UNIX-Type APIs (V5R2)

Signal APlIs

Table of Contents

Signal APIs
« Using Signa APIs
o APIs
o aarm() (Set schedule for alarm signal)
o getitimer() (Get value of interval timer)
o kill() (Send signal to process or group of processes)

0 pause() (Suspend process until signal received)

0 QpOsDisableSignals() (Disable process for signals)

o QpOsEnableSignals() (Enable process for signals)

o setitimer() (Set value of interval timer)

o sigaction() (Examine and change signal action)

0 sigaddset() (Add signal to signal set)

0 sigdelset() (Delete signal from signal set)

o sigemptyset() (Initialize and empty signal set)

o sdfillset() (Initialize and fill signal set)

o sigismember() (Test for signal in signal set)

o siglongimp() (Perform nonlocal goto with signal handling)

o sigpending() (Examine pending signals)

o sigprocmask() (Examine and change blocked signals)

o sigsetimp() (Set jump point for nonlocal goto)

o sigsuspend() (Wait for signal)

o sigtimedwait() (Synchronously accept asignal for interval of time)
o sigwait() (Synchronously accept a signal)

o sigwaitinfo() (Synchronously accept a signal and signal data)
o seep() (Suspend processing for interval of time)

o usleep() (Suspend processing for interval of time)

Header Filesfor UNIX-Type Functions
Errno Values for UNIX-Type Functions




Signal APlIs

An X/Open specification definesa"signal” as a mechanism by which a process may be notified of, or
affected by, an event occurring in the system. The term signal is also used to refer to the event itself.

For additional information on the Signal APIs, see:

Signal Concepts
0S/400 Signal Management

Differences from Signals on UNIX Systems

The Signal APIs are:

alarm() (Set schedule for alarm signal) generates a SIGALRM signa after the number of seconds

specified by the seconds parameter have elapsed. The delivery of the SIGALRM signal is directed
at the calling process.

getitimer() (Get value of interval timer) returns the value last used to set the interval timer specified
by which in the structure pointed to by value.

kill() (Send signal to process or group of processes) sends a signal to a process or process group
specified by pid.

pause() (Suspend process until signal received) suspends processing of the calling thread.
QposDisableSignals() (Disable process for signals) prevents the process from receiving signals.

QpOsEnableSignals() (Enable process for signals) enables the process to receive signals.

setitimer() (Set value of interval timer) sets the timer specified by which to the value in the

structure pointed to by value and stores the previous value of the timer in the structure pointed to by
ovalue.

sigaction() (Examine and change signal action) examines, changes, or both examines and changes
the action associated with a specific signal.

sigaddset() (Add signal to signal set) is part of afamily of functions that manipulate signal sets.
sigdelset() (Delete signal from signal set) is part of afamily of functions that manipulate signal
sets.

sigemptyset() (Initialize and empty signal set) is part of afamily of functions that manipulate signal
sets.

sigfillset() (Initialize and fill signal set) is part of afamily of functions that manipulate signal sets.
sigismember() (Test for signal in signal set) is part of afamily of functions that manipulate signal
sets.

siglongjmp() (Perform nonlocal goto with signal handling) restores the stack environment
previously saved in env by sigsetjmp().

sigpending() (Examine pending signals) returns signals that are blocked from delivery and pending
for either the calling thread or the process.

sigprocmask() (Examine and change blocked signals) examines, or changes, or both examines and
changes the signal mask of the calling thread.

sigsetimp() (Set jump point for nonlocal goto) saves the current stack environment and, optionally,
the current signal mask.

sigsuspend() (Wait for signal) replaces the current signal mask of a thread with the signal set given




by *sigmask and then suspends processing of the calling process.

« sigtimedwait() (Synchronously accept asignal for interval of time) selects a pending signal from
set, clearsit from the set of pending signals for the thread or process, and returns that signal number
in the si_signo member in the structure that is referenced by info.

« sigwait() (Synchronously accept asignal) selects a pending signal from set, clearsit from the set of
pending signals for the thread or process, and returns that signal number in the location that is
referenced by sig.

« sigwaitinfo() (Synchronously accept asignal and signal data) selects a pending signal from set,
clearsit from the set of pending signals for the thread or process, and returns that signal number in
the si_signo member in the structure that is referenced by info.

« sleep() (Suspend processing for interval of time) suspends a thread for a specified number of
seconds.

« usleep() (Suspend processing for interval of time) suspends a thread for the number of
microseconds specified by the of useconds parameter.

Note: These functions use header (include) files from the library QSY SINC, which is optionally installable.
Make sure QSY SINC isinstalled on your system before using any of the functions. See Header Files for

UNIX-Type Functions for the file and member name of each header file.

Theterm "signal" comes from X/Open CAE Specification System Interface Definitions Issue 4, Number 2,
Glossary, page 27. X/Open Company Ltd., United Kingdom, 1994.

Top | UNIX-Type APIs| APIs by category




Using Signal APIs

Signal Concepts

An X/Open specification definesa"signal" as a mechanism by which a process may be notified of, or
affected by, an event occurring in the system. The term signal is also used to refer to the event itself.

A signal is said to be gener ated when the event that causes the signal first occurs. Examples of such events
include the following:

o System-detected errors
o Timer expiration
o Terminal (work station) activity

«» Cadling an API such as the X/Open kill() function, the American National Standard C raise()
function, or the ILE CEESGL (signa a condition) function.

A synchronoussignal isasignal that is generated by some action attributable to a program running within
the thread, such as a system-detected error, raise(), or CEESGL . An asynchronous signal isasignal that
is generated for the process by using the kill() function or by an asynchronous event such as terminal
activity or an expired timer.

The signal action vector isalist of signal-handling actions for each defined signal. The signal action
vector is maintained separately for each process and isinherited from the parent process. The signal action
vector specifies the signal-handling actions for both synchronously and asynchronously generated signals.

A signal is said to be deliver ed to a process when the specified signal-handling action for the signal is
taken. A signal is said to be accepted by a process when asignal is selected and returned by one of the
sigwait functions.

Signals generated for a process are delivered to or accepted by one thread in the process.

A signal is said to be pending during the interval between the time the signal is generated and thetimeiit is
delivered or accepted. Ordinarily, thisinterval cannot be detected by an application. However, asignal can
be blocked from being delivered to athread. When a signal is blocked, the signal-handling action
associated with the signal is not taken. If there are no threadsin a call to asigwait function selecting the
signal and if al threads block delivery of the signal, the signal remains pending on the process. The signal
remains pending until either athread calls a sigwait function selecting the signal, a thread unblocks delivery
of the signal, or the signal action associated with the signal is set to ignore the signal. The signal blocking
mask defines the set of signalsthat are blocked from delivery to the thread. The signal blocking mask is
maintained separately for each thread in the process and is inherited from the thread that created it.

0OS/400 Signal Management

The set of defined signalsis determined by the system. The system specifies the attributes for each defined
signal. These attributes consist of a signal number, the initial signal action, and the signal default action.
The system also specifies an initial signal blocking mask. The set of defined signals, the signal attributes,
and signal blocking mask are referred to as signal controls.

A signal can be generated or delivered only to a process that has expressed an interest in signals. An error



condition results under the following conditions:
« Anattempt is made to generate a signal when the system signal controls have not been initialized.
« Anattempt is made to generate asignal for a process that has not been enabled for signals.

A process can express an interest in signals by calling the QpOsEnableSignals() API. In addition, calling
particular signal APIsimplicitly enables the process for signals.

If the process has not been enabled for signals, the process signal controls are set from signal controls
established by the system during IPL (the system signal controls). An error condition resultsif an attempt is
made to enable signals for the process before the system signal controls have been initialized.

Once the process signal controls have been initialized, the user is permitted to change the signal controls for
the process. For example, the signal blocking mask and the signal action for asignal are commonly
changed. Some signal controls, such as the number of defined signals and the signal default action for a
signal, cannot be changed at the process level.

The attributes for each defined signal are stored in an object called a signal monitor. The system supports a
maximum of 63 signal monitors for each process. The process signal action vector isalist of signal
monitors, one for each defined signal. The signal monitor contains, but is not limited to, the following
information:

« Signal action
« Signal default action
« Signal options
The signal action defines the action to be taken by the system when a process receives an unblocked signal.
The user can change the signal action for a process signal monitor. The possible signal actions are;
« Handleusing signal default action (SIG_DFL)
The handle using signal default action signal action indicates that the system is to take the action
specified by the signal default action field when the signal is éligible to be delivered.
« Ignorethesigna (SIG_IGN)
Theignorethe signal signal action indicates that the user is not interested in handling the signal.

When an ignored signal is generated for the process, the system automatically discards the signal,
regardless of the blocked or unblocked state of the signal monitor.

« Handlethe signal by running signal-catching function

The handle the signal by running signal-catching function signal action causes the system to call
the signal-catching function when asignal is received for the signal monitor. The signal-catching
function is set to point to a procedure within an active activation group.

The signal default action field defines the action to be taken by the system when the signal action is set to
handle using signal default action. The signal default action for a signal monitor is set in the system signal
controls and cannot be changed for a process signal monitor. The possible signal default actions are:

« Terminate the process
The terminate the process action puts the process in a phase that ends the process, allowing cancel

handlers to be called. If the processis already in the end phase, the terminate the process action is
ignored.

« Endtherequest

The end the request action results in the cancelation of all calls up to the nearest call that has a call
status of request processor. If acall with a status of request processor is not present or thejob is



capable of having multiple threads, the terminate the process action is taken.
« Ignorethe signa

The ignore the signal action causes the system to discard the signal. A signal isdiscarded for a
signal monitor in the blocked state when the signal action is handle using signal default action and
the default signal action isignore the signal.

« Stop the process

The stop the process action causes the system to place the process in the stopped state. When a
processisin the stopped state, it istemporarily suspended until asignal is generated for the process
that has continue the process if stopped asits signal default action. When a processis in the stopped
state, the normal process control functions remain in effect (the process can be suspended, resumed,
or ended). When asignal is generated for asignal monitor that has stop the process asits signal
default action, the system removes any pending signals for signal monitors that have continue the
process if stopped as their default action.

« Continue the processiif stopped

The continue the process if stopped action causes the system to resume running the processthat is
in the stopped state, even if the signal monitor with the signal default action of continue the process
if stopped isin the blocked state or has a signal action of ignore the signal. When asignal is
generated for asignal monitor that has continue the processif stopped asits signal default action,
the system removes any pending signals for signal monitors that have stop the process as their
signal default action.

« Signal exception

The signal exception action causes the system to send the MCH7603 escape message to the
process.

The signal options specify an additional set of attributes for the signal monitor. The primary use of these
optionsisto specify an additional set of actionsto be taken by the system when a signal-catching function
iscalled.

A signal is generated by sending a request to a signal monitor. Scheduling of the signal-handling action is
controlled separately for each signal monitor through the signal blocking mask. The signal blocking mask
isabit mask that defines the set of signals to be blocked from delivery to the thread. The blocked or
unblocked option specified for the nth bit position in the signal blocking mask is applied to the nth signal
monitor defined for the process. When si gnal i s unbl ocked isspecified, the signal-handling action
iseligibleto be scheduled. Whensi gnal i s bl ocked isspecified, the signal-handling action is
blocked from delivery.

The processto receive the signal isidentified by aprocess 1 D. The process ID is used to indicate whether
the signal should be sent to an individual process or to agroup of processes (known as a process group).
The process ID is a4-byte binary number that is used to locate an entry in the system-managed process
table. A processtable entry contains the following information relating to the process:

« Parent process|D
« Processgroup ID
« Statusinformation
The parent processisthelogical creator of the process. A process group represents a collection of

processes that are bound together for some common purpose. An error condition resultsif the process ID
specified when asignal is sent does not represent a valid process or process group.

The process sending a signal must have the appropriate authority to the receiving process. The parent
processis allowed to send asignal to a child process (the parent process ID of the receiving processis equal



to the process I D of the process sending the signal). A child processis alowed to send asignal to its parent
process (the process ID of the receiving processis equal to the parent process ID of the process sending the
signal). A process can send a signal to another processif the sending process has * JOBCTL authority
defined for the current process user profile or in an adopted user profile. Otherwise, the real or effective
user ID of the sending process must match the real or effective user 1D of the receiving process. An error
condition results if the process does not have authority to send the signal to areceiving process.

Differences from Signals on UNIX Systems

The OS/400 support for signals does differ from the usual behavior of signals on UNIX systems:
« Integration of American National Standard C signal model and X/Open signal model

On UNIX systems, the standard C signal functions (as defined by American National Standards
Institute (ANSI)) and the UNIX signal functions interact. That is, the standard C signal() function
operates on the process signal action vector. Likewise, when asignal is generated for a process
using the standard C raise() function, the process signal blocking mask and the signal action vector
are used to determine the action to be taken.

On 0S/400, the behavior of the standard C signal functions depends on a compiler option. When
the compiler option SY SIFCOPT (*ASYNCSIGNAL) is specified, the standard C signal() and
raise() functions operate like the UNIX signal functions by operating on the process signal action
vector and the process signal blocking mask. However, if the SY SIFCOPT (*ASYNCSIGNAL) is
not specified the standard C signal functions do not operate like the UNIX signal functions.
Although the default C signal model does not interact with the UNIX signal functions, the UNIX
signal functions sigaction() and kill() provide the same type of capability asthe standard C signal()
and raise() functions. For more information, see sigaction()--Examine and Change Signal Action

and kill()--Send Signal to Process or Group of Processes.

« Scope of signal action vector, signal-blocking mask, and pending signals

On most UNIX systems, a process consists of a single thread of control. When the program in
control needsto perform atask that is contained in another program, the program uses the fork()
and exec() functionsto start a child process that runs the other program. The signal controls for the
child process are inherited from the parent process. Changes to the signal controlsin either the
parent or the child process are isolated to the process in which the change is made.

On 0OS/400, when a program needs to perform atask that is contained in another program, the
program calls that program directly. The target program is run using the same process structure. As
aresult of this call and return mechanism, if a called program changes the process signal controls
and does not restore the original signal controls when returning to its caller, the changed process
signal controls remain in effect. The called program inherits the signal controls of its caller.
However, there are some differences from what would be expected if fork() and exec() were used
inaUNIX process:

o The set of pending signalsis not cleared.
o Alarmsare not reset.
o Signals set to be caught are not reset to the default action.

Programs that use signals and change the signal controls of the process should restore the old
actions or signal blocking mask (or both) when they return to their callers. Programs using signals
should explicitly enable the process for signals when the program begins. If the process was not
enabled for signals when the program was called, the program should a so disable signals when it
returns to the process. For more information, see QpOsEnableSignal s()--Enable Process for Signals

and QpO0sDisableSignals()--Disable Process for Signals.




« Mapping system-detected errorsto signals

On UNIX systems, system-detected errors are mapped to signal numbers. For example, afloating
point error results in the SIGFPE signal being generated for the process. On OS/400, the default C
signal model presents system-detected errors to the user as escape messages which can be handled
with C signal handlers established with the C signal () function or with ILE C exception-handling
functions, but not with signal handlers established with the UNIX sigaction() function. When the
compiler option SY SIFCOPT (*ASYNCSI GNAL ) is specified, system-detected errors are mapped
to signal numbers and can be handled with signal handlers established either with the C signal()
function or the UNIX sigaction() function, but not with ILE C exception-handling functions.

» Unexpected error handling in the signal-catching function

On UNIX systems, an unhandled error condition in a signal-catching function results in ending the
process. On OS/400, unhandled error conditions in the signal-catching function are implicitly
handled. The signal-catching function is ended and the receiving program resumes running at the
point at which it was interrupted. The error condition may be logged in the job log. Aside from the
job log entry for the error, no further error notification takes place.

« Termination action
0S/400 offers two types of termination actions. The termination action applied to most signalsisto
end the most recent request. This usually results in ending the current program, which isthe

expectation of most UNIX programmers. The second termination action is to end the process,
which is more severe. The only signal with this action is SIGKILL.

o Default actions

On OS/400, some default actions for signals are different than on typical UNIX systems. For
example, the OS/400 default action for the SIGPIPE signal isto ignore the signal.

