UNIX-Type APIs (V5R2)

Problem Determination APIs

Table of Contents

Problem Determination APIs
o Qp0zDump() (Dump formatted storage trace data)
o Qp0zDumpStack() (Dump formatted stack trace data)
o QpOzDumpTargetStack() (Dump formatted stack trace data of the target thread)
o QpOzL printf() (Print formatted job log data)
QpOzUprintf() (Print formatted user trace data)

Header Filesfor UNIX-Type Functions
Errno Values for UNIX-Type Functions

Problem Determination APIs

The problem determination APIs are:

o QpO0zDump() (Dump formatted storage trace data) dumps the user storage specified by areato the
user trace.

o QpOzDumpStack() (Dump formatted stack trace data) dumps a formatted representation of the call
stack of the calling thread to the user trace.

o QpOzDumpTargetStack() (Dump formatted stack trace data of the target thread) dumps a formatted
representation of the call stack of the target thread to the user trace.

o QpOzL printf() (Print formatted job log data) prints user data specified by format-string as an
information message type to the job log.

o QpOzUprintf() (Print formatted user trace data) prints user data specified by the format-string
parameter to the user trace.

Note: These functions use header (include) files from the library QSY SINC, which is optionally installable.
Make sure QSY SINC isinstalled on your system before using any of the functions. See Header Files for

UNIX-Type Functions for the file and member name of each header file.

The problem determination APIs are intended to be used as an aid in debugging exception or error
conditions in application programs. These functions should not be used in performance critical code.

These functions can be used during application development, as well as after the application is made
available, as debug mechanisms. For example, one of the following methods could be used:

« Useacompile option that activates the problem determination functions during application
development. When the application is ready to be made available, recompile to deactivate the
functions.

« Design amethod to (quickly) check and see whether application problem determination is desired,
aswell as an external method to activate application problem determination. Then, use the problem
determination functions in such a manner as to check (at run time) whether or not the functions
should be called.

Some of the problem determination functions dump or print to the user trace. The user trace is a permanent
user space object named QP0Z<jobnumber> in the QUSRSY Slibrary. The user traceis created the first
time any thread in ajob writes trace output. The following CL commands can be used to manipulate the
user trace properties and objects:

» Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user trace.

o Dump User Trace (DMPUSRTRC) can be used to dump trace records to afile or to standard
output.

« Delete User Trace (DLTUSRTRC) can be used to delete the user trace objects.

For those problem determination functions that use the user trace, the following should be considered:

« Thefunctions require no authority to the user trace object. See CL commands CHGUSRTRC,
DMPUSRTRC, and DLTUSRTRC for the authority required to administer, display, or modify
tracing information using the CL commands.

« Nolocks are held on the user trace between callsto the tracing functions. The user trace can be
deleted while in use. The next function that produces trace output will create the user trace again.

« If another job on the system has the same job number as an existing user trace, the existing trace
datais cleared, and the trace data from the new job replacesiit.

Top | UNIX-Type APIs | APIs by category

Qp0zDump()--Dump Formatted Storage Trace Data

Syntax

#i ncl ude <gpOztrc. h>
voi d QpOzDunp(const char *I abel,

voi d *area,
i nt l en);

Service Program Name: QPOZCPA
Default Public Authority: *USE

Threadsafe: Yes

The Qp0zDump() function dumps the user storage specified by area to the user trace. The user-provided storage is
formatted for viewing in hexadecimal representation for up to len number of bytes. The formatted storageis labeled
with the text string specified by label.

If any input parameters are not valid, or an incorrect or error condition is detected, the QpOzDump() function
returns immediately and no error isindicated.

An application should not use the tracing function in performance critical code. These functions are intended for
debugging exception or error conditions. The user trace is a permanent user space object named
QPOZ<jobnumber> in the QUSRSY S library. The user trace is created the first time any thread in ajob writes
trace output. See the Change User Trace (CHGUSRTRC), Dump User Trace (DMPUSRTRC) and Delete User
Trace (DLTUSRTRC) CL commands for information about manipulating the user trace properties and objects.

Parameters

label
(Input) A pointer to astring that is used to label the storage dump.

area

(Input) A pointer to storage areathat is to be formatted and dumped to the user trace.
len

(Input) The number of bytes of storage to be formatted in the user trace.
Authorities

None.

Return Value

None.

Error Conditions

If QpOzDump() is not successful, the function returns immediately and no error is indicated.

Usage Notes

1. Nolocksare held on the user trace between calls to the tracing functions. The user trace can be deleted
whilein use. The next function that produces trace output will create the user trace again.

2. If another job on the system has the same job number as an existing user trace, the existing trace datais
cleared, and the trace data from the new job replacesiit.

3. Astheformat of the user trace records can change, only the following CL commands can be used to
mani pul ate the user trace properties and objects:

o Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user trace.

o Dump User Trace (DMPUSRTRC) can be used to dump trace recordsto afile or to standard
output.

0 Delete User Trace (DLTUSRTRC) can be used to delete the user trace objects.

Related Information

o Op0zDumpStack()--Dump Formatted Stack Trace Data

o Op0zDumpTargetStack()--Dump Formatted Stack Trace Data of the Target Thread

Op0zL printf()--Print Formatted Job Log Data

Op0zUprintf()--Print Formatted User Trace Data

Example

The following example uses Qp0zDump() and Qp0zUprintf() functions to produce trace output.

#define _MJULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <qgpOztrc. h>

#defi ne THREADDATAMAX 128

void *theThread(void *parm

{

char *myData = parm

printf("Entered the % thread\n", nyData);
QOzUprintf("Tracing in the % thread\n", myData);
Q0O0zDunmp("The Data", myData, THREADDATAMAX) ;
free(nyData);

return NULL;

int main(int argc, char **argv)

{

pt hr ead_t t hread, thread?2;
i nt rc=0;
char *t hr eadDat a;

printf("Enter Testcase - %\n", argv[O0]);
QOzUprintf("Traci ng Testcase Entry\n");

printf("Create two threads\n");
QOzUprintf("Tracing creation of two threads\n");

threadData = (char *)mal | oc(THREADDATAMAX) ;
nmenset (t hreadData, 'Z', THREADDATAMAX) ;
sprintf(threadData, "50%% Cotton, 50%% Pol yester");
rc = pthread_create(& hread, NULL, theThread, threadData);
if (rc) {
printf("Failed to create a % thread\n", threadData);
exi t (EXI T_FAI LURE) ;

