access to the data queue. If you suspect a problem with the
data queue, check the job log of the SNMP agent job (QTMSNMP in subsystem QSYSWRK) for
TCP4041 messages with reason code 001.

●

Parameters

queue_name

(Input) The name of the data queue (as a null-terminated string) on which the subagent wants to
receive Distributed Protocol Interface (DPI) packets. The value must conform to OS/400 rules for
data queue names (such as using uppercase letters and starting with a letter, $, #, @, and so forth).

lib_name

(Input) The name of the OS/400 library (as a null-terminated string) to which the data queue
belongs. QTEMP is not an allowed value. The value must conform to OS/400 rules for library
names (such as using uppercase letters and starting with a letter, $, #, @, and so forth).

Note that the actual character representation of the specific library name must be used. Special
values such as *LIBL and *CURLIB are not allowed.

timeout

(Input) The amount of time in seconds that the subagent is willing to wait for a connection. This
field may contain the following values:

0 Unlimited wait

> 0 The number of seconds to wait (maximum is 2 147 483 647)

Any other values result in an error return code.

Return Value

The return values are defined in the <qtossapi.h> file in the QSYSINC library.

0 snmpsa_RC_ok

The call was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the
condition, and resubmit the subagent job. (This return code is only used when a more specific
return code is not available.)

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-3 snmpsa_RC_mismatch

There is a code-level mismatch between the agent and the subagent. If this occurs, report the
problem to the appropriate service organization.

-4 snmpsa_RC_timedout

The specified timeout value was exceeded.

-7 snmpsa_RC_parmerr

A parameter error occurred. This is more likely caused by errors in the value of a parameter (for
example, a value was too large or too small) or by a pointer parameter that has a NULL value and
should not. For char* parameters, it may also be caused if the length of the string exceeds some
limit.

-8 snmpsa_RC_lengtherr

During an attempt to communicate with the agent, a length exception occurred.

-9 snmpsa_RC_buffer

An internal buffer was not obtained. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

-10 snmpsa_RC_duplicate

The agent already has a subagent with this queue and library name. The subagent may continue as
usual with the mkDPIopen() and mkDPIregister() functions. If these fail, the subagent should use
different library and queue names.

-13 snmpsa_RC_alreadyconnected

The subagent is already connected using the same data queue and library names passed on the call.
If the SNMP agent still does not forward requests to the subagent properly, use the
disconnectSNMP() function, then the connectSNMP() function.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol (SNMP) Support book.

Usage Notes

The connectSNMP() function establishes a logical connection with the SNMP agent that is running on the
same system as the subagent. This is normally the first subagent API that a subagent calls.

This API, like all the subagent APIs, checks to ensure that the pointers passed are generally valid for user
data, for example, user domain. Such audits occur for all pointer parameters and for all pointers that appear
in all C structures that are passed as parameters. If one of these checks fail, a CPF9872 exception is
generated. This can occur from all the subagent APIs except debugDPI(), DPI_PACKET_LEN(), and
mkDPIAreYouThere().

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

disconnectSNMP()--End Connection with SNMP Agent●

mkDPIregister()--Make a DPI Register Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 int rc;

 rc = connectSNMP("QABCDEFG", "LIBABC", 0);

 if (rc) {
 /* Handle exception. */
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

debugDPI()--Set DPI Packet Trace

 Syntax

 #include <qtossapi.h>

 void debugDPI(int level);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The debugDPI() function sets the level of the Distributed Protocol Interface (DPI) packet trace. The trace
consists of a representation (printed to STDERR) of DPI packets as they are parsed (by the pDPIpacket()
function) or made (by one of the mkDPIxxx() APIs). The trace is written to ILE C standard error output.

Parameters

level

(Input) The level of tracing to perform. If this value is zero, tracing is turned off. If it has any other
value, tracing is turned on at the specified level. The higher the value, the more detail. A higher
level includes all lower levels of tracing. Possible values follow:

0 Turn off packet tracing

1 Display packet creation and parsing

2 Level 1, plus display the hexadecimal dump of incoming and outgoing DPI packets.

Usage Notes

The debugDPI() function is used to turn the DPI packet trace on or off.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

mkDPIregister()--Make a DPI Register Packet●

mkDPIresponse()--Make a DPI Response Packet●

pDPIpacket()--Parse a DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 debugDPI(2);

Following are some examples of the DPI packet trace. A simple way to view STDERR is to run your
program in batch in a submitted job.

The following is an example of a trace, with the level parameter set to 1, of a register packet made by the
subagent's call to mkDPIregister(). This is indicated in the trace by the letter c (for create) at the beginning
of a trace line. Immediately following that is the parse of the response packet that the subagent got back
from the SNMP agent. This is indicated in the trace by the letter p (for parse) at the beginning of a trace
line.

 cDPIpacket: Major=2, Version=2, Release=0, Id=1, Type=SNMP_DPI_REGISTER
 cDPIreg: subtree=1.3.6.1.2.3.4.5.6., priority=0, timeout=4
 view_selection=No
 bulk_selection=No
 pDPIpacket: Major=2, Version=2, Release=0, Id=1, Type=SNMP_DPI_RESPONSE
 pDPIresp: ret_code=0 [0x0] (noError), ret_index=255
 pDPIset: subtree=1.3.6.1.2.3.4.5.6, instance=** NONE **
 object=1.3.6.1.2.3.4.5.6
 value_type=NULL ['04'H], value_len=0
 value=** NULL **

Next is an example of a "get" packet that is received by a subagent. Immediately following that is the
response packet that the subagent built (indicated by the letter c) by calling mkDPIresponse().

 pDPIpacket: Major=2, Version=2, Release=0, Id=2, Type=SNMP_DPI_GET
 Community=** NONE **
 pDPIget: subtree=1.3.6.1.2.3.4.5.6., instance=1.0
 object=1.3.6.1.2.3.4.5.6.1.0
 cDPIpacket: Major=2, Version=2, Release=0, Id=2, Type=SNMP_DPI_RESPONSE
 cDPIresp: ret_code=0 [0x0] (noError), ret_index=0
 cDPIset: subtree=1.3.6.1.2.3.4.5.6., instance=1.0
 object=1.3.6.1.2.3.4.5.6.1.0
 value_type=Integer32 ['81'H], value_len=4
 value=1 [0x00000001]

Next is an example of the trace with the level parameter set to 2. This causes a hexadecimal dump of the
DPI packet to be generated when pDPIpacket() is called, in addition to the trace level of 1. Next is the
same packet as parsed by pDPIpacket(), and immediately following that is the response packet that the
subagent built by calling mkDPIresponse().

 Dump of 33 byte incoming DPI packet:
 00 1f 02 02 00 00 03 02 00 00 f1 4b f3 4b f6 4b
 f1 4b f2 4b f3 4b f4 4b f5 4b f6 4b 00 f5 4b f0
 00
 pDPIpacket: Major=2, Version=2, Release=0, Id=3, Type=SNMP_DPI_GETNEXT
 Community=** NONE **
 pDPInext: subtree=1.3.6.1.2.3.4.5.6., instance=5.0
 object=1.3.6.1.2.3.4.5.6.5.0
 cDPIpacket: Major=2, Version=2, Release=0, Id=3, Type=SNMP_DPI_RESPONSE
 cDPIresp: ret_code=0 [0x0] (noError), ret_index=0
 cDPIset: subtree=1.3.6.1.2.3.4.5.6., instance=6.0
 object=1.3.6.1.2.3.4.5.6.6.0
 value_type=Counter32 ['86'H], value_len=4
 value=6 [0x00000006]

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

disconnectSNMP()--End Connection with SNMP
Agent

 Syntax

 #include <qtossapi.h>

 int disconnectSNMP(
 char *queue_name,
 char *lib_name,
 long int timeout);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The disconnectSNMP() function ends the logical connection between the SNMP subagent and the OS/400
SNMP agent.

Authorities

So that the subagent can receive messages from the SNMP agent, the following conditions must be met:

The library and data queue whose names are passed as a parameter in the connectSNMP() call
must exist prior to the call.

●

The data queue and library names passed as parameters in the disconnectSNMP() call must be the
same as used in the previous, successful connectSNMP() call.

●

Parameters

queue_name

(Input) The name of the data queue (as a null-terminated string) on which the subagent was
receiving Distributed Protocol Interface (DPI) packets. This should be the same data queue name as
previously used in a call to connectSNMP().

lib_name

(Input) The name of the OS/400 library (as a null-terminated string) to which the data queue
belongs. This should be the same library name as previously used in a call to connectSNMP().

timeout

(Input) The amount of time in seconds that the subagent is willing to wait for a disconnection. This

field may contain any of these values:

0 Immediate disconnect, independent of whether or not the SNMP agent is available or has
responded

> 0 The number of seconds to wait (maximum is 2 147 483 647)

Any other values result in an error return code.

Return Value

The indicated return values are defined in the <qtossapi.h> file.

0 snmpsa_RC_ok

The disconnectSNMP() function was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the
condition, and resubmit the subagent job. (This return code is only used when a more specific
return code is not available.)

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-3 snmpsa_RC_mismatch

There is a code-level mismatch between the agent and the subagent. If this occurs, report the
problem to the appropriate service organization.

-4 snmpsa_RC_timedout

The specified timeout value was exceeded.

-7 snmpsa_RC_parmerr

A parameter error occurred. This is more likely caused by errors in the value of a parameter (for
example, a value was too large or too small) or by a pointer parameter that has a NULL value and
should not. For char* parameters, it may also be caused if the length of the string exceeds some
limit.

-8 snmpsa_RC_lengtherr

During an attempt to communicate with the agent, a length exception occurred. See any messages
in the job log and correct any errors that are indicated, then retry the operation.

-9 snmpsa_RC_buffer

An internal buffer was not obtained. See any messages in the job log and correct any errors that are
indicated, then retry the operation.

-14 snmpsa_RC_sync

A synchronization problem occurred between the agent and subagent. If this occurs, report the
problem to the appropriate service organization.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol (SNMP) Support book.

Usage Notes

The disconnectSNMP() function ends the logical connection between the SNMP agent and a subagent.
This is normally the last subagent API that a subagent calls.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

connectSNMP()--Establish Connection with SNMP Agent●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 int rc;

 rc = disconnectSNMP("QABCDEFG", "LIBABC", 0);
 if (rc) {
 /* Handle exception. */
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

DPI_PACKET_LEN()--Get Length of DPI Packet

 Syntax

 #include <qtossapi.h>

 int DPI_PACKET_LEN(unsigned char *packet_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The DPI_PACKET_LEN() macro returns the length (number of bytes) of a Distributed Protocol Interface
(DPI) packet.

Parameters

packet_p

(Input) A pointer to a (serialized) DPI packet.

Return Value

value An integer value that represents the total DPI packet length.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol (SNMP) Support book.

Usage Notes

The DPI_PACKET_LEN() macro generates a C expression that returns an integer that represents the total
length of a DPI packet. It uses the first 2 bytes (in network byte order) of the packet to calculate the length.
The length returned includes these first 2 bytes.

Example

 #include <qtossapi.h>
 unsigned char *pack_p;
 int length;

 pack_p = mkDPIclose(SNMP_CLOSE_goingDown);
 if (pack_p) {
 length = DPI_PACKET_LEN(pack_p);
 /* Send packet to agent or subagent. */
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

fDPIparse()--Free Storage from DPI Packet
Parse

 Syntax

 #include <qtossapi.h>

 void fDPIparse(snmp_dpi_hdr *hdr_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The fDPIparse() function frees storage that was previously allocated by a call to pDPIpacket() to store the
DPI packet.

Parameters

hdr_p

(Input) A pointer to an snmp_dpi_hdr structure.