Top | UNIX-Type APIs| APIs by category




alarm()--Set Schedule for Alarm Signal

Syntax

#i ncl ude <uni std. h>

unsigned int alarm unsigned int seconds );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The alarm() function generates a SIGALRM signal after the number of seconds specified by the seconds
parameter have elapsed. The delivery of the SIGALRM signal is directed at the calling process.

seconds is the number of real secondsto elapse before the SIGALRM is generated. Because of processor
delays, the SSIGALRM may be generated slightly later than this specified time. If secondsis zero, any
previoudly set alarm request is canceled.

Only one such alarm can be active at atime for the process. If anew alarm time is set, any previous alarm
is canceled.

Parameters

seconds
(Input) The number of real seconds to elapse before generating the signal.

Return Value

value alarm() was successful. The value returned is one of the following:

« A nonzero value that is the number of real seconds until the previous alar m() request
would have generated a SIGALRM signal.

« A vaue of zero if there was no previous alar m() request with time remaining.

-1 alarm() was not successful. The errno variable is set to indicate the error.

Error Conditions

If alarm() is not successful, errno usually indicates the following error. Under some conditions, errno
could indicate an error other than that listed here.



[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

» Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have not
been initialized.

Usage Notes

The alarm() function enables a process for signalsif the processis not already enabled for signals. For
details, see QpOsEnableSignals()--Enable Process for Signals. If the system has not been enabled for

signals, alarm() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

» The<signal.h> file (see Header Files for UNIX-Type Functions)

e The<unistd.h> file

o pause()--Suspend Process Until Signal Received

o OpOsDisableSignals()--Disable Process for Signals

o QpOsEnableSignals()--Enable Process for Signals

o Setitimer()--Set Vaue for Interval Timer

« Sigaction()--Examine and Change Signal Action

o sigsuspend()--Wait for Signa

o sleep()--Suspend Processing for Interval of Time

o usleep()--Suspend Processing for Interval of Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example generates a SIGALRM signal using the alarm() function:

#i ncl ude <si gnal . h>
#i ncl ude <uni std. h>



#i ncl ude <stdio. h>
#i ncl ude <tine. h>
#i ncl ude <errno. h>

#define LOOP_LIMT 1E6
volatile int sigcount=0;

void catcher( int sig ) {
printf( "Signal catcher called for signal %\n", sig );
sigcount = 1;

}
int main( int argc, char *argv[] ) {

struct sigaction sact;
vol ati |l e doubl e count;
time_t t;

si genptyset ( &sact.sa_nmask );
sact.sa flags = 0;

sact.sa _handl er = catcher;
sigaction( SIGALRM &sact, NULL );

alarm5); /* timer will pop in five seconds */

time( & );
printf( "Before loop, time is %", ctinme(&) );

for( count=0; ((count<LOOP_LIMT) && (sigcount==0)); count++ );

time( & );
printf( "After loop, tine is %\n", ctime(&) );

i f( sigcount == 0 )

printf( "The signal catcher never gained control\n" );
el se

printf( "The signal catcher gained control\n" );

printf( "The value of count is %O0f\n", count );

return( 0 );

Output:

Before loop, tine is Sun Jan 22 10: 14: 00 1995
Signal catcher called for signal 14

After loop, tinme is Sun Jan 22 10:14:05 1995
The signal catcher gained contro

The val ue of count is 290032




API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




getitimer()--Get Value for Interval Timer

Syntax

#i ncl ude <sys/tine. h>

int getitinmer( int which, struct itinerval *value );

Service Program Name: QPOSSRV |
Default Public Authority: *USE

Threadsafe: Yes

The getitimer () function returns the value last used to set the interval timer specified by which in the
structure pointed to by value.

Parameters
which
(Input) Theinterval timer type.
The possible values for which, which are defined in the <sys/time.h> header file, are asfollows:

ITIMER _REAL Theinterval timer value is decremented in real time. The SIGALRM
signal is generated for the process when this timer expires.

ITIMER VIRTUAL Theinterval timer valueis only decremented when the processis running.
The SIGVTALRM signal is generated for the process when this timer
expires.

ITTMER_PROF The interval timer valueis only decremented when the processis running
or when the system is running on behalf of the process. The SIGPROF
signal is generated for the process when this timer expires.

value
(Output) A pointer to the space where the current interval timer value is stored.

Return Value

0 getitimer () was successful.

-1 getitimer() was not successful. The errno variable is set to indicate the error.



Error Conditions

If getitimer () is not successful, errno usually indicates the following error. Under some conditions, errno
could indicate an error other than that listed here.

[EINVAL] Aninvalid parameter was found.

A parameter passed to this function is not valid.
« Thevalue of whichisnot equal to one of the defined values.

[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:
« Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function isbeing called when the system signal controls have not
been initialized.

Related Information

The <sys/time.h> file (see Header Files for UNIX-Type Functions)

alarm()--Set Schedule for Alarm Signa

setitimer()--Set Vaue for Interval Timer

sleep()--Suspend Processing for Interval of Time

usleep()--Suspend Processing for Interval of Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example returns the current interval timer value using the getitimer () function:

#i ncl ude <sys/tinme. h>
#i ncl ude <signal . h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>

#i ncl ude <tine. h>

#i ncl ude <errno. h>

#define LOOP_LIMT 1E12

volatile int sigcount=0;



void catcher( int sig ) {

struct itinmerval value
int which = I TI MER REAL;

printf( "Signal
si gcount ++;

if( sigcount > 1) {

/*
* Disable the rea
*/

getitimer( which, &value );

value.it _value.tv_sec = 0;
value.it_value.tv_usec = 0;

setitimer( which, &val ue,

mai n( int argc, char *argv[] ) {

int result = O;

struct itimerval value, oval ue,
int which = I TI MER REAL;

struct sigaction sact;
vol ati |l e doubl e count;
time_t t;

si genptyset ( &sact.sa_nmask );
sact.sa flags = 0;

sact.sa _handl er = catcher;
sigaction( SIGALRM &sact, NULL );

getitimer( which, &pvalue );

/*

* Set areal time interva

*/

value.it _interval.tv_sec = 0;
value.it _interval.tv_usec = 200000;
value.it _value.tv_sec = 0;

val ue.it_val ue.tv_usec = 500000;

result = setitimer( which, &val ue,
/*
* The interval
* jdentical
*/

catcher called for signa

time interval

NULL );

%\ n", sig);

timer

pval ue;

timer to repeat every 200 nmilliseconds

/* Zero seconds */
/* Two hundred mlliseconds */
/* Zero seconds */
/* Five hundred mlliseconds */

&oval ue );

timer value returned by setitiner() should be
to the tiner value returned by getitinmer().



if( ovalue.it _interval.tv_sec != pvalue.it_interval.tv_sec ||

ovalue.it _interval.tv_usec != pvalue.it_interval.tv_usec ||
ovalue.it_value.tv_sec != pvalue.it_value.tv_sec ||
ovalue.it_value.tv_usec != pvalue.it_value.tv_usec ) {
printf( "Real tine interval tinmer mismtch\n" );
result = -1;

}

time( & );

printf( "Before loop, time is %", ctinme(&) );
for( count=0; ((count<LOOP_LIMT) && (sigcount<2)); count++ );

time( & );
printf( "After loop, time is %\n", ctime(&) );

i f( sigcount == 0 )

printf( "The signal catcher never gained control\n" );
el se

printf( "The signal catcher gained control\n" );

printf( "The value of count is %O0f\n", count );

return( result );

Output:

Before loop, tine is Sun Jun 15 10: 14: 00 1997
Signal catcher called for signal 14

Signal catcher called for signal 14

After loop, tinme is Sun Jun 15 10:14:01 1997
The signal catcher gained control

The val ue of count is 702943

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category




Kill()--Send Signal to Process or Group of
Processes

Syntax

#i ncl ude <sys/types. h>
#i ncl ude <signal . h>

int kill( pid_t pid, int sig);

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

TheKkill() function sends a signal to a process or process group specified by pid. The signal to be sent is
specified by sig and is either 0 or one of the signals from the list in the <sys/signal.h> header file.

The process sending the signal must have appropriate authority to the receiving process or processes. The
kill() function is successful if the process has permission to send the signal sig to any of the processes
specified by pid. If kill() is not successful, no signal is sent.

A process can use kill() to send asignal toitself. If the signal is not blocked in the sending thread, and if no

other thread has the sig unblocked or is waiting in asigwait function for sig, either sig or at least one
pending unblocked signal is delivered to the sender before kill() returns.

Parameters
pid

(Input) The process ID or process group ID to receive the signal.
sig

(Input) The signal to be sent.

pid and sig can be used as follows:



pid_t pid; Specifiesthe processes that the caller wants to send the signal to:

« If pidisgreater than zero, Kill() sends the signal sig to the process whose ID is equal
to pid.

« If pidisequal to zero, kill() sendsthe signal sig to all processes whose process
group 1D isequal to that of the sender, except for those to which the sender does not
have the appropriate authority to send asignal.

o If pidisequal to-1, kill() returns-1 and errnois set to [ESRCH].

o If pidislessthan -1, kill() sendsthe signal sig to all processes whose process group
ID isequal to the absolute value of pid, except for those to which the sender does
not have appropriate authority to send asignal.

intsig; The signal that should be sent to the processes specified by pid. This must be zero, or one of
the signals defined in the <sys/signal .h> header file. If sig is zero, kill() performs error
checking, but does not send asignal. You can use asig value of zero to check whether the
pid argument is valid.

Authorities

The thread sending the signal must have the appropriate authority to the receiving process. A thread is
allowed to send asignal to a process if at least one of the following conditions is true:

« Thethread is sending asignal to its own process.

o Thethread has* JOBCTL specia authority defined in the currently running user profile or in a
current adopted user profile.

» Thethread belongs to a process that is the parent of the receiving process. (The process being
signaled has a parent process ID equal to the process ID of the thread sending the signal.)

« |f the receiving process is multi-threaded,

o Thereal or effective user ID of the thread matches the job user identity of the process
receiving process (the process being signaled).

o Otherwise,

o Thereal or effective user 1D of the thread matches the real or effective user ID of the
process being signaled. If _POSIX_SAVED_IDSisdefined in the <unistd.h> includefile,
the saved set user 1D of the intended recipient is checked instead of its effective user ID.

The job user identity is the name of the user profile by which ajob is known to other jobs. It is described in

more detail in the Work Management @ book on the V5R1 Supplemental Manuals Web site.

When sending a signal affects entries for multiple processes, the signal is generated for each process to
which the process sending the signal is authorized. If the process does not have permission to send the



signal to any receiving process, the [EPERM] error isreturned.

Regardless of user 1D, a process can always send a SIGCONT signal to a process that is a member of the
same process group (same process group D) as the sender.

Return Value

0  Kkill() was successful. It had permission to send sig to one or more of the processes specified by pid.

-1 kill() was not successful. It failed to send asignal. The errno variable is set to indicate the error.

Error Conditions

If kill() is not successful, errno usually indicates one of the following errors. Under some conditions, errno
could indicate an error other than those listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.

The value of sig is not within the range of signal numbers or isasignal that is not
supported.

[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

« Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have not
been initialized.

[ENOSYSRSC]  System resources not available to complete request.

[EPERM] Operation not permitted.

Y ou must have appropriate privileges or be the owner of the object or other resource
to do the requested operation.

[ESRCH] No item could be found that matches the specified value.

The process or process group specified in pid cannot be found.



Usage Notes

1. If thevalue of pidis0 (so that kill() is used to send a signal to all processes whose process group
ID isequal to that of the sender), kill() enables the process for signals if the processis not aready
enabled for signals. For details, see QpOsEnableSignal s()--Enable Process for Signals.

2. A process can use Kill() to ssmulate the American National Standard C raise() function by using the
following:

sigset _t sigmask;
/*

* Allow all signals to be delivered by unblocking all signals
*/

si gentyset ( &sigmask );
si gprocnmask( SI G SETMASK, &sigmask, NULL );

kill( getpid(), SIGUSRL );

The example above ensures that no signals are blocked from delivery. When the kill() functionis
called, the behavior is the same as calling the raise() function.

Related Information

» The<signal.h> file (see Header Files for UNIX-Type Functions)

o The <sydltypes.h> file (see Header Files for UNIX-Type Functions)

o OpOsDisableSignals()--Disable Process for Signals

o OpOsEnableSignals()--Enable Process for Signals

« sigaction()--Examine and Change Signal Action

« Sigtimedwait()--Synchronously Accept a Signal for Interval of Time

« sigwait()--Synchronously Accept aSignal

« sigwaitinfo()--Synchronously Accept a Signal and Signal Data




Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the kill() function:

#i ncl ude <signal . h>
#i ncl ude <uni std. h>
#i ncl ude <errno. h>
#i ncl ude <stdio. h>
#i ncl ude <tine. h>

i nt

sendsig( int );

vol atile int sigcount=0;

void catcher( int sig ) {

}

i nt

si gcount ++;

mai n( int argc, char *argv[] ) {

struct sigaction sigact;
int result;

/[* set up a signal catching function to handle the signals */
[* that will be sent fromthe sendsig() function */

si genptyset ( &sigact.sa_nask );
sigact.sa flags = 0O;

si gact.sa_handl er = catcher;
sigaction( SIGUSRL, &sigact, NULL );

/* Call the sendsig() function that will call the kill () */
/* function for SIGUSRL n tines based on the input value */

result = sendsig( 21 );

printf( "Back in main\n" );

printf( "The kill() function was called % tinmes\n", result );

printf( "The signal catching function was called % tinmes\n"
si gcount );

return( 0 );

sendsig( int count ) {

int i;
int j=0;
for( i=0; i < count; i++ ) {
if( i == ((i/10)*10) ) {
] ++;

kill( getpid(), SIGUSRL );

\



return( j );

Output:

Back in main
The kill () function was called 3 tines
The signal catching function was called 3 tines

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




pause()--Suspend Process Until Signal
Received

Syntax

#i ncl ude <uni std. h>

int pause( void );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The pause() function suspends processing of the calling thread. The thread does not resume until asignal is
delivered whose action is to call a signal-catching function, end the request, or terminate the process. Some
signals can be blocked by the thread's signal mask. See sigprocmask()--Examine and Change Blocked

Signalsfor details.

If an incoming unblocked signal has an action of end the request or terminate the process, pause() never
returnsto the caller. If an incoming signal is handled by a signal-catching function, pause() returns after the
signal-catching function returns.

Parameters

None.

Return Value

Thereis no return value to indicate successful completion.

Error Conditions

If pause() returns, errno indicates the following:

-1 pause() was not successful. The errno variableis set to indicate the reason.

[EINTR] Interrupted function call.

A signal was received and handled by a signal-catching function that returned.



[ENOTSGINIT] Process not enabled for signals.
An attempt was made to call asignal function under one of the following
conditions:

« Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have
not been initialized.

[EWOULDBLOCK] Operation would have caused the process to be suspended.

The current thread state would prevent the signal function from completing.

Usage Notes

The pause() function enables a process for signalsif the processis not already enabled for signals. For
details, see QpOsEnableSignal s()--Enable Process for Signals. If the system has not been enabled for

signals, pause() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

o The<unistd.h> file (see Header Files for UNIX-Type Functions)

o aarm()--Set Schedule for Alarm Signal

« Kkill()--Send Signal to Process or Group of Processes

o OpOsDisableSignals()--Disable Process for Signals

o QpOsEnableSignals()--Enable Process for Signals

« sigprocmask()--Examine and Change Blocked Signals

o sigsuspend()--Wait for Signa

« Sigtimedwait()--Synchronously Accept a Signal for Interval of Time

« sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept a Signal and Signal Data

o sleep()--Suspend Processing for Interval of Time




Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing using the pause() function and determines the current time:

#i ncl ude <uni std. h>
#i ncl ude <signal . h>
#i ncl ude <stdio. h>
#i ncl ude <tine. h>

void catcher( int sig ) {
printf( "Signal catcher called for signal %\n", sig );

}
void tinestanp( char *str ) {

time t t;

time(&t);

printf( "The time % is %\n", str, ctinme(&) );
}

int main( int argc, char *argv[] ) {
struct sigaction sigact;
si genptyset ( &sigact.sa _nask );
sigact.sa flags = 0;
si gact.sa_handl er = catcher;
sigaction( SIGALRM &sigact, NULL );
alarnm( 10 );
ti mestanp( "before pause" );
pause() ;
ti mestanp( "after pause" );

return( 0 );

Output:

The tinme before pause is Sun Jan 22 11:09: 08 1995
Signal catcher called for signal 14
The tinme after pause is Sun Jan 22 11:09:18 1995

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category




QpOsDisableSignals()--Disable Process for
Signals

Syntax

#i ncl ude <signal . h>

i nt QOsDi sabl eSi gnal s( void );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The QpOsDisableSignals() function prevents the process from receiving signals.