}

threadData = (char *)nmal | oc(THREADDATAMAX) ;
nmenset (t hreadData, 'Q, THREADDATAMAX);
sprintf(threadData, "Lacquered Camel Hair");
rc = pthread create(& hread2, NULL, theThread, threadData);
if (rc) {
printf("Failed to create a % thread\n", threadData);
exit (EXI T_FAI LURE) ;

}

printf("Wait for threads to conplete\n");
rc = pthread_join(thread, NULL);
if (rc) { printf("Failed pthread_join() 1\n"); exit(EXI T_FAILURE);

rc = pthread_joi n(thread2, NULL);
if (rc) { printf("Failed pthread_join() 2\n"); exit(EXI T_FAILURE);

printf("Testcase conplete\n");
QOzUprintf("Tracing conpletion of the testcase rc=%\n", rc);
return O,

}

}

Trace Output:

This trace output was generated after the test case was run by using the CL command DMPUSRTRC
JOB(100464/USER/TPZDUM PQ) OUTPUT (* STDOUT). The above example program ran as job
100464/USER/TPZDUMPO.

Note the following in the trace output:

1. Eachtracerecord isindented by several spacesto aid in readability. Trace records from different threads
have different indentation levels.

2. Each tracerecord isidentified by the hexadecimal thread ID, a colon, and a timestamp. The timestamp can
be used to aid in debugging of waiting or looping threads. For example, the third trace record shown below
(the Tracing Testcase Entry trace point) was created by thread 0x13, and occurred 0.870960 seconds after
the last full date and time label. This means that the trace record was created on 5 January 1998 at
14:08:28.870960. A full date and time label is placed between those trace points that occur during different
whole seconds.

User Trace Dunp for job 100464/ USER/ TPZDUMPO. Size: 300K, Wapped O
times. --- 01/05/1998 14:08:28 ---
00000013: 870960 Traci ng Testcase Entry
00000013: 871720 Tracing creation of two threads
00000014: 879904 Tracing in the 50% Cotton, 50% Pol yester thread
00000014: 880256 CG66E80F4DF: 001F60 L: 0080 The Data
00000014: 880968 C66E80F4DF: 001F60 F5F06C40 C396A3A3 96956B40 F5F06C40
*50% Cotton, 50% *
00000014: 881680 C66E80F4ADF: 001F70 D79693A8 85A2A385 9900E9E9 E9E9E9E9
Pol yester. 222777
00000014: 882392 C66E80F4DF: 001F80 E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9
7777777777777777
00000014: 883096 C66E80F4DF: 001F90 E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9
7777777777777777
00000014: 883808 C66E80FADF: 001FA0 E9E9E9E9 E9EQE9E9 E9E9E9E9 E9E9E9E9
7777777777777777
00000014: 884512 C66E80FADF: 001FBO E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9
7777777777777777
00000014: 885224 C66E80FADF: 001FCO E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9
7777777777777777
00000015: 887872 Tracing in the Lacquered Canel Hair thread
00000015: 888216 C66EBO0F4DF: 002000 L: 0080 The Data
00000015: 888952 C66E80F4DF: 002000 D3818398 A4859985 8440C381
94859340 *Lacquered Carel *
00000015: 889680 C66E80F4DF: 002010 (8818999 00D8D8D8 D8D3D8D8
D8D8D3D8 *Hair.
00000015: 890416 C66E80F4DF: 002020 D8D8D8D8 D8D8DS8D8 D8D3D8D8
D8D8D308 j10.000000000000000,
00000015: 891152 C66E80F4DF: 002030 D8D8D8D8 D8D8D8D8 D8D3D8D3
D8D8D308 j10.000000000000000,
00000015: 891888 C66E80F4DF: 002040 D8D8D38D8 D8D8D8D8 D8D3D8D3
D3D3D8 D8 0090000000000 000,
00000015: 892624 C66E80F4DF: 002050 D8D8D3D8 D8D8D8D8 D8D3D8D3
D3D3D8 D8 j100.00000000000000,
00000015: 893352 C66E80F4DF: 002060 D8D8D8D8 D8D8D8D8 D8D3D8D8
D8D8D308 j10.0000000000000 00,
00000015: 894088 C66E80F4DF: 002070 D8D8D8D8 D8D8DS8D8 D8D3D8D8
D8D8D308 * QRRRRARRARRAARY*

00000014: 896168 C66E80F4DF: 0O01FDO E9E9E9E9 E9EOE9E9 E9E9ESES EOE9E9E9
LL77777777777777

00000013: 898832 Traci ng conpletion of the testcase rc=0
Press ENTER to end term nal session.

API introduced: V4R3

Top | UNIX-Type APIs | APIs by category

Qp0zDumpStack()--Dump Formatted Stack Trace
Data

Syntax

#i ncl ude <gpOztrc. h>

voi d QpOzDunpSt ack(const char *I abel);

Service Program Name: QPOZCPA
Default Public Authority: *USE

Threadsafe: Yes

The Qp0zDumpStack() function dumps a formatted representation of the call stack of the calling thread to the user
trace. The formatted call stack islabeled with the text string specified by label. The formatted call stack shows the
library, program, module, and procedure information associated with each frame on the call stack.

The formatted dump of the current call stack shows the oldest entries first, followed by newer entries.

The following exampleis acall stack dump if the QpO0zDumpStack() function is used to dump the stack of the
current thread. The label Thread dumping my own stack was inserted by the application program using the label
parameter.

The thread start routine in this example isthreadfunc() in program or service program ATESTS that residesin
library QPOWTEST. The threadfunc() function (at statement 2) has called the function foo(). The function foo()
(at statement 1), in turn has called bar (). The function bar () (at statement 1), has dumped the current call stack due
to some application-specific error condition.