Usage Notes

The fDPIparse() function frees dynamic storage that was previously created by a call to pDPIpacket().
After calling fDPIparse(), no further references should be made to hdr_p, which pointed to the
snmp_dpi_hdr structure.

A complete or partial DPI snmp_dpi_hdr structure is also implicitly freed by a call to a DPI function that
serializes an snmp_dpi_hdr structure into a DPI packet. The section that describes each function tells you if
this is the case. An example of such a function is mkDPIresponse().

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

mkDPIresponse()--Make a DPI Response Packet●

pDPIpacket()--Parse a DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 snmp_dpi_hdr *hdr_p;
 unsigned char *pack_p; /* Assume pack_p points to */
 /* incoming DPI packet. */
 hdr_p = pDPIpacket(pack_p);

 /* Handle the packet, and when done, do the following. */
 if (hdr_p) fDPIparse(hdr_p);

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

fDPIset()--Free Storage from DPI Set Packet

 Syntax

 #include <qtossapi.h>

 void fDPIset(snmp_dpi_set_packet *packet_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The fDPIset() function frees storage that was previously allocated for snmp_dpi_set_packet structures.

Parameters

packet_p

(Input) A pointer to the first snmp_dpi_set_packet structure in a chain of such structures.

Usage Notes

The fDPIset() function is typically used if you must free a chain of one or more snmp_dpi_set_packet
structures. This may be the case if you are in the middle of preparing a chain of such structures for a DPI
RESPONSE packet, but then run into an error before you can actually make the response.

If you get to the point where you make a DPI response packet to which you pass the chain of
snmp_dpi_set_packet structures, then the mkDPIresponse() function will free the chain of
snmp_dpi_set_packet structures. Similarly, if you pass the chain of snmp_dpi_set_packet structures to
mkDPItrap() to make a DPI trap request, the storage will be freed.

Unnecessary free operations may result in an MCH6902 (type 2). If this occurs, remove the call to
fDPIset().

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

mkDPIresponse()--Make a DPI Response Packet●

mkDPIset()--Make a DPI Set Packet●

Example

See Code disclaimer information for information pertaining to code examples.

#include <qtossapi.h>
unsigned char *pack_p;
snmp_dpi_hdr *hdr_p;
snmp_dpi_set_packet *set_p, *first_p;
long int num1 = 0, num2 = 0;

/* ... */

/* The subagent was waiting for work from the SNMP agent, and */
/* a message arrives... */

hdr_p = pDPIpacket(pack_p); /* Assume pack_p */
/* analyze packet and assume all OK */ /* points to the */
/* now prepare response; 2 varBinds */ /* incoming packet. */

set_p = mkDPIset(snmp_dpi_NULL_p, /* Create first one */
 "1.3.6.1.2.3.4.5.","1.0", /* OID=1, instance=0.*/
 SNMP_TYPE_Integer32,
 sizeof(num1), &num1);
if (set_p) { /* If successful, then */
 first_p = set_p; /* save pointer to first */
 set_p = mkDPIset(set_p, /* chain. Next one */
 "1.3.6.1.2.3.4.5.","1.1", /* OID=1, instance=1.*/
 SNMP_TYPE_Integer32,
 sizeof(num2), &num2);
 if (set_p) { /*If successful, 2nd one */
 pack_p = mkDPIresponse(hdr_p, /* makes response. */
 SNMP_ERROR_noError, /* It will also free */
 0L, first_p); /* the set_p tree. */
 /* Send DPI response to agent. */
 } else { /* If 2nd mkDPIset fails, */
 fDPIset(first_p); /* it must free chain. */
 }
}

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

mkDPIAreYouThere()--Make a DPI AreYouThere
Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIAreYouThere(void);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIAreYouThere() function makes a DPI AreYouThere packet and returns a pointer to the packet.

Parameters

None.

Return Value

value

The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first two bytes of the
buffer (in network byte order) contain the length of the remaining packet. The
DPI_PACKET_LEN() function can be used to calculate the total length of the DPI packet.

NULL

If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a
serialized DPI packet.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol (SNMP) Support book.

Usage Notes

The mkDPIAreYouThere() function creates a serialized DPI ARE_YOU_THERE packet that can then be
sent to the DPI peer (normally the agent).

If your connection to the agent is still intact, the agent will send a DPI RESPONSE with
SNMP_ERROR_DPI_noError in the error code field and zero in the error index field. The RESPONSE will
have no varbind data. If your connection is not intact, the agent may send a response with an error
indication, or may not send a response at all.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

DPI_PACKET_LEN()--Get Length of DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 unsigned char *pack_p;

 pack_p = mkDPIAreYouThere();
 if (pack_p) {
 /* Send the packet to the agent. */
 }

 /* Wait for response with waitDPIpacket(). */
 /* Normally the response should come back fairly quickly, */
 /* but it depends on the load of the agent. */

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

mkDPIclose()--Make a DPI Close Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIclose(char reason_code);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIclose() function makes a DPI close packet and returns a pointer to the packet.

Parameters

reason_code

(Input) The reason for the close. See the <qtossapi.h> file in the QSYSINC library for the list of
defined reason codes.

Return Value

value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the
buffer (in network byte order) contain the length of the remaining packet. The
DPI_PACKET_LEN() function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a
serialized DPI packet.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol (SNMP) Support book.

Usage Notes

The mkDPIclose() function creates a serialized DPI CLOSE packet that can then be sent to the DPI peer.
As a result of sending the packet, the DPI connection will be closed.

Sending a DPI CLOSE packet to the agent implies an automatic DPI UNREGISTER for all registered
subtrees on the connection being closed.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

DPI_PACKET_LEN()--Get Length of DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 unsigned char *pack_p;

 pack_p = mkDPIclose(SNMP_CLOSE_goingDown);
 if (pack_p) {
 /* Send the packet to the agent. */
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

mkDPIopen()--Make a DPI Open Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIopen(
 char *oid_p,
 char *description_p,
 unsigned long timeout,
 unsigned long max_varBinds,
 char character_set,
 unsigned long password_len,
 unsigned char *password_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIopen() function makes a Distributed Protocol Interface (DPI) open packet and returns a pointer
to the packet.

Parameters

oid_p

(Input) A pointer to a NULL-terminated character string that represents the OBJECT IDENTIFIER,
which uniquely identifies the subagent.

description_p

(Input) A pointer to a NULL-terminated character string, which is a descriptive name for the
subagent. This can be any DisplayString, which basically is a byte string that contains only
characters from the ASCII network virtual terminal (NVT) set.

timeout

(Input) The requested timeout for this subagent. An agent often has a limit for this value, and it will
use that limit if this value is larger. A timeout of zero has a special meaning in the sense that the
agent will then use its own default timeout value. The upper bound and default timeout values for
DPI subagents are maintained by the SNMP agent in the subagent MIB. For details about the

subagent MIB, see "SNMP Subagent MIB" in the Simple Network Management Protocol
book.

max_varBinds

(Input) The maximum number of varbinds per DPI packet that the subagent is prepared to handle.
The agent tries to combine up to this number of varbinds (belonging to the same subtree) in a single

DPI packet. If zero is specified, there is no explicit upper bound on the number of varbinds. In all
cases, the actual number of varbinds is constrained by buffer sizes.

character_set

(Input) The character set that you want to use for string-based data fields in the DPI packets and
structures. In general, the SNMP agent communicates to all SNMP managers in NVT ASCII and
stores information in its own MIBs in ASCII. However, the agent will do some translations.
Currently, only DPI_NATIVE_CSET is supported. For the iSeries server, this is EBCDIC (coded
character set identifier (CCSID) 500).

The specifics are as follows:

On SET, COMMIT and UNDO requests from the agent, if the OID Structure of
Management Information (SMI) type is SNMP_TYPE_OCTET_STRING and the textual
convention is DisplayString, the agent will translate from ASCII to EBCDIC. The
<qtossapi.h> file contains the C-language defines for these SMI types.

Note: A subagent implementation with DisplayString OIDs that have read/write access
should check the value_type in the snmp_dpi_set_packet (see the <qtossapi.h> file). If the
value_type is not equal to the SNMP_TYPE_DisplayString in the set request, then the
agent will not have converted from ASCII to EBCDIC. In this case, the subagent should
perform the translation.

❍

If the textual convention is DisplayString during the processing of a GET or GETNEXT
from a subagent, the agent will convert from EBCDIC to ASCII.

❍

When processing a DPI open packet, the agent will translate the description (see the
description_p parameter) from EBCDIC to ASCII for storage in the subagent MIB.

❍

In the SNMP MIB II system group, there are a number of DisplayString OIDs. These are
all stored in ASCII. (The Internet standard RFC 1213, "Management Information Base for
Network Management of TCP/IP-based internets: MIB-II", defines MIB II and the system
group as well as other groups.)

❍

password_len

(Input) The length (in bytes) of an optional password. For the iSeries server agent, subagents do not
need to supply a password. If not, then a zero length may be specified.

password_p

(Input) A pointer to an byte string that represents the password for this subagent. This corresponds
to an SNMP agent community name. A password may include any character value, including the
NULL character. If the password_len is zero, then this can be a NULL pointer.

Return Value

value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the
buffer (in network byte order) contain the length of the remaining packet. The
DPI_PACKET_LEN() function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a
serialized DPI packet.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol book.

Usage Notes

The mkDPIopen() function creates a serialized DPI OPEN packet that can then be sent to the SNMP agent.

The SNMP agent will send a DPI response packet back to the subagent with a code that can be used to
determine if the open request was successful. This will be one of the SNMP_ERROR_DPI_* return codes
found in <qtossapi.h>. Following receipt of this response packet, the subagent will need to call the
pDPIpacket() to parse this DPI packet. The error_code should be checked.

If the error_code is SNMP_ERROR_DPI_duplicateSubAgentIdentifier, then another subagent with the
same subagent OID has already sent an open DPI packet and the SA MIB OID saAllowDuplicateIDs is 2
(No). Either choose a different OID for this subagent, change saAllowDuplicateIDs to 1 (Yes) or stop the
other subagent that has the requested identifier. The fDPIparse() function would normally be called after
that to free the parsed DPI response packet. For information about saAllowDuplicateIDs, see "SNMP

Subagent MIB" in the Simple Network Management Protocol book.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

DPI_PACKET_LEN()--Get Length of DPI Packet●

fDPIparse()--Free Storage from DPI Packet Parse●

pDPIpacket()--Parse a DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 unsigned char *pack_p;

 pack_p = mkDPIopen("1.3.6.1.2.3.4.5",
 "Sample DPI sub-agent"
 0L,2L, DPI_NATIVE_CSET,
 0,(char *)0);

 if (pack_p) {
 /* Send packet to the agent. */
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

mkDPIregister()--Make a DPI Register Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIregister(
 unsigned short timeout,
 long int priority,
 char *group_p,
 char bulk_select);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIregister() function makes a Distributed Protocol Interface (DPI) register packet and returns a
pointer to the packet.

Parameters

timeout

(Input) The requested timeout in seconds. An agent often has a limit for this value, and it will use
that limit if this value is larger. The value zero has special meaning in the sense that it tells the
agent to use the timeout value that was specified in the DPI OPEN packet.

priority

(Input) The requested priority, relative to other DPI subagents. This field may contain any of these
values:

-1 The best available priority.

0 A better priority than the highest priority currently registered. Use this value to obtain the
SNMP DPI version 1 behavior.

nnn Any other positive value. You will receive that priority if available; otherwise, the next
best priority that is available.

group_p

(Input) A pointer to a NULL-terminated character string that represents the subtree to be registered.
This group ID must have a trailing dot.

bulk_select

(Input) Whether you want the agent to pass GETBULK on to the subagent or to map them into
multiple GETNEXT requests. The possible value follows:

DPI_BULK_NO Do not pass any GETBULK requests, but instead map a GETBULK request
into multiple GETNEXT requests.