After QpOsDisableSignals() is called, the processis nho longer eligible to receive signals from another
process or the system. Callsto functions that examine the signal action or the signal blocking mask of the
thread will not return the requested information. For details on those functions, see sigaction()--Examine

and Change Signa Action and sigprocmask()--Examine and Change Blocked Signals.

If the processis currently disabled for signals, a call to QpOsDisableSignals() has no effect and an
[ENOTSIGINIT] error is returned.

Parameters

None

Return Value

0 QpOsDisableSignals() was successful.
-1 QpOsDisableSignals() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOsDisableSignals() is not successful, errno usually indicates the following error. Under some
conditions, errno could indicate an error other than that listed here.



[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

» Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have not
been initialized.

Usage Notes

1. Processes, by default, are not eligible to receive signals from other processes or the system.
However, once a process has been enabled for signals, it remains eligible to receive signals until
either it ends or some user action is taken to prevent the delivery of signals.

Use of the following functions enables a process for signals:
o aarm()
0 getpgrp()
o getpid()
o kill()
0 pause()
0 QpOwGetPgrp()
0 QpOwGetPid()
0 setitimer()
o sigaction()
o sigprocmask()
o sigsuspend()
0 sigtimedwait()
o sigwait()
o sigwaitinfo()
0 sleep()

Any of the Pthread APIs. See Pthread APIs for more information.

2. The user of signals can prevent the signals from being delivered to the process by calling the
sigprocmask() function. The user can aso ignore the signal by calling the sigaction() function.
However, not all signals can be blocked or ignored. For details, see sigaction()--Examine and
Change Signal Action and sigprocmask()--Examine and Change Blocked Signals. The
QpOsDisableSignals() function provides a means of preventing the calling process from receiving
any signal from other processes or the system.

3. If aprocess has not been enabled for signals, the signa blocking mask for any thread created in the
process will be set to the empty set.

4. 1If aprocess with multiple threadsis disabled for signals by calling Qp0OsDisableSignals() and then
later re-enabled for signals, only the thread that causes signals to be enabled will have its signal
blocking mask changed. The signal blocking mask for all other threads will be the value last used to



set the signal blocking mask for those threads.

Related Information

» The<signal.h> file (see Header Files for UNIX-Type Functions)

o aarm()--Set Schedule for Alarm Signal

o Kkill()--Send Signal to Process or Group of Processes

o pause()--Suspend Process Until Signal Received

o QpOsEnableSignals()--Enable Process for Signals

o Setitimer()--Set Value for Interval Timer

« Sigaction()--Examine and Change Signal Action

« sigprocmask()--Examine and Change Blocked Signals

o sigsuspend()--Wait for Signa

o sigtimedwait()--Synchronously Accept a Signal for Interval of Time

o sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept aSignal and Signal Data

o Seep()--Suspend Processing for Interval of Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how a process can reset its signal vector and signal blocking mask.

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<si gnal . h>
<tine. h>

<uni st d. h>
<stdi 0. h>

void tinestanmp( char *str ) {

tine t t;



time( & );
printf( "% the tine is %\n", str, ctime(&) );

}
int main( int argc, char * argv[] ) {
unsigned int ret;
ti mestanp( "before sleep()" );
/-k
The sleep() function inplicitly enables the process to
receive signals.
*/
ret = sleep( 10 );
timestanp( "after sleep()" );
printf( "sleep() returned %\ n", ret );
/-k
*  QOsDi sabl eSi gnal s() prevents the process fromreceiving
* signals. |If the call to the QOsDi sabl eSi gnal s() function
* is not done, the process would remain eligible to receive
* signals after the return fromnmain().
*/
Q0sDi sabl eSi gnal s();
return( 0 );
}
Output:

before sleep() the time is Sun Jan 22 17:25:17 1995
after sleep() the tinme is Sun Jan 22 17:25:28 1995
sleep() returned O

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




QpOsEnableSignals()--Enable Process for
Signals

Syntax

#i ncl ude <signal . h>

i nt QoOsEnabl eSi gnal s( void );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The QpOsEnableSignals() function enables the process to receive signals.

The QpOsEnableSignals() function causes the process signal vector to be initialized for the set of
supported signals. The signal handling action for each supported signal is set to the default action, as
defined by sigaction() (see sigaction()--Examine and Change Signal Action). The signal blocking mask of

the calling thread is set to the empty signal set (see sigemptyset()--Initialize and Empty Signal Set).

If the processis currently enabled for signals, acall to the QpOsEnableSignals() has no effect. That is, the
process signal vector and the signal blocking mask of the calling thread are unchanged and an
[EALREADY] error is returned.

Parameters

None

Return Value

0 QpOsEnableSignals() was successful.

-1 QpOsEnableSignals() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOsEnableSignals() is not successful, errno usualy indicates one of the following errors. Under some
conditions, errno could indicate an error other than those listed here.



[EALREADY] Operation aready in progress.

The calling processis currently enabled for signals.

[ENOTSIGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

« Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have not
been initialized.

Usage Notes

1. Processes, by default, are not eligible to receive signals from other processes or the system. The

QpOsEnableSignals() function allows the calling process to receive signals from other processes or
the system without having to call other signal functions that enable the process for signals.
Use of the following functions enable a process for signas.

o aarm()

0 getpgrp()

o getpid()

o kill()

0 pause()

0 QpOwGetPgrp()

0 QpOwGetPid()

o setitimer()

o sigaction()

o sigprocmask()

0 sigsuspend()

0 sigtimedwait()

o sigwait()

o sigwaitinfo()

0 sleep()

Any of the Pthread APIs. See Pthread APIs for more information.

. Once a process has been enabled for signals, it remains eligible to receive signals until either it ends
or some user action istaken to prevent the delivery of signals. The user of signals can prevent the
signals from being delivered by calling the sigprocmask () function. The user can also ignore the
signal by calling the sigaction() function. However, not all signals can be blocked or ignored. For
details, see sigaction()--Examine and Change Signal Action and sigprocmask()--Examine and

Change Blocked Signals.

. If aprocess has not been enabled for signals, the signal blocking mask for any thread created in the
process will be set to the empty set.

4. If aprocess with multiple threadsis disabled for signals by calling QpOsDisableSignals() and then



later re-enabled for signals, only the thread that causes signals to be enabled will have its signal
blocking mask changed. The signal blocking mask for all other threads will be the value last used to
set the signal blocking mask for those threads.

Related Information

» The<signal.h> file (see Header Files for UNIX-Type Functions)

o aarm()--Set Schedule for Alarm Signal

o Kkill()--Send Signal to Process or Group of Processes

o pause()--Suspend Process Until Signal Received

o OQpOsDisableSignals()--Disable Process for Signals

o Setitimer()--Set Value for Interval Timer

« Sigaction()--Examine and Change Signal Action

« sigprocmask()--Examine and Change Blocked Signals

o sigsuspend()--Wait for Signa

o sigtimedwait()--Synchronously Accept a Signal for Interval of Time

o sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept aSignal and Signal Data

o Seep()--Suspend Processing for Interval of Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how a process can reset its signal vector and signal blocking mask:

#i ncl ude <si gnal . h>
#i ncl ude <errno. h>

int resetSignals( void ) {

int return_val ue;



return_val ue = QOsEnabl eSi gnal s();
if( return_value == -1 ) {
Q0sDi sabl eSi gnal s();
return_val ue = QOsEnabl eSi gnal s();

}

return( return_value );

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




setitimer()--Set Value for Interval Timer

Syntax

#i ncl ude <sys/tine. h>
int setitinmer( int which,

const struct itinmerval *val ue,
struct itimerval *ovalue );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The setitimer () function sets the timer specified by which to the value in the structure pointed to by value
and stores the previous value of the timer in the structure pointed to by ovalue.

Parameters

which
(Input) Theinterval timer type.

The possible values for which, which are defined in the <sys/time.h> header file, are asfollows:

ITIMER _REAL Theinterval timer value is decremented in real time. The SIGALRM
signal is generated for the process when this timer expires.

ITIMER VIRTUAL Theinterval timer valueis only decremented when the processis running.
The SIGVTALRM signal is generated for the process when this timer
expires.

ITTMER_PROF The interval timer valueis only decremented when the processis running
or when the system is running on behalf of the process. The SIGPROF
signal is generated for the process when this timer expires.

value
(Input) A pointer to the interval timer structure to be used to change the interval timer value.

Thetimer value is defined by theitimerval structure. If it_valueis hon-zero, it indicates thetimeto
the next timer expiration. If it_interval isnon-zero, it indicates the time to be used to reset the timer
when theit_value time elapses. If it_valueis zero, the timer is disabled and the value of it_interval
isignored. If it_interval is zero, the timer is disabled after the next timer expiration.

ovalue
(Output) A pointer to the space where the previous interval timer value is stored. This value may be



NULL.

Return Value

0 setitimer() was successful.

-1 setitimer () was not successful. The errno variable is set to indicate the error.

Error Conditions

If setitimer () is not successful, errno usually indicates the following error. Under some conditions, errno
could indicate an error other than that listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.
« Thevalue of which isnot equal to one of the defined values.

« Thetv_usec member of theit_value structure has a value greater than or
equal to 1,000,000.

« Thetv_usec member of theit_interval structure has avalue greater than or
equal to 1,000,000.

[ENOSYSRC] System resources not available to complete request.

o ThelTIMER_VIRTUAL vaue for which isnot supported on this
implementation.

o ThelTIMER_PROF value for which is not supported on this
implementation.

[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

» Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have not
been initialized.



Usage Notes

The setitimer () function enables a process for signalsif the processis not already enabled for signals. For
details, see QpOsEnableSignals()--Enable Process for Signals. If the system has not been enabled for

signals, setitimer() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

« The<sydtime.h> file (see Header Files for UNIX-Type Functions)

o darm()--Set Schedule for Alarm Signa

o Setitimer()--Set Value for Interval Timer

o Seep()--Suspend Processing for Interval of Time

o usleep()--Suspend Processing for Interval of Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example returns the current interval timer value using the setitimer () function:

#i ncl ude <sys/tinme. h>
#i ncl ude <signal . h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>

#i ncl ude <tine. h>

#i ncl ude <errno. h>

#define LOOP_LIMT 1E12
volatile int sigcount=0;
void catcher( int sig ) {

struct itinerval val ue;
int which = | TI MER _REAL;

printf( "Signal catcher called for signal %\n", sig );
si gcount ++;

if( sigcount > 1) {
/*

* Disable the real tinme interval tiner
*/



}

getitimer( which, &value );

value.it _value.tv_sec = 0;
value.it_value.tv_usec = 0;

setitimer( which, &alue, NULL );

int main( int argc, char *argv[] ) {

int result = O;

struct itinmerval value, ovalue, pval ue;
int which = I TI MER REAL;

struct sigaction sact;
vol ati |l e doubl e count;
time_t t;

si genptyset ( &sact.sa_nmask );
sact.sa flags = 0;

sact.sa _handl er = catcher;
sigaction( SIGALRM &sact, NULL );

getitimer( which, &pvalue );
/*

* Set a real time interval timer to repeat every 200 mlliseconds
*/

value.it interval.tv_sec = 0; /* Zero seconds */
value.it _interval.tv_usec = 200000; /* Two hundred nilliseconds */
value.it _value.tv_sec = 0; /* Zero seconds */
val ue.it_val ue.tv_usec = 500000; /* Five hundred mlliseconds */

result = setitimer( which, &val ue, &ovalue );

/*
* The interval timer value returned by setitiner() should be
* jdentical to the tinmer value returned by getitinmer().
*/

if( ovalue.it _interval.tv_sec != pvalue.it_interval.tv_sec ||
ovalue.it interval.tv_usec != pvalue.it_interval.tv_usec ||
ovalue.it _value.tv_sec != pvalue.it_value.tv_sec ||
ovalue.it _value.tv_usec != pvalue.it_value.tv_usec ) {
printf( "Real tine interval tinmer mismatch\n" );
result = -1;

}

time( & );

printf( "Before loop, time is %", ctinme(&) );

for( count=0; ((count<LOOP_LIMT) && (sigcount<2)); count++ );



time( & );
printf( "After loop, time is %\n", ctime(&) );

i f( sigcount == 0 )

printf( "The signal catcher never gained control\n" );
el se

printf( "The signal catcher gained control\n" );

printf( "The value of count is %O0f\n", count );

return( result );

Output:

Before loop, tine is Sun Jun 15 10: 14: 00 1997
Signal catcher called for signal 14

Signal catcher called for signal 14

After loop, tinme is Sun Jun 15 10:14:01 1997
The signal catcher gained control

The val ue of count is 702943

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category



sigaction()--Examine and Change Signal Action

Syntax

#i ncl ude <signal . h>
#i ncl ude <sys/signal . h>

int sigaction( int sig, const struct sigaction *act,
struct sigaction *oact );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe; Yes

The sigaction() function examines, changes, or both examines and changes the action associated with a specific
signal.

The sig argument must be one of the macros defined in the <sys/signal.h> header file.

If sigaction() fails, the action for the signal sig is not changed.

Parameters

sig
(Input) A signal from the list defined in Control Signals Table.

*act
(Input) A pointer to the sigaction structure that describes the action to be taken for the signal. Can be
NULL.

If actisaNULL pointer, signal handling is unchanged. sigaction() can be used to inquire about the
current handling of signal sig.

If actisnot NULL, the action specified in the sigaction structure becomes the new action associated
with sig.

*oact
(Output) A pointer to a storage location where sigaction() can store a sigaction structure. This structure
contains the action currently associated with sig. Can be NULL.
If oactisaNULL pointer, sigaction() does not store this information.

The sigaction() function uses structures of the sigaction type. The following is an example of a sigaction()
structure:

struct sigaction {
voi d (*sa_handl er) (int);
sigset _t sa_nask;
i nt sa_fl ags;



voi d (*sa_sigaction)(int, siginfo t * void *);

b

The members of the sigaction structure are as follows:

Member name

Description

void (*) (int) sa_handler

A pointer to the function assigned to handle the signal. The value of this
member also can be SIG_DFL (indicating the default action) or SIG_IGN
(indicating that the signal should be ignored).

sigset_t sa_mask

A signal set (set of signals) to be added to the signal mask of the calling process
before the signal-catching function sa_handler is called. For more on signal

sets, see sigprocmask()--Examine and Change Blocked Signals. Y ou cannot use
this mechanism to block the SIGKILL or SIGSTOP signals. If sa_mask
includes these signals, they are ignored and sigaction() does not return an error.

sa_mask must be set by using one or more of the signal set manipulation
functions: sigemptyset(), sigfillset(), sigaddset(), or sigdelset()

int sa_flags

A collection of flag bits that affect the behavior of signals. The following flag
bits can be set in sa_flags:

SA NOCLDSTOP If thisflag is set, the system does not generate a
SIGCHLD signal when child processes stop. Thisis
relevant only when the sig argument of sigaction() is
SIGCHLD.

SA NODEFER If thisflag is set and sigis caught, sig is not added to the
signal mask of the process on entry to the signal catcher
unlessitisincluded in sa_mask. If thisflag is not set,
sig is always added to the signal mask of the process on
entry to the signal catcher. Thisflag is supported for
compatibility with applications that use signal() to set
the signal action.