Thread dunping my own stack

Li brary / Program Modul e St mt Procedure

QsYS / QLESPI QLECRTTH 7 LE Create Thread2
QBYS |/ QPOWPTHR QPOVWPTHR 974 pt hread_create_part2
QPOWIEST /| ATESTS ATEST5 2 . threadfunc

QPOWIEST / ATESTS ATEST5 1 : foo

QPOWIEST / ATESTS ATEST5S 1 . bar

@Q@@YS ! QPOZCPA QPOZUDBG 5 : QOzDunpSt ack

@@YS | QPOZSCPA QPOZSCPA 199 Q0zSUDunpsSt ack

QYsS | QPOZSCPA QPOZSCPA 210 Q0zSUDunpTar get St ack

An application should not use the tracing function in performance critical code. These functions are intended for
debugging exception or error conditions. The user trace is a permanent user space object named
QPO0Z<jobnumber> in the QUSRSY Slibrary. The user trace is created the first time any thread in ajob writes
trace output. See the Change User Trace (CHGUSRTRC), Dump User Trace (DMPUSRTRC) and Delete User
Trace (DLTUSRTRC) CL commands for information about manipulating the user trace properties and objects.

Parameters

label
(Input) A pointer to astring that is used to label the stack dump.

Authorities

None.

Return Value

None.

Error Conditions

If QpOzDumpStack() is not successful, the function returns immediately and no error is indicated.

Usage Notes

1. No locksare held on the user trace between calls to the tracing functions. The user trace can be deleted
whilein use. The next function that produces trace output will create the user trace again.

2. If another job on the system has the same job number as an existing user trace, the existing trace datais
cleared, and the trace data from the new job replacesiit.

3. If the calling thread has more than 128 call stack entries, QpOzDumpStack () returns after dumping the
first 128 entries of the call stack.

4. Astheformat of the user trace records can change, only the following CL commands can be used to
manipulate the user trace properties and objects:

o Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user trace.

o Dump User Trace (DMPUSRTRC) can be used to dump trace records to afile or to standard
output.

o Delete User Trace (DLTUSRTRC) can be used to delete the user trace objects.

Related Information

o Op0zDump()--Dump Formatted Storage Trace Data

o OQpO0zDumpTargetStack()--Dump Formatted Stack Trace Data of the Target Thread

o OpOzL printf()--Print Formatted Job Log Data

o Op0zUprintf()--Print Formatted User Trace Data

Example

The following example uses Qp0zDumpStack () and QpOzUprintf() functions to produce trace output.

#define _MJULTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <qgpOztrc. h>

#defi ne THREADDATAMAX 128

void foo(char *string);
voi d bar(char *string);

void *theThread(void *parm

{
char *nmyData = parm
printf("Entered the % thread\n", nyData);
foo(myDat a) ;
free(nyData);
return NULL;

}

void foo(char *string)

bar (string);

voi d bar(char *string)

{
QOzUprintf("function bar(): H't an error condition!\n");
Q0O0zDunmpSt ack(string);
}
int main(int argc, char **argv)
{
pt hr ead_t t hread, thread2;
i nt r c=0;
char *t hr eadDat a;

printf("Enter Testcase - %\n", argv[O0]);
QOzUprintf("Tracing Testcase Entry\n");

printf("Create two threads\n")
QOzUprintf("Tracing creation of two threads\n");

threadData = (char *)mal | oc(THREADDATANAX) ;
sprintf(threadData, "50%% Cotton, 50%% Pol yester");

rc = pthread _create(& hread, NULL, theThread, threadData);
if (rc) {

printf("Failed to create a % thread\n", threadData);

exi t (EXI T_FAI LURE) ;
}

threadData = (char *)mal | oc(THREADDATAMAX) ;
sprintf(threadData, "Lacquered Canmel Hair");
rc = pthread create(& hread2, NULL, theThread, threadData);
if (rc) {
printf("Failed to create a % thread\n", threadData);
exit (EXI T_FAI LURE) ;

}

printf("Wait for threads to conplete\n");
rc = pthread_joi n(thread, NULL);
if (rc) { printf("Failed pthread_join() 1\n"); exit(EXIT_FAILURE); }

rc = pthread join(thread2, NULL);
if (rc) { printf("Failed pthread_join() 2\n"); exit(EXIT_FAILURE); }

printf("Testcase conplete\n");
QOzUprintf("Tracing conpletion of the testcase rc=%d\n", rc);
return O,

Trace Output:

This trace output was generated after the test case was run by using the CL command DMPUSRTRC
JOB(100465/USER/TPZSTK0) OUTPUT (*STDOUT). The above example program ran asjob
100465/USER/TPZSTKO.

Note the following in the trace output:

1. Eachtracerecord isindented by severa spacesto aid in readability. Trace records from different threads
have different indentation levels.

2. Each tracerecord isidentified by the hexadecimal thread ID, a colon, and a timestamp. The timestamp can
be used to aid in debugging of waiting or looping threads. For example, the third trace record shown
below, (the Tracing Testcase Entry trace point) was created by thread 0x16, and occurred 0.841456
seconds after the last full date and time label. This means that the trace record was created on 5 January
1998 at 16:32:23.841456. A full date and time label is placed between those trace points that occur during
different whole seconds.

User Trace Dunp for job 100465/ USER/ TPZSTKO. Size: 300K, Wapped O tines.
--- 01/05/1998 16:32:23 ---
00000016: 841456 Traci ng Testcase Entry
00000016: 842176 Tracing creation of two threads
00000017: 850328 function bar(): Ht an error condition!
00000017: 850552 Stack Dunp For Current Thread
00000017: 850752 Stack: 50% Cotton, 50% Pol yester
00000018: 853288 function bar(): Ht an error condition!
00000018: 853512 Stack Dunmp For Current Thread
00000018: 853712 Stack: Lacquered Camel Hair

00000018: 888752 Stack: Library /[Program Modul e St nt
Procedure
00000017: 889400 Stack: Library ! Program Modul e St mt

Pr ocedur e

00000017: 904848 Stack: QSYS / QLESPI QLECRTTH
LE Create_Thread2__FPl2crtth_parmt