Return Value

value The mkDPIregister() function was successful. The value returned is a pointer to the DPI
packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the
buffer (in network byte order) contain the length of the remaining packet. The
DPI_PACKET_LEN function can be used to calculate the total length of the DPI packet.

NULL The mkDPIregister() function was not successful.

If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a
serialized DPI packet.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol book.

Usage Notes

The mkDPIregister() function creates a serialized DPI REGISTER packet that can then be sent to the
SNMP agent.

The SNMP agent will send a DPI response packet back to the subagent with a code that can be used to
determine if the register request was successful. This will be one of the SNMP_ERROR_DPI_* return
codes found in <qtossapi.h>. Following receipt of this response packet, the subagent will need to call the
pDPIpacket() to parse the incoming DPI packet and to check the response packet error_code. Then,
fDPIparse() would normally be called to free the parsed DPI packet.

If the response from the SNMP agent is SNMP_ERROR_DPI_higherPriorityRegistered, then a DPI
subagent has already registered the same subtree at a higher priority than requested in this call. If so, this
subagent will be contained in the subagent Management Information Base (MIB), and using an appropriate
SNMP management application, you can determine its priority. You may want to consider requesting a
higher priority or even -1 (best available) for your subagent.

If the response from the SNMP agent is SNMP_ERROR_DPI_alreadyRegistered, then the requested
subtree registration was for a portion of the overall MIB that is supported by an SNMP agent directly or by
other system-implemented programs. Generally, registration of any subtree root, which would have the
effect of masking all or portions of these subtrees (if allowed to occur), is prohibited.

Not all protected subtrees are currently supplied on the iSeries server, although most are. If a subtree is
currently not supplied, then the first subagent that dynamically registers it will be allowed, and later
subagents will be disallowed. Refer to the "OS/400 SNMP Agent Set Processing and Supported SNMP

MIBs" in the Simple Network Management Protocol book for information on the MIB groups
currently supplied with OS/400.

Following are the protected subtrees and the associated MIB name:

1.3.6.1.2.1.1 System

1.3.6.1.2.1.2 Interfaces

1.3.6.1.2.1.3 Address translation

1.3.6.1.2.1.4 Internet Protocol

1.3.6.1.2.1.5 Internet Control Message Protocol

1.3.6.1.2.1.6 Transmission Control Protocol (TCP)

1.3.6.1.2.1.7 User Datagram Protocol (UDP)

1.3.6.1.2.1.10.7 Ethernet

1.3.6.1.2.1.10.9 Token ring

1.3.6.1.2.1.10.15 Fiber distributed data interface (FDDI)

1.3.6.1.2.1.10.32 Frame relay

1.3.6.1.2.1.11 SNMP

1.3.6.1.2.1.25 Host

1.3.6.1.3.6 Interface extensions

1.3.6.1.4.1.2.2.12 Subagent

1.3.6.1.4.1.2.2.1 Distributed Protocol Interface (DPI) (See the Internet standard RFC 1592, "Simple
Network Management Protocol Distributed Protocol Interface", Version 1.0.)

1.3.6.1.4.1.2.6.2.13 Advanced Peer-to-Peer Networking(R) (APPN(R))

1.3.6.1.4.1.2.6.4.5 NetView/6000 subagent computer system group

1.3.6.1.4.1.2.6.50 Client management

1.3.6.1.4.1.23.2.5 Internetwork Packet Exchange (IPX) protocol

1.3.6.1.4.1.23.2.19 Netware Link Services Protocol (NLSP)

1.3.6.1.4.1.23.2.20 Router Information Protocol (RIP) and Service Advertising Protocol (SAP)

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

DPI_PACKET_LEN()--Get Length of DPI Packet●

fDPIparse()--Free Storage from DPI Packet Parse●

pDPIpacket()--Parse a DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 unsigned char *pack_p;

 pack_p = mkDPIregister(0,0L,"1.3.6.1.2.3.4.5.",
 DPI_BULK_NO);
 if (pack_p) {
 /* Send packet to agent and await response. */
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

mkDPIresponse()--Make a DPI Response
Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIresponse(
 snmp_dpi_hdr *hdr_p,
 long int error_code,
 long int error_index,
 snmp_dpi_set_packet *packet_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIresponse() function makes a DPI response packet and returns a pointer to the packet.

Parameters

hdr_p

(Input) A pointer to the snmp_dpi_hdr structure of the DPI request to which this DPI packet will be
the response. The function uses this structure to copy the packet_id and the DPI version and release
so that the DPI packet is correctly formatted as a response.

error_code

(Input) The error code from the <qtossapi.h> file.

error_index

(Input) The first varbind in error. Counting starts at 1 for the first varbind. This field should be zero
if there is no error.

packet_p

(Input) A pointer to a chain of snmp_dpi_set_packet structures. This partial structure will be freed
by the mkDPIresponse() function. Therefore, on return, you cannot refer to it anymore. Pass a
NULL pointer if there are no varbinds to be returned.

Return Value

value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the
buffer (in network byte order) contain the length of the remaining packet. The
DPI_PACKET_LEN() function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a
serialized DPI packet.

For more information, see "SNMP Subagent Problem Determination" in the book Simple Network

Management Protocol book.

Usage Notes

The mkDPIresponse() function is used by a subagent to prepare a DPI RESPONSE packet to a GET,
GETNEXT, SET, COMMIT, or UNDO request. The resulting packet can be sent to the SNMP agent.

Unnecessary free operations may result in an MCH6902 (type 2). If this occurs, remove the call to
fDPIset().

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

DPI_PACKET_LEN()--Get Length of DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 unsigned char *pack_p;
 snmp_dpi_hdr *hdr_p;
 snmp_dpi_set_packet *set_p;
 long int num;

 hdr_p = pDPIpacket(pack_p); /* Parse incoming packet. */
 /* Assume it's in pack_p. */
 if (hdr_p) {
 /* Analyze packet, assume GET, no error. */
 set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,
 "1.3.6.1.2.3.4.5.", "1.0",

 SNMP_TYPE_Integer32,
 sizeof(num), &num);
 if (set_p) {
 pack_p = mkDPIresponse(hdr_p,
 SNMP_ERROR_noError, 0L, set_p);
 if (pack_p) {
 /* Send packet to subagent. */
 }
 }
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

mkDPIset()--Make a DPI Set Packet

 Syntax

 #include <qtossapi.h>

 snmp_dpi_set_packet *mkDPIset(
 snmp_dpi_set_packet *packet_p,
 char *group_p,
 char *instance_p,
 int value_type,
 int value_len,
 void *value_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIset() function makes a DPI set structure and adds it to a chained list of set structures if previous
calls have been made.

Parameters

packet_p

(Input) A pointer to a chain of snmp_dpi_set_packet structures. Pass a NULL pointer if this is the
first structure to be created. Typically, to handle multiple varbinds, this routine will be called
repeatedly with this parameter having as its value the result returned from the previous call. Each
new snmp_dpi_set_packet will be chained at the end.

group_p

(Input) A pointer to a NULL-terminated character string that represents the registered subtree that
caused this GET request to be passed to this DPI subagent. The subtree must have a trailing dot.

instance_p

(Input) A pointer to a NULL-terminated character string that represents the rest (the piece
following the subtree part) of the OBJECT IDENTIFIER of the variable instance being accessed.
Use of the term instance_p here should not be confused with an OBJECT instance because this
instance_p string may consist of a piece of the OBJECT IDENTIFIER plus the INSTANCE
IDENTIFIER.

value_type

(Input) The type of the value.

See the <qtossapi.h> file for a list of currently defined value types.

value_len

(Input) A signed integer that specifies the length (in bytes) of the value pointed to by the value_p
parameter. The length may be zero if the value is of type SNMP_TYPE_NULL.

value_p

(Input) A pointer to the actual value. This parameter may contain a NULL pointer if the value is of
(implicit or explicit) type SNMP_TYPE_NULL.

Return Value

value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the
buffer (in network byte order) contain the length of the remaining packet. The
DPI_PACKET_LEN() function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol book.

Usage Notes

The mkDPIset() function is used at the subagent side to prepare a chain of one or more
snmp_dpi_set_packet structures. This chain is then later used to create a DPI packet, using a call to
mkDPIresponse() or mkDPItrap(), which can then be sent to an SNMP agent. Each occurrence of an
snmp_dpi_set_packet corresponds to a varbind in a protocol data unit (PDU).

This function is unlike the other subagent APIs that have names beginning mkDPI, in that this function
does not make a DPI packet that can be sent directly. Hence, it returns a pointer to an snmp_dpi_set_packet
rather than a char * (as do the other mkDPI functions).

Note that if the nth (n > 1) call to this function fails for some reason, the pointer to the chain of previously
built snmp_dpi_set_packet structures will be lost unless the caller saves it.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

DPI_PACKET_LEN()--Get Length of DPI Packet●

fDPIset()--Free Storage from DPI Set Packet●

mkDPIresponse()--Make a DPI Response Packet●

mkDPItrap()--Make a DPI Trap Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 unsigned char *pack_p;
 snmp_dpi_hdr *hdr_p;
 snmp_dpi_set_packet *set_p;
 long int num;

 hdr_p = pDPIpacket(pack_p) /* Parse incoming packet. */
 /* Assume it's in pack_p. */
 if (hdr_p) {
 /* Analyze packet, assume GET, no error. */
 set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,
 "1.3.6.1.2.3.4.5.", "1.0",
 SNMP_TYPE_Integer32,
 sizeof(num), &num);
 if (set_p) {
 pack_p = mkDPIresponse(hdr_p,
 SNMP_ERROR_noError,
 0L, set_p);
 if (pack_p)
 /* Send packet to subagent. */
 }
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

mkDPItrap()--Make a DPI Trap Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPItrap(
 long int generic,
 long int specific,
 snmp_dpi_set_packet *packet_p,
 char *enterprise_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPItrap() function makes a DPI trap packet and returns a pointer to the packet.

Parameters

generic

(Input) The generic trap type. The range of this value is 0 through 6, where 6 (enterpriseSpecific) is
the type that is probably used most by DPI subagent programmers. The values 0 through 5 are
well-defined standard SNMP traps.

specific

(Input) The (enterprise) specific trap type. This can be any value that is valid for the Management
Information Base (MIB) subtrees that the subagent implements.

packet_p

(Input) A pointer to a chain of snmp_dpi_set_structures that represents the varbinds to be passed
with the trap. This partial structure will be freed by the mkDPItrap() function; therefore, you cannot
refer to it anymore on completion of the call. A NULL pointer means that there are no varbinds to
be included in the trap.

enterprise_p

(Input) A pointer to a NULL-terminated character string that represents the enterprise ID (OBJECT
IDENTIFIER) for which this trap is defined. A NULL pointer can be used. In this case, the
subagent Identifier as passed in the DPI OPEN packet will be used when the agent receives the DPI
TRAP packet.

Note: This OID must not end in a period (.).

Return Value

value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the
buffer (in network byte order) contain the length of the remaining packet. The
DPI_PACKET_LEN() function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a
serialized DPI packet.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol book.

Usage Notes

The mkDPItrap() function is used at the subagent side to prepare a DPI TRAP packet. The resulting packet
can be sent to the SNMP agent.

Unnecessary free operations may result in an MCH6902 (type 2). If this occurs, remove the call to
fDPIset().