SA RESETHAND  If thisflag is set, the signal-handling action for the
signal isreset to SIG_DFL and the SA_SIGINFO flag is
cleared on entry to the signal-catching function.
Otherwise, the signal-handling action is not changed on
entry to the signal-catching function. Thisflagis
supported for compatibility with applications that use
signal() to set the signal action.

SA SGINFO If thisflag is not set and the signal is caught, the
signal-catching function identified by sa_handler is
entered. If thisflag is set and the signal is caught, the
signal-catching function identified by sa_sigactionis
entered.

void (*) (int, siginfo_t *,
void *) sa_sigaction

A pointer to the function assigned to handle the signal. If SA_SIGINFO is set,
the signal-catching function identified by sa_sigaction is entered with
additional arguments and sa_handler isignored. If SA_SIGINFO is not set,
sa sigactionisignored. If sig_action() is called from a program using data
model LLP64, the parameters to sa_sigaction must be declared as siginfo_t

*  ptrl28 and void *__ ptrl128.




When asignal catcher installed by sigaction(), with the SA_ RESETHAND flag set off, catches asignal, the
system calculates a new signal mask by taking the union of the following:

« The current signal mask

« Thesignals specified by sa_mask
« Thesignal that was just caught if the SA_NODEFER flag is set off

This new mask staysin effect until the signal handler returns, or until sigprocmask (), sigsuspend(), or
siglongjmp() is called. When the signal handler ends, the original signal mask is restored.

After an action has been specified for a particular signal, it remainsinstalled until it is explicitly changed with

another call to sigaction().

There are three types of actions that can be associated with asignal: SIG_DFL, SIG_IGN, or apointer to a
function. Initialy, all signalsare set to SIG_DFL or SIG_IGN. The actions prescribed by these values are as

follows:
Action Description
SG_DFL The default actions for the supported signals are specified in Control Signals

(signal-specific
default action)

Table

If the default action isto stop the process, that process is temporarily suspended.
When a process stops, a SIGCHLD signal is generated for its parent process,
unless the parent process has set the SA_NOCLDSTOP flag. While aprocessis
stopped, any additional signals sent to the process are not delivered. The one
exception is SIGKILL, which always ends the receiving process. When the
process resumes, any unblocked signals that were not delivered are then delivered
toit.

If the default action isto ignore the signal, setting asignal action to SIG_DFL
causes any pending signals for that signal to be discarded, whether or not the
signal is blocked.

SG_IGN
(ignore signal)

Delivery of the signal has no effect on the process. The behavior of a processis
undefined if it ignoresa SIGFPE, SIGILL, or SIGSEGV signal that was not
generated by Kill() or raise().

If the default action isto ignore the signal, setting asignal action to SIG_DFL
causes any pending signals for that signal to be discarded, whether or not the
signal is blocked.

The signal action for the signals SIGKILL and SIGTOP cannot be set to
SIG_IGN.




Pointer to a
function (catch
signal)

« Ondelivery of the signa, the receiving process runs the signal-catching function.
When the signal-catching function returns, the receiving process resumes
processing at the point at which it was interrupted.

« If SA_SIGINFO isnot set, the signal-catching function identified by sa_handler is
entered as follows:

void func( int signo );
where the following istrue:

o funcisthe specified signal-catching function.
o signo isthe signal number of the signal being delivered.

« If SA_SIGINFO is set, the signal-catching function identified by sa_sigactionis
entered as follows:

void func( int signo, siginfo_t *info, void *context );
where the following is true:

o funcisthe specified signal-catching function.
o signo isthe signal number of the signal being delivered.

o *info points to an object of type siginfo_t associated with the signal being
delivered.

0 context is set to the NULL pointer.

» Thebehavior of aprocessisundefined if it returns normally from a
signal-catching function for a SIGFPE, SIGILL, or SIGSEGV signal that was not
generated by kill() or raise().

« Thesignals SIGKILL and SIGSTOP cannot be caught.

The following is an example of the siginfo_t structure:

typedef struct siginfo_t {

i nt
i nt
i nt
short

M _Tine

struct {
char
char
char
char
char

} si_QIN;

i nt

i nt

pid_t

si _signo; [* Signal nunber */
si _source : 1; /* Signal source */
reservedl . 15; /* Reserved (binary 0) */
si _data_si ze; /* Size of additional signal
related data (if avail abl e) */
si_tine; /* Time of signal */
reserved2[2] /* Pad (reserved) */
si_job[10]; /* Sinple job nane */
si_user[10]; [/* User nane */
si _jobno[6]; [/* Job number */
reserved3[4]; /* Pad (reserved) */

/* Qualified job nane */
si _code; [ * Cause of signal */
si_errno; [* Error nunber */
si_pid; /* Process |ID of sender */




uid t si_uid; /* Real user |ID of sender */
char si _data[1]; /* Additional signal related

} siginfo_t;

data (if avail abl e) */

The members of the siginfo_t structure are as follows:

intsi_signo

int si_source

short si_data size

structsi_ QJIN

intsi_errno

intsi_code

pidt_ts_pid

uid tsi_uid

char si_data[ 1]

The system-generated signal number.

Indicates whether the source of the signal is being generated by the system or another
process on the system. When the signal source is another process, the memberssi_ QJN,
si_pid, and si_uid contain valid data. When the signal source is the system, those
members are set to binary 0.

Thelength of si_errno, si_code, si_pid, si_uid, and any additional signal-related data. If
this member is set to O, this signal-related information is not available.

The fully qualified OS/400 job name of the process sending the signal.

If not zero, this member contains an errno value associated with the signal, as defined in
<errno.h>.

If not zero, this member contains a code identifying the cause of the signal. Possible
code values are defined in the <sys/signal .h> header file.

The process ID of the process sending the signal.

The real user ID of the process sending the signal.

If present, the member contains any additional signal-related data.

Control Signals Table

See Default actions for a description of the value given.

Value Default Action | Meaning

SIGABRT 2 Abnormal termination

SIGFPE 2 Arithmetic exceptions that are not masked (for example, overflow,
division by zero, and incorrect operation)

SIGILL 2 Detection of an incorrect function image

SIGINT 2 Interactive attention

SIGSEGV 2 Incorrect access to storage




SIGTERM 2 Termination request sent to the program

SIGUSR1 2 Intended for use by user applications

SIGUSR2 2 Intended for use by user applications

SIGALRM 2 A timeout signal (sent by alarm())

SIGHUP 2 A controlling terminal is hung up, or the controlling process ended

SIGKILL 1 A termination signal that cannot be caught or ignored

SIGPIPE 3 A write to apipe that is not being read

SIGQUIT 2 A quit signal for aterminal

SIGCHLD 3 An ended or stopped child process (SIGCLD is an alias name for this
signal)

SIGCONT 5 If stopped, continue

SIGSTOP 4 A stop signal that cannot be caught or ignored

SIGTSTP 4 A stop signal for aterminal

SIGTTIN 4 A background process attempted to read from a controlling termina

SIGTTOU 4 A background process attempted to write to a controlling terminal

SIGIO 3 Completion of input or output

SIGURG 3 High bandwidth datais available at a socket

SIGPOLL 2 Pollable event

SIGBUS 2 Specification exception

SIGPRE 2 Programming exception

SIGSYS 2 Bad system call

SIGTRAP 2 Trace or breakpoint trap

SIGPROF 2 Profiling timer expired

SIGVTALRM | 2 Virtual timer expired

SIGXCPU 2 Processor time limit exceeded

SIGXFSZ 2 File size limit exceeded

SIGDANGER | 2 System crash imminent

SIGPCANCEL | 2 Thread termination signal that cannot be caught or ignored

Default Actions:




End the process immediately.
End the request.
Ignore the signal.

Stop the process.

a A W N P

Continue the process if it is currently stopped. Otherwise, ignore the signal.

Return Value

0 sigaction() was successful.

-1 sigaction() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigaction() is not successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.
[ENOTSIGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

« Thesignal function isbeing called for a process that is not enabled for
asynchronous signals.

» Thesignal function is being called when the system signal controls have not been
initialized.

Usage Notes

1. When the sigaction function is used to change the action associated with a specific signal, it enables a
process for signals if the processis not already enabled for signals. For details, see
QpOsEnableSignal s()--Enable Process for Signals. If the system has not been enabled for signals,

sigaction() is not successful, and an [ENOTSIGINIT] error is returned.

2. The sigaction() function can be used to set the action for a particular signal with the same semantics as
acall to signal(). The sigaction structure indicated by the parameter * act should contain the following:

o A sa handler equal to the func specified on signal().
o A sa_mask containing the signal mask set by sigemptyset().



o A sa flag with the SA_RESETHAND flag set on.
o A sa flag with the SA_NODEFER flag set on.

3. Some of the functions have been restricted to be serially reusable with respect to asynchronous signals.
That is, the library does not alow an asynchronous signal to interrupt the processing of one of these
functions until it has completed.

Thisrestriction needs to be taken into consideration when a signal-catching function is called
asynchronously, because it causes the behavior of some of the library functions to become
unpredictable.

Because of this, when producing a strictly compliant POSIX application, only the following functions
should be assumed to be reentrant with respect to asynchronous signals. Y our signal-catching functions
should be restricted to using only these functions:

accept() access() alarm() chdir()
chmod() chown() close() connect()
creat() dup() dup2() fentl()
fstat() getegid() geteuid() getgid()
getgroups()  getpgrp()  getpid() getppid()
getuid() kill() link() |seek ()
mkdir () open() pathconf() pause()
read() readv() recv() recvfrom()
recvmsg() rename() rmdir () select()
send() sendmsg() sendto() sigaction()

sigaddset() sigdelset() sigemptyset()  sidfillset()
sigismember() sigpending() sigprocmask() sigsuspend()
sigtimedwait() sigwait() sigwaitinfo()  setitimer()

deep() stat() sysconf() time()
times() umask() uname() unlink()
utime() write() writev()

In addition to the above functions, the macro versions of getc() and putc() are not reentrant. However,
the library versions of these functions are reentrant.

Related Information

« The<signal.h> file (see Header Files for UNIX-Type Functions)

o kill()--Send Signal to Process or Group of Processes




Op0sDisableSignals()--Disable Process for Signals

OpO0sEnableSignals()--Enable Process for Signals

sigprocmask()--Examine and Change Blocked Signals

sigsuspend()--Wait for Signal

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how signal catching functions can be established using the sigaction() function:

#i ncl ude <signal . h>
#1 ncl ude <uni std. h>
#i ncl ude <stdi o. h>

voi d check_mask( int sig, char *signanme ) {
sigset _t sigset;

sigprocmask( SI G_SETMASK, NULL, &sigset );
i f( sigisnenber( &sigset, sig ) )

printf( "the % signal is blocked\n", signane );
el se

printf( "the % signal is unblocked\n", signane );

}

void catcher( int sig ) {
printf( "inside catcher() function\n" );
check_mask( SI GUSR1, "SI GUSRL" );
check_mask( SI GUSR2, "SI GUSR2" );

int main( int argc, char *argv[] ) {

struct sigaction sigact, old_sigact;
sigset _t sigset;

/*

* Set up an Anerican National Standard C style signal handler
* by setting the signal nask to the enpty signal set and

* using the do-not-defer signal, and reset the signal handl er
* to the SI G DFL signal flag options.

*

~

si genptyset ( &sigact.sa nask );

sigact.sa flags = O;

sigact.sa_flags = sigact.sa_flags | SA NODEFER | SA RESETHAND;
si gact.sa_handl er = catcher;

sigaction( SIGUSRL, &sigact, NULL );



Send a signal to this program by using
kill(getpid(), SIGUSR1)
which is the equival ent of the American
Nati onal Standard C rai se(SlI GUSR1)
function call.
/

* % * X X X X

printf( "raise SIGUSRL signal\n" );
kill( getpid(), SIGUSRL );

*

* Get the current value of the signal handling action for
* SIGUSRL. The signal -catching function should have been
* reset to SI G DFL

*/

sigaction( SIGUSRL, NULL, &old_sigact );
if ( old sigact.sa handler !'= SIGDFL )
printf( "signal handler was not reset\n" );

/-k
* Reset the signal-handling action for SIGUSRL
*/

si genptyset ( &sigact.sa_mask );

si gaddset ( &sigact.sa _nask, SIGUSR2 );
sigact.sa_flags = O;

si gact.sa_handl er = catcher;
sigaction( SIGUSR1, &sigact, NULL );

printf( "raise SIGUSRL signal\n" );
kill( getpid(), SIGUSRL );

* Get the current value of the signal-handling action for
* SIGUSRL. catcher() should still be the signal catching
* function.

*/

sigaction( SIGUSR1, NULL, &old sigact );
if( old_sigact.sa handler != catcher )
printf( "signal handler was reset\n" );

return( 0 );

Output:

rai se SI GUSR1 signa

i nsi de catcher() function

the SI GUSRL signal is unblocked
the SI GUSR2 signal is unblocked
rai se SI GQUSRL signha



i nside catcher() function
the SIGUSRL signal is blocked
the SIGQUSR2 signal is blocked

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




sigaddset()--Add Signal to Signal Set

Syntax

#i ncl ude <signal . h>

int sigaddset( sigset t *set, int signo );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigaddset() function is part of afamily of functions that manipulate signal sets. Signal sets are data
objects that let athread keep track of groups of signals. For example, athread might create asignal set to
record which signalsit is blocking, and another signal set to record which signals are pending. Signal sets
are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine
signal sets returned by other functions (such as sigpending()).

sigaddset() adds a signal to the set of signals already recorded in set.

Parameters

* set
(Input) A pointer to asignal set.

signo
(Input) A signal from the list defined in Control Signals Table.

Return Value

0 sigaddset() successfully added to the signal set.

-1 sigaddset() was not successful. The errno variableis set to indicate the error.

Error Conditions

If sigaddset() is not successful, errno usually indicates the following error. Under some conditions, errno
could indicate an error other than that listed here.



[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.

The value of signo is not within the range of valid signals or specifies asignal that is not
supported.

Related Information

o The<signal.h> file (see Header Files for UNIX-Type Functions)

« sigaction()--Examine and Change Signal Action

o Sigdelset()--Delete Signa from Signal Set

o sSigemptyset()--Initialize and Empty Signal Set

o sigfillset()--Initialize and Fill Signal Set

o sigismember()--Test for Signal in Signal Set

« sigprocmask()--Examine and Change Blocked Signals

o sigpending()--Examine Pending Signals

o Sigsuspend()--Wait for Signal

« Sigtimedwait()--Synchronously Accept a Signal for Interval of Time

« sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept a Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example adds a signal to a set of signals:

#i ncl ude <stdi o. h>
#i ncl ude <unistd. h>
#i ncl ude <signal . h>



void catcher( int sig ) {

printf( "catcher() has gained control\n" );

int main( int argc, char *argv[] ) {

struct sigaction sigact;
sigset t sigset;

si genptyset ( &sigact.sa_mask );
sigact.sa flags = O;

si gact.sa_handl er = catcher;
sigaction( SIGUSR1, &sigact, NULL );

printf( "before first kill()\n" );
Kill( getpid(), SIGUSRL );

/-k

* Bl ocking SI GUSR1 signals prevents the signals
* frombeing delivered until they are unbl ocked,
* so0 the catcher will not gain control.

*/

si genptyset ( &sigset );
si gaddset ( &sigset, SIGUSRL );
si gprocmask( SI G SETMASK, &sigset, NULL );

printf( "before second kill()\n" );
Kill( getpid(), SIGUSRL );
printf( "after second kill()\n" );

return( 0 );

Output:

before first kill()
catcher () has gai ned control
before second kill ()

after second kill ()

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




sigdelset()--Delete Signal from Signal Set

Syntax

#i ncl ude <signal . h>

int sigdelset( sigset t *set, int signo );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigdelset() function is part of afamily of functions that manipulate signal sets. Signal sets are data
objects that let athread keep track of groups of signals. For example, athread might create asignal set to
record which signalsit is blocking, and another signal set to record which signals are pending. Signal sets
are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine
signal sets returned by other functions (such as sigpending()).

sigdelset() removes the specified signo from the list of signals recorded in set.