00000017: 905088 Stack: QSYS /' QPOWPTHR QPOWPTHR
pt hread_create_part2

00000017: 905312 Stack: QPOWEST |/ TPZSTKO TPZSTKO
t heThr ead

00000017: 905528 Stack: QPOWIEST /| TPZSTKO TPZSTKO
f oo

00000017: 905744 Stack: QPOWEST / TPZSTKO TPZSTKO
bar

00000017: 905960 Stack: QSYS /| QPOZCPA QPOZUDBG
Q0zDunpsSt ack

00000017: 906184 Stack: QSYS | QPOZSCPA QPOZSCPA
Q0zSUDunp St ack

00000017: 906408 Stack: QSYS |/ QPOZSCPA QPOZSCPA
Q0zSUDunpTar get St ack

00000017: 906536 Stack: Conpl eted
00000018: 908504 Stack: QSYS / QLESPI QLECRTTH 774
LE Create Thread2_ FPl2crtth _parm:t
00000018: 908744 Stack: QSYS /[QPOWPTHR QPOWPTHR 1004
pt hread _create part?2
00000018: 908960 Stack: QPOWEST / TPZSTKO TPZSTKO 2
t heThr ead
00000018: 909168 Stack: QPOWEST / TPZSTKO TPZSTKO 1
00000018: 909384 Stack: QPOWEST / TPZSTKO TPZSTKO 2
00000018: 909592 Stack: QSYS / QPOZCPA QP0ZUDBG 85
Q0zDunpsSt ack
00000018: 909816 Stack: QSYS [/ QPOZSCPA QPOZSCPA 274
Qo0z SUDunpsSt ack
00000018: 910032 Stack: QSYS [/ QPOZSCPA QPOZSCPA 285
Q0zSUDunpTar get St ack
00000018: 910168 Stack: Conpl eted

00000016: 912792 Traci ng conpletion of the testcase rc=0
Press ENTER to end terminal session.

774

1004

85
274

285

f oo
bar

API introduced: V4R3

Top | UNIX-Type APIs| APIs by category

QpO0zDumpTargetStack()--Dump Formatted Stack
Trace Data of the Target Thread

Syntax

#i ncl ude <qgpOztrc. h>

i nt QpOzDunpTarget St ack(i nt handl e,
const char *label);

Service Program Name: QPOZCPA
Default Public Authority: *USE

Threadsafe: Conditional; see Usage Notes.

The Qp0zDumpTar getStack() function dumps a formatted representation of the call stack of the target thread to
the user trace. The target thread is specified by handle, which can be filled in using the pthread t structure. The
formatted call stack islabeled with the text string specified by label. The formatted call stack shows the library,
program, module, and procedure information associated with each frame on the call stack at the time the function
was called.

The formatted dump of the target call stack shows the oldest entriesfirst, followed by newer entries.

For consistent results, ensure that the target thread specified in the handle parameter is blocked or waiting for some
resource and not actively running.

If atarget thread that is actively running is specified, the stack trace information may be inconsistent.

An application should not use the tracing function in performance critical code. These functions are intended for
debugging exception or error conditions. The user trace is a permanent user space object named
QP0Z<jobnumber> in the QUSRSY S library. The user trace is created the first time any thread in ajob writes

trace output. See the Change User Trace (CHGUSRTRC), Dump User Trace (DMPUSRTRC) and Delete User
Trace (DLTUSRTRC) CL commands for information about manipul ating the user trace properties and objects.

Parameters

handle
(Input) A handle to the target thread.

label
(Input) A pointer to astring that is used to label the stack dump.

Authorities

None.

Return Value

0

QpO0zDumpT ar getStack () was successful.

value QpOzDumpTargetStack() was not successful. The value returned is an errno indicating the failure.

Error Conditions

If QpOzDumpTargetStack() is not successful, the return value usually indicates one of the following errors. Under
some conditions, the return value could indicate an error other than those listed here.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a cal, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

[ESRCH] Noitem could be found that matches the specified value.

Usage Notes

1

No locks are held on the user trace between calls to the tracing functions. The user trace can be deleted
whilein use. The next function that produces trace output will create the user trace again.

If another job on the system has the same job number as an existing user trace, the existing trace datais
cleared, and the trace data from the new job replacesiit.

The Qp0zDumpTar getStack() can only safely be used against athread that is stopped or waiting for some
activity to occur. If QpOzDumpT ar getStack() is used with athread that is actively running, the output
stack trace may show an inconsistent view of the call stack.

If the target thread has more than 128 call stack entries, QpOzDumpT ar getStack () returns after dumping
the first 128 entries of the call stack.

Asthe format of the user trace records can change, only the following CL commands can be used to
manipulate the user trace properties and objects:

o Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user trace.

o Dump User Trace (DMPUSRTRC) can be used to dump trace records to afile or to standard
output.

0 Delete User Trace (DLTUSRTRC) can be used to delete the user trace objects.

Related Information

o Op0zDump()--Dump Formatted Storage Trace Data

o Op0zDumpStack()--Dump Formatted Stack Trace Data

o OpOzL printf()--Print Formatted Job Log Data

o OpO0zUprintf()--Print Formatted User Trace Data

Example

The following example uses QpO0zDumpT ar getStack () and Qp0zUprintf() functions to produce trace output.

#define _MULTI _THREADED

#i
#i
#i
#i
#i
#i

ncl ude <pt hread. h>
nclude <mlib. h>
ncl ude <stdi o. h>
ncl ude <errno. h>
ncl ude <uni std. h>
ncl ude <qpOztrc. h>

void *t hreadfunc(void *);

int main(int argc, char **argv)

{

i nt rc=0;
pt hr ead_t t hr ead;

QOzUprintf("Entering Testcase\n");
rc = pthread create(& hread, NULL, threadfunc, NULL);
sleep(2); [/* Let the thread block */

/* If the other thread ends or is actively running (that is */
/* changing the call stack, you nay get neaningless results in the*/
/* stack dunp for the target thread.) */

Q0zDunpTar get St ack(t hread. reservedHandl e,

"Dunpi ng target thread' s stack\n");
QOzUprintf("Exit with return code of 0\n");
return O;

void foo(void);
voi d bar(void);
voi d *t hreadfunc(void *parm

}

QOzUprintf("lInside secondary thread\n");
foo();
return NULL;

voi d foo(void)

bar () ;

}
voi d bar (voi d)

Q0O0zDunmpSt ack(" Thread dunpi ng ny own stack\n");
sl eep(10); /* Ensure the thread is bl ocked */

Trace Output:

This trace output was generated after the test case was run by using the CL command DMPUSRTRC
JOB(107141/USER/TPZTSTKO0) OUTPUT (*STDOUT). The above example program ran as job
107141/USER/TPZTSTKO.

Note the following in the trace output:

1. Each trace record isindented by several spacesto aid in readability. Trace records from different threads
have different indentation levels.

2. Each trace record isidentified by the hexadecimal thread 1D, a colon, and a timestamp. The timestamp can
be used to aid in debugging of waiting or looping threads. For example, the third trace record shown
below, (the Entering Testcase trace point) was created by thread 0x36, and occurred 0.595584 seconds
after the last full date and time label. This means that the trace record was created on 23 January 1998 at
12:38:10.595584. A full date and time label is placed between those trace points that occur during different
whole seconds.