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

DPI_PACKET_LEN()--Get Length of DPI Packet●

Example

 #include <qtossapi.h>
 unsigned char *pack_p;
 snmp_dpi_set_packet *set_p;
 long int num;

 set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,
 "1.3.6.1.2.3.4.5.", "1.0",
 SNMP_TYPE_Integer32,
 sizeof(num), &num);
 if (set_p) {
 pack_p = mkDPItrap(6,1,set_p, (char *)0);
 if (pack_p) {
 /* Send packet to subagent. */
 }

 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

mkDPIunregister()--Make a DPI Unregister
Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIunregister(
 char reason_code,
 char *group_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIunregister() function makes a DPI unregister packet and returns a pointer to the packet.

Parameters

reason_code

(Input) The reason for the unregister operation. See the <qtossapi.h> file for a list of defined
reason codes.

group_p

(Input) A pointer to a NULL-terminated character string that represents the subtree to be
unregistered. The subtree must have a trailing dot.

Return Value

pointer value The mkDPIunregister() function was successful. The value returned is a pointer to the
DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of
the buffer (in network byte order) contain the length of the remaining packet. The
DPI_PACKET_LEN() function can be used to calculate the total length of the DPI
packet.

NULL The mkDPIunregister() function was not successful.

If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a
serialized DPI packet.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol book.

Usage Notes

The mkDPIunregister() function creates a serialized DPI UNREGISTER packet that can then be sent to
the SNMP agent. Normally, the SNMP peer then sends a DPI RESPONSE packet back, which details if the
unregister was successful or not.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

DPI_PACKET_LEN()--Get Length of DPI Packet●

Example

 #include <qtossapi.h>
 unsigned char *pack_p;

 pack_p = mkDPIunregister(
 SNMP_UNREGISTER_goingDown,
 "1.3.6.1.2.3.4.5.");
 if (pack_p) {
 /* Send packet to agent or subagent and await response. */
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

pDPIpacket()--Parse a DPI Packet

 Syntax

 #include <qtossapi.h>

 snmp_dpi_hdr *pDPIpacket(unsigned char *packet_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The pDPIpacket() function parses a serialized Distributed Protocol Interface (DPI) packet to make it
available for processing by the subagent.

Parameters

packet_p

(Input) A pointer to a serialized (incoming) DPI packet.

Return Value

pointer value The pDPIpacket() function was successful. The value returned is a pointer to the DPI
packet.

If successful, a pointer to the snmp_dpi_hdr structure is returned. Storage for the
structure has been dynamically allocated, and it is the caller's responsibility to free it
when no longer needed. You can use the fDPIparse() function to free the structure.

NULL The pDPIpacket() function was not successful.

If unsuccessful, a NULL pointer is returned.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol (SNMP) Support book.

Usage Notes

The pDPIpacket() function parses the buffer that is pointed to by the packet_p parameter. It ensures that
the buffer contains a valid DPI packet and that the packet is for a DPI version and release that is supported
by the DPI functions in use.

Typical follow-on processing will examine the packet_type in the returned snmp_dpi_hdr, and take various
actions to process the various types of DPI packets that may arrive. A subagent would normally expect to
handle all the possible DPI packet types listed in <qtossapi.h>, except SNMPv2 types
(SNMP_DPI_GETBULK and SNMP_DPI_TRAPV2), and types sent only to SNMP agents
(SNMP_DPI_OPEN, SNMP_DPI_REGISTER, SNMP_DPI_TRAP, and SNMP_DPI_INFORM). Note that
a close or unregister packet can be sent from an agent to the subagent. And if the subagent receives an
are-you-there packet, it should build and send a response packet with the proper error_code.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

fDPIparse()--Free Storage from DPI Packet Parse●

pDPIpacket()--Parse a DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 unsigned char *pack_p;
 snmp_dpi_hdr *hdr_p;

 hdr_p = pDPIpacket(pack_p); /* Parse incoming packet. */
 /* Assume it's in pack_p. */
 if (hdr_p) {
 /* Analyze packet, and handle it. */
 switch(hdr_p->packet_type) {
 ...
 }
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

receiveDPIpacket()--Receive a DPI Packet from
the SNMP Agent

 Syntax

 #include <qtossapi.h>

 int receiveDPIpacket(
 sa_dataq_msg *dataq_msg_p,
 void *dpi_msg_p,
 unsigned long int *length_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The receiveDPIpacket() function obtains a copy of a DPI packet sent by the SNMP agent to the subagent,
and returns the DPI packet to the caller.

Authorities

Unlike the waitDPIpacket() function, this function does not actually refer to the subagent,s data queue.

Parameters

dataq_msg_p

(Input) A pointer to the data queue message that was sent to the subagent to tell it that a DPI packet
is pending. Note that the message must have already been received from the data queue by the
subagent and placed in a buffer. This is a pointer to that message in the buffer. Use of this function
assumes that the data queue messages are handled directly by the subagent,s own code. See
waitDPIpacket() for an alternative.

The sa_dataq_msg structure is defined in the <qtossapi.h> file.

dpi_msg_p

(I/O) A pointer to a buffer set up by the subagent that will contain the DPI serialized packet on
successful return from this routine.

length_p

(Output) A pointer to an integer that will contain the length of the DPI packet contained in the
subagent,s buffer on successful return.

Return Value

The return values are defined in the <qtossapi.h> file.

0 snmpsa_RC_ok

The call was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the
condition, and resubmit the subagent job. (This return code is only used when a more specific
return code is not available.)

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-3 snmpsa_RC_mismatch

A previous DPI packet was found. The subagent may want to process this packet or call
receiveDPIpacket() again to get the next packet. See any messages in the job log and correct any
errors that are indicated, then retry the operation.

-5 snmpsa_RC_nonagentmsg

The data queue message is not from the SNMP agent. (There is no DPI packet pending.)

-7 snmpsa_RC_parmerr

A parameter error occurred, probably a null pointer.

-8 snmpsa_RC_lengtherr

A parameter was an incorrect length.

-9 snmpsa_RC_buffer

Check the job log of the subagent for MCH3802. If found, the problem was likely due to agent
workload, and the subagent can retry the request. If a different exception is found, see any
messages in the job log, correct any errors that are indicated, and then retry the operation.

-12 snmpsa_RC_connectfirst

The subagent must connect to the SNMP agent before making this call.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol book.

Usage Notes

The receiveDPIpacket() function obtains a copy of a DPI packet sent to the subagent. The copy is placed
in a buffer owned by the subagent.

Use of this function by a subagent requires that the subagent programmer must wait for and receive the
prompting message on the subagent,s data queue. An alternative is to use the waitDPIpacket() function,
which handles the data queue for the subagent and also receives the DPI packet.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

waitDPIpacket()--Wait for a DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 #define MAX_MSG_SIZE 4096
 char dpibuff[MAX_MSG_SIZE],
 dataqbuff[80];
 int rc, len;

 /* Wait for message on data queue. When it arrives... */
 QRCVDTAQ(...)
 /* Handle exceptions. */

 rc = receiveDPIpacket(&dataqbuff[0],
 &dpibuff[0], &len);
 if (rc) {
 /* Handle exceptions. */
 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

sendDPIpacket()--Send a DPI Packet to the
SNMP Agent

 Syntax

 #include <qtossapi.h>

 int sendDPIpacket(void *dpimsg_p, int length);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The sendDPIpacket() function sends a copy of a Distributed Protocol Interface (DPI) packet to the SNMP
agent (on the same iSeries server as the subagent).

Parameters

dpimsg_p

(Input) A pointer to the serialized DPI packet.

length

(Input) The length in bytes of the DPI packet to be sent.

Return Value

The return values are defined in the <qtossapi.h> file.

0 snmpsa_RC_ok

The routine was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the
condition, and resubmit the subagent job. (This return code is only used when a more specific
return code is not available.)

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-4 snmpsa_RC_timedout

An internal time-out occurred. See the job log for further information about the exception.

-7 snmpsa_RC_parmerr

A parameter error occurred, probably a null pointer.

-8 snmpsa_RC_lengtherr

The length parameter may be incorrect, or the DPI packet to be sent is longer than the maximum
length supported, or the length specified is not a positive number. See any messages in the job log
and correct any errors that are indicated, then retry the operation.

-9 snmpsa_RC_buffer

If the subagent was trying to send a response to an SNMP agent request (for example, using get
packets), it cannot be sent. The subagent may continue. (The SNMP manager may retry the
original request.) If the subagent was trying to send a subagent-initiated packet (for example, using
open or register packets), then a dynamic buffer was unavailable, probably due to agent workload.
The subagent may try to send the packet again.

-11 snmpsa_RC_canttrap

A trap cannot be sent to the SNMP agent at this time, probably due to pending agent workload. The
subagent may retry.

-12 snmpsa_RC_connectfirst

The subagent must connect to the SNMP agent before making this call.

For more information, see "SNMP Subagent Problem Determination" in the >Simple Network Management

Protocol .

Usage Notes

The sendDPIpacket() function sends a copy of a DPI packet that was sent to the SNMP agent.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 unsigned char *pack_p;

 int rc;

 pack_p = mkDPIopen("1.3.6.1.2.3.4.5",
 "Sample DPI sub-agent"
 0L,2L, DPI_NATIVE_CSET,
 0,(char *)0);
 if (pack_p) {

 /* Send packet to the agent. */
 rc = sendDPIpacket(pack_p, DPI_PACKET_LEN(pack_p));

 }

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

waitDPIpacket()--Wait for a DPI Packet

 Syntax

 #include <qtossapi.h>

 int waitDPIpacket(
 long int timeout,
 void *dpimsgbuff_p,
 unsigned long int *length);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The waitDPIpacket() function waits for a message on the data queue with which the subagent has
previously connected (see connectSNMP()--Establish Connection with SNMP Agent). When a Distributed
Protocol Interface (DPI) packet arrives, this function receives the packet and copies it to a subagent buffer.

Authorities

So that the subagent can receive messages from the SNMP agent, the following conditions must be met:

The SNMP agent job must have write access to the data queue. If you suspect a problem with the
data queue, check the job log of the SNMP agent job (QTMSNMP in subsystem QSYSWRK) for
TCP4041 messages with reason code 001.

●

Parameters

timeout

(Input) The number of seconds that the subagent is willing to wait for a message (a call to this
function will block the subagent until a message is received or until this timeout is reached).

Possible values have the indicated meaning;

< 0 Unlimited wait

0 No wait. This causes an immediate return if a data queue message is not present.

> 0 The number of seconds to wait (maximum is 99999).

dpimsgbuff_p

(I/O) A pointer to a buffer that is owned by the subagent. This will contain the serialized packet

from the SNMP agent when snmpsa_RC_ok is returned. The maximum length of a DPI packet is
SNMP_DPI_BUFSIZE, defined in the <qtossapi.h> file. The buffer will contain the data queue
message itself if that message is not from the SNMP agent, and waitDPIpacket() will return
snmpsa_RC_nonagentmsg.

length

(Output) When snmpsa_RC_ok is returned, the length (in bytes) of the DPI packet received. When
snmpsa_RC_nonagentmsg is returned, the length of the data queue message. Otherwise, this value
is 0.

Return Value

The return values are defined in the <qtossapi.h> file.

0 snmpsa_RC_ok

The routine was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the
condition, and resubmit the subagent job. (This return code is only used when a more specific
return code is not available.)

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-3 snmpsa_RC_mismatch

A previous DPI packet was found. The subagent may want to process this packet or call the
receiveDPIpacket() function again to get the next packet.

-4 snmpsa_RC_timedout

No message was received within the specified timeout.

-5 snmpsa_RC_nonagentmsg

A data queue message arrived that is not from the SNMP agent.

-6 snmpsa_RC_dqinvalid

The subagent data queue or library is invalid. This refers to the data queue and library used in the
connectSNMP() call.

-7 snmpsa_RC_parmerr

A parameter error occurred, probably a null pointer.

-8 snmpsa_RC_lengtherr

A parameter was an incorrect length.