Parameters

* set
(Input) A pointer to asignal set.

signo
(Input) A signal from the list defined in Control Signals Table.

Return Value

0 sigdelset() successfully deleted from the signal set.

-1 sigdelset() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigdelset() is not successful, errno usually indicates the following error. Under some conditions, errno
could indicate an error other than that listed here.



[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.

The value of signo is not within the range of valid signals or specifies asignal that is not
supported.

Related Information

o The<signal.h> file (see Header Files for UNIX-Type Functions)

« sigaction()--Examine and Change Signal Action

o Sigaddset()--Add Signal to Signal Set

o sSigemptyset()--Initialize and Empty Signal Set

o sigfillset()--Initialize and Fill Signal Set

o sigismember()--Test for Signal in Signal Set

« sigprocmask()--Examine and Change Blocked Signals

o sigpending()--Examine Pending Signals

o Sigsuspend()--Wait for Signal

« Sigtimedwait()--Synchronously Accept a Signal for Interval of Time

« sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept a Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example deletes a signal from a set of signals:

#i ncl ude <stdi o. h>
#i ncl ude <unistd. h>
#i ncl ude <signal . h>



void catcher( int sig ) {

printf( "catcher() has gained control\n" );

mai n( int argc, char *argv[] ) {

struct sigaction sigact;
sigset t sigset;

si genptyset ( &sigact.sa_mask );
sigact.sa flags = O;

si gact.sa_handl er = catcher;
sigaction( SIGUSR1, &sigact, NULL );

/
Bl ocking all signals prevents the bl ockabl e
signals frombeing delivered until they are
unbl ocked, so the catcher will not gain

* control

*/

* ok ok *

sigfillset( &sigset );
si gaddset ( &sigset, SIGUSRL );
si gprocmask( SI G SETMASK, &, sigset, NULL );

printf( "before kill()\n" );
Kill( getpid(), SIGUSRL );

printf( "before unbl ocking SI GUSR1\ n" );
si gdel set( &sigset, SIGUSRL );

si gprocmask( SI G SETMASK, &sigset, NULL );
printf( "after unbl ocking SI GUSRI\n" );

return( 0 );

Output:

before kill ()

bef ore unbl ocki ng SI GUSR1
catcher () has gained contro
after unbl ocki ng SI GUSR1

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




sigemptyset()--Initialize and Empty Signal Set

Syntax
#i ncl ude <signal . h>
int sigenptyset( sigset t *set );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigemptyset() function is part of afamily of functions that manipulate signal sets. Signal sets are data
objects that let athread keep track of groups of signals. For example, athread might create asignal set to
record which signalsit is blocking, and another signal set to record which signals are pending. Signal sets
are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine
signal sets returned by other functions (such as sigpending()).

sigemptyset() initializes the signal set specified by set to an empty set. That is, all supported signals are
excluded (see Control Signals Table).

Parameters
*set
(Input) A pointer to asignal set.

Return Value

0 sigemptyset() was successful.

Error Conditions

The sigemptyset() function does not return an error.

Related Information

« The<signal.h> file (see Header Files for UNIX-Type Functions)

« Sigaction()--Examine and Change Signal Action




o sigaddset()--Add Signal to Signal Set

o sigdelset()--Delete Signal from Signal Set

o sigfillset()--Initialize and Fill Signal Set

o Sigismember()--Test for Signal in Signal Set

« sigprocmask()--Examine and Change Blocked Signals

« sigpending()--Examine Pending Signals

o sigsuspend()--Wait for Signa

o sigtimedwait()--Synchronously Accept a Signal for Interval of Time

o sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept a Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example initializes a set of signals to the empty set:

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <signal . h>

int main( int argc, char *argv[] ) {

struct sigaction sigact;
sigset _t sigset;

si genptyset ( &sigact.sa_nask );
sigact.sa flags = 0O;

sigact.sa _handler = SIG |G\
sigaction( SIGUSR2, &sigact, NULL );

/-k

* Unbl ocking all signals ensures that the signal
* handling action will be taken when the signal
* | s generated.

*/

si genptyset ( &sigset );



si gprocmask( SI G SETMASK, &sigset, NULL );

printf( "before kill()\n" );
Kill( getpid(), SIGUSR2 );
printf( "after kill()\n" );

return( 0 );
}
Output:
before kill ()
after kill()

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




sigfillset()--Initialize and Fill Signal Set

Syntax

#i ncl ude <signal . h>

int sigfillset( sigset t *set );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigfillset() function is part of afamily of functions that manipulate signal sets. Signal sets are data
objects that let athread keep track of groups of signals. For example, athread might create asignal set to
record which signasit is blocking, and another signal set to record which signals are pending. Signal sets
are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine
signal sets returned by other functions (such as sigpending()).

sigfillset() initializes the signal set specified by set to acomplete set. That is, the set includes al supported
signals (see Control Signals Table).

Parameters

*set
(Input) A pointer to asignal set.

Return Value

0 sdfillset() was successful.

Error Conditions

The sigfillset() function does not return an error.



Related Information

« The<signal.h> file (see Header Files for UNIX-Type Functions)

« Sigaction()--Examine and Change Signal Action

o Sigaddset()--Add Signal to Signal Set

o sigdelset()--Delete Signal from Signal Set

« sigemptyset()--Initialize and Empty Signal Set

o sigismember()--Test for Signal in Signal Set

« sigprocmask()--Examine and Change Blocked Signals

« sigpending()--Examine Pending Signals

« Sigsuspend()--Wait for Signal

« sigtimedwait()--Synchronously Accept a Signal for Interval of Time

o sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept a Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following exampleinitializes a set of signalsto the complete set:

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i ncl ude <si gnal . h>

int main( int argc, char *argv[] ) {
sigset _t sigset;
/*
* Blocking all signals ensures that the signal
* handling action for the signals in the set is
* not taken until the signals are unbl ocked.
*/

sigfillset( &sigset );



si gprocmask( SI G SETMASK, &sigset, NULL );

printf( "before kill()\n" );
Kill( getpid(), SIGUSR2 );
printf( "after kill()\n" );

return( 0 );
}
Output:
before kill ()
after kill()

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




sigismember()--Test for Signal in Signal Set

Syntax

#i ncl ude <signal . h>

i nt sigismenber( const sigset t *set, int signo );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigismember () function is part of afamily of functions that manipulate signal sets. Signal sets are data
objects that let athread keep track of groups of signals. For example, athread might create asignal set to
record which signalsit is blocking, and another signal set to record which signals are pending. Signal sets
are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine
signal sets returned by other functions (such as sigpending()).

sigismember () tests whether a signal number specified by signo is amember of asignal set specified by
Set.

Parameters

* set
(Input) A pointer to asignal set.

signo
(Input) A signal from the list defined in Control Signals Table.

Return Value

1 Thespecified signa isin the specified signal set.
0 The specified signal is not in the specified signal set.

-1 Anerror occurred. The errno variable is set to indicate the error.



Error Conditions

If sigismember () is not successful, errno usually indicates the following error. Under some conditions,
errno could indicate an error other than that listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.

The value of signo is not within the range of valid signals or specifiesasignal that is not
supported.

Related Information

The <signal.h> file (see Header Files for UNIX-Type Functions)

« Sigaction()--Examine and Change Signal Action

o Sigaddset()--Add Signal to Signal Set

o sigdelset()--Delete Signal from Signal Set

« sigemptyset()--Initialize and Empty Signal Set

o sigfillset()--Initialize and Fill Signal Set

« sigprocmask()--Examine and Change Blocked Signals

« sigpending()--Examine Pending Signals

« Sigsuspend()--Wait for Signal

« sigtimedwait()--Synchronously Accept a Signal for Interval of Time

o sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept a Signal and Signal Data

Example
The following exampl e uses the sigismember () function to test for the presence of signalsin asignal set:

#i ncl ude <stdi o. h>
#i ncl ude <signal . h>



void check( sigset t set, int signo, char *signanme ) {
printf( "% is ", signhane );
i f( !sigisnenber( &set, signo ) )
printf( "not ");
printf( "in the set" );
int main( int argc, char *argv[] ) {
sigset t sigset;
si genptyset ( &sigset );
si gaddset ( &sigset, Sl GUSRL

si gaddset ( &sigset, SIGKILL
si gaddset ( &sigset, SIGCHLD );

).
).

’
’

check( sigset, SIGUSRL, "SIGUSRL" )
check( sigset, SIGUSR2, "SIGUSR2" )
check( sigset, SIGCHLD, "SI GCHLD' )

)

check( sigset, SIGFPE, "SIGFPE" ) 7
check( sigset, SIGKILL, "SIGKILL"

’

return( 0 );

Output:

SIGUSRL is in the set
SIGUSR2 is not in the set
SIGCHLD is in the set
SIGFPE is not in the set
SIGKILL is in the set

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




siglongimp()--Perform Nonlocal Goto with
Signal Handling

Syntax

#i ncl ude <setjnp. h>

voi d siglongjnp( sigjnmp_buf env, int val );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The siglongjmp() function restores the stack environment previously saved in env by sigsetjmp().
siglongjmp() also provides the option to restore the signal mask, depending on whether the signal mask
was saved by sigsetjmp().

siglongjmp() issimilar to longjmp(), except for the optional capability of restoring the signal mask.
The sigsetjmp() and siglongjmp() functions provide away to perform anonloca "goto."
A call to sigsetjmp() causes the current stack environment (including, optionally, the signal mask) to be

saved in env. A subsequent call to siglongjmp() does the following:
« Restores the saved environment and signal mask (if saved by sigsetjmp()).

« Returns control to a point in the program corresponding to the sigsetjmp() call.

Processing resumes as if the sigsetjmp() call had just returned the given val. All variables, (except register
variables) that are accessible to the function that receives control contain the values they had when
siglongjmp() was called. The values of register variables are unpredictable. Nonvolatile auto variables that
are changed between callsto sigsetjmp() and siglongjmp() are also unpredictable.

Note: When using siglongjmp(), the function in which the corresponding call to sigsetjmp() was made
must not have returned first. Unpredictable program behavior occursif siglongjmp() is caled after the
function calling sigsetjmp() has returned.

The val argument passed to siglongjmp() must be nonzero. If the val argument is equal to zero,
siglongjmp() substitutesa 1 in its place.

siglongjmp() does not use the normal function call and return mechanisms. siglongjmp() restores the saved
signal mask only if the env parameter was initialized by acall to sigsetjmp() with a nonzero savemask
argument.



Parameters

env
(Input) An array type that holds the information needed to restore a calling environment.

val
(Input) The return value.

Return Value

None.

Error Conditions

The siglongjmp() function does not return an error.

Usage Notes

The sigsetjmp()-siglongjmp() pair and the setjmp()-longjmp() pair cannot be intermixed. A stack
environment and signal mask saved by sigsetjmp() can be restored only by siglongjmp().

Related Information

The <setjmp.h> file (see Header Files for UNIX-Type Functions)

« sigaction()--Examine and Change Signal Action

« sigprocmask()--Examine and Change Blocked Signals

o sigsetimp()--Set Jump Point for Nonlocal Goto

o Sigsuspend()--Wait for Signal

o Seep()--Suspend Processing for Interval of Time

Example

See Code disclaimer information for information pertaining to code examples.

This example saves the stack environment and signal mask at the following statement:



if( sigsetjmp(mark,1) '=0) {

When the system first performs the if statement, it saves the environment and signal mask in mark and sets
the condition to false because sigsetjmp() returns a 0 when it saves the environment. The program prints
the following message:

sigsetjnp() has been called

The subsequent call to function p() tests for alocal error condition, which can cause it to perform
siglongjmp() (in this example as aresult of calling asignal catching function). Control is returned to the
original sigsetjmp() function using the environment saved in mark and the restored signal mask. Thistime,
the condition is true because -1 is the return value from siglongjmp(). The program then performs the
statements in the block and prints the following:

si gl ongj mp() function was called
Then the program performs the recover () function and exits.

Here isthe program:

#i ncl ude <si gnal . h>
#i ncl ude <setj nmp. h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>

sigset _t sigset;
si gj np_buf mark;

void catcher( int );
void p( void );
voi d recover( void );

int main( int argc, char *argv[] ) {

int result;

/*

* Block the SIGUSRL and SI GUSR2 signals. This set of
* signals will be saved as part of the environment

* by the sigsetjnp() function.

*/

si genptyset ( &sigset );

si gaddset ( &sigset, SIGUSRL );

si gaddset ( &sigset, SIGQUSR2 );

si gprocnmask( SI G SETMASK, &sigset, NULL );

if( sigsetjmp( mark, 1) !'=0) {
printf( "siglongjnp() function was called\n" );
recover();
resul t =0;

el se {
printf( "sigsetjnp() has been called\n" );

p();



si gprocnmask( SI G SETMASK, NULL, &sigset );
i f( sigismenber( &sigset, SIGUSR2 ) )

printf( "siglongjnp() was not called\n" );
resul t=-1;

}

printf( "return to main with result %\ n", result );

return( result );

}
void p( void ) {

struct sigaction sigact;
int error=0;

printf( "performng function p()\n" );

/* Send signal handler in case error condition is detected */
si genptyset ( &sigact.sa_mask );

sigact.sa flags = 0;

si gact.sa _handl er = catcher;

sigaction( SIGQUSR2, &sigact, NULL );

si gdel set( &sigset, SIGQUSR2 );
si gprocmask( SI G SETMASK, &sigset, NULL );

/* After sonme processing an error condition is detected */
error=-1;
/* Call catcher() function if error is detected */
if( error '=0)
printf( "error condition detected, send SI GQUSR2 signal\n" );
Kill( getpid(), SIGUSR2 );

printf( "return fromcatcher() function is an error\n" );

}

void recover( void ) {
printf( "taking recovery action\n" );
si gprocnmask( SI G SETMASK, NULL, &sigset );
i f( sigismenber( &sigset, SIGUSR2 ) )
printf( "signal mask was restored after siglongjnmp()\n" );

}

void catcher( int signo ) {
printf( "in catcher() before siglongjnm()\n" );
siglongjmp( mark, -1 );

printf( "in catcher() after siglongjnp() is an error\n" );



Output

sigsetjnp() has been called

perform ng function p()

error condition detected, send SI GUSR2 signal
in catcher() before siglongjnm()

si gl ongj np() function was called

taki ng recovery action

signal mask was restored after siglongjnp()
return to main with result 0O

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




sigpending()--Examine Pending Signals

Syntax

#i ncl ude <signal . h>

i nt sigpending( sigset t *set );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigpending() function returns signals that are blocked from delivery and pending for either the calling
thread or the process. Thisinformation is represented as asignal set stored in set. For more information on
examining the signal set pointed to by set, see sigismember()--Test for Signal in Signal Set.

Parameters

*
Set
(Output) A pointer to the space where the signal set information is stored.

Return Value

0 sigpending() was successful.

-1 sigpending() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigpending() is not successful, errno usually indicates the following error. Under some conditions, errno
could indicate an error other than that listed here.

[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

« Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have not
been initialized.



Related Information

The <signal.h> file (see Header Files for UNIX-Type Functions)

o sigaddset()--Add Signal to Signal Set

o sigdelset()--Delete Signal from Signal Set

o sigemptyset()--Initialize and Empty Signal Set

« sidfillset()--Initialize and Fill Signal Set

o Sigismember()--Test for Signal in Signal Set

« sigprocmask()--Examine and Change Blocked Signals

Example

See Code disclaimer information for information pertaining to code examples.