User Trace Dunp for job 107141/ USER/ TPZTSTKO. Size: 300K, Wapped O tines.
--- 01/23/1998 12:38:10 ---

00000036: 595584 Enteri ng Testcase

00000037: 598832 | nsi de secondary thread

00000037: 599024 Stack Dunp For Current Thread

00000037: 599200 Stack: Thread dunping my own stack

00000037: 695440 Stack: Library | Program Modul e St nt
Procedure
00000037: 752984 Stack: QSYS /| QLESPI Q.ECRTTH 774
LE Create Thread2 FPl2crtth _parm:t
00000037: 805664 Stack: QSYS [/ QPOWPTHR QPOWPTHR 1006

pt hread_create part?2

00000037: 805888 Stack: QPOWEST / TPZTSTKO TPZTSTKO 2
t hr eadf unc

00000037: 806088 Stack: QPOWEST / TPZTSTKO TPZTSTKO 1

foo

00000037: 806288 Stack: QPOWEST / TPZTSTKO TPZTSTKO 1
bar

00000037: 806496 Stack: QSYS | QPOZCPA QPOZUDBG 85
Q0zDunmpSt ack

00000037: 848280 Stack: QSYS ! QPOZSCPA QPOZSCPA 274
Q0zSUDunpSt ack

00000037: 848504 Stack: QSYS | QPOZSCPA QPOZSCPA 285

Q0zSUDunpTar get St ack
00000037: 848616 Stack: Conpleted
--- 01/23/1998 12:38:12 ---
00000036: 628272 Stack Dunp For Target Thread: Handle 7 (0x00000007)
00000036: 628464 Stack: Dunping target thread' s stack

Pr ocedur e

pt hread _create part?2

t hr eadf unc

gpOswait _ FP13qpOssi gwai t _t

00000036: 651608 St ack:
00000036: 651872 St ack:
LE Create_Thread2__FPl12crtth_parmt
00000036: 652088 St ack:
00000036: 652304 St ack:

00000036: 652512 St ack:

foo

00000036: 652712 St ack:
bar

00000036: 677456 St ack:
sl eep

00000036: 700096 St ack:

00000036: 700216 St ack:
00000036: 700408 Exit with return code of O
Press ENTER to end term nal session.

Li brary
QYS

QsYS
QPOWIEST
QPOWIEST
QPOWIEST
QYS

QsYS
Conpl et ed

Program
QLESPI
QPOWPTHR
TPZTSTKO
TPZTSTKO
TPZTSTKO
QPOSSRV1

QPOSSRV2

Modul e
QLECRTTH
QPOVWPTHR
TPZTSTKO
TPZTSTKO
TPZTSTKO
QPOSLI B

QPOSWAI T

St

774

1006

1061

248

API introduced: V4R3

Top | UNIX-Type APIs| APIs by category

QpOzLprintf()--Print Formatted Job Log Data

Syntax

#i ncl ude <gpOztrc. h>

int QOzLprintf(char *format-string, ...);

Service Program Name: QPOZCPA
Default Public Authority: *USE

Threadsafe; Y es

The QpOzL printf() function prints user data specified by format-string as an information message type to the job
log.

If asecond parameter, argument-list, is provided, QpOzL printf() converts each entry in the argument-list and
writes the entry to the job log according to the corresponding format specification in format-string. If there are
more entries in argument-list than format specifications in format-string, the extra argument-list entries are
evaluated and then ignored. If there are less entries in argument-list than format specifications in format-string, the
job log output for those entries is undefined, and the QpOzL printf() function may return an error.

The data printed by QpOzL printf() is buffered one line a atime, and a new message in the job log is forced every
512 charactersif anew line (\n) is not detected in the data before that time. The buffer used by QpOzL printf() is
not physically written when the application ends. To ensure messages are written to the job log, always use a new
line (\n) at the end of each format-string.

An application should not use the tracing function in performance critical code. These functions are intended for
debugging exceptions or error conditions.

Parameters

format-string
(Input) The format string representing the format of the data to be printed. See the printf() functionin ILE

C/C++ for iSeries Run-Time Library Functions@ for adescription of valid format strings.

... (argument-list)
(Input) An optional list of arguments that contain entries to be formatted and printed to the job log.

Authorities

None.

Return Value

value QpOzL printf() was successful. The value returned is the number of characters successfully printed.

-1 QpOzL printf() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOzL printf() isnot successful, errno usually indicates one of the following errors. Under some conditions,
errno could indicate an error other than that listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.
An invalid format-string or argument-list was specified.
[EFAULT] The address used for an argument is not correct.
In attempting to use an argument in a cal, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address that
isnot valid.

Usage Notes

None.

Related Information

o Op0zDump()--Dump Formatted Storage Trace Data

Op0zDumpStack()--Dump Formatted Stack Trace Data

Op0zDumpTargetStack()--Dump Formatted Stack Trace Data of the Target Thread

Op0zUprintf()--Print Formatted User Trace Data

Example
The following example uses QpOzL printf() to produce output in the job log.

#defi ne _MJLTI _THREADED
#i ncl ude <pthread. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>
#i ncl ude <qgpOztrc. h>

#defi ne THREADDATANAX 128

voi d *theThread(void *parm

{
char *myData = parm

QOzLprintf ("% 8x % 8x: Entered the % thread\n",
pt hread_gett hreadid_np(), nyData);

free(nyData);

return NULL;

}

int main(int argc, char **argv)

{
pt hread_t t hread, thread2;
i nt rc=0,
char *t hr eadDat a;

printf("Create two threads\n");
QOzUprintf("Tracing creation of two threads\n");

threadData = (char *)mal | oc(THREADDATANAX) ;
sprintf(threadData, "50%% Cotton, 50%% Pol yester");
rc = pthread create(& hread, NULL, theThread, threadData);
if (rc) {
printf("Failed to create a % thread\n", threadData);
exi t (EXI T_FAI LURE) ;

}

threadData = (char *)mal | oc(THREADDATAMAX) ;
sprintf(threadData, "Lacquered Canmel Hair");
rc = pthread create(& hread2, NULL, theThread, threadData);
if (rc) {
printf("Failed to create a % thread\n", threadData);
exit (EXI T_FAI LURE) ;

}

printf("Wait for threads to conplete\n");
rc = pthread_join(thread, NULL);
if (rc) { printf("Failed pthread_join() 1\n"); exit(EXIT_FAILURE); }

rc = pthread join(thread2, NULL);
if (rc) { printf("Failed pthread_join() 2\n"); exit(EXIT_FAILURE); }
return O;

Job Log Output:

The following two job log messages where generated by the example shown above. The output was retrieved from
the spooled file created when the job ran to completion and when the job log was retained. The informational
messages contain the contents of the QpOzL printf() function calls.