-9 snmpsa_RC_buffer

Check the job log of the subagent for MCH3802. If found, the problem was likely due to agent
workload, and the subagent can retry the request. If a different exception is found, see any
messages in the job log, correct any errors that are indicated, and then retry the operation.

-12 snmpsa_RC_connectfirst

The subagent must connect to the SNMP agent before making this call.

For more information, see "SNMP Subagent Problem Determination" in the Simple Network Management

Protocol book.

Usage Notes

The waitDPIpacket() function waits for a message on the data queue that the subagent specified on the
connectSNMP() call. When a data queue message is received, the corresponding DPI packet is copied to
the specified subagent buffer.

If a data queue message arrives that is not from the SNMP agent, then it is returned in the buffer and the
code snmpsa_RC_nonagentmsg is returned.

Related Information

The <qtossapi.h> file (see Header Files for UNIX-Type Functions)●

connectSNMP()--Establish Connection with SNMP Agent●

pDPIpacket()--Parse a DPI Packet●

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>
 #define MAX_LEN 4096
 #define waitTIMEOUT 300
 unsigned char *pack_p,
 dpimsgbuff[MAX_LEN];
 snmp_dpi_hdr *hdr_p;
 snmp_dpi_set_packet *set_p;
 long int num, length;

 for(;;) {

 rc = waitDPIpacket(waitTIMEOUT,

 &dpimsgbuff[0], length);

 if (rc<0) {
 /* Handle exceptions. */
 }

 else {
 hdr_p = pDPIpacket(pack_p); /* Parse incoming packet. */
 /* Assume it's in pack_p. */
 if (hdr_p) {
 /* Analyze packet, assume GET, no error. */
 set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,
 "1.3.6.1.2.3.4.5.", "1.0",
 SNMP_TYPE_Integer32,
 sizeof(num), &num);
 if (set_p) {
 pack_p = mkDPIresponse(hdr_p,
 SNMP_ERROR_noError, 0L, set_p);
 if (pack_p) {
 /* Send packet to subagent. */

 } /*end if*/
 } /*end if*/
 } /*end if*/
 } /*end else*/
 } /*end for*/

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Simple Network Management Protocol (SNMP)
Manager APIs
The SNMP Manager APIs are:

snmpGet() (Retrieve MIB objects) is used to get one or more management information base (MIB)
objects from an SNMP agent or subagent on a local or remote system.

●

snmpGetnext() (Retrieve next MIB object) is used to get the value of one or more management
information base (MIB) objects from an SNMP agent or subagent on a local or remote system.

●

snmpSet() (Set MIB objects) is used to set one or more management information base (MIB)
objects in an SNMP agent or subagent on a local or remote system.

●

Note: These functions use header (include) files from the library QSYSINC, which is optionally installable.
Make sure QSYSINC is installed on your system before using any of the functions. All of the SNMP
manager APIs use header file qtomeapi.h. You can see this source in source file H, member name
QTOMEAPI, in the QSYSINC library.

For examples that use the SNMP manager APIs, see Using SNMP Manager APIs--Example.

For information about trap support, see SNMP Trap Support.

SNMP managing applications typically use APIs to establish communication with local or remote SNMP
agents, and then call other APIs to retrieve or modify MIB objects managed by those agents. The OS/400
SNMP manager APIs accomplish both of these tasks within the same API. Three manager APIs are
provided to perform the SNMP GET, GETNEXT, and SET operations. In general, all three APIs are
blocked. That is, when the application calls these APIs, the API constructs a proper SNMP message,
delivers it to the proper SNMP agent, waits, decodes the response from the agent, and delivers the
information to the application. No processing occurs in the application until the API delivers this
information or times out. The communications mechanism between the manager APIs and agents uses
sockets. Therefore, both systems need to support sockets.

Application programmers who are writing network management applications can use the snmpGet(),
snmpGetnext(), and snmpSet() SNMP APIs to retrieve and set management information base (MIB) data so
that they can manage their systems and networks. Programmers should have a strong understanding of
network management, SNMP, and some transport protocol such as Transmission Control Protocol/Internet
Protocol (TCP/IP).

Top | UNIX-Type APIs | APIs by category

snmpGet()--Retrieve MIB Objects

 Syntax

 #include <qtomeapi.h>

 int snmpGet(snmppdu * pdu_ptr,
 char * host_ptr,
 unsigned long int time_out,
 char * comm_ptr,
 unsigned long int comm_len);

 Service Program Name: QTOMEAPI

 Default Public Authority: *USE

 Threadsafe: No

An SNMP managing application uses the snmpGet() function to get one or more management information
base (MIB) objects from an SNMP agent or subagent on a local or remote system.

Parameters

pdu_ptr

(Input) A pointer to a structure of the protocol data unit (PDU) type as defined in the
<qtomeapi.h> file.

This structure contains the PDU type (GET in this instance), the error status, the error index, and
the pointer to the varbind structure.

The varbind structure (found in the qtomeapi.h file) consists of the following:

struct _varBind{
 struct _varBind * next;
 char *oid; /* Null Terminated */
 unsigned char asn_type;
 int val_len;
 union {
 int * int_val;
 char * str_val;
 } val;
};

The fields for this structure are described as follows:

*next The pointer to the next varbind. This has to be NULL if it is the last varbind in the
list.

*oid The pointer to the OID being set or retrieved (depending on the operation).

asn_type The ASN type of the OID. This field must be set by the user only for the snmpSet
function. On the snmpGet or snmpGetnext function, it is returned by the API.

val_len For the snmpSet function, the user must set this to reflect the exact amount of data to
be written to the OID. On an snmpGet or snmpGetnext, the user must use this field to
indicate how much space to allocate for the value being retrieved. If the value coming
back is greater than the amount of space allocated, a return code of 1 is received.

val A union of either a pointer to the string data or a pointer to the integer data. This
space is allocated by the user.

host_ptr

(Input) A pointer to the character string that contains the Internet Protocol (IP) address.

This parameter can be stored in dotted decimal notation, that is, 9.130.38.217, or in host address
format, that is, oursystem.endicott.ibm.com. This parameter must contain printable characters only.

time_out

(Input) The time-out value.

This parameter is the amount of time in seconds that the management application is willing to wait
for the response PDU. The minimum value is 1, and the maximum is 100.

comm_ptr

(Input) A pointer to the character string that contains the community name.

This parameter contains a variable-length field that contains printable and nonprintable values.
Therefore, the user must supply the exact length of this value in another parameter.
EBCDIC-to-ASCII translation will not be done, and it is the responsibility of the managing
application to specify the community name in the correct notation for the SNMP agent system.

comm_len

(Input) The length of the community name.

This parameter is the exact length of the community name. The minimum value is 1, and the
maximum is 255.

Authorities

Service Program Authority

*USE

Return Value

The following are the possible return codes posted by the snmpGet() function:

0 API_RC_OK

snmpGet() was successful.

-4 API_RC_OUT_OF_MEMORY

There was not enough storage to complete this operation.

-5 API_RC_OUT_OF_BUFFERS

There were not enough internal buffers to continue.

-6 API_RC_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded.

-7 API_RC_SNMP_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded. This return code is equivalent to the
-6 return code.

-9 API_RC_SNMP_INVALID_OID

The OID specified in the varbind list is not valid. This return code is equivalent to the -112 return
code.

-10 API_RC_INVALID_VALUE

The specified value in the varbind is not valid.

-11 API_RC_INVALID_VALUE_REP

The specified value in the varbind is incorrectly represented.

-12 API_RC_DECODE_ERROR

The SNMP APIs were unable to decode the incoming PDU.

-13 API_RC_DECODE_ERROR

The SNMP APIs were unable to encode the PDU data structure.

-18 API_RC_TIMEOUT

A response to this request was not received within the allotted time-out value.

-21 API_RC_INVALID_PDU_TYPE

The PDU type was not recognized as one of the seven common PDU types.

-103 API_RC_INVALID_IP_ADDRESS

The IP address that was specified is not valid.

-104
API_RC_INVALID_COMMUNITY_NAME
_LENGTH

The community name length must be greater than 0 and less than 256.

-108 API_RC_INVALID_TIMEOUT_PARM

The time-out value must be greater than 0 and less than or equal to 100.

-110 API_RC_UNKNOWN_HOST

The host name or IP address that is specified is not known on the network.

-112 API_RC_INVALID_OID

The OID that is specified in the varbind list is not valid.

-113 API_RC_INVALID_PDU_POINTER

The pointer value to the PDU structure must be non-NULL.

-114 API_RC_INVALID_HOST_POINTER

The pointer value to the host address must be non-NULL.

-115 API_RC_INVALID_HOST_POINTER

The pointer value to the community name must be non-NULL.

-201 API_RC_SOCKET_ERROR

The APIs have detected a socket error and cannot continue.

-202 API_RC_NOT_OK

The APIs have detected an unknown error and cannot continue. The val_len field of the varbind
structure contains a value that is not valid.

1
API_RC_VAL_LEN_LESS_THAN_RETURNED_
VAL_LEN

The value being returned by the API is greater than the space allocated by the user.

241 API_RC_DOMAIN_ERROR

This is equivalent to an MCH6801 error--stating object domain error.

242 API_RC_INVALID_POINTER

This is equivalent to an MCH3601 error--referenced location in a space does not contain a
pointer.

243 API_RC_INVALID_PTR_TYPE

This is equivalent to an MCH3602 error-pointer type not valid for requested operation.

For more information, see "Problem Determination for SNMP Manager APIs" in the Simple Network

Management Protocol book.

Error Conditions

Following are the possible error statuses returned in the error status field of the PDU structure. These values
are returned by the SNMP agents.

0 API_SNMP_ERROR_noError

The function was successful.

1 API_SNMP_ERROR_tooBig

The agent could not fit the results of an operation into a single SNMP message.

2 API_SNMP_ERROR_noSuchName

The requested operation identified an unknown variable name.

3 API_SNMP_ERROR_badValue

The requested operation specified an incorrect syntax or value when the management application
tried to modify a variable.

5 API_SNMP_ERROR_genErr

A nonspecific error occurred while running this operation on the SNMP agent.

Usage Notes

The area where the data is returned is the responsibility of the user, not the API. To allocate storage, the
user may use the AddVarbind routine (see AddVarbind Routine). To deallocate storage, the user may use
the FreePdu routine (see FreePdu Routine).

You must use the correct PDU type on AddVarbind. It must match the operation on which you call. For
example, if you build a PDU wherein AddVarbind passes a PDU type of Set and then you call the snmpGet
operation using the PDU that you just created with Set, you will receive an error on the snmpGet call.

All character strings that are passed to the APIs must be null-terminated unless you explicitly provide the
length, if a length field is available.

If you are building a PDU to go to a remote agent, you must remember to do correct translation of strings.
The iSeries server is an EBCDIC system, whereas an SNMP agent on an RISC System/6000(R)

(RS/6000(R)) computer is an ASCII system. Therefore, you must provide string values as you would see
them on that system. For example, if you are sending a PDU to an RS/6000 system and the community
name is public, you would enter the community name string in hexadecimal, X'7075626C6963'. See the
data conversion APIs to convert data from EBCDIC to ASCII and vice versa.

These APIs are blocked, which means that on a call to the API a PDU is sent across a communications
protocol to an SNMP agent on a local or remote system. The call returns when a response has been received
from the agent or when the command times out. On the return, all returned data is placed in the appropriate
locations. You need do no further action to retrieve such data.