The following example returns blocked and pending signals:

#i ncl ude <signal . h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>

void catcher( int sig ) {
puts( "inside catcher() function\n" );

voi d check_pending( int sig, char *signame ) {
sigset _t sigset;

if( sigpending( &sigset ) !'=0)
perror( "sigpending() error\n" );

el se if( sigisnenber( &sigset, sig ) )
printf( "a % signal is pending\n", signame );
el se
printf( "no % signals are pending\n", signane );

int main( int argc, char *argv[] ) {

struct sigaction sigact;
sigset _t sigset;



si genptyset ( &sigact.sa_mask );
sigact.sa flags = O;
si gact.sa_handl er = catcher;

i f( sigaction( SIGUSRL, &sigact, NULL ) !'=0)
perror( "sigaction() error\n" );

el se {
si genptyset ( &sigset );
si gaddset ( &sigset, SIGUSRL );
if ( sigprocnmask( SI G SETMASK, &sigset, NULL ) !'= 0)
perror( "sigprocmask() error\n" );

el se {
printf( "SI GUSRL signals are now bl ocked\n" );

Kill( getpid(), SIGUSRL );
printf( "after kill()\n" );

check_pendi ng( SI GUSRL, "SI GUSRL" );

si genptyset ( &sigset );
si gprocmask( SI G SETMASK, &sigset, NULL );
printf( "SIGUSRL signals are no | onger blocked\n" );

check_pendi ng( SI GUSRL, "SI GUSRL" );
}

return( 0 );

Output:

SI GUSR1 signals are now bl ocked

after kill()

a SI GUSR1 signal is pending

i nside catcher() function

SI GUSR1 signals are no | onger bl ocked
no S| GUSR1 signals are pending

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




sigprocmask()--Examine and Change Blocked
Signals

Syntax

#i ncl ude <signal . h>

i nt sigprocmask( int how, const sigset_ t *set,
sigset _t *oset );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigprocmask() function examines, or changes, or both examines and changes the signal mask of the
calling thread.

The signals SIGKILL or SIGSTOP cannot be blocked. Any attempt to use sigprocmask() to block these
signalsis simply ignored, and no error is returned.

SIGFPE, SIGILL, and SIGSEGV signals that are not artificially generated by kill() or raise() (that is, were
generated by the system as aresult of a hardware or software exception) are not blocked.

If there are any pending unblocked signals after sigpr ocmask () has changed the signal mask, at least one of
those signalsis delivered to the thread before sigpr ocmask() returns.

If sigprocmask() fails, the process's signal mask is not changed.

Parameters

how
(Input) The way in which the signal set is changed.

* set
(Input) A pointer to a set of signalsto be used to change the currently blocked set. May be NULL.

*oset
(Output) A pointer to the space where the previous signal mask is stored. May be NULL.
The possible values for how, which are defined in the <sys/signal .h> header file, are asfollows:

SG_BLOCK Indicates that the set of signals given by set should be blocked, in addition to the set
currently being blocked.



SG_UNBLOCK Indicates that the set of signals given by set should not be blocked. These signals are
removed from the current set of signals being blocked.

SG_SETMASK  Indicates that the set of signals given by set should replace the old set of signals being
blocked.

The set parameter pointsto asignal set giving the new signals that should be blocked or unblocked
(depending on the value of how), or it points to the new signal mask if the value of how was
SIG_SETMASK. Signal sets are described in sigemptyset()--Initialize and Empty Signal Set. If setisa

NULL pointer, the set of blocked signalsis not changed. If set isNULL, the value of howisignored.

The signal set manipulation functions (sigemptyset(), sigfillset(), sigaddset(), and sigdelset()) must be
used to establish the new signal set pointed to by set.

sigprocmask() determines the current signal set and returns thisinformation in *oset. If set isSNULL, oset
returns the current set of signals being blocked. When set isnot NULL, the set of signals pointed to by oset
isthe previous set.

Return Value
0 sigprocmask() was successful.

-1 sigprocmask() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigprocmask() is not successful, errno usually indicates the following error. Under some conditions,
errno could indicate an error other than that listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.

One of the following has occurred:
« Thevalue of how isnot equal to one of the defined values.
« Thesignal set pointed to by set contains asignal that is not within the valid
range or asignal that is not supported.

[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

« Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have not
been initialized.



Usage Notes

1

When the sigprocmask function is used to change the signal mask of the calling process, it enables
the process for signals if the processis not already enabled for signals. For details, see
QpOsEnableSignals()--Enable Process for Signals. If the system has not been enabled for signals,

sigprocmask() is not successful, and an [ENOTSIGINIT] error is returned.

Typically, sigprocmask(SIG_BLOCK, ...) isused to block signals during acritical section of code.
At the end of the critical section of code, sigprocmask(SIG_SETMASK, ...) is used to restore the
mask to the previous value returned by sigprocmask(SIG_BLOCK, ...).

Related Information

The <signal.h> file (see Header Files for UNIX-Type Functions)

sigaction()--Examine and Change Signal Action

QpOsDisableSignals()--Disable Process for Signals

OpO0sEnableSignals()--Enable Process for Signals

sigaddset()--Add Signal to Signal Set

sigdelset()--Delete Signal from Signal Set

sigemptyset()--Initialize and Empty Signal Set

sigfillset()--Initialize and Fill Signal Set

sigismember()--Test for Signal in Signal Set

sigpending()--Examine Pending Signals

sigsuspend()--Wait for Signal

sigtimedwait()--Synchronously Accept a Signal for Interval of Time

sigwait()--Synchronously Accept a Signa

sigwaitinfo()--Synchronously Accept a Signal and Signal Data




Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the signal mask:

#i ncl ude <signal . h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>
#i ncl ude <tine. h>

void catcher( int sig ) {
printf( "inside catcher() function\n" );
}

int main( int argc, char *argv[] ) {

tine_t start, finish;
struct sigaction sact;
sigset _t new set, old_set;
doubl e diff;

si genptyset ( &sact.sa _mask );
sact.sa flags = O;

sact.sa_handl er = catcher;
sigaction( SIGALRM &sact, NULL );

si genptyset ( &ew set );
si gaddset ( &new set, S| GALRM );
si gprocmask( SI G BLOCK, &new set, &old set);

tinme( &start );
printf( "SI GALRM signals bl ocked at %\ n", ctine(&start) );

alarn( 1 ); [* SIGALRMwi || be sent in 1 second */
do {

time( & inish);

diff =difftime( finish, start );
} while (diff < 10);

si gprocmask( SI G SETMASK, &old set, NULL );
printf( "SI GALRM signal s unbl ocked at 9%\n", ctinme(&inish) );

return( 0 );

Output:

S| GALRM si gnal s bl ocked at Sun Jan 22 16:53:40 1995
i nside catcher() function
S| GALRM si gnal s unbl ocked at Sun Jan 22 16:53:50 1995



API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




sigsetjmp()--Set Jump Point for Nonlocal Goto

Syntax

#i ncl ude <setjnp. h>

int sigsetjnmp( sigjnp_buf env, int savemask );
Service Program Name: QPOSSRV 1

Default Public Authority: * USE

Threadsafe: Yes

The sigsetjmp() function saves the current stack environment and, optionally, the current signal mask. The
stack environment and signal mask saved by sigsetjmp() can subsequently be restored by siglongjmp().

sigsetjmp() issimilar to setjmp(), except for the optional capability of saving the signal mask. Like
setjmp() and longjmp(), the sigsetjmp() and siglongjmp() functions provide away to perform a nonlocal
"goto."

A call to sigsetjmp() causes it to save the current stack environment in env. If the value of the savemask
parameter is honzero, sigsetjmp() also saves the current signal mask in env. A subsequent call to
siglongjmp() does the following:

» Restores the saved environment and signal mask (if saved by sigsetjmp()).

«» Returns control to a point corresponding to the sigsetjmp() call.

The values of all variables (except register variables) accessible to the function receiving control contain
the values they had when siglongj mp() was called. The values of register variables are unpredictable.
Nonvolatile automatic storage variables that are changed between calls to sigsetjmp() and siglongjmp() are
also unpredictable.

Parameters

env
(Input) An array type for holding the information needed to restore a calling environment.

savemask

(Input) Anindicator used to determine if the current signal mask of the thread isto be saved. This
value may be zero.



Return Value

0 sigsetjmp() was called to save the stack environment and, optionally, the signal mask. It may have
been either successful or not successful.

val siglongjmp() caused control to be transferred to the place in the user's program where sigsetjmp()
was issued. The value returned is the value specified on siglongjmp() for the val parameter (or 1 if
the value of val is zero).

Error Conditions
The sigsetjmp() function does not return an error.

Usage Notes

The sigsetjmp()-siglongjmp() pair and the setjmp()-longjmp() pair cannot be intermixed. A stack
environment and signal mask saved by sigsetjmp() can be restored only by siglongjmp().

Related Information

o The <setjmp.h> file (see Header Files for UNIX-Type Functions)

« sigaction()--Examine and Change Signal Action

« siglongijmp()--Perform Nonlocal Goto with Signal Handling

« sigprocmask()--Examine and Change Blocked Signals

o sigsuspend()--Wait for Signa

Example

See Code disclaimer information for information pertaining to code examples.

This example saves the stack environment and signal mask at the following statement:

if( sigsetjmp(mark,1) '=0) {

When the system first performstheif statement, it saves the environment and signal mask in mark and sets
the condition to false because sigsetjmp() returns a 0 when it saves the environment. The program prints
the following message:

sigsetjnp() has been called



The subsequent call to function p() testsfor alocal error condition, which can cause it to perform
siglongjmp() (in this example as aresult of calling asignal catching function). Control is returned to the
original sigsetjmp() function using the environment saved in mark and the restored signal mask. Thistime,
the condition is true because -1 is the return value from siglongjmp(). The program then performs the
statements in the block and prints the following:

si gl ongj mp() function was called
Then the program performs the recover () function and exits.

Here isthe program:

#i ncl ude <si gnal . h>
#i ncl ude <setj nmp. h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>

sigset _t sigset;
si gj mp_buf mark;

void catcher( int );
void p( void );
voi d recover( void );

int main( int argc, char *argv[] ) {

int result;

/*

* Block the SIGUSRL and SI GUSR2 signals. This set of
* signals will be saved as part of the environment

* by the sigsetjnp() function.

*/

si genptyset ( &sigset );

si gaddset ( &sigset, SIGUSRL );

si gaddset ( &sigset, SIGQUSR2 );

si gprocnmask( SI G SETMASK, &sigset, NULL );

if( sigsetjmp( mark, 1) !'=0) {
printf( "siglongjnp() function was called\n" );
recover();
resul t =0;

el se {
printf( "sigsetjnp() has been called\n" );
P();
si gprocnmask( SI G SETMASK, NULL, &sigset );
i f( sigismenber( &sigset, SIGUSR2 ) )
printf( "siglongjnp() was not called\n" );
result=-1;
}

printf( "return to main with result %\ n", result);

return( result );



void p( void ) {

struct sigaction sigact;
int error=0;

printf( "performng function p()\n" );

/* Send signal handler in case error condition is detected */
si genptyset ( &sigact.sa_mask );

sigact.sa flags = 0;

si gact.sa _handl er = catcher;

sigaction( SIGUSR2, &sigact, NULL );

si gdel set( &sigset, SIGQUSR2 );
si gprocmask( SI G SETMASK, &sigset, NULL );

/* After sonme processing an error condition is detected */
error=-1;
/* Call catcher() function if error is detected */
if( error '=0) {
printf( "error condition detected, send SI GUSR2 signal\n" );
Kill( getpid(), SIGUSR2 );

printf( "return fromcatcher() function is an error\n" );

}

void recover( void ) {
printf( "taking recovery action\n" );
si gprocnmask( SI G SETMASK, NULL, &sigset );
i f( sigismenber( &sigset, SIGUSR2 ) )
printf( "signal mask was restored after siglongjnmp()\n" );

}

void catcher( int signo ) {
printf( "in catcher() before siglongjnmp()\n" );
siglongjmp( mark, -1 );

printf( "in catcher() after siglongjnp() is an error\n" );

Output:

sigsetjnp() has been called
perform ng function p()



error condition detected, send SI GUSR2 si gnal
in catcher() before siglongjnm()

si gl ongj mp() function was called

taki ng recovery action

signal mask was restored after siglongjnp()
return to main with result 0

API introduced: V3R6

Top | UNIX-Type APIs| APIs by category




sigsuspend()--Wait for Signal

Syntax
#i ncl ude <signal . h>
i nt sigsuspend( const sigset t *sigmask );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigsuspend() function replaces the current signal mask of athread with the signal set given by
*sigmask and then suspends processing of the calling process. The thread does not resume running until a
signal is delivered whose action isto call asignal-catching function, to end the request, or to terminate the
process. (Signal sets are described in more detail in sigemptyset()--Initialize and Empty Signal Set.)

The signal mask indicates a set of signals that should be blocked. Such signals do not "wake up" the
suspended function. The signals SIGSTOP and SIGKILL cannot be blocked or ignored; they are delivered
to the thread regardless of what the sigmask argument specifies.

If an incoming unblocked signal has an action of end the request of terminate the process, sigsuspend()
never returnsto the caller. If an incoming signal is handled by a signal-catching function, sigsuspend()

returns after the signal-catching function returns. In this case, the signal mask of the thread is restored to
whatever it was before sigsuspend() was called.

Parameters

*sigmask
(Input) A pointer to a set of signalsto be used to replace the current signal mask of the process.

Return Value

-1 sigsuspend() was not successful. The errno variable is set to indicate the reason.

There is no return value to indicate successful completion.



Error Conditions

If sigsuspend() returns, errno indicates the following:
[EINTR] Interrupted function call.
A signal was received and handled by a signal-catching function that returned.
[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.

The signal set pointed to by sigmask contains asignal that is not within the valid
range or asignal that is not supported.

[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following
conditions:

« Thesignal function isbeing called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have
not been initialized.

[EWOULDBLOCK] Operation would have caused the process to be suspended.

The current thread state would prevent the signal function from completing.

Usage Notes

The sigsuspend function enables a process for signalsif the processis not already enabled for signals. For
details, see QpOsEnableSignals()--Enable Process for Signals. If the system has not been enabled for

signals, sigsuspend() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

The <signal.h> file (see Header Files for UNIX-Type Functions)

alarm()--Set Schedule for Alarm Signa

pause()--Suspend Process Until Signal Received

Qp0sDisableSignals()--Disable Process for Signals

QpO0sEnableSignals()--Enable Process for Signals

sigaction()--Examine and Change Signal Action




o sigaddset()--Add Signal to Signal Set

o sigdelset()--Delete Signal from Signal Set

o sigemptyset()--Initialize and Empty Signal Set

« sidfillset()--Initialize and Fill Signal Set

o Sigismember()--Test for Signal in Signal Set

« sigpending()--Examine Pending Signals

« sigprocmask()--Examine and Change Blocked Signals

o sigtimedwait()--Synchronously Accept a Signal for Interval of Time

o sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept a Signal and Signal Data

o Seep()--Suspend Processing for Interval of Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example replaces the signal mask and then suspends processing:

#i ncl ude <si gnal . h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>
#i ncl ude <tine. h>

void catcher( int sig ) {
printf( "inside catcher() function\n" );

}

void tinestanmp( char *str ) {
tine t t;
time( & );

printf( "% the tine is %\n", str, ctinme(&) );

int main( int argc, char *argv[] ) {



}

struct sigaction sigact;
sigset _t block_set;

sigfillset( &block set );
si gdel set ( &bl ock_set, SIGALRM);

si genptyset ( &sigact.sa_mask );
sigact.sa flags = O;

si gact.sa_handl er = catcher;
sigaction( SIGALRM &sigact, NULL );

ti mestanp( "before sigsuspend()" );
alarm 10 );

si gsuspend( &bl ock_set );
timestanp( "after sigsuspend()" );

return( 0 );

Output:

bef ore sigsuspend() the time is Sun Jan 22 17:11:41 1995
i nside catcher() function
after sigsuspend() the tine is Sun Jan 22 17:11:51 1995

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category




sigtimedwait()--Synchronously Accept a Signal
for Interval of Time

Syntax

#i ncl ude <signal . h>
int sigtimedwait( const sigset t *set,

siginfo_t *info,
const struct timespec *tinmeout );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigtimedwait() function selects a pending signal from set, clearsit from the set of pending signals for
the thread or process, and returns that signal number in the si_signo member in the structure that is
referenced by info. If prior to the call to sigtimedwait() there are multiple pending instances of asingle
signal number, upon successful return the number of remaining signals for that signal number is
decremented by one.