* NONE I nformati on 01/ 05/ 98 16: 55: 05 QPOZCPA
Q@YS *STMI QP0ZCPA @@YS *STMI
Frommodule : QPOZUDBG
From procedure :
QOzVLprintf
Statenent ¢ 296
To module : QPOZUDBG
To procedure Coe e
QOzVLprintf

Statenent ! 296
Thread : 0000001A
Message : 00000000 0000001a:
Ent ered the 50% Cotton, 50% Pol yester
t hr ead
* NONE I nformati on 01/ 05/ 98 16: 55: 05 QPOZCPA
QsYSs * STMT QPOZCPA QYsS * STMT
Fromnmodule : QPOZUDBG
From procedure :
QOzVLprintf
Statenent 296
To module : QPOZUDBG
To procedure Coe .
QOzVLprintf
Statenent 296
Thread : 0000001B
Message 00000000 0000001b:

Entered the Lacquered Canel Hair thread

API introduced: V4R3

Top | UNIX-Type APIs| APIs by category

QpOzUprintf()--Print Formatted User Trace Data

Syntax

#i ncl ude <qgpOztrc. h>

int QOzUprintf(char *format-string, ...);

Service Program Name: QPOZCPA
Default Public Authority: *USE

Threadsafe: Yes

The QpO0zUprintf() function prints user data specified by the format-string parameter to the user trace.

If asecond parameter, argument-list, is provided, Qp0OzUprintf() converts each entry in the argument-list
and writes the entry to the user trace according to the corresponding format specification in format-string. If
there are more entries in argument-list than format specifications in format-string, the extra argument-list
entries are evaluated and then ignored. If there are less entries in argument-list than format specificationsin
format-string, the user trace output for those entriesis undefined, and the Qp0OzUprintf() function may
return an error.

An application should not use the tracing function in performance critical code. These functions are
intended for debugging exception or error conditions. The user trace is a permanent user space object
named QP0Z<jobnumber> in the QUSRSY Slibrary. The user trace is created the first time any thread in a
job writes trace output. See the Change User Trace (CHGUSRTRC), Dump User Trace (DMPUSRTRC)
and Delete User Trace (DLTUSRTRC) CL commands for information about manipulating the user trace
properties and objects.

Parameters

format-string
(Input) The format string representing the format of the data to be printed. See the printf() function

in the ILE C/C++ Programmer's Gui de@ for a description of valid format strings.

... (argument-list)

(Input) An optional list of arguments that contain entries to be formatted and printed to the user
trace.

Authorities

None.

Return Value

value QpO0zUprintf() was successful. The value returned is the number of characters successfully
printed.

-1 QpO0zUprintf() was not successful. The errno variable is set to indicate the error.

Error Conditions

If QpOzUprintf() is not successful, errno indicates one of the following errors. Under some conditions,
errno could indicate an error other than those listed here.

[EINVAL] Aninvalid parameter was found.
A parameter passed to this function is not valid.
Aninvalid format-string or argument-list was specified.
[EFAULT] The address used for an argument is not correct.
In attempting to use an argument in acall, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an
address that is not valid.

Usage Notes

1. Nolocksare held on the user trace between calls to the tracing functions. The user trace can be
deleted while in use. The next function that produces trace output will create the user trace again.

2. If another job on the system has the same job number as an existing user trace, the existing trace
datais cleared, and the trace data from the new job replacesiit.

3. Astheformat of the user trace records can change, only the following CL commands can be used
to manipulate the user trace properties and objects:

o Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user
trace.

o Dump User Trace (DMPUSRTRC) can be used to dump trace recordsto afile or to
standard output.

o Delete User Trace (DLTUSRTRC) can be used to del ete the user trace objects.

Related Information

Qp0zDump()--Dump Formatted Storage Trace Data

Op0zDumpStack()--Dump Formatted Stack Trace Data

Op0zDumpTargetStack()--Dump Formatted Stack Trace Data of the Target Thread

OpO0zL printf()--Print Formatted Job Log Data

Example

See Qp0zDump()--Dump Formatted Storage Trace Data.

API introduced: V4R3

Top | UNIX-Type APIs| APIs by category

Header Files for UNIX-Type Functions

Programs using the UNIX-type functions must include one or more header files that contain information
needed by the functions, such as:

« Macro definitions
« Datatype definitions
« Structure definitions
« Function prototypes
The header files are provided in the QSY SINC library, which is optionally installable. Make sure

QSY SINC ison your system before compiling programs that use these header files. For information on
installing the QSY SINC library, see Data structures and the QSY SINC Library.

The table below shows the file and member name in the QSY SINC library for each header file used by the
UNIX-type APIsin this publication.

Nameof Filein

Name of Header File QSYSINC Name of M ember
| arpalinet.h | ARPA | INET
| apanameserh | ARPA | NAMESER
| bse.h | H | BSE
| bsedos.h | H | BSEDOS
| bseerr.h | H | BSEERR
| dirent.h | H | DIRENT
| errno.h | H | ERRNO
| fentl.h | H | FCNTL
| grp.h | H | GRP
| Zinttypes.h | H | INTTYPES®
| limits.h | H | LIMITS
| #mman.h | H | MMAN
| netdbh.h | H | NETDB
| Pnetinet/icmpé.h | NETINET | ICMP6&
| net/if.h | NET | IF
| netinet/in.h | NETINET | IN
| netinet/ip_icmp.h | NETINET | IP_ICMP
| netinet/ip.h | NETINET | IP
| Pnetinet/ipph | NETINET | IP6
| netinet/tcp.h | NETINET | TCP
| netinet/udp.h | NETINET | UDP
| netns/idp.h | NETNS | IDP
| netns/ipx.h | NETNS | IPX
| netngns.h | NETNS | NS
| netns/sp.h | NETNS | SP
| net/route.h | NET | ROUTE
| nettel/tel.h | NETTEL | TEL