Related Information

The <qtomeapi.h> file (see Header Files for UNIX-Type Functions)●

snmpGetnext()--Retrieve Next MIB Object●

snmpSet()--Set MIB Objects●

Example

For examples that pertain to the SNMP manager APIs, see Using SNMP Manager APIs--Example.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

snmpGetnext()--Retrieve Next MIB Object

 Syntax

 #include <qtomeapi.h>

 int snmpGetnext(snmppdu * pdu_ptr,
 char * host_ptr,
 unsigned long int time_out,
 char * comm_ptr,
 unsigned long int comm_len);

 Service Program Name: QTOMEAPI

 Default Public Authority: *USE

 Threadsafe: No

An SNMP managing application uses the snmpGetnext() function to get the value of one or more
management information base (MIB) objects from an SNMP agent or subagent on a local or remote system.
The snmpGetnext() function gets the value of the object instance that is next in lexicographic order.

Parameters

pdu_ptr

(Input) A pointer to a structure of the protocol data unit (PDU) type as defined in the
<qtomeapi.h> file.

This structure contains the PDU type (GET NEXT in this instance), the error status, the error index,
and the pointer to the varbind structure.

The varbind structure (found in the qtomeapi.h file) consists of the following:

struct _varBind{
 struct _varBind * next;
 char *oid; /* Null Terminated */
 unsigned char asn_type;
 int val_len;
 union {
 int * int_val;
 char * str_val;
 } val;
};

The fields for this structure are described as follows:

*next The pointer to the next varbind. This has to be NULL if it is the last varbind in the
list.

*oid The pointer to the OID being set or retrieved (depending on the operation).

asn_type The ASN type of the OID. This field must be set by the user only for the snmpSet
function. On the snmpGet or snmpGetnext function, it is returned by the API.

val_len For the snmpSet function, the user must set this to reflect the exact amount of data to
be written to the OID. On an snmpGet or snmpGetnext, the user must use this field to
indicate how much space to allocate for the value being retrieved. If the value coming
back is greater than the amount of space allocated, a return code of 1 is received.

val A union of either a pointer to the string data or a pointer to the integer data. This
space is allocated by the user.

host_ptr

(Input) A pointer to the character string that contains the Internet Protocol (IP) address.

This parameter can be stored in dotted decimal notation, that is, 9.130.38.217, or in host address
format, that is, oursystem.endicott.ibm.com. This parameter must contain printable characters only.

time_out

(Input) The time-out value.

This parameter is the amount of time in seconds that the management application is willing to wait
for the response PDU. The minimum value is 1, and the maximum is 100.

comm_ptr

(Input) A pointer to the character string that contains the community name.

This parameter contains a variable-length field that contains printable and nonprintable values.
Therefore, the user must supply the exact length of this value in another parameter.
EBCDIC-to-ASCII translation will not be done, and it is the responsibility of the managing
application to specify the community name in the correct notation for the SNMP agent system.

comm_len

(Input) The length of the community name.

This parameter is the exact length of the community name. The minimum value is 1, and the
maximum is 255.

Authorities

Service Program Authority

*USE

Return Value

The following are the possible return codes posted by the snmpGetnext() function:

0 API_RC_OK

snmpGetnext() was successful.

-4 API_RC_OUT_OF_MEMORY

There was not enough storage to complete this operation.

-5 API_RC_OUT_OF_BUFFERS

There were not enough internal buffers to continue.

-6 API_RC_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded.

-7 API_RC_SNMP_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded. This return code is equivalent to the
-6 return code.

-9 API_RC_SNMP_INVALID_OID

The OID specified in the varbind list is not valid. This return code is equivalent to the -112 return
code.

-10 API_RC_INVALID_VALUE

The specified value in the varbind is not valid.

-11 API_RC_INVALID_VALUE_REP

The specified value in the varbind is incorrectly represented.

-12 API_RC_DECODE_ERROR

The SNMP APIs were unable to decode the incoming PDU.

-13 API_RC_DECODE_ERROR

The SNMP APIs were unable to encode the PDU data structure.

-18 API_RC_TIMEOUT

A response to this request was not received within the allotted time-out value.

-21 API_RC_INVALID_PDU_TYPE

The PDU type was not recognized as one of the seven common PDU types.

-103 API_RC_INVALID_IP_ADDRESS

The IP address that was specified is not valid.

-104
API_RC_INVALID_COMMUNITY_NAME
_LENGTH

The community name length must be greater than 0 and less than 256.

-108 API_RC_INVALID_TIMEOUT_PARM

The time-out value must be greater than 0 and less than or equal to 100.

-110 API_RC_UNKNOWN_HOST

The host name or IP address that is specified is not known on the network.

-112 API_RC_INVALID_OID

The OID that is specified in the varbind list is not valid.

-113 API_RC_INVALID_PDU_POINTER

The pointer value to the PDU structure must be non-NULL.

-114 API_RC_INVALID_HOST_POINTER

The pointer value to the host address must be non-NULL.

-115 API_RC_INVALID_HOST_POINTER

The pointer value to the community name must be non-NULL.

-201 API_RC_SOCKET_ERROR

The APIs have detected a socket error and cannot continue.

-202 API_RC_NOT_OK

The APIs have detected an unknown error and cannot continue. The val_len field of the varbind
structure contains a value that is not valid.

1
API_RC_VAL_LEN_LESS_THAN_RETURNED_
VAL_LEN

The value being returned by the API is greater than the space allocated by the user.

241 API_RC_DOMAIN_ERROR

This is equivalent to an MCH6801 error--stating object domain error.

242 API_RC_INVALID_POINTER

This is equivalent to an MCH3601 error--referenced location in a space does not contain a
pointer.

243 API_RC_INVALID_PTR_TYPE

This is equivalent to an MCH3602 error-pointer type not valid for requested operation.

For more information, see "Problem Determination for SNMP Manager APIs" in the Simple Network

Management Protocol book.

Error Conditions

Following are the possible error statuses returned in the error status field of the PDU structure. These values
are returned by the SNMP agents.

0 API_SNMP_ERROR_noError

The function was successful.

1 API_SNMP_ERROR_tooBig

The agent could not fit the results of an operation into a single SNMP message.

2 API_SNMP_ERROR_noSuchName

The requested operation identified an unknown variable name.

3 API_SNMP_ERROR_badValue

The requested operation specified an incorrect syntax or value when the management application
tried to modify a variable.

5 API_SNMP_ERROR_genErr

A nonspecific error occurred while running this operation on the SNMP agent.

Usage Notes

The area where the data is returned is the responsibility of the user, not the API. To allocate storage, the
user may use the AddVarbind routine (see AddVarbind Routine). To deallocate storage, the user may use
the FreePdu routine (see FreePdu Routine).

You must use the correct PDU type on AddVarbind. It must match the operation on which you call. For
example, if you build a PDU wherein AddVarbind passes a PDU type of Set and then you call the snmpGet
operation using the PDU that you just created with Set, you will receive an error on the snmpGet call.

All character strings that are passed to the APIs must be null-terminated unless you explicitly provide the
length, if a length field is available.

If you are building a PDU to go to a remote agent, you must remember to do correct translation of strings.
The iSeries server is an EBCDIC system, whereas an SNMP agent on an RISC System/6000 (RS/6000)
computer is an ASCII system. Therefore, you must provide string values as you would see them on that
system. For example, if you are sending a PDU to an RS/6000 system and the community name is
public, you would enter the community name string in hexadecimal, X'7075626C6963'. See the data
conversion APIs to convert data from EBCDIC to ASCII and vice versa.

These APIs are blocked, which means that on a call to the API a PDU is sent across a communications
protocol to an SNMP agent on a local or remote system. The call returns when a response has been received
from the agent or when the command times out. On the return, all returned data is placed in the appropriate
locations. You need do no further action to retrieve such data.

Related Information

The <qtomeapi.h> file (see Header Files for UNIX-Type Functions)●

snmpGet()--Retrieve MIB Objects●

snmpSet()--Set MIB Objects●

Example

For examples that pertain to the SNMP manager APIs, see Using SNMP Manager APIs--Example.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

snmpSet()--Set MIB Objects

 Syntax

 #include <qtomeapi.h>

 int snmpSet(snmppdu * pdu_ptr,
 char * host_ptr,
 unsigned long int time_out,
 char * comm_ptr,
 unsigned long int comm_len);

 Service Program Name: QTOMEAPI

 Default Public Authority: *USE

 Threadsafe: No

An SNMP managing application uses the snmpSet() function to set one or more management information
base (MIB) objects in an SNMP agent or subagent on a local or remote system.

Parameters

pdu_ptr

(Input) A pointer to a structure of the protocol data unit (PDU) type as defined in the
<qtomeapi.h> file.

This structure contains the PDU type (SET in this instance), the error status, the error index, and the
pointer to the varbind structure.

The varbind structure (found in the qtomeapi.h file) consists of the following:

struct _varBind{
 struct _varBind * next;
 char *oid; /* Null Terminated */
 unsigned char asn_type;
 int val_len;
 union {
 int * int_val;
 char * str_val;
 } val;
};

The fields for this structure are described as follows:

*next The pointer to the next varbind. This has to be NULL if it is the last varbind in the
list.

*oid The pointer to the OID being set or retrieved (depending on the operation).

asn_type The ASN type of the OID. This field must be set by the user only for the snmpSet
function. On the snmpGet or snmpGetnext function, it is returned by the API.

val_len For the snmpSet function, the user must set this to reflect the exact amount of data to
be written to the OID. On an snmpGet or snmpGetnext, the user must use this field to
indicate how much space to allocate for the value being retrieved. If the value coming
back is greater than the amount of space allocated, a return code of 1 is received.

val A union of either a pointer to the string data or a pointer to the integer data. This
space is allocated by the user.

host_ptr

(Input) A pointer to the character string that contains the Internet Protocol (IP) address.

This parameter can be stored in dotted decimal notation, that is, 9.130.38.217, or in host address
format, that is, oursystem.endicott.ibm.com. This parameter must contain printable characters only.

time_out

(Input) The time-out value.

This parameter is the amount of time in seconds that the management application is willing to wait
for the response PDU. The minimum value is 1, and the maximum is 100.

comm_ptr

(Input) A pointer to the character string that contains the community name.

This parameter contains a variable-length field that contains printable and nonprintable values.
Therefore, the user must supply the exact length of this value in another parameter.
EBCDIC-to-ASCII translation will not be done, and it is the responsibility of the managing
application to specify the community name in the correct notation for the SNMP agent system.

comm_len

(Input) The length of community name.

This parameter is the exact length of the community name. The minimum value is 1, and the
maximum is 255.

Authorities

Service Program Authority

*USE

Return Value

The following are the possible return codes posted by the snmpSet() function:

0 API_RC_OK

snmpSet() was successful.

-4 API_RC_OUT_OF_MEMORY

There was not enough storage to complete this operation.

-5 API_RC_OUT_OF_BUFFERS

There were not enough internal buffers to continue.

-6 API_RC_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded.

-7 API_RC_SNMP_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded. This return code is equivalent to the
-6 return code.

-9 API_RC_SNMP_INVALID_OID

The OID specified in the varbind list is not valid. This return code is equivalent to the -112 return
code.

-10 API_RC_INVALID_VALUE

The specified value in the varbind is not valid.

-11 API_RC_INVALID_VALUE_REP

The specified value in the varbind is incorrectly represented.

-12 API_RC_DECODE_ERROR

The SNMP APIs were unable to decode the incoming PDU.

-13 API_RC_DECODE_ERROR

The SNMP APIs were unable to encode the PDU data structure.

-18 API_RC_TIMEOUT

A response to this request was not received within the allotted time-out value.

-21 API_RC_INVALID_PDU_TYPE

The PDU type was not recognized as one of the seven common PDU types.

-103 API_RC_INVALID_IP_ADDRESS

The IP address that was specified is not valid.

-104
API_RC_INVALID_COMMUNITY_NAME
_LENGTH

The community name length must be greater than 0 and less than 256.