If no signal in set is pending at the time of the call, the thread shall be suspended for the time interval in the
timespec structure referenced by timeout. The thread does not resume until either one or more signalsin set
become pending or the time interval has elapsed. If the timespec structure referenced by timeout has avalue
of zero and none of the signals specified by set are pending, then sigtimedwait() is not successful and an
[EAGAIN] error is returned.

The signals defined by set are required to be blocked at the time of the call to sigtimedwait(); otherwise,
sigtimedwait() is not successful, and an [EINVAL] error isreturned. The signal SIGKILL or SIGSTOP
cannot be selected. Any attempt to use sigpr ocmask () to select these signalsis simply ignored, and no error
isreturned.

The signal action for the signal in set that is returned in the member si_signo in the structure referenced by
info is not taken.

If more than one thread is using a sigwait function to wait for the same signal, only one of these threads will
return from the sigwait function with the signal number. If more than one thread is waiting for the same
signal, the first thread to wait on the signal will return from the sigwait function.

Parameters

*set
(Input) A pointer to asignal set to be waited upon.

*info



(Output) A pointer to the storage location where sigtimedwait() can store the signal related
information for the signal number that completed the wait. This value may be NULL. The siginfo_t
structure is described in sigaction()--Examine and Change Signal Action.

*timeout

(Input) A pointer to the storage location specifying the time interval sigtimedwait() should wait.
Thisvalue may be NULL. If timeout is NULL, the thread will be suspended until one or more
signalsin set become pending.

Return Value

0 sigtimedwait() was successful.

-1 sigtimedwait() was not successful. The errno variable is set to indicate the reason.

Error Conditions

If sigtimedwait() is not successful, errno usually indicates the following error. Under some conditions,
errno could indicate an error other than that listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.

One of the following has occurred:

« Thesignal set pointed to by set contains asignal that is not within the valid
range or asignal that is not supported.

« A signa inthesignal set pointed to by set containsasignal that is not
blocked.

« Thetv_nsec member in the timespec structure pointed to by timeout is greater
than or equal to 1,000,000,000.

[EAGAIN] Operation would have caused the process to be suspended.

[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

» Thesignal function isbeing called for a process that is not enabled for
asynchronous signals.

» Thesignal function isbeing called when the system signal controls have not
been initialized.



Usage Notes

The sigtimedwait() function enables a process for signalsif the process is hot already enabled for signals.
For details, see QpOsEnabl eSignals()--Enable Process for Signals. If the system has not been enabled for

signals, sigtimedwait() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

o The<signal.h> file (see Header Files for UNIX-Type Functions)

o OQpOsDisableSignals()--Disable Process for Signals

o OpOsEnableSignals()--Enable Process for Signals

« Sigaction()--Examine and Change Signal Action

« sigpending()--Examine Pending Signals

« sigprocmask()--Examine and Change Blocked Signals

o sigsuspend()--Wait for Signa

o sigwait()--Synchronously Accept a Signal

« sigwaitinfo()--Synchronously Accept aSignal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing by using the sigtimedwait() function and determines the
current time:

Note: The signal catching function is not called.

#i ncl ude <signal . h>
#i ncl ude <stdio. h>
#i ncl ude <tine. h>

void catcher( int sig ) {
printf( "Signal catcher called for signal %\n", sig );

void tinestanp( char *str ) {
time_t t;



time( T);

printf( "The time % is %\n", str, ctime(T) );
int main( int argc, char *argv[] ) {

int result = O;

struct sigaction sigact;

struct sigset t waitset;

siginfo_ t info;

struct timespec tineout;

si genptyset ( &sigact.sa_mask );

sigact.sa flags = O;

si gact.sa _handl er = catcher;

sigaction( SIGALRM &sigact, NULL );

si genptyset ( &wai tset );
si gaddset ( &wai tset, SIGALRM);

si gprocmask( SI G BLOCK, &waitset, NULL );

timeout.tv_sec = 10; /* Number of seconds to wait */
timeout.tv_nsec = 1000; /* Nunber of nanoseconds to wait */

alarm 10 );
timestanp( "before sigtinedwait()" );
result = sigtinedwait( &waitset, & nfo, &tineout );
printf("sigtinmedwait() returned for signal %\n",
i nfo.si_signo );

timestanp( "after sigtinmedwait()" );

return( result );

Output:

The tinme before sigtinmedwait() is Mon Feb 17 11:09: 08 1997
sigtinmedwait() returned for signal 14
The tinme after sigtinedwait() is Mon Feb 17 11:09: 18 1997

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category




sigwait()--Synchronously Accept a Signal

Syntax

#i ncl ude <signal . h>

int sigwait( const sigset t *set, int *sig );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigwait() function selects a pending signal from set, clearsit from the set of pending signals for the
thread or process, and returns that signal number in the location that is referenced by sig. If prior to the call
to sigwait() there are multiple pending instances of a single signal number, upon successful return the
number of remaining signals for that signal number is decremented by one.

If no signal in set is pending at the time of the call, the thread shall be suspended. The thread does not
resume until one or more signalsin set become pending.

The signals defined by set are required to be blocked at the time of the call to sigwait(); otherwise,
sigwait() is not successful, and an [EINVAL] error is returned. The signals SIGKILL or SIGSTOP cannot
be selected. Any attempt to use sigwait() to select these signalsis simply ignored, and no error is returned.
The signal action for the signal in set that is returned in the location referenced by sig is not taken.

If more than one thread is using a sigwait function to wait for the same signal, only one of these threads will

return from the sigwait function with the signal number. If more than one thread is waiting for the same
signal, the first thread to wait on the signal will return from the sigwait function.

Parameters

*set
(Input) A pointer to asignal set to be waited upon.
*sg

(Output) A pointer to the storage location where sigwait() can store the signal number that
completed the wait.

Return Value

0 sigwait() was successful.

-1 sigwait() was not successful. The errno variable is set to indicate the reason.



Error Conditions

If sigwait() is not successful, errno usually indicates the following error. Under some conditions, errno
could indicate an error other than that listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.

One of the following has occurred:

» Thesignal set pointed to by set contains asignal that is not within the valid
range or asignal that is not supported.

« A signal inthesignal set pointed to by set containsasignal that is not
blocked.
[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

« Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have not
been initialized.

Usage Notes

The sigwait() function enables a process for signals if the processis not aready enabled for signals. For
details, see QpOsEnableSignals()--Enable Process for Signals. If the system has not been enabled for

signals, sigwait() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

« The<signal.h> file (see Header Files for UNIX-Type Functions)

o OQpOsDisableSignals()--Disable Process for Signals

o OpOsEnableSignals()--Enable Process for Signals

« Sigaction()--Examine and Change Signal Action

« sigpending()--Examine Pending Signals

« sigprocmask()--Examine and Change Blocked Signals




o sigsuspend()--Wait for Signa

o sigtimedwait()--Synchronously Accept a Signal for Interval of Time

« sigwaitinfo()--Synchronously Accept aSignal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing by using the sigwait() function and determines the current
time:

Note: The signal catching function is not called.

#i ncl ude <signal . h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>
#i ncl ude <tine. h>

extern int errno;
void catcher( int sig ) {

printf( "Signal catcher called for signal %\n", sig );
void tinestanp( char *str ) {

time_t t;

time( T);

printf( "The time % is %\n", str, ctime(T) );
int main( int argc, char *argv[] ) {

struct sigaction sigact;

sigset _t waitset;

int sig;

int result = O;

si genptyset ( &sigact.sa_mask );

sigact.sa flags = O;

si gact.sa_handl er = catcher;

sigaction( SIGALRM &sigact, NULL );

si genptyset ( &wai tset );
si gaddset ( &wai tset, SIGALRM);

si gprocmask( SI G BLOCK, &waitset, NULL );
alarm 10 );

timestanp( "before sigwait()" );



result = sigwait( &waitset, &sig );

if( result == 0)
printf( "sigwait() returned for signal %\n", sig);

el se {
printf( "sigwait() returned error nunber %\ n", errno );
perror( "sigwait() function failed\n" );

tinestanp( "after sigwait()" ):

return( result );

}
Output:

The tinme before sigwait() is Tue Jul 15 11:15:43 1997
sigwait() returned for signal 14
The time after sigwait() is Tue Jul 15 11:15:54 1997

API introduced: V4R2

Top | UNIX-Type APIs | APIs by category




sigwaitinfo()--Synchronously Accept a Signal
and Signal Data

Syntax

#i ncl ude <signal . h>

int sigwaitinfo( const sigset t *set,
siginfo_t *info);

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sigwaitinfo() function selects a pending signal from set, clearsit from the set of pending signals for the
thread or process, and returns that signal number in the si_signo member in the structure that is referenced
by info. If prior to the call to sigwaitinfo() there are multiple pending instances of asingle signal number,
upon successful return the number of remaining signals for that signal number is decremented by one.

If no signal in set is pending at the time of the call, the thread shall be suspended. The thread does not
resume until one or more signalsin set become pending.

The signals defined by set are required to be blocked at the time of the call to sigwaitinfo(); otherwise,
sigwaitinfo() is not successful, and an [EINVAL] error is returned. The signals SIGKILL or SIGSTOP
cannot be selected. Any attempt to use sigwaitinfo() to select these signalsis simply ignored, and no error
isreturned.

The signal action for the signal in set that is returned in the member si_signo in the structure referenced by
info is not taken.

If more than one thread is using a sigwait function to wait for the same signal, only one of these threads will
return from the sigwait function with the signal number. If more than one thread is waiting for the same
signal, the first thread to wait on the signal will return from the sigwait function.

Parameters

*set
(Input) A pointer to asignal set to be waited upon.

*info

(Output) A pointer to the storage location where sigwaitinfo() can store the signal related
information for the signal number that completed the wait. This value may be NULL. The siginfo_t
structure is described in sigaction()--Examine and Change Signal Action.




Return Value

0 sigwaitinfo() was successful.

-1 sigwaitinfo() was not successful. The errno variableis set to indicate the reason.

Error Conditions

If sigwaitinfo() is not successful, errno usually indicates the following error. Under some conditions, errno
could indicate an error other than that listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.

One of the following has occurred:

» Thesignal set pointed to by set contains asignal that is not within the valid
range or asignal that is not supported.

« A signa inthesignal set pointed to by set containsasignal that is not
blocked.
[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following conditions:

« Thesignal function is being called for a process that is not enabled for
asynchronous signals

« Thesignal function is being called when the system signal controls have not
been initialized.

Usage Notes

The sigwaitinfo() function enables a process for signals if the processis not already enabled for signals. For
details, see QpOsEnableSignal s()--Enable Process for Signals. If the system has not been enabled for

signals, sigwaitinfo() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

« The<signal.h> file (see Header Files for UNIX-Type Functions)

o OpOsDisableSignals()--Disable Process for Signals

o OpOsEnableSignals()--Enable Process for Signals

« sigaction()--Examine and Change Signal Action

« sigpending()--Examine Pending Signals




« sigprocmask()--Examine and Change Blocked Signals

o Sigsuspend()--Wait for Signal

« Sigtimedwait()--Synchronously Accept a Signal for Interval of Time

« sigwait()--Synchronously Accept a Signal

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing by using the sigwaitinfo() function and determines the current
time:

Note: The signal catching function is not called.

#i ncl ude <si gnal . h>
#i ncl ude <uni std. h>
#i ncl ude <stdio. h>
#i ncl ude <tine. h>

extern int errno;
void catcher( int sig ) {

printf( "Signal catcher called for signal %\n", sig );
void tinestanp( char *str ) {

time t t;

time( T);

printf( "The time % is %\n", str, ctinme(T) );
int main( int argc, char *argv[] ) {

int result = 0;

struct sigaction sigact;

sigset _t waitset;

siginfo_t info;

si genptyset ( &sigact.sa_mask );

sigact.sa_flags = O;

si gact.sa_handl er = catcher;

sigaction( SIGALRM &sigact, NULL );

si genptyset ( &waitset );
si gaddset ( &wai tset, SIGALRM);

si gprocmask( SI G BLOCK, &waitset, NULL );



alarm 10 );
timestanp( "before sigwaitinfo(" );
result = sigwaitinfo( &aitset, & nfo );
if( result == 0)
printf( "sigwaitinfo() returned for signal %\n",
i nfo.si_signo );
el se {
printf( "sigwait() returned error nunber %\n", errno );
perror( "sigwait() function failed\n" );

timestanp( "after sigwaitinfo()" );

return( result );

Output:

The tinme before sigwaitinfo() is Tue Jul 15 11:22:56 1997
sigwaitinfo() returned for signal 14
The tinme after sigwaitinfo() is Tue Jul 15 11:23:07 1997

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category



sleep()--Suspend Processing for Interval of
Time

Syntax

#i ncl ude <uni std. h>

unsi gned int sleep( unsigned int seconds );

Service Program Name: QPOSSRV 1
Default Public Authority: *USE

Threadsafe: Yes

The sleep() function suspends a thread for a specified number of seconds. (Because of processor delays, the
thread can sleep dlightly longer than this specified time.) If an unblocked signal is received during thistime
and its action is to call asignal-catching function, to end the request, or to end the process, sleep() returns
immediately with the amount of sleep time remaining.

If aSIGALRM signal is generated for the calling process while sleep() isrunning and if the SIGALRM
signal is being ignored or blocked from delivery, dleep() does not return when the SIGALRM signal is
scheduled. If the SIGALRM signal is blocked from delivery, the SIGALRM remains pending after sleep()
returns.

If aSIGALRM signal is generated for the calling process while sleep() is running (except asaresult of a
previous call to alarm()) and if the SIGALRM is not being ignored or blocked from delivery, the
SIGALRM signal has no effect on sleep() other than causing it to return.

A signal-catching function that interrupts sleep() can examine and change thetime a SIGALRM is
scheduled to be generated, the action associated with the SIGALRM signal, and whether SIGALRM is
blocked from delivery.

If asignal-catching function interrupts sleep() and calls siglongjmp() or longjmp() to restore an
environment saved prior to sleep(), the sleep() function is canceled. The action associated with the
SIGALRM signal and the time at which a SIGALRM signal is scheduled to be generated are unchanged.
The SIGALRM blocking action remains unchanged, unless the thread's signal mask is restored as part of
the environment.

Parameters

seconds
(Input) The number of real seconds for which the process is to be suspended.



Return Value

0 The thread dlept for the full time specified.

value Thethread did not sleep the full time because of a signal whose action isto run a signal-catching
function, to end the request, or to terminate the process. The value returned is the number of
seconds remaining in the specified sleep time; that is, the value of seconds minus the actual
number of seconds that the thread was suspended.

-1 sleep() was not successful. The errno variable is set to indicate the error.

Error Conditions

If deep() isnot successful, errno usualy indicates the following error. Under some conditions, errno could
indicate an error other than that listed here.

[ENOTSGINIT] Process not enabled for signals.

An attempt was made to call asignal function under one of the following
conditions:

« Thesignal function is being called for a process that is not enabled for
asynchronous signals.

« Thesignal function is being called when the system signal controls have
not been initialized.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EWOULDBLOCK] Operation would have caused the process to be suspended.

The current thread state would prevent the signal function from completing.