| 0s2.h | H | 02

| 0s2def h | H | OS2DEF

| pwd.h | H | PWD

| Qigh | H | QLG

| qpOlflop.h | H | QPOLFLOP
| Zqpoljrnl.h | H | QPOLJRNL
| #qpOiror.h | H | QPOLROR%
[Qpoistdih | H [QPOLSTDI
[opOwpidh | H [QPOWPID
| qpOzdipc.h | H | QPOZDIPC

| gpO0zipc.h | H | QPOZIPC

| gpOzolip.h | H | QPOZOLIP

| gpOzolsm.h | H | QPOZOLSM
| gpOzripc.h | H | QPOZRIPC

| gpOztrc.h | H | QPOZTRC

| qpOztrml.h | H | QPOZTRML
[gpozi170h | H | QPOZ1170
| Pgsoasynch | H | QSOASYNCX
[anxapih | H [QTNXAAPI
| gtnxadtp.h | H | QTNXADTP
| qgtomeapi.h | H | QTOMEAPI
| qgtossapi.h | H | QTOSSAPI

| resolv.h | H | RESOLVE

| semaphore.h | H | SEMAPHORE
| signal.h | H | SIGNAL

| spawn.h | H | SPAWN

| ss.h | H | SSL

| syslerrno.h | H | ERRNO

[sysioctih | SYS | IOCTL

| syslipc.h | SYS | IPC

| sys/layout.h | H | LAYOUT

| sys/limits.h | H | LIMITS

| sys/msg.h | SYS | MSG

| sys/param.h | SYS | PARAM

| Psysresourceh | SYS | RESOURCE#
| sys/sem.h | SYS | SEM

[syesimph | SYS | SETIMP

| sys/shm.h | SYS | SHM

[sys/signah | SYS | SIGNAL

[syssocketh | SYS [SOCKET

| sys/stat.h | SYs | STAT

[gesavfsh | SYS [STATVFS

| sys/time.h | SYS | TIME

| sysitypes.h | SYS | TYPES

| sys/uio.h | SYS | ulo

| sys/un.h | SYS | UN

| syswait.h | SYs | WAIT

| Zulimith | H | ULIMIT
| unistd.h | H | UNISTD
| utime.h | H | UTIME

You can display a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to display the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(5)

« Using the Display Physical File Member command. For example, to display the sys/stat.h header
file, enter the following command:

DSPPFM FI LE(QSYSI NC/ SYS) MBR(STAT)

Y ou can print a header filein QSY SINC by using one of the following methods:

« Using your editor. For example, to print the unistd.h header file using the Source Entry Utility
editor, enter the following command:

STRSEU SRCFI LE(QSYSI NC/ H) SRCMBR(UNI STD) OPTI ON(6)

« Using the Copy File command. For example, to print the sys/stat.h header file, enter the following
command:

CPYF FROVFI LE(QSYSI NC/ SYS) TOFI LE(* PRI NT) FROMVBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

Top | UNIX-Type APIs| APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX-type functions may receive error information as errno values. The possible
values returned are listed here in ascending errno value sequence.

IName |Value | Text

EDOM 3001 A domain error occurred in a math
function.

|ERANGE |3002 |A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or
update operation.

|[ENOTOPEN 13004 |Fileis not open.

|[ENOTREAD |3005 |Fileis not opened for read operations.

|EIO 13006 |Input/output error.

|ENODEV 13007 INo such device.

ERECIO ’3008 Cannot get single character for files
opened for record 1/0.

|[ENOTWRITE 13009 |Fileis not opened for write operations.

|ESTDIN 13010 | The stdin stream cannot be opened.

|ESTDOUT 13011 | The stdout stream cannot be opened.

|ESTDERR 13012 | The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not
correct.

|EBADNAME 13014 | The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open
function is not correct.

|EBADPOS 13017 | The position specifier is not correct.

ENOPOS 3018 Thereis no record at the specified
position.

ENUMMBRS 3019 Attempted to use ftell on multiple
members.

ENUMRECS 3020 ngﬁ current record position istoo long for
tell.

EINVAL 3021 The value specified for the argument is not
correct.

EBADFUNC 3022 _Functi on parameter in the signal function
is not set.

|ENOENT 13025 INo such path or directory.

|[ENOREC 13026 |Record is not found.

|EPERM 13027 |The operation is not permitted.

|EBADDATA 13028 |Message datais not valid.

|EBUSY 13029 |Resource busy.

|EBADOPT 13040 |Option specified is not valid.

|[ENOTUPD 13041 |Fileis not opened for update operations.

|[ENOTDLT |3042 |Fileis not opened for delete operations.

EPAD 3043 The number of characterswritten is
shorter than the expected record length.
EBADKEYLN 3044 A length that was not valid was specified
for the key.
EPUTANDGET 3080 A read operation should not immediately
follow awrite operation.
EGETANDPUT 3081 A write operation should not immediately
follow aread operation.
|EIOERROR 3101 |A nonrecoverable 1/O error occurred.
|EIORECERR 3102 |A recoverable /O error occurred.
|EACCES 3401 |Permission denied.
|ENOTDIR 3403 INot adirectory.
|ENOSPC 3404 INo spaceis available.
|EXDEV 3405 |Improper link.
EAGAIN 3406 Operation would have caused the process
to be suspended.
EWOULDBLOCK 3406 Operation would have caused the process
to be suspended.
|EINTR 3407 |Interrupted function call.
EFAULT 3408 The address used for an argument was not
correct.
|ETIME 3409 |Operation timed out.
|ENXIO 3415 INo such device or address.
EAPAR 3418 Possible APAR condition or hardware
failure.
|ERECURSE 13419 |Recursive attempt rejected.
|EADDRINUSE 3420 |Address already in use.
|[EADDRNOTAVAIL 3421 |Address is not available.
EAFNOSUPPORT 3422 The type of socket isnot supported in this
protocol family.
|EALREADY 3423 |Operation is already in progress.
|[ECONNABORTED 3424 |Connection ended abnormally.
ECONNREFUSED 3425 A remote host refused an attempted
connect operation.
ECONNRESET 3426 A connection with a remote socket was
reset by that socket.
|EDESTADDRREQ |3427 |Operation requires destination address.
|EHOSTDOWN 3428 |A remote host is not available.
|[EHOSTUNREACH 3429 |A route to the remote host is not available.
|EINPROGRESS 3430 |Operation in progress.
|EISCONN 3431 |A connection has already been established.
|EMSGSIZE 3432 |Message size is out of range.
|[ENETDOWN 3433 |The network currently is not available.
ENETRESET A socket is connected to a host that is no

=

longer available.

|[ENETUNREACH 3435 |Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the
regquested operation.

ENOPROTOOPT 3437 The protocol does not support the
specified option.

ENOTCONN 3438 Requested operation requires a
connection.

ENOTSOCK 3439 The specified descriptor does not
reference a socket.

|[ENOTSUP 3440 |Operation is not supported.
|EOPNOTSUPP 3440 |Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not
supported.

EPROTONOSUPPORT (3442 No protocol of the specified type and
domain exists.

EPROTOTY PE 3443 The socket type or protocols are not
compatible.

ERCVDERR 3444 An error indication was sent by the peer
program.

|ESHUTDOWN 3445 |Cannot send data after a shutdown.
|ESOCKTNOSUPPORT |3446 | The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the
timeout period.

EUNATCH 3448 The protocol required to support the
specified address family is not available at
thistime.

|EBADF 3450 |Descriptor is not valid.

|EMFILE 3452 |Too many open files for this process.
|ENFILE 3453 |Too many open filesin the system.
|EPIPE 3455 |Broken pipe.

|ECANCEL 3456 |Operation cancelled.

|EEXIST 3457 |File exists.

|EDEADLK 3459 |Resource deadlock avoided.
|[ENOMEM 3460 | Storage all ocation request failed.

EOWNERTERM 3462 The synchronization object no longer
exists because the owner is no longer
running.

EDESTROYED 3463 The synchronization object was destroyed,
or the object no longer exists.

|ETERM 3464 |Operation was terminated.
|ENOENT1 3465 INo such file or directory.

ENOEQFLOG 3466 Object is aready linked to a dead
directory.

|[EEMPTYDIR 3467 |Directory is empty.

EMLINK 3468 Maximum link count for afile was
exceeded.

|ESPIPE 3469 | Seek request is not supported for object.

|ENOSYS 3470 |Function not implemented.

|EISDIR 3471 |Specified target is adirectory.

|EROFS 3472 |Read-only file system.

|[EUNKNOWN 3474 |Unknown system state.

|EITERBAD 3475 |Iterator is not valid.

|EITERSTE 3476 |Iterator isin wrong state for operation.

|EHRICLSBAD |3477 |HRI classisnot valid.

|EHRICLBAD 3478 IHRI subclass is not valid.

|EHRITYPBAD |3479 |HRI typeisnot valid.

|ENOTAPPL 3480 |Data requested is not applicable.

|EHRIREQTYP 3481 IHRI request type s not valid.

|[EHRINAMEBAD 3482 IHRI resource name is not valid.

|EDAMAGE 3484 |A damaged object was encountered.

|ELOOP 3485 |A loop exists in the symbolic links.

IENAMETOOLONG 3486 |A path name is too long.

|ENOLCK 3487 INo locks are available.

|[ENOTEMPTY 3488 |Directory is not empty.

|ENOSY SRSC 3489 |System resources are not available.

|[ECONVERT 13490 |Conversion error.

|E2BIG 3491 |Argument list istoo long.

EILSEQ 3492 Conversion stopped due to input character
that does not belong to the input codeset.

|ETYPE 3493 |Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that
was not found or was destroyed.

EBADOBJ 3495 Attempted to reference an object that was
not found, was destroyed, or was
damaged.

EIDXINVAL 3496 Data space index used as a directory is not
valid.

|ESOFTDAMAGE 3497 |Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution
directory.

|EOFFLINE 13499 |Object is suspended.

|EROOBJ 13500 |Object is aread-only object.

EEAHDDSI 3501 Hard damage on extended attribute data
space index.

EEASDDS 3502 Soft damage on extended attribute data
space index.

EEAHDDS 3503 Hard damage on extended attribute data
space.

EEASDDS 3504 Soft damage on extended attribute data
space.

EEADUPRC 3505 | Duplicate extended attribute record.

ELOCKED 3506 Areabeing read from or writtentois

locked.

EFBIG 3507 |Object too large.

EIDRM 3509 The semaphore, shared memory, or
message gqueue identifier is removed from
the system.

ENOMSG 3510 The queue does not contain a message of

the desired type and (msgflg logically
ANDed with IPC_NOWAIT).

|EFILECVT 3511 |File ID conversion of adirectory failed.

EBADFID 3512 A file 1D could not be assigned when
linking an object to a directory.

|ESTALE 3513 |File handle was rejected by server.

|ESRCH 3515 INo such process.

|IENOTSIGINIT 3516 |Process is not enabled for signals.

|ECHILD 3517 INo child process.

|EBADH 13520 IHandleis not valid.

ETOOMANY REFS 3523 The operation would have exceeded the

maximum number of references allowed
for a descriptor.

|ENOTSAFE 3524 |Function is not allowed.

|[EOVERFLOW 3525 |Object istoo large to process.

|EIRNDAMAGE 3526 \Journal is damaged.

|EJRNI NACTIVE |3527 |Journa| isinactive.

|EJRNRCVSPC 3528 |Journal space or system storage error.

|EIRNRMT 3529 |Journal is remote.

|ENEWJRNRCV 3530 INew journal receiver is needed.

|ENEWJRN 3531 INew journal is needed.

|EJOURNALED 3532 |Object already journaled.

|[EJRNENTTOOLONG 3533 |Entry istoo large to send.

|EDATALINK 3534 |Object is adatalink object.

|[ENOTAVAIL 3535 |IASPisnot available.

|ENOTTY 3536 |10 control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its
sort file size limit.

|ETXTBSY 3543 | Text file busy.

|[EASPGRPNOTSET 3544 |ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be
restarted.

Top | UNIX-Type APIs| APIs by category

	Problem Determination APIs (V5R2)
	Table of Contents
	Problem Determination APIs
	Qp0zDump()--Dump Formatted Storage Trace Data
	Qp0zDumpStack()--Dump Formatted Stack Trace Data
	Qp0zDumpTargetStack()--Dump Formatted Stack Trace Data of the Target Thread
	Qp0zLprintf()--Print Formatted Job Log Data
	Qp0zUprintf()--Print Formatted User Trace Data

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