-108 API_RC_INVALID_TIMEOUT_PARM

The time-out value must be greater than 0 and less than or equal to 100.

-110 API_RC_UNKNOWN_HOST

The host name or IP address that is specified is not known on the network.

-112 API_RC_INVALID_OID

The OID that is specified in the varbind list is not valid.

-113 API_RC_INVALID_PDU_POINTER

The pointer value to the PDU structure must be non-NULL.

-114 API_RC_INVALID_HOST_POINTER

The pointer value to the host address must be non-NULL.

-115 API_RC_INVALID_HOST_POINTER

The pointer value to the community name must be non-NULL.

-201 API_RC_SOCKET_ERROR

The APIs have detected a socket error and cannot continue.

-202 API_RC_NOT_OK

The APIs have detected an unknown error and cannot continue. The val_len field of the varbind
structure contains a value that is not valid.

1
API_RC_VAL_LEN_LESS_THAN_RETURNED_
VAL_LEN

The value being returned by the API is greater than the space allocated by the user.

241 API_RC_DOMAIN_ERROR

This is equivalent to an MCH6801 error--stating object domain error.

242 API_RC_INVALID_POINTER

This is equivalent to an MCH3601 error--referenced location in a space does not contain a
pointer.

243 API_RC_INVALID_PTR_TYPE

This is equivalent to an MCH3602 error--pointer type not valid for requested operation.

For more information, see "Problem Determination for SNMP Manager APIs" in the Simple Network

Management Protocol book.

Error Conditions

Following are the possible error statuses returned in the error status field of the PDU structure. These values
are returned by the SNMP agents.

0 API_SNMP_ERROR_noError

The function was successful.

1 API_SNMP_ERROR_tooBig

The agent could not fit the results of an operation into a single SNMP message.

2 API_SNMP_ERROR_noSuchName

The requested operation identified an unknown variable name.

3 API_SNMP_ERROR_badValue

The requested operation specified an incorrect syntax or value when the management application
tried to modify a variable.

5 API_SNMP_ERROR_genErr

A nonspecific error occurred while running this operation on the SNMP agent.

Usage Notes

The area where the data is returned is the responsibility of the user, not the API. To allocate storage, the
user may use the AddVarbind routine (see AddVarbind Routine). To deallocate storage, the user may use
the FreePdu routine (see FreePdu Routine).

You must use the correct PDU type on AddVarbind. It must match the operation on which you call. For
example, if you build a PDU wherein AddVarbind passes a PDU type of Set and then you call the snmpGet
operation using the PDU that you just created with Set, you will receive an error on the snmpGet call.

All character strings that are passed to the APIs must be null-terminated unless you explicitly provide the
length, if a length field is available.

If you are building a PDU to go to a remote agent, you must remember to do correct translation of strings.
The iSeries server is an EBCDIC system, whereas an SNMP agent on an RISC System/6000 (RS/6000)
computer is an ASCII system. Therefore, you must provide string values as you would see them on that
system. For example, if you are sending a PDU to an RS/6000 system and the community name is
public, you would enter the community name string in hexadecimal, X'7075626C6963'. See the data
conversion APIs to convert data from EBCDIC to ASCII and vice versa.

These APIs are blocked, which means that on a call to the API a PDU is sent across a communications
protocol to an SNMP agent on a local or remote system. The call returns when a response has been received
from the agent or when the command times out. On the return, all returned data is placed in the appropriate
locations. You need do no further action to retrieve such data.

Related Information

The <qtomeapi.h> file (see Header Files for UNIX-Type Functions)●

snmpGet()--Retrieve MIB Objects●

snmpGetnext()--Retrieve Next MIB Object●

Example

For examples that pertain to the SNMP manager APIs, see Using SNMP Manager APIs--Example.

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category

Using SNMP Manager APIs--Example
The examples in this topic provide two small routines that may aid in the use of several SNMP manager
APIs. In addition, a sample snmpGet loop is provided to show the use of the two sample programs and its
relation to an snmpGet call.

These examples are for the SNMP manager APIs snmpGet, snmpSet, and snmpGetnext.

See Code disclaimer information for information pertaining to code examples.

AddVarbind Routine

This routine is used to create an initial protocol data unit (PDU), and subsequent calls will add varbinds to
that PDU.

The value of this routine is that you will be able to create PDUs and add varbinds to those PDUs. The
burden of storage allocation for each varbind and its values is removed from you, as is pointer maintenance
on the varbinds. Remember that you need to deallocate any dynamic storage when you are done with it. The
FreePdu routine (see page FreePdu Routine) is an easy way to do this. The AddVarbind sample code
follows:

#include <qtomeapi.h>

int AddVarbind(snmppdu **pdu, char * oid, value v, unsigned
char pdu_type, unsigned char asn_type)
{

 varBind * t; /* Varbind pointer. */
 int str_len,i;

 switch (pdu_type) { /* Check to make sure that*/
 case GET_PDU_TYPE: /* the PDU type is a known*/
 case SET_PDU_TYPE: /* value. If not, the */
 case GETNEXT_PDU_TYPE: break; /* you may want to set a */
 defaults: return(-2005); /* return code value of */
 /* your liking (for */
 } /* example, -2005). */

 if (pdu[0] == NULL ||
 pdu[0] == 0 ||
 pdu[0] == '\0')
 { /* Check if PDU is null (meaning new PDU).*/
 pdu[0] = (snmppdu *) malloc(sizeof(snmppdu));
 /* Allocate storage for the PDU. */
 memset((snmppdu *) pdu[0],0,sizeof(pdu[0]));
 /* Initialize the PDU to zeros. */
 pdu[0]->pdu_type = pdu_type;
 /* Initialize the PDU type. */
 pdu[0]->varbind = (varBind *) malloc(sizeof(varBind));
 /* Allocate storage for the varbind. */
 str_len = strlen(oid);
 /* Set the length of the OID. */

 if (str_len > API_MAX_OID_SIZE) return(-2000);
 /* If OID length is not valid return. */
 pdu[0]->varbind->oid =

 (char *) malloc(API_MAX_OID_SIZE+1);
 strcpy(pdu[0]->varbind->oid,oid); /* Copy the
OID.*/
 pdu[0]->varbind->oid[str_len] = '\0';
 /*Null terminate OID.*/
 pdu[0]->varbind->next = NULL; /* Nullify next
pointer.*/
 /* This signifies last varbind.*/
 t = pdu[0]->varbind; /* Set temporary pointer to
varbind.*/
 t->val.str_val =
 (char *) malloc(API_MAX_VALUE_SIZE+1); /*Allocate storage */
 /* for the value of the OID.*/
/***/
/* Note: This sample code shows a malloc of the maximum value size */
/* plus 1 for null termination. It would be in your best interest */
/* to allocate only the amount of the actual value, plus 1. This */
/* reduces the amount of space allocated on each PDU. */
/***/
 }
 else
 {
 if (pdu[0]->pdu_type != pdu_type) \keyword{return(-2001);
 /* If this is not the initial call to */
 /* add a varbind, then check to make */
 /* sure the PDU type of this call */
 /* matches the original. */
 t = pdu[0]->varbind;
 /* Store temporary pointer to this varbind.*/
 i = 0; /* Initialize loop variable. */

 while (t->next != NULL) /* Loop until you locate last varbind.*/
 {
 t = t->next;

 i++;

 }

 if (i > 100 /* MAX_NUM... */) \keyword{return(-2002);
 /* Return if you exceed maximum varbinds. */
 t->next = (varBind *) malloc(sizeof(varBind));
 /* Allocate storage for this varbind. */
 t = t->next; /* Set new temporary varbind pointer. */
 str_len = strlen(oid); /* Set length of OID. */

 if (str_len > API_MAX_OID_SIZE) return(-2000);
 /* If OID length exceed maximum, return. */
 t->oid = (char *) malloc(API_MAX_OID_SIZE+1);
 /* Allocate storage for the OID. */
 strcpy(t->oid,oid);
 /* Copy OID to storage. */

 t->oid[str_len] = '\0';
 /* Null terminate the OID. */
 t->val.str_val = (char *) malloc(API_MAX_VALUE_SIZE+1);
 /* Allocate storage to hold value. */
 t->val_len = API_MAX_VALUE_SIZE+1;
/**/
/* Note: This sample code shows a malloc of the maximum value size */
/* plus 1 for null termination. It would be in your best interest */
/* to allocate only the amount of the actual value, plus 1. This */
/* reduces the amount of space allocated on each PDU. */
/**/
 t->next = NULL;
 /* Nullify next varbind pointer */
 } /* signifying the last varbind. */

 if (pdu_type == SET_PDU_TYPE) /* For sets only */
 {
 t->asn_type = asn_type; /* Save ASN type */

 switch (asn_type) {
 case API_ASN_OCTET_STRING: /* All string types */
 case API_ASN_OBJECT_IDENTIFIER:
 case API_ASN_IpAddress:
 case API_ASN_Opaque:
 str_len = strlen(v.str_val); /* Store length */
 strcpy(t->val.str_val,v.str_val); /* Copy string */
 t->val.str_val[str_len] = '\0';
 /* Null terminate */
 t->val_len = str_len; /* Save length */
 break;
 case API_ASN_INTEGER:
 case API_ASN_Counter:
 case API_ASN_Gauge:
 case API_ASN_TimeTicks:
 *t->val.int_val = *v.int_val; /* Save integer value */
 t->val_len = sizeof(int); /* Save length of */
 break; /* an integer. */
 default: return(-2003);
 }
 }
 return(API_RC_OK);
}

FreePdu Routine

This routine is used to free all the dynamically allocated storage from AddVarbind.

The value of this routine is that you can free all the dynamically allocated (user domain) storage with one
call. The FreePdu sample code follows:

#include <qtomeapi.h>

void FreePdu(snmppdu * pdu) /* Pass in pointer to PDU. */

{
 varBind * vb, *t; /* Define pointers to varbinds. */

 vb = pdu->varbind; /* Set first varbind pointer. */
 while (vb != NULL){ /* Loop as long as varbinds exist. */
 t = vb; /* Save current varbind pointer. */
 vb = vb->next; /* Pointer to next varbind. */
 free(t->oid); /* Free storage allocated for OID. */
 free(t->val.str_val); /* Free storage allocated for value. */
 free(t); /* Free storage allocated for temporary varbind. */
 }
 free(pdu); /* Free storage allocated for PDU. */
}

snmpGet Call Example

When you use the following example to call the snmpGet, snmpSet, or snmpGetnext API, it is important to
note the following:

The area where the data is returned is the responsibility of the user, not the API. To allocate
storage, the user may use the AddVarbind routine (see AddVarbind Routine). To deallocate
storage, the user may use the FreePdu routine (see FreePdu Routine).

●

You must use the correct PDU type on AddVarbind. It must match the operation on which you call.
For example, if you build a PDU wherein AddVarbind passes a PDU type of Set and then you call
the snmpGet operation using the PDU that you just created with Set, you will receive an error on
the snmpGet call.

●

All character strings that are passed to the APIs must be null-terminated unless you explicitly
provide the length, if a length field is available.

●

If you are building a PDU to go to a remote agent, you must remember to do correct translation of
strings. The iSeries server is an EBCDIC system, whereas an SNMP agent on an RISC
System/6000 (RS/6000) computer is an ASCII system. Therefore, you must provide string values
as you would see them on that system. For example, if you are sending a PDU to an RS/6000
system and the community name is public, you would enter the community name string in
hexadecimal, X'7075626C6963'.

●

These APIs are blocked, which means that on a call to the API a PDU is sent across a
communications protocol to an SNMP agent on a local or remote system. The call returns when a
response has been received from the agent or when the command times out. On the return, all
returned data is placed in the appropriate locations. You need do no further action to retrieve such
data.

●

The snmpGet sample code follows:

#include <qtomeapi.h>

void main() {

typedef union

 {
 int * int_val;
 char * str_val;
 } value; /* Value typedef. */

 snmppdu *pdu; /* PDU pointer. */
 value v; /* Value container. */
 int rc; /* Return code. */
 char community_name[120]; /* Community container. */

 pdu = NULL; /* Nullify PDU pointer. */
 rc = AddVarbind(&pdu, /* Add varbind with */
 "1.3.6.1.2.1.1.1.0", /* OID, value, type of */
 v, /* PDU this is for, ASN */
 GET_PDU_TYPE, /* type. PDU pointer */
 0); /* is set to non-null. */
 if (rc < 0) { /* Check error code user */
 printf("Error: %d\n",rc); /* defined here. Sample */
 exit(1); /* is print return code. */
 }

 rc = AddVarbind(&pdu, /* Add second varbind. */
 "1.3.6.1.2.1.1.1.1", /* PDU pointer is now */
 v, /* non-null after 1st */
 GET_PDU_TYPE, /* invocation of Add- */
 0); /* Varbind. */
 if (rc < 0) {
 printf("Error: %d\n",rc); /* Again, check return code.*/
 exit(1);
 }
 strcpy(community_name,"public"); /* Set community name. */

 rc = snmpGet(pdu, /* Invoke operation. */
 "system_name_of_snmp_agent_system", /* Hostname. */
 10, /* Time-out value. */
 community_name, /* Pointer to community name. */
 6); /* Correct length of */
 } /* community name. */

Top | UNIX-Type APIs | APIs by category

SNMP Trap Support
You can monitor for unsolicited SNMP trap messages by using the SNMP trap support. These trap messages may contain
helpful data for managing a network.

By using the OS/400 SNMP manager, it is possible to deliver SNMP traps to data queues. All traps that are received on an
iSeries server can be routed to user-defined data queues as shown in Figure: SNMP Trap Support. Your applications
should monitor the data queue to receive trap information.

SNMP Trap Support

Configuring Trap Support

SNMP trap support uses the exit point QIBM_QZCA_SNMPTRAP and a data queue that you define. To use SNMP trap
support, do the following:

Use the Work with Registration Information (WRKREGINF) command to determine if the
QIBM_QZCA_SNMPTRAP exit point exists on your system (see Figure 1-3). If the exit point does not exist,
create and register the exit point by using this command:

 CALL PGM(QUSRGPT)
 PARM('QIBM_QZCA_SNMPTRAP '
 'ZCAT0100' X'00000000' X'00000000')

Note: The first parameter must be 20 characters long.

1.

Define a data queue of 32780 bytes. For example, to define a data queue that is called MYQUEUE in library
QGPL, enter:

 CRTDTAQ DTAQ(QGPL/MYQUEUE) MAXLEN(32780)

2.

Register the exit program and exit program data with the QIBM_QZCA_SNMPTRAP exit point by using the
Work with Registration Information (WRKREGINF) command. For example, see Figure: Work with Registration
Information (WRKREGINF) Display through Figure 1-6.

3.

This configuration only registers the data queue name. You may want to add the program name and library that will use
this data queue even though this information is not used by the system.

Figure: Work with Registration Information (WRKREGINF) Display

+--+
| Work with Registration Information
|
|
|
| Type options, press Enter.
|
| 5=Display exit point 8=Work with exit programs
|
|
|
| Exit
|
| Exit Point
|
| Opt Point Format Registered Text
|
| QIBM_QTA_TAPE_TMS TMS00200 *YES
|
| QIBM_QTF_TRANSFER TRAN0100 *YES Original File Transfer
Functi |
| QIBM_QVP_PRINTERS PRNT0100 *YES Original Virtual Print
Server |
| QIBM_QZCA_ADDC ZCAA0100 *YES Add Client exit point
|
| QIBM_QZCA_REFC ZCAF0100 *YES Refresh Client
Information ex |
| QIBM_QZCA_RMVC ZCAR0100 *YES Remove Client exit point
|
| 8 QIBM_QZCA_SNMPTRAP ZCAT0100 *YES
|
| QIBM_QZCA_UPDC ZCAU0100 *YES Update Client Information
exi |
| QIBM_QZDA_INIT ZDAI0100 *YES Database Server - entry
|
| QIBM_QZDA_NDB1 ZDAD0100 *YES Database Server -
database a |
| QIBM_QZDA_NDB1 ZDAD0200 *YES Database Server -
database a |
|
More... |
| Command
|
| ===>
|
| F3=Exit F4=Prompt F9=Retrieve F12=Cancel
|
+--+

Figure: Work with Exit Programs Display is reached using Option 8 from the display shown in the Figure above.

Figure: Work with Exit Programs Display

+--+
| Work with Exit Programs
|

|
|
| Exit point: QIBM_QZCA_SNMPTRAP Format: ZCAT0100
|
|
|
| Type options, press Enter.
|
| 1=Add 4=Remove 5=Display 10=Replace
|
|
|
| Exit
|
| Program Exit
|
| Opt Number Program Library
|
| 1 TRAPCHECK QGPL
|
|
|
| (No exit programs found.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Command
|
| ===>
|
| F3=Exit F4=Prompt F5=Refresh F9=Retrieve F12=Cancel
|
+--+

Figure: Add Exit Programis reached using Option 1 from the Figure above and pressing F10 for additional parameters.

Figure: Add Exit Program - Display 1 of 2

+--+
| Add Exit Program (ADDEXITPGM)
|
|
|
| Type choices, press Enter.
|
|
|

| Exit point > QIBM_QZCA_SNMPTRAP
|
| Exit point format > ZCAT0100 Name
|
| Program number > 1 1-2147483647, *LOW, *HIGH
|
| Program > TRAPCHECK Name
|
| Library > QGPL Name, *CURLIB
|
| Text 'description' Reroute traps
|
|
|
|
|
| Additional Parameters
|
|
|
| Replace existing entry > *NO *YES, *NO
|
| Create exit point *NO *YES, *NO
|
|
|
|
|
|
|
|
|
|
More... |
| F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this
display |
| F24=More keys
|
+--+

Figure: Add Exit Program - Display 2 of 2

+--+
| Add Exit Program (ADDEXITPGM)
|
|
|
| Type choices, press Enter.
|
|
|
| Exit program data:
|
| Coded character set ID *NONE Number, *NONE, *JOB
|
| Length of data *CALC 0-2048, *CALC
|
| Program data QGPL/MYQUEUE
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Bottom |
| F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this
display |
| F24=More keys
|
+--+

Notes:

The program data field on the Add Exit Program (ADDEXITPGM) display contains the library name and the data
queue name that will be used by the trap manager. This data must not exceed 21 bytes.

1.

The exit program and library do not have to exist when they are added to the exit point.2.

The format for the ZCAT0100 trap data queue entry follows. For details about the SNMP trap, refer to the Internet
standard for the trap message described in RFC 1155 and RFC 1157. The values for the object type field can be
found in OS/400 library QSYSINC, file H, member QTOMEAPI.

Offset

Type FieldDec Hex

0 0 CHAR(10) Entry type (always *SNMPTRAP)

10 A CHAR(2) Entry ID (currently 01)

12 C BINARY(4) Version (This is the start of the trap header. All
displacements are from the start of the trap
header.)

16 10 BINARY(4) Length of community name

20 14 BINARY(4) Displacement to community name

24 18 BINARY(4) Length of enterprise object ID

28 1C BINARY(4) Displacement to enterprise object ID

32 20 BINARY(4) Length of agent address

36 24 BINARY(4) Displacement to agent address

40 28 BINARY(4) Generic trap type

44 2C BINARY(4) Specific trap code

3.

48 30 BINARY(4) Time stamp

52 34 BINARY(4) Number of variable bindings

56 38 BINARY(4) Displacement to first variable binding

Note: An array of variable bindings follows.

These fields
repeat for each
variable binding

BINARY(4) Length of object name

BINARY(4) Displacement to object name

BINARY(4) Length of value

BINARY(4) Displacement to value

BINARY(4) Value type (Values for this field can be found in
OS/400 library QSYSINC, file H, member
QTOMEAPI.)

Note: All object names and values follow.

CHAR(*) Object names and values for all variable
bindings

The library name and data queue must be specified in uppercase on the exit point.4.

Multiple exit programs are supported on the QIBM_QZCA_SNMPTRAP exit point. Each exit program must
contain only one data queue.

5.

A maximum of 100 data queues can be defined.6.

The data queue names are retrieved from the exit point only when the trap manager is started. To activate any
changes to the data queues, you must end the trap manager with the End Trap Manager (ENDTRPMGR)
command and restart the trap manager with the Start Trap Manager (STRTRPMGR) command.

7.

In the preceding scenario, all traps are added to the data queue. If the queue is locked, damaged, destroyed, or
named incorrectly, the traps are lost. It is the responsibility of the user application to remove traps from the queue.
No messages are sent if the queue is full or traps not removed.

8.

Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions
Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

Macro definitions●

Data type definitions●

Structure definitions●

Function prototypes●

The header files are provided in the QSYSINC library, which is optionally installable. Make sure
QSYSINC is on your system before compiling programs that use these header files. For information on
installing the QSYSINC library, see Data structures and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by the
UNIX-type APIs in this publication.

Name of Header File
Name of File in

QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

●

Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

●

You can print a header file in QSYSINC by using one of the following methods:

Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

●

Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

●

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions
Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

Name Value Text

EDOM 3001 A domain error occurred in a math
function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files
opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 The current record position is too long for
ftell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 Function parameter in the signal function
is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is
shorter than the expected record length.

EBADKEYLN 3044 A length that was not valid was specified
for the key.

EPUTANDGET 3080 A read operation should not immediately
follow a write operation.

EGETANDPUT 3081 A write operation should not immediately
follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process
to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not
correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware
failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this
protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted
connect operation.

ECONNRESET 3426 A connection with a remote socket was
reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no
longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
requested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and
domain exists.

EPROTOTYPE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead
directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was
exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDSI 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is
locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or
message queue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of
the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when
linking an object to a directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the
maximum number of references allowed
for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs | APIs by category

	Simple Network Management Protocol (SNMP) APIs (V5R2)
	Table of Contents
	Simple Network Management Protocol (SNMP) APIs
	Simple Network Management Protocol (SNMP) Subagent APIs
	connectSNMP()--Establish Connection with SNMP Agent
	debugDPI()--Set DPI Packet Trace
	disconnectSNMP()--End Connection with SNMP Agent
	DPI_PACKET_LEN()--Get Length of DPI Packet
	fDPIparse()--Free Storage from DPI Packet Parse
	fDPIset()--Free Storage from DPI Set Packet
	mkDPIAreYouThere()--Make a DPI AreYouThere Packet
	mkDPIclose()--Make a DPI Close Packet
	mkDPIopen()--Make a DPI Open Packet
	mkDPIregister()--Make a DPI Register Packet
	mkDPIresponse()--Make a DPI Response Packet
	mkDPIset()--Make a DPI Set Packet
	mkDPItrap()--Make a DPI Trap Packet
	mkDPIunregister()--Make a DPI Unregister Packet
	pDPIpacket()--Parse a DPI Packet
	receiveDPIpacket()--Receive a DPI Packet from the SNMP Agent
	sendDPIpacket()--Send a DPI Packet to the SNMP Agent
	waitDPIpacket()--Wait for a DPI Packet

	Simple Network Management Protocol (SNMP) Manager APIs
	APIs
	snmpGet()--Retrieve MIB Objects
	snmpGetnext()--Retrieve Next MIB Object
	snmpSet()--Set MIB Objects

	Using SNMP Manager APIs--Example
	SNMP Trap Support

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