Usage Notes

The sleep() function enables a process for signalsif the processis not already enabled for signals. For
details, see QpOsEnableSignal s()--Enable Process for Signals. If the system has not been enabled for

signals, sleep() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

» The<unistd.h> file (see Header Filesfor UNIX-Type Functions)

o aarm()--Set Schedule for Alarm Signal




o pause()--Suspend Process Until Signal Received

o OpOsDisableSignals()--Disable Process for Signals

o OpOsEnableSignals()--Enable Process for Signals

« Sigaction()--Examine and Change Signal Action

« siglongimp()--Perform Nonlocal Goto with Signal Handling

o Sigsetjmp()--Set Jump Point for Nonlocal Goto

o sigsuspend()--Wait for Signa

o sigtimedwait()--Synchronously Accept a Signal for Interval of Time

o sigwait()--Synchronously Accept aSignal

« sigwaitinfo()--Synchronously Accept a Signal and Signal Data

o usleep()--Suspend Processing for Interval of Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the sleep() function to suspend processing for a specified time:

#i ncl ude <uni std. h>
#i ncl ude <stdio. h>
#i ncl ude <ti nme. h>

voi d tinmestanp( char *str ) {

tinme_t t;

tinme( & );

printf( "% the tinme is %\n", str, ctinme(&) );
mai n( int argc, char *argv[] ) {

unsigned int ret;

ti mestanp( "before sleep()" );

ret = sleep( 10 );
timestanp( "after sleep()" );



printf( "sleep() returned %\ n", ret );

return( 0 );

}
Output:

before sleep() the time is Sun Jan 22 17:25:17 1995
after sleep() the tinme is Sun Jan 22 17:25:28 1995
sleep() returned O

API introduced: V3R6

Top | UNIX-Type APIs | APIs by category




usleep()--Suspend Processing for Interval of
Time

Syntax

#i ncl ude <uni std. h>

unsi gned int usleep( useconds_t useconds );
Service Program Name: QPOSSRV 1

Default Public Authority: * USE

Threadsafe: Yes

The usleep() function suspends athread for the number of microseconds specified by the of useconds
parameter. (Because of processor delays, the thread can be suspended slightly longer than this specified
time.)

The usleep() function uses the process's real-time interval timer to indicate when the thread should be
resumed.

Thereis one real-time interval timer for each process. The usleep() function will not interfere with a
previous setting of thistimer.

Parameters

useconds
(Input) The number of microseconds for which the thread is to be suspended.

Return Value

0 Thethread slept for the full time specified.

-1 deep() was not successful. The errno variable is set to indicate the error.

Error Conditions

If usleep() is not successful, errno usually indicates the following error. Under some conditions, errno could
indicate an error other than that listed here.



[EINVAL] Aninvalid parameter was found.

A parameter passed to this function is not valid.
« Thetimeinterval specified 1,000,000 or more microseconds.

Usage Notes

The usleep() function isincluded for its historical usage. The setitimer () function is preferred over this
function.

Related Information

« The<unistd.h> file (see Header Filesfor UNIX-Type Functions)

o aarm()--Set Schedule for Alarm Signal

o getitimer()--Get Vaue for Interva Timer

setitimer()--Set Vaue for Interval Timer

sleep()--Suspend Processing for Interval of Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the usleep() function to suspend processing for a specified time:

#i ncl ude <unistd. h>
#i ncl ude <stdi o. h>
#i nclude <tine. h>
void tinestanp( char *str ) {
time_t t;
time( & );
printf( "% the time is %\nquot;, str, ctinme(&) );
int main( int argc, char *argv[] ) {
int result = O;

ti mestanp( quot; before usleep()quot; );
result = usleep( 999999 );



ti mestanp( quot;after usleep()quot; );
printf( quot;usleep() returned %\ nquot;, result );

return( result );

Output:

before usleep() the tinme is Sun Jun 15 17:25:17 1995
after usleep() the tinme is Sun Jun 15 17:25:18 1995
usl eep() returned O

API introduced: V4R2

Top | UNIX-Type APIs| APIs by category




Header Files for UNIX-Type Functions

Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

« Macro definitions
« Datatype definitions
« Structure definitions
« Function prototypes
The header files are provided in the QSY SINC library, which is optionally installable. Make sure

QSY SINC ison your system before compiling programs that use these header files. For information on
installing the QSY SINC library, see Data structures and the QSY SINC Library.

The table below shows the file and member name in the QSY SINC library for each header file used by the
UNIX-type APIsin this publication.

Nameof Filein

Name of Header File QSYSINC Name of M ember
| arpalinet.h | ARPA | INET
|  apanameserh | ARPA | NAMESER
| bse.h | H | BSE
| bsedos.h | H | BSEDOS
| bseerr.h | H | BSEERR
| dirent.h | H | DIRENT
| errno.h | H | ERRNO
| fentl.h | H | FCNTL
| grp.h | H | GRP
| Zinttypes.h | H | INTTYPES®
| limits.h | H | LIMITS
| #mman.h | H | MMAN
| netdbh.h | H | NETDB
| Pnetinet/icmpé.h | NETINET | ICMP6&
| net/if.h | NET | IF
| netinet/in.h | NETINET | IN
| netinet/ip_icmp.h | NETINET | IP_ICMP
| netinet/ip.h | NETINET | IP
| Pnetinet/ipph | NETINET | IP6
| netinet/tcp.h | NETINET | TCP
| netinet/udp.h | NETINET | UDP
| netns/idp.h | NETNS | IDP
| netns/ipx.h | NETNS | IPX
| netngns.h | NETNS | NS
| netns/sp.h | NETNS | SP
| net/route.h | NET | ROUTE
| nettel/tel.h | NETTEL | TEL



| 0s2.h | H | 02

| 0s2def h | H | OS2DEF

| pwd.h | H | PWD

| Qigh | H | QLG

| qpOlflop.h | H | QPOLFLOP
| Zqpoljrnl.h | H | QPOLJRNL
| #qpOiror.h | H | QPOLROR%
[ Qpoistdih | H [ QPOLSTDI
[ opOwpidh | H [ QPOWPID
| qpOzdipc.h | H | QPOZDIPC

| gpO0zipc.h | H | QPOZIPC

| gpOzolip.h | H | QPOZOLIP

| gpOzolsm.h | H | QPOZOLSM
| gpOzripc.h | H | QPOZRIPC

| gpOztrc.h | H | QPOZTRC

| qpOztrml.h | H | QPOZTRML
[ gpozi170h | H | QPOZ1170
| Pgsoasynch | H | QSOASYNCX
[ anxapih | H [ QTNXAAPI
| gtnxadtp.h | H | QTNXADTP
| qgtomeapi.h | H | QTOMEAPI
| qgtossapi.h | H | QTOSSAPI

| resolv.h | H | RESOLVE

| semaphore.h | H | SEMAPHORE
| signal.h | H | SIGNAL

| spawn.h | H | SPAWN

| ss.h | H | SSL

| syslerrno.h | H | ERRNO

[ sysioctih | SYS | IOCTL

| syslipc.h | SYS | IPC

| sys/layout.h | H | LAYOUT

| sys/limits.h | H | LIMITS

| sys/msg.h | SYS | MSG

| sys/param.h | SYS | PARAM

| Psysresourceh | SYS |  RESOURCE#
| sys/sem.h | SYS | SEM

[ syesimph | SYS | SETIMP

| sys/shm.h | SYS | SHM

[ sys/signah | SYS | SIGNAL

[ syssocketh | SYS [ SOCKET

| sys/stat.h | SYs | STAT

[ gesavfsh | SYS [ STATVFS




| sys/time.h | SYS | TIME

| sysitypes.h | SYS | TYPES

| sys/uio.h | SYS | ulo

| sys/un.h | SYS | UN

| syswait.h | SYs | WAIT

| Zulimith | H | ULIMIT
| unistd.h | H | UNISTD
| utime.h | H | UTIME

You can display a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE( QSYSI NC/ H) SRCMBR( UNI STD) OPTI ON( 5)

« Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FI LE( QSYSI NC/ SYS) MBR( STAT)

Y ou can print a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE( QSYSI NC/ H) SRCMBR( UNI STD) OPTI ON( 6)

« Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROVFI LE( QSYSI NC/ SYS) TOFI LE(* PRI NT) FROMVBR( STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs| APIs by category




Errno Values for UNIX-Type Functions

Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

IName |Value | Text

EDOM 3001 A domain error occurred in a math
function.

|ERANGE |3002 |A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

|[ENOTOPEN 13004 |Fileis not open.

|[ENOTREAD |3005 |Fileis not opened for read operations.

|EIO 13006 |Input/output error.

|ENODEV 13007 INo such device.

ERECIO ’3008 Cannot get single character for files
opened for record 1/0.

|[ENOTWRITE 13009 |Fileis not opened for write operations.

|ESTDIN 13010 | The stdin stream cannot be opened.

|ESTDOUT 13011 | The stdout stream cannot be opened.

|ESTDERR 13012 | The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

|EBADNAME 13014 | The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

|EBADPOS 13017 | The position specifier is not correct.

ENOPOS 3018 Thereis no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 ngﬁ current record position istoo long for
tell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 _Functi on parameter in the signal function
is not set.

|ENOENT 13025 INo such path or directory.

|[ENOREC 13026 |Record is not found.

|EPERM 13027 |The operation is not permitted.

|EBADDATA 13028 |Message datais not valid.

|EBUSY 13029 |Resource busy.

|EBADOPT 13040 |Option specified is not valid.

|[ENOTUPD 13041 |Fileis not opened for update operations.

|[ENOTDLT |3042 |Fileis not opened for delete operations.




EPAD 3043 The number of characterswritten is
shorter than the expected record length.
EBADKEYLN 3044 A length that was not valid was specified
for the key.
EPUTANDGET 3080 A read operation should not immediately
follow awrite operation.
EGETANDPUT 3081 A write operation should not immediately
follow aread operation.
|EIOERROR 3101 |A nonrecoverable 1/O error occurred.
|EIORECERR 3102 |A recoverable /O error occurred.
|EACCES 3401 |Permission denied.
|ENOTDIR 3403 INot adirectory.
|ENOSPC 3404 INo spaceis available.
|EXDEV 3405 |Improper link.
EAGAIN 3406 Operation would have caused the process
to be suspended.
EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.
|EINTR 3407 |Interrupted function call.
EFAULT 3408 The address used for an argument was not
correct.
|ETIME 3409 |Operation timed out.
|ENXIO 3415 INo such device or address.
EAPAR 3418 Possible APAR condition or hardware
failure.
|ERECURSE 13419 |Recursive attempt rejected.
|EADDRINUSE 3420 |Address already in use.
|[EADDRNOTAVAIL 3421 |Address is not available.
EAFNOSUPPORT 3422 The type of socket isnot supported in this
protocol family.
|EALREADY 3423 |Operation is already in progress.
|[ECONNABORTED 3424 |Connection ended abnormally.
ECONNREFUSED 3425 A remote host refused an attempted
connect operation.
ECONNRESET 3426 A connection with a remote socket was
reset by that socket.
|EDESTADDRREQ  |3427 |Operation requires destination address.
|EHOSTDOWN 3428 |A remote host is not available.
|[EHOSTUNREACH 3429 |A route to the remote host is not available.
|EINPROGRESS 3430 |Operation in progress.
|EISCONN 3431 |A connection has already been established.
|EMSGSIZE 3432 |Message size is out of range.
|[ENETDOWN 3433 |The network currently is not available.
ENETRESET A socket is connected to a host that is no

=

longer available.




|[ENETUNREACH 3435 |Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
regquested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

|[ENOTSUP 3440 |Operation is not supported.
|EOPNOTSUPP 3440 |Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT (3442 No protocol of the specified type and
domain exists.

EPROTOTY PE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

|ESHUTDOWN 3445 |Cannot send data after a shutdown.
|ESOCKTNOSUPPORT |3446 | The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
thistime.

|EBADF 3450 |Descriptor is not valid.

|EMFILE 3452 |Too many open files for this process.
|ENFILE 3453 |Too many open filesin the system.
|EPIPE 3455 |Broken pipe.

|ECANCEL 3456 |Operation cancelled.

|EEXIST 3457 |File exists.

|EDEADLK 3459 |Resource deadlock avoided.
|[ENOMEM 3460 | Storage all ocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

|ETERM 3464 |Operation was terminated.
|ENOENT1 3465 INo such file or directory.

ENOEQFLOG 3466 Object is aready linked to a dead
directory.

|[EEMPTYDIR 3467 |Directory is empty.

EMLINK 3468 Maximum link count for afile was
exceeded.




|ESPIPE 3469 | Seek request is not supported for object.

|ENOSYS 3470 |Function not implemented.

|EISDIR 3471 |Specified target is adirectory.

|EROFS 3472 |Read-only file system.

|[EUNKNOWN 3474 |Unknown system state.

|EITERBAD 3475 |Iterator is not valid.

|EITERSTE 3476 |Iterator isin wrong state for operation.

|EHRICLSBAD |3477 |HRI classisnot valid.

|EHRICLBAD 3478 IHRI subclass is not valid.

|EHRITYPBAD |3479 |HRI typeisnot valid.

|ENOTAPPL 3480 |Data requested is not applicable.

|EHRIREQTYP 3481 IHRI request type s not valid.

|[EHRINAMEBAD 3482 IHRI resource name is not valid.

|EDAMAGE 3484 |A damaged object was encountered.

|ELOOP 3485 |A loop exists in the symbolic links.

IENAMETOOLONG 3486 |A path name is too long.

|ENOLCK 3487 INo locks are available.

|[ENOTEMPTY 3488 |Directory is not empty.

|ENOSY SRSC 3489 |System resources are not available.

|[ECONVERT 13490 |Conversion error.

|E2BIG 3491 |Argument list istoo long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

|ETYPE 3493 |Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

|ESOFTDAMAGE 3497 |Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

|EOFFLINE 13499 |Object is suspended.

|EROOBJ 13500 |Object is aread-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDS 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 | Duplicate extended attribute record.




ELOCKED 3506 Areabeing read from or writtentois

locked.

EFBIG 3507 |Object too large.

EIDRM 3509 The semaphore, shared memory, or
message gqueue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of

the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

|EFILECVT 3511 |File ID conversion of adirectory failed.

EBADFID 3512 A file 1D could not be assigned when
linking an object to a directory.

|ESTALE 3513 |File handle was rejected by server.

|ESRCH 3515 INo such process.

|IENOTSIGINIT 3516 |Process is not enabled for signals.

|ECHILD 3517 INo child process.

|EBADH 13520 IHandleis not valid.

ETOOMANY REFS 3523 The operation would have exceeded the

maximum number of references allowed
for a descriptor.

|ENOTSAFE 3524 |Function is not allowed.

|[EOVERFLOW 3525 |Object istoo large to process.

|EIRNDAMAGE 3526 \Journal is damaged.

|EJRNI NACTIVE |3527 |Journa| isinactive.

|EJRNRCVSPC 3528 |Journal space or system storage error.

|EIRNRMT 3529 |Journal is remote.

|ENEWJRNRCV 3530 INew journal receiver is needed.

|ENEWJRN 3531 INew journal is needed.

|EJOURNALED 3532 |Object already journaled.

|[EJRNENTTOOLONG 3533 |Entry istoo large to send.

|EDATALINK 3534 |Object is adatalink object.

|[ENOTAVAIL 3535 |IASPisnot available.

|ENOTTY 3536 |10 control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

|ETXTBSY 3543 | Text file busy.

|[EASPGRPNOTSET 3544 |ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs| APIs by category




	Signal APIs (V5R2)
	Table of Contents
	Signal APIs
	Using Signal APIs
	APIs
	alarm()--Set Schedule for Alarm Signal
	getitimer()--Get Value for Interval Timer
	kill()--Send Signal to Process or Group of Processes
	pause()--Suspend Process Until Signal Received
	Qp0sDisableSignals()--Disable Process for Signals
	Qp0sEnableSignals()--Enable Process for Signals
	setitimer()--Set Value for Interval Timer
	sigaction()--Examine and Change Signal Action
	sigaddset()--Add Signal to Signal Set
	sigdelset()--Delete Signal from Signal Set
	sigemptyset()--Initialize and Empty Signal Set
	sigfillset()--Initialize and Fill Signal Set
	sigismember()--Test for Signal in Signal Set
	siglongjmp()--Perform Nonlocal Goto with Signal Handling
	sigpending()--Examine Pending Signals
	sigprocmask()--Examine and Change Blocked Signals
	sigsetjmp()--Set Jump Point for Nonlocal Goto
	sigsuspend()--Wait for Signal
	sigtimedwait()--Synchronously Accept a Signal for Interval of Time
	sigwait()--Synchronously Accept a Signal
	sigwaitinfo()--Synchronously Accept a Signal and Signal Data
	sleep()--Suspend Processing for Interval of Time
	usleep()--Suspend Processing for Interval of Time


	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions


